Sample records for bond length difference

  1. Electronegativity effects and single covalent bond lengths of molecules in the gas phase.

    PubMed

    Lang, Peter F; Smith, Barry C

    2014-06-07

    This paper discusses in detail the calculation of internuclear distances of heteronuclear single bond covalent molecules in the gaseous state. It reviews briefly the effect of electronegativity in covalent bond length. A set of single bond covalent radii and electronegativity values are proposed. Covalent bond lengths calculated by an adapted form of a simple expression (which calculated internuclear separation of different Group 1 and Group 2 crystalline salts to a remarkable degree of accuracy) show very good agreement with observed values. A small number of bond lengths with double bonds as well as bond lengths in the crystalline state are calculated using the same expression and when compared with observed values also give good agreement. This work shows that covalent radii are not additive and that radii in the crystalline state are different from those in the gaseous state. The results also show that electronegativity is a major influence on covalent bond lengths and the set of electronegativity scale and covalent radii proposed in this work can be used to calculate covalent bond lengths in different environments that have not yet been experimentally measured.

  2. Mean bond-length variations in crystals for ions bonded to oxygen

    PubMed Central

    2017-01-01

    Variations in mean bond length are examined in oxide and oxysalt crystals for 55 cation configurations bonded to O2−. Stepwise multiple regression analysis shows that mean bond length is correlated to bond-length distortion in 42 ion configurations at the 95% confidence level, with a mean coefficient of determination (〈R 2〉) of 0.35. Previously published correlations between mean bond length and mean coordination number of the bonded anions are found not to be of general applicability to inorganic oxide and oxysalt structures. For two of 11 ions tested for the 95% confidence level, mean bond lengths predicted using a fixed radius for O2− are significantly more accurate as those predicted using an O2− radius dependent on coordination number, and are statistically identical otherwise. As a result, the currently accepted ionic radii for O2− in different coordinations are not justified by experimental data. Previously reported correlation between mean bond length and the mean electronegativity of the cations bonded to the oxygen atoms of the coordination polyhedron is shown to be statistically insignificant; similar results are obtained with regard to ionization energy. It is shown that a priori bond lengths calculated for many ion configurations in a single structure-type leads to a high correlation between a priori and observed mean bond lengths, but a priori bond lengths calculated for a single ion configuration in many different structure-types leads to negligible correlation between a priori and observed mean bond lengths. This indicates that structure type has a major effect on mean bond length, the magnitude of which goes beyond that of the other variables analyzed here.

  3. Metal-metal bond lengths in complexes of transition metals.

    PubMed

    Pauling, L

    1976-12-01

    In complexes of the transition metals containing clusters of metal atoms the cobalt-cobalt bond lengths are almost always within 1 pm of the single-bond value 246 pm given by the enneacovalent radius of cobalt, whereas most of the observed iron-iron bond lengths are significantly larger than the single-bond value 248 pm, the mean being 264 pm, which corresponds to a half-bond. A simple discussion of the structures of these complexes based on spd hybrid orbitals, the electroneutrality principle, and the partial ionic character of bonds between unlike atoms leads to the conclusion that resonance between single bonds and no-bonds would occur for iron and its congeners but not for cobalt and its congeners, explaining the difference in the bond lengths.

  4. The covalently bound diazo group as an infrared probe for hydrogen bonding environments.

    PubMed

    You, Min; Liu, Liyuan; Zhang, Wenkai

    2017-07-26

    Covalently bound diazo groups are frequently found in biomolecular substrates. The C[double bond, length as m-dash]N[double bond, length as m-dash]N asymmetric stretching vibration (ν as ) of the diazo group has a large extinction coefficient and appears in an uncongested spectral region. To evaluate the solvatochromism of the C[double bond, length as m-dash]N[double bond, length as m-dash]N ν as band for studying biomolecules, we recorded the infrared (IR) spectra of a diazo model compound, 2-diazo-3-oxo-butyric acid ethyl ester, in different solvents. The width of the C[double bond, length as m-dash]N[double bond, length as m-dash]N ν as band was linearly dependent on the Kamlet-Taft solvent parameter, which reflects the polarizability and hydrogen bond accepting ability of the solvent. Therefore, the width of the C[double bond, length as m-dash]N[double bond, length as m-dash]N ν as band could be used to probe these properties for a solvent. We found that the position of the C[double bond, length as m-dash]N[double bond, length as m-dash]N ν as band was linearly correlated with the density of hydrogen bond donor groups in the solvent. We studied the relaxation dynamics and spectral diffusion of the C[double bond, length as m-dash]N[double bond, length as m-dash]N ν as band of a natural amino acid, 6-diazo-5-oxo-l-norleucine, in water using nonlinear IR spectroscopy. The relaxation and spectral diffusion time constants of the C[double bond, length as m-dash]N[double bond, length as m-dash]N ν as band were similar to those of the N[double bond, length as m-dash]N[double bond, length as m-dash]N ν as band. We concluded that the position and width of the C[double bond, length as m-dash]N[double bond, length as m-dash]N ν as band of the diazo group could be used to probe the hydrogen bond donating and accepting ability of a solvent, respectively. These results suggest that the diazo group could be used as a site-specific IR probe for the local hydration environments.

  5. Metal-metal bond lengths in complexes of transition metals*

    PubMed Central

    Pauling, Linus

    1976-01-01

    In complexes of the transition metals containing clusters of metal atoms the cobalt-cobalt bond lengths are almost always within 1 pm of the single-bond value 246 pm given by the enneacovalent radius of cobalt, whereas most of the observed iron-iron bond lengths are significantly larger than the single-bond value 248 pm, the mean being 264 pm, which corresponds to a half-bond. A simple discussion of the structures of these complexes based on spd hybrid orbitals, the electroneutrality principle, and the partial ionic character of bonds between unlike atoms leads to the conclusion that resonance between single bonds and no-bonds would occur for iron and its congeners but not for cobalt and its congeners, explaining the difference in the bond lengths. PMID:16592368

  6. Formation of unexpected silicon- and disiloxane-bridged multiferrocenyl derivatives bearing Si-O-CH[double bond, length as m-dash]CH2 and Si-(CH2)2C(CH3)3 substituents via cleavage of tetrahydrofuran and trapping of its ring fragments.

    PubMed

    Bruña, Sonia; González-Vadillo, Ana Mª; Ferrández, Marta; Perles, Josefina; Montero-Campillo, M Merced; Mó, Otilia; Cuadrado, Isabel

    2017-09-12

    The formation of a family of silicon- and siloxane-bridged multiferrocenyl derivatives carrying different functional groups attached to silicon, including Fc 2 (CH 3 ) 3 C(CH 2 ) 2 SiCH[double bond, length as m-dash]CH 2 (5), Fc 2 (CH 2 [double bond, length as m-dash]CH-O)SiCH[double bond, length as m-dash]CH 2 (6), Fc 2 (OH)SiCH[double bond, length as m-dash]CH 2 (7), Fc 2 (CH 2 [double bond, length as m-dash]CH-O)Si-O-Si(O-CH[double bond, length as m-dash]CH 2 )Fc 2 (8) and Fc 2 (CH 2 [double bond, length as m-dash]CH-O)Si-O-SiFc 3 (9) is described. Silyl vinyl ether molecules 6, 8 and 9 and the heteroleptic vinylsilane 5 resulted from the competing metathesis reaction of lithioferrocene (FcLi), CH 2 [double bond, length as m-dash]CH-OLi or (CH 3 ) 3 C(CH 2 ) 2 Li with the corresponding multifunctional chlorosilane, Cl 3 SiCH[double bond, length as m-dash]CH 2 or Cl 3 Si-O-SiCl 3 . The last two organolithium species have been likely formed in situ by fragmentation of the tetrahydrofuran solvent. Diferrocenylvinyloxyvinylsilane 6 is noteworthy since it represents a rare example of a redox-active silyl mononomer in which two different C[double bond, length as m-dash]C polymerisable groups are directly connected to silicon. The molecular structures of the silicon-containing multiferrocenyl species 5, 6, 8 and 9 have been investigated by single-crystal X-ray diffraction studies, demonstrating the capture and storage processes of two ring fragments resulting from the cleavage of cyclic THF in redox-active and stable crystalline organometallic compounds. From electrochemical studies we found that by changing the anion of the supporting electrolyte from [PF 6 ] - to [B(C 6 F 5 ) 4 ] - , the redox behaviour of tetrametallic disiloxane 8 can be switched from a poorly resolved multistep redox process to four consecutive well-separated one-electron oxidations, corresponding to the sequential oxidation of the four ferrocenyl moieties.

  7. Vibrational overtone spectra of metallocenes: effect of the coordinating metal on the CH bond lengths

    NASA Astrophysics Data System (ADS)

    Billinghurst, Brant E.; Gough, Kathleen M.

    2003-03-01

    The first through third overtone spectra of ferrocene, ruthenocene, nickelocene, cobaltocene, dicyclopentadienyl magnesium and sodium cyclopentadienyl are examined with particular attention to the CH stretching of the cyclopentadienyl. Using semi-empirical correlations between CH bond length and CH stretching frequencies in each overtone region, we have determined that the type of metal atom within a metallocene complex has little effect on the CH bond length in the cyclopentadienyl. The only exception is cobaltocene where there is evidence that the Jahn-Teller effect results in several different CH bond lengths. Evidence that bis(cyclopentadienyl) magnesium is not ionic has been observed.

  8. Sacrificial bonds and hidden length in biomaterials -- a kinetic description of strength and toughness in bone

    NASA Astrophysics Data System (ADS)

    Lieou, Charles K. C.; Elbanna, Ahmed E.; Carlson, Jean M.

    2013-03-01

    Sacrificial bonds and hidden length in structural molecules account for the greatly increased fracture toughness of biological materials compared to synthetic materials without such structural features, by providing a molecular-scale mechanism of energy dissipation. One example of occurrence of sacrificial bonds and hidden length is in the polymeric glue connection between collagen fibrils in animal bone. In this talk, we propose a simple kinetic model that describes the breakage of sacrificial bonds and the revelation of hidden length, based on Bell's theory. We postulate a master equation governing the rates of bond breakage and formation, at the mean-field level, allowing for the number of bonds and hidden lengths to take up non-integer values between successive, discrete bond-breakage events. This enables us to predict the mechanical behavior of a quasi-one-dimensional ensemble of polymers at different stretching rates. We find that both the rupture peak heights and maximum stretching distance increase with the stretching rate. In addition, our theory naturally permits the possibility of self-healing in such biological structures.

  9. How Is the Enamel Affected by Different Orthodontic Bonding Agents and Polishing Techniques?

    PubMed

    Heravi, Farzin; Shafaee, Hooman; Abdollahi, Mojtaba; Rashed, Roozbeh

    2015-03-01

    The objective of this study was to assess the effect of new bonding techniques on enamel surface. Sixty upper central incisors were randomly divided into two equal groups. In the first group, metal brackets were bonded using TransbondXT and, in the second group, the same brackets were bonded with Maxcem Elite. The shear bond strength (SBS) of both agents to enamel was measured and the number and length of enamel cracks before bonding, after debonding and after polishing were compared. The number of visible cracks and the adhesive remnant index (ARI) scores in each group were also measured. There were significantly more enamel cracks in the Transbond XT group after debonding and polishing compared to the Maxcem Elite group. There was no significant difference in the length of enamel cracks between the two groups; but, in each group, a significant increase in the length of enamel cracks was noticeable after debonding. Polishing did not cause any statistically significant change in crack length. The SBS of Maxcem Elite was significantly lower than that of Transbond XT (95% confidence interval). Maxcem Elite offers clinically acceptable bond strength and can thus be used as a routine adhesive for orthodontic purposes since it is less likely to damage the enamel.

  10. Variations in enamel damage after debonding of two different bracket base designs: An in vitro study.

    PubMed

    Ahangar Atashi, Mohammad Hossein; Sadr Haghighi, Amir Hooman; Nastarin, Parastou; Ahangar Atashi, Sina

    2018-01-01

    Background. Bracket base design is a factor influencing shear bond strength. High shear bond strength leads to enamel crack formation during debonding. The aim of this study was to compare enamel damage variations, including the number and length of enamel cracks after debonding of two different base designs. Methods. Eighty-eight extracted human premolars were randomly divided into2 groups (n=44). The teeth in each group were bonded by two types of brackets with different base designs: 80-gauge mesh design versus anchor pylon design with pylons for adhesive retention. The number and length of enamel cracks before bonding and after debonding were evaluated under an optical stereomicroscope ×40 in both groups. Mann-Whitney U test was used to compare the number of cracks between the two groups. ANCOVA was used for comparison of crack lengths after and before debonding in each group and between the two groups. Results. There was a significant increase in enamel crack length and numbers in each group after debonding. There was no significant difference in enamel crack numbers after debonding between the two groups, whereas the length of enamel cracks was significantly greater in anchor pylon base design after debonding. Conclusion. Bracket bases with pylon design for adhesive retention caused more iatrogenic debonding damage to enamel surface.

  11. Influence of metal bonding layer on strain transfer performance of FBG

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Chen, Weimin; Zhang, Peng; Liu, Li; Shu, Yuejie; Wu, Jun

    2013-01-01

    Metal bonding layer seriously affects the strain transfer performance of Fiber Bragg Grating (FBG). Based on the mode of FBG strain transfer, the influence of the length, the thickness, Poisson's ratio, elasticity modulus of metal bonding layer on the strain transfer coefficient of FBG is analyzed by numerical simulation. FBG is packaged to steel wire using metal bonding technology of FBG. The tensile tests of different bonding lengths and elasticity modulus are carried out. The result shows the strain transfer coefficient of FBGs are 0.9848,0.962 and their average strain sensitivities are 1.076 pm/μɛ,1.099 pm/μɛ when the metal bonding layer is zinc, whose lengths are 15mm, 20mm, respectively. The strain transfer coefficient of FBG packaged by metal bonding layer raises 8.9 percent compared to epoxy glue package. The preliminary experimental results show that the strain transfer coefficient increases with the length of metal bonding layer, decreases with the thickness of metal bonding layer and the influence of Poisson's ratio can be ignored. The experiment result is general agreement with the analysis and provides guidance for metal package of FBG.

  12. Evidence from bond lengths and bond angles for enneacovalence of cobalt, rhodium, iridium, iron, ruthenium, and osmium in compounds with elements of medium electronegativity.

    PubMed

    Pauling, L

    1984-03-01

    Enneacovalence of neutral atoms can be achieved for Co, Rh, and Ir by promoting some electrons from the nd orbital to the (n + 1)s and (n + 1)p orbitals and for Fe, Ru, and Os by a similar promotion together with the addition of an electron, which may be provided by an electron pair from a singly bonded carbonyl group or other group. The bond lengths and bond angles are predicted by the theory of enneacovalence to be significantly different for the different transition metals. Recently reported experimental values are shown to be in good agreement with the predicted values, providing support for the theory of enneacovalence and the theory of hybrid sp(3)d(5) bond orbitals.

  13. Evidence from bond lengths and bond angles for enneacovalence of cobalt, rhodium, iridium, iron, ruthenium, and osmium in compounds with elements of medium electronegativity

    PubMed Central

    Pauling, Linus

    1984-01-01

    Enneacovalence of neutral atoms can be achieved for Co, Rh, and Ir by promoting some electrons from the nd orbital to the (n + 1)s and (n + 1)p orbitals and for Fe, Ru, and Os by a similar promotion together with the addition of an electron, which may be provided by an electron pair from a singly bonded carbonyl group or other group. The bond lengths and bond angles are predicted by the theory of enneacovalence to be significantly different for the different transition metals. Recently reported experimental values are shown to be in good agreement with the predicted values, providing support for the theory of enneacovalence and the theory of hybrid sp3d5 bond orbitals. PMID:16593439

  14. Evaluation of enamel damages following orthodontic bracket debonding in fluorosed teeth bonded with adhesion promoter.

    PubMed

    Baherimoghadam, Tahreh; Akbarian, Sahar; Rasouli, Reza; Naseri, Navid

    2016-01-01

    To evaluate shear bond strength (SBS) of the orthodontic brackets bonded to fluorosed and nonfluorosed teeth using Light Bond with and without adhesion promoters and compare their enamel damages following debonding. In this study, 30 fluorosed (Thylstrup and Fejerskov Index = 4-5) and 30 nonfluorosed teeth were randomly distributed between two subgroups according to the bonding materials: Group 1, fluorosed teeth bonded with Light Bond; Group 2, fluorosed teeth bonded with adhesion promoters and Light Bond; Group 3, nonfluorosed teeth bonded with Light Bond; Group 4, nonfluorosed bonded with adhesion promoters and Light Bond. After bonding, the SBS of the brackets was tested with a universal testing machine. Stereomicroscopic evaluation was performed by unbiased stereology in all teeth to determine the amount of adhesive remnants and the number and length of enamel cracks before bonding and after debonding. The data were analyzed using two-way analysis of variance, Kruskal-Wallis, Wilcoxon Signed Rank, and Mann-Whitney test. While fluorosis reduced the SBS of orthodontic bracket (P = 0.017), Enhance Locus Ceruleus LC significantly increased the SBS of the orthodontic bracket in fluorosed and nonfluorosed teeth (P = 0.039). Significant increasing in the number and length of enamel crack after debonding was found in all four groups. There were no significant differences in the length of enamel crack increased after debonding among four groups (P = 0.768) while increasing in the number of enamel cracks after debonding was significantly different among the four groups (P = 0.023). Teeth in Group 2 showed the highest enamel damages among four groups following debonding. Adhesion promoters could improve the bond strength of orthodontic brackets, but conservative debonding methods for decreasing enamel damages would be necessary.

  15. Atomic and molecular analysis highlights the biophysics of unprotonated and protonated retinal in UV and scotopic vision.

    PubMed

    Kubli-Garfias, Carlos; Vázquez-Ramírez, Ricardo; Cabrera-Vivas, Blanca M; Gómez-Reyes, Baldomero; Ramírez, Juan Carlos

    2015-09-26

    During the photoreaction of rhodopsin, retinal isomerizes, rotating the C11[double bond, length as m-dash]C12 π-bond from cis to an all-trans configuration. Unprotonated (UR) or protonated (PR) retinal in the Schiff's base (SB) is related to UV and light vision. Because the UR and PR have important differences in their physicochemical reactivities, we compared the atomic and molecular properties of these molecules using DFT calculations. The C10-C11[double bond, length as m-dash]C12-C13 dihedral angle was rotated from 0° to 180° in 45° steps, giving five conformers, and the following were calculated from them: atomic orbital (AO) contributions to the HOMO and LUMO, atomic charges, bond length, bond order, HOMO, LUMO, hardness, electronegativity, polarizability, electrostatic potential, UV-vis spectra and dipole moment (DM). Similarly, the following were analyzed: the energy profile, hybridization, pyramidalization and the hydrogen-out-of-plane (HOOP) wagging from the H11-C11[double bond, length as m-dash]C12-H12 dihedral angle. In addition, retinal with a water H-bond (HR) in the SB was included for comparison. Interestingly, in the PR, C11 and C12 are totally the LUMO and the HOMO, respectively, and have a large electronegativity difference, which predicts an electron jump in these atoms during photoexcitation. At the same time, the PR showed a longer bond length and lower bond order, with a larger DM, lower HOMO-LUMO gap, lower hardness and higher electronegativity. In addition, the AOs of -45° and -90° conformers changed significantly, from pz to py, during the rotation concomitantly with marked hybridization, smooth pyramidalization and lower HOOP activity. Clearly, the atomic and molecular differences between the UR and PR are overwhelming, including the rotational energy profile and light absorption spectra, which indicates that light absorption of UR and PR is already determined by the retinal characteristics of the SB protonation. The HR-model compared with UR shows a lower energy barrier and a discreet bathochromic effect in the UV region.

  16. Nucleation-dependant chemical bonding paradigm: the effect of rare earth ions on the nucleation of urea in aqueous solution.

    PubMed

    Chen, Xiaoyan; Sun, Congting; Wu, Sixin; Xue, Dongfeng

    2017-03-29

    Rare earth ions can be used to construct a variety of novel structures and are favorable to chemical bonding regulation and design. In this study, the chemical bonding paradigm between rare earth ions (Ln 3+ ) and urea molecules in an aqueous solution can be tracked by the evolution of C[double bond, length as m-dash]O, NH 2 , and CN vibration bands during the urea nucleation stage. Rare earth ions such as La 3+ , Gd 3+ , and Lu 3+ can manipulate the nucleation time of urea via regulating the nucleation-dependant N-C[double bond, length as m-dash]OH-N hydrogen-bonding between urea molecules. Two types of chemical bondings between Ln 3+ and urea molecules have been confirmed, which are Ln 3+ O[double bond, length as m-dash]C-N and Ln 3+ NH 2 -C. Compared with Ln 3+ NH 2 -C, Ln 3+ prefers to coordinate with the O[double bond, length as m-dash]C bond in urea. With a higher concentration of rare earth ions in the solution, some N-C[double bond, length as m-dash]OH-N hydrogen bonds are broken as a consequence of the incorporation of Ln 3+ into the lattice, resulting in the decreased symmetry of local urea molecules in the crystalline nuclei and the consequent Ln 3+ concentration-dependent nucleation time of urea. Moreover, using the ionic electronegativity scale of Ln 3+ , the different effects of La 3+ , Gd 3+ , and Lu 3+ on urea nucleation can be further distinguished. The present study provides basic data for unrevealing the chemical bonding regulation role of rare earth ions in the formation of hydrogen bonded materials, which may give insight into the design and fabrication of novel materials utilizing rare earth ions to adjust the chemical bonding process.

  17. Bond-length distributions for ions bonded to oxygen: results for the non-metals and discussion of lone-pair stereoactivity and the polymerization of PO4

    PubMed Central

    Gagné, Olivier Charles

    2018-01-01

    Bond-length distributions are examined for three configurations of the H+ ion, 16 configurations of the group 14–16 non-metal ions and seven configurations of the group 17 ions bonded to oxygen, for 223 coordination polyhedra and 452 bond distances for the H+ ion, 5957 coordination polyhedra and 22 784 bond distances for the group 14–16 non-metal ions, and 248 coordination polyhedra and 1394 bond distances for the group 17 non-metal ions. H⋯O and O—H + H⋯O distances correlate with O⋯O distance (R 2 = 0.94 and 0.96): H⋯O = 1.273 × O⋯O – 1.717 Å; O—H + H⋯O = 1.068 × O⋯O – 0.170 Å. These equations may be used to locate the hydrogen atom more accurately in a structure refined by X-ray diffraction. For non-metal elements that occur with lone-pair electrons, the most observed state between the n versus n+2 oxidation state is that of highest oxidation state for period 3 cations, and lowest oxidation state for period 4 and 5 cations when bonded to O2−. Observed O—X—O bond angles indicate that the period 3 non-metal ions P3+, S4+, Cl3+ and Cl5+ are lone-pair seteroactive when bonded to O2−, even though they do not form secondary bonds. There is no strong correlation between the degree of lone-pair stereoactivity and coordination number when including secondary bonds. There is no correlation between lone-pair stereoactivity and bond-valence sum at the central cation. In synthetic compounds, PO4 polymerizes via one or two bridging oxygen atoms, but not by three. Partitioning our PO4 dataset shows that multi-modality in the distribution of bond lengths is caused by the different bond-valence constraints that arise for Obr = 0, 1 and 2. For strongly bonded cations, i.e. oxyanions, the most probable cause of mean bond length variation is the effect of structure type, i.e. stress induced by the inability of a structure to follow its a priori bond lengths. For ions with stereoactive lone-pair electrons, the most probable cause of variation is bond-length distortion.

  18. XRD- and infrared-probed anisotropic thermal expansion properties of an organic semiconducting single crystal.

    PubMed

    Mohanraj, J; Capria, E; Benevoli, L; Perucchi, A; Demitri, N; Fraleoni-Morgera, A

    2018-01-17

    The anisotropic thermal expansion properties of an organic semiconducting single crystal constituted by 4-hydroxycyanobenzene (4HCB) have been probed by XRD in the range 120-300 K. The anisotropic thermal expansion coefficients for the three crystallographic axes and for the crystal volume have been determined. A careful analysis of the crystal structure revealed that the two different H-bonds stemming from the two independent, differently oriented 4HCB molecules composing the unit cell have different rearrangement patterns upon temperature variations, in terms of both bond length and bond angle. Linearly Polarized Mid InfraRed (LP-MIR) measurements carried out in the same temperature range, focused on the O-H bond spectral region, confirm this finding. The same LP-MIR measurements, on the basis of a semi-empirical relation and of geometrical considerations and assumptions, allowed calculation of the -CNH-O- hydrogen bond length along the a and b axes of the crystal. In turn, the so-calculated -CNH-O- bond lengths were used to derive the thermal expansion coefficients along the corresponding crystal axes, as well as the volumetric one, using just the LP-MIR data. Reasonable to good agreement with the same values obtained from XRD measurements was obtained. This proof-of-principle opens interesting perspectives about the possible development of a rapid, low cost and industry-friendly assessment of the thermal expansion properties of organic semiconducting single crystals (OSSCs) involving hydrogen bonds.

  19. Theoretical verification and extension of the McKean relationship between bond lengths and stretching frequencies

    NASA Astrophysics Data System (ADS)

    Larsson, J. A.; Cremer, D.

    1999-08-01

    Vibrational spectra contain explicit information on the electronic structure and the bonding situation of a molecule, which can be obtained by transforming the vibrational normal modes of a molecule into appropriate internal coordinate modes, which are localized in a fragment of the molecule and which are associated to that internal coordinate that describes the molecular fragment in question. It is shown that the adiabatic internal modes derived recently (Int. J. Quant. Chem., 67 (1998) 1) are the theoretical counterparts of McKean's isolated CH stretching modes (Chem. Soc. Rev., 7 (1978) 399). Adiabatic CH stretching frequencies obtained from experimental vibrational spectra can be used to determine CH bond lengths with high accuracy. Contrary to the concept of isolated stretching frequencies a generalization to any bond of a molecule is possible as is demonstrated for the CC stretching frequencies. While normal mode frequencies do not provide a basis to determine CC bond lengths and CC bond strengths, this is possible with the help of the adiabatic CC stretching frequencies. Measured vibrational spectra are used to describe different types of CC bonds in a quantitative way. For CH bonds, it is also shown that adiabatic stretching frequency leads to the definition of an ideal dissociation energy, which contrary to the experimentally determined dissociation energy is a direct measure of the bond strength. The difference between measured and ideal dissociation energies gives information on stabilization or destabilization of the radicals formed in a dissociation process.

  20. Crystal structure of catena-poly[[aquadi-n-propyl­tin(IV)]-μ-oxalato

    PubMed Central

    Reichelt, Martin; Reuter, Hans

    2014-01-01

    The title compound, [Sn(C3H7)2(H2O)(C2O4)]n, represents the first diorganotin(IV) oxalate hydrate to be structurally characterized. The tin(IV) atom of the one-dimensional coordination polymer is located on a twofold rotation axis and is coordinated by two chelating oxalate ligands with two slightly different Sn—O bond lengths of 2.290 (2) and 2.365 (2) Å, two symmetry-related n-propyl groups with a Sn—C bond lengths of 2.127 (3) Å, and a water mol­ecule with a Sn—O bond length of 2.262 (2) Å. The coordination polyhedron around the SnIV atom is a slightly distorted penta­gonal bipyramid with a nearly linear axis between the trans-oriented n-propyl groups [C—Sn—C = 176.8 (1)°]. The bond angles between the oxygen atoms of the equatorial plane range from 70.48 (6)° to 76.12 (8)°. A one-dimensional coordination polymer results from the less asymmetric bilateral coordination of the centrosymmetric oxalate anion, inter­nally reflected by two slightly different C—O bond lengths of 1.248 (3) and 1.254 (3) Å. The chains of the polymer propagate parallel to [001] and are held together by hydrogen bonds between water mol­ecules and oxalate anions of neighboring chains, leading to a two-dimensional network parallel to (100). PMID:25249862

  1. HYDROGEN BONDING IN THE METHANOL DIMER

    USDA-ARS?s Scientific Manuscript database

    In this work, two methanol molecules are placed in different arrangements to study hydrogen bonding in carbohydrate materials such as cellulose. Energy was calculated as a function of both hydrogen bond length and angle over wide ranges, using quantum mechanics (QM). The QM wavefunctions are analyze...

  2. Bonding properties and bond activation of ylides: recent findings and outlook.

    PubMed

    Urriolabeitia, Esteban P

    2008-11-14

    The interaction of phosphorus and nitrogen ylides with metallic precursors has been examined from different points of view. The first one is related to the bonding properties of the ylides. Ylides with a unique stabilizing group bond through different atoms (the Calpha or the heteroatoms); while ylides with two stabilizing groups never coordinate through the Calpha atom. In the second section we examine the cause of the stereoselective coordination of bisylides of phosphorus, nitrogen and arsenic, and of mixed bisylides. We describe here the very interesting conformational preferences found in these systems, which have been determined and characterized. The DFT study of these bisylides has allowed for the characterization of strong intramolecular PO and AsO interactions, as well as moderate CHO[double bond, length as m-dash]C hydrogen bonds as the source of these conformational preferences. The third topic is related to the amazing reactivity of phosphorus ylides in bond activation processes. Depending on the nature of the metallic precursors, ylides can behave as sources of carbenes, of phosphine derivatives, of other ylides or of orthometallated complexes through P[double bond, length as m-dash]C, P-C or C-H bond activation reactions.

  3. Electronic communication in phosphine substituted bridged dirhenium complexes - clarifying ambiguities raised by the redox non-innocence of the C4H2- and C4-bridges.

    PubMed

    Li, Yan; Blacque, Olivier; Fox, Thomas; Luber, Sandra; Polit, Walther; Winter, Rainer F; Venkatesan, Koushik; Berke, Heinz

    2016-04-07

    The mononuclear rhenium carbyne complex trans-[Re(C[triple bond, length as m-dash]CSiMe3)([triple bond, length as m-dash]C-Me)(PMe3)4][PF6] (2) was prepared in 90% yield by heating a mixture of the dinitrogen complex trans-[ReCl(N2)(PMe3)4] (1), TlPF6, and an excess of HC[triple bond, length as m-dash]CSiMe3. 2 could be deprotonated with KOtBu to the vinylidene complex trans-[Re(C[triple bond, length as m-dash]CSiMe3)([double bond, length as m-dash]C[double bond, length as m-dash]CH2)(PMe3)4] (3) in 98% yield. Oxidation of 3 with 1.2 equiv. of [Cp2Fe][PF6] at -78 °C gave the Cβ-C'β coupled dinuclear rhenium biscarbyne complex trans-[(Me3SiC[triple bond, length as m-dash]C)(PMe3)4Re[triple bond, length as m-dash]C-CH2-CH2-C[triple bond, length as m-dash]Re(PMe3)4(C[triple bond, length as m-dash]CSiMe3)][PF6]2 (5) in 92% yield. Deprotonation of 5 with an excess of KOtBu in THF produced the diamagnetic trans-[(Me3SiC[triple bond, length as m-dash]C)(PMe3)4Re[double bond, length as m-dash]C[double bond, length as m-dash]CH-CH[double bond, length as m-dash]C[double bond, length as m-dash]Re(PMe3)4(C[triple bond, length as m-dash]CSiMe3)] complex (E-6(S)) in 87% yield with an E-butadienediylidene bridge. Density functional theory (DFT) calculations of E-6(S) confirmed its singlet ground state. The Z-form of 6 (Z-6(S)) could not be observed, which is in accord with its DFT calculated 17.8 kJ mol(-1) higher energy. Oxidation of E-6 with 2 equiv. of [Cp2Fe][PF6] resulted in the stable diamagnetic dicationic trans-[(Me3SiC[triple bond, length as m-dash]C)(PMe3)4Re[triple bond, length as m-dash]C-CH[double bond, length as m-dash]CH-C[triple bond, length as m-dash]Re(PMe3)4(C[triple bond, length as m-dash]CSiMe3)][PF6]2 complex (E-6[PF6]2) with an ethylenylidene dicarbyne structure of the bridge. The paramagnetic mixed-valence (MV) complex E-6[PF6] was obtained by comproportionation of E-6(S) and E-6[PF6]2 or by oxidation of E-6(S) with 1 equiv. of [Cp2Fe][PF6]. The dicationic trans-[(Me3SiC[triple bond, length as m-dash]C)(PMe3)4Re[triple bond, length as m-dash]C-C[triple bond, length as m-dash]C-C[triple bond, length as m-dash]Re(PMe3)4(C[triple bond, length as m-dash]CSiMe3)][PF6]2 (7[PF6]2) complex, attributed a butynedi(triyl) bridge structure, was obtained by deprotonation of E-6[PF6]2 with KOtBu followed by oxidation with 2 equiv. of [Cp2Fe][PF6]. The neutral complex 7 could be accessed best by reduction of 7[PF6]2 with KH in the presence of 18-crown-6. According to DFT calculations 7 possesses two equilibrating electronic states: diamagnetic 7(S) and triplet 7(F) with ferromagnetically coupled spins. The latter is calculated to be 5.2 kcal mol(-1) lower in energy than 7(S). There is experimental evidence that 7(S) prevails in solution. 7 could not be isolated in the crystalline state and is unstable transforming mainly by H-abstraction to give E-6(S). UV-Vis-NIR spectroscopy for the dinuclear rhenium complexes E-6(S), E-6[PF6] and E-6[PF6]2, as well as EPR spectroscopic and variable-temperature magnetization measurements for the MV complex E-6[PF6] were also conducted. Spectro-electrochemical reduction studies on 7[PF6]2 allowed the characterization of the mono- and direduced forms of 7(+) and 7 by means of IR- and UV-Vis-NIR-spectroscopy and revealed the chemical fate of the higher reduced form.

  4. IR spectroscopy as a source of data on bond strengths

    NASA Astrophysics Data System (ADS)

    Finkelshtein, E. I.; Shamsiev, R. S.

    2018-02-01

    The aim of this work is the estimation of double bond strength, namely Cdbnd O bonds in ketones and aldehydes and Cdbnd C bonds in various compounds. By the breaking of these bonds one or both fragments formed are carbenes, for which experimental data on the enthalpies of formation (ΔHf298) are scarce. Thus for the estimation of ΔHf298 of the corresponding carbenes, the empirical equations were proposed based on different approximations. In addition, a quantum chemical calculations of the ΔHf298 values of carbenes were performed, and the data obtained were compared with experimental values and the results of earlier calculations. Equations for the calculation of Cdbnd O bond strengths of different ketones and aldehydes from the corresponding stretching frequencies ν(Cdbnd O) were derived. Using the proposed equations, the strengths of Cdbnd O bonds of 25 ketones and 12 conjugated aldehydes, as well as Cdbnd C bonds of 13 hydrocarbons and 7 conjugated aldehydes were estimated for the first time. Linear correlations of Cdbnd C and Cdbnd O bond strengths with the bond lengths were established, and the equations permitting the estimation of the double bond strengths and lengths with acceptable accuracy were obtained. Also, the strength of central Cdbnd C bond of stilbene was calculated for the first time. The uncertainty of the strengths of double bonds obtained may be regarded as accurate ±10-15 kJ/mol.

  5. Analisis parametrico de las variables que influyen en el comportamiento adherente de las armaduras pretesas en el hormigon

    NASA Astrophysics Data System (ADS)

    Arbelaez Jaramillo, Cesar Augusto

    Prestressed concrete technique through the use of prestressed reinforcement is extended in the precast concrete industry. This technique consists on casting a concrete element over a previously prestressed reinforcement, proceeding to release once the concrete has reached a determined strength so the prestressed stress introduced to the reinforcement be transmitted, by bond, to concrete. The bond behaviour of prestressed reinforcement includes two phenomena: prestress transmission from the reinforcement to concrete and anchorage of the reinforcement. This bond behaviour is characterized by mean of two lengths: transmission length and anchorage length. The good design of these lengths is a basic and fundamental aspect in the project of precast prestressed concrete elements to guaranty the appropriate transmission of prestress and to allow the anchorage of the reinforcement along the structural element service life. The influence of the parameters related to the concrete dosage on the transmission and anchorage lengths of prestressing strands have been analyzed. The ECADA test method has been applied. With this method the operations of transmission of prestress and anchorage of the reinforcement are sequentially done. The transmission and anchorage lengths are determined from the force control supported by the reinforcement testing series of specimens with different embedment lengths. The differentiation of the concepts of anchorage length without slips and with slips has been proposed. The relationship of the parameters of dosage with the bond stress and the registered slips during the processes of transmission and anchorage has been studied. Expressions to value the slips distribution of the reinforcement in the transmission zone and in the anchorage zone have been proposed. A study on the determination of the transmission length from the free reinforcement slip end has been done and the viability to experimentally determine the transmission length from the slips sequence in the pull-out end as a function of the embedment length has been verified. The experimental results have been compared with results and predictions from other authors and standards, and an expression to calculate the transmission length have been proposed. Finally, the bond behaviour of self-compacting concretes has been compared with the bond behaviour of traditional concretes.

  6. On the correlation between bond-length change and vibrational frequency shift in halogen-bonded complexes

    NASA Astrophysics Data System (ADS)

    Wang, Weizhou; Zhang, Yu; Ji, Baoming; Tian, Anmin

    2011-06-01

    The C-Hal (Hal = Cl, Br, or I) bond-length change and the corresponding vibrational frequency shift of the C-Hal stretch upon the C-Hal ⋯Y (Y is the electron donor) halogen bond formation have been determined by using density functional theory computations. Plots of the C-Hal bond-length change versus the corresponding vibrational frequency shift of the C-Hal stretch all give straight lines. The coefficients of determination range from 0.94366 to 0.99219, showing that the correlation between the C-Hal bond-length change and the corresponding frequency shift is very good in the halogen-bonded complexes. The possible effects of vibrational coupling, computational method, and anharmonicity on the bond-length change-frequency shift correlation are discussed in detail.

  7. Sacrificial bonds and hidden length in biomaterials: A kinetic constitutive description of strength and toughness in bone

    NASA Astrophysics Data System (ADS)

    Lieou, Charles K. C.; Elbanna, Ahmed E.; Carlson, Jean M.

    2013-07-01

    Sacrificial bonds and hidden length in structural molecules account for the greatly increased fracture toughness of biological materials compared to synthetic materials without such structural features by providing a molecular-scale mechanism for energy dissipation. One example is in the polymeric glue connection between collagen fibrils in animal bone. In this paper we propose a simple kinetic model that describes the breakage of sacrificial bonds and the release of hidden length, based on Bell's theory. We postulate a master equation governing the rates of bond breakage and formation. This enables us to predict the mechanical behavior of a quasi-one-dimensional ensemble of polymers at different stretching rates. We find that both the rupture peak heights and maximum stretching distance increase with the stretching rate. In addition, our theory naturally permits the possibility of self-healing in such biological structures.

  8. A P-H functionalized Al/P-based frustrated Lewis pair - hydrophosphination of nitriles, ring opening with cyclopropenones and evidence of P[double bond, length as m-dash]C double bond formation.

    PubMed

    Keweloh, Lukas; Aders, Niklas; Hepp, Alexander; Pleschka, Damian; Würthwein, Ernst-Ulrich; Uhl, Werner

    2018-06-12

    Hydroalumination of R-P(H)-C[triple bond, length as m-dash]C-tBu with bulky H-Al[CH(SiMe3)2]2 afforded the new P-H functionalized Al/P-based frustrated Lewis pair R-P(H)-C[[double bond, length as m-dash]C(H)-tBu]-AlR2 [R = CH(SiMe3)2; FLP 7]. A weak adduct of 7 with benzonitrile (8) was detected by NMR spectroscopy, but could not be isolated. tert-Butyl isocyanide afforded a similar, but isolable adduct (9), in which the isocyanide C atom was coordinated to aluminium. The unique reactivity of 7 became evident from its reactions with the heteroatom substituted nitriles PhO-C[triple bond, length as m-dash]N, PhCH2S-C[triple bond, length as m-dash]N and H8C4N-C[triple bond, length as m-dash]N. Hydrophosphination of the C[triple bond, length as m-dash]N triple bonds afforded imines at room temperature which were coordinated to the FLP by Al-N and P-C bonds to yield AlCPCN heterocycles (10 to 12). These processes depend on substrate activation by the FLP. Diphenylcyclopropenone and its sulphur derivative reacted with 7 by addition of the P-H bond to a C-C bond of the strained C3 ring and ring opening to afford the fragment (Z)-Ph-C(H)[double bond, length as m-dash]C(Ph)-C-X-Al (X = O, S). The C-O or C-S groups were coordinated to the FLP to yield AlCPCX heterocycles (13 and 14). The thiocarbonyl derived compound 14 contains an internally stabilized phosphenium cation with a localized P[double bond, length as m-dash]C bond, a trigonal planar coordinated P atom and a short P[double bond, length as m-dash]C distance (168.9 pm). Insight into formation mechanisms, the structural and energetic properties of FLP 7 and compounds 13 and 14 was gained by quantum chemical DFT calculations.

  9. The effect of the length of macro synthetic fibres on their performance in concrete

    NASA Astrophysics Data System (ADS)

    Juhász, K. P.; Kis, V.

    2017-09-01

    Nowadays macro synthetic fibres are able to compete with steel fibres despite their low Youngs Modulus. This is due to their different pull-out mechanism and a larger number of individual fibres per kilo compared to steel fibres. Macro synthetic fibres bond to the concrete along their full length, usually with an embossed surface, while steel fibres are mostly anchored by their hooked ends. If the bond is defined by the length of the embossed surface, logically the longer the synthetic fibre the higher post-crack capacity. In this paper the same type of macro synthetic fibre was researched with different lengths but at the same dosage. The consistency of the fresh concrete together with the quality of the distribution of the fibres have been analysed and compared with the residual strength. After analysing these data the optimum fibre length was able to be determined.

  10. Continuum in the X-Z---Y weak bonds: Z= main group elements.

    PubMed

    Joy, Jyothish; Jose, Anex; Jemmis, Eluvathingal D

    2016-01-15

    The Continuum in the variation of the X-Z bond length change from blue-shifting to red-shifting through zero- shifting in the X-Z---Y complex is inevitable. This has been analyzed by ab-initio molecular orbital calculations using Z= Hydrogen, Halogens, Chalcogens, and Pnicogens as prototypical examples. Our analysis revealed that, the competition between negative hyperconjugation within the donor (X-Z) molecule and Charge Transfer (CT) from the acceptor (Y) molecule is the primary reason for the X-Z bond length change. Here, we report that, the proper tuning of X- and Y-group for a particular Z- can change the blue-shifting nature of X-Z bond to zero-shifting and further to red-shifting. This observation led to the proposal of a continuum in the variation of the X-Z bond length during the formation of X-Z---Y complex. The varying number of orbitals and electrons available around the Z-atom differentiates various classes of weak interactions and leads to interactions dramatically different from the H-Bond. Our explanations based on the model of anti-bonding orbitals can be transferred from one class of weak interactions to another. We further take the idea of continuum to the nature of chemical bonding in general. © 2015 Wiley Periodicals, Inc.

  11. Monte Carlo simulations of lattice models for single polymer systems

    NASA Astrophysics Data System (ADS)

    Hsu, Hsiao-Ping

    2014-10-01

    Single linear polymer chains in dilute solutions under good solvent conditions are studied by Monte Carlo simulations with the pruned-enriched Rosenbluth method up to the chain length N ˜ O(10^4). Based on the standard simple cubic lattice model (SCLM) with fixed bond length and the bond fluctuation model (BFM) with bond lengths in a range between 2 and sqrt{10}, we investigate the conformations of polymer chains described by self-avoiding walks on the simple cubic lattice, and by random walks and non-reversible random walks in the absence of excluded volume interactions. In addition to flexible chains, we also extend our study to semiflexible chains for different stiffness controlled by a bending potential. The persistence lengths of chains extracted from the orientational correlations are estimated for all cases. We show that chains based on the BFM are more flexible than those based on the SCLM for a fixed bending energy. The microscopic differences between these two lattice models are discussed and the theoretical predictions of scaling laws given in the literature are checked and verified. Our simulations clarify that a different mapping ratio between the coarse-grained models and the atomistically realistic description of polymers is required in a coarse-graining approach due to the different crossovers to the asymptotic behavior.

  12. Influence of anatomical, physical, and mechanical properties of diffuse-porous hardwoods on moisture durability of bonded assemblies

    Treesearch

    Daniel J. Yelle; Ashley M. Stirgus

    2016-01-01

    Studying wood adhesive bond durability is challenging because wood is highly variable and heterogeneous at all length scales. In this study, three North American diffuse-porous hardwoods (hard maple, soft maple, and basswood) and their adhesively bonded as-semblies were exposed to wet and dry cyclic tests. Then, their den-sity differences were related to bond...

  13. Bent Bonds and Multiple Bonds.

    ERIC Educational Resources Information Center

    Robinson, Edward A.; Gillespie, Ronald J.

    1980-01-01

    Considers carbon-carbon multiple bonds in terms of Pauling's bent bond model, which allows direct calculation of double and triple bonds from the length of a CC single bond. Lengths of these multiple bonds are estimated from direct measurements on "bent-bond" models constructed of plastic tubing and standard kits. (CS)

  14. Some transition metal complexes derived from mono- and di-ethynyl perfluorobenzenes.

    PubMed

    Armitt, David J; Bruce, Michael I; Gaudio, Maryka; Zaitseva, Natasha N; Skelton, Brian W; White, Allan H; Le Guennic, Boris; Halet, Jean-François; Fox, Mark A; Roberts, Rachel L; Hartl, Frantisek; Low, Paul J

    2008-12-21

    Transition metal alkynyl complexes containing perfluoroaryl groups have been prepared directly from trimethylsilyl-protected mono- and di-ethynyl perfluoroarenes by simple desilylation/metallation reaction sequences. Reactions between Me(3)SiC[triple bond, length as m-dash]CC(6)F(5) and RuCl(dppe)Cp' [Cp' = Cp, Cp*] in the presence of KF in MeOH give the monoruthenium complexes Ru(C[triple bond, length as m-dash]CC(6)F(5))(dppe)Cp' [Cp' = Cp (); Cp* ()], which are related to the known compound Ru(C[triple bond, length as m-dash]CC(6)F(5))(PPh(3))(2)Cp (). Treatment of Me(3)SiC[triple bond, length as m-dash]CC(6)F(5) with Pt(2)(mu-dppm)(2)Cl(2) in the presence of NaOMe in MeOH gave the bis(alkynyl) complex Pt(2)(mu-dppm)(2)(C[triple bond, length as m-dash]CC(6)F(5))(2) (). The Pd(0)/Cu(i)-catalysed reactions between Au(C[triple bond, length as m-dash]CC(6)F(5))(PPh(3)) and Mo( identical withCBr)(CO)(2)Tp* [Tp* = hydridotris(3.5-dimethylpyrazoyl)borate], Co(3)(mu(3)-CBr)(mu-dppm)(CO)(7) or IC[triple bond, length as m-dash]CFc [Fc = (eta(5)-C(5)H(4))FeCp] afford Mo( identical withCC[triple bond, length as m-dash]CC(6)F(5))(CO)(2)Tp* (), Co(3)(mu(3)-CC[triple bond, length as m-dash]CC(6)F(5))(mu-dppm)(CO)(7) () and FcC[triple bond, length as m-dash]CC[triple bond, length as m-dash]CC(6)F(5) (), respectively. The diruthenium complexes 1,4-{Cp'(PP)RuC[triple bond, length as m-dash]C}(2)C(6)F(4) [(PP)Cp' = (PPh(3))(2)Cp (); (dppe)Cp (); (dppe)Cp* ()] are prepared from 1,4-(Me(3)SiC[triple bond, length as m-dash]C)(2)C(6)F(4) in a manner similar to that described for the monoruthenium complexes -. The non-fluorinated complexes 1,4-{Cp'(PP)RuC[triple bond, length as m-dash]C}(2)C(6)H(4) [(PP)Cp' = (PPh(3))(2)Cp (); (dppe)Cp (); (dppe)Cp* ()], prepared for comparison, are obtained from 1,4-(Me(3)SiC[triple bond, length as m-dash]C)(2)C(6)H(4). Spectro-electrochemical studies of the ruthenium aryl and arylene alkynyl complexes - and -, together with DFT-based computational studies on suitable model systems, indicate that perfluorination of the aromatic ring has little effect on the electronic structures of these compounds, and that the frontier orbitals have appreciable diethynylphenylene character. Molecular structure determinations are reported for the fluoroaromatic complexes , , , and .

  15. Sulfide bonded atomic radii

    NASA Astrophysics Data System (ADS)

    Gibbs, G. V.; Ross, N. L.; Cox, D. F.

    2017-09-01

    The bonded radius, r b(S), of the S atom, calculated for first- and second-row non-transition metal sulfide crystals and third-row transition metal sulfide molecules and crystals indicates that the radius of the sulfur atom is not fixed as traditionally assumed, but that it decreases systematically along the bond paths of the bonded atoms with decreasing bond length as observed in an earlier study of the bonded radius of the oxygen atom. When bonded to non-transition metal atoms, r b(S) decreases systematically with decreasing bond length from 1.68 Å when the S atom is bonded to the electropositive VINa atom to 1.25 Å when bonded to the more electronegative IVP atom. In the case of transition metal atoms, rb(S) likewise decreases with decreasing bond length from 1.82 Å when bonded to Cu and to 1.12 Å when bonded to Fe. As r b(S) is not fixed at a given value but varies substantially depending on the bond length and the field strength of the bonded atoms, it is apparent that sets of crystal and atomic sulfide atomic radii based on an assumed fixed radius for the sulfur atom are satisfactory in that they reproduce bond lengths, on the one hand, whereas on the other, they are unsatisfactory in that they fail to define the actual sizes of the bonded atoms determined in terms of the minima in the electron density between the atoms. As such, we urge that the crystal chemistry and the properties of sulfides be studied in terms of the bond lengths determined by adding the radii of either the atomic and crystal radii of the atoms but not in terms of existing sets of crystal and atomic radii. After all, the bond lengths were used to determine the radii that were experimentally determined, whereas the individual radii were determined on the basis of an assumed radius for the sulfur atom.

  16. Origin of the X-Hal (Hal = Cl, Br) bond-length change in the halogen-bonded complexes.

    PubMed

    Wang, Weizhou; Hobza, Pavel

    2008-05-01

    The origin of the X-Hal bond-length change in the halogen bond of the X-Hal...Y type has been investigated at the MP2(full)/6-311++G(d,p) level of theory using a natural bond orbital analysis, atoms in molecules procedure, and electrostatic potential fitting methods. Our results have clearly shown that various theories explaining the nature of the hydrogen bond cannot be applied to explain the origin of the X-Hal bond-length change in the halogen bond. We provide a new explanation for this change. The elongation of the X-Hal bond length is caused by the electron-density transfer to the X-Hal sigma* antibonding orbital. For the blue-shifting halogen bond, the electron-density transfer to the X-Hal sigma* antibonding orbital is only of minor importance; it is the electrostatic attractive interaction that causes the X-Hal bond contraction.

  17. Negative hyperconjugation and red-, blue- or zero-shift in X-Z∙∙∙Y complexes.

    PubMed

    Joy, Jyothish; Jemmis, Eluvathingal D; Vidya, Kaipanchery

    2015-01-01

    A generalized explanation is provided for the existence of the red- and blue-shifting nature of X-Z bonds (Z=H, halogens, chalcogens, pnicogens, etc.) in X-Z∙∙∙Y complexes based on computational studies on a selected set of weakly bonded complexes and analysis of existing literature data. The additional electrons and orbitals available on Z in comparison to H make for dramatic differences between the H-bond and the rest of the Z-bonds. The nature of the X-group and its influence on the X-Z bond length in the parent X-Z molecule largely controls the change in the X-Z bond length on X-Z∙∙∙Y bond formation; the Y-group usually influences only the magnitude of the effects controlled by X. The major factors which control the X-Z bond length change are: (a) negative hyperconjugative donation of electron density from X-group to X-Z σ* antibonding molecular orbital (ABMO) in the parent X-Z, (b) induced negative hyperconjugation from the lone pair of electrons on Z to the antibonding orbitals of the X-group, and (c) charge transfer (CT) from the Y-group to the X-Z σ* orbital. The exchange repulsion from the Y-group that shifts partial electron density at the X-Z σ* ABMO back to X leads to blue-shifting and the CT from the Y-group to the σ* ABMO of X-Z leads to red-shifting. The balance between these two opposing forces decides red-, zero- or blue-shifting. A continuum of behaviour of X-Z bond length variation is inevitable in X-Z∙∙∙Y complexes.

  18. Pi Bond Orders and Bond Lengths

    ERIC Educational Resources Information Center

    Herndon, William C.; Parkanyi, Cyril

    1976-01-01

    Discusses three methods of correlating bond orders and bond lengths in unsaturated hydrocarbons: the Pauling theory, the Huckel molecular orbital technique, and self-consistent-field techniques. (MLH)

  19. Development of a QSAR model for predicting aqueous reaction rate constants of organic chemicals with hydroxyl radicals.

    PubMed

    Luo, Xiang; Yang, Xianhai; Qiao, Xianliang; Wang, Ya; Chen, Jingwen; Wei, Xiaoxuan; Peijnenburg, Willie J G M

    2017-03-22

    Reaction with hydroxyl radicals (˙OH) is an important removal pathway for organic pollutants in the aquatic environment. The aqueous reaction rate constant (k OH ) is therefore an important parameter for fate assessment of aquatic pollutants. Since experimental determination fails to meet the requirement of being able to efficiently handle numerous organic chemicals at limited cost and within a relatively short period of time, in silico methods such as quantitative structure-activity relationship (QSAR) models are needed to predict k OH . In this study, a QSAR model with a larger and wider applicability domain as compared with existing models was developed. Following the guidelines for the development and validation of QSAR models proposed by the Organization for Economic Co-operation and Development (OECD), the model shows satisfactory performance. The applicability domain of the model has been extended and contained chemicals that have rarely been covered in most previous studies. The chemicals covered in the current model contain functional groups including [double bond splayed left]C[double bond, length as m-dash]C[double bond splayed right], -C[triple bond, length as m-dash]C-, -C 6 H 5 , -OH, -CHO, -O-, [double bond splayed left]C[double bond, length as m-dash]O, -C[double bond, length as m-dash]O(O)-, -COOH, -C[triple bond, length as m-dash]N, [double bond splayed left]N-, -NH 2 , -NH-C(O)-, -NO 2 , -N[double bond, length as m-dash]C-N[double bond splayed right], [double bond splayed left]N-N[double bond splayed right], -N[double bond, length as m-dash]N-, -S-, -S-S-, -SH, -SO 3 , -SO 4 , -PO 4 , and -X (F, Cl, Br, and I).

  20. Bond-length distributions for ions bonded to oxygen: alkali and alkaline-earth metals.

    PubMed

    Gagné, Olivier Charles; Hawthorne, Frank Christopher

    2016-08-01

    Bond-length distributions have been examined for 55 configurations of alkali-metal ions and 29 configurations of alkaline-earth-metal ions bonded to oxygen, for 4859 coordination polyhedra and 38 594 bond distances (alkali metals), and for 3038 coordination polyhedra and 24 487 bond distances (alkaline-earth metals). Bond lengths generally show a positively skewed Gaussian distribution that originates from the variation in Born repulsion and Coulomb attraction as a function of interatomic distance. The skewness and kurtosis of these distributions generally decrease with increasing coordination number of the central cation, a result of decreasing Born repulsion with increasing coordination number. We confirm the following minimum coordination numbers: ([3])Li(+), ([3])Na(+), ([4])K(+), ([4])Rb(+), ([6])Cs(+), ([3])Be(2+), ([4])Mg(2+), ([6])Ca(2+), ([6])Sr(2+) and ([6])Ba(2+), but note that some reported examples are the result of extensive dynamic and/or positional short-range disorder and are not ordered arrangements. Some distributions of bond lengths are distinctly multi-modal. This is commonly due to the occurrence of large numbers of structure refinements of a particular structure type in which a particular cation is always present, leading to an over-representation of a specific range of bond lengths. Outliers in the distributions of mean bond lengths are often associated with anomalous values of atomic displacement of the constituent cations and/or anions. For a sample of ([6])Na(+), the ratio Ueq(Na)/Ueq(bonded anions) is partially correlated with 〈([6])Na(+)-O(2-)〉 (R(2) = 0.57), suggesting that the mean bond length is correlated with vibrational/displacement characteristics of the constituent ions for a fixed coordination number. Mean bond lengths also show a weak correlation with bond-length distortion from the mean value in general, although some coordination numbers show the widest variation in mean bond length for zero distortion, e.g. Li(+) in [4]- and [6]-coordination, Na(+) in [4]- and [6]-coordination. For alkali-metal and alkaline-earth-metal ions, there is a positive correlation between cation coordination number and the grand mean incident bond-valence sum at the central cation, the values varying from 0.84 v.u. for ([5])K(+) to 1.06 v.u. for ([8])Li(+), and from 1.76 v.u. for ([7])Ba(2+) to 2.10 v.u. for ([12])Sr(2+). Bond-valence arguments suggest coordination numbers higher than [12] for K(+), Rb(+), Cs(+) and Ba(2+).

  1. CCSDT calculations of molecular equilibrium geometries

    NASA Astrophysics Data System (ADS)

    Halkier, Asger; Jørgensen, Poul; Gauss, Jürgen; Helgaker, Trygve

    1997-08-01

    CCSDT equilibrium geometries of CO, CH 2, F 2, HF, H 2O and N 2 have been calculated using the correlation-consistent cc-pVXZ basis sets. Similar calculations have been performed for SCF, CCSD and CCSD(T). In general, bond lengths decrease when improving the basis set and increase when improving the N-electron treatment. CCSD(T) provides an excellent approximation to CCSDT for bond lengths as the largest difference between CCSDT and CCSD(T) is 0.06 pm. At the CCSDT/cc-pVQZ level, basis set deficiencies, neglect of higher-order excitations, and incomplete treatment of core-correlation all give rise to errors of a few tenths of a pm, but to a large extent, these errors cancel. The CCSDT/cc-pVQZ bond lengths deviate on average only by 0.11 pm from experiment.

  2. Correlation of the bond-length change and vibrational frequency shift in model hydrogen-bonded complexes of pyrrole

    NASA Astrophysics Data System (ADS)

    McDowell, Sean A. C.

    2017-04-01

    An MP2 computational study of model hydrogen-bonded pyrrole⋯YZ (YZ = NH3, NCH, BF, CO, N2, OC, FB) complexes was undertaken in order to examine the variation of the Nsbnd H bond length change and its associated vibrational frequency shift. The chemical hardness of Y, as well as the YZ dipole moment, were found to be important parameters in modifying the bond length change/frequency shift. The basis set effect on the computed properties was also assessed. A perturbative model, which accurately reproduced the ab initio Nsbnd H bond length changes and frequency shifts, was useful in rationalizing the observed trends.

  3. Repeated bonding of fixed retainer increases the risk of enamel fracture.

    PubMed

    Chinvipas, Netrporn; Hasegawa, Yuh; Terada, Kazuto

    2014-01-01

    The aim of this study was to investigate the influences of repeated bonding, using 2 different orthodontic adhesive systems, on the shear bond strength (SBS) and the enamel surface morphology. Sixty premolars were divided into 2 groups (n = 30), and either Transbond XT (T group) or Fuji Ortho LC (F group) adhesives were used. SBS was measured 24 h after bonding, using a universal testing machine. Then, the enamel surfaces were investigated and the mode of failure was described using adhesive remnant index (ARI) scores. After each debonding, 10 teeth from each group were examined by scanning electron microscopy to determine the penetration of adhesives, the length of resin tags, and the state of the enamel surface. The other teeth were subjected to two more bonding/debonding procedures. In T group, the second debonding sequences had significantly higher bond strengths than the other sequences. The length of resin tags was greatest in the second debonding sequence, although there was no significant difference. In F group, the SBS increased with further rebonding and the failure mode tended towards cohesive failure. In both groups, the ARI scores increased with rebonding. Enamel loss could have occurred with both adhesives, although the surfaces appeared unchanged to the naked eye. From this study, we suggest that enamel damage caused by repeated bonding is of concern. To prevent bond failure, we should pay attention to the adhesion method used for bondable retainers.

  4. Bond Strength of Composite CFRP Reinforcing Bars in Timber

    PubMed Central

    Corradi, Marco; Righetti, Luca; Borri, Antonio

    2015-01-01

    The use of near-surface mounted (NSM) fibre-reinforced polymer (FRP) bars is an interesting method for increasing the shear and flexural strength of existing timber members. This article examines the behaviour of carbon FRP (CFRP) bars in timber under direct pull-out conditions. The objective of this experimental program is to investigate the bond strength between composite bars and timber: bars were epoxied into small notches made into chestnut and fir wood members using a commercially-available epoxy system. Bonded lengths varied from 150 to 300 mm. Failure modes, stress and strain distributions and the bond strength of CFRP bars have been evaluated and discussed. The pull-out capacity in NSM CFRP bars at the onset of debonding increased with bonded length up to a length of 250 mm. While CFRP bar’s pull-out was achieved only for specimens with bonded lengths of 150 and 200 mm, bar tensile failure was mainly recorded for bonded lengths of 250 and 300 mm. PMID:28793423

  5. Vector-based model of elastic bonds for simulation of granular solids.

    PubMed

    Kuzkin, Vitaly A; Asonov, Igor E

    2012-11-01

    A model (further referred to as the V model) for the simulation of granular solids, such as rocks, ceramics, concrete, nanocomposites, and agglomerates, composed of bonded particles (rigid bodies), is proposed. It is assumed that the bonds, usually representing some additional gluelike material connecting particles, cause both forces and torques acting on the particles. Vectors rigidly connected with the particles are used to describe the deformation of a single bond. The expression for potential energy of the bond and corresponding expressions for forces and torques are derived. Formulas connecting parameters of the model with longitudinal, shear, bending, and torsional stiffnesses of the bond are obtained. It is shown that the model makes it possible to describe any values of the bond stiffnesses exactly; that is, the model is applicable for the bonds with arbitrary length/thickness ratio. Two different calibration procedures depending on bond length/thickness ratio are proposed. It is shown that parameters of the model can be chosen so that under small deformations the bond is equivalent to either a Bernoulli-Euler beam or a Timoshenko beam or short cylinder connecting particles. Simple analytical expressions, relating parameters of the V model with geometrical and mechanical characteristics of the bond, are derived. Two simple examples of computer simulation of thin granular structures using the V model are given.

  6. Infrared Spectroscopic Investigation on CH Bond Acidity in Cationic Alkanes

    NASA Astrophysics Data System (ADS)

    Matsuda, Yoshiyuki; Xie, Min; Fujii, Asuka

    2016-06-01

    We have demonstrated large enhancements of CH bond acidities in alcohol, ether, and amine cations through infrared predissociation spectroscopy based on the vacuum ultraviolet photoionization detection. In this study, we investigate for the cationic alkanes (pentane, hexane, and heptane) with different alkyl chain lengths. The σ electrons are ejected in the ionization of alkanes, while nonbonding electrons are ejected in ionization of alcohols, ethers, and amines. Nevertheless, the acidity enhancements of CH in these cationic alkanes have also been demonstrated by infrared spectroscopy. The correlations of their CH bond acidities with the alkyl chain lengths as well as the mechanisms of their acidity enhancements will be discussed by comparison of infrared spectra and theoretical calculations.

  7. Identification of the formation of metal-vinylidene interfacial bonds of alkyne-capped platinum nanoparticles by isotopic labeling.

    PubMed

    Hu, Peiguang; Chen, Limei; Deming, Christopher P; Bonny, Lewis W; Lee, Hsiau-Wei; Chen, Shaowei

    2016-10-07

    Stable platinum nanoparticles were prepared by the self-assembly of 1-dodecyne and dodec-1-deuteroyne onto bare platinum colloid surfaces. The nanoparticles exhibited consistent core size and optical properties. FTIR and NMR measurements confirmed the formation of Pt-vinylidene (Pt[double bond, length as m-dash]C[double bond, length as m-dash]CH-) interfacial linkages rather than Pt-acetylide (Pt-C[triple bond, length as m-dash]C-) and platinum-hydride (Pt-H) bonds.

  8. The series of carbon-chain complexes {Ru(dppe)Cp*}₂{μ-(C≡C )x} (x = 4–8, 11): Synthesis, structures, properties and some reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruce, Michael I.; Cole, Marcus L.; Ellis, Benjamin G.

    The construction of a series of compounds {Ru(dppe)Cp*} 2(μ-C 2x) (Ru*-C2x-Ru*, x = 4–8, 11)) is described. A direct reaction between RuCl(dppe)Cp* and Me 3Si(Ctriple bond; length of mdashC) 4SiMe 3 afforded Ru*-C8-Ru* in 89% yield. The Pd(0)/Cu(I)-catalysed coupling of Ru{Ctriple bond; length of mdashCCtriple bond; length of mdashCAu(PPh 3)}(dppe)Cp*Ru*-C4-Au (2 equiv.) with diiodoethyne gave Ru*-C10-Ru* (64%), or of 1 equiv. with I(Ctriple bond; length of mdashC) 3I gave Ru*-C14-Ru* (36%); similarly, Ru{(Ctriple bond; length of mdashC) 4Au(PPh 3)}(dppe)Cp*Ru*-C8-Au and I(Ctriple bond; length of mdashC) 3I gave Ru*-C22-Ru* (12%). Desilylation (TBAF) of Ru{(Ctriple bond; length of mdashC)xSiMe 3}(dppe)Cp*Ru*-C2x-Si (x =more » 3, 4) followed by oxidative coupling [Cu(OAc) 2/py] gave Ru*-C12-Ru* (82%) and Ru*-C16-Ru* (58%), respectively. Similar oxidative coupling of Ru(Ctriple bond; length of mdashCCtriple bond; length of mdashCH)(dppe)Cp* was a second route to Ru*-C8-Ru* (82%). Appropriate precursors are already known, or obtained by coupling of Ru*-C2x-Si (x = 2, 4) with AuCl(PPh 3)/NaOMe [Ru*-C4-Au, 95%; Ru*-C8-Au, 74%] or from Pd(0)/Cu(I) catalysed coupling of Ru*-C2x-Au (x = 2, 3) with I(Ctriple bond; length of mdashC) 2SiMe 3 (Ru*-C8-Si, 64%; Ru*-C10-Si, 2%). Reactions between Ru*-C2x-Ru* (x = 3, 4) and Fe 2(CO) 9 gave {Fe 3(CO) 9}{μ 3-CCtriple bond; length of mdashC[Ru(dppe)Cp*]} 2Fe(C 3-Ru*) 2 and {Fe 3(CO) 9}{μ 3-CCtriple bond; length of mdashC[Ru(dppe)Cp*]}{μ 3-C(Ctriple bond; length of mdashC) 2[Ru(dppe)Cp*]} Fe(C 3-Ru*)(C 5-Ru*), respectively. The redox properties of the series of complexes with 2x = 2–16 were measured and showed a diminution of the separation of the first two oxidation potentials, ΔE = E 2 - E 1, with increasing carbon chain length. The X-ray-determined molecular structures of Ru*-C8-Si, Ru*-C8-Ru*, Ru*-C14-Ru* (two C 6H 6 solvates), {Ru(PPh 3) 2Cp} 2{μ-(Ctriple bond; length of mdashC) 4}·4CHCl 3Ru-C 8-Ru·4CHCl 3 and of Fe(C 3-Ru*) 2 and Fe(C 3-Ru*)(C 5-Ru*) are reported.« less

  9. The Quest for Greater Chemical Energy Storage II: On the Relationship between Bond Length and Bond Energy

    NASA Astrophysics Data System (ADS)

    Lindsay, Michael; Buszek, Robert; Boatz, Jerry; Fajardo, Mario

    2017-06-01

    This is the second in a series of papers aimed at exploring the fundamental limitations to chemical energy storage. In the previous work, we summarized the lessons learned in various high energy density materials (HEDM) programs, the different degrees of freedom in which to store energy in materials, and the fundamental limitations and orders of magnitude of the energies involved.1 That discussion focused almost exclusively on the topic of molar energy density (J/mol) from the perspective of the energy of oxidation of the elements and Fritz Zwicky's ``free atom limit.''2 In this talk, we extend the analysis by considering a different, though equally important, aspect of the energy density calculation: the volumetric density of the energetic material. Specifically, we examine how the distances between individual atoms (i.e. intra- and inter-molecular bond lengths) are coupled to (in fact, approximately inversely proportional to) the energy stored in the bonds of the molecule. This relationship further limits the chemical energy that theoretically can be stored in a material below that predicted by the ``free atom limit.'' This talk will give specific examples of the trends with different bonding motifs and the implications to the fundamental limitations of chemical energy storage.

  10. Vibrational studies of phosphoryl transfer enzymes: ras- p21(*)magnesium-GTP and Myosin S1(*)magnesium-ADP- vanadate

    NASA Astrophysics Data System (ADS)

    Wang, Jianghua

    1999-07-01

    We have measured the Raman spectra of monophosphate compounds in aqueous solution. The measured frequencies were correlated with P••O valence bond order by using a modification of the Hardcastle- Wachs procedure. The P••O bond order and bond length in phosphates can be determined from vibrational spectra by using the derived bond order/stretching frequency correlation and the bond length/bond order correlation of Brown and Wu. The Raman and infrared spectra of guanosine 5'-diphosphate (GDP) and guanosine 5'-triphosphate (GTP) in aqueous solution were also examined. Frequency shifts were observed as Mg2+ complexes with GDP and GTP in aqueous solution. These results suggested that Mg2+ binds to GDP in a bidentate manner to the α,β P••O bonds and in a tridentate manner to the α,β and γ P••O bonds of Mg•GTP . We have analyzed the previously obtained isotope edited Raman difference spectra of 1:1 complexes of Mg•GDP and Mg•GTP in ras-p21. Frequency changes of the phosphate groups were observed when Mg•GDP , Mg•GTP bind to the protein. Employing both the previous empirical relationships between bond orders/lengths and frequencies as well as vibrational analysis from ab initio calculations, the spectral changes can be explained by the change of the Mg2+ binding sites and hydrogen-bonding. Implications of these structural results for the reaction mechanism of GTP hydrolysis catalyzed by the GTPase are discussed. We have analyzed previously obtained isotope edited Raman difference spectra of the non-bridging V••O bonds of vanadates, both in solution, and when bound to the myosin S1•MgADP complex. By use of ab initio calculations on a model of the vanadate binding site in myosin, the angles between the non-bridging V••O bonds and between these bonds and the apical bonds in the myosin S1•MgADP -Vi complex were determined. The summed bond order of the two apical bonds between the attacking and leaving group oxygens with the central vanadium ion in the S1•MgADP -Vi complex was found to increase only slightly compared with the bond order of the ester V-O bond of a monoester vanadate model compound in solution, suggesting an SN2 like mechanism for the phosphoryl transfer reaction catalyzed by myosin.

  11. Bonding durability of dual-curing composite core material with different self-etching adhesive systems in a model complete vertical root fracture reconstruction.

    PubMed

    Waidyasekera, Kanchana; Nikaido, Toru; Weerasinghe, Dinesh; Nurrohman, Hamid; Tagami, Junji

    2012-04-01

    This study evaluated a dual-curing composite along with different dentin adhesive systems for 1 year under water storage, as a new bonding method of root fragments in complete vertical root fracture. Bovine root fragments were bonded with the dual-curing resin composite Clearfil DC Core Automix (DCA) and one of three adhesive systems: two-step self-etching adhesive Clearfil SE Bond (SE), one-step self-etching adhesive Tokuyama Bond Force (BF), one-step dual-curing self-etching adhesive Clearfil DC Bond (DC). Microtensile bond strength (µTBS)/ultimate tensile bond strength (UTS), FE-SEM ultramorphology of fracture modes, and adhesive dentin interface were observed after water storage for periods of up to one year. The data were analyzed with two-way ANOVA. µTBS was influenced by "dentin adhesive system" (F = 324.455, p < 0.001) and "length of water storage" (F = 8.470, p < 0.001). SE yielded significantly higher µTBS, regardless of storage period (p < 0.05) and maintained the initial µTBS without a significant change after 1 year of water storage (p > 0.05). From 24 h to 1 month, BF showed significantly higher bond strength than DC. UTS of DCA was influenced only by the curing mode of the material (F = 5.051, p = 0.027), but not by the length of water storage (F = 0.053, p > 0.05). Two-step self-etching adhesive systems and dual-curing composite core material can be considered as a suitable bonding method for complete root fractures.

  12. Origin of anisotropic negative Poisson's ratio in graphene.

    PubMed

    Qin, Zhenzhen; Qin, Guangzhao; Hu, Ming

    2018-06-07

    Negative Poisson's ratio (NPR) in auxetic materials is of great interest due to the typically enhanced toughness, shear resistance, and sound and vibration absorption, which enables plenty of novel applications such as aerospace and defense. Insight into the mechanism underlying NPR is significant to the design of auxetic nanomaterials and nanostructures. However, the analysis of NPR in previous studies mainly remains on the level of the evolution of geometry parameters, such as bond length and bond angle, while a thorough and fundamental understanding is lacking. In this paper, we report anisotropic differential NPR in graphene for uniaxial strains applied along both zigzag and armchair directions based on first-principles calculations. The mechanism underlying the emergence of NPR in graphene (evolution of bond length and bond angle) is found to be different from the conclusions from previous classical molecular dynamics simulations with empirical potential. We propose that the decentralized electron localization function (ELF) driven by strain leads to ELF coupling between different types of bonds, which results in the counter-intuitive anomalous increase of the bond angle and thus the emergence of NPR in graphene. Moreover, the NPR phenomenon can be anticipated to emerge in other nanomaterials or nanostructures with a similar honeycomb structure as that of graphene, where the ELF coupling would also be possible.

  13. Sensitivity of hydrogen bonds of DNA and RNA to hydration, as gauged by 1JNH measurements in ethanol-water mixtures.

    PubMed

    Manalo, Marlon N; Kong, Xiangming; LiWang, Andy

    2007-04-01

    Hydrogen-bond lengths of nucleic acids are (1) longer in DNA than in RNA, and (2) sequence dependent. The physicochemical basis for these variations in hydrogen-bond lengths is unknown, however. Here, the notion that hydration plays a significant role in nucleic acid hydrogen-bond lengths is tested. Watson-Crick N1...N3 hydrogen-bond lengths of several DNA and RNA duplexes are gauged using imino 1J(NH) measurements, and ethanol is used as a cosolvent to lower water activity. We find that 1J(NH) values of DNA and RNA become less negative with added ethanol, which suggests that mild dehydration reduces hydrogen-bond lengths even as the overall thermal stabilities of these duplexes decrease. The 1J(NH) of DNA are increased in 8 mol% ethanol to those of RNA in water, which suggests that the greater hydration of DNA plays a significant role in its longer hydrogen bonds. The data also suggest that ethanol-induced dehydration is greater for the more hydrated G:C base pairs and thereby results in greater hydrogen-bond shortening than for the less hydrated A:T/U base pairs of DNA and RNA.

  14. The effect of redox-active cyanomanganese(I) ligands on intramolecular electron transfer to, and alkyne alignment in, M(CO)(RC[triple bond, length as m-dash]CR)Tp' (M = Mo or W) units.

    PubMed

    Adams, Christopher J; Connelly, Neil G; Onganusorn, Sriwipha

    2009-04-28

    The complexes [(eta-C(5)Me(5))(ON)LMn(micro-CN)M(CO)(RC[triple bond, length as m-dash]CR)Tp'](+) (L = CNXyl, M = Mo; L = CNBu(t), M = Mo or W, R = Ph or Me) and trans- or cis-[(dppm){(EtO)(3)P}(OC)(2)Mn(micro-CN)M(CO)(PhC[triple bond, length as m-dash]CPh)Tp'](+), and their linkage isomers [(eta-C(5)Me(5))(ON)LMn(micro-NC)M(CO)(PhC[triple bond, length as m-dash]CPh)Tp'](+) and trans- or cis-[(dppm){(EtO)(3)P}(OC)(2)Mn(micro-NC)M(CO)(PhC[triple bond, length as m-dash]CPh)Tp'](+), undergo two one-electron oxidations. The complexes [(eta-C(5)Me(5))(ON)LMn(micro-XY)M(CO)(RC[triple bond, length as m-dash]CR)Tp'](+) (XY = CN or NC) are oxidised first at the N-bound metal centre and then at the C-bound centre. For [(dppm){(EtO)(3)P}(OC)(2)Mn(micro-XY)M(CO)(PhC[triple bond, length as m-dash]CPh)Tp'](+), the trans isomers are first oxidised at manganese whereas the cis isomers are first oxidised at M. Thus, the order of one-electron oxidation of the two series of binuclear monocations is influenced by linkage isomerisation of the cyanide bridge and cis-trans isomerisation of the Mn(CO)(2) group. IR spectroscopic changes on reaction of Ag(+) with [(eta-C(5)Me(5))(ON)(Bu(t)NC)Mn(micro-CN)W(CO)(MeC[triple bond, length as m-dash]CMe)Tp'](+) are consistent with one-electron at the N-bound tungsten centre. Likewise, trans-[(dppm){(EtO)(3)P}(OC)(2)Mn(micro-NC)M(CO)(PhC[triple bond, length as m-dash]CPh)Tp'](+) (M = Mo or W) give the stable dications [(dppm){(EtO)(3)P}(OC)(2)Mn(micro-NC)M(CO)(PhC[triple bond, length as m-dash]CPh)Tp'](2+). Significantly longer Mn-P bond distances in trans-[(dppm){(EtO)(3)P}(OC)(2)Mn(micro-NC)Mo(CO)(PhC[triple bond, length as m-dash]CPh)Tp'](2+) than in trans-[(dppm){(EtO)(3)P}(OC)(2)Mn(micro-NC)Mo(CO)(PhC[triple bond, length as m-dash]CPh)Tp'](+) are consistent with one-electron oxidation first at Mn(I); the alignment of the (CN)Mn(CO)(2){P(OEt)(3)}(dppm) fragment relative to the alkyne in trans-[(dppm){(EtO)(3)P}(OC)(2)Mn(micro-NC)Mo(CO)(PhC[triple bond, length as m-dash]CPh)Tp'](+) suggests it acts as a pi-acceptor, in contrast to related species such as trans-(NC)Mn(CO)(2){P(OEt)(3)}(dppm) and (NC)Mn(NO){P(OPh)(3)}(pi-C(5)H(4)Me) which behave as simple N-donors.

  15. Nonmetallic electronegativity equalization and point-dipole interaction model including exchange interactions for molecular dipole moments and polarizabilities.

    PubMed

    Smalø, Hans S; Astrand, Per-Olof; Jensen, Lasse

    2009-07-28

    The electronegativity equalization model (EEM) has been combined with a point-dipole interaction model to obtain a molecular mechanics model consisting of atomic charges, atomic dipole moments, and two-atom relay tensors to describe molecular dipole moments and molecular dipole-dipole polarizabilities. The EEM has been phrased as an atom-atom charge-transfer model allowing for a modification of the charge-transfer terms to avoid that the polarizability approaches infinity for two particles at infinite distance and for long chains. In the present work, these shortcomings have been resolved by adding an energy term for transporting charges through individual atoms. A Gaussian distribution is adopted for the atomic charge distributions, resulting in a damping of the electrostatic interactions at short distances. Assuming that an interatomic exchange term may be described as the overlap between two electronic charge distributions, the EEM has also been extended by a short-range exchange term. The result is a molecular mechanics model where the difference of charge transfer in insulating and metallic systems is modeled regarding the difference in bond length between different types of system. For example, the model is capable of modeling charge transfer in both alkanes and alkenes with alternating double bonds with the same set of carbon parameters only relying on the difference in bond length between carbon sigma- and pi-bonds. Analytical results have been obtained for the polarizability of a long linear chain. These results show that the model is capable of describing the polarizability scaling both linearly and nonlinearly with the size of the system. Similarly, a linear chain with an end atom with a high electronegativity has been analyzed analytically. The dipole moment of this model system can either be independent of the length or increase linearly with the length of the chain. In addition, the model has been parametrized for alkane and alkene chains with data from density functional theory calculations, where the polarizability behaves differently with the chain length. For the molecular dipole moment, the same two systems have been studied with an aldehyde end group. Both the molecular polarizability and the dipole moment are well described as a function of the chain length for both alkane and alkene chains demonstrating the power of the presented model.

  16. Bond length variation in Zn substituted NiO studied from extended X-ray absorption fine structure

    NASA Astrophysics Data System (ADS)

    Singh, S. D.; Poswal, A. K.; Kamal, C.; Rajput, Parasmani; Chakrabarti, Aparna; Jha, S. N.; Ganguli, Tapas

    2017-06-01

    Bond length behavior for Zn substituted NiO is determined through extended x-ray absorption fine structure (EXAFS) measurements performed at ambient conditions. We report bond length value of 2.11±0.01 Å for Zn-O of rock salt (RS) symmetry, when Zn is doped in RS NiO. Bond length for Zn substituted NiO RS ternary solid solutions shows relaxed behavior for Zn-O bond, while it shows un-relaxed behavior for Ni-O bond. These observations are further supported by first-principles calculations. It is also inferred that Zn sublattice remains nearly unchanged with increase in lattice parameter. On the other hand, Ni sublattice dilates for Zn compositions up to 20% to accommodate increase in the lattice parameter. However, for Zn compositions more than 20%, it does not further dilate. It has been attributed to the large disorder that is incorporated in the system at and beyond 20% of Zn incorporation in the cubic RS lattice of ternary solid solutions. For these large percentages of Zn incorporation, the Ni and the Zn atoms re-arrange themselves microscopically about the same nominal bond length rather than systematically increase in magnitude to minimize the energy of the system. This results in an increase in the Debye-Waller factor with increase in the Zn concentration rather than a systematic increase in the bond lengths.

  17. A vector-based representation of the chemical bond for the substituted torsion of biphenyl

    NASA Astrophysics Data System (ADS)

    Li, Jiahui; Huang, Weijie; Xu, Tianlv; Kirk, Steven R.; Jenkins, Samantha

    2018-06-01

    We use a new interpretation of the chemical bond within QTAIM, the bond-path framework set B = {p, q, r} with associated linkages with lengths H∗, H and the familiar bond-path length is used to describe a torsion θ, 0.0° ≤ θ < 22.0° of para-substituted biphenyl, C12H9-x, x = N(CH3)2, NH2, CH3, CHO, CN, NO2. We include consideration of the H--H bonding interactions and find that the lengths H > H∗ that we explain in terms of the most and least preferred directions of charge density accumulation. We also consider the fractional eigenvector-following path with lengths Hf and Hfθmin.

  18. Extreme oxatriquinanes and a record C-O bond length

    NASA Astrophysics Data System (ADS)

    Gunbas, Gorkem; Hafezi, Nema; Sheppard, William L.; Olmstead, Marilyn M.; Stoyanova, Irini V.; Tham, Fook S.; Meyer, Matthew P.; Mascal, Mark

    2012-12-01

    Oxatriquinanes are fused, tricyclic oxonium ions that are known to have exceptional stability compared to simple alkyl oxonium salts. C-O bonds in ethers are generally ˜1.43 Å in length, but oxatriquinane has been found to have C-O bond lengths of 1.54 Å. A search of the Cambridge Structural Database turned up no bona fide C-O bond length exceeding this value. Computational modelling of oxatriquinane alongside other alkyl oxonium ions indicated that the electronic consequences of molecular strain were primarily responsible for the observed bond elongation. We also show that substitution of the oxatriquinane ring system with alkyl groups of increasing steric demand pushes the C-O bond to unheard of distances, culminating in a tert-butyl derivative at a predicted 1.60 Å. Chemical synthesis and an X-ray crystallographic study of these compounds validated the results of the modelling work and, finally, an extraordinary 1.622 Å C-O bond was observed in 1,4,7-tri-tert-butyloxatriquinane.

  19. 1 mil gold bond wire study.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huff, Johnathon; McLean, Michael B.; Jenkins, Mark W.

    2013-05-01

    In microcircuit fabrication, the diameter and length of a bond wire have been shown to both affect the current versus fusing time ratio of a bond wire as well as the gap length of the fused wire. This study investigated the impact of current level on the time-to-open and gap length of 1 mil by 60 mil gold bond wires. During the experiments, constant current was provided for a control set of bond wires for 250ms, 410ms and until the wire fused; non-destructively pull-tested wires for 250ms; and notched wires. The key findings were that as the current increases, themore » gap length increases and 73% of the bond wires will fuse at 1.8A, and 100% of the wires fuse at 1.9A within 60ms. Due to the limited scope of experiments and limited data analyzed, further investigation is encouraged to confirm these observations.« less

  20. An unusual alkylidyne homologation.

    PubMed

    Han, Yong-Shen; Hill, Anthony F; Kong, Richard Y

    2018-02-27

    The reaction of [W([triple bond, length as m-dash]CH)Br(CO) 2 (dcpe)] (dcpe = 1,2-bis(dicyclohexylphosphino)ethane) with t BuLi and SiCl 4 affords the trichlorosilyl ligated neopentylidyne complex [W([triple bond, length as m-dash]C t Bu)(SiCl 3 )(CO) 2 (dcpe)]. This slowly reacts with H 2 O to afford [W([triple bond, length as m-dash]CCH 2 t Bu)Cl 3 (dcpe)] and ultimately H 2 C[double bond, length as m-dash]CH t Bu via an unprecedented alkylidyne homologation in which coordinated CO is the source of the additional carbon atom with potential relevance to the Fischer-Tropsch process.

  1. Dental plaque microcosm response to bonding agents containing quaternary ammonium methacrylates with different chain lengths and charge densities

    PubMed Central

    Zhou, Han; Li, Fang; Weir, Michael D.; Xu, Hockin H.K.

    2013-01-01

    Objectives Antibacterial bonding agents are promising to combat bacteria and caries at tooth-restoration margins. The objectives of this study were to incorporate new quaternary ammonium methacrylates (QAMs) to bonding agent and determine the effects of alkyl chain length (CL) and quaternary amine charge density on dental plaque microcosm bacteria response for the first time. Methods Six QAMs were synthesized with CL = 3, 6, 9, 12, 16, 18. Each QAM was incorporated into Scotchbond Multi-purpose (SBMP). To determine the charge density effect, dimethylaminododecyl methacrylate (DMAHDM, CL = 16) was mixed into SBMP at mass fraction = 0%, 2.5%, 5%, 7.5%, 10%. Charge density was measured using a fluorescein dye method. Dental plaque microcosm using saliva from ten donors was tested. Bacteria were inoculated on resins. Early-attachment was tested at 4 hours. Biofilm colony-forming units (CFU) were measured at 2 days. Results Incorporating QAMs into SBMP reduced bacteria early-attachment. Microcosm biofilm CFU for CL = 16 was 4 log lower than SBMP control. Charge density of bonding agent increased with DMAHDM content. Bacteria early-attachment decreased with increasing charge density. Biofilm CFU at 10% DMAHDM was reduced by 4 log. The killing effect was similarly-strong against total microorganisms, total streptococci, and mutans streptococci. Conclusions Increasing alkyl chain length and charge density of bonding agent was shown for the first time to decrease microcosm bacteria attachment and reduce biofilm CFU by 4 orders of magnitude. Novel antibacterial resins with tailored chain length and charge density are promising for wide applications in bonding, cements, sealants and composites to inhibit biofilms and caries. PMID:23948394

  2. Dental plaque microcosm response to bonding agents containing quaternary ammonium methacrylates with different chain lengths and charge densities.

    PubMed

    Zhou, Han; Li, Fang; Weir, Michael D; Xu, Hockin H K

    2013-11-01

    Antibacterial bonding agents are promising to combat bacteria and caries at tooth-restoration margins. The objectives of this study were to incorporate new quaternary ammonium methacrylates (QAMs) to bonding agent and determine the effects of alkyl chain length (CL) and quaternary amine charge density on dental plaque microcosm bacteria response for the first time. Six QAMs were synthesized with CL=3, 6, 9, 12, 16, 18. Each QAM was incorporated into Scotchbond multi-purpose (SBMP). To determine the charge density effect, dimethylaminododecyl methacrylate (DMAHDM, CL=16) was mixed into SBMP at mass fraction=0%, 2.5%, 5%, 7.5%, 10%. Charge density was measured using a fluorescein dye method. Dental plaque microcosm using saliva from ten donors was tested. Bacteria were inoculated on resins. Early-attachment was tested at 4h. Biofilm colony-forming units (CFU) were measured at 2 days. Incorporating QAMs into SBMP reduced bacteria early-attachment. Microcosm biofilm CFU for CL=16 was 4 log lower than SBMP control. Charge density of bonding agent increased with DMAHDM content. Bacteria early-attachment decreased with increasing charge density. Biofilm CFU at 10% DMAHDM was reduced by 4 log. The killing effect was similarly-strong against total microorganisms, total streptococci, and mutans streptococci. Increasing alkyl chain length and charge density of bonding agent was shown for the first time to decrease microcosm bacteria attachment and reduce biofilm CFU by 4 orders of magnitude. Novel antibacterial resins with tailored chain length and charge density are promising for wide applications in bonding, cements, sealants and composites to inhibit biofilms and caries. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Molecular dynamics simulations of AP/HMX composite with a modified force field.

    PubMed

    Zhu, Wei; Wang, Xijun; Xiao, Jijun; Zhu, Weihua; Sun, Huai; Xiao, Heming

    2009-08-15

    An all-atom force field for ammonium perchlorate (AP) is developed with the framework of pcff force field. The structural parameters of AP obtained with the modified force field are in good agreement with experimental values. Molecular dynamics (MD) simulations have been performed to investigate AP/HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazocane) composite at different temperatures. The binding energies, thermal expansion coefficient, and the trigger bond lengths of HMX in the AP/HMX composite have been obtained. The binding energies of the system increase slightly with temperature increasing, peak at 245K, and then gradually decrease. The volume thermal expansion coefficient of the AP/HMX composite has been derived from the volume variation with temperature. As the temperature rises, the maximal lengths of the trigger bond N-NO(2) of HMX increase gradually. The simulated results indicate that the maximal length of trigger bond can be used as a criterion for judging the sensitivity of energetic composite.

  4. Correlation of bond strength with surface roughness using a new roughness measurement technique.

    PubMed

    Winkler, M M; Moore, B K

    1994-07-01

    The correlation between shear bond strength and surface roughness was investigated using new surface measurement methods. Bonding agents and associated resin composites were applied to set amalgam after mechanically roughening its surface. Surface treatments were noe (as set against glass), 80 grit, and 600 grit abrasive paper. Surface roughness (R(a) as measured parallel and perpendicular (+) to the direction of the polishing scratches and true profile length were measured. A knife-edge was applied (rate = 2.54 mm/min) at the bonding agent/amalgam interface of each sample until failure. Coefficients of determination for mean bond strength vs either roughness (R(a), of profile length were significantly higher for measurements in parallel directions than for those measurements in (+) directions. The shear bond strength to set amalgam for a PENTA-containing adhesives system (L.D. Caulk Division) was not significantly different from that of a PENTA-free adhesive (3M Dental Products Division), even though PENTA has been reported to increase bond strength to nonprecious metals. The shear bond strength of resin composite to amalgam is correlated to surface roughness when it is measured parallel to the polishing scratches. This correlation is significantly lower when surface roughness is measured in the typical manner, perpendicular to the polishing scratches.

  5. Bond breaking in epoxy systems: A combined QM/MM approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barr, Stephen A.; Ecker, Allison M.; Berry, Rajiv J., E-mail: Rajiv.Berry@us.af.mil

    2016-06-28

    A novel method to combine quantum mechanics (QM) and molecular mechanics has been developed to accurately and efficiently account for covalent bond breaking in polymer systems under high strain without the use of predetermined break locations. Use of this method will provide a better fundamental understanding of the mechano-chemical origins of fracture in thermosets. Since classical force fields cannot accurately account for bond breaking, and QM is too demanding to simulate large systems, a hybrid approach is required. In the method presented here, strain is applied to the system using a classical force field, and all bond lengths are monitored.more » When a bond is stretched past a threshold value, a zone surrounding the bond is used in a QM energy minimization to determine which, if any, bonds break. The QM results are then used to reconstitute the system to continue the classical simulation at progressively larger strain until another QM calculation is triggered. In this way, a QM calculation is only computed when and where needed, allowing for efficient simulations. A robust QM method for energy minimization has been determined, as well as appropriate values for the QM zone size and the threshold bond length. Compute times do not differ dramatically from classical molecular mechanical simulations.« less

  6. On the nature of the {SO2-4}/{Ag(111) } and {SO2-4}/{Au(111) } surface bonding

    NASA Astrophysics Data System (ADS)

    Patrito, E. M.; Olivera, P. Paredes; Sellers, Harrell

    1997-05-01

    The nature of sulfate-Ag(111) and sulfate-Au(111) surface bonding has been investigated at the SCF + MP2 level of theory. Convergence of binding energy with cluster size is investigated and, unlike neutral adsorbates, large clusters are required in order to obtain reliable binding energies. In the most stable adsorption mode, sulfate binds to the surface via three oxygen atoms (C 3v symmetry) with a binding energy of 159.3 kcal/mol on Ag(111) and 143.9 kcal/mol on Au(111). The geometry of adsorbed sulfate was optimized at the SCF level. While the bond length between sulfur and the oxygens coordinated to the surface increases, the sulfur-uncoordinated oxygen bond length decreases. This weakening and strengthening of the bonds, respectively, is consistent with bond order conservation in adsorbates on metal surfaces. Although a charge transfer of 0.4 electrons towards the metal is observed, the adsorbate remains very much sulfate-like. The molecular orbital analysis indicates that there is also some charge back-donation towards unoccupied orbitals of sulfate. This results in an increased electron density around sulfur as revealed in the electron density difference maps. Analysis of the Laplacian of the charge density of free sulfate provides a suitable framework to understand the nature of the different charge transfer processes and allows us to establish some similarities with the CO- and SO 2-metal bondings.

  7. NDT evaluation of long-term bond durability of CFRP-structural systems applied to RC highway bridges

    NASA Astrophysics Data System (ADS)

    Crawford, Kenneth C.

    2016-06-01

    The long-term durability of CFRP structural systems applied to reinforced-concrete (RC) highway bridges is a function of the system bond behavior over time. The sustained structural load performance of strengthened bridges depends on the carbon fiber-reinforced polymer (CFRP) laminates remaining 100 % bonded to concrete bridge members. Periodic testing of the CFRP-concrete bond condition is necessary to sustain load performance. The objective of this paper is to present a non-destructive testing (NDT) method designed to evaluate the bond condition and long-term durability of CFRP laminate (plate) systems applied to RC highway bridges. Using the impact-echo principle, a mobile mechanical device using light impact hammers moving along the length of a bonded CFRP plate produces unique acoustic frequencies which are a function of existing CFRP plate-concrete bond conditions. The purpose of this method is to test and locate CFRP plates de-bonded from bridge structural members to identify associated deterioration in bridge load performance. Laboratory tests of this NDT device on a CFRP plate bonded to concrete with staged voids (de-laminations) produced different frequencies for bonded and de-bonded areas of the plate. The spectra (bands) of frequencies obtained in these tests show a correlation to the CFRP-concrete bond condition and identify bonded and de-bonded areas of the plate. The results of these tests indicate that this NDT impact machine, with design improvements, can potentially provide bridge engineers a means to rapidly evaluate long lengths of CFRP laminates applied to multiple highway bridges within a national transportation infrastructure.

  8. Differential segregation in a cell-cell contact interface: the dynamics of the immunological synapse.

    PubMed Central

    Burroughs, Nigel John; Wülfing, Christoph

    2002-01-01

    Receptor-ligand couples in the cell-cell contact interface between a T cell and an antigen-presenting cell form distinct geometric patterns and undergo spatial rearrangement within the contact interface. Spatial segregation of the antigen and adhesion receptors occurs within seconds of contact, central aggregation of the antigen receptor then occurring over 1-5 min. This structure, called the immunological synapse, is becoming a paradigm for localized signaling. However, the mechanisms driving its formation, in particular spatial segregation, are currently not understood. With a reaction diffusion model incorporating thermodynamics, elasticity, and reaction kinetics, we examine the hypothesis that differing bond lengths (extracellular domain size) is the driving force behind molecular segregation. We derive two key conditions necessary for segregation: a thermodynamic criterion on the effective bond elasticity and a requirement for the seeding/nucleation of domains. Domains have a minimum length scale and will only spontaneously coalesce/aggregate if the contact area is small or the membrane relaxation distance large. Otherwise, differential attachment of receptors to the cytoskeleton is required for central aggregation. Our analysis indicates that differential bond lengths have a significant effect on synapse dynamics, i.e., there is a significant contribution to the free energy of the interaction, suggesting that segregation by differential bond length is important in cell-cell contact interfaces and the immunological synapse. PMID:12324401

  9. Pressure-induced emission band separation of the hybridized local and charge transfer excited state in a TPE-based crystal.

    PubMed

    Liu, Xuedan; Li, Aisen; Xu, Weiqing; Ma, Zhiyong; Jia, Xinru

    2018-05-08

    We herein report a newly synthesized simple molecule, named TPE[double bond, length as m-dash]C4, with twisted D-A structure. TPE[double bond, length as m-dash]C4 showed two intrinsic emission bands ascribed to the locally excited (LE) state and the intramolecular charge transfer (ICT) state, respectively. In the crystal state, the LE emission band is usually observed. However, by applying hydrostatic pressure to the powder sample and the single crystal sample of TPE[double bond, length as m-dash]C4, dual-fluorescence (445 nm and 532 nm) was emerged under high pressure, owing to the pressure-induced emission band separation of the hybridized local and charge transfer excited state (HLCT). It is found that the emission of TPE[double bond, length as m-dash]C4 is generally determined by the ratio of the LE state to the ICT state. The ICT emission band is much more sensitive to the external pressure than the LE emission band. The HLCT state leads to a sample with different responsiveness to grinding and hydrostatic pressure. This study is of significance in the molecular design of such D-A type molecules and in the control of photoluminescence features by molecular structure. Such results are expected to pave a new way to further understand the relationship between the D-A molecular structure and stimuli-responsive properties.

  10. Bond-Slip Relationship for CFRP Sheets Externally Bonded to Concrete under Cyclic Loading.

    PubMed

    Li, Ke; Cao, Shuangyin; Yang, Yue; Zhu, Juntao

    2018-02-26

    The objective of this paper was to explore the bond-slip relationship between carbon fiber-reinforced polymer (CFRP) sheets and concrete under cyclic loading through experimental and analytical approaches. Modified beam tests were performed in order to gain insight into the bond-slip relationship under static and cyclic loading. The test variables are the CFRP-to-concrete width ratio, and the bond length of the CFRP sheets. An analysis of the test results in this paper and existing test results indicated that the slope of the ascending segment of the bond-slip curve decreased with an increase in the number of load cycles, but the slip corresponding to the maximum shear stress was almost invariable as the number of load cycles increased. In addition, the rate of reduction in the slope of the ascending range of the bond-slip curve during cyclic loading decreased as the concrete strength increased, and increased as the load level or CFRP-to-concrete width ratio enhanced. However, these were not affected by variations in bond length if the residual bond length was longer than the effective bond length. A bilinear bond-slip model for CFRP sheets that are externally bonded to concrete under cyclic loading, which considered the effects of the cyclic load level, concrete strength, and CFRP-to-concrete ratio, was developed based on the existing static bond-slip model. The accuracy of this proposed model was verified by a comparison between this proposed model and test results.

  11. Can HN[double bond, length as m-dash]NH, FN[double bond, length as m-dash]NH, or HN[double bond, length as m-dash]CHOH bridge the σ-hole and the lone pair at P in binary complexes with H2XP, for X = F, Cl, NC, OH, CN, CCH, CH3, and H?

    PubMed

    Del Bene, Janet E; Alkorta, Ibon; Elguero, José

    2015-11-11

    Ab initio MP2/aug'-cc-pVTZ calculations have been carried out to investigate the properties of complexes formed between H2XP, for X = F, Cl, NC, OH, CN, CCH, CH3, and H, and the possible bridging molecules HN[double bond, length as m-dash]NH, FN[double bond, length as m-dash]NH, and HN[double bond, length as m-dash]CHOH. H2XP:HNNH and H2XP:FNNH complexes are stabilized by PN pnicogen bonds, except for H2(CH3)P:FNNH and H3P:FNNH which are stabilized by N-HP hydrogen bonds. H2XP:HNCHOH complexes are stabilized by PN pnicogen bonds and nonlinear O-HP hydrogen bonds. For a fixed H2XP molecule, binding energies decrease in the order HNCHOH > HNNH > FNNH, except for the binding energies of H2(CH3)P and H3P with HNNH and FNNH. Binding energies of complexes with HNCHOH and HNNH increase as the P-N1 distance decreases, but binding energies of complexes with FNNH show little dependence on this distance. The large binding energies of H2XP:HNCHOH complexes arise from a cooperative effect involving electron-pair acceptance by P to form a pnicogen bond, and electron-pair donation by P to form a hydrogen bond. The dominant charge-transfer interaction in these complexes involves electron-pair donation by N across the pnicogen bond, except for complexes in which X is one of the more electropositive substituents, CCH, CH3, and H. For these, lone-pair donation by P across the hydrogen bond dominates. AIM and NBO data for these complexes are consistent with their bonding characteristics, showing molecular graphs with bond critical points and charge-transfer interactions associated with hydrogen and pnicogen bonds. EOM-CCSD spin-spin coupling constants (1p)J(P-N) across the pnicogen bond for each series of complexes correlate with the P-N distance. In contrast, (2h)J(O-P) values for complexes H2XP:HNCHOH do not correlate with the O-P distance, a consequence of the nonlinearity of these hydrogen bonds.

  12. Semiflexible macromolecules in quasi-one-dimensional confinement: Discrete versus continuous bond angles.

    PubMed

    Huang, Aiqun; Hsu, Hsiao-Ping; Bhattacharya, Aniket; Binder, Kurt

    2015-12-28

    The conformations of semiflexible polymers in two dimensions confined in a strip of width D are studied by computer simulations, investigating two different models for the mechanism by which chain stiffness is realized. One model (studied by molecular dynamics) is a bead-spring model in the continuum, where stiffness is controlled by a bond angle potential allowing for arbitrary bond angles. The other model (studied by Monte Carlo) is a self-avoiding walk chain on the square lattice, where only discrete bond angles (0° and ±90°) are possible, and the bond angle potential then controls the density of kinks along the chain contour. The first model is a crude description of DNA-like biopolymers, while the second model (roughly) describes synthetic polymers like alkane chains. It is first demonstrated that in the bulk the crossover from rods to self-avoiding walks for both models is very similar, when one studies average chain linear dimensions, transverse fluctuations, etc., despite their differences in local conformations. However, in quasi-one-dimensional confinement two significant differences between both models occur: (i) The persistence length (extracted from the average cosine of the bond angle) gets renormalized for the lattice model when D gets less than the bulk persistence length, while in the continuum model it stays unchanged. (ii) The monomer density near the repulsive walls for semiflexible polymers is compatible with a power law predicted for the Kratky-Porod model in the case of the bead-spring model, while for the lattice case it tends to a nonzero constant across the strip. However, for the density of chain ends, such a constant behavior seems to occur for both models, unlike the power law observed for flexible polymers. In the regime where the bulk persistence length ℓp is comparable to D, hairpin conformations are detected, and the chain linear dimensions are discussed in terms of a crossover from the Daoud/De Gennes "string of blobs"-picture to the flexible rod picture when D decreases and/or the chain stiffness increases. Introducing a suitable further coarse-graining of the chain contours of the continuum model, direct estimates for the deflection length and its distribution could be obtained.

  13. Dimensional Stability of Hexoloy SA® Silicon Carbide and Zerodur™ Materials for the LISA Mission

    NASA Astrophysics Data System (ADS)

    Preston, Alix; Cruz, Rachel J.; Thorpe, J. Ira; Mueller, Guido; Boothe, G. Trask; Delgadillo, Rodrigo; Guntaka, Sridhar R.

    2006-11-01

    In the LISA mission, incoming gravitational waves will modulate the distance between proof masses while laser beams monitor the optical path length changes with 20 pm/√Hz accuracy. Optical path length changes between bench components or the relative motion between the primary and secondary mirrors of the telescope need to be well below this level to result in a successful operation of LISA. The reference cavity for frequency stabilization must have a dimensional stability of a few fm/√Hz. While the effects of temperature fluctuations are well characterized in most materials at the macroscopic level (i.e. coefficients of thermal expansion), microscopic material internal processes and long term processes in the bonds between different components can dominate the dimensional stability at the pm or fm levels. Zerodur and ULE have been well studied, but the ultimate stabilities of other materials like silicon carbide or CFRP are virtually unknown. Chemical bonding techniques, like hydroxide bonding, provide significantly stronger bonds than the standard optical contacts. However, the noise levels of these bonds are also unknown. In this paper we present our latest results on the stability of silicon carbide and hydroxide bonds on Zerodur.

  14. The selective activation of a C-F bond with an auxiliary strong Lewis acid: a method to change the activation preference of C-F and C-H bonds.

    PubMed

    Wang, Lin; Sun, Hongjian; Li, Xiaoyan; Fuhr, Olaf; Fenske, Dieter

    2016-11-15

    The selective activation of the C-F bonds in substituted (2,6-difluorophenyl)phenylimines (2,6-F 2 H 3 C 6 -(C[double bond, length as m-dash]NH)-n'-R-C 6 H 4 (n' = 2, R = H (1); n' = 2, R = Me (2); n' = 4, R = tBu (3))) by Fe(PMe 3 ) 4 with an auxiliary strong Lewis acid (LiBr, LiI, or ZnCl 2 ) was explored. As a result, iron(ii) halides ((H 5 C 6 -(C[double bond, length as m-dash]NH)-2-FH 3 C 6 )FeX(PMe 3 ) 3 (X = Br (8); Cl (9)) and (n-RH 4 C 6 -(C[double bond, length as m-dash]NH)-2'-FH 3 C 6 )FeX(PMe 3 ) 3 (n = 2, R = Me, X = Br (11); n = 4, R = tBu, X = I (12))) were obtained. Under similar reaction conditions, using LiBF 4 instead of LiBr or ZnCl 2 , the reaction of (2,6-difluorophenyl)phenylimine with Fe(PMe 3 ) 4 afforded an ionic complex [(2,6-F 2 H 3 C 6 -(C[double bond, length as m-dash]NH)-H 4 C 6 )Fe(PMe 3 ) 4 ](BF 4 ) (10) via the activation of a C-H bond. The method of C-F bond activation with an auxiliary strong Lewis acid is appropriate for monofluoroarylmethanimines. Without the Lewis acid, iron(ii) hydrides ((2-RH 4 C 6 -(C[double bond, length as m-dash]NH)-2'-FH 3 C 6 )FeH(PMe 3 ) 3 (R = H (13); Me (14))) were generated from the reactions of Fe(PMe 3 ) 4 with the monofluoroarylmethanimines (2-FH 4 C 6 -(C[double bond, length as m-dash]NH)-2'-RC 6 H 4 (R = H (4); Me (5))); however, in the presence of ZnCl 2 or LiBr, iron(ii) halides ((2-RH 4 C 6 -(C[double bond, length as m-dash]NH)-H 4 C 6 )FeX(PMe 3 ) 3 (R = H, X = Cl (15); R = Me, X = Br (16))) could be obtained through the activation of a C-F bond. Furthermore, a C-F bond activation with good regioselectivity in (pentafluorophenyl)arylmethanimines (F 5 C 6 -(C[double bond, length as m-dash]NH)-2,6-Y 2 C 6 H 3 (Y = F (6); H (7))) could be realized in the presence of ZnCl 2 to produce iron(ii) chlorides ((2,6-Y 2 H 3 C 6 -(C[double bond, length as m-dash]NH)-F 4 C 6 )FeCl(PMe 3 ) 3 (Y = F (17); H (18))). This series of iron(ii) halides could be used to catalyze the hydrosilylation reaction of aldehydes. Due to the stability of iron(ii) halides to high temperature, the reaction mixture was allowed to be heated to 100 °C and the reaction could finish within 0.5 h.

  15. First principles study of the electronic properties and band gap modulation of two-dimensional phosphorene monolayer: Effect of strain engineering

    NASA Astrophysics Data System (ADS)

    Phuc, Huynh V.; Hieu, Nguyen N.; Ilyasov, Victor V.; Phuong, Le T. T.; Nguyen, Chuong V.

    2018-06-01

    The effect of strain on the structural and electronic properties of monolayer phosphorene is studied by using first-principle calculations based on the density functional theory. The intra- and inter-bond length and bond angle for monolayer phosphorene is also evaluated. The intra- and inter-bond length and the bond angle for phosphorene show an opposite tendency under different directions of the applied strain. At the equilibrium state, monolayer phosphorene is a semiconductor with a direct band gap at the Γ-point of 0.91 eV. A direct-indirect band gap transition is found in monolayer phosphorene when both the compression and tensile strain are simultaneously applied along both zigzag and armchair directions. Under the applied compression strain, a semiconductor-metal transition for monolayer phosphorene is observed at -13% and -10% along armchair and zigzag direction, respectively. The direct-indirect and phase transition will largely constrain application of monolayer phosphorene to electronic and optical devices.

  16. Driving force for hydrophobic interaction at different length scales.

    PubMed

    Zangi, Ronen

    2011-03-17

    We study by molecular dynamics simulations the driving force for the hydrophobic interaction between graphene sheets of different sizes down to the atomic scale. Similar to the prediction by Lum, Chandler, and Weeks for hard-sphere solvation [J. Phys. Chem. B 1999, 103, 4570-4577], we find the driving force to be length-scale dependent, despite the fact that our model systems do not exhibit dewetting. For small hydrophobic solutes, the association is purely entropic, while enthalpy favors dissociation. The latter is demonstrated to arise from the enhancement of hydrogen bonding between the water molecules around small hydrophobes. On the other hand, the attraction between large graphene sheets is dominated by enthalpy which mainly originates from direct solute-solute interactions. The crossover length is found to be inside the range of 0.3-1.5 nm(2) of the surface area of the hydrophobe that is eliminated in the association process. In the large-scale regime, different thermodynamic properties are scalable with this change of surface area. In particular, upon dimerization, a total and a water-induced stabilization of approximately 65 and 12 kJ/mol/nm(2) are obtained, respectively, and on average around one hydrogen bond is gained per 1 nm(2) of graphene sheet association. Furthermore, the potential of mean force between the sheets is also scalable except for interplate distances smaller than 0.64 nm which corresponds to the region around the barrier for removing the last layer of water. It turns out that, as the surface area increases, the relative height of the barrier for association decreases and the range of attraction increases. It is also shown that, around small hydrophobic solutes, the lifetime of the hydrogen bonds is longer than in the bulk, while around large hydrophobes it is the same. Nevertheless, the rearrangement of the hydrogen-bond network for both length-scale regimes is slower than in bulk water. © 2011 American Chemical Society

  17. Anisotropy of the monomer random walk in a polymer melt: local-order and connectivity effects

    NASA Astrophysics Data System (ADS)

    Bernini, S.; Leporini, D.

    2016-05-01

    The random walk of a bonded monomer in a polymer melt is anisotropic due to local order and bond connectivity. We investigate both effects by molecular-dynamics simulations on melts of fully-flexible linear chains ranging from dimers (M  =  2) up to entangled polymers (M  =  200). The corresponding atomic liquid is also considered a reference system. To disentangle the influence of the local geometry and the bond arrangements, and to reveal their interplay, we define suitable measures of the anisotropy emphasising either the former or the latter aspect. Connectivity anisotropy, as measured by the correlation between the initial bond orientation and the direction of the subsequent monomer displacement, shows a slight enhancement due to the local order at times shorter than the structural relaxation time. At intermediate times—when the monomer displacement is comparable to the bond length—a pronounced peak and then decays slowly as t -1/2, becoming negligible when the displacement is as large as about five bond lengths, i.e. about four monomer diameters or three Kuhn lengths. Local-geometry anisotropy, as measured by the correlation between the initial orientation of a characteristic axis of the Voronoi cell and the subsequent monomer dynamics, is affected at shorter times than the structural relaxation time by the cage shape with antagonistic disturbance by the connectivity. Differently, at longer times, the connectivity favours the persistence of the local-geometry anisotropy, which vanishes when the monomer displacement exceeds the bond length. Our results strongly suggest that the sole consideration of the local order is not enough to understand the microscopic origin of the rattling amplitude of the trapped monomer in the cage of the neighbours.

  18. Molecular structures of carotenoids as predicted by MNDO-AM1 molecular orbital calculations

    NASA Astrophysics Data System (ADS)

    Hashimoto, Hideki; Yoda, Takeshi; Kobayashi, Takayoshi; Young, Andrew J.

    2002-02-01

    Semi-empirical molecular orbital calculations using AM1 Hamiltonian (MNDO-AM1 method) were performed for a number of biologically important carotenoid molecules, namely all- trans-β-carotene, all- trans-zeaxanthin, and all- trans-violaxanthin (found in higher plants and algae) together with all- trans-canthaxanthin, all- trans-astaxanthin, and all- trans-tunaxanthin in order to predict their stable structures. The molecular structures of all- trans-β-carotene, all- trans-canthaxanthin, and all- trans-astaxanthin predicted based on molecular orbital calculations were compared with those determined by X-ray crystallography. Predicted bond lengths, bond angles, and dihedral angles showed an excellent agreement with those determined experimentally, a fact that validated the present theoretical calculations. Comparison of the bond lengths, bond angles and dihedral angles of the most stable conformer among all the carotenoid molecules showed that the displacements are localized around the substituent groups and hence around the cyclohexene rings. The most stable conformers of all- trans-zeaxanthin and all- trans-violaxanthin gave rise to a torsion angle around the C6-C7 bond to be ±48.7 and -84.8°, respectively. This difference is a key factor in relation to the biological function of these two carotenoids in plants and algae (the xanthophyll cycle). Further analyses by calculating the atomic charges and using enpartment calculations (division of bond energies between component atoms) were performed to ascribe the cause of the different observed torsion angles.

  19. A Computational Study on the Ground and Excited States of Nickel Silicide.

    PubMed

    Schoendorff, George; Morris, Alexis R; Hu, Emily D; Wilson, Angela K

    2015-09-17

    Nickel silicide has been studied with a range of computational methods to determine the nature of the Ni-Si bond. Additionally, the physical effects that need to be addressed within calculations to predict the equilibrium bond length and bond dissociation energy within experimental error have been determined. The ground state is predicted to be a (1)Σ(+) state with a bond order of 2.41 corresponding to a triple bond with weak π bonds. It is shown that calculation of the ground state equilibrium geometry requires a polarized basis set and treatment of dynamic correlation including up to triple excitations with CR-CCSD(T)L resulting in an equilibrium bond length of only 0.012 Å shorter than the experimental bond length. Previous calculations of the bond dissociation energy resulted in energies that were only 34.8% to 76.5% of the experimental bond dissociation energy. It is shown here that use of polarized basis sets, treatment of triple excitations, correlation of the valence and subvalence electrons, and a Λ coupled cluster approach is required to obtain a bond dissociation energy that deviates as little as 1% from experiment.

  20. Ligand-to-ligand charge-transfer transitions of platinum(II) complexes with arylacetylide ligands with different chain lengths: spectroscopic characterization, effect of molecular conformations, and density functional theory calculations.

    PubMed

    Tong, Glenna So Ming; Law, Yuen-Chi; Kui, Steven C F; Zhu, Nianyong; Leung, King Hong; Phillips, David Lee; Che, Chi-Ming

    2010-06-11

    The complexes [Pt(tBu(3)tpy){C[triple bond]C(C(6)H(4)C[triple bond]C)(n-1)R}](+) (n = 1: R = alkyl and aryl (Ar); n = 1-3: R = phenyl (Ph) or Ph-N(CH(3))(2)-4; n = 1 and 2, R = Ph-NH(2)-4; tBu(3)tpy = 4,4',4''-tri-tert-butyl-2,2':6',2''-terpyridine) and [Pt(Cl(3)tpy)(C[triple bond]CR)](+) (R = tert-butyl (tBu), Ph, 9,9'-dibutylfluorene, 9,9'-dibutyl-7-dimethyl-amine-fluorene; Cl(3)tpy = 4,4',4''-trichloro-2,2':6',2''-terpyridine) were prepared. The effects of substituent(s) on the terpyridine (tpy) and acetylide ligands and chain length of arylacetylide ligands on the absorption and emission spectra were examined. Resonance Raman (RR) spectra of [Pt(tBu(3)tpy)(C[triple bond]CR)](+) (R = n-butyl, Ph, and C(6)H(4)-OCH(3)-4) obtained in acetonitrile at 298 K reveal that the structural distortion of the C[triple bond]C bond in the electronic excited state obtained by 502.9 nm excitation is substantially larger than that obtained by 416 nm excitation. Density functional theory (DFT) and time-dependent DFT (TDDFT) calculations on [Pt(H(3)tpy)(C[triple bond]CR)](+) (R = n-propyl (nPr), 2-pyridyl (Py)), [Pt(H(3)tpy){C[triple bond]C(C(6)H(4)C[triple bond]C)(n-1)Ph}](+) (n = 1-3), and [Pt(H(3)tpy){C[triple bond]C(C(6)H(4)C[triple bond]C)(n-1)C(6)H(4)-N(CH(3))(2)-4}](+)/+H(+) (n = 1-3; H(3)tpy = nonsubstituted terpyridine) at two different conformations were performed, namely, with the phenyl rings of the arylacetylide ligands coplanar ("cop") with and perpendicular ("per") to the H(3)tpy ligand. Combining the experimental data and calculated results, the two lowest energy absorption peak maxima, lambda(1) and lambda(2), of [Pt(Y(3)tpy)(C[triple bond]CR)](+) (Y = tBu or Cl, R = aryl) are attributed to (1)[pi(C[triple bond]CR)-->pi*(Y(3)tpy)] in the "cop" conformation and mixed (1)[d(pi)(Pt)-->pi*(Y(3)tpy)]/(1)[pi(C[triple bond]CR)-->pi*(Y(3)tpy)] transitions in the "per" conformation. The lowest energy absorption peak lambda(1) for [Pt(tBu(3)tpy){C[triple bond]C(C(6)H(4)C[triple bond]C)(n-1)C(6)H(4)-H-4}](+) (n = 1-3) shows a redshift with increasing chain length. However, for [Pt(tBu(3)tpy){C[triple bond]C(C6H4C[triple bond]C)(n-1)C(6)H(4)-N(CH(3))(2)-4}](+) (n = 1-3), lambda(1) shows a blueshift with increasing chain length n, but shows a redshift after the addition of acid. The emissions of [Pt(Y(3)tpy)(C[triple bond]CR)](+) (Y = tBu or Cl) at 524-642 nm measured in dichloromethane at 298 K are assigned to the (3)[pi(C[triple bond]CAr)-->pi*(Y(3)tpy)] excited states and mixed (3)[d(pi)(Pt)-->pi*(Y(3)tpy)]/(3)[pi(C[triple bond]C)-->pi*(Y(3)tpy)] excited states for R = aryl and alkyl groups, respectively. [Pt(tBu(3)tpy){C[triple bond]C(C(6)H(4)C[triple bond]C)(n-1)C(6)H(4)-N(CH(3))(2)-4}](+) (n = 1 and 2) are nonemissive, and this is attributed to the small energy gap between the singlet ground state (S(0)) and the lowest triplet excited state (T(1)).

  1. Density functional theory and chromium: Insights from the dimers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Würdemann, Rolf; Kristoffersen, Henrik H.; Moseler, Michael

    2015-03-28

    The binding in small Cr clusters is re-investigated, where the correct description of the dimer in three charge states is used as criterion to assign the most suitable density functional theory approximation. The difficulty in chromium arises from the subtle interplay between energy gain from hybridization and energetic cost due to exchange between s and d based molecular orbitals. Variations in published bond lengths and binding energies are shown to arise from insufficient numerical representation of electron density and Kohn-Sham wave-functions. The best functional performance is found for gradient corrected (GGA) functionals and meta-GGAs, where we find severe differences betweenmore » functionals from the same family due to the importance of exchange. Only the “best fit” from Bayesian error estimation is able to predict the correct energetics for all three charge states unambiguously. With this knowledge, we predict small bond-lengths to be exclusively present in Cr{sub 2} and Cr{sub 2}{sup −}. Already for the dimer cation, solely long bond-lengths appear, similar to what is found in the trimer and in chromium bulk.« less

  2. Pauling bond strength, bond length and electron density distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibbs, Gerald V.; Ross, Nancy L.; Cox, David F.

    2014-01-18

    A power law regression equation, = 1.46(/r)-0.19, connecting the average experimental bond lengths, , with the average accumulation of the electron density at the bond critical point, , between bonded metal M and oxygen atoms, determined at ambient conditions for oxide crystals, where r is the row number of the M atom, is similar to the regression equation R(M-O) = 1.39(ρ(rc)/r)-0.21 determined for three perovskite crystals for pressures as high as 80 GPa. The two equations are also comparable with those, = 1.43( /r)-0.21, determined for a large number of oxide crystals at ambient conditions and = 1.39(/r)-0.22, determined formore » geometry optimized hydroxyacid molecules, that connect the bond lengths to the average Pauling electrostatic bond strength, , for the M-O bonded interactions. On the basis of the correspondence between the two sets of equations connecting ρ(rc) and the Pauling bond strength s with bond length, it appears that Pauling’s simple definition of bond strength closely mimics the accumulation of the electron density between bonded pairs of atoms. The similarity of the expressions for the crystals and molecules is compelling evidence that the M-O bonded interactions for the crystals and molecules 2 containing the same bonded interactions are comparable. Similar expressions, connecting bond lengths and bond strength, have also been found to hold for fluoride, nitride and sulfide molecules and crystals. The Brown-Shannon bond valence, σ, power law expression σ = [R1/(R(M-O)]N that has found wide use in crystal chemistry, is shown to be connected to a more universal expression determined for oxides and the perovskites, = r[(1.41)/]4.76, demonstrating that the bond valence for a bonded interaction is likewise closely connected to the accumulation of the electron density between the bonded atoms. Unlike the Brown-Shannon expression, it is universal in that it holds for the M-O bonded interactions for a relatively wide range of M atoms of the periodic table. The power law equation determined for the oxide crystals at ambient conditions is similar to the power law expression = r[1.46/]5.26 determined for the perovskites at pressures as high as 80 GPa, indicating that the intrinsic connection between R(M-O) and ρ(rc) that holds at ambient conditions also holds, to a first approximation, at high pressures.« less

  3. Facile synthesis of -C[double bond, length as m-dash]N- linked covalent organic frameworks under ambient conditions.

    PubMed

    Ding, San-Yuan; Cui, Xiao-Hui; Feng, Jie; Lu, Gongxuan; Wang, Wei

    2017-10-31

    We reported herein a facile approach for the synthesis of -C[double bond, length as m-dash]N- linked covalent organic frameworks under ambient conditions. Three known (COF-42, COF-43, and COF-LZU1) and one new (Pr-COF-42) COF materials were successfully synthesized using this method. Furthermore, this simple synthetic approach makes the large-scale synthesis of -C[double bond, length as m-dash]N- linked COFs feasible.

  4. pKa prediction from an ab initio bond length: part 3--benzoic acids and anilines.

    PubMed

    Harding, A P; Popelier, P L A

    2011-06-21

    The prediction of pK(a) from a single ab initio bond length has been extended to provide equations for benzoic acids and anilines. The HF/6-31G(d) level of theory is used for all geometry optimisations. Similarly to phenols (Part 2 of this series of publications), the meta-/para-substituted benzoic acids can be predicted from a single model constructed from one bond length. This model had an impressive RMSEP of 0.13 pK(a) units. The prediction of ortho-substituted benzoic acids required the identification of high-correlation subsets, where the compounds in the same subset have at least one of the same (e.g. halogens, hydroxy) ortho substituent. Two pK(a) equations are provided for o-halogen benzoic acids and o-hydroxybenzoic acids, where the RMSEP values are 0.19 and 0.15 pK(a) units, respectively. Interestingly, the bond length that provided the best model differed between these two high-correlation subsets. This demonstrates the importance of investigating the most predictive bond length, which is not necessarily the bond involving the acid hydrogen. Three high-correlation subsets were identified for the ortho-substituted anilines. These were o-halogen, o-nitro and o-alkyl-substituted aniline high-correlation subsets, where the RMSEP ranged from 0.23 to 0.44 pK(a) units. The RMSEP for the meta-/para-substituted aniline model was 0.54 pK(a) units. This value exceeded our threshold of 0.50 pK(a) units and was higher than both the m-/p-benzoic acids in this work and the m-/p-phenols (RMSEP = 0.43) of Part 2. Constructing two separate models for the meta- and para- substituted anilines, where RMSEP values of 0.63 and 0.33 pK(a) units were obtained respectively, revealed it was the meta-substituted anilines that caused the large RMSEP value. For unknown reasons the RMSEP value increased with the addition of a further twenty meta-substituted anilines to this model. The C-N bond always produced the best correlations with pK(a) for all the high-correlation subsets. A higher level of theory and an ammonia probe improved the statistics only marginally for the hydroxybenzoic acid high-correlation subsets.

  5. Neutron and X-ray total scattering study of hydrogen disorder in fully hydrated hydrogrossular, Ca3Al2(O4H4)3

    NASA Astrophysics Data System (ADS)

    Keen, David A.; Keeble, Dean S.; Bennett, Thomas D.

    2018-04-01

    The structure of fully hydrated grossular, or katoite, contains an unusual arrangement of four O-H bonds within each O4 tetrahedra. Neutron and X-ray total scattering from a powdered deuterated sample have been measured to investigate the local arrangement of this O4D4 cluster. The O-D bond length determined directly from the pair distribution function is 0.954 Å, although the Rietveld-refined distance between average O and D positions was slightly smaller. Reverse Monte Carlo refinement of supercell models to the total scattering data show that other than the consequences of this correctly determined O-D bond length, there is little to suggest that the O4D4 structure is locally significantly different from that expected based on the average structure determined solely from Bragg diffraction.

  6. Significantly shorter Fe–S bond in cytochrome P450-I is consistent with greater reactivity relative to chloroperoxidase

    DOE PAGES

    Krest, Courtney M.; Silakov, Alexey; Rittle, Jonathan; ...

    2015-08-03

    Cytochrome P450 (P450) and chloroperoxidase (CPO) are thiolate-ligated haem proteins that catalyse the activation of carbon hydrogen bonds. The principal intermediate in these reactions is a ferryl radical species called compound I. P450 compound I (P450-I) is significantly more reactive than CPO-I, which only cleaves activated C–H bonds. In this paper, to provide insight into the differing reactivities of these intermediates, we examined CPO-I and P450-I using variable-temperature Mössbauer and X-ray absorption spectroscopies. These measurements indicate that the Fe–S bond is significantly shorter in P450-I than in CPO-I. This difference in Fe–S bond lengths can be understood in terms ofmore » variations in the hydrogen-bonding patterns within the ‘cys-pocket’ (a portion of the proximal helix that encircles the thiolate ligand). Weaker hydrogen bonding in P450-I results in a shorter Fe–S bond, which enables greater electron donation from the axial thiolate ligand. Finally, this observation may in part explain P450's greater propensity for C–H bond activation.« less

  7. Mathematical analysis of compressive/tensile molecular and nuclear structures

    NASA Astrophysics Data System (ADS)

    Wang, Dayu

    Mathematical analysis in chemistry is a fascinating and critical tool to explain experimental observations. In this dissertation, mathematical methods to present chemical bonding and other structures for many-particle systems are discussed at different levels (molecular, atomic, and nuclear). First, the tetrahedral geometry of single, double, or triple carbon-carbon bonds gives an unsatisfying demonstration of bond lengths, compared to experimental trends. To correct this, Platonic solids and Archimedean solids were evaluated as atoms in covalent carbon or nitrogen bond systems in order to find the best solids for geometric fitting. Pentagonal solids, e.g. the dodecahedron and icosidodecahedron, give the best fit with experimental bond lengths; an ideal pyramidal solid which models covalent bonds was also generated. Second, the macroscopic compression/tension architectural approach was applied to forces at the molecular level, considering atomic interactions as compressive (repulsive) and tensile (attractive) forces. Two particle interactions were considered, followed by a model of the dihydrogen molecule (H2; two protons and two electrons). Dihydrogen was evaluated as two different types of compression/tension structures: a coaxial spring model and a ring model. Using similar methods, covalent diatomic molecules (made up of C, N, O, or F) were evaluated. Finally, the compression/tension model was extended to the nuclear level, based on the observation that nuclei with certain numbers of protons/neutrons (magic numbers) have extra stability compared to other nucleon ratios. A hollow spherical model was developed that combines elements of the classic nuclear shell model and liquid drop model. Nuclear structure and the trend of the "island of stability" for the current and extended periodic table were studied.

  8. Utilisation of an eta(3)-allyl hydride complex, formed by UV irradiation, as a controlled source of 16-electron (eta(5)-C(5)Me(5))Rh(CH(2)[double bond, length as m-dash]CHMe).

    PubMed

    Sexton, Catherine J; López-Serrano, Joaquín; Lledós, Agustí; Duckett, Simon B

    2008-10-21

    Low temperature UV irradiation of solutions of (eta(5)-C(5)Me(5))Rh(CH(2)[double bond, length as m-dash]CHMe)(2) yields (eta(5)-C(5)Me(5))Rh(eta(3)-CH(2)CHCH(2))(H), which provides controlled access to the 16-electron fragment (eta(5)-C(5)Me(5))Rh(CH(2)[double bond, length as m-dash]CHMe).

  9. Capture of SO3 isomers in the oxidation of sulfur monoxide with molecular oxygen.

    PubMed

    Wu, Zhuang; Lu, Bo; Feng, Ruijuan; Xu, Jian; Lu, Yan; Wan, Huabin; Eckhardt, André K; Schreiner, Peter R; Xie, Changjian; Guo, Hua; Zeng, Xiaoqing

    2018-02-13

    When mixing SO with O 2 in N 2 , Ne, or Ar, an end-on complex OS-OO forms in the gas phase and can subsequently be trapped at cryogenic temperatures (2.8-15.0 K). Upon infrared light irradiation, OS-OO converts to SO 3 and SO 2 + O with the concomitant formation of a rare 1,2,3-dioxathiirane 2-oxide, i.e., cyclic OS([double bond, length as m-dash]O)O. Unexpectedly, the ring-closure of 16 OS- 18 O 18 O yields a ca. 2 : 1 mixture of cyclic 18 OS([double bond, length as m-dash] 16 O) 18 O and 16 OS([double bond, length as m-dash] 18 O) 18 O. The characterization of OS-OO and OS([double bond, length as m-dash]O)O with IR and UV/Vis spectroscopy is supported by high-level ab initio computations.

  10. A revised set of values of single-bond radii derived from the observed interatomic distances in metals by correction for bond number and resonance energy

    PubMed Central

    Pauling, Linus; Kamb, Barclay

    1986-01-01

    An earlier discussion [Pauling, L. (1947) J. Am. Chem. Soc. 69, 542] of observed bond lengths in elemental metals with correction for bond number and resonance energy led to a set of single-bond metallic radii with values usually somewhat less than the corresponding values obtained from molecules and complex ions. A theory of resonating covalent bonds has now been developed that permits calculation of the number of resonance structures per atom and of the effective resonance energy per bond. With this refined method of correcting the observed bond lengths for the effect of resonance energy, a new set of single-bond covalent radii, in better agreement with values from molecules and complex ions, has been constructed. PMID:16593698

  11. Microwave structure for the propiolic acid-formic acid complex.

    PubMed

    Kukolich, Stephen G; Mitchell, Erik G; Carey, Spencer J; Sun, Ming; Sargus, Bryan A

    2013-10-03

    New microwave spectra were measured to obtain rotational constants and centrifugal distortion constants for the DCCCOOH···HOOCH and HCCCOOD···DOOCH isotopologues. Rotational transitions were measured in the frequency range of 4.9-15.4 GHz, providing accurate rotational constants, which, combined with previous rotational constants, allowed an improved structural fit for the propiolic acid-formic acid complex. The new structural fit yields reasonably accurate orientations for both the propiolic and formic acid monomers in the complex and more accurate structural parameters describing the hydrogen bonding. The structure is planar, with a positive inertial defect of Δ = 1.33 amu Å(2). The experimental structure exhibits a greater asymmetry for the two hydrogen bond lengths than was obtained from the ab initio mp2 calculations. The best-fit hydrogen bond lengths have an r(O1-H1···O4) of 1.64 Å and an r(O3-H2···O2) of 1.87 Å. The average of the two hydrogen bond lengths is r(av)(exp) = 1.76 Å, in good agreement with r(av)(theory) = 1.72 Å. The center of mass separation of the monomers is R(CM) = 3.864 Å. Other structural parameters from the least-squares fit using the experimental rotational constants are compared with theoretical values. The spectra were obtained using two different pulsed beam Fourier transform microwave spectrometers.

  12. The Changing Nature of the Chemical Bond

    NASA Astrophysics Data System (ADS)

    Angel, R. J.; Ross, N. L.; Zhao, J.

    2006-12-01

    It is commonly assumed that the relationship between bond strength and bond length for a particular pair of atoms is a simple and single-valued one for a given coordination environment; longer bonds are weaker. This is the basis of the concept of bond valence, for example. Indeed, in strongly-bonded oxide minerals, the range of bond lengths found for a given cation-anion polyhedron is so small that it was long thought that the polyhedral bulk moduli were essentially independent of structure type and thus the environment of the polyhedron. This view is incompatible with the discovery that the response of the perovskite structure to high pressures is controlled by the equipartition of bond-valence strain between the A and B cation sites within the structure [1]. The same appears to be true, within experimental uncertainties, for all framework structures with rigid-unit modes. In perovskites, this explicitly implies that the octahedral compressibility depends not only upon the octahedral cation, but also upon the compressibility of the cation-oxygen bonds of the extra-framework (nominally dodecahedral) site. Thus the octahedral compressibility of a B cation site must change as the A- site cation is changed, whether or not the B-O bond lengths change as a result of the substitution on the A site. The strength of bonds is thus dependent upon the crystal environment and not solely upon the bond length. The observation of a plateau effect in the variation of octahedral compressibilities in perovskite solid solutions suggests that the bond-valence matching principle is followed not just globally, but on a local scale as well. Such observations should allow the change with pressure of the excess thermodynamic properties of solid solutions to be directly related to the microscopic (atomic scale) evolution of the structure. [1] Zhao, Ross, & Angel (2004). Acta Cryst. B60:263

  13. Bond-length relaxation in crystalline Si1-xGex alloys: An extended x-ray-absorption fine-structure study

    NASA Astrophysics Data System (ADS)

    Kajiyama, Hiroshi; Muramatsu, Shin-Ichi; Shimada, Toshikazu; Nishino, Yoichi

    1992-06-01

    Extended x-ray-absorption fine-structure spectra for crystalline Si1-xGex alloys, measured at the K edge of Ge at room temperature, are analyzed with a curve-fitting method based on the spherical-wave approximation. The Ge-Ge and Ge-Si bond lengths, coordination numbers of Ge and Si atoms around a Ge atom, and Debye-Waller factors of Ge and Si atoms are obtained. It is shown that Ge-Ge and Ge-Si bonds relax completely, for all Ge concentrations of their study, while the lattice constant varies monotonically, following Vegard's law. As noted by Bragg and later by Pauling and Huggins, the Ge-Ge and Ge-Si bond lengths are close to the sum of their constituent-element atomic radii: nearly 2.45 Å for Ge-Ge bonds and 2.40 Å for Ge-Si bonds. A study on the coordination around a Ge atom in the alloys revealed that Ge and Si atoms mix randomly throughout the compositional range studied.

  14. Shear Bond Strengths and Morphological Evaluation of Filled and Unfilled Adhesive Interfaces to Enamel and Dentine

    PubMed Central

    Mortazavi, Vajihesadat; Fathi, Mohammadhosein; Ataei, Ebrahim; Khodaeian, Niloufar; Askari, Navid

    2012-01-01

    In this laboratory study shear bond strengths of three filled and one unfilled adhesive systems to enamel and dentine were compared. Forty-eight extracted intact noncarious human mandibular molars were randomly assigned to two groups of 24 one for bonding to enamel and the other for bonding to dentine. Buccal and lingual surfaces of each tooth were randomly assigned for application of each one of filled (Prime & Bond NT (PBNT), Optibond Solo Plus (OBSP), and Clearfil SE Bond (CSEB)) and unfilled (Single Bond (SB)) adhesive systems (n = 12). A universal resin composite was placed into the translucent plastic cylinders (3 mm in diameter and 2 mm in length) and seated against the enamel and dentine surfaces and polymerized for 40 seconds. Shear bond strength was determined using a universal testing machine, and the results were statistically analyzed using two-way ANOVA, one-way ANOVA, t-test, and Tukey HSD post hoc test with a 5% level of significance.There were no statistically significant differences in bond strength between the adhesive systems in enamel, but CSEB and SB exhibited significantly higher and lower bond strength to dentine, respectively, than the other tested adhesive systems while there were no statistically significant differences between PBNT and OBSP. PMID:23209471

  15. Hydridosilylamido complexes of Ta and Mo isolobal with Berry's zirconocenes: syntheses, β-Si-H agostic interactions, catalytic hydrosilylation, and insight into mechanism.

    PubMed

    McLeod, Nicolas A; Kuzmina, Lyudmila G; Korobkov, Ilia; Howard, Judith A K; Nikonov, Georgii I

    2016-02-14

    The syntheses of novel Group 5 and Group 6 hydrosilylamido complexes of the type R(ArN[double bond, length as m-dash])M{N((t)Bu)SiMe2-H}X (M = Ta, R = Cp; M = Mo, R = ArN; X = Cl, H, OBn, Me) are described. The various substituents in the X position seem to play the key role in determining the extent of β-agostic interaction with the Si-H bond. The Mo agostic hydrido complex (ArN[double bond, length as m-dash])2Mo{η(3)-N((t)Bu)SiMe2-H}H is a pre-catalyst for the hydrosilylation of carbonyls. The stoichiometric reaction between benzaldehyde and (ArN[double bond, length as m-dash])2Mo{η(3)-N((t)Bu)SiMe2-H}H gives the benzoxy complex (ArN[double bond, length as m-dash])2Mo{N((t)Bu)SiMe2-H}(OBn), which showed a similar catalytic reactivity compared to the parent hydride. Mechanistic studies suggest that a non-hydride mechanism is operative.

  16. Ammonolysis of ketene as a potential source of acetamide in the troposphere: a quantum chemical investigation.

    PubMed

    Sarkar, Saptarshi; Mallick, Subhasish; Kumar, Pradeep; Bandyopadhyay, Biman

    2018-05-16

    Quantum chemical calculations at the CCSD(T)/CBS//MP2/aug-cc-pVTZ levels of theory have been carried out to investigate a potential new source of acetamide in Earth's atmosphere through the ammonolysis of the simplest ketene. It was found that the reaction can occur via the addition of ammonia at either the C[double bond, length as m-dash]C or C[double bond, length as m-dash]O bond of ketene. The potential energy surface as well as calculated rate coefficients indicate that under tropospheric conditions, ammonolysis would occur almost exclusively via ammonia addition at the C[double bond, length as m-dash]O bond with negligible contribution from addition at the C[double bond, length as m-dash]C bond. The reaction of ketene with water has also been investigated in order to compare between hydrolysis and ammonolysis, as the former is known to be responsible for the formation of acetic acid. The rate coefficient for the formation of acetamide was found to be ∼106 to 109 times higher than that for the formation of acetic acid from the same ketene source in the troposphere. By means of the relative rate of ammonolysis with respect to hydrolysis, it was shown that acetamide formation would dominate over acetic acid formation at various altitudes in the troposphere.

  17. Anti-Caries Effects of Dental Adhesives Containing Quaternary Ammonium Methacrylates with Different Chain Lengths

    PubMed Central

    Han, Qi; Li, Bolei; Zhou, Xuedong; Ge, Yang; Wang, Suping; Li, Mingyun; Ren, Biao; Wang, Haohao; Zhang, Keke; Xu, Hockin H. K.; Peng, Xian; Feng, Mingye; Weir, Michael D.; Chen, Yu; Cheng, Lei

    2017-01-01

    The objectives of this study were to investigate the effects of dental adhesives containing quaternary ammonium methacrylates (QAMs) with different alkyl chain lengths (CL) on ecological caries prevention in vitro. Five QAMs were synthesized with a CL = 3, 6, 9, 12, and 16 and incorporated into adhesives. Micro-tensile bond strength and surface charge density were used to measure the physical properties of the adhesives. The proportion change in three-species biofilms consisting of Streptococcus mutans, Streptococcus sanguinis, and Streptococcus gordonii was tested using the TaqMan real-time polymerase chain reaction. Lactic acid assay, MTT [3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, exopolysaccharide staining, live/dead staining, scanning electron microscopy (SEM), and transverse microradiography (TMR) were performed to study the anti-biofilm and anti-demineralization effects of the dental adhesives. The results showed that incorporating QAMs with different alkyl chain lengths into the adhesives had no obvious effect on the dentin bond strength. The adhesives containing QAMs with a longer alkyl chain developed healthier biofilms. The surface charge density, anti-biofilm, and anti-demineralization effects of the adhesives increased with a CL of the QAMs from 3 to 12, but decreased slightly with a CL from 12 to 16. In conclusion, adhesives containing QAMs with a tailored chain length are promising for preventing secondary caries in an “ecological way”. PMID:28773004

  18. Short Carboxylic Acid–Carboxylate Hydrogen Bonds Can Have Fully Localized Protons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Jiusheng; Pozharski, Edwin; Wilson, Mark A.

    Short hydrogen bonds (H-bonds) have been proposed to play key functional roles in several proteins. The location of the proton in short H-bonds is of central importance, as proton delocalization is a defining feature of low-barrier hydrogen bonds (LBHBs). Experimentally determining proton location in H-bonds is challenging. Here, bond length analysis of atomic (1.15–0.98 Å) resolution X-ray crystal structures of the human protein DJ-1 and its bacterial homologue, YajL, was used to determine the protonation states of H-bonded carboxylic acids. DJ-1 contains a buried, dimer-spanning 2.49 Å H-bond between Glu15 and Asp24 that satisfies standard donor–acceptor distance criteria for amore » LBHB. Bond length analysis indicates that the proton is localized on Asp24, excluding a LBHB at this location. However, similar analysis of the Escherichia coli homologue YajL shows both residues may be protonated at the H-bonded oxygen atoms, potentially consistent with a LBHB. A Protein Data Bank-wide screen identifies candidate carboxylic acid H-bonds in approximately 14% of proteins, which are typically short [O–O> = 2.542(2) Å]. Chemically similar H-bonds between hydroxylated residues (Ser/Thr/Tyr) and carboxylates show a trend of lengthening O–O distance with increasing H-bond donor pK a. This trend suggests that conventional electronic effects provide an adequate explanation for short, charge-assisted carboxylic acid–carboxylate H-bonds in proteins, without the need to invoke LBHBs in general. This study demonstrates that bond length analysis of atomic resolution X-ray crystal structures provides a useful experimental test of certain candidate LBHBs.« less

  19. Short Carboxylic Acid-Carboxylate Hydrogen Bonds Can Have Fully Localized Protons.

    PubMed

    Lin, Jiusheng; Pozharski, Edwin; Wilson, Mark A

    2017-01-17

    Short hydrogen bonds (H-bonds) have been proposed to play key functional roles in several proteins. The location of the proton in short H-bonds is of central importance, as proton delocalization is a defining feature of low-barrier hydrogen bonds (LBHBs). Experimentally determining proton location in H-bonds is challenging. Here, bond length analysis of atomic (1.15-0.98 Å) resolution X-ray crystal structures of the human protein DJ-1 and its bacterial homologue, YajL, was used to determine the protonation states of H-bonded carboxylic acids. DJ-1 contains a buried, dimer-spanning 2.49 Å H-bond between Glu15 and Asp24 that satisfies standard donor-acceptor distance criteria for a LBHB. Bond length analysis indicates that the proton is localized on Asp24, excluding a LBHB at this location. However, similar analysis of the Escherichia coli homologue YajL shows both residues may be protonated at the H-bonded oxygen atoms, potentially consistent with a LBHB. A Protein Data Bank-wide screen identifies candidate carboxylic acid H-bonds in approximately 14% of proteins, which are typically short [⟨d O-O ⟩ = 2.542(2) Å]. Chemically similar H-bonds between hydroxylated residues (Ser/Thr/Tyr) and carboxylates show a trend of lengthening O-O distance with increasing H-bond donor pK a . This trend suggests that conventional electronic effects provide an adequate explanation for short, charge-assisted carboxylic acid-carboxylate H-bonds in proteins, without the need to invoke LBHBs in general. This study demonstrates that bond length analysis of atomic resolution X-ray crystal structures provides a useful experimental test of certain candidate LBHBs.

  20. Distillation of natural fatty acids and their chemical derivatives

    USDA-ARS?s Scientific Manuscript database

    Well over 1,000 different fatty acids are known which are natural components of fats, oils (triacylglycerols), and other related compounds. These fatty acids can have different alkyl chain lengths, 0-6 carbon-carbon double bonds possessing cis- or trans-geometry, and can contain a variety of functio...

  1. The Hydrogen Bonded Structures of Two 5-Bromobarbituric Acids and Analysis of Unequal C5–X and C5–X′ Bond Lengths (X = X′ = F, Cl, Br or Me) in 5,5-Disubstituted Barbituric Acids

    PubMed Central

    Gelbrich, Thomas; Braun, Doris E.; Oberparleiter, Stefan; Schottenberger, Herwig; Griesser, Ulrich J.

    2017-01-01

    The crystal structure of the methanol hemisolvate of 5,5-dibromobarbituric acid (1MH) displays an H-bonded layer structure which is based on N–H⋯O=C, N–H⋯O(MeOH) and (MeOH)O–H⋯O interactions. The barbiturate molecules form an H-bonded substructure which has the fes topology. 5,5′-Methanediylbis(5-bromobarbituric acid) 2, obtained from a solution of 5,5-dibromobarbituric acid in nitromethane, displays a N–H⋯O=C bonded framework of the sxd type. The conformation of the pyridmidine ring and the lengths of the ring substituent bonds C5–X and C5–X′ in crystal forms of 5,5-dibromobarbituric acid and three closely related analogues (X = X′ = Br, Cl, F, Me) have been investigated. In each case, a conformation close to a C5-endo envelope is correlated with a significant lengthening of the axial C5–X′ in comparison to the equatorial C5–X bond. Isolated molecule geometry optimizations at different levels of theory confirm that the C5-endo envelope is the global conformational energy minimum of 5,5-dihalogenbarbituric acids. The relative lengthening of the axial bond is therefore interpreted as an inherent feature of the preferred envelope conformation of the pyrimidine ring, which minimizes repulsive interactions between the axial substituent and pyrimidine ring atoms. PMID:28670485

  2. Influence of Hot-Etching Surface Treatment on Zirconia/Resin Shear Bond Strength

    PubMed Central

    Lv, Pin; Yang, Xin; Jiang, Ting

    2015-01-01

    This study was designed to evaluate the effect of hot-etching surface treatment on the shear bond strength between zirconia ceramics and two commercial resin cements. Ceramic cylinders (120 units; length: 2.5 mm; diameter: 4.7 mm) were randomly divided into 12 groups (n = 10) according to different surface treatments (blank control; airborne-particle-abrasion; hot-etching) and different resin cements (Panavia F2.0; Superbond C and B) and whether or not a thermal cycling fatigue test (5°–55° for 5000 cycles) was performed. Flat enamel surfaces, mounted in acrylic resin, were bonded to the zirconia discs (diameter: 4.7 mm). All specimens were subjected to shear bond strength testing using a universal testing machine with a crosshead speed of 1 mm/min. All data were statistically analyzed using one-way analysis of variance and multiple-comparison least significant difference tests (α = 0.05). Hot-etching treatment produced higher bond strengths than the other treatment with both resin cements. The shear bond strength of all groups significantly decreased after the thermal cycling test; except for the hot-etching group that was cemented with Panavia F2.0 (p < 0.05). Surface treatment of zirconia with hot-etching solution enhanced the surface roughness and bond strength between the zirconia and the resin cement. PMID:28793699

  3. 4-Bromo-N-(di-n-propyl-carbamothioyl)-benzamide.

    PubMed

    Binzet, Gün; Flörke, Ulrich; Külcü, Nevzat; Arslan, Hakan

    2009-02-04

    The synthesis of the title compound, C(14)H(19)BrN(2)OS, involves the reaction of 4-bromo-benzoyl chloride with potassium thio-cyanate in acetone followed by condensation of the resulting 4-bromo-benzoyl isothio-cyanate with di-n-propyl-amine. Typical thio-urea carbonyl and thio-carbonyl double bonds, as well as shortened C-N bonds, are observed in the title compound. The short C-N bond lengths in the centre of the mol-ecule reveal the effects of resonance in this part of the mol-ecule. The asymmetric unit of the title compound contains two crystallographically independent mol-ecules, A and B. There is very little difference between the bond lengths and angles of these mol-ecules. In mol-ecule B, one di-n-propyl group is twisted in a -anti-periplanar conformation with C-C-C-H = -179.1 (3)° and the other adopts a -synclinal conformation with C-C-C-H = -56.7 (4)°; in mol-ecule A the two di-n-propyl groups are twisted in + and -anti-periplanar conformations, with C-C-C-H = -179.9 (3) and 178.2 (3)°, respectively. In the crystal, the mol-ecules are linked into dimeric pairs via pairs of N-H⋯S hydrogen bonds.

  4. Contact and Length Dependent Effects in Single-Molecule Electronics

    NASA Astrophysics Data System (ADS)

    Hines, Thomas

    Understanding charge transport in single molecules covalently bonded to electrodes is a fundamental goal in the field of molecular electronics. In the past decade, it has become possible to measure charge transport on the single-molecule level using the STM break junction method. Measurements on the single-molecule level shed light on charge transport phenomena which would otherwise be obfuscated by ensemble measurements of groups of molecules. This thesis will discuss three projects carried out using STM break junction. In the first project, the transition between two different charge transport mechanisms is reported in a set of molecular wires. The shortest wires show highly length dependent and temperature invariant conductance behavior, whereas the longer wires show weakly length dependent and temperature dependent behavior. This trend is consistent with a model whereby conduction occurs by coherent tunneling in the shortest wires and by incoherent hopping in the longer wires. Measurements are supported with calculations and the evolution of the molecular junction during the pulling process is investigated. The second project reports controlling the formation of single-molecule junctions by means of electrochemically reducing two axial-diazonium terminal groups on a molecule, thereby producing direct Au-C covalent bonds in-situ between the molecule and gold electrodes. Step length analysis shows that the molecular junction is significantly more stable, and can be pulled over a longer distance than a comparable junction created with amine anchoring bonds. The stability of the junction is explained by the calculated lower binding energy associated with the direct Au-C bond compared with the Au-N bond. Finally, the third project investigates the role that molecular conformation plays in the conductance of oligothiophene single-molecule junctions. Ethyl substituted oligothiophenes were measured and found to exhibit temperature dependent conductance and transition voltage for molecules with between two and six repeat units. While the molecule with only one repeat unit shows temperature invariant behavior. Density functional theory calculations show that at higher temperatures the oligomers with multiple repeat units assume a more planar conformation, which increases the conjugation length and decreases the effective energy barrier of the junction.

  5. Hydrogen bond asymmetric local potentials in compressed ice.

    PubMed

    Huang, Yongli; Ma, Zengsheng; Zhang, Xi; Zhou, Guanghui; Zhou, Yichun; Sun, Chang Q

    2013-10-31

    A combination of the Lagrangian mechanics of oscillators vibration, molecular dynamics decomposition of volume evolution, and Raman spectroscopy of phonon relaxation has enabled us to resolve the asymmetric, local, and short-range potentials pertaining to the hydrogen bond (O:H-O) in compressed ice. Results show that both oxygen atoms in the O:H-O bond shift initially outwardly with respect to the coordination origin (H), lengthening the O-O distance by 0.0136 nm from 0.2597 to 0.2733 nm by Coulomb repulsion between electron pairs on adjacent oxygen atoms. Both oxygen atoms then move toward right along the O:H-O bond by different amounts upon being compressed, approaching identical length of 0.11 nm. The van der Waals potential VL(r) for the O:H noncovalent bond reaches a valley at -0.25 eV, and the lowest exchange VH(r) for the H-O polar-covalent bond is valued at -3.97 eV.

  6. Bond characteristics of reinforcing steel embedded in geopolymer concrete

    NASA Astrophysics Data System (ADS)

    Kathirvel, Parthiban; Thangavelu, Manju; Gopalan, Rashmi; Raja Mohan Kaliyaperumal, Saravana

    2017-07-01

    The force transferring between reinforcing steel and the surrounding concrete in reinforced concrete is influenced by several factors. Whereas, the study on bond behaviour of geopolymer concrete (GPC) is lagging. In this paper, an experimental attempt has been made to evaluate the geopolymer concrete bond with reinforcing steel of different diameter and embedded length using standard pull out test. The geopolymer concrete is made of ground granulated blast furnace slag (GGBFS) as geopolymer source material (GSM). The tests were conducted to evaluate the development of bond between steel and concrete of grade M40 and M50 with 12 and 16 mm diameter reinforcing steel for geopolymer and cement concrete mixes and to develop a relation between bond strength and compressive strength. From the experimental results, it has been observed that the bond strength of the geopolymer concrete mixes was more compared to the cement concrete mixes and increases with the reduction in the diameter of the bar.

  7. Gel Electrophoresis of Gold-DNA Nanoconjugates

    DOE PAGES

    Pellegrino, T.; Sperling, R. A.; Alivisatos, A. P.; ...

    2007-01-01

    Gold-DNA conjugates were investigated in detail by a comprehensive gel electrophoresis study based on 1200 gels. A controlled number of single-stranded DNA of different length was attached specifically via thiol-Au bonds to phosphine-stabilized colloidal gold nanoparticles. Alternatively, the surface of the gold particles was saturated with single stranded DNA of different length either specifically via thiol-Au bonds or by nonspecific adsorption. From the experimentally determined electrophoretic mobilities, estimates for the effective diameters of the gold-DNA conjugates were derived by applying two different data treatment approaches. The first method is based on making a calibration curve for the relation between effectivemore » diameters and mobilities with gold nanoparticles of known diameter. The second method is based on Ferguson analysis which uses gold nanoparticles of known diameter as reference database. Our study shows that effective diameters derived from gel electrophoresis measurements are affected with a high error bar as the determined values strongly depend on the method of evaluation, though relative changes in size upon binding of molecules can be detected with high precision. Furthermore, in this study, the specific attachment of DNA via gold-thiol bonds to Au nanoparticles is compared to nonspecific adsorption of DNA. Also, the maximum number of DNA molecules that can be bound per particle was determined.« less

  8. Structural Insights and the Surprisingly Low Mechanical Stability of the Au-S Bond in the Gold-Specific Protein GolB.

    PubMed

    Wei, Wei; Sun, Yang; Zhu, Mingli; Liu, Xiangzhi; Sun, Peiqing; Wang, Feng; Gui, Qiu; Meng, Wuyi; Cao, Yi; Zhao, Jing

    2015-12-16

    The coordination bond between gold and sulfur (Au-S) has been widely studied and utilized in many fields. However, detailed investigations on the basic nature of this bond are still lacking. A gold-specific binding protein, GolB, was recently identified, providing a unique opportunity for the study of the Au-S bond at the molecular level. We probed the mechanical strength of the gold-sulfur bond in GolB using single-molecule force spectroscopy. We measured the rupture force of the Au-S bond to be 165 pN, much lower than Au-S bonds measured on different gold surfaces (∼1000 pN). We further solved the structures of apo-GolB and Au(I)-GolB complex using X-ray crystallography. These structures showed that the average Au-S bond length in GolB is much longer than the reported average value of Au-S bonds. Our results highlight the dramatic influence of the unique biological environment on the stability and strength of metal coordination bonds in proteins.

  9. A Comparison of Cocrystal Structure Solutions from Powder and Single Crystal Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S Lapidus; P Stephens; K Arora

    We demonstrate the effectiveness and accuracy of high resolution powder diffraction for determination of cocrystal structures through a double-blind study. Structures of 10 cocrystals of varying complexity were determined independently using single crystal and powder techniques. The two methodologies give identical molecular packing and hydrogen bond topology, and an rms difference in covalent bond lengths of 0.035 {angstrom}. Powder techniques are clearly sufficient to establish a complete characterization of cocrystal geometry.

  10. Fracture Behavior in Nylon 6 Fibers. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lloyd, B. A.

    1972-01-01

    Electron paramagnetic resonance (EPR) techniques are used to determine the number of free radicals produced during deformation leading to fracture of nylon 6 fibers. A reaction rate molecular model is proposed to explain some of the deformation and bond rupture behavior leading to fracture. High-strength polymer fibers are assumed to consist of a sandwich structure of disordered and ordered regions along the fiber axis. In the disordered or critical flaw regions, tie chains connecting the ordered or crystalline block regions are assumed to have a statistical distribution in length. These chains are, therefore, subjected to different stresses. The effective length distribution was determined by EPR. The probability of bond rupture was assumed to be controlled by reaction-rate theory with a stress-aided activation energy and behavior of various loadings determined by numerical techniques. The model is successfully correlated with experimental stress, strain, and bond rupture results for creep, constant rate loadings, cyclic stress, stress relaxation and step strain tests at room temperature.

  11. Effects of different overlap lengths and composite adherend thicknesses on the performance of adhesively-bonded joints under tensile and bending loadings

    NASA Astrophysics Data System (ADS)

    Kadioglu, F.; Avil, E.; Ercan, M. E.; Aydogan, T.

    2018-05-01

    Fiber-reinforced polymer composites are being used in an increasingly wide range of products. They are particularly popular in automotive and aerospace sectors because they offer an attractive combination of stiffness, strength and low mass. Adhesively-bonded joints of such materials are preferred by many designers due to their assembling advantages over other traditional mechanical joining systems, such as bolted and riveted joints. In this study, some experimental works have been carried out on adhesively-bonded adherends manufactured from a woven carbon fiber-reinforced polymer matrix composite (Hexply 8552S/A280-5H, produced by Hexcel), by using a film adhesive (AF163-2K produced by 3 M). The bonded specimens were prepared in the Single Lap Joint (SLJ) configuration, and tested in tensile and also in four-point bending loading. In order to assess the joint performance, three different overlap lengths, 15 mm, 25 mm and 40 mm, and two different thicknesses of the composite adherends, 2 mm and 3 mm, were used. The results shown that the parameters are controlled by the loading modes; while the overlap length increases the joint performance significantly in tensile loading, the opposite was the case for those in bending loading, which was affected mainly by the adherend thicknesses. The results were related to the mechanisms of joint failures; while the joints in the tensile failed in the adhesive layer with some exceptions, those in the bending mainly failed in the plies adjacent to the layer. The current study indicates that one of the important factors affecting the joint strength of the adherends manufactured from the laminated composites is the local failure of the plies. It is thought more focused-studies would be needed to lessen such problems, which would be possible via in-depth numerical analysis.

  12. Bond between smooth prestressing wires and concrete : finite element model and transfer length analysis for pretensioned concrete crossties.

    DOT National Transportation Integrated Search

    2014-04-03

    Pretensioned concrete ties are increasingly employed in railroad high speed : and heavy haul applications. The bond between prestressing wires or strands and : concrete plays an important role in determining the transfer length of pretensioned : conc...

  13. Influence of chain length and double bond on the aqueous behavior of choline carboxylate soaps.

    PubMed

    Rengstl, Doris; Diat, Olivier; Klein, Regina; Kunz, Werner

    2013-02-26

    In preceding studies, we demonstrated that choline carboxylates ChC(m) with alkyl chain lengths of m = 12 - 18 are highly water-soluble (for m = 12, soluble up to 93 wt % soap and 0 °C). In addition, choline soaps are featured by an extraordinary lyotropic phase behavior. With decreasing water concentration, the following phases were found: micellar phase (L(1)), discontinuous cubic phase (I(1)' and I(1)"), hexagonal phase (H(1)), bicontinuous cubic phase (V(1)), and lamellar phase (L(α)). The present work is also focused on the lyotropic phase behavior of choline soaps but with shorter alkyl chains or different alkyl chain properties. We have investigated the aqueous phase behavior of choline soaps with C(8) and C(10) chain-lengths (choline octanoate and choline decanoate) and with a C(18) chain-length with a cis-double bond (choline oleate). We found that choline decanoate follows the lyotropic phase behavior of the longer-chain homologues mentioned above. Choline octanoate in water shows no discontinuous cubic phases, but an extended, isotropic micellar solution phase. In addition, choline octanoate is at the limit between a surfactant and a hydrotrope. The double bond in choline oleate leads also to a better solubility in water and a decrease of the solubilization temperature. It also influences the Gaussian curvature of the aggregates which results in a loss of discontinuous cubic phases in the binary phase diagram. The different lyotropic mesophases were identified by the penetration scan technique with polarizing light microscope and visual observations. To clarify the structural behavior small (SAXS) and wide (WAXS) angle X-ray scattering were performed. To further characterize the extended, isotropic micellar solution phase in the binary phase diagram of choline octanoate viscosity and conductivity measurements were also carried out.

  14. Study on the Connecting Length of CFRP

    NASA Astrophysics Data System (ADS)

    Liu, Xiongfei; Li, Yue; Li, Zhanguo

    2018-05-01

    The paper studied the varying mode of shear stress in the connecting zone of CFRP. Using epoxy resin (EP) as bond material, performance of specimens with different connecting length of CFRP was tested to obtain the conclusion. CFRP-confined concrete column was tested subsequently to verify the conclusion. The results show that: (1) The binding properties of modified epoxy resin with CFRP is good; (2) As the connecting length increased, the ultimate tensile strength of CFRP increased as well in the range of the experiment parameters; (3) Tensile strength of CFRP can reach the ultimate strength when the connecting length is 90mm;(4) The connecting length of 90mm of CFRP meet the reinforcement requirements.

  15. Crystal structure of (eth­oxy­ethyl­idene)di­methyl­aza­nium ethyl sulfate

    PubMed Central

    Tiritiris, Ioannis; Saur, Stefan; Kantlehner, Willi

    2015-01-01

    In the title salt, C6H14NO+·C2H5SO4 −, the C—N bond lengths in the cation are 1.2981 (14), 1.4658 (14) and 1.4707 (15) Å, indicating double- and single-bond character, respectively. The C—O bond length of 1.3157 (13) Å shows double-bond character, indicating charge delocalization within the NCO plane of the iminium ion. In the crystal, C—H⋯O hydrogen bonds between H atoms of the cations and O atoms of neighbouring ethyl sulfate anions are present, generating a three-dimensional network. PMID:26870525

  16. The Effect of Limited Diffusion and Wet-Dry Cycling on Reversible Polymerization Reactions: Implications for Prebiotic Synthesis of Nucleic Acids.

    PubMed

    Higgs, Paul G

    2016-06-08

    A long-standing problem for the origins of life is that polymerization of many biopolymers, including nucleic acids and peptides, is thermodynamically unfavourable in aqueous solution. If bond making and breaking is reversible, monomers and very short oligomers predominate. Recent experiments have shown that wetting and drying cycles can overcome this problem and drive the formation of longer polymers. In the dry phase, bond formation is favourable, but diffusion is restricted, and bonds only form between monomers that are initially close together. In the wet phase, some of the bonds are hydrolyzed. However, repositioning of the molecules allows new bonds to form in the next dry phase, leading to an increase in mean polymer length. Here, we consider a simple theoretical model that explains the effect of cycling. There is an equilibrium length distribution with a high mean length that could be achieved if diffusion occurred freely in the dry phase. This equilibrium is inaccessible without diffusion. A single dry cycle without diffusion leads to mean lengths much shorter than this. Repeated cycling leads to a significant increase in polymerization relative to a single cycle. In the most favourable case, cycling leads to the same equilibrium length distribution as would be achieved if free diffusion were possible in the dry phase. These results support the RNA World scenario by explaining a potential route to synthesis of long RNAs; however, they also imply that cycling would be beneficial to the synthesis of other kinds of polymers, including peptides, where bond formation involves a condensation reaction.

  17. The Effect of Limited Diffusion and Wet–Dry Cycling on Reversible Polymerization Reactions: Implications for Prebiotic Synthesis of Nucleic Acids

    PubMed Central

    Higgs, Paul G.

    2016-01-01

    A long-standing problem for the origins of life is that polymerization of many biopolymers, including nucleic acids and peptides, is thermodynamically unfavourable in aqueous solution. If bond making and breaking is reversible, monomers and very short oligomers predominate. Recent experiments have shown that wetting and drying cycles can overcome this problem and drive the formation of longer polymers. In the dry phase, bond formation is favourable, but diffusion is restricted, and bonds only form between monomers that are initially close together. In the wet phase, some of the bonds are hydrolyzed. However, repositioning of the molecules allows new bonds to form in the next dry phase, leading to an increase in mean polymer length. Here, we consider a simple theoretical model that explains the effect of cycling. There is an equilibrium length distribution with a high mean length that could be achieved if diffusion occurred freely in the dry phase. This equilibrium is inaccessible without diffusion. A single dry cycle without diffusion leads to mean lengths much shorter than this. Repeated cycling leads to a significant increase in polymerization relative to a single cycle. In the most favourable case, cycling leads to the same equilibrium length distribution as would be achieved if free diffusion were possible in the dry phase. These results support the RNA World scenario by explaining a potential route to synthesis of long RNAs; however, they also imply that cycling would be beneficial to the synthesis of other kinds of polymers, including peptides, where bond formation involves a condensation reaction. PMID:27338479

  18. Theoretical electrical conductivity of hydrogen-bonded benzamide-derived molecules and single DNA bases.

    PubMed

    Chen, Xiang

    2013-09-01

    A benzamide molecule is used as a "reader" molecule to form hydrogen bonds with five single DNA bases, i.e., four normal single DNA bases A,T,C,G and one for 5methylC. The whole molecule is then attached to the gold surface so that a meta-molecule junction is formed. We calculate the transmission function and conductance for the five metal-molecule systems, with the implementation of density functional theory-based non-equilibrium Green function method. Our results show that each DNA base exhibits a unique conductance and most of them are on the pS level. The distinguishable conductance of each DNA base provides a way for the fast sequencing of DNA. We also investigate the dependence of conductivity of such a metal-molecule system on the hydrogen bond length between the "reader" molecule and DNA base, which shows that conductance follows an exponential decay as the hydrogen bond length increases, i.e., the conductivity is highly sensitive to the change in hydrogen bond length.

  19. Symmetry and novelty in the electronic and geometric structure of nanoalloys:. the case of Ag27Cu7

    NASA Astrophysics Data System (ADS)

    Ortigoza, M. Alcántara; Rahman, T. S.

    2008-04-01

    Nanoparticles of bimetallic alloys have been shown to possess composition dependent characteristics which distinguish themselves from the corresponding bulk alloys. Taking the 34-atom nanoalloy of Ag and Cu (Ag27Cu7), we show using first principles electronic structure calculations that this core-shell alloy indeed has perfect D5h symmetry and consists of only 6 non-equivalent (2 Cu and 4 Ag) atoms. Analysis of the interatomic bond lengths and detailed electronic structure further reveal that the Cu atoms play a major role in controlling the characteristics of the nanoalloy. The higher cohesive energy, together with shorter bond length for Cu, compared to Ag, conspire to produce a hierarchy in the relative strengths of the Ag - Cu, Ag - Ag, and Cu - Cu bonds and corresponding interatomic bond lengths, point to the uniqueness in the characteristics of this nanoalloy. Charge density plots of Ag27Cu7 provide further insights into the relative strengths of the various interatomic bonds.

  20. Short-range structure of barium tellurite glasses and its correlation with stress-optic response

    NASA Astrophysics Data System (ADS)

    Kaur, Amarjot; Khanna, Atul; Fábián, Margit

    2018-06-01

    The atomic parameters of metal ion-oxygen speciation such as bond-lengths and nearest neighbor distances for Ba-O, Te-O and O-O pairs, co-ordination numbers and bond angle distributions for O-Ba-O, O-Te-O and O-O-O linkages are determined by neutron diffraction and Reverse Monte Carlo simulations on the series of xBaO-(100-x)TeO2 glasses containing 10, 15 and 20 mol% BaO. The glass network depolymerizes and the average Te-O co-ordination number decreases from 3.60 ± 0.02 to 3.48 ± 0.02 with increase in BaO concentration. Te-O bond lengths are in the range: 1.97 ± 0.01–1.92 ± 0.01 Å. Ba2+ is mostly in octahedral coordination and the Ba-O bond lengths are in the range: 2.73 ± 0.01 to 2.76 ± 0.03 Å. Te-O co-ordination number is also determined by Raman spectroscopy and it shows good agreement with the neutron data. The short-range structural properties i.e. metal ion coordination number (Nc) and bond lengths (d) were correlated with the stress-optic response. The bonding characteristic, Br values were determined from the structural data of xBaO-(100-x)TeO2 glasses and were used to predict the stress-induced birefringence properties.

  1. Consequences of theory level choice evaluated with new tools from QTAIM and the stress tensor for a dipeptide conformer

    NASA Astrophysics Data System (ADS)

    Li, Jiahui; Xu, Tianlv; Ping, Yang; van Mourik, Tanja; Früchtl, Herbert; Kirk, Steven R.; Jenkins, Samantha

    2018-03-01

    QTAIM and the stress tensor were used to provide a detailed analysis of the topology of the molecular graph, BCP and bond-path properties, including the new introduced helicity length H, of a Tyr-Gly dipeptide conformer subjected to a torsion with four levels of theory; MP2, M06-2X, B3LYP-D3 and B3LYP and a modest-sized basis set, 6-31+G(d). Structural effects and bonding properties are quantified and reflect differences in the BSSE and lack of inclusion of dispersion effects in the B3LYP calculations. The helicity length H demonstrated that MP2 produced a unique response to the torsion suggesting future use as a diagnostic tool.

  2. Stable Chloro- and Bromoxenate Cage Anions; [X3(XeO3)3]3- and [X4(XeO3)4]4- (X = Cl or Br).

    PubMed

    Goettel, James T; Haensch, Veit G; Schrobilgen, Gary J

    2017-06-28

    The number of isolable compounds which contain different noble-gas-element bonds is limited for xenon and even more so for krypton. Examples of Xe-Cl bonds are rare, and prior to this work, no Xe-Br bonded compound had been isolated in macroscopic quantities. The syntheses, isolation, and characterization of the first compounds to contain Xe-Br bonds and their chlorine analogues are described in the present work. The reactions of XeO 3 with [N(CH 3 ) 4 ]Br and [N(C 2 H 5 ) 4 ]Br have provided two bromoxenate salts, [N(C 2 H 5 ) 4 ] 3 [Br 3 (XeO 3 ) 3 ] and [N(CH 3 ) 4 ] 4 [Br 4 (XeO 3 ) 4 ], in which the cage anions have Xe-Br bond lengths that range from 3.0838(3) to 3.3181(8) Å. The isostructural chloroxenate anions (Xe-Cl bond lengths, 2.9316(2) to 3.101(4) Å) were synthesized by analogy with their bromine analogues. The bromo- and chloroxenate salts are stable in the atmosphere at room temperature and were characterized in the solid state by Raman spectroscopy and low-temperature single-crystal X-ray diffraction, and in the gas phase by quantum-chemical calculations. They are the only known examples of cage anions that contain a noble-gas element. The Xe-Br and Xe-Cl bonds are very weakly covalent and can be viewed as σ-hole interactions, similar to those encountered in halogen bonding. However, the halogen atoms in these cases are valence electron lone pair donors, and the σ* Xe-O orbitals are lone pair acceptors.

  3. Infrared study of matrix-isolated ethyl cyanide: simulation of the photochemistry in the atmosphere of Titan.

    PubMed

    Toumi, A; Piétri, N; Couturier-Tamburelli, I

    2015-11-11

    Low-temperature Ar matrix isolation has been carried out to investigate the infrared spectrum of ethyl cyanide (CH3CH2CN), a molecule present in the atmosphere of Titan. The λ > 120 nm and λ > 230 nm photolysis reactions of ethyl cyanide in an Ar matrix were also performed in order to compare the behaviour of this compound when it is submitted to high and low energetic radiations. These different wavelengths have been used with the aim to reproduce the radiation reaching the various parts of the atmosphere. Several photoproducts have been identified during photolysis such as vinyl cyanide (CH2[double bond, length as m-dash]CHCN), cyanoacetylene (HC3N), and ethylene/hydrogen cyanide (C2H4/HCN), ethylene/hydrogen isocyanide (C2H4/HNC), acetylene/hydrogen cyanide (C2H2/HCN), acetylene/hydrogen isocyanide (C2H2/HNC), and acetylene:methylenimine (C2H2:HNCH2) complexes. Ethyl isocyanide (CH3CH2NC) and a ketenimine form (CH3CH[double bond, length as m-dash]C[double bond, length as m-dash]NH) have been identified as well. Photoproduct identification and spectral assignments were done using previous studies and density functional theory (DFT) calculations with the B3LYP/cc-pVTZ basis set.

  4. Observation of pendular butterfly Rydberg molecules

    PubMed Central

    Niederprüm, Thomas; Thomas, Oliver; Eichert, Tanita; Lippe, Carsten; Pérez-Ríos, Jesús; Greene, Chris H.; Ott, Herwig

    2016-01-01

    Engineering molecules with a tunable bond length and defined quantum states lies at the heart of quantum chemistry. The unconventional binding mechanism of Rydberg molecules makes them a promising candidate to implement such tunable molecules. A very peculiar type of Rydberg molecules are the so-called butterfly molecules, which are bound by a shape resonance in the electron–perturber scattering. Here we report the observation of these exotic molecules and employ their exceptional properties to engineer their bond length, vibrational state, angular momentum and orientation in a small electric field. Combining the variable bond length with their giant dipole moment of several hundred Debye, we observe counter-intuitive molecules which locate the average electron position beyond the internuclear distance. PMID:27703143

  5. Molecularly Tuning the Radicaloid N-H···O═C Hydrogen Bond.

    PubMed

    Lu, Norman; Chung, Wei-Cheng; Ley, Rebecca M; Lin, Kwan-Yu; Francisco, Joseph S; Negishi, Ei-Ichi

    2016-03-03

    Substituent effects on the open shell N-H···O═C hydrogen-bond has never been reported. This study examines how 12 functional groups composed of electron donating groups (EDG), halogen atoms and electron withdrawing groups (EWG) affect the N-H···O═C hydrogen-bond properties in a six-membered cyclic model system of O═C(Y)-CH═C(X)N-H. It is found that group effects on this open shell H-bonding system are significant and have predictive trends when X = H and Y is varied. When Y is an EDG, the N-H···O═C hydrogen-bond is strengthened; and when Y is an EWG, the bond is weakened; whereas the variation in electronic properties of X group do not exhibit a significant impact upon the hydrogen bond strength. The structural impact of the stronger N-H···O═C hydrogen-bond are (1) shorter H and O distance, r(H···O) and (2) a longer N-H bond length, r(NH). The stronger N-H···O═C hydrogen-bond also acts to pull the H and O in toward one another which has an effect on the bond angles. Our findings show that there is a linear relationship between hydrogen-bond angle and N-H···O═C hydrogen-bond energy in this unusual H-bonding system. In addition, there is a linear correlation of the r(H···O) and the hydrogen bond energy. A short r(H···O) distance corresponds to a large hydrogen bond energy when Y is varied. The observed trends and findings have been validated using three different methods (UB3LYP, M06-2X, and UMP2) with two different basis sets.

  6. Non-covalent synthesis of supermicelles with complex architectures using spatially confined hydrogen-bonding interactions

    PubMed Central

    Li, Xiaoyu; Gao, Yang; Boott, Charlotte E.; Winnik, Mitchell A.; Manners, Ian

    2015-01-01

    Nature uses orthogonal interactions over different length scales to construct structures with hierarchical levels of order and provides an important source of inspiration for the creation of synthetic functional materials. Here, we report the programmed assembly of monodisperse cylindrical block comicelle building blocks with crystalline cores to create supermicelles using spatially confined hydrogen-bonding interactions. We also demonstrate that it is possible to further program the self-assembly of these synthetic building blocks into structures of increased complexity by combining hydrogen-bonding interactions with segment solvophobicity. The overall approach offers an efficient, non-covalent synthesis method for the solution-phase fabrication of a range of complex and potentially functional supermicelle architectures in which the crystallization, hydrogen-bonding and solvophobic interactions are combined in an orthogonal manner. PMID:26337527

  7. Studies of EXAFSSpectra using Copper (II) Schiff Base complexes and Determination of Bond lengths Using Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Mishra, A.; Vibhute, V.; Ninama, S.; Parsai, N.; Jha, S. N.; Sharma, P.

    2016-10-01

    X-ray absorption fine structure (XAFS) at the K-edge of copper has been studied in some copper (II) complexes with substituted anilines like (2Cl, 4Br, 2NO2, 4NO2 and pure aniline) with o-PDA (orthophenylenediamine) as ligand. The X-ray absorption measurements have been performed at the recently developed BL-8 dispersive EXAFS beam line at 2.5 GeV Indus-2 Synchrotron Source at RRCAT, Indore, India. The data obtained has been processed using EXAFS data analysis program Athena.The graphical method gives the useful information about bond length and also the environment of the absorbing atom. The theoretical bond lengths of the complexes were calculated by using interactive fitting of EXAFS using fast Fourier inverse transformation (IFEFFIT) method. This method is also called as Fourier transform method. The Lytle, Sayers and Stern method and Levy's method have been used for determination of bond lengths experimentally of the studied complexes. The results of both methods have been compared with theoretical IFEFFIT method.

  8. Raman spectroscopic determination of the length, strength, compressibility, Debye temperature, elasticity, and force constant of the C-C bond in graphene.

    PubMed

    Yang, X X; Li, J W; Zhou, Z F; Wang, Y; Yang, L W; Zheng, W T; Sun, Chang Q

    2012-01-21

    From the perspective of bond relaxation and bond vibration, we have formulated the Raman phonon relaxation of graphene, under the stimuli of the number-of-layers, the uni-axial strain, the pressure, and the temperature, in terms of the response of the length and strength of the representative bond of the entire specimen to the applied stimuli. Theoretical unification of the measurements clarifies that: (i) the opposite trends of the Raman shifts, which are due to the number-of-layers reduction, of the G-peak shift and arises from the vibration of a pair of atoms, while the D- and the 2D-peak shifts involve the z-neighbor of a specific atom; (ii) the tensile strain-induced phonon softening and phonon-band splitting arise from the asymmetric response of the C(3v) bond geometry to the C(2v) uni-axial bond elongation; (iii) the thermal softening of the phonons originates from bond expansion and weakening; and (iv) the pressure stiffening of the phonons results from bond compression and work hardening. Reproduction of the measurements has led to quantitative information about the referential frequencies from which the Raman frequencies shift as well as the length, energy, force constant, Debye temperature, compressibility and elastic modulus of the C-C bond in graphene, which is of instrumental importance in the understanding of the unusual behavior of graphene.

  9. [Structural and Dipole Structure Peculiarities of Hoogsteen Base Pairs Formed in Complementary Nucleobases according to ab initio Quantum Mechanics Studies].

    PubMed

    Petrenko, Y M

    2015-01-01

    Ab initio quantum mechanics studies for the detection of structure and dipole structure peculiarities of Hoogsteen base pairs relative to Watson-Crick base pairs, were performed during our work. These base pairs are formed as a result of complementary interactions. It was revealed, that adenine-thymine Hoogsteen base pair and adenine-thymine Watson-Crick base pairs can be formed depending on initial configuration. Cytosine-guanine Hoogsteen pairs are formed only when cytosine was originally protonated. Both types of Hoogsteen pairs have noticeable difference in the bond distances and angles. These differences appeared in purine as well as in pyrimidine parts of the pairs. Hoogsteen pairs have mostly shorter hydrogen bond lengths and significantly larger angles of hydrogen bonds and larger angles between the hydrogen bonds than Watson-Crick base pairs. Notable differences are also observed with respect to charge distribution and dipole moment. Quantitative data on these differences are shown in our work. It is also reported that the values of local parameters (according to Cambridge classification of the parameters which determine DNA properties) in Hoogsteen base pairs, are greatly different from Watson-Crick ones.

  10. Introducing Quantum Mechanics into General Chemistry

    NASA Astrophysics Data System (ADS)

    Popkowski, Iwona; Bascal, Hafed

    2008-10-01

    Periodicity has long been recognized as the tool that chemists can use to bring some order to investigating the chemistry of more than one hundred elements. Such studies provide useful tools for understanding a wide array of chemical principles. The advances in computational chemistry make it possible to study and teach such trends with hands on approach. In this study we utilize recently acquired software Spartan Pro to illustrate theoretical measurements of bond length, bond angle and dipole as compared to experimental data. We constructed a matrix of values obtained from the theoretical calculations and obtained trends in bond length, bond angle and dipoles for the several periodic groups.

  11. A new potential for radiation studies of borosilicate glass

    NASA Astrophysics Data System (ADS)

    Alharbi, Amal F.; Jolley, Kenny; Smith, Roger; Archer, Andrew J.; Christie, Jamieson K.

    2017-02-01

    Borosilicate glass containing 70 mol% SiO2 and 30 mol% B2O3 is investigated theoretically using fixed charge potentials. An existing potential parameterisation for borosilicate glass is found to give good agreement for the bond angle and bond length distributions compared to experimental values but the optimal density is 30% higher than experiment. Therefore the potential parameters are refitted to give an optimal density of 2.1 g/cm3, in line with experiment. To determine the optimal density, a series of random initial structures are quenched at a rate of 5 × 1012 K/s using constant volume molecular dynamics. An average of 10 such quenches is carried out for each fixed volume. For each quenched structure, the bond angles, bond lengths, mechanical properties and melting points are determined. The new parameterisation is found to give the density, bond angles, bond lengths and Young's modulus comparable with experimental data, however, the melting points and Poisson's ratio are higher than the reported experimental values. The displacement energy thresholds are computed to be similar to those determined with the earlier parameterisation, which is lower than those for ionic crystalline materials.

  12. X-ray absorption spectral studies of copper (II) mixed ligand complexes

    NASA Astrophysics Data System (ADS)

    Soni, B.; Dar, Davood Ah; Shrivastava, B. D.; Prasad, J.; Srivastava, K.

    2014-09-01

    X-ray absorption spectra at the K-edge of copper have been studied in two copper mixed ligand complexes, one having tetramethyethylenediamine (tmen) and the other having tetraethyethylenediamine (teen) as one of the ligands. The spectra have been recorded at BL-8 dispersive extended X-ray absorption fine structure (EXAFS) beamline at the 2.5 GeV INDUS- 2 synchrotron, RRCAT, Indore, India. The data obtained has been processed using the data analysis program Athena. The energy of the K-absorption edge, chemical shift, edge-width and shift of the principal absorption maximum in the complexes have been determined and discussed. The values of these parameters have been found to be approximately the same in both the complexes indicating that the two complexes possess similar chemical environment around the copper metal atom. The chemical shift has been utilized to estimate effective nuclear charge on the absorbing atom. The normalized EXAFS spectra have been Fourier transformed. The position of the first peak in the Fourier transform gives the value of first shell bond length, which is shorter than the actual bond length because of energy dependence of the phase factors in the sine function of the EXAFS equation. This distance is thus the phase- uncorrected bond length. Bond length has also been determined by Levy's, Lytle's and Lytle, Sayers and Stern's (LSS) methods. The results obtained from LSS and the Fourier transformation methods are comparable with each other, since both are phase uncorrected bond lengths.

  13. The geometric structures, vibrational frequencies and redox properties of the actinyl coordination complexes ([AnO2(L)n](m); An = U, Pu, Np; L = H2O, Cl-, CO3(2-), CH3CO2(-), OH-) in aqueous solution, studied by density functional theory methods.

    PubMed

    Austin, Jonathan P; Sundararajan, Mahesh; Vincent, Mark A; Hillier, Ian H

    2009-08-14

    The geometric and electronic structures of the aqua, chloro, acetato, hydroxo and carbonato complexes of U, Np and Pu in both their (VI) and (V) oxidation states, and in an aqueous environment, have been studied using density functional theory methods. We have obtained micro-solvated structures derived from molecular dynamics simulations and included the bulk solvent using a continuum model. We find that two different hydrogen bonding patterns involving the axial actinyl oxygen atoms are sometimes possible, and may give rise to different An-O bond lengths and vibrational frequencies. These alternative structures are reflected in the experimental An-O bond lengths of the aqua and carbonato complexes. The variation of the redox potential of the uranyl complexes with the different ligands has been studied using both BP86 and B3LYP functionals. The relative values for the four uranium complexes having anionic ligands are in surprisingly good agreement with experiment, although the absolute values are in error by approximately 1 eV. The absolute error for the aqua species is much less, leading to an incorrect order of the redox potentials of the aqua and chloro species.

  14. Bond Strength and Interfacial Morphology of Different Dentin Adhesives in Primary Teeth

    PubMed Central

    Vashisth, Pallavi; Mittal, Mudit; Goswami, Mousumi; Chaudhary, Seema; Dwivedi, Swati

    2014-01-01

    Objective: To evaluate the interfacial morphology and the bond strength produced by the three-step, two-step and single-step bonding systems in primary teeth. Materials and Methods: Occlusal surfaces of 72 extracted human deciduous teeth were ground to expose the dentin. The teeth were divided into four groups: (a) Scotchbond Multipurpose (3M, ESPE), (b) Adh Se (Vivadent), (d) OptiBond All-in-One (Kerr) and (e)Futurabond NR (VOCO, Cuxhaven, Germany). The adhesives were applied to each group following the manufacturer’s instructions. Then, teeth from each group were divided into two groups: (A) For viewing interfacial morphology (32 teeth), with 8 teeth in each group, and (B) For measurement of bond strength (40 teeth), with 10 teeth in each group. All the samples were prepared for viewing under SEM. The statistical analysis was done using SPSS version 15.0 software. Results: Observational measurement of tag length in different adhesives revealed that Scotchbond had the most widely spread values with a range from 12.20 to 89.10μm while OptiBond AIO had the narrowest range (0 to 22.50). The bond strength of Scotchbond Multipurpose was significantly higher (7.4744±1.88763) (p<0.001) as compared to Futurabond NR (3.8070±1.61345), Adhe SE (4.4478 ± 1.3820) and OptiBond-all-in-one (4.4856±1.07925). Conclusion: The three-step bonding system showed better results as compared to simplified studied bonding systems PMID:24910694

  15. Finite Element Bond Modeling for Indented Wires in Pretensioned Concrete Crossties

    DOT National Transportation Integrated Search

    2016-04-12

    Indented wires have been increasingly employed by : concrete crosstie manufacturers to improve the bond between : prestressing steel reinforcements and concrete, as bond can : affect several critical performance measures, including transfer : length,...

  16. Recrystallization texture in nickel heavily deformed by accumulative roll bonding

    NASA Astrophysics Data System (ADS)

    Mishin, O. V.; Zhang, Y. B.; Godfrey, A.

    2017-07-01

    The recrystallization behavior of Ni processed by accumulative roll bonding to a total accumulated von Mises strain of 4.8 has been examined, and analyzed with respect to heterogeneity in the deformation microstructure. The regions near the bonding interface are found to be more refined and contain particle deformation zones around fragments of the steel wire brush used to prepare the surface for bonding. Sample-scale gradients are also observed, manifested as differences between the subsurface, intermediate and central layers, where the distributions of texture components are different. These heterogeneities affect the progress of recrystallization. While the subsurface and near-interface regions typically contain lower frequencies of cube-oriented grains than anywhere else in the sample, a strong cube texture forms in the sample during recrystallization, attributed to both a high nucleation rate and fast growth rate of cube-oriented grains. The observations highlight the sensitivity of recrystallization to heterogeneity in the deformation microstructure and demonstrate the importance of characterizing this heterogeneity over several length scales.

  17. Bond–Slip Relationship for CFRP Sheets Externally Bonded to Concrete under Cyclic Loading

    PubMed Central

    Li, Ke; Cao, Shuangyin; Yang, Yue; Zhu, Juntao

    2018-01-01

    The objective of this paper was to explore the bond–slip relationship between carbon fiber-reinforced polymer (CFRP) sheets and concrete under cyclic loading through experimental and analytical approaches. Modified beam tests were performed in order to gain insight into the bond–slip relationship under static and cyclic loading. The test variables are the CFRP-to-concrete width ratio, and the bond length of the CFRP sheets. An analysis of the test results in this paper and existing test results indicated that the slope of the ascending segment of the bond–slip curve decreased with an increase in the number of load cycles, but the slip corresponding to the maximum shear stress was almost invariable as the number of load cycles increased. In addition, the rate of reduction in the slope of the ascending range of the bond–slip curve during cyclic loading decreased as the concrete strength increased, and increased as the load level or CFRP-to-concrete width ratio enhanced. However, these were not affected by variations in bond length if the residual bond length was longer than the effective bond length. A bilinear bond–slip model for CFRP sheets that are externally bonded to concrete under cyclic loading, which considered the effects of the cyclic load level, concrete strength, and CFRP-to-concrete ratio, was developed based on the existing static bond–slip model. The accuracy of this proposed model was verified by a comparison between this proposed model and test results. PMID:29495383

  18. Compositional effects on Si–OH bond length in hydrous silicates with implications for trends in the SiOH acidity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarubin, Dmitri P., E-mail: dmitri.zarubin@mtu-net.ru

    2014-04-01

    Theoretical calculations of the structure and Brønsted acidity of SiOH groups in silica clusters have never addressed the question if these vary with the degree of SiOH deprotonation. In this connection, a statistical analysis is presented of Si–OH bond lengths in crystalline hydrogen silicates with well-determined structures with a special emphasis placed on effects of the silicate composition. It is found that among hydrogen silicates of large cations with low charges the Si–OH bonds are always longer than terminal Si–O bonds in the same anion and correlate in length with the anionic charge per tetrahedron. The findings are explained bymore » steric limitations on charge balancing at oxygen atoms by hydrogen bonds and/or cations. It is suggested that similar limitations and imbalances may underlie the well-known trends in the Brønsted acidity of silicic acids and silicas in aqueous media: decreased acidity with increased SiOH deprotonation and increased acidity with increased tetrahedra connectivity. - Graphical abstract: Si–OH bonds in crystalline silicates lengthen with the anionic charge per tetrahedron, which is in parallel with the well-known trend of decreased acidity of silicic acids and silicas in solution with increased degree of deprotonation. - Highlights: • Si–OH bonds in alkali hydrogen silicates are always longer than terminal Si–O bonds. • Si–OH bonds in silicates lengthen with the anionic charge per tetrahedron. • The Si–OH bond elongation results from inherent underbonding of terminal O atoms. • The longer the Si–OH bond, the less acidic the OH group is.« less

  19. On the CH...Cu agostic interaction: chiral copper(II) compounds with ephedrine and pseudoephedrine derivatives.

    PubMed

    Castro, Miguel; Cruz, Julián; López-Sandoval, Horacio; Barba-Behrens, Norah

    2005-08-14

    The ephedrine derivative, (H2ceph), yields [Cu(Hceph)2], showing a CH...Cu(II) agostic interaction; while in the analogous compound [Cu(Hcpse)2], with pseudoephedrine (H2cpse), that interaction is absent, despite the fact that these two diasteromers differ only in the orientation of the methyl and phenyl groups: erythro in H2ceph and threo in H2cpse. The X-ray crystal structure of [Cu(Hceph)2], indicates a Cu...HC length of 2.454 A and the theoretical study reveals the formation of a Cu...HC bond since the associated electronic density shows both a bond critical point and a bond ring critical point.

  20. Local structure in solid solutions of stabilised zirconia with actinide dioxides (UO{sub 2}, NpO{sub 2})

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walter, Marcus, E-mail: marcus.walter@vkta.d; Somers, Joseph; Bouexiere, Daniel

    2011-04-15

    The local structure of (Zr,Lu,U)O{sub 2-x} and (Zr,Y,Np)O{sub 2-x} solid solutions has been investigated by extended X-ray absorption fine structure (EXAFS). Samples were prepared by mixing reactive (Zr,Lu)O{sub 2-x} and (Zr,Y)O{sub 2-x} precursor materials with the actinide oxide powders, respectively. Sintering at 1600 {sup o}C in Ar/H{sub 2} yields a fluorite structure with U(IV) and Np(IV). As typical for stabilised zirconia the metal-oxygen and metal-metal distances are characteristic for the different metal ions. The bond lengths increase with actinide concentration, whereas highest adaptation to the bulk stabilised zirconia structure was observed for U---O and Np---O bonds. The Zr---O bond showsmore » only a slight increase from 2.14 A at 6 mol% actinide to 2.18 A at infinite dilution in UO{sub 2} and NpO{sub 2}. The short interatomic distance between Zr and the surrounding oxygen and metal atoms indicate a low relaxation of Zr with respect to the bulk structure, i.e. a strong Pauling behaviour. -- Graphical abstract: Metal-oxygen bond distances in (Zr,Lu,U)O{sub 2-x} solid solutions with different oxygen vacancy concentrations (Lu/Zr=1 and Lu/Zr=0.5). Display Omitted Research Highlights: {yields} EXAFS indicates high U and Np adaption to the bulk structure of stabilised zirconia. {yields} Zr---O bond length is 2.18 A at infinite Zr dilution in UO{sub 2} and NpO{sub 2}. {yields} Low relaxation (strong Pauling behaviour) of Zr explains its low solubility in UO{sub 2}.« less

  1. Shock response of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX): The C-N bond scission studied by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Yuan, Jiao-Nan; Wei, Yong-Kai; Zhang, Xiu-Qing; Chen, Xiang-Rong; Ji, Guang-Fu; Kotni, Meena Kumari; Wei, Dong-Qing

    2017-10-01

    The shock response has a great influence on the design, synthesis, and application of energetic materials in both industrial and military areas. Therefore, the initial decomposition mechanism of bond scission at the atomistic level of condensed-phase α-RDX under shock loading has been studied based on quantum molecular dynamics simulations in combination with a multi-scale shock technique. First, based on the frontier molecular orbital theory, our calculated result shows that the N-NO2 bond is the weakest bond in the α-RDX molecule in the ground state, which may be the initial bond for pyrolysis. Second, the changes of bonds under shock loading are investigated by the changes of structures, kinetic bond lengths, and Laplacian bond orders during the simulation. Also, the variation of thermodynamic properties with time in shocked α-RDX at 10 km/s along the lattice vector a for a timescale of up to 3.5 ps is presented. By analyzing the detailed structural changes of RDX under shock loading, we find that the shocked RDX crystal undergoes a process of compression and rotation, which leads to the C-N bond initial rupture. The time variation of dynamic bond lengths in a shocked RDX crystal is calculated, and the result indicates that the C-N bond is easier to rupture than other bonds. The Laplacian bond orders are used to predict the molecular reactivity and stability. The values of the calculated bond orders show that the C-N bonds are more sensitive than other bonds under shock loading. In a word, the C-N bond scission has been validated as the initial decomposition in a RDX crystal shocked at 10 km/s. Finally, the bond-length criterion has been used to identify individual molecules in the simulation. The distance thresholds up to which two particles are considered direct neighbors and assigned to the same cluster have been tested. The species and density numbers of the initial decomposition products are collected according to the trajectory.

  2. Depressing thermal conductivity of fullerene by caging rare gas

    NASA Astrophysics Data System (ADS)

    Li, Jian; Zheng, Dong-Qin; Zhong, Wei-Rong

    2016-01-01

    We have investigated the thermal conductivity of C60 and its derivatives caged with rare gas by using the nonequilibrium molecular dynamics method. It is reported that embedding C60 with different rare gas atoms has a significant impact on its thermal conductivity. We analyze the phenomenon through the phonon spectra of rare gas atom and the C-C bonds length of C60. When the number of atoms inside the C60 increases, the phonon spectra band width of rare gas expands and the length of C-C bonds becomes longer, which contributes to the depression of the thermal conductivity of C60. The method is applied to control the thermal conductivity of C60 chains, which maybe a kind of potential materials in thermal circuits. Our results also provide a controllable method for the thermal management in nanoscale materials.

  3. The role of amino acid side chains in stabilizing dipeptides: the laser ablation Fourier transform microwave spectrum of Ac-Val-NH2.

    PubMed

    León, I; Alonso, E R; Mata, S; Cabezas, C; Rodríguez, M A; Grabow, J-U; Alonso, J L

    2017-09-20

    The steric effects imposed by the isopropyl group of valine in the conformational stabilization of the capped dipeptide N-acetyl-l-valinamide (Ac-Val-NH 2 ) have been studied by laser ablation molecular beam Fourier transform microwave (LA-MB-FTMW) spectroscopy. The rotational and quadrupole coupling constants of the two 14 N nuclei determined in this work show that this dipeptide exists as a mixture of C 7 and C 5 conformers in the supersonic expansion. The conformers are stabilized by a C[double bond, length as m-dash]OH-N intramolecular hydrogen bond closing a seven- or a five-membered ring, respectively. The observation of both conformers is in good agreement with previous results on the related dipeptides containing different residues, confirming that the polarity/non-polarity of the side chains of the amino acid is responsible for the conformational locking/unlocking. The voluminous isopropyl group is not able to prevent the less stable C 5 conformer from forming but it destabilizes the C[double bond, length as m-dash]OH-N interaction.

  4. Modeling the intermolecular interactions: molecular structure of N-3-hydroxyphenyl-4-methoxybenzamide.

    PubMed

    Karabulut, Sedat; Namli, Hilmi; Kurtaran, Raif; Yildirim, Leyla Tatar; Leszczynski, Jerzy

    2014-03-01

    The title compound, N-3-hydroxyphenyl-4-methoxybenzamide (3) was prepared by the acylation reaction of 3-aminophenol (1) and 4-metoxybenzoylchloride (2) in THF and characterized by ¹H NMR, ¹³C NMR and elemental analysis. Molecular structure of the crystal was determined by single crystal X-ray diffraction and DFT calculations. 3 crystallizes in monoclinic P2₁/c space group. The influence of intermolecular interactions (dimerization and crystal packing) on molecular geometry has been evaluated by calculations performed for three different models; monomer (3), dimer (4) and dimer with added unit cell contacts (5). Molecular structure of 3, 4 and 5 was optimized by applying B3LYP method with 6-31G+(d,p) basis set in gas phase and compared with X-ray crystallographic data including bond lengths, bond angles and selected dihedral angles. It has been concluded that although the crystal packing and dimerization have a minor effect on bond lengths and angles, however, these interactions are important for the dihedral angles and the rotational conformation of aromatic rings. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Bond Length Dependence on Quantum States as Shown by Spectroscopy

    ERIC Educational Resources Information Center

    Lim, Kieran F.

    2005-01-01

    A discussion on how a spreadsheet simulation of linear-molecular spectra could be used to explore the dependence of rotational band spacing and contours on average bond lengths in the initial and final quantum states is presented. The simulation of hydrogen chloride IR, iodine UV-vis, and nitrogen UV-vis spectra clearly show whether the average…

  6. Complex transition metal hydrides: linear correlation of countercation electronegativity versus T-D bond lengths.

    PubMed

    Humphries, T D; Sheppard, D A; Buckley, C E

    2015-06-30

    For homoleptic 18-electron complex hydrides, an inverse linear correlation has been established between the T-deuterium bond length (T = Fe, Co, Ni) and the average electronegativity of the metal countercations. This relationship can be further employed towards aiding structural solutions and predicting physical properties of novel complex transition metal hydrides.

  7. The influence of plain bar on bond strength of geopolymer concrete

    NASA Astrophysics Data System (ADS)

    Dewi, Evrianti Syntia; Ekaputri, Januarti Jaya

    2017-06-01

    This paper presents some results of experimental study of bond strength of plain bar embedded in geopolymer concrete. Fly ash class F was used as a raw material activated with alkali solutions. The combination of 8 Molar of sodium hydroxide (NaOH) and sodium silicate (Na2SiO3) as alkali activators was examined in the mixture with ratio of 2.5 by weight. Nine cubical specimens with a size of 150 × 150 × 150 mm were prepared to measure bond strength and slip between reinforcement and concrete. The influential factors studied for the experimental investigation were the diameter of reinforcement bar, bond area, and concrete cover to diameter (c/d) of reinforcement. The result showed that the average bond strength decreased as the diameter of plain bar and bonded length were increased from 16 mm to 19 mm. However, the 12 mm showed the different result allegedly caused by the effect of bond area and the passive confined provided by the concrete. Based on several equations used to compare the bond strength, it is clear that deformed bar of 12 mm in diameter is potential to increase the bond strength.

  8. Crystal structure of tetra­aqua­[2-(pyridin-2-yl)-1H-imidazole-κ2 N 2,N 3]iron(II) sulfate

    PubMed Central

    Setifi, Zouaoui; Setifi, Fatima; Francuski, Bojana M.; Novaković, Sladjana B.; Merazig, Hocine

    2015-01-01

    In the title compound, [Fe(C8H7N3)(H2O)4]SO4, the central FeII ion is octa­hedrally coordinated by two N atoms from the bidentate 2-(pyridin-2-yl)-1H-imidazole ligand and by four O atoms of the aqua ligands. The largest deviation from the ideal octa­hedral geometry is reflected by the small N—Fe—N bite angle of 76.0 (1)°. The Fe—N coordination bonds have markedly different lengths [2.1361 (17) and 2.243 (2) Å], with the shorter one to the pyrimidine N atom. The four Fe—O coordination bond lengths vary from 2.1191 (18) to 2.1340 (17) Å. In the crystal, the cations and anions are arranged by means of medium-strength O—H⋯O hydrogen bonds into layers parallel to the ab plane. Neighbouring layers further inter­connect by N—H⋯O hydrogen bonds involving the imidazole fragment as donor group to one sulfate O atom as an acceptor. The resulting three-dimensional network is consolidated by C—H⋯O, C—H⋯π and π–π inter­actions. PMID:26029386

  9. Size-induced changes of structural and ferromagnetic properties in La1-xSrxMnO3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Hintze, Cornelia E.; Fuchs, Dirk; Merz, Michael; Amari, Houari; Kübel, Christian; Huang, Meng-Jie; Powell, Annie; v. Löhneysen, Hilbert

    2017-06-01

    La1-xSrxMnO3 nanocrystals were grown using a microemulsion approach with different water-to-surfactant ratios Rw resulting in diameters between 20 and 40 nm. The variation of Rw entails a variation in the Sr concentrations between x = 0.35 and 0.50. This technique allows the controlled growth of structurally well-defined nanoparticles using the same calcination conditions. With decreasing particle size, the unit-cell volume increases together with the Mn-O bond length, while the Mn-O-Mn bond angle was found to decrease. The size-dependent change of structural properties is possibly related to surface effects or disorder. With the decrease in particle size, the ferromagnetic ordering temperature TC decreases significantly by up to 20%. The reduction of TC can be well understood with respect to the structural changes: the increase of Mn-O bond length and the decrease of Mn-O-Mn bond angle weaken the double-exchange coupling and hence reduce T C . In addition the intrinsic finite-size effect reduces T C . The observed size-induced change of magnetic properties may allow for a controlled manipulation of magnetism in La1-xSrxMnO3 nanoparticles by varying the particle size.

  10. Thinking Like a Chemist: Intuition in Thermoelectric Materials.

    PubMed

    Zeier, Wolfgang G; Zevalkink, Alex; Gibbs, Zachary M; Hautier, Geoffroy; Kanatzidis, Mercouri G; Snyder, G Jeffrey

    2016-06-06

    The coupled transport properties required to create an efficient thermoelectric material necessitates a thorough understanding of the relationship between the chemistry and physics in a solid. We approach thermoelectric material design using the chemical intuition provided by molecular orbital diagrams, tight binding theory, and a classic understanding of bond strength. Concepts such as electronegativity, band width, orbital overlap, bond energy, and bond length are used to explain trends in electronic properties such as the magnitude and temperature dependence of band gap, carrier effective mass, and band degeneracy and convergence. The lattice thermal conductivity is discussed in relation to the crystal structure and bond strength, with emphasis on the importance of bond length. We provide an overview of how symmetry and bonding strength affect electron and phonon transport in solids, and how altering these properties may be used in strategies to improve thermoelectric performance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Electrical conductivity enhancement by boron-doping in diamond using first principle calculations

    NASA Astrophysics Data System (ADS)

    Ullah, Mahtab; Ahmed, Ejaz; Hussain, Fayyaz; Rana, Anwar Manzoor; Raza, Rizwan

    2015-04-01

    Boron doping in diamond plays a vital role in enhancing electrical conductivity of diamond by making it a semiconductor, a conductor or even a superconductor. To elucidate this fact, partial and total density of states has been determined as a function of B-content in diamond. Moreover, the orbital charge distributions, B-C bond lengths and their population have been studied for B-doping in pristine diamond thin films by applying density functional theory (DFT). These parameters have been found to be influenced by the addition of different percentages of boron atoms in diamond. The electronic density of states, B-C bond situations as well as variations in electrical conductivities of diamond films with different boron content and determination of some relationship between these parameters were the basic tasks of this study. Diamond with high boron concentration (∼5.88% B-atoms) showed maximum splitting of energy bands (caused by acceptor impurity states) at the Fermi level which resulted in the enhancement of electron/ion conductivities. Because B atoms either substitute carbon atoms and/or assemble at grain boundaries (interstitial sites) inducing impurity levels close to the top of the valence band. At very high B-concentration, impurity states combine to form an impurity band which accesses the top of the valence band yielding metal like conductivity. Moreover, bond length and charge distributions are found to decrease with increase in boron percentage in diamond. It is noted that charge distribution decreased from +1.89 to -1.90 eV whereas bond length reduced by 0.04 Å with increasing boron content in diamond films. These theoretical results support our earlier experimental findings on B-doped diamond polycrystalline films which depict that the addition of boron atoms to diamond films gives a sudden fall in resistivity even up to 105 Ω cm making it a good semiconductor for its applications in electrical devices.

  12. Kinetics of the Multistep Rupture of Fibrin ‘A-a’ Polymerization Interactions Measured Using Atomic Force Microscopy

    PubMed Central

    Averett, Laurel E.; Schoenfisch, Mark H.; Akhremitchev, Boris B.; Gorkun, Oleg V.

    2009-01-01

    Abstract Fibrin, the structural scaffold of blood clots, spontaneously polymerizes through the formation of ‘A-a’ knob-hole bonds. When subjected to external force, the dissociation of this bond is accompanied by two to four abrupt changes in molecular dimension observable as rupture events in a force curve. Herein, the configuration, molecular extension, and kinetic parameters of each rupture event are examined. The increases in contour length indicate that the D region of fibrinogen can lengthen by ∼50% of the length of a fibrin monomer before rupture of the ‘A-a’ interaction. The dependence of the dissociation rate on applied force was obtained using probability distributions of rupture forces collected at different pull-off velocities. These distributions were fit using a model in which the effects of the shape of the binding potential are used to quantify the kinetic parameters of forced dissociation. We found that the weak initial rupture (i.e., event 1) was not well approximated by these models. The ruptured bonds comprising the strongest ruptures, events 2 and 3, had kinetic parameters similar to those commonly found for the mechanical unfolding of globular proteins. The bonds ruptured in event 4 were well described by these analyses, but were more loosely bound than the bonds in events 2 and 3. We propose that the first event represents the rupture of an unknown interaction parallel to the ‘A-a’ bond, events 2 and 3 represent unfolding of structures in the D region of fibrinogen, and event 4 is the rupture of the ‘A-a’ knob-hole bond weakened by prior structural unfolding. Comparison of the activation energy obtained via force spectroscopy measurements with the thermodynamic free energy of ‘A-a’ bond dissociation indicates that the ‘A-a’ bond may be more resistant to rupture by applied force than to rupture by thermal dissociation. PMID:19917237

  13. Pullout Performances of Grouted Rockbolt Systems with Bond Defects

    NASA Astrophysics Data System (ADS)

    Xu, Chang; Li, Zihan; Wang, Shanyong; Wang, Shuren; Fu, Lei; Tang, Chunan

    2018-03-01

    This paper presents a numerical study on the pullout behaviour of fully grouted rockbolts with bond defects. The cohesive zone model (CZM) is adopted to model the bond-slip behaviour between the rockbolt and grout material. Tensile tests were also conducted to validate the numerical model. The results indicate that the defect length can obviously influence the load and stress distributions along the rockbolt as well as the load-displacement response of the grouted system. Moreover, a plateau in the stress distribution forms due to the bond defect. The linear limit and peak load of the load-displacement response decrease as the defect length increases. A bond defect located closer to the loaded end leads to a longer nonlinear stage in the load-displacement response. However, the peak loads measured from the specimens made with various defect locations are almost approximately the same. The peak load for a specimen with the defects equally spaced along the bolt is higher than that for a specimen with defects concentrated in a certain zone, even with the same total defect length. Therefore, the dispersed pattern of bond defects would be much safer than the concentrated pattern. For the specimen with dispersed defects, the peak load increases with an increase in the defect spacing, even if the total defect length is the same. The peak load for a grouted rockbolt system with defects increases with an increases in the bolt diameter. This work leads to a better understanding of the load transfer mechanism for grouted rockbolt systems with bond defects, and paves the way towards developing a general evaluation method for damaged rockbolt grouted systems.

  14. Ge K-Edge Extended X-Ray Absorption Fine Structure Study of the Local Structure of Amorphous GeTe and the Crystallization

    NASA Astrophysics Data System (ADS)

    Maeda, Yoshihito; Wakagi, Masatoshi

    1991-01-01

    The local structure and crystallization of amorphous GeTe (a-GeTe) were examined by means of Ge K-edge EXAFS. In a-GeTe, both Ge-Ge and Ge-Te bonds were observed to exist in nearest neighbors of Ge. The average coordination number around Ge is 3.7, which is close to the tetrahedral structure. A random covalent network (RCN) model seems to be suitable for the local Structure. After a-GeTe crystallizes at 129°C, the Ge-Ge bond disappears and the Ge-Te bond length increases considerably. As temperature rises, in a-GeTe the Debye-Waller factor of the Ge-Te bond increases greatly, while that of the Ge-Ge bond increases only slightly. At the crystallization, it is found that the fluctuation of the Ge-Te bond length plays a major role in the change of the local structure and bonding state around Ge.

  15. Structural elucidation of antihemorrhage drug molecule Diethylammonium 2,5-dihydroxybenzene sulfonate - an insilico approach

    NASA Astrophysics Data System (ADS)

    Kumar, S. Anil; Bhaskar, BL

    2018-02-01

    Ab-initio computational study of antihemorrhage drug molecule diethylammonium 2,5-dihydroxybenzene sulfonate, popularly known as ethamsylate, has been attempted using Gaussian 09. The optimized molecular geometry has been envisaged using density functional theory method at B3LYP/6-311 basis set. Different geometrical parameters like bond lengths and bond angles were computed and compared against the experimental results available in literature. Fourier transform infrared scanning of the title molecule was performed and vibrational frequencies were also computed using Gaussian software. The presence of O-H---O hydrogen bonds between C6H5O5S- anions and N-H---O hydrogen bonds between anion and cation is evident in the computational studies also. In general, satisfactory agreement of concordance has been observed between computational and experimental results.

  16. Molecular-dynamics simulation of polymethylene chain confined in cylindrical potentials. I. Nature of the conformational defects

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takashi; Kimikawa, Yuichi

    1992-10-01

    The conformational motion of a polymethylene molecule constrained by a cylindrical potential is simulated up to 100 ps. The molecule consists of 60 CH2 groups and has variable bond lengths, bond angles, and dihedral angles. Our main concern here is the excitation and the dynamics of the conformational defects: kinks, jogs, etc. Under weaker constraint a number of gauche bonds are excited; they mostly form pairs such as gtḡ kinks or gtttḡ jogs. These conformational defects show no continuous drift in space. Instead they often annihilate and then recreate at different sites showing apparently random positional changes. The conformational defects produce characteristic strain fields around them. It seems that the conformational defects interact attractively through these strain fields. This is evidenced by remarkably correlated spatial distributions of the gauche bonds.

  17. Chemical and constitutional influences in the self-assembly of functional supramolecular hydrogen-bonded nanoscopic fibres.

    PubMed

    Puigmartí-Luis, Josep; Minoia, Andrea; Pérez Del Pino, Angel; Ujaque, Gregori; Rovira, Concepció; Lledós, Agustí; Lazzaroni, Roberto; Amabilino, David B

    2006-12-13

    A new series of secondary amides bearing long alkyl chains with pi-electron-donor cores has been synthesized and characterised, and their self-assembly upon casting at surfaces has been studied. The different supramolecular assemblies of the materials have been visualized by using atomic force microscopy (AFM) and transmission electron microscopy (TEM). It is possible to obtain well-defined fibres of these aromatic core molecules as a result of the hydrogen bonds between the amide groups. Indeed, by altering the alkyl-chain lengths, constitutions, concentrations and solvent, it is possible to form different rodlike aggregates on graphite. Aggregate sizes with a lower limit of 6-8 nm width have been reached for different amide derivatives, while others show larger aggregates with rodlike morphologies which are several micrometers in length. For one compound that forms nanofibres, doping was performed by using a chemical oxidant, and the resulting layer on graphite was shown to exhibit metallic-like spectroscopy curves when probed with current-sensing AFM. This technique also revealed current maps of the surface of the molecular material. Fibre formation not only takes place on the graphite surface: nanometre scale rods have been imaged by using TEM on a grid after evaporation of solutions of the compounds in chloroform. Molecular modelling proves the importance of the hydrogen bonds in the generation of the fibres, and indicates that the constitution of the molecules is vital for the formation of the desired columnar stacks, results that are consistent with the images obtained by microscopic techniques. The results show the power of noncovalent bonds in self-assembly processes that can lead to electrically conducting nanoscale supramolecular wires.

  18. Anisotropy of atomic bonds formed by p-type dopants in bulk GaN crystals

    NASA Astrophysics Data System (ADS)

    Lawniczak-Jablonska, K.; Suski, T.; Gorczyca, I.; Christensen, N. E.; Libera, J.; Kachniarz, J.; Lagarde, P.; Cortes, R.; Grzegory, I.

    The anisotropy of atomic bonds formed by acceptor dopants with nitrogen in bulk wurtzite GaN crystals was studied by means of linearly polarized synchrotron radiation used in measurements of X-ray-absorption spectra for the K-edgeof Mg and Zn dopants. These spectra correspond to i) a single acceptor N bond along the c-axis and ii) three bonds realized with N atoms occupying the ab-plane perpendicular to the c-axis. The Zn dopant formed resonant spectra similar to that characteristic for Ga cations. In the case of the Mg dopant, similarity to Ga cations was observed for triple bonds in the ab-plane, only. Practically no resonant structure for spectra detected along the c-axis was observed. The absorption spectra were compared with ab initio calculations using the full-potential linear muffin-tin-orbital method. These calculations were also used for determination of the bond length for Mg-N and Zn-N in wurtzite GaN crystals and show that introducing dopants causes an increase of the lengths of the bonds formed by both dopants. Extended X-ray-absorption fine-structure measurements performed for bulk GaN:Zn confirmed the prediction of the theory in the case of the Zn-N bond. Finally, it is suggested that the anisotropy in the length of the Mg-N bonds, related to their larger strength in the case of bonds in the ab-plane, can explain preferential formation of a superlattice consisting of Mg-rich layers arranged in ab-planes of several bulk GaN:Mg crystals observed by transmission electron microscopy. Within the sensitivity of the method used, no parasitic metallic clusters or oxide compounds formed by the considered acceptors in GaN crystals were found.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Qi-lin, E-mail: xiongql@hust.edu.cn; Hubei Key Laboratory of Engineering Structural Analysis and Safety Assessment, Luoyu Road 1037, Wuhan 430074; Tian, Xiao Geng

    The torsional mechanical properties of hexagonal single-walled boron nitride nanotubes (SWBNNTs), single-walled carbon nanotubes (SWCNTs), and their hybrid structures (SWBN-CNTs) are investigated using molecular dynamics (MD) simulation. Two approaches - force approach and energy approach, are adopted to calculate the shear moduli of SWBNNTs and SWCNTs, the discrepancy between two approaches is analyzed. The results show that the shear moduli of single-walled nanotubes (SWNTs), including SWBNNTs and SWCNTs are dependent on the diameter, especially for armchair SWNTs. The armchair SWNTs show the better ability of resistance the twisting comparable to the zigzag SWNTs. The effects of diameter and length onmore » the critical values of torque of SWNTs are obtained by comparing the torsional behaviors of SWNTs with different diameters and different lengths. It is observed that the MD results of the effect of diameter and length on the critical values of torque agrees well with the prediction of continuum shell model. The shear modulus of SWBN-CNT has a significant dependence on the percentages of SWCNT and the hybrid style has also an influence on shear modulus. The critical values of torque of SWBN-CNTs increase with the increase of the percentages of SWCNT. This phenomenon can be interpreted by the function relationship between the torque of different bonds (B-N-X, C-C-X, C-B-X, C-N-X) and the angles of bonds.« less

  20. Evaluation of bond strength of various epoxy resin based sealers in oval shaped root canals.

    PubMed

    Cakici, Fatih; Cakici, Elif Bahar; Ceyhanli, Kadir Tolga; Celik, Ersan; Kucukekenci, Funda Fundaoglu; Gunseren, Arif Onur

    2016-09-30

    The aim of this study was to evaluate the bond strength of AH plus, Acroseal, and Adseal to the root canal dentin. A total of 36 single-rooted, mandibular premolar teeth were used. Root canal shaping procedures were performed with ProTaper rotary instruments (Dentsply Maillefer) up to size F4. The prepared samples were then randomly assembled into 3 groups (n = 12). For each group, an ultrasonic tip (size 15, 0.02 taper) which was also coated with an epoxy resin based sealer and placed 2 mm shorter than the working length. The sealer was then activated for 10 s. A push-out test was used to measure the bond strength between the root canal dentine and the sealer. Kruskal-Wallis test to evaluate the push-out bond strength of epoxy based sealer (P = 0.05). The failure mode data were statistically analyzed using Pearson's chi square test (P = 0.05). Kruskal-Wallis test indicated that there were no statistically significant difference among the push out bond strength values of 3 mm (p = 0.123) and 6 mm (P = 0.057) for groups, there was statistically significant difference push out bond strength value of 9 mm (P = 0.032). Pearson's chi square test showed statistically significant differences for the failure types among the groups. Various epoxy resin based sealers activated ultrasonically showed similar bond strength in oval shaped root canals. Apical sections for all groups have higher push out bond strength values than middle and coronal sections.

  1. Investigation of non-corrin cobalt(II)-containing sites in protein structures of the Protein Data Bank.

    PubMed

    Abriata, Luciano Andres

    2013-04-01

    Protein X-ray structures with non-corrin cobalt(II)-containing sites, either natural or substituting another native ion, were downloaded from the Protein Data Bank and explored to (i) describe which amino acids are involved in their first ligand shells and (ii) analyze cobalt(II)-donor bond lengths in comparison with previously reported target distances, CSD data and EXAFS data. The set of amino acids involved in Co(II) binding is similar to that observed for catalytic Zn(II) sites, i.e. with a large fraction of carboxylate O atoms from aspartate and glutamate and aromatic N atoms from histidine. The computed Co(II)-donor bond lengths were found to depend strongly on structure resolution, an artifact previously detected for other metal-donor distances. Small corrections are suggested for the target bond lengths to the aromatic N atoms of histidines and the O atoms of water and hydroxide. The available target distance for cysteine (Scys) is confirmed; those for backbone O and other donors remain uncertain and should be handled with caution in refinement and modeling protocols. Finally, a relationship between both Co(II)-O bond lengths in bidentate carboxylates is quantified.

  2. A molecular scale perspective: Monte Carlo simulation for rupturing of ultra thin polymer film melts

    NASA Astrophysics Data System (ADS)

    Singh, Satya Pal

    2017-04-01

    Monte Carlo simulation has been performed to study the rupturing process of thin polymer film under strong confinement. The change in mean square displacement; pair correlation function; density distribution; average bond length and microscopic viscosity are sampled by varying the molecular interaction parameters such as the strength and the equilibrium positions of the bonding, non-bonding potentials and the sizes of the beads. The variation in mean square angular displacement χθ = [ < Δθ2 > - < Δθ>2 ] fits very well to a function of type y (t) = A + B *e-t/τ. This may help to study the viscous properties of the films and its dependence on different parameters. The ultra thin film annealed at high temperature gets ruptured and holes are created in the film mimicking spinodal dewetting. The pair correlation function and density profile reveal rich information about the equilibrium structure of the film. The strength and equilibrium bond length of finite extensible non-linear elastic potential (FENE) and non-bonding Morse potential have clear impact on microscopic rupturing of the film. The beads show Rouse or repetition motion forming rim like structures near the holes created inside the film. The higher order interaction as dipole-quadrupole may get prominence under strong confinement. The enhanced excluded volume interaction under strong confinement may overlap with the molecular dispersion forces. It can work to reorganize the molecules at the bottom of the scale and can imprint its signature in complex patterns evolved.

  3. Quantum mechanics models of the methanol dimer: OH⋯O hydrogen bonds of β-d-glucose moieties from crystallographic data.

    PubMed

    Cintrón, Michael Santiago; Johnson, Glenn P; French, Alfred D

    2017-04-18

    The interaction of two methanol molecules, simplified models of carbohydrates and cellulose, was examined using a variety of quantum mechanics (QM) levels of theory. Energy plots for hydrogen bonding distance (H⋯O) and angle (OH⋯O) were constructed. All but two experimental structures were located in stabilized areas on the vacuum phase energy plots. Each of the 399 models was analyzed with Bader's atoms-in-molecules (AIM) theory, which showed a widespread ability by the dimer models to form OH⋯O hydrogen bonds that have bond paths and Bond Critical Points. Continuum solvation calculations suggest that a portion of the energy-stabilized structures could occur in the presence of water. A survey of the Cambridge Structural Database (CSD) for all donor-acceptor interactions in β-D-glucose moieties examined the similarities and differences among the hydroxyl groups and acetal oxygen atoms that participate in hydrogen bonds. Comparable behavior was observed for the O2H, O3H, O4H, and O6H hydroxyls, acting either as acceptors or donors. Ring O atoms showed distinct hydrogen bonding behavior that favored mid-length hydrogen bonds. Published by Elsevier Ltd.

  4. Silane and Germane Molecular Electronics.

    PubMed

    Su, Timothy A; Li, Haixing; Klausen, Rebekka S; Kim, Nathaniel T; Neupane, Madhav; Leighton, James L; Steigerwald, Michael L; Venkataraman, Latha; Nuckolls, Colin

    2017-04-18

    This Account provides an overview of our recent efforts to uncover the fundamental charge transport properties of Si-Si and Ge-Ge single bonds and introduce useful functions into group 14 molecular wires. We utilize the tools of chemical synthesis and a scanning tunneling microscopy-based break-junction technique to study the mechanism of charge transport in these molecular systems. We evaluated the fundamental ability of silicon, germanium, and carbon molecular wires to transport charge by comparing conductances within families of well-defined structures, the members of which differ only in the number of Si (or Ge or C) atoms in the wire. For each family, this procedure yielded a length-dependent conductance decay parameter, β. Comparison of the different β values demonstrates that Si-Si and Ge-Ge σ bonds are more conductive than the analogous C-C σ bonds. These molecular trends mirror what is seen in the bulk. The conductance decay of Si and Ge-based wires is similar in magnitude to those from π-based molecular wires such as paraphenylenes However, the chemistry of the linkers that attach the molecular wires to the electrodes has a large influence on the resulting β value. For example, Si- and Ge-based wires of many different lengths connected with a methyl-thiomethyl linker give β values of 0.36-0.39 Å -1 , whereas Si- and Ge-based wires connected with aryl-thiomethyl groups give drastically different β values for short and long wires. This observation inspired us to study molecular wires that are composed of both π- and σ-orbitals. The sequence and composition of group 14 atoms in the σ chain modulates the electronic coupling between the π end-groups and dictates the molecular conductance. The conductance behavior originates from the coupling between the subunits, which can be understood by considering periodic trends such as bond length, polarizability, and bond polarity. We found that the same periodic trends determine the electric field-induced breakdown properties of individual Si-Si, Ge-Ge, Si-O, Si-C, and C-C bonds. Building from these studies, we have prepared a system that has two different, alternative conductance pathways. In this wire, we can intentionally break a labile, strained silicon-silicon bond and thereby shunt the current through the secondary conduction pathway. This type of in situ bond-rupture provides a new tool to study single molecule reactions that are induced by electric fields. Moreover, these studies provide guidance for designing dielectric materials as well as molecular devices that require stability under high voltage bias. The fundamental studies on the structure/function relationships of the molecular wires have guided the design of new functional systems based on the Si- and Ge-based wires. For example, we exploited the principle of strain-induced Lewis acidity from reaction chemistry to design a single molecule switch that can be controllably switched between two conductive states by varying the distance between the tip and substrate electrodes. We found that the strain intrinsic to the disilaacenaphthene scaffold also creates two state conductance switching. Finally, we demonstrate the first example of a stereoelectronic conductance switch, and we demonstrate that the switching relies crucially on the electronic delocalization in Si-Si and Ge-Ge wire backbones. These studies illustrate the untapped potential in using Si- and Ge-based wires to design and control charge transport at the nanoscale and to allow quantum mechanics to be used as a tool to design ultraminiaturized switches.

  5. Modification of the G-phonon mode of graphene by nitrogen doping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lukashev, Pavel V., E-mail: pavel.lukashev@uni.edu; Hurley, Noah; Zhao, Liuyan

    2016-01-25

    The effect of nitrogen doping on the phonon spectra of graphene is analyzed. In particular, we employ first-principles calculations and scanning Raman analysis to investigate the dependence of phonon frequencies in graphene on the concentration of nitrogen dopants. We demonstrate that the G phonon frequency shows oscillatory behavior as a function of nitrogen concentration. We analyze different mechanisms which could potentially be responsible for this behavior, such as Friedel charge oscillations around the localized nitrogen impurity atom, the bond length change between nitrogen impurity and its nearest neighbor carbon atoms, and the long-range interactions of the nitrogen point defects. Wemore » show that the bond length change and the long range interaction of point defects are possible mechanisms responsible for the oscillatory behavior of the G frequency as a function of nitrogen concentration. At the same time, Friedel charge oscillations are unlikely to contribute to this behavior.« less

  6. Quantum conductance oscillation in linear monatomic silicon chains

    NASA Astrophysics Data System (ADS)

    Liu, Fu-Ti; Cheng, Yan; Yang, Fu-Bin; Chen, Xiang-Rong

    2014-02-01

    The conductance of linear silicon atomic chains with n=1-8 atoms sandwiched between Au electrodes is investigated by using the density functional theory combined with non-equilibrium Green's function. The results show that the conductance oscillates with a period of two atoms as the number of atoms in the chain is varied. We optimize the geometric structure of nanoscale junctions in different distances, and obtain that the average bond-length of silicon atoms in each chain at equilibrium positions is 2.15±0.03 Å. The oscillation of average Si-Si bond-length can explain the conductance oscillation from the geometric structure of atomic chains. We calculate the transmission spectrum of the chains in the equilibrium positions, and explain the conductance oscillation from the electronic structure. The transport channel is mainly contributed by px and py orbital electrons of silicon atoms. The even-odd oscillation is robust under external voltage up to 1.2 V.

  7. Synergistic oxygen atom transfer by ruthenium complexes with non-redox metal ions.

    PubMed

    Lv, Zhanao; Zheng, Wenrui; Chen, Zhuqi; Tang, Zhiming; Mo, Wanling; Yin, Guochuan

    2016-07-28

    Non-redox metal ions can affect the reactivity of active redox metal ions in versatile biological and heterogeneous oxidation processes; however, the intrinsic roles of these non-redox ions still remain elusive. This work demonstrates the first example of the use of non-redox metal ions as Lewis acids to sharply improve the catalytic oxygen atom transfer efficiency of a ruthenium complex bearing the classic 2,2'-bipyridine ligand. In the absence of Lewis acid, the oxidation of ruthenium(ii) complex by PhI(OAc)2 generates the Ru(iv)[double bond, length as m-dash]O species, which is very sluggish for olefin epoxidation. When Ru(bpy)2Cl2 was tested as a catalyst alone, only 21.2% of cyclooctene was converted, and the yield of 1,2-epoxycyclooctane was only 6.7%. As evidenced by electronic absorption spectra and EPR studies, both the oxidation of Ru(ii) by PhI(OAc)2 and the reduction of Ru(iv)[double bond, length as m-dash]O by olefin are kinetically slow. However, adding non-redox metal ions such as Al(iii) can sharply improve the oxygen transfer efficiency of the catalyst to 100% conversion with 89.9% yield of epoxide under identical conditions. Through various spectroscopic characterizations, an adduct of Ru(iv)[double bond, length as m-dash]O with Al(iii), Ru(iv)[double bond, length as m-dash]O/Al(iii), was proposed to serve as the active species for epoxidation, which in turn generated a Ru(iii)-O-Ru(iii) dimer as the reduced form. In particular, both the oxygen transfer from Ru(iv)[double bond, length as m-dash]O/Al(iii) to olefin and the oxidation of Ru(iii)-O-Ru(iii) back to the active Ru(iv)[double bond, length as m-dash]O/Al(iii) species in the catalytic cycle can be remarkably accelerated by adding a non-redox metal, such as Al(iii). These results have important implications for the role played by non-redox metal ions in catalytic oxidation at redox metal centers as well as for the understanding of the redox mechanism of ruthenium catalysts in the oxygen atom transfer reaction.

  8. Research on Anchorage Performance of Grouting Anchor Connection of Precast Concrete Structure

    NASA Astrophysics Data System (ADS)

    Wang, Donghui; Liu, Xudong; Wang, Sheng; Cao, Xixi

    2018-03-01

    The bonding of grouted anchor bars is one of the vertical connection forms of steel bars in fabricated concrete structures. The performance of grouted connection is mainly affected by the anchorage length and lap length of steel bars. The mechanisms of bond and anchorage between steel bar and concrete are analyzed, and the factors that influence the anchorage performance of steel bar are systematically summarized. Results show that the bond and anchorage performance of steel and concrete have been studied widely, but there are still shortcomings, and the connection forms need to be further improved.

  9. Critical effects of alkyl chain length on fibril structures in benzene-trans(RR)- or (SS)-N,N'-alkanoyl-1,2-diaminocyclohexane gels.

    PubMed

    Sato, Hisako; Nakae, Takahiro; Morimoto, Kazuya; Tamura, Kenji

    2012-02-28

    Vibrational circular dichroism (VCD) spectra were recorded on benzene-d(6) gels formed by chiral low molecular mass gelators (LMGs), trans(RR)- or trans(SS)-N,N'-alkanoyl-1,2-diaminocyclohexane (denoted by RR-C(n) or SS-C(n), respectively; n = the number of carbon atoms in an introduced alkanoyl group). Attention was focused on the effects of alkyl chain length on the structures of the gels. When n was changed from 6 to 12, the signs of the coupled peaks around 1550 cm(-1) in the VCD spectra, which were assigned to the symmetric and asymmetric C=O stretching vibrations from the higher to lower wavenumber, respectively, critically depended on the alkyl chain length. In the case of RR-C(n), for example, the signs of the couplet were plus and minus for n = 8, 9, 10 and 12, while the signs of the same couplet were reversed for n = 6 and 7. The conformations of LMGs in fibrils were determined by comparing the observed IR and VCD spectra with those calculated for a monomeric molecule. The observed reversal of signs in the C=O couplet was rationalized in terms of the different modes of hydrogen bonding. In the case of C(8), C(9), C(10) and C(12), gelator molecules were stacked with their cyclohexyl rings in parallel, forming double anti-parallel chains of intermolecular hydrogen bonds using two pairs of >NH and >C=O groups. In case of C(6) and C(7), gelator molecules were stacked through a single chain of intermolecular hydrogen bonds using a pair of >NH and >C=O groups. The remaining pair of >NH and >C=O groups formed an intramolecular hydrogen bond.

  10. Effect of cutting temperature on hardness of SiC and diamond in the nano-cutting process of monocrystalline silicon

    NASA Astrophysics Data System (ADS)

    Wang, Jiachun; Li, Yuntao; Liu, Xiaoxuan; Lv, Maoqiang

    2016-10-01

    In the process of cutting silicon by natural diamond tools, groove wear happens on the flank face of cutting tool frequently.Scholars believe that one of the wear reasons is mechanical scratching effect by hard particles like SiC. To reveal the mechanical scratching mechanism, it is essential to study changes in the mechanical properties of hard particles and diamond, especially the effect of cutting temperature on hardness of diamond and hard particles. Molecular dynamics (MD) model that contact-zone temperature between tool and workpiece was calculated by dividing zone while nano-cutting monocrystalline silicon was established, cutting temperature values in different regions were computed as the simulation was carried out.On this basis, the models of molecular dynamics simulation of SiC and diamond were established separately with setting the initial temperature to room temperature. The laws of length change of C-C bond and Si-C bond varing with increase of simulation temperature were studied. And drawing on predecessors' research on theoretical calculation of hardness of covalent crystals and the relationship between crystal valence electron density and bond length, the curves that the hardness of diamond and SiC varing with bond length were obtained. The effect of temperature on the hardness was calculated. Results show that, local cutting temperature can reach 1300K.The rise in cutting temperature leaded to a decrease in the diamond local atomic clusters hardness,SiC local atomic clusters hardness increased. As the cutting temperature was more than 1100K,diamond began to soften, the local clusters hardness was less than that of SiC.

  11. Cholesterol oxidase: ultrahigh-resolution crystal structure and multipolar atom model-based analysis.

    PubMed

    Zarychta, Bartosz; Lyubimov, Artem; Ahmed, Maqsood; Munshi, Parthapratim; Guillot, Benoît; Vrielink, Alice; Jelsch, Christian

    2015-04-01

    Examination of protein structure at the subatomic level is required to improve the understanding of enzymatic function. For this purpose, X-ray diffraction data have been collected at 100 K from cholesterol oxidase crystals using synchrotron radiation to an optical resolution of 0.94 Å. After refinement using the spherical atom model, nonmodelled bonding peaks were detected in the Fourier residual electron density on some of the individual bonds. Well defined bond density was observed in the peptide plane after averaging maps on the residues with the lowest thermal motion. The multipolar electron density of the protein-cofactor complex was modelled by transfer of the ELMAM2 charge-density database, and the topology of the intermolecular interactions between the protein and the flavin adenine dinucleotide (FAD) cofactor was subsequently investigated. Taking advantage of the high resolution of the structure, the stereochemistry of main-chain bond lengths and of C=O···H-N hydrogen bonds was analyzed with respect to the different secondary-structure elements.

  12. Structures and interactions in N-methylacetamide-water mixtures studied by IR spectra and density functional theory

    NASA Astrophysics Data System (ADS)

    Zhang, Rong; Li, Haoran; Lei, Yi; Han, Shijun

    2004-05-01

    IR spectra have been performed to study the structures and interactions in N-methylacetamide and water mixtures. Because of the competitions of acceptor and donor of the strong hydrogen bonds, some interesting phenomena of red shifts and blue shifts are observed in νCO and νN-H. It is due to the blue-shifting C-H⋯O hydrogen bond, the νC-H blue shifts more obviously. Then some representative cluster structures are suggested and further investigated by density functional theory method. The changes in bond length and frequency shift of the structures give good reasons for the red shift and blue shift, which represents excellent agreement with the IR experiment. The investigations of IR spectra and DFT calculations reveal that the weak C-H⋯O interactions play different roles compared with the classical strong hydrogen bonds in the NMA-water mixtures.

  13. Psychodynamic group psychotherapy: impact of group length and therapist professional characteristics on development of therapeutic alliance.

    PubMed

    Lorentzen, Steinar; Bakali, Jan Vegard; Hersoug, Anne Grete; Hagtvet, Knut A; Ruud, Torleif; Høglend, Per

    2012-09-01

    Little research has been done on therapeutic alliance in group psychotherapy, especially the impact of treatment duration and therapist professional characteristics. Therapeutic alliance was rated by patients on the Working Alliance Inventory-Short Form at three time points (sessions 3, 10 and 17) in a randomized controlled trial of short-term and long-term psychodynamic group psychotherapy. As predictors we selected therapist clinical experience and length of didactic training, which have demonstrated ambiguous results in previous research. Linear latent variable growth curve models (structural equation modeling) were developed for the three Working Alliance Inventory-Short Form subscales bond, task and goal. We found a significant variance in individual growth curves (intercepts and slopes) but no differential development due to group length. Longer therapist formal training had a negative impact on early values of subscale task in both treatments. There was an interaction between length of the therapists' clinical experience and group length on early bond, task and goal: therapists with longer clinical experience were rated lower on initial bond in the long-term group but less so in the short-term group. Longer clinical experience influenced initial task and goal positively in the short-term group but was unimportant for task or significantly negative for goal in the long-term group. There was no mean development of alliance, and group length did not differentially impact the alliance during 6 months. Early ratings of the three Working Alliance Inventory-Short Form subscales partly reflected different preparations of patients in the two group formats, partly therapist characteristics, but more research is needed to see how these aspects impact alliance development and outcome. Therapists should pay attention to all three aspects of the alliance, when they prepare patients for group therapy. In psychodynamic groups, length of therapy does not differentiate the overall level or the development of member-leader alliance. Within psychodynamic groups, each individual appear to have their unique perception of the member-leader alliance. Therapists with longer formal psychotherapy training may be less successful in establishing early agreement with patients on the tasks of psychodynamic group psychotherapy. Patients perceive a somewhat lower degree of early emotional bonding with the more clinically experienced therapists in long-term psychodynamics groups. Therapists with more clinical experience may contribute to a stronger degree of initial agreement with patients on the tasks and goals of short-term group psychotherapy. Copyright © 2011 John Wiley & Sons, Ltd.

  14. Periodic trends in bond dissociation energies. A theoretical study.

    PubMed

    Mó, Otilia; Yáñez, Manuel; Eckert-Maksić, Mirjana; Maksić, Zvonimir B; Alkorta, Ibón; Elguero, José

    2005-05-19

    Bond dissociation energies (BDEs) of all possible A-X single bonds involving the first- and second-row atoms, from Li to Cl, where the free valences are saturated by hydrogens, have been estimated through the use of the G3-theory and at the B3LYP/6-311+G(3df,2pd)//B3LYP/6-31G(2df,p) DFT level of theory. BDEs exhibit a periodical behavior. The A-X (A = Li, Be, B, Na, Mg, Al, and Si) BDEs show a steady increase along the first and the second row of the periodic table as a function of the atomic number Z(X). For A-X bonds involving electronegative atoms (A = C, N, O, F, P, S, and Cl) the bond energies achieve a maximum around Z(X) = 5. The same behavior is observed when BDEs are plotted against the electronegativity chi(X) of the atom X. Thus, for A-X bonds (A = Li, Be, B, Na, Mg, Al, Si), the BDEs for a fixed A increases, grosso modo, as the electronegativity differences between X and A increase, with some exceptions, which reflect the differences in the relaxation energies of the radicals produced upon the bond cleavage. A similar trend, albeit less pronounced, is found for single A-X bonds, where A = C, N, O, F, P, S, and Cl. However, there is an additional feature embodied in the enhancement of the strength of the A-boron bonds due to the ability of boron to act as a strong electron acceptor. The trends in bond lengths and charge densities at the bond critical points are in line with the aforementioned behavior.

  15. Investigation of field corrosion performance and bond/development length of galvanized reinforcing steel : [tech transfer summary].

    DOT National Transportation Integrated Search

    2014-12-01

    In reinforced concrete systems, ensuring that a good bond between the : concrete and the embedded reinforcing steel is critical to long-term structural : performance. Without good bond between the two, the system simply cannot : behave as intended. :...

  16. Investigation of field corrosion performance and bond/development length of galvanized reinforcing steel.

    DOT National Transportation Integrated Search

    2014-12-01

    In reinforced concrete systems, ensuring that a good bond between the concrete and the embedded reinforcing steel is critical to : long-term structural performance. Without good bond between the two, the system simply cannot behave as intended. The b...

  17. Stability and electronic structure of the low- Σ grain boundaries in CdTe: a density functional study

    DOE PAGES

    Park, Ji-Sang; Kang, Joongoo; Yang, Ji-Hui; ...

    2015-01-15

    Using first-principles density functional calculations, we investigate the relative stability and electronic structure of the grain boundaries (GBs) in zinc-blende CdTe. Among the low-Σ-value symmetric tilt Σ3 (111), Σ3 (112), Σ5 (120), and Σ5 (130) GBs, we show that the Σ3 (111)GB is always the most stable due to the absence of dangling bonds and wrong bonds. The Σ5 (120) GBs, however, are shown to be more stable than the Σ3 (112) GBs, even though the former has a higher Σ value, and the latter is often used as a model system to study GB effects in zinc-blende semiconductors. Furthermore,more » we find that although containing wrong bonds, the Σ5 (120) GBs are electrically benign due to the short wrong bond lengths, and thus are not as harmful as the Σ3 (112) GBs also having wrong bonds but with longer bond lengths.« less

  18. N,N,N′,N′-Tetra­methyl­guanidinium tetra­phenyl­borate

    PubMed Central

    Tiritiris, Ioannis

    2012-01-01

    In the title salt, C5H14N3 +·C24H20B−, the C—N bond lengths in the central CN3 unit are 1.3322 (11), 1.3385 (12) and 1.3422 (12) Å, indicating partial double-bond character. The central C atom is bonded to the three N atoms in a nearly ideal trigonal-planar geometry [N—C—N angles = 119.51 (8), 119.81 (9) and 120.69 (8)°] and the positive charge is delocalized in the CN3 plane. The bond lengths between the N atoms and the terminal methyl groups all have values close to a typical single bond [1.4597 (12)–1.4695 (13) Å]. The crystal packing is caused by electrostatic inter­actions between cations and anions. PMID:23476307

  19. Using Excel To Study The Relation Between Protein Dihedral Angle Omega And Backbone Length

    NASA Astrophysics Data System (ADS)

    Shew, Christopher; Evans, Samari; Tao, Xiuping

    How to involve the uninitiated undergraduate students in computational biophysics research? We made use of Microsoft Excel to carry out calculations of bond lengths, bond angles and dihedral angles of proteins. Specifically, we studied protein backbone dihedral angle omega by examining how its distribution varies with the length of the backbone length. It turns out Excel is a respectable tool for this task. An ordinary current-day desktop or laptop can handle the calculations for midsized proteins in just seconds. Care has to be taken to enter the formulas for the spreadsheet column after column to minimize the computing load. Supported in part by NSF Grant #1238795.

  20. Topology of charge density of flucytosine and related molecules and characteristics of their bond charge distributions.

    PubMed

    Murgich, Juan; Franco, Héctor J; San-Blas, Gioconda

    2006-08-24

    The molecular charge distribution of flucytosine (4-amino-5-fluoro-2-pyrimidone), uracil, 5-fluorouracil, and thymine was studied by means of density functional theory calculations (DFT). The resulting distributions were analyzed by means of the atoms in molecules (AIM) theory. Bonds were characterized through vectors formed with the charge density value, its Laplacian, and the bond ellipticity calculated at the bond critical point (BCP). Within each set of C=O, C-H, and N-H bonds, these vectors showed little dispersion. C-C bonds formed three different subsets, one with a significant degree of double bonding, a second corresponding to single bonds with a finite ellipticity produced by hyperconjugation, and a third one formed by a pure single bond. In N-C bonds, a decrease in bond length (an increase in double bond character) was not reflected as an increase in their ellipticity, as in all C-C bonds studied. It was also found that substitution influenced the N-C, C-O, and C-C bond ellipticity much more than density and its Laplacian at the BCP. The Laplacian of charge density pointed to the existence of both bonding and nonbonding maxima in the valence shell charge concentration of N, O, and F, while only bonding ones were found for the C atoms. The nonbonding maxima related to the sites for electrophilic attack and H bonding in O and N, while sites of nucleophilic attack were suggested by the holes in the valence shell of the C atoms of the carbonyl groups.

  1. Physical and mechanical properties of flakeboard reinforced with bamboo strips

    Treesearch

    Ge Wang; Zhehui Jiang; Chung Y. Hse; Todd F. Shupe

    2009-01-01

    The objective of this study was to investigate the physical and mechanical performance of flakeboard reinforced with bamboo strips. The study investigated three different bamboo strip alignment patterns and an experimental control. All panels were tested in static bending both along parallel and perpendicular to the lengths of the bamboo strips. Internal bond...

  2. A QM/MM study of the initial excited state dynamics of green-absorbing proteorhodopsin.

    PubMed

    Borin, Veniamin A; Wiebeler, Christian; Schapiro, Igor

    2018-04-17

    The primary photochemical reaction of the green-absorbing proteorhodopsin is studied by means of a hybrid quantum mechanics/molecular mechanics (QM/MM) approach. The simulations are based on a homology model derived from the blue-absorbing proteorhodopsin crystal structure. The geometry of retinal and the surrounding sidechains in the protein binding pocket were optimized using the QM/MM method. Starting from this geometry the isomerization was studied with a relaxed scan along the C13[double bond, length as m-dash]C14 dihedral. It revealed an "aborted bicycle pedal" mechanism of isomerization that was originally proposed by Warshel for bovine rhodopsin and bacteriorhodopsin. However, the isomerization involved the concerted rotation about C13[double bond, length as m-dash]C14 and C15[double bond, length as m-dash]N, with the latter being highly twisted but not isomerized. Further, the simulation showed an increased steric interaction between the hydrogen at the C14 of the isomerizing bond and the hydroxyl group at the neighbouring tyrosine 200. In addition, we have simulated a nonadiabatic trajectory which showed the timing of the isomerization. In the first 20 fs upon excitation the order of the conjugated double and single bonds is inverted, consecutively the C13[double bond, length as m-dash]C14 rotation is activated for 200 fs until the S1-S0 transition is detected. However, the isomerization is reverted due to the specific interaction with the tyrosine as observed along the relaxed scan calculation. Our simulations indicate that the retinal - tyrosine 200 interaction plays an important role in the outcome of the photoisomerization.

  3. Surface correlation behaviors of metal-organic Langmuir-Blodgett films on differently passivated Si(001) surfaces

    NASA Astrophysics Data System (ADS)

    Bal, J. K.; Kundu, Sarathi

    2013-03-01

    Langmuir-Blodgett films of standard amphiphilic molecules like nickel arachidate and cadmium arachidate are grown on wet chemically passivated hydrophilic (OH-Si), hydrophobic (H-Si), and hydrophilic plus hydrophobic (Br-Si) Si(001) surfaces. Top surface morphologies and height-difference correlation functions g(r) with in-plane separation (r) are obtained from the atomic force microscopy studies. Our studies show that deposited bilayer and trilayer films have self-affine correlation behavior irrespective of different passivations and different types of amphiphilic molecules, however, liquid like correlation coexists only for a small part of r, which is located near the cutoff length (1/κ) or little below the correlation length ξ obtained from the liquid like and self-affine fitting, respectively. Thus, length scale dependent surface correlation behavior is observed for both types of Langmuir-Blodgett films. Metal ion specific interactions (ionic, covalent, etc.,) in the headgroup and the nature of the terminated bond (polar, nonpolar, etc.,) of Si surface are mainly responsible for having different correlation parameters.

  4. The pure rotational spectra of the open-shell diatomic molecules PbI and SnI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, Corey J., E-mail: cje8@le.ac.uk, E-mail: nick.walker@newcastle.ac.uk; Needham, Lisa-Maria E.; Walker, Nicholas R., E-mail: cje8@le.ac.uk, E-mail: nick.walker@newcastle.ac.uk

    2015-12-28

    Pure rotational spectra of the ground electronic states of lead monoiodide and tin monoiodide have been measured using a chirped pulsed Fourier transform microwave spectrometer over the 7-18.5 GHz region for the first time. Each of PbI and SnI has a X {sup 2}Π{sub 1/2} ground electronic state and may have a hyperfine structure that aids the determination of the electron electric dipole moment. For each species, pure rotational transitions of a number of different isotopologues and their excited vibrational states have been assigned and fitted. A multi-isotopologue Dunham-type analysis was carried out on both species producing values for Y{submore » 01}, Y{sub 02}, Y{sub 11}, and Y{sub 21}, along with Λ-doubling constants, magnetic hyperfine constants and nuclear quadrupole coupling constants. The Born-Oppenheimer breakdown parameters for Pb have been evaluated and the parameter rationalized in terms of finite nuclear field effects. Analysis of the bond lengths and hyperfine interaction indicates that the bonding in both PbI and SnI is ionic in nature. Equilibrium bond lengths have been evaluated for both species.« less

  5. Structural modeling of djenkolic acid with sulfur replaced by selenium and tellurium.

    PubMed

    Melnikov, Petr; Nascimento, Valter A; Silva, Anderson F; Consolo, Lourdes Z Z

    2014-04-17

    The comparative structural modeling of djenkolic acid and its derivatives containing selenium and tellurium in chalcogen sites (Ch=Se, Te) has provided detailed information about the bond lengths and bond angles, filling the gap in what we know about the structural characteristics of these aminoacids. The investigation using the molecular mechanics technique with good approximation confirmed the available information on X-ray refinements for the related compounds methionine and selenomethionine, as well as for an estimate made earlier for telluromethionine. It was shown that the Ch-C(3) and Ch-C(4) bond lengths grow in parallel with the increasing anionic radii. Although the distances C-C, C-O, and C-N are very similar, the geometry of conformers is quite different owing to the possibility of rotation about four carbon atoms, hence the remarkable variability observed in dihedral angles. It was shown that the compounds contain a rigid block with two Ch atoms connected through a methylene group. The standard program Gaussian 03 with graphical interface Gaussview 4.1.2 has proved to be satisfactory tool for the structural description of less-common bioactive compositions when direct X-ray results are absent.

  6. The pure rotational spectrum of ZnS (X 1Σ +)

    NASA Astrophysics Data System (ADS)

    Zack, L. N.; Ziurys, L. M.

    2009-10-01

    The pure rotational spectrum of ZnS (X 1Σ +) has been measured using direct-absorption millimeter/sub-millimeter techniques in the frequency range 372-471 GHz. This study is the first spectroscopic investigation of this molecule. Spectra originating in four zinc isotopologues ( 64ZnS, 66ZnS, 68ZnS, and 67ZnS) were recorded in natural abundance in the ground vibrational state, and data from the v = 1 state were also measured for the two most abundant zinc species. Spectroscopic constants have been subsequently determined, and equilibrium parameters have been estimated. The equilibrium bond length was calculated to be re ˜ 2.0464 Å, which agrees well with theoretical predictions. In contrast, the dissociation energy of DE ˜ 3.12 eV calculated for ZnS, assuming a Morse potential, was significantly higher than past experimental and theoretical estimates, suggesting diabatic interaction with other potentials that lower the effective dissociation energy. Although ZnS is isovalent with ZnO, there appear to be subtle differences in bonding between the two species, as suggested by their respective force constants and bond length trends in the 3d series.

  7. A theoretical perspective of the nature of hydrogen-bond types - the atoms in molecules approach

    NASA Astrophysics Data System (ADS)

    Vijaya Pandiyan, B.; Kolandaivel, P.; Deepa, P.

    2014-06-01

    Hydrogen bonds and their strength were analysed based on their X-H proton-donor bond properties and the parameters of the H-Y distance (Y proton acceptor). Strong, moderate and weak interactions in hydrogen-bond types were verified through the proton affinities of bases (PA), deprotanation enthalpies of acids (DPE) and the chemical shift (σ). The aromaticity and anti-aromaticity were analysed by means of the NICS (0) (nucleus-independent chemical shift), NICS (1) and ΔNICS (0), ΔNICS (1) of hydrogen-bonded molecules. The strength of a hydrogen bond depends on the capacity of hydrogen atom engrossing into the electronegative acceptor atom. The correlation between the above parameters and their relations were discussed through curve fitting. Bader's theory of atoms in molecules has been applied to estimate the occurrence of hydrogen bonds through eight criteria reported by Popelier et al. The lengths and potential energy shifts have been found to have a strong negative linear correlation, whereas the lengths and Laplacian shifts have a strong positive linear correlation. This study illustrates the common factors responsible for strong, moderate and weak interactions in hydrogen-bond types.

  8. Relativistic Corrections to the Properties of the Alkali Fluorides

    NASA Technical Reports Server (NTRS)

    Dyall, Kenneth G.; Partridge, Harry

    1993-01-01

    Relativistic corrections to the bond lengths, dissociation energies and harmonic frequencies of KF, RbF and CsF have been obtained at the self-consistent field level by dissociating to ions. The relativistic corrections to the bond lengths, harmonic frequencies and dissociation energies to the ions are very small, due to the ionic nature of these molecules and the similarity of the relativistic and nonrelativistic ionic radii.

  9. Optoelectronic tuning of organoborylazadipyrromethenes via effective electronegativity at the metalloid center.

    PubMed

    Berhe, Seare A; Rodriguez, Marco T; Park, Eunsol; Nesterov, Vladimir N; Pan, Hongjun; Youngblood, W Justin

    2014-03-03

    Organoborylazadipyrromethenes were synthesized from free base and fluoroborylazadipyrromethenes and characterized with regard to their structural and electronic properties. B-N bond lengths, along with photophysical and redox behavior, appear dependent on the effective electronegativity at the boron atom as tuned by its substituents, with stronger electronegativity correlating to a shorter B-N bond length, red-shifted absorbance, enhanced fluorescence lifetime and yield, and positively shifted redox potentials.

  10. Molecular mechanism of gelation upon the addition of water to a solution of poly(acrylonitrile) in dimethylsulfoxide

    NASA Astrophysics Data System (ADS)

    Vettegren, V. I.; Kulik, V. B.; Savitskii, A. V.; Fetisov, O. I.; Usov, V. V.

    2010-05-01

    The solidification of a solution of poly(acrylonitrile) (PAN) in dimethylsulfoxide (DMSO) upon introduction of water into the solution is studied by Raman spectroscopy. In the absence of water, DMSO molecules are found to produce dipole-dipole bonds with PAN molecules. Upon the introduction of water, DMSO molecules produce hydrogen bonds with it and bands at 1005 and 1015 cm-1 appear in the Raman spectrum, which are assigned to the valence vibrations of S=O bonds involved in the hydrogen bonds. Simultaneously, water molecules produce hydrogen bonds with PAN molecules: R-C≡N...H-O-H...N≡C-R, where R is the carbon skeleton of a PAN molecule. Accordingly, a band at 2250 cm-1 arises in the Raman spectrum, which is assigned to the valence vibrations of C≡N bonds producing hydrogen bonds with a water molecule. When the water content is low and the DMSO concentration is high, the length of the hydrogen bonds varies in wide limits and the band at 2250 cm-1 is wide. As the water content rises, DMSO molecules come out of PAN, the variation of the hydrogen bond length in it decreases (the band at 2250 cm-1 narrows), and a high-viscosity system (gel) arises that consists of PAN molecules bonded to water molecules via “equally strong” hydrogen bonds.

  11. Rotational dynamics of coumarin-153 and 4-aminophthalimide in 1-ethyl-3-methylimidazolium alkylsulfate ionic liquids: effect of alkyl chain length on the rotational dynamics.

    PubMed

    Das, Sudhir Kumar; Sarkar, Moloy

    2012-01-12

    Rotational dynamics of two neutral organic solutes, coumarin-153 (C-153) and 4-aminophthalimide (AP), with only the latter having hydrogen-bond-donating ability, has been investigated in a series of 1-ethyl-3-methylimidazolium alkyl sulfate ionic liquids as a function of temperature. The ionic liquids differ only in the length of the linear alkyl side chain (alkyl = ethyl, butyl, hexyl, and octyl) on the anionic moiety. The present study has been undertaken to examine the role of alkyl side chains on the rotational dynamics of the two solutes in these ionic liquids. Analysis of the results using Stokes-Einstein-Debye hydrodynamic theory indicates that the rotational dynamics of C-153 lies between the stick and slip boundary condition in the ethyl analogue and finally reaches subslip condition as in case of the octyl substituent. The observed rotational behavior of C-153 has been explained on the basis of an increase in the size of the solvent, which offers lower friction for solute rotation. On the other hand, AP shows superstick behavior in the ethyl system and exceeds the stick limit in the octyl derivative. Superstick behavior of AP has been attributed to the specific hydrogen-bonding interaction between AP and the sulfate moiety. Proton NMR investigation confirms the hydrogen-bonding interaction between the N-H hydrogen of AP and the ionic liquid. The decrease in rotational coupling constant values for AP with increasing length of alkyl side chains has been attributed to the decrease in the solute-solvent-specific interaction with an increase in the alkyl side chain length on the sulfate moiety.

  12. 3-Methyl-4,5-di­hydro­oxazolium tetra­phenyl­borate

    PubMed Central

    Tiritiris, Ioannis; Saur, Stefan; Kantlehner, Willi

    2014-01-01

    In the cation of the title salt, C4H8NO+·C24H20B−, the C—N bond lengths are 1.272 (2), 1.4557 (19) and 1.4638 (19) Å, indicating double- and single-bond character, respectively. The C—O bond length of 1.3098 (19) Å shows that double-bond character and charge delocalization occurs within the NCO plane of the cation. In the crystal, a C—H⋯π inter­action is present between the methyl­ene H atom of the cation and one phenyl ring of the tetra­phenyl­borate ion. The latter forms an aromatic pocket in which the cation is embedded. PMID:24765023

  13. Crystal structure of (1-eth­oxy­ethyl­idene)di­methyl­aza­nium tetra­phenyl­borate

    PubMed Central

    Tiritiris, Ioannis; Saur, Stefan; Kantlehner, Willi

    2015-01-01

    In the cation of the title salt, C6H14NO+·C24H20B−, the C—N bond lengths are 1.297 (2), 1.464 (2) and 1.468 (2) Å, indicating double- and single-bond character, respectively. The C—O bond length of 1.309 (2) Å shows double-bond character, pointing towards charge delocalization within the NCO plane of the iminium ion. In the crystal, C—H⋯π inter­actions between the iminium H atoms and the phenyl C atoms of the anion are present. The phenyl rings form aromatic pockets, in which the iminium ions are embedded. PMID:26870564

  14. A method of coupling the Paternò-Büchi reaction with direct infusion ESI-MS/MS for locating the C[double bond, length as m-dash]C bond in glycerophospholipids.

    PubMed

    Stinson, Craig A; Xia, Yu

    2016-06-21

    Tandem mass spectrometry (MS/MS) coupled with soft ionization is established as an essential platform for lipid analysis; however, determining high order structural information, such as the carbon-carbon double bond (C[double bond, length as m-dash]C) location, remains challenging. Recently, our group demonstrated a method for sensitive and confident lipid C[double bond, length as m-dash]C location determination by coupling online the Paternò-Büchi (PB) reaction with nanoelectrospray ionization (nanoESI) and MS/MS. Herein, we aimed to expand the scope of the PB reaction for lipid analysis by enabling the reaction with infusion ESI-MS/MS at much higher flow rates than demonstrated in the nanoESI setup (∼20 nL min(-1)). In the new design, the PB reaction was effected in a fused silica capillary solution transfer line, which also served as a microflow UV reactor, prior to ESI. This setup allowed PB reaction optimization and kinetics studies. Under optimized conditions, a maximum of 50% PB reaction yield could be achieved for a standard glycerophosphocholine (PC) within 6 s of UV exposure over a wide flow rate range (0.1-10 μL min(-1)). A solvent composition of 7 : 3 acetone : H2O (with 1% acid or base modifier) allowed the highest PB yields and good lipid ionization, while lower yields were obtained with an addition of a variety of organic solvents. Radical induced lipid peroxidation was identified to induce undesirable side reactions, which could be effectively suppressed by eliminating trace oxygen in the solution via N2 purge. Finally, the utility of coupling the PB reaction with infusion ESI-MS/MS was demonstrated by analyzing a yeast polar lipid extract where C[double bond, length as m-dash]C bond locations were revealed for 35 glycerophospholipids (GPs).

  15. Maximum-valence radii of transition metals

    PubMed Central

    Pauling, Linus

    1975-01-01

    In many of their compounds the transition metals have covalence 9, forming nine bonds with use of nine hybrid spd bond orbitals. A set of maximum-valence single-bond radii is formulated for use in these compounds. These radii are in reasonably good agreement with observed bond lengths. Quadruple bonds between two transition metal atoms are about 50 pm (iron-group atoms) or 55 pm (palladium and platinum-group atoms) shorter than single bonds. This amount of shortening corresponds to four bent single bonds with the best set of bond angles, 79.24° and 128.8°. PMID:16578730

  16. In situ observation of electron beam-induced phase transformation of CaCO3 to CaO via ELNES at low electron beam energies.

    PubMed

    Golla-Schindler, Ute; Benner, Gerd; Orchowski, Alexander; Kaiser, Ute

    2014-06-01

    It is demonstrated that energy-filtered transmission electron microscope enables following of in situ changes of the Ca-L2,3 edge which can originate from variations in both local symmetry and bond lengths. Low accelerating voltages of 20 and 40 kV slow down radiation damage effects and enable study of the start and finish of phase transformations. We observed electron beam-induced phase transformation of single crystalline calcite (CaCO3) to polycrystalline calcium oxide (CaO) which occurs in different stages. The coordination of Ca in calcite is close to an octahedral one streched along the <111> direction. Changes during phase transformation to an octahedral coordination of Ca in CaO go along with a bond length increase by 5 pm, where oxygen is preserved as a binding partner. Electron loss near-edge structure of the Ca-L2,3 edge show four separated peaks, which all shift toward lower energies during phase transformation at the same time the energy level splitting increases. We suggest that these changes can be mainly addressed to the change of the bond length on the order of picometers. An important pre-condition for such studies is stability of the energy drift in the range of meV over at least 1 h, which is achieved with the sub-Ångström low-voltage transmission electron microscope I prototype microscope.

  17. Adsorbate-induced reconstruction in the phase 1 × 2-3H/Rh(110)

    NASA Astrophysics Data System (ADS)

    Michl, M.; Nichtl-Pecher, W.; Oed, W.; Landskron, H.; Heinz, K.; Müller, K.

    1989-10-01

    The 1 × 2-3H superstructure of hydrogen on Rh(110) at coverage θ = {3}/{2} is analysed by low energy electron diffraction at 90 K. The spectra of eight beams are recorded with a computer-controlled TV measurement technique which yields low noise data even for weak superstructure spots by multiple averaging. Comparison to full dynamical calculations shows that a kinematic treatment of the hydrogen layer diffraction coupled to the full dynamical diffraction of the substrate is a very good approximation. Spectra computed in this way are compared with experimental data by R-factor evaluation. The three non-equivalent hydrogen atoms are found to adsorb in quasi-three-fold coordinated adsorption sites with slightly different local configurations and with H-Rh bond lengths between 1.87 and 1.93 Å to the first-layer rhodium atoms. Interaction between the adatoms seems to weaken the bonding to the adjacent atom in the second layer, so that H-Rh bond lengths larger than 2.17 Å result. A slight reconstruction of the substrate is necessary to bring superstructure spot intensities near the experimentally observed level. Rhodium atoms bonded to two hydrogen atoms are moved out of the surface by 0.03 ± 0.02 Å relative to Rh atoms bonded to only a single H atom. The relaxation of the first Rh layer spacing is determined to be {d 12}/{d 0} = -3.8 ± 1% and {d 22}/{d 0} = 0 ± 1% . The best fit Pendry R-factor is 0.33.

  18. Analytical energy gradient for the two-component normalized elimination of the small component method

    NASA Astrophysics Data System (ADS)

    Zou, Wenli; Filatov, Michael; Cremer, Dieter

    2015-06-01

    The analytical gradient for the two-component Normalized Elimination of the Small Component (2c-NESC) method is presented. The 2c-NESC is a Dirac-exact method that employs the exact two-component one-electron Hamiltonian and thus leads to exact Dirac spin-orbit (SO) splittings for one-electron atoms. For many-electron atoms and molecules, the effect of the two-electron SO interaction is modeled by a screened nucleus potential using effective nuclear charges as proposed by Boettger [Phys. Rev. B 62, 7809 (2000)]. The effect of spin-orbit coupling (SOC) on molecular geometries is analyzed utilizing the properties of the frontier orbitals and calculated SO couplings. It is shown that bond lengths can either be lengthened or shortened under the impact of SOC where in the first case the influence of low lying excited states with occupied antibonding orbitals plays a role and in the second case the jj-coupling between occupied antibonding and unoccupied bonding orbitals dominates. In general, the effect of SOC on bond lengths is relatively small (≤5% of the scalar relativistic changes in the bond length). However, large effects are found for van der Waals complexes Hg2 and Cn2, which are due to the admixture of more bonding character to the highest occupied spinors.

  19. Cis Effects in the Cobalt Corrins. 1. Crystal Structures of 10-Chloroaquacobalamin Perchlorate, 10-Chlorocyanocobalamin, and 10-Chloromethylcobalamin.

    PubMed

    Brown, Kenneth L.; Cheng, Shifa; Zou, Xiang; Zubkowski, Jeffrey D.; Valente, Edward J.; Knapton, Leanne; Marques, Helder M.

    1997-08-13

    The crystal structures of 10-chloroaquacobalamin perchlorate hydrate (10-Cl-H(2)OCbl.ClO(4)) (Mo Kalpha, 0.710 73 Å, monoclinic system, P2(1), a = 11.922(4) Å, b = 26.592(10) Å, c = 13.511(5) Å, beta = 93.05(3) degrees, 10 535 independent reflections, R(1) = 0.0426), 10-chlorocyanocobalamin-acetone hydrate (10-Cl-CNCbl) (Mo Kalpha, 0.710 73 Å, orthorhombic system, P2(1)2(1)2(1), a = 16.24(3) Å, b = 21.85(5) Å, c = 26.75(8) Å, 7699 independent reflections, R(1) = 0.0698), and 10-chloromethylcobalamin-acetone hydrate (10-Cl-MeCbl) (Mo Kalpha, 0.71073 Å, orthorhombic system, P2(1)2(1)2(1), a = 16.041(14) Å, b = 22.13(2) Å, c = 26.75(4) Å, 6792 independent reflections, R(1) = 0.0554), in which the C10 meso H is substituted by Cl, are reported. An unusual feature of the structures is disorder in the C ring, consistent with a two-site occupancy in which the major conformation has the C46 methyl group in the usual position, "upwardly" axial, and the C47 methyl group equatorial, while in the minor conformation both are pseudoequatorial, above and below the corrin ring. (13)C NMR chemical shifts of C46, C47, C12, and C13 suggest that the C ring disorder may persist in solution as a ring flip. Since molecular dynamics simulations fail to reveal any population of the minor conformation, the effect is likely to be electronic rather than steric. The axial bond lengths in 10-Cl-MeCbl are very similar to those in MeCbl (d(Co)(-)(C) = 1.979(7) vs 1.99(2); to 5,6-dimethylbenzimidazole, d(Co)(-)(NB3) = 2.200(7) vs 2.19(2)), but the bonds to the four equatorial N donors, d(Co)(-)(N(eq)), are on average 0.05 Å shorter. In 10-Cl-CNCbl, d(Co)(-)(C) and d(Co)(-)(NB3) are longer (by 0.10(2) and 0.03(1) Å, respectively) than the bond lengths observed in CNCbl itself, while conversely, the C-N bond length is shorter by 0.06(2) Å, but there is little difference in d(Co)(-)(N(eq)). The Co-O bond length to coordinated water in 10-Cl-H(2)OCbl(+) is very similar to that found in H(2)OCbl(+) itself, but the d(Co)(-)(NB3) bond is longer (1.967 vs1.925(2) Å), while the average d(Co)(-)(N(eq)) is very similar. The coordinated water molecule in 10-Cl-H(2)OCbl(+) is hydrogen bonded to the c side chain carbonyl oxygen, as in H(2)OCbl(+). NMR observations indicate that the H bond between coordinated H(2)O and the c side chain amide persists in solution. The equilibrium constant, K(Co), for coordination of bzm to Co(III) is smaller in 10-Cl-MeCbl and 10-Cl-CNCbl than in their C10-unsubstituted analogs (181 vs 452; 4.57 x 10(3) vs 3.35 x 10(5)), but could not be determined for 10-Cl-H(2)OCbl because hydrolysis of the phosphodiester is competitive with the establishment of the base-off equilibrium. Substitution of H by Cl at C10 causes the bands in the electronic spectrum of 10-Cl-XCbl complexes to move to lower energy, which is consistent with an increase in electron density in the corrin pi-conjugated system. This increased electron density is not due to greater electron donation from the axial ligand as bonds between these and the metal are either longer (not shorter) or unchanged, and it most probably arises from pi-donation to the corrin by Cl at C10. As the donor power of X increases (H(2)O < CN(-) < Me), the corrin ring becomes more flexible to deformation, and the number of bond lengths and bond angles that are significantly different in XCbl and 10-Cl-XCbl increases; importantly, the C10-Cl bond length, d(C10)(-)(Cl), increases as well. Thus, despite the fact that chlorine is an inductively electron withdrawing substituent, its resonance electron donation is the more important effect on electron distribution in the corrin ring. Mulliken charges obtained from semiempirical RHF-SCF MO calculations using the ZINDO/1 model on XCbl and their 10-Cl analogs at the crystal structure geometry are shown to correlate reasonably well with (13)C NMR shifts and may be used to determine the pattern of electron distribution in these complexes. Substitution by Cl at C10 causes an increase in charge density at Co when X = H(2)O and CN(-), while the charge density on the four equatorial N donors remains virtually unchanged, but a decrease when X = Me, while the charge density on the equatorial N donors also decreases. In response, d(Co)(-)(NB3) increases in the first two complexes but the equatorial bond lengths remain virtually unchanged, while d(Co)(-)(NB3) remains unchanged and the average d(Co)(-)(N(eq)) decreases in 10-Cl-MeCbl. Furthermore, the partial charge on chlorine increases as the donor power of X increases. The small decrease in the pK(a) of coordinated H(2)O in 10-Cl-H(2)OCbl(+) compared to H(2)OCbl(+) itself (7.65 vs 8.09) is due to a decreased charge density on oxygen in 10-Cl-OHCbl compared to OHCbl. The picture that emerges, therefore, is of competitive electron donation by X and Cl toward the corrin system. In 10-Cl-CNCbl, the decrease in the C&tbd1;N bond length as Co-C increases compared to CNCbl suggests that dpi-ppi bonding between cobalt and cyanide is important. (13)C and (15)N NMR observations on 10-Cl-(13)C(15)NCbl are consistent with these effects.

  20. Bonded Radii and the Contraction of the Electron Density of the Oxygen Atom by Bonded Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibbs, Gerald V.; Ross, Nancy L.; Cox, David F.

    2013-02-21

    The bonded radii for more than 550 bonded pairs of atoms, comprising more than 50 crystals, determined from experimental and theoretical electron density distributions, are compared with the effective ionic, ri(M), and crystal radii, rc(M), for metal atoms, M, bonded to O atoms. At odds with the fixed ionic radius of 1.40 Å, assumed for the O atom in the compilation of the ionic radii, the bonded radius for the atom, rb(O), is not fixed but displays a relatively wide range of values as the O atom is progressively polarized by the M-O bonded interactions: as such, rb(O) decreases systematicallymore » from 1.40 Å (the Pauling radius of the oxide anion) as bond lengths decrease when bonded to an electropositive atom like sodium, to 0.64 Å (Bragg’s atomic radius of the O atom) when bonded to an electronegative atom like nitrogen. Both rb(M) and rb(O) increase in tandum with the increasing coordination number of the M atom. The bonded radii of the M atoms are highly correlated with both ri(M) and rc(M), but they both depart systematically from rb(M) and become smaller as the electronegativity of the M atom increases and the M-O bond length decreases. The well-developed correlations between both sets of radii and rb(M) testifies to the relative precision of both sets of radii and the fact that both sets are highly correlated the M-O bond 1 lengths. On the other hand, the progressive departure of rb(O) from the fixed ionic radius of the O atom with the increasing electronegativity of the bonded M atom indicates that any compilation of sets of ionic radii, assuming that the radius for the oxygen atom is fixed in value, is problematical and impacts on the accuracy of the resulting sets of ionic and crystal radii thus compiled. The assumption of a fixed O atom radius not only results in a negative ionic radii for several atoms, but it also results in values of rb(M) that are much as ~ 0.6 Å larger than the ri(M) and rc(M) values, respectively, particularly for the more electronegative M atoms. On the other hand, the ionic radii are in closer agreement with rb(M) for the more electropositive atoms. Notwithstanding that ionic radii are typically smaller than bonded radii, particularly for the more electronegative atoms, they have been used with considerable success in understanding and rationalizing problems and properties in crystal chemistry primarily because both ionic and crystal radii are highly correlated on a one-to-one basis with both the bonded radii and the associated M-O bond lengths. The lack of agreement between the effective ionic and crystal radii and the bonded radii for the more shared bonded interactions is ascribed to the progressive increase in the polarization of the O atom by the bonded atoms with a concomitant decrease in its radius, a factor that was neglected in the compilation of ionic and crystal radii for fluorides, oxides, sulfides and nitrides. This accounts for ionic radii for these materials being smaller than the bonded radii for the more electronegative atoms.« less

  1. Temperature and composition dependence of short-range order and entropy, and statistics of bond length: the semiconductor alloy (GaN)(1-x)(ZnO)(x).

    PubMed

    Liu, Jian; Pedroza, Luana S; Misch, Carissa; Fernández-Serra, Maria V; Allen, Philip B

    2014-07-09

    We present total energy and force calculations for the (GaN)1-x(ZnO)x alloy. Site-occupancy configurations are generated from Monte Carlo (MC) simulations, on the basis of a cluster expansion model proposed in a previous study. Local atomic coordinate relaxations of surprisingly large magnitude are found via density-functional calculations using a 432-atom periodic supercell, for three representative configurations at x = 0.5. These are used to generate bond-length distributions. The configurationally averaged composition- and temperature-dependent short-range order (SRO) parameters of the alloys are discussed. The entropy is approximated in terms of pair distribution statistics and thus related to SRO parameters. This approximate entropy is compared with accurate numerical values from MC simulations. An empirical model for the dependence of the bond length on the local chemical environments is proposed.

  2. Quantitative structure activity relationships from optimised ab initio bond lengths: steroid binding affinity and antibacterial activity of nitrofuran derivatives

    NASA Astrophysics Data System (ADS)

    Smith, P. J.; Popelier, P. L. A.

    2004-02-01

    The present day abundance of cheap computing power enables the use of quantum chemical ab initio data in Quantitative Structure-Activity Relationships (QSARs). Optimised bond lengths are a new such class of descriptors, which we have successfully used previously in representing electronic effects in medicinal and ecological QSARs (enzyme inhibitory activity, hydrolysis rate constants and pKas). Here we use AM1 and HF/3-21G* bond lengths in conjunction with Partial Least Squares (PLS) and a Genetic Algorithm (GA) to predict the Corticosteroid-Binding Globulin (CBG) binding activity of the classic steroid data set, and the antibacterial activity of nitrofuran derivatives. The current procedure, which does not require molecular alignment, produces good r2 and q2 values. Moreover, it highlights regions in the common steroid skeleton deemed relevant to the active regions of the steroids and nitrofuran derivatives.

  3. Investigation of heat transfer and material flow of P-FSSW: Experimental and numerical study

    NASA Astrophysics Data System (ADS)

    Rezazadeh, Niki; Mosavizadeh, Seyed Mostafa; Azizi, Hamed

    2018-02-01

    Friction stir spot welding (FSSW) is the joining process which utilizes a rotating tool consisting of a shoulder and/or a probe. In this study, the novel method of FSSW, which is called protrusion friction stir spot welding (P-FSSW), has been presented and effect of shoulder diameter parameter has been studied numerically and experimentally on the weld quality including temperature field, velocity contour, material flow, bonding length, and the depth of the stirred area. The results show that the numerical findings are in good agreement with experimental measurements. The present model could well predict the temperature distribution, velocity contour, depth of the stirred area, and the bonding length. As the shoulder diameter increases, the amount of temperature rises which leads to a rise in stirred area depth, bonding length and temperatures and velocities. Therefore, a weld of higher quality will be performed.

  4. Reductive transformation of V(iii) precursors into vanadium(ii) oxide nanowires.

    PubMed

    Ojelere, Olusola; Graf, David; Ludwig, Tim; Vogt, Nicholas; Klein, Axel; Mathur, Sanjay

    2018-05-15

    Vanadium(ii) oxide nanostructures are promising materials for supercapacitors and electrocatalysis because of their excellent electrochemical properties and high surface area. In this study, new homoleptic vanadium(iii) complexes with bi-dentate O,N-chelating heteroarylalkenol ligands (DmoxCH[double bond, length as m-dash]COCF3, PyCH[double bond, length as m-dash]COCF3 and PyN[double bond, length as m-dash]COCF3) were synthesized and successfully transformed by reductive conversion into VO nanowires. The chemical identity of V(iii) complexes and their redox behaviour were unambiguously established by single crystal X-ray diffraction studies, cyclic voltammetry, spectrometric studies and DFT calculations. Transformation into the metastable VO phase was verified by powder X-ray diffraction and thermo-gravimetry. Transmission electron microscopy and X-ray photoelectron spectroscopy data confirmed the morphology and chemical composition of VO nanostructures, respectively.

  5. Linear free-energy relationships between a single gas-phase ab initio equilibrium bond length and experimental pKa values in aqueous solution.

    PubMed

    Alkorta, Ibon; Popelier, Paul L A

    2015-02-02

    Remarkably simple yet effective linear free energy relationships were discovered between a single ab initio computed bond length in the gas phase and experimental pKa values in aqueous solution. The formation of these relationships is driven by chemical features such as functional groups, meta/para substitution and tautomerism. The high structural content of the ab initio bond length makes a given data set essentially divide itself into high correlation subsets (HCSs). Surprisingly, all molecules in a given high correlation subset share the same conformation in the gas phase. Here we show that accurate pKa values can be predicted from such HCSs. This is achieved within an accuracy of 0.2 pKa units for 5 drug molecules. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Insights into the crystal chemistry of Earth materials rendered by electron density distributions: Pauling's rules revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibbs, Gerald V.; Ross, Nancy L.; Cox, David F.

    2014-05-20

    Pauling's first two rules are examined in terms of the accumulation of the electron density between bonded pairs of atoms for a relatively large number of oxide and silicate crystals and siloxane molecules. The distribution of the electron density shows that the radius of the oxygen atom is not fixed, but that it actually decreases systematically from ~1.40 Å to ~ 0.65 Å as the polarizing power and the electronegativity of the bonded metal atoms increase and the distribution of the O atom is progressively polarized and contracted along the bond vectors by the impact of the bonded interactions. Themore » contractions result in an aspherical oxygen atom that displays as many different bonded “radii” as it has bonded interactions. The bonded radii for the metal atoms match the Shannon and Prewitt ionic radii for the more electropositive atoms like potassium and sodium, but they are systematically larger for the more electronegative atoms like aluminum, silicon and phosphorous. Pauling's first rule is based on the assumption that the radius of the oxide anion is fixed and that the radii of the cations are such that radius sum of the spherical oxide anion and a cation necessarily equals the separation between the cation-anion bonded pair with the coordination number of the cation being determined by the ratio of the radii of the cation and anion. In the case of the bonded radii, the sum of the bonded radii for the metal atoms and the oxide anion necessarily equals the bond lengths by virtue of the way that the bonded radii were determined in the partitioning of the electron density along the bond path into metal and O atom parts. But, the radius ratio for the O and M atoms is an unsatisfactory rule for determining the coordination number of the metal atom inasmuch as a bonded O atom is not, in general, spherical, and its size varies substantially along its bonded directions. But by counting the number of bond paths that radiate from a bonded atom, the coordination number of the atom is determined uniquely independent of the asphericity and sizes of the atom. A power law connection established between the bond lengths and bond strengths for crystals and molecules is mirrored by a comparable power law connection between bond length and the accumulation of the electron density between bonded pairs of atoms, a connection that is consistent with Pauling's electroneutrality postulate that the charges of the atoms in an oxide are negligibly small. The connection indicates that a one-to-one correspondence exists between the accumulation between a pair of bonded atoms and the Pauling bond strength for M-O bonded interaction for all atoms of the periodic table. The connection provides a common basis for understanding the success of the manifold applications that have been made with the bond valence theory model together with the modeling of crystal structures, chemical zoning, leaching and cation transport in batteries and the like. We believe that the wide spread applications of the model in mineralogy and material science owes much of its success to the direct connection between bond strength and the quantum mechanical observable, the electron density distribution. Comparable power law expressions established for the bonded interactions for both crystals and molecules support Pauling's assertion that his second rule has significance for molecules as well as for crystals. A simple expression is found that provides a one to one connection between the accumulation of the electron density between bonded M and O atoms and the Pauling bond strength for all M atoms of the periodic table with ~ 95 % of the variation of the bond strength being explained in terms of a linear dependence on the accumulated electron density. Compelling evidence is presented that supports the argument that the Si-O bonded interactions for tiny siloxane molecules and silicate crystals are chemically equivalent.« less

  7. Trialkylphosphine-stabilized copper(I) gallium(III) phenylchalcogenolate complexes: crystal structures and generation of ternary semiconductors by thermolysis.

    PubMed

    Kluge, Oliver; Krautscheid, Harald

    2012-06-18

    A series of organometallic trialkylphosphine-stabilized copper gallium phenylchalcogenolate complexes [(R(3)P)(m)Cu(n)Me(2-x)Ga(EPh)(n+x+1)] (R = Me, Et, (i)Pr, (t)Bu; E = S, Se, Te; x = 0, 1) has been prepared and structurally characterized by X-ray diffraction. From their molecular structures three groups of compounds can be distinguished: ionic compounds, ring systems, and cage structures. All these complexes contain one gallium atom bound to one or two methyl groups, whereas the number of copper atoms, and therefore the nuclearity of the complexes, is variable and depends mainly on size and amount of phosphine ligand used in synthesis. The Ga-E bonds are relatively rigid, in contrast to flexible Cu-E bonds. The lengths of the latter are controlled by the coordination number and steric influences. The Ga-E bond lengths depend systematically on the number of methyl groups bound to the gallium atom, with somewhat shorter bonds in monomethyl compounds compared to dimethyl compounds. Quantum chemical computations reproduce this trend and show furthermore that the rotation of one phenyl group around the Ga-E bond is a low energy process with two distinct minima, corresponding to two different conformations found experimentally. Mixtures of different types of chalcogen atoms on molecular scale are possible, and then ligand exchange reactions in solution lead to mixed site occupation. In thermogravimetric studies the complexes were converted into the ternary semiconductors CuGaE(2). The thermolysis reaction is completed at temperatures between 250 and 400 °C, typically with lower temperatures for the heavier chalcogens. Because of significant release of Me(3)Ga during the thermolysis process, and especially in case of copper excess in the precursor complexes, binary copper chalcogenides are obtained as additional thermolysis products. Quaternary semiconductors can be obtained from mixed chalcogen precursors.

  8. Insertion of terminal alkyne into Pt-N bond of the square planar [PtI2(Me2phen)] complex.

    PubMed

    Benedetti, Michele; De Castro, Federica; Lamacchia, Vincenza; Pacifico, Concetta; Natile, Giovanni; Fanizzi, Francesco P

    2017-11-21

    The reactivity of [PtX 2 (Me 2 phen)] complexes (X = Cl, Br, I; Me 2 phen = 2,9-dimethyl-1,10-phenanthroline) with terminal alkynes has been investigated. Although the dichlorido species [PtCl 2 (Me 2 phen)] exhibits negligible reactivity, the bromido and iodido derivatives lead in short time to the formation of five-coordinate Pt(ii) complexes of the type [PtX 2 (Me 2 phen)(η 2 -CH[triple bond, length as m-dash]CR)] (X = Br, I; R = Ph, n-Bu), in equilibrium with the starting reagents. Similar to analogous complexes with simple acetylene, the five coordinate species can also undergo dissociation of an halido ligand and formation of the transient square-planar cationic species [PtX(Me 2 phen)(η 2 -CH[triple bond, length as m-dash]CR)] + . This latter can further evolve to give an unusual, sparingly soluble square planar product where the former terminal alkyne is converted into a :C[double bond, length as m-dash]C(H)(R) moiety with the α-carbon bridging the Pt(ii) core with one of the two N-donors of coordinated Me 2 phen. The final product [PtX 2 {κ 2 -N,C-(Z)-N[combining low line]1-N10-C[combining low line][double bond, length as m-dash]C(H)(R)}] (N1-N10 = 2,9-dimethyl-1,10-phenanthroline; X = Br, I) contains a Pt-N-C-C-N-C six-membered chelate ring in a square planar Pt(ii) coordination environment.

  9. Bonding thermoplastic polymers

    DOEpatents

    Wallow, Thomas I [Fremont, CA; Hunter, Marion C [Livermore, CA; Krafcik, Karen Lee [Livermore, CA; Morales, Alfredo M [Livermore, CA; Simmons, Blake A [San Francisco, CA; Domeier, Linda A [Danville, CA

    2008-06-24

    We demonstrate a new method for joining patterned thermoplastic parts into layered structures. The method takes advantage of case-II permeant diffusion to generate dimensionally controlled, activated bonding layers at the surfaces being joined. It is capable of producing bonds characterized by cohesive failure while preserving the fidelity of patterned features in the bonding surfaces. This approach is uniquely suited to production of microfluidic multilayer structures, as it allows the bond-forming interface between plastic parts to be precisely manipulated at micrometer length scales. The bond enhancing procedure is easily integrated in standard process flows and requires no specialized equipment.

  10. Quadratic elongation: A quantitative measure of distortion in coordination polyhedra

    USGS Publications Warehouse

    Robinson, Kelly F.; Gibbs, G.V.; Ribbe, P.H.

    1971-01-01

    Quadratic elongation and the variance of bond angles are linearly correlated for distorted octahedral and tetrahedral coordination complexes, both of which show variations in bond length and bond angle. The quadratic elonga tion is dimensionless, giving a quantitative measure of polyhedral distortion which is independent of the effective size of the polyhedron.

  11. Vibrational states and optical transitions in hydrogen bonds

    NASA Astrophysics Data System (ADS)

    Johannsen, P. G.

    1998-03-01

    Proton energies in hydrogen bonds are mostly calculated using a double Morse potential (the DMP model). This form, however, does not reproduce the experimentally observed correlation between the proton stretching frequency and the bond length in an extended bond-length region sufficiently well. An alternative potential is proposed in the present paper. The quantum states of this non-symmetric double-well potential are calculated numerically using the Numerov (Fox-Goodwin) algorithm. It is shown that the optical spectra of hydrogen bonds in various substances can be well approximated on the basis of the transition frequencies and intensities predicted by the present model. For weakly interacting OH impurities in 0953-8984/10/10/008/img1, the overtone spectrum and line intensities are well reproduced, whereas the line broadenings and the decrease of the fundamental stretching frequencies in intermediate and strong hydrogen bonds are traced back to the influence of the reduced height of the central barrier. The model is also extrapolated to the range of symmetric hydrogen bonds, and the calculated transition frequencies are discussed with respect to most recent infra-red experiments on ice under strong compression. A possible artificial infra-red signal from strained diamond anvils is thereby noted.

  12. Bi-directional ultrasonic wave coupling to FBGs in continuously bonded optical fiber sensing.

    PubMed

    Wee, Junghyun; Hackney, Drew; Bradford, Philip; Peters, Kara

    2017-09-01

    Fiber Bragg grating (FBG) sensors are typically spot-bonded onto the surface of a structure to detect ultrasonic waves in laboratory demonstrations. However, to protect the rest of the optical fiber from any environmental damage during real applications, bonding the entire length of fiber, called continuous bonding, is commonly done. In this paper, we investigate the impact of continuously bonding FBGs on the measured Lamb wave signal. In theory, the ultrasonic wave signal can bi-directionally transfer between the optical fiber and the plate at any adhered location, which could potentially produce output signal distortion for the continuous bonding case. Therefore, an experiment is performed to investigate the plate-to-fiber and fiber-to-plate signal transfer, from which the signal coupling coefficient of each case is theoretically estimated based on the experimental data. We demonstrate that the two coupling coefficients are comparable, with the plate-to-fiber case approximately 19% larger than the fiber-to-plate case. Finally, the signal waveform and arrival time of the output FBG responses are compared between the continuous and spot bonding cases. The results indicate that the resulting Lamb wave signal output is only that directly detected at the FBG location; however, a slight difference in signal waveform is observed between the two bonding configurations. This paper demonstrates the practicality of using continuously bonded FBGs for ultrasonic wave detection in structural health monitoring (SHM) applications.

  13. Computations and estimates of rate coefficients for hydrocarbon reactions of interest to the atmospheres of outer solar system

    NASA Technical Reports Server (NTRS)

    Laufer, A. H.; Gardner, E. P.; Kwok, T. L.; Yung, Y. L.

    1983-01-01

    The rate coefficients, including Arrhenius parameters, have been computed for a number of chemical reactions involving hydrocarbon species for which experimental data are not available and which are important in planetary atmospheric models. The techniques used to calculate the kinetic parameters include the Troe and semiempirical bond energy-bond order (BEBO) or bond strength-bond length (BSBL) methods.

  14. Adhesive-bonded scarf and stepped-lap joints

    NASA Technical Reports Server (NTRS)

    Hart-Smith, L. J.

    1973-01-01

    Continuum mechanics solutions are derived for the static load-carrying capacity of scarf and stepped-lap adhesive-bonded joints. The analyses account for adhesive plasticity and adherend stiffness imbalance and thermal mismatch. The scarf joint solutions include a simple algebraic formula which serves as a close lower bound, within a small fraction of a per cent of the true answer for most practical geometries and materials. Digital computer programs were developed and, for the stepped-lap joints, the critical adherend and adhesive stresses are computed for each step. The scarf joint solutions exhibit grossly different behavior from that for double-lap joints for long overlaps inasmuch as that the potential bond shear strength continues to increase with indefinitely long overlaps on the scarf joints. The stepped-lap joint solutions exhibit some characteristics of both the scarf and double-lap joints. The stepped-lap computer program handles arbitrary (different) step lengths and thickness and the solutions obtained have clarified potentially weak design details and the remedies. The program has been used effectively to optimize the joint proportions.

  15. Zn Coordination Chemistry:  Development of Benchmark Suites for Geometries, Dipole Moments, and Bond Dissociation Energies and Their Use To Test and Validate Density Functionals and Molecular Orbital Theory.

    PubMed

    Amin, Elizabeth A; Truhlar, Donald G

    2008-01-01

    We present nonrelativistic and relativistic benchmark databases (obtained by coupled cluster calculations) of 10 Zn-ligand bond distances, 8 dipole moments, and 12 bond dissociation energies in Zn coordination compounds with O, S, NH3, H2O, OH, SCH3, and H ligands. These are used to test the predictions of 39 density functionals, Hartree-Fock theory, and seven more approximate molecular orbital theories. In the nonrelativisitic case, the M05-2X, B97-2, and mPW1PW functionals emerge as the most accurate ones for this test data, with unitless balanced mean unsigned errors (BMUEs) of 0.33, 0.38, and 0.43, respectively. The best local functionals (i.e., functionals with no Hartree-Fock exchange) are M06-L and τ-HCTH with BMUEs of 0.54 and 0.60, respectively. The popular B3LYP functional has a BMUE of 0.51, only slightly better than the value of 0.54 for the best local functional, which is less expensive. Hartree-Fock theory itself has a BMUE of 1.22. The M05-2X functional has a mean unsigned error of 0.008 Å for bond lengths, 0.19 D for dipole moments, and 4.30 kcal/mol for bond energies. The X3LYP functional has a smaller mean unsigned error (0.007 Å) for bond lengths but has mean unsigned errors of 0.43 D for dipole moments and 5.6 kcal/mol for bond energies. The M06-2X functional has a smaller mean unsigned error (3.3 kcal/mol) for bond energies but has mean unsigned errors of 0.017 Å for bond lengths and 0.37 D for dipole moments. The best of the semiempirical molecular orbital theories are PM3 and PM6, with BMUEs of 1.96 and 2.02, respectively. The ten most accurate functionals from the nonrelativistic benchmark analysis are then tested in relativistic calculations against new benchmarks obtained with coupled-cluster calculations and a relativistic effective core potential, resulting in M05-2X (BMUE = 0.895), PW6B95 (BMUE = 0.90), and B97-2 (BMUE = 0.93) as the top three functionals. We find significant relativistic effects (∼0.01 Å in bond lengths, ∼0.2 D in dipole moments, and ∼4 kcal/mol in Zn-ligand bond energies) that cannot be neglected for accurate modeling, but the same density functionals that do well in all-electron nonrelativistic calculations do well with relativistic effective core potentials. Although most tests are carried out with augmented polarized triple-ζ basis sets, we also carried out some tests with an augmented polarized double-ζ basis set, and we found, on average, that with the smaller basis set DFT has no loss in accuracy for dipole moments and only ∼10% less accurate bond lengths.

  16. Correlation of nonorthogonality of best hybrid bond orbitals with bond strength of orthogonal orbitals

    PubMed Central

    Pauling, Linus

    1976-01-01

    An expression is derived for the bond length of two spd orbitals with maximum values in two directions forming a given bond angle by consideration of the nonorthogonality integral of two best orbitals in these directions. This equation is equivalent to the expression derived by formulating the pair of orthogonal orbitals. Similar expressions are derived for spdf orbitals. Applications are made to icosahedral and cuboctahedral bonds and to the packing of nucleons in atomic nuclei. PMID:16578736

  17. Correlation of nonorthogonality of best hybrid bond orbitals with bond strength of orthogonal orbitals.

    PubMed

    Pauling, L

    1976-02-01

    An expression is derived for the bond length of two spd orbitals with maximum values in two directions forming a given bond angle by consideration of the nonorthogonality integral of two best orbitals in these directions. This equation is equivalent to the expression derived by formulating the pair of orthogonal orbitals. Similar expressions are derived for spdf orbitals. Applications are made to icosahedral and cuboctahedral bonds and to the packing of nucleons in atomic nuclei.

  18. Lattice effects on ferromagnetism in perovskite ruthenates

    PubMed Central

    Cheng, J.-G.; Zhou, J.-S.; Goodenough, John B.

    2013-01-01

    Ferromagnetism and its evolution in the orthorhombic perovskite system Sr1–xCaxRuO3 have been widely believed to correlate with structural distortion. The recent development of high-pressure synthesis of the Ba-substituted Sr1–yBayRuO3 makes it possible to study ferromagnetism over a broader phase diagram, which includes the orthorhombic Imma and the cubic phases. However, the chemical substitutions introduce the A-site disorder effect on Tc, which complicates determination of the relationship between ferromagnetism and structural distortion. By clarifying the site disorder effect on Tc in several unique series of ruthenates in which the average bond length 〈A–O〉 remains the same but the bond-length variance varies, we are able to demonstrate a parabolic curve of Tc versus mean bond length 〈A–O〉. A much higher Tc ∼ 177 K than that found in orthorhombic SrRuO3 can be obtained from the curve at a bond length 〈A–O〉, which makes the geometric factor t = 〈A–O〉/(√2〈Ru–O〉) ∼ 1. This result reveals not only that the ferromagnetism in the ruthenates is extremely sensitive to the lattice strain, but also that it has an important implication for exploring the structure–property relationship in a broad range of oxides with perovskite or a perovskite-related structure. PMID:23904477

  19. (Meth­oxy­methyl­idene)di­methyl­aza­nium tetra­phenyl­borate aceto­nitrile monosolvate

    PubMed Central

    Tiritiris, Ioannis; Saur, Stefan; Kantlehner, Willi

    2014-01-01

    In the cation of the title salt, C4H10NO+·C24H20B−·C2H3N, the C—N bond lengths are 1.2864 (16), 1.4651 (17) and 1.4686 (16) Å, indicating double- and single-bond character, respectively. The C—O bond length of 1.2978 (15) Å shows double-bond character, pointing towards charge delocalization within the NCO plane of the iminium ion. C—H⋯π inter­actions are present between the methine H atom and two of the phenyl rings of the tetra­phenyl­borate ion. The latter forms an aromatic pocket in which the cation is embedded. The iminium ion is further connected through a C—H⋯N hydrogen bond to the aceto­nitrile mol­ecule. This leads to the formation of a two-dimensional supramolecular pattern along the bc plane. PMID:24765028

  20. Phase behaviors of supramolecular graft copolymers with reversible bonding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xu; Wang, Liquan, E-mail: jlin@ecust.edu.cn, E-mail: lq-wang@ecust.edu.cn; Jiang, Tao

    2013-11-14

    Phase behaviors of supramolecular graft copolymers with reversible bonding interactions were examined by the random-phase approximation and real-space implemented self-consistent field theory. The studied supramolecular graft copolymers consist of two different types of mutually incompatible yet reactive homopolymers, where one homopolymer (backbone) possesses multifunctional groups that allow second homopolymers (grafts) to be placed on. The calculations carried out show that the bonding strength exerts a pronounced effect on the phase behaviors of supramolecular graft copolymers. The length ratio of backbone to graft and the positions of functional groups along the backbone are also of importance to determine the phase behaviors.more » Phase diagrams were constructed at high bonding strength to illustrate this architectural dependence. It was found that the excess unbounded homopolymers swell the phase domains and shift the phase boundaries. The results were finally compared with the available experimental observations, and a well agreement is shown. The present work could, in principle, provide a general understanding of the phase behaviors of supramolecular graft copolymers with reversible bonding.« less

  1. Hydrogen bonding in water clusters and their ionized counterparts.

    PubMed

    Neela, Y Indra; Mahadevi, A Subha; Sastry, G Narahari

    2010-12-30

    Ab initio and DFT computations were carried out on four distinct hydrogen-bonded arrangements of water clusters (H(2)O)(n), n = 2-20, represented as W1D, W2D, W2DH, and W3D. The variation in the strength of hydrogen bond as a function of the chain length is studied. In all the four cases, there is a substantial cooperative interaction, albeit in different degrees. The effect of basis set superposition error (BSSE) on the complexation energy of water clusters has been analyzed. Atoms in molecules (AIM) analysis performed to evaluate the nature of the hydrogen bonding shows a high correlation between hydrogen bond strength and the trends in complexation energy. Solvated water clusters exhibit lower complexation energies compared to corresponding gas-phase geometries on PCM (polarized continuum model) optimization. The feasibility of stripping an electron or addition of an electron increases dramatically as the cluster size increases. Although W3D caged structures are stable for neutral clusters, the helical W2DH arrangement appeared to be an optimal choice for its ionized counterparts.

  2. Viscous friction of hydrogen-bonded matter

    NASA Astrophysics Data System (ADS)

    Erbas, Aykut; Horinek, Dominik; Netz, Roland R.

    2012-02-01

    Amontons' law successfully describes friction between macroscopic solid bodies for a wide range of velocities and normal forces. For the diffusion and forced sliding of adhering or entangled macromolecules, proteins and biological complexes, temperature effects are invariably important and a similarly successful friction law at biological length and velocity scales is missing. Hydrogen bonds are key to the specific binding of bio-matter. Here we show that friction between hydrogen-bonded matter obeys in the biologically relevant low-velocity viscous regime a simple equations: the friction force is proportional to the number of hydrogen bonds, the sliding velocity, and a friction coefficient γHB. This law is deduced from atomistic molecular dynamics simulations for short peptide chains that are laterally pulled over hydroxylated substrates in the presence of water and holds for widely different peptides, surface polarities and applied normal forces. The value of γHB is extrapolated from simulations at sliding velocities in the range from v=10-2 m/s to 100 m/s by mapping on a simple stochastic model and turns out to be of the order of γHB˜10-8 kg/s. 3 hydrogen bonds act collectively.

  3. Measurement accuracy of FBG used as a surface-bonded strain sensor installed by adhesive.

    PubMed

    Xue, Guangzhe; Fang, Xinqiu; Hu, Xiukun; Gong, Libin

    2018-04-10

    Material and dimensional properties of surface-bonded fiber Bragg gratings (FBGs) can distort strain measurement, thereby lowering the measurement accuracy. To accurately assess measurement precision and correct obtained strain, a new model, considering reinforcement effects on adhesive and measured object, is proposed in this study, which is verified to be accurate enough by the numerical method. Meanwhile, a theoretical strain correction factor is obtained, which is demonstrated to be significantly sensitive to recoating material and bonding length, as suggested by numerical and experimental results. It is also concluded that a short grating length as well as a thin but large-area (preferably covering the whole FBG) adhesive can enhance the correction precision.

  4. Hydrogen bonds in crystalline D-alanine: diffraction and spectroscopic evidence for differences between enantiomers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belo, Ezequiel A.; Pereira, Jose E. M.; Freire, Paulo T. C.

    Enantiomeric amino acids have specific physiological functions in complex biological systems. Systematic studies focusing on the solid-state properties of D-amino acids are, however, still limited. To shed light on this field, structural and spectroscopic studies of D-alanine using neutron powder diffraction, polarized Raman scattering and ab initio calculations of harmonic vibrational frequencies were carried out. Clear changes in the number of vibrational modes are observed as a function of temperature, which can be directly connected to variations of the N—D bond lengths. These results reveal dissimilarities in the structural properties of D-alanine compared with L-alanine.

  5. Hydrogen bonds in crystalline D-alanine: diffraction and spectroscopic evidence for differences between enantiomers

    DOE PAGES

    Belo, Ezequiel A.; Pereira, Jose E. M.; Freire, Paulo T. C.; ...

    2018-01-01

    Enantiomeric amino acids have specific physiological functions in complex biological systems. Systematic studies focusing on the solid-state properties of D-amino acids are, however, still limited. To shed light on this field, structural and spectroscopic studies of D-alanine using neutron powder diffraction, polarized Raman scattering and ab initio calculations of harmonic vibrational frequencies were carried out. Clear changes in the number of vibrational modes are observed as a function of temperature, which can be directly connected to variations of the N—D bond lengths. These results reveal dissimilarities in the structural properties of D-alanine compared with L-alanine.

  6. Dipolar Second-Order Nonlinear Optical Chromophores Containing Ferrocene, Octamethylferrocene, and Ruthenocene Donors and Strong π-Acceptors: Crystal Structures and Comparison of π-Donor Strengths

    PubMed Central

    Kinnibrugh, Tiffany L.; Salman, Seyhan; Getmanenko, Yulia A.; Coropceanu, Veaceslav; Porter, William W.; Timofeeva, Tatiana V.; Matzger, Adam J.; Brédas, Jean-Luc; Marder, Seth R.; Barlow, Stephen

    2009-01-01

    Crystal structures have been determined for six dipolar polyene chromophores with metallocenyl – ferrocenyl (Fc), octamethylferrocenyl (Fc″), or ruthenocenyl (Rc) – donors and strong heterocyclic acceptors based on 1,3-diethyl-2-thiobarbituric acid or 3-dicyanomethylidene-2,3-dihydrobenzothiophene-1,1-dioxide. In each case, crystals were found to belong to centrosymmetric space groups. For one example, polymer-induced heteronucleation revealed the existence of two additional polymorphs, which were inactive in second-harmonic generation, suggesting that they were also centrosymmetric. The bond-length alternations between the formally double and single bonds of the polyene bridges are reduced compared to simple polyenes, indicating significant contribution from charge-separated resonance structures, although the metallocenes are not significantly distorted towards the [(η6-fulvene)(η5-cyclopentadienyl)metal(II)]+ extreme. DFT geometries are in excellent agreement with those determined crystallographically; while the π-donor strengths of the three metallocenyl groups are insufficiently different to result in detectable differences in the crystallographic bond-length alternations, the DFT geometries, as well as DFT-calculations of partial charges for atoms, suggest that π-donor strength decreases in the order Fc″ ≫ Fc > Rc. NMR, IR and electrochemical evidence also suggests that octamethylferrocenyl is the stronger π-donor, exhibiting similar π-donor strength to a p-(dialkylamino)phenyl group, while ferrocenyl and ruthenocenyl show very similar π-donor strengths to one another in chromophores of this type. PMID:20047010

  7. Significance of DNA bond strength in programmable nanoparticle thermodynamics and dynamics.

    PubMed

    Yu, Qiuyan; Hu, Jinglei; Hu, Yi; Wang, Rong

    2018-04-04

    Assembly of nanoparticles (NPs) coated with complementary DNA strands leads to novel crystals with nanosized basic units rather than classic atoms, ions or molecules. The assembly process is mediated by hybridization of DNA via specific base pairing interaction, and is kinetically linked to the disassociation of DNA duplexes. DNA-level physiochemical quantities, both thermodynamic and kinetic, are key to understanding this process and essential for the design of DNA-NP crystals. The melting transition properties are helpful to judge the thermostability and sensitivity of relative DNA probes or other applications. Three different cases are investigated by changing the linker length and the spacer length on which the melting properties depend using the molecular dynamics method. Melting temperature is determined by sigmoidal melting curves based on hybridization percentage versus temperature and the Lindemann melting rule simultaneously. We provide a computational strategy based on a coarse-grained model to estimate the hybridization enthalpy, entropy and free energy from percentages of hybridizations which are readily accessible in experiments. Importantly, the lifetime of DNA bond dehybridization based on temperature and the activation energy depending on DNA bond strength are also calculated. The simulation results are in good agreement with the theoretical analysis and the present experimental data. Our study provides a good strategy to predict the melting temperature which is important for the DNA-directed nanoparticle system, and bridges the dynamics and thermodynamics of DNA-directed nanoparticle systems by estimating the equilibrium constant from the hybridization of DNA bonds quantitatively.

  8. The bonding of FeN2, FeCO, and Fe2N2 - Model systems for side-on bonding of CO and N2

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Pettersson, Lars G. M.; Siegbahn, Per E. M.

    1987-01-01

    Qualitative calculations are performed to elucidate the nature of the side-on interaction of both N2 and CO with a single Fe atom. The systems are found to be quite similar, with bonding leading to an increase in the CO or N2 bond length and a decrease in the vibrational frequency. The CO or N2 stretching modes lead to a large dipole derivative along the metal-ligand bond axis. The populations show an almost identical, large donation from the Fe 3d orbitals into the CO or N2 Pi-asterisk. The larger system Fe2N2 is then considered, with the N2 bridging the Fe2, both parallel and perpendicular to the Fe2 bond axis for two different Fe-Fe distances. For FeN2, the shift in the observed N2 frequency is smaller than observed for the alpha state of N2/Fe(111). The shift in the N2 vibrational frequency increases when the N2 interacts with two Fe atoms, either at the Fe-Fe nearest neighbor distance or at the first layer Fe-Fe distance, when the side-on N2 axis is oriented perpendicular to an Fe-Fe bond.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikhlina, Ya. A., E-mail: altik@inbox.ru; Bolotin, B. M.; Kuz'mina, L. G., E-mail: kuzmina@igic.ras.ru

    Two crystal modifications (1o and 1y) of N-butyl-2-cyano-3-[4-(dimethylamino)phenyl]-2-propenamide, which differ in the color of crystals and the color of luminescence, have been studied by X-ray diffraction and spectral-luminescence methods. The corresponding bond lengths and bond angles in the molecules of two crystal modifications are virtually identical. In both crystal structures, there are two systems of weak intermolecular interactions: {pi}-stacking interactions and -CN Horizontal-Ellipsis H-N hydrogen bonds involving nitrile and NH groups. In the crystal structures, two hydrogen bonds connect pairs of molecules into centrosymmetric dimers. The N Horizontal-Ellipsis H distances are 2.21 and 2.41 A in 1o and 1y, respectively.more » The interplanar distances in the {pi}-stacked systems of 1o and 1y are 3.33 and 3.41 A, respectively. Both types of weak interactions are stronger in 1o than in 1y, which accounts for a larger shift of absorption and luminescence bands for the former compound.« less

  10. [A development of FRP frame for crown and bridge resin. (2) Rigidity and adaptability of FRP frame].

    PubMed

    Kimura, H; Teraoka, F

    1990-05-01

    Retainer and pontic of FRP frame for crown and bridge resin were constructed with two different prepregs, used glass cloth and roving as reinforcement. Rigidity and adaptability of the FRP frame and bonding strength of jointing of retainer and pontic were investigated. The glass content was about 50 wt% for both kinds of prepregs. Bonding strength and modulus of FRP plate reinforced with glass roving were about 1.5 times larger than that of the FRP plate reinforced with glass cloth. Bonding strength of FRP specimen constructed by curing the prepreg put on the FRP plate was about 3 kgf/mm2. However, the bonding strength of specimen constructed by curing simultaneously the two prepregs was about 12 kgf/mm2. Though discrepancy of the FRP frame to stone cast of abutment tooth was proportional to the length of pontic, that of the FRP frame with a 50 mm pontic was less than 0.05 mm.

  11. 77 FR 5728 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-06

    ... between bonding lead and the harness, due to over length of the bonding lead. As the affected wire is not... chafing of the wires, and corrective actions, if necessary. We are proposing this AD to detect and correct contact or chafing of wires and bonding leads which, if not detected could be a source of sparks in the...

  12. Social bonds and rank acquisition in raven nonbreeder aggregations

    PubMed Central

    Braun, Anna; Bugnyar, Thomas

    2012-01-01

    Complex social life has been characterized as cognitively challenging and recently, social relationships such as long-term social bonds and alliances have been identified as key elements for brain evolution. Whereas good evidence is available to support the link between social relations and cognition in mammals, it remains unsatisfying for birds. Here we investigated the role of avian social bonds in a nonbreeder aggregation of ravens, Corvus corax, in the Austrian Alps. We individually marked 138 wild ravens, representing approximately half of a population that uses the area of a local zoo for foraging. For 2 years, we observed the dynamics of group composition and the birds' agonistic and affiliative interactions. We identified two levels of organization: the formation of an unrelated local group and the individuals' engagement in social bonds of different length and reciprocity pattern. Whereas belonging to the local group had no significant effect on conflicts won during foraging, the individual bonding type did. Birds that engaged in affiliative relationships were more successful when competing for food than those without such bonds. Bonded birds did suffer from aggression by other bonded birds and, probably as a consequence, most of the ravens' social relations were not stable over time. These results support the idea that social bonding and selective cooperation and competition are prominent features in nonbreeding ravens. Proximately, bonding may qualify as a social manoeuvre that facilitates access to resources; ultimately it might function to assess the quality of a partner in these long-term monogamous birds. PMID:23264693

  13. Tensile Bond Strength of Self Adhesive Resin Cement After Various Surface Treatment of Enamel.

    PubMed

    Sekhri, Sahil; Mittal, Sanjeev; Garg, Sandeep

    2016-01-01

    In self adhesive resin cements adhesion is achieved to dental surface without surface pre-treatment, and requires only single step application. This makes the luting procedure less technique-sensitive and decreases postoperative sensitivity. The purpose of this study was to evaluate bond strength of self adhesive resin after surface treatment of enamel for bonding base metal alloy. On the labial surface of 64 central incisor rectangular base metal block of dimension 6 mm length, 5mm width and 1 mm height was cemented with RelyX U200 and Maxcem Elite self adhesive cements with and without surface treatment of enamel. Surface treatment of enamel was application of etchant, one step bonding agent and both. Tensile bond strength of specimen was measured with universal testing machine at a cross head speed of 1mm/min. Least tensile bond strength (MPa) was in control group i.e. 1.33 (0.32) & 1.59 (0.299), Highest bond strength observed when enamel treated with both etchant and bonding agent i.e. 2.72 (0.43) & 2.97 (0.19) for Relyx U200 and Elite cement. When alone etchant and bonding agent were applied alone bond strength is 2.19 (0.18) & 2.24 (0.47) for Relyx U200, and 2.38 (0.27) 2.49 (0.16) for Max-cem elite. Mean bond strength was higher in case of Max-cem Elite as compared to RelyX U200 resin cement, although differences were non-significant (p > 0.05). Surface treatment of enamel increases the bond strength of self adhesive resin cement.

  14. Analytical energy gradient for the two-component normalized elimination of the small component method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Wenli; Filatov, Michael; Cremer, Dieter, E-mail: dcremer@smu.edu

    2015-06-07

    The analytical gradient for the two-component Normalized Elimination of the Small Component (2c-NESC) method is presented. The 2c-NESC is a Dirac-exact method that employs the exact two-component one-electron Hamiltonian and thus leads to exact Dirac spin-orbit (SO) splittings for one-electron atoms. For many-electron atoms and molecules, the effect of the two-electron SO interaction is modeled by a screened nucleus potential using effective nuclear charges as proposed by Boettger [Phys. Rev. B 62, 7809 (2000)]. The effect of spin-orbit coupling (SOC) on molecular geometries is analyzed utilizing the properties of the frontier orbitals and calculated SO couplings. It is shown thatmore » bond lengths can either be lengthened or shortened under the impact of SOC where in the first case the influence of low lying excited states with occupied antibonding orbitals plays a role and in the second case the jj-coupling between occupied antibonding and unoccupied bonding orbitals dominates. In general, the effect of SOC on bond lengths is relatively small (≤5% of the scalar relativistic changes in the bond length). However, large effects are found for van der Waals complexes Hg{sub 2} and Cn{sub 2}, which are due to the admixture of more bonding character to the highest occupied spinors.« less

  15. Synthesis and SMM behaviour of trinuclear versus dinuclear 3d-5f uranyl(v)-cobalt(ii) cation-cation complexes.

    PubMed

    Chatelain, Lucile; Tuna, Floriana; Pécaut, Jacques; Mazzanti, Marinella

    2017-05-02

    Trinuclear versus dinuclear heterodimetallic U V O 2 + Co 2+ complexes were selectively assembled via a cation-cation interaction by tuning the ligand. The trimeric complex 2, with a linear [Co-O[double bond, length as m-dash]U[double bond, length as m-dash]O-Co] core, exhibits magnetic exchange and slow relaxation with a reversal barrier of 30.5 ± 0.9 K providing the first example of a U-Co exchange-coupled SMM.

  16. Effect of Surface Treatment on Enamel Cracks After Orthodontic Bracket Debonding: Er,Cr:YSGG Laser-Etching Versus Acid-Etching

    PubMed Central

    Ghaffari, Hassanali; Mirhashemi, Amirhossein; Baherimoghadam, Tahereh; Azmi, Amir

    2017-01-01

    Objectives: This study sought to compare enamel cracks after orthodontic bracket debonding in the surfaces prepared with erbium, chromium: yttrium-scandium-galliumgarnet (Er,Cr:YSGG) laser and the conventional acid-etching technique. Materials and Methods: This in-vitro experimental study was conducted on 60 sound human premolars extracted for orthodontic purposes. The teeth were randomly divided into two groups (n=30). The teeth in group A were etched with 37% phosphoric acid gel, while the teeth in group B were subjected to Er,Cr:YSGG laser irradiation (gold handpiece, MZ8 tip, 50Hz, 4.5W, 60μs, 80% water and 60% air). Orthodontic brackets were bonded to the enamel surfaces and were then debonded in both groups. The samples were inspected under a stereomicroscope at ×38 magnification to assess the number and length of enamel cracks before bonding and after debonding. Independent-samples t-test was used to compare the frequency of enamel cracks in the two groups. Levene’s test was applied to assess the equality of variances. Results: No significant difference was noted in the frequency or length of enamel cracks between the two groups after debonding (P>0.05). Conclusions: Despite the same results of the frequency and length of enamel cracks in the two groups and by considering the side effects of acid-etching (demineralization and formation of white spot lesions), Er,Cr:YSGG laser may be used as an alternative to acid-etching for enamel surface preparation prior to bracket bonding. PMID:29296111

  17. A reversible fluorescent probe based on C[double bond, length as m-dash]N isomerization for the selective detection of formaldehyde in living cells and in vivo.

    PubMed

    Song, Xinyu; Han, Xiaoyue; Yu, Fabiao; Zhang, Jinjin; Chen, Lingxin; Lv, Changjun

    2018-01-15

    Formaldehyde (FA) is an endogenously produced reactive carbonyl species (RCS) through biological metabolic processes whose concentration is closely related to human health and disease. Noninvasive and real-time detection of FA concentration in organisms is very important for revealing the physiological and pathological functions of FA. Herein, we design and synthesize a reversible fluorescent probe BOD-NH 2 for the detection of FA in living cells and in vivo. The probe is composed of two moieties: the BODIPY fluorophore and the primary amino group response unit. The probe undergoes an intracellular aldimine condensation reaction with FA and forms imine (C[double bond, length as m-dash]N) which will result in C[double bond, length as m-dash]N isomerization and rotation to turn-off the fluorescence of the probe. It is important that the probe can show a reversible response to FA. The probe BOD-NH 2 has been successfully applied for detecting and imaging FA in the cytoplasm of living cells. BOD-NH 2 is capable of detecting fluctuations in the levels of endogenous and exogenous FA in different types of living cells. The probe can be used to visualize the FA concentration in fresh hippocampus and the probe can further qualitatively evaluate the FA concentrations in ex vivo-dissected organs. Moreover, BOD-NH 2 can also be used for imaging in mice. The above applications make our new probe a potential chemical tool for the study of physiological and pathological functions of FA in cells and in vivo.

  18. Magnesium isotope fractionation between brucite [Mg(OH)2] and Mg aqueous species: Implications for silicate weathering and biogeochemical processes

    NASA Astrophysics Data System (ADS)

    Li, Weiqiang; Beard, Brian L.; Li, Chengxiang; Johnson, Clark M.

    2014-05-01

    Brucite, with its octahedral structure, has a lattice configuration that is similar to the Mg-bearing octahedral layers in phyllosilicates. Understanding stable Mg isotope fractionation between brucite and aqueous solution therefore bears on interpretation of Mg isotope data in natural weathering systems. In this study, we experimentally determined Mg isotope fractionation between brucite and two Mg aqueous species, the free Mg aquo ion ([Mg(OH2)6]2+) and EDTA-bonded Mg (Mg-EDTA2-). Results from recrystallization and brucite synthesis experiments suggest mild preferential partitioning of light Mg isotopes into brucite compared to Mg aquo ions at low temperatures, where measured ΔMgbrucite-Mg26 fractionation increased from ca. -0.3‰ at 7 °C, to ca. -0.2‰ at 22 °C, to ca. 0‰ at 40 °C. MgO hydrolysis experiments in EDTA-bearing solutions suggest that the ΔMgbrucite-Mg-EDTA26 fractionation is ⩾+2.0‰ at 22 °C, indicating that light Mg isotopes strongly partition into Mg-EDTA complex relative to brucite, as well as relative to Mg aquo ions. Magnesium atoms in brucite, Mg aquo ions, and Mg-EDTA complexes are all octahedrally coordinated, and the measured Mg isotope fractionations correlate with average bond lengths for Mg. Aqueous Mg ions have the shortest bond length among the three phases, and enrich heavy Mg isotopes relative to brucite and Mg-EDTA. In contrast, Mg-EDTA has the longest average bond length for Mg, and enriches light Mg isotopes relative to Mg aquo ions and brucite; the relatively long Mg-EDTA bond suggests that organically bound Mg may commonly have low 26Mg/24Mg ratios, which may explain proposed "vital" effects for stable Mg isotopes. Such relations between bond length and Mg isotope fractionation could be extended to other phyllosilicates such as serpentine- and clay-group minerals where Mg is also octahedrally coordinated.

  19. Charging and geometric effects on conduction through Anthracene molecular junctions

    NASA Astrophysics Data System (ADS)

    Kaur, Rupan Preet; Sawhney, Ravinder Singh; Engles, Derick

    We studied the geometric effects on the charge transfer through the anthracenedithiol (ADT) molecular junction using density functional theory combined with the non-equilibrium Green’s function approach. Two major geometric aspects, bond length and bond angle, were moderated to optimize the electrical conduction. From the results established in this paper, we found that the electrical conduction can be tuned from 0.2 G0 to 0.9 G0 by varying the Au-S bond length, whereas the moderation of bonding angle assayed a minor change from 0.37 G0 to 0.47 G0. We attributed this escalating zero bias conductance to the increasing charge on the terminal sulfur atom of the ADT molecule, which increased the energy of the HOMO orbital towards Fermi level and exhibited a semi-metallic behaviour. Therefore, geometry plays a critical role in deciding the charge transport through the metal/molecule interface.

  20. Nanoscopic length scale dependence of hydrogen bonded molecular associates’ dynamics in methanol

    PubMed Central

    Bertrand, C. E.; Self, J. L.; Copley, J. R. D.; Faraone, A.

    2017-01-01

    In a recent paper [C. E. Bertrand et al., J. Chem. Phys. 145, 014502 (2016)], we have shown that the collective dynamics of methanol shows a fast relaxation process related to the standard density-fluctuation heat mode and a slow non-Fickian mode originating from the hydrogen bonded molecular associates. Here we report on the length scale dependence of this slow relaxation process. Using quasielastic neutron scattering and molecular dynamics simulations, we show that the dynamics of the slow process is affected by the structuring of the associates, which is accessible through polarized neutron diffraction experiments. Using a series of partially deuterated samples, the dynamics of the associates is investigated and is found to have a similar time scale to the lifetime of hydrogen bonding in the system. Both the structural relaxation and the dynamics of the associates are thermally activated by the breaking of hydrogen bonding. PMID:28527447

  1. Molecular dynamics study of the encapsulation capability of a PCL-PEO based block copolymer for hydrophobic drugs with different spatial distributions of hydrogen bond donors and acceptors.

    PubMed

    Patel, Sarthak K; Lavasanifar, Afsaneh; Choi, Phillip

    2010-03-01

    Molecular dynamics simulation was used to study the potential of using a block copolymer containing three poly(epsilon-caprolactone) (PCL) blocks of equal length connected to one end of a poly(ethylene oxide) (PEO) block, designated as PEO-b-3PCL, to encapsulate two classes of hydrophobic drugs with distinctively different molecular structures. In particular, the first class of drugs consisted of two cucurbitacin drugs (CuB and CuI) that contain multiple hydrogen bond donors and acceptors evenly distributed on their molecules while the other class of drugs (fenofibrate and nimodipine) contain essentially only clustered hydrogen bond acceptors. In the case of cucurbitacin drugs, the results showed that PEO-b-3PCL lowered the Flory-Huggins interaction parameters (chi) considerably (i.e., increased the drug solubility) compared to the linear di-block copolymer PEO-b-PCL with the same PCL/PEO (w/w) ratio of 1.0. However, the opposite effect was observed for fenofibrate and nimodipine. Analysis of the intermolecular interactions indicates that the number of hydrogen bonds formed between the three PCL blocks and cucurbitacin drugs is significantly higher than that of the linear di-block copolymer. On the other hand, owing to the absence of hydrogen bond donors and the clustering of the hydrogen bond acceptors on the fenofibrate and nimodipine molecules, this significantly reduces the number of hydrogen bonds formed in the multi-PCL block environment, leading to unfavourable chi values. The findings of the present work suggest that multi-hydrophobic block architecture could potentially increase the drug loading for hydrophobic drugs with structures containing evenly distributed multiple hydrogen bond donors and acceptors. (c) 2009 Elsevier Ltd. All rights reserved.

  2. Tooth surface treatment strategies for adhesive cementation

    PubMed Central

    2017-01-01

    PURPOSE The aim of this study was to evaluate the effect of tooth surface pre-treatment steps on shear bond strength, which is essential for understanding the adhesive cementation process. MATERIALS AND METHODS Shear bond strengths of different cements with various tooth surface treatments (none, etching, priming, or etching and priming) on enamel and dentin of human teeth were measured using the Swiss shear test design. Three adhesives (Permaflo DC, Panavia F 2.0, and Panavia V5) and one self-adhesive cement (Panavia SA plus) were included in this study. The interface of the cement and the tooth surface with the different pre-treatments was analyzed using SEM. pH values of the cements and primers were measured. RESULTS The highest bond strength values for all cements were achieved with etching and primer on enamel (25.6 ± 5.3 - 32.3 ± 10.4 MPa). On dentin, etching and priming produced the highest bond strength values for all cements (8.6 ± 2.9 - 11.7 ± 3.5 MPa) except for Panavia V5, which achieved significantly higher bond strengths when pre-treated with primer only (15.3 ± 4.1 MPa). Shear bond strength values were correlated with the micro-retentive surface topography of enamel and the tag length on dentin except for Panavia V5, which revealed the highest bond strength with primer application only without etching, resulting in short but sturdy tags. CONCLUSION The highest bond strength can be achieved for Panavia F 2.0, Permaflo DC, and Panavia SA plus when the tooth substrate is previously etched and the respective primer is applied. The new cement Panavia V5 displayed low technique-sensitivity and attained significantly higher adhesion of all tested cements to dentin when only primer was applied. PMID:28435616

  3. Miniature Rocket Motor for Aircraft Stall/Spin Recovery

    NASA Technical Reports Server (NTRS)

    Lucy, M. H.

    1985-01-01

    Design accommodates different thrust levels and burn times with minimum weight. Different thrust levels achieved by substituting other propellants of different diameter and burn-rate characteristics. Different burn times achieved by simply changing length of grain/tube assembly. Grain bond material also acts as insulator for fiberglass tube. Rocket motor attached to aircraft model and ignited from radio-controlled 4.8-volt power source. Device provides more than twice energy available in previous designs at only 60 percent of weight. Rocket motor used to identify energy requirements for aircraft stall/spin recovery positive propulsion system.

  4. Structural differences between single crystal and polycrystalline UBe 13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volz, Heather Michelle; Vogel, Sven C.; Smith, Alice Iulia

    Here, we report on observations of structural and chemical differences between samples of UBe 13 that were synthesised using two different methods. Unexplained discrepancies in properties between samples with differing synthesis had previously been found in this heavy fermion superconductor. A polycrystalline UBe13 sample was made by arc-melting the constituents. Single crystals were grown using an aluminium flux and had a consistently slightly larger lattice parameter than the polycrystals, which merited further study. Neutron diffraction data were collected at the Lujan Center at LANSCE on the HIPPO diffractometer. Aluminium was detected by inductively coupled plasma mass spectrometry (ICP-MS) in themore » flux-grown single crystal (0.803 wt%), and small amounts (~0.2 wt%) of thorium were detected in the UBe 13 polycrystalline sample. In order to probe the implications of the presence of Al, calculations by spin-polarised DFT-GGA+U show that the incorporation of Al onto the 96i site (the lowest symmetry site in the structure) is energetically more favourable than on other sites. In general, the trends calculated by DFT for bond lengths and lattice parameter increases are consistent with bond lengths experimentally observed by neutron diffraction, but specific percentage changes with aluminium incorporation may be obscured by the unexpected thorium in the polycrystalline sample. The aggregate of our initial observations suggests that incorporation of aluminium from the flux into single crystal UBe 13 is significant.« less

  5. Structural differences between single crystal and polycrystalline UBe 13

    DOE PAGES

    Volz, Heather Michelle; Vogel, Sven C.; Smith, Alice Iulia; ...

    2018-05-16

    Here, we report on observations of structural and chemical differences between samples of UBe 13 that were synthesised using two different methods. Unexplained discrepancies in properties between samples with differing synthesis had previously been found in this heavy fermion superconductor. A polycrystalline UBe13 sample was made by arc-melting the constituents. Single crystals were grown using an aluminium flux and had a consistently slightly larger lattice parameter than the polycrystals, which merited further study. Neutron diffraction data were collected at the Lujan Center at LANSCE on the HIPPO diffractometer. Aluminium was detected by inductively coupled plasma mass spectrometry (ICP-MS) in themore » flux-grown single crystal (0.803 wt%), and small amounts (~0.2 wt%) of thorium were detected in the UBe 13 polycrystalline sample. In order to probe the implications of the presence of Al, calculations by spin-polarised DFT-GGA+U show that the incorporation of Al onto the 96i site (the lowest symmetry site in the structure) is energetically more favourable than on other sites. In general, the trends calculated by DFT for bond lengths and lattice parameter increases are consistent with bond lengths experimentally observed by neutron diffraction, but specific percentage changes with aluminium incorporation may be obscured by the unexpected thorium in the polycrystalline sample. The aggregate of our initial observations suggests that incorporation of aluminium from the flux into single crystal UBe 13 is significant.« less

  6. Quantitative assessment of intermolecular interactions by atomic force microscopy imaging using copper oxide tips

    NASA Astrophysics Data System (ADS)

    Mönig, Harry; Amirjalayer, Saeed; Timmer, Alexander; Hu, Zhixin; Liu, Lacheng; Díaz Arado, Oscar; Cnudde, Marvin; Strassert, Cristian Alejandro; Ji, Wei; Rohlfing, Michael; Fuchs, Harald

    2018-05-01

    Atomic force microscopy is an impressive tool with which to directly resolve the bonding structure of organic compounds1-5. The methodology usually involves chemical passivation of the probe-tip termination by attaching single molecules or atoms such as CO or Xe (refs 1,6-9). However, these probe particles are only weakly connected to the metallic apex, which results in considerable dynamic deflection. This probe particle deflection leads to pronounced image distortions, systematic overestimation of bond lengths, and in some cases even spurious bond-like contrast features, thus inhibiting reliable data interpretation8-12. Recently, an alternative approach to tip passivation has been used in which slightly indenting a tip into oxidized copper substrates and subsequent contrast analysis allows for the verification of an oxygen-terminated Cu tip13-15. Here we show that, due to the covalently bound configuration of the terminal oxygen atom, this copper oxide tip (CuOx tip) has a high structural stability, allowing not only a quantitative determination of individual bond lengths and access to bond order effects, but also reliable intermolecular bond characterization. In particular, by removing the previous limitations of flexible probe particles, we are able to provide conclusive experimental evidence for an unusual intermolecular N-Au-N three-centre bond. Furthermore, we demonstrate that CuOx tips allow the characterization of the strength and configuration of individual hydrogen bonds within a molecular assembly.

  7. Length-dependence of intramolecular electron transfer in σ-bonded rigid molecular rods: an ab initio molecular orbital study

    NASA Astrophysics Data System (ADS)

    Pati, Ranjit; Karna, Shashi P.

    2002-01-01

    The dependence of electron transfer (ET) coupling element, VAB, on the length of rigid-rod-like systems consisting of bicyclo[1.1.1]pentane (BCP), cubane (CUB), and bicyclo[2.2.2]octane (BCO) monomers, has been investigated with the use of ab initio Hartree-Fock (HF) method employing Marcus-Hush two-state (TS) model. The value of VAB decreases exponentially with increase in the number of the cage units of the σ-bonded molecules. The calculated decay constant, β, shows good agreement with previously reported data. For molecular length⩾15 Å, the value of VAB becomes negligibly small, suggesting complete suppression of the through bond direct tunneling contribution to ET process.

  8. Crystal structure of cis-aqua­chlorido­bis­(1,10-phenanthroline-κ2 N,N′)chromium(III) tetra­chlorido­zincate monohydrate from synchrotron data

    PubMed Central

    Moon, Dohyun; Choi, Jong-Ha

    2015-01-01

    The structure of the title compound, [CrCl(C12H8N2)2(H2O)][ZnCl4]·H2O, has been determined from synchrotron data. The CrIII ion is bonded to four N atoms from two 1,10-phenanthroline (phen) ligands, one water mol­ecule and a Cl atom in a cis arrangement, displaying an overall distorted octa­hedral coordination environment. The Cr—N(phen) bond lengths are in the range of 2.0495 (18) to 2.0831 (18) Å, while the Cr—Cl and Cr—(OH2) bond lengths are 2.2734 (7) and 1.9986 (17) Å, respectively. The tetra­hedral [ZnCl4]2− anion is slightly distorted owing to its involvement in O—H⋯Cl hydrogen bonding with coordinating and non-coordinating water mol­ecules. The two types of water mol­ecules also inter­act through O—H⋯O hydrogen bonds. The observed hydrogen-bonding pattern leads to the formation of a three-dimensional network structure. PMID:25844190

  9. Effect of synthesis methods with different annealing temperatures on micro structure, cations distribution and magnetic properties of nano-nickel ferrite

    NASA Astrophysics Data System (ADS)

    El-Sayed, Karimat; Mohamed, Mohamed Bakr; Hamdy, Sh.; Ata-Allah, S. S.

    2017-02-01

    Nano-crystalline NiFe2O4 was synthesized by citrate and sol-gel methods at different annealing temperatures and the results were compared with a bulk sample prepared by ceramic method. The effect of methods of preparation and different annealing temperatures on the crystallize size, strain, bond lengths, bond angles, cations distribution and degree of inversions were investigated by X-ray powder diffraction, high resolution transmission electron microscope, Mössbauer effect spectrometer and vibrating sample magnetometer. The cations distributions were determined at both octahedral and tetrahedral sites using both Mössbauer effect spectroscopy and a modified Bertaut method using Rietveld method. The Mössbauer effect spectra showed a regular decrease in the hyperfine field with decreasing particle size. Saturation magnetization and coercivity are found to be affected by the particle size and the cations distribution.

  10. Backbone conformation affects duplex initiation and duplex propagation in hybridisation of synthetic H-bonding oligomers.

    PubMed

    Iadevaia, Giulia; Núñez-Villanueva, Diego; Stross, Alexander E; Hunter, Christopher A

    2018-06-06

    Synthetic oligomers equipped with complementary H-bond donor and acceptor side chains form multiply H-bonded duplexes in organic solvents. Comparison of the duplex forming properties of four families of oligomers with different backbones shows that formation of an extended duplex with three or four inter-strand H-bonds is more challenging than formation of complexes that make only two H-bonds. The stabilities of 1 : 1 complexes formed between length complementary homo-oligomers equipped with either phosphine oxide or phenol recognition modules were measured in toluene. When the backbone is very flexible (pentane-1,5-diyl thioether), the stability increases uniformly by an order of magnitude for each additional base-pair added to the duplex: the effective molarities for formation of the first intramolecular H-bond (duplex initiation) and subsequent intramolecular H-bonds (duplex propagation) are similar. This flexible system is compared with three more rigid backbones that are isomeric combinations of an aromatic ring and methylene groups. One of the rigid systems behaves in exactly the same way as the flexible backbone, but the other two do not. For these systems, the effective molarity for formation of the first intramolecular H-bond is the same as that found for the other two backbones, but additional H-bonds are not formed between the longer oligomers. The effective molarities are too low for duplex propagation in these systems, because the oligomer backbones cannot adopt conformations compatible with formation of an extended duplex.

  11. A novel disulfide bond in the SH2 Domain of the C-terminal Src kinase controls catalytic activity.

    PubMed

    Mills, Jamie E; Whitford, Paul C; Shaffer, Jennifer; Onuchic, Jose N; Adams, Joseph A; Jennings, Patricia A

    2007-02-02

    The SH2 domain of the C-terminal Src kinase [Csk] contains a unique disulfide bond that is not present in other known SH2 domains. To investigate whether this unusual disulfide bond serves a novel function, the effects of disulfide bond formation on catalytic activity of the full-length protein and on the structure of the SH2 domain were investigated. The kinase activity of full-length Csk decreases by an order of magnitude upon formation of the disulfide bond in the distal SH2 domain. NMR spectra of the fully oxidized and fully reduced SH2 domains exhibit similar chemical shift patterns and are indicative of similar, well-defined tertiary structures. The solvent-accessible disulfide bond in the isolated SH2 domain is highly stable and far from the small lobe of the kinase domain. However, reduction of this bond results in chemical shift changes of resonances that map to a cluster of residues that extend from the disulfide bond across the molecule to a surface that is in direct contact with the small lobe of the kinase domain in the intact molecule. Normal mode analyses and molecular dynamics calculations suggest that disulfide bond formation has large effects on residues within the kinase domain, most notably within the active-site cleft. Overall, the data indicate that reversible cross-linking of two cysteine residues in the SH2 domain greatly impacts catalytic function and interdomain communication in Csk.

  12. A theoretical study of hydrogen complexes of the XH-pi type between propyne and HF, HCL or HCN.

    PubMed

    Tavares, Alessandra M; da Silva, Washington L V; Lopes, Kelson C; Ventura, Elizete; Araújo, Regiane C M U; do Monte, Silmar A; da Silva, João Bosco P; Ramos, Mozart N

    2006-05-15

    The present manuscript reports a systematic investigation of the basis set dependence of some properties of hydrogen-bonded (pi type) complexes formed by propyne and a HX molecule, where X=F, Cl and CN. The calculations have been performed at Hartree-Fock, MP2 and B3LYP levels. Geometries, H-bond energies and vibrational have been considered. The more pronounced effects on the structural parameters of the isolated molecules, as a result of complexation, are verified on RCtriple bondC and HX bond lengths. As compared to double-zeta (6-31G**), triple-zeta (6-311G**) basis set leads to an increase of RCtriple bondC bond distance, at all three computational levels. In the case where diffuse functions are added to both hydrogen and 'heavy' atoms, the effect is more pronounced. The propyne-HX structural parameters are quite similar to the corresponding parameters of acetylene-HX complexes, at all levels. The largest difference is obtained for hydrogen bond distance, RH, with a smaller value for propyne-HX complex, indicating a stronger bond. Concerning the electronic properties, the results yield the following ordering for H-bond energies, DeltaE: propynecdots, three dots, centeredHF>propynecdots, three dots, centeredHCl>propynecdots, three dots, centeredHCN. It is also important to point out that the inclusion of BSSE and zero-point energies (ZPE) corrections cause significant changes on DeltaE. The smaller effect of ZPE is obtained for propynecdots, three dots, centeredHCN at HF/6-311++G** level, while the greatest difference is obtained at MP2/6-31G** level for propynecdots, three dots, centeredHF system. Concerning the IR vibrational it was obtained that larger shift can be associated with stronger hydrogen bonds. The more pronounced effect on the normal modes of the isolated molecule after the complexation is obtained for HX stretching frequency, which is shifted downward.

  13. Non-destructive testing of full-length bonded rock bolts based on HHT signal analysis

    NASA Astrophysics Data System (ADS)

    Shi, Z. M.; Liu, L.; Peng, M.; Liu, C. C.; Tao, F. J.; Liu, C. S.

    2018-04-01

    Full-length bonded rock bolts are commonly used in mining, tunneling and slope engineering because of their simple design and resistance to corrosion. However, the length of a rock bolt and grouting quality do not often meet the required design standards in practice because of the concealment and complexity of bolt construction. Non-destructive testing is preferred when testing a rock bolt's quality because of the convenience, low cost and wide detection range. In this paper, a signal analysis method for the non-destructive sound wave testing of full-length bonded rock bolts is presented, which is based on the Hilbert-Huang transform (HHT). First, we introduce the HHT analysis method to calculate the bolt length and identify defect locations based on sound wave reflection test signals, which includes decomposing the test signal via empirical mode decomposition (EMD), selecting the intrinsic mode functions (IMF) using the Pearson Correlation Index (PCI) and calculating the instantaneous phase and frequency via the Hilbert transform (HT). Second, six model tests are conducted using different grouting defects and bolt protruding lengths to verify the effectiveness of the HHT analysis method. Lastly, the influence of the bolt protruding length on the test signal, identification of multiple reflections from defects, bolt end and protruding end, and mode mixing from EMD are discussed. The HHT analysis method can identify the bolt length and grouting defect locations from signals that contain noise at multiple reflected interfaces. The reflection from the long protruding end creates an irregular test signal with many frequency peaks on the spectrum. The reflections from defects barely change the original signal because they are low energy, which cannot be adequately resolved using existing methods. The HHT analysis method can identify reflections from the long protruding end of the bolt and multiple reflections from grouting defects based on mutations in the instantaneous frequency, which makes weak reflections more noticeable. The mode mixing phenomenon is observed in several tests, but this does not markedly affect the identification results due to the simple medium in bolt tests. The mode mixing can be reduced by ensemble EMD (EEMD) or complete ensemble EMD with adaptive noise (CEEMDAN), which are powerful tools to used analyze the test signal in a complex medium and may play an important role in future studies. The HHT bolt signal analysis method is a self-adaptive and automatic process, which can be programed as analysis software and will make bolt tests more convenient in practice.

  14. Application of the bond valence method in the non-isovalent semiconductor alloy (GaN) 1–x (ZnO) x

    DOE PAGES

    Liu, Jian

    2016-09-29

    This paper studies the bond valence method (BVM) and its application in the non-isovalent semiconductor alloy (GaN) 1-x(ZnO) x. Particular attention is paid to the role of short-range order (SRO). A physical interpretation based on atomic orbital interaction is proposed and examined by density-functional theory (DFT) calculations. Combining BVM with Monte-Carlo simulations and a DFT-based cluster expansion model, bond-length distributions and bond-angle variations are predicted. The correlation between bond valence and bond stiffness is also revealed. Lastly the concept of bond valence is extended into the modelling of an atomistic potential.

  15. Synthesis and photophysical properties of a single bond linked tetracene dimer

    NASA Astrophysics Data System (ADS)

    Sun, Tingting; Shen, Li; Liu, Heyuan; Sun, Xuan; Li, Xiyou

    2016-07-01

    A tetracene dimer linked directly by a single bond has been successfully prepared by using electron withdrawing groups to improve the stability. The molecular structure of this dimer is characterized by 1H NMR, MALDI-TOF mass spectroscopy, and elemental analysis. The minimized molecular structure and X-ray crystallography reveal that the tetracene subunits of this dimer adopt an orthogonal configuration. Its absorption spectrum differs significantly from that of its monomeric counterpart, suggesting the presence of strong interactions between the two tetracene subunits. The excited state of this dimer is delocalized on both two tetracene subunits, which is significantly different from that of orthogonal anthracene dimers, but similar with that observed for orthogonal pentacene dimer. Most of the excited states of this dimer decay by radioactive channels, which is different from the localized twisted charge transfer state (LTCT) channel of anthracene dimers and the singlet fission (SF) channel of pentacene dimers. The results of this research suggest that similar orthogonal configurations caused different propertied for acene dimers with different conjugation length.

  16. Interaction of Benzimidazoles and Benzotriazole: Its Corrosion Protection Properties on Mild Steel in Hydrochloric Acid

    NASA Astrophysics Data System (ADS)

    Ramya, K.; Mohan, Revathi; Joseph, Abraham

    2014-11-01

    Synergistic hydrogen-bonded interaction of alkyl benzimidazoles and 1,2,3-benzotrizole and its corrosion protection properties on mild steel in hydrochloric acid at different temperatures have been studied using polarization, EIS, adsorption, surface studies, and computational methods. The extent of synergistic interaction increases with temperature. Quantum chemical approach is used to calculate some electronic properties of the molecules and to ascertain the synergistic interaction, inhibitive effect, and molecular structures. The corrosion inhibition efficiencies and the global chemical reactivity relate to some parameters, such as total energy, E HOMO, E LUMO, and gap energy (Δ E). 1,2,3-Benzotrizole interacts with benzimidazoles derivatives up to a bond length of approximately 1.99 Å. This interaction represents the formation of a hydrogen bond between the 1,2,3-benzotrizole and benzimidazoles. This synergistic interaction of 1,2,3-benzotrizole and benzimidazole derivatives offers extended inhibition efficiency toward mild steel in hydrochloric acid.

  17. Contribution of Hydrogen Bonds to Paper Strength Properties.

    PubMed

    Przybysz, Piotr; Dubowik, Marcin; Kucner, Marta Anna; Przybysz, Kazimierz; Przybysz Buzała, Kamila

    2016-01-01

    The objective of this work was to investigate the influence of hydrogen bonds between fibres on static and dynamic strength properties of paper. A commercial bleached pinewood kraft pulp was soaked in water, refined in a PFI, and used to form paper webs in different solvents, such as water, methanol, ethanol, n-propanol and n-butanol, to determine the effect of their dipole moment on static and dynamic strength properties of resulting paper sheets. Paper which was formed in water, being the solvent of the highest dipole moment among the tested ones, showed the highest breaking length and tear resistance. When paper webs were formed in n-butanol, which was the least polar among the solvents, these parameters were reduced by around 75%. These results provide evidence of the importance of water in paper web formation and strong impact of hydrogen bonds between fibres on strength properties of paper.

  18. Contribution of Hydrogen Bonds to Paper Strength Properties

    PubMed Central

    Przybysz, Piotr; Dubowik, Marcin; Kucner, Marta Anna; Przybysz, Kazimierz; Przybysz Buzała, Kamila

    2016-01-01

    The objective of this work was to investigate the influence of hydrogen bonds between fibres on static and dynamic strength properties of paper. A commercial bleached pinewood kraft pulp was soaked in water, refined in a PFI, and used to form paper webs in different solvents, such as water, methanol, ethanol, n-propanol and n-butanol, to determine the effect of their dipole moment on static and dynamic strength properties of resulting paper sheets. Paper which was formed in water, being the solvent of the highest dipole moment among the tested ones, showed the highest breaking length and tear resistance. When paper webs were formed in n-butanol, which was the least polar among the solvents, these parameters were reduced by around 75%. These results provide evidence of the importance of water in paper web formation and strong impact of hydrogen bonds between fibres on strength properties of paper. PMID:27228172

  19. Ab Initio Study of Polarizabilities of Oligothiophene, Oligocyclopentadiene and Oligofulvene and their Cyano Substituted Oligomers

    NASA Astrophysics Data System (ADS)

    Lagowski, Jolanta; Ferdous, Sultana

    2005-03-01

    Ab Initio polarizabilities of thiophene, fulvene and cyclopentadiene based conducting oligomers and polymers and their cyano derivatives have been calculated using the Hartree-Fock (HF), configuration interaction (singles) (CIS ) and density functional (DF) theories with 3-21G* basis using Gaussian software. The main motivation of this investigation is to determine the correlation between the excitation energies and polarizabilities for the conjugated systems studied. It has been found that HF and DF approaches give similar magnitudes for polarizabilities whereas CIS theory provides results that are considerably different. All three methods predict similar trends in polarizabilities as a function of oligomer length and bond alternation along the backbone of the oligomers. It has also been observed that the end groups and the number of `double' bonds have a significant effect on the magnitude of polarizability per C-C bond. Comparison with experimental results will be made where possible.

  20. Hydrogen bonding between nitriles and hydrogen halides and the topological properties of molecular charge distributions

    NASA Astrophysics Data System (ADS)

    Boyd, Russell J.; Choi, Sai Cheng

    1986-08-01

    The topological properties of the charge density of the hydrogen-bonded complexes between nitrites and hydrogen chloride correlate linearly with theoretical estimates of the hydrogen-bond energy. At the 6-31G ** level, the hydrogenbond energies range from a low of 10 kJ/mol m NCCN—HC1 to a high of 38 kJ/mol in LiCN—HCl. A linear relationship between the charge density at the hydrogen-bond critical point and the NH internuclear distance of the RCN—HC1 complexes indicates that the generalization of the bond-length-bond-order relationship of CC bonds due to Bader, Tang, Tal and Biegler-König can be extended to intermolecular hydrogen bonding.

  1. Efficacy of ceramic repair material on the bond strength of composite resin to zirconia ceramic.

    PubMed

    Kirmali, Omer; Kapdan, Alper; Harorli, Osman Tolga; Barutcugil, Cagatay; Ozarslan, Mehmet Mustafa

    2015-01-01

    The aim of this study was to evaluate the shear bond strength of composite resin in five different repair systems. Sixty specimens (7 mm in diameter and 3 mm in height) of zirconia ceramic were fabricated. All specimen surfaces were prepared with a 30 µm fine diamond rotary cutting instrument with water irrigation for 10 s and dried with oil-free air. Specimens were then randomly divided into six groups for the following different intra-oral repair systems (n = 10): Group 1, control group; Group 2, Cojet system (3M ESPE, Seefeld, Germany); Group 3, Cimara® System (Voco, Cuxhaven, Germany); Group 4, Z-Prime Plus System (Bisco Inc., Schaumburg, IL); Group 5, Clearfil™ System (Kuraray, Osaka, Japan); and Group 6, Z-Bond System (Danville, CA). After surface conditioning, a composite resin Grandio (Voco, Cuxhaven, Germany) was applied to the zirconia surface using a cylindrical mold (5 mm in diameter and 3 mm in length) and incrementally filled up, according to the manufacturer's instructions of each intra-oral system. Each specimen was subjected to a shear load at a crosshead speed of 1 mm/min until fracture. One-way analysis of variance (ANOVA) and Tukey post-hoc tests were used to analyze the bond strength values. There were significant differences between Groups 2-6 and Group 1. The highest bond strength values were obtained with Group 2 (17.26 ± 3.22) and Group 3 (17.31 ± 3.62), while the lowest values were observed with Group 1 (8.96 ± 1.62) and Group 6 (12.85 ± 3.95). All repair systems tested increased the bond strength values between zirconia and composite resin that used surface grinding with a diamond bur.

  2. Monte Carlo Simulation of Endlinking Oligomers

    NASA Technical Reports Server (NTRS)

    Hinkley, Jeffrey A.; Young, Jennifer A.

    1998-01-01

    This report describes initial efforts to model the endlinking reaction of phenylethynyl-terminated oligomers. Several different molecular weights were simulated using the Bond Fluctuation Monte Carlo technique on a 20 x 20 x 20 unit lattice with periodic boundary conditions. After a monodisperse "melt" was equilibrated, chain ends were linked whenever they came within the allowed bond distance. Ends remained reactive throughout, so that multiple links were permitted. Even under these very liberal crosslinking assumptions, geometrical factors limited the degree of crosslinking. Average crosslink functionalities were 2.3 to 2.6; surprisingly, they did not depend strongly on the chain length. These results agreed well with the degrees of crosslinking inferred from experiment in a cured phenylethynyl-terminated polyimide oligomer.

  3. Tensile Bond Strength of Self Adhesive Resin Cement After Various Surface Treatment of Enamel

    PubMed Central

    Sekhri, Sahil; Garg, Sandeep

    2016-01-01

    Introduction In self adhesive resin cements adhesion is achieved to dental surface without surface pre-treatment, and requires only single step application. This makes the luting procedure less technique-sensitive and decreases postoperative sensitivity. Aim The purpose of this study was to evaluate bond strength of self adhesive resin after surface treatment of enamel for bonding base metal alloy. Materials and Methods On the labial surface of 64 central incisor rectangular base metal block of dimension 6 mm length, 5mm width and 1 mm height was cemented with RelyX U200 and Maxcem Elite self adhesive cements with and without surface treatment of enamel. Surface treatment of enamel was application of etchant, one step bonding agent and both. Tensile bond strength of specimen was measured with universal testing machine at a cross head speed of 1mm/min. Results Least tensile bond strength (MPa) was in control group i.e. 1.33 (0.32) & 1.59 (0.299), Highest bond strength observed when enamel treated with both etchant and bonding agent i.e. 2.72 (0.43) & 2.97 (0.19) for Relyx U200 and Elite cement. When alone etchant and bonding agent were applied alone bond strength is 2.19 (0.18) & 2.24 (0.47) for Relyx U200, and 2.38 (0.27) 2.49 (0.16) for Max-cem elite. Mean bond strength was higher in case of Max-cem Elite as compared to RelyX U200 resin cement, although differences were non–significant (p > 0.05). Conclusion Surface treatment of enamel increases the bond strength of self adhesive resin cement. PMID:26894165

  4. Detailed microscopic unfolding pathways of an α-helix and a β-hairpin: direct observation and molecular dynamics.

    PubMed

    Jas, Gouri S; Hegefeld, Wendy A; Middaugh, C Russell; Johnson, Carey K; Kuczera, Krzysztof

    2014-07-03

    We present a combined experimental and computational study of unfolding pathways of a model 21-residue α-helical heteropeptide (W1H5-21) and a 16-residue β-hairpin (GB41-56). Experimentally, we measured fluorescence energy transfer efficiency as a function of temperature, employing natural tryptophans as donors and dansylated lysines as acceptors. Secondary structural analysis was performed with circular dichroism and Fourier transform infrared spectroscopy. Our studies present markedly different unfolding pathways of the two elementary secondary structural elements. During thermal denaturation, the helical peptide exhibits an initial decrease in length, followed by an increase, while the hairpin undergoes a systematic increase in length. In the complementary computational part of the project, we performed microsecond length replica-exchange molecular dynamics simulations of the peptides in explicit solvent, yielding a detailed microscopic picture of the unfolding processes. For the α-helical peptide, we found a large heterogeneous population of intermediates that are primarily frayed single helices or helix-turn-helix motifs. Unfolding starts at the termini and proceeds through a stable helical region in the interior of the peptide but shifted off-center toward the C-terminus. The simulations explain the experimentally observed non-monotonic variation of helix length with temperature as due primarily to the presence of frayed-end single-helix intermediate structures. For the β-hairpin peptide, our simulations indicate that folding is initiated at the turn, followed by formation of the hairpin in zipper-like fashion, with Cα···Cα contacts propagating from the turn to termini and hairpin hydrogen bonds forming in parallel with these contacts. In the early stages of hairpin formation, the hydrophobic side-chain contacts are only partly populated. Intermediate structures with low numbers of β-hairpin hydrogen bonds have very low populations. This is in accord with the "broken zipper" model of Scheraga. The monotonic increase in length with temperature may be explained by the zipper-like breaking of the hairpin hydrogen bonds and backbone contacts.

  5. Orbital Exponent Optimization in Elementary VB Calculations of the Chemical Bond in the Ground State of Simple Molecular Systems

    ERIC Educational Resources Information Center

    Magnasco, Valerio

    2008-01-01

    Orbital exponent optimization in the elementary ab-initio VB calculation of the ground states of H[subscript 2][superscript +], H[subscript 2], He[subscript 2][superscript +], He[subscript 2] gives a fair description of the exchange-overlap component of the interatomic interaction that is important in the bond region. Correct bond lengths and…

  6. Electro-optical parameters of bond polarizability model for aluminosilicates.

    PubMed

    Smirnov, Konstantin S; Bougeard, Daniel; Tandon, Poonam

    2006-04-06

    Electro-optical parameters (EOPs) of bond polarizability model (BPM) for aluminosilicate structures were derived from quantum-chemical DFT calculations of molecular models. The tensor of molecular polarizability and the derivatives of the tensor with respect to the bond length are well reproduced with the BPM, and the EOPs obtained are in a fair agreement with available experimental data. The parameters derived were found to be transferable to larger molecules. This finding suggests that the procedure used can be applied to systems with partially ionic chemical bonds. The transferability of the parameters to periodic systems was tested in molecular dynamics simulation of the polarized Raman spectra of alpha-quartz. It appeared that the molecular Si-O bond EOPs failed to reproduce the intensity of peaks in the spectra. This limitation is due to large values of the longitudinal components of the bond polarizability and its derivative found in the molecular calculations as compared to those obtained from periodic DFT calculations of crystalline silica polymorphs by Umari et al. (Phys. Rev. B 2001, 63, 094305). It is supposed that the electric field of the solid is responsible for the difference of the parameters. Nevertheless, the EOPs obtained can be used as an initial set of parameters for calculations of polarizability related characteristics of relevant systems in the framework of BPM.

  7. Spectroscopic investigation on cocrystal formation between adenine and fumaric acid based on infrared and Raman techniques

    NASA Astrophysics Data System (ADS)

    Du, Yong; Fang, Hong Xia; Zhang, Qi; Zhang, Hui Li; Hong, Zhi

    2016-01-01

    As an important component of double-stranded DNA, adenine has powerful hydrogen-bond capability, due to rich hydrogen bond donors and acceptors existing within its molecular structure. Therefore, it is easy to form cocrystal between adenine and other small molecules with intermolecular hydrogen-bond effect. In this work, cocrystal of adenine and fumaric acid has been characterized as model system by FT-IR and FT-Raman spectral techniques. The experimental results show that the cocrystal formed between adenine and fumaric acid possesses unique spectroscopical characteristic compared with that of starting materials. Density functional theory (DFT) calculation has been performed to optimize the molecular structures and simulate vibrational modes of adenine, fumaric acid and the corresponding cocrystal. Combining the theoretical and experimental vibrational results, the characteristic bands corresponding to bending and stretching vibrations of amino and carbonyl groups within cocrystal are shifted into lower frequencies upon cocrystal formation, and the corresponding bond lengths show some increase due to the effect of intermolecular hydrogen bonding. Different vibrational modes shown in the experimental spectra have been assigned based on the simulation DFT results. The study could provide experimental and theoretical benchmarks to characterize cocrystal formed between active ingredients and cocrystal formers and also the intermolecular hydrogen-bond effect within cocrystal formation process by vibrational spectroscopic techniques.

  8. The Strength of Hydrogen Bonds between Fluoro-Organics and Alcohols, a Theoretical Study.

    PubMed

    Rosenberg, Robert E

    2018-05-10

    Fluorinated organic compounds are ubiquitous in the pharmaceutical and agricultural industries. To better discern the mode of action of these compounds, it is critical to understand the strengths of hydrogen bonds involving fluorine. There are only a few published examples of the strengths of these bonds. This study provides a high level ab initio study of inter- and intramolecular hydrogen bonds between RF and R'OH, where R and R' are aryl, vinyl, alkyl, and cycloalkyl. Intermolecular binding energies average near 5 kcal/mol, while intramolecular binding energies average about 3 kcal/mol. Inclusion of zero-point energies and applying a counterpoise correction lessen the difference. In both series, modest increases in binding energies are seen with increased acidity of R'OH and increased electron donation of R in RF. In the intramolecular compounds, binding energy increases with the rigidity of the F-(C) n -OH ring. Inclusion of free energy corrections at 298 K results in exoergic binding energies for the intramolecular compounds and endoergic binding energies for the intermolecular compounds. Parameters such as bond lengths, vibrational frequencies, and atomic populations are consistent with formation of a hydrogen bond and with slightly stronger binding in the intermolecular cases over the intramolecular cases. However, these parameters correlated poorly with binding energies.

  9. The effects of chain length, embedded polar groups, pressure, and pore shape on structure and retention in reversed-phase liquid chromatography: molecular-level insights from Monte Carlo simulations.

    PubMed

    Rafferty, Jake L; Siepmann, J Ilja; Schure, Mark R

    2009-03-20

    Particle-based simulations using the configurational-bias and Gibbs ensemble Monte Carlo techniques are carried out to probe the effects of various chromatographic parameters on bonded-phase chain conformation, solvent penetration, and retention in reversed-phase liquid chromatography (RPLC). Specifically, we investigate the effects due to the length of the bonded-phase chains (C(18), C(8), and C(1)), the inclusion of embedded polar groups (amide and ether) near the base of the bonded-phase chains, the column pressure (1, 400, and 1000 atm), and the pore shape (planar slit pore versus cylindrical pore with a 60A diameter). These simulations utilize a bonded-phase coverage of 2.9 micromol/m(2)and a mobile phase containing methanol at a molfraction of 33% (about 50% by volume). The simulations show that chain length, embedded polar groups, and pore shape significantly alter structural and retentive properties of the model RPLC system, whereas the column pressure has a relatively small effect. The simulation results are extensively compared to retention measurements. A molecular view of the RPLC retention mechanism emerges that is more complex than can be inferred from thermodynamic measurements.

  10. Investigation of Electrostatic Charge in Hose Lines

    DTIC Science & Technology

    2006-10-01

    of the system. A INSULATORINSULATOR Ir1 Q Q dH vH A INSULATORINSULATOR Ir2 Q dm dl 2 vm LmLH S1 S2 S3EXTERNAL WIRE BRAID ON HOSE vl 2vm dm Lm dl...sizes of fuel hoses , including hoses with and without integrally bonded grounding wire braid ; (4) Different lengths of hose test sections; (5...Different earth grounding contact conditions along the hose test section, such as: (i) Complete insulation from the ground; (ii) Wire braid conductor along

  11. Sealant Microleakage After Using Nano-Filled Bonding Agents on Saliva-Contaminated Enamel

    PubMed Central

    Paryab, Mehrsa

    2013-01-01

    Objective: The efficacy of correctly applied fissure sealants has been revealed in the prevention of caries. Saliva and moisture contamination of the etched enamel surface before sealant placement can decrease the bonding strength of the sealant to the enamel. The aim of this study was to test the new bonding agents containing nano-fillers in order to reduce the negative effect of saliva contamination on the sealant micro leakage. Materials and Methods: Seventy five sound human premolars were randomly assigned to five equal groups as follows: Group A: etching, sealant; Group B: etching, saliva contamination, sealant; Group C: etching, saliva contamination, Single bond, sealant; Group D: etching, saliva contamination, Adper Single bond 2, sealant; Group E: etching, saliva contamination, N Bond, sealant. The samples were thermo-cycled and immersed in basic fuchsine 0.5% by weight. Then, the teeth were sectioned bucco-lingually and parallel to the long axis into two segments. Finally, the length of dye penetration at the sealant-tooth interface was scored according to a four-point scale. Results: Micro-leakage was higher in group B compared to the other groups, while there were no differences among the evaluated dentin adhesives. Conclusion: The use of nano-filled bonding agents as an intermediate layer between the etched enamel and the sealant can reduce sealant micro-leakage after saliva contamination at the level of the uncontaminated enamel. PMID:25512749

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolotin, B. M., E-mail: bolotin70@yandex.ru; Mikhlina, Ya. A.; Arkhipova, S. A.

    The crystal and molecular structures of two crystal forms (pale yellow form 1 and yellow form 2) of N-[2-(4-oxo-4H-benzo[d][1,3]oxazin-2-yl)phenyl]naphthalene-2-sulfonamide (Orlyum White 520T), which is an organic luminophore with an anomalously high Stokes shift, were determined. Crystal 2 is a solvate with para-xylene. Crystal 1 is a solvent-free form. The molecular geometry in crystal 1 differs from that in 2 only in the orientation of the SO{sub 2}Ar substituent. The bond-length distribution in the planar moiety of the molecule in crystal 1 is virtually identical to that in 2, but the bonds in the NH-SO{sub 2}Ar-bearing benzene ring in crystal 1more » are systematically longer than the corresponding bonds in crystal 2. This fact can be attributed to the crystal-packing effects. In 2 the molecules form stacked dimers with {pi}-stacking interactions between two planar conjugated tricyclic systems. The charge transfer in this system accounts for the intensification of the color of these crystals and the observed difference in the optical properties of 1 and 2.« less

  13. Simulating protein folding initiation sites using an alpha-carbon-only knowledge-based force field

    PubMed Central

    Buck, Patrick M.; Bystroff, Christopher

    2015-01-01

    Protein folding is a hierarchical process where structure forms locally first, then globally. Some short sequence segments initiate folding through strong structural preferences that are independent of their three-dimensional context in proteins. We have constructed a knowledge-based force field in which the energy functions are conditional on local sequence patterns, as expressed in the hidden Markov model for local structure (HMMSTR). Carbon-alpha force field (CALF) builds sequence specific statistical potentials based on database frequencies for α-carbon virtual bond opening and dihedral angles, pairwise contacts and hydrogen bond donor-acceptor pairs, and simulates folding via Brownian dynamics. We introduce hydrogen bond donor and acceptor potentials as α-carbon probability fields that are conditional on the predicted local sequence. Constant temperature simulations were carried out using 27 peptides selected as putative folding initiation sites, each 12 residues in length, representing several different local structure motifs. Each 0.6 μs trajectory was clustered based on structure. Simulation convergence or representativeness was assessed by subdividing trajectories and comparing clusters. For 21 of the 27 sequences, the largest cluster made up more than half of the total trajectory. Of these 21 sequences, 14 had cluster centers that were at most 2.6 Å root mean square deviation (RMSD) from their native structure in the corresponding full-length protein. To assess the adequacy of the energy function on nonlocal interactions, 11 full length native structures were relaxed using Brownian dynamics simulations. Equilibrated structures deviated from their native states but retained their overall topology and compactness. A simple potential that folds proteins locally and stabilizes proteins globally may enable a more realistic understanding of hierarchical folding pathways. PMID:19137613

  14. Effects of Diode Laser Debonding of Ceramic Brackets on Enamel Surface and Pulpal Temperature.

    PubMed

    Yassaei, Soghra; Soleimanian, Azadeh; Nik, Zahra Ebrahimi

    2015-04-01

    Debonding of ceramic brackets due to their high bond strength and low fracture toughness is one of the most challenging complications of orthodontic clinicians. Application of lasers might be effective in the debonding of ceramic brackets as they reduce bond strength of resins and, therefore, can eliminate the risk of enamel damage. However, the thermal effects of laser radiation on dental tissue can cause undesirable results. The aim of this study is to evaluate the enamel surface characteristics and pulpal temperature changes of teeth after debonding of ceramic brackets with or without laser light. Thirty polycrystalline brackets were bonded to 30 intact extracted premolars, and later debonded conventionally or through a diode laser (2.5 W, 980 nm). The laser was applied for 10 seconds with sweeping movement. After debonding, the adhesive remnant index (ARI), the lengths and frequency of enamel cracks were compared among the groups. The increase in intrapulpal temperature was also measured. The collected data were analyzed by Chi-squared test and paired t-test using Statistical Package for Social Sciences (SPSS) software. There was no case of enamel fracture in none of the groups. Laser debonding caused a significant decrease in the frequency and lengths of enamel cracks, compared to conventional debonding. In laser debonding group, the increase in intrapulpal temperature (1.46°C) was significantly below the benchmark of 5.5°C for all the specimens. No significant difference was observed in ARI scores among the groups. Laser-assisted debonding of ceramic brackets could reduce the risk of enamel damage, without causing thermal damage to the pulp. However, some increases in the length and frequency of enamel cracks should be expected with all debonding methods.

  15. Dependence of short and intermediate-range order on preparation in experimental and modeled pure a-Si

    DOE PAGES

    Holmstrom, Eero; Haberl, Bianca; Pakarinen, Olli H.; ...

    2016-02-20

    Variability in the short-to-intermediate range order of pure amorphous silicon prepared by different experimental and computational techniques is probed by measuring mass density, atomic coordination, bond-angle deviation, and dihedral angle deviation. It is found that there is significant variability in order parameters at these length scales in this archetypal covalently bonded, monoatomic system. This diversity strongly reflects preparation technique and thermal history in both experimental and simulated systems. Experiment and simulation do not fully quantitatively agree, partly due to differences in the way parameters are accessed. However, qualitative agreement in the trends is identified. Relaxed forms of amorphous silicon closelymore » resemble continuous random networks generated by a hybrid method of bond-switching Monte Carlo and molecular dynamics simulation. As-prepared ion implanted amorphous silicon can be adequately modeled using a structure generated from amorphization via ion bombardement using energetic recoils. Preparation methods which narrowly avoid crystallization such as experimental pressure-induced amorphization or simulated melt-quenching result in inhomogeneous structures that contain regions with significant variations in atomic ordering. Ad hoc simulated structures containing small (1 nm) diamond cubic crystal inclusions were found to possess relatively high bond-angle deviations and low dihedral angle deviations, a trend that could not be reconciled with any experimental material.« less

  16. Relationship between x-ray emission and absorption spectroscopy and the local H-bond environment in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhovtobriukh, Iurii; Besley, Nicholas A.; Fransson, Thomas

    Here, the connection between specific features in the water X-ray absorption spectrum and X-ray emission spectrum (XES) and the local H-bond coordination is studied based on structures obtained from path-integral molecular dynamics simulations using either the opt-PBE-vdW density functional or the MB-pol force field. Computing the XES spectrum using all molecules in a snapshot results in only one peak in the lone-pair (1b 1) region, while the experiment shows two peaks separated by 0.8-0.9 eV. Different H-bond configurations were classified based on the local structure index (LSI) and a geometrical H-bond cone criterion. We find that tetrahedrally coordinated molecules characterizedmore » by high LSI values and two strong donated and two strong accepted H-bonds contribute to the low energy 1b 1 emission peak and to the post-edge region in absorption. Molecules with the asymmetric H-bond environment with one strong accepted H-bond and one strong donated H-bond and low LSI values give rise to the high energy 1b 1 peak in the emission spectrum and mainly contribute to the pre-edge and main-edge in the absorption spectrum. The 1b 1 peak splitting can be increased to 0.62 eV by imposing constraints on the H-bond length, i.e., for very tetrahedral structures short H-bonds (less than 2.68 Å) and for very asymmetric structures elongated H-bonds (longer than 2.8 Å). Such structures are present, but underrepresented, in the simulations which give more of an average of the two extremes.« less

  17. Relationship between x-ray emission and absorption spectroscopy and the local H-bond environment in water

    DOE PAGES

    Zhovtobriukh, Iurii; Besley, Nicholas A.; Fransson, Thomas; ...

    2018-04-14

    Here, the connection between specific features in the water X-ray absorption spectrum and X-ray emission spectrum (XES) and the local H-bond coordination is studied based on structures obtained from path-integral molecular dynamics simulations using either the opt-PBE-vdW density functional or the MB-pol force field. Computing the XES spectrum using all molecules in a snapshot results in only one peak in the lone-pair (1b 1) region, while the experiment shows two peaks separated by 0.8-0.9 eV. Different H-bond configurations were classified based on the local structure index (LSI) and a geometrical H-bond cone criterion. We find that tetrahedrally coordinated molecules characterizedmore » by high LSI values and two strong donated and two strong accepted H-bonds contribute to the low energy 1b 1 emission peak and to the post-edge region in absorption. Molecules with the asymmetric H-bond environment with one strong accepted H-bond and one strong donated H-bond and low LSI values give rise to the high energy 1b 1 peak in the emission spectrum and mainly contribute to the pre-edge and main-edge in the absorption spectrum. The 1b 1 peak splitting can be increased to 0.62 eV by imposing constraints on the H-bond length, i.e., for very tetrahedral structures short H-bonds (less than 2.68 Å) and for very asymmetric structures elongated H-bonds (longer than 2.8 Å). Such structures are present, but underrepresented, in the simulations which give more of an average of the two extremes.« less

  18. Programmable Assembly of Peptide Amphiphile via Noncovalent-to-Covalent Bond Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, Kohei; Ji, Wei; Palmer, Liam C.

    Controlling the number of monomers in a supramolecular polymer has been a great challenge in programmable self-assembly of organic molecules. One approach has been to make use of frustrated growth of the supramolecular assembly by tuning the balance of attractive and repulsive intermolecular forces. We report here on the use of covalent bond formation among monomers, compensating for intermolecular electrostatic repulsion, as a mechanism to control the length of a supramolecular nanofiber formed by self-assembly of peptide amphiphiles. Circular dichroism spectroscopy in combination with dynamic light scattering, size-exclusion chromatography, and transmittance electron microscope analyses revealed that hydrogen bonds between peptidesmore » were reinforced by covalent bond formation, enabling the fiber elongation. To examine these materials for their potential biomedical applications, cytotoxicity of nanofibers against C2C12 premyoblast cells was tested. We demonstrated that cell viability increased with an increase in fiber length, presumably because of the suppressed disruption of cell membranes by the fiber end-caps.« less

  19. Crystal structure of 2-bromo-3-di­methyl­amino-N,N,N′,N′,4-penta­methyl-4-(tri­methyl­sil­yloxy)pent-2-eneamidinium bromide

    PubMed Central

    Tiritiris, Ioannis; Kress, Ralf; Kantlehner, Willi

    2015-01-01

    The reaction of the ortho­amide 1,1,1-tris­(di­methyl­amino)-4-methyl-4-(tri­methyl­sil­yloxy)pent-2-yne with bromine in benzene, yields the title salt, C15H33BrN3OSi+·Br−. The C—N bond lengths in the amidinium unit are 1.319 (6) and 1.333 (6) Å, indicating double-bond character, pointing towards charge delocalization within the NCN plane. The C—Br bond length of 1.926 (5) Å is characteristic for a C—Br single bond. Additionally, there is a bromine–bromine inter­action [3.229 (3) Å] present involving the anion and cation. In the crystal, weak C—H⋯Br inter­actions between the methyl H atoms of the cation and the bromide ions are present. PMID:26870498

  20. Programmable Assembly of Peptide Amphiphile via Noncovalent-to-Covalent Bond Conversion

    DOE PAGES

    Sato, Kohei; Ji, Wei; Palmer, Liam C.; ...

    2017-06-22

    Controlling the number of monomers in a supramolecular polymer has been a great challenge in programmable self-assembly of organic molecules. One approach has been to make use of frustrated growth of the supramolecular assembly by tuning the balance of attractive and repulsive intermolecular forces. We report here on the use of covalent bond formation among monomers, compensating for intermolecular electrostatic repulsion, as a mechanism to control the length of a supramolecular nanofiber formed by self-assembly of peptide amphiphiles. Circular dichroism spectroscopy in combination with dynamic light scattering, size-exclusion chromatography, and transmittance electron microscope analyses revealed that hydrogen bonds between peptidesmore » were reinforced by covalent bond formation, enabling the fiber elongation. To examine these materials for their potential biomedical applications, cytotoxicity of nanofibers against C2C12 premyoblast cells was tested. We demonstrated that cell viability increased with an increase in fiber length, presumably because of the suppressed disruption of cell membranes by the fiber end-caps.« less

  1. Spectroscopic and theoretical investigations of alkali metal linoleates and oleinates

    NASA Astrophysics Data System (ADS)

    Świsłocka, Renata; Regulska, Ewa; Jarońko, Paweł; Lewandowski, Włodzimierz

    2017-11-01

    The influence of lithium, sodium, potassium, rubidium and cesium on the electronic system of the linoleic (cis-9,cis-12-octadecadienoic) and oleic (cis-9-octadecenoic) acids was investigated. The complementary analytical methods: vibrational (IR, Raman) and electronic (UV) molecular absorption spectroscopy as well as DFT quantum mechanical calculations (charge distribution, angles between bonds, bond lengths, theoretical IR and NMR spectra) were carried out. The regular shifts of bands connected with carboxylate anion in the spectra of studied salts were observed. Some bonds and angles reduced or elongated in the series: acid→Li→Na→K linoleates/oleinates. The highest changes were noted for bond lengths and angles concerning COO- ion. The electronic charge distribution in studied molecules was also discussed. Total atomic charges of carboxylate anion decrease as a result of the replacement of hydrogen atom with alkali metal cation. The increasing values of dipole moment and decreasing values of total energy in the order: linoleic/oleic acid→lithium→sodium→potassium linoleates/oleinates indicate an increase in stability of the compounds.

  2. Real-space identification of intermolecular bonding with atomic force microscopy.

    PubMed

    Zhang, Jun; Chen, Pengcheng; Yuan, Bingkai; Ji, Wei; Cheng, Zhihai; Qiu, Xiaohui

    2013-11-01

    We report a real-space visualization of the formation of hydrogen bonding in 8-hydroxyquinoline (8-hq) molecular assemblies on a Cu(111) substrate, using noncontact atomic force microscopy (NC-AFM). The atomically resolved molecular structures enable a precise determination of the characteristics of hydrogen bonding networks, including the bonding sites, orientations, and lengths. The observation of bond contrast was interpreted by ab initio density functional calculations, which indicated the electron density contribution from the hybridized electronic state of the hydrogen bond. Intermolecular coordination between the dehydrogenated 8-hq and Cu adatoms was also revealed by the submolecular resolution AFM characterization. The direct identification of local bonding configurations by NC-AFM would facilitate detailed investigations of intermolecular interactions in complex molecules with multiple active sites.

  3. Reaction of the thermo-labile triazenide Na[tBu3SiNNNSiMe3] with CO2: formation of the imido carbonate (tBu3SiO)(Me3SiO)C[double bond, length as m-dash]N-SitBu3 and carbamine acid (tBu3SiO)CONH2.

    PubMed

    Lerner, H-W; Bolte, M; Wagner, M

    2017-07-11

    The thermo-labile triazenide Na[tBu 3 SiNNNSiMe 3 ] was prepared by the reaction of Me 3 SiN 3 with Na(thf) 2 [SitBu 3 ] in pentane at -78 °C. Treatment of Na[tBu 3 SiNNNSiMe 3 ] with an excess of carbon dioxide in pentane at -78 °C yielded the imido carbonate (tBu 3 SiO)(Me 3 SiO)C[double bond, length as m-dash]N-SitBu 3 and the carbamine acid (tBu 3 SiO)CONH 2 along with other products. From the reaction solution we could isolate the imido carbonate (tBu 3 SiO)(Me 3 SiO)C[double bond, length as m-dash]N-SitBu 3 and carbamine acid (tBu 3 SiO)CONH 2 . At first single crystals of the carbamine acid (tBu 3 SiO)CONH 2 (triclinic, space group P1[combining macron]) were grown from this solution at room temperature. A second crop of crystals were obtained by concentrating the solution. The second charge consisted of the imido carbonate (tBu 3 SiO)(Me 3 SiO)C[double bond, length as m-dash]N-SitBu 3 (monoclinic, space group P2 1 /n).

  4. Molecular basis for genetic resistance of Anopheles gambiae to Plasmodium: structural analysis of TEP1 susceptible and resistant alleles.

    PubMed

    Le, Binh V; Williams, Marni; Logarajah, Shankar; Baxter, Richard H G

    2012-01-01

    Thioester-containing protein 1 (TEP1) is a central component in the innate immune response of Anopheles gambiae to Plasmodium infection. Two classes of TEP1 alleles, TEP1*S and TEP1*R, are found in both laboratory strains and wild isolates, related by a greater or lesser susceptibility, respectively to both P. berghei and P. falciparum infection. We report the crystal structure of the full-length TEP1*S1 allele which, while similar to the previously determined structure of full-length TEP1*R1, displays flexibility in the N-terminal fragment comprising domains MG1-MG6. Amino acid differences between TEP1*R1 and TEP1*S1 are localized to the TED-MG8 domain interface that protects the thioester bond from hydrolysis and structural changes are apparent at this interface. As a consequence cleaved TEP1*S1 (TEP1*S1(cut)) is significantly more susceptible to hydrolysis of its intramolecular thioester bond than TEP1*R1(cut). TEP1*S1(cut) is stabilized in solution by the heterodimeric LRIM1/APL1C complex, which preserves the thioester bond within TEP1*S1(cut). These results suggest a mechanism by which selective pressure on the TEP1 gene results in functional variation that may influence the vector competence of A. gambiae towards Plasmodium infection.

  5. Thermal Strain Analysis of Optic Fiber Sensors

    PubMed Central

    Her, Shiuh-Chuan; Huang, Chih-Ying

    2013-01-01

    An optical fiber sensor surface bonded onto a host structure and subjected to a temperature change is analytically studied in this work. The analysis is developed in order to assess the thermal behavior of an optical fiber sensor designed for measuring the strain in the host structure. For a surface bonded optical fiber sensor, the measuring sensitivity is strongly dependent on the bonding characteristics which include the protective coating, adhesive layer and the bonding length. Thermal stresses can be generated due to a mismatch of thermal expansion coefficients between the optical fiber and host structure. The optical fiber thermal strain induced by the host structure is transferred via the adhesive layer and protective coating. In this investigation, an analytical expression of the thermal strain and stress in the optical fiber is presented. The theoretical predictions are validated using the finite element method. Numerical results show that the thermal strain and stress are linearly dependent on the difference in thermal expansion coefficients between the optical fiber and host structure and independent of the thermal expansion coefficients of the adhesive and coating. PMID:23385407

  6. Performance of quantum Monte Carlo for calculating molecular bond lengths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleland, Deidre M., E-mail: deidre.cleland@csiro.au; Per, Manolo C., E-mail: manolo.per@csiro.au

    2016-03-28

    This work investigates the accuracy of real-space quantum Monte Carlo (QMC) methods for calculating molecular geometries. We present the equilibrium bond lengths of a test set of 30 diatomic molecules calculated using variational Monte Carlo (VMC) and diffusion Monte Carlo (DMC) methods. The effect of different trial wavefunctions is investigated using single determinants constructed from Hartree-Fock (HF) and Density Functional Theory (DFT) orbitals with LDA, PBE, and B3LYP functionals, as well as small multi-configurational self-consistent field (MCSCF) multi-determinant expansions. When compared to experimental geometries, all DMC methods exhibit smaller mean-absolute deviations (MADs) than those given by HF, DFT, and MCSCF.more » The most accurate MAD of 3 ± 2 × 10{sup −3} Å is achieved using DMC with a small multi-determinant expansion. However, the more computationally efficient multi-determinant VMC method has a similar MAD of only 4.0 ± 0.9 × 10{sup −3} Å, suggesting that QMC forces calculated from the relatively simple VMC algorithm may often be sufficient for accurate molecular geometries.« less

  7. Electric Field Effects on the Intermolecular Interactions in Water Whiskers: Insight from Structures, Energetics, and Properties

    DOE PAGES

    Bai, Yang; He, Hui-Min; Li, Ying; ...

    2015-02-19

    Modulation of intermolecular interactions in response to external electric fields could be fundamental to the formation of unusual forms of water, such as water whiskers. However, a detailed understanding of the nature of intermolecular interactions in such systems is lacking. In this study, we present novel theoretical results based on electron correlation calculations regarding the nature of H-bonds in water whiskers, which is revealed by studying their evolution under external electric fields with various field strengths. We find that the water whiskers consisting of 2-7 water molecules all have a chain-length dependent critical electric field. Under the critical electric field,more » the most compact chain structures are obtained, featuring very strong H-bonds, herein referred to as covalent H-bonds. In the case of a water dimer whisker, the bond length of the novel covalent H-bond shortens by 25%, the covalent bond order increases by 9 times, and accordingly the H-bond energy is strengthened by 5 times compared to the normal H-bond in a (H 2O) 2 cluster. Below the critical electric field, it is observed that with increasing field strength, H-bonding orbitals display gradual evolutions in the orbital energy, orbital ordering, and orbital nature (i.e., from typical -style orbital to unusual -style double H-bonding orbital). We also show that beyond the critical electric field, a single water whisker may disintegrate to form a loosely bound zwitterionic chain due to a relay-style proton transfer, whereas two water whiskers may undergo intermolecular cross-linking to form a quasi-two-dimensional water network. In conclusion, these results help shed new insight on the effects of electric fields on water whisker formation.« less

  8. An Experimental Investigation of Silicone-to-Metal Bond Strength in Composite Space Docking System Seals

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Siamidis, John; Larkin, Elizabeth M. G.

    2010-01-01

    The National Aeronautics and Space Administration (NASA) is currently developing a new universal docking mechanism for future space exploration missions called the Low Impact Docking System (LIDS). A candidate LIDS main interface seal design is a composite assembly of silicone elastomer seals vacuum molded into grooves in an electroless nickel plated aluminum retainer. The strength of the silicone-tometal bond is a critical consideration for the new system, especially due to the presence of small areas of disbond created during the molding process. In the work presented herein, seal-to-retainer bonds of subscale seal specimens with different sizes of intentional disbond were destructively tensile tested. Nominal specimens without intentional disbonds were also tested. Tension was applied either uniformly on the entire seal circumference or locally in one short circumferential length. Bond failure due to uniform tension produced a wide scatter of observable failure modes and measured load-displacement behaviors. Although the preferable failure mode for the seal-to-retainer bond is cohesive failure of the elastomer material, the dominant observed failure mode under the uniform loading condition was found to be the less desirable adhesive failure of the bond in question. The uniform tension case results did not show a correlation between disbond size and bond strength. Localized tension was found to produce failure either as immediate tearing of the elastomer material outside the bond region or as complete peel-out of the seal in one piece. The obtained results represent a valuable benchmark for comparison in the future between adhesion loads under various separation conditions and composite seal bond strength.

  9. Dynamics in entangled polyethylene melts using coarse-grained models

    NASA Astrophysics Data System (ADS)

    Peters, Brandon L.; Grest, Gary S.; Salerno, K. Michael; Agrawal, Anupriya; Perahia, Dvora

    Polymer dynamics creates distinctive viscoelastic behavior as a result of a coupled interplay of motion on multiple length scales. Capturing the broad time and length scales of polymeric motion however, remains a challenge. Using polyethylene (PE) as a model system, we probe the effects of the degree of coarse graining on polymer dynamics. Coarse-grained (CG) potentials are derived using iterative Boltzmann inversion (iBi) with 2-6 methyl groups per CG bead from all fully atomistic melt simulations for short chains. While the iBi methods produces non-bonded potentials which give excellent agreement for the atomistic and CG pair correlation functions, the pressure P = 100-500MPa for the CG model. Correcting for potential so P 0 leads to non-bonded models with slightly smaller effective diameter and much deeper minimum. However, both the pressure and non-pressure corrected CG models give similar results for mean squared displacement (MSD) and the stress auto correlation function G(t) for PE melts above the melting point. The time rescaling factor between CG and atomistic models is found to be nearly the same for both CG models. Transferability of potential for different temperatures was tested by comparing the MSD and G(t) for potentials generated at different temperatures.

  10. Advanced Statistical Analyses to Reduce Inconsistency of Bond Strength Data.

    PubMed

    Minamino, T; Mine, A; Shintani, A; Higashi, M; Kawaguchi-Uemura, A; Kabetani, T; Hagino, R; Imai, D; Tajiri, Y; Matsumoto, M; Yatani, H

    2017-11-01

    This study was designed to clarify the interrelationship of factors that affect the value of microtensile bond strength (µTBS), focusing on nondestructive testing by which information of the specimens can be stored and quantified. µTBS test specimens were prepared from 10 noncarious human molars. Six factors of µTBS test specimens were evaluated: presence of voids at the interface, X-ray absorption coefficient of resin, X-ray absorption coefficient of dentin, length of dentin part, size of adhesion area, and individual differences of teeth. All specimens were observed nondestructively by optical coherence tomography and micro-computed tomography before µTBS testing. After µTBS testing, the effect of these factors on µTBS data was analyzed by the general linear model, linear mixed effects regression model, and nonlinear regression model with 95% confidence intervals. By the general linear model, a significant difference in individual differences of teeth was observed ( P < 0.001). A significantly positive correlation was shown between µTBS and length of dentin part ( P < 0.001); however, there was no significant nonlinearity ( P = 0.157). Moreover, a significantly negative correlation was observed between µTBS and size of adhesion area ( P = 0.001), with significant nonlinearity ( P = 0.014). No correlation was observed between µTBS and X-ray absorption coefficient of resin ( P = 0.147), and there was no significant nonlinearity ( P = 0.089). Additionally, a significantly positive correlation was observed between µTBS and X-ray absorption coefficient of dentin ( P = 0.022), with significant nonlinearity ( P = 0.036). A significant difference was also observed between the presence and absence of voids by linear mixed effects regression analysis. Our results showed correlations between various parameters of tooth specimens and µTBS data. To evaluate the performance of the adhesive more precisely, the effect of tooth variability and a method to reduce variation in bond strength values should also be considered.

  11. Efficient Organometallic Spin Filter between Single-Wall Carbon Nanotube or Graphene Electrodes

    NASA Astrophysics Data System (ADS)

    Koleini, Mohammad; Paulsson, Magnus; Brandbyge, Mads

    2007-05-01

    We present a theoretical study of spin transport in a class of molecular systems consisting of an organometallic benzene-vanadium cluster placed in between graphene or single-wall carbon-nanotube-model contacts. Ab initio modeling is performed by combining spin density functional theory and nonequilibrium Green’s function techniques. We consider weak and strong cluster-contact bonds. Depending on the bonding we find from 73% (strong bonds) up to 99% (weak bonds) spin polarization of the electron transmission, and enhanced polarization with increased cluster length.

  12. Enamel colour changes after debonding using various bonding systems.

    PubMed

    Zaher, Abbas R; Abdalla, Essam M; Abdel Motie, Maha A; Rehman, Noman Atiq; Kassem, Hassan; Athanasiou, Athanasios E

    2012-06-01

    To test the possible association between enamel colour alteration and resin tag depth. In vitro laboratory study. Department of Orthodontics, Alexandria University, Egypt. Fifty freshly extracted human premolar teeth were equally divided randomly into a control and four experimental groups. Teeth in group I received only enamel prophylaxis. Teeth in groups II and III were etched with 35% phosphoric acid for 15 and 60 seconds, respectively. Teeth in group IV were conditioned with Prompt L-pop self-etching primer and in group V with Xeno III self-etching primer, according to the manufacturer's instructions. Orthodontic brackets were bonded to the teeth in all experimental groups using Transbond XT composite. Following bracket debonding, finishing and polishing were performed. Enamel colour was evaluated spectrophotometrically at baseline and then after debonding, with the corresponding colour differences ΔE calculated. Resin tags lengths were measured on sectioned teeth in each experimental group under scanning electron microscope. All experimental groups showed clinically perceivable colour change after debonding and finishing as all values were exceeded the clinical colour detection threshold of ΔE = 3.7 units. Significant differences (P<0.05) in resin tag length were found in all experimental groups. Significant moderate correlation was found between colour change and resin tags length when all teeth were combined and tested, irrespective of group. Moderate evidence exists that shorter resin tag penetration produces less change in enamel colour following clean-up and polishing. Self-etch primers produce less resin penetration and these systems may produce less iatrogenic colour change in enamel following orthodontic treatment.

  13. Hydrogen-Bond Driven Loop-Closure Kinetics in Unfolded Polypeptide Chains

    PubMed Central

    Daidone, Isabella; Neuweiler, Hannes; Doose, Sören; Sauer, Markus; Smith, Jeremy C.

    2010-01-01

    Characterization of the length dependence of end-to-end loop-closure kinetics in unfolded polypeptide chains provides an understanding of early steps in protein folding. Here, loop-closure in poly-glycine-serine peptides is investigated by combining single-molecule fluorescence spectroscopy with molecular dynamics simulation. For chains containing more than 10 peptide bonds loop-closing rate constants on the 20–100 nanosecond time range exhibit a power-law length dependence. However, this scaling breaks down for shorter peptides, which exhibit slower kinetics arising from a perturbation induced by the dye reporter system used in the experimental setup. The loop-closure kinetics in the longer peptides is found to be determined by the formation of intra-peptide hydrogen bonds and transient β-sheet structure, that accelerate the search for contacts among residues distant in sequence relative to the case of a polypeptide chain in which hydrogen bonds cannot form. Hydrogen-bond-driven polypeptide-chain collapse in unfolded peptides under physiological conditions found here is not only consistent with hierarchical models of protein folding, that highlights the importance of secondary structure formation early in the folding process, but is also shown to speed up the search for productive folding events. PMID:20098498

  14. Sorption and solubility of ofloxacin and norfloxacin in water-methanol cosolvent.

    PubMed

    Peng, Hongbo; Li, Hao; Wang, Chi; Zhang, Di; Pan, Bo; Xing, Baoshan

    2014-05-01

    Prediction of the properties and behavior of antibiotics is important for their risk assessment and pollution control. Theoretical calculation was incorporated in our experimental study to investigate the sorption of ofloxacin (OFL) and norfloxacin (NOR) on carbon nanotubes and their solubilities in water, methanol, and their mixture. Sorption for OFL and NOR decreased as methanol volume fractions (fc) increased. But the log-linear cosolvency model could not be applied as a general model to describe the cosolvent effect on OFL and NOR sorption. We computed the bond lengths of possible hydrogen bonds between solute and solvent and the corresponding interaction energies using Density Functional Theory. The decreased OFL solubility with increased fc could be attributed to the generally stronger hydrogen bond between OFL and H2O than that between OFL and CH3OH. Solubility of NOR varied nonmonotonically with increasing fc, which may be understood from the stronger hydrogen bond of NOR-CH3OH than NOR-H2O at two important sites (-O18 and -O21). The interaction energies were also calculated for the solute surrounded by solvent molecules at all the possible hydrogen bond sites, but it did not match the solubility variations with fc for both chemicals. The difference between the simulated and real systems was discussed. Similar sorption but different solubility of NOR and OFL from water-methanol cosolvent suggested that sorbate-solvent interaction seems not control their sorption. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Noble gas bond and the behaviour of XeO3 under pressure.

    PubMed

    Hou, Chunju; Wang, Xianlong; Botana, Jorge; Miao, Maosheng

    2017-10-18

    Over the past few decades, the concept of hydrogen bonds, in which hydrogen is electrophilic, has been extended to halogen bonds, chalcogen bonds and pnicogen bonds. Herein, we show that such a non-covalent bonding also exists in noble gas compounds. Using first principles calculations, we illustrate the OXe-O bond in molecular crystal XeO 3 and its effect on the behavior of this compound under pressure. Our calculations show that the covalent Xe-O bond lengths were elongated with increasing pressure and correspondingly the Xe-O stretching vibration frequencies were red shifted, which is similar to the change of H-bonds under pressure. The OXe-O bond and related hopping of O between neighboring Xe sites also correspond to the structural changes in the XeO 3 compounds at about 2 GPa. Our study extends the concept of hydrogen bonding to include all p-block elements and show a new bonding type for Noble gas elements in which it acts as an electrophilic species.

  16. Difference in the stable isotopic fractionations of Ce, Nd, and Sm during adsorption on iron and manganese oxides and its interpretation based on their local structures

    NASA Astrophysics Data System (ADS)

    Nakada, Ryoichi; Tanimizu, Masaharu; Takahashi, Yoshio

    2013-11-01

    Many elements have become targets for studies of stable isotopic fractionation with the development of various analytical techniques. Although several chemical factors that control the isotopic fractionation of heavy elements have been proposed, it remains controversial which properties are most important for the isotopic fractionation of elements. In this study, the stable isotopic fractionation of neodymium (Nd) and samarium (Sm) during adsorption on ferrihydrite and δ-MnO2 was examined. This examination was combined with speciation analyses of these ions adsorbed on the solid phases by extended X-ray absorption fine structure (EXAFS) spectroscopy. Neodymium isotope ratios for Nd on ferrihydrite and δ-MnO2 systems were, on average, 0.166‰ and 0.410‰ heavier than those of the liquid phase, which correspond to mean isotopic fractionation factors between the liquid and solid phases (αLq-So) of Nd on ferrihydrite and δ-MnO2 of 0.999834 (2σ = ±0.000048) and 0.999590 (2σ = ±0.000106), respectively. Similarly, averaged Sm isotope ratios on ferrihydrite and δ-MnO2 were 0.206‰ and 0.424‰ heavier than those of the liquid phase and the corresponding αLq-So values were 0.999794 (±0.000041) and 0.999576 (±0.000134), respectively. These results indicate that the directions of isotopic fractionation in the Nd and Sm systems are in contrast with that recently found for Ce(III) systems despite the similar chemical characteristics of rare earth elements. EXAFS analyses suggest that the bond length of the first coordination sphere (REE-O bond) of Nd and Sm adsorbed on δ-MnO2 is shorter than that of their aqua ions, although this was not clear for the ferrihydrite systems. The shorter bond length relative to the aqua ion is indicative of a stronger bond, suggesting that the equilibrium isotopic fractionation for the Nd and Sm systems can be governed by bond strength as has often been discussed for isotopic fractionation in solid-water adsorption systems. Meanwhile, EXAFS analyses of the Ce/ferrihydrite system showed a distorted structure for the first coordination sphere that was not observed for Ce3+ aqua ions. Such distortion was also observed for La adsorption on ferrihydrite and δ-MnO2. In addition, previous studies have suggested a high stability of the hydrated state for La and Ce in terms of Gibbs free energy change. Thus, we suggest here that the difference in the stable isotopic fractionation for Ce (and predicted for La) vs. Nd and Sm can be explained by (i) the shorter bond lengths of adsorbed relative to dissolved species for Nd and Sm and (ii) the distorted structure of adsorbed Ce (and La) species and high stability of the aqua Ce ion.

  17. Berberine alkaloid: Quantum chemical study of different forms by the DFT and MP2 methods

    NASA Astrophysics Data System (ADS)

    Danilov, V. I.; Dailidonis, V. V.; Hovorun, D. M.; Kurita, N.; Murayama, Y.; Natsume, T.; Potopalsky, A. I.; Zaika, L. A.

    2006-10-01

    The stable structures and electronic properties for the berberine cation as well as possible ammonium, carbinol and amino-aldehyde forms of protoberberine salts in the presence of hydroxyl ions were investigated by the B3LYP/6-31G(d,p) and MP2/6-31++G(d,p) methods. The geometry optimizations by both methods lead to the nonplanar propeller-twisted and buckled structure for the all forms. The obtained bond lengths and bond angles agree with the experimental values. The comparison of total energies elucidates that the amino-aldehyde form is the most preferable tautomer in gas phase, while the carbinol form is less stable. The least stable tautomer is the ammonium form.

  18. Dependence of Ion Dynamics on the Polymer Chain Length in Poly(ethylene oxide)-Based Polymer Electrolytes.

    PubMed

    Chattoraj, Joyjit; Knappe, Marisa; Heuer, Andreas

    2015-06-04

    It is known from experiments that in the polymer electrolyte system, which contains poly(ethylene oxide) chains (PEO), lithium-cations (Li(+)), and bis(trifluoromethanesulfonyl)imide-anions (TFSI(-)), the cation and the anion diffusion and the ionic conductivity exhibit a similar chain-length dependence: with increasing chain length, they start dropping steadily, and later, they saturate to constant values. These results are surprising because Li-cations are strongly correlated with the polymer chains, whereas TFSI-anions do not have such bonding. To understand this phenomenon, we perform molecular dynamics simulations of this system for four different polymer chain lengths. The diffusion results obtained from our simulations display excellent agreement with the experimental data. The cation transport model based on the Rouse dynamics can successfully quantify the Li-diffusion results, which correlates Li diffusion with the polymer center-of-mass motion and the polymer segmental motion. The ionic conductivity as a function of the chain length is then estimated based on the chain-length-dependent ion diffusion, which shows a temperature-dependent deviation for short chain lengths. We argue that in the first regime, counterion correlations modify the conductivity, whereas for the long chains, the system behaves as a strong electrolyte.

  19. Bond-strength inversion in (In,Ga)As semiconductor alloys

    NASA Astrophysics Data System (ADS)

    Eckner, Stefanie; Ritter, Konrad; Schöppe, Philipp; Haubold, Erik; Eckner, Erich; Rensberg, Jura; Röder, Robert; Ridgway, Mark C.; Schnohr, Claudia S.

    2018-05-01

    The atomic-scale structure and vibrational properties of semiconductor alloys are determined by the energy required for stretching and bending the individual bonds. Using temperature-dependent extended x-ray absorption fine-structure spectroscopy, we have determined the element-specific In-As and Ga-As effective bond-stretching force constants in (In,Ga)As as a function of the alloy composition. The results reveal a striking inversion of the bond strength where the originally stiffer bond in the parent materials becomes the softer bond in the alloy and vice versa. Our findings clearly demonstrate that changes of both the individual bond length and the surrounding matrix affect the bond-stretching force constants. We thus show that the previously used common assumptions about the element-specific force constants in semiconductor alloys do not reproduce the composition dependence determined experimentally for (In,Ga)As.

  20. Photoelectron diffraction from single oriented molecules: Towards ultrafast structure determination of molecules using x-ray free-electron lasers

    NASA Astrophysics Data System (ADS)

    Kazama, Misato; Fujikawa, Takashi; Kishimoto, Naoki; Mizuno, Tomoya; Adachi, Jun-ichi; Yagishita, Akira

    2013-06-01

    We provide a molecular structure determination method, based on multiple-scattering x-ray photoelectron diffraction (XPD) calculations. This method is applied to our XPD data on several molecules having different equilibrium geometries. Then it is confirmed that, by our method, bond lengths and bond angles can be determined with a resolution of less than 0.1 Å and 10∘, respectively. Differently from any other scenario of ultrafast structure determination, we measure the two- or three-dimensional XPD of aligned or oriented molecules in the energy range from 100 to 200 eV with a 4π detection velocity map imaging spectrometer. Thanks to the intense and ultrashort pulse properties of x-ray free-electron lasers, our approach exhibits the most probable method for obtaining ultrafast real-time structural information on small to medium-sized molecules consisting of light elements, i.e., a “molecular movie.”

  1. Design, Static Analysis And Fabrication Of Composite Joints

    NASA Astrophysics Data System (ADS)

    Mathiselvan, G.; Gobinath, R.; Yuvaraja, S.; Raja, T.

    2017-05-01

    The Bonded joints will be having one of the important issues in the composite technology is the repairing of aging in aircraft applications. In these applications and also for joining various composite material parts together, the composite materials fastened together either using adhesives or mechanical fasteners. In this paper, we have carried out design, static analysis of 3-D models and fabrication of the composite joints (bonded, riveted and hybrid). The 3-D model of the composite structure will be fabricated by using the materials such as epoxy resin, glass fibre material and aluminium rivet for preparing the joints. The static analysis was carried out with different joint by using ANSYS software. After fabrication, parametric study was also conducted to compare the performance of the hybrid joint with varying adherent width, adhesive thickness and overlap length. Different joint and its materials tensile test result have compared.

  2. Effect of critical molecular weight of PEO in epoxy/EPO blends as characterized by advanced DSC and solid-state NMR

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoliang; Lu, Shoudong; Sun, Pingchuan; Xue, Gi

    2013-03-01

    The differential scanning calorimetry (DSC) and solid state NMR have been used to systematically study the length scale of the miscibility and local dynamics of the epoxy resin/poly(ethylene oxide) (ER/PEO) blends with different PEO molecular weight. By DSC, we found that the diffusion behavior of PEO with different Mw is an important factor in controlling these behaviors upon curing. We further employed two-dimensional 13C-{1H}PISEMA NMR experiment to elucidate the possible weak interaction and detailed local dynamics in ER/PEO blends. The CH2O group of PEO forms hydrogen bond with hydroxyl proton of cured-ER ether group, and its local dynamics frozen by such interaction. Our finding indicates that molecular weight (Mw) of PEO is a crucial factor in controlling the miscibility, chain dynamics and hydrogen bonding interaction in these blends.

  3. Vibrational spectral investigation and natural bond orbital analysis of pharmaceutical compound 7-Amino-2,4-dimethylquinolinium formate - DFT approach

    NASA Astrophysics Data System (ADS)

    Suresh, D. M.; Amalanathan, M.; Sebastian, S.; Sajan, D.; Hubert Joe, I.; Bena Jothy, V.; Nemec, Ivan

    2013-11-01

    The molecular geometry, the normal mode frequencies and corresponding vibrational assignments, natural bond orbital analysis and the HOMO-LUMO analysis of 7-Amino-2,4-dimethylquinolinium formate in the ground state were performed by B3LYP levels of theory using the 6-31G(d) basis set. The optimised bond lengths and bond angles are in good agreement with the X-ray data. The vibrational spectra of the title compound which is calculated by DFT method, reproduces vibrational wave numbers and intensities with an accuracy which allows reliable vibrational assignments. The possibility of N-H⋯O hydrogen bonding was identified using NBO analysis. Natural bond orbital analysis confirms the presence of intramolecular charge transfer and the hydrogen bonding interaction.

  4. Reconciliation of local and long-range tilt correlations in underdoped La 2-xBa xCuO 4(0 ≤ x ≤ 0.155)

    DOE PAGES

    Bozin, Emil S.; Zhong, Ruidan; Knox, Kevin R.; ...

    2015-02-26

    A long standing puzzle regarding the disparity of local and long range CuO₆ octahedral tilt correlations in the underdoped regime of La₂₋ xBa xCuO₄ is addressed by utilizing complementary neutron powder diffraction and inelastic neutron scattering (INS) approaches. Long-range and static CuO₆ tilt order with orthogonally inequivalent Cu-O bonds in the CuO₂ planes in the low temperature tetragonal (LTT) phase is succeeded on warming through the low-temperature transition by one with orthogonally equivalent bonds in the low temperature orthorhombic (LTO) phase. In contrast, the signatures of LTT-type tilts in the instantaneous local atomic structure persist on heating throughout the LTOmore » crystallographic phase on the nanoscale, although becoming weaker as temperature increases. Analysis of the INS spectra for the x = 1/8 composition reveals the dynamic nature of the LTT-like tilt fluctuations within the LTO phase and their 3D character. The doping dependence of relevant structural parameters indicates that the magnitude of the Cu-O bond anisotropy has a maximum at x = 1/8 doping where bulk superconductivity is most strongly suppressed, suggesting that the structural anisotropy might be influenced by electron-phonon coupling and the particular stability of the stripe-ordered phase at this composition. The bond-length modulation that pins stripe order is found to be remarkably subtle, with no anomalous bond length disorder at low temperature, placing an upper limit on any in-plane Cu-O bondlength anisotropy. The results further reveal that although appreciable octahedral tilts persist through the high-temperature transition and into the high temperature tetragonal (HTT) phase, there is no significant preference between different tilt directions in the HTT regime. As a result, this study also exemplifies the importance of a systematic approach using complementary techniques when investigating systems exhibiting a large degree of complexity and subtle structural responses.« less

  5. Charge disproportionation in tetragonal La2MoO5, a small band gap semiconductor influenced by direct Mo-Mo bonding.

    PubMed

    Colabello, Diane M; Camino, Fernando E; Huq, Ashfia; Hybertsen, Mark; Khalifah, Peter G

    2015-01-28

    The structure of the novel compound La2MoO5 has been solved from powder X-ray and neutron diffraction data and belongs to the tetragonal space group P4/m (no. 83) with a = 12.6847(3) Å and c = 6.0568(2) Å and with Z = 8. It consists of equal proportions of bioctahedral (Mo2O10) and square prismatic (Mo2O8) dimers, both of which contain direct Mo-Mo bonds and are arranged in 1D chains. The Mo-Mo bond length in the Mo2O10 dimers is 2.684(8) Å, while there are two types of Mo2O8 dimers with Mo-Mo bonds lengths of 2.22(2) and 2.28(2) Å. Although the average Mo oxidation state in La2MoO5 is 4+, the very different Mo-Mo distances reflect the fact that the Mo2O10 dimers contain only Mo(5+) (d(1)), while the prismatic Mo2O8 dimers only contain Mo(3+) (d(3)), a result directly confirmed by density function theory calculations. This is due to the complete disproportionation of Mo(4+), a phenomenon which has not previously been observed in solid-state compounds. La2MoO5 is diamagnetic, behavior which is not expected for a nonmetallic transition-metal oxide whose cation sites have an odd number of d-electrons. The resistivity displays the Arrhenius-type activated behavior expected for a semiconductor with a band gap of 0.5 eV, exhibiting an unusually small transport gap relative to other diamagnetic oxides. Diffuse reflectance studies indicate that La2MoO5 is a rare example of a stable oxide semiconductor with strong infrared absorbance. It is shown that the d-orbital splitting associated with the Mo2O8 and Mo2O10 dimeric units can be rationalized using simple molecular orbital bonding concepts.

  6. Bond, transfer length, and development length of prestressing strand in self-consolidating concrete.

    DOT National Transportation Integrated Search

    2014-07-01

    Due to its economic advantages, the use of self-consolidating concrete (SCC) has increased rapidly in recent years. However, because : SCC mixes typically have decreased amounts of coarse aggregate and high amounts of admixtures, industry members hav...

  7. Thermal conductivity of cross-linked polyethylene from molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Xiong, Xue; Yang, Ming; Liu, Changlin; Li, Xiaobo; Tang, Dawei

    2017-07-01

    The thermal conductivity of cross-linked bulk polyethylene is studied using molecular dynamics simulation. The atomic structure of the cross-linked polyethylene (PEX) is generated through simulated bond formation using LAMMPS. The thermal conductivity of PEX is studied with different degrees of crosslinking, chain length, and tensile strain. Generally, the thermal conductivity increases with the increasing degree of crosslinking. When the length of the primitive chain increases, the thermal conductivity increases linearly. When the polymer is stretched along one direction, the thermal conductivity increases in the stretched direction and decreases in the direction perpendicular to it. However, the thermal conductivity varies slightly when the polymer is stretched in three directions simultaneously.

  8. Do dihydroxymagnesium carboxylates form Grignard-type reagents? A theoretical investigation on decarboxylative fragmentation.

    PubMed

    Ruf, Alexander; Kanawati, Basem; Schmitt-Kopplin, Philippe

    2018-03-27

    Dihydroxymagnesium carboxylates [(OH) 2 MgO 2 CR] were probed for decarboxylation on a theoretical level, by utilizing both Møller-Plesset perturbation theory (MP2) and density functional theory (B3LYP-DFT) computations. This study is connected to the question of whether this recently introduced, astrobiologically relevant chemical class may form Grignard-type reagent molecules. To extract trends for a broad molecular mass range, different linear alkyl chain lengths between C 4 and C 11 were computed. The forward energy barrier for decarboxylation reactions increases linearly as a function of the ligand's chain length. Decarboxylation-type fragmentations of these organomagnesium compounds seem to be improbable in non-catalytic, low energetic environments. A high forward energy barrier (E MP2  > 55 kcal mol -1 ) towards a described transition state restricts the release of CO 2 . Nevertheless, we propose the release of CO 2 on a theoretical level, as been revealed via an intramolecular nucleophilic attack mechanism. Once the challenging transition state for decarboxylation is overcome, a stable Mg-C bond is formed. These mechanistic insights were gained by help of natural bond orbital analysis. The Cα atom (first carbon atom in the ligand chain attached to the carboxyl group) is thought to prefer binding towards the electrophilic magnesium coordination center, rather than towards the electrophilic CO 2 -carbon atom. Additionally, the putatively formed Grignard-type OH-bearing product molecules possess a more polarized Mg-C bond in comparison to RMgCl species. Therefore, carbanion formation from OH-bearing Grignard-type molecules is made feasible for triggering C-C bond formation reactions. Graphical abstract This study asks whether recently introduced, astrobiologically dihydroxymagnesium carboxylates form Grignard-type reagent molecules via decarboxylative fragmentation.

  9. Site-specific binding of a water molecule to the sulfa drugs sulfamethoxazole and sulfisoxazole: a laser-desorption isomer-specific UV and IR study.

    PubMed

    Uhlemann, Thomas; Seidel, Sebastian; Müller, Christian W

    2018-03-07

    To determine the preferred water molecule binding sites of the polybasic sulfa drugs sulfamethoxazole (SMX) and sulfisoxazole (SIX), we have studied their monomers and monohydrated complexes through laser-desorption conformer-specific UV and IR spectroscopy. Both the SMX and SIX monomer adopt a single conformer in the molecular beam. On the basis of their conformer-specific IR spectra in the NH stretch region, these conformers were assigned to the SMX and SIX global minimum structures, both exhibiting a staggered sulfonamide group and an intramolecular C-HO[double bond, length as m-dash]S hydrogen bond. The SMX-H 2 O and SIX-H 2 O complexes each adopt a single isomer in the molecular beam. Their isomeric structures were determined based on their isomer-specific IR spectra in the NH/OH stretch region. Quantum Theory of Atoms in Molecules analysis of the calculated electron densities revealed that in the SMX-H 2 O complex the water molecule donates an O-HN hydrogen bond to the heterocycle nitrogen atom and accepts an N-HO hydrogen bond from the sulfonamide NH group. In the SIX-H 2 O complex, however, the water molecule does not bind to the heterocycle but instead donates an O-HO[double bond, length as m-dash]S hydrogen bond to the sulfonamide group and accepts an N-HO hydrogen bond from the sulfonamide NH group. Both water complexes are additionally stabilized by a C ph -HOH 2 hydrogen bond. Interacting Quantum Atoms analysis suggests that all intermolecular hydrogen bonds are dominated by the short-range exchange-correlation contribution.

  10. Laser desorption single-conformation UV and IR spectroscopy of the sulfonamide drug sulfanilamide, the sulfanilamide-water complex, and the sulfanilamide dimer.

    PubMed

    Uhlemann, Thomas; Seidel, Sebastian; Müller, Christian W

    2017-06-07

    We have studied the conformational preferences of the sulfonamide drug sulfanilamide, its dimer, and its monohydrated complex through laser desorption single-conformation UV and IR spectroscopy in a molecular beam. Based on potential energy curves for the inversion of the anilinic and the sulfonamide NH 2 groups calculated at DFT level, we suggest that the zero-point level wave function of the sulfanilamide monomer is appreciably delocalized over all four conformer wells. The sulfanilamide dimer, and the monohydrated complex each exhibit a single isomer in the molecular beam. The isomeric structures of the sulfanilamide dimer and the monohydrated sulfanilamide complex were assigned based on their conformer-specific IR spectra in the NH and OH stretch region. Quantum Theory of Atoms in Molecules (QTAIM) analysis of the calculated electron density in the water complex suggests that the water molecule is bound side-on in a hydrogen bonding pocket, donating one O-HO[double bond, length as m-dash]S hydrogen bond and accepting two hydrogen bonds, a NHO and a CHO hydrogen bond. QTAIM analysis of the dimer electron density suggests that the C i symmetry dimer structure exhibits two dominating N-HO[double bond, length as m-dash]S hydrogen bonds, and three weaker types of interactions: two CHO bonds, two CHN bonds, and a chalcogen OO interaction. Most interestingly, the molecular beam dimer structure closely resembles the R dimer unit - the dimer unit with the greatest interaction energy - of the α, γ, and δ crystal polymorphs. Interacting Quantum Atoms analysis provides evidence that the total intermolecular interaction in the dimer is dominated by the short-range exchange-correlation contribution.

  11. Spectroscopic investigation on cocrystal formation between adenine and fumaric acid based on infrared and Raman techniques.

    PubMed

    Du, Yong; Fang, Hong Xia; Zhang, Qi; Zhang, Hui Li; Hong, Zhi

    2016-01-15

    As an important component of double-stranded DNA, adenine has powerful hydrogen-bond capability, due to rich hydrogen bond donors and acceptors existing within its molecular structure. Therefore, it is easy to form cocrystal between adenine and other small molecules with intermolecular hydrogen-bond effect. In this work, cocrystal of adenine and fumaric acid has been characterized as model system by FT-IR and FT-Raman spectral techniques. The experimental results show that the cocrystal formed between adenine and fumaric acid possesses unique spectroscopical characteristic compared with that of starting materials. Density functional theory (DFT) calculation has been performed to optimize the molecular structures and simulate vibrational modes of adenine, fumaric acid and the corresponding cocrystal. Combining the theoretical and experimental vibrational results, the characteristic bands corresponding to bending and stretching vibrations of amino and carbonyl groups within cocrystal are shifted into lower frequencies upon cocrystal formation, and the corresponding bond lengths show some increase due to the effect of intermolecular hydrogen bonding. Different vibrational modes shown in the experimental spectra have been assigned based on the simulation DFT results. The study could provide experimental and theoretical benchmarks to characterize cocrystal formed between active ingredients and cocrystal formers and also the intermolecular hydrogen-bond effect within cocrystal formation process by vibrational spectroscopic techniques. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Hydrogen bonded C-H···Y (Y = O, S, Hal) molecular complexes: A natural bond orbital analysis

    NASA Astrophysics Data System (ADS)

    Isaev, A. N.

    2016-03-01

    Hydrogen bonded C-H···Y complexes formed by H2O, H2S molecules, hydrogen halides, and halogen-ions with methane, halogen substituted methane as well as with the C2H2 and NCH molecules were studied at the MP2/aug-cc-pVDZ level. The structure of NBOs corresponding to lone pair of acceptor Y, n Y, and vacant anti-σ-bond C-H of proton donor was analyzed and estimates of second order perturbation energy E(2) characterizing donor-acceptor n Y → σ C-H * charge-transfer interaction were obtained. Computational results for complexes of methane and its halogen substituted derivatives show that for each set of analogous structures, the EnY→σ*C-H (2) energy tends to grow with an increase in the s-component percentage in the lone pair NBO of acceptor Y. Calculations for different C···Y distances show that the equilibrium geometries of complexes lie in the region where the E(2) energy is highest and it changes symbatically with the length of the covalent E-H bond when the R(C···Y) distance is varied. The performed analysis allows us to divide the hydrogen bonded complexes into two groups, depending on the pattern of overlapping for NBOs of the hydrogen bridge.

  13. A theoretical study of hydrogen complexes of the X sbnd H-π type between propyne and HF, HCL or HCN

    NASA Astrophysics Data System (ADS)

    Tavares, Alessandra M.; da Silva, Washington L. V.; Lopes, Kelson C.; Ventura, Elizete; Araújo, Regiane C. M. U.; do Monte, Silmar A.; da Silva, João Bosco P.; Ramos, Mozart N.

    2006-05-01

    The present manuscript reports a systematic investigation of the basis set dependence of some properties of hydrogen-bonded (π type) complexes formed by propyne and a HX molecule, where X = F, Cl and CN. The calculations have been performed at Hartree-Fock, MP2 and B3LYP levels. Geometries, H-bond energies and vibrational have been considered. The more pronounced effects on the structural parameters of the isolated molecules, as a result of complexation, are verified on RC tbnd C and HX bond lengths. As compared to double-ζ (6-31G **), triple-ζ (6-311G **) basis set leads to an increase of RC tbnd C bond distance, at all three computational levels. In the case where diffuse functions are added to both hydrogen and 'heavy' atoms, the effect is more pronounced. The propyne-HX structural parameters are quite similar to the corresponding parameters of acetylene-HX complexes, at all levels. The largest difference is obtained for hydrogen bond distance, RH, with a smaller value for propyne-HX complex, indicating a stronger bond. Concerning the electronic properties, the results yield the following ordering for H-bond energies, Δ E: propyne⋯HF > propyne⋯HCl > propyne⋯HCN. It is also important to point out that the inclusion of BSSE and zero-point energies (ZPE) corrections cause significant changes on Δ E. The smaller effect of ZPE is obtained for propyne⋯HCN at HF/6-311++G ** level, while the greatest difference is obtained at MP2/6-31G ** level for propyne⋯HF system. Concerning the IR vibrational it was obtained that larger shift can be associated with stronger hydrogen bonds. The more pronounced effect on the normal modes of the isolated molecule after the complexation is obtained for H sbnd X stretching frequency, which is shifted downward.

  14. Conciliatory Inductive Model Explaining the Origin of Changes in the η(2)-SiH Bond Length Caused by Presence of Strongly Electronegative Atoms X (X = F, Cl) in Cp(OC)2Mn[η(2)-H(SiH3-nXn)] (n = 0-3) Complexes.

    PubMed

    Jabłoński, Mirosław

    2016-06-23

    Using three theoretical methods, QTAIM, IQA, and NCI, we analyze an influence of halogen atoms X (X = F, Cl) substituted at various positions in the -SiH3-nXn group on the charge density distribution within the η(2)-SiH bond and on the SiH bond energies in Cp(OC)2Mn[η(2)-H(SiH3-nXn)] complexes and isolated HSiH3-nXn molecules. It is shown that shortening of the η(2)-SiH bond in Cp(OC)2Mn[η(2)-H(SiH3-nXn)] complexes should be considered as a normal inductive result of halogenation. This η(2)-SiH bond's compression may, however, be overcome by a predominant elongation resulting from a contingent presence of a halogen atom at position trans to the η(2)-SiH bond. This trans effect is particularly large for bulky and highly polarizable chlorine. Moreover, peculiar properties of the trans chlorine atom are manifested in several ways. To explain the origin of all the observed changes in both the length and the electron charge distribution of the η(2)-SiH bond in investigated Cp(OC)2Mn[η(2)-H(SiH3-nXn)] complexes a new model, called the Conciliatory Inductive Model, is being proposed.

  15. Synthesis, structure and reactivity of rare-earth metallacarborane alkyls [η(1):η(5)-O(CH2)2C2B9H9]Ln(σ:η(1)-CH2C6H4-o-NMe2)(THF)2.

    PubMed

    Yang, Jingying; Xie, Zuowei

    2015-04-14

    Rare-earth metallacarborane alkyls can be stabilized by the incorporation of a functional sidearm into both π and σ ligands. Reaction of [Me3NH][7,8-O(CH2)2-7,8-C2B9H10] with one equiv. of Ln(CH2C6H4-o-NMe2)3 gave metallacarborane alkyls [η(1):η(5)-O(CH2)2C2B9H9]Ln(σ:η(1)-CH2C6H4-o-NMe2)(THF)2 (Ln = Y (), Gd (), Er ()) via alkane elimination. They represent the first examples of rare-earth metallacarborane alkyls. Treatment of with RN[double bond, length as m-dash]C[double bond, length as m-dash]NR (R = Cy, (i)Pr) or 2-benzoylpyridine afforded the corresponding mono-insertion products [η(1):η(5)-O(CH2)2C2B9H9]Y[η(2)-(RN)2C(CH2C6H4-o-NMe2)](DME) (R = Cy (), (i)Pr ()) or [η(1):η(5)-O(CH2)2C2B9H9]Y[C5H4NC(Ph)(CH2C6H4-o-NMe2)O](THF)2 (), respectively. Complex also reacted with ArNCO or ArNC (Ar = 2,6-diisopropylphenyl, 2,6-dimethylphenyl) to give di-insertion products [η(1):η(5)-O(CH2)2C2B9H9]Y[OC([double bond, length as m-dash]NC6H3Me2)N(C6H3Me2)C(CH2C6H4-o-NMe2)O](THF)2 () or [η(1):η(5)-O(CH2)2C2B9H9]Y[C([double bond, length as m-dash]NC6H3(i)Pr2)C([double bond, length as m-dash]NC6H3(i)Pr2)(CH2C6H4-o-NMe2)](DME) (). These results showed that the reactivity pattern of the Ln-C σ bond in rare-earth metallacarborane alkyls was dependent on the nature of the unsaturated organic molecules. New complexes were characterized by various spectroscopic techniques and elemental analysis. Some were further confirmed by single-crystal X-ray analysis.

  16. Local Bonding Influence on the Band Edge and Band Gap Formation in Quaternary Chalcopyrites.

    PubMed

    Miglio, Anna; Heinrich, Christophe P; Tremel, Wolfgang; Hautier, Geoffroy; Zeier, Wolfgang G

    2017-09-01

    Quaternary chalcopyrites have shown to exhibit tunable band gaps with changing anion composition. Inspired by these observations, the underlying structural and electronic considerations are investigated using a combination of experimentally obtained structural data, molecular orbital considerations, and density functional theory. Within the solid solution Cu 2 ZnGeS 4- x Se x , the anion bond alteration parameter changes, showing larger bond lengths for metal-selenium than for metal-sulfur bonds. The changing bonding interaction directly influences the valence and conduction band edges, which result from antibonding Cu-anion and Ge-anion interactions, respectively. The knowledge of the underlying bonding interactions at the band edges can help design properties of these quaternary chalcopyrites for photovoltaic and thermoelectric applications.

  17. Phase sensitive molecular dynamics of self-assembly glycolipid thin films: A dielectric spectroscopy investigation

    NASA Astrophysics Data System (ADS)

    Velayutham, T. S.; Ng, B. K.; Gan, W. C.; Majid, W. H. Abd.; Hashim, R.; Zahid, N. I.; Chaiprapa, Jitrin

    2014-08-01

    Glycolipid, found commonly in membranes, is also a liquid crystal material which can self-assemble without the presence of a solvent. Here, the dielectric and conductivity properties of three synthetic glycolipid thin films in different thermotropic liquid crystal phases were investigated over a frequency and temperature range of (10-2-106 Hz) and (303-463 K), respectively. The observed relaxation processes distinguish between the different phases (smectic A, columnar/hexagonal, and bicontinuous cubic Q) and the glycolipid molecular structures. Large dielectric responses were observed in the columnar and bicontinuous cubic phases of the longer branched alkyl chain glycolipids. Glycolipids with the shortest branched alkyl chain experience the most restricted self-assembly dynamic process over the broad temperature range studied compared to the longer ones. A high frequency dielectric absorption (Process I) was observed in all samples. This is related to the dynamics of the hydrogen bond network from the sugar group. An additional low-frequency mechanism (Process II) with a large dielectric strength was observed due to the internal dynamics of the self-assembly organization. Phase sensitive domain heterogeneity in the bicontinuous cubic phase was related to the diffusion of charge carriers. The microscopic features of charge hopping were modelled using the random walk scheme, and two charge carrier hopping lengths were estimated for two glycolipid systems. For Process I, the hopping length is comparable to the hydrogen bond and is related to the dynamics of the hydrogen bond network. Additionally, that for Process II is comparable to the bilayer spacing, hence confirming that this low-frequency mechanism is associated with the internal dynamics within the phase.

  18. Electronic and Structural Parameters of Phosphorus-Oxygen Bonds in Inorganic Phosphate Crystals

    NASA Astrophysics Data System (ADS)

    Atuchin, V. V.; Kesler, V. G.; Pervukhina, N. V.

    Wide set of experimental results on binding energy of photoelectrons emitted from P 2p, P 2s, and O 1s core levels has been observed for inorganic phosphate crystals and the parameters were compared using energy differences Δ(O 1s - P 2p) and Δ (O 1s - P 2s) as most robust characteristics. Linear dependence of the binding energy difference on mean chemical bond length L(P-O) between phosphorus and oxygen atoms has been found. The functions are of the forms: Δ (O 1s - P 2p) (eV) = 375.54 + 0.146 · L(P-O) (pm) and Δ (O 1s - P 2s) (eV) = 320.77 + 0.129 · L(P-O) (pm). The dependencies are general for inorganic phosphates and may be used in quantitative component analysis of X-ray photoemission spectra of complex oxide compounds including functional groups with different coordination of P and O atoms.

  19. Moisture effect on interfacial integrity of epoxy-bonded system: a hierarchical approach

    NASA Astrophysics Data System (ADS)

    Tam, Lik-ho; Lun Chow, Cheuk; Lau, Denvid

    2018-01-01

    The epoxy-bonded system has been widely used in various applications across different scale lengths. Prior investigations have indicated that the moisture-affected interfacial debonding is the major failure mode of such a system, but the fundamental mechanism remains unknown, such as the basis for the invasion of water molecules in the cross-linked epoxy and the epoxy-bonded interface. This prevents us from predicting the long-term performance of the epoxy-related applications under the effect of the moisture. Here, we use full atomistic models to investigate the response of the epoxy-bonded system towards the adhesion test, and provide a detailed analysis of the interfacial integrity under the moisture effect and the associated debonding mechanism. Molecular dynamics simulations show that water molecules affect the hierarchical structure of the epoxy-bonded system at the nanoscale by disrupting the film-substrate interaction and the molecular interaction within the epoxy, which leads to the detachment of the epoxy thin film, and the final interfacial debonding. The simulation results show good agreement with the experimental results of the epoxy-bonded system. Through identifying the relationship between the epoxy structure and the debonding mechanism at multiple scales, it is shown that the hierarchical structure of the epoxy-bonded system is crucial for the interfacial integrity. In particular, the available space of the epoxy-bonded system, which consists of various sizes ranging from the atomistic scale to the macroscale and is close to the interface facilitates the moisture accumulation, leading to a distinct interfacial debonding when compared to the dry scenario.

  20. Geminal difunctionalization of α-diazo arylmethylphosphonates: synthesis of fluorinated phosphonates.

    PubMed

    Zhou, Yujing; Zhang, Yan; Wang, Jianbo

    2016-11-08

    A general approach towards diverse fluorinated phosphonates via geminal difunctionalization reactions of α-diazo arylmethylphosphonates is described. The diazo functionality (RR'C[double bond, length as m-dash]N 2 ) is successfully converted to RR'CF 2 , RR'CHF, RR'CFBr or RR'CFNR'' 2 groups by employing different fluorination reagents. A variety of fluorinated organophosphorus compounds were readily accessed in good to excellent yields from a common type of precursor.

  1. pi-Turns: types, systematics and the context of their occurrence in protein structures

    PubMed Central

    Dasgupta, Bhaskar; Chakrabarti, Pinak

    2008-01-01

    Background For a proper understanding of protein structure and folding it is important to know if a polypeptide segment adopts a conformation inherent in the sequence or it depends on the context of its flanking secondary structures. Turns of various lengths have been studied and characterized starting from three-residue γ-turn to six-residue π-turn. The Schellman motif occurring at the C-terminal end of α-helices is a classical example of hydrogen bonded π-turn involving residues at (i) and (i+5) positions. Hydrogen bonded and non-hydrogen bonded β- and α-turns have been identified previously; likewise, a systematic characterization of π-turns would provide valuable insight into turn structures. Results An analysis of protein structures indicates that at least 20% of π-turns occur independent of the Schellman motif. The two categories of π-turns, designated as π-HB and SCH, have been further classified on the basis of backbone conformation and both have AAAa as the major class. They differ in the residue usage at position (i+1), the former having a large preference for Pro that is absent in the latter. As in the case of shorter length β- and α-turns, π-turns have also been identified not only on the basis of the existence of hydrogen bond, but also using the distance between terminal Cα-atoms, and this resulted in a comparable number of non-hydrogen-bonded π-turns (π-NHB). The presence of shorter β- and α-turns within all categories of π-turns, the subtle variations in backbone torsion angles along the turn residues, the location of the turns in the context of tertiary structures have been studied. Conclusion π-turns have been characterized, first using hydrogen bond and the distance between Cα atoms of the terminal residues, and then using backbone torsion angles. While the Schellman motif has a structural role in helix termination, many of the π-HB turns, being located on surface cavities, have functional role and there is also sequence conservation. PMID:18808671

  2. pi-Turns: types, systematics and the context of their occurrence in protein structures.

    PubMed

    Dasgupta, Bhaskar; Chakrabarti, Pinak

    2008-09-22

    For a proper understanding of protein structure and folding it is important to know if a polypeptide segment adopts a conformation inherent in the sequence or it depends on the context of its flanking secondary structures. Turns of various lengths have been studied and characterized starting from three-residue gamma-turn to six-residue pi-turn. The Schellman motif occurring at the C-terminal end of alpha-helices is a classical example of hydrogen bonded pi-turn involving residues at (i) and (i+5) positions. Hydrogen bonded and non-hydrogen bonded beta- and alpha-turns have been identified previously; likewise, a systematic characterization of pi-turns would provide valuable insight into turn structures. An analysis of protein structures indicates that at least 20% of pi-turns occur independent of the Schellman motif. The two categories of pi-turns, designated as pi-HB and SCH, have been further classified on the basis of backbone conformation and both have AAAa as the major class. They differ in the residue usage at position (i+1), the former having a large preference for Pro that is absent in the latter. As in the case of shorter length beta- and alpha-turns, pi-turns have also been identified not only on the basis of the existence of hydrogen bond, but also using the distance between terminal C alpha-atoms, and this resulted in a comparable number of non-hydrogen-bonded pi-turns (pi-NHB). The presence of shorter beta- and alpha-turns within all categories of pi-turns, the subtle variations in backbone torsion angles along the turn residues, the location of the turns in the context of tertiary structures have been studied. pi-turns have been characterized, first using hydrogen bond and the distance between C alpha atoms of the terminal residues, and then using backbone torsion angles. While the Schellman motif has a structural role in helix termination, many of the pi-HB turns, being located on surface cavities, have functional role and there is also sequence conservation.

  3. Vibrational tug-of-war: The pKA dependence of the broad vibrational features of strongly hydrogen-bonded carboxylic acids

    NASA Astrophysics Data System (ADS)

    Van Hoozen, Brian L.; Petersen, Poul B.

    2018-04-01

    Medium and strong hydrogen bonds give rise to broad vibrational features frequently spanning several hundred wavenumbers and oftentimes exhibiting unusual substructures. These broad vibrational features can be modeled from first principles, in a reduced dimensional calculation, that adiabatically separates low-frequency modes, which modulate the hydrogen bond length, from high-frequency OH stretch and bend modes that contribute to the vibrational structure. Previously this method was used to investigate the origin of an unusual vibrational feature frequently found in the spectra of dimers between carboxylic acids and nitrogen-containing aromatic bases that spans over 900 cm-1 and contains two broad peaks. It was found that the width of this feature largely originates from low-frequency modes modulating the hydrogen bond length and that the structure results from Fermi resonance interactions. In this report, we examine how these features change with the relative acid and base strength of the components as reflected by their aqueous pKA values. Dimers with large pKA differences are found to have features that can extend to frequencies below 1000 cm-1. The relationships between mean OH/NH frequency, aqueous pKA, and O-N distance are examined in order to obtain a more rigorous understanding of the origin and shape of the vibrational features. The mean OH/NH frequencies are found to correlate well with O-N distances. The lowest OH stretch frequencies are found in dimer geometries with O-N distances between 2.5 and 2.6 Å. At larger O-N distances, the hydrogen bonding interaction is not as strong, resulting in higher OH stretch frequencies. When the O-N distance is smaller than 2.5 Å, the limited space between the O and N determines the OH stretch frequency, which gives rise to frequencies that decrease with O-N distances. These two effects place a lower limit on the OH stretch frequency which is calculated to be near 700 cm-1. Understanding how the vibrational features of strongly hydrogen-bonded structures depend on the relative pKA and other structural parameters will guide studies of biological structures and analysis of proton transfer studies using photoacids.

  4. Pullout bond strength of fiber posts luted to different depths and submitted to artificial aging.

    PubMed

    Macedo, V C; Souza, N A Y; Faria e Silva, A L; Cotes, C; da Silva, C; Martinelli, M; Kimpara, E T

    2013-01-01

    The extension of fiber post cementation often does not seem to influence the fracture resistance of restorations. This study evaluated the effects of cementation depths on the retention of fiber posts submitted to artificial aging. One hundred and sixty bovine incisors were selected to assess post retention. Following endodontic treatment, the canals were flared with diamonds burs. Postholes were prepared in lengths of 5 or 10 mm, after which fiber posts were relined with composite resin and luted with RelyX ARC or RelyX Unicem. The samples were then submitted to thermal and/or mechanical cycling before testing their pullout bond strengths. Absence of cycling was used as a control. The results of each cement were submitted to two-way and post hoc Tukey tests (α=0.05). Independent of the aging protocol, a depth of 10 mm showed higher pullout bond strength than did 5 mm, except for RelyX Unicem without cycling. For RelyX ARC, thermomechanical cycling resulted in lower values than in the absence of cycling. Mechanical cycling alone promoted the highest bond strength when the posts were luted with RelyX Unicem. The effect of artificial aging on the pullout bond strength is dependent on the type of material and the depth.

  5. Exploring the Interaction Natures in Plutonyl (VI) Complexes with Topological Analyses of Electron Density

    PubMed Central

    Du, Jiguang; Sun, Xiyuan; Jiang, Gang

    2016-01-01

    The interaction natures between Pu and different ligands in several plutonyl (VI) complexes are investigated by performing topological analyses of electron density. The geometrical structures in both gaseous and aqueous phases are obtained with B3LYP functional, and are generally in agreement with available theoretical and experimental results when combined with all-electron segmented all-electron relativistic contracted (SARC) basis set. The Pu–Oyl bond orders show significant linear dependence on bond length and the charge of oxygen atoms in plutonyl moiety. The closed-shell interactions were identified for Pu-Ligand bonds in most complexes with quantum theory of atoms in molecules (QTAIM) analyses. Meanwhile, we found that some Pu–Ligand bonds, like Pu–OH−, show weak covalent. The interactive nature of Pu–ligand bonds were revealed based on the interaction quantum atom (IQA) energy decomposition approach, and our results indicate that all Pu–Ligand interactions is dominated by the electrostatic attraction interaction as expected. Meanwhile it is also important to note that the quantum mechanical exchange-correlation contributions can not be ignored. By means of the non-covalent interaction (NCI) approach it has been found that some weak and repulsion interactions existed in plutonyl(VI) complexes, which can not be distinguished by QTAIM, can be successfully identified. PMID:27077844

  6. Retention properties of novel beta-CD bonded stationary phases in reversed-phase HPLC mode.

    PubMed

    Zhao, Yanyan; Guo, Zhimou; Zhang, Yongping; Xue, Xingya; Xu, Qing; Li, Xiuling; Liang, Xinmiao; Zhang, Yukui

    2009-05-15

    With the given special structures, the CD bonded stationary phases are expected to have complementary retention properties with conventional C18 stationary phase, which will be helpful to enhance the polar selectivity in RP mode separation. In this work, two beta-cyclodextrin (beta-CD) bonded stationary phases for reversed-phase HPLC, including 1, 12-dodecyldiol linked beta-CD stationary phase (CD1) and olio (ethylene glycol) (OEG) linked beta-CD stationary phase (CD2), have been synthesized via click chemistry. The resulting materials were characterized with FT-IR and elemental analysis, which proved the successful immobilization of ligands. The similarities and differences in retention characteristics between the CD and C18 stationary phases have been elucidated by using comparative linear solvation energy relationships (LSERs). The force related to solute McGowan volume has no significant difference, while the hydrogen bonding and dipolar interactions between solutes and CD stationary phases are stronger than between solutes and C18, which is attributed to the special structures (CD and triazole groups) of CD stationary phases. Chemical origins are interpreted by comparison between CD1 and CD2. Similar dispersive interactions of CD1 and CD2 are attributed to their similar length of spacer arms. CD2 which contains OEG spacer arm has relative weaker HBD acidity but stronger HBA basicity. CD stationary phases display no serious different methylene selectivity and higher polar selectivity than in the case of C18. Higher acid selectivity and lower basic selectivity are observed on CD2 than on CD1. Distinctive retention properties and good complementary separation selectivity to C18 make the novel CD bonded stationary phases available for more application in RPLC.

  7. Mechanochemical Cycloreversion of Cyclobutane Observed at the Single Molecule Level.

    PubMed

    Pill, Michael F; Holz, Katharina; Preußke, Nils; Berger, Florian; Clausen-Schaumann, Hauke; Lüning, Ulrich; Beyer, Martin K

    2016-08-16

    Mechanochemical cycloreversion of cyclobutane is known from ultrasound experiments. It is, however, not clear which forces are required to induce the cycloreversion. In atomic force microscopy (AFM) experiments, on the other hand, it is notoriously difficult to assign the ruptured bond. We have solved this problem through the synthesis of tailored macrocycles, in which the cyclobutane mechanophore is bypassed by an ethylene glycol chain of specific length. This macrocycle is covalently anchored between a glass substrate and an AFM cantilever by polyethylene glycol linkers. Upon mechanical stretching of the macrocycle, cycloreversion occurs, which is identified by a defined length increase of the stretched polymer. The measured length change agrees with the value calculated with the external force explicitly included (EFEI) method. By using two different lengths for the ethylene glycol safety line, the assignment becomes unambiguous. Mechanochemical cycloreversion of cyclobutane is observed at forces above 1.7 nN. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Energetic and entropic components of the Tolman length for mW and TIP4P/2005 water nanodroplets

    NASA Astrophysics Data System (ADS)

    Joswiak, Mark N.; Do, Ryan; Doherty, Michael F.; Peters, Baron

    2016-11-01

    The surface free energy of a droplet is approximately γ ( R ) = γ ( ∞ ) ( 1 - 2 δ / R ) , with R being the droplet radius and δ being the Tolman length. Here we use the mitosis method to compute δ = - 0.56 ± 0.1 Å at 300 K for mW water, indicating that γ ( R ) increases as the droplet size decreases. The computed Tolman length agrees quite well with a previous study of TIP4P/2005 water. We also decompose the size-dependent surface free energy into energetic and entropic contributions for the mW and TIP4P/2005 force fields. Despite having similar Tolman lengths, the energy-entropy decompositions are very different for the two force fields. We discuss critical assumptions which lead to these findings and their relation to experiments on the nucleation of water droplets. We also discuss surface broken bonds and structural correlations as possible explanations for the energetic and entropic contributions.

  9. Intrinsic autocorrelation time of picoseconds for thermal noise in water.

    PubMed

    Zhu, Zhi; Sheng, Nan; Wan, Rongzheng; Fang, Haiping

    2014-10-02

    Whether thermal noise is colored or white is of fundamental importance. In conventional theory, thermal noise is usually treated as white noise so that there are no directional transportations in the asymmetrical systems without external inputs, since only the colored fluctuations with appropriate autocorrelation time length can lead to directional transportations in the asymmetrical systems. Here, on the basis of molecular dynamics simulations, we show that the autocorrelation time length of thermal noise in water is ~10 ps at room temperature, which indicates that thermal noise is not white in the molecular scale while thermal noise can be reasonably assumed as white in macro- and meso-scale systems. The autocorrelation time length of thermal noise is intrinsic, since the value is almost unchanged for different temperature coupling methods. Interestingly, the autocorrelation time of thermal noise is correlated with the lifetime of hydrogen bonds, suggesting that the finite autocorrelation time length of thermal noise mainly comes from the finite lifetime of the interactions between neighboring water molecules.

  10. Driven translocation of Polymer through a nanopore: effect of heterogeneous flexibility

    NASA Astrophysics Data System (ADS)

    Adhikari, Ramesh; Bhattacharya, Aniket

    2014-03-01

    We have studied translocation of a model bead-spring polymer through a nanopore whose building blocks consist of alternate stiff and flexible segments and variable elastic bond potentials. For the case of uniform spring potential translocation of a symmetric periodic stiff-flexible chain of contour length N and segment length m (mod(N,2m)=0), we find that the end-to-end distance and the mean first passage time (MFPT) have weak dependence on the length m. The characteristic periodic pattern of the waiting time distribution captures the stiff and flexible segments of the chain with stiff segments taking longer time to translocate. But when we vary both the elastic bond energy, and the bending energy, as well as the length of stiff/flexible segments, we discover novel patterns in the waiting time distribution which brings out structural information of the building blocks of the translocating chain. Partially supported by UCF Office of Research and Commercialization & College of Science SEED grant.

  11. CORRELATION BETWEEN METAL-CERAMIC BOND STRENGTH AND COEFFICIENT OF LINEAR THERMAL EXPANSION DIFFERENCE

    PubMed Central

    Lopes, Stella Crosara; Pagnano, Valéria Oliveira; Rollo, João Manuel Domingos de Almeida; Leal, Mônica Barbosa; Bezzon, Osvaldo Luiz

    2009-01-01

    The purpose of this study was to evaluate the metal-ceramic bond strength (MCBS) of 6 metal-ceramic pairs (2 Ni-Cr alloys and 1 Pd-Ag alloy with 2 dental ceramics) and correlate the MCBS values with the differences between the coefficients of linear thermal expansion (CTEs) of the metals and ceramics. Verabond (VB) Ni-Cr-Be alloy, Verabond II (VB2), Ni-Cr alloy, Pors-on 4 (P), Pd-Ag alloy, and IPS (I) and Duceram (D) ceramics were used for the MCBS test and dilatometric test. Forty-eight ceramic rings were built around metallic rods (3.0 mm in diameter and 70.0 mm in length) made from the evaluated alloys. The rods were subsequently embedded in gypsum cast in order to perform a tensile load test, which enabled calculating the CMBS. Five specimens (2.0 mm in diameter and 12.0 mm in length) of each material were made for the dilatometric test. The chromel-alumel thermocouple required for the test was welded into the metal test specimens and inserted into the ceramics. ANOVA and Tukey's test revealed significant differences (p=0.01) for the MCBS test results (MPa), with PI showing higher MCBS (67.72) than the other pairs, which did not present any significant differences. The CTE (10-6 °C-1) differences were: VBI (0.54), VBD (1.33), VB2I (-0.14), VB2D (0.63), PI (1.84) and PD (2.62). Pearson's correlation test (r=0.17) was performed to evaluate of correlation between MCBS and CTE differences. Within the limitations of this study and based on the obtained results, there was no correlation between MCBS and CTE differences for the evaluated metal-ceramic pairs. PMID:19274398

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Seung Sae; Yu, Jung Ho; Lu, Di

    Long-range order and phase transitions in two-dimensional (2D) systems—such as magnetism, superconductivity, and crystallinity—have been important research topics for decades. The issue of 2D crystalline order has reemerged recently, with the development of exfoliated atomic crystals. Understanding the dimensional limit of crystalline phases, with different types of bonding and synthetic techniques, is at the foundation of low-dimensional materials design. We study ultrathin membranes of SrTiO 3, an archetypal perovskite oxide with isotropic (3D) bonding. Atomically controlled membranes are released after synthesis by dissolving an underlying epitaxial layer. Although all unreleased films are initially single-crystalline, the SrTiO 3 membrane lattice collapsesmore » below a critical thickness (5 unit cells). This crossover from algebraic to exponential decay of the crystalline coherence length is analogous to the 2D topological Berezinskii-Kosterlitz-Thouless (BKT) transition. Finally, the transition is likely driven by chemical bond breaking at the 2D layer-3D bulk interface, defining an effective dimensional phase boundary for coherent crystalline lattices.« less

  13. Psychometric properties of the Portuguese version of place attachment scale for youth in residential care.

    PubMed

    Magalhães, Eunice; Calheiros, María M

    2015-01-01

    Although the significant scientific advances on place attachment literature, no instruments exist specifically developed or adapted to residential care. 410 adolescents (11 - 18 years old) participated in this study. The place attachment scale evaluates five dimensions: Place identity, Place dependence, Institutional bonding, Caregivers bonding and Friend bonding. Data analysis included descriptive statistics, content validity, construct validity (Confirmatory Factor Analysis), concurrent validity with correlations with satisfaction with life and with institution, and reliability evidences. The relationship with individual characteristics and placement length was also verified. Content validity analysis revealed that more than half of the panellists perceive all the items as relevant to assess the construct in residential care. The structure with five dimensions revealed good fit statistics and concurrent validity evidences were found, with significant correlations with satisfaction with life and with the institution. Acceptable values of internal consistence and specific gender differences were found. The preliminary psychometric properties of this scale suggest it potential to be used with youth in care.

  14. B-spline tight frame based force matching method

    NASA Astrophysics Data System (ADS)

    Yang, Jianbin; Zhu, Guanhua; Tong, Dudu; Lu, Lanyuan; Shen, Zuowei

    2018-06-01

    In molecular dynamics simulations, compared with popular all-atom force field approaches, coarse-grained (CG) methods are frequently used for the rapid investigations of long time- and length-scale processes in many important biological and soft matter studies. The typical task in coarse-graining is to derive interaction force functions between different CG site types in terms of their distance, bond angle or dihedral angle. In this paper, an ℓ1-regularized least squares model is applied to form the force functions, which makes additional use of the B-spline wavelet frame transform in order to preserve the important features of force functions. The B-spline tight frames system has a simple explicit expression which is useful for representing our force functions. Moreover, the redundancy of the system offers more resilience to the effects of noise and is useful in the case of lossy data. Numerical results for molecular systems involving pairwise non-bonded, three and four-body bonded interactions are obtained to demonstrate the effectiveness of our approach.

  15. Comparison of Degrees of Potential-Energy-Surface Anharmonicity for Complexes and Clusters with Hydrogen Bonds

    NASA Astrophysics Data System (ADS)

    Kozlovskaya, E. N.; Doroshenko, I. Yu.; Pogorelov, V. E.; Vaskivskyi, Ye. V.; Pitsevich, G. A.

    2018-01-01

    Previously calculated multidimensional potential-energy surfaces of the MeOH monomer and dimer, water dimer, malonaldehyde, formic acid dimer, free pyridine-N-oxide/trichloroacetic acid complex, and protonated water dimer were analyzed. The corresponding harmonic potential-energy surfaces near the global minima were constructed for series of clusters and complexes with hydrogen bonds of different strengths based on the behavior of the calculated multidimensional potential-energy surfaces. This enabled the introduction of an obvious anharmonicity parameter for the calculated potential-energy surfaces. The anharmonicity parameter was analyzed as functions of the size of the analyzed area near the energy minimum, the number of points over which energies were compared, and the dimensionality of the solved vibrational problem. Anharmonicity parameters for potential-energy surfaces in complexes with strong, medium, and weak H-bonds were calculated under identical conditions. The obtained anharmonicity parameters were compared with the corresponding diagonal anharmonicity constants for stretching vibrations of the bridging protons and the lengths of the hydrogen bridges.

  16. [Study on THz spectra and vibrational modes of benzoic acid and sodium Benzoate].

    PubMed

    Zheng, Zhuan-Ping; Fan, Wen-Hui; Yan, Hui; Liu, Jia; Xu, Li-Min

    2013-03-01

    Terahertz time-domain spectroscopy was employed to measure the terahertz absorption spectra of benzoic acid and sodium benzoate at room temperature. The origins of the measured features of benzoic acid were summarized based on previous study. Density functional theory was used to compute and analyze the molecular structure and vibrational modes of sodium benzoate in monomer. Based on the obtained results, the authors found that the THz spectral features can be used to distinguish benzoic acid and sodium benzoate totally; the essential reason for the THz spectral difference between benzoic acid and sodium benzoate is that the electrovalent bond of sodium benzoate affects the values of covalent bond lengths and bond angles, as well as the molecular interactions and arrangement in unit cell; the measured features of benzoic acid and sodium benzoate come from the collective vibrations except the peaks located at 107 cm-1 of benzoic acid and 54 cm-1 of sodium benzoate.

  17. Bulk and surface structural investigations of diesel engine soot and carbon black.

    PubMed

    Müller, J-O; Su, D S; Wild, U; Schlögl, R

    2007-08-14

    The microstructure and electronic structure of environmentally relevant carbons such as Euro IV heavy duty diesel engine soot, soot from a black smoking diesel engine, spark discharge soot as model aerosol, commercial furnace soot and lamp black are investigated by transmission electron microscopy, electron energy-loss spectroscopy and X-ray photoelectron spectroscopy. The materials exhibit differences in the predominant bonding, which influences microstructure as well as surface functionalization. These chemical and physical properties depend on the formation history of the investigated carbonaceous materials. In this work, a correlation of the microstructure of the samples to the predominant bonding and incorporation of oxygen into the carbons is obtained. It is shown that a high amount of defects and the deviation of the carbons from a perfect graphitic structure results in a increased incorporation of oxygen and hydrogen. A correlation between the length and curvature of graphene layers with the bonding state of carbon atoms and incorporation of oxygen and hydrogen is established.

  18. Molecular dynamics analysis of transitions between rotational isomers in polymethylene

    NASA Astrophysics Data System (ADS)

    Zúñiga, Ignacio; Bahar, Ivet; Dodge, Robert; Mattice, Wayne L.

    1991-10-01

    Molecular dynamics trajectories have been computed and analyzed for linear chains, with sizes ranging from C10H22 to C100H202, and for cyclic C100H200. All hydrogen atoms are included discretely. All bond lengths, bond angles, and torsion angles are variable. Hazard plots show a tendency, at very short times, for correlations between rotational isomeric transitions at bond i and i±2, in much the same manner as in the Brownian dynamics simulations reported by Helfand and co-workers. This correlation of next nearest neighbor bonds in isolated polyethylene chains is much weaker than the correlation found for next nearest neighbor CH-CH2 bonds in poly(1,4-trans-butadiene) confined to the channel formed by crystalline perhydrotriphenylene [Dodge and Mattice, Macromolecules 24, 2709 (1991)]. Less than half of the rotational isomeric transitions observed in the entire trajectory for C50H102 can be described as strongly coupled next nearest neighbor transitions. If correlated motions are identified with successive transitions, which occur within a time interval of Δt≤1 ps, only 18% of the transitions occur through cooperative motion of bonds i and i±2. An analysis of the entire data set of 2482 rotational isomeric state transitions, observed in a 3.7 ns trajectory for C50H102 at 400 K, was performed using a formalism that treats the transitions at different bonds as being independent. On time scales of 0.1 ns or longer, the analysis based on independent bonds accounts reasonably well for the results from the molecular dynamics simulations. At shorter times the molecular dynamics simulation reveals a higher mobility than implied by the analysis assuming independent bonds, presumably due to the influence of correlations that are important at shorter times.

  19. 31 CFR 321.12 - Redemption value of securities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... value of each savings security is determined by the terms of its offering and the length of time it has been outstanding. The Bureau of the Fiscal Service determines redemption values for Series A-E bonds, eligible Series EE and I bonds, and savings notes, that should be used in redeeming savings securities. [63...

  20. Efficient Transition State Optimization of Periodic Structures through Automated Relaxed Potential Energy Surface Scans.

    PubMed

    Plessow, Philipp N

    2018-02-13

    This work explores how constrained linear combinations of bond lengths can be used to optimize transition states in periodic structures. Scanning of constrained coordinates is a standard approach for molecular codes with localized basis functions, where a full set of internal coordinates is used for optimization. Common plane wave-codes for periodic boundary conditions almost exlusively rely on Cartesian coordinates. An implementation of constrained linear combinations of bond lengths with Cartesian coordinates is described. Along with an optimization of the value of the constrained coordinate toward the transition states, this allows transition optimization within a single calculation. The approach is suitable for transition states that can be well described in terms of broken and formed bonds. In particular, the implementation is shown to be effective and efficient in the optimization of transition states in zeolite-catalyzed reactions, which have high relevance in industrial processes.

  1. Impact of hydrogen bonding on dynamics of hydroxyl-terminated polydimethylsiloxane

    DOE PAGES

    Xing, Kunyue; Chatterjee, Sabornie; Saito, Tomonori; ...

    2016-04-06

    Dielectric spectroscopy, rheology, and differential scanning calorimetry were employed to study the effect of chain-end hydrogen bonding on the dynamics of hydroxylterminated polydimethylsiloxane. We demonstrate that hydrogen bonding has a strong influence on both segmental and slower dynamics in the systems with low molecular weights. In particular, the decrease in the chain length leads to an increase of the glass transition temperature, viscosity, and fragility index, at variance with the usual behavior of nonassociating polymers. The supramolecular association of hydroxylterminated chains leads to the emergence in dielectric and mechanical relaxation spectra of the so-called Debye process traditionally observed in monohydroxymore » alcohols. Our analysis suggests that the hydroxyl-terminated PDMS oligomers may associate in brush-like or chain-like structures, depending on the size of their covalent chains. Finally, the effective length of the linear-associated chains was estimated from the rheological measurements.« less

  2. Formation of {Co(dppe)}2{μ2-η(2):η(2)-η(2):η(2)-[(C60)2]} Dimers Bonded by Single C-C Bonds and Bridging η(2)-Coordinated Cobalt Atoms.

    PubMed

    Konarev, Dmitri V; Troyanov, Sergey I; Ustimenko, Kseniya A; Nakano, Yoshiaki; Shestakov, Alexander F; Otsuka, Akihiro; Yamochi, Hideki; Saito, Gunzi; Lyubovskaya, Rimma N

    2015-05-18

    Coordination of two bridging cobalt atoms to fullerenes by the η(2) type in {Co(dppe)}2{μ2-η(2):η(2)-η(2):η(2)-[(C60)2]}·3C6H4Cl2 [1; dppe = 1,2-bis(diphenylphosphino)ethane] triggers fullerene dimerization with the formation of two intercage C-C bonds of 1.571(4) Å length. Coordination-induced fullerene dimerization opens a path to the design of fullerene structures bonded by both covalent C-C bonds and η(2)-coordination-bridged metal atoms.

  3. Design and evaluation of corn starch-bonded Rhizophora spp. particleboard phantoms for SPECT/CT imaging

    NASA Astrophysics Data System (ADS)

    Hamid, Puteri Nor Khatijah Abd; Yusof, Mohd Fahmi Mohd; Aziz Tajuddin, Abd; Hashim, Rokiah; Zainon, Rafidah

    2018-01-01

    The aim of this study was to design and evaluate of corn starch-bonded Rhizophora spp. particleboards as phantom for SPECT/CT imaging. The phantom was designed according to the Jaszczak phantom commonly used in SPECT imaging with dimension of 22 cm diameter and 18 cm length. Six inserts with different diameter were made for insertion of vials filled with 1.6 µCi/ml of 99mTc unsealed source. The particleboard phantom was scanned using SPECT/CT imaging protocol. The contrast of each vial for particleboards phantom were calculated based on the ratio of counts in radionuclide volume and phantom background and compared to Perspex® and water phantom. The results showed that contrast values for each vial in particleboard phantomis near to 1.0 and in good agreement with Perspex® and water phantoms as common phantom materials for SPECT/CT. The paired sample t-test result showed no significant difference of contrast values between images in particleboard phantoms and that in water. The overall results showed the potential of corn starch-bonded Rhizophora spp. as phantom for quality control and dosimetry works in SPECT/CT imaging.

  4. The effect of elastomer chain length on properties of silicone-modified polyimide adhesives

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; St.clair, T. L.; Ezzell, S.

    1981-01-01

    A series of polyimides containing silicone elastomers was synthesized in order to study the effects of the elastomer chain length on polymer properties. The elastomer with repeat units varying from n=10 to 105 was chemically reacted into the backbone of an addition polyimide oligomer via reactive aromatic amine groups. Glass transition temperatures of the elastomer and polyimide phases were observed by torsional braid analysis. The elastomer-modified polyimides were tested as adhesives for bonding titanium in order to determine their potential for aerospace applications. Adhesive lap shear tests were performed before and after aging bonded specimens at elevated temperatures.

  5. Bio-inspired passive actuator simulating an abalone shell mechanism for structural control

    NASA Astrophysics Data System (ADS)

    Yang, Henry T. Y.; Lin, Chun-Hung; Bridges, Daniel; Randall, Connor J.; Hansma, Paul K.

    2010-10-01

    An energy dispersion mechanism called 'sacrificial bonds and hidden length', which is found in some biological systems, such as abalone shells and bones, is the inspiration for new strategies for structural control. Sacrificial bonds and hidden length can substantially increase the stiffness and enhance energy dissipation in the constituent molecules of abalone shells and bone. Having been inspired by the usefulness and effectiveness of such a mechanism, which has evolved over millions of years and countless cycles of evolutions, the authors employ the conceptual underpinnings of this mechanism to develop a bio-inspired passive actuator. This paper presents a fundamental method for optimally designing such bio-inspired passive actuators for structural control. To optimize the bio-inspired passive actuator, a simple method utilizing the force-displacement-velocity (FDV) plots based on LQR control is proposed. A linear regression approach is adopted in this research to find the initial values of the desired parameters for the bio-inspired passive actuator. The illustrative examples, conducted by numerical simulation with experimental validation, suggest that the bio-inspired passive actuator based on sacrificial bonds and hidden length may be comparable in performance to state-of-the-art semi-active actuators.

  6. Molecular Basis for Genetic Resistance of Anopheles gambiae to Plasmodium: Structural Analysis of TEP1 Susceptible and Resistant Alleles

    PubMed Central

    Logarajah, Shankar; Baxter, Richard H. G.

    2012-01-01

    Thioester-containing protein 1 (TEP1) is a central component in the innate immune response of Anopheles gambiae to Plasmodium infection. Two classes of TEP1 alleles, TEP1*S and TEP1*R, are found in both laboratory strains and wild isolates, related by a greater or lesser susceptibility, respectively to both P. berghei and P. falciparum infection. We report the crystal structure of the full-length TEP1*S1 allele which, while similar to the previously determined structure of full-length TEP1*R1, displays flexibility in the N-terminal fragment comprising domains MG1-MG6. Amino acid differences between TEP1*R1 and TEP1*S1 are localized to the TED-MG8 domain interface that protects the thioester bond from hydrolysis and structural changes are apparent at this interface. As a consequence cleaved TEP1*S1 (TEP1*S1cut) is significantly more susceptible to hydrolysis of its intramolecular thioester bond than TEP1*R1cut. TEP1*S1cut is stabilized in solution by the heterodimeric LRIM1/APL1C complex, which preserves the thioester bond within TEP1*S1cut. These results suggest a mechanism by which selective pressure on the TEP1 gene results in functional variation that may influence the vector competence of A. gambiae towards Plasmodium infection. PMID:23055931

  7. Effect of Boric Acid Versus Conventional Irrigation Solutions on the Bond Strength Between Fiber Post 
and Root Dentin.

    PubMed

    Culhaoglu, Ahmet Kursad; Özcan, Erdal; Kilicarslan, Mehmet Ali; Seker, Emre

    2017-01-01

    To compare the effect of boric acid solutions of different percentages to conventional irrigation solutions on the adhesive bond strength between fiber posts and radicular dentin surface with different cement types. One hundred fifteen extracted human incisors were endodontically instrumented to a length of 14-15 mm, and 12-mm post spaces were prepared with specific drills. Cylindrical fiber posts (Panavia Post) were luted with two different composite cements (Panavia F 2.0, Panavia SA) and cut into 1-mm-thick slices. These specimens were randomly allocated to 5 groups according to the irrigant applied: 1. control, no irrigant; 2. 10 ml of 2% chlorhexidine; 3. 10 ml of 5.25% NaOCl for 5 min and 10 ml of 17% EDTA for 3 min; 4. 10 ml of 5% boric acid solution at a temperature of 55°C for 60 s; 5. 10% boric acid solution, conditions as in group 4. Bond strength was determined using the push-out test. Microscopic assessment and SEM evaluations were performed in combination with push-out tests. The push-out bond strengths of cervical segments were significantly higher than for the middle and apical segments in all groups. The type of irrigation solution used significantly affected the bond strengths of the posts. The 10% boric acid solution and EDTA + NaOCl irrigation solutions provided the highest bond strengths (p < 0.005). SEM analysis showed that the dentin tubules were open and the smear layer was completely removed when EDTA/NaOCl and 10% boric acid were used as irrigation agents. Boric acid solutions, especially at a concentration of 10%, can be a viable alternative to the conventional irrigants used during endodontic treatment. The extent to which the 10% boric acid solution successfully removed the smear layer and the ease of rinsing boric acid from the root surface are advantageous.

  8. Ultra-Low Heat-Leak, High-Temperature Superconducting Current Leads for Space Applications

    NASA Technical Reports Server (NTRS)

    Rey, Christopher M.

    2013-01-01

    NASA Goddard Space Flight Center has a need for current leads used in an adiabatic demagnetization refrigerator (ADR) for space applications. These leads must comply with stringent requirements such as a heat leak of approximately 100 W or less while conducting up to 10 A of electric current, from more than 90 K down to 10 K. Additionally, a length constraint of < 300 mm length and < 50 mm diameter is to be maintained. The need for these current leads was addressed by developing a superconducting hybrid lead. This hybrid lead comprises two different high-temperature superconducting (HTS) conductors bonded together at a thermally and electrically determined optimum point along the length of the current lead. By taking advantage of material properties of each conductor type, employing advanced fabrication techniques, and taking advantage of novel insulation materials, the company was able to develop and fabricate the lightweight, low heat-leak leads currently to NASA's specs.

  9. Theoretical investigations on the structure and properties of p-n-alkoxy benzoic acid based liquid crystals

    NASA Astrophysics Data System (ADS)

    Subhapriya, P.; Dhanapal, V.; Sadasivam, K.; Vijayanand, P. S.

    2016-05-01

    The present study focused on the structural conformations, alkoxy chain lengths and mesogenic properties of two mole of alkoxy benzoic acid(nOBA) and one mole of suberic acid (SA) hydrogen bonded (nOBASA) complexes (n=8 to 10) by density functional theory (DFT) calculations and the Fourier Transform Infrared (FT-IR) spectrum. The intermolecular hydrogen bond formation was confirmed by the optimized geometric bond lengths and bond angles obtained by computation. Using the natural bond orbital (NBO) analysis, the stability of the molecule arising from hyper conjugative interactions and charge delocalization has been analyzed. Results obtained shows that the charge in electron density (ED) in σ*and π* antibonding orbital and second order delocalization energies E(2) authorizes the occurrence of intermolecular charge transfer. The molecular electrostatic potential (MEP) surface map is plotted over the optimized geometry of the molecule to obtain the chemical reactivity of the molecule. From the local charge distributions, the mesomorphic behavior and the nematic phase stabilities for each of the molecule have been predicted. Finally the calculated result is applied to simulated infrared spectra of 8OBASA mesogens which shows good agreement with the observed spectra. The comparison of the theoretical results obtained with the experimental ones shows the reliability of this DFT method.

  10. Does time after pair bond disruption affect subsequent reproduction in the socially monogamous woodland vole (Microtus pinetorum)?

    PubMed Central

    Renfro, Caroline A.; Pesek, Daniel W.; Bobeck, Kelly; Solomon, Nancy G.

    2010-01-01

    Disruption of the pair bond between socially monogamous animals leads to changes in behavior, which may have reproductive consequences. There are two alternative hypotheses to explain the effect of the length of time since pair bond disruption on subsequent reproduction. One hypothesis predicts that voles housed immediately with a new opposite-sex conspecific will be as likely to produce litters and will produce them as quickly as voles separated from their initial mate for longer. Alternatively, if attachment between mates is enduring, we expect that more voles separated longer from their previous mates will produce litters and produce them sooner than voles re-paired immediately after separation from their initial mates. Woodland voles, paired with opposite-sex conspecifics, remained together until parturition. Mates were then separated for zero, seven, or fourteen days until re-pairing with an opposite-sex conspecific. Pair bond disruption did not prevent males and females from mating subsequently, which was consistent with data from our breeding colony. In addition, the length of time an individual remained alone after pair bond disruption did not affect the latency to produce a litter. Our results show that having been paired previously does not affect subsequent reproduction in this socially monogamous vole. PMID:19429197

  11. Transient sheath overvoltages in armored power cables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustavsen, B.; Sletbak, J.

    1996-07-01

    This paper is concerned with methods of limiting the build-up of transient voltages between sheath and armor in long armored power cables. Calculations by a frequency dependent cable model demonstrate that this voltage can be efficiently limited to an acceptable level by introducing sheath-armor bondings at regular intervals, or by using a semiconductive sheath-armor interlayer. The paper investigates the required minimum length between bondings, as well as the required conductivity of the sheath-armor interlayer if the use of bondings is to be avoided.

  12. Comparison of fatigue crack growth of riveted and bonded aircraft lap joints made of Aluminium alloy 2024-T3 substrates - A numerical study

    NASA Astrophysics Data System (ADS)

    Pitta, S.; Rojas, J. I.; Crespo, D.

    2017-05-01

    Aircraft lap joints play an important role in minimizing the operational cost of airlines. Hence, airlines pay more attention to these technologies to improve efficiency. Namely, a major time consuming and costly process is maintenance of aircraft between the flights, for instance, to detect early formation of cracks, monitoring crack growth, and fixing the corresponding parts with joints, if necessary. This work is focused on the study of repairs of cracked aluminium alloy (AA) 2024-T3 plates to regain their original strength; particularly, cracked AA 2024-T3 substrate plates repaired with doublers of AA 2024-T3 with two configurations (riveted and with adhesive bonding) are analysed. The fatigue life of the substrate plates with cracks of 1, 2, 5, 10 and 12.7mm is computed using Fracture Analysis 3D (FRANC3D) tool. The stress intensity factors for the repaired AA 2024-T3 plates are computed for different crack lengths and compared using commercial FEA tool ABAQUS. The results for the bonded repairs showed significantly lower stress intensity factors compared with the riveted repairs. This improves the overall fatigue life of the bonded joint.

  13. Three different product types from reactions of lithiated cyclic aminals with trivalent organometal chlorides.

    PubMed

    Hellmann, Benjamin J; Kamps, Ina; Mix, Andreas; Neumann, Beate; Stammler, Hans-Georg; Mitzel, Norbert W

    2010-09-21

    The reaction of 2-lithio-1,3,5-trimethyl-1,3,5-triazacyclohexane with YCp(2)Cl leads to the formation of a donor-functionalised mono-anionic amide ligand, 1,3,5-trimethyl-2-(methylamidomethyl)-1,3,5-triazacyclohexane, bonded to the YCp(2) unit. The reaction involves a cleavage of the 1,3,5-triazacyclohexane ring and such a cleavage is also observed in the analogous reaction with (Me(3)C)(2)GaCl, where a MeN[double bond, length as m-dash]CH(-) fragment is formed. No such cleavage occurs in the reaction of the related dilithiated bicyclic bis(3-methyl-1,3-diazacyclohex-1-yl)methane with YCpCl(2).3thf, which affords a mixed lithium-yttrium organyl.

  14. AceDRG: a stereochemical description generator for ligands

    PubMed Central

    Emsley, Paul; Gražulis, Saulius; Merkys, Andrius; Vaitkus, Antanas

    2017-01-01

    The program AceDRG is designed for the derivation of stereochemical information about small molecules. It uses local chemical and topological environment-based atom typing to derive and organize bond lengths and angles from a small-molecule database: the Crystallography Open Database (COD). Information about the hybridization states of atoms, whether they belong to small rings (up to seven-membered rings), ring aromaticity and nearest-neighbour information is encoded in the atom types. All atoms from the COD have been classified according to the generated atom types. All bonds and angles have also been classified according to the atom types and, in a certain sense, bond types. Derived data are tabulated in a machine-readable form that is freely available from CCP4. AceDRG can also generate stereochemical information, provided that the basic bonding pattern of a ligand is known. The basic bonding pattern is perceived from one of the computational chemistry file formats, including SMILES, mmCIF, SDF MOL and SYBYL MOL2 files. Using the bonding chemistry, atom types, and bond and angle tables generated from the COD, AceDRG derives the ‘ideal’ bond lengths, angles, plane groups, aromatic rings and chirality information, and writes them to an mmCIF file that can be used by the refinement program REFMAC5 and the model-building program Coot. Other refinement and model-building programs such as PHENIX and BUSTER can also use these files. AceDRG also generates one or more coordinate sets corresponding to the most favourable conformation(s) of a given ligand. AceDRG employs RDKit for chemistry perception and for initial conformation generation, as well as for the interpretation of SMILES strings, SDF MOL and SYBYL MOL2 files. PMID:28177307

  15. Structure determination from XAFS using high-accuracy measurements of x-ray mass attenuation coefficients of silver, 11 keV-28 keV, and development of an all-energies approach to local dynamical analysis of bond length, revealing variation of effective thermal contributions across the XAFS spectrum.

    PubMed

    Tantau, L J; Chantler, C T; Bourke, J D; Islam, M T; Payne, A T; Rae, N A; Tran, C Q

    2015-07-08

    We use the x-ray extended range technique (XERT) to experimentally determine the mass attenuation coefficient of silver in the x-ray energy range 11 kev-28 kev including the silver K absorption edge. The results are accurate to better than 0.1%, permitting critical tests of atomic and solid state theory. This is one of the most accurate demonstrations of cross-platform accuracy in synchrotron studies thus far. We derive the mass absorption coefficients and the imaginary component of the form factor over this range. We apply conventional XAFS analytic techniques, extended to include error propagation and uncertainty, yielding bond lengths accurate to approximately 0.24% and thermal Debye-Waller parameters accurate to 30%. We then introduce the FDMX technique for accurate analysis of such data across the full XAFS spectrum, built on full-potential theory, yielding a bond length accuracy of order 0.1% and the demonstration that a single Debye parameter is inadequate and inconsistent across the XAFS range. Two effective Debye-Waller parameters are determined: a high-energy value based on the highly-correlated motion of bonded atoms (σ(DW) = 0.1413(21) Å), and an uncorrelated bulk value (σ(DW) = 0.1766(9) Å) in good agreement with that derived from (room-temperature) crystallography.

  16. Properties of discontinuous S2-glass fiber-particulate-reinforced resin composites with two different fiber length distributions.

    PubMed

    Huang, Qiting; Garoushi, Sufyan; Lin, Zhengmei; He, Jingwei; Qin, Wei; Liu, Fang; Vallittu, Pekka Kalevi; Lassila, Lippo Veli Juhana

    2017-10-01

    To investigate the reinforcing efficiency and light curing properties of discontinuous S2-glass fiber-particulate reinforced resin composite and to examine length distribution of discontinuous S2-glass fibers after a mixing process into resin composite. Experimental S2-glass fiber-particulate reinforced resin composites were prepared by mixing 10wt% of discontinuous S2-glass fibers, which had been manually cut into two different lengths (1.5 and 3.0mm), with various weight ratios of dimethacrylate based resin matrix and silaned BaAlSiO 2 filler particulates. The resin composite made with 25wt% of UDMA/SR833s resin system and 75wt% of silaned BaAlSiO 2 filler particulates was used as control composite which had similar composition as the commonly used resin composites. Flexural strength (FS), flexural modulus (FM) and work of fracture (WOF) were measured. Fractured specimens were observed by scanning electron microscopy. Double bond conversion (DC) and fiber length distribution were also studied. Reinforcement of resin composites with discontinuous S2-glass fibers can significantly increase the FS, FM and WOF of resin composites over the control. The fibers from the mixed resin composites showed great variation in final fiber length. The mean aspect ratio of experimental composites containing 62.5wt% of particulate fillers and 10wt% of 1.5 or 3.0mm cutting S2-glass fibers was 70 and 132, respectively. No difference was found in DC between resin composites containing S2-glass fibers with two different cutting lengths. Discontinuous S2-glass fibers can effectively reinforce the particulate-filled resin composite and thus may be potential to manufacture resin composites for high-stress bearing application. Copyright © 2017. Published by Elsevier Ltd.

  17. Modified Acyl-ACP desaturase

    DOEpatents

    Cahoon, Edgar B.; Shanklin, John; Lindqvist, Ylva; Schneider, Gunter

    1999-03-30

    Disclosed is a method for modifying the chain length and double bond positional specificities of a soluble plant fatty acid desaturase. More specifically, the method involves modifying amino acid contact residues in the substrate binding channel of the soluble fatty acid desaturase which contact the fatty acid. Specifically disclosed is the modification of an acyl-ACP desaturase. Amino acid contact residues which lie within the substrate binding channel are identified, and subsequently replaced with different residues to effect the modification of activity.

  18. Modified acyl-ACP desaturase

    DOEpatents

    Cahoon, Edgar B.; Shanklin, John; Lindgvist, Ylva; Schneider, Gunter

    1998-01-06

    Disclosed is a methods for modifying the chain length and double bond positional specificities of a soluble plant fatty acid desaturase. More specifically, the method involves modifying amino acid contact residues in the substrate binding channel of the soluble fatty acid desaturase which contact the fatty acid. Specifically disclosed is the modification of an acyl-ACP desaturase. Amino acid contact residues which lie within the substrate binding channel are identified, and subsequently replaced with different residues to effect the modification of activity.

  19. Orientation-dependent structural and photocatalytic properties of LaCoO3 epitaxial nano-thin films

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-ping; Liu, Hai-feng; Hu, Hai-long; Xie, Rui-shi; Ma, Guo-hua; Huo, Ji-chuan; Wang, Hai-bin

    2018-02-01

    LaCoO3 epitaxial films were grown on (100), (110) and (111) oriented LaAlO3 substrates by the polymer-assisted deposition method. Crystal structure measurement and cross-section observation indicate that all the LaCoO3 films are epitaxially grown in accordance with the orientation of LaAlO3 substrates, with biaxial compressive strain in the ab plane. Owing to the different strain directions of CoO6 octahedron, the mean Co-O bond length increases by different amounts in (100), (110) and (111) oriented films compared with that of bulk LaCoO3, and the (100) oriented LaCoO3 has the largest increase. Photocatalytic degradation of methyl orange indicates that the order of photocatalytic activity of the three oriented films is (100) > (111) > (110). Combined with analysis of electronic nature and band structure for LaCoO3 films, it is found that the change of the photocatalytic activity is closely related to the crystal field splitting energy of Co3+ and Co-O binding energy. The increase in the mean Co-O bond length will decrease the crystal field splitting energy of Co3+ and Co-O binding energy and further reduce the value of band gap energy, thus improving the photocatalytic activity. This may also provide a clue for expanding the visible-light-induced photocatalytic application of LaCoO3.

  20. Structural variation in transition-metal bispidine compounds.

    PubMed

    Comba, Peter; Kerscher, Marion; Merz, Michael; Müller, Vera; Pritzkow, Hans; Remenyi, Rainer; Schiek, Wolfgang; Xiong, Yun

    2002-12-16

    The experimentally determined molecular structures of 40 transition metal complexes with the tetradentate bispyridine-substituted bispidone ligand, 2,4-bis(2-pyridine)-3,7-diazabicyclo[3.3.1]nonane-9-one [M(bisp)XYZ]n+; M = CrIII, MnII, FeII, CoII, CuII, CuI, ZnII; X, Y, Z = mono- or bidentate co-ligands; penta-, hexa- or heptacoordinate complexes) are characterized in detail, supported by force-field and DFT calculations. While the bispidine ligand is very rigid (N3...N7 distance = 2.933 +/- 0.025 A), it tolerates a large range of metal-donor bond lengths (2.07 A < sigma(M-N)/4 < 2.35 A). Of particular interest is the ratio of the bond lengths between the metal center and the two tertiary amine donors (0.84 A < M-N3/M-N7 < 1.05 A) and the fact that, in terms of this ratio there seem to be two clusters with M-N3 < M-N7 and M-N3 > or = M-N7. Calculations indicate that the two structural types are close to degenerate, and the structural form therefore depends on the metal ion, the number and type of co-ligands, as well as structural variations of the bispidine ligand backbone. Tuning of the structures is of importance since the structurally differing complexes have very different stabilities and reactivities.

  1. A density functional theory study on the hydrogen bonding interactions between luteolin and ethanol.

    PubMed

    Zheng, Yan-Zhen; Xu, Jing; Liang, Qin; Chen, Da-Fu; Guo, Rui; Fu, Zhong-Min

    2017-08-01

    Ethanol is one of the most commonly used solvents to extract flavonoids from propolis. Hydrogen bonding interactions play an important role in the properties of liquid system. The main objective of the work is to study the hydrogen bonding interactions between flavonoid and ethanol. Luteolin is a very common flavonoid that has been found in different geographical and botanical propolis. In this work, it was selected as the representative flavonoid to do detailed research. The study was performed from a theoretical perspective using density functional theory (DFT) method. After careful optimization, there exist nine optimized geometries for the luteolin - CH 3 CH 2 OH complex. The binding distance of X - H···O, and the bond length, vibrational frequency, and electron density changes of X - H all indicate the formation of the hydrogen bond in the optimized geometries. In the optimized geometries, it is found that: (1) except for the H2', H5', and H6', CH 3 CH 2 OH has formed hydrogen bonds with all the hydrogen and oxygen atoms in luteolin. The hydrogen atoms in the hydroxyl groups of luteolin form the strongest hydrogen bonds with CH 3 CH 2 OH; (2) all of the hydrogen bonds are closed-shell interactions; (3) the strongest hydrogen bond is the O3' - H3'···O in structure A, while the weakest one is the C3 - H3···O in structure E; (4) the hydrogen bonds of O3' - H3'···O, O - H···O4, O - H···O3' and O - H···O7 are medium strength and covalent dominant in nature. While the other hydrogen bonds are weak strength and possess a dominant character of the electrostatic interactions in nature.

  2. Report B : self-consolidating concrete (SCC) for infrastructure elements - bond, transfer length, and development length of prestressing strand in SCC.

    DOT National Transportation Integrated Search

    2012-08-01

    Due to its economic advantages, the use of self-consolidating concrete (SCC) has : increased rapidly in recent years. However, because SCC mixes typically have decreased : amounts of coarse aggregate and high amounts of admixtures, industry members h...

  3. Extreme halophilic alcohol dehydrogenase mediated highly efficient syntheses of enantiopure aromatic alcohols.

    PubMed

    Alsafadi, Diya; Alsalman, Safaa; Paradisi, Francesca

    2017-11-07

    Enzymatic synthesis of enantiopure aromatic secondary alcohols (including substituted, hetero-aromatic and bicyclic structures) was carried out using halophilic alcohol dehydrogenase ADH2 from Haloferax volcanii (HvADH2). This enzyme showed an unprecedented substrate scope and absolute enatioselectivity. The cofactor NADPH was used catalytically and regenerated in situ by the biocatalyst, in the presence of 5% ethanol. The efficiency of HvADH2 for the conversion of aromatic ketones was markedly influenced by the steric and electronic factors as well as the solubility of ketones in the reaction medium. Furthermore, carbonyl stretching band frequencies ν (C[double bond, length as m-dash]O) have been measured for different ketones to understand the effect of electron withdrawing or donating properties of the ketone substituents on the reaction rate catalyzed by HvADH2. Good correlation was observed between ν (C[double bond, length as m-dash]O) of methyl aryl-ketones and the reaction rate catalyzed by HvADH2. The enzyme catalyzed the reductions of ketone substrates on the preparative scale, demonstrating that HvADH2 would be a valuable biocatalyst for the preparation of chiral aromatic alcohols of pharmaceutical interest.

  4. EXAFS studies on the reaction of gold (III) chloride complex ions with sodium hydroxide and glucose.

    PubMed

    Pacławski, K; Zajac, D A; Borowiec, M; Kapusta, Cz; Fitzner, K

    2010-11-11

    EXAFS and QEXAFS experiments were carried out at Hasylab laboratory in DESY center (X1 beamline, Hamburg, Germany) to monitor the course of the hydrolysis reactions of [AuCl(4)](-) complex ions as well as their reduction using glucose. As a result, changes in the spectra of [AuCl(4)](-) ions and disappearance of absorption Au-L(3) edge were registered. From the results of the experiments we have carried out, the changes in bond lengths between Au(3+) central ion and Cl(-) ligands as well as the reduction of Au(3+) to metallic form (colloidal gold was formed in the system) are evident. Good quality spectra obtained before and after the reactions gave a chance to determine the bond length characteristic of Au-Cl, Au-OH and Au-Au pairs. Additionally, the obtained results were compared with the simulated spectra of different gold (III) complex ions, possibly present in the solution. Finally, the mechanism of these reactions was suggested. Unfortunately, it was not possible to detect the changes in the structure of gold (III) complex ions within the time of reaction, because of too high rates of both processes (hydrolysis and reduction) as compared with the detection time.

  5. On the nature of the excess heat capacity of mixing

    NASA Astrophysics Data System (ADS)

    Benisek, Artur; Dachs, Edgar

    2011-03-01

    The excess vibrational entropy (Δ S {vib/ex}) of several silicate solid solutions are found to be linearly correlated with the differences in end-member volumes (Δ V i ) and end-member bulk moduli (Δκ i ). If a substitution produces both, larger and elastically stiffer polyhedra, then the substituted ion will find itself in a strong enlarged structure. The frequency of its vibration is decreased because of the increase in bond lengths. Lowering of frequencies produces larger heat capacities, which give rise to positive excess vibrational entropies. If a substitution produces larger but elastically softer polyhedra, then increase and decrease of mean bond lengths may be similar in magnitude and their effect on the vibrational entropy tends to be compensated. The empirical relationship between Δ S {vib/ex}, Δ V i and Δκ i , as described by Δ S {vib/ex} = (Δ V i + mΔκ i ) f, was calibrated on six silicate solid solutions (analbite-sanidine, pyrope-grossular, forsterite-fayalite, analbite-anorthite, anorthite-sanidine, CaTs-diopside) yielding m = 0.0246 and f = 2.926. It allows the prediction of Δ S {vib/ex} behaviour of a solid solution based on its volume and bulk moduli end-member data.

  6. Nanoindentation methods for wood-adhesive bond lines

    Treesearch

    Joseph E. Jakes; Donald S. Stone; Charles R. Frihart

    2008-01-01

    As an adherend, wood is structurally, chemically, and mechanically more complex than metals or plastics, and the largest source of this complexity is wood’s chemical and mechanical inhomogeneities. Understanding and predicting the performance of adhesively bonded wood requires knowledge of the interactions occurring at length scales ranging from the macro down to the...

  7. Vibrational spectral investigation and natural bond orbital analysis of pharmaceutical compound 7-Amino-2,4-dimethylquinolinium formate - DFT approach.

    PubMed

    Suresh, D M; Amalanathan, M; Sebastian, S; Sajan, D; Hubert Joe, I; Bena Jothy, V; Nemec, Ivan

    2013-11-01

    The molecular geometry, the normal mode frequencies and corresponding vibrational assignments, natural bond orbital analysis and the HOMO-LUMO analysis of 7-Amino-2,4-dimethylquinolinium formate in the ground state were performed by B3LYP levels of theory using the 6-31G(d) basis set. The optimised bond lengths and bond angles are in good agreement with the X-ray data. The vibrational spectra of the title compound which is calculated by DFT method, reproduces vibrational wave numbers and intensities with an accuracy which allows reliable vibrational assignments. The possibility of N-H⋯O hydrogen bonding was identified using NBO analysis. Natural bond orbital analysis confirms the presence of intramolecular charge transfer and the hydrogen bonding interaction. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Structural propensities and entropy effects in peptide helix-coil transitions

    NASA Astrophysics Data System (ADS)

    Chemmama, Ilan E.; Pelea, Adam Colt; Bhandari, Yuba R.; Chapagain, Prem P.; Gerstman, Bernard S.

    2012-09-01

    The helix-coil transition in peptides is a critical structural transition leading to functioning proteins. Peptide chains have a large number of possible configurations that must be accounted for in statistical mechanical investigations. Using hydrogen bond and local helix propensity interaction terms, we develop a method for obtaining and incorporating the degeneracy factor that allows the exact calculation of the partition function for a peptide as a function of chain length. The partition function is used in calculations for engineered peptide chains of various lengths that allow comparison with a variety of different types of experimentally measured quantities, such as fraction of helicity as a function of both temperature and chain length, heat capacity, and denaturation studies. When experimental sensitivity in helicity measurements is properly accounted for in the calculations, the calculated curves fit well with the experimental curves. We determine values of interaction energies for comparison with known biochemical interactions, as well as quantify the difference in the number of configurations available to an amino acid in a random coil configuration compared to a helical configuration.

  9. Weak hydrogen bonds in complexes pairing monohalomethanes with neutral formic acid

    NASA Astrophysics Data System (ADS)

    Solimannejad, Mohammad; Scheiner, Steve

    2006-06-01

    Ab initio calculations are used to analyze the interaction between formic acid and CH 3X, for X equal to each of F, Cl, and Br. All minima are cyclic in that they contain more than one H-bond. The most strongly bound contain a OH⋯X bond, along with CH⋯O, and the others contain CH⋯X and CH⋯O interactions. Alterations of the covalent bond lengths within each subunit, and vibrational frequency shifts, coupled with electronic charge shifts, reveal fundamental features of these complexes, and the nature of the interactions. The OH⋯X bond is the strongest of those examined here, followed by CH⋯X and CH⋯O.

  10. Low temperature FTIR spectra and hydrogen bonds in polycrystalline cytidine.

    PubMed

    Rozenberg, M; Jung, C; Shoham, G

    2004-08-01

    FTIR spectra of polycrystalline samples of cytidine, pure and containing a small quantity of N(O)H or N(O)D groups (<20%), were measured in KBr pellets from 4000 to 400 cm(-1) at temperatures from 300 to 20K. For the first time the bands of the narrow isotopically decoupled proton stretching vibration mode (nu(1)) of OH- and NH- groups were found; their number corresponds to the number of H-bonds in crystal according to structural data. The FTIR spectra at low temperature in the out-of-plane bending nu(4) proton mode range (lower than 1000 cm(-1)) of N(O)H groups revealed narrow bands, which correspond to nu(1) bands together with several "extra" bands, which are influenced by the isotopic exchange and (or) cooling. All of them have their counterparts in the N(O)D-substance spectrum with an isotopic frequency ratio of 1.30-1.40. The "extra" bands are assigned to the H-bound OH and NH protons, which are disordered and cannot be seen with X-ray crystal structure analysis. The peak positions of both mode bands (expressed as the red shift of nu(1) or blue shift of nu(4) modes relatively free molecules) were used for the estimation of the energy of different H-bonds using previously established empirical correlations between spectral and thermodynamic parameters of hydrogen bonds. The correlation of the red shift and H-bond length is also confirmed for all five H-bonds of cytidine.

  11. Density functional theory analysis of the impact of steric interaction on the function of switchable polarity solvents

    DOE PAGES

    McNally, Joshua S.; Noll, Bruce; Orme, Christopher J.; ...

    2015-05-04

    Here, a density functional theory (DFT) analysis has been performed to explore the impact of steric interactions on the function of switchable polarity solvents (SPS) and their implications on a quantitative structure-activity relationship (QSAR) model previously proposed for SPS. An x-ray crystal structure of the N,N-dimethylcyclohexylammonium bicarbonate (Hdmcha) salt has been solved as an asymmetric unit containing two cation/anion pairs, with a hydrogen bonding interaction observed between the bicarbonate anions, as well as between the cation and anion in each pair. DFT calculations provide an optimized structure of Hdmcha that closely resembles experimental data and reproduces the cation/anion interaction withmore » the inclusion of a dielectric field. Relaxed potential energy surface (PES) scans have been performed on Hdmcha-based computational model compounds, differing in the size of functional group bonded to the nitrogen center, to assess the steric impact of the group on the relative energy and structural properties of the compound. Results suggest that both the length and amount of branching associated with the substituent impact the energetic limitations on rotation of the group along the N-R bond and NC-R bond, and disrupt the energy minimized position of the hydrogen bonded bicarbonate group. The largest interaction resulted from functional groups that featured five bonds between the ammonium proton and a proton on a functional group with the freedom of rotation to form a pseudo-six membered ring which included both protons.« less

  12. Linear and nonlinear susceptibilities from diffusion quantum Monte Carlo: application to periodic hydrogen chains.

    PubMed

    Umari, P; Marzari, Nicola

    2009-09-07

    We calculate the linear and nonlinear susceptibilities of periodic longitudinal chains of hydrogen dimers with different bond-length alternations using a diffusion quantum Monte Carlo approach. These quantities are derived from the changes in electronic polarization as a function of applied finite electric field--an approach we recently introduced and made possible by the use of a Berry-phase, many-body electric-enthalpy functional. Calculated susceptibilities and hypersusceptibilities are found to be in excellent agreement with the best estimates available from quantum chemistry--usually extrapolations to the infinite-chain limit of calculations for chains of finite length. It is found that while exchange effects dominate the proper description of the susceptibilities, second hypersusceptibilities are greatly affected by electronic correlations. We also assess how different approximations to the nodal surface of the many-body wave function affect the accuracy of the calculated susceptibilities.

  13. TiO(2) doping by hydroxyurea at the nucleation stage: towards a new photocatalyst in the visible spectral range.

    PubMed

    Azouani, R; Tieng, S; Chhor, K; Bocquet, J-F; Eloy, P; Gaigneaux, E M; Klementiev, K; Kanaev, A V

    2010-10-07

    We report an original method of preparation of OCN-doped TiO(2) for photocatalysis in the visible spectral range. The preparation is achieved by a sol-gel route using titanium tetraisopropoxide precursor. Special attention was paid to fluid micromixing, which enables homogeneous reaction conditions in the reactor bulk and monodispersity of the produced clusters/nanoparticles. The dopant hydroxyurea (HyU, CH(4)N(2)O(2)) is injected into the reactive fluid at the nucleation stage, which lasts tens of milliseconds. The doping results in a strong yellow coloration of the nanocolloids due to the absorption band in the spectral range 380-550 nm and accelerates the aggregation kinetics of both nuclei at the induction stage and sub-nuclei units (clusters) at the nucleation stage. FTIR, Raman and UV-visible absorption analyses show the formation of a stable HyU-TiO(2) complex. EXAFS spectra indicate no appreciable changes of the first-shell Ti atom environment. The doping agent takes available surface sites of TiO(2) clusters/nanoparticles attaining ∼10% molar loading. The reaction kinetics then accelerates due to a longer collisional lifetime between nanoparticles induced by the formation of a weak [double bond, length as m-dash]OTi bond. The OCN-group bonding to titanium atoms produces a weakening of the C[double bond, length as m-dash]O double bond and a strengthening of the C-N and N-O bonds.

  14. Thermomechanical responses of concrete members strengthened with cfrp sheets

    NASA Astrophysics Data System (ADS)

    Alqurashi, Abdulaziz

    Strengthening structural members means to be able to carry additional loads. Since, 1990s, a lot of materials and techniques have been established to not only increasing the capacity of member but also facing deterioration. Deterioration has become one of the worst highly maintenance cost. According to The ASCE, 27.1% of all bridges in the United States are not effectual. This is because the high traffic reflects negatively to structural members and cause deterioration of these members. This problem has been cost a lot of money. In addition, FRP has approved that it can increase the capacity of member and overcome some disadvantages such as deterioration. Therefore, CFRP sheet has become widely used. However, high temperatures affect the performance of externally bonded CFRP sheet negatively. Investigation should be carried out on relaxation and flexural performance of members under different temperatures. Therefore, this thesis focus on analyzing and investigating the performance of strengthened members exposed to elevated temperatures (25 to 175 °C). The experimental program was divided to two main parts. First, 144 strengthen concrete blocks 100mm X 150mm X 75mm has been exposed to elevated temperatures. These blocks have two main categories, which are different CFRP sheet width, and different CFRP sheet length. Different CFRP width has three types, which are type 0.25B (25mm x 100mm), type 0.5B (50mm x 100mm) and type 0.75B (75mm x 100mm). Also, Different CFRP length has three types, which are type L e (bonded area of 50 mm by 90mm), 1.25 Le (area of 50mm by 125mm) and type 1.5Le (50mm by 137 mm). Second, studying the performance of RC beams exposed to elevated temperatures.

  15. Modeling single molecule junction mechanics as a probe of interface bonding

    NASA Astrophysics Data System (ADS)

    Hybertsen, Mark S.

    2017-03-01

    Using the atomic force microscope based break junction approach, applicable to metal point contacts and single molecule junctions, measurements can be repeated thousands of times resulting in rich data sets characterizing the properties of an ensemble of nanoscale junction structures. This paper focuses on the relationship between the measured force extension characteristics including bond rupture and the properties of the interface bonds in the junction. A set of exemplary model junction structures has been analyzed using density functional theory based calculations to simulate the adiabatic potential surface that governs the junction elongation. The junction structures include representative molecules that bond to the electrodes through amine, methylsulfide, and pyridine links. The force extension characteristics are shown to be most effectively analyzed in a scaled form with maximum sustainable force and the distance between the force zero and force maximum as scale factors. Widely used, two parameter models for chemical bond potential energy versus bond length are found to be nearly identical in scaled form. Furthermore, they fit well to the present calculations of N-Au and S-Au donor-acceptor bonds, provided no other degrees of freedom are allowed to relax. Examination of the reduced problem of a single interface, but including relaxation of atoms proximal to the interface bond, shows that a single-bond potential form renormalized by an effective harmonic potential in series fits well to the calculated results. This allows relatively accurate extraction of the interface bond energy. Analysis of full junction models shows cooperative effects that go beyond the mechanical series inclusion of the second bond in the junction, the spectator bond that does not rupture. Calculations for a series of diaminoalkanes as a function of molecule length indicate that the most important cooperative effect is due to the interactions between the dipoles induced by the donor-acceptor bond formation at the junction interfaces. The force extension characteristic of longer molecules such as diaminooctane, where the dipole interaction effects drop to a negligible level, accurately fit to the renormalized single-bond potential form. The results suggest that measured force extension characteristics for single molecule junctions could be analyzed with a modified potential form that accounts for the energy stored in deformable mechanical components in series.

  16. Modeling single molecule junction mechanics as a probe of interface bonding

    DOE PAGES

    Hybertsen, Mark S.

    2017-03-07

    Using the atomic force microscope based break junction approach, applicable to metal point contacts and single molecule junctions, measurements can be repeated thousands of times resulting in rich data sets characterizing the properties of an ensemble of nanoscale junction structures. This paper focuses on the relationship between the measured force extension characteristics including bond rupture and the properties of the interface bonds in the junction. We analyzed a set of exemplary model junction structures using density functional theory based calculations to simulate the adiabatic potential surface that governs the junction elongation. The junction structures include representative molecules that bond tomore » the electrodes through amine, methylsulfide, and pyridine links. The force extension characteristics are shown to be most effectively analyzed in a scaled form with maximum sustainable force and the distance between the force zero and force maximum as scale factors. Widely used, two parameter models for chemical bond potential energy versus bond length are found to be nearly identical in scaled form. Furthermore, they fit well to the present calculations of N–Au and S–Au donor-acceptor bonds, provided no other degrees of freedom are allowed to relax. Examination of the reduced problem of a single interface, but including relaxation of atoms proximal to the interface bond, shows that a single-bond potential form renormalized by an effective harmonic potential in series fits well to the calculated results. This, then, allows relatively accurate extraction of the interface bond energy. Analysis of full junction models shows cooperative effects that go beyond the mechanical series inclusion of the second bond in the junction, the spectator bond that does not rupture. Calculations for a series of diaminoalkanes as a function of molecule length indicate that the most important cooperative effect is due to the interactions between the dipoles induced by the donor-acceptor bond formation at the junction interfaces. The force extension characteristic of longer molecules such as diaminooctane, where the dipole interaction effects drop to a negligible level, accurately fit to the renormalized single-bond potential form. Our results suggest that measured force extension characteristics for single molecule junctions could be analyzed with a modified potential form that accounts for the energy stored in deformable mechanical components in series.« less

  17. Modeling single molecule junction mechanics as a probe of interface bonding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hybertsen, Mark S.

    Using the atomic force microscope based break junction approach, applicable to metal point contacts and single molecule junctions, measurements can be repeated thousands of times resulting in rich data sets characterizing the properties of an ensemble of nanoscale junction structures. This paper focuses on the relationship between the measured force extension characteristics including bond rupture and the properties of the interface bonds in the junction. We analyzed a set of exemplary model junction structures using density functional theory based calculations to simulate the adiabatic potential surface that governs the junction elongation. The junction structures include representative molecules that bond tomore » the electrodes through amine, methylsulfide, and pyridine links. The force extension characteristics are shown to be most effectively analyzed in a scaled form with maximum sustainable force and the distance between the force zero and force maximum as scale factors. Widely used, two parameter models for chemical bond potential energy versus bond length are found to be nearly identical in scaled form. Furthermore, they fit well to the present calculations of N–Au and S–Au donor-acceptor bonds, provided no other degrees of freedom are allowed to relax. Examination of the reduced problem of a single interface, but including relaxation of atoms proximal to the interface bond, shows that a single-bond potential form renormalized by an effective harmonic potential in series fits well to the calculated results. This, then, allows relatively accurate extraction of the interface bond energy. Analysis of full junction models shows cooperative effects that go beyond the mechanical series inclusion of the second bond in the junction, the spectator bond that does not rupture. Calculations for a series of diaminoalkanes as a function of molecule length indicate that the most important cooperative effect is due to the interactions between the dipoles induced by the donor-acceptor bond formation at the junction interfaces. The force extension characteristic of longer molecules such as diaminooctane, where the dipole interaction effects drop to a negligible level, accurately fit to the renormalized single-bond potential form. Our results suggest that measured force extension characteristics for single molecule junctions could be analyzed with a modified potential form that accounts for the energy stored in deformable mechanical components in series.« less

  18. A Unified Theory for the Blue- and Red-Shifting Phenomena in Hydrogen and Halogen Bonds.

    PubMed

    Wang, Changwei; Danovich, David; Shaik, Sason; Mo, Yirong

    2017-04-11

    Typical hydrogen and halogen bonds exhibit red-shifts of their vibrational frequencies upon the formation of hydrogen and halogen bonding complexes (denoted as D···Y-A, Y = H and X). The finding of blue-shifts in certain complexes is of significant interest, which has led to numerous studies of the origins of the phenomenon. Because charge transfer mixing (i.e., hyperconjugation in bonding systems) has been regarded as one of the key forces, it would be illuminating to compare the structures and vibrational frequencies in bonding complexes with the charge transfer effect "turned on" and "turned off". Turning off the charge transfer mixing can be achieved by employing the block-localized wave function (BLW) method, which is an ab initio valence bond (VB) method. Further, with the BLW method, the overall stability gained in the formation of a complex can be analyzed in terms of a few physically meaningful terms. Thus, the BLW method provides a unified and physically lucid way to explore the nature of red- and blue-shifting phenomena in both hydrogen and halogen bonding complexes. In this study, a direct correlation between the total stability and the variation of the Y-A bond length is established based on our BLW computations, and the consistent roles of all energy components are clarified. The n(D) → σ*(Y-A) electron transfer stretches the Y-A bond, while the polarization due to the approach of interacting moieties reduces the HOMO-LUMO gap and results in a stronger orbital mixing within the YA monomer. As a consequence, both the charge transfer and polarization stabilize bonding systems with the Y-A bond stretched and red-shift the vibrational frequency of the Y-A bond. Notably, the energy of the frozen wave function is the only energy component which prefers the shrinking of the Y-A bond and thus is responsible for the associated blue-shifting. The total variations of the Y-A bond length and the corresponding stretching vibrational frequency are thus determined by the competition between the frozen-energy term and the sum of polarization and charge transfer energy terms. Because the frozen energy is composed of electrostatic and Pauli exchange interactions and frequency shifting is a long-range phenomenon, we conclude that long-range electrostatic interaction is the driving force behind the frozen energy term.

  19. Nb2©Au6: a molecular wheel with a short Nb 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 Nb triple bond coordinated by an Au6 ring and reinforced by σ aromaticity† †Electronic supplementary information (ESI) available: Photoelectron spectra of Nb2Au6– at (a) 616.86 nm, (b) 610.55 nm, (c) 603.38 nm, and (d) 589.58 nm; relative energies of low-lying isomers of Nb2Au6– within 1.5 eV at the PW91, PBE0 (in square brackets), CCSD (in braces) and CCSD(T) (in angle brackets) levels; the four lowest-lying isomers of Nb2Au6 at the levels of PW91 and PBE0; valence canonical molecular orbital contours for the D6h Nb2Au6– at the PBE0 level; comparison between the 193 nm spectrum of Nb2Au6– with the simulated spectra of isomers I and II at the PW91/Def2-TZVPPD and BP86/Def2-TZVPPD levels; comparison between the 193 nm spectrum of Nb2Au6– with the simulated spectra of isomer I at PBE0/Def2-TZVPPD and TPSSh/Def2-TZVPPD levels; the energy difference between isomers I and II of Nb2Au6– calculated at various levels of theory; the first VDEs of isomers I, II, III, IV and V of Nb2Au6– computed at the PW91 and PBE0 levels; calculated vibrational frequencies for the D6h global minimum of Nb2Au6 at PW91 and PBE0 levels; calculated bond orders and charges of D∞h Nb2, D6h Au6, and D6h Nb2Au6 at the PBE0/Def2-TZVP level. See DOI: 10.1039/c7sc02881d

    PubMed Central

    Jian, Tian; Cheung, Ling Fung; Czekner, Joseph; Chen, Teng-Teng; Lopez, Gary V.; Li, Wei-Li

    2017-01-01

    We report a photoelectron spectroscopy and high-resolution photoelectron imaging study of a bimetallic Nb2Au6– cluster. Theoretical calculations, in conjunction with the experimental data, reveal that Nb2Au6–/0 possess high-symmetry D6h structures featuring a Nb–Nb axis coordinated equatorially by an Au6 ring. Chemical bonding analyses show that there are two π bonds and one σ bond in the Nb2 moiety in Nb2©Au6, as well as five totally delocalized σ bonds. The Nb 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 Nb triple bond is strengthened significantly by the delocalized σ bonds, resulting in an extremely short Nb–Nb bond length comparable to the quintuple bond in gaseous Nb2. The totally delocalized σ bonding in Nb2©Au6 is reminiscent of σ aromaticity, representing a new bonding mode in metal–ligand systems. The unusually short Nb–Nb bond length in Nb2©Au6 shows that the Au6 ring can serve as a bridging ligand to facilitate multiple bonding in transition metal dimers via delocalized σ bonding. PMID:29163907

  20. Alkyl Chain Length Dependent Structural and Orientational Transformations of Water at Alcohol-Water Interfaces and Its Relevance to Atmospheric Aerosols.

    PubMed

    Mondal, Jahur A; Namboodiri, V; Mathi, P; Singh, Ajay K

    2017-04-06

    Although the hydrophobic size of an amphiphile plays a key role in various chemical, biological, and atmospheric processes, its effect at macroscopic aqueous interfaces (e.g., air-water, oil-water, cell membrane-water, etc.), which are ubiquitous in nature, is not well understood. Here we report the hydrophobic alkyl chain length dependent structural and orientational transformations of water at alcohol (C n H 2n+1 OH, n = 1-12)-water interfaces using interface-selective heterodyne-detected vibrational sum frequency generation (HD-VSFG) and Raman multivariate curve resolution (Raman-MCR) spectroscopic techniques. The HD-VSFG results reveal that short-chain alcohols (C n H 2n+1 OH, n < 4, i.e., up to 1-propanol) do not affect the structure (H-bonding) and orientation of water at the air-water interface; the OH stretch band maximum appears at ∼3470 cm -1 , and the water H atoms are pointed toward the bulk water, that is, "H-down" oriented. In contrast, long-chain alcohols (C n H 2n+1 OH, n > 4, i.e., beyond 1-butanol) make the interfacial water more strongly H-bonded and reversely orientated; the OH stretch band maximum appears at ∼3200 cm -1 , and the H atoms are pointed away from the bulk water, that is, "H-up" oriented. Interestingly, for the alcohol of intermediate chain length (C n H 2n+1 OH, n = 4, i.e, 1-butanol), the interface is quite unstable even after hours of its formation and the time-averaged result is qualitatively similar to that of the long-chain alcohols, indicating a structural/orientational crossover of interfacial water at the 1-butanol-water interface. pH-dependent HD-VSFG measurements (with H 2 O as well as isotopically diluted water, HOD) suggest that the structural/orientational transformation of water at the long-chain alcohol-water interface is associated with the adsorption of OH - anion at the interface. Vibrational mapping of the water structure in the hydration shell of OH - anion (obtained by Raman-MCR spectroscopy of NaOH in HOD) clearly shows that the water becomes strongly H-bonded (OH stretch max. ≈ 3200 cm -1 ) while hydrating the OH - anion. Altogether, it is conceivable that alcohols of different hydrophobic chain lengths that are present in the troposphere will differently affect the interfacial electrostatics and associated chemical processes of aerosol droplets, which are critical for cloud formation, global radiation budget, and climate change.

  1. Detonation wave profiles measured in plastic bonded explosives using 1550 nm photon doppler velocimetry (PDV)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustavsen, Richard L; Bartram, Brian D; Sanchez, Nathaniel

    2009-01-01

    We present detonation wave profiles measured in two TATB based explosives and two HMX based explosives. Profiles were measured at the interface of the explosive and a Lithium-Fluoride (LiF) window using 1550 nm Photon Doppler Velocimetry (PDV). Planar detonations were produced by impacting the explosive with a projectile launched in a gas-gun. The impact state was varied to produce varied distance to detonation, and therefore varied support of the Taylor wave following the Chapman-Jouget (CJ) or sonic state. Profiles from experiments with different support should be the same between the Von-Neumann (VN) spike and CJ state and different thereafter. Comparisonmore » of profiles with differing support, therefore, allows us to estimate reaction zone lengths. For the TATB based explosive, a reaction zone length of {approx} 3.9 mm, 500 ns was measured in EDC-35, and a reaction zone length of {approx} 6.3 mm, 800 ns was measured in PBX 9502 pre-cooled to -55 C. The respective VN spike state was 2.25 {+-} 0.05 km/s in EDC-35 and 2.4 {+-} 0.1 km/s in the cooled PBX 9502. We do not believe we have resolved either the VN spike state (> 2.6 km/s) nor the reaction zone length (<< 50 ns) in the HMX based explosives.« less

  2. Doubly self-consistent field theory of grafted polymers under simple shear in steady state.

    PubMed

    Suo, Tongchuan; Whitmore, Mark D

    2014-03-21

    We present a generalization of the numerical self-consistent mean-field theory of polymers to the case of grafted polymers under simple shear. The general theoretical framework is presented, and then applied to three different chain models: rods, Gaussian chains, and finitely extensible nonlinear elastic (FENE) chains. The approach is self-consistent at two levels. First, for any flow field, the polymer density profile and effective potential are calculated self-consistently in a manner similar to the usual self-consistent field theory of polymers, except that the calculation is inherently two-dimensional even for a laterally homogeneous system. Second, through the use of a modified Brinkman equation, the flow field and the polymer profile are made self-consistent with respect to each other. For all chain models, we find that reasonable levels of shear cause the chains to tilt, but it has very little effect on the overall thickness of the polymer layer, causing a small decrease for rods, and an increase of no more than a few percent for the Gaussian and FENE chains. Using the FENE model, we also probe the individual bond lengths, bond correlations, and bond angles along the chains, the effects of the shear on them, and the solvent and bonded stress profiles. We find that the approximations needed within the theory for the Brinkman equation affect the bonded stress, but none of the other quantities.

  3. Modelling the local atomic structure of molybdenum in nuclear waste glasses with ab initio molecular dynamics simulations.

    PubMed

    Konstantinou, Konstantinos; Sushko, Peter V; Duffy, Dorothy M

    2016-09-21

    The nature of chemical bonding of molybdenum in high level nuclear waste glasses has been elucidated by ab initio molecular dynamics simulations. Two compositions, (SiO 2 ) 57.5 -(B 2 O 3 ) 10 -(Na 2 O) 15 -(CaO) 15 -(MoO 3 ) 2.5 and (SiO 2 ) 57.3 -(B 2 O 3 ) 20 -(Na 2 O) 6.8 -(Li 2 O) 13.4 -(MoO 3 ) 2.5 , were considered in order to investigate the effect of ionic and covalent components on the glass structure and the formation of the crystallisation precursors (Na 2 MoO 4 and CaMoO 4 ). The coordination environments of Mo cations and the corresponding bond lengths calculated from our model are in excellent agreement with experimental observations. The analysis of the first coordination shell reveals two different types of molybdenum host matrix bonds in the lithium sodium borosilicate glass. Based on the structural data and the bond valence model, we demonstrate that the Mo cation can be found in a redox state and the molybdate tetrahedron can be connected with the borosilicate network in a way that inhibits the formation of crystalline molybdates. These results significantly extend our understanding of bonding in Mo-containing nuclear waste glasses and demonstrate that tailoring the glass composition to specific heavy metal constituents can facilitate incorporation of heavy metals at high concentrations.

  4. Double bonds? Studies on the barrier to rotation about the cumulenic C=C bonds of tetraaryl[n]cumulenes (n = 3, 5, 7, 9).

    PubMed

    Buehringer, Martina U; Padberg, Kevin; Phleps, Martin; Maid, Harald; Placht, Christian; Neiss, Christian; Ferguson, Michael; Goerling, Andreas; Tykwinski, Rik R

    2018-03-31

    Bonding is the fundamental aspect of organic chemistry, yet the magnitude of C=C bonding in [n]cumulenes as a function of increasing chain length has yet to be experimentally verified for derivatives longer than n = 5. The synthesis of a series of apolar and unsymmetrically substituted tetraaryl[n]cumulenes (n = 3, 5, 7, 9) has been developed and rotational barriers for Z-/E-isomerization have been measured using dynamic VT-NMR spectroscopy. Both experiment and theory confirm a dramatic reduction of the rotational barrier (through estimation of G≠rot for the isomerization) from >24 to 19 to 15 to 11 kcal-1 in [n]cumulenes with n = 3, 5, 7, 9, respectively. Thus, the reduction of cumulenic bonding in longer cumulenes affords bond rotational barriers that are more characteristic of a sterically hindered single bond than that of a double bond. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Effects of ligand electronegativity on recoupled pair bonds with application to sulfurane precursors.

    PubMed

    Lindquist, Beth A; Woon, David E; Dunning, Thom H

    2014-07-31

    Recoupled pair bonds (RPBs) are conditional bonds-they only form for selected central atoms and ligands. A complete theoretical description of RPBs requires an understanding of the properties of the central atom and ligands that enable such bonds to be formed. In this work, we show that ligand electronegativity is positively correlated with recoupled pair bond strength for a variety of ligands interacting with the 3p(2) pair of sulfur. We also describe substituent (X) effects on the SF(a(4)Σ(-)) state by investigating X2SF species. These effects generally mirror those observed for covalently bound analogues, but we found that recoupled pair bonding can lead to breakdowns in the expected relationships among bond length, strength, and force constant for some of these species. Finally, we compare the properties of two molecules of practical interest that are bound by recoupled pair bonds: the dimethyl sulfur fluoride and hydroxide radicals (DMS-F and DMS-OH).

  6. Comparison of microleakage on one composite etched with phosphoric acid or a combination of phosphoric and hydrofluoric acids and bonded with several different systems.

    PubMed

    Szep, Susanne; Langner, Nicole; Bayer, Silja; Börnichen, Diana; Schulz, Christoph; Gerhardt, Thomas; Schriever, Anette; Becker, Joachim; Heidemann, Detlef

    2003-02-01

    There are no data available on whether or to what extent hydrofluoric acid affects the marginal integrity of dentin-bonded composite restorations when it is used instead of phosphoric acid in the total-etch technique. This in vitro study examined the etching effects of phosphoric acid versus a combination of phosphoric and hydrofluoric acid by evaluation of microleakage in a composite restoration bonded with different dentin adhesive systems. Extracted teeth (n = 90) containing 2 class II preparations, mesial occlusal (MO) and distal occlusal (DO) standarized (cervical margins in dentin) were perfused with Ringer solution and etched in 1 of 2 ways: with phosphoric acid only or with phosphoric combined with hydrofluoric acid. Different dentin bonding agents were then applied (Etch & Prime 3.0, Optibond Solo, Prime & Bond NT, Scotchbond 1, Syntac Single Component, or Syntac Sprint; (n = 15 for each etching material)). The preparations were restored with a hybrid composite (Herculite XRV) and submitted to 5000 thermocycles (5 degrees C to 55 degrees C) to simulate the in vivo situation. Microleakage was assessed with 2% methylene blue diffusion for 24 hours. Dye penetration was calculated as a percentage of the total length of the gingival margins of the preparation with light microscopy at original magnification x 32. The results were analyzed with the Kruskal-Wallis multiple comparison z-value assay (alpha = .05). Differences in dye penetration were significant, both as a function of the dentin adhesive and the conditioning mode applied. In the specimen groups conditioned with phosphoric acid, Optibond Solo (54% +/- 44%) and Syntac Sprint (74% +/- 39%) demonstrated the lowest penetration values. Higher values were obtained for Prime & Bond NT (81% +/- 34%), Scotchbond 1 (83% +/- 31%), Etch & Prime 3.0 (85% +/- 33%), and Syntac Single Component (95% +/- 16%), with no significant differences (alpha=.05) between specimen groups. The best results were obtained for Syntac Sprint (24% +/- 26% dye penetration) after conditioning with a mixture of phosphoric and hydrofluoric acid. The least favorable result was obtained for Optibond Solo (65% +/- 31%). It was significantly different from Prime & Bond NT (76% +/- 37%), Scotchbond 1 (85% +/- 29%), and Etch & Prime 3.0 (88% +/- 24%). Syntac Single Component (75% +/- 32%) was significantly different from Syntac Sprint. Syntac Single Component and Syntac Sprint exhibited significantly better results when conditioned with a combination of phosphoric acid and hydrofluoric acid than with phosphoric acid only. Within the limitations of this in vitro study, total-etching water-based (Syntac Single Component) and acetone-based (Syntac Sprint) bonding agents with a combination of phosphoric acid and hydrofluoric acid led to significant reductions (alpha=.05) in dye penetration compared to phosphoric acid conditioning only. Ethanol-based dentin bonding agents (Etch & Prime 3.0, Optibond Solo, and Scotchbond 1) were not significantly influenced by the type of conditioner used.

  7. Validating a Mentoring Relationship Quality Scale: Does Match Strength Predict Match Length?

    ERIC Educational Resources Information Center

    Rhodes, Jean E.; Schwartz, Sarah E. O.; Willis, Margaret M.; Wu, Max B.

    2017-01-01

    Youth mentoring relationships have significant potential for promoting positive youth development. Nonetheless, the benefits derived from such relationships depend considerably on the length and quality of the bonds that are created between mentors and youth. Although some attention has been paid to youth's experience of relationship quality, few…

  8. A DFT-D Study on Structural, Electronic, Thermodynamic, and Mechanical Properties of HMX/MPNO Cocrystal under High Pressure

    NASA Astrophysics Data System (ADS)

    Lin, He; Chen, Jian-Fu; Cui, Yu-Ming; Zhang, Zhen-Jiang; Yang, Dong-Dong; Zhu, Shun-Guan; Li, Hong-Zhen

    2017-04-01

    An investigation on the structural, electronic, thermodynamic, and mechanical properties of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)/2-methylpyridine-N-oxide (MPNO) cocrystal was carried out from 0 to 100 GPa by using a dispersion-corrected density functional theory (DFT-D) method. Our calculated crystal structure is in excellent agreement with experimental results at ambient pressure. Based on the analysis of lattice parameters, lattice angles, bond lengths, bond angles, and dihedral angles under high pressure, we observe that HMX molecules in the cocrystal bulk are seriously distorted but MPNO molecules remain relatively unchanged. Hydrogen bond lengths are greatly shortened under high pressure. In addition, with the increase in pressure, the bandgap decreases gradually. However, it increases suddenly at 70 GPa. Some important hydrogen bonds between HMX and MPNO are also observed in the density of states spectrum. According to the thermodynamic analysis, this cocrystal is more easily prepared under low pressure. Finally, we characterized its mechanical properties and the results show that this cocrystal is malleable in nature. We expect that this research can provide a fundamental basis for further HMX cocrystal design and preparation.

  9. Molecular structure, vibrational spectra, NBO analysis and molecular packing prediction of 3-nitroacetanilide by ab initio HF and density functional theory.

    PubMed

    Li, Xiao-Hong; Li, Tong-Wei; Ju, Wei-Wei; Yong, Yong-Liang; Zhang, Xian-Zhou

    2014-01-24

    Quantum chemical calculations of geometries and vibrational wavenumbers of 3-nitroacetanilide (C8H8N2O3) in the ground state were carried out by using ab initio HF and density functional theory (DFT/B3LYP) methods with 6-31+G(*) basis set. The -311++G(**) basis set is also used for B3LYP level. The scaled harmonic vibrational frequencies have been compared with experimental FT-IR spectra. Theoretical vibrational spectra of the title compound were interpreted by means of potential energies distributions (PEDs) using MOLVIB program. The theoretical spectrograms for IR spectra of the title compound have been constructed. The shortening of C-H bond length and the elongation of N-H bond length suggest the existence of weak C-H⋯O and N-H⋯O hydrogen bonds, which is confirmed by the natural bond orbital analysis. In addition, the crystal structure obtained by molecular mechanics belongs to the P2(1) space group, with lattice parameters Z=4, a=14.9989 Å, b=4.0367 Å, c=12.9913 Å, ρ=0.998 g cm(-3). Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Molecular structure, vibrational spectra, NBO analysis and molecular packing prediction of 3-nitroacetanilide by ab initio HF and density functional theory

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Hong; Li, Tong-Wei; Ju, Wei-Wei; Yong, Yong-Liang; Zhang, Xian-Zhou

    2014-01-01

    Quantum chemical calculations of geometries and vibrational wavenumbers of 3-nitroacetanilide (C8H8N2O3) in the ground state were carried out by using ab initio HF and density functional theory (DFT/B3LYP) methods with 6-31+G* basis set. The -311++G** basis set is also used for B3LYP level. The scaled harmonic vibrational frequencies have been compared with experimental FT-IR spectra. Theoretical vibrational spectra of the title compound were interpreted by means of potential energies distributions (PEDs) using MOLVIB program. The theoretical spectrograms for IR spectra of the title compound have been constructed. The shortening of Csbnd H bond length and the elongation of Nsbnd H bond length suggest the existence of weak Csbnd H⋯O and Nsbnd H⋯O hydrogen bonds, which is confirmed by the natural bond orbital analysis. In addition, the crystal structure obtained by molecular mechanics belongs to the P21 space group, with lattice parameters Z = 4, a = 14.9989 Å, b = 4.0367 Å, c = 12.9913 Å, ρ = 0.998 g cm-3.

  11. Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen

    PubMed Central

    Gagné, Olivier Charles; Hawthorne, Frank Christopher

    2015-01-01

    Published two-body bond-valence parameters for cation–oxygen bonds have been evaluated via the root mean-square deviation (RMSD) from the valence-sum rule for 128 cations, using 180 194 filtered bond lengths from 31 489 coordination polyhedra. Values of the RMSD range from 0.033–2.451 v.u. (1.1–40.9% per unit of charge) with a weighted mean of 0.174 v.u. (7.34% per unit of charge). The set of best published parameters has been determined for 128 ions and used as a benchmark for the determination of new bond-valence parameters in this paper. Two common methods for the derivation of bond-valence parameters have been evaluated: (1) fixing B and solving for R o; (2) the graphical method. On a subset of 90 ions observed in more than one coordination, fixing B at 0.37 Å leads to a mean weighted-RMSD of 0.139 v.u. (6.7% per unit of charge), while graphical derivation gives 0.161 v.u. (8.0% per unit of charge). The advantages and disadvantages of these (and other) methods of derivation have been considered, leading to the conclusion that current methods of derivation of bond-valence parameters are not satisfactory. A new method of derivation is introduced, the GRG (generalized reduced gradient) method, which leads to a mean weighted-RMSD of 0.128 v.u. (6.1% per unit of charge) over the same sample of 90 multiple-coordination ions. The evaluation of 19 two-parameter equations and 7 three-parameter equations to model the bond-valence–bond-length relation indicates that: (1) many equations can adequately describe the relation; (2) a plateau has been reached in the fit for two-parameter equations; (3) the equation of Brown & Altermatt (1985 ▸) is sufficiently good that use of any of the other equations tested is not warranted. Improved bond-valence parameters have been derived for 135 ions for the equation of Brown & Altermatt (1985 ▸) in terms of both the cation and anion bond-valence sums using the GRG method and our complete data set. PMID:26428406

  12. The role of differing probe and target strand lengths in DNA microarrays investigated via Monte Carlo molecular simulation

    NASA Astrophysics Data System (ADS)

    Rivard, Brea R.; Cooper, Sarah J.; Stubbs, John M.

    2018-02-01

    DNA duplexes consisting of a 25mer together with shorter complementary sequences were studied over a range of temperature and surface binding motifs using a coarse-grained two-site nucleotide model. Results were analyzed in terms of hydrogen bonding interactions and structural characteristics and indicate that hybridization is most stable when furthest from the surface binding site. Strand elongation and straightening near the bound end are found to be correlated to duplex destabilization.

  13. Modified acyl-ACP desaturase

    DOEpatents

    Cahoon, E.B.; Shanklin, J.; Lindgvist, Y.; Schneider, G.

    1998-01-06

    Disclosed is a method for modifying the chain length and double bond positional specificities of a soluble plant fatty acid desaturase. More specifically, the method involves modifying amino acid contact residues in the substrate binding channel of the soluble fatty acid desaturase which contact the fatty acid. Specifically disclosed is the modification of an acyl-ACP desaturase. Amino acid contact residues which lie within the substrate binding channel are identified, and subsequently replaced with different residues to effect the modification of activity. 1 fig.

  14. Modified Acyl-ACP desaturase

    DOEpatents

    Cahoon, E.B.; Shanklin, J.; Lindqvist, Y.; Schneider, G.

    1999-03-30

    Disclosed is a method for modifying the chain length and double bond positional specificities of a soluble plant fatty acid desaturase. More specifically, the method involves modifying amino acid contact residues in the substrate binding channel of the soluble fatty acid desaturase which contact the fatty acid. Specifically disclosed is the modification of an acyl-ACP desaturase. Amino acid contact residues which lie within the substrate binding channel are identified, and subsequently replaced with different residues to effect the modification of activity. 2 figs.

  15. Principles determining the structure of high-pressure forms of metals: The structures of cesium(IV) and cesium(V)

    PubMed Central

    Pauling, Linus

    1989-01-01

    Consideration of the relation between bond length and bond number and the average atomic volume for different ways of packing atoms leads to the conclusion that the average ligancy of atoms in a metal should increase when a phase change occurs on increasing the pressure. Minimum volume for each value of the ligancy results from triangular coordination polyhedra (with triangular faces), such as the icosahedron and the Friauf polyhedron. Electron transfer may permit atoms of an element to assume different ligancies. Application of these principles to Cs(IV) and Cs(V), which were previously assigned structures with ligancy 8 and 6, respectively, has led to the assignment to Cs(IV) of a primitive cubic unit cell with a = 16.11 Å and with about 122 atoms in the cube and to Cs(V) of a primitive cubic unit cell resembling that of Mg32(Al,Zn)49, with a = 16.97 Å and with 162 atoms in the cube. PMID:16578839

  16. Blood lead: Its effect on trace element levels and iron structure in hemoglobin

    NASA Astrophysics Data System (ADS)

    Jin, C.; Li, Y.; Li, Y. L.; Zou, Y.; Zhang, G. L.; Normura, M.; Zhu, G. Y.

    2008-08-01

    Lead is a ubiquitous environmental pollutant that induce a broad range of physiological and biochemical dysfunctions. The purpose of this study was to investigate its effects on trace elements and the iron structure in hemoglobin. Blood samples were collected from rats that had been exposed to lead. The concentration of trace elements in whole blood and blood plasma was determined by ICP-MS and the results indicate that lead exists mainly in the red blood cells and only about 1-3% in the blood plasma. Following lead exposure, the concentrations of zinc and iron in blood decrease, as does the hemoglobin level. This indicates that the heme biosynthetic pathway is inhibited by lead toxicity and that lead poisoning-associated anemia occurs. The selenium concentration also decreases after lead exposure, which may lead to an increased rate of free radical production. The effect of lead in the blood on iron structure in hemoglobin was determined by EXAFS. After lead exposure, the Fe-O bond length increases by about 0.07 Å and the Fe-Np bond length slightly increases, but the Fe-N ɛ bond length remains unchanged. This indicates that the blood content of Hb increases, but that the content of HbO 2 decreases.

  17. Bond length (Ti-O) dependence of nano ATO3-based (A = Pb, Ba, Sr) perovskite structures: Optical investigation in IR range

    NASA Astrophysics Data System (ADS)

    Ghasemifard, Mahdi; Ghamari, Misagh; Okay, Cengiz

    2018-01-01

    In the current study, ABO3 (A = Pb, Ba, Sr and B = Ti) perovskite structures are produced by the auto-combustion route by using citric acid (CA) and nitric acid (NA) as fuel and oxidizer. The X-ray diffraction (XRD) patterns confirmed the perovskite nanostructure with cubic, tetragonal, and rhombohedral for SrTiO3, PbTiO3, and BaTiO3, respectively. Using Scherrer’s equation and XRD pattern, the average crystallite size of the samples were acquired. The effect of Ti-O bond length on the structure of the samples was evaluated. The type of structures obtained depends on Ti-O bond length which is in turn influenced by A2+ substitutions. Microstructural studies of nanostructures calcined at 850∘C confirmed the formation of polyhedral particles with a narrow size distribution. The values of optical band gaps were measured and the impact of A2+ was discussed. The optical properties such as the complex refractive index and dielectric function were calculated by IR spectroscopy and Kramers-Kronig (K-K) relations. Lead, as the element with the highest density as compared to other elements, changes the optical constants, remarkably due to altering titanium and oxygen distance in TO6 groups.

  18. The atomic geometries of GaP(110) and ZnS(110) revisited - A structural ambiguity and its resolution

    NASA Technical Reports Server (NTRS)

    Duke, C. B.; Paton, A.; Kahn, A.

    1984-01-01

    The atomic geometries of GaP(110) and ZnS(110) are reexamined using the R-factor minimization procedure, developed for GaAs(110) and previously applied to GaSb(110), ZnTe(110), InAs(110), and AlP(110), to analyze experimental elastic low-energy electron diffraction intensities. Unlike most of the earlier cases, both GaP(110) and ZnS(110) exhibit two distinct minimum-Rx structures which cannot be distinguished by analysis of the shapes of the intensity profiles alone. One region of best-fit structures exhibits top-layer displacements normal to the surface characterized by a small bond-length-conserving, top-layer rotation (omega aproximately 2-3 deg), a small relaxation of the top layer away from the surface, and a 10 percent expansion of the top-layer bond length. The other region of best-fit structures is the conventional one: nearly bond-length-conserving rotations of omega = 26-28 deg in the top layer and a small (approximately 0.1 A) contraction of the uppermost layer spacing. This ambiguity may be removed, however, by consideration of the integrated beam intensities. The conventional region of structural parameters provides a decisively better description of the relative magnitudes of the integrated beam intensities and hence is the preferred structure.

  19. Both the stroma and thylakoid lumen of tobacco chloroplasts are competent for the formation of disulphide bonds in recombinant proteins.

    PubMed

    Bally, Julia; Paget, Eric; Droux, Michel; Job, Claudette; Job, Dominique; Dubald, Manuel

    2008-01-01

    Plant chloroplasts are promising vehicles for recombinant protein production, but the process of protein folding in these organelles is not well understood in comparison with that in prokaryotic systems, such as Escherichia coli. This is particularly true for disulphide bond formation which is crucial for the biological activity of many therapeutic proteins. We have investigated the capacity of tobacco (Nicotiana tabacum) chloroplasts to efficiently form disulphide bonds in proteins by expressing in this plant cell organelle a well-known bacterial enzyme, alkaline phosphatase, whose activity and stability strictly depend on the correct formation of two intramolecular disulphide bonds. Plastid transformants have been generated that express either the mature enzyme, localized in the stroma, or the full-length coding region, including its signal peptide. The latter has the potential to direct the recombinant alkaline phosphatase into the lumen of thylakoids, giving access to this even less well-characterized organellar compartment. We show that the chloroplast stroma supports the formation of an active enzyme, unlike a normal bacterial cytosol. Sorting of alkaline phosphatase to the thylakoid lumen occurs in the plastid transformants translating the full-length coding region, and leads to larger amounts and more active enzyme. These results are compared with those obtained in bacteria. The implications of these findings on protein folding properties and competency of chloroplasts for disulphide bond formation are discussed.

  20. A computational study of hydrogen-bonded X3CH⋯YZ (X = Cl, F, NC; YZ = FLi, BF, CO, N2) complexes

    NASA Astrophysics Data System (ADS)

    McDowell, Sean A. C.

    2018-03-01

    An MP2/6-311++G(3df,3pd) computational study of a series of hydrogen-bonded complexes X3CH⋯YZ (X = Cl, F, NC; YZ = FLi, BF, CO, N2) was undertaken to assess the trends in the relative stability and other molecular properties with variation of both the X group and the chemical hardness of the Y atom of YZ. The red- and blue-shifting propensities of the proton donor X3CH were investigated by considering the Csbnd H bond length change and its associated vibrational frequency shift. The proton donor Cl3CH, which has a positive dipole moment derivative with respect to Csbnd H bond extension, tends to form red-shifted complexes, this tendency being modified by the hardness (and dipole moment) associated with the proton acceptor. On the other hand, F3CH has a negative dipole moment derivative and tends to form blue-shifted complexes, suggesting that as X becomes more electron-withdrawing, the proton donor should have a negative dipole moment derivative and form blue-shifted complexes. Surprisingly, the most polar proton donor (NC)3CH was found to have a positive dipole moment derivative and produces red-shifted complexes. A perturbative model was found useful in rationalizing the trends for the Csbnd H bond length change and associated frequency shift.

  1. Molecular dynamics modeling of PPTA crystallite mechanical properties in the presence of defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mercer, Brian; Zywicz, Edward; Papadopoulos, Panayiotis

    Here, the mechanical properties of PPTA crystallites, the fundamental building blocks of aramid polymer fibers such as Kevlar® and Twaron®, are studied here using molecular dynamics simulations. The ReaxFF interatomic potential is employed to study crystallite failure via covalent and hydrogen bond rupture in constant strain-rate tensile loading simulations. Emphasis is placed on analyzing how chain-end defects in the crystallite influence its mechanical response and fracture strength. Chain-end defects are found to affect the behavior of nearby chains in a region of the PPTA crystallite that is small relative to the typical crystallite size in manufactured aramid fibers. The centralmore » Csingle bondN bond along the backbone chain is identified as the weakest in the PPTA polymer chain backbone in dynamic strain-to-failure simulations of the crystallite. It is found that clustering of chain-ends leads to reduced crystallite strength and crystallite failure via hydrogen bond rupture and chain sliding, whereas randomly scattered defects impact the strength less and failure is by covalent bond rupture and chain scission. The axial crystallite modulus increases with increasing chain length and is independent of chain-end defect locations. On the basis of these findings, a theoretical model is proposed to predict the axial modulus as a function of chain length.« less

  2. Molecular dynamics modeling of PPTA crystallite mechanical properties in the presence of defects

    DOE PAGES

    Mercer, Brian; Zywicz, Edward; Papadopoulos, Panayiotis

    2017-03-11

    Here, the mechanical properties of PPTA crystallites, the fundamental building blocks of aramid polymer fibers such as Kevlar® and Twaron®, are studied here using molecular dynamics simulations. The ReaxFF interatomic potential is employed to study crystallite failure via covalent and hydrogen bond rupture in constant strain-rate tensile loading simulations. Emphasis is placed on analyzing how chain-end defects in the crystallite influence its mechanical response and fracture strength. Chain-end defects are found to affect the behavior of nearby chains in a region of the PPTA crystallite that is small relative to the typical crystallite size in manufactured aramid fibers. The centralmore » Csingle bondN bond along the backbone chain is identified as the weakest in the PPTA polymer chain backbone in dynamic strain-to-failure simulations of the crystallite. It is found that clustering of chain-ends leads to reduced crystallite strength and crystallite failure via hydrogen bond rupture and chain sliding, whereas randomly scattered defects impact the strength less and failure is by covalent bond rupture and chain scission. The axial crystallite modulus increases with increasing chain length and is independent of chain-end defect locations. On the basis of these findings, a theoretical model is proposed to predict the axial modulus as a function of chain length.« less

  3. Some general aspects of torsional sensitivity and the GG-effect

    NASA Astrophysics Data System (ADS)

    Yu, C.-H.; Schäfer, L.; Ramek, M.; Miller, D. M.; Teppen, B. J.

    1999-08-01

    The geometries of 28 compounds of type X-C1-C2-C3-Y, with X,Y=CH 3, F, Cl, OH, NH 2, COH, and COOH, were fully optimized by ab initio HF/4-21G calculations at 30° grid points in their respective φ(X-C1-C2-C3), ψ(C1-C2-C3-Y)-torsional spaces. The results make it possible to construct parameter surfaces and their gradients in φ, ψ-space. The magnitude of the gradient, |∇ P|=[( ∂P/ ∂φ) 2+( ∂P/ ∂ψ) 2] 1/2, of a structural parameter P (a bond length, bond angle, or non-bonded distance) in φ, ψ-torsional space is a measure of torsional sensitivity (TS); i.e. a measure of the extent to which bond lengths, bond angles, and non-bonded distances change at a point in φ, ψ-space with backbone torsional angles. It is found that TS is not constant throughout the conformational space of a molecule, but varies in a characteristic way. It seems that, regardless of the nature of X or Y, extended forms are typically in regions of low TS; puckered conformations, of high TS. Conformations with two sequential gauche torsional angles (GG sequences) are characterized by high TS of 1,5-non-bonded distances concomitant with relatively low TS of other internal coordinates. This property of GG sequences is the source of a stabilizing and cooperative energy increment that is not afforded by other torsional sequences, such as trans- trans or trans- gauche. A structural data base, consisting of thousands of HF/4-21G structures of X-C-C-Y and X-C-C-C-Y systems has been assembled and is available on a CD.

  4. Analysis and design of composite slab by varying different parameters

    NASA Astrophysics Data System (ADS)

    Lambe, Kedar; Siddh, Sharda

    2018-03-01

    Composite deck slabs are in demand because of its faster, lighter and economical construction work. Composite slab consists of cold formed deck profiled sheet and concrete either lightweight or normal. Investigation of shear behaviour of the composite slab is very complex. Shear bond strength depends on the various parameter such as a shape of sheeting, a thickness of the sheet, type of embossment and its frequency of use, shear stiffener or intermediate stiffener, type of load, an arrangement of load, length of shear span, the thickness of concrete and support friction etc. In present study finite element analysis is carried out with ABAQUS 6.13, a simply supported composite slab is considered for the investigation of the shear bond behaviour of the composite slab by considering variation in three different parameters, the shape of a sheet, thickness of sheet and shear span. Different shear spans of two different shape of cold formed deck profiled sheet i.e. with intermediate stiffeners and without intermediate stiffeners are considered with two different thicknesses (0.8 mm and 1.2 mm) for simulation. In present work, simulation of models has done for static loading with 20 mm mesh size is considered.

  5. Supramolecular Recognition Allows Remote, Site-Selective C-H Oxidation of Methylenic Sites in Linear Amines.

    PubMed

    Olivo, Giorgio; Farinelli, Giulio; Barbieri, Alessia; Lanzalunga, Osvaldo; Di Stefano, Stefano; Costas, Miquel

    2017-12-18

    Site-selective C-H functionalization of aliphatic alkyl chains is a longstanding challenge in oxidation catalysis, given the comparable relative reactivity of the different methylenes. A supramolecular, bioinspired approach is described to address this challenge. A Mn complex able to catalyze C(sp 3 )-H hydroxylation with H 2 O 2 is equipped with 18-benzocrown-6 ether receptors that bind ammonium substrates via hydrogen bonding. Reversible pre-association of protonated primary aliphatic amines with the crown ether selectively exposes remote positions (C8 and C9) to the oxidizing unit, resulting in a site-selective oxidation. Remarkably, such control of selectivity retains its efficiency for a whole series of linear amines, overriding the intrinsic reactivity of C-H bonds, no matter the chain length. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A Relationship Between the 2-body Energy of Kaxiras Pandey and Pearson Takai Halicioglu Tiller Potential Functions

    NASA Astrophysics Data System (ADS)

    Lim, Teik-Cheng

    2004-01-01

    A parametric relationship between the Pearson Takai Halicioglu Tiller (PTHT) and the Kaxiras Pandey (KP) empirical potential energy functions is developed for the case of 2-body interaction. The need for such relationship arises when preferred parametric data and adopted software correspond to different potential functions. The analytical relationship was obtained by equating the potential functions' derivatives at zeroth, first and second order with respect to the interatomic distance at the equilibrium bond length, followed by comparison of coefficients in the repulsive and attractive terms. Plots of non-dimensional 2-body energy versus the nondimensional interatomic distance verified the analytical relationships developed herein. The discrepancy revealed in theoretical plots suggests that the 2-body PTHT and KP potentials are more suitable for curve-fitting "softer" and "harder" bonds respectively.

  7. pi-Selective stationary phases: (II) Adsorption behavior of substituted aromatic compounds on n-alkyl-phenyl stationary phases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gritti, Fabrice; Guiochon, Georges A; Mayfield, Kirsty

    2010-01-01

    The frontal analysis method was used to measure the adsorption isotherms of phenol, 4-chlorophenol, p-cresol, 4-methoxyphenol and caffeine on a series of columns packed with home-made alkyl-phenyl bonded silica particles. These ligands consist of a phenyl ring tethered to the silica support via a carbon chain of length ranging from 0 to 4 atoms. The adsorption isotherm models that fit best to the data account for solute-solute interactions that are likely caused by p-p interactions occurring between aromatic compounds and the phenyl group of the ligand. These interactions are the dominant factor responsible for the separation of low molecular weightmore » aromatic compounds on these phenyl-type stationary phases. The saturation capacities depend on whether the spacer of the ligands have an even or an odd number of carbon atoms, with the even alkyl chain lengths having a greater saturation capacity than the odd alkyl chain lengths. The trends in the adsorption equilibrium constant are also significantly different for the even and the odd chain length ligands.« less

  8. Structure, bonding nature, and binding energy of alkanethiolate on As-rich GaAs (001) surface: a density functional theory study.

    PubMed

    Voznyy, Oleksandr; Dubowski, Jan J

    2006-11-30

    Chemisorption of alkanethiols on As-rich GaAs (001) surface under a low coverage condition was studied using first principles density functional calculations in a periodic supercell approach. The thiolate adsorption site, tilt angle and its direction are dictated by the high directionality of As dangling bond and sulfur 3p orbital participating in bonding and steric repulsion of the first three CH2 units from the surface. Small charge transfer between thiolate and surface, strong dependence of total energy on tilt angle, and a relatively short length of 2.28 A of the S-As bond indicate the highly covalent nature of the bonding. Calculated binding energy of 2.1 eV is consistent with the available experimental data.

  9. [Factors influencing bonding fixed restorations].

    PubMed

    Medić, Vesna; Obradović-Djuricić, Kosovka

    2008-01-01

    Crown displacement often occurs because the features of tooth preparations do not counteract the forces directed against restorations. The purpose of this study was to evaluate the effect of preparation designs on retention and resistance of fixed restorations. The study was performed on 64 differently sized stainless steel dies. Also, caps which were used for evaluated retention were made of stainless steel for each die. After cementing the caps on experimental dies, measuring of necessary tensile forces to separate cemented caps from dies was done. Caps, which were made of a silver-palladium alloy with a slope of 600 to the longitudinal axis formed on the occlusal surface, were used for evaluating resistance. A sudden drop in load pressure recorded by the test machine indicated failure for that cap. A significant difference was found between the tensile force required to remove the caps from the dies with different length (p < 0.05) and different taper (p < 0.01). The greatest retentive strengths (2579.2 N and 2989.8 N) were noticed in experimental dies with the greatest length and smallest taper. No statistically significant (p > 0.05) differences were found between tensile loads for caps cemented on dies with different diameter. Although there was an apparent slight increase in resistance values for caps on dies with smaller tapers, the increase in resistance for those preparation designs was not statistically significant. There was a significant difference among the resistance values for caps on dies with different length (p < 0.01) and diameter (p < 0.05). In the light of the results obtained, it could be reasonably concluded that retention and resistance of the restoration is in inverse proportion to convergence angle of the prepared teeth. But, at a constant convergence angle, retention and resistance increase with rising length and diameter.

  10. Thermoplastic Ribbon-Ply Bonding Model

    NASA Technical Reports Server (NTRS)

    Hinkley, Jeffrey A.; Marchello, Joseph M.; Messier, Bernadette C.

    1996-01-01

    The aim of the present work was to identify key variables in rapid weldbonding of thermoplastic tow (ribbon) and their relationship to matrix polymer properties and to ribbon microstructure. Theoretical models for viscosity, establishment of ply-ply contact, instantaneous (Velcro) bonding, molecular interdiffusion (healing), void growth suppression, and gap filling were reviewed and synthesized. Consideration of the theoretical bonding mechanisms and length scales and of the experimental weld/peel data allow the prediction of such quantities as the time and pressure required to achieve good contact between a ribbon and a flat substrate, the time dependence of bond strength, pressures needed to prevent void growth from dissolved moisture and conditions for filling gaps and smoothing overlaps.

  11. Vibrational tug-of-war: The pKA dependence of the broad vibrational features of strongly hydrogen-bonded carboxylic acids.

    PubMed

    Van Hoozen, Brian L; Petersen, Poul B

    2018-04-07

    Medium and strong hydrogen bonds give rise to broad vibrational features frequently spanning several hundred wavenumbers and oftentimes exhibiting unusual substructures. These broad vibrational features can be modeled from first principles, in a reduced dimensional calculation, that adiabatically separates low-frequency modes, which modulate the hydrogen bond length, from high-frequency OH stretch and bend modes that contribute to the vibrational structure. Previously this method was used to investigate the origin of an unusual vibrational feature frequently found in the spectra of dimers between carboxylic acids and nitrogen-containing aromatic bases that spans over 900 cm -1 and contains two broad peaks. It was found that the width of this feature largely originates from low-frequency modes modulating the hydrogen bond length and that the structure results from Fermi resonance interactions. In this report, we examine how these features change with the relative acid and base strength of the components as reflected by their aqueous pK A values. Dimers with large pK A differences are found to have features that can extend to frequencies below 1000 cm -1 . The relationships between mean OH/NH frequency, aqueous pK A , and O-N distance are examined in order to obtain a more rigorous understanding of the origin and shape of the vibrational features. The mean OH/NH frequencies are found to correlate well with O-N distances. The lowest OH stretch frequencies are found in dimer geometries with O-N distances between 2.5 and 2.6 Å. At larger O-N distances, the hydrogen bonding interaction is not as strong, resulting in higher OH stretch frequencies. When the O-N distance is smaller than 2.5 Å, the limited space between the O and N determines the OH stretch frequency, which gives rise to frequencies that decrease with O-N distances. These two effects place a lower limit on the OH stretch frequency which is calculated to be near 700 cm -1 . Understanding how the vibrational features of strongly hydrogen-bonded structures depend on the relative pK A and other structural parameters will guide studies of biological structures and analysis of proton transfer studies using photoacids.

  12. 2-Acetyl-1,1,3,3-tetra­methyl­guanidine

    PubMed Central

    Tiritiris, Ioannis

    2012-01-01

    In the mol­ecule of the title compound, C7H15N3O, the central C atom is surrounded in a nearly ideal trigonal–planar geometry by three N atoms. The C—N bond lengths in the CN3 unit are 1.3353 (13), 1.3463 (12) and 1.3541 (13) Å, indicating an inter­mediate character between a single and a double bond for each C—N bond. The bonds between the N atoms and the terminal C-methyl groups all have values close to that of a typical single bond [1.4526 (13)–1.4614 (14) Å]. In the crystal, the guanidine mol­ecules are connected by weak C—H⋯O and C—H⋯N hydrogen bonds, generating layers parallel to the ab plane. PMID:23125768

  13. Modeling the IR spectra of aqueous metal carboxylate complexes: correlation between bonding geometry and stretching mode wavenumber shifts.

    PubMed

    Sutton, Catherine C R; da Silva, Gabriel; Franks, George V

    2015-04-27

    A widely used principle is that shifts in the wavenumber of carboxylate stretching modes upon bonding with a metal center can be used to infer if the geometry of the bonding is monodentate or bidentate. We have tested this principle with ab initio modeling for aqueous metal carboxylate complexes and have shown that it does indeed hold. Modeling of the bonding of acetate and formate in aqueous solution to a range of cations was used to predict the infrared spectra of the metal-carboxylate complexes, and the wavenumbers of the symmetric and antisymmetric vibrational modes are reported. Furthermore, we have shown that these shifts in wavenumber occur primarily due to how bonding with the metal changes the carboxylate C-O bond lengths and O-C-O angle. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The effect of surface and interface on Neel transition temperature of low-dimensional antiferromagnetic materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wen; Zhou, Zhaofeng, E-mail: zfzhou@xtu.edu.cn; Zhong, Yuan

    2015-11-15

    Incorporating the bond order-length-strength (BOLS) notion with the Ising premise, we have modeled the size dependence of the Neel transition temperature (T{sub N}) of antiferromagnetic nanomaterials. Reproduction of the size trends reveals that surface atomic undercoordination induces bond contraction, and interfacial hetero-coordination induces bond nature alteration. Both surface and interface of nanomaterials modulate the T{sub N} by adjusting the atomic cohesive energy. The T{sub N} is related to the atomic cohesive/exchange energy that is lowered by the coordination number (CN) imperfection of the undercoordinated atoms near the surface and altered by the changed bond nature of epitaxial interface. A numericalmore » match between predictions and measurements reveals that the T{sub N} of antiferromagnetic nanomaterials declines with reduced size and increases with both the strengthening of heterogeneous bond and the increase of the bond number.« less

  15. Two-dimensional limit of crystalline order in perovskite membrane films

    PubMed Central

    Hong, Seung Sae; Yu, Jung Ho; Lu, Di; Marshall, Ann F.; Hikita, Yasuyuki; Cui, Yi; Hwang, Harold Y.

    2017-01-01

    Long-range order and phase transitions in two-dimensional (2D) systems—such as magnetism, superconductivity, and crystallinity—have been important research topics for decades. The issue of 2D crystalline order has reemerged recently, with the development of exfoliated atomic crystals. Understanding the dimensional limit of crystalline phases, with different types of bonding and synthetic techniques, is at the foundation of low-dimensional materials design. We study ultrathin membranes of SrTiO3, an archetypal perovskite oxide with isotropic (3D) bonding. Atomically controlled membranes are released after synthesis by dissolving an underlying epitaxial layer. Although all unreleased films are initially single-crystalline, the SrTiO3 membrane lattice collapses below a critical thickness (5 unit cells). This crossover from algebraic to exponential decay of the crystalline coherence length is analogous to the 2D topological Berezinskii-Kosterlitz-Thouless (BKT) transition. The transition is likely driven by chemical bond breaking at the 2D layer-3D bulk interface, defining an effective dimensional phase boundary for coherent crystalline lattices. PMID:29167822

  16. Accurate characterization of wafer bond toughness with the double cantilever specimen

    NASA Astrophysics Data System (ADS)

    Turner, Kevin T.; Spearing, S. Mark

    2008-01-01

    The displacement loaded double cantilever test, also referred to as the "Maszara test" and the "crack opening method" by the wafer bonding community, is a common technique used to evaluate the interface toughness or surface energy of direct wafer bonds. While the specimen is widely used, there has been a persistent question as to the accuracy of the method since the actual specimen geometry differs from the ideal beam geometry assumed in the expression used for data reduction. The effect of conducting the test on whole wafer pairs, in which the arms of cantilevers are wide plates rather than slender beams, is examined in this work using finite element analysis. A model is developed to predict the equilibrium shape of the crack front and to develop a corrected expression for calculating interface toughness from crack length measurements obtained in tests conducted on whole wafer pairs. The finite element model, which is validated through comparison to experiments, demonstrates that using the traditional beam theory-based expressions for data reduction can lead to errors of up to 25%.

  17. Complexes in the Photocatalytic Reaction of CO2 and H2O: Theoretical Studies

    PubMed Central

    Luo, Dongmei; Zhang, Ning; Hong, Sanguo; Wu, Huanwen; Liu, Zhihua

    2010-01-01

    Complexes (H2O/CO2, e–(H2O/CO2) and h+–(H2O/CO2)) in the reaction system of CO2 photoreduction with H2O were researched by B3LYP and MP2 methods along with natural bond orbital (NBO) analysis. Geometries of these complexes were optimized and frequencies analysis performed. H2O/CO2 captured photo-induced electron and hole produced e–(H2O/CO2) and h+–(H2O/CO2), respectively. The results revealed that CO2 and H2O molecules could be activated by the photo-induced electrons and holes, and each of these complexes possessed two isomers. Due to the effect of photo-induced electrons, the bond length of C=O and H-O were lengthened, while H-O bonds were shortened, influenced by holes. The infrared (IR) adsorption frequencies of these complexes were different from that of CO2 and H2O, which might be attributed to the synergistic effect and which could not be captured experimentally. PMID:21152274

  18. Two-dimensional limit of crystalline order in perovskite membrane films

    DOE PAGES

    Hong, Seung Sae; Yu, Jung Ho; Lu, Di; ...

    2017-11-17

    Long-range order and phase transitions in two-dimensional (2D) systems—such as magnetism, superconductivity, and crystallinity—have been important research topics for decades. The issue of 2D crystalline order has reemerged recently, with the development of exfoliated atomic crystals. Understanding the dimensional limit of crystalline phases, with different types of bonding and synthetic techniques, is at the foundation of low-dimensional materials design. We study ultrathin membranes of SrTiO 3, an archetypal perovskite oxide with isotropic (3D) bonding. Atomically controlled membranes are released after synthesis by dissolving an underlying epitaxial layer. Although all unreleased films are initially single-crystalline, the SrTiO 3 membrane lattice collapsesmore » below a critical thickness (5 unit cells). This crossover from algebraic to exponential decay of the crystalline coherence length is analogous to the 2D topological Berezinskii-Kosterlitz-Thouless (BKT) transition. Finally, the transition is likely driven by chemical bond breaking at the 2D layer-3D bulk interface, defining an effective dimensional phase boundary for coherent crystalline lattices.« less

  19. Effect of metal surface topography on mechanical bonding at simulated total hip stem-cement interfaces.

    PubMed

    Chen, C Q; Scott, W; Barker, T M

    1999-01-01

    Bonding and loosening mechanisms between bone cement and joint prostheses have not been well identified. In this study, the effects of simulated hip stem surface topography on the interfacial shear strength were examined. Six different surface topographies were used. They were described by several surface characterization parameters that may directly relate to the interfacial bonding strength: average surface roughness R(a), root mean square slope R(Deltaq), correlation length beta, and fluid retention index R(ri). The shear strengths between Palacos E bone cement and stainless steel rods were measured using an Instron materials testing machine. We found that cement can "flow" into the surface microtopography and establish good contact with the metal surface. The results show that the interfacial strength increases monotonically with the increase of R(Deltaq) instead of with R(a). The relationship between interfacial strength and surface parameters shows that a metal stem with an isotropic surface texture, higher R(Deltaq), and greater R(ri) gives a higher interfacial strength. Copyright 1999 John Wiley & Sons, Inc.

  20. Bis[2-(hy-droxy-imino-meth-yl)phenolato]nickel(II): a second monoclinic polymorph.

    PubMed

    Rusanova, Julia A; Buvaylo, Elena A; Rusanov, Eduard B

    2011-01-15

    The title compound, [Ni(C(7)H(6)NO(2))(2)], (I), is a second monoclinic polymorph of the compound, (II), reported by Srivastava et al. [Acta Cryst. (1967), 22, 922] and Mereiter [Private communication (2002) CCDC refcode NISALO01]. The bond lengths and angles are similar in both structures. The mol-ecule in both structures lies on a crystallographic inversion center and both have an inter-nal hydrogen bond. The title compound crystallizes in the space group P2(1)/c (Z = 2), whereas compound (II) is in the space group P2(1)/n (Z = 2) with a similar cell volume but different cell parameters. In both polymorphs, mol-ecules are arranged in the layers but in contrast to the previously published compound (II) where the dihedral angle between the layers is 86.3°, in the title polymorph the same dihedral angle is 29.4°. The structure of (I) is stabilized by strong intra-molecular O-H⋯O hydrogen bonding between the O-H group and the phenolate O atom.

  1. Possible steric control of the relative strength of chelation enhanced fluorescence for zinc(II) compared to cadmium(II): metal ion complexing properties of tris(2-quinolylmethyl)amine, a crystallographic, UV-visible, and fluorometric study.

    PubMed

    Williams, Neil J; Gan, Wei; Reibenspies, Joseph H; Hancock, Robert D

    2009-02-16

    The idea is examined that steric crowding in ligands can lead to diminution of the chelation enhanced fluorescence (CHEF) effect in complexes of the small Zn(II) ion as compared to the larger Cd(II) ion. Steric crowding is less severe for the larger ion and for the smaller Zn(II) ion leads to Zn-N bond length distortion, which allows some quenching of fluorescence by the photoinduced electron transfer (PET) mechanism. Some metal ion complexing properties of the ligand tris(2-quinolylmethyl)amine (TQA) are presented in support of the idea that more sterically efficient ligands, which lead to less M-N bond length distortion with the small Zn(II) ion, will lead to a greater CHEF effect with Zn(II) than Cd(II). The structures of [Zn(TQA)H(2)O](ClO(4))(2).1.5 H(2)O (1), ([Pb(TQA)(NO(3))(2)].C(2)H(5)OH) (2), ([Ag(TQA)(ClO(4))]) (3), and (TQA).C(2)H(5)OH (4) are reported. In 1, the Zn(II) is 5-coordinate, with four N-donors from the ligand and a water molecule making up the coordination sphere. The Zn-N bonds are all of normal length, showing that the level of steric crowding in 1 is not sufficient to cause significant Zn-N bond length distortion. This leads to the observation that, as expected, the CHEF effect in the Zn(II)/TQA complex is much stronger than that in the Cd(II)/TQA complex, in contrast to similar but more sterically crowded ligands, where the CHEF effect is stronger in the Cd(II) complex. The CHEF effect for TQA with the metal ions examined varies as Zn(II) > Cd(II) > Ni(II) > Pb(II) > Hg(II) > Cu(II). The structure of 2 shows an 8-coordinate Pb(II), with evidence of a stereochemically active lone pair, and normal Pb-N bond lengths. In 3, the Ag(I) is 5-coordinate, with four N-donors from the TQA and an oxygen from the perchlorate. The Ag(I) shows no distortion toward linear 2-coordinate geometry, and the Ag-N bonds fall slightly into the upper range for Ag-N bonds in 5-coordinate complexes. The structure of 4 shows the TQA ligand to be involved in pi-stacking between quinolyl groups from adjacent TQA molecules. Formation constants determined by UV-visible spectroscopy are reported in 0.1 M NaClO(4) at 25 degrees C for TQA with Zn(II), Cd(II), and Pb(II). When compared with other similar ligands, one sees that, as the level of steric crowding increases, the stability decreases most with the small Zn(II) ion and least with the large Pb(II) ion. This is in accordance with the idea that TQA has a moderate level of steric crowding and that steric crowding increases for TQA analogs tris(2-pyridylmethyl)amine (TPyA) < TQA < tris(6-methyl-2-pyridyl)amine (TMPyA).

  2. Nature's Mechanisms for Tough, Self-healing Polymers and Polymer Adhesives

    NASA Astrophysics Data System (ADS)

    Hansma, Paul

    2007-03-01

    Spider silk^2 and the natural polymer adhesives in abalone shells^3 and bone^4,5 can give us insights into nature's mechanisms for tough, self-healing polymers and polymer adhesives. The natural polymer adhesives in biomaterials have been optimized by evolution. An optimized polymer adhesive has five characteristics. 1) It holds together the strong elements of the composite. 2) It yields just before the strong elements would otherwise break. 3) It dissipates large amounts of energy as it yields. 4) It self heals after it yields. 5) It takes just a few percent by weight. Both natural polymer adhesives and silk rely on sacrificial bonds and hidden length for toughness and self-healing.^6 A relatively large energy, of order 100eV, is required to stretch a polymer molecule after a weak bond, a sacrificial bond, breaks and liberates hidden length, which was previously hidden, typically in a loop or folded domain, from whatever was stretching the polymer. The bond is called sacrificial if it breaks at forces well below the forces that could otherwise break the polymer backbone, typically greater than 1nN. In many biological cases, the breaking of sacrificial bonds has been found to be reversible, thereby also providing a ``self-healing'' property to the material.^2-4 Individual polymer adhesive molecules based on sacrificial bonds and hidden length can supply forces of order 300pN over distances of 100s of nanometers. Model calculations show that a few percent by weight of adhesives based on these principles could be optimized adhesives for high performance composite materials including nanotube and graphene sheet composites. ^2N. Becker, E. Oroudjev, S. Mutz et al., Nature Materials 2 (4), 278 (2003). ^3B. L. Smith, T. E. Schaffer, M. Viani et al., Nature 399 (6738), 761 (1999). ^4J. B. Thompson, J. H. Kindt, B. Drake et al., Nature 414 (6865), 773 (2001). ^5G. E. Fantner, T. Hassenkam, J. H. Kindt et al., Nature Materials 4, 612 (2005). ^6G. E. Fantner, E. Oroudjev, G. Schitter et al., Biophysical Journal 90 (4), 1411 (2006).

  3. Time-of-flight neutron powder diffraction study on the third row transition metal hexafluorides WF6, OsF6, and PtF6

    NASA Astrophysics Data System (ADS)

    Marx, R.; Seppelt, K.; Ibberson, R. M.

    1996-05-01

    A neutron diffraction study on the third-row transition metal hexafluorides MF6 (M≡W, Os, Pt) has been performed using the high resolution neutron powder diffractometer (HRPD) at the spallation source ISIS, England. The previously unknown structures of the low-temperature phases of OsF6 and PtF6 are reported. WF6, OsF6, and PtF6, which exhibit a (5dt2g)0, (5dt2g)2, and (5dt2g)4 electronic configuration, respectively, are found to be isostructural and crystallize in the UF6 structure, space group Pmnb, (No. 62). The geometry of the MF6 molecules is to good approximation octahedral for each compound, the mean M-F bond length increasing only slightly from 182.5 (W) to 185.0 (Pt). For WF6 deviations from ideal octahedral geometry are only marginally significant [181.8(2) to 183.2(2) pm] and may be interpreted on the basis of packing effects. Deviations for the d2 complex OsF6 are somewhat larger [181.5(2) to 184.4(3) pm] and may be assumed to be caused by packing effects essentially the same as for WF6, in addition to a first-order Jahn-Teller effect arising from the (5dt2g)2 electronic configuration. While eliminating the effects of packing by a comparison of individual M-F bond lengths for WF6 and OsF6, the OsF6 molecule shows to have D4h symmetry with two apical M-F bonds about 1.8 pm longer than the four equatorial bonds as a result of the Jahn-Teller distortion. Only small deviations from ideal octahedral geometry [184.4(3) to 185.8(3) pm] are found for the d4 complex PtF6. Within the series W to Pt a substantial shortening of the F...F van der Waals contact distances is observed. This shortening more than compensates for the increase in the M-F bond lengths and leads to unit cell volumes and cell parameters decreasing continuously from W to Pt. The variation of F...F contact distances and M-F bond lengths may be rationalized in terms of polarization of the F-ligands in the field of the highly charged nuclei of the central atoms which are only incompletely shielded by the 5d electrons.

  4. The effect of Ga vacancies on the defect and magnetic properties of Mn-doped GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Joongoo; Chang, K. J.; Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea and Korea Institute for Advanced Study, Seoul 130-722

    2007-10-15

    We perform first-principles theoretical calculations to investigate the effect of the presence of Ga vacancy on the defect and magnetic properties of Mn-doped GaN. When a Ga vacancy (V{sub Ga}) is introduced to the Mn ions occupying the Ga lattice sites, a charge transfer occurs from the Mn d band to the acceptor levels of V{sub Ga}, and strong Mn-N bonds are formed between the Mn ion and the N atoms in the neighborhood of V{sub Ga}. The charge transfer and chemical bonding effects significantly affect the defect and magnetic properties of Mn-doped GaN. In a Mn-V{sub Ga} complex, whichmore » consists of a Ga vacancy and one Mn ion, the dangling bond orbital of the N atom involved in the Mn-N bond is electrically deactivated, and the remaining dangling bond orbitals of V{sub Ga} lead to the shallowness of the defect level. When a Ga vacancy forms a complex with two Mn ions located at a distance of about 6 A, which corresponds to the percolation length in determining the Curie temperature in diluted Mn-doped GaN, the Mn d band is broadened and the density of states at the Fermi level is reduced due to two strong Mn-N bonds. Although the broadening and depopulation of the Mn d band weaken the ferromagnetic stability between the Mn ions, the ferromagnetism is still maintained because of the lack of antiferromagnetic superexchange interactions at the percolation length.« less

  5. Damage, Self-Healing, and Hysteresis in Spider Silks

    PubMed Central

    De Tommasi, D.; Puglisi, G.; Saccomandi, G.

    2010-01-01

    Abstract In this article, we propose a microstructure-based continuum model to describe the material behavior of spider silks. We suppose that the material is composed of a soft fraction with entropic elasticity and a hard, damageable fraction. The hard fraction models the presence of stiffer, crystal-rich, oriented regions and accounts for the effect of softening induced by the breaking of hydrogen bonds. To describe the observed presence of crystals with different size, composition, and orientation, this hard fraction is modeled as a distribution of materials with variable properties. The soft fraction describes the remaining regions of amorphous material and is here modeled as a wormlike chain. During stretching, we consider the effect of bond-breaking as a transition from the hard- to the soft-material phase. As we demonstrate, a crucial effect of bond-breaking that accompanies the softening of the material is an increase in contour length associated with chains unraveling. The model describes also the self-healing properties of the material by assuming partial bond reconnection upon unloading. Despite its simplicity, the proposed mechanical system reproduces the main experimental effects observed in cyclic loading of spider silks. Moreover, our approach is amenable to two- or three-dimensional extensions and may prove to be a useful tool in the field of microstructure optimization for bioinspired materials. PMID:20441758

  6. A quantum chemistry study of Qinghaosu

    NASA Astrophysics Data System (ADS)

    Gu, Jian-De; Chen, Kai-Xian; Jiang, Hua-Liang; Zhu, Wei-Liang; Chen, Jian-Zhong; Ji, Ru-Yun

    1997-10-01

    The powerful anti-malarial drug, Qinghaosu (Artemisinin), has been studied using ab initio methods. The DFT B3LYP method with the 6-31G ∗ basis set gives an excellent geometry compared to experiments, especially for the OO bond length and the 1,2,4-Trioxane ring subsystem. The R(OO) bond length predicted at this level is 1.460 Å, only 0.018 Å shorter than the experimental measurement. The vibrational analysis shows that the OO stretching mode is combined with the OC vibration mode, having the character of an OOC entity. The OO vibrational band at 722 cm -1 suggested in the experimental studies has been assigned as 1,2,4-trioxane ring breathing.

  7. Dipropyl 3,6-diphenyl-1,2-dihydro-1,2,4,5-tetrazine-1,2-dicarboxylate.

    PubMed

    Rao, Guo-Wu; Hu, Wei-Xiao

    2003-05-01

    The title compound, C(22)H(24)N(4)O(4), was prepared from propyl chloroformate and 3,6-diphenyl-1,2-dihydro-s-tetrazine. This reaction yields the title compound rather than dipropyl 3,6-diphenyl-1,4-dihydro-s-tetrazine-1,4-dicarboxylate. The 2,3-diazabutadiene group in the central six-membered ring is not planar; the C=N double-bond length is 1.285 (2) A, and the average N-N single-bond length is 1.401 (3) A, indicating a lack of conjugation. The ring has a twist conformation, in which adjacent N atoms lie +/- 0.3268 (17) A from the plane of the ring. The molecule has twofold crystallographic symmetry.

  8. All-electron molecular Dirac-Hartree-Fock calculations - The group IV tetrahydrides CH4, SiH4, GeH4, SnH4, and PbH4

    NASA Technical Reports Server (NTRS)

    Dyall, Kenneth G.; Taylor, Peter R.; Faegri, Knut, Jr.; Partridge, Harry

    1991-01-01

    A basis-set-expansion Dirac-Hartree-Fock program for molecules is described. Bond lengths and harmonic frequencies are presented for the ground states of the group 4 tetrahydrides, CH4, SiH4, GeH4, SnH4, and PbH4. The results are compared with relativistic effective core potential (RECP) calculations, first-order perturbation theory (PT) calculations and with experimental data. The bond lengths are well predicted by first-order perturbation theory for all molecules, but none of the RECP's considered provides a consistent prediction. Perturbation theory overestimates the relativistic correction to the harmonic frequencies; the RECP calculations underestimate the correction.

  9. All-electron molecular Dirac-Hartree-Fock calculations: The group 4 tetrahydrides CH4, SiH4, GeH4, SnH4 and PbH4

    NASA Technical Reports Server (NTRS)

    Dyall, Kenneth G.; Taylor, Peter R.; Faegri, Knut, Jr.; Partridge, Harry

    1990-01-01

    A basis-set-expansion Dirac-Hartree-Fock program for molecules is described. Bond lengths and harmonic frequencies are presented for the ground states of the group 4 tetrahydrides, CH4, SiH4, GeH4, SnH4, and PbH4. The results are compared with relativistic effective core potential (RECP) calculations, first-order perturbation theory (PT) calculations and with experimental data. The bond lengths are well predicted by first-order perturbation theory for all molecules, but non of the RECP's considered provides a consistent prediction. Perturbation theory overestimates the relativistic correction to the harmonic frequencies; the RECP calculations underestimate the correction.

  10. Quasiparticle and excitonic gaps of one-dimensional carbon chains.

    PubMed

    Mostaani, E; Monserrat, B; Drummond, N D; Lambert, C J

    2016-06-01

    We report diffusion quantum Monte Carlo (DMC) calculations of the quasiparticle and excitonic gaps of hydrogen-terminated oligoynes and extended polyyne. The electronic gaps are found to be very sensitive to the atomic structure in these systems. We have therefore optimised the geometry of polyyne by directly minimising the DMC energy with respect to the lattice constant and the Peierls-induced carbon-carbon bond-length alternation. We find the bond-length alternation of polyyne to be 0.136(2) Å and the excitonic and quasiparticle gaps to be 3.30(7) and 3.4(1) eV, respectively. The DMC zone-centre longitudinal optical phonon frequency of polyyne is 2084(5) cm(-1), which is consistent with Raman spectroscopic measurements for large oligoynes.

  11. High temperature extended x-ray absorption fine structure study of multiferroic BiFeO3

    NASA Astrophysics Data System (ADS)

    Raghavendra Reddy, V.; Meneghini, Carlo; Kothari, Deepti; Gupta, Ajay; Aquilanti, Giuliana

    2012-08-01

    Local atomic structure modifications around Fe atoms in polycrystalline multiferroic BiFeO3 are studied by Fe K edge x-ray absorption spectroscopy as a function of temperature across the Néel temperature (TN = 643 K) in order to reveal local structure modifications related to the magnetic transition. This work demonstrates that on crossing TN the local structure around Fe shows peculiar changes: the Fe-O bond lengths get shorter, the ligand symmetry increases and the Fe-O bond length disorder (σ2) deviates from Debye behaviour. These results suggest that the structural transition at the ferroelectric Curie temperature (TC = 1103 K) is anticipated by early local rearrangement of the structure starting already at TN.

  12. Concentration effect on inter-mineral equilibrium isotope fractionation: insights from Mg and Ca isotopic systems

    NASA Astrophysics Data System (ADS)

    Huang, F.; Wang, W.; Zhou, C.; Kang, J.; Wu, Z.

    2017-12-01

    Many naturally occurring minerals, such as carbonate, garnet, pyroxene, and feldspar, are solid solutions with large variations in chemical compositions. Such variations may affect mineral structures and modify the chemical bonding environment around atoms, which further impacts the equilibrium isotope fractionation factors among minerals. Here we investigated the effects of Mg content on equilibrium Mg and Ca isotope fractionation among carbonates and Ca content on equilibrium Ca isotope fractionation between orthopyroxene (opx) and clinopyroxene (cpx) using first-principles calculations. Our results show that the average Mg-O bond length increases with decreasing Mg/(Mg+Ca) in calcite when it is greater than 1/48[1] and the average Ca-O bond length significantly decreases with decreasing Ca/(Ca+Mg+Fe) in opx when it ranges from 2/16 to 1/48[2]. Equilibrium isotope fractionation is mainly controlled by bond strengths, which could be measured by bond lengths. Thus, 103lnα26Mg/24Mg between dolomite and calcite dramatically increases with decreasing Mg/(Mg+Ca) in calcite [1] and it reaches a constant value when it is lower than 1/48. 103lnα44Ca/40Ca between opx and cpx significantly increases with decreasing Ca content in opx when Ca/(Ca+Mg+Fe) ranges from 2/16 to 1/48 [2]. If Ca/(Ca+Mg+Fe) is below 1/48, 103lnα44Ca/40Ca is not sensitive to Ca content. Based on our results, we conclude that the concentration effect on equilibrium isotope fractionation could be significant within a certain range of chemical composition of minerals, which should be a ubiquitous phenomenon in solid solution systems. [1] Wang, W., Qin, T., Zhou, C., Huang, S., Wu, Z., Huang, F., 2017. GCA 208, 185-197. [2] Feng, C., Qin, T., Huang, S., Wu, Z., Huang, F., 2014. GCA 143, 132-142.

  13. Structural inheritance and difference between Ti 2AlC, Ti 3AlC 2  and Ti 5Al 2C 3 under pressure from first principles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Qing -He; Du, An; Yang, Ze -Jin

    The structural inheritance and difference between Ti 2AlC, Ti 3AlC 2 and Ti 5Al 2C 3 under pressure from first principles are studied. The results indicate that the lattice parameter a are almost the same within Ti 2AlC, Ti 3AlC 2 and Ti 5Al 2C 3, and the value of c in Ti 5Al 2C 3 is the sum of Ti 2AlC and Ti 3AlC 2 which is revealed by the covalently bonded chain in the electron density difference: Al–Ti–C–Ti–Al for Ti 2AlC, Al–Ti 2–C–Ti 1–C–Ti 2–Al for Ti 3AlC 2 and Al–Ti 3–C 2–Ti 3–Al–Ti 2–C 1–Ti 1–C 1–Timore » 2–Al for Ti 5Al 2C 3. The calculated axial compressibilities, volumetric shrinkage, elastic constant c 11, c 33/c 11 ratio, bulk modulus, shear modulus, and Young’s modulus of Ti 5Al 2C 3 are within the range of the end members (Ti 2AlC and Ti 3AlC 2) in a wide pressure range of 0–100 GPa. Only Ti 2AlC is isotropic crystal at about 50 GPa within the Ti–Al–C compounds. All of the Ti 3 d density of states curves of the three compounds move from lower energy to higher energy level with pressure increasing. The similarities of respective bond length, bond overlap population (Ti–C, Ti–Al and Ti–Ti), atom Mulliken charges under pressure as well as the electron density difference for the three compounds are discovered. Among the Ti–Al–C ternary compounds, Ti–Ti bond behaves least compressibility, whereas the Ti–Al bond is softer than that of Ti–C bonds, which can also been confirmed by the density of states and electron density difference. Bond overlap populations of Ti–Ti, Ti–C and Ti–Al indicate that the ionicity interaction becomes more and more stronger in the three structures as the pressure increasing. Lastly, Mulliken charges of Ti 1, Ti 2, Ti 3, C and Al are 0.65, 0.42, 0.39, –0.73, –0.04 at 0 GPa, respectively, which are consistent with the Pauling scale.« less

  14. Structural inheritance and difference between Ti 2AlC, Ti 3AlC 2  and Ti 5Al 2C 3 under pressure from first principles

    DOE PAGES

    Gao, Qing -He; Du, An; Yang, Ze -Jin

    2017-02-08

    The structural inheritance and difference between Ti 2AlC, Ti 3AlC 2 and Ti 5Al 2C 3 under pressure from first principles are studied. The results indicate that the lattice parameter a are almost the same within Ti 2AlC, Ti 3AlC 2 and Ti 5Al 2C 3, and the value of c in Ti 5Al 2C 3 is the sum of Ti 2AlC and Ti 3AlC 2 which is revealed by the covalently bonded chain in the electron density difference: Al–Ti–C–Ti–Al for Ti 2AlC, Al–Ti 2–C–Ti 1–C–Ti 2–Al for Ti 3AlC 2 and Al–Ti 3–C 2–Ti 3–Al–Ti 2–C 1–Ti 1–C 1–Timore » 2–Al for Ti 5Al 2C 3. The calculated axial compressibilities, volumetric shrinkage, elastic constant c 11, c 33/c 11 ratio, bulk modulus, shear modulus, and Young’s modulus of Ti 5Al 2C 3 are within the range of the end members (Ti 2AlC and Ti 3AlC 2) in a wide pressure range of 0–100 GPa. Only Ti 2AlC is isotropic crystal at about 50 GPa within the Ti–Al–C compounds. All of the Ti 3 d density of states curves of the three compounds move from lower energy to higher energy level with pressure increasing. The similarities of respective bond length, bond overlap population (Ti–C, Ti–Al and Ti–Ti), atom Mulliken charges under pressure as well as the electron density difference for the three compounds are discovered. Among the Ti–Al–C ternary compounds, Ti–Ti bond behaves least compressibility, whereas the Ti–Al bond is softer than that of Ti–C bonds, which can also been confirmed by the density of states and electron density difference. Bond overlap populations of Ti–Ti, Ti–C and Ti–Al indicate that the ionicity interaction becomes more and more stronger in the three structures as the pressure increasing. Lastly, Mulliken charges of Ti 1, Ti 2, Ti 3, C and Al are 0.65, 0.42, 0.39, –0.73, –0.04 at 0 GPa, respectively, which are consistent with the Pauling scale.« less

  15. Constant size descriptors for accurate machine learning models of molecular properties

    NASA Astrophysics Data System (ADS)

    Collins, Christopher R.; Gordon, Geoffrey J.; von Lilienfeld, O. Anatole; Yaron, David J.

    2018-06-01

    Two different classes of molecular representations for use in machine learning of thermodynamic and electronic properties are studied. The representations are evaluated by monitoring the performance of linear and kernel ridge regression models on well-studied data sets of small organic molecules. One class of representations studied here counts the occurrence of bonding patterns in the molecule. These require only the connectivity of atoms in the molecule as may be obtained from a line diagram or a SMILES string. The second class utilizes the three-dimensional structure of the molecule. These include the Coulomb matrix and Bag of Bonds, which list the inter-atomic distances present in the molecule, and Encoded Bonds, which encode such lists into a feature vector whose length is independent of molecular size. Encoded Bonds' features introduced here have the advantage of leading to models that may be trained on smaller molecules and then used successfully on larger molecules. A wide range of feature sets are constructed by selecting, at each rank, either a graph or geometry-based feature. Here, rank refers to the number of atoms involved in the feature, e.g., atom counts are rank 1, while Encoded Bonds are rank 2. For atomization energies in the QM7 data set, the best graph-based feature set gives a mean absolute error of 3.4 kcal/mol. Inclusion of 3D geometry substantially enhances the performance, with Encoded Bonds giving 2.4 kcal/mol, when used alone, and 1.19 kcal/mol, when combined with graph features.

  16. Constructing a Catalytic Cycle for C-F to C-X (X = O, S, N) Bond Transformation Based on Gold-Mediated Ligand Nucleophilic Attack.

    PubMed

    Hu, Ji-Yun; Zhang, Jing; Wang, Gao-Xiang; Sun, Hao-Ling; Zhang, Jun-Long

    2016-03-07

    A tricoordinated gold(I) chloride complex, tBuXantphosAuCl, supported by a sterically bulky 9,9-dimethyl-4,5-bis(di-tert-butylphosphino)xanthene ligand (tBuXantphos) was synthesized. This complex features a remarkably longer Au-Cl bond length [2.632(1) Å] than bicoordinated linear gold complexes (2.27-2.30 Å) and tricoordinated XantphosAuCl [2.462(1) Å]. Single-crystal X-ray diffraction analysis of a cocrystal of tBuXantphosAuCl and pentafluoronitrobenzene (PFNB) and UV-vis spectroscopic titration experiments revealed the existence of an anion-π interaction between the Cl anion ligand and PFNB. Stoichiometric reaction between PFNB and tBuXantphosAuOtBu, after replacement of Cl by a more nucleophilic tBuO anion ligand, showed higher reactivity and para selectivity in the transformation of C-F to C-OtBu bond, distinctively different from that when only KOtBu was used (ortho selectivity) under the identical condition. Mechanistic studies including density functional theory calculations suggested a gold-mediated nucleophilic ligand attack of the C-F bond pathway via an SNAr process. On the basis of these results, using trimethylsilyl derivatives TMS-X (X = OMe, SEt, NEt2) as the nucleophilic ligand source and the fluorine acceptor, catalytic transformation of the C-F bond of aromatic substrates to the C-X (X = O, S, N) bond was achieved with tBuXantphosAuCl as the catalyst (up to 20 turnover numbers).

  17. Orientation-dependent structural and photocatalytic properties of LaCoO3 epitaxial nano-thin films

    PubMed Central

    Zhang, Yan-ping; Hu, Hai-long; Xie, Rui-shi; Ma, Guo-hua; Huo, Ji-chuan; Wang, Hai-bin

    2018-01-01

    LaCoO3 epitaxial films were grown on (100), (110) and (111) oriented LaAlO3 substrates by the polymer-assisted deposition method. Crystal structure measurement and cross-section observation indicate that all the LaCoO3 films are epitaxially grown in accordance with the orientation of LaAlO3 substrates, with biaxial compressive strain in the ab plane. Owing to the different strain directions of CoO6 octahedron, the mean Co–O bond length increases by different amounts in (100), (110) and (111) oriented films compared with that of bulk LaCoO3, and the (100) oriented LaCoO3 has the largest increase. Photocatalytic degradation of methyl orange indicates that the order of photocatalytic activity of the three oriented films is (100) > (111) > (110). Combined with analysis of electronic nature and band structure for LaCoO3 films, it is found that the change of the photocatalytic activity is closely related to the crystal field splitting energy of Co3+ and Co–O binding energy. The increase in the mean Co–O bond length will decrease the crystal field splitting energy of Co3+ and Co–O binding energy and further reduce the value of band gap energy, thus improving the photocatalytic activity. This may also provide a clue for expanding the visible-light-induced photocatalytic application of LaCoO3. PMID:29515854

  18. Orientation-dependent structural and photocatalytic properties of LaCoO3 epitaxial nano-thin films.

    PubMed

    Zhang, Yan-Ping; Liu, Hai-Feng; Hu, Hai-Long; Xie, Rui-Shi; Ma, Guo-Hua; Huo, Ji-Chuan; Wang, Hai-Bin

    2018-02-01

    LaCoO 3 epitaxial films were grown on (100), (110) and (111) oriented LaAlO 3 substrates by the polymer-assisted deposition method. Crystal structure measurement and cross-section observation indicate that all the LaCoO 3 films are epitaxially grown in accordance with the orientation of LaAlO 3 substrates, with biaxial compressive strain in the ab plane. Owing to the different strain directions of CoO 6 octahedron, the mean Co-O bond length increases by different amounts in (100), (110) and (111) oriented films compared with that of bulk LaCoO 3 , and the (100) oriented LaCoO 3 has the largest increase. Photocatalytic degradation of methyl orange indicates that the order of photocatalytic activity of the three oriented films is (100) > (111) > (110). Combined with analysis of electronic nature and band structure for LaCoO 3 films, it is found that the change of the photocatalytic activity is closely related to the crystal field splitting energy of Co 3+ and Co-O binding energy. The increase in the mean Co-O bond length will decrease the crystal field splitting energy of Co 3+ and Co-O binding energy and further reduce the value of band gap energy, thus improving the photocatalytic activity. This may also provide a clue for expanding the visible-light-induced photocatalytic application of LaCoO 3 .

  19. Estimating the hydraulic conductivity of two-dimensional fracture networks

    NASA Astrophysics Data System (ADS)

    Leung, C. T.; Zimmerman, R. W.

    2010-12-01

    Most oil and gas reservoirs, as well as most potential sites for nuclear waste disposal, are naturally fractured. In these sites, the network of fractures will provide the main path for fluid to flow through the rock mass. In many cases, the fracture density is so high as to make it impractical to model it with a discrete fracture network (DFN) approach. For such rock masses, it would be useful to have recourse to analytical, or semi-analytical, methods to estimate the macroscopic hydraulic conductivity of the fracture network. We have investigated single-phase fluid flow through stochastically generated two-dimensional fracture networks. The centres and orientations of the fractures are uniformly distributed, whereas their lengths follow either a lognormal distribution or a power law distribution. We have considered the case where the fractures in the network each have the same aperture, as well as the case where the aperture of each fracture is directly proportional to the fracture length. The discrete fracture network flow and transport simulator NAPSAC, developed by Serco (Didcot, UK), is used to establish the “true” macroscopic hydraulic conductivity of the network. We then attempt to match this conductivity using a simple estimation method that does not require extensive computation. For our calculations, fracture networks are represented as networks composed of conducting segments (bonds) between nodes. Each bond represents the region of a single fracture between two adjacent intersections with other fractures. We assume that the bonds are arranged on a kagome lattice, with some fraction of the bonds randomly missing. The conductance of each bond is then replaced with some effective conductance, Ceff, which we take to be the arithmetic mean of the individual conductances, averaged over each bond, rather than over each fracture. This is in contrast to the usual approximation used in effective medium theories, wherein the geometric mean is used. Our explanation is that the conductivities of the bonds that meet at a given node in a fracture network do not satisfy the usual assumption of being uncorrelated; rather, the conductances of at least two of these bonds are highly correlated, as they represent the incoming and outgoing branches of the same fracture. The effective conductance of our idealized “equivalent network” is then trivial to calculate. We find that this estimate of the hydraulic conductivity agrees very closely with the numerically computed value, essentially for all fracture densities that are not too close to the percolation threshold. Moreover, the same methodology applies regardless of whether the fracture lengths are distributed lognormally, or according to a power law.

  20. Analysis of the vibronic structure of the trans-stilbene fluorescence and excitation spectra: the S0 and S1 PES along the Ce[double bond, length as m-dash]Ce and Ce-Cph torsions.

    PubMed

    Orlandi, Giorgio; Garavelli, Marco; Zerbetto, Francesco

    2017-09-20

    We analyze the highly resolved vibronic structure of the low energy (≤200 cm -1 ) region of the fluorescence and fluorescence excitation spectra of trans-stilbene in supersonic beams. In this spectral region the vibronic structure is associated mainly with vibrational levels of the C e -C e torsion (τ) and the a u combination of the two C e -C ph bond twisting (ϕ). We base this analysis on the well-established S 0 (τ, ϕ) two-dimensional potential energy surface (PES) and on a newly refined S 1 (τ, ϕ) PES. We obtain vibrational eigenvalues and eigenvectors of the anharmonic S 0 (τ, ϕ) and S 1 (τ, ϕ) PES using a numerical procedure based on the Meyer's flexible model [R. Meyer, J. Mol. Spectrosc., 1979, 76, 266]. Then we derive Franck-Condon factors and therefore intensities of the relevant vibronic bands for the S 0 → S 1 excitation and S 1 → S 0 fluorescence spectra. Furthermore, we assess the role of the b g combination of the two C e -C ph bond twisting (ν 48 ) in the structure of the S 1 → S 0 fluorescence spectra. By the use of these results we are able to assign most of the low energy vibrational levels of the S 0 → S 1 excitation spectra and of the fluorescence spectra of the emission from several low energy S 1 vibronic levels. The good agreement between the observed and the computed vibrational structure of the S 0 → S 1 and S 1 → S 0 spectra suggests that the proposed picture of the E 1 (τ, ϕ) and E 0 (τ, ϕ) PES, in particular along the coordinate τ governing trans-cis photo-isomerization in S 1 , is accurate. In S 0 , the barriers for the C e [double bond, length as m-dash]C e torsion and for the a u type C e -C ph bond twisting are 16 080 cm -1 and 3125 cm -1 , respectively, while in S 1 , where the bond orders of the C e [double bond, length as m-dash]C e and C e -C ph bonds are reversed, the two barriers become 1350 cm -1 and 8780 cm -1 , respectively.

  1. Effect of investment type and mold temperature on casting accuracy and titanium-ceramic bond.

    PubMed

    Leal, Mônica Barbosa; Pagnano, Valéria Oliveira; Bezzon, Osvaldo Luiz

    2013-01-01

    This study evaluated the casting accuracy of crown margins and metal-ceramic shear bond strength (SBS) of pure titanium injected into casting molds made using 2 investment types at 3 mold temperatures. Sixty crown (30-degree beveled finish line) and 60 cylinder (5mm diameter × 8mm high) patterns were divided into 6 groups (n=10), and cast using a phosphate-bonded investment (P) and a magnesium oxide-bonded investment (U), at 400°C (groups P400 and U400), 550°C (groups P550 and U550) and 700°C (groups P700 and U700) mold temperatures. Crown margins were recorded in impression material, the degree of marginal rounding was measured and margin length deficiencies (µm) were calculated. Titanium-ceramic specimens were prepared using Triceram ceramic (2mm high) and SBS was tested. Failure modes were assessed by optical microscopy. Data were subjected to two-way ANOVA and Tukey's HSD test (α=0.05). For casting accuracy, expressed by marginal deficiency (µm), investment U provided more accurate results (64 ± 11) than P (81 ± 23) (p<0.001). The increase in temperature resulted in different effects for the tested investments (p<0.001), as it provided better casting accuracy for U700 (55 ± 7) and worse for P700 (109 ± 18). Casting accuracy at 700°C (82 ± 31) was significantly different from 400°C (69 ± 9) and 550°C (68 ± 9) (p<0.05). For SBS, there was no significant differences among the groups for factors investment (p=0.062) and temperature (p=0.224), or for their interaction (p=0.149). Investment U provided better casting accuracy than investment P. The SBS was similar for all combinations of investments and temperatures.

  2. Extra-thermodynamic study on surface diffusion in reversed-phase liquid chromatography using silica gels bonded with alkyl ligands of different chain lengths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyabe, Kanji; Guiochon, Georges A

    2005-06-01

    Surface diffusion on adsorbents made of silica gels bonded to C{sub 1}, C{sub 4}, C{sub 8}, and C{sub 18} alkyl ligands was studied in reversed-phase liquid chromatography (RPLC) from the viewpoints of two extrathermodynamic relationships: enthalpy-entropy compensation (EEC) and linear free-energy relationship (LFER). First, the values of the surface diffusion coefficient (D{sub s}), normalized by the density of the alkyl ligands, were analyzed with the modified Arrhenius equation, following the four approaches proposed in earlier research. This showed that an actual EEC resulting from substantial physicochemical effects occurs for surface diffusion and suggested a mechanistic similarity of molecular migration bymore » surface diffusion, irrespective of the alkyl chain length. Second, a new model based on EEC was derived to explain the LFER between the logarithms of D{sub s} measured under different RPLC conditions. This showed that the changes of free energy, enthalpy, and entropy of surface diffusion are linearly correlated with the carbon number in the alkyl ligands of the bonded phases and that the contribution of the C{sub 18} ligand to the changes of the thermodynamic parameters corresponds to that of the C{sub 10} ligand. The new LFER model correlates the slope and intercept of the LFER to the compensation temperatures derived from the EEC analyses and to several parameters characterizing the molecular contributions to the changes in enthalpy and entropy. Finally, the new model was used to estimate D{sub s} under various RPLC conditions. The values of D{sub s} that were estimated from only two original experimental D{sub s} data were in agreement with corresponding experimental D{sub s} values, with relative errors of {approx}20%, irrespective of some RPLC conditions.« less

  3. [Precision of three-dimensional printed brackets].

    PubMed

    Zhang, D; Wang, L C; Zhou, Y H; Liu, X M; Li, J

    2017-08-18

    This study was based on digital orthodontic diagnosis work flow for indirect bonding transfer tray model design and three-dimensional (3D) printing, and the aim of this paper was to inspect the dimensional accuracyof 3D printed brackets, which is the foundation of the follow up work and hoped that will illuminate the clinical application of the digital orthodontics work flow. The samples which consisted of 14 cases of patients with malocclusion from Department of Orthodontics Peking University were selected, including 8 cases with tooth extraction and 6 cases without tooth extraction. All the 14 patients were taken intra-oral scan (Trios 3Shape, Denmark) and cone-beam computed tomography (CBCT, NewTom 3G volumetric scanner, Aperio Service,Italy)shooting after periodontal treatment. STL data and DICOM data were obtained from intraoral scans and CBCT images.Data segmentation, registration, fusion, automatic tooth arrangement, virtual positioning of orthodontic appliance and conversion the coordinates of malocclusion model were all done with self-programming software. The data of 3D printing model with brackets on it were output finally and printed out with EDEN260V (Objet Geometries, Israel) to make indirect bonding transfer tray. Digital vernier caliper was used to measure the length and width of upper and lower left brackets and buccal tubes on those 3D models after removal of surrounding supporting material by ultrasonic vibration and water-spray. Intra-examiner reliability was assessed by using intra-class correlation coefficients (ICC), and one-sample T test was used to compare the measurements with the standard dimensional data of the brackets. There were significant differences which range in 0.04-0.17 mm between the 13 items out of the 19 measurement items. Except for the length of the lower left premolars'brackets, mean values of the other items were greater than the test value. Although the measurement results in the width of brackets and the width and length of the buccal tubes obtained experimentally were slightly larger than the test value,this may not reduce the accuracy of indirect bonding procedure in clinic necessarily. Whether the differences which range in 0.04-0.17 mm would actually affect the retention and positioning of brackets needs to be confirmed by further studies.

  4. Diradicals acting through diamagnetic phenylene vinylene bridges: Raman spectroscopy as a probe to characterize spin delocalization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    González, Sandra Rodríguez; Nieto-Ortega, Belén; González Cano, Rafael C.

    2014-04-28

    We present a complete Raman spectroscopic study in two structurally well-defined diradical species of different lengths incorporating oligo p-phenylene vinylene bridges between two polychlorinated triphenylmethyl radical units, a disposition that allows sizeable conjugation between the two radicals through and with the bridge. The spectroscopic data are interpreted and supported by quantum chemical calculations. We focus the attention on the Raman frequency changes, interpretable in terms of: (i) bridge length (conjugation length); (ii) bridge conformational structure; and (iii) electronic coupling between the terminal radical units with the bridge and through the bridge, which could delineate through-bond spin polarization, or spin delocalization.more » These items are addressed by using the “oligomer approach” in conjunction with pressure and temperature dependent Raman spectroscopic data. In summary, we have attempted to translate the well-known strategy to study the electron (charge) structure of π−conjugated molecules by Raman spectroscopy to the case of electron (spin) interactions via the spin delocalization mechanism.« less

  5. Tensile bond strength of an adhesive resin cement to different alloys having various surface treatments.

    PubMed

    Abreu, Amara; Loza, Maria A; Elias, Augusto; Mukhopadhyay, Siuli; Looney, Stephen; Rueggeberg, Frederick A

    2009-02-01

    The ability of a resin cement to bond to a restorative alloy is critical for maximal crown retention to nonideal preparations. Surface treatment and metal type may have an important role in optimizing resin-to-metal strength. The purpose of this study was to examine the effect of surface pretreatment on the tensile strength of base and noble metals bonded using a conventional resin cement. Cylindrical plastic rods (9.5 mm in diameter), cast in base (Rexillium NBF) or noble metal (IPS d.SIGN 53), were divided into rods 10 mm in length (n=10-12). Specimens were heated in a porcelain furnace to create an oxide layer. Test specimens were further subjected to airborne-particle abrasion (50-microm Al(2)O(3) particles) alone or with the application of a metal primer (Alloy Primer). Similarly treated rod ends were joined using resin cement (RelyX ARC), thermocycled (x500, 5 degrees -55 degrees C) and stored (24 hours, 37 degrees C) before debonding using a universal testing machine. Debond strength and failure site were recorded. Rank-based ANOVA for unbalanced designs was used to test for significant interaction (alpha=.050). Each pair of treatments was compared separately for each metal (Bonferroni-adjusted significance level of .0083, overall error rate for comparisons, .05). The 2 metals were compared separately for each of the 3 treatments using an adjusted significance level of .017, maintaining an overall error rate of .05. A multinomial logit model was used to describe the effect of metal type and surface pretreatment on failure site location (alpha=.05). Interaction between metal type and surface pretreatment was significant for stress values (P=.019). Metal type did not significantly affect tensile bond strength for any of the compared surface pretreatments. Metal primer significantly improved tensile bond strength for each metal type. Most failures tended to occur as either adhesive or mixed in nature. Metal primer application significantly enhanced tensile bond strength to base and noble metal. No significant differences in tensile strength were found between alloys. Differences in failure site incidence were found to be related to metal type and surface pretreatment.

  6. Prediction of boiling points of organic compounds by QSPR tools.

    PubMed

    Dai, Yi-min; Zhu, Zhi-ping; Cao, Zhong; Zhang, Yue-fei; Zeng, Ju-lan; Li, Xun

    2013-07-01

    The novel electro-negativity topological descriptors of YC, WC were derived from molecular structure by equilibrium electro-negativity of atom and relative bond length of molecule. The quantitative structure-property relationships (QSPR) between descriptors of YC, WC as well as path number parameter P3 and the normal boiling points of 80 alkanes, 65 unsaturated hydrocarbons and 70 alcohols were obtained separately. The high-quality prediction models were evidenced by coefficient of determination (R(2)), the standard error (S), average absolute errors (AAE) and predictive parameters (Qext(2),RCV(2),Rm(2)). According to the regression equations, the influences of the length of carbon backbone, the size, the degree of branching of a molecule and the role of functional groups on the normal boiling point were analyzed. Comparison results with reference models demonstrated that novel topological descriptors based on the equilibrium electro-negativity of atom and the relative bond length were useful molecular descriptors for predicting the normal boiling points of organic compounds. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Tunnel current across linear homocatenated germanium chains

    NASA Astrophysics Data System (ADS)

    Matsuura, Yukihito

    2014-01-01

    The electronic transport properties of germanium oligomers catenating into linear chains (linear Ge chains) have been theoretically studied using first principle methods. The conduction mechanism of a Ge chain sandwiched between gold electrodes was analyzed based on the density of states and the eigenstates of the molecule in a two-probe environment. Like that of silicon chains (Si chains), the highest occupied molecular orbital of Ge chains contains the extended σ-conjugation of Ge 4p orbitals at energy levels close to the Fermi level; this is in contrast to the electronic properties of linear carbon chains. Furthermore, the conductance of a Ge chain is expected to decrease exponentially with molecular length L. The decay constant β, which is defined as e-βL, of a Ge chain is similar to that of a Si chain, whereas the conductance of the Ge chains is higher than that of Si chains even though the Ge-Ge bond length is longer than the Si-Si bond length.

  8. Molecular geometry as a source of chemical information. 5. Substituent effect on proton transfer in para-substituted phenol complexes with fluoride--a B3LYP/6-311+G study.

    PubMed

    Krygowski, Tadeusz M; Szatyłowicz, Halina; Zachara, Joanna E

    2005-01-01

    The simplified model system [p-X-PhO...H...F](-), where -X are -NO, -NO(2), -CHO, -H, -CH(3), -OCH(3), and -OH, with various O...F distance was used to simulate the wide range of the H-bond strength. Structural changes due to variation of the substituent as well as the H-bond strength are well monitored by the changes in the aromaticity index HOMA and by two empirical measures of the H-bond strength-the (1)H NMR chemical shift of proton involved and the C-O bond length. Changes in H-bonding strengths and the position of proton transfer while shortening the O...F distance are well described by the Hammett equation.

  9. Electrochemical reduction of carbon fluorine bond in 4-fluorobenzonitrile Mechanistic analysis employing Marcus Hush quadratic activation-driving force relation

    NASA Astrophysics Data System (ADS)

    Muthukrishnan, A.; Sangaranarayanan, M. V.

    2007-10-01

    The reduction of carbon-fluorine bond in 4-fluorobenzonitrile in acetonitrile as the solvent, is analyzed using convolution potential sweep voltammetry and the dependence of the transfer coefficient on potential is investigated within the framework of Marcus-Hush quadratic activation-driving force theory. The validity of stepwise mechanism is inferred from solvent reorganization energy estimates as well as bond length calculations using B3LYP/6-31g(d) method. A novel method of estimating the standard reduction potential of the 4-fluorobenzonitrile in acetonitrile is proposed.

  10. Stereoselective heterocycle synthesis through oxidative carbon-hydrogen bond activation.

    PubMed

    Liu, Lei; Floreancig, Paul E

    2010-01-01

    Heterocycles are ubiquitous structures in both drugs and natural products, and efficient methods for their construction are being pursued constantly. Carbon-hydrogen bond activation offers numerous advantages for the synthesis of heterocycles with respect to minimizing the length of synthetic routes and reducing waste. As interest in chiral medicinal leads increases, stereoselective methods for heterocycle synthesis must be developed. The use of carbon-hydrogen bond activation reactions for stereoselective heterocycle synthesis has produced a range of creative transformations that provide a wide array of structural motifs, selected examples of which are described in this review.

  11. Exact valence bond entanglement entropy and probability distribution in the XXX spin chain and the potts model.

    PubMed

    Jacobsen, J L; Saleur, H

    2008-02-29

    We determine exactly the probability distribution of the number N_(c) of valence bonds connecting a subsystem of length L>1 to the rest of the system in the ground state of the XXX antiferromagnetic spin chain. This provides, in particular, the asymptotic behavior of the valence-bond entanglement entropy S_(VB)=N_(c)ln2=4ln2/pi(2)lnL disproving a recent conjecture that this should be related with the von Neumann entropy, and thus equal to 1/3lnL. Our results generalize to the Q-state Potts model.

  12. Evidence for a novel chemisorption bond: Formate (HCO/sub 2/) on Cu(100)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoehr, J.; Outka, D.A.; Madix, R.J.

    1985-03-25

    Surface extended-x-ray-absorption fine-structure measurements reveal that formate (HCO/sub 2/) groups on Cu(100) chemisorb via the two oxygen atoms in adjacent fourfold hollow sites with an average O-Cu nearest-neighbor bond length of 2.38 +- 0.03 A. This distance is sig- nificantly (approx.0.4 A) longer than typical O-Cu bonds in bulk compounds and all known surface complexes. The unusually large O-Cu distance is attributed to a steric effect involving the C atom in HCO/sub 2/ and the nearest-neighbor Cu surface atoms.

  13. Bioremediation Using Dehaloperoxidase

    DTIC Science & Technology

    2011-02-01

    distal pocket. The Fe—O bond length of 2.2 Å in the wild-type structure presented here is consistent with a chemical bond, while the longer distance in...130, 2128-2129 10.1021/ja0772952 CCC: $40.75 © 2008 American Chemical Society determination of the deuteron nuclei coupling constant. The assignment of...published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Article Characterization of Dehaloperoxidase Compound ES and

  14. (But­oxy­methyl­idene)di­methyl­aza­nium tetra­phenyl­borate aceto­nitrile monosolvate

    PubMed Central

    Tiritiris, Ioannis; Saur, Stefan; Kantlehner, Willi

    2014-01-01

    In the title solvated salt, C7H16NO+·C24H20B−·C2H3N, the C—N bond lengths in the cation are 1.2831 (19), 1.467 (2) and 1.465 (2) Å, indicating double- and single-bond character, respectively. The C—O bond length of 1.2950 (18) Å shows a double-bond character, pointing towards charge delocalization within the NCO plane of the iminium ion. The two C atoms of the n-butyl group are disordered over the two sites, with refined occupancy ratios of 0.890 (5):0.110 (5) and 0.888 (4):0.112 (4). In the crystal, C—H⋯π inter­actions occur between the methine H atom, H atoms of the –N(CH3)2 and –CH2 groups of the cation, and two of the phenyl rings of the tetra­phenyl­borate anion. The latter inter­action forms an aromatic pocket in which the cation is embedded. Thus, a two-dimensional pattern is created in the ac plane. PMID:24826158

  15. Role of Hydrogen Bonding on Nonlinear Mechano-Optical Behavior of L-Phenylalanine-based Poly(ester urea)s.

    NASA Astrophysics Data System (ADS)

    Chen, Keke; Yu, Jiayi; Guzman, Gustavo; Es-Haghi, S. Shams; Becker, Matthew L.; Cakmak, Miko

    The uniaxial mechano-optical behavior of a series of amorphous L-phenylalanine-based poly(ester urea) (PEU) films was studied in the rubbery state using a custom real-time measurement system. When the materials were subjected to deformation at temperatures near the glass transition temperature (Tg) , the photoelastic behavior was manifested by a small increase in birefringence with a significant increase in true stress. At temperatures above Tg, PEUs with a shorter diol chain length exhibited a liquid-liquid (Tll) transition at about 1.06 Tg (K), above which the material transforms from a heterogeneous ``liquid of fixed-structure'' to a ``true liquid'' state. The initial photoelastic behavior disappears with increasing temperature, as the initial slope of the stress optical curves becomes temperature independent. Fourier transform infrared spectra of PEUs revealed that the average strength of hydrogen bonding diminishes with increasing temperature. For PEUs with the longest diol chain length, the area associated with N-H stretching region exhibits a linear temperature dependence. The presence of hydrogen bonding enhances the ``stiff'' segmental correlations between adjacent chains in the PEU structure. As a result, the photoelastic constant decreases with increasing hydrogen bonding strength. This work was supported by the Ohio Department of Development's Innovation Platform Program and The National Science Foundation.

  16. Uranyl interaction with the hydrated (001) basal face of gibbsite: a combined theoretical and spectroscopic study.

    PubMed

    Veilly, Edouard; Roques, Jérôme; Jodin-Caumon, Marie-Camille; Humbert, Bernard; Drot, Romuald; Simoni, Eric

    2008-12-28

    The sorption of uranyl cations and water molecules on the basal (001) face of gibbsite was studied by combining vibrational and fluorescence spectroscopies together with density functional theory (DFT) computations. Both the calculated and experimental values of O-H bond lengths for the gibbsite bulk are in good agreement. In the second part, water sorption with this surface was studied to take into account the influence of hydration with respect to the uranyl adsorption. The computed water configurations agreed with previously published molecular dynamics studies. The uranyl adsorption in acidic media was followed by time-resolved laser-induced fluorescence spectroscopy and Raman spectrometry measurements. The existence of only one kind of adsorption site for the uranyl cation was then indicated in good agreement with the DFT calculations. The computation of the uranyl adsorption has been performed by means of a bidentate interaction with two surface oxygen atoms. The optimized structures displayed strong hydrogen bonds between the surface and the -yl oxygen of uranyl. The uranium-surface bond strength depends on the protonation state of the surface oxygen atoms. The calculated U-O(surface) bond lengths range between 2.1-2.2 and 2.6-2.7 A for the nonprotonated and protonated surface O atoms, respectively.

  17. Acyl chain length and charge effect on Tamoxifen-lipid model membrane interactions

    NASA Astrophysics Data System (ADS)

    Bilge, Duygu; Kazanci, Nadide; Severcan, Feride

    2013-05-01

    Tamoxifen (TAM), which is an antiestrogenic agent, is widely used during chemotherapy of breast, pancreas, brain and liver cancers. In this study, TAM and model membrane interactions in the form of multilamellar vesicles (MLVs) were studied for lipids containing different acyl chain length and different charge status as a function of different TAM (1, 6, 9 and 15 mol%) concentrations. Zwitterionic lipids namely dipalmitoyl phosphatidylcholine (DPPC), and dimyristoylphosphatidylcholine (DMPC) lipids were used to see the acyl chain length effect and anionic dipalmitoyl phosphtidylglycerol (DPPG) lipid was used to see the charge effect. For this purpose Fourier transform-infrared (FTIR) spectroscopic and differential scanning calorimetric (DSC) techniques have been conducted. For zwitterionic lipid, concentration dependent different action of TAM was observed both in the gel and liquid crystalline phases by significantly increasing the lipid order and decreasing the dynamics for 1 mol% TAM, while decreasing the lipid order and increasing the dynamics of the lipids for higher concentrations (6, 9 and 15 mol%). However, different than neutral lipids, the dynamics and disorder of DPPG liposome increased for all TAM concentrations. The interactions between TAM and head group of multilamellar liposomes was monitored by analyzing the Cdbnd O stretching and PO2- antisymmetric double bond stretching bands. Increasing Tamoxifen concentrations led to a dehydration around these functional groups in the polar part of the lipids. DSC studies showed that for all types of lipids, TAM eliminates the pre-transition, shifts the main phase transition to lower temperatures and broadened the phase transition curve. The results indicate that not the acyl chain length but the charge status of the polar head group induces different effects on lipid membranes order and dynamics.

  18. NMR determination of the global structure of the 113Cd derivative of desulforedoxin: investigation of the hydrogen bonding pattern at the metal center.

    PubMed Central

    Goodfellow, B. J.; Rusnak, F.; Moura, I.; Domke, T.; Moura, J. J.

    1998-01-01

    Desulforedoxin (Dx) is a simple homodimeric protein isolated from Desulfovibrio gigas (Dg) containing a distorted rubredoxin-like center with one iron coordinated by four cysteinyl residues (7.9 kDa with 36 amino acids per monomer). In order to probe the geometry and the H-bonding at the active site of Dx, the protein was reconstituted with 113Cd and the solution structure determined using 2D NMR methods. The structure of this derivative was initially compared with the NMR solution structure of the Zn form (Goodfellow BJ et al., 1996, J Biol Inorg Chem 1:341-353). Backbone amide protons for G4, D5, G13, L11 NH, and the Q14 NH side-chain protons, H-bonded in the X-ray structure, were readily exchanged with solvent. Chemical shift differences observed for amide protons near the metal center confirm the H-bonding pattern seen in the X-ray model (Archer M et al., 1995, J Mol Biol 251:690-702) and also suggest that H-bond lengths may vary between the Fe, Zn, and 113Cd forms. The H-bonding pattern was further probed using a heteronuclear spin echo difference (HSED) experiment; the results confirm the presence of NH-S H-bonds inferred from D2O exchange data and observed in the NMR family of structures. The presence of "H-bond mediated" coupling in Dx indicates that the NH-S H-bonds at the metal center have significant covalent character. The HSED experiment also identified an intermonomer "through space" coupling for one of the L26 methyl groups, indicating its proximity to the 113Cd center in the opposing monomer. This is the first example of an intermonomer "through space" coupling. Initial structure calculations produced subsets of NMR families with the S of C28 pointing away from or toward the L26 methyl: only the subset with the C28 sulfur pointing toward the L26 methyl could result in a "through space" coupling. The HSED result was therefore included in the structure calculations. Comparison of the Fe, Zn, and 113Cd forms of Dx suggests that the geometry of the metal center and the global fold of the protein does not vary to any great extent, although the H-bond network varies slightly when Cd is introduced. The similarity between the H-bonding pattern seen at the metal center in Dx, Rd (including H-bonded and through space-mediated coupling), and many zinc-finger proteins suggests that these H-bonds are structurally vital for stabilization of the metal centers in these proteins. PMID:9568899

  19. NMR determination of the global structure of the 113Cd derivative of desulforedoxin: investigation of the hydrogen bonding pattern at the metal center.

    PubMed

    Goodfellow, B J; Rusnak, F; Moura, I; Domke, T; Moura, J J

    1998-04-01

    Desulforedoxin (Dx) is a simple homodimeric protein isolated from Desulfovibrio gigas (Dg) containing a distorted rubredoxin-like center with one iron coordinated by four cysteinyl residues (7.9 kDa with 36 amino acids per monomer). In order to probe the geometry and the H-bonding at the active site of Dx, the protein was reconstituted with 113Cd and the solution structure determined using 2D NMR methods. The structure of this derivative was initially compared with the NMR solution structure of the Zn form (Goodfellow BJ et al., 1996, J Biol Inorg Chem 1:341-353). Backbone amide protons for G4, D5, G13, L11 NH, and the Q14 NH side-chain protons, H-bonded in the X-ray structure, were readily exchanged with solvent. Chemical shift differences observed for amide protons near the metal center confirm the H-bonding pattern seen in the X-ray model (Archer M et al., 1995, J Mol Biol 251:690-702) and also suggest that H-bond lengths may vary between the Fe, Zn, and 113Cd forms. The H-bonding pattern was further probed using a heteronuclear spin echo difference (HSED) experiment; the results confirm the presence of NH-S H-bonds inferred from D2O exchange data and observed in the NMR family of structures. The presence of "H-bond mediated" coupling in Dx indicates that the NH-S H-bonds at the metal center have significant covalent character. The HSED experiment also identified an intermonomer "through space" coupling for one of the L26 methyl groups, indicating its proximity to the 113Cd center in the opposing monomer. This is the first example of an intermonomer "through space" coupling. Initial structure calculations produced subsets of NMR families with the S of C28 pointing away from or toward the L26 methyl: only the subset with the C28 sulfur pointing toward the L26 methyl could result in a "through space" coupling. The HSED result was therefore included in the structure calculations. Comparison of the Fe, Zn, and 113Cd forms of Dx suggests that the geometry of the metal center and the global fold of the protein does not vary to any great extent, although the H-bond network varies slightly when Cd is introduced. The similarity between the H-bonding pattern seen at the metal center in Dx, Rd (including H-bonded and through space-mediated coupling), and many zinc-finger proteins suggests that these H-bonds are structurally vital for stabilization of the metal centers in these proteins.

  20. Doubly self-consistent field theory of grafted polymers under simple shear in steady state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suo, Tongchuan; Whitmore, Mark D., E-mail: mark-whitmore@umanitoba.ca

    2014-03-21

    We present a generalization of the numerical self-consistent mean-field theory of polymers to the case of grafted polymers under simple shear. The general theoretical framework is presented, and then applied to three different chain models: rods, Gaussian chains, and finitely extensible nonlinear elastic (FENE) chains. The approach is self-consistent at two levels. First, for any flow field, the polymer density profile and effective potential are calculated self-consistently in a manner similar to the usual self-consistent field theory of polymers, except that the calculation is inherently two-dimensional even for a laterally homogeneous system. Second, through the use of a modified Brinkmanmore » equation, the flow field and the polymer profile are made self-consistent with respect to each other. For all chain models, we find that reasonable levels of shear cause the chains to tilt, but it has very little effect on the overall thickness of the polymer layer, causing a small decrease for rods, and an increase of no more than a few percent for the Gaussian and FENE chains. Using the FENE model, we also probe the individual bond lengths, bond correlations, and bond angles along the chains, the effects of the shear on them, and the solvent and bonded stress profiles. We find that the approximations needed within the theory for the Brinkman equation affect the bonded stress, but none of the other quantities.« less

  1. The structure of poly(carbonsuboxide) on the atomic scale: a solid-state NMR study.

    PubMed

    Schmedt auf der Günne, Jörn; Beck, Johannes; Hoffbauer, Wilfried; Krieger-Beck, Petra

    2005-07-18

    In this contribution we present a study of the structure of amorphous poly(carbonsuboxide) (C3O2)x by 13C solid-state NMR spectroscopy supported by infrared spectroscopy and chemical analysis. Poly(carbonsuboxide) was obtained by polymerization of carbonsuboxide C3O2, which in turn was synthesized from malonic acid bis(trimethylsilylester). Two different 13C labeling schemes were applied to probe inter- and intramonomeric bonds in the polymer by dipolar solid-state NMR methods and also to allow quantitative 13C MAS NMR spectra. Four types of carbon environments can be distinguished in the NMR spectra. Double-quantum and triple-quantum 2D correlation experiments were used to assign the observed peaks using the through-space and through-bond dipolar coupling. In order to obtain distance constraints for the intermonomeric bonds, double-quantum constant-time experiments were performed. In these experiments an additional filter step was applied to suppress contributions from not directly bonded 13C,13C spin pairs. The 13C NMR intensities, chemical shifts, connectivities and distances gave constraints for both the polymerization mechanism and the short-range order of the polymer. The experimental results were complemented by bond lengths predicted by density functional theory methods for several previously suggested models. Based on the presented evidence we can unambiguously exclude models based on gamma-pyronic units and support models based on alpha-pyronic units. The possibility of planar ladder- and bracelet-like alpha-pyronic structures is discussed.

  2. Does the 4f-shell contribute to bonding in tetravalent lanthanide halides?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Wen-Xin; School of Chemistry and Chemical Engineering, Ningxia University, 750015 Yinchuan; Xu, Wei

    2014-12-28

    Lanthanide tetrahalide molecules LnX{sub 4} (Ln = Ce, Pr, Tb; X = F, Cl, Br, I) have been investigated by density functional theory at the levels of the relativistic Zero Order Regular Approximation and the relativistic energy-consistent pseudopotentials, using frozen small- and medium-cores. The calculated bond lengths and vibrational frequencies are close to the experimental data. Our calculations indicate 4f shell contributions to bonding in LnX{sub 4}, in particular for the early lanthanides, which show significant overlap between the Ln 4f-shell and the halogen np-shells. The 4f shells contribute to Ln-X bonding in LnX{sub 4} about one third more thanmore » in LnX{sub 3}.« less

  3. Anharmonic Potential Constants and Their Dependence Upon Bond Length

    DOE R&D Accomplishments Database

    Herschbach, D. R.; Laurie, V. W.

    1961-01-01

    Empirical study of cubic and quartic vibrational force constants for diatomic molecules shows them to be approximately exponential functions of internuclear distance. A family of curves is obtained, determined by the location of the bonded atoms in rows of the periodic table. Displacements between successive curves correspond closely to those in Badger's rule for quadratic force constants (for which the parameters are redetermined to accord with all data now available). Constants for excited electronic and ionic states appear on practically the same curves as those for the ground states. Predictions based on the diatomic correlations agree with the available cubic constants for bond stretching in polyatomic molecules, regardless of the type of bonding involved. Implications of these regularities are discussed. (auth)

  4. Controlling formation of single-molecule junctions by electrochemical reduction of diazonium terminal groups.

    PubMed

    Hines, Thomas; Díez-Pérez, Ismael; Nakamura, Hisao; Shimazaki, Tomomi; Asai, Yoshihiro; Tao, Nongjian

    2013-03-06

    We report controlling the formation of single-molecule junctions by means of electrochemically reducing two axialdiazonium terminal groups on a molecule, thereby producing direct Au-C covalent bonds in situ between the molecule and gold electrodes. We report a yield enhancement in molecular junction formation as the electrochemical potential of both junction electrodes approach the reduction potential of the diazonium terminal groups. Step length analysis shows that the molecular junction is significantly more stable, and can be pulled over a longer distance than a comparable junction created with amine anchoring bonds. The stability of the junction is explained by the calculated lower binding energy associated with the direct Au-C bond compared with the Au-N bond.

  5. Velocity modulation spectroscopy of molecular ions II: The millimeter/submillimeter-wave spectrum of TiF + ( X3Φr)

    NASA Astrophysics Data System (ADS)

    Halfen, D. T.; Ziurys, L. M.

    2006-11-01

    The pure rotational spectrum of the molecular ion TiF + in its 3Φr ground state has been measured in the range 327-542 GHz using millimeter-wave direct absorption techniques combined with velocity modulation spectroscopy. TiF + was made in an AC discharge from a mixture of TiCl 4, F 2 in He, and argon. Ten transitions of this ion were recorded. In every transition, fluorine hyperfine interactions, as well as the fine structure splittings, were resolved. The fine structure pattern was found to be regular with almost equal spacing in frequency between the three spin components, in contrast to TiCl +, which is perturbed in the ground state. The data were fit with a case ( a) Hamiltonian and rotational, fine structure, and hyperfine constants were determined. The bond length established for TiF +, r0 = 1.7775 Å, was found to be shorter than that of TiF, r0 = 1.8342 Å—also established from mm-wave data. The hyperfine parameters determined are consistent with a δ1π1 electron configuration with the electrons primarily located on the titanium nucleus. The nuclear spin-orbit constant a indicates that the unpaired electrons are closer to the fluorine nucleus in TiF + relative to TiF, as expected with the decrease in bond length for the ion. The shorter bond distance is thought to arise from increased charge on the titanium nucleus as a result of a Ti 2+F - configuration. A similar decrease in bond length was found for TiCl + relative to TiCl.

  6. In-Situ Adhesive Bond Assessment

    DTIC Science & Technology

    2010-08-01

    a list of AR coefficients. The use of the VCC metric , with appropriate extreme value statistics models as described in detail below, allowed...equivalent PZT with thickness equal to the MFC electrode spacing , a , and length equal to the MFC net electrode length, (p le), where p is the number of ...particular geometry of the test specimen and with MFC patches affixed to the

  7. Local environment effects in the magnetic properties and electronic structure of disordered FePt

    NASA Astrophysics Data System (ADS)

    Khan, Saleem Ayaz; Minár, Ján; Ebert, Hubert; Blaha, Peter; Šipr, Ondřej

    2017-01-01

    Local aspects of magnetism of disordered FePt are investigated by ab initio fully relativistic full-potential calculations, employing the supercell approach and the coherent potential approximation (CPA). The focus is on trends of the spin and orbital magnetic moments with chemical composition and with bond lengths around the Fe and Pt atoms. A small but distinct difference between average magnetic moments obtained when using the supercells and when relying on the CPA is identified and linked to the neglect of the Madelung potential in the CPA.

  8. Atomic configurations at InAs partial dislocation cores associated with Z-shape faulted dipoles.

    PubMed

    Li, Luying; Gan, Zhaofeng; McCartney, Martha R; Liang, Hanshuang; Yu, Hongbin; Gao, Yihua; Wang, Jianbo; Smith, David J

    2013-11-15

    The atomic arrangements of two types of InAs dislocation cores associated by a Z-shape faulted dipole are observed directly by aberration-corrected high-angle annular-dark-field imaging. Single unpaired columns of different atoms in a matrix of dumbbells are clearly resolved, with observable variations of bonding lengths due to excess Coulomb force from bare ions at the dislocation core. The corresponding geometric phase analysis provides confirmation that the dislocation cores serve as origins of strain field inversion while stacking faults maintain the existing strain status.

  9. Electron and optical properties of fullerene C70 within the conception of a strongly correlated state

    NASA Astrophysics Data System (ADS)

    Lobanov, B. V.; Murzashev, A. I.

    2017-02-01

    In the framework of the Hubbard model in the static fluctuation approximation, the energy spectrum of fullerene C70 with allowance for different lengths of the bonds between nonequivalent nodes is calculated. On the basis of the calculated energy spectrum, the optical absorption spectrum in the ultraviolet and visible region is simulated. A good qualitative agreement between the calculated and measured absorption spectra and between the measured and theoretical values of the gap width between the highest occupied and the lowest unoccupied molecular orbital is found.

  10. Ionic bonding of lanthanides, as influenced by d- and f-atomic orbitals, by core-shells and by relativity.

    PubMed

    Ji, Wen-Xin; Xu, Wei; Schwarz, W H Eugen; Wang, Shu-Guang

    2015-03-15

    Lanthanide trihalide molecules LnX3 (X = F, Cl, Br, I) were quantum chemically investigated, in particular detail for Ln = Lu (lutetium). We applied density functional theory (DFT) at the nonrelativistic and scalar and SO-coupled relativistic levels, and also the ab initio coupled cluster approach. The chemically active electron shells of the lanthanide atoms comprise the 5d and 6s (and 6p) valence atomic orbitals (AO) and also the filled inner 4f semivalence and outer 5p semicore shells. Four different frozen-core approximations for Lu were compared: the (1s(2) -4d(10) ) [Pd] medium core, the [Pd+5s(2) 5p(6) = Xe] and [Pd+4f(14) ] large cores, and the [Pd+4f(14) +5s(2) 5p(6) ] very large core. The errors of LuX bonding are more serious on freezing the 5p(6) shell than the 4f(14) shell, more serious upon core-freezing than on the effective-core-potential approximation. The LnX distances correlate linearly with the AO radii of the ionic outer shells, Ln(3+) -5p(6) and X(-) -np(6) , characteristic for dominantly ionic Ln(3+) -X(-) binding. The heavier halogen atoms also bind covalently with the Ln-5d shell. Scalar relativistic effects contract and destabilize the LuX bonds, spin orbit coupling hardly affects the geometries but the bond energies, owing to SO effects in the free atoms. The relativistic changes of bond energy BE, bond length Re , bond force k, and bond stretching frequency vs do not follow the simple rules of Badger and Gordy (Re ∼BE∼k∼vs ). The so-called degeneracy-driven covalence, meaning strong mixing of accidentally near-degenerate, nearly nonoverlapping AOs without BE contribution is critically discussed. © 2015 Wiley Periodicals, Inc.

  11. Determination of the crystal structure and composition of Li6Be4OH12 by the stochastic method.

    PubMed Central

    Pauling, L

    1990-01-01

    Because of the failure to find a structure for LiBeH3 with a face-centered unit cube with edge 5.09 A, the x-ray powder pattern has been reindexed for a body-centered unit cube with edge 7.24 A. Application of the principles of structural chemistry leads to the formula Li6Be4OH12 and to a structure involving Be4OH12 clusters formed by 4 BeOH3 tetrahedra with their O corner shared, Be--(H,O) bond length 1.59 A, and with the clusters joined to one another by Li with octahedral or rectangular-planar coordination of 6 H or 4 H, Li-H bond lengths about 1.92 A. PMID:11607052

  12. Determination of the crystal structure and composition of Li6Be4OH12 by the stochastic method.

    PubMed

    Pauling, L

    1990-01-01

    Because of the failure to find a structure for LiBeH3 with a face-centered unit cube with edge 5.09 A, the x-ray powder pattern has been reindexed for a body-centered unit cube with edge 7.24 A. Application of the principles of structural chemistry leads to the formula Li6Be4OH12 and to a structure involving Be4OH12 clusters formed by 4 BeOH3 tetrahedra with their O corner shared, Be--(H,O) bond length 1.59 A, and with the clusters joined to one another by Li with octahedral or rectangular-planar coordination of 6 H or 4 H, Li-H bond lengths about 1.92 A.

  13. Stress analysis of the cracked-lap-shear specimen - An ASTM round-robin

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1987-01-01

    This ASTM Round Robin was conducted to evaluate the state of the art in stress analysis of adhesively bonded joint specimens. Specifically, the participants were asked to calculate the strain-energy-release rate for two different geometry cracked lap shear (CLS) specimens at four different debond lengths. The various analytical techniques consisted of 2- and 3-dimensional finite element analysis, beam theory, plate theory, and a combination of beam theory and finite element analysis. The results were examined in terms of the total strain-energy-release rate and the mode I to mode II ratio as a function of debond length for each specimen geometry. These results basically clustered into two groups: geometric linear or geometric nonlinear analysis. The geometric nonlinear analysis is required to properly analyze the CLS specimens. The 3-D finite element analysis gave indications of edge closure plus some mode III loading. Each participant described his analytical technique and results. Nine laboratories participated.

  14. Stress analysis of the cracked lap shear specimens: An ASTM round robin

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1986-01-01

    This ASTM Round Robin was conducted to evaluate the state of the art in stress analysis of adhesively bonded joint specimens. Specifically, the participants were asked to calculate the strain-energy-release rate for two different geometry cracked lap shear (CLS) specimens at four different debond lengths. The various analytical techniques consisted of 2- and 3-dimensional finite element analysis, beam theory, plate theory, and a combination of beam theory and finite element analysis. The results were examined in terms of the total strain-energy-release rate and the mode I to mode II ratio as a function of debond length for each specimen geometry. These results basically clustered into two groups: geometric linear or geometric nonlinear analysis. The geometric nonlinear analysis is required to properly analyze the CLS specimens. The 3-D finite element analysis gave indications of edge closure plus some mode III loading. Each participant described his analytical technique and results. Nine laboratories participated.

  15. Crystal structure of cis-aqua­bis­(2,2′-bi­pyridine-κ2 N,N′)chlorido­chromium(III) tetra­chlorido­zincate determined from synchrotron data

    PubMed Central

    Moon, Dohyun; Ryoo, Keon Sang; Choi, Jong-Ha

    2016-01-01

    The structure of the title salt, [CrCl(C10H8N2)2(H2O)][ZnCl4], has been determined from synchrotron data. The CrIII ion is coordinated by four N atoms from two 2,2′-bi­pyridine (bipy) ligands, one O atom from a water mol­ecule and a chloride anion in a cis arrangement, displaying a distorted octa­hedral geometry. The tetra­hedral [ZnCl4]2− anion is slightly distorted owing to its involvement in O—H⋯Cl hydrogen bonding with the coordinating water mol­ecule. The Cr—N(bipy) bond lengths are in the range 2.0485 (13)–2.0632 (12) Å, while the Cr—Cl and Cr—(OH2) bond lengths are 2.2732 (6) and 1.9876 (12) Å, respectively. In the crystal, mol­ecules are stacked along the a axis. PMID:27006786

  16. Bis{2-meth­oxy-6-[tris­(hydroxy­meth­yl)methyl­imino­meth­yl]phenolato-κ3 O,N,O′}manganese(II) dimethanol solvate hemihydrate

    PubMed Central

    Zhang, Xiutang; Wei, Peihai; Dou, Jianmin; Li, Bin; Hu, Bo

    2009-01-01

    In the title complex, [Mn(C12H16NO5)2]·2CH3OH·0.5H2O, the MnII atom has a distorted octa­hedral coordination geometry in which two N atoms from two 6-meth­oxy-2-[tris­(hydroxy­meth­yl)methyl­imino­meth­yl]phenolate ligands adopt a trans arrangement. The Mn—O(H) bonds (mean length 2.134 Å) are significantly longer than the Mn—O and Mn—N bonds (mean length 2.011 and 2.027 Å, respectively), and the dihedral angle between the mean planes through the aromatic rings of the two ligands is 76.8 (1)°. A complex network of O—H⋯O hydrogen bonds is formed between the complexes and the uncoordinated methanol and water mol­ecules. The C and O atoms of one C—OH group are disordered with equal occupancies. PMID:21582076

  17. Spin-Orbit Effect on the Molecular Properties of TeXn (X = F, Cl, Br, and I; n = 1, 2, and 4): A Density Functional Theory and Ab Initio Study.

    PubMed

    Moon, Jiwon; Kim, Joonghan

    2016-09-29

    Density functional theory (DFT) and ab initio calculations, including spin-orbit coupling (SOC), were performed to investigate the spin-orbit (SO) effect on the molecular properties of tellurium halides, TeXn (X = F, Cl, Br, and I; n = 1, 2, and 4). SOC elongates the Te-X bond and slightly reduces the vibrational frequencies. Consideration of SOC leads to better agreement with experimental values. Møller-Plesset second-order perturbation theory (MP2) seriously underestimates the Te-X bond lengths. In contrast, B3LYP significantly overestimates them. SO-PBE0 and multireference configuration interactions with the Davidson correction (MRCI+Q), which include SOC via a state-interaction approach, give the Te-I bond length of TeI2 that matches the experimental value. On the basis of the calculated thermochemical energy and optimized molecular structure, TeI4 is unlikely to be stable. The use of PBE0 including SOC is strongly recommended for predicting the molecular properties of Te-containing compounds.

  18. Ab initio study on the structural and electronic properties of water surrounding a multifunctional nanoprobe

    NASA Astrophysics Data System (ADS)

    Xia, Xiuli; Shao, Yuanzhi

    2018-02-01

    We report the magneto-electric behavior of a dual-modality biomedical nanoprobe, a ternary nanosystem consisting of gold and gadolinia clusters and water molecules, with the effect of both nanoclusters on the structural and electronic properties of water. The hydrogen-oxygen bond lengths and angles as well as electronic charges of water molecules surrounding both nanoclusters were calculated using Hubbard U corrected density functional theory aided by molecular dynamics approach. The calculations reveal existence of a magneto-electric interaction between gold and gadolinium oxide nanoclusters, which influences the physical properties of surrounding water remarkably. A broader (narrower) distribution of Hsbnd O bond lengths (Hsbnd Osbnd H bond angles) was observed at the presence of either gold or gadolinia nanoclusters. The presence of Gd6O9 cluster leads to the larger charges of neighbour oxygen atoms. The distribution of oxygen atom charges becomes border when both Gd6O9 and Au13 clusters coexist. Ab initio calculation provides a feasible approach to explore the most essential interactions among functional components of a multimodal nanoprobe applied in aqueous environment.

  19. Effectiveness of an infiltrant on sealing of composite restoration margins with/without artificial caries.

    PubMed

    Tulunoglu, Ozlem; Tulunoglu, Ibrahim Fevzi; Antonson, Sibel A; Campillo-Funollet, Marc; Antonson, Donald; Munoz-Viveros, Carlos

    2014-11-01

    The aim of this in vitro study was to evaluate the effectiveness of a resin infiltrant (ICON) on marginal sealing ability of class II resin restorations with/without-caries. Forty-eight noncarious human pre-molar teeth were embedded and MO and DO preparations of standard dimensions were prepared. The left side of dentin margins of the cavities were left nonbonded (UB) while the right side were bonded using total etch-bonding agent and all restored with a Nanohybrid composite. The teeth were thermocycled and half of the specimens in the UB and B groups were subjected to an artificial caries process. ICON was applied to caries and noncaries subgroups following the manufacturer's directions. Impressions were made at each step: after the restorations were completed, thermocycling, artificial caries procedures, and infiltrant application and the silicone tag lengths were measured with a stereomicroscope. The specimens were immersed in 0.5% basic fuchsine at 37° C for 24 hours, sectioned and microleakage was evaluated with a stereomicroscope. Selected samples and their replicas were assessed for marginal quality under a stereomicroscope and SEM. Statistical evaluation of the data were made using Kruskal-Wallis, Mann-Whitney U and Wilcoxon Sign Rank tests. While bonding application did not create a meaningful difference, the thermocycling and artificial caries significantly increased the gap length and microleakage (p < 0.05). ICON application was decreased the microleakage, created gap-free margins and closed the gaps which were previously occurred at the same cavities (p < 0.05). A resin infiltrant (ICON) application decreased the microleakage, created gap-free margins and closed the gaps, which previously occurred at the same cavities. Approximal application of resin infiltrant may increase the success of the class II composite restorations also reduced the risk of needing more complex restoration therapy.

  20. Raman spectroscopy as a tool to investigate the structure and electronic properties of carbon-atom wires

    PubMed Central

    Milani, Alberto; Tommasini, Matteo; Russo, Valeria; Li Bassi, Andrea; Lucotti, Andrea; Cataldo, Franco

    2015-01-01

    Summary Graphene, nanotubes and other carbon nanostructures have shown potential as candidates for advanced technological applications due to the different coordination of carbon atoms and to the possibility of π-conjugation. In this context, atomic-scale wires comprised of sp-hybridized carbon atoms represent ideal 1D systems to potentially downscale devices to the atomic level. Carbon-atom wires (CAWs) can be arranged in two possible structures: a sequence of double bonds (cumulenes), resulting in a 1D metal, or an alternating sequence of single–triple bonds (polyynes), expected to show semiconducting properties. The electronic and optical properties of CAWs can be finely tuned by controlling the wire length (i.e., the number of carbon atoms) and the type of termination (e.g., atom, molecular group or nanostructure). Although linear, sp-hybridized carbon systems are still considered elusive and unstable materials, a number of nanostructures consisting of sp-carbon wires have been produced and characterized to date. In this short review, we present the main CAW synthesis techniques and stabilization strategies and we discuss the current status of the understanding of their structural, electronic and vibrational properties with particular attention to how these properties are related to one another. We focus on the use of vibrational spectroscopy to provide information on the structural and electronic properties of the system (e.g., determination of wire length). Moreover, by employing Raman spectroscopy and surface enhanced Raman scattering in combination with the support of first principles calculations, we show that a detailed understanding of the charge transfer between CAWs and metal nanoparticles may open the possibility to tune the electronic structure from alternating to equalized bonds. PMID:25821689

  1. Protein farnesyltransferase isoprenoid substrate discrimination is dependent on isoprene double bonds and branched methyl groups.

    PubMed

    Micali, E; Chehade, K A; Isaacs, R J; Andres, D A; Spielmann, H P

    2001-10-16

    Farnesylation is a posttranslational lipid modification in which a 15-carbon farnesyl isoprenoid is linked via a thioether bond to specific cysteine residues of proteins in a reaction catalyzed by protein farnesyltransferase (FTase). We synthesized the benzyloxyisoprenyl pyrophosphate (BnPP) series of transferable farnesyl pyrophosphate (FPP) analogues (1a-e) to test the length dependence of the isoprenoid substrate on the FTase-catalyzed transfer of lipid to protein substrate. Kinetic analyses show that pyrophosphates 1a-e and geranyl pyrophosphate (GPP) transfer with a lower efficiency than FPP whereas geranylgeranyl pyrophosphate (GGPP) does not transfer at all. While a correlation was found between K(m) and analogue hydrophobicity and length, there was no correlation between k(cat) and these properties. Potential binding geometries of FPP, GPP, GGPP, and analogues 1a-e were examined by modeling the molecules into the active site of the FTase crystal structure. We found that analogue 1d displaces approximately the same volume of the active site as does FPP, whereas GPP and analogues 1a-c occupy lesser volumes and 1e occupies a slightly larger volume. Modeling also indicated that GGPP adopts a different conformation than the farnesyl chain of FPP, partially occluding the space occupied by the Ca(1)a(2)X peptide in the ternary X-ray crystal structure. Within the confines of the FTase pocket, the double bonds and branched methyl groups of the geranylgeranyl chain significantly restrict the number of possible conformations relative to the more flexible lipid chain of analogues 1a-e. The modeling results also provide a molecular explanation for the observation that an aromatic ring is a good isostere for the terminal isoprene of FPP.

  2. An investigation of viscous-mediated coupling of crickets cercal hair sensors using a scaled up model

    NASA Astrophysics Data System (ADS)

    Alagirisamy, Pasupathy S.; Jeronimidis, George; Le Moàl, Valerie

    2009-08-01

    Viscous coupling between filiform hair sensors of insects and arthropods has gained considerable interest recently. Study of viscous coupling between hairs at micro scale with current technologies is proving difficult and hence the hair system has been physically scaled up by a factor of 100. For instance, a typical filiform hair of 10 μm diameter and 1000 μm length has been physically scaled up to 1 mm in diameter and 100mm in length. At the base, a rotational spring with a bonded strain gauge provides the restoring force and measures the angle of deflection of the model hair. These model hairs were used in a glycerol-filled aquarium where the velocity of flow and the fluid properties were determined by imposing the Reynolds numbers compatible with biological system. Experiments have been conducted by varying the separation distance and the relative position between the moveable model hairs, of different lengths and between the movable and rigid hairs of different lengths for the steady velocity flow with Reynolds numbers of 0.02 and 0.05. In this study, the viscous coupling between hairs has been characterised. The effect of the distance from the physical boundaries, such as tank walls has also been quantified (wall effect). The purpose of this investigation is to provide relevant information for the design of MEMS systems mimicking the cricket's hair array.

  3. Analysis of the bonding in XH3Cu+ (XB, Al, Ga) complexes

    NASA Astrophysics Data System (ADS)

    Corral, Inés; Mó, Otilia; Yáñez, Manuel

    High-level density functional theory (DFT) calculations on XH3Cu+ (XB, Al, Ga) complexes show that the attachment of the metal cation to the base takes place through agostic-type interactions. These interactions that can be viewed as dative bonds from the σXH bonding orbitals of the base toward low-lying empty 4s orbitals of the metal cation, and back-donations from the lone pairs of the metal into the σ *XH antibonding orbitals of the neutral, are particularly favored when the XH bonds have a high X+δH-δ polarity. Accordingly, the AlH3 and GaH3 Cu+ binding energies are very similar, but much larger than that of BH3. Depopulation of the σXH bonding orbital and the concomitant population of the σ *XH antibonding orbital involved in the agostic interaction result in a significant weakening of the corresponding XH linkages, whose bond length increases and whose stretching frequency appears red-shifted.

  4. 3-[Bis(dimethyl­amino)­methyl­ene]-1,1-diphenyl­urea

    PubMed Central

    Tiritiris, Ioannis

    2012-01-01

    In the title compound, C18H22N4O, the C=N and C—N bond lengths in the CN3 unit are 1.3179 (11), 1.3551 (11) and 1.3737 (11) Å, indicating double- and single-bond character, respectively. The N—C—N angles are 115.91 (8), 118.20 (8) and 125.69 (8), showing a deviation of the CN3 plane from an ideal trigonal–planar geometry. The bonds between the N atoms and the terminal C-methyl groups all have values close to a typical single bond [1.4529 (12)–1.4624 (12) Å]. The dihedral angle between the phenyl rings is 79.63 (4)°. In the crystal, the mol­ecules are connected via weak C—H⋯O hydrogen bonds, generating chains along [100]. PMID:23284417

  5. Linking microscopic and macroscopic response in disordered solids

    NASA Astrophysics Data System (ADS)

    Hexner, Daniel; Liu, Andrea J.; Nagel, Sidney R.

    2018-06-01

    The modulus of a rigid network of harmonic springs depends on the sum of the energies in each of the bonds due to an applied distortion such as compression in the case of the bulk modulus or shear in the case of the shear modulus. However, the distortion need not be global. Here we introduce a local modulus, Li, associated with changing the equilibrium length of a single bond, i , in the network. We show that Li is useful for understanding many aspects of the mechanical response of the entire system. It allows an efficient computation of how the removal of any bond changes the global properties such as the bulk and shear moduli. Furthermore, it allows a prediction of the distribution of these changes and clarifies why the changes of these two moduli due to removal of a bond are uncorrelated; these are the essential ingredients necessary for the efficient manipulation of network properties by bond removal.

  6. Natural bond orbital analysis, electronic structure, non-linear properties and vibrational spectral analysis of L-histidinium bromide monohydrate: a density functional theory.

    PubMed

    Sajan, D; Joseph, Lynnette; Vijayan, N; Karabacak, M

    2011-10-15

    The spectroscopic properties of the crystallized nonlinear optical molecule L-histidinium bromide monohydrate (abbreviated as L-HBr-mh) have been recorded and analyzed by FT-IR, FT-Raman and UV techniques. The equilibrium geometry, vibrational wavenumbers and the first order hyperpolarizability of the crystal were calculated with the help of density functional theory computations. The optimized geometric bond lengths and bond angles obtained by using DFT (B3LYP/6-311++G(d,p)) show good agreement with the experimental data. The complete assignments of fundamental vibrations were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. The natural bond orbital (NBO) analysis confirms the occurrence of strong intra and intermolecular N-H⋯O hydrogen bonding. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Polyarylether composition and membrane

    DOEpatents

    Hung, Joyce; Brunelle, Daniel Joseph; Harmon, Marianne Elisabeth; Moore, David Roger; Stone, Joshua James; Zhou, Hongyi; Suriano, Joseph Anthony

    2010-11-09

    A composition including a polyarylether copolymer is provided. The copolymer includes a polyarylether backbone; and a sulfonated oligomeric group bonded to the polyarylether suitable for use as a cation conducting membrane. Method of bonding a sulfonated oligomeric group to the polyarylether backbone to form a polyarylether copolymer. The membrane may be formed from the polyarylether copolymer composition. The chain length of the sulfonated oligomeric group may be controlled to affect or control the ion conductivity of the membrane.

  8. History-dependence of muscle slack length following contraction and stretch in the human vastus lateralis.

    PubMed

    Stubbs, Peter W; Walsh, Lee D; D'Souza, Arkiev; Héroux, Martin E; Bolsterlee, Bart; Gandevia, Simon C; Herbert, Robert D

    2018-06-01

    In reduced muscle preparations, the slack length and passive stiffness of muscle fibres have been shown to be influenced by previous muscle contraction or stretch. In human muscles, such behaviours have been inferred from measures of muscle force, joint stiffness and reflex magnitudes and latencies. Using ultrasound imaging, we directly observed that isometric contraction of the vastus lateralis muscle at short lengths reduces the slack lengths of the muscle-tendon unit and muscle fascicles. The effect is apparent 60 s after the contraction. These observations imply that muscle contraction at short lengths causes the formation of bonds which reduce the effective length of structures that generate passive tension in muscles. In reduced muscle preparations, stretch and muscle contraction change the properties of relaxed muscle fibres. In humans, effects of stretch and contraction on properties of relaxed muscles have been inferred from measurements of time taken to develop force, joint stiffness and reflex latencies. The current study used ultrasound imaging to directly observe the effects of stretch and contraction on muscle-tendon slack length and fascicle slack length of the human vastus lateralis muscle in vivo. The muscle was conditioned by (a) strong isometric contractions at long muscle-tendon lengths, (b) strong isometric contractions at short muscle-tendon lengths, (c) weak isometric contractions at long muscle-tendon lengths and (d) slow stretches. One minute after conditioning, ultrasound images were acquired from the relaxed muscle as it was slowly lengthened through its physiological range. The ultrasound image sequences were used to identify muscle-tendon slack angles and fascicle slack lengths. Contraction at short muscle-tendon lengths caused a mean 13.5 degree (95% CI 11.8-15.0 degree) shift in the muscle-tendon slack angle towards shorter muscle-tendon lengths, and a mean 5 mm (95% CI 2-8 mm) reduction in fascicle slack length, compared to the other conditions. A supplementary experiment showed the effect could be demonstrated if the muscle was conditioned by contraction at short lengths but not if the relaxed muscle was held at short lengths, confirming the role of muscle contraction. These observations imply that muscle contraction at short lengths causes the formation of bonds which reduce the effective length of structures that generate passive tension in muscles. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  9. Theoretical study on the influence of different para-substituents on 13C NMR of the single carbonyl curcumin analogues

    NASA Astrophysics Data System (ADS)

    Jia, Fei-yun; Ran, Ming; Zhang, Bo

    2015-12-01

    The structure of eight kinds of different para-substituents curcumin analogues has been optimized at the level of B3LYP/6-31G( d, p), under which the stability has been verified by means of vibration analysis. Moreover, NMR spectra of curcumin analogues compounds have been studied at the level of B3LYP/6-311G( d, p) by GIAO method. The results show that the structure of eight compounds, a larger conjugated system, has good planarity. The effect of ortho-substituents on bond lengths and bond angles is greater than para and meta. Different substituents and different positions of substituents all have different influence on NMR of the single carbonyl curcumin analogues. In general, after the hydrogen atom on the benzene ring is substituted by other groups, the δ value of α-C changes significantly, the δ value of ortho-carbon atom may also have great change, but the δ value change of meta-carbon atoms is not too obvious. The effect of substituent electronegativity on α-C atoms presents obvious regularity, while the influence of conjugate effect on carbon atoms of benzene ring is more complex. Finally, the bigger substituted alkyl is, the more the δ value of α-C increases.

  10. Chemical intuition for high thermoelectric performance in monolayer black phosphorus, α-arsenene and aW-antimonene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Bo; Zhang, Hao; Shao, Hezhu

    Identifying materials with intrinsically high thermoelectric performance remains a challenge even with the aid of a high-throughput search. Here, using a chemically intuitive approach based on the bond-orbital theory, three anisotropic 2D group-V materials (monolayer black phosphorus, α-arsenene, and aW-antimonene) are identified as candidates for high thermoelectric energy conversion efficiency. Concepts, such as bond length, bond angle, and bond strength, are used to explain the trends in their electronic properties, such as the band gap and the effective mass. Our first principles calculations confirm that high carrier mobilities and large Seebeck coefficients can be obtained at the same time inmore » these materials, due to complex Fermi surfaces originating from the anisotropic structures. An intuitive understanding of how the bonding character affects phonon transport is also provided with emphasis on the importance of bonding strength and bond anharmonicity. High thermoelectric performance is observed in these materials. In conclusion, our approach provides a powerful tool to identify new thermoelectric materials and evaluate their transport properties.« less

  11. Chemical intuition for high thermoelectric performance in monolayer black phosphorus, α-arsenene and aW-antimonene

    DOE PAGES

    Peng, Bo; Zhang, Hao; Shao, Hezhu; ...

    2017-11-21

    Identifying materials with intrinsically high thermoelectric performance remains a challenge even with the aid of a high-throughput search. Here, using a chemically intuitive approach based on the bond-orbital theory, three anisotropic 2D group-V materials (monolayer black phosphorus, α-arsenene, and aW-antimonene) are identified as candidates for high thermoelectric energy conversion efficiency. Concepts, such as bond length, bond angle, and bond strength, are used to explain the trends in their electronic properties, such as the band gap and the effective mass. Our first principles calculations confirm that high carrier mobilities and large Seebeck coefficients can be obtained at the same time inmore » these materials, due to complex Fermi surfaces originating from the anisotropic structures. An intuitive understanding of how the bonding character affects phonon transport is also provided with emphasis on the importance of bonding strength and bond anharmonicity. High thermoelectric performance is observed in these materials. In conclusion, our approach provides a powerful tool to identify new thermoelectric materials and evaluate their transport properties.« less

  12. Crazing of nanocomposites with polymer-tethered nanoparticles

    DOE PAGES

    Meng, Dong; Kumar, Sanat K.; Ge, Ting; ...

    2016-09-07

    The crazing behavior of polymer nanocomposites formed by blending polymer grafted nanoparticles with an entangled polymer melt is studied by molecular dynamics simulations. We focus on the three key differences in the crazing behavior of a composite relative to the pure homopolymer matrix, namely, a lower yield stress, a smaller extension ratio, and a grafted chain length dependent failure stress. The yield behavior is found to be mostly controlled by the local nanoparticle-grafted polymer interfacial energy, with the grafted polymer-polymer matrix interfacial structure being of little to no relevance. Increasing the attraction between nanoparticle core and the grafted polymer inhibitsmore » void nucleation and leads to a higher yield stress. In the craze growth regime, the presence of “grafted chain” sections of ≈100 monomers alters the mechanical response of composite samples, giving rise to smaller extension ratios and higher drawing stresses than for the homopolymer matrix. As a result, the dominant failure mechanism of composite samples depends strongly on the length of the grafted chains, with disentanglement being the dominant mechanism for short chains, while bond breaking is the failure mode for chain lengths >10N e, where N e is the entanglement length.« less

  13. Crystal structure details of La- and Bi-substituted hydroxyapatites: Evidence for LaO{sup +} and BiO{sup +} with a very short metal–oxygen bond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kazin, Pavel E., E-mail: kazin@inorg.chem.msu.ru; Pogosova, Mariam A.; Trusov, Lev A.

    Crystal structures of substituted apatites with general formula Ca{sub 10−x}M{sub x}(PO{sub 4}){sub 6}(OH{sub 1−δ}){sub 2−x}O{sub x}, where M=La, Bi, 0≤x<2, were refined using high-resolution X-ray powder diffraction patterns. Individual positions for Ca{sup 2+} and M{sup 3+}-ions localized near Ca2-site were determined. The M{sup 3+}-ion was found shifted toward the hexagonal channel center with respect to the Ca{sup 2+}-ion, forming very short bond with the intrachannel O{sup 2−}, while leaving considerably longer distances to other oxygen atoms, which suggested the existence of a MO{sup +} ion. Distinct bands of stretching M–O modes were observed in the Raman and FT-IR spectra ofmore » the compounds. The bond lengths for BiO{sup +} and LaO{sup +} were estimated to be 2.05(1) and 2.09(1) Å correspondingly. The latter was almost 0.3 Å lower than the shortest La–O bond in La{sub 2}O{sub 3}. The realization of such a strong lanthanide–oxygen bond in a crystal lattice could provide a very high axial ligand field and might be implemented to develop high-energy-barrier single-molecule magnets as well as to tune properties of lanthanide-based luminophores. - Graphical abstract: A fragment of the La-for-Ca substituted apatite crystal structure focusing on the La–O bond. - Highlights: • Individual positions in the apatite crystal lattice for a doping atom (La, Bi) and Ca. • The doping atom shifts toward the center of the hexagonal channel. • BiO{sup +} and LaO{sup +} with estimated short bond lengths of 2.05 and 2.09 Å respectively.« less

  14. On the complexity of Engh and Huber refinement restraints: the angle τ as example

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Touw, Wouter G.; Vriend, Gert, E-mail: vriend@cmbi.ru.nl

    2010-12-01

    The angle τ (backbone N—C{sup α}—C) is the most contested Engh and Huber refinement target parameter. It is shown that this parameter is ‘correct’ as a PDB-wide average, but can be improved by taking into account residue types, secondary structures and many other aspects of our knowledge of the biophysical relations between residue type and protein structure. The Engh and Huber parameters for bond lengths and bond angles have been used uncontested in macromolecular structure refinement from 1991 until very recently, despite critical discussion of their ubiquitous validity by many authors. An extensive analysis of the backbone angle τ (N—C{supmore » α}—C) illustrates that the Engh and Huber parameters can indeed be improved and a recent study [Tronrud et al. (2010 ▶), Acta Cryst. D66, 834–842] confirms these ideas. However, the present study of τ shows that improving the Engh and Huber parameters will be considerably more complex than simply making the parameters a function of the backbone ϕ, ψ angles. Many other aspects, such as the cooperativity of hydrogen bonds, the bending of secondary-structure elements and a series of biophysical aspects of the 20 amino-acid types, will also need to be taken into account. Different sets of Engh and Huber parameters will be needed for conceptually different refinement programs.« less

  15. Elemental Identification by Combining Atomic Force Microscopy and Kelvin Probe Force Microscopy.

    PubMed

    Schulz, Fabian; Ritala, Juha; Krejčí, Ondrej; Seitsonen, Ari Paavo; Foster, Adam S; Liljeroth, Peter

    2018-06-01

    There are currently no experimental techniques that combine atomic-resolution imaging with elemental sensitivity and chemical fingerprinting on single molecules. The advent of using molecular-modified tips in noncontact atomic force microscopy (nc-AFM) has made it possible to image (planar) molecules with atomic resolution. However, the mechanisms responsible for elemental contrast with passivated tips are not fully understood. Here, we investigate elemental contrast by carrying out both nc-AFM and Kelvin probe force microscopy (KPFM) experiments on epitaxial monolayer hexagonal boron nitride (hBN) on Ir(111). The hBN overlayer is inert, and the in-plane bonds connecting nearest-neighbor boron and nitrogen atoms possess strong covalent character and a bond length of only ∼1.45 Å. Nevertheless, constant-height maps of both the frequency shift Δ f and the local contact potential difference exhibit striking sublattice asymmetry. We match the different atomic sites with the observed contrast by comparison with nc-AFM image simulations based on the density functional theory optimized hBN/Ir(111) geometry, which yields detailed information on the origin of the atomic-scale contrast.

  16. Global expression for representing cohesive-energy curves. II

    NASA Technical Reports Server (NTRS)

    Schlosser, Herbert; Ferrante, John

    1993-01-01

    Schlosser et al. (1991) showed that the R dependence of the cohesive energy of partially ionic solids may be characterized by a two-term energy relationship consisting of a Coulomb term arising from the charge transfer, delta-Z, and a scaled universal energy function, E*(a *), which accounts for the partially covalent character of the bond and for repulsion between the atomic cores for small R; a* is a scaled length. In the paper by Schlosser et al., the normalized cohesive-energy curves of NaCl-structure alkali-halide crystals were generated with this expression. In this paper we generate the cohesive-energy curves of several families of partially ionic solids with different crystal structures and differing degrees of ionicity. These include the CsCl-structure Cs halides, and the Tl and Ag halides, which have weaker ionic bonding than the alkali halides, and which have the CsCl and NaCl structures, respectively. The cohesive-energy-curve parameters are then used to generate theoretical isothermal compression curves for the Li, Na, K, Cs, and Ag halides. We find good agreement with the available experimental compression data.

  17. Ferroelectric properties of oxalate and phenanthroline based 1-D single chain molecular magnet [{FeII(Δ)FeII(Λ)}0.5{CrII(Δ)CrII(Λ)}0.5(ox)2(phen)2

    NASA Astrophysics Data System (ADS)

    Bhatt, Pramod; Mukadam, M. D.; Mandal, B. P.; Yusuf, S. M.

    2018-04-01

    The one-dimensional (1-D) single chain molecular magnet [{FeII(Δ)FeII(Λ)}0.5{CrII(Δ)CrII(Λ)}0.5(ox)2(phen)2] is hydrothermally synthesized using oxalate (ox) and phenanthroline (phen) ligands with transition metal ions (Fe and Cr). The compound is characterized using x-ray diffraction, dc magnetization measurements and P-E ferroelectric loop measurements. The diffraction analysis using Rietveld refinement confirms a single phase formation of the compound in monoclinic structure with space group of P21. The compound crystallizes in 1-D chain like structure containing two different crystallographic sites of metal ions (Δ- and Λ-), which are bridged by the ox ligand and Phen ligand. These two metals site are different in bond length and bond angles results lattice distortions. The lattice distortion induces ferroelectric behavior in the compound which is discussed in terms of lattice distortion induced dipole moments.

  18. Comparison between layering NbSe2 and rod characteristic of MgB2 by investigation of elastic constants

    NASA Astrophysics Data System (ADS)

    Shokri, Asiye; Yazdani, Ahmad; Barakati, Behrad

    2018-03-01

    The delicate balancing of strong anisotropy on strength of hybridisation resulted to CDW- order “TCDW=33K” and finally emerging superconductivity at “Tc = 7.2K” are the most intriguing question in characteristic behaviour of NbSe2. On other hand, the original mechanism of MgB2 old superconductor, which has unlike the cuprates a lower anisotropy on strength hybridisation is still unknown. We believe this could result to bond exchange and larger coherence length of the grain boundary to current. Since the cause and the mechanism of band strengths of two original layering and rod structures are consequence of bond- rupturing-atomic displacement, here the stability of crystalline structure of inter atomic potential through the elasticity-compressibility is investigated. Consequently, in order to clear out the strong difference between the layering NbSe2 and domination of rod-character of MgB2 the stability of both crystal structures through the cohesive energy c/a, czz and c33 are investigated. The proposed investigations are more evident on different characteristic behaviour of calculated parameters.

  19. Synthesis, spectroscopic (FT-IR, FT-Raman, NMR, UV-Visible), NLO, NBO, HOMO-LUMO, Fukui function and molecular docking study of (E)-1-(5-bromo-2-hydroxybenzylidene)semicarbazide

    NASA Astrophysics Data System (ADS)

    Raja, M.; Raj Muhamed, R.; Muthu, S.; Suresh, M.

    2017-08-01

    The title compound, (E)-1-(5-bromo-2-hydroxybenzylidene)semicarbazide (15BHS) was synthesized and characterized by FT-IR, FT-Raman, UV, 1HNMR and 13CNMR spectral analysis. The optimized molecular geometry, the vibrational wavenumbers, the infrared intensities and the Raman scattering activities were calculated by using density functional theory(DFT) B3LYP method with 6-311++G(d,p) basis set. The detailed interpretation of the vibrational spectra has been carried out by VEDA program. The calculated HOMO and LUMO energies show that charge transfer within the molecule. Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital analysis (NBO). The first order hyperpolarizability, Molecular electrostatic potential (MEP) and Fukui functions were also performed. To study the biological activity of the investigation molecule, molecular docking was done to identify the hydrogen bond lengths and binding energy with different antifungal proteins. The thermodynamic properties (heat capacity, entropy, and enthalpy) of the 15BHS at different temperatures have been calculated.

  20. Structural and computational analysis of intermolecular interactions in a new 2-thiouracil polymorph.

    PubMed

    Fabijanić, Ivana; Matković-Čalogović, Dubravka; Pilepić, Viktor; Sanković, Krešimir

    2017-12-01

    The crystallization and characterization of a new polymorph of 2-thiouracil by single-crystal X-ray diffraction, Hirshfeld surface analysis and periodic density functional theory (DFT) calculations are described. The previously published polymorph (A) crystallizes in the triclinic space group P\\overline{1}, while that described herein (B) crystallizes in the monoclinic space group P2 1 /c. Periodic DFT calculations showed that the energies of polymorphs A and B, compared to the gas-phase geometry, were -108.8 and -29.4 kJ mol -1 , respectively. The two polymorphs have different intermolecular contacts that were analyzed and are discussed in detail. Significant differences in the molecular structure were found only in the bond lengths and angles involving heteroatoms that are involved in hydrogen bonds. Decomposition of the Hirshfeld fingerprint plots revealed that O...H and S...H contacts cover over 50% of the noncovalent contacts in both of the polymorphs; however, they are quite different in strength. Hydrogen bonds of the N-H...O and N-H...S types were found in polymorph A, whereas in polymorph B, only those of the N-H...O type are present, resulting in a different packing in the unit cell. QTAIM (quantum theory of atoms in molecules) computational analysis showed that the interaction energies for these weak-to-medium strength hydrogen bonds with a noncovalent or mixed interaction character were estimated to fall within the ranges 5.4-10.2 and 4.9-9.2 kJ mol -1 for polymorphs A and B, respectively. Also, the NCI (noncovalent interaction) plots revealed weak stacking interactions. The interaction energies for these interactions were in the ranges 3.5-4.1 and 3.1-5.5 kJ mol -1 for polymorphs A and B, respectively, as shown by QTAIM analysis.

Top