Sample records for bond order parameter

  1. Two-order-parameter description of liquid Al under five different pressures

    NASA Astrophysics Data System (ADS)

    Li, Y. D.; Hao, Qing-Hai; Cao, Qi-Long; Liu, C. S.

    2008-11-01

    In the present work, using the glue potential, the constant pressure molecular-dynamics simulations of liquid Al under five various pressures and a systematic analysis of the local atomic structures have been performed in order to test the two-order-parameter model proposed by Tanaka [Phys. Rev. Lett. 80, 5750 (1998)] originally for explaining the unusual behaviors of liquid water. The temperature dependence of the bond order parameter Q6 in liquid Al under five different pressures can be well fitted by the functional expression (Q6)/(1-Q6)=Q60exp((ΔE-PΔV)/(kBT)) which produces the energy gain ΔE and the volume change upon the formation of a locally favored structure: ΔE=0.025eV and ΔV=-0.27(Å)3 . ΔE is nearly equal to the difference between the average bond energy of the other type I bonds and the average bond energy of 1551 bonds (characterizing the icosahedronlike local structure); ΔV could be explained as the average volume occupied by one atom in icosahedra minus that occupied by one atom in other structures. With the obtained ΔE and ΔV , it is satisfactorily explained that the density of liquid Al displays a much weaker nonlinear dependence on temperature under lower pressures. So it is demonstrated that the behavior of liquid Al can be well described by the two-order-parameter model.

  2. Laser surface texturing of polypropylene to increase adhesive bonding

    NASA Astrophysics Data System (ADS)

    Mandolfino, Chiara; Pizzorni, Marco; Lertora, Enrico; Gambaro, Carla

    2018-05-01

    In this paper, the main parameters of laser surface texturing of polymeric substrates have been studied. The final aim of the texturing is to increase the performance of bonded joints of grey-pigmented polypropylene substrates. The experimental investigation was carried out starting from the identification of the most effective treatment parameters, in order to achieve a good texture without compromising the characteristics of the bulk material. For each of these parameters, three values were individuated and 27 sets of samples were realised. The surface treatment was analysed and related to the mechanical characteristics of the bonded joints performing lap-shear tests. A statistical analysis in order to find the most influential parameter completed the work.

  3. Computations and estimates of rate coefficients for hydrocarbon reactions of interest to the atmospheres of outer solar system

    NASA Technical Reports Server (NTRS)

    Laufer, A. H.; Gardner, E. P.; Kwok, T. L.; Yung, Y. L.

    1983-01-01

    The rate coefficients, including Arrhenius parameters, have been computed for a number of chemical reactions involving hydrocarbon species for which experimental data are not available and which are important in planetary atmospheric models. The techniques used to calculate the kinetic parameters include the Troe and semiempirical bond energy-bond order (BEBO) or bond strength-bond length (BSBL) methods.

  4. Emergent Ising degrees of freedom above a double-stripe magnetic ground state

    NASA Astrophysics Data System (ADS)

    Zhang, Guanghua; Flint, Rebecca

    2017-12-01

    Double-stripe magnetism [Q =(π /2 ,π /2 )] has been proposed as the magnetic ground state for both the iron-telluride and BaTi2Sb2O families of superconductors. Double-stripe order is captured within a J1-J2-J3 Heisenberg model in the regime J3≫J2≫J1 . Intriguingly, besides breaking spin-rotational symmetry, the ground-state manifold has three additional Ising degrees of freedom associated with bond ordering. Via their coupling to the lattice, they give rise to an orthorhombic distortion and to two nonuniform lattice distortions with wave vector (π ,π ) . Because the ground state is fourfold degenerate, modulo rotations in spin space, only two of these Ising bond order parameters are independent. Here, we introduce an effective field theory to treat all Ising order parameters, as well as magnetic order, and solve it within a large-N limit. All three transitions, corresponding to the condensations of two Ising bond order parameters and one magnetic order parameter are simultaneous and first order in three dimensions, but lower dimensionality, or equivalently weaker interlayer coupling, and weaker magnetoelastic coupling can split the three transitions, and in some cases allows for two separate Ising phase transitions above the magnetic one.

  5. AB INITIO Molecular Dynamics Simulations on Local Structure and Electronic Properties in Liquid MgxBi1-x Alloys

    NASA Astrophysics Data System (ADS)

    Hao, Qing-Hai; You, Yu-Wei; Kong, Xiang-Shan; Liu, C. S.

    2013-03-01

    The microscopic structure and dynamics of liquid MgxBi1-x(x = 0.5, 0.6, 0.7) alloys together with pure liquid Mg and Bi metals were investigated by means of ab initio molecular dynamics simulations. We present results of structure properties including pair correlation function, structural factor, bond-angle distribution function and bond order parameter, and their composition dependence. The dynamical and electronic properties have also been studied. The structure factor and pair correlation function are in agreement with the available experimental data. The calculated bond-angle distribution function and bond order parameter suggest that the stoichiometric composition Mg3Bi2 exhibits a different local structure order compared with other concentrations, which help us understand the appearance of the minimum electronic conductivity at this composition observed in previous experiments.

  6. Emergent Ising degrees of freedom above a double-stripe magnetic ground state [Emergent Ising degrees of freedom above double-stripe magnetism

    DOE PAGES

    Zhang, Guanghua; Flint, Rebecca

    2017-12-27

    Here, double-stripe magnetism [Q=(π/2,π/2)] has been proposed as the magnetic ground state for both the iron-telluride and BaTi 2Sb 2O families of superconductors. Double-stripe order is captured within a J 1–J 2–J 3 Heisenberg model in the regime J 3 >> J 2 >> J 1. Intriguingly, besides breaking spin-rotational symmetry, the ground-state manifold has three additional Ising degrees of freedom associated with bond ordering. Via their coupling to the lattice, they give rise to an orthorhombic distortion and to two nonuniform lattice distortions with wave vector (π,π). Because the ground state is fourfold degenerate, modulo rotations in spin space,more » only two of these Ising bond order parameters are independent. Here, we introduce an effective field theory to treat all Ising order parameters, as well as magnetic order, and solve it within a large-N limit. All three transitions, corresponding to the condensations of two Ising bond order parameters and one magnetic order parameter are simultaneous and first order in three dimensions, but lower dimensionality, or equivalently weaker interlayer coupling, and weaker magnetoelastic coupling can split the three transitions, and in some cases allows for two separate Ising phase transitions above the magnetic one.« less

  7. Emergent Ising degrees of freedom above a double-stripe magnetic ground state [Emergent Ising degrees of freedom above double-stripe magnetism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Guanghua; Flint, Rebecca

    Here, double-stripe magnetism [Q=(π/2,π/2)] has been proposed as the magnetic ground state for both the iron-telluride and BaTi 2Sb 2O families of superconductors. Double-stripe order is captured within a J 1–J 2–J 3 Heisenberg model in the regime J 3 >> J 2 >> J 1. Intriguingly, besides breaking spin-rotational symmetry, the ground-state manifold has three additional Ising degrees of freedom associated with bond ordering. Via their coupling to the lattice, they give rise to an orthorhombic distortion and to two nonuniform lattice distortions with wave vector (π,π). Because the ground state is fourfold degenerate, modulo rotations in spin space,more » only two of these Ising bond order parameters are independent. Here, we introduce an effective field theory to treat all Ising order parameters, as well as magnetic order, and solve it within a large-N limit. All three transitions, corresponding to the condensations of two Ising bond order parameters and one magnetic order parameter are simultaneous and first order in three dimensions, but lower dimensionality, or equivalently weaker interlayer coupling, and weaker magnetoelastic coupling can split the three transitions, and in some cases allows for two separate Ising phase transitions above the magnetic one.« less

  8. Shear-induced criticality near a liquid-solid transition of colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Miyama, Masamichi J.; Sasa, Shin-Ichi

    2011-02-01

    We investigate colloidal suspensions under shear flow through numerical experiments. By measuring the time-correlation function of a bond-orientational order parameter, we find a divergent time scale near a transition point from a disordered fluid phase to an ordered fluid phase, where the order is characterized by a nonzero value of the bond-orientational order parameter. We also present a phase diagram in the (ρ,γ˙ex) plane, where ρ is the density of the colloidal particles and γ˙ex is the shear rate of the solvent. The transition line in the phase diagram terminates at the equilibrium transition point, while a critical region near the transition line vanishes continuously as γ˙ex→0.

  9. Competition of the connectivity with the local and the global order in polymer melts and crystals

    NASA Astrophysics Data System (ADS)

    Bernini, S.; Puosi, F.; Barucco, M.; Leporini, D.

    2013-11-01

    The competition between the connectivity and the local or global order in model fully flexible chain molecules is investigated by molecular-dynamics simulations. States with both missing (melts) and high (crystal) global order are considered. Local order is characterized within the first coordination shell (FCS) of a tagged monomer and found to be lower than in atomic systems in both melt and crystal. The role played by the bonds linking the tagged monomer to FCS monomers (radial bonds), and the bonds linking two FCS monomers (shell bonds) is investigated. The detailed analysis in terms of Steinhardt's orientation order parameters Ql (l = 2 - 10) reveals that increasing the number of shell bonds decreases the FCS order in both melt and crystal. Differently, the FCS arrangements organize the radial bonds. Even if the molecular chains are fully flexible, the distribution of the angle formed by adjacent radial bonds exhibits sharp contributions at the characteristic angles θ ≈ 70°, 122°, 180°. The fractions of adjacent radial bonds with θ ≈ 122°, 180° are enhanced by the global order of the crystal, whereas the fraction with 70° ≲ θ ≲ 110° is nearly unaffected by the crystallization. Kink defects, i.e., large lateral displacements of the chains, are evidenced in the crystalline state.

  10. Molecular Dynamics Simulation of Calbindin D9k in Apo, Singly and Doubly Loaded States in Various Side-Chains

    NASA Astrophysics Data System (ADS)

    Thapa, Mahendra Bahadur

    Calbindin D9k (CAB) is a single domain calcium-binding protein and is the smallest members of the calmodulin superfamily, possessing a pair of calcium-binding EF-hands, and structures for all four states have been determined and extensively characterized experimentally. Because of the tremendous advancement in hardware and software computer technologies in recent years, longer and more realistic molecular dynamics (MD) simulations of a protein are possible now in reasonable periods of time. These advances were exploited to generate multiple, all-atom MD simulations of CAB via the AMBER software package, and the resulting trajectories were employed to calculate backbone order parameters of the apo, the singly and the doubly loaded states of calcium in CAB. The results are in very good agreement with corresponding experimental NMR-based (Nuclear Magnetic Resonance spectroscopy) results, and are improved in comparison to those calculated over a decade ago; use of modified force fields played a key role in the observed improvements. The apo state is the most flexible, and the singly loaded and the doubly loaded states are similar, thus supporting positive cooperativity in line with the experimental results. Further, B-factor calculations of backbone atoms for these calcium-binding states of calbindin D9k also support such cooperativity. Although changes in side-chain motions are not necessarily correlated to changes in protein backbone mobility, past studies on the comparison of experimental and simulated methyl side-chain NMR relaxation parameters of CAB for the doubly-loaded state reported significant improvements in the quantitative representation of side-chain motion by MD simulation. In this project, the order parameters for various side chains in apo, singly loaded and doubly loaded states of CAB were calculated. The primary goal of this work was to determine whether or not the allosteric effect of calcium binding, as observed via the backbone order parameters, also extended to the amino acid side chains, and if so, to what extent. Such information could be useful in better understanding the physical basis of cooperative calcium binding in CAB. Most of the residues which provide ligands to bind calcium at the binding sites support positive cooperativity, as observed when Ca-Cß, Cß-C?, C-C bond and C-O bonds of COO groups of aspartic and glutamic acid residues, the C-N bond of the side-chain amide group in asparagine and glutamine residues, and the N-H bonds of amide (NH2) group order parameters were studied. There are only a few residues containing methyl groups that are involved in providing ligands to the calcium, and the studies of order parameters of C-C bond and C-H bond of these methyl groups did not exhibit the cooperativity effect upon calcium binding; the simulated C-C bond order parameter of the methyl group symmetry axis did correlate well with the experimental results for the fully loaded state of CAB (4ICB). Analysis of the MD trajectories using GSATools and MutInf, provided valuable insights into possible pathways for communicating allosteric effects between the two calcium-binding sites of CAB.

  11. Proceedings of the Second Annual Symposium for Nondestructive Evaluation of Bond Strength

    NASA Technical Reports Server (NTRS)

    Roberts, Mark J. (Compiler)

    1999-01-01

    Ultrasonics, microwaves, optically stimulated electron emission (OSEE), and computational chemistry approaches have shown relevance to bond strength determination. Nonlinear ultrasonic nondestructive evaluation methods, however, have shown the most effectiveness over other methods on adhesive bond analysis. Correlation to changes in higher order material properties due to microstructural changes using nonlinear ultrasonics has been shown related to bond strength. Nonlinear ultrasonic energy is an order of magnitude more sensitive than linear ultrasound to these material parameter changes and to acoustic velocity changes caused by the acoustoelastic effect when a bond is prestressed. Signal correlations between non-linear ultrasonic measurements and initialization of bond failures have been measured. This paper reviews bond strength research efforts presented by university and industry experts at the Second Annual Symposium for Nondestructive Evaluation of Bond Strength organized by the NDE Sciences Branch at NASA Langley in November 1998.

  12. A review: Application of adhesive bonding on semiconductor interconnection joints

    NASA Astrophysics Data System (ADS)

    Suppiah, Sarveshvaran; Ong, Nestor Rubio; Sauli, Zaliman; Sarukunaselan, Karunavani; Alcain, Jesselyn Barro; Shahimin, Mukhzeer Mohamad; Retnasamy, Vithyacharan

    2017-09-01

    A comprehensive review on adhesive die bonding is presented in this paper. Adhesive bonding technique involved electrically conductive adhesives that bond by evaporation of a solvent or by curing a bonding agent with three main parameters; heat, pressure, and time. Isotropic conductive adhesive (ICA) and anisotropic conductive adhesive (ACA) are the commonly used adhesive in this technique. In order to achieve and promote a better adhesion of die on the substrate, surface cleaning steps and methods were very crucial. The major challenge faced by this technique is entrapment of the conductive particles between the die and substrate. An adequate amount of conductive particle is needed between the die and substrate in order to avoid increase in contact resistance.

  13. Magnetic field effect on the structural properties of a peptide model: Molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Housaindokht, Mohammad Reza; Moosavi, Fatemeh

    2018-06-01

    The effect of magnetization on the properties of a system containing a peptide model is studied by molecular dynamics simulation at a range of 298-318 K. Two mole fractions of 0.001 and 0.002 of peptide were simulated and the variation of hydrogen bond number, orientational ordering parameter, gyration radius, mean square displacement, as well as radial distribution function, were under consideration. The results show that applying magnetic field will increase the number of hydrogen bonds between water molecules by clustering them and decreases the interaction of water and peptide. This reduction may cause more available free space and enhance the movement of the peptide. As a result, the diffusion coefficient of the peptide becomes greater and its conformation changes. Orientational ordering parameter besides radius of gyration demonstrates that peptide is expanded by static magnetic field and its orientational ordering parameter is affected.

  14. Dependence of short and intermediate-range order on preparation in experimental and modeled pure a-Si

    DOE PAGES

    Holmstrom, Eero; Haberl, Bianca; Pakarinen, Olli H.; ...

    2016-02-20

    Variability in the short-to-intermediate range order of pure amorphous silicon prepared by different experimental and computational techniques is probed by measuring mass density, atomic coordination, bond-angle deviation, and dihedral angle deviation. It is found that there is significant variability in order parameters at these length scales in this archetypal covalently bonded, monoatomic system. This diversity strongly reflects preparation technique and thermal history in both experimental and simulated systems. Experiment and simulation do not fully quantitatively agree, partly due to differences in the way parameters are accessed. However, qualitative agreement in the trends is identified. Relaxed forms of amorphous silicon closelymore » resemble continuous random networks generated by a hybrid method of bond-switching Monte Carlo and molecular dynamics simulation. As-prepared ion implanted amorphous silicon can be adequately modeled using a structure generated from amorphization via ion bombardement using energetic recoils. Preparation methods which narrowly avoid crystallization such as experimental pressure-induced amorphization or simulated melt-quenching result in inhomogeneous structures that contain regions with significant variations in atomic ordering. Ad hoc simulated structures containing small (1 nm) diamond cubic crystal inclusions were found to possess relatively high bond-angle deviations and low dihedral angle deviations, a trend that could not be reconciled with any experimental material.« less

  15. Roles of bond orientational ordering in glass transition and crystallization.

    PubMed

    Tanaka, Hajime

    2011-07-20

    It is widely believed that crystallization in three dimensions is primarily controlled by positional ordering, and not by bond orientational ordering. In other words, bond orientational ordering is usually considered to be merely a consequence of positional ordering and thus has often been ignored. This one-order-parameter (density) description may be reasonable when we consider an equilibrium liquid-solid transition, but may not be enough to describe a metastable state and the kinetics of the transition. Here we propose that bond orientational ordering can play a key role in (i) crystallization, (ii) the ordering to quasi-crystal and (iii) vitrification, which occurs under rather weak frustration against crystallization. In a metastable supercooled state before crystallization, a system generally tends to have bond orientational order at least locally as a result of a constraint of dense packing. For a system interacting with hard-core repulsions, the constraint is intrinsically of geometrical origin and thus the basic physics is the same as nematic ordering of rod-like particles upon densification. Furthermore, positional ordering is easily destroyed even by weak frustration such as polydispersity and anisotropic interactions which favour a symmetry not consistent with that of the equilibrium crystal. Thus we may say that vitrification can be achieved by disturbing and prohibiting long-range positional ordering. Even in such a situation, bond orientational ordering still survives, accompanying its critical-like fluctuations, which are the origin of dynamic heterogeneity for this case. This scenario naturally explains both the absence of positional order and the development of bond orientational order upon cooling in a supercooled state. Although our argument is speculative in nature, we emphasize that this physical picture can coherently explain crystallization, vitrification, quasi-crystallization and their relationship in a natural manner. For a strongly frustrated system, even bond orientational order can be destroyed. Even in such a case there may still appear a structural signature of dense packing, which is linked to slow dynamics.

  16. Characterisation of CFRP adhesive bonds by electromechanical impedance

    NASA Astrophysics Data System (ADS)

    Malinowski, Pawel H.; Wandowski, Tomasz; Ostachowicz, Wieslaw M.

    2014-03-01

    In aircraft industry the Carbon Fiber Reinforced Polymer (CFRP) elements are joint using rivets and adhesive bonding. The reliability of the bonding limits the use of adhesive bonding for primary aircraft structures, therefore it is important to assess the bond quality. The performance of adhesive bonds depends on the physico-chemical properties of the adhered surfaces. The contamination leading to weak bonds may have various origin and be caused by moisture, release agent, hydraulic fluid, fuel, poor curing of adhesive and so on. In this research three different causes of possible weak bonds were selected for the investigation: 1. Weak bond due to release agent contamination, 2. Weak bond due to moisture contamination, 3. Weak bond due to poor curing of the adhesive. In order to assess the bond quality electromechanical impedance (EMI) technique was selected and investigation was focused on the influence of bond quality on electrical impedance of piezoelectric transducer. The piezoelectric transducer was mounted at the middle of each sample surface. Measurements were conducted using HIOKI Impedance Analyzer IM3570. Using the impedance analyzer the electrical parameters were measured for wide frequency band. Due to piezoelectric effect the electrical response of a piezoelectric transducer is related to mechanical response of the sample to which the transducers is attached. The impedance spectra were investigated in order to find indication of the weak bonds. These spectra were compared with measurements for reference sample using indexes proposed in order to assess the bond quality.

  17. Temperature and composition dependence of short-range order and entropy, and statistics of bond length: the semiconductor alloy (GaN)(1-x)(ZnO)(x).

    PubMed

    Liu, Jian; Pedroza, Luana S; Misch, Carissa; Fernández-Serra, Maria V; Allen, Philip B

    2014-07-09

    We present total energy and force calculations for the (GaN)1-x(ZnO)x alloy. Site-occupancy configurations are generated from Monte Carlo (MC) simulations, on the basis of a cluster expansion model proposed in a previous study. Local atomic coordinate relaxations of surprisingly large magnitude are found via density-functional calculations using a 432-atom periodic supercell, for three representative configurations at x = 0.5. These are used to generate bond-length distributions. The configurationally averaged composition- and temperature-dependent short-range order (SRO) parameters of the alloys are discussed. The entropy is approximated in terms of pair distribution statistics and thus related to SRO parameters. This approximate entropy is compared with accurate numerical values from MC simulations. An empirical model for the dependence of the bond length on the local chemical environments is proposed.

  18. AB INITIO Molecular Dynamics Simulations on Local Structure and Electronic Properties in Liquid Sb from 913 K to 1193 K

    NASA Astrophysics Data System (ADS)

    Hao, Qing-Hai; Li, Y. D.; Kong, Xiang-Shan; Liu, C. S.

    2013-02-01

    Ab initio molecular dynamics simulations on liquid Sb have been carried out at five different temperatures from 913 K to 1193 K. We have investigated the temperature dependence of structure properties including structural factor S(Q), pair correlation function g(r), bond-angle distribution function g3(θ), cluster properties and bond order parameter Q4 and Q6. A shoulder was reproduced in the high wave number side of the first peak in the S(Q) implying that the residual structure units of crystalline Sb remain in liquid Sb. There is a noticeable bend at around 1023 K in the temperature dependence of the first-peak height of S(Q), the cluster properties and bond order parameter Q4, respectively, indicating that an abnormal structural change may occur at 973-1023 K.

  19. A short review on thermosonic flip chip bonding

    NASA Astrophysics Data System (ADS)

    Suppiah, Sarveshvaran; Ong, Nestor Rubio; Sauli, Zaliman; Sarukunaselan, Karunavani; Alcain, Jesselyn Barro; Shahimin, Mukhzeer Mohamad; Retnasamy, Vithyacharan

    2017-09-01

    This review is to study the evolution and key findings, critical technical challenges, solutions and bonding equipment of thermosonic flip chip bonding. Based on the review done, it was found that ultrasonic power, bonding time and force are the three main critical parameters need to be optimized in order to achieve sound and reliable bonding between the die and substrate. A close monitoring of the ultrasonic power helped to prevent over bonding phenomena on flexible substrate. Gold stud bumping is commonly used in thermosonic bonding compared to solder due to its better reliability obtained in the LED and optoelectronic packages. The review comprised short details on the available thermosonic bonding equipment in the semiconductor industry as well.

  20. Quantum chemical calculations of Cr2O3/SnO2 using density functional theory method

    NASA Astrophysics Data System (ADS)

    Jawaher, K. Rackesh; Indirajith, R.; Krishnan, S.; Robert, R.; Das, S. Jerome

    2018-03-01

    Quantum chemical calculations have been employed to study the molecular effects produced by Cr2O3/SnO2 optimised structure. The theoretical parameters of the transparent conducting metal oxides were calculated using DFT / B3LYP / LANL2DZ method. The optimised bond parameters such as bond lengths, bond angles and dihedral angles were calculated using the same theory. The non-linear optical property of the title compound was calculated using first-order hyperpolarisability calculation. The calculated HOMO-LUMO analysis explains the charge transfer interaction between the molecule. In addition, MEP and Mulliken atomic charges were also calculated and analysed.

  1. Structure and property of metal melt I: The number of residual bonds after solid-liquid phase changes

    NASA Astrophysics Data System (ADS)

    Mi, Guangbao; Li, Peijie; He, Liangju

    2010-09-01

    Based on the mechanism of metal solid-liquid phase change and the theory of liquid metal’s micro-inhomogeneity, a physical model is established between latent heats of fusion and vaporization and the numbers of residual bonds and short-range ordered atoms at the melting point inside a metal melt. Meanwhile, the mathematical derivation and proof are also offered. This model produces the numbers of residual bonds and short-range ordered atoms after the solid-liquid phase change only by using basic parameters and thermophysical properties of the crystal structure. Therefore, it presents a more effective way to analyze the melt’s structural information. By using this model, this study calculates the numbers of residual bonds and short-range ordered atoms in Al and Ni melts. The calculated results are consistent with the experimental results. Simultaneously, this study discusses the atomic number’s influence on the numbers of residual bonds and short-range ordered atoms in the melts within the first (IA) and second main group (IIA) elements.

  2. Ultrasonic Nondestructive Characterization of Adhesive Bonds

    NASA Technical Reports Server (NTRS)

    Qu, Jianmin

    1999-01-01

    Adhesives and adhesive joints are widely used in various industrial applications to reduce weight and costs, and to increase reliability. For example, advances in aerospace technology have been made possible, in part, through the use of lightweight materials and weight-saving structural designs. Joints, in particular, have been and continue to be areas in which weight can be trimmed from an airframe through the use of novel attachment techniques. In order to save weight over traditional riveted designs, to avoid the introduction of stress concentrations associated with rivet holes, and to take full advantage of advanced composite materials, engineers and designers have been specifying an ever-increasing number of adhesively bonded joints for use on airframes. Nondestructive characterization for quality control and remaining life prediction has been a key enabling technology for the effective use of adhesive joints. Conventional linear ultrasonic techniques generally can only detect flaws (delamination, cracks, voids, etc) in the joint assembly. However, more important to structural reliability is the bond strength. Although strength, in principle, cannot be measured nondestructively, a slight change in material nonlinearity may indicate the onset of failure. Furthermore, microstructural variations due to aging or under-curing may also cause changes in the third order elastic constants, which are related to the ultrasonic nonlinear parameter of the polymer adhesive. It is therefore reasonable to anticipate a correlation between changes in the ultrasonic nonlinear acoustic parameter and the remaining bond strength. It has been observed that higher harmonics of the fundamental frequency are generated when an ultrasonic wave passes through a nonlinear material. It seems that such nonlinearity can be effectively used to characterize bond strength. Several theories have been developed to model this nonlinear effect. Based on a microscopic description of the nonlinear interface binding force, a quantitative method was presented. Recently, a comparison between the experimental and simulated results based on a similar theoretical model was presented. A through-transmission setup for water immersion mode-converted shear waves was used to analyze the ultrasonic nonlinear parameter of an adhesive bond. In addition, ultrasonic guided waves have been used to analyze adhesive or diffusion bonded joints. In this paper, the ultrasonic nonlinear parameter is used to characterize the curing state of a polymer/aluminum adhesive joint. Ultrasonic through-transmission tests were conducted on samples cured under various conditions. The magnitude of the second order harmonic was measured and the corresponding ultrasonic nonlinear parameter was evaluated. A fairly good correlation between the curing condition and the nonlinear parameter is observed. The results show that the nonlinear parameter might be used as a good indicator of the cure state for adhesive joints.

  3. Infinitely robust order and local order-parameter tulips in Apollonian networks with quenched disorder

    NASA Astrophysics Data System (ADS)

    Kaplan, C. Nadir; Hinczewski, Michael; Berker, A. Nihat

    2009-06-01

    For a variety of quenched random spin systems on an Apollonian network, including ferromagnetic and antiferromagnetic bond percolation and the Ising spin glass, we find the persistence of ordered phases up to infinite temperature over the entire range of disorder. We develop a renormalization-group technique that yields highly detailed information, including the exact distributions of local magnetizations and local spin-glass order parameters, which turn out to exhibit, as function of temperature, complex and distinctive tulip patterns.

  4. Evolution of short range order in Ar: Liquid to glass and solid transitions-A computational study

    NASA Astrophysics Data System (ADS)

    Shor, Stanislav; Yahel, Eyal; Makov, Guy

    2018-04-01

    The evolution of the short range order (SRO) as a function of temperature in a Lennard-Jones model liquid with Ar parameters was determined and juxtaposed with thermodynamic and kinetic properties obtained as the liquid was cooled (heated) and transformed between crystalline solid or glassy states and an undercooled liquid. The Lennard-Jones system was studied by non-equilibrium molecular dynamics simulations of large supercells (approximately 20000 atoms) rapidly cooled or heated at selected quenching rates and at constant pressure. The liquid to solid transition was identified by discontinuities in the atomic volume and molar enthalpy; the glass transition temperature range was identified from the temperature dependence of the self-diffusion. The SRO was studied within the quasi-crystalline model (QCM) framework and compared with the Steinhardt bond order parameters. Within the QCM it was found that the SRO evolves from a bcc-like order in the liquid through a bct-like short range order (c/a=1.2) in the supercooled liquid which persists into the glass and finally to a fcc-like ordering in the crystalline solid. The variation of the SRO that results from the QCM compares well with that obtained with Steinhardt's bond order parameters. The hypothesis of icosahedral order in liquids and glasses is not supported by our results.

  5. Local structure of dilute aqueous DMSO solutions, as seen from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Idrissi, Abdenacer; Marekha, Bogdan A.; Barj, Mohammed; Miannay, François Alexandre; Takamuku, Toshiyuki; Raptis, Vasilios; Samios, Jannis; Jedlovszky, Pál

    2017-06-01

    The information about the structure of dimethyl sulfoxide (DMSO)-water mixtures at relatively low DMSO mole fractions is an important step in order to understand their cryoprotective properties as well as the solvation process of proteins and amino acids. Classical MD simulations, using the potential model combination that best reproduces the free energy of mixing of these compounds, are used to analyze the local structure of DMSO-water mixtures at DMSO mole fractions below 0.2. Significant changes in the local structure of DMSO are observed around the DMSO mole fraction of 0.1. The array of evidence, based on the cluster and the metric and topological parameters of the Voronoi polyhedra distributions, indicates that these changes are associated with the simultaneous increase of the number of DMSO-water and decrease of water-water hydrogen bonds with increasing DMSO concentration. The inversion between the dominance of these two types of H-bonds occurs around XDMSO = 0.1, above which the DMSO-DMSO interactions also start playing an important role. In other words, below the DMSO mole fraction of 0.1, DMSO molecules are mainly solvated by water molecules, while above it, their solvation shell consists of a mixture of water and DMSO. The trigonal, tetrahedral, and trigonal bipyramidal distributions of water shift to lower corresponding order parameter values indicating the loosening of these orientations. Adding DMSO does not affect the hydrogen bonding between a reference water molecule and its first neighbor hydrogen bonded water molecules, while it increases the bent hydrogen bond geometry involving the second ones. The close-packed local structure of the third, fourth, and fifth water neighbors also is reinforced. In accordance with previous theoretical and experimental data, the hydrogen bonding between water and the first, the second, and the third DMSO neighbors is stronger than that with its corresponding water neighbors. At a given DMSO mole fraction, the behavior of the intensity of the high orientational order parameter values indicates that water molecules are more ordered in the vicinity of the hydrophilic group while their structure is close-packed near the hydrophobic group of DMSO.

  6. Correlation of the bond-length change and vibrational frequency shift in model hydrogen-bonded complexes of pyrrole

    NASA Astrophysics Data System (ADS)

    McDowell, Sean A. C.

    2017-04-01

    An MP2 computational study of model hydrogen-bonded pyrrole⋯YZ (YZ = NH3, NCH, BF, CO, N2, OC, FB) complexes was undertaken in order to examine the variation of the Nsbnd H bond length change and its associated vibrational frequency shift. The chemical hardness of Y, as well as the YZ dipole moment, were found to be important parameters in modifying the bond length change/frequency shift. The basis set effect on the computed properties was also assessed. A perturbative model, which accurately reproduced the ab initio Nsbnd H bond length changes and frequency shifts, was useful in rationalizing the observed trends.

  7. Vibrational spectroscopic and DFT calculation studies of 2-amino-7-bromo-5-oxo-[1]benzopyrano [2,3-b]pyridine-3 carbonitrile

    NASA Astrophysics Data System (ADS)

    Premkumar, S.; Jawahar, A.; Mathavan, T.; Kumara Dhas, M.; Milton Franklin Benial, A.

    2015-03-01

    The vibrational spectra of 2-amino-7-bromo-5-oxo-[1]benzopyrano [2,3-b]pyridine-3 carbonitrile were recorded using fourier transform-infrared and fourier transform-Raman spectrometer. The optimized structural parameters, vibrational frequencies, Mulliken atomic charge distribution, frontier molecular orbitals, thermodynamic properties, temperature dependence of thermodynamic parameters, first order hyperpolarizability and natural bond orbital calculations of the molecule were performed using the Gaussian 09 program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using the VEDA 4.0 program. The calculated first order hyperpolarizability of ABOBPC molecule was obtained as 6.908 × 10-30 issue, which was 10.5 times greater than urea. The nonlinear optical activity of the molecule was also confirmed by the frontier molecular orbitals and natural bond orbital analysis. The frontier molecular orbitals analysis shows that the lower energy gap of the molecule, which leads to the higher value of first order hyperpolarizability. The natural bond orbital analysis indicates that the nonlinear optical activity of the molecule arises due to the π → π∗ transitions. The Mulliken atomic charge distribution confirms the presence of intramolecular charge transfer within the molecule. The reactive site of the molecule was predicted from the molecular electrostatic potential contour map. The values of thermo dynamic parameters were increasing with increasing temperature.

  8. Nonholonomic Hamiltonian Method for Molecular Dynamics Simulations of Reacting Shocks

    NASA Astrophysics Data System (ADS)

    Fahrenthold, Eric; Bass, Joseph

    2015-06-01

    Conventional molecular dynamics simulations of reacting shocks employ a holonomic Hamiltonian formulation: the breaking and forming of covalent bonds is described by potential functions. In general these potential functions: (a) are algebraically complex, (b) must satisfy strict smoothness requirements, and (c) contain many fitted parameters. In recent research the authors have developed a new noholonomic formulation of reacting molecular dynamics. In this formulation bond orders are determined by rate equations and the bonding-debonding process need not be described by differentiable functions. This simplifies the representation of complex chemistry and reduces the number of fitted model parameters. Example applications of the method show molecular level shock to detonation simulations in nitromethane and RDX. Research supported by the Defense Threat Reduction Agency.

  9. Influence of the temperature on the composites' fusion bonding quality

    NASA Astrophysics Data System (ADS)

    Harkous, Ali; Jurkowski, Tomasz; Bailleul, Jean-Luc; Le Corre, Steven

    2017-10-01

    Thermoplastic composite parts are increasingly used to replace metal pieces in automotive field due to their mechanical properties, chemical properties and recycling potential [1]. To assemble and give them new mechanical functions, fusion bonding is often used. It is a type of welding carried out at a higher temperature than the fusion one [2]. The mechanical quality of the final adhesion depends on the process parameters like pressure, temperature and cycle time [3]. These parameters depend on two phenomena at the origin of the bonding formation: intimate contact [4] and reptation and healing [5]. In this study, we analyze the influence of the temperature on the bonding quality, disregarding in this first steps the pressure influence. For that, two polyamide composite parts are welded using a specific setup. Then, they undergo a mechanical test of peeling in order to quantify the adhesion quality.

  10. Bond Ellipticity Alternation: An Accurate Descriptor of the Nonlinear Optical Properties of π-Conjugated Chromophores.

    PubMed

    Lopes, Thiago O; Machado, Daniel F Scalabrini; Risko, Chad; Brédas, Jean-Luc; de Oliveira, Heibbe C B

    2018-03-15

    Well-defined structure-property relationships offer a conceptual basis to afford a priori design principles to develop novel π-conjugated molecular and polymer materials for nonlinear optical (NLO) applications. Here, we introduce the bond ellipticity alternation (BEA) as a robust parameter to assess the NLO characteristics of organic chromophores and illustrate its effectiveness in the case of streptocyanines. BEA is based on the symmetry of the electron density, a physical observable that can be determined from experimental X-ray electron densities or from quantum-chemical calculations. Through comparisons to the well-established bond-length alternation and π-bond order alternation parameters, we demonstrate the generality of BEA to foreshadow NLO characteristics and underline that, in the case of large electric fields, BEA is a more reliable descriptor. Hence, this study introduces BEA as a prominent descriptor of organic chromophores of interest for NLO applications.

  11. Vibrational study and Natural Bond Orbital analysis of serotonin in monomer and dimer states by density functional theory

    NASA Astrophysics Data System (ADS)

    Borah, Mukunda Madhab; Devi, Th. Gomti

    2018-06-01

    The vibrational spectral analysis of Serotonin and its dimer were carried out using the Fourier Transform Infrared (FTIR) and Raman techniques. The equilibrium geometrical parameters, harmonic vibrational wavenumbers, Frontier orbitals, Mulliken atomic charges, Natural Bond orbitals, first order hyperpolarizability and some optimized energy parameters were computed by density functional theory with 6-31G(d,p) basis set. The detailed analysis of the vibrational spectra have been carried out by computing Potential Energy Distribution (PED, %) with the help of Vibrational Energy Distribution Analysis (VEDA) program. The second order delocalization energies E(2) confirms the occurrence of intramolecular Charge Transfer (ICT) within the molecule. The computed wavenumbers of Serotonin monomer and dimer were found in good agreement with the experimental Raman and IR values.

  12. Crystal structure, vibrational spectra and DFT studies of hydrogen bonded 1,2,4-triazolium hydrogenselenate

    NASA Astrophysics Data System (ADS)

    Arjunan, V.; Thirunarayanan, S.; Marchewka, M. K.; Mohan, S.

    2017-10-01

    The new hydrogen bonded molecular complex 1,2,4-triazolium hydrogenselenate (THS) is prepared by the reaction of 1H-1,2,4-triazole and selenic acid. This complex is stabilised by N-H⋯O and C-H⋯O hydrogen bonding and electrostatic attractive forces between 1H and 1,2,4-triazolium cations and hydrogen selenate anions. The XRD studies revealed that intermolecular proton transfer occur from selenic acid to 1H-1,2,4-triazole molecule, results in the formation of 1,2,4-triazolium hydrogenselenate which contains 1,2,4-triazolium cations and hydrogenselenate anions. The molecular structure of THS crystal has also been optimised by using Density Functional Theory (DFT) using B3LYP/cc-pVTZ and B3LYP/6-311++G** methods in order to find the whole characteristics of the molecular complex. The theoretical structural parameters such as bond length, bond angle and dihedral angle determined by DFT methods are well agreed with the XRD parameters. The atomic charges and thermodynamic properties are also calculated and analysed. The energies of frontier molecular orbitals HOMO, LUMO, HOMO-1, LUMO+1 and LUMO-HUMO energy gap are calculated to understand the kinetic stability and chemical reactivity of the molecular complex. The natural bond orbital analysis (NBO) has been performed in order to study the intramolecular bonding interactions and delocalisation of electrons. These intra molecular charge transfer may induce biological activities such as antimicrobials, antiinflammatory, antifungal etc. The complete vibrational assignments of THS have been performed by using FT-IR and FT-Raman spectra.

  13. U (1 ) -symmetric infinite projected entangled-pair states study of the spin-1/2 square J1-J2 Heisenberg model

    NASA Astrophysics Data System (ADS)

    Haghshenas, R.; Sheng, D. N.

    2018-05-01

    We develop an improved variant of U (1 ) -symmetric infinite projected entangled-pair states (iPEPS) ansatz to investigate the ground-state phase diagram of the spin-1 /2 square J1-J2 Heisenberg model. In order to improve the accuracy of the ansatz, we discuss a simple strategy to select automatically relevant symmetric sectors and also introduce an optimization method to treat second-neighbor interactions more efficiently. We show that variational ground-state energies of the model obtained by the U (1 ) -symmetric iPEPS ansatz (for a fixed bond dimension D ) set a better upper bound, improving previous tensor-network-based results. By studying the finite-D scaling of the magnetically order parameter, we find a Néel phase for J2/J1<0.53 . For 0.53

  14. Stacking fault density and bond orientational order of fcc ruthenium nanoparticles

    NASA Astrophysics Data System (ADS)

    Seo, Okkyun; Sakata, Osami; Kim, Jae Myung; Hiroi, Satoshi; Song, Chulho; Kumara, Loku Singgappulige Rosantha; Ohara, Koji; Dekura, Shun; Kusada, Kohei; Kobayashi, Hirokazu; Kitagawa, Hiroshi

    2017-12-01

    We investigated crystal structure deviations of catalytic nanoparticles (NPs) using synchrotron powder X-ray diffraction. The samples were fcc ruthenium (Ru) NPs with diameters of 2.4, 3.5, 3.9, and 5.4 nm. We analyzed average crystal structures by applying the line profile method to a stacking fault model and local crystal structures using bond orientational order (BOO) parameters. The reflection peaks shifted depending on rules that apply to each stacking fault. We evaluated the quantitative stacking faults densities for fcc Ru NPs, and the stacking fault per number of layers was 2-4, which is quite large. Our analysis shows that the fcc Ru 2.4 nm-diameter NPs have a considerably high stacking fault density. The B factor tends to increase with the increasing stacking fault density. A structural parameter that we define from the BOO parameters exhibits a significant difference from the ideal value of the fcc structure. This indicates that the fcc Ru NPs are highly disordered.

  15. Vibrational spectroscopic and DFT calculation studies of 2-amino-7-bromo-5-oxo-[1]benzopyrano [2,3-b]pyridine-3 carbonitrile.

    PubMed

    Premkumar, S; Jawahar, A; Mathavan, T; Kumara Dhas, M; Milton Franklin Benial, A

    2015-03-05

    The vibrational spectra of 2-amino-7-bromo-5-oxo-[1]benzopyrano [2,3-b]pyridine-3 carbonitrile were recorded using fourier transform-infrared and fourier transform-Raman spectrometer. The optimized structural parameters, vibrational frequencies, Mulliken atomic charge distribution, frontier molecular orbitals, thermodynamic properties, temperature dependence of thermodynamic parameters, first order hyperpolarizability and natural bond orbital calculations of the molecule were performed using the Gaussian 09 program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using the VEDA 4.0 program. The calculated first order hyperpolarizability of ABOBPC molecule was obtained as 6.908×10(-30) issue, which was 10.5 times greater than urea. The nonlinear optical activity of the molecule was also confirmed by the frontier molecular orbitals and natural bond orbital analysis. The frontier molecular orbitals analysis shows that the lower energy gap of the molecule, which leads to the higher value of first order hyperpolarizability. The natural bond orbital analysis indicates that the nonlinear optical activity of the molecule arises due to the π→π(∗) transitions. The Mulliken atomic charge distribution confirms the presence of intramolecular charge transfer within the molecule. The reactive site of the molecule was predicted from the molecular electrostatic potential contour map. The values of thermo dynamic parameters were increasing with increasing temperature. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Improved Bond Equations for Fiber-Reinforced Polymer Bars in Concrete.

    PubMed

    Pour, Sadaf Moallemi; Alam, M Shahria; Milani, Abbas S

    2016-08-30

    This paper explores a set of new equations to predict the bond strength between fiber reinforced polymer (FRP) rebar and concrete. The proposed equations are based on a comprehensive statistical analysis and existing experimental results in the literature. Namely, the most effective parameters on bond behavior of FRP concrete were first identified by applying a factorial analysis on a part of the available database. Then the database that contains 250 pullout tests were divided into four groups based on the concrete compressive strength and the rebar surface. Afterward, nonlinear regression analysis was performed for each study group in order to determine the bond equations. The results show that the proposed equations can predict bond strengths more accurately compared to the other previously reported models.

  17. Bond Dilution Effects on Bethe Lattice the Spin-1 Blume-Capel Model

    NASA Astrophysics Data System (ADS)

    Albayrak, Erhan

    2017-09-01

    The bond dilution effects are investigated for the spin-1 Blume-Capel model on the Bethe lattice by using the exact recursion relations. The bilinear interaction parameter is either turned on ferromagnetically with probability p or turned off with probability 1 - p between the nearest-neighbor spins. The thermal variations of the order-parameters are studied in detail to obtain the phase diagrams on the possible planes spanned by the temperature (T), probability (p) and crystal field (D) for the coordination numbers q = 3, 4, and 6. The lines of the second-order phase transitions, Tc-lines, combined with the first-order ones, Tt-lines, at the tricritical points (TCP) are always found for any p and q on the (T, D)-planes. It is also found that the model gives only Tc-lines, Tc-lines combined with the Tt-lines at the TCP’s and only Tt-lines with the consecutively decreasing values of D on the (T, p)-planes for all q.

  18. Performance of Adhesive and Cementitious Anchoring Systems

    DOT National Transportation Integrated Search

    2017-08-01

    This research project evaluated the behavior of adhesive and cementitious bonded anchoring systems per the approach found in the provisional standard AASHTO TP-84, in order to provide recommendations pertaining to the test method. Additional paramete...

  19. Infinitely Robust Order and Local Order-Parameter Tulips in Apollonian Networks with Quenched Disorder

    NASA Astrophysics Data System (ADS)

    Nadir Kaplan, C.; Hinczewski, Michael; Berker, A. Nihat

    2009-03-01

    For a variety of quenched random spin systems on an Apollonian network, including ferromagnetic and antiferromagnetic bond percolation and the Ising spin glass, we find the persistence of ordered phases up to infinite temperature over the entire range of disorder.[1] We develop a renormalization-group technique that yields highly detailed information, including the exact distributions of local magnetizations and local spin-glass order parameters, which turn out to exhibit, as function of temperature, complex and distinctive tulip patterns. [1] C.N. Kaplan, M. Hinczewski, and A.N. Berker, arXiv:0811.3437v1 [cond-mat.dis-nn] (2008).

  20. Gapped paramagnetic state in a frustrated spin-1/2 Heisenberg antiferromagnet on the cross-striped square lattice

    NASA Astrophysics Data System (ADS)

    Li, P. H. Y.; Bishop, R. F.

    2018-03-01

    We implement the coupled cluster method to very high orders of approximation to study the spin-1/2 J1 -J2 Heisenberg model on a cross-striped square lattice. Every nearest-neighbour pair of sites on the square lattice has an isotropic antiferromagnetic exchange bond of strength J1 > 0 , while the basic square plaquettes in alternate columns have either both or neither next-nearest-neighbour (diagonal) pairs of sites connected by an equivalent frustrating bond of strength J2 ≡ αJ1 > 0 . By studying the magnetic order parameter (i.e., the average local on-site magnetization) in the range 0 ≤ α ≤ 1 of the frustration parameter we find that the quasiclassical antiferromagnetic Néel and (so-called) double Néel states form the stable ground-state phases in the respective regions α < α1ac = 0 . 46(1) and α > α1bc = 0.615(5) . The double Néel state has Néel (⋯ ↑↓↑↓ ⋯) ordering along the (column) direction parallel to the stripes of squares with both or no J2 bonds, and spins alternating in a pairwise (⋯ ↑↑↓↓↑↑↓↓ ⋯) fashion along the perpendicular (row) direction, so that the parallel pairs occur on squares with both J2 bonds present. Further explicit calculations of both the triplet spin gap and the zero-field uniform transverse magnetic susceptibility provide compelling evidence that the ground-state phase over all or most of the intermediate regime α1ac < α < α1bc is a gapped state with no discernible long-range magnetic order.

  1. Double-stage nematic bond ordering above double stripe magnetism: Application to BaTi 2 Sb 2 O

    DOE PAGES

    Zhang, G.; Glasbrenner, J. K.; Flint, R.; ...

    2017-05-01

    Spin-driven nemore » maticity, or the breaking of the point-group symmetry of the lattice without long-range magnetic order, is clearly quite important in iron-based superconductors. From a symmetry point of view, nematic order can be described as a coherent locking of spin fluctuations in two interpenetrating Néel sublattices with ensuing nearest-neighbor bond order and an absence of static magnetism. In this paper, we argue that the low-temperature state of the recently discovered superconductor BaTi 2 Sb 2 O is a strong candidate for a more exotic form of spin-driven nematic order, in which fluctuations occurring in four Néel sublattices promote both nearest- and next-nearest-neighbor bond order. We develop a low-energy field theory of this state and show that it can have, as a function of temperature, up to two separate bond-order phase transitions, namely, one that breaks rotation symmetry and one that breaks reflection and translation symmetries of the lattice. The resulting state has an orthorhombic lattice distortion, an intra-unit-cell charge density wave, and no long-range magnetic order, all consistent with reported measurements of the low-temperature phase of BaTi 2 Sb 2 O . Finally, we then use density functional theory calculations to extract exchange parameters to confirm that the model is applicable to BaTi 2 Sb 2 O .« less

  2. Double-stage nematic bond ordering above double stripe magnetism: Application to BaTi 2 Sb 2 O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, G.; Glasbrenner, J. K.; Flint, R.

    Spin-driven nemore » maticity, or the breaking of the point-group symmetry of the lattice without long-range magnetic order, is clearly quite important in iron-based superconductors. From a symmetry point of view, nematic order can be described as a coherent locking of spin fluctuations in two interpenetrating Néel sublattices with ensuing nearest-neighbor bond order and an absence of static magnetism. In this paper, we argue that the low-temperature state of the recently discovered superconductor BaTi 2 Sb 2 O is a strong candidate for a more exotic form of spin-driven nematic order, in which fluctuations occurring in four Néel sublattices promote both nearest- and next-nearest-neighbor bond order. We develop a low-energy field theory of this state and show that it can have, as a function of temperature, up to two separate bond-order phase transitions, namely, one that breaks rotation symmetry and one that breaks reflection and translation symmetries of the lattice. The resulting state has an orthorhombic lattice distortion, an intra-unit-cell charge density wave, and no long-range magnetic order, all consistent with reported measurements of the low-temperature phase of BaTi 2 Sb 2 O . Finally, we then use density functional theory calculations to extract exchange parameters to confirm that the model is applicable to BaTi 2 Sb 2 O .« less

  3. Improved Bond Equations for Fiber-Reinforced Polymer Bars in Concrete

    PubMed Central

    Pour, Sadaf Moallemi; Alam, M. Shahria; Milani, Abbas S.

    2016-01-01

    This paper explores a set of new equations to predict the bond strength between fiber reinforced polymer (FRP) rebar and concrete. The proposed equations are based on a comprehensive statistical analysis and existing experimental results in the literature. Namely, the most effective parameters on bond behavior of FRP concrete were first identified by applying a factorial analysis on a part of the available database. Then the database that contains 250 pullout tests were divided into four groups based on the concrete compressive strength and the rebar surface. Afterward, nonlinear regression analysis was performed for each study group in order to determine the bond equations. The results show that the proposed equations can predict bond strengths more accurately compared to the other previously reported models. PMID:28773859

  4. Buckling analysis of SMA bonded sandwich structure – using FEM

    NASA Astrophysics Data System (ADS)

    Katariya, Pankaj V.; Das, Arijit; Panda, Subrata K.

    2018-03-01

    Thermal buckling strength of smart sandwich composite structure (bonded with shape memory alloy; SMA) examined numerically via a higher-order finite element model in association with marching technique. The excess geometrical distortion of the structure under the elevated environment modeled through Green’s strain function whereas the material nonlinearity counted with the help of marching method. The system responses are computed numerically by solving the generalized eigenvalue equations via a customized MATLAB code. The comprehensive behaviour of the current finite element solutions (minimum buckling load parameter) is established by solving the adequate number of numerical examples including the given input parameter. The current numerical model is extended further to check the influence of various structural parameter of the sandwich panel on the buckling temperature including the SMA effect and reported in details.

  5. A theoretical study of hydrogen complexes of the XH-pi type between propyne and HF, HCL or HCN.

    PubMed

    Tavares, Alessandra M; da Silva, Washington L V; Lopes, Kelson C; Ventura, Elizete; Araújo, Regiane C M U; do Monte, Silmar A; da Silva, João Bosco P; Ramos, Mozart N

    2006-05-15

    The present manuscript reports a systematic investigation of the basis set dependence of some properties of hydrogen-bonded (pi type) complexes formed by propyne and a HX molecule, where X=F, Cl and CN. The calculations have been performed at Hartree-Fock, MP2 and B3LYP levels. Geometries, H-bond energies and vibrational have been considered. The more pronounced effects on the structural parameters of the isolated molecules, as a result of complexation, are verified on RCtriple bondC and HX bond lengths. As compared to double-zeta (6-31G**), triple-zeta (6-311G**) basis set leads to an increase of RCtriple bondC bond distance, at all three computational levels. In the case where diffuse functions are added to both hydrogen and 'heavy' atoms, the effect is more pronounced. The propyne-HX structural parameters are quite similar to the corresponding parameters of acetylene-HX complexes, at all levels. The largest difference is obtained for hydrogen bond distance, RH, with a smaller value for propyne-HX complex, indicating a stronger bond. Concerning the electronic properties, the results yield the following ordering for H-bond energies, DeltaE: propynecdots, three dots, centeredHF>propynecdots, three dots, centeredHCl>propynecdots, three dots, centeredHCN. It is also important to point out that the inclusion of BSSE and zero-point energies (ZPE) corrections cause significant changes on DeltaE. The smaller effect of ZPE is obtained for propynecdots, three dots, centeredHCN at HF/6-311++G** level, while the greatest difference is obtained at MP2/6-31G** level for propynecdots, three dots, centeredHF system. Concerning the IR vibrational it was obtained that larger shift can be associated with stronger hydrogen bonds. The more pronounced effect on the normal modes of the isolated molecule after the complexation is obtained for HX stretching frequency, which is shifted downward.

  6. Holographic Symmetries and Generalized Order Parameters for Topological Matter

    NASA Astrophysics Data System (ADS)

    Cobanera, Emilio; Ortiz, Gerardo; Nussinov, Zohar

    2013-03-01

    We introduce a universally applicable method, based on the bond-algebraic theory of dualities, to search for generalized order parameters in a wide variety of non-Landau systems, including topologically ordered matter. To this end we introduce the key notion of holographic symmetry. It reflects situations in which global symmetries become exact boundary symmetries under a duality mapping. Holographic symmetries are naturally related to edge modes and localization. The utility of our approach is illustrated by presenting a systematic derivation of generalized order parameters for pure and matter-coupled Abelian gauge theories and (extended) toric codes. Also we introduce a many-body extension of the Kitaev wire, the gauged Kitaev wire, and exploit holographic symmetries and dualities to describe its phase diagram, generalized order parameter, and edge states. [arXiv:1211.0564] This work was supported by the Dutch Science Foundation NWO/FOM and an ERC Advanced Investigator grant, and, in part, under grants No. NSF PHY11-25915 and CMMT 1106293.

  7. Quenched bond randomness: Superfluidity in porous media and the strong violation of universality

    NASA Astrophysics Data System (ADS)

    Falicov, Alexis; Berker, A. Nihat

    1997-04-01

    The effects of quenched bond randomness are most readily studied with superfluidity immersed in a porous medium. A lattice model for3He-4He mixtures and incomplete4He fillings in aerogel yields the signature effect of bond randomness, namely the conversion of symmetry-breaking first-order phase transitions into second-order phase transitions, the λ-line reaching zero temperature, and the elimination of non-symmetry-breaking first-order phase transitions. The model recognizes the importance of the connected nature of aerogel randomness and thereby yields superfluidity at very low4He concentrations, a phase separation entirely within the superfluid phase, and the order-parameter contrast between mixtures and incomplete fillings, all in agreement with experiments. The special properties of the helium mixture/aerogel system are distinctly linked to the aerogel properties of connectivity, randomness, and tenuousness, via the additional study of a regularized “jungle-gym” aerogel. Renormalization-group calculations indicate that a strong violation of the empirical universality principle of critical phenomena occurs under quenched bond randomness. It is argued that helium/aerogel critical properties reflect this violation and further experiments are suggested. Renormalization-group analysis also shows that, adjoiningly to the strong universality violation (which hinges on the occurrence or non-occurrence of asymptotic strong coupling—strong randomness under rescaling), there is a new “hyperuniversality” at phase transitions with asymptotic strong coupling—strong randomness behavior, for example assigning the same critical exponents to random- bond tricriticality and random- field criticality.

  8. Minimization of Basis Risk in Parametric Earthquake Cat Bonds

    NASA Astrophysics Data System (ADS)

    Franco, G.

    2009-12-01

    A catastrophe -cat- bond is an instrument used by insurance and reinsurance companies, by governments or by groups of nations to cede catastrophic risk to the financial markets, which are capable of supplying cover for highly destructive events, surpassing the typical capacity of traditional reinsurance contracts. Parametric cat bonds, a specific type of cat bonds, use trigger mechanisms or indices that depend on physical event parameters published by respected third parties in order to determine whether a part or the entire bond principal is to be paid for a certain event. First generation cat bonds, or cat-in-a-box bonds, display a trigger mechanism that consists of a set of geographic zones in which certain conditions need to be met by an earthquake’s magnitude and depth in order to trigger payment of the bond principal. Second generation cat bonds use an index formulation that typically consists of a sum of products of a set of weights by a polynomial function of the ground motion variables reported by a geographically distributed seismic network. These instruments are especially appealing to developing countries with incipient insurance industries wishing to cede catastrophic losses to the financial markets because the payment trigger mechanism is transparent and does not involve the parties ceding or accepting the risk, significantly reducing moral hazard. In order to be successful in the market, however, parametric cat bonds have typically been required to specify relatively simple trigger conditions. The consequence of such simplifications is the increase of basis risk. This risk represents the possibility that the trigger mechanism fails to accurately capture the actual losses of a catastrophic event, namely that it does not trigger for a highly destructive event or vice versa, that a payment of the bond principal is caused by an event that produced insignificant losses. The first case disfavors the sponsor who was seeking cover for its losses while the second disfavors the investor who loses part of the investment without a reasonable cause. A streamlined and fairly automated methodology has been developed to design parametric triggers that minimize the basis risk while still maintaining their level of relative simplicity. Basis risk is minimized in both, first and second generation, parametric cat bonds through an optimization procedure that aims to find the most appropriate magnitude thresholds, geographic zones, and weight index values. Sensitivity analyses to different design assumptions show that first generation cat bonds are typically affected by a large negative basis risk, namely the risk that the bond will not trigger for events within the risk level transferred, unless a sufficiently small geographic resolution is selected to define the trigger zones. Second generation cat bonds in contrast display a bias towards negative or positive basis risk depending on the degree of the polynomial used as well as on other design parameters. Two examples are presented, the construction of a first generation parametric trigger mechanism for Costa Rica and the design of a second generation parametric index for Japan.

  9. High-Q Wafer Level Package Based on Modified Tri-Layer Anodic Bonding and High Performance Getter and Its Evaluation for Micro Resonant Pressure Sensor.

    PubMed

    Wang, Liying; Du, Xiaohui; Wang, Lingyun; Xu, Zhanhao; Zhang, Chenying; Gu, Dandan

    2017-03-16

    In order to achieve and maintain a high quality factor (high-Q) for the micro resonant pressure sensor, this paper presents a new wafer level package by adopting cross-layer anodic bonding technique of the glass/silicon/silica (GSS) stackable structure and integrated Ti getter. A double-layer structure similar to a silicon-on-insulator (SOI) wafer is formed after the resonant layer and the pressure-sensitive layer are bonded by silicon direct bonding (SDB). In order to form good bonding quality between the pressure-sensitive layer and the glass cap layer, the cross-layer anodic bonding technique is proposed for vacuum package by sputtering Aluminum (Al) on the combination wafer of the pressure-sensitive layer and the resonant layer to achieve electrical interconnection. The model and the bonding effect of this technique are discussed. In addition, in order to enhance the performance of titanium (Ti) getter, the prepared and activation parameters of Ti getter under different sputtering conditions are optimized and discussed. Based on the optimized results, the Ti getter (thickness of 300 nm to 500 nm) is also deposited on the inside of the glass groove by magnetron sputtering to maintain stable quality factor (Q). The Q test of the built testing system shows that the number of resonators with a Q value of more than 10,000 accounts for more than 73% of the total. With an interval of 1.5 years, the Q value of the samples remains almost constant. It proves the proposed cross-layer anodic bonding and getter technique can realize high-Q resonant structure for long-term stable operation.

  10. Low-temperature wafer-level gold thermocompression bonding: modeling of flatness deviations and associated process optimization for high yield and tough bonds

    NASA Astrophysics Data System (ADS)

    Stamoulis, Konstantinos; Tsau, Christine H.; Spearing, S. Mark

    2005-01-01

    Wafer-level, thermocompression bonding is a promising technique for MEMS packaging. The quality of the bond is critically dependent on the interaction between flatness deviations, the gold film properties and the process parameters and tooling used to achieve the bonds. The effect of flatness deviations on the resulting bond is investigated in the current work. The strain energy release rate associated with the elastic deformation required to overcome wafer bow is calculated. A contact yield criterion is used to examine the pressure and temperature conditions required to flatten surface roughness asperities in order to achieve bonding over the full apparent area. The results are compared to experimental data of bond yield and toughness obtained from four-point bend delamination testing and microscopic observations of the fractured surfaces. Conclusions from the modeling and experiments indicate that wafer bow has negligible effect on determining the variability of bond quality and that the well-bonded area is increased with increasing bonding pressure. The enhanced understanding of the underlying deformation mechanisms allows for a better controlled trade-off between the bonding pressure and temperature.

  11. Low-temperature wafer-level gold thermocompression bonding: modeling of flatness deviations and associated process optimization for high yield and tough bonds

    NASA Astrophysics Data System (ADS)

    Stamoulis, Konstantinos; Tsau, Christine H.; Spearing, S. Mark

    2004-12-01

    Wafer-level, thermocompression bonding is a promising technique for MEMS packaging. The quality of the bond is critically dependent on the interaction between flatness deviations, the gold film properties and the process parameters and tooling used to achieve the bonds. The effect of flatness deviations on the resulting bond is investigated in the current work. The strain energy release rate associated with the elastic deformation required to overcome wafer bow is calculated. A contact yield criterion is used to examine the pressure and temperature conditions required to flatten surface roughness asperities in order to achieve bonding over the full apparent area. The results are compared to experimental data of bond yield and toughness obtained from four-point bend delamination testing and microscopic observations of the fractured surfaces. Conclusions from the modeling and experiments indicate that wafer bow has negligible effect on determining the variability of bond quality and that the well-bonded area is increased with increasing bonding pressure. The enhanced understanding of the underlying deformation mechanisms allows for a better controlled trade-off between the bonding pressure and temperature.

  12. Delamination failure of multilaminated adhesively bonded joints at low temperatures

    NASA Astrophysics Data System (ADS)

    Lee, Chi-Seung; Chun, Min-Sung; Kim, Myung-Hyun; Lee, Jae-Myung

    2011-08-01

    A series of experimental investigations of multilaminated joints adhesively bonded by epoxy/polyurethane (PU) glue were conducted in order to examine the delamination failure characteristics under in-plane shear loading at low temperatures. In order to observe these phenomena, a series of lap-shear tests were carried out at various low temperatures (20 °C, -110 °C and -163 °C) and various adhesion areas (15 mm × 50 mm, 30 mm × 50 mm, 50 mm × 50 mm, 75 mm × 50 mm and 100 mm × 50 mm). The test results were used to investigate the delamination and material characteristics, as well as the material properties, e.g., ultimate shear stress and shear elongation. Furthermore, the dependencies of the characteristics of multilaminated adhesively bonded joints (MABJs) on temperature and adhesion area was analyzed using the stress-strain relationship, and closed form formulas that are functions of the dependent parameters are proposed.

  13. On the interpretation of domain averaged Fermi hole analyses of correlated wavefunctions.

    PubMed

    Francisco, E; Martín Pendás, A; Costales, Aurora

    2014-03-14

    Few methods allow for a physically sound analysis of chemical bonds in cases where electron correlation may be a relevant factor. The domain averaged Fermi hole (DAFH) analysis, a tool firstly proposed by Robert Ponec in the 1990's to provide interpretations of the chemical bonding existing between two fragments Ω and Ω' that divide the real space exhaustively, is one of them. This method allows for a partition of the delocalization index or bond order between Ω and Ω' into one electron contributions, but the chemical interpretation of its parameters has been firmly established only for single determinant wavefunctions. In this paper we report a general interpretation based on the concept of excluded density that is also valid for correlated descriptions. Both analytical models and actual computations on a set of simple molecules (H2, N2, LiH, and CO) are discussed, and a classification of the possible DAFH situations is presented. Our results show that this kind of analysis may reveal several correlated assisted bonding patterns that might be difficult to detect using other methods. In agreement with previous knowledge, we find that the effective bond order in covalent links decreases due to localization of electrons driven by Coulomb correlation.

  14. Automated bond order assignment as an optimization problem.

    PubMed

    Dehof, Anna Katharina; Rurainski, Alexander; Bui, Quang Bao Anh; Böcker, Sebastian; Lenhof, Hans-Peter; Hildebrandt, Andreas

    2011-03-01

    Numerous applications in Computational Biology process molecular structures and hence strongly rely not only on correct atomic coordinates but also on correct bond order information. For proteins and nucleic acids, bond orders can be easily deduced but this does not hold for other types of molecules like ligands. For ligands, bond order information is not always provided in molecular databases and thus a variety of approaches tackling this problem have been developed. In this work, we extend an ansatz proposed by Wang et al. that assigns connectivity-based penalty scores and tries to heuristically approximate its optimum. In this work, we present three efficient and exact solvers for the problem replacing the heuristic approximation scheme of the original approach: an A*, an ILP and an fixed-parameter approach (FPT) approach. We implemented and evaluated the original implementation, our A*, ILP and FPT formulation on the MMFF94 validation suite and the KEGG Drug database. We show the benefit of computing exact solutions of the penalty minimization problem and the additional gain when computing all optimal (or even suboptimal) solutions. We close with a detailed comparison of our methods. The A* and ILP solution are integrated into the open-source C++ LGPL library BALL and the molecular visualization and modelling tool BALLView and can be downloaded from our homepage www.ball-project.org. The FPT implementation can be downloaded from http://bio.informatik.uni-jena.de/software/.

  15. A theoretical study of hydrogen complexes of the X sbnd H-π type between propyne and HF, HCL or HCN

    NASA Astrophysics Data System (ADS)

    Tavares, Alessandra M.; da Silva, Washington L. V.; Lopes, Kelson C.; Ventura, Elizete; Araújo, Regiane C. M. U.; do Monte, Silmar A.; da Silva, João Bosco P.; Ramos, Mozart N.

    2006-05-01

    The present manuscript reports a systematic investigation of the basis set dependence of some properties of hydrogen-bonded (π type) complexes formed by propyne and a HX molecule, where X = F, Cl and CN. The calculations have been performed at Hartree-Fock, MP2 and B3LYP levels. Geometries, H-bond energies and vibrational have been considered. The more pronounced effects on the structural parameters of the isolated molecules, as a result of complexation, are verified on RC tbnd C and HX bond lengths. As compared to double-ζ (6-31G **), triple-ζ (6-311G **) basis set leads to an increase of RC tbnd C bond distance, at all three computational levels. In the case where diffuse functions are added to both hydrogen and 'heavy' atoms, the effect is more pronounced. The propyne-HX structural parameters are quite similar to the corresponding parameters of acetylene-HX complexes, at all levels. The largest difference is obtained for hydrogen bond distance, RH, with a smaller value for propyne-HX complex, indicating a stronger bond. Concerning the electronic properties, the results yield the following ordering for H-bond energies, Δ E: propyne⋯HF > propyne⋯HCl > propyne⋯HCN. It is also important to point out that the inclusion of BSSE and zero-point energies (ZPE) corrections cause significant changes on Δ E. The smaller effect of ZPE is obtained for propyne⋯HCN at HF/6-311++G ** level, while the greatest difference is obtained at MP2/6-31G ** level for propyne⋯HF system. Concerning the IR vibrational it was obtained that larger shift can be associated with stronger hydrogen bonds. The more pronounced effect on the normal modes of the isolated molecule after the complexation is obtained for H sbnd X stretching frequency, which is shifted downward.

  16. Ground-state ordering of the J1-J2 model on the simple cubic and body-centered cubic lattices

    NASA Astrophysics Data System (ADS)

    Farnell, D. J. J.; Götze, O.; Richter, J.

    2016-06-01

    The J1-J2 Heisenberg model is a "canonical" model in the field of quantum magnetism in order to study the interplay between frustration and quantum fluctuations as well as quantum phase transitions driven by frustration. Here we apply the coupled cluster method (CCM) to study the spin-half J1-J2 model with antiferromagnetic nearest-neighbor bonds J1>0 and next-nearest-neighbor bonds J2>0 for the simple cubic (sc) and body-centered cubic (bcc) lattices. In particular, we wish to study the ground-state ordering of these systems as a function of the frustration parameter p =z2J2/z1J1 , where z1 (z2) is the number of nearest (next-nearest) neighbors. We wish to determine the positions of the phase transitions using the CCM and we aim to resolve the nature of the phase transition points. We consider the ground-state energy, order parameters, spin-spin correlation functions, as well as the spin stiffness in order to determine the ground-state phase diagrams of these models. We find a direct first-order phase transition at a value of p =0.528 from a state of nearest-neighbor Néel order to next-nearest-neighbor Néel order for the bcc lattice. For the sc lattice the situation is more subtle. CCM results for the energy, the order parameter, the spin-spin correlation functions, and the spin stiffness indicate that there is no direct first-order transition between ground-state phases with magnetic long-range order, rather it is more likely that two phases with antiferromagnetic long range are separated by a narrow region of a spin-liquid-like quantum phase around p =0.55 . Thus the strong frustration present in the J1-J2 Heisenberg model on the sc lattice may open a window for an unconventional quantum ground state in this three-dimensional spin model.

  17. Two dimensional PMMA nanofluidic device fabricated by hot embossing and oxygen plasma assisted thermal bonding methods

    NASA Astrophysics Data System (ADS)

    Yin, Zhifu; Sun, Lei; Zou, Helin; Cheng, E.

    2015-05-01

    A method for obtaining a low-cost and high-replication precision two-dimensional (2D) nanofluidic device with a polymethyl methacrylate (PMMA) sheet is proposed. To improve the replication precision of the 2D PMMA nanochannels during the hot embossing process, the deformation of the PMMA sheet was analyzed by a numerical simulation method. The constants of the generalized Maxwell model used in the numerical simulation were calculated by experimental compressive creep curves based on previously established fitting formula. With optimized process parameters, 176 nm-wide and 180 nm-deep nanochannels were successfully replicated into the PMMA sheet with a replication precision of 98.2%. To thermal bond the 2D PMMA nanochannels with high bonding strength and low dimensional loss, the parameters of the oxygen plasma treatment and thermal bonding process were optimized. In order to measure the dimensional loss of 2D nanochannels after thermal bonding, a dimension loss evaluating method based on the nanoindentation experiments was proposed. According to the dimension loss evaluating method, the total dimensional loss of 2D nanochannels was 6 nm and 21 nm in width and depth, respectively. The tensile bonding strength of the 2D PMMA nanofluidic device was 0.57 MPa. The fluorescence images demonstrate that there was no blocking or leakage over the entire microchannels and nanochannels.

  18. Quantitation of buried contamination by use of solvents. Part 1: Solvent degradation of amine cured epoxy resins

    NASA Technical Reports Server (NTRS)

    Rheineck, A. E.; Heskin, R. A.; Hill, L. W.

    1972-01-01

    The solubility and/or swelling of cured epoxy resins was studied using the solubility parameter method. Determination of solubility parameters were found in order to select solvents for solvent-assisted degradation of cured epoxy polymers used in spacecraft. A method for improving recovery of seeded spores is suggested for assay of buried contaminants. Three commercial epoxy resins were cured using four different alkyl amines. For each resin-amine combination, three levels of amine were used, corresponding to 1/3, 2/3, and all of the amine required to react with the oxirane groups of the resin. The solubility parameters of the 36 resulting model compounds were determined in poorly and moderately hydrogen-bonded solvents. No strongly hydrogen-bonded solvents caused dissolution or swelling. The tolerance of cured resins is discussed in terms of polymer structure.

  19. Quenched bond randomness: Superfluidity in porous media and the strong violation of universality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Falicov, A.; Berker, A.N.

    1997-04-01

    The effects of quenched bond randomness are most readily studied with superfluidity immersed in a porous medium. A lattice model for {sup 3}He-{sup 4}He mixtures and incomplete {sup 4}He fillings in aerogel yields the signature effect of bond randomness, namely the conversion of symmetry-breaking first-order phase transitions into second-order phase transitions, the A-line reaching zero temperature, and the elimination of non-symmetry-breaking first-order phase transitions. The model recognizes the importance of the connected nature of aerogel randomness and thereby yields superfluidity at very low {sup 4}He concentrations, a phase separation entirely within the superfluid phase, and the order-parameter contrast between mixturesmore » and incomplete fillings, all in agreement with experiments. The special properties of the helium mixture/aerogel system are distinctly linked to the aerogel properties of connectivity, randomness, and tenuousness, via the additional study of a regularized {open_quote}jungle-gym{close_quotes} aerogel. Renormalization-group calculations indicate that a strong violation of the empirical universality principle of critical phenomena occurs under quenched bond randomness. It is argued that helium/aerogel critical properties reflect this violation and further experiments are suggested. Renormalization-group analysis also shows that, adjoiningly to the strong universality violation (which hinges on the occurrence or non-occurrence of asymptotic strong coupling-strong randomness under resealing), there is a new {open_quotes}hyperuniversality{close_quotes} at phase transitions with asymptotic strong coupling-strong randomness behavior, for example assigning the same critical exponents to random-bond tricriticality and random-field criticality.« less

  20. Density functional theory study of interactions between carbon monoxide and iron tetraaza macrocyclic complexes, FeTXTAA (X = -Cl, -OH, -OCH3, -NH2, and -NO2).

    PubMed

    de Matos Mourão Neto, Isaias; Silva, Adilson Luís Pereira; Tanaka, Auro Atsushi; de Jesus Gomes Varela, Jaldyr

    2017-02-01

    This work describes a DFT level theoretical quantum study using the B3LYP functional with the Lanl2TZ(f)/6-31G* basis set to calculate parameters including the bond distances and angles, electronic configurations, interaction energies, and vibrational frequencies of FeTClTAA (iron-tetrachloro-tetraaza[14]annulene), FeTOHTAA (iron-tetrahydroxy-tetraaza[14]annulene), FeTOCH 3 TAA (iron- tetramethoxy-tetraaza[14]annulene), FeTNH 2 TAA (iron-tetraamino-tetraaza[14]annulene), and FeTNO 2 TAA (iron-tetranitro-tetraaza[14]annulene) complexes, as well as their different spin multiplicities. The calculations showed that the complexes were most stable in the triplet spin state (S = 1), while, after interaction with carbon monoxide, the singlet state was most stable. The reactivity of the complexes was evaluated using HOMO-LUMO gap calculations. Parameter correlations were performed in order to identify the best complex for back bonding (3d xz Fe → 2p x C and 3d yz Fe → 2p z C) with carbon monoxide, and the degree of back bonding increased in the order: FeTNO 2 TAA < FeTClTAA < FeTOHTAA < FeTOCH 3 TAA < FeTNH 2 TAA.

  1. SLAM examination of solar cells and solar cell welds. [Scanning Laser Acoustic Microscope

    NASA Technical Reports Server (NTRS)

    Stella, P. M.; Vorres, C. L.; Yuhas, D. E.

    1981-01-01

    The scanning laser acoustic microscope (SLAM) has been evaluated for non-destructive examination of solar cells and interconnector bonds. Using this technique, it is possible to view through materials in order to reveal regions of discontinuity such as microcracks and voids. Of particular interest is the ability to evaluate, in a unique manner, the bonds produced by parallel gap welding. It is possible to not only determine the area and geometry of the bond between the tab and cell, but also to reveal any microcracks incurred during the welding. By correlating the SLAM results with conventional techniques of weld evaluation a more confident weld parameter optimization can be obtained.

  2. Insight into the molecular mechanism of water evaporation via the finite temperature string method.

    PubMed

    Musolino, Nicholas; Trout, Bernhardt L

    2013-04-07

    The process of water's evaporation at its liquid/air interface has proven challenging to study experimentally and, because it constitutes a rare event on molecular time scales, presents a challenge for computer simulations as well. In this work, we simulated water's evaporation using the classical extended simple point charge model water model, and identified a minimum free energy path for this process in terms of 10 descriptive order parameters. The measured free energy change was 7.4 kcal/mol at 298 K, in reasonable agreement with the experimental value of 6.3 kcal/mol, and the mean first-passage time was 1375 ns for a single molecule, corresponding to an evaporation coefficient of 0.25. In the observed minimum free energy process, the water molecule diffuses to the surface, and tends to rotate so that its dipole and one O-H bond are oriented outward as it crosses the Gibbs dividing surface. As the water molecule moves further outward through the interfacial region, its local density is higher than the time-averaged density, indicating a local solvation shell that protrudes from the interface. The water molecule loses donor and acceptor hydrogen bonds, and then, with its dipole nearly normal to the interface, stops donating its remaining hydrogen bond. At that point, when the final, accepted hydrogen bond is broken, the water molecule is free. We also analyzed which order parameters are most important in the process and in reactive trajectories, and found that the relative orientation of water molecules near the evaporating molecule, and the number of accepted hydrogen bonds, were important variables in reactive trajectories and in kinetic descriptions of the process.

  3. A special method for analyzing anisotropic nuclear magnetic resonance parameters: Acetonitrile in liquid crystals

    NASA Astrophysics Data System (ADS)

    Lounila, Juhani; Ala-Korpela, Mika; Jokisaari, Jukka

    1990-12-01

    A reliable analysis of the nuclear magnetic resonance (NMR) spectral parameters of partially oriented molecules requires the calculation of the effects of the correlation between the molecular vibration and rotation. However, in many cases the information content of the spectral data is not sufficient for an unambiguous determination of all the adjustable parameters involved in such an analysis. The present paper describes a special method to simplify the analysis significantly, so as to make seemingly underdetermined problems solvable. The method is applicable to the molecules which contain segments composed of one or more light bonds attached to a heavier bond. It is applied to the anisotropic couplings Dij of acetonitrile (CH3CN) oriented in various liquid crystals. The analysis leads to the following rα geometry: ∠HCH=109.22°±0.06°, rCH/rCC =0.751±0.002 and rCN/rCC =0.788±0.005. In addition, detailed information on (1) the indirect coupling anisotropies ΔJCC and 2ΔJCN, (2) the 1H and 13C chemical shift anisotropies, (3) the external torques acting on the CH bonds, and (4) the orientational order parameters of the CH3C segment of the acetonitrile molecule is obtained.

  4. The triel bond: a potential force for tuning anion-π interactions

    NASA Astrophysics Data System (ADS)

    Esrafili, Mehdi D.; Mousavian, Parisasadat

    2018-02-01

    Using ab-initio calculations, the mutual influence between anion-π and B···N or B···C triel bond interactions is investigated in some model complexes. The properties of these complexes are studied by molecular electrostatic potential, noncovalent interaction index, quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) analyses. According to the results, the formation of B···N or B···C triel bond interactions in the multi-component systems makes a significant shortening of anion-π distance. Such remarkable variation in the anion-π distances has not been reported previously. The strengthening of the anion-π bonding in the multi-component systems depend significantly on the nature of the anion, and it becomes larger in the order Br- > Cl- > F-. The parameters derived from the QTAIM and NBO methodologies are used to study the mechanism of the cooperativity between the anion-π and triel bond interactions in the multi-component complexes.

  5. Development of non-bonded interaction parameters between graphene and water using particle swarm optimization.

    PubMed

    Bejagam, Karteek K; Singh, Samrendra; Deshmukh, Sanket A

    2018-05-05

    New Lennard-Jones parameters have been developed to describe the interactions between atomistic model of graphene, represented by REBO potential, and five commonly used all-atom water models, namely SPC, SPC/E, SPC/Fw, SPC/Fd, and TIP3P/Fs by employing particle swarm optimization (PSO) method. These new parameters were optimized to reproduce the macroscopic contact angle of water on a graphene sheet. The calculated line tension was in the order of 10 -11 J/m for the droplets of all water models. Our molecular dynamics simulations indicate the preferential orientation of water molecules near graphene-water interface with one OH bond pointing toward the graphene surface. Detailed analysis of simulation trajectories reveals the presence of water molecules with ≤∼1, ∼2, and ∼4 hydrogen bonds at the surface of air-water interface, graphene-water interface, and bulk region of the water droplet, respectively. Presence of water molecules with ≤∼1 and ∼2 hydrogen bonds suggest the existence of water clusters of different sizes at these interfaces. The trends observed in the libration, bending, and stretching bands of the vibrational spectra are closely associated with these structural features of water. The inhomogeneity in hydrogen bond network of water at the air-water and graphene-water interface is manifested by broadening of the peaks in the libration band for water present at these interfaces. The stretching band for the molecules in water droplet shows a blue shift as compared to the pure bulk water, which conjecture the presence of weaker hydrogen bond network in a droplet. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Extension of the self-consistent-charge density-functional tight-binding method: third-order expansion of the density functional theory total energy and introduction of a modified effective coulomb interaction.

    PubMed

    Yang, Yang; Yu, Haibo; York, Darrin; Cui, Qiang; Elstner, Marcus

    2007-10-25

    The standard self-consistent-charge density-functional-tight-binding (SCC-DFTB) method (Phys. Rev. B 1998, 58, 7260) is derived by a second-order expansion of the density functional theory total energy expression, followed by an approximation of the charge density fluctuations by charge monopoles and an effective damped Coulomb interaction between the atomic net charges. The central assumptions behind this effective charge-charge interaction are the inverse relation of atomic size and chemical hardness and the use of a fixed chemical hardness parameter independent of the atomic charge state. While these approximations seem to be unproblematic for many covalently bound systems, they are quantitatively insufficient for hydrogen-bonding interactions and (anionic) molecules with localized net charges. Here, we present an extension of the SCC-DFTB method to incorporate third-order terms in the charge density fluctuations, leading to chemical hardness parameters that are dependent on the atomic charge state and a modification of the Coulomb scaling to improve the electrostatic treatment within the second-order terms. These modifications lead to a significant improvement in the description of hydrogen-bonding interactions and proton affinities of biologically relevant molecules.

  7. Nonequilibrium lattice-driven dynamics of stripes in nickelates using time-resolved x-ray scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, W. S.; Kung, Y. F.; Moritz, B.

    We investigate the lattice coupling to the spin and charge orders in the striped nickelate, La 1.75 Sr 0.25 NiO 4 , using time-resolved resonant x-ray scattering. Lattice-driven dynamics of both spin and charge orders are observed when the pump photon energy is tuned to that of an E u bond- stretching phonon. We present a likely scenario for the behavior of the spin and charge order parameters and its implications using a Ginzburg-Landau theory.

  8. Conformational Characteristics of Poly(tetrafluoroethylene) (PTFE) Based Upon Ab Initio Electronic Structure Calculations on Model Molecules

    NASA Technical Reports Server (NTRS)

    Smith, Grant D.; Jaffe, R. L.; Yoon, D. Y.; Arnold, James O. (Technical Monitor)

    1994-01-01

    Conformational energy contours of perfluoroalkanes, determined from ab initio calculations, confirm the well-known spitting of trans states into two minima at plus or minus 17 degrees but also show that the gauche states split as well, with minima at plus or minus 124 degrees and plus or minus 84 in order to relieve steric crowding. The directions of such split distortions from the perfectly staggered states are strongly coupled for adjacent pairs of bonds in a manner identical to the intradyad pair for poly (isobutylene) chains. These conformational characteristics are fully represented by a six-state rotational isomeric state (RIS) model for PTFE comprised of t(+), t(-), g(sup +)+, g(sup +)-, g(sup -) + and g(sup -)-states, located at the split energy minima. The resultant 6 x 6 statistical weight matrix is described by first-order interaction parameters for the g+(+) (ca. 0.6 kcal/mol) and g+- (ca. 2.0 kcal/mol) states, and second order parameters for the g(sup +)+g(sup +)+ (ca 0.6 kcal/mol) and g(sup +)+g(sup -)+ (ca. 1.0 kcal/mol) states. This six-state RIS model, without adjustment of the geometric or energy parameters as determined from the ab initio calculations, predicts the unperturbed chain dimensions and the fraction of gauche bonds as a function of temperature for PTFE in good agreement with available experimental values.

  9. Critical evaluation of dipolar, acid-base and charge interactions I. Electron displacement within and between molecules, liquids and semiconductors.

    PubMed

    Rosenholm, Jarl B

    2017-09-01

    Specific dipolar, acid-base and charge interactions involve electron displacements. For atoms, single bonds and molecules electron displacement is characterized by electronic potential, absolute hardness, electronegativity and electron gap. In addition, dissociation, bonding, atomization, formation, ionization, affinity and lattice enthalpies are required to quantify the electron displacement in solids. Semiconductors are characterized by valence and conduction band energies, electron gaps and average Fermi energies which in turn determine Galvani potentials of the bulk, space charge layer and surface states. Electron displacement due to interaction between (probe) molecules, liquids and solids are characterized by parameters such as Hamaker constant, solubility parameter, exchange energy density, surface tension, work of adhesion and immersion. They are determined from permittivity, refractive index, enthalpy of vaporization, molar volume, surface pressure and contact angle. Moreover, acidic and basic probes may form adducts which are adsorbed on target substrates in order to establish an indirect measure of polarity, acidity, basicity or hydrogen bonding. Acidic acceptor numbers (AN), basic donor numbers (DN), acidic and basic "electrostatic" (E) and "covalent" (C) parameters determined by enthalpy of adduct formation are considered as general acid-base scales. However, the formal grounds for assignments as dispersive, Lifshitz-van der Waals, polar, acid, base and hydrogen bond interactions are inconsistent. Although correlations are found no of the parameters are mutually fully compatible and moreover the enthalpies of acid-base interaction do not correspond to free energies. In this review the foundations of different acid-base parameters relating to electron displacement within and between (probe) molecules, liquids and (semiconducting) solids are thoroughly investigated and their mutual relationships are evaluated. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The effects of lasers on bond strength to ceramic materials: A systematic review and meta-analysis.

    PubMed

    García-Sanz, Verónica; Paredes-Gallardo, Vanessa; Mendoza-Yero, Omel; Carbonell-Leal, Miguel; Albaladejo, Alberto; Montiel-Company, José María; Bellot-Arcís, Carlos

    2018-01-01

    Lasers have recently been introduced as an alternative means of conditioning dental ceramic surfaces in order to enhance their adhesive strength to cements and other materials. The present systematic review and meta-analysis aimed to review and quantitatively analyze the available literature in order to determine which bond protocols and laser types are the most effective. A search was conducted in the Pubmed, Embase and Scopus databases for papers published up to April 2017. PRISMA guidelines for systematic review and meta-analysis were followed. Fifty-two papers were eligible for inclusion in the review. Twenty-five studies were synthesized quantitatively. Lasers were found to increase bond strength of ceramic surfaces to resin cements and composites when compared with control specimens (p-value < 0.01), whereas no significant differences were found in comparison with air-particle abraded surfaces. High variability can be observed in adhesion values between different analyses, pointing to a need to standardize study protocols and to determine the optimal parameters for each laser type.

  11. Spin-orbit interaction driven dimerization in one dimensional frustrated magnets

    NASA Astrophysics Data System (ADS)

    Zhang, Shang-Shun; Batista, Cristian D.

    Spin nematic ordering has been proposed to emerge near the saturation of field of a class of frustrated magnets. The experimental observation of this novel phase is challenging for the traditional experimental probes. Nematic spin ordering is expected to induce a local quadrupolar electric moment via the spin-orbit coupling. However, a finite spin-orbit interaction explicitly breaks the U(1) symmetry of global spin rotations down to Z2, which renders the traditional nematic order no longer well-defined. In this work we investigate the relevant effect of spin-orbit interaction on the 1D frustrated J1 -J2 model. The real and the imaginary parts of the nematic order parameter belong to different representations of the discrete symmetry group of the new Hamiltonian. We demonstrate that spin-orbit coupling stabilizes the real component and simultaneously induces bond dimerization in most of the phase diagram. Such a bond dimerization can be observed with X-rays or nuclear magnetic resonance. In addition, an incommensurate bond-density wave (ICBDW) appears for smaller values of J2 / |J1 | . The experimental fingerprint of the ICBDW is a double-horn shape of the the NMR line. These conclusions can shed light on the experimental search of this novel phase.

  12. Synthesis, spectroscopic, single crystal diffraction and potential nonlinear optical properties of novel pyrazoline derivatives: Interplay of experimental and computational analyses.

    PubMed

    Arshad, Muhammad Nadeem; Birinji, Abdulhadi Salih; Khalid, Muhammad; Asiri, Abdullah M; Al-Amry, Khalid A; Aqlan, Faisal M S; Braga, Ataualpa A C

    2018-09-05

    Pyrazoline are widely being studied due to their potential applications in chemical field. Herein, five pyrazolines compounds were synthesized and characterized spectroscopically using nuclear magnetic resonance techniques ( 1 H NMR & 13 C NMR) to determine the structures of molecules along-with UV-Visible and infrared (FT-IR) studies for additional spectroscopic support in characterization of entitle synthesized molecules. Unit cells, specific space groups, bond lengths, bond angles and hydrogen bonding interactions were determined by the x-ray diffraction studies. Further, computational study of compounds with B3LYP/6-311 + G(d,p) level were carried out to explore optimized geometry, spectroscopic data for FT-IR, frontier molecular orbitals (FMOs) and non-linear optical (NLO) parameters. While, UV-Vis spectral were performed by TD-DFT/B3LYP/6-311 + G(d,p) level. The experimental results of spectroscopic and single crystal studies were compared and found in good agreement with the computational. The global reactivity parameters have been calculated with the help of the energy of FMOs. The order for the total first and second order hyperpolarizabilities of 1-5 is found in the following orders: 1 > 4 > 3 > 5 > 2 and 1 > 4 > 5 > 2 > 3 respectively. Overall, greater NLO response than urea molecule prove that investigated molecules are excellent candidate for NLO applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. The loss of a hydrogen bond: Thermodynamic contributions of a non-standard nucleotide

    PubMed Central

    Jolley, Elizabeth A.

    2017-01-01

    Abstract Non-standard nucleotides are ubiquitous in RNA. Thermodynamic studies with RNA duplexes containing non-standard nucleotides, whether incorporated naturally or chemically, can provide insight into the stability of Watson–Crick pairs and the role of specific functional groups in stabilizing a Watson–Crick pair. For example, an A-U, inosine•U and pseudouridine•A pair each form two hydrogen bonds. However, an RNA duplex containing a central I•U pair or central Ψ•A pair is 2.4 kcal/mol less stable or 1.7 kcal/mol more stable, respectively, than the corresponding duplex containing an A-U pair. In the non-standard nucleotide purine, hydrogen replaces the exocyclic amino group of A. This replacement results in a P•U pair containing only one hydrogen bond. Optical melting studies were performed with RNA duplexes containing P•U pairs adjacent to different nearest neighbors. The resulting thermodynamic parameters were compared to RNA duplexes containing A-U pairs in order to determine the contribution of the hydrogen bond involving the exocyclic amino group. Results indicate a loss of 1.78 kcal/mol, on average, when an internal P•U replaces A-U in an RNA duplex. This value is compared to the thermodynamics of a hydrogen bond determined by similar methods. Nearest neighbor parameters were derived for use in free energy and secondary structure prediction software. PMID:28180321

  14. On the correlations between the polyhedron eccentricity parameters and the bond-valence sums for the cations with one lone electron pair.

    PubMed

    Sidey, Vasyl

    2008-08-01

    Applicability of the Wang-Liebau polyhedron eccentricity parameter in the bond-valence model [Wang & Liebau (2007). Acta Cryst. B63, 216-228] has been found to be doubtful: the correlations between the values of the polyhedron eccentricity parameters and the bond-valence sums calculated for the cations with one lone electron pair are probably an artifact of the poorly determined bond-valence parameters.

  15. Orientation and Order of the Amide Group of Sphingomyelin in Bilayers Determined by Solid-State NMR

    PubMed Central

    Matsumori, Nobuaki; Yamaguchi, Toshiyuki; Maeta, Yoshiko; Murata, Michio

    2015-01-01

    Sphingomyelin (SM) and cholesterol (Chol) are considered essential for the formation of lipid rafts; however, the types of molecular interactions involved in this process, such as intermolecular hydrogen bonding, are not well understood. Since, unlike other phospholipids, SM is characterized by the presence of an amide group, it is essential to determine the orientation of the amide and its order in the lipid bilayers to understand the nature of the hydrogen bonds in lipid rafts. For this study, 1′-13C-2-15N-labeled and 2′-13C-2-15N-labeled SMs were prepared, and the rotational-axis direction and order parameters of the SM amide in bilayers were determined based on 13C and 15N chemical-shift anisotropies and intramolecular 13C-15N dipole coupling constants. Results revealed that the amide orientation was minimally affected by Chol, whereas the order was enhanced significantly in its presence. Thus, Chol likely promotes the formation of an intermolecular hydrogen-bond network involving the SM amide without significantly changing its orientation, providing a higher order to the SM amide. To our knowledge, this study offers new insight into the significance of the SM amide orientation with regard to molecular recognition in lipid rafts, and therefore provides a deeper understanding of the mechanism of their formation. PMID:26083921

  16. On the consistency of QCBED structure factor measurements for TiO 2 (Rutile)

    DOE PAGES

    Jiang, Bin; Zuo, Jian -Min; Friis, Jesper; ...

    2003-09-16

    The same Bragg reflection in TiO 2 from twelve different CBED patterns (from different crystals, orientations and thicknesses) are analysed quantitatively in order to evaluate the consistency of the QCBED method for bond-charge mapping. The standard deviation in the resulting distribution of derived X-ray structure factors is found to be an order of magnitude smaller than that in conventional X-ray work, and the standard error (0.026% for F X(110)) is slightly better than obtained by the X-ray Pendellosung method applied to silicon. This is sufficiently accuracy to distinguish between atomic, covalent and ionic models of bonding. We describe the importancemore » of extracting experimental parameters from CCD camera characterization, and of surface oxidation and crystal shape. Thus, the current experiments show that the QCBED method is now a robust and powerful tool for low order structure factor measurement, which does not suffer from the large extinction (multiple scattering) errors which occur in inorganic X-ray crystallography, and may be applied to nanocrystals. Our results will be used to understand the role of d electrons in the chemical bonding of TiO 2.« less

  17. Characterization of hot bonding of bi-metal C45/25CrMo4 by plane strain compression test

    NASA Astrophysics Data System (ADS)

    Enaim, Mohammed; Langlois, Laurent; Zimmer-Chevret, Sandra; Bigot, Régis; Krumpipe, Pierre

    2018-05-01

    The need to produce multifunctional parts in order to conform to complex specifications becomes crucial in today's industrial context. This is why new processes are under study to develop multi-material parts which can satisfy this kind of requirements. This paper investigates the possibility of producing hot bonding of bi-metal C45/25CrMo4 parts by forging. This manufacturing process is a solid state joining process that involves, simultaneously, the welding and shaping of multi-material part. In this study, the C45/25CrMo4 bimetal was investigated. The forging is conducted at 1100°C and the influence of reduction rate on microstructure and bonding was investigated. The bonding model is inspired from Bay's model. Following this model, two parameters govern the solid-state bonding at the interface between materials: normal contact pressure and surface expansion. The objective is to check the bonding quality under different pressure and surface expansion. To achieve this goal, the plane strain compression test is chosen as the characterization test. Finally, simulations and experiments of this test are compared.

  18. Self-assembled block copolymer-nanoparticle hybrids: interplay between enthalpy and entropy.

    PubMed

    Sarkar, Biswajit; Alexandridis, Paschalis

    2012-11-13

    The dispersion of nanoparticles in ordered block copolymer nanostructures can provide control over particle location and orientation, and pave the way for engineered nanomaterials that have enhanced mechanical, electrical, or optical properties. Fundamental questions pertaining to the role of enthalpic and entropic particle-polymer interactions remain open and motivate the present work. We consider here a system of 10.6 nm silica nanoparticles (NPs) dispersed in ordered cylinders formed by hydrated poly(ethylene oxide)-poly(propylene oxide) block copolymers (Pluronic P105: EO(37)PO(56)EO(37)). Protonation of silica was used to vary the NP-polymer enthalpic interactions, while polar organic solvents (glycerol, DMSO, ethanol, and DMF) were used to modulate the NP-polymer entropic interactions. The introduction of deprotonated NPs in the place of an equal mass of water did not affect the lattice parameter of the PEO-PPO-PEO block copolymer hexagonal lyotropic liquid crystalline structures. However, the dispersion of protonated NPs led to an increase in the lattice parameter, which was attributed to stronger NP-polymer hydrogen bonding (enthalpic) interactions. Dispersion of protonated NPs into cylindrical structures formed by Pluronic P105 in 80/20 water/organic solvents does not influence the lattice parameter, different from the case of protonated NP in plain water. Organic solvents appear to screen the NP-polymer hydrogen bonding interactions.

  19. Nonequilibrium lattice-driven dynamics of stripes in nickelates using time-resolved x-ray scattering

    DOE PAGES

    Lee, W. S.; Kung, Y. F.; Moritz, B.; ...

    2017-03-13

    Here, we investigate the lattice coupling to the spin and charge orders in the striped nickelate, La 1.75 Sr 0.25 NiO 4, using time-resolved resonant x-ray scattering. Lattice-driven dynamics of both spin and charge orders are observed when the pump photon energy is tuned to that of an E u bond- stretching phonon. We present a likely scenario for the behavior of the spin and charge order parameters and its implications using a Ginzburg-Landau theory.

  20. Nonequilibrium lattice-driven dynamics of stripes in nickelates using time-resolved x-ray scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, W. S.; Kung, Y. F.; Moritz, B.

    Here, we investigate the lattice coupling to the spin and charge orders in the striped nickelate, La 1.75 Sr 0.25 NiO 4, using time-resolved resonant x-ray scattering. Lattice-driven dynamics of both spin and charge orders are observed when the pump photon energy is tuned to that of an E u bond- stretching phonon. We present a likely scenario for the behavior of the spin and charge order parameters and its implications using a Ginzburg-Landau theory.

  1. Structure determination from XAFS using high-accuracy measurements of x-ray mass attenuation coefficients of silver, 11 keV-28 keV, and development of an all-energies approach to local dynamical analysis of bond length, revealing variation of effective thermal contributions across the XAFS spectrum.

    PubMed

    Tantau, L J; Chantler, C T; Bourke, J D; Islam, M T; Payne, A T; Rae, N A; Tran, C Q

    2015-07-08

    We use the x-ray extended range technique (XERT) to experimentally determine the mass attenuation coefficient of silver in the x-ray energy range 11 kev-28 kev including the silver K absorption edge. The results are accurate to better than 0.1%, permitting critical tests of atomic and solid state theory. This is one of the most accurate demonstrations of cross-platform accuracy in synchrotron studies thus far. We derive the mass absorption coefficients and the imaginary component of the form factor over this range. We apply conventional XAFS analytic techniques, extended to include error propagation and uncertainty, yielding bond lengths accurate to approximately 0.24% and thermal Debye-Waller parameters accurate to 30%. We then introduce the FDMX technique for accurate analysis of such data across the full XAFS spectrum, built on full-potential theory, yielding a bond length accuracy of order 0.1% and the demonstration that a single Debye parameter is inadequate and inconsistent across the XAFS range. Two effective Debye-Waller parameters are determined: a high-energy value based on the highly-correlated motion of bonded atoms (σ(DW) = 0.1413(21) Å), and an uncorrelated bulk value (σ(DW) = 0.1766(9) Å) in good agreement with that derived from (room-temperature) crystallography.

  2. A cobalt (II) complex with 6-methylpicolinate: Synthesis, characterization, second- and third-order nonlinear optical properties, and DFT calculations

    NASA Astrophysics Data System (ADS)

    Altürk, Sümeyye; Avcı, Davut; Tamer, Ömer; Atalay, Yusuf; Şahin, Onur

    2016-11-01

    A cobalt(II) complex of 6-methylpicolinic acid, [Co(6-Mepic)2(H2O)2]·2H2O, was prepared and fully determined by single crystal X-ray crystal structure analysis as well as FT-IR, FT-Raman. UV-vis spectra were recorded within different solvents, to illustrate electronic transitions and molecular charge transfer within complex 1. The coordination sphere of complex 1 is a distorted octahedron according to single crystal X-ray results. Moreover, DFT (density functional theory) calculations with HSEH1PBE/6-311 G(d,p) level were carried out to back up the experimental results, and form base for future work in advanced level. Hyperconjugative interactions, intramolecular charge transfer (ICT), molecular stability and bond strength were researched by the using natural bond orbital (NBO) analysis. X-ray and NBO analysis results demonsrate that O-H···O hydrogen bonds between the water molecules and carboxylate oxygen atoms form a 2D supramolecular network, and also adjacent 2D networks connected by C-H···π and π···π interactions to form a 3D supramolecular network. Additionally, the second- and third-order nonlinear optical parameters of complex 1 were computed at DFT/HSEH1PBE/6-311 G(d,p) level. The refractive index (n) was calculated by using the Lorentz-Lorenz equation in order to investigate polarization behavior of complex 1 in different solvent polarities. The first-order static hyperpolarizability (β) value is found to be lower than pNA value because of the inversion symmetry around Co (II). But the second-order static hyperpolarizability (γ) value is 2.45 times greater than pNA value (15×10-30 esu). According to these results, Co(II) complex can be considered as a candidate to NLO material. Lastly molecular electrostatic potential (MEP), frontier molecular orbital energies and related molecular parameters for complex 1 were evaluated.

  3. Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen

    PubMed Central

    Gagné, Olivier Charles; Hawthorne, Frank Christopher

    2015-01-01

    Published two-body bond-valence parameters for cation–oxygen bonds have been evaluated via the root mean-square deviation (RMSD) from the valence-sum rule for 128 cations, using 180 194 filtered bond lengths from 31 489 coordination polyhedra. Values of the RMSD range from 0.033–2.451 v.u. (1.1–40.9% per unit of charge) with a weighted mean of 0.174 v.u. (7.34% per unit of charge). The set of best published parameters has been determined for 128 ions and used as a benchmark for the determination of new bond-valence parameters in this paper. Two common methods for the derivation of bond-valence parameters have been evaluated: (1) fixing B and solving for R o; (2) the graphical method. On a subset of 90 ions observed in more than one coordination, fixing B at 0.37 Å leads to a mean weighted-RMSD of 0.139 v.u. (6.7% per unit of charge), while graphical derivation gives 0.161 v.u. (8.0% per unit of charge). The advantages and disadvantages of these (and other) methods of derivation have been considered, leading to the conclusion that current methods of derivation of bond-valence parameters are not satisfactory. A new method of derivation is introduced, the GRG (generalized reduced gradient) method, which leads to a mean weighted-RMSD of 0.128 v.u. (6.1% per unit of charge) over the same sample of 90 multiple-coordination ions. The evaluation of 19 two-parameter equations and 7 three-parameter equations to model the bond-valence–bond-length relation indicates that: (1) many equations can adequately describe the relation; (2) a plateau has been reached in the fit for two-parameter equations; (3) the equation of Brown & Altermatt (1985 ▸) is sufficiently good that use of any of the other equations tested is not warranted. Improved bond-valence parameters have been derived for 135 ions for the equation of Brown & Altermatt (1985 ▸) in terms of both the cation and anion bond-valence sums using the GRG method and our complete data set. PMID:26428406

  4. Wrinkling of a thin circular sheet bonded to a spherical substrate

    PubMed Central

    Kohn, Robert V.

    2017-01-01

    We consider a disc-shaped thin elastic sheet bonded to a compliant sphere. (Our sheet can slip along the sphere; the bonding controls only its normal displacement.) If the bonding is stiff (but not too stiff), the geometry of the sphere makes the sheet wrinkle to avoid azimuthal compression. The total energy of this system is the elastic energy of the sheet plus a (Winkler-type) substrate energy. Treating the thickness of the sheet h as a small parameter, we determine the leading-order behaviour of the energy as h tends to zero, and we give (almost matching) upper and lower bounds for the next-order correction. Our analysis of the leading-order behaviour determines the macroscopic deformation of the sheet; in particular, it determines the extent of the wrinkled region, and predicts the (non-trivial) radial strain of the sheet. The leading-order behaviour also provides insight about the length scale of the wrinkling, showing that it must be approximately independent of the distance r from the centre of the sheet (so that the number of wrinkles must increase with r). Our results on the next-order correction provide insight about how the wrinkling pattern should vary with r. Roughly speaking, they suggest that the length scale of wrinkling should not be exactly constant—rather, it should vary slightly, so that the number of wrinkles at radius r can be approximately piecewise constant in its dependence on r, taking values that are integer multiples of h−a with . This article is part of the themed issue ‘Patterning through instabilities in complex media: theory and applications’. PMID:28373380

  5. Theoretical modeling of infrared spectra of the hydrogen and deuterium bond in aspirin crystal

    NASA Astrophysics Data System (ADS)

    Ghalla, Houcine; Rekik, Najeh; Michta, Anna; Oujia, Brahim; Flakus, Henryk T.

    2010-01-01

    An extended quantum theoretical approach of the ν IR lineshape of cyclic dimers of weakly H-bonded species is proposed. We have extended a previous approach [M.E.-A. Benmalti, P. Blaise, H.T. Flakus, O. Henri-Rousseau, Chem. Phys. 320 (2006) 267] by accounting for the anharmonicity of the slow mode which is described by a "Morse" potential in order to reproduce the polarized infrared spectra of the hydrogen and deuterium bond in acetylsalicylic acid (aspirin) crystals. From comparison of polarized IR spectra of isotopically neat and isotopically diluted aspirin crystals it resulted that centrosymmetric aspirin dimer was the bearer of the crystal main spectral properties. In this approach, the adiabatic approximation is performed for each separate H-bond bridge of the dimer and a strong non-adiabatic correction is introduced into the model via the resonant exchange between the fast mode excited states of the two moieties. Within the strong anharmonic coupling theory, according to which the X-H→⋯Y high-frequency mode is anharmonically coupled to the H-bond bridge, this model incorporated the Davydov coupling between the excited states of the two moieties, the quantum direct and indirect dampings and the anharmonicity for the H-bond bridge. The spectral density is obtained within the linear response theory by Fourier transform of the damped autocorrelation functions. The evaluated spectra are in fairly good agreement with the experimental ones by using a minimum number of independent parameters. The effect of deuteration has been well reproduced by reducing simply the angular frequency of the fast mode and the anharmonic coupling parameter.

  6. Parametrization of the contribution of mono- and bidentate ligands on the symmetric C[triple bond]O stretching frequency of fac-[Re(CO)(3)](+) complexes.

    PubMed

    Zobi, Fabio

    2009-11-16

    A ligand parameter, IR(P)(L), is introduced in order to evaluate the effect that different monodentate and bidentate ligands have on the symmetric C[triple bond]O stretching frequency of octahedral d(6) fac-[Re(CO)(3)L(3)] complexes (L = mono- or bidentate ligand). The parameter is empirically derived by assuming that the electronic effect, or contribution, that any given ligand L will add to the fac-[ReCO(3)](+) core, in terms of the total observed energy of symmetric C[triple bond]O stretching frequency (nu(CO(obs))), is additive. The IR(P)(CO) (i.e., the IR(P) of carbon monoxide) is first defined as one-sixth that of the observed C[triple bond]O frequency (nu(CO(obs))) of [Re(CO)(6)](+). All subsequent IR(P)(L) parameters of fac-[Re(CO)(3)L(3)] complexes are derived from IR(P)(L) = (1)/(3)[nu(CO(obs)) - 3IR(P)(CO)]. The symmetric C[triple bond]O stretching frequency was selected for analysis by assuming that it alone describes the "average electronic environment" in the IR spectra of the complexes. The IR(P)(L) values for over 150 ligands are listed, and the validity of the model is tested against other octahedral d(6) fac-[M(CO)(3)L(3)] complexes (M = Mn, (99)Tc, and Ru) and cis-[Re(CO)(2)L(4)](+) species and by calculations at the density functional level of theory. The predicted symmetric C[triple bond]O stretching frequency (nu(CO(cal))) is given by nu(CO(cal)) = S(R)[ sum IR(P)(L)] + I(R), where S(R) and I(R) are constants that depend upon the metal, its oxidation state, and the number of CO ligands in its primary coordination sphere. A linear relationship between IR(P) values and the well-established ligand electrochemical parameter E(L) is found. From a purely thermodynamic point of view, it is suggested that ligands with high IR(P)(L) values should weaken the M-CO bond to a greater extent than ligands with low IR(P)(L) values. The significance of the results and the limitations of the model are discussed.

  7. The effects of lasers on bond strength to ceramic materials: A systematic review and meta-analysis

    PubMed Central

    García-Sanz, Verónica; Mendoza-Yero, Omel; Carbonell-Leal, Miguel; Albaladejo, Alberto; Montiel-Company, José María; Bellot-Arcís, Carlos

    2018-01-01

    Lasers have recently been introduced as an alternative means of conditioning dental ceramic surfaces in order to enhance their adhesive strength to cements and other materials. The present systematic review and meta-analysis aimed to review and quantitatively analyze the available literature in order to determine which bond protocols and laser types are the most effective. A search was conducted in the Pubmed, Embase and Scopus databases for papers published up to April 2017. PRISMA guidelines for systematic review and meta-analysis were followed. Fifty-two papers were eligible for inclusion in the review. Twenty-five studies were synthesized quantitatively. Lasers were found to increase bond strength of ceramic surfaces to resin cements and composites when compared with control specimens (p-value < 0.01), whereas no significant differences were found in comparison with air-particle abraded surfaces. High variability can be observed in adhesion values between different analyses, pointing to a need to standardize study protocols and to determine the optimal parameters for each laser type. PMID:29293633

  8. NASA Astrophysics Data System (ADS)

    Knight, Kevin S.; Marshall, William G.; Hawkins, Philip M.

    2014-06-01

    The fluoroperovskite phase RbCaF3 has been investigated using high-pressure neutron powder diffraction in the pressure range ~0-7.9 GPa at room temperature. It has been found to undergo a first-order high-pressure structural phase transition at ~2.8 GPa from the cubic aristotype phase to a hettotype phase in the tetragonal space group I4/ mcm. This transition, which also occurs at ~200 K at ambient pressure, is characterised by a linear phase boundary and a Clapeyron slope of 2.96 × 10-5 GPa K-1, which is in excellent agreement with earlier, low-pressure EPR investigations. The bulk modulus of the high-pressure phase (49.1 GPa) is very close to that determined for the low-pressure phase (50.0 GPa), and both are comparable with those determined for the aristotype phases of CsCdF3, TlCdF3, RbCdF3, and KCaF3. The evolution of the order parameter with pressure is consistent with recent modifications to Landau theory and, in conjunction with polynomial approximations to the pressure dependence of the lattice parameters, permits the pressure variation of the bond lengths and angles to be predicted. On entering the high-pressure phase, the Rb-F bond lengths decrease from their extrapolated values based on a third-order Birch-Murnaghan fit to the aristotype equation of state. By contrast, the Ca-F bond lengths behave atypically by exhibiting an increase from their extrapolated magnitudes, resulting in the volume and the effective bulk modulus of the CaF6 octahedron being larger than the cubic phase. The bulk moduli for the two component polyhedra in the tetragonal phase are comparable with those determined for the constituent binary fluorides, RbF and CaF2.

  9. Overcoming the sign problem at finite temperature: Quantum tensor network for the orbital eg model on an infinite square lattice

    NASA Astrophysics Data System (ADS)

    Czarnik, Piotr; Dziarmaga, Jacek; Oleś, Andrzej M.

    2017-07-01

    The variational tensor network renormalization approach to two-dimensional (2D) quantum systems at finite temperature is applied to a model suffering the notorious quantum Monte Carlo sign problem—the orbital eg model with spatially highly anisotropic orbital interactions. Coarse graining of the tensor network along the inverse temperature β yields a numerically tractable 2D tensor network representing the Gibbs state. Its bond dimension D —limiting the amount of entanglement—is a natural refinement parameter. Increasing D we obtain a converged order parameter and its linear susceptibility close to the critical point. They confirm the existence of finite order parameter below the critical temperature Tc, provide a numerically exact estimate of Tc, and give the critical exponents within 1 % of the 2D Ising universality class.

  10. Effect of processing parameters on reaction bonding of silicon nitride

    NASA Technical Reports Server (NTRS)

    Richman, M. H.; Gregory, O. J.; Magida, M. B.

    1980-01-01

    Reaction bonded silicon nitride was developed. The relationship between the various processing parameters and the resulting microstructures was to design and synthesize reaction bonded materials with improved room temperature mechanical properties.

  11. A molecular scale perspective: Monte Carlo simulation for rupturing of ultra thin polymer film melts

    NASA Astrophysics Data System (ADS)

    Singh, Satya Pal

    2017-04-01

    Monte Carlo simulation has been performed to study the rupturing process of thin polymer film under strong confinement. The change in mean square displacement; pair correlation function; density distribution; average bond length and microscopic viscosity are sampled by varying the molecular interaction parameters such as the strength and the equilibrium positions of the bonding, non-bonding potentials and the sizes of the beads. The variation in mean square angular displacement χθ = [ < Δθ2 > - < Δθ>2 ] fits very well to a function of type y (t) = A + B *e-t/τ. This may help to study the viscous properties of the films and its dependence on different parameters. The ultra thin film annealed at high temperature gets ruptured and holes are created in the film mimicking spinodal dewetting. The pair correlation function and density profile reveal rich information about the equilibrium structure of the film. The strength and equilibrium bond length of finite extensible non-linear elastic potential (FENE) and non-bonding Morse potential have clear impact on microscopic rupturing of the film. The beads show Rouse or repetition motion forming rim like structures near the holes created inside the film. The higher order interaction as dipole-quadrupole may get prominence under strong confinement. The enhanced excluded volume interaction under strong confinement may overlap with the molecular dispersion forces. It can work to reorganize the molecules at the bottom of the scale and can imprint its signature in complex patterns evolved.

  12. Synthesis, spectroscopic investigation and computational study of 3-(1-(((methoxycarbonyl)oxy)imino)ethyl)-2H-chromen-2-one

    NASA Astrophysics Data System (ADS)

    Gokula Krishnan, K.; Sivakumar, R.; Thanikachalam, V.; Saleem, H.; Arockia doss, M.

    2015-06-01

    The molecular structure and vibrational modes of 3-acetylcoumarin oxime carbonate (abbreviated as 3-ACOC) have been investigated by FT-IR, FT-Raman, NMR spectra and also by computational methods using HF and B3LYP with 6-311++G(d,p) basis set. The optimized geometric parameters (bond lengths, bond angles and dihedral angles) were in good agreement with the corresponding experimental values of 3-ACOC. The calculated vibrational frequencies of normal modes from DFT method matched well with the experimental values. The complete assignments were made on the basis of the total energy distribution (TED) of the vibrational modes. NMR (1H and 13C) chemical shifts were calculated by GIAO method and the results were compared with the experimental values. The other parameters like dipole moment, polarizability, first order hyperpolarizability, zero-point vibrational energy, EHOMO, ELUMO, heat capacity and entropy have also been computed.

  13. A multivariate relationship for the impact sensitivities of energetic N-nitrocompounds based on bond dissociation energy.

    PubMed

    Li, Jinshan

    2010-02-15

    The ZPE-corrected N-NO(2) bond dissociation energies (BDEs(ZPE)) of a series of model N-nitrocompounds and typical energetic N-nitrocompounds have been calculated using density functional theory methods. Computed results show that using the 6-31G** basis set the UB3LYP calculated BDE(ZPE) is similar to the B3PW91 but is less than the UB3P86 and that for both UB3P86 and UB3PW91 methods the 6-31G(**) calculated BDE(ZPE) is close to the 6-31++G(**). For the series of model N-nitrocompounds it is drawn from the NBO analysis that at the UB3LYP/6-31G(**) level the order of BDE(ZPE) is not only in line with that of bond order but also with that of the energy gap between N-NO(2) bond and antibond orbitals. For the typical energetic N-nitrocompounds the impact sensitivity is strongly related to the BDE(ZPE) indeed, and based on the BDEs(ZPE) calculated at different density functional theory levels this work has established a good multivariate correlation of impact sensitivity with molecular parameters, which provides a method to address the sensitivity problem.

  14. Mechanism of alpha-amino acids decomposition in the gas phase. experimental and theoretical study of the elimination kinetics of N-benzyl glycine ethyl ester.

    PubMed

    Tosta, Maria; Oliveros, Jhenny C; Mora, Jose R; Córdova, Tania; Chuchani, Gabriel

    2010-02-25

    The gas-phase elimination kinetics of N-benzylglycine ethyl ester was examined in a static system, seasoned with allyl bromide, and in the presence of the free chain radical suppressor toluene. The working temperature and pressure range were 386.4-426.7 degrees C and 16.7-40.0 torr, respectively. The reaction showed to be homogeneous, unimolecular, and obeys a first-order rate law. The elimination products are benzylglycine and ethylene. However, the intermediate benzylglycine is unstable under the reaction conditions decomposing into benzyl methylamine and CO(2) gas. The variation of the rate coefficients with temperature is expressed by the following Arrhenius equation: log k(1) (s(-1)) = (11.83 +/- 0.52) - (190.3 +/- 6.9) kJ mol(-1) (2.303RT)(-1). The theoretical calculation of the kinetic parameters and mechanism of elimination of this ester were performed at B3LYP/6-31G*, B3LYP/6-31+G**, MPW1PW91/6-31G*, and MPW1PW91/6-31+G** levels of theory. The calculation results suggest a molecular mechanism of a concerted nonsynchronous six-membered cyclic transition state process. The analysis of bond order and natural bond orbital charges implies that the bond polarization of C(=O)O-C, in the sense of C(=O)O(delta-)...C(delta+), is rate determining. The experimental and theoretical parameters have been found to be in reasonable agreement.

  15. Ab Initio Calculations of the N-N Bond Dissociation for the Gas-phase RDX and HMX.

    PubMed

    Liu, Lin-Lin; Liu, Pei-Jin; Hu, Song-Qi; He, Guo-Qiang

    2017-01-17

    NO 2 fission is a vital factor for 1,3,5-Trinitroperhydro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) decomposition. In this study, the geometry of the gas-phase RDX and HMX molecules was optimized, and the bond order and the bond dissociation energy of the N-N bonds were examined. Moreover, the rate constants of the gas-phase RDX and HMX conformers, concerning the N-N bond dissociation, were evaluated using the microcanonical variational transition state theory (μVT). The calculation results have shown that HMX is more stable than RDX in terms of the N-N bond dissociation, and the conformers stability parameters were as follows: RDXaaa < RDXaae < HMX I < HMX II. In addition, for the RDX conformers, the N-N bond of the pseudo-equatorial positioning of the nitro group was more stable than the N-N bond of the axial positioning of the nitro group, while the results were opposite in the case of the HMX conformers. Moreover, it has been shown that the dissociation rate constant of the N-N bond is influenced by the temperature significantly, thus the rate constants were much lower (<10 -10  s -1 ) when the temperature was less than 1000 K.

  16. Ab Initio Calculations of the N-N Bond Dissociation for the Gas-phase RDX and HMX

    PubMed Central

    Liu, Lin-lin; Liu, Pei-jin; Hu, Song-qi; He, Guo-qiang

    2017-01-01

    NO2 fission is a vital factor for 1,3,5-Trinitroperhydro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) decomposition. In this study, the geometry of the gas-phase RDX and HMX molecules was optimized, and the bond order and the bond dissociation energy of the N-N bonds were examined. Moreover, the rate constants of the gas-phase RDX and HMX conformers, concerning the N-N bond dissociation, were evaluated using the microcanonical variational transition state theory (μVT). The calculation results have shown that HMX is more stable than RDX in terms of the N-N bond dissociation, and the conformers stability parameters were as follows: RDXaaa < RDXaae < HMX I < HMX II. In addition, for the RDX conformers, the N-N bond of the pseudo-equatorial positioning of the nitro group was more stable than the N-N bond of the axial positioning of the nitro group, while the results were opposite in the case of the HMX conformers. Moreover, it has been shown that the dissociation rate constant of the N-N bond is influenced by the temperature significantly, thus the rate constants were much lower (<10−10 s−1) when the temperature was less than 1000 K. PMID:28094774

  17. Ab Initio Calculations of the N-N Bond Dissociation for the Gas-phase RDX and HMX

    NASA Astrophysics Data System (ADS)

    Liu, Lin-Lin; Liu, Pei-Jin; Hu, Song-Qi; He, Guo-Qiang

    2017-01-01

    NO2 fission is a vital factor for 1,3,5-Trinitroperhydro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) decomposition. In this study, the geometry of the gas-phase RDX and HMX molecules was optimized, and the bond order and the bond dissociation energy of the N-N bonds were examined. Moreover, the rate constants of the gas-phase RDX and HMX conformers, concerning the N-N bond dissociation, were evaluated using the microcanonical variational transition state theory (μVT). The calculation results have shown that HMX is more stable than RDX in terms of the N-N bond dissociation, and the conformers stability parameters were as follows: RDXaaa < RDXaae < HMX I < HMX II. In addition, for the RDX conformers, the N-N bond of the pseudo-equatorial positioning of the nitro group was more stable than the N-N bond of the axial positioning of the nitro group, while the results were opposite in the case of the HMX conformers. Moreover, it has been shown that the dissociation rate constant of the N-N bond is influenced by the temperature significantly, thus the rate constants were much lower (<10-10 s-1) when the temperature was less than 1000 K.

  18. Granule-by-granule reconstruction of a sandpile from x-ray microtomography data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seidler, G. T.; Martinez, G.; Seeley, L. H.

    2000-12-01

    Mesoscale disordered materials are ubiquitous in industry and in the environment. Any fundamental understanding of the transport and mechanical properties of such materials must follow from a thorough understanding of their structure. However, in the overwhelming majority of cases, experimental characterization of such materials has been limited to first- and second-order structural correlation functions, i.e., the mean filling fraction and the structural autocorrelation function. We report here the successful combination of synchrotron x-ray microtomography and image processing to determine the full three-dimensional real-space structure of a model disordered material, a granular bed of relatively monodisperse glass spheres. Specifically, we determinemore » the center location and the local connectivity of each granule. This complete knowledge of structure can be used to calculate otherwise inaccessible high-order correlation functions. We analyze nematic order parameters for contact bonds to characterize the geometric anisotropy or fabric induced by the sample boundary conditions. Away from the boundaries we find short-range bond orientational order exhibiting characteristics of the underlying polytetrahedral structure.« less

  19. Knowing the Odds: Parameters that Predict Passing or Failing School District Bonds

    ERIC Educational Resources Information Center

    Bowers, Alex J.; Metzger, Scott Alan; Militello, Matthew

    2010-01-01

    This study investigates parameters affecting the likelihood of passing school facility construction bonds by local district election. Using statewide data from Michigan, this study analyzes school bond data for urban (n = 30), suburban (n = 164), small town (n = 70), and rural (n = 241) school districts that held capital improvement bond elections…

  20. Crystal structure of a new alpha-cyclodextrin hydrate form. Molecular geometry and packing features: disordered solvent contribution.

    PubMed

    Puliti, R; Mattia, C A; Paduano, L

    1998-08-01

    The crystallographic study of a new hydrated form of alpha-cyclodextrin (cyclohexaamylose) is reported. C36H60O30 . 11H2O; space group P2(1)2(1)2(1) with cell constants a = 13.839(3), b = 15.398(3), c = 24.209(7) A; final discrepancy index R = 0.057 for the 5182 observed reflections and 632 refined parameters. Besides four ordered water molecules placed outside alpha-cyclodextrins, the structure shows regions of severely disordered solvent mainly confined in the oligosaccharide cavities. The contribution of the observed disorder has been computed via Fourier inversions of the residual electron density and incorporated into the structure factors in further refinements of the ordered part. The alpha-cyclodextrin molecule assumes a relaxed round shape stabilised by a ring sequence of all the six possible O2 ... O3 intramolecular hydrogen bonds. The four ordered water molecules take part in an extensive network of hydrogen bonds (infinite chains and loops) without modifying the scheme of intramolecular H-bonds or the (-)gauche conformation of O-6-H hydroxyl groups. The structure shows a new molecular arrangement, for an "empty" hydrated alpha-cyclodextrin, like that "brick-type" observed for alpha-CD in the iodoanilide trihydrate complex crystallising in an isomorphous cell.

  1. Collapsed tetragonal phase as a strongly covalent and fully nonmagnetic state: Persistent magnetism with interlayer As-As bond formation in Rh-doped Ca0 .8Sr0 .2Fe2As2

    NASA Astrophysics Data System (ADS)

    Zhao, K.; Glasbrenner, J. K.; Gretarsson, H.; Schmitz, D.; Bednarcik, J.; Etter, M.; Sun, J. P.; Manna, R. S.; Al-Zein, A.; Lafuerza, S.; Scherer, W.; Cheng, J. G.; Gegenwart, P.

    2018-02-01

    A well-known feature of the CaFe2As2 -based superconductors is the pressure-induced collapsed tetragonal phase that is commonly ascribed to the formation of an interlayer As-As bond. Using detailed x-ray scattering and spectroscopy, we find that Rh-doped Ca0.8Sr0.2Fe2As2 does not undergo a first-order phase transition and that local Fe moments persist despite the formation of interlayer As-As bonds. Our density functional theory calculations reveal that the Fe-As bond geometry is critical for stabilizing magnetism and the pressure-induced drop in the c lattice parameter observed in pure CaFe2As2 is mostly due to a constriction within the FeAs planes. The collapsed tetragonal phase emerges when covalent bonding of strongly hybridized Fe 3 d and As 4 p states completely wins out over their exchange splitting. Thus the collapsed tetragonal phase is properly understood as a strong covalent phase that is fully nonmagnetic with the As-As bond forming as a by-product.

  2. Fluorescent and colorimetric molecular recognition probe for hydrogen bond acceptors.

    PubMed

    Pike, Sarah J; Hunter, Christopher A

    2017-11-22

    The association constants for formation of 1 : 1 complexes between a H-bond donor, 1-naphthol, and a diverse range of charged and neutral H-bond acceptors have been measured using UV/vis absorption and fluorescence emission titrations. The performance of 1-naphthol as a dual colorimetric and fluorescent molecular recognition probe for determining the H-bond acceptor (HBA) parameters of charged and neutral solutes has been investigated in three solvents. The data were employed to establish self-consistent H-bond acceptor parameters (β) for benzoate, azide, chloride, thiocyanate anions, a series of phosphine oxides, phosphate ester, sulfoxide and a tertiary amide. The results demonstrate both the transferability of H-bond parameters between different solvents and the utility of the naphthol-based dual molecular recognition probe to exploit orthogonal spectroscopic techniques to determine the HBA properties of neutral and charged solutes. The benzoate anion is the strongest HBA studied with a β parameter of 15.4, and the neutral tertiary amide is the weakest H-bond acceptor investigated with a β parameter of 8.5. The H-bond acceptor strength of the azide anion is higher than that of chloride (12.8 and 12.2 respectively), and the thiocyanate anion has a β value of 10.8 and thus is a significantly weaker H-bond acceptor than both the azide and chloride anions.

  3. Crystal water dynamics of guanosine dihydrate: analysis of atomic displacement parameters, time profile of hydrogen-bonding probability, and translocation of water by MD simulation.

    PubMed

    Yoneda, Shigetaka; Sugawara, Yoko; Urabe, Hisako

    2005-01-27

    The dynamics of crystal water molecules of guanosine dihydrate are investigated in detail by molecular dynamics (MD) simulation. A 2 ns simulation is performed using a periodic boundary box composed of 4 x 5 x 8 crystallographic unit cells and using the particle-mesh Ewald method for calculation of electrostatic energy. The simulated average atomic positions and atomic displacement parameters are remarkably coincident with the experimental values determined by X-ray analysis, confirming the high accuracy of this simulation. The dynamics of crystal water are analyzed in terms of atomic displacement parameters, orientation vectors, order parameters, self-correlation functions of the orientation vectors, time profiles of hydrogen-bonding probability, and translocations. The simulation clarifies that the average structure is composed of various stable and transient structures of the molecules. The simulated guanosine crystal forms a layered structure, with four water sites per asymmetric unit, classified as either interlayer water or intralayer water. From a detailed analysis of the translocations of water molecules in the simulation, columns of intralayer water molecules along the c axis appear to represent a pathway for hydration and dehydration by a kind of molecular valve mechanism.

  4. Structural properties of hydration shell around various conformations of simple polypeptides.

    PubMed

    Czapiewski, Dariusz; Zielkiewicz, Jan

    2010-04-08

    In this paper we investigate structural properties of water within the solvation shell around the peptide core created by a well-defined conformation of polypeptide chain. The following secondary structures are investigated: linear (straight chain), and three helices PII (polyproline-like), 3(10), and alpha. We propose using the two-particle contribution to entropy as a rational measure of the water structural ordering within the solvation layer. This contribution divides into two terms, depending on the peptide-water and water-water interactions, respectively, and in this paper both terms are investigated. The structure of "solvation" water is described by the second term, and therefore it mainly attracts our attention. Determination of this term, however, is not an easy task, requiring some controversial approximations. Therefore, we have transformed this term to the form of some rational parameter which measures the local structural ordering of water within the solvation shell. Moreover, the results of several independent investigations are reported: we adopt the harmonic approximation for an independent estimation of the water entropy within the solvation shell, and we also study structure of the water-water hydrogen bond network, mean geometry of a single hydrogen bond, the self-diffusion coefficients (both translational and rotational) of water, and the mean lifetimes of water-water and water-peptide hydrogen bonds. All the obtained results lead to the conclusion that the local structure of water within the solvation shell changes only slightly in comparison to the bulk one. If so, the measure of local water ordering proposed by us is exploited with the aim to gain the deeper insight on the structural properties of "solvation" water. It has been shown that this parameter can be factored into three terms, which measure translational, configurational, and orientational ordering, respectively. Using this factoring, the ordering map for a precise description of the water local ordering has been built. An interesting correlation is observed: the points on this map lie approximately on the straight line, while the linear conformations clearly deviate from the general tendency. Further analysis of the obtained results allows us to express the supposition that an increasing local ordering of water around given secondary structure corresponds to an increasing relative stability of this structure in aqueous solution. Analyzing the geometry of the water-water hydrogen bond network within the solvation layer, we find some systematic deviations of this geometry from the bulk water properties. We also observe that the alanine peptides (excluding the linear form) disturb the hydrogen bond network in the less range, and in another way than the various conformations of polyglycine, while the linear form of polyalanine behaves very similarly to the glycine ones. Next, investigating the dynamic properties, we also conclude that water near the peptide surface creates a pseudorigid structure, a "halo" around the peptide core. This "halo" is stabilized by slightly higher energy of the hydrogen bonds network: we have found that within this region the hydrogen bonds network is slightly less distorted, the water-water hydrogen bonds are a little more stable and their mean lifetime is clearly longer that that of bulk water. Significant differences between the alanine- and glycine-based polypeptides are also visible. It has also been found that this solvation layer interacts with the polyalanine in another way than with polyglycine. Although in the case of the glycine-based polypeptide this layer slides relatively freely over the peptide surface, for the alanine-based polypeptide this sliding is strongly hindered by the presence of the methyl groups, and this effect is additionally enhanced by a rise in the solvation layer rigidity. Thus, the survey of various dynamic properties allows us to perceive and to explain distinct differences in behavior of water within the solvation shell around both glycine and alanine peptides.

  5. Strength order and nature of the π-hole bond of cyanuric chloride and 1,3,5-triazine with halide.

    PubMed

    Wang, Hui; Li, Chen; Wang, Weizhou; Jin, Wei Jun

    2015-08-28

    The (13)C NMR chemical shift moving upfield indicates the main model of π-holeX(-) bond between cyanuric chloride/1,3,5-triazine (3ClN/3N), which possess both the π-hole and σ-hole, and X(-). (13)C NMR and UV absorption titration in acetonitrile confirmed that the bonding abilities of 3ClN/3N with X(-) follow the order I(-) > Br(-) > Cl(-), which is apparently the order of the charge transfer ability of halide to 3ClN/3N. Chemical calculations showed that the bonding abilities in solution were essentially consistent with those obtained by titration experiments. However, the results in the gas phase were the reverse, i.e., π-holeCl(-) > π-holeBr(-) > π-holeI(-) in bonding energy, which obeys the order of electrostatic interaction. In fact, the π-hole bond and σ-hole bond compete with solvation and possible anion-hydrogen bond between a solvent molecule and a halide in solution. An explanation is that the apparent charge transfer order of π-/σ-holeI(-) > π-/σ-holeBr(-) > π-/σ-holeCl(-) occurs for weak π-hole bonds and σ-hole bonds, whereas the order of electrostatic attraction of π-/σ-holeCl(-) > π-/σ-holeBr(-) > π-/σ-holeI(-) is valid for strong bonds. It can be concluded by combining energy decomposition analysis and natural bond orbital analysis that the π-holeX(-) bond and σ-holeX(-) bond are electrostatically attractive in nature regardless of whether the order is I(-) > Br(-) > Cl(-) or the reverse.

  6. Accounting for the differences in the structures and relative energies of the highly homoatomic np pi-np pi (n > or = 3)-bonded S2I4 2+, the Se-I pi-bonded Se2I4 2+, and their higher-energy isomers by AIM, MO, NBO, and VB methodologies.

    PubMed

    Brownridge, Scott; Crawford, Margaret-Jane; Du, Hongbin; Harcourt, Richard D; Knapp, Carsten; Laitinen, Risto S; Passmore, Jack; Rautiainen, J Mikko; Suontamo, Reijo J; Valkonen, Jussi

    2007-02-05

    The bonding in the highly homoatomic np pi-np pi (n > or = 3)-bonded S2I42+ (three sigma + two pi bonds), the Se-I pi-bonded Se2I42+ (four sigma + one pi bonds), and their higher-energy isomers have been studied using modern DFT and ab initio calculations and theoretical analysis methods: atoms in molecules (AIM), molecular orbital (MO), natural bond orbital (NBO), and valence bond (VB) analyses, giving their relative energies, theoretical bond orders, and atomic charges. The aim of this work was to seek theory-based answers to four main questions: (1) Are the previously proposed simple pi*-pi* bonding models valid for S2I42+ and Se2I42+? (2) What accounts for the difference in the structures of S2I42+ and Se2I42+? (3) Why are the classically bonded isolobal P2I4 and As2I4 structures not adopted? (4) Is the high experimentally observed S-S bond order supported by theoretical bond orders, and how does it relate to high bond orders between other heavier main group elements? The AIM analysis confirmed the high bond orders and established that the weak bonds observed in S2I42+ and Se2I42+ are real and the bonding in these cations is covalent in nature. The full MO analysis confirmed that S2I42+ contains three sigma and two pi bonds, that the positive charge is essentially equally distributed over all atoms, that the bonding between S2 and two I2+ units in S2I42+ is best described by two mutually perpendicular 4c2e pi*-pi* bonds, and that in Se2I42+, two SeI2+ moieties are joined by a 6c2e pi*-pi* bond, both in agreement with previously suggested models. The VB treatment provided a complementary approach to MO analysis and provided insight how the formation of the weak bonds affects the other bonds. The NBO analysis and the calculated AIM charges showed that the minimization of the electrostatic repulsion between EI2+ units (E = S, Se) and the delocalization of the positive charge are the main factors that explain why the nonclassical structures are favored for S2I42+ and Se2I42+. The difference in the structures of S2I42+ and Se2I42+ is related to the high strength of the S-S pi bond compared to the weak S-I sigma bond and the additional stabilization from increased delocalization of positive charge in the structure of S2I42+ compared to the structure of Se2I42+. The investigation of the E2X42+ series (E = S, Se, Te; X = Cl, Br, I) revealed that only S2I42+ adopts the highly np pi-np pi (n > or = 3)-bonded structure, while all other dications favor the pi-bonded Se2I42+ structure. Theoretical bond order calculations for S2I42+ confirm the previously presented experimentally based bond orders for S-S (2.1-2.3) and I-I (1.3-1.5) bonds. The S-S bond is determined to have the highest reported S-S bond order in an isolated compound and has a bond order that is either similar to or slightly less than the Si-Si bond order in the proposed triply bonded [(Me3Si)2CH]2(iPr)SiSi triple bond SiSi(iPr)[CH(SiMe3)2]2 depending on the definition of bond orders used.

  7. Effects of Atomic-Scale Structure on the Fracture Properties of Amorphous Carbon - Carbon Nanotube Composites

    NASA Technical Reports Server (NTRS)

    Jensen, Benjamin D.; Wise, Kristopher E.; Odegard, Gregory M.

    2015-01-01

    The fracture of carbon materials is a complex process, the understanding of which is critical to the development of next generation high performance materials. While quantum mechanical (QM) calculations are the most accurate way to model fracture, the fracture behavior of many carbon-based composite engineering materials, such as carbon nanotube (CNT) composites, is a multi-scale process that occurs on time and length scales beyond the practical limitations of QM methods. The Reax Force Field (ReaxFF) is capable of predicting mechanical properties involving strong deformation, bond breaking and bond formation in the classical molecular dynamics framework. This has been achieved by adding to the potential energy function a bond-order term that varies continuously with distance. The use of an empirical bond order potential, such as ReaxFF, enables the simulation of failure in molecular systems that are several orders of magnitude larger than would be possible in QM techniques. In this work, the fracture behavior of an amorphous carbon (AC) matrix reinforced with CNTs was modeled using molecular dynamics with the ReaxFF reactive forcefield. Care was taken to select the appropriate simulation parameters, which can be different from those required when using traditional fixed-bond force fields. The effect of CNT arrangement was investigated with three systems: a single-wall nanotube (SWNT) array, a multi-wall nanotube (MWNT) array, and a SWNT bundle system. For each arrangement, covalent bonds are added between the CNTs and AC, with crosslink fractions ranging from 0-25% of the interfacial CNT atoms. The SWNT and MWNT array systems represent ideal cases with evenly spaced CNTs; the SWNT bundle system represents a more realistic case because, in practice, van der Waals interactions lead to the agglomeration of CNTs into bundles. The simulation results will serve as guidance in setting experimental processing conditions to optimize the mechanical properties of CNT composites.

  8. A design of experiments test to define critical spray cleaning parameters for Brulin 815 GD and Jettacin cleaners

    NASA Technical Reports Server (NTRS)

    Keen, Jill M.; Evans, Kurt B.; Schiffman, Robert L.; Deweese, C. Darrell; Prince, Michael E.

    1995-01-01

    Experimental design testing was conducted to identify critical parameters of an aqueous spray process intended for cleaning solid rocket motor metal components (steel and aluminum). A two-level, six-parameter, fractional factorial matrix was constructed and conducted for two cleaners, Brulin 815 GD and Diversey Jettacin. The matrix parameters included cleaner temperature and concentration, wash density, wash pressure, rinse pressure, and dishwasher type. Other spray parameters: nozzle stand-off, rinse water temperature, wash and rinse time, dry conditions, and type of rinse water (deionized) were held constant. Matrix response testing utilized discriminating bond specimens (fracture energy and tensile adhesion strength) which represent critical production bond lines. Overall, Jettacin spray cleaning was insensitive to the range of conditions tested for all parameters and exhibited bond strengths significantly above the TCA test baseline for all bond lines tested. Brulin 815 was sensitive to cleaning temperature, but produced bond strengths above the TCA test baseline even at the lower temperatures. Ultimately, the experimental design database was utilized to recommend process parameter settings for future aqueous spray cleaning characterization work.

  9. Critical behavior of the extended Hubbard model with bond dimerization

    NASA Astrophysics Data System (ADS)

    Ejima, Satoshi; Lange, Florian; Essler, Fabian H. L.; Fehske, Holger

    2018-05-01

    Exploiting the matrix-product-state based density-matrix renormalization group (DMRG) technique we study the one-dimensional extended (U-V) Hubbard model with explicit bond dimerization in the half-filled band sector. In particular we investigate the nature of the quantum phase transition, taking place with growing ratio V / U between the symmetry-protected-topological and charge-density-wave insulating states. The (weak-coupling) critical line of continuous Ising transitions with central charge c = 1 / 2 terminates at a tricritical point belonging to the universality class of the dilute Ising model with c = 7 / 10 . We demonstrate that our DMRG data perfectly match with (tricritical) Ising exponents, e.g., for the order parameter β = 1 / 8 (1/24) and correlation length ν = 1 (5/9). Beyond the tricritical Ising point, in the strong-coupling regime, the quantum phase transition becomes first order.

  10. Mechatronic modeling of a 750kW fixed-speed wind energy conversion system using the Bond Graph Approach.

    PubMed

    Khaouch, Zakaria; Zekraoui, Mustapha; Bengourram, Jamaa; Kouider, Nourreeddine; Mabrouki, Mustapha

    2016-11-01

    In this paper, we would like to focus on modeling main parts of the wind turbines (blades, gearbox, tower, generator and pitching system) from a mechatronics viewpoint using the Bond-Graph Approach (BGA). Then, these parts are combined together in order to simulate the complete system. Moreover, the real dynamic behavior of the wind turbine is taken into account and with the new model; final load simulation is more realistic offering benefits and reliable system performance. This model can be used to develop control algorithms to reduce fatigue loads and enhance power production. Different simulations are carried-out in order to validate the proposed wind turbine model, using real data provided in the open literature (blade profile and gearbox parameters for a 750 kW wind turbine). Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Analytical interatomic potential for modeling nonequilibrium processes in the W-C-H system

    NASA Astrophysics Data System (ADS)

    Juslin, N.; Erhart, P.; Träskelin, P.; Nord, J.; Henriksson, K. O. E.; Nordlund, K.; Salonen, E.; Albe, K.

    2005-12-01

    A reactive interatomic potential based on an analytical bond-order scheme is developed for the ternary system W-C-H. The model combines Brenner's hydrocarbon potential with parameter sets for W-W, W-C, and W-H interactions and is adjusted to materials properties of reference structures with different local atomic coordinations including tungsten carbide, W-H molecules, as well as H dissolved in bulk W. The potential has been tested in various scenarios, such as surface, defect, and melting properties, none of which were considered in the fitting. The intended area of application is simulations of hydrogen and hydrocarbon interactions with tungsten, which have a crucial role in fusion reactor plasma-wall interactions. Furthermore, this study shows that the angular-dependent bond-order scheme can be extended to second nearest-neighbor interactions, which are relevant in body-centered-cubic metals. Moreover, it provides a possibly general route for modeling metal carbides.

  12. Membrane Perturbation Induced by Interfacially Adsorbed Peptides

    PubMed Central

    Zemel, Assaf; Ben-Shaul, Avinoam; May, Sylvio

    2004-01-01

    The structural and energetic characteristics of the interaction between interfacially adsorbed (partially inserted) α-helical, amphipathic peptides and the lipid bilayer substrate are studied using a molecular level theory of lipid chain packing in membranes. The peptides are modeled as “amphipathic cylinders” characterized by a well-defined polar angle. Assuming two-dimensional nematic order of the adsorbed peptides, the membrane perturbation free energy is evaluated using a cell-like model; the peptide axes are parallel to the membrane plane. The elastic and interfacial contributions to the perturbation free energy of the “peptide-dressed” membrane are evaluated as a function of: the peptide penetration depth into the bilayer's hydrophobic core, the membrane thickness, the polar angle, and the lipid/peptide ratio. The structural properties calculated include the shape and extent of the distorted (stretched and bent) lipid chains surrounding the adsorbed peptide, and their orientational (C-H) bond order parameter profiles. The changes in bond order parameters attendant upon peptide adsorption are in good agreement with magnetic resonance measurements. Also consistent with experiment, our model predicts that peptide adsorption results in membrane thinning. Our calculations reveal pronounced, membrane-mediated, attractive interactions between the adsorbed peptides, suggesting a possible mechanism for lateral aggregation of membrane-bound peptides. As a special case of interest, we have also investigated completely hydrophobic peptides, for which we find a strong energetic preference for the transmembrane (inserted) orientation over the horizontal (adsorbed) orientation. PMID:15189858

  13. Electronic origin of structural transition in 122 Fe based superconductors

    NASA Astrophysics Data System (ADS)

    Ghosh, Haranath; Sen, Smritijit; Ghosh, Abyay

    2017-03-01

    Direct quantitative correlations between the orbital order and orthorhombicity is achieved in a number of Fe-based superconductors of 122 family. The former (orbital order) is calculated from first principles simulations using experimentally determined doping and temperature dependent structural parameters while the latter (the orthorhombicity) is taken from already established experimental studies; when normalized, both the above quantities quantitatively corresponds to each other in terms of their doping as well as temperature variations. This proves that the structural transition in Fe-based materials is electronic in nature due to orbital ordering. An universal correlations among various structural parameters and electronic structure are also obtained. Most remarkable among them is the mapping of two Fe-Fe distances in the low temperature orthorhombic phase, with the band energies Edxz, Edyz of Fe at the high symmetry points of the Brillouin zone. The fractional co-ordinate zAs of As which essentially determines anion height is inversely (directly) proportional to Fe-As bond distances (with exceptions of K doped BaFe2As2) for hole (electron) doped materials as a function of doping. On the other hand, Fe-As bond-distance is found to be inversely (directly) proportional to the density of states at the Fermi level for hole (electron) doped systems. Implications of these results to current issues of Fe based superconductivity are discussed.

  14. Dynamics and structure of hydrogen-bonding glass formers: Comparison between hexanetriol and sugar alcohols based on dielectric relaxation

    NASA Astrophysics Data System (ADS)

    Nakanishi, Masahiro; Nozaki, Ryusuke

    2010-04-01

    Broadband dielectric spectra of supercooled 1,2,6-hexanetriol are presented in order to reveal physical picture behind a glass transition of polyhydric alcohols. It has been reported so far that temperature dependences of α relaxation time for sugar alcohols exhibit systematic trend against number of carbon atoms or OH groups per molecule. However, because each molecule is composed of equal number of carbon atoms and OH groups in the case of the reported sugar alcohols, the more dominant parameter to govern the α relaxation dynamics has not been discussed. By using a chemical structure of the hexanetriol composed of the deferent number of carbon and OH, it is possible to determine the dominant parameter. From temperature dependence of α relaxation times, it is strongly supported that the number of OH groups is the dominant parameter. Furthermore, from an analysis of static dielectric constant, it is suggested that local hydrogen-bonding structure is similar among all polyhydric alcohols. From these two results, a simple picture of the origin of the systematic character is proposed.

  15. Dynamics and structure of hydrogen-bonding glass formers: comparison between hexanetriol and sugar alcohols based on dielectric relaxation.

    PubMed

    Nakanishi, Masahiro; Nozaki, Ryusuke

    2010-04-01

    Broadband dielectric spectra of supercooled 1,2,6-hexanetriol are presented in order to reveal physical picture behind a glass transition of polyhydric alcohols. It has been reported so far that temperature dependences of alpha relaxation time for sugar alcohols exhibit systematic trend against number of carbon atoms or OH groups per molecule. However, because each molecule is composed of equal number of carbon atoms and OH groups in the case of the reported sugar alcohols, the more dominant parameter to govern the alpha relaxation dynamics has not been discussed. By using a chemical structure of the hexanetriol composed of the deferent number of carbon and OH, it is possible to determine the dominant parameter. From temperature dependence of alpha relaxation times, it is strongly supported that the number of OH groups is the dominant parameter. Furthermore, from an analysis of static dielectric constant, it is suggested that local hydrogen-bonding structure is similar among all polyhydric alcohols. From these two results, a simple picture of the origin of the systematic character is proposed.

  16. Parametric Study of Single Bolted Composite Bolted Joint Subjected to Static Tensile Loading

    NASA Astrophysics Data System (ADS)

    Awadhani, L. V.; Bewoor, Anand, Dr.

    2017-08-01

    The use of composites is increasing in the engineering applications in order to reduce the weight, building energy efficient systems, designing a suitable material according to the requirements of the application. But at the same time, building a structure is possible only by bonding or bolting or combination of them. There are limitations for the bonding methods and problems with the bolting such as stress concentration near the neighborhood of the bolt hole, tensile or shear failure, delamination etc. Hence the design of a composite bolted structure needs a special attention. This paper focuses on the performance of the composite bolted joint under static tensile loading and the effect of variation in the parameters such as the bolt pitch, plate width, thickness, bolt tightening torque, composite material, coefficient of friction between the bolt and plate etc. A simple spring mass model is used to study the single bolted composite bolted joint. The influencing parameters are identified through the developed model and compared with the results from the literature. The best geometric parameters for the applied load are identified for the composite bolted joints.

  17. Pi Bond Orders and Bond Lengths

    ERIC Educational Resources Information Center

    Herndon, William C.; Parkanyi, Cyril

    1976-01-01

    Discusses three methods of correlating bond orders and bond lengths in unsaturated hydrocarbons: the Pauling theory, the Huckel molecular orbital technique, and self-consistent-field techniques. (MLH)

  18. Destructive and non-destructive evaluation of cu/cu diffusion bonding with interlayer aluminum

    NASA Astrophysics Data System (ADS)

    Santosh Kumar, A.; Mohan, T.; Kumar, S. Suresh; Ravisankar, B.

    2018-03-01

    The current study is established an inspection procedure for assessing quality of diffusion bonded joints using destructive and non-destructive method. Diffusion bonding of commercially pure copper with aluminium interlayer was carried out uniaxial load at 15MPa for different temperatures under holding time 60 min in vacuum atmosphere. The bond qualities were determined by destructive and non-destructive testing method (ultrasonic C- scan). The bond interface and bonded samples were analysed using optical and scanning electron microscopy (SEM). The element composition of the fractured and bonded area is determined using the Energy Dispersive Spectrometry (EDS). The bond quality obtained by both testing methods and its parameters are correlated. The optimized bonding parameter for best bonding characteristics for copper diffusion bonding with aluminum interlayer is reported.

  19. On the correlations between the polyhedron eccentricity parameters and the bond-valence sums for the cations with one lone electron pair. Addendum.

    PubMed

    Sidey, Vasyl

    2009-06-01

    Systematic variations of the bond-valence sums calculated from the poorly determined bond-valence parameters [Sidey (2008), Acta Cryst. B64, 515-518] have been illustrated using a simple graphical scheme.

  20. Theoretical and experimental studies of the molecular orbital bonding coefficients for Cu{sup 2+} ion in cesium hydrogen oxalate single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalfaoğlu, Emel, E-mail: emelkalfaoglu@mynet.com; Karabulut, Bünyamin

    2016-03-25

    Electron paramagnetic resonance (EPR) and optical absorption spectra of Cu{sup 2+} ions in cesium hydrogen oxalate single crystals have been investigated at room temperature. The spin-Hamiltonian parameters (g and A), have been determined. Crystalline field around the Cu{sup 2+} ion is almost axially symmetric. The results show a single paramagnetic site which confirms the triclinic crystal symmetry. Molecular orbital bonding coefficients are studied from the EPR and optical data. Theoretical octahedral field parameter and the tetragonal field parameters have been evaluated from the superposition model. Using these parameters, various bonding parameters are analyzed and the nature of bonding in themore » complex is discussed. The theoretical results are supported by experimental results.« less

  1. Vibrational and elastic properties of Ln2Sn2O7 (Ln = La, Sm, Gd, Dy, Ho, Er, Yb, or Lu)

    NASA Astrophysics Data System (ADS)

    Akbudak, S.; Kushwaha, A. K.

    2018-04-01

    In this study, an eight-parameter bond-bending force constant model was used to calculate the zone center phonon frequencies, elastic constants, and related properties of the stannate compounds Ln2Sn2O7 (Ln = La, Sm, Gd, Dy, Ho, Er, Yb, or Lu) with a pyrochlore structure. We found that the Snsbnd O bond strengths dominate the Ln-O and Osbnd O bonds. We also found that all of the materials are ductile and anisotropic in nature. The anisotropic nature of the compounds increases in the order of: La2Sn2O7 < Sm2Sn2O7 < Gd2Sn2O7 < Dy2Sn2O7 < Ho2Sn2O7 < Er2Sn2O7 < Yb2Sn2O7 < Lu2Sn2O7.

  2. Synthesis and spectral characterization of hydrazone derivative of furfural using experimental and DFT methods.

    PubMed

    Babu, N Ramesh; Subashchandrabose, S; Ali Padusha, M Syed; Saleem, H; Erdoğdu, Y

    2014-01-01

    The Spectral Characterization of (E)-1-(Furan-2-yl) methylene)-2-(1-phenylvinyl) hydrazine (FMPVH) were carried out by using FT-IR, FT-Raman and UV-Vis., Spectrometry. The B3LYP/6-311++G(d,p) level of optimization has been performed on the title compound. The conformational analysis was performed for this molecule, in which the cis and trans conformers were studied for spectral characterization. The recorded spectral results were compared with calculated results. The optimized bond parameters of FMPVH molecule was compared with X-ray diffraction data of related molecule. To study the intra-molecular charge transfers within the molecule the Lewis (bonding) and Non-Lewis (anti-bonding) structural calculation was performed. The Non-linear optical behavior of the title compound was measured using first order hyperpolarizability calculation. The atomic charges were calculated and analyzed. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Structure and Bonding analysis of the cationic electrophilic phosphinidene complexes of iron, ruthenium, and osmium [(η(5)-C5Me5)(CO)2M{PN(i)Pr2}]+, [(η(5)-C5H5)(CO)2M{PNR2}]+ (R = Me, (i)Pr), and [(η(5)-C5H5)(PMe3)2M{PNMe2}]+ (M = Fe, Ru, Os).

    PubMed

    Pandey, Krishna K; Tiwari, Pradeep; Patidar, Pankaj

    2012-11-29

    Quantum-chemical DFT calculations for the electronic, molecular structure and M-PNR(2) bonding analyses of the experimentally known cationic electrophilic phosphinidene complexes [(η(5)-C(5)Me(5))(CO)(2)M{PN(i)Pr(2)}](+) and of the model complexes [(η(5)-C(5)H(5))(CO)(2)M{PNR(2)}](+) (R = (i)Pr, Me) and [(η(5)-C(5)H(5))(PMe(3))(2)M{PNMe(2)}](+) were carried out using BP86/TZ2P/ZORA level of theory. The calculated geometrical parameters of the studied complexes are in good agreement with the reported experimental values. The short M-P bond distances and calculated Pauling bond orders (range of 1.23-1.68), suggest the presence of M-P multiple bond characters. The Hirshfeld charge analysis shows that the overall charge flows from phosphinidene ligand to metal fragment. The M-P σ-bonding orbitals are well-occupied (>1.80e). The energy decomposition analysis revealed that the contribution of the electrostatic interaction ΔE(elstat) is, in all studied complexes, significantly larger (55.2-62.6%) than the orbital interactions ΔE(orb). The orbital interactions between metal and PNR(2) in [(η(5)-C(5)H(5))(L)(2)M{PNR(2)}](+) arise mainly from M ← PNR(2) σ-donation. The π-bonding contribution (19-36%) is much smaller than the σ-bonding. The interaction energies, as well as bond dissociation energies, depend on the auxiliary ligand framework around the metal and decrease in the order (η(5)-C(5)H(5)) > (η(5)-C(5)Me(5)) and CO > PMe(3). Upon substitution of R = (i)Pr with smaller group R = Me, the M-PNR(2) bond strength slightly decreases.

  4. Theoretical studies of the dependence of EPR parameters on local structure for the tetragonal Er(3+) centres in YVO4 and ScVO4.

    PubMed

    Chai, Rui-Peng; Hao, Dan-Hui; Kuang, Xiao-Yu; Liang, Liang

    2015-11-05

    The dependences of the EPR parameters on the local distortion parameters Δθ and ΔR as well as the crystal-field parameters have been studied by diagonalizing the 364×364 complete energy matrices for a tetragonal Er(3+) centre in the YVO4 and ScVO4 crystals. The results show that the local distortion angle Δθ and the fourth-order crystal-field parameter Ā4 are most sensitive to the EPR g-factors g// and g⊥, whereas the local distortion length ΔR and the second-order parameter Ā2 are less sensitive to the g-factors. Furthermore, we found that the abnormal EPR g-factors for the Er(3+) ion in the ScVO4 may be ascribed to the stronger nephelauxetic effect and covalent bonding effect, as a result of an expanded local distortion for the Er(3+) centre in the ScVO4 crystal. Simultaneously, the contributions of the J-J mixing effects from the terms of excited states to the EPR parameters have been evaluated quantitatively. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Low frequency vibrational spectra and the nature of metal-oxygen bond of alkaline earth metal acetylacetonates

    NASA Astrophysics Data System (ADS)

    Fakheri, Hamideh; Tayyari, Sayyed Faramarz; Heravi, Mohammad Momen; Morsali, Ali

    2017-12-01

    Theoretical quantum chemistry calculations were used to assign the observed vibrational band frequencies of Be, Mg, Ca, Sr, and Ba acetylacetonates complexes. Density functional theory (DFT) calculations have been carried out at the B3LYP level, using LanL2DZ, def2SVP, and mixed, GenECP, (def2SVP for metal ions and 6-311++G** for all other atoms) basis sets. The B3LYP level, with mixed basis sets, was utilized for calculations of vibrational frequencies, IR intensity, and Raman activity. Analysis of the vibrational spectra indicates that there are several bands which could almost be assigned mainly to the metal-oxygen vibrations. The strongest Raman band in this region could be used as a measure of the stability of the complex. The effects of central metal on the bond orders and charge distributions in alkaline earth metal acetylacetonates were studied by the Natural Bond Orbital (NBO) method for fully optimized compounds. Optimization were performed at the B3LYP/6-311++G** level for the lighter alkaline earth metal complexes (Be, Mg, and Ca acetylacetonates) while the B3LYP level, using LanL2DZ (extrabasis, d and f on oxygen and metal atoms), def2SVP and mixed (def2SVP on metal ions and 6-311++G** for all other atoms) basis sets for all understudy complexes. Calculations indicate that the covalence nature of metal-oxygen bonds considerably decreases from Be to Ba complexes. The nature of metal-oxygen bond was further studied by using Atoms In Molecules (AIM) analysis. The topological parameters, Wiberg bond orders, natural charges of O and metal ions, and also some vibrational band frequencies were correlated with the stability constants of understudy complexes.

  6. Electro-optical parameters of bond polarizability model for aluminosilicates.

    PubMed

    Smirnov, Konstantin S; Bougeard, Daniel; Tandon, Poonam

    2006-04-06

    Electro-optical parameters (EOPs) of bond polarizability model (BPM) for aluminosilicate structures were derived from quantum-chemical DFT calculations of molecular models. The tensor of molecular polarizability and the derivatives of the tensor with respect to the bond length are well reproduced with the BPM, and the EOPs obtained are in a fair agreement with available experimental data. The parameters derived were found to be transferable to larger molecules. This finding suggests that the procedure used can be applied to systems with partially ionic chemical bonds. The transferability of the parameters to periodic systems was tested in molecular dynamics simulation of the polarized Raman spectra of alpha-quartz. It appeared that the molecular Si-O bond EOPs failed to reproduce the intensity of peaks in the spectra. This limitation is due to large values of the longitudinal components of the bond polarizability and its derivative found in the molecular calculations as compared to those obtained from periodic DFT calculations of crystalline silica polymorphs by Umari et al. (Phys. Rev. B 2001, 63, 094305). It is supposed that the electric field of the solid is responsible for the difference of the parameters. Nevertheless, the EOPs obtained can be used as an initial set of parameters for calculations of polarizability related characteristics of relevant systems in the framework of BPM.

  7. Scale-free crystallization of two-dimensional complex plasmas: Domain analysis using Minkowski tensors

    NASA Astrophysics Data System (ADS)

    Böbel, A.; Knapek, C. A.; Räth, C.

    2018-05-01

    Experiments of the recrystallization processes in two-dimensional complex plasmas are analyzed to rigorously test a recently developed scale-free phase transition theory. The "fractal-domain-structure" (FDS) theory is based on the kinetic theory of Frenkel. It assumes the formation of homogeneous domains, separated by defect lines, during crystallization and a fractal relationship between domain area and boundary length. For the defect number fraction and system energy a scale-free power-law relation is predicted. The long-range scaling behavior of the bond-order correlation function shows clearly that the complex plasma phase transitions are not of the Kosterlitz, Thouless, Halperin, Nelson, and Young type. Previous preliminary results obtained by counting the number of dislocations and applying a bond-order metric for structural analysis are reproduced. These findings are supplemented by extending the use of the bond-order metric to measure the defect number fraction and furthermore applying state-of-the-art analysis methods, allowing a systematic testing of the FDS theory with unprecedented scrutiny: A morphological analysis of lattice structure is performed via Minkowski tensor methods. Minkowski tensors form a complete family of additive, motion covariant and continuous morphological measures that are sensitive to nonlinear properties. The FDS theory is rigorously confirmed and predictions of the theory are reproduced extremely well. The predicted scale-free power-law relation between defect fraction number and system energy is verified for one more order of magnitude at high energies compared to the inherently discontinuous bond-order metric. It is found that the fractal relation between crystalline domain area and circumference is independent of the experiment, the particular Minkowski tensor method, and the particular choice of parameters. Thus, the fractal relationship seems to be inherent to two-dimensional phase transitions in complex plasmas. Minkowski tensor analysis turns out to be a powerful tool for investigations of crystallization processes. It is capable of revealing nonlinear local topological properties, however, still provides easily interpretable results founded on a solid mathematical framework.

  8. Scaling Relations for Acidity and Reactivity of Zeolites

    PubMed Central

    2017-01-01

    Zeolites are widely applied as solid acid catalysts in various technological processes. In this work we have computationally investigated how catalytic reactivity scales with acidity for a range of zeolites with different topologies and chemical compositions. We found that straightforward correlations are limited to zeolites with the same topology. The adsorption energies of bases such as carbon monoxide (CO), acetonitrile (CH3CN), ammonia (NH3), trimethylamine (N(CH3)3), and pyridine (C5H5N) give the same trend of acid strength for FAU zeolites with varying composition. Crystal orbital Hamilton populations (COHP) analysis provides a detailed molecular orbital picture of adsorbed base molecules on the Brønsted acid sites (BAS). Bonding is dominated by strong σ donation from guest molecules to the BAS for the adsorbed CO and CH3CN complexes. An electronic descriptor of acid strength is constructed based on the bond order calculations, which is an intrinsic parameter rather than adsorption energy that contains additional contributions due to secondary effects such as van der Waals interactions with the zeolite walls. The bond order parameter derived for the CH3CN adsorption complex represents a useful descriptor for the intrinsic acid strength of FAU zeolites. For FAU zeolites the activation energy for the conversion of π-adsorbed isobutene into alkoxy species correlates well with the acid strength determined by the NH3 adsorption energies. Other zeolites such as MFI and CHA do not follow the scaling relations obtained for FAU; we ascribe this to the different van der Waals interactions and steric effects induced by zeolite framework topology. PMID:29142616

  9. A study of N-methylacetamide in water clusters: based on atom-bond electronegativity equalization method fused into molecular mechanics.

    PubMed

    Yang, Zhong-Zhi; Qian, Ping

    2006-08-14

    N-methylacetamide (NMA) is a very interesting compound and often serves as a model of the peptide bond. The interaction between NMA and water provides a convenient prototype for the solvation of the peptides in aqueous solutions. Here we present NMA-water potential model based on atom-bond electronegativity equalization method fused into molecular mechanics (ABEEM/MM) that is to take ABEEM charges of all atoms, bonds, and lone-pair electrons of NMA and water molecules into the electrostatic interaction term in molecular mechanics. The model has the following characters: (1)it allows the charges in system to fluctuate responding to the ambient environment; (2) for two major types of intermolecular hydrogen bonds, which are the hydrogen bond forming between the lone-pair electron on amide oxygen and the water hydrogen, and the one forming between the lone-pair electron on water oxygen and the amide hydrogen, we take special treatments in describing the electrostatic interaction by the use of the parameters k(lpO=, H) and k(lpO(-), HN(-)), respectively. The newly constructed potential model based on ABEEM/MM is first applied to amide-water clusters and reproduces gas-phase state properties of NMA(H(2)O)(n) (n=1-3) including optimal structures, dipole moments, ABEEM charge distributions, energy difference of the isolated trans- and cis-NMA, interaction energies, hydrogen bonding cooperative effects, and so on, whose results show the good agreement with those measured by available experiments and calculated by ab initio methods. In order to further test the reasonableness of this model and the correctness and transferability of the parameters, many static properties of the larger NMA-water complexes NMA(H(2)O)(n) (n=4-6) are also studied including optimal structures and interaction energies. The results also show fair consistency with those of our quantum chemistry calculations.

  10. Anisotropic crystal structure distortion of the monoclinic polymorph of acetaminophen at high hydrostatic pressures.

    PubMed

    Boldyreva, E V; Shakhtshneider, T P; Vasilchenko, M A; Ahsbahs, H; Uchtmann, H

    2000-04-01

    The anisotropy of structural distortion of the monoclinic polymorph of acetaminophen induced by hydrostatic pressure up to 4.0 GPa was studied by single-crystal X-ray diffraction in a Merrill-Bassett diamond anvil cell (DAC). The space group (P2(1)/n) and the general structural pattern remained unchanged with pressure. Despite the overall decrease in the molar volume with pressure, the structure expanded in particular crystallographic directions. One of the linear cell parameters (c) passed through a minimum as the pressure increased. The intramolecular bond lengths changed only slightly with pressure, but the changes in the dihedral and torsion angles were very large. The compressibility of the intermolecular hydrogen bonds NH...O and OH...O was measured. NH...O bonds were shown to be slightly more compressible than OH...O bonds. The anisotropy of structural distortion was analysed in detail in relation to the pressure-induced changes in the molecular conformations, to the compression of the hydrogen-bond network, and to the changes in the orientation of molecules with respect to each other in the pleated sheets in the structure. Dirichlet domains were calculated in order to analyse the relative shifts of the centroids of the hydrogen-bonded cycles and of the centroids of the benzene rings with pressure.

  11. Chemical association in simple models of molecular and ionic fluids. III. The cavity function

    NASA Astrophysics Data System (ADS)

    Zhou, Yaoqi; Stell, George

    1992-01-01

    Exact equations which relate the cavity function to excess solvation free energies and equilibrium association constants are rederived by using a thermodynamic cycle. A zeroth-order approximation, derived previously by us as a simple interpolation scheme, is found to be very accurate if the associative bonding occurs on or near the surface of the repulsive core of the interaction potential. If the bonding radius is substantially less than the core radius, the approximation overestimates the association degree and the association constant. For binary association, the zeroth-order approximation is equivalent to the first-order thermodynamic perturbation theory (TPT) of Wertheim. For n-particle association, the combination of the zeroth-order approximation with a ``linear'' approximation (for n-particle distribution functions in terms of the two-particle function) yields the first-order TPT result. Using our exact equations to go beyond TPT, near-exact analytic results for binary hard-sphere association are obtained. Solvent effects on binary hard-sphere association and ionic association are also investigated. A new rule which generalizes Le Chatelier's principle is used to describe the three distinct forms of behaviors involving solvent effects that we find. The replacement of the dielectric-continuum solvent model by a dipolar hard-sphere model leads to improved agreement with an experimental observation. Finally, equation of state for an n-particle flexible linear-chain fluid is derived on the basis of a one-parameter approximation that interpolates between the generalized Kirkwood superposition approximation and the linear approximation. A value of the parameter that appears to be near optimal in the context of this application is obtained from comparison with computer-simulation data.

  12. Solid-state Bonding of Superplastic Aluminum Alloy 7475 Sheet

    NASA Technical Reports Server (NTRS)

    Byun, T. D. S.; Vastava, R. B.

    1985-01-01

    Experimental works were carried out to study the feasibility of solid state bonding of superplastic aluminum 7475 sheet. Amount of deformation, bonding time, surface cleaning method and intermediate layer were the process parameters investigated. Other parameters, held constant by the superplastic forming condition which is required to obtain a concurrent solid state bonding, are bonding temperature, bonding pressure and atmosphere. Bond integrity was evaluated through metallographic examination, X-ray line scan analysis, SEM fractographic analysis and lap shear tests. The early results of the development program indicated that sound solid state bonding was accomplished for this high strength 7475 alloy with significant amounts of deformation. A thin intermediate layer of the soft 5052 aluminum alloy aided in achieving a solid state bonding by reducing the required amount of plastic deformation at the interface. Bond strength was substantially increased by a post bond heat treatment.

  13. Characterizing hydrophobicity at the nanoscale: a molecular dynamics simulation study.

    PubMed

    Bandyopadhyay, Dibyendu; Choudhury, Niharendu

    2012-06-14

    We use molecular dynamics (MD) simulations of water near nanoscopic surfaces to characterize hydrophobic solute-water interfaces. By using nanoscopic paraffin like plates as model solutes, MD simulations in isothermal-isobaric ensemble have been employed to identify characteristic features of such an interface. Enhanced water correlation, density fluctuations, and position dependent compressibility apart from surface specific hydrogen bond distribution and molecular orientations have been identified as characteristic features of such interfaces. Tetrahedral order parameter that quantifies the degree of tetrahedrality in the water structure and an orientational order parameter, which quantifies the orientational preferences of the second solvation shell water around a central water molecule, have also been calculated as a function of distance from the plate surface. In the vicinity of the surface these two order parameters too show considerable sensitivity to the surface hydrophobicity. The potential of mean force (PMF) between water and the surface as a function of the distance from the surface has also been analyzed in terms of direct interaction and induced contribution, which shows unusual effect of plate hydrophobicity on the solvent induced PMF. In order to investigate hydrophobic nature of these plates, we have also investigated interplate dewetting when two such plates are immersed in water.

  14. Vector-based model of elastic bonds for simulation of granular solids.

    PubMed

    Kuzkin, Vitaly A; Asonov, Igor E

    2012-11-01

    A model (further referred to as the V model) for the simulation of granular solids, such as rocks, ceramics, concrete, nanocomposites, and agglomerates, composed of bonded particles (rigid bodies), is proposed. It is assumed that the bonds, usually representing some additional gluelike material connecting particles, cause both forces and torques acting on the particles. Vectors rigidly connected with the particles are used to describe the deformation of a single bond. The expression for potential energy of the bond and corresponding expressions for forces and torques are derived. Formulas connecting parameters of the model with longitudinal, shear, bending, and torsional stiffnesses of the bond are obtained. It is shown that the model makes it possible to describe any values of the bond stiffnesses exactly; that is, the model is applicable for the bonds with arbitrary length/thickness ratio. Two different calibration procedures depending on bond length/thickness ratio are proposed. It is shown that parameters of the model can be chosen so that under small deformations the bond is equivalent to either a Bernoulli-Euler beam or a Timoshenko beam or short cylinder connecting particles. Simple analytical expressions, relating parameters of the V model with geometrical and mechanical characteristics of the bond, are derived. Two simple examples of computer simulation of thin granular structures using the V model are given.

  15. Co-extrusion of semi-finished aluminium-steel compounds

    NASA Astrophysics Data System (ADS)

    Thürer, S. E.; Uhe, J.; Golovko, O.; Bonk, C.; Bouguecha, A.; Klose, C.; Behrens, B.-A.; Maier, H. J.

    2017-10-01

    The combination of light metals and steels allows for new lightweight components with wear-resistant functional surfaces. Within the Collaborative Research Centre 1153 novel process chains are developed for the manufacture of such hybrid components. Here, the production process of a hybrid bearing bushing made of the aluminium alloy EN AW-6082 and the case-hardened steel 20MnCr5 is developed. Hybrid semi-finished products are an attractive alternative to conventional ones resulting from massive forming processes where the individual components are joined after the forming process. The actual hybrid semi-finished products were manufactured using a lateral angular co-extrusion (LACE) process. The bearing bushings are subsequently produced by die forging. In the present study, a tool concept for the LACE process is described, which renders the continuous joining of a steel rod with an aluminium tube possible. During the LACE process, the rod is fed into the extrusion die at an angle of approx. 90°. Metallographic analysis of the hybrid profile showed that the mechanical bonding between the different materials begins about 75 mm after the edge of the aluminium sheath. In order to improve the bonding strength, the steel rod is to be preheated during extrusion. Systematic investigations using a dilatometer, considering the maximum possible co-extrusion process parameters, were carried out. The variable parameters for the dilatometer experiments were determined by numerical simulation. In order to form a bond between the materials, the oxide layer needs to be disrupted during the co-extrusion process. In an attempt to better understand this effect, a modified sample geometry with chamfered steel was developed for the dilatometer experiments. The influence of the process parameters on the formation of the intermetallic phase at the interface was analysed by scanning electron microscopy and X-ray diffraction. This article, which was originally published online on 16 October 2017, contained an error in the press ratio, where 9:1 should be 6:1. The corrected ratio appears in the Corrigendum attached to the pdf.

  16. Development of solid-state NMR techniques for the characterisation of pharmaceutical compounds

    NASA Astrophysics Data System (ADS)

    Tatton, Andrew S.

    Structural characterisation in the solid state is an important step in understanding the physical and chemical properties of a material. Solid-state NMR techniques applied to solid delivery forms are presented as an alternative to more established structural characterisation methods. The effect of homonuclear decoupling upon heteronuclear couplings is investigated using a combination of experimental and density-matrix simulation results acquired from a 13C-1H spinecho pulse sequence, modulated by scalar couplings. It is found that third-order cross terms under MAS and homonuclear decoupling contribute to strong dephasing effects in the NMR signal. Density-matrix simulations allow access to parameters currently unattainable in experiment, and demonstrate that higher homonuclear decoupling rf nutation frequencies reduce the magnitude of third-order cross terms. 15N-1H spinecho experiments were applied to pharmaceutically relevant samples to differentiate between the number of directly attached protons. Using this method, proton transfer in an acid-base reaction is proven in pharmaceutical salts. The indirect detection of 14N lineshapes via protons obtained using 2D 14N-1H HMQC experiments is presented, where coherence transfer is achieved via heteronuclear through-space dipolar couplings. The importance of fast MAS frequencies is demonstrated, and it is found that increasing the recoupling duration reveals longer range NH proximities. The 2D 14N-1H HMQC method is used to demonstrate the presence of specific hydrogen bonding interactions, and thus aid in identifying molecular association in a cocrystal and an amorphous dispersion. In addition, hydrogen bonding motifs were identified by observing the changes in the 14N quadrupolar parameters between individual molecular components relative to the respective solid delivery form. First-principles calculations of NMR chemical shifts and quadrupolar parameters using the GIPAW method were combined with 14N-1H experimental results to assist with spectral assignment and the identification of the hydrogen bonding interactions.

  17. The contribution of the hydrogen bond acidity on the lipophilicity of drugs estimated from chromatographic measurements.

    PubMed

    Pallicer, Juan M; Pascual, Rosalia; Port, Adriana; Rosés, Martí; Ràfols, Clara; Bosch, Elisabeth

    2013-02-14

    The influence of the hydrogen bond acidity when the 1-octanol/water partition coefficient (log P(o/w)) of drugs is determined from chromatographic measurements was studied in this work. This influence was firstly evaluated by means of the comparison between the Abraham solvation parameter model when it is applied to express the 1-octanol/water partitioning and the chromatographic retention, expressed as the solute polarity p. Then, several hydrogen bond acidity descriptors were compared in order to determine properly the log P(o/w) of drugs. These descriptors were obtained from different software and comprise two-dimensional parameters such as the calculated Abraham hydrogen bond acidity A and three-dimensional descriptors like HDCA-2 from CODESSA program or WO1 and DRDODO descriptors calculated from Volsurf+software. The additional HOMO-LUMO polarizability descriptor should be added when the three-dimensional descriptors are used to complement the chromatographic retention. The models generated using these descriptors were compared studying the correlations between the determined log P(o/w) values and the reference ones. The comparison showed that there was no significant difference between the tested models and any of them was able to determine the log P(o/w) of drugs from a single chromatographic measurement and the correspondent molecular descriptors terms. However, the model that involved the calculated A descriptor was simpler and it is thus recommended for practical uses. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. The impact of processing parameters on the properties of Zn-bonded Nd-Fe-B magnets

    NASA Astrophysics Data System (ADS)

    Kelhar, Luka; Zavašnik, Janez; McGuiness, Paul; Kobe, Spomenka

    2016-12-01

    We report on the effect of loading factor and pressure on the density and the magnetic properties of Zn-bonded Nd-Fe-B magnets produced by pulsed-electric-current sintering (PECS). The idea behind this study is to fabricate bonded magnets with a metallic binder in order for the bonded magnet to operate at temperatures higher than 180 °C: the current upper-limit for polymer-bonded magnets. These composites are made of hard-magnetic powder in the form of melt-spun ribbons bonded with the low-melting-point metal Zn. The binder additions were varied from 10 to 30 wt%, and pressures of 50 and 500 MPa were applied. The high-pressure mode with 20 wt% Zn resulted in a 24% increase of Jr, compared to the low-pressure mode. The magnetic measurements revealed a maximum remanence of 0.64 T for 10 wt% Zn, while the coercivity is largely unaffected by the processing conditions. The density of the composites was up to 7.0 g/cm3, corresponding to 94% of the theoretical density. Compared to commercial polymer-bonded magnets, the Zn-bonded counterparts exhibit a slightly lower Jr, but the coercivity is retained. We show that there is a minor diffusion of Zn into the Nd-Fe-B, forming a 1 μm thin transition layer, but it does not harm the magnetic properties. These metal-bonded Nd-Fe-B magnets are ideal for use in high-temperature automotive applications like under-the-hood sensors and other magnet-based devices that are close to the engine.

  19. Reconciliation of local and long-range tilt correlations in underdoped La 2-xBa xCuO 4(0 ≤ x ≤ 0.155)

    DOE PAGES

    Bozin, Emil S.; Zhong, Ruidan; Knox, Kevin R.; ...

    2015-02-26

    A long standing puzzle regarding the disparity of local and long range CuO₆ octahedral tilt correlations in the underdoped regime of La₂₋ xBa xCuO₄ is addressed by utilizing complementary neutron powder diffraction and inelastic neutron scattering (INS) approaches. Long-range and static CuO₆ tilt order with orthogonally inequivalent Cu-O bonds in the CuO₂ planes in the low temperature tetragonal (LTT) phase is succeeded on warming through the low-temperature transition by one with orthogonally equivalent bonds in the low temperature orthorhombic (LTO) phase. In contrast, the signatures of LTT-type tilts in the instantaneous local atomic structure persist on heating throughout the LTOmore » crystallographic phase on the nanoscale, although becoming weaker as temperature increases. Analysis of the INS spectra for the x = 1/8 composition reveals the dynamic nature of the LTT-like tilt fluctuations within the LTO phase and their 3D character. The doping dependence of relevant structural parameters indicates that the magnitude of the Cu-O bond anisotropy has a maximum at x = 1/8 doping where bulk superconductivity is most strongly suppressed, suggesting that the structural anisotropy might be influenced by electron-phonon coupling and the particular stability of the stripe-ordered phase at this composition. The bond-length modulation that pins stripe order is found to be remarkably subtle, with no anomalous bond length disorder at low temperature, placing an upper limit on any in-plane Cu-O bondlength anisotropy. The results further reveal that although appreciable octahedral tilts persist through the high-temperature transition and into the high temperature tetragonal (HTT) phase, there is no significant preference between different tilt directions in the HTT regime. As a result, this study also exemplifies the importance of a systematic approach using complementary techniques when investigating systems exhibiting a large degree of complexity and subtle structural responses.« less

  20. Stochastic dynamics of virus capsid formation: direct versus hierarchical self-assembly

    PubMed Central

    2012-01-01

    Background In order to replicate within their cellular host, many viruses have developed self-assembly strategies for their capsids which are sufficiently robust as to be reconstituted in vitro. Mathematical models for virus self-assembly usually assume that the bonds leading to cluster formation have constant reactivity over the time course of assembly (direct assembly). In some cases, however, binding sites between the capsomers have been reported to be activated during the self-assembly process (hierarchical assembly). Results In order to study possible advantages of such hierarchical schemes for icosahedral virus capsid assembly, we use Brownian dynamics simulations of a patchy particle model that allows us to switch binding sites on and off during assembly. For T1 viruses, we implement a hierarchical assembly scheme where inter-capsomer bonds become active only if a complete pentamer has been assembled. We find direct assembly to be favorable for reversible bonds allowing for repeated structural reorganizations, while hierarchical assembly is favorable for strong bonds with small dissociation rate, as this situation is less prone to kinetic trapping. However, at the same time it is more vulnerable to monomer starvation during the final phase. Increasing the number of initial monomers does have only a weak effect on these general features. The differences between the two assembly schemes become more pronounced for more complex virus geometries, as shown here for T3 viruses, which assemble through homogeneous pentamers and heterogeneous hexamers in the hierarchical scheme. In order to complement the simulations for this more complicated case, we introduce a master equation approach that agrees well with the simulation results. Conclusions Our analysis shows for which molecular parameters hierarchical assembly schemes can outperform direct ones and suggests that viruses with high bond stability might prefer hierarchical assembly schemes. These insights increase our physical understanding of an essential biological process, with many interesting potential applications in medicine and materials science. PMID:23244740

  1. Stability limits for the supercooled liquid and superheated crystal of Lennard-Jones particles

    NASA Astrophysics Data System (ADS)

    Loscar, Ernesto S.; Martin, Daniel A.; Grigera, Tomás S.

    2017-07-01

    We have studied the limits of stability in the first order liquid-solid phase transition in a Lennard-Jones system by means of the short-time relaxation method and using the bond-orientational order parameter Q6. These limits are compared with the melting line. We have paid special attention to the supercooled liquid, comparing our results with the point where the free energy cost of forming a nucleating droplet goes to zero. We also indirectly estimate the dimension associated to the critical nucleus at the spinodal, expected to be fractal according to mean field theories of nucleation.

  2. Force-field parametrization and molecular dynamics simulations of Congo red

    NASA Astrophysics Data System (ADS)

    Król, Marcin; Borowski, Tomasz; Roterman, Irena; Piekarska, Barbara; Stopa, Barbara; Rybarska, Joanna; Konieczny, Leszek

    2004-01-01

    Congo red, a diazo dye widely used in medical diagnosis, is known to form supramolecular systems in solution. Such a supramolecular system may interact with various proteins. In order to examine the nature of such complexes empirical force field parameters for the Congo red molecule were developed. The parametrization of bonding terms closely followed the methodology used in the development of the charmm22 force field, except for the calculation of charges. Point charges were calculated from a fit to a quantum mechanically derived electrostatic potential using the CHELP-BOW method. Obtained parameters were tested in a series of molecular dynamics simulations of both a single molecule and a micelle composed of Congo red molecules. It is shown that newly developed parameters define a stable minimum on the hypersurface of the potential energy and crystal and ab initio geometries and rotational barriers are well reproduced. Furthermore, rotations around C-N bonds are similar to torsional vibrations observed in crystals of diphenyl-diazene, which confirms that the flexibility of the molecule is correct. Comparison of results obtained from micelles molecular dynamics simulations with experimental data shows that the thermal dependence of micelle creation is well reproduced.

  3. Molecular structural property and potential energy dependence on nonequilibrium-thermodynamic state point of liquid n-hexadecane under shear.

    PubMed

    Tseng, Huan-Chang; Chang, Rong-Yeu; Wu, Jiann-Shing

    2011-01-28

    Extensive computer experiments have been conducted in order to shed light on the macroscopic shear flow behavior of liquid n-hexadecane fluid under isobaric-isothermal conditions through the nonequilibrium molecular dynamic methodology. With respect to shear rates, the accompanying variations in structural properties of the fluid span the microscopic range of understanding from the intrinsic to extrinsic characteristics. As drawn from the average value of bond length and bond angle, the distribution of dihedral angle, and the radius distribution function of intramolecular and intermolecular van der Waals distances, these intrinsic structures change with hardness, except in the situation of extreme shear rates. The shear-induced variation of thermodynamic state curve along with the shear rate studied is shown to consist of both the quasiequilibrium state plateau and the nonequilibrium-thermodynamic state slope. Significantly, the occurrence of nonequilibrium-thermodynamic state behavior is attributed to variations in molecular potential energies, which include bond stretching, bond bending, bond torsion, and intra- and intermolecular van der Waals interactions. To unfold the physical representation of extrinsic structural deformation, under the aggressive influence of a shear flow field, the molecular dimension and appearance can be directly described via the squared radius of gyration and the sphericity angle, R(g)(2) and ϕ, respectively. In addition, a specific orientational order S(x) defines the alignment of the molecules with the flow direction of the x-axis. As a result, at low shear rates, the overall molecules are slightly stretched and shaped in a manner that is increasingly ellipsoidal. Simultaneously, there is an obvious enhancement in the order. In contrast to high shear rates, the molecules spontaneously shrink themselves with a decreased value of R(g)(2), while their shape and order barely vary with an infinite value of ϕ and S(x). It is important to note that under different temperatures and pressures, these three parameters are integrated within a molecular description in response to thermodynamic state variable of density and rheological material function of shear viscosity.

  4. A Novel Process for Joining Ti Alloy and Al Alloy using Two-Stage Sintering Powder Metallurgy

    NASA Astrophysics Data System (ADS)

    Long, Luping; Liu, Wensheng; Ma, Yunzhu; Wu, Lei; Liu, Chao

    2018-04-01

    The major challenges for conventional diffusion bonding of joining Ti alloy and Al alloy are the undesirable interfacial reaction, low matrixes and joint strength. To avoid the problem in diffusion bonding, a novel two-stage sintering powder metallurgy process is developed. In the present work, the interface characterization and joint performance of the bonds obtained by powder metallurgy bonding are investigated and are compared with the diffusion bonded Ti/Al joints obtained with the same and the optimized process parameters. The results show that no intermetallic compound is visible in the Ti/Al joint obtained by powder metallurgy bonding, while a new layer formed at the joint diffusion bonded with the same parameters. The maximum tensile strength of joint obtained by diffusion bonding is 58 MPa, while a higher tensile strength reaching 111 MPa for a bond made by powder metallurgy bonding. Brittle fractures occur at all the bonds. It is shown that the powder metallurgy bonding of Ti/Al is better than diffusion bonding. The results of this study should benefit the bonding quality.

  5. Hydrogen bonding in ionic liquids.

    PubMed

    Hunt, Patricia A; Ashworth, Claire R; Matthews, Richard P

    2015-03-07

    Ionic liquids (IL) and hydrogen bonding (H-bonding) are two diverse fields for which there is a developing recognition of significant overlap. Doubly ionic H-bonds occur when a H-bond forms between a cation and anion, and are a key feature of ILs. Doubly ionic H-bonds represent a wide area of H-bonding which has yet to be fully recognised, characterised or explored. H-bonds in ILs (both protic and aprotic) are bifurcated and chelating, and unlike many molecular liquids a significant variety of distinct H-bonds are formed between different types and numbers of donor and acceptor sites within a given IL. Traditional more neutral H-bonds can also be formed in functionalised ILs, adding a further level of complexity. Ab initio computed parameters; association energies, partial charges, density descriptors as encompassed by the QTAIM methodology (ρBCP), qualitative molecular orbital theory and NBO analysis provide established and robust mechanisms for understanding and interpreting traditional neutral and ionic H-bonds. In this review the applicability and extension of these parameters to describe and quantify the doubly ionic H-bond has been explored. Estimating the H-bonding energy is difficult because at a fundamental level the H-bond and ionic interaction are coupled. The NBO and QTAIM methodologies, unlike the total energy, are local descriptors and therefore can be used to directly compare neutral, ionic and doubly ionic H-bonds. The charged nature of the ions influences the ionic characteristics of the H-bond and vice versa, in addition the close association of the ions leads to enhanced orbital overlap and covalent contributions. The charge on the ions raises the energy of the Ylp and lowers the energy of the X-H σ* NBOs resulting in greater charge transfer, strengthening the H-bond. Using this range of parameters and comparing doubly ionic H-bonds to more traditional neutral and ionic H-bonds it is clear that doubly ionic H-bonds cover the full range of weak through to very strong H-bonds.

  6. Systematic approach to developing empirical interatomic potentials for III-N semiconductors

    NASA Astrophysics Data System (ADS)

    Ito, Tomonori; Akiyama, Toru; Nakamura, Kohji

    2016-05-01

    A systematic approach to the derivation of empirical interatomic potentials is developed for III-N semiconductors with the aid of ab initio calculations. The parameter values of empirical potential based on bond order potential are determined by reproducing the cohesive energy differences among 3-fold coordinated hexagonal, 4-fold coordinated zinc blende, wurtzite, and 6-fold coordinated rocksalt structures in BN, AlN, GaN, and InN. The bond order p is successfully introduced as a function of the coordination number Z in the form of p = a exp(-bZn ) if Z ≤ 4 and p = (4/Z)α if Z ≥ 4 in empirical interatomic potential. Moreover, the energy difference between wurtzite and zinc blende structures can be successfully evaluated by considering interaction beyond the second-nearest neighbors as a function of ionicity. This approach is feasible for developing empirical interatomic potentials applicable to a system consisting of poorly coordinated atoms at surfaces and interfaces including nanostructures.

  7. Molecular statics simulation of CdTe grain boundary structures and energetics using a bond-order potential

    NASA Astrophysics Data System (ADS)

    Stechmann, Guillaume; Zaefferer, Stefan; Raabe, Dierk

    2018-06-01

    The structure and energetics of coincidence site lattice grain boundaries (GB) in CdTe are investigated by mean of molecular statics simulations, using the Cd–Zn–Te bond-order potential (second iteration) developed by Ward et al (2012 Phys. Rev. B 86 245203; 2013 J. Mol. Modelling 19 5469–77). The effects of misorientation (Σ value) and interface plane are treated separately, complying with the critical need for full five-parameter characterization of GB. In addition, stoichiometric shifts, occurring between the inner interfaces and their adjacent atomic layers, are also predicted, revealing the energetic preference of Te-rich boundaries, opening opportunities for crystallography-based intrinsic interface doping. Our results also suggest that the intuitive assumption that Σ3 boundaries with low-indexed planes are more energetically favorable is often unfounded, except for coherent twins developing on {111} boundary planes. Therefore, Σ5, 7 or 9 boundaries, with lower interface energy than that of twin boundaries lying on different facets, are frequently encountered.

  8. Molecular dynamics simulations of a DMSO/water mixture using the AMBER force field.

    PubMed

    Stachura, Slawomir S; Malajczuk, Chris J; Mancera, Ricardo L

    2018-06-25

    Due to its protective properties of biological samples at low temperatures and under desiccation, dimethyl sulfoxide (DMSO) in aqueous solutions has been studied widely by many experimental approaches and molecular dynamics (MD) simulations. In the case of the latter, AMBER is among the most commonly used force fields for simulations of biomolecular systems; however, the parameters for DMSO published by Fox and Kollman in 1998 have only been tested for pure liquid DMSO. We have conducted an MD simulation study of DMSO in a water mixture and computed several structural and dynamical properties such as of the mean density, self-diffusion coefficient, hydrogen bonding and DMSO and water ordering. The AMBER force field of DMSO is seen to reproduce well most of the experimental properties of DMSO in water, with the mixture displaying strong and specific water ordering, as observed in experiments and multiple other MD simulations with other non-polarizable force fields. Graphical abstract Hydration structure within hydrogen-bonding distance around a DMSOmolecule.

  9. Bond-orientational order in liquid Si

    NASA Technical Reports Server (NTRS)

    Wang, Z. Q.; Stroud, D.

    1991-01-01

    Bond-orientational order in liquid Si via Monte Carlo simulation in conjuncation with empirical two- and three-body potentials of the form proposed by Stillinger and Weber are studied. Bond-orientational order (BOO) is described in terms of combinations of spherical harmonic functions. Liquid Si is found to have pronounced short-range BOO corresponding to l = 3, as expected for a structure with local tetrahedral order. No long-range BOO is found either in the equilibrium or the supercooled liquid. When the three-body potential is artificially removed, the tetrahedral bond-orientation order disappears and the liquid assumes a close-packed structure.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hastings, Matthew B

    We show how to combine the light-cone and matrix product algorithms to simulate quantum systems far from equilibrium for long times. For the case of the XXZ spin chain at {Delta} = 0.5, we simulate to a time of {approx} 22.5. While part of the long simulation time is due to the use of the light-cone method, we also describe a modification of the infinite time-evolving bond decimation algorithm with improved numerical stability, and we describe how to incorporate symmetry into this algorithm. While statistical sampling error means that we are not yet able to make a definite statement, themore » behavior of the simulation at long times indicates the appearance of either 'revivals' in the order parameter as predicted by Hastings and Levitov (e-print arXiv:0806.4283) or of a distinct shoulder in the decay of the order parameter.« less

  11. Formulation and evaluation of buccal patches for delivery of atenolol.

    PubMed

    Adhikari, Surya N Ratha; Nayak, Bhabani S; Nayak, Amit K; Mohanty, Biswaranjan

    2010-09-01

    Buccal patches for the delivery of atenolol using sodium alginate with various hydrophilic polymers like carbopol 934 P, sodium carboxymethyl cellulose, and hydroxypropyl methylcellulose in various proportions and combinations were fabricated by solvent casting technique. Various physicomechanical parameters like weight variation, thickness, folding endurance, drug content, moisture content, moisture absorption, and various ex vivo mucoadhesion parameters like mucoadhesive strength, force of adhesion, and bond strength were evaluated. An in vitro drug release study was designed, and it was carried out using commercial semipermeable membrane. All these fabricated patches were sustained for 24 h and obeyed first-order release kinetics. Ex vivo drug permeation study was also performed using porcine buccal mucosa, and various drug permeation parameters like flux and lag time were determined.

  12. 15N backbone dynamics of the S-peptide from ribonuclease A in its free and S-protein bound forms: toward a site-specific analysis of entropy changes upon folding.

    PubMed Central

    Alexandrescu, A. T.; Rathgeb-Szabo, K.; Rumpel, K.; Jahnke, W.; Schulthess, T.; Kammerer, R. A.

    1998-01-01

    Backbone 15N relaxation parameters (R1, R2, 1H-15N NOE) have been measured for a 22-residue recombinant variant of the S-peptide in its free and S-protein bound forms. NMR relaxation data were analyzed using the "model-free" approach (Lipari & Szabo, 1982). Order parameters obtained from "model-free" simulations were used to calculate 1H-15N bond vector entropies using a recently described method (Yang & Kay, 1996), in which the form of the probability density function for bond vector fluctuations is derived from a diffusion-in-a-cone motional model. The average change in 1H-15N bond vector entropies for residues T3-S15, which become ordered upon binding of the S-peptide to the S-protein, is -12.6+/-1.4 J/mol.residue.K. 15N relaxation data suggest a gradient of decreasing entropy values moving from the termini toward the center of the free peptide. The difference between the entropies of the terminal and central residues is about -12 J/mol residue K, a value comparable to that of the average entropy change per residue upon complex formation. Similar entropy gradients are evident in NMR relaxation studies of other denatured proteins. Taken together, these observations suggest denatured proteins may contain entropic contributions from non-local interactions. Consequently, calculations that model the entropy of a residue in a denatured protein as that of a residue in a di- or tri-peptide, might over-estimate the magnitude of entropy changes upon folding. PMID:9521116

  13. Effects of the bond polarity on the structural and dynamical properties of silica-like liquids

    NASA Astrophysics Data System (ADS)

    Pafong Sanjon, E.; Drossel, B.; Vogel, M.

    2018-03-01

    Silica is a network-forming liquid that shares many properties with water due to its tetrahedral structure. It undergoes a transition from a fragile to a strong liquid as the temperature is decreased, which is accompanied by a structural change to lower density and higher tetrahedral order. In order to disentangle the effects of Coulomb and van der Waals interactions on the structure and dynamics of liquid silica, we modify the bond polarity by changing the partial charges assigned to each atom. Using molecular dynamics simulations, we show that density, tetrahedral order, and structural relaxation times decrease when reducing bond polarity. Moreover, we find that the density maximum and the fragile-to-strong transition move to lower temperatures until they eventually vanish when the partial charges are decreased below approximately 75% of their regular value. Irrespective of whether strong or fragile behavior exists, structural relaxation is governed by hopping motion at sufficiently low temperatures. As long as there is a strong regime, the energy barrier associated with strong dynamics decreases with decreasing partial charges, but the dependence on the bond polarity differs from that of the activation energy in the Arrhenius regime at high temperatures. We show that the fragile-to-strong transition is associated with structural changes occurring between the first and second coordination shells that lead to a decrease in density and an increase in tetrahedral order. In particular, independent of the value of the partial charges, the distribution of the local structures is the same at this dynamic crossover, but we find no evidence that the effect occurs upon crossing the Widom line. In the fragile regime at intermediate temperatures, the relaxation times are well described by a previously proposed model which decomposes the apparent activation energy into a constant single-particle contribution and a temperature-dependent collective contribution. However, our results for silica-like melts do not obey several common relations of the model parameters reported for molecular glass formers.

  14. Polarizable atomic multipole X-ray refinement: application to peptide crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schnieders, Michael J.; Fenn, Timothy D.; Howard Hughes Medical Institute

    2009-09-01

    A method to accelerate the computation of structure factors from an electron density described by anisotropic and aspherical atomic form factors via fast Fourier transformation is described for the first time. Recent advances in computational chemistry have produced force fields based on a polarizable atomic multipole description of biomolecular electrostatics. In this work, the Atomic Multipole Optimized Energetics for Biomolecular Applications (AMOEBA) force field is applied to restrained refinement of molecular models against X-ray diffraction data from peptide crystals. A new formalism is also developed to compute anisotropic and aspherical structure factors using fast Fourier transformation (FFT) of Cartesian Gaussianmore » multipoles. Relative to direct summation, the FFT approach can give a speedup of more than an order of magnitude for aspherical refinement of ultrahigh-resolution data sets. Use of a sublattice formalism makes the method highly parallelizable. Application of the Cartesian Gaussian multipole scattering model to a series of four peptide crystals using multipole coefficients from the AMOEBA force field demonstrates that AMOEBA systematically underestimates electron density at bond centers. For the trigonal and tetrahedral bonding geometries common in organic chemistry, an atomic multipole expansion through hexadecapole order is required to explain bond electron density. Alternatively, the addition of interatomic scattering (IAS) sites to the AMOEBA-based density captured bonding effects with fewer parameters. For a series of four peptide crystals, the AMOEBA–IAS model lowered R{sub free} by 20–40% relative to the original spherically symmetric scattering model.« less

  15. Numerical investigation of compaction of deformable particles with bonded-particle model

    NASA Astrophysics Data System (ADS)

    Dosta, Maksym; Costa, Clara; Al-Qureshi, Hazim

    2017-06-01

    In this contribution, a novel approach developed for the microscale modelling of particles which undergo large deformations is presented. The proposed method is based on the bonded-particle model (BPM) and multi-stage strategy to adjust material and model parameters. By the BPM, modelled objects are represented as agglomerates which consist of smaller ideally spherical particles and are connected with cylindrical solid bonds. Each bond is considered as a separate object and in each time step the forces and moments acting in them are calculated. The developed approach has been applied to simulate the compaction of elastomeric rubber particles as single particles or in a random packing. To describe the complex mechanical behaviour of the particles, the solid bonds were modelled as ideally elastic beams. The functional parameters of solid bonds as well as material parameters of bonds and primary particles were estimated based on the experimental data for rubber spheres. Obtained results for acting force and for particle deformations during uniaxial compression are in good agreement with experimental data at higher strains.

  16. Vibrational studies of phosphoryl transfer enzymes: ras- p21(*)magnesium-GTP and Myosin S1(*)magnesium-ADP- vanadate

    NASA Astrophysics Data System (ADS)

    Wang, Jianghua

    1999-07-01

    We have measured the Raman spectra of monophosphate compounds in aqueous solution. The measured frequencies were correlated with P••O valence bond order by using a modification of the Hardcastle- Wachs procedure. The P••O bond order and bond length in phosphates can be determined from vibrational spectra by using the derived bond order/stretching frequency correlation and the bond length/bond order correlation of Brown and Wu. The Raman and infrared spectra of guanosine 5'-diphosphate (GDP) and guanosine 5'-triphosphate (GTP) in aqueous solution were also examined. Frequency shifts were observed as Mg2+ complexes with GDP and GTP in aqueous solution. These results suggested that Mg2+ binds to GDP in a bidentate manner to the α,β P••O bonds and in a tridentate manner to the α,β and γ P••O bonds of Mg•GTP . We have analyzed the previously obtained isotope edited Raman difference spectra of 1:1 complexes of Mg•GDP and Mg•GTP in ras-p21. Frequency changes of the phosphate groups were observed when Mg•GDP , Mg•GTP bind to the protein. Employing both the previous empirical relationships between bond orders/lengths and frequencies as well as vibrational analysis from ab initio calculations, the spectral changes can be explained by the change of the Mg2+ binding sites and hydrogen-bonding. Implications of these structural results for the reaction mechanism of GTP hydrolysis catalyzed by the GTPase are discussed. We have analyzed previously obtained isotope edited Raman difference spectra of the non-bridging V••O bonds of vanadates, both in solution, and when bound to the myosin S1•MgADP complex. By use of ab initio calculations on a model of the vanadate binding site in myosin, the angles between the non-bridging V••O bonds and between these bonds and the apical bonds in the myosin S1•MgADP -Vi complex were determined. The summed bond order of the two apical bonds between the attacking and leaving group oxygens with the central vanadium ion in the S1•MgADP -Vi complex was found to increase only slightly compared with the bond order of the ester V-O bond of a monoester vanadate model compound in solution, suggesting an SN2 like mechanism for the phosphoryl transfer reaction catalyzed by myosin.

  17. Orientational order in smectic liquid-crystalline phases of amphiphilic diols

    NASA Astrophysics Data System (ADS)

    Giesselmann, Frank; Germer, Roland; Saipa, Alexander

    2005-07-01

    The thermotropic smectic phases of amphiphilic 2-(trans-4-n-alkylcyclohexyl)-propane-1,3-diols were investigated by means of small- and wide-angle x-ray scattering and values of the smectic (bi-)layer spacing, the orientational order parameters ⟨P2⟩ and ⟨P4⟩, the orientational distribution function as well as the intralayer correlation length were extracted from the scattering profiles. The results for the octyl homolog indicate that these smectic phases combine a very high degree of smectic one-dimensional-translational order with remarkably low orientational order, the order parameter of which (⟨P2⟩≈0.56) is far below those values typically found in nonamphiphilic smectics. This combination, quite exceptional in thermotropic smectics, most likely originates from the intermolecular hydrogen bonding between the terminal diol groups which seems to be the specific driving force in the formation of the thermotropic smectic structure in these amphiphiles and leads to a type of microphase segregation. Even in the absence of a solvent, the liquid-crystalline ordering of the amphiphilic mesogens comes close to the structure of the so-called neat soaps, found in lyotropic liquid crystals.

  18. Molecular interactions in nanocellulose assembly

    NASA Astrophysics Data System (ADS)

    Nishiyama, Yoshiharu

    2017-12-01

    The contribution of hydrogen bonds and the London dispersion force in the cohesion of cellulose is discussed in the light of the structure, spectroscopic data, empirical molecular-modelling parameters and thermodynamics data of analogue molecules. The hydrogen bond of cellulose is mainly electrostatic, and the stabilization energy in cellulose for each hydrogen bond is estimated to be between 17 and 30 kJ mol-1. On average, hydroxyl groups of cellulose form hydrogen bonds comparable to those of other simple alcohols. The London dispersion interaction may be estimated from empirical attraction terms in molecular modelling by simple integration over all components. Although this interaction extends to relatively large distances in colloidal systems, the short-range interaction is dominant for the cohesion of cellulose and is equivalent to a compression of 3 GPa. Trends of heat of vaporization of alkyl alcohols and alkanes suggests a stabilization by such hydroxyl group hydrogen bonding to be of the order of 24 kJ mol-1, whereas the London dispersion force contributes about 0.41 kJ mol-1 Da-1. The simple arithmetic sum of the energy is consistent with the experimental enthalpy of sublimation of small sugars, where the main part of the cohesive energy comes from hydrogen bonds. For cellulose, because of the reduced number of hydroxyl groups, the London dispersion force provides the main contribution to intermolecular cohesion. This article is part of a discussion meeting issue `New horizons for cellulose nanotechnology'.

  19. Rapid prototyping of versatile atom chips for atom interferometry applications.

    NASA Astrophysics Data System (ADS)

    Kasch, Brian; Squires, Matthew; Olson, Spencer; Kroese, Bethany; Imhof, Eric; Kohn, Rudolph; Stuhl, Benjamin; Schramm, Stacy; Stickney, James

    2016-05-01

    We present recent advances in the manipulation of ultracold atoms with ex-vacuo atom chips (i.e. atom chips that are not inside to the UHV chamber). Details will be presented of an experimental system that allows direct bonded copper (DBC) atom chips to be removed and replaced in minutes, requiring minimal re-optimization of parameters. This system has been used to create Bose-Einstein condensates, as well as magnetic waveguides with precisely tunable axial parameters, allowing double wells, pure harmonic confinement, and modified harmonic traps. We investigate the effects of higher order magnetic field contributions to the waveguide, and the implications for confined atom interferometry.

  20. On Characterization of Barium Rare-Earth Antimonates: Ordered Perovskites Suitable as Substrates for Superconducting Films

    NASA Astrophysics Data System (ADS)

    Alonso, J. A.; Cascales, C.; García Casado, P.; Rasines, I.

    1997-02-01

    The crystal structure of the ordered perovskites Ba2(RSb)O6(R=Y, Ho) is refined from neutron powder diffraction data in the space groupFmoverline3m(No. 225),Z=4, with Ba at 8(c),Rat 4(b), Sb at 4(a), oxygen at 24(e), oxygen positional parameterx=0.2636(2) forR=Y and Ho, and unit cell dimensions ofa/Å=8.4240(3) and 8.4170(2) forR=Y and Ho, respectively. Bond-valence analysis explains how the highly covalent Sb-O bonds determine the overall structure of these perovskites in whichR-O and Ba-O bonds are under compressive and tensile stresses, respectively. The magnetic susceptibility of Ba2(HoSb)O6has been measured in the temperature range 2-350 K. From ana prioriestimation of the crystal-field parameters corresponding to the point site symmetry of the rare-earth,Oh, and using the wave functions associated with the energy levels obtained, the paramagnetic susceptibility and its evolution vs temperature is simulated according to the van Vleck formalism. The observed deviation from the Curie-Weiss behavior at low temperature, very well reproduced, reflects the splitting of the ground state of this cation under the influence of the crystal field.

  1. Macromolecule simulation and CH4 adsorption mechanism of coal vitrinite

    NASA Astrophysics Data System (ADS)

    Yu, Song; Yan-ming, Zhu; Wu, Li

    2017-02-01

    The microscopic mechanism of interactions between CH4 and coal macromolecules is of significant practical and theoretical importance in CBM development and methane storage. Under periodic boundary conditions, the optimal energy configuration of coal vitrinite, which has a higher torsion degree and tighter arrangement, can be determined by the calculation of molecular mechanics (MM) and molecular dynamics (MD), and annealing kinetics simulation based on ultimate analysis, 13C NMR, FT IR and HRTEM. Macromolecular stabilization is primarily due to the van der Waals energy and covalent bond energy, mainly consisting of bond torsion energy and bond angle energy. Using the optimal configuration as the adsorbent, GCMC simulation of vitrinite adsorption of CH4 is conducted. A saturated state is reached after absorbing 17 CH4s per coal vitrinite molecule. CH4 is preferentially adsorbed on the edge, and inclined to gathering around the branched chains of the inner vitrinite sites. Finally, the adsorption parameters are calculated through first principle DFT. The adsorbability order is as follows: aromatic structure> heteroatom rings > oxygen functional groups. The adsorption energy order is as follows: Top < Bond < Center, Up < Down. The order of average RDF better reflects the adsorption ability and that of [-COOH] is lower than those of [sbnd Cdbnd O] and [Csbnd Osbnd C]. CH4 distributed in the distance of 0.99-16 Å to functional groups in the type of monolayer adsorption and the average distance order manifest as [sbnd Cdbnd O] (1.64 Å) < [Csbnd Osbnd C] (1.89 Å) < [sbnd COOH] (3.78 Å) < [-CH3] (4.11 Å) according to the average RDF curves. CH4 enriches around [sbnd Cdbnd O] and [Csbnd O-C] whereas is rather dispersed about [-COOH] and [CH3]. Simulation and experiment data are both in strong agreement with the Langmuir and D-A isothermal adsorption model and the D-A model fit better than Langmuir model. Preferential adsorption sites and orientations in vitrinite are identical to those of graphite/graphene. However, the energy of the most preferential location is much lower than that of graphite/graphene. CH4 is more easily absorbed on the surface of vitrinite. Adsorbability varies considerably at different adsorption locations and sites on the surface of vitrinite. Crystal parameter of vitrinite is a = b = c = 15.8 Å and majority of its micropores are blow 15.8 Å, indicating that the vitrinite have the optimum adsorption aperture. It can explain its higher observed adsorption capacities for CH4 compared with graphite/graphene.

  2. Photoinduced ultrafast charge-order melting: Charge-order inversion and nonthermal effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Veenendaal, Michel

    2016-09-01

    The effect of photoexcitation is studied for a system with checkerboard charge order induced by displacements of ligands around a metal site. The motion of the ligands is treated classically and the electronic charges are simplified to two-level molecular bond charges. The calculations are done for a checkerboard charge-ordered system with about 100 000 ligand oscillators coupled to a fixed-temperature bath. The initial photoexcitation is followed by a rapid decrease in the charge-order parameter within 50–100 femtoseconds while leaving the correlation length almost unchanged. Depending on the fluence, a complete melting of the charge order occurs in less than amore » picosecond. While for low fluences, the system returns to its original state, for full melting, it recovers to its broken-symmetry state leading to an inversion of the charge order. For small long-range interactions, recovery can be slow due to domain formation.« less

  3. Photoinduced ultrafast charge-order melting: Charge-order inversion and nonthermal effects

    DOE PAGES

    van Veenendaal, Michel

    2016-09-01

    The effect of photoexcitation is studied for a system with checkerboard charge order induced by displacements of ligands around a metal site. The motion of the ligands is treated classically and the electronic charges are simplified to two-level molecular bond charges. The calculations are done for a checkerboard charge-ordered system with about 100 000 ligand oscillators coupled to a fixed-temperature bath. The initial photoexcitation is followed by a rapid decrease in the charge-order parameter within 50–100 femtoseconds while leaving the correlation length almost unchanged. Depending on the fluence, a complete melting of the charge order occurs in less than amore » picosecond. While for low fluences, the system returns to its original state, for full melting, it recovers to its broken-symmetry state leading to an inversion of the charge order. Finally, for small long-range interactions, recovery can be slow due to domain formation.« less

  4. Duration of an intense laser pulse can determine the breakage of multiple chemical bonds

    PubMed Central

    Xie, Xinhua; Lötstedt, Erik; Roither, Stefan; Schöffler, Markus; Kartashov, Daniil; Midorikawa, Katsumi; Baltuška, Andrius; Yamanouchi, Kaoru; Kitzler, Markus

    2015-01-01

    Control over the breakage of a certain chemical bond in a molecule by an ultrashort laser pulse has been considered for decades. With the availability of intense non-resonant laser fields it became possible to pre-determine femtosecond to picosecond molecular bond breakage dynamics by controlled distortions of the electronic molecular system on sub-femtosecond time scales using field-sensitive processes such as strong-field ionization or excitation. So far, all successful demonstrations in this area considered only fragmentation reactions, where only one bond is broken and the molecule is split into merely two moieties. Here, using ethylene (C2H4) as an example, we experimentally investigate whether complex fragmentation reactions that involve the breakage of more than one chemical bond can be influenced by parameters of an ultrashort intense laser pulse. We show that the dynamics of removing three electrons by strong-field ionization determines the ratio of fragmentation of the molecular trication into two respectively three moieties. We observe a relative increase of two-body fragmentations with the laser pulse duration by almost an order of magnitude. Supported by quantum chemical simulations we explain our experimental results by the interplay between the dynamics of electron removal and nuclear motion. PMID:26271602

  5. Developing density functional theory for Bose-Einstein condensates. The case of chemical bonding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Putz, Mihai V., E-mail: mvputz@cbg.uvt.ro

    Since the nowadays growing interest in Bose-Einstein condensates due to the expanded experimental evidence on various atomic systems within optical lattices in weak and strong coupling regimes, the connection with Density Functional Theory is firstly advanced within the mean field framework at three levels of comprehension: the many-body normalization condition, Thomas-Fermi limit, and the chemical hardness closure with the inter-bosonic strength and universal Hohenberg-Kohn functional. As an application the traditional Heitler-London quantum mechanical description of the chemical bonding for homopolar atomic systems is reloaded within the non-linear Schrödinger (Gross-Pitaevsky) Hamiltonian; the results show that a two-fold energetic solution is registeredmore » either for bonding and antibonding states, with the bosonic contribution being driven by the square of the order parameter for the Bose-Einstein condensate density in free (gas) motion, while the associate wave functions remain as in classical molecular orbital model.« less

  6. Competition between Hydrogen Bonding and Proton Transfer during Specific Anion Recognition by Dihomooxacalix[4]arene Bidentate Ureas.

    PubMed

    Martínez-González, Eduardo; González, Felipe J; Ascenso, José R; Marcos, Paula M; Frontana, Carlos

    2016-08-05

    Competition between hydrogen bonding and proton transfer reactions was studied for systems composed of electrogenerated dianionic species from dinitrobenzene isomers and substituted dihomooxacalix[4]arene bidentate urea derivatives. To analyze this competition, a second-order ErCrCi mechanism was considered where the binding process is succeeded by proton transfer and the voltammetric responses depend on two dimensionless parameters: the first related to hydrogen bonding reactions, and the second one to proton transfer processes. Experimental results indicated that, upon an increase in the concentration of phenyl-substituted dihomooxacalix[4]arene bidentate urea, voltammetric responses evolve from diffusion-controlled waves (where the binding process is at chemical equilibrium) into irreversible kinetic responses associated with proton transfer. In particular, the 1,3-dinitrobenzene isomer showed a higher proton transfer rate constant (∼25 M(-1) s(-1)) compared to that of the 1,2-dinitrobenzene (∼5 M(-1) s(-1)), whereas the 1,4-dinitrobenzene did not show any proton transfer effect in the experimental conditions employed.

  7. Fractional viscoelasticity of soft elastomers and auxetic foams

    NASA Astrophysics Data System (ADS)

    Solheim, Hannah; Stanisauskis, Eugenia; Miles, Paul; Oates, William

    2018-03-01

    Dielectric elastomers are commonly implemented in adaptive structures due to their unique capabilities for real time control of a structure's shape, stiffness, and damping. These active polymers are often used in applications where actuator control or dynamic tunability are important, making an accurate understanding of the viscoelastic behavior critical. This challenge is complicated as these elastomers often operate over a broad range of deformation rates. Whereas research has demonstrated success in applying a nonlinear viscoelastic constitutive model to characterize the behavior of Very High Bond (VHB) 4910, robust predictions of the viscoelastic response over the entire range of time scales is still a significant challenge. An alternative formulation for viscoelastic modeling using fractional order calculus has shown significant improvement in predictive capabilities. While fractional calculus has been explored theoretically in the field of linear viscoelasticity, limited experimental validation and statistical evaluation of the underlying phenomena have been considered. In the present study, predictions across several orders of magnitude in deformation rates are validated against data using a single set of model parameters. Moreover, we illustrate the fractional order is material dependent by running complementary experiments and parameter estimation on the elastomer VHB 4949 as well as an auxetic foam. All results are statistically validated using Bayesian uncertainty methods to obtain posterior densities for the fractional order as well as the hyperelastic parameters.

  8. Activation and thermodynamic parameter study of the heteronuclear C=O···H-N hydrogen bonding of diphenylurethane isomeric structures by FT-IR spectroscopy using the regularized inversion of an eigenvalue problem.

    PubMed

    Spegazzini, Nicolas; Siesler, Heinz W; Ozaki, Yukihiro

    2012-08-02

    The doublet of the ν(C=O) carbonyl band in isomeric urethane systems has been extensively discussed in qualitative terms on the basis of FT-IR spectroscopy of the macromolecular structures. Recently, a reaction extent model was proposed as an inverse kinetic problem for the synthesis of diphenylurethane for which hydrogen-bonded and non-hydrogen-bonded C=O functionalities were identified. In this article, the heteronuclear C=O···H-N hydrogen bonding in the isomeric structure of diphenylurethane synthesized from phenylisocyanate and phenol was investigated via FT-IR spectroscopy, using a methodology of regularization for the inverse reaction extent model through an eigenvalue problem. The kinetic and thermodynamic parameters of this system were derived directly from the spectroscopic data. The activation and thermodynamic parameters of the isomeric structures of diphenylurethane linked through a hydrogen bonding equilibrium were studied. The study determined the enthalpy (ΔH = 15.25 kJ/mol), entropy (TΔS = 14.61 kJ/mol), and free energy (ΔG = 0.6 kJ/mol) of heteronuclear C=O···H-N hydrogen bonding by FT-IR spectroscopy through direct calculation from the differences in the kinetic parameters (δΔ(‡)H, -TδΔ(‡)S, and δΔ(‡)G) at equilibrium in the chemical reaction system. The parameters obtained in this study may contribute toward a better understanding of the properties of, and interactions in, supramolecular systems, such as the switching behavior of hydrogen bonding.

  9. Viscoelasticity imaging using ultrasound: parameters and error analysis

    PubMed Central

    Sridhar, M; Liu, J

    2009-01-01

    Techniques are being developed to image viscoelastic features of soft tissues from time-varying strain. A compress-hold-release stress stimulus commonly used in creep-recovery measurements is applied to samples to form images of elastic strain and strain retardance times. While the intended application is diagnostic breast imaging, results in gelatin hydrogels are presented to demonstrate the techniques. The spatiotemporal behaviour of gelatin is described by linear viscoelastic theory formulated for polymeric solids. Measured creep responses of polymers are frequently modelled as sums of exponentials whose time constants describe the delay or retardation of the full strain response. We found the spectrum of retardation times τ to be continuous and bimodal, where the amplitude at each τ represents the relative number of molecular bonds with a given strength and conformation. Such spectra indicate that the molecular weight of the polymer fibres between bonding points is large. Imaging parameters are found by summarizing these complex spectral distributions at each location in the medium with a second-order Voigt rheological model. This simplification reduces the dimensionality of the data for selecting imaging parameters while preserving essential information on how the creeping deformation describes fluid flow and collagen matrix restructuring in the medium. The focus of this paper is on imaging parameter estimation from ultrasonic echo data, and how jitter from hand-held force applicators used for clinical applications propagate through the imaging chain to generate image noise. PMID:17440244

  10. Microwave dielectric relaxation spectroscopy study of propylene glycol/ethanol binary mixtures: Temperature dependence

    NASA Astrophysics Data System (ADS)

    Vishwam, T.; Shihab, Suriya; Murthy, V. R. K.; Tiong, Ha Sie; Sreehari Sastry, S.

    2017-05-01

    Complex dielectric permittivity measurements of propylene glycol (PG) in ethanol at various mole fractions were measured by using open-ended coaxial probe technique at different temperatures in the frequency range 0.02 < ν/GHz < 20. The dipole moment (μ), excess dipole moment (Δμ),excess permittivity (εE), excess inverse relaxation time(1/τ)E, Bruggeman parameter (fB), excess Helmholtz energy (ΔFE) are determined using experimental data. From the minimum energy based geometry optimization, dipole moments of individual monomers of propylene glycol and ethanol and their binary system have been evaluated theoretically at gaseous state as well as alcoholic medium by using PCM and IEFPCM solvation models from the Hatree-Fock (HF) and Density Functional Theory (DFT-B3LYP) methods with 6-311G* and 6-311G** basis sets. The obtained results have been interpreted in terms of the short and long range ordering of the dipoles, Kirkwood correlation factor (geff), thermodynamic parameters, mean molecular polarizability (αM) and interaction in the mixture through hydrogen bonding. Dielectric relaxation study of propylene glycol in ethanol medium Determination of excess dielectric and thermodynamic parameters Comparison of experimental dipole moment with theoretical calculations Interpretation of the molecular interactions in the liquid through H-bonding Correlation between the evaluated dielectric parameters and theoretical results

  11. Magnetic susceptibility of alkali-tetracyanoquinodimethane salts and extended Hubbard models with bond order and charge density wave phases

    NASA Astrophysics Data System (ADS)

    Kumar, Manoranjan; Topham, Benjamin J.; Yu, RuiHui; Ha, Quoc Binh Dang; Soos, Zoltán G.

    2011-06-01

    The molar spin susceptibilities χ(T) of Na-tetracyanoquinodimethane (TCNQ), K-TCNQ, and Rb-TCNQ(II) are fit quantitatively to 450 K in terms of half-filled bands of three one-dimensional Hubbard models with extended interactions using exact results for finite systems. All three models have bond order wave (BOW) and charge density wave (CDW) phases with boundary V = Vc(U) for nearest-neighbor interaction V and on-site repulsion U. At high T, all three salts have regular stacks of TCNQ^- anion radicals. The χ(T) fits place Na and K in the CDW phase and Rb(II) in the BOW phase with V ≈ Vc. The Na and K salts have dimerized stacks at T < Td while Rb(II) has regular stacks at 100 K. The χ(T) analysis extends to dimerized stacks and to dimerization fluctuations in Rb(II). The three models yield consistent values of U, V, and transfer integrals t for closely related TCNQ^- stacks. Model parameters based on χ(T) are smaller than those from optical data that in turn are considerably reduced by electronic polarization from quantum chemical calculation of U, V, and t of adjacent TCNQ^- ions. The χ(T) analysis shows that fully relaxed states have reduced model parameters compared to optical or vibration spectra of dimerized or regular TCNQ^- stacks.

  12. Investigation of ball bond integrity for 0.8 mil (20 microns) diameter gold bonding wire on low k die in wire bonding technology

    NASA Astrophysics Data System (ADS)

    Kudtarkar, Santosh Anil

    Microelectronics technology has been undergoing continuous scaling to accommodate customer driven demand for smaller, faster and cheaper products. This demand has been satisfied by using novel materials, design techniques and processes. This results in challenges for the chip connection technology and also the package technology. The focus of this research endeavor was restricted to wire bond interconnect technology using gold bonding wires. Wire bond technology is often regarded as a simple first level interconnection technique. In reality, however, this is a complex process that requires a thorough understanding of the interactions between the design, material and process variables, and their impact on the reliability of the bond formed during this process. This research endeavor primarily focused on low diameter, 0.8 mil thick (20 mum) diameter gold bonding wire. Within the scope of this research, the integrity of the ball bond formed by 1.0 mil (25 mum) and 0.8 mil (20 mum) diameter wires was compared. This was followed by the evaluation of bonds formed on bond pads having doped SiO2 (low k) as underlying structures. In addition, the effect of varying the percentage of the wire dopant, palladium and bonding process parameters (bonding force, bond time, ultrasonic energy) for 0.8 mil (20 mum) bonding wire was also evaluated. Finally, a degradation empirical model was developed to understand the decrease in the wire strength. This research effort helped to develop a fundamental understanding of the various factors affecting the reliability of a ball bond from a design (low diameter bonding wire), material (low k and bonding wire dopants), and process (wire bonding process parameters) perspective for a first level interconnection technique, namely wire bonding. The significance of this research endeavor was the systematic investigation of the ball bonds formed using 0.8 mil (20 microm) gold bonding wire within the wire bonding arena. This research addressed low k structures on 90 nm silicon technology, bonding wires with different percentage of doping element (palladium), and different levels of bonding process parameters. An empirical model to understand the high temperature effects for bonds formed using the low diameter wire was also developed.

  13. Bond Order and Chemical Properties of BF, CO, and N[subscript 2

    ERIC Educational Resources Information Center

    Martinie, Ryan J.; Bultema, Jarred J.; Vander Wal, Mark N.; Burkhart, Brandon J.; Vander Griend, Douglas A.; DeKock, Roger L.

    2011-01-01

    The traditional chemical approaches, Lewis electron dot structures and molecular orbital theory, predict the relative bond orders of boron monofluoride, carbon monoxide, and dinitrogen to be BF less than CO less than N[subscript 2]. This is quantified by quantum mechanical, theoretical studies that show the bond orders to be approximately 1.4,…

  14. Ab initio study of properties of BaBiO3 at high pressure

    NASA Astrophysics Data System (ADS)

    Martoňák, Roman; Ceresoli, Davide; Kagayama, Tomoko; Tosatti, Erio

    BaBiO3 is a mixed-valence perovskite which escapes metallic state by creating a Bi-O bond disproportionation or CDW pattern, resulting in a Peierls semiconductor with gap of nearly 1 eV at zero pressure. Evolution of structural and electronic properties at high pressure is, however, largely unknown. Pressure, it might be natural to expect, could reduce the bond-disproportionation and bring the system closer to metalicity or even superconductivity. We address this question by ab initio DFT methods based on GGA and hybrid functionals in combination with crystal structure prediction techniques based on genetic algorithms. We analyze the pressure evolution of bond disproportionation as well as other order parameters related to octahedra rotation for various phases in connection with corresponding evolution of the electronic structure. Results indicate that BaBiO3 continues to resist metalization also under pressure, through structural phase transitions which sustain and in fact increase the diversity of length of Bi-O bonds for neighboring Bi ions, in agreement with preliminary high pressure resistivity data. R.M. Slovak Research and Development Agency Contract APVV-15-0496, VEGA project No. 1-0904-15; E.T. ERC MODPHYSFRICT Advanced Grant No. 320796.

  15. Effect of grit-blasting on substrate roughness and coating adhesion

    NASA Astrophysics Data System (ADS)

    Varacalle, Dominic J.; Guillen, Donna Post; Deason, Douglas M.; Rhodaberger, William; Sampson, Elliott

    2006-09-01

    Statistically designed experiments were performed to compare the surface roughness produced by grit blasting A36/1020 steel using different abrasives. Grit blast media, blast pressure, and working distance were varied using a Box-type statistical design of experiment (SDE) approach. The surface textures produced by four metal grits (HG16, HG18, HG25, and HG40) and three conventional grits (copper slag, coal slag, and chilled iron) were compared. Substrate roughness was measured using surface profilometry and correlated with operating parameters. The HG16 grit produced the highest surface roughness of all the grits tested. Aluminum and zinc-aluminum coatings were deposited on the grit-blasted substrates using the twin-wire electric are (TWEA) process. Bond strength of the coatings was measured with a portable adhesion tester in accordance with ASTM standard D 4541. The coatings on substrates roughened with steel grit exhibit superior bond strength to those prepared with conventional grit. For aluminum coatings sprayed onto surfaces prepared with the HG16 grit, the bond strength was most influenced by current, spray distance, and spray gun pressure (in that order). The highest bond strength for the zinc-aluminum coatings was attained on surfaces prepared using the metal grits.

  16. A note on anomalous band-gap variations in semiconductors with temperature

    NASA Astrophysics Data System (ADS)

    Chakraborty, P. K.; Mondal, B. N.

    2018-03-01

    An attempt is made to theoretically study the band-gap variations (ΔEg) in semiconductors with temperature following the works, did by Fan and O'Donnell et al. based on thermodynamic functions. The semiconductor band-gap reflects the bonding energy. An increase in temperature changes the chemical bondings, and electrons are promoted from valence band to conduction band. In their analyses, they made several approximations with respect to temperature and other fitting parameters leading to real values of band-gap variations with linear temperature dependences. In the present communication, we have tried to re-analyse the works, specially did by Fan, and derived an analytical model for ΔEg(T). Because, it was based on the second-order perturbation technique of thermodynamic functions. Our analyses are made without any approximations with respect to temperatures and other fitting parameters mentioned in the text, leading to a complex functions followed by an oscillating nature of the variations of ΔEg. In support of the existence of the oscillating energy band-gap variations with temperature in a semiconductor, possible physical explanations are provided to justify the experimental observation for various materials.

  17. Optical parameters of Ge15Sb5Se80 and Ge15Sb5Te80 from ellipsometric measurements

    NASA Astrophysics Data System (ADS)

    Abdel-Wahab, F.; Ashraf, I. M.; Alomairy, S. E.

    2018-02-01

    The optical properties of Ge15Sb5Se80 (GSS) and Ge15Sb5Te80 (GST) films prepared by thermal evaporation method were investigated in the photon energy range from 0.9 eV to 5 eV by using a variable-angle spectroscopic ellipsometer. Combinations of multiple Gaussian, and Tauc-Lorentz or Cody-Lorentz dispersion functions are used to fit the experimental data. The models' parameters (Lorentz oscillator amplitude, resonance energy, oscillator width, optical band gap, and Urbach energy) of both GSS and GST films were calculated. Refractive indices and extinction coefficients of the films were determined. Analysis of the absorption coefficient shows that the optical absorption edge of GSS and GST films to be 1.6 eV and 0.89 eV, respectively. Manca's relation based on mean bond energy and the bond statistics of chemically ordered model (COM) and random covalent network model (CRNM) is applied for the estimation of the optical band gap (Eg) of the investigated films. A good agreement between experimental and calculated Eg is obtained.

  18. Spectroscopic investigations on Pr3+ ions doped lead telluro-borate glasses for photonic applications

    NASA Astrophysics Data System (ADS)

    Suthanthirakumar, P.; Mariyappan, M.; Marimuthu, K.

    2018-04-01

    A new series of Lead telluro-borate glasses doped with different concentrations of Pr3+ ions (xPLTB) were prepared by melt quenching technique and their structural and spectroscopic properties were investigated by recording XRD, FTIR, optical absorption and luminescence spectral measurements. XRD measurements confirm the amorphous nature and the FTIR spectra reveal the presence of different vibrational modes of borate and tellurite networks in the prepared glasses. The bonding parameter values (δ) obtained from the absorption band positions indicates that the bonding between Pr3+ ions and their surrounding ligands is of ionic in nature. The optical band gap (Eopt) corresponding to the direct and indirect allowed transitions were determined with the framework of tauc's plot. From the luminescence spectra, important radiative parameters such as stimulated emission cross-section (σPE) , branching ratios (βR) and radiative lifetime (τR) were calculated for the dominant emission transition 3P0→3H4 (blue) in order to suggest the suitability of the studied glasses for suitable photonic applications.

  19. Itinerant fermions on a triangular lattice: Unconventional magnetism and other ordered states

    NASA Astrophysics Data System (ADS)

    Ye, Mengxing; Chubukov, Andrey V.

    2018-06-01

    We consider a system of 2D fermions on a triangular lattice with well separated electron and hole pockets of similar sizes, centered at certain high-symmetry points in the Brillouin zone. We first analyze Stoner-type spin-density-wave (SDW) magnetism. We show that SDW order is degenerate at the mean-field level. Beyond mean-field, the degeneracy is lifted and is either 120∘ "triangular" order (same as for localized spins), or a collinear order with antiferromagnetic spin arrangement on two-thirds of sites, and nonmagnetic on the rest of sites. We also study a time-reversal symmetric directional spin bond order, which emerges when some interactions are repulsive and some are attractive. We show that this order is also degenerate at a mean-field level, but beyond mean-field the degeneracy is again lifted. We next consider the evolution of a magnetic order in a magnetic field starting from an SDW state in zero field. We show that a field gives rise to a canting of an SDW spin configuration. In addition, it necessarily triggers the directional bond order, which, we argue, is linearly coupled to the SDW order in a finite field. We derive the corresponding term in the free energy. Finally, we consider the interplay between an SDW order and superconductivity and charge order. For this, we analyze the flow of the couplings within parquet renormalization group (pRG) scheme. We show that magnetism wins if all interactions are repulsive and there is little energy space for pRG to develop. However, if system parameters are such that pRG runs over a wide range of energies, the system may develop either superconductivity or an unconventional charge order, which breaks time-reversal symmetry.

  20. Theoretical studies of the EPR parameters and local structures for Cu2+-doped cobalt ammonium phosphate hexahydrate

    NASA Astrophysics Data System (ADS)

    Li, Chao-Ying; Liu, Shi-Fei; Fu, Jin-Xian

    2015-11-01

    High-order perturbation formulas for a 3d9 ion in rhombically elongated octahedral was applied to calculate the electron paramagnetic resonance (EPR) parameters (the g factors, gi, and the hyperfine structure constants Ai, i = x, y, z) of the rhombic Cu2+ center in CoNH4PO4.6H2O. In the calculations, the required crystal-field parameters are estimated from the superposition model which enables correlation of the crystal-field parameters and hence the EPR parameters with the local structure of the rhombic Cu2+ center. Based on the calculations, the ligand octahedral (i.e. [Cu(H2O)6]2+ cluster) are found to experience the local bond length variations ΔZ (≈0.213 Å) and δr (≈0.132 Å) along axial and perpendicular directions due to the Jahn-Teller effect. Theoretical EPR parameters based on the above local structure are in good agreement with the observed values; the results are discussed.

  1. Theoretical investigation of M@Pb122- and M@Sn122- Zintl clusters (M = Lrn+, Lun+, La3+, Ac3+ and n = 0, 1, 2, 3).

    PubMed

    Joshi, Meenakshi; Chandrasekar, Aditi; Ghanty, Tapan K

    2018-06-06

    The positions of lawrencium (Lr), lutetium (Lu), actinium (Ac) and lanthanum (La) in the periodic table have been a controversial topic for quite some time. According to studies carried out by different groups with their justifications, these elements may potentially be placed in the d-block, p-block or all four in a 15 element f-block. The present work looks into this issue from a new perspective, which involves encapsulation of these four elements into Zintl ion clusters, Pb122- and Sn122-, followed by the determination of the structural, thermodynamic and electronic properties of these endohedral M@Pb122- and M@Sn122- clusters (M = Lrn+, Lun+ with n = 0, 1, 2, 3) using first principles based density functional theory (DFT). These parameters are compared with similar clusters encapsulated La3+ and Ac3+ ions in order to seek out similarities and differences to draw conclusions about their placement in the periodic table. For the first time the structural, energetic, and electronic properties of these metal atom/ion encapsulated Pb122- and Sn122- clusters have been investigated thoroughly. Structural parameters such as bond distances, geometry and symmetry, electronic properties viz. the density of states, the molecular orbital ordering, the electron localization function, bond critical point properties and charge distributions have been analyzed. Additionally, the thermodynamic property of the binding energy during the encapsulation process has also been calculated. All M@Pb12+ and M@Sn12+ (M = Lr and Lu) clusters form stable 18 bonding electron magic number systems with shell closing. They show negative values of binding energy and relatively large HOMO-LUMO energy gaps indicating the stability of such clusters. All the calculated parameters for Lr encapsulated clusters closely match with the corresponding calculated parameters of Lu encapsulated clusters, confirming the similarity between Lr and Lu metal atoms in various oxidation states, though their atomic ground state valence electronic configurations are different. The effect of spin orbit coupling has also been investigated using the ZORA approach. It is interesting to discover that La and Ac showed striking similarities to Lr and Lu with respect to all the properties investigated and have formed a stable 18-electron system.

  2. Unifying mechanical and thermodynamic descriptions across the thioredoxin protein family.

    PubMed

    Mottonen, James M; Xu, Minli; Jacobs, Donald J; Livesay, Dennis R

    2009-05-15

    We compare various predicted mechanical and thermodynamic properties of nine oxidized thioredoxins (TRX) using a Distance Constraint Model (DCM). The DCM is based on a nonadditive free energy decomposition scheme, where entropic contributions are determined from rigidity and flexibility of structure based on distance constraints. We perform averages over an ensemble of constraint topologies to calculate several thermodynamic and mechanical response functions that together yield quantitative stability/flexibility relationships (QSFR). Applied to the TRX protein family, QSFR metrics display a rich variety of similarities and differences. In particular, backbone flexibility is well conserved across the family, whereas cooperativity correlation describing mechanical and thermodynamic couplings between the residue pairs exhibit distinctive features that readily standout. The diversity in predicted QSFR metrics that describe cooperativity correlation between pairs of residues is largely explained by a global flexibility order parameter describing the amount of intrinsic flexibility within the protein. A free energy landscape is calculated as a function of the flexibility order parameter, and key values are determined where the native-state, transition-state, and unfolded-state are located. Another key value identifies a mechanical transition where the global nature of the protein changes from flexible to rigid. The key values of the flexibility order parameter help characterize how mechanical and thermodynamic response is linked. Variation in QSFR metrics and key characteristics of global flexibility are related to the native state X-ray crystal structure primarily through the hydrogen bond network. Furthermore, comparison of three TRX redox pairs reveals differences in thermodynamic response (i.e., relative melting point) and mechanical properties (i.e., backbone flexibility and cooperativity correlation) that are consistent with experimental data on thermal stabilities and NMR dynamical profiles. The results taken together demonstrate that small-scale structural variations are amplified into discernible global differences by propagating mechanical couplings through the H-bond network.

  3. Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom typing

    PubMed Central

    Vanommeslaeghe, K.; MacKerell, A. D.

    2012-01-01

    Molecular mechanics force fields are widely used in computer-aided drug design for the study of drug-like molecules alone or interacting with biological systems. In simulations involving biological macromolecules, the biological part is typically represented by a specialized biomolecular force field, while the drug is represented by a matching general (organic) force field. In order to apply these general force fields to an arbitrary drug-like molecule, functionality for assignment of atom types, parameters and charges is required. In the present article, which is part I of a series of two, we present the algorithms for bond perception and atom typing for the CHARMM General Force Field (CGenFF). The CGenFF atom typer first associates attributes to the atoms and bonds in a molecule, such as valence, bond order, and ring membership among others. Of note are a number of features that are specifically required for CGenFF. This information is then used by the atom typing routine to assign CGenFF atom types based on a programmable decision tree. This allows for straightforward implementation of CGenFF’s complicated atom typing rules and for equally straightforward updating of the atom typing scheme as the force field grows. The presented atom typer was validated by assigning correct atom types on 477 model compounds including in the training set as well as 126 test-set molecules that were constructed to specifically verify its different components. The program may be utilized via an online implementation at https://www.paramchem.org/. PMID:23146088

  4. Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom typing.

    PubMed

    Vanommeslaeghe, K; MacKerell, A D

    2012-12-21

    Molecular mechanics force fields are widely used in computer-aided drug design for the study of drug-like molecules alone or interacting with biological systems. In simulations involving biological macromolecules, the biological part is typically represented by a specialized biomolecular force field, while the drug is represented by a matching general (organic) force field. In order to apply these general force fields to an arbitrary drug-like molecule, functionality for assignment of atom types, parameters, and charges is required. In the present article, which is part I of a series of two, we present the algorithms for bond perception and atom typing for the CHARMM General Force Field (CGenFF). The CGenFF atom typer first associates attributes to the atoms and bonds in a molecule, such as valence, bond order, and ring membership among others. Of note are a number of features that are specifically required for CGenFF. This information is then used by the atom typing routine to assign CGenFF atom types based on a programmable decision tree. This allows for straightforward implementation of CGenFF's complicated atom typing rules and for equally straightforward updating of the atom typing scheme as the force field grows. The presented atom typer was validated by assigning correct atom types on 477 model compounds including in the training set as well as 126 test-set molecules that were constructed to specifically verify its different components. The program may be utilized via an online implementation at https://www.paramchem.org/ .

  5. 19 CFR 19.33 - General order; transportation in bond.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Bonded for the Storage of Wheat § 19.33 General order; transportation in bond. The provisions of §§ 19.29 through 19.32 shall be applicable to those parts of any premises in which imported wheat is stored in a...

  6. Interface bonding of SA508-3 steel under deformation and high temperature diffusion

    NASA Astrophysics Data System (ADS)

    Xu, Bin; Shao, Chunjuan; Sun, Mingyue

    2018-05-01

    There are mainly two parameters affecting high temperature interface bonding: deformation and diffusion. To study these two parameters, interface bonding of SA508-3 bainitic steel at 1100°C are simulated by gleeble3500 thermal simulator. The results show that interface of SA508-3 steel can be bonded under deformation and high temperature. For a specimen pressed at 1100°C without further high temperature diffusion, a reduction ratio of 30% can make the interface begun to bond, but the interface is still part of the grain boundary and small grains exist near the interface. When reduction ratio reaches 50%, the interface can be completely bonded and the microstructure near the interface is the same as that of the base material. When deformation is small, long time diffusion can also help the interface bonding. The results show that when the diffusion time is long enough, the interface under small deformation can also be bonded. For a specimen holding for 24h at 1100°C, only 13% reduction ratio is enough for interface bonding.

  7. NMR Investigations of Noncovalent Carbon Tetrel Bonds. Computational Assessment and Initial Experimental Observation.

    PubMed

    Southern, Scott A; Bryce, David L

    2015-12-10

    Group IV tetrel elements may act as tetrel bond donors, whereby a region of positive electrostatic potential (σ-hole) interacts with a Lewis base. The results of calculations of NMR parameters are reported for a series of model compounds exhibiting tetrel bonding from a methyl carbon to the oxygen or nitrogen atoms in various functional groups. The (13)C chemical shift (δiso) and the (1c)J((13)C,Y) coupling (Y = (17)O, (15)N) across the tetrel bond are recorded as a function of geometry. The sensitivity of the NMR parameters to the noncovalent interaction is demonstrated via an increase in δiso and in |(1c)J((13)C,Y)| as the tetrel bond shortens. Gauge-including projector-augmented wave density functional theory (DFT) calculations of δiso are reported for crystals that exhibit tetrel bonding in the solid state. Experimental δiso values for solid sarcosine and its tetrel-bonded salts corroborate the computational findings. This work offers new insights into tetrel bonding and facilitates the incorporation of tetrel bonds as restraints in NMR crystallographic structure refinement.

  8. Development of a shock wave adhesion test for composite bonds by laser pulsed and mechanical impacts

    NASA Astrophysics Data System (ADS)

    Ecault, Romain; Boustie, Michel; Touchard, Fabienne; Arrigoni, Michel; Berthe, Laurent; CNRS Collaboration

    2013-06-01

    Evaluating the bonding quality of composite material is becoming one of the main challenges faced by aeronautic industries. This work aims the development of a technique using shock wave, which would enable to quantify the bonding mechanical quality. Laser shock experiments were carried out. This technique enables high tensile stress generation in the thickness of composite bond without any mechanical contact. The resulting damage has been quantified using different method such as confocal microscopy, ultrasound and cross section observation. The discrimination between a correct bond and a weak bond was possible thanks to these experiments. Nevertheless, laser sources are not well adapted for optimization of such a test since it has often fixed parameters. That is why mechanical impacts bonded composites were also performed in this work. By changing the thickness of aluminum projectiles, the tensile stresses generated by the shock wave propagation were moved toward the composite/bond interface. The observations made prove that the optimization of the technique is possible. The key parameters for the development of a bonding test using shock wave have been identified.

  9. Comparison between layering NbSe2 and rod characteristic of MgB2 by investigation of elastic constants

    NASA Astrophysics Data System (ADS)

    Shokri, Asiye; Yazdani, Ahmad; Barakati, Behrad

    2018-03-01

    The delicate balancing of strong anisotropy on strength of hybridisation resulted to CDW- order “TCDW=33K” and finally emerging superconductivity at “Tc = 7.2K” are the most intriguing question in characteristic behaviour of NbSe2. On other hand, the original mechanism of MgB2 old superconductor, which has unlike the cuprates a lower anisotropy on strength hybridisation is still unknown. We believe this could result to bond exchange and larger coherence length of the grain boundary to current. Since the cause and the mechanism of band strengths of two original layering and rod structures are consequence of bond- rupturing-atomic displacement, here the stability of crystalline structure of inter atomic potential through the elasticity-compressibility is investigated. Consequently, in order to clear out the strong difference between the layering NbSe2 and domination of rod-character of MgB2 the stability of both crystal structures through the cohesive energy c/a, czz and c33 are investigated. The proposed investigations are more evident on different characteristic behaviour of calculated parameters.

  10. CeRuPO: A rare example of a ferromagnetic Kondo lattice

    NASA Astrophysics Data System (ADS)

    Krellner, C.; Kini, N. S.; Brüning, E. M.; Koch, K.; Rosner, H.; Nicklas, M.; Baenitz, M.; Geibel, C.

    2007-09-01

    We have determined the physical ground state properties of the compounds CeRuPO and CeOsPO by means of magnetic susceptibility χ(T) , specific heat C(T) , electrical resistivity ρ(T) , and thermopower S(T) measurements. χ(T) reveals a trivalent 4f1 cerium state in both compounds. For CeRuPO a pronounced decrease of ρ(T) below 50K indicates the onset of coherent Kondo scattering, which is confirmed by enhanced S(T) . The temperature and magnetic field dependence of χ(T) and C(T) evidence ferromagnetic (FM) order at TC=15K . Thus, CeRuPO seems to be one of the rare examples of a FM Kondo lattice. In contrast, CeOsPO shows antiferromagnetic order at TN=4.5K despite only minor changes in lattice parameters and electronic configuration. Additional P31 NMR results support these scenarios. LSDA+U calculations evidence a quasi-two-dimensional electronic band structure, reflecting a strong covalent bonding within the CeO and RuP layers and a weak ioniclike bonding between the layers.

  11. Electrostatic bonding of thin (cycle sine 3 mil) 7070 cover glass to Ta2O5 AR-coated thin (cycle sine 2 mil) silicon wafers and solar cells

    NASA Technical Reports Server (NTRS)

    Egelkrout, D. W.

    1981-01-01

    Electrostatic bonding of thin cover glass to thin solar cells was researched. Silicon solar cells, wafers, and Corning 7070 glass of from about 0.002" to about 0.003" in thickness were used in the investigation to establish optimum parameters for producing mechanically acceptable bonds while minimizing thermal stresses and resultant solar cell electrical parameter degradation.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jimenez-Orozco, Carlos; Florez, Elizabeth; Moreno, Andres

    A systematic study of ethylene adsorption over δ-MoC(001), TiC(001), and ZrC(001) surfaces was conducted by means of calculations based on periodic density functional theory. The structure and electronic properties of each carbide pristine surface had a strong influence in the bonding of ethylene. It was found that the metal and carbon sites of the carbide could participate in the adsorption process. As a consequence of this, very different bonding mechanisms were seen on δ-MoC(001) and TiC(001). The bonding of the molecule on the TMC(001) systems showed only minor similarities to the type of bonding found on a typical metal likemore » Pt(111). In general, the ethylene binding energy follow the trend in stability: ZrC(001) < TiC(001) < δ-MoC(001) < Pt(111). The van der Waals correction to the energy produces large binding energy values, modifies the stability orders and drives the ethylene closer to the surface but the adsorbate geometry parameters remain unchanged. Ethylene was activated on clearly defined binding geometries, changing its hybridization from sp 2 to sp 3 with an elongation (0.16–0.31 Å) of the C=C bond. As a result, on the basis of this theoretical study, δ-MoC(001) is proposed as a potential catalyst for the hydrogenation of olefins, whereas TiC(001) could be useful for their hydrogenolysis.« less

  13. Quantum phase transitions and string orders in the spin-1/2 Heisenberg-Ising alternating chain with Dzyaloshinskii-Moriya interaction.

    PubMed

    Liu, Guang-Hua; You, Wen-Long; Li, Wei; Su, Gang

    2015-04-29

    Quantum phase transitions (QPTs) and the ground-state phase diagram of the spin-1/2 Heisenberg-Ising alternating chain (HIAC) with uniform Dzyaloshinskii-Moriya (DM) interaction are investigated by a matrix-product-state (MPS) method. By calculating the odd- and even-string order parameters, we recognize two kinds of Haldane phases, i.e. the odd- and even-Haldane phases. Furthermore, doubly degenerate entanglement spectra on odd and even bonds are observed in odd- and even-Haldane phases, respectively. A rich phase diagram including four different phases, i.e. an antiferromagnetic (AF), AF stripe, odd- and even-Haldane phases, is obtained. These phases are found to be separated by continuous QPTs: the topological QPT between the odd- and even-Haldane phases is verified to be continuous and corresponds to conformal field theory with central charge c = 1; while the rest of the phase transitions in the phase diagram are found to be c = 1/2. We also revisit, with our MPS method, the exactly solvable case of HIAC model with DM interactions only on odd bonds and find that the even-Haldane phase disappears, but the other three phases, i.e. the AF, AF stripe and odd-Haldane phases, still remain in the phase diagram. We exhibit the evolution of the even-Haldane phase by tuning the DM interactions on the even bonds gradually.

  14. Evaluation of bond strength of resin cements using different general-purpose statistical software packages for two-parameter Weibull statistics.

    PubMed

    Roos, Malgorzata; Stawarczyk, Bogna

    2012-07-01

    This study evaluated and compared Weibull parameters of resin bond strength values using six different general-purpose statistical software packages for two-parameter Weibull distribution. Two-hundred human teeth were randomly divided into 4 groups (n=50), prepared and bonded on dentin according to the manufacturers' instructions using the following resin cements: (i) Variolink (VAN, conventional resin cement), (ii) Panavia21 (PAN, conventional resin cement), (iii) RelyX Unicem (RXU, self-adhesive resin cement) and (iv) G-Cem (GCM, self-adhesive resin cement). Subsequently, all specimens were stored in water for 24h at 37°C. Shear bond strength was measured and the data were analyzed using Anderson-Darling goodness-of-fit (MINITAB 16) and two-parameter Weibull statistics with the following statistical software packages: Excel 2011, SPSS 19, MINITAB 16, R 2.12.1, SAS 9.1.3. and STATA 11.2 (p≤0.05). Additionally, the three-parameter Weibull was fitted using MNITAB 16. Two-parameter Weibull calculated with MINITAB and STATA can be compared using an omnibus test and using 95% CI. In SAS only 95% CI were directly obtained from the output. R provided no estimates of 95% CI. In both SAS and R the global comparison of the characteristic bond strength among groups is provided by means of the Weibull regression. EXCEL and SPSS provided no default information about 95% CI and no significance test for the comparison of Weibull parameters among the groups. In summary, conventional resin cement VAN showed the highest Weibull modulus and characteristic bond strength. There are discrepancies in the Weibull statistics depending on the software package and the estimation method. The information content in the default output provided by the software packages differs to very high extent. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. Learning reduced kinetic Monte Carlo models of complex chemistry from molecular dynamics.

    PubMed

    Yang, Qian; Sing-Long, Carlos A; Reed, Evan J

    2017-08-01

    We propose a novel statistical learning framework for automatically and efficiently building reduced kinetic Monte Carlo (KMC) models of large-scale elementary reaction networks from data generated by a single or few molecular dynamics simulations (MD). Existing approaches for identifying species and reactions from molecular dynamics typically use bond length and duration criteria, where bond duration is a fixed parameter motivated by an understanding of bond vibrational frequencies. In contrast, we show that for highly reactive systems, bond duration should be a model parameter that is chosen to maximize the predictive power of the resulting statistical model. We demonstrate our method on a high temperature, high pressure system of reacting liquid methane, and show that the learned KMC model is able to extrapolate more than an order of magnitude in time for key molecules. Additionally, our KMC model of elementary reactions enables us to isolate the most important set of reactions governing the behavior of key molecules found in the MD simulation. We develop a new data-driven algorithm to reduce the chemical reaction network which can be solved either as an integer program or efficiently using L1 regularization, and compare our results with simple count-based reduction. For our liquid methane system, we discover that rare reactions do not play a significant role in the system, and find that less than 7% of the approximately 2000 reactions observed from molecular dynamics are necessary to reproduce the molecular concentration over time of methane. The framework described in this work paves the way towards a genomic approach to studying complex chemical systems, where expensive MD simulation data can be reused to contribute to an increasingly large and accurate genome of elementary reactions and rates.

  16. Learning reduced kinetic Monte Carlo models of complex chemistry from molecular dynamics

    PubMed Central

    Sing-Long, Carlos A.

    2017-01-01

    We propose a novel statistical learning framework for automatically and efficiently building reduced kinetic Monte Carlo (KMC) models of large-scale elementary reaction networks from data generated by a single or few molecular dynamics simulations (MD). Existing approaches for identifying species and reactions from molecular dynamics typically use bond length and duration criteria, where bond duration is a fixed parameter motivated by an understanding of bond vibrational frequencies. In contrast, we show that for highly reactive systems, bond duration should be a model parameter that is chosen to maximize the predictive power of the resulting statistical model. We demonstrate our method on a high temperature, high pressure system of reacting liquid methane, and show that the learned KMC model is able to extrapolate more than an order of magnitude in time for key molecules. Additionally, our KMC model of elementary reactions enables us to isolate the most important set of reactions governing the behavior of key molecules found in the MD simulation. We develop a new data-driven algorithm to reduce the chemical reaction network which can be solved either as an integer program or efficiently using L1 regularization, and compare our results with simple count-based reduction. For our liquid methane system, we discover that rare reactions do not play a significant role in the system, and find that less than 7% of the approximately 2000 reactions observed from molecular dynamics are necessary to reproduce the molecular concentration over time of methane. The framework described in this work paves the way towards a genomic approach to studying complex chemical systems, where expensive MD simulation data can be reused to contribute to an increasingly large and accurate genome of elementary reactions and rates. PMID:28989618

  17. Prediction of binding constants of protein ligands: A fast method for the prioritization of hits obtained from de novo design or 3D database search programs

    NASA Astrophysics Data System (ADS)

    Böhm, Hans-Joachim

    1998-07-01

    A dataset of 82 protein-ligand complexes of known 3D structure and binding constant Ki was analysed to elucidate the important factors that determine the strength of protein-ligand interactions. The following parameters were investigated: the number and geometry of hydrogen bonds and ionic interactions between the protein and the ligand, the size of the lipophilic contact surface, the flexibility of the ligand, the electrostatic potential in the binding site, water molecules in the binding site, cavities along the protein-ligand interface and specific interactions between aromatic rings. Based on these parameters, a new empirical scoring function is presented that estimates the free energy of binding for a protein-ligand complex of known 3D structure. The function distinguishes between buried and solvent accessible hydrogen bonds. It tolerates deviations in the hydrogen bond geometry of up to 0.25 Å in the length and up to 30 °Cs in the hydrogen bond angle without penalizing the score. The new energy function reproduces the binding constants (ranging from 3.7 × 10-2 M to 1 × 10-14 M, corresponding to binding energies between -8 and -80 kJ/mol) of the dataset with a standard deviation of 7.3 kJ/mol corresponding to 1.3 orders of magnitude in binding affinity. The function can be evaluated very fast and is therefore also suitable for the application in a 3D database search or de novo ligand design program such as LUDI. The physical significance of the individual contributions is discussed.

  18. Learning reduced kinetic Monte Carlo models of complex chemistry from molecular dynamics

    DOE PAGES

    Yang, Qian; Sing-Long, Carlos A.; Reed, Evan J.

    2017-06-19

    Here, we propose a novel statistical learning framework for automatically and efficiently building reduced kinetic Monte Carlo (KMC) models of large-scale elementary reaction networks from data generated by a single or few molecular dynamics simulations (MD). Existing approaches for identifying species and reactions from molecular dynamics typically use bond length and duration criteria, where bond duration is a fixed parameter motivated by an understanding of bond vibrational frequencies. Conversely, we show that for highly reactive systems, bond duration should be a model parameter that is chosen to maximize the predictive power of the resulting statistical model. We demonstrate our methodmore » on a high temperature, high pressure system of reacting liquid methane, and show that the learned KMC model is able to extrapolate more than an order of magnitude in time for key molecules. Additionally, our KMC model of elementary reactions enables us to isolate the most important set of reactions governing the behavior of key molecules found in the MD simulation. We develop a new data-driven algorithm to reduce the chemical reaction network which can be solved either as an integer program or efficiently using L1 regularization, and compare our results with simple count-based reduction. For our liquid methane system, we discover that rare reactions do not play a significant role in the system, and find that less than 7% of the approximately 2000 reactions observed from molecular dynamics are necessary to reproduce the molecular concentration over time of methane. Furthermore, we describe a framework in this work that paves the way towards a genomic approach to studying complex chemical systems, where expensive MD simulation data can be reused to contribute to an increasingly large and accurate genome of elementary reactions and rates.« less

  19. On the Use of Quartic Force Fields in Variational Calculations

    NASA Technical Reports Server (NTRS)

    Fortenberry, Ryan C.; Huang, Xinchuan; Yachmenev, Andrey; Thiel, Walter; Lee, Timothy J.

    2013-01-01

    The use of quartic force fields (QFFs) has been shown to be one of the most effective ways to efficiently compute vibrational frequencies for small molecules. In this paper we outline and discuss how the simple-internal or bond-length bond-angle (BLBA) coordinates can be transformed into Morse-cosine(-sine) coordinates which produce potential energy surfaces from QFFs that possess proper limiting behavior and can effectively describe the vibrational (or rovibrational) energy levels of an arbitrary molecular system. We investigate parameter scaling in the Morse coordinate, symmetry considerations, and examples of transformed QFFs making use of the MULTIMODE, TROVE, and VTET variational vibrational methods. Cases are referenced where variational computations coupled with transformed QFFs produce accuracies compared to experiment for fundamental frequencies on the order of 5 cm(exp -1) and often as good as 1 cm(exp -1).

  20. Solvent induced temperature dependencies of NMR parameters of hydrogen bonded anionic clusters

    NASA Astrophysics Data System (ADS)

    Golubev, Nikolai S.; Shenderovich, Ilja G.; Tolstoy, Peter M.; Shchepkin, Dmitry N.

    2004-07-01

    The solvent induced temperature dependence of NMR parameters (proton and fluorine chemical shifts, the two-bond scalar spin coupling constant across the hydrogen bridge, 2hJFF) for dihydrogen trifluoride anion, (FH) 2F -, in a polar aprotic solvent, CDF 3/CDF 2Cl, is reported and discussed. The results are interpreted in terms of a simple electrostatic model, accounting a decrease of electrostatic repulsion of two negatively charged fluorine atoms on placing into a dielectric medium. The conclusion is drawn that polar medium causes some contraction of hydrogen bonds in ionic clusters combined with a decrease of hydrogen bond asymmetry.

  1. A convenient and accurate wide-range parameter relationship between Buckingham and Morse potential energy functions

    NASA Astrophysics Data System (ADS)

    Lim, Teik-Cheng; Dawson, James Alexander

    2018-05-01

    This study explores the close-range, short-range and long-range relationships between the parameters of the Morse and Buckingham potential energy functions. The results show that the close-range and short-range relationships are valid for bond compression and for very small changes in bond length, respectively, while the long-range relationship is valid for bond stretching. A wide-range relationship is proposed to combine the comparative advantages of the close-range, short-range and long-range parameter relationships. The wide-range relationship is useful for replacing the close-range, short-range and long-range parameter relationships, thereby preventing the undesired effects of potential energy jumps resulting from functional switching between the close-range, short-range and long-range interaction energies.

  2. Crystal field parameters and energy levels scheme of trivalent chromium doped BSO

    NASA Astrophysics Data System (ADS)

    Petkova, P.; Andreici, E.-L.; Avram, N. M.

    2014-11-01

    The aim of this paper is to give an analysis of crystal field parameters and energy levels schemes for the above doped material, in order to give a reliable explanation for experimental data. The crystal field parameters have been modeled in the frame of Exchange Charge Model (ECM) of the crystal field theory, taken into account the geometry of systems, with actually site symmetry of the impurity ions. The effect of the charges of the ligands and covalence bonding between chromium cation and oxygen anions, in the cluster approach, also were taken into account. With the obtained values of the crystal field parameters we simulated the scheme of energy levels of chromium ions by diagonalizing the matrix of the Hamiltonian of the doped crystal. The obtained energy levels and estimated Racah parameters B and C were compared with the experimental spectroscopic data and discussed. Comparison with experiment shows that the results are quite satisfactory which justify the model and simulation scheme used for the title system.

  3. Material and morphology parameter sensitivity analysis in particulate composite materials

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyu; Oskay, Caglar

    2017-12-01

    This manuscript presents a novel parameter sensitivity analysis framework for damage and failure modeling of particulate composite materials subjected to dynamic loading. The proposed framework employs global sensitivity analysis to study the variance in the failure response as a function of model parameters. In view of the computational complexity of performing thousands of detailed microstructural simulations to characterize sensitivities, Gaussian process (GP) surrogate modeling is incorporated into the framework. In order to capture the discontinuity in response surfaces, the GP models are integrated with a support vector machine classification algorithm that identifies the discontinuities within response surfaces. The proposed framework is employed to quantify variability and sensitivities in the failure response of polymer bonded particulate energetic materials under dynamic loads to material properties and morphological parameters that define the material microstructure. Particular emphasis is placed on the identification of sensitivity to interfaces between the polymer binder and the energetic particles. The proposed framework has been demonstrated to identify the most consequential material and morphological parameters under vibrational and impact loads.

  4. Crystal field parameters and energy levels scheme of trivalent chromium doped BSO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petkova, P.; Andreici, E.-L.; Avram, N. M., E-mail: n1m2marva@yahoo.com

    The aim of this paper is to give an analysis of crystal field parameters and energy levels schemes for the above doped material, in order to give a reliable explanation for experimental data. The crystal field parameters have been modeled in the frame of Exchange Charge Model (ECM) of the crystal field theory, taken into account the geometry of systems, with actually site symmetry of the impurity ions. The effect of the charges of the ligands and covalence bonding between chromium cation and oxygen anions, in the cluster approach, also were taken into account. With the obtained values of themore » crystal field parameters we simulated the scheme of energy levels of chromium ions by diagonalizing the matrix of the Hamiltonian of the doped crystal. The obtained energy levels and estimated Racah parameters B and C were compared with the experimental spectroscopic data and discussed. Comparison with experiment shows that the results are quite satisfactory which justify the model and simulation scheme used for the title system.« less

  5. Phase behavior of charged colloids at a fluid interface

    NASA Astrophysics Data System (ADS)

    Kelleher, Colm P.; Guerra, Rodrigo E.; Hollingsworth, Andrew D.; Chaikin, Paul M.

    2017-02-01

    We study the phase behavior of a system of charged colloidal particles that are electrostatically bound to an almost flat interface between two fluids. We show that, despite the fact that our experimental system consists of only 103-104 particles, the phase behavior is consistent with the theory of melting due to Kosterlitz, Thouless, Halperin, Nelson, and Young. Using spatial and temporal correlations of the bond-orientational order parameter, we classify our samples into solid, isotropic fluid, and hexatic phases. We demonstrate that the topological defect structure we observe in each phase corresponds to the predictions of Kosterlitz-Thouless-Halperin-Nelson-Young theory. By measuring the dynamic Lindemann parameter γL(τ ) and the non-Gaussian parameter α2(τ ) of the displacements of the particles relative to their neighbors, we show that each of the phases displays distinctive dynamical behavior.

  6. Fermionology in the Kondo-Heisenberg model: the case of CeCoIn5

    NASA Astrophysics Data System (ADS)

    Zhong, Yin; Zhang, Lan; Lu, Han-Tao; Luo, Hong-Gang

    2015-09-01

    The Fermi surface of heavy electron systems plays a fundamental role in understanding their variety of puzzling phenomena, for example, quantum criticality, strange metal behavior, unconventional superconductivity and even enigmatic phases with yet unknown order parameters. The spectroscopy measurement of the typical heavy fermion superconductor CeCoIn5 has demonstrated multi-Fermi surface structure, which has not been studied in detail theoretically in a model system like the Kondo-Heisenberg model. In this work, we take a step toward such a theoretical model by revisiting the Kondo-Heisenberg model. It is found that the usual self-consistent calculation cannot reproduce the fermionology of the experimental observation of the system due to the sign binding between the hopping of the conduction electrons and the mean-field valence-bond order. To overcome such inconsistency, the mean-field valence-bond order is considered as a free/fitting parameter to correlate them with real-life experiments as performed in recent experiments [M.P. Allan, F. Massee, D.K. Morr, J. Van Dyke, A.W. Rost, A.P. Mackenzie, C. Petrovic, J.C. Davis, Nat. Phys. 9, 468 (2013); J. Van Dyke, F. Massee, M.P. Allan, J.C. Davis, C. Petrovic, D.K. Morr, Proc. Natl. Acad. Sci. 111, 11663 (2014)], which also explicitly reflects the intrinsic dispersion of local electrons observed in experimental measurements. Given the fermionology, the calculated effective mass enhancement, entropy, superfluid density and Knight shift are all in qualitative agreement with the experimental results of CeCoIn5, which confirms our assumption. Our result supports a d_{x^2 - y^2 }-wave pairing structure in the heavy fermion material CeCoIn5.

  7. Low temperature synthesis of LnOF rare-earth oxyfluorides through reaction of the oxides with PTFE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutton, S.E., E-mail: sdutton@princeton.edu; Hirai, D.; Cava, R.J.

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Low temperature synthesis of LnOF rare-earth oxyfluorides from Ln{sub 2}O{sub 3} and PTFE (CF{sub 2}). Black-Right-Pointing-Pointer Rhombohedral LnOF is the major phase and forms as nanocrystals, 29-103 nm. Black-Right-Pointing-Pointer Expected lanthanide contraction observed in lattice parameters and bond lengths. Black-Right-Pointing-Pointer TbOF orders antiferromagnetically at 10 K and has a metamagnetic transition at 1.8 T. Black-Right-Pointing-Pointer GdOF orders antiferromagnetically at 5 K, other LnOF are paramagnetic. -- Abstract: A low temperature solid-state synthesis route, employing polytetrafluoroethylene (PTFE) and the rare-earth oxides, for the formation of the LnOF rare-earth oxyfluorides (Ln = Y, La, Pr, Nd, Sm, Eu, Gd, Tb,more » Dy, Ho, Er), is reported. With the exception of LaOF, which forms in a tetragonal variant, rhomobohedral LnOF is found to be the major product of the reaction. In the case of PrOF, a transition from the rhombohedral to the cubic fluorite phase is observed on heating in air to 500 Degree-Sign C. X-ray diffraction shows the expected lanthanide contraction in the lattice parameters and bond lengths. Magnetic susceptibility measurements show antiferromagnetic-like ordering in TbOF, T{sub m} = 10 K, with a metamagnetic transition at a field {mu}{sub 0}H{sub t} = 1.8 T at 2 K. An antiferromagnetic transition, T{sub N} = 4 K, is observed in GdOF. Paramagnetic behavior is observed above 2 K in PrOF, NdOF, DyOF, HoOF and ErOF. The magnetic susceptibility of EuOF is characteristic of Van Vleck paramagnetism.« less

  8. The pure rotational spectrum of TiF (X 4Φr): 3d transition metal fluorides revisited

    NASA Astrophysics Data System (ADS)

    Sheridan, P. M.; McLamarrah, S. K.; Ziurys, L. M.

    2003-11-01

    The pure rotational spectrum of TiF in its X 4Φr (v=0) ground state has been measured using millimeter/sub-millimeter wave direct absorption techniques in the range 140-530 GHz. In ten out of the twelve rotational transitions recorded, all four spin-orbit components were observed, confirming the 4Φr ground state assignment. Additional small splittings were resolved in several of the spin components in lower J transitions, which appear to arise from magnetic hyperfine interactions of the 19F nucleus. In contrast, no evidence for Λ-doubling was seen in the data. The rotational transitions of TiF were analyzed using a case (a) Hamiltonian, resulting in the determination of rotational and fine structure constants, as well as hyperfine parameters for the fluorine nucleus. The data were readily fit in a case (a) basis, indicating strong first order spin-orbit coupling and minimal second-order effects, as also evidenced by the small value of λ, the spin-spin parameter. Moreover, only one higher order term, η, the spin-orbit/spin-spin interaction term, was needed in the analysis, again suggesting limited perturbations in the ground state. The relative values of the a, b, and c hyperfine constants indicate that the three unpaired electrons in this radical lie in orbitals primarily located on the titanium atom and support the molecular orbital picture of TiF with a σ1δ1π1 single electron configuration. The bond length of TiF (1.8342 Å) is significantly longer than that of TiO, suggesting that there are differences in the bonding between 3d transition metal fluorides and oxides.

  9. Bond and flux-disorder effects on the superconductor-insulator transition of a honeycomb array of Josephson junctions

    NASA Astrophysics Data System (ADS)

    Granato, Enzo

    2018-05-01

    We study the effects of disorder on the zero-temperature quantum phase transition of a honeycomb array of Josephson junctions in a magnetic field with an average of fo flux quantum per plaquette. Bond disorder due to spatial variations in the Josephson couplings and magnetic flux disorder due to variations in the plaquette areas are considered. The model can describe the superconductor-insulator transition in ultra-thin films with a triangular pattern of nanoholes. Path integral Monte Carlo simulations of the equivalent (2 + 1)-dimensional classical model are used to study the critical behavior and estimate the universal resistivity at the transition. The results show that bond disorder leads to a rounding of the first-order phase transition for fo = 1 / 3 to a continuous transition. For integer fo, the decrease of the critical coupling parameter with flux disorder is significantly different from that of the same model defined on a square lattice. The results are compared with recent experimental observations on nanohole thin films with geometrical disorder and external magnetic field.

  10. Study of Ti 4+ substitution in ZrW 2O 8 negative thermal expansion materials

    NASA Astrophysics Data System (ADS)

    De Buysser, Klaartje; Van Driessche, Isabel; Putte, Bart Vande; Schaubroeck, Joseph; Hoste, Serge

    2007-08-01

    Powder XRD-analysis and thermo-mechanical analysis on sintered TiO 2-WO 3-ZrO 2 mixtures revealed the formation of Zr 1-xTi xW 2O 8 solid solutions. A noticeable decrease in unit cell parameter ' a' and in the order-disorder transition temperature could be seen in the case of Zr 1-xTi xW 2O 8 solid solutions. Studies performed on other ZrW 2O 8 solid solutions have attributed an increase in phase transition temperature to a decrease in free lattice volume, whereas a decrease in phase transition temperature was suggested to be due to the presence of a more disordered state. Our studies indicate that the phase transition temperature in our materials is strongly influenced by the bond dissociation energy of the substituting ion-oxygen bond. A decrease in bond strength may compensate for the effect of a decrease in lattice free volume, lowering the phase transition temperature as the degree of substitution by Ti 4+ increases. This hypothesis is proved by differential scanning calorimetry.

  11. Structural changes induced by lattice-electron interactions: SiO2 stishovite and FeTiO3 ilmenite.

    PubMed

    Yamanaka, Takamitsu

    2005-09-01

    The bright source and highly collimated beam of synchrotron radiation offers many advantages for single-crystal structure analysis under non-ambient conditions. The structure changes induced by the lattice-electron interaction under high pressure have been investigated using a diamond anvil pressure cell. The pressure dependence of electron density distributions around atoms is elucidated by a single-crystal diffraction study using deformation electron density analysis and the maximum entropy method. In order to understand the bonding electrons under pressure, diffraction intensity measurements of FeTiO3 ilmenite and gamma-SiO2 stishovite single crystals at high pressures were made using synchrotron radiation. Both diffraction studies describe the electron density distribution including bonding electrons and provide the effective charge of the cations. In both cases the valence electrons are more localized around the cations with increasing pressure. This is consistent with molecular orbital calculations, proving that the bonding electron density becomes smaller with pressure. The thermal displacement parameters of both samples are reduced with increasing pressure.

  12. Structural, mechanical and vibrational study of uranyl silicate mineral soddyite by DFT calculations

    NASA Astrophysics Data System (ADS)

    Colmenero, Francisco; Bonales, Laura J.; Cobos, Joaquín; Timón, Vicente

    2017-09-01

    Uranyl silicate mineral soddyite, (UO2)2(SiO4)·2(H2O), is a fundamental component of the paragenetic sequence of secondary phases that arises from the weathering of uraninite ore deposits and corrosion of spent nuclear fuel. In this work, soddyite was studied by first principle calculations based on the density functional theory. As far as we know, this is the first time that soddyite structure is determined theoretically. The computed structure of soddyite reproduces the one determined experimentally by X-Ray diffraction (orthorhombic symmetry, spatial group Fddd O2; lattice parameters a = 8.334 Å, b = 11.212 Å; c = 18.668 Å). Lattice parameters, bond lengths, bond angles and X-Ray powder pattern were found to be in very good agreement with their experimental counterparts. Furthermore, the mechanical properties were obtained and the satisfaction of the Born conditions for mechanical stability of the structure was demonstrated by means of calculations of the elasticity tensor. The equation of state of soddyite was obtained by fitting lattice volumes and pressures to a fourth order Birch-Murnahan equation of state. The Raman spectrum was also computed by means of density functional perturbation theory and compared with the experimental spectrum obtained from a natural soddyite sample. The results were also found in agreement with the experimental data. A normal mode analysis of the theoretical spectra was carried out and used in order to assign the main bands of the Raman spectrum.

  13. Multi-objective optimization on laser solder jet bonding process in head gimbal assembly using the response surface methodology

    NASA Astrophysics Data System (ADS)

    Deeying, J.; Asawarungsaengkul, K.; Chutima, P.

    2018-01-01

    This paper aims to investigate the effect of laser solder jet bonding parameters to the solder joints in Head Gimbal Assembly. Laser solder jet bonding utilizes the fiber laser to melt solder ball in capillary. The molten solder is transferred to two bonding pads by nitrogen gas. The response surface methodology have been used to investigate the effects of laser energy, wait time, nitrogen gas pressure, and focal position on the shear strength of solder joints and the change of pitch static attitude (PSA). The response surface methodology is employed to establish the reliable mathematical relationships between the laser soldering parameters and desired responses. Then, multi-objective optimization is conducted to determine the optimal process parameters that can enhance the joint shear strength and minimize the change of PSA. The validation test confirms that the predicted value has good agreement with the actual value.

  14. Experimental investigation on bond of reinforcement in steel fibre-reinforced lightweight concrete

    NASA Astrophysics Data System (ADS)

    Holschemacher, K.; Ali, A.

    2017-10-01

    Bond behaviour of reinforcement is crucial parameter for load bearing reinforced concrete members. Many parameters like anchorage of reinforcement, lap splices, deflection or tension stiffening are influenced by the bond properties. It is well known that the ductility of bond can be improved by steel fibres. In this context almost innumerable experiments were performed for investigation of bond in normal weight concrete. However, the bond behaviour of reinforcement in steel fibre-reinforced lightweight concrete (SFRLWC) has received much less attention. For this reason, an experimental program dealing with bond in SFRLWC has been started at HTWK Leipzig/Germany. Main parts of the investigation were pull-out tests with various bar sizes and application of different steel fibre-reinforced lightweight and normal weight concretes. The paper reports the details of experimental investigations and evaluates the test results. As one of the most important outcomes that can be noted is that there is pronounced effect of bar size and steel fibre amount on bond properties in general. But those effects are more pronounced for SFRLWC in comparison to normal weight concrete with and without steel fibres.

  15. Crystal growth and DFT insight on sodium para-nitrophenolate para-nitrophenol dihydrate single crystal for NLO applications

    NASA Astrophysics Data System (ADS)

    Selvakumar, S.; Boobalan, Maria Susai; Anthuvan Babu, S.; Ramalingam, S.; Leo Rajesh, A.

    2016-12-01

    Single crystals of sodium para-nitrophenolate para-nitrophenol dihydrate (SPPD) were grown by slow evaporation technique and its structure has been studied by FT-IR, FT-Raman and single crystal X-ray diffraction techniques. The optical and electrical properties were characterized by UV-Vis spectrum, and dielectric studies respectively. SPPD was thermally stable up to 128 °C as determined by TG-DTA curves. Using the Kurtz-Perry powder method, the second-harmonic generation efficiency was found to be five times to that of KDP. Third-order nonlinear response was studied using Z-scan technique with a He-Ne laser (632.8 nm) and NLO parameters such as intensity dependent refractive index, nonlinear absorption coefficient and third-order susceptibility were also estimated. The molecular geometry from X-ray experiment in the ground state has been compared using density functional theory (DFT) with appropriate basis set. The first-order hyperpolarizability also calculated using DFT approaches. Stability of the molecule arising from hyperconjugative interactions leading to its nonlinear optical activity and charge delocalization were analyzed using natural bond orbital technique. HOMO-LUMO energy gap value suggests the possibility of charge transfer within the molecule. Based on optimized ground state geometries, Natural bond orbital (NBO) analysis was performed to study donor-acceptor interactions.

  16. Links between the charge model and bonded parameter force constants in biomolecular force fields

    NASA Astrophysics Data System (ADS)

    Cerutti, David S.; Debiec, Karl T.; Case, David A.; Chong, Lillian T.

    2017-10-01

    The ff15ipq protein force field is a fixed charge model built by automated tools based on the two charge sets of the implicitly polarized charge method: one set (appropriate for vacuum) for deriving bonded parameters and the other (appropriate for aqueous solution) for running simulations. The duality is intended to treat water-induced electronic polarization with an understanding that fitting data for bonded parameters will come from quantum mechanical calculations in the gas phase. In this study, we compare ff15ipq to two alternatives produced with the same fitting software and a further expanded data set but following more conventional methods for tailoring bonded parameters (harmonic angle terms and torsion potentials) to the charge model. First, ff15ipq-Qsolv derives bonded parameters in the context of the ff15ipq solution phase charge set. Second, ff15ipq-Vac takes ff15ipq's bonded parameters and runs simulations with the vacuum phase charge set used to derive those parameters. The IPolQ charge model and associated protocol for deriving bonded parameters are shown to be an incremental improvement over protocols that do not account for the material phases of each source of their fitting data. Both force fields incorporating the polarized charge set depict stable globular proteins and have varying degrees of success modeling the metastability of short (5-19 residues) peptides. In this particular case, ff15ipq-Qsolv increases stability in a number of α -helices, correctly obtaining 70% helical character in the K19 system at 275 K and showing appropriately diminishing content up to 325 K, but overestimating the helical fraction of AAQAA3 by 50% or more, forming long-lived α -helices in simulations of a β -hairpin, and increasing the likelihood that the disordered p53 N-terminal peptide will also form a helix. This may indicate a systematic bias imparted by the ff15ipq-Qsolv parameter development strategy, which has the hallmarks of strategies used to develop other popular force fields, and may explain some of the need for manual corrections in this force fields' evolution. In contrast, ff15ipq-Vac incorrectly depicts globular protein unfolding in numerous systems tested, including Trp cage, villin, lysozyme, and GB3, and does not perform any better than ff15ipq or ff15ipq-Qsolv in tests on short peptides. We analyze the free energy surfaces of individual amino acid dipeptides and the electrostatic potential energy surfaces of each charge model to explain the differences.

  17. Super-pnicogen bonding in the radical anion of the fluorophosphine dimer

    NASA Astrophysics Data System (ADS)

    Setiawan, Dani; Cremer, Dieter

    2016-10-01

    The LUMO of the pnicogen-bonded fluoro-phosphine dimer has PP bonding character. Radical anion and dianion form relatively strong pnicogen bonds with some covalent character where however the dianion turns out to be a second order transition state. The binding energy of (FPH 2)2- is 30.4 kcal/mol (CCSD(T)/aug-cc-pVTZ; CASPT2(5,8): 30.7 kcal/mol) and the bond strength order measured with the local PP bond stretching force constant increases from 0.055 for the neutral dimer to 0.187 thus revealing that the stabilization of the radical anion is to a large extend a result of one-electron six-center delocalization. Pnicogen-bonded complexes have a stabilizing electron affinity.

  18. The active site of hen egg-white lysozyme: flexibility and chemical bonding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Held, Jeanette, E-mail: jeanette.netzel@uni-bayreuth.de; Smaalen, Sander van

    Chemical bonding at the active site of lysozyme is analyzed on the basis of a multipole model employing transferable multipole parameters from a database. Large B factors at low temperatures reflect frozen-in disorder, but therefore prevent a meaningful free refinement of multipole parameters. Chemical bonding at the active site of hen egg-white lysozyme (HEWL) is analyzed on the basis of Bader’s quantum theory of atoms in molecules [QTAIM; Bader (1994 ▶), Atoms in Molecules: A Quantum Theory. Oxford University Press] applied to electron-density maps derived from a multipole model. The observation is made that the atomic displacement parameters (ADPs) ofmore » HEWL at a temperature of 100 K are larger than ADPs in crystals of small biological molecules at 298 K. This feature shows that the ADPs in the cold crystals of HEWL reflect frozen-in disorder rather than thermal vibrations of the atoms. Directly generalizing the results of multipole studies on small-molecule crystals, the important consequence for electron-density analysis of protein crystals is that multipole parameters cannot be independently varied in a meaningful way in structure refinements. Instead, a multipole model for HEWL has been developed by refinement of atomic coordinates and ADPs against the X-ray diffraction data of Wang and coworkers [Wang et al. (2007), Acta Cryst. D63, 1254–1268], while multipole parameters were fixed to the values for transferable multipole parameters from the ELMAM2 database [Domagala et al. (2012), Acta Cryst. A68, 337–351] . Static and dynamic electron densities based on this multipole model are presented. Analysis of their topological properties according to the QTAIM shows that the covalent bonds possess similar properties to the covalent bonds of small molecules. Hydrogen bonds of intermediate strength are identified for the Glu35 and Asp52 residues, which are considered to be essential parts of the active site of HEWL. Furthermore, a series of weak C—H⋯O hydrogen bonds are identified by means of the existence of bond critical points (BCPs) in the multipole electron density. It is proposed that these weak interactions might be important for defining the tertiary structure and activity of HEWL. The deprotonated state of Glu35 prevents a distinction between the Phillips and Koshland mechanisms.« less

  19. Collapsing lattice animals and lattice trees in two dimensions

    NASA Astrophysics Data System (ADS)

    Hsu, Hsiao-Ping; Grassberger, Peter

    2005-06-01

    We present high statistics simulations of weighted lattice bond animals and lattice trees on the square lattice, with fugacities for each non-bonded contact and for each bond between two neighbouring monomers. The simulations are performed using a newly developed sequential sampling method with resampling, very similar to the pruned-enriched Rosenbluth method (PERM) used for linear chain polymers. We determine with high precision the line of second-order transitions from an extended to a collapsed phase in the resulting two-dimensional phase diagram. This line includes critical bond percolation as a multicritical point, and we verify that this point divides the line into different universality classes. One of them corresponds to the collapse driven by contacts and includes the collapse of (weakly embeddable) trees. There is some evidence that the other is subdivided again into two parts with different universality classes. One of these (at the far side from collapsing trees) is bond driven and is represented by the Derrida-Herrmann model of animals having bonds only (no contacts). Between the critical percolation point and this bond-driven collapse seems to be an intermediate regime, whose other end point is a multicritical point P* where a transition line between two collapsed phases (one bond driven and the other contact driven) sparks off. This point P* seems to be attractive (in the renormalization group sense) from the side of the intermediate regime, so there are four universality classes on the transition line (collapsing trees, critical percolation, intermediate regime, and Derrida-Herrmann). We obtain very precise estimates for all critical exponents for collapsing trees. It is already harder to estimate the critical exponents for the intermediate regime. Finally, it is very difficult to obtain with our method good estimates of the critical parameters of the Derrida-Herrmann universality class. As regards the bond-driven to contact-driven transition in the collapsed phase, we have some evidence for its existence and rough location, but no precise estimates of critical exponents.

  20. Universality from disorder in the random-bond Blume-Capel model

    NASA Astrophysics Data System (ADS)

    Fytas, N. G.; Zierenberg, J.; Theodorakis, P. E.; Weigel, M.; Janke, W.; Malakis, A.

    2018-04-01

    Using high-precision Monte Carlo simulations and finite-size scaling we study the effect of quenched disorder in the exchange couplings on the Blume-Capel model on the square lattice. The first-order transition for large crystal-field coupling is softened to become continuous, with a divergent correlation length. An analysis of the scaling of the correlation length as well as the susceptibility and specific heat reveals that it belongs to the universality class of the Ising model with additional logarithmic corrections which is also observed for the Ising model itself if coupled to weak disorder. While the leading scaling behavior of the disordered system is therefore identical between the second-order and first-order segments of the phase diagram of the pure model, the finite-size scaling in the ex-first-order regime is affected by strong transient effects with a crossover length scale L*≈32 for the chosen parameters.

  1. Molecular-dynamics simulations of alkaline-earth metal cations in water by atom-bond electronegativity equalization method fused into molecular mechanics.

    PubMed

    Yang, Zhong-Zhi; Li, Xin

    2005-09-01

    Intermolecular potential for alkaline-earth metal (Be(2+), Mg(2+), and Ca(2+)) cations in water has been derived using the atom-bond electronegativity equalization method fused into molecular mechanics (ABEEM/MM), and it is consistent with what was previously applied to the hydration study of the monovalent cations. Parameters for the effective interaction between a cation and a water molecule were determined, reproducing the ab initio results. The static, dynamic, and thermodynamic properties of Be(2+)(aq), Mg(2+)(aq), and Ca(2+)(aq) were studied using these potential parameters. Be(2+) requires a more complicated form of the potential function than Mg(2+) and Ca(2+) in order to obtain better fits. Strong influences of the twofold charged cations on the structures of the hydration shells and some other properties of aqueous ionic solutions are discussed and compared with the results of a previous study of monovalent cations in water. At the same time, comparative study of the hydration properties of each cation is also discussed. This work demonstrates that ABEEM/MM provides a useful tool in the exploration of the hydration of double-charged cations in water.

  2. Structural, luminescence, thermodynamic and theoretical studies on mononuclear complexes of Eu(III) with pyridine monocarboxylate-N-oxides in aqueous solution

    NASA Astrophysics Data System (ADS)

    Dumpala, Rama Mohana Rao; Rawat, Neetika; Boda, Anil; Ali, Sk. Musharaf; Tomar, B. S.

    2018-02-01

    The mononuclear complexes formed by Eu(III) with three isomeric pyridine monocarboxylate-N-oxides namely picolinic acid-N-oxide (PANO), nicotinic acid-N-oxide (NANO) and isonicotinic acid-N-oxide (IANO) in aqueous solutions were studied by potentiometry, luminescence spectroscopy and isothermal titration calorimetry (ITC) to determine the speciation, coordination, luminescence properties and thermodynamic parameters of the complexes formed during the course of the reaction. More stable six membered chelate complexes with stoichiometry (MLi, i = 1-4) are formed by Eu(III) with PANO while non chelating ML and ML2 complexes are formed by NANO and IANO. The stability of Eu(III) complexes follow the order PANO > IANO > NANO. The ITC studies inferred an endothermic and innersphere complex formation of Eu(III)-PANO and Eu(III)-IANO whereas an exothermic and outer-sphere complex formation for Eu(III)-NANO. The luminescence life time data further supported the ITC results. Density functional theoretical calculations were carried out to optimize geometries of the complexes and to estimate the energies, structural parameters (bond distances, bond angles) and charges on individual atoms of the same. Theoretical approximations are found to be in good agreement with the experimental observations.

  3. Quantitative structure activity relationship studies of piperazinyl phenylalanine derivatives as VLA-4/VCAM-1 inhibitors.

    PubMed

    Bhargava, Dinesh; Karthikeyan, C; Moorthy, N S H N; Trivedi, Piyush

    2009-09-01

    QSAR study was carried out for a series of piperazinyl phenylalanine derivatives exhibiting VLA-4/VCAM-1 inhibitory activity to find out the structural features responsible for the biological activity. The QSAR study was carried out on V-life Molecular Design Suite software and the derived best QSAR model by partial least square (forward) regression method showed 85.67% variation in biological activity. The statistically significant model with high correlation coefficient (r2=0.85) was selected for further study and the resulted validation parameters of the model, crossed squared correlation coefficient (q2=0.76 and pred_r2=0.42) show the model has good predictive ability. The model showed that the parameters SaaNEindex, SsClcount slogP,and 4PathCount are highly correlated with VLA-4/VCAM-1 inhibitory activity of piperazinyl phenylalanine derivatives. The result of the study suggests that the chlorine atoms in the molecule and fourth order fragmentation patterns in the molecular skeleton favour VLA-4/VCAM-1 inhibition shown by the title compounds whereas lipophilicity and nitrogen bonded to aromatic bond are not conducive for VLA-4/VCAM-1 inhibitory activity.

  4. On the vibrational spectra and structural parameters of methyl, silyl, and germyl azide from theoretical predictions and experimental data.

    PubMed

    Durig, Douglas T; Durig, M S; Durig, James R

    2005-05-01

    The infrared and Raman spectra of methyl, silyl, and germyl azide (XN3 where X=CH3, SiH3 and GeH3) have been predicted from ab initio calculations with full electron correlation by second order perturbation theory (MP2) and hybrid density function theory (DFT) by the B3LYP method with a variety of basis sets. These predicted data are compared to previously reported experimental data and complete vibrational assignments are provided for all three molecules. It is shown that several of the assignments recently proposed [J. Mol. Struct. (Theochem.) 434 (1998) 1] for methyl azide are not correct. Structural parameters for CH3N3 and GeH3N3 have been obtained by combining the previously reported microwave rotational constants with the ab initio MP2/6-311+G(d,p) predicted values. These "adjusted r0" parameters have very small uncertainties of +/-0.003 A for the XH distances and a maximum of +/-0.005 A for the heavy atom distances and +/-0.5 degrees for the angles. The predicted distance for the terminal NN bond which is nearly a triple bond is much better predicted by the B3LYP calculations, whereas the fundamental frequencies are better predicted by the scaled ab initio calculations. The results are discussed and compared to those obtained for some similar molecules.

  5. Probing the Bond Order Wave Phase Transitions of the Ionic Hubbard Model by Superlattice Modulation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Loida, Karla; Bernier, Jean-Sébastien; Citro, Roberta; Orignac, Edmond; Kollath, Corinna

    2017-12-01

    An exotic phase, the bond order wave, characterized by the spontaneous dimerization of the hopping, has been predicted to exist sandwiched between the band and Mott insulators in systems described by the ionic Hubbard model. Despite growing theoretical evidence, this phase still evades experimental detection. Given the recent realization of the ionic Hubbard model in ultracold atomic gases, we propose here to detect the bond order wave using superlattice modulation spectroscopy. We demonstrate, with the help of time-dependent density-matrix renormalization group and bosonization, that this spectroscopic approach reveals characteristics of both the Ising and Kosterlitz-Thouless transitions signaling the presence of the bond order wave phase. This scheme also provides insights into the excitation spectra of both the band and Mott insulators.

  6. Covalent bond orders and atomic valences from correlated wavefunctions

    NASA Astrophysics Data System (ADS)

    Ángyán, János G.; Rosta, Edina; Surján, Péter R.

    1999-01-01

    A comparison is made between two alternative definitions for covalent bond orders: one derived from the exchange part of the two-particle density matrix and the other expressed as the correlation of fluctuations (covariance) of the number of electrons between the atomic centers. Although these definitions lead to identical formulae for mono-determinantal SCF wavefunctions, they predict different bond orders for correlated wavefunctions. It is shown that, in this case, the fluctuation-based definition leads to slightly lower values of the bond order than does the exchange-based definition, provided one uses an appropriate space-partitioning technique like that of Bader's topological theory of atoms in a molecule; however, use of Mulliken partitioning in this context leads to unphysical behaviour. The example of H 2 is discussed in detail.

  7. A brief note on the magnecule order parameter upgrade hypothesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Nathan O.

    2015-03-10

    In this short remark, we report on recent hypothetical work that aims to equip Santilli’s magnecule model with topological deformation order parameters (OP) of fractional statistics to define a preliminary set of wavepacket wavefunctions for the electron toroidal polarizations. The primary objective is to increase the representational precision and predictive accuracy of the magnecule model by exemplifying the fluidic characteristics for direct industrial application. In particular, the OPs are deployed to encode the spontaneous superfluidic gauge symmetry breaking (which may be restored at the iso-topic level) and correlated with Leggett’s superfluid B phases to establish a long range constraint formore » the wavefunctions. These new, developing, theoretical results may be significant because the OP configuration arms us with an extra degree of freedom for encoding a magnecule’s states and transitions, which may reveal further insight into the underlying physical mechanisms and features associated with these state-of-the-art magnecular bonds.« less

  8. Partial Transient Liquid-Phase Bonding, Part II: A Filtering Routine for Determining All Possible Interlayer Combinations

    NASA Astrophysics Data System (ADS)

    Cook, Grant O.; Sorensen, Carl D.

    2013-12-01

    Partial transient liquid-phase (PTLP) bonding is currently an esoteric joining process with limited applications. However, it has preferable advantages compared with typical joining techniques and is the best joining technique for certain applications. Specifically, it can bond hard-to-join materials as well as dissimilar material types, and bonding is performed at comparatively low temperatures. Part of the difficulty in applying PTLP bonding is finding suitable interlayer combinations (ICs). A novel interlayer selection procedure has been developed to facilitate the identification of ICs that will create successful PTLP bonds and is explained in a companion article. An integral part of the selection procedure is a filtering routine that identifies all possible ICs for a given application. This routine utilizes a set of customizable parameters that are based on key characteristics of PTLP bonding. These parameters include important design considerations such as bonding temperature, target remelting temperature, bond solid type, and interlayer thicknesses. The output from this routine provides a detailed view of each candidate IC along with a broad view of the entire candidate set, greatly facilitating the selection of ideal ICs. This routine provides a new perspective on the PTLP bonding process. In addition, the use of this routine, by way of the accompanying selection procedure, will expand PTLP bonding as a viable joining process.

  9. A Comprehensive Understanding of Machine and Material Behaviors During Inertia Friction Welding

    NASA Astrophysics Data System (ADS)

    Tung, Daniel J.

    Inertia Friction Welding (IFW), a critical process to many industries, currently relies on trial-and-error experimentation to optimize process parameters. Although this Edisonian approach is very effective, the high time and dollar costs incurred during process development are the driving force for better design approaches. Thermal-stress finite element modeling has been increasingly used to aid in process development in the literature; however, several fundamental questions on machine and material behaviors remain unanswered. The work presented here aims produce an analytical foundation to significantly reduce the costly physical experimentation currently required to design the inertia welding of production parts. Particularly, the work is centered around the following two major areas. First, machine behavior during IFW, which critically determines deformation and heating, had not been well understood to date. In order to properly characterize the IFW machine behavior, a novel method based on torque measurements was invented to measure machine efficiency, i.e. the ratio of the initial kinetic energy of the flywheel to that contributing to workpiece heating and deformation. The measured efficiency was validated by both simple energy balance calculations and more sophisticated finite element modeling. For the first time, the efficiency dependence on both process parameters (flywheel size, initial rotational velocity, axial load, and surface roughness) and materials (1018 steel, Low Solvus High Refractory LSHR and Waspaloy) was quantified using the torque based measurement method. The effect of process parameters on machine efficiency was analyzed to establish simple-to-use yet powerful equations for selection and optimization of IFW process parameters for making welds; however, design criteria such as geometry and material optimization were not addressed. Second, there had been a lack of understanding of the bond formation during IFW. In the present research, an interrupted welding study was developed utilizing purposefully-designed dissimilar metal couples to investigate bond formation for this specific material combination. The inertia welding process was interrupted at various times as the flywheel velocity decreased. The fraction of areas with intermixed metals was quantified to reveal the bond formation during IFW. The results revealed a relationship between the upset and the fraction of bonded material, which, interestingly, was found to be consistent to that established for roll bonding literature. The relationship is critical to studying the bonding mechanism and surface interactions during IFW. Moreover, it is essential to accurately interpret the modeling results to determine the extent of bonding using the computed strains near the workpiece interface. With this method developed, similar data can now be collected for additional similar and dissimilar material combinations. In summary, in the quest to develop, validate, and execute a modeling framework to study the inertia friction weldability of different alloy systems, particularly Fe- and Ni-base alloys, many new discoveries have been made to enhance the body of knowledge surrounding IFW. The data and trends discussed in this dissertation constitute a physics-based framework to understand the machine and material behaviors during IFW. Such a physics-based framework is essential to significantly reduce the costly trial-and-error experimentation currently required to successfully and consistently perform the inertia welding of production parts.

  10. Systematic theoretical study of ethylene adsorption on δ-MoC(001), TiC(001), and ZrC(001) surfaces

    DOE PAGES

    Jimenez-Orozco, Carlos; Florez, Elizabeth; Moreno, Andres; ...

    2016-05-31

    A systematic study of ethylene adsorption over δ-MoC(001), TiC(001), and ZrC(001) surfaces was conducted by means of calculations based on periodic density functional theory. The structure and electronic properties of each carbide pristine surface had a strong influence in the bonding of ethylene. It was found that the metal and carbon sites of the carbide could participate in the adsorption process. As a consequence of this, very different bonding mechanisms were seen on δ-MoC(001) and TiC(001). The bonding of the molecule on the TMC(001) systems showed only minor similarities to the type of bonding found on a typical metal likemore » Pt(111). In general, the ethylene binding energy follow the trend in stability: ZrC(001) < TiC(001) < δ-MoC(001) < Pt(111). The van der Waals correction to the energy produces large binding energy values, modifies the stability orders and drives the ethylene closer to the surface but the adsorbate geometry parameters remain unchanged. Ethylene was activated on clearly defined binding geometries, changing its hybridization from sp 2 to sp 3 with an elongation (0.16–0.31 Å) of the C=C bond. As a result, on the basis of this theoretical study, δ-MoC(001) is proposed as a potential catalyst for the hydrogenation of olefins, whereas TiC(001) could be useful for their hydrogenolysis.« less

  11. The estimation of H-bond and metal ion-ligand interaction energies in the G-Quadruplex ⋯ Mn+ complexes

    NASA Astrophysics Data System (ADS)

    Mostafavi, Najmeh; Ebrahimi, Ali

    2018-06-01

    In order to characterize various interactions in the G-quadruplex ⋯ Mn+ (G-Q ⋯ Mn+) complexes, the individual H-bond (EHB) and metal ion-ligand interaction (EMO) energies have been estimated using the electron charge densities (ρs) calculated at the X ⋯ H (X = N and O) and Mn+ ⋯ O (Mn+ is an alkaline, alkaline earth and transition metal ion) bond critical points (BCPs) obtained from the atoms in molecules (AIM) analysis. The estimated values of EMO and EHB were evaluated using the structural parameters, results of natural bond orbital analysis (NBO), aromaticity indexes and atomic charges. The EMO value increase with the ratio of ionic charge to radius, e/r, where a linear correlation is observed between EMO and e/r (R = 0.97). Meaningful relationships are also observed between EMO and indexes used for aromaticity estimation. The ENH value is higher than EOH in the complexes; this is in complete agreement with the trend of N⋯Hsbnd N and O⋯Hsbnd N angles, the E (2) value of nN → σ*NH and nO → σ*NH interactions and the difference between the natural charges on the H-bonded atom and the hydrogen atom of guanine (Δq). In general, the O1MO2 angle becomes closer to 109.5° with the increase in EMO and decrease in EHB in the presence of metal ion.

  12. Variations of water's local-structure induced by solvation of NaCl

    NASA Astrophysics Data System (ADS)

    Gu, Bin; Zhang, Feng-Shou; Huang, Yu-Gai; Fang, Xia

    2010-03-01

    The researches on the structure of water and its changes induced by solutes are of enduring interests. The changes of the local structure of liquid water induced by NaCl solute under ambient conditions are studied and presented quantitatively with some order parameters and visualized with 2-body and 3-body correlation functions. The results show that, after the NaCl are solvated, the translational order t of water is decreased for the suppression of the second hydration shells around H2O molecules; the tetrahedral order (q) of water is also decreased and its favorite distribution peak moves from 0.76 to 0.5. In addition, the orientational freedom k and the diffusion coefficient D of water molecules are reduced because of new formed hydrogen-bonding structures between water and solvated ions.

  13. Optical characterisation of hydroxide catalysed bonds applied to phosphate glass

    NASA Astrophysics Data System (ADS)

    Lacaille, Grégoire; Mangano, Valentina; van Veggel, Anna-Maria A.; Killow, Christian J.; MacKay, Peter E.; Rowan, Sheila; Hough, James

    2017-10-01

    We apply the Hydroxide Catalysis Bonding (HCB) technique to phosphate glass and measure the reflectivity and Light Induced Damage Threshold (LITD) of the newly formed interface. HCB is a room temperature, high performing process which was designed for astronomical research glass assemblies and played a key role in the detection of gravitational waves, a breakthrough in contemporary science. The bonds have numerous assets including mechanical strength, stability, no outgassing and resistance to contamination which are of high interest in the precision optics industry. However only little research has been done on their optical properties and mostly on silica based materials. In this paper, we use HCB to bond phosphate glass at room temperature with the goal of designing composite components for solid state laser gain media. We change the solution parameters to identify how they influence the final properties of the bonds: the LIDT at 1535 nm in long pulse regime and the reflectivity at 532 nm are investigated. The measurement of the incidence dependent reflectance allows estimating the thickness and refractive index of the bond in a non destructive process. The best performing set of parameters yields a LIDT of 1.6 GW/cm2 (16 J/cm2) and a reflectivity below 0.03 % which makes it suitable for use in high power lasers. The bond thickness is derived both from Scanning Electron Microscopy and the reflectivity measurements and is in the range of 50-150 nm depending on the parameters. Finally, the bonds survive cutting and polishing which is promising for manufacturing purpose.

  14. Fast and accurate predictions of covalent bonds in chemical space.

    PubMed

    Chang, K Y Samuel; Fias, Stijn; Ramakrishnan, Raghunathan; von Lilienfeld, O Anatole

    2016-05-07

    We assess the predictive accuracy of perturbation theory based estimates of changes in covalent bonding due to linear alchemical interpolations among molecules. We have investigated σ bonding to hydrogen, as well as σ and π bonding between main-group elements, occurring in small sets of iso-valence-electronic molecules with elements drawn from second to fourth rows in the p-block of the periodic table. Numerical evidence suggests that first order Taylor expansions of covalent bonding potentials can achieve high accuracy if (i) the alchemical interpolation is vertical (fixed geometry), (ii) it involves elements from the third and fourth rows of the periodic table, and (iii) an optimal reference geometry is used. This leads to near linear changes in the bonding potential, resulting in analytical predictions with chemical accuracy (∼1 kcal/mol). Second order estimates deteriorate the prediction. If initial and final molecules differ not only in composition but also in geometry, all estimates become substantially worse, with second order being slightly more accurate than first order. The independent particle approximation based second order perturbation theory performs poorly when compared to the coupled perturbed or finite difference approach. Taylor series expansions up to fourth order of the potential energy curve of highly symmetric systems indicate a finite radius of convergence, as illustrated for the alchemical stretching of H2 (+). Results are presented for (i) covalent bonds to hydrogen in 12 molecules with 8 valence electrons (CH4, NH3, H2O, HF, SiH4, PH3, H2S, HCl, GeH4, AsH3, H2Se, HBr); (ii) main-group single bonds in 9 molecules with 14 valence electrons (CH3F, CH3Cl, CH3Br, SiH3F, SiH3Cl, SiH3Br, GeH3F, GeH3Cl, GeH3Br); (iii) main-group double bonds in 9 molecules with 12 valence electrons (CH2O, CH2S, CH2Se, SiH2O, SiH2S, SiH2Se, GeH2O, GeH2S, GeH2Se); (iv) main-group triple bonds in 9 molecules with 10 valence electrons (HCN, HCP, HCAs, HSiN, HSiP, HSiAs, HGeN, HGeP, HGeAs); and (v) H2 (+) single bond with 1 electron.

  15. A valence bond study of three-center four-electron pi bonding: electronegativity vs electroneutrality.

    PubMed

    DeBlase, Andrew; Licata, Megan; Galbraith, John Morrison

    2008-12-18

    Three-center four-electron (3c4e) pi bonding systems analogous to that of the ozone molecule have been studied using modern valence bond theory. Molecules studied herein consist of combinations of first row atoms C, N, and O with the addition of H atoms where appropriate in order to preserve the 3c4e pi system. Breathing orbital valence bond (BOVB) calculations were preformed at the B3LYP/6-31G**-optimized geometries in order to determine structural weights, pi charge distributions, resonance energies, and pi bond energies. It is found that the most weighted VB structure depends on atomic electronegativity and charge distribution, with electronegativity as the dominant factor. By nature, these systems are delocalized, and therefore, resonance energy is the main contributor to pi bond energies. Molecules with a single dominant VB structure have low resonance energies and therefore low pi bond energies.

  16. Modified low-temperture direct bonding method for vacuum microelectronics application

    NASA Astrophysics Data System (ADS)

    Ju, Byeong-Kwon; Lee, Duck-Jung; Choi, Woo-Beom; Lee, Yun-Hi; Jang, Jin; Lee, Kwang-Bae; Oh, Myung-Hwan

    1997-06-01

    This paper presents the process and experimental results for the improved silicon-to-glass bonding using silicon direct bonding (SDB) followed by anodic bonding. The initial bonding between glass and silicon was caused by the hydrophilic surfaces of silicon-glass ensemble using SDB method. Then the initially bonded specimen had to be strongly bonded by anodic bonding process. The effects of the bonding process parameters on the interface energy were investigated as functions of the bonding temperature and voltage. We found that the specimen which was bonded using SDB process followed by anodic bonding process had higher interface energy than one using anodic bonding process only. The main factor contributing to the higher interface energy in the glass-to-silicon assemble bonded by SDB followed by anodic bonding was investigated by secondary ion mass spectroscopy analysis.

  17. Analysis of local bond-orientational order for liquid gallium at ambient pressure: Two types of cluster structures.

    PubMed

    Chen, Lin-Yuan; Tang, Ping-Han; Wu, Ten-Ming

    2016-07-14

    In terms of the local bond-orientational order (LBOO) parameters, a cluster approach to analyze local structures of simple liquids was developed. In this approach, a cluster is defined as a combination of neighboring seeds having at least nb local-orientational bonds and their nearest neighbors, and a cluster ensemble is a collection of clusters with a specified nb and number of seeds ns. This cluster analysis was applied to investigate the microscopic structures of liquid Ga at ambient pressure (AP). The liquid structures studied were generated through ab initio molecular dynamics simulations. By scrutinizing the static structure factors (SSFs) of cluster ensembles with different combinations of nb and ns, we found that liquid Ga at AP contained two types of cluster structures, one characterized by sixfold orientational symmetry and the other showing fourfold orientational symmetry. The SSFs of cluster structures with sixfold orientational symmetry were akin to the SSF of a hard-sphere fluid. On the contrary, the SSFs of cluster structures showing fourfold orientational symmetry behaved similarly as the anomalous SSF of liquid Ga at AP, which is well known for exhibiting a high-q shoulder. The local structures of a highly LBOO cluster whose SSF displayed a high-q shoulder were found to be more similar to the structure of β-Ga than those of other solid phases of Ga. More generally, the cluster structures showing fourfold orientational symmetry have an inclination to resemble more to β-Ga.

  18. A theoretical perspective of the nature of hydrogen-bond types - the atoms in molecules approach

    NASA Astrophysics Data System (ADS)

    Vijaya Pandiyan, B.; Kolandaivel, P.; Deepa, P.

    2014-06-01

    Hydrogen bonds and their strength were analysed based on their X-H proton-donor bond properties and the parameters of the H-Y distance (Y proton acceptor). Strong, moderate and weak interactions in hydrogen-bond types were verified through the proton affinities of bases (PA), deprotanation enthalpies of acids (DPE) and the chemical shift (σ). The aromaticity and anti-aromaticity were analysed by means of the NICS (0) (nucleus-independent chemical shift), NICS (1) and ΔNICS (0), ΔNICS (1) of hydrogen-bonded molecules. The strength of a hydrogen bond depends on the capacity of hydrogen atom engrossing into the electronegative acceptor atom. The correlation between the above parameters and their relations were discussed through curve fitting. Bader's theory of atoms in molecules has been applied to estimate the occurrence of hydrogen bonds through eight criteria reported by Popelier et al. The lengths and potential energy shifts have been found to have a strong negative linear correlation, whereas the lengths and Laplacian shifts have a strong positive linear correlation. This study illustrates the common factors responsible for strong, moderate and weak interactions in hydrogen-bond types.

  19. Nuclear magnetic and nuclear quadrupole resonance parameters of β-carboline derivatives calculated using density functional theory

    NASA Astrophysics Data System (ADS)

    Ahmadinejad, Neda; Tari, Mostafa Talebi

    2017-04-01

    A density functional theory (DFT) calculations using B3LYP/6-311++G( d,p) method were carried out to investigate the relative stability of the molecules of β-carboline derivatives such as harmaline, harmine, harmalol, harmane and norharmane. Calculated nuclear quadrupole resonance (NQR) parameters were used to determine the 14N nuclear quadrupole coupling constant χ, asymmetry parameter η and EFG tensor ( q zz ). For better understanding of the electronic structure of β-carboline derivatives, natural bond orbital (NBO) analysis, isotropic and anisotropic NMR chemical shieldings were calculated for 14N nuclei using GIAO method for the optimized structures. The NBO analysis shows that pyrrole ring nitrogen (N9) atom has greater tendency than pyridine ring nitrogen (N2) atom to participate in resonance interactions and aromaticity development in the all of these structures. The NMR and NQR parameters were studied in order to find the correlations between electronic structure and the structural stability of the studied molecules.

  20. Kinetic study of olive oil degradation monitored by fourier transform infrared spectrometry. Application to oil characterization.

    PubMed

    Román Falcó, Iván P; Grané Teruel, Nuria; Prats Moya, Soledad; Martín Carratalá, M Luisa

    2012-11-28

    A new approach for the determination of kinetic parameters of the cis/trans isomerization during the oxidation process of 24 virgin olive oils belonging to 8 different varieties is presented. The accelerated process of degradation at 100 °C was monitored by recording the Fourier transform infrared spectra. The parameters obtained confirm pseudo-first-order kinetics for the degradation of cis and the appearance of trans double bonds. The kinetic approach affords the induction time and the rate coefficient; these parameters are related to the fatty acid profile of the fresh olive oils. The data obtained were used to compare the oil stability of the samples with the help of multivariate statistical techniques. Fatty acid allowed a classification of the samples in five groups, one of them constituted by the cultivars with higher stability. Meanwhile, the kinetic parameters showed greater ability for the characterization of olive oils, allowing the classification in seven groups.

  1. New look at the Badger-Bauer rule: Correlations of spectroscopic IR and NMR parameters with hydrogen bond energy and geometry. FHF complexes

    NASA Astrophysics Data System (ADS)

    Tupikina, E. Yu.; Denisov, G. S.; Melikova, S. M.; Kucherov, S. Yu.; Tolstoy, P. M.

    2018-07-01

    In this work correlation dependencies between hydrogen bond energy ΔE for complexes with Fsbnd H⋯F hydrogen bond and their spectroscopic characteristics of the IR and NMR spectra are presented. We considered 26 complexes in a wide hydrogen bond energy range 0.2-47 kcal/mol. For each complex we calculated complexation energy (MP2/6-311++G(d,p)), IR spectroscopic parameters (FH stretching frequency ν, FH stretching frequency in local mode approximation νLM at MP2/6-311++G(d,p) level) and NMR parameters (chemical shift of hydrogen δH and fluorine nuclei δF, Nuclear Independent Chemical Shielding and spin-spin coupling constants 1JFH, 1hJH...F, 2hJFF at B3LYP/pcSseg-2 level). It was shown that changes of parameters upon complexation, i.e. changes of the stretching frequency in local mode approximation ΔνLM, change of the proton chemical shift ΔδH and change of the absolute value of spin-spin coupling constant 1JFH could be used for estimation of corresponding hydrogen bond strength. Furthermore, we build correlation dependencies between abovementioned spectroscopic characteristics and geometric ones, such as the asymmetry of bridging proton position q1 = 0.5·(rFH - rH…F).

  2. Ligand electronic parameters as a measure of the polarization of the C≡O bond in [M(CO)(x)L(y)]n complexes and of the relative stabilization of [M(CO)(x)L(y)](n/n+1) species.

    PubMed

    Zobi, Fabio

    2010-11-15

    The electronic description of octahedral (fac-[M(CO)(3)L(3)](n), with M = Re, Ru, and Mn, and [Cr(CO)(5)L](n)), square-planar (cis-[Pt(CO)(2)L(2)](n)), and tetrahedral ([Ni(CO)(3)L](n)) carbonyl complexes (where L = monodentate ligand) was obtained via density functional theory and natural population analyses in order to understand what effects are probed in these species by vibrational spectroscopy and electrochemistry as a function of the ligand electronic parameter of the associated L. The analysis indicates that while ligand electronic parameters may be considered as a measure of the net donor power of the ligand, the net transfer of the electron density (or charge) does not occur from the ligand to the metal ion. In [M(CO)(x)L(y)](n) carbonyl species, the charge transfer occurs from the ligand L to the oxygen atom of the bound carbon monoxides. This charge transfer translates into changes of the polarization (or permanent dipole) and the covalency of the C≡O bonds, and it is this effect that is probed in IR spectroscopy. As the analysis shifts from IR radiations to electrochemical potentials, the parameters best describe the relative thermodynamic stability of the oxidized and reduced [M(CO)(x)L(y)](n/n+1) species. No relationship is found between the metal natural charge of the [M(CO)(x)L(y)](n) fragments analyzed and the parameters. Brief considerations are given on the possible design of CO-releasing molecules.

  3. The assessment of bond strength between heat damaged concrete and high strength fibre reinforced concrete

    NASA Astrophysics Data System (ADS)

    Zahid, M. Z. A. Mohd; Muhamad, K.

    2017-09-01

    The aim of this study is to assess the bond strength between heat damaged concrete and high strength fibre reinforced concrete (HPFRC). Firstly, this paper presents the various steps taken to prepare the HPFRC with self-compacting property. The minimum targeted slump flow is 600 mm and minimum targeted compressive strength is 80 MPa. The key mix variables considered are such as type of superplasticizer, water cement ratio and silica fume content. Then, the bond strength between the heat damaged concrete with HPFRC was examined. The experimental parameters are heating temperature, surface treatment technique and curing method and the results show that, all experimental parameters are significantly affected the bond strength between heat damaged concrete and HPFRC.

  4. Neutron diffraction studies of magnetic ordering in Ni-doped LaCoO3

    NASA Astrophysics Data System (ADS)

    Rajeevan, N. E.; Kumar, Vinod; Kumar, Rajesh; Kumar, Ravi; Kaushik, S. D.

    2015-11-01

    Research in rare earth cobaltite has recently been intensified due to its fascinating magnetic properties. LaCoO3, an important cobaltite, exhibits two prominent susceptibility features at 90 K and 500 K in low field measurement. The magnetic behavior below 100 K is predominantly antiferromagnetic (AFM), but absence of pure AFM ordering and emergence of ferromagnetic coupling on further decreasing temperature made situation more intricate. The present work of studying the effect of Ni substitution at Co site in polycrystalline LaCo1-xNixO3 (0≤x≤0.3) is motivated by the interesting changes in magnetic and electronic properties. For lucid understanding, temperature dependent neutron diffraction (ND) study was carried out. ND patterns fitted with rhombohedral structure in perovskite form with R-3c space group, elucidated information on phase purity. Further temperature dependent cell parameter, Co-O bond-length and Co-O-Co bond angle were calculated for the series of Ni doped LaCoO3. The results are explained in terms of decrease in the crystal field energy which led to the transition of cobalt from low Spin (LS) state to intermediate spin state (IS).

  5. Photo-physical and structural studies of some synthesized arylazoquinoline dyes

    NASA Astrophysics Data System (ADS)

    Ghanadzadeh Gilani, A.; Taghvaei, V.; Moradi Rufchahi, E.; Mirzaei, M.

    2017-10-01

    This study presents the spectral and structure characteristics of seven azoquinoline dyes with different substituents and their new methylated counterparts for the first time, where some compounds are newly synthesized. The solvatochromic, tautomeric, halochromic, and dichroic behavior of the compounds were studied by electronic spectroscopy in various media. The different types of media were ordinary, multifunctional, and ordered liquids. The experiments were extended to include under acidic or basic conditions. The orientational behavior of the azo dye-doped liquid crystals was studied, and it was established that the azo form is the main species in high polar anisotropic media. The multi-parameter polarity scales were used to correlate the spectral data. Influence of acid and base on the absorption spectra of the dyes was also examined. Ionization constants for these dyes were determined in ethanol-water media. As a result, at the high dye concentrations, the intermolecular hydrogen bonding is more stable than the intra-molecular hydrogen bond, and therefore, the azo form is the main species in concentrated solutions. In order to provide more details, time-dependent density functional theory (TD-DFT) calculations were carried out for the representative models.

  6. Application of the anisotropic bond model to second-harmonic generation from amorphous media

    NASA Astrophysics Data System (ADS)

    Adles, E. J.; Aspnes, D. E.

    2008-04-01

    As a step toward analyzing second-harmonic generation (SHG) from crystalline Si nanospheres in glass, we develop an anisotropic bond model (ABM) that expresses SHG in terms of physically meaningful parameters and provide a detailed understanding of the basic physics of SHG on the atomic scale. Nonlinear-optical (NLO) responses are calculated classically via the four fundamental steps of optics: evaluate the local field at a given bond site, solve the force equation for the acceleration of the charge, calculate the resulting radiation, then superpose the radiation from all charges. Because the emerging NLO signals are orders of magnitude weaker and occur at wavelengths different from that of the pump beam, these steps are independent. Paradoxically, the treatment of NLO is therefore simpler than that of linear optics (LO), where these calculations must be done self-consistently. The ABM goes beyond previous bond models by including the complete set of underlying contributions: retardation (RD), spatial-dispersion (SD), and magnetic (MG) effects, in addition to the anharmonic restoring force acting on the bond charge. Transverse as well as longitudinal motion is also considered. We apply the ABM to obtain analytic expressions for SHG from amorphous materials under Gaussian-beam excitation. These materials represent an interesting test case not only because they are ubiquitous but also because the anharmonic-force contribution that dominates the SHG response of crystalline materials and ordered interfaces vanishes by symmetry. The remaining contributions, and hence the SHG signals, are entirely functions of the LO response and beam geometry, so the only new information available is the anisotropy of the LO response at the bond level. The RD, SD, and MG contributions are all of the same order of magnitude, so none can be ignored. Diffraction is important in determining not only the pattern of the emerging beam but also the phases and amplitudes of the different terms. The plane-wave expansion that gives rise to electric quadrupole magnetic dipole effects in LO appears here as retardation. Using the paraxial-ray approximation, we reduce the results to the isotropic case in two limits, that where the linear restoring force dominates (glasses) and that where it is absent (metals). Both forward- and backscattering geometries are discussed. Estimated signal strengths and conversion efficiencies for fused silica appear to be in general agreement with data where available. Predictions that allow additional critical tests of these results are made.

  7. 3c/4e [small sigma, Greek, circumflex]-type long-bonding competes with ω-bonding in noble-gas hydrides HNgY (Ng = He, Ne, Ar, Kr, Xe, Rn; Y = F, Cl, Br, I): a NBO/NRT perspective.

    PubMed

    Zhang, Guiqiu; Li, Hong; Weinhold, Frank; Chen, Dezhan

    2016-03-21

    Noble-gas hydrides HNgY are frequently described as a single ionic form (H-Ng)(+)Y(-). We apply natural bond orbital (NBO) and natural resonance theory (NRT) analyses to a series of noble-gas hydrides HNgY (Ng = He, Ne, Ar, Kr, Xe, Rn; Y = F, Cl, Br, I) to gain quantitative insight into the resonance bonding of these hypervalent molecules. We find that each of the studied species should be better represented as a resonance hybrid of three leading resonance structures, namely, H-Ng(+ -):Y (I), H:(- +)Ng-Y (II), and H^Y (III), in which the "ω-bonded" structures I and II arise from the complementary donor-acceptor interactions nY → σ*HNg and nH → σ*NgY, while the "long-bond" ([small sigma, Greek, circumflex]-type) structure III arises from the nNg → [small sigma, Greek, circumflex]*HY/[small sigma, Greek, circumflex]HY interaction. The bonding for all of the studied molecules can be well described in terms of the continuously variable resonance weightings of 3c/4e ω-bonding and [small sigma, Greek, circumflex]-type long-bonding motifs. Furthermore, we find that the calculated bond orders satisfy a generalized form of "conservation of bond order" that incorporates both ω-bonding and long-bonding contributions [viz., (bHNg + bNgY) + bHY = bω-bonding + blong-bonding = 1]. Such "conservation" throughout the title series implies a competitive relationship between ω-bonding and [small sigma, Greek, circumflex]-type long-bonding, whose variations are found to depend in a chemically reasonable manner on the electronegativity of Y and the outer valence-shell character of the central Ng atom. The calculated bond orders are also found to exhibit chemically reasonable correlations with bond lengths, vibrational frequencies, and bond dissociation energies, in accord with Badger's rule and related empirical relationships. Overall, the results provide electronic principles and chemical insight that may prove useful in the rational design of noble-gas hydrides of technological interest.

  8. Probing hydrogen bonding in cocrystals and amorphous dispersions using (14)N-(1)H HMQC solid-state NMR.

    PubMed

    Tatton, Andrew S; Pham, Tran N; Vogt, Frederick G; Iuga, Dinu; Edwards, Andrew J; Brown, Steven P

    2013-03-04

    Cocrystals and amorphous solid dispersions have generated interest in the pharmaceutical industry as an alternative to more established solid delivery forms. The identification of intermolecular hydrogen bonding interactions in a nicotinamide palmitic acid cocrystal and a 50% w/w acetaminophen-polyvinylpyrrolidone solid dispersion are reported using advanced solid-state magic-angle spinning (MAS) NMR methods. The application of a novel (14)N-(1)H HMQC experiment, where coherence transfer is achieved via through-space couplings, is shown to identify specific hydrogen bonding motifs. Additionally, (1)H isotropic chemical shifts and (14)N electric field gradient (EFG) parameters, both accessible from (14)N-(1)H HMQC experiments, are shown to be sensitive to changes in hydrogen bonding geometry. Numerous indicators of molecular association are accessible from this experiment, including NH cross-peaks occurring from intermolecular hydrogen bonds and changes in proton chemical shifts or electric field gradient parameters. First-principles calculations using the GIPAW approach that yield accurate estimates of isotropic chemical shifts, and EFG parameters were used to assist in assignment. It is envisaged that (14)N-(1)H HMQC solid state NMR experiments could become a valuable screening technique of solid delivery forms in the pharmaceutical industry.

  9. 48 CFR 28.204-2 - Certified or cashiers checks, bank drafts, money orders, or currency.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... checks, bank drafts, money orders, or currency. 28.204-2 Section 28.204-2 Federal Acquisition Regulations... Other Security for Bonds 28.204-2 Certified or cashiers checks, bank drafts, money orders, or currency... draft, Post Office money order, or currency, in an amount equal to the penal sum of the bond, instead of...

  10. 48 CFR 28.204-2 - Certified or cashiers checks, bank drafts, money orders, or currency.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... checks, bank drafts, money orders, or currency. 28.204-2 Section 28.204-2 Federal Acquisition Regulations... Other Security for Bonds 28.204-2 Certified or cashiers checks, bank drafts, money orders, or currency... draft, Post Office money order, or currency, in an amount equal to the penal sum of the bond, instead of...

  11. 48 CFR 28.204-2 - Certified or cashiers checks, bank drafts, money orders, or currency.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... checks, bank drafts, money orders, or currency. 28.204-2 Section 28.204-2 Federal Acquisition Regulations... Other Security for Bonds 28.204-2 Certified or cashiers checks, bank drafts, money orders, or currency... draft, Post Office money order, or currency, in an amount equal to the penal sum of the bond, instead of...

  12. 48 CFR 28.204-2 - Certified or cashiers checks, bank drafts, money orders, or currency.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... checks, bank drafts, money orders, or currency. 28.204-2 Section 28.204-2 Federal Acquisition Regulations... Other Security for Bonds 28.204-2 Certified or cashiers checks, bank drafts, money orders, or currency... draft, Post Office money order, or currency, in an amount equal to the penal sum of the bond, instead of...

  13. 48 CFR 28.204-2 - Certified or cashiers checks, bank drafts, money orders, or currency.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... checks, bank drafts, money orders, or currency. 28.204-2 Section 28.204-2 Federal Acquisition Regulations... Other Security for Bonds 28.204-2 Certified or cashiers checks, bank drafts, money orders, or currency... draft, Post Office money order, or currency, in an amount equal to the penal sum of the bond, instead of...

  14. Oregon School Bond Manual. Sixth Edition.

    ERIC Educational Resources Information Center

    Oregon State Dept. of Education, Salem. Office of School District Services.

    Given that purchasers of Oregon school bonds rely on recommendations of accredited bond attorneys, this document is designed to assist school districts in complying with state statutes regulating the issuance of school bond issues in order that attorney opinions may be favorable. Six initial steps toward a bond sale and Oregon laws regarding bonds…

  15. Molecular Static Third-Order Polarizabilities of Carbon-Cage Fullerene and Their Correlation with Three Geometric Properties: Symmetry, Aromaticity, and Size

    NASA Technical Reports Server (NTRS)

    Moore, C. E.; Cardelino, B. H.; Frazier, D. O.; Niles, J.; Wang, X.-Q.

    1998-01-01

    The static third-order polarizabilities (gamma) of C60, C70, five isomers of C78 and two isomers of C84 were analyzed in terms of three properties, from a geometric point of view: symmetry, aromaticity and size. The polarizability values were based on the finite field approximation using a semiempirical Hamiltonian (AM1) and applied to molecular structures obtained from density functional theory calculations. Symmetry was characterized by the molecular group order. The selection of 6-member rings as aromatic was determined from an analysis of bond lengths. Maximum interatomic distance and surface area were the parameters considered with respect to size. Based on triple linear regression analysis, it was found that the static linear polarizability (alpha) and gamma in these molecules respond differently to geometrical properties: alpha depends almost exclusively on surface area while gamma is affected by a combination of number of aromatic rings, length and group order, in decreasing importance. In the case of alpha, valence electron contributions provide the same information as all-electron estimates. For gamma, the best correlation coefficients are obtained when all-electron estimates are used and when the dependent parameter is ln(gamma) instead of gamma.

  16. Tension Amplification in Molecular Brushes in Solutions and on Substrates

    PubMed Central

    Panyukov, Sergey; Zhulina, Ekaterina B.; Sheiko, Sergei S.; Randall, Greg C.; Brock, James; Rubinstein, Michael

    2009-01-01

    Molecular bottle-brushes are highly branched macromolecules with side chains densely grafted to a long polymer backbone. The brush-like architecture allows focusing of the side-chain tension to the backbone and its amplification from the picoNewton to nanoNewton range. The backbone tension depends on the overall molecular conformation and the surrounding environment. Here we study the relation between the tension and conformation of the molecular brushes in solutions, melts, and on substrates. In solutions, we find that the backbone tension in dense brushes with side chains attached to every backbone monomer is on the order of f0N3/8 in athermal solvents, f0N1/3 in θ-solvents, and f0 in poor solvents and melts, where N is the degree of polymerization of side chains, f0≃ kBT/b is the maximum tension in side chains, b is the Kuhn length, kB is Boltzmann constant, and T is absolute temperature. Depending on the side chain length and solvent quality, molecular brushes in solutions develop tension on the order of 10–100 picoNewtons, which is sufficient to break hydrogen bonds. Significant amplification of tension occurs upon adsorption of brushes onto a substrate. On a strongly attractive substrate, maximum tension in the brush backbone is ~ f0N, reaching values on the order of several nanoNewtons which exceed the strength of a typical covalent bond. At low grafting density and high spreading parameter the cross-sectional profile of adsorbed molecular brush is approximately rectangular with thicknes ~bA/S, where A is the Hamaker constant and S is the spreading parameter. At a very high spreading parameter (S > A), the brush thickness saturates at monolayer ~ b. At a low spreading parameter, the cross-sectional profile of adsorbed molecular brush has triangular tent-like shape. In the cross-over between these two opposite cases, covering a wide range of parameter space, the adsorbed molecular brush consists of two layers. Side chains in the lower layer gain surface energy due to the direct interaction with the substrate, while the second layer spreads on the top of the first layer. Scaling theory predicts that this second layer has a triangular cross-section with width R ~ N3/5 and height h ~ N2/5. Using self-consistent field theory we calculate the cap profile y (x) = h (1 − x2/R2)2, where x is the transverse distance from the backbone. The predicted cap shape is in excellent agreement with both computer simulation and experiment. PMID:19673133

  17. Effects of fragility and reduced glass transition temperature on the glass formation ability of amorphous alloys

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-Jin; Long, Zhi-Lin; Liu, Wei; Liao, Guang-Kai

    2017-11-01

    In this paper, based on the reduced glass transition temperature ({{T}rg} ) proposed by Turnbull and the relation between the glass-forming ability (GFA) and the short-range bond ordering of liquids demonstrated by Tanaka, a detailed analysis on the specific roles of {{T}rg} and fragility of the glass forming liquid (m) in characterizing the GFA has been conducted, and then a novel GFA parameter α [=2/3× (100{{T}rg}{)}-(16/100)× m=67{{T}rg}-0.16m] was put forward. This new GFA parameter α , which increases with a decrease in the critical cooling rate (R c) for glass formation, is a complex function of {{T}rg} and m. The relationship between R c and the parameter α was identified and verified using available literature data for broad range of amorphous alloys with widely varying GFA. The correlation coefficient (R 2) of 0.9 clearly shows an excellent correlation between GFA and the parameter α and that α is a more superior indicator compared to currently reported similar GFA parameters.

  18. Surface pretreatment of plastics with an atmospheric pressure plasma jet - Influence of generator power and kinematics

    NASA Astrophysics Data System (ADS)

    Moritzer, E.; Leister, C.

    2014-05-01

    The industrial use of atmospheric pressure plasmas in the plastics processing industry has increased significantly in recent years. Users of this treatment process have the possibility to influence the target values (e.g. bond strength or surface energy) with the help of kinematic and electrical parameters. Until now, systematic procedures have been used with which the parameters can be adapted to the process or product requirements but only by very time-consuming methods. For this reason, the relationship between influencing values and target values will be examined based on the example of a pretreatment in the bonding process with the help of statistical experimental design. Because of the large number of parameters involved, the analysis is restricted to the kinematic and electrical parameters. In the experimental tests, the following factors are taken as parameters: gap between nozzle and substrate, treatment velocity (kinematic data), voltage and duty cycle (electrical data). The statistical evaluation shows significant relationships between the parameters and surface energy in the case of polypropylene. An increase in the voltage and duty cycle increases the polar proportion of the surface energy, while a larger gap and higher velocity leads to lower energy levels. The bond strength of the overlapping bond is also significantly influenced by the voltage, velocity and gap. The direction of their effects is identical with those of the surface energy. In addition to the kinematic influences of the motion of an atmospheric pressure plasma jet, it is therefore especially important that the parameters for the plasma production are taken into account when designing the pretreatment processes.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moritzer, E., E-mail: elmar.moritzer@ktp.upb.de; Leister, C., E-mail: elmar.moritzer@ktp.upb.de

    The industrial use of atmospheric pressure plasmas in the plastics processing industry has increased significantly in recent years. Users of this treatment process have the possibility to influence the target values (e.g. bond strength or surface energy) with the help of kinematic and electrical parameters. Until now, systematic procedures have been used with which the parameters can be adapted to the process or product requirements but only by very time-consuming methods. For this reason, the relationship between influencing values and target values will be examined based on the example of a pretreatment in the bonding process with the help ofmore » statistical experimental design. Because of the large number of parameters involved, the analysis is restricted to the kinematic and electrical parameters. In the experimental tests, the following factors are taken as parameters: gap between nozzle and substrate, treatment velocity (kinematic data), voltage and duty cycle (electrical data). The statistical evaluation shows significant relationships between the parameters and surface energy in the case of polypropylene. An increase in the voltage and duty cycle increases the polar proportion of the surface energy, while a larger gap and higher velocity leads to lower energy levels. The bond strength of the overlapping bond is also significantly influenced by the voltage, velocity and gap. The direction of their effects is identical with those of the surface energy. In addition to the kinematic influences of the motion of an atmospheric pressure plasma jet, it is therefore especially important that the parameters for the plasma production are taken into account when designing the pretreatment processes.« less

  20. Bonded orthotropic strips with cracks

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1978-01-01

    The elastostatic problem for a nonhomogeneous plane which consists of two sets of periodically arranged dissimilar orthotropic strips is considered. First, the problem of cracks fully imbedded into the homogeneous strips is considered. Then, the singular behavior of the stresses for two special crack geometries is studied in some detail. The first is the case of a broken laminate in which the crack tips touch the interfaces. The second is the case of cracks crossing the interfaces. A number of numerical examples are worked out in order to separate the primary material parameters influencing the stress intensity factors and the powers of stress singularity, and to determine the trends regarding the influence of the secondary parameters. Finally, some numerical results are given for the stress intensity factors in certain basic crack geometries and for typical material combinations.

  1. Charge and current orders in the spin-fermion model with overlapping hot spots

    NASA Astrophysics Data System (ADS)

    Volkov, Pavel A.; Efetov, Konstantin B.

    2018-04-01

    Experiments carried over the last years on the underdoped cuprates have revealed a variety of symmetry-breaking phenomena in the pseudogap state. Charge-density waves, breaking of C4 rotational symmetry as well as time-reversal symmetry breaking have all been observed in several cuprate families. In this regard, theoretical models where multiple nonsuperconducting orders emerge are of particular interest. We consider the recently introduced [Volkov and Efetov, Phys. Rev. B 93, 085131 (2016), 10.1103/PhysRevB.93.085131] spin-fermion model with overlapping `hot spots' on the Fermi surface. Focusing on the particle-hole instabilities we obtain a rich phase diagram with the chemical potential relative to the dispersion at (0 ,π );(π ,0 ) and the Fermi surface curvature in the antinodal regions being the control parameters. We find evidence for d-wave Pomeranchuk instability, d-form factor charge density waves, as well as commensurate and incommensurate staggered bond current phases similar to the d-density wave state. The current orders are found to be promoted by the curvature. Considering the appropriate parameter range for the hole-doped cuprates, we discuss the relation of our results to the pseudogap state and incommensurate magnetic phases of the cuprates.

  2. A quantum chemical study of molecular properties and QSPR modeling of oximes, amidoximes and hydroxamic acids with nucleophilic activity against toxic organophosphorus agents

    NASA Astrophysics Data System (ADS)

    Alencar Filho, Edilson B.; Santos, Aline A.; Oliveira, Boaz G.

    2017-04-01

    The proposal of this work includes the use of quantum chemical methods and cheminformatics strategies in order to understand the structural profile and reactivity of α-nucleophiles compounds such as oximes, amidoximes and hydroxamic acids, related to hydrolysis rate of organophosphates. Theoretical conformational study of 41 compounds were carried out through the PM3 semiempirical Hamiltonian, followed by the geometry optimization at the B3LYP/6-31+G(d,p) level of theory, complemented by Polarized Continuum Model (PCM) to simulate the aqueous environment. In line with the experimental hypothesis about hydrolytic power, the strength of the Intramolecular Hydrogen Bonds (IHBs) at light of the Bader's Quantum Theory of Atoms in Molecules (QTAIM) is related to the preferential conformations of α-nucleophiles. A set of E-Dragon descriptors (1,666) were submitted to a variable selection through Ordered Predictor Selection (OPS) algorithm. Five descriptors, including atomic charges obtained from the Natural Bond Orbitals (NBO) protocol jointly with a fragment index associated to the presence/absence of IHBs, provided a Quantitative Structure-Property Relationship (QSPR) model via Multiple Linear Regression (MLR). This model showed good validation parameters (R2 = 0.80, Qloo2 = 0.67 and Qext2 = 0.81) and allowed the identification of significant physicochemical features on the molecular scaffold in order to design compounds potentially more active against organophosphorus poisoning.

  3. Mechanical response of silk crystalline units from force-distribution analysis.

    PubMed

    Xiao, Senbo; Stacklies, Wolfram; Cetinkaya, Murat; Markert, Bernd; Gräter, Frauke

    2009-05-20

    The outstanding mechanical toughness of silk fibers is thought to be caused by embedded crystalline units acting as cross links of silk proteins in the fiber. Here, we examine the robustness of these highly ordered beta-sheet structures by molecular dynamics simulations and finite element analysis. Structural parameters and stress-strain relationships of four different models, from spider and Bombyx mori silk peptides, in antiparallel and parallel arrangement, were determined and found to be in good agreement with x-ray diffraction data. Rupture forces exceed those of any previously examined globular protein many times over, with spider silk (poly-alanine) slightly outperforming Bombyx mori silk ((Gly-Ala)(n)). All-atom force distribution analysis reveals both intrasheet hydrogen-bonding and intersheet side-chain interactions to contribute to stability to similar extent. In combination with finite element analysis of simplified beta-sheet skeletons, we could ascribe the distinct force distribution pattern of the antiparallel and parallel silk crystalline units to the difference in hydrogen-bond geometry, featuring an in-line or zigzag arrangement, respectively. Hydrogen-bond strength was higher in antiparallel models, and ultimately resulted in higher stiffness of the crystal, compensating the effect of the mechanically disadvantageous in-line hydrogen-bond geometry. Atomistic and coarse-grained force distribution patterns can thus explain differences in mechanical response of silk crystals, opening up the road to predict full fiber mechanics.

  4. A theoretical study on the electronic structures and equilibrium constants evaluation of Deferasirox iron complexes.

    PubMed

    Salehi, Samie; Saljooghi, Amir Shokooh; Izadyar, Mohammad

    2016-10-01

    Elemental iron is essential for cellular growth and homeostasis but it is potentially toxic to the cells and tissues. Excess iron can contribute in tumor initiation and tumor growth. Obviously, in iron overload issues using an iron chelator in order to reduce iron concentration seems to be vital. This study presents the density functional theory calculations of the electronic structure and equilibrium constant for iron-deferasirox (Fe-DFX) complexes in the gas phase, water and DMSO. A comprehensive study was performed to investigate the Deferasirox-iron complexes in chelation therapy. Calculation was performed in CAMB3LYP/6-31G(d,p) to get the optimized structures for iron complexes in high and low spin states. Natural bond orbital and quantum theory of atoms in molecules analyses was carried out with B3LYP/6-311G(d,p) to understand the nature of complex bond character and electronic transition in complexes. Electrostatic potential effects on the complexes were evaluated using the CHelpG calculations. The results indicated that higher affinity for Fe(III) is not strictly a function of bond length but also the degree of Fe-X (X=O,N) covalent bonding. Based on the quantum reactivity parameters which have been investigated here, it is possible reasonable design of the new chelators to improve the chelator abilities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Electrochemical removal of hydrogen atoms in Mg-doped GaN epitaxial layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, June Key, E-mail: junekey@jnu.ac.kr, E-mail: hskim7@jbnu.ac.kr; Hyeon, Gil Yong; Tawfik, Wael Z.

    2015-05-14

    Hydrogen atoms inside of an Mg-doped GaN epitaxial layer were effectively removed by the electrochemical potentiostatic activation (EPA) method. The role of hydrogen was investigated in terms of the device performance of light-emitting diodes (LEDs). The effect of the main process parameters for EPA such as solution type, voltage, and time was studied and optimized for application to LED fabrication. In optimized conditions, the light output of 385-nm LEDs was improved by about 26% at 30 mA, which was caused by the reduction of the hydrogen concentration by ∼35%. Further removal of hydrogen seems to be involved in the breaking ofmore » Ga-H bonds that passivate the nitrogen vacancies. An EPA process with high voltage breaks not only Mg-H bonds that generate hole carriers but also Ga-H bonds that generate electron carriers, thus causing compensation that impedes the practical increase of hole concentration, regardless of the drastic removal of hydrogen atoms. A decrease in hydrogen concentration affects the current-voltage characteristics, reducing the reverse current by about one order and altering the forward current behavior in the low voltage region.« less

  6. Bimetallo-radical carbon-hydrogen bond activation of methanol and methane.

    PubMed

    Cui, Weihong; Zhang, X Peter; Wayland, Bradford B

    2003-04-30

    Carbon-hydrogen bond cleavage reactions of CH3OH and CH4 by a dirhodium(II) diporphyrin complex with a m-xylyl tether (.Rh(m-xylyl)Rh.(1)) are reported. Kinetic-mechanistic studies show that the substrate reactions are bimolecular and occur through the use of two Rh(II) centers in the molecular unit of 1. Second-order rate constants (T = 296 K) for the reactions of 1 with methanol (k(CH3OH) = 1.45 x 10-2 M-1 s-1) and methane (k(CH4) = 0.105 M-1 s-1) show a clear kinetic preference for the methane activation process. The methanol and methane reactions with 1 have large kinetic isotope effects (k(CH3OH)/k(CD3OD) = 9.7 +/- 0.8, k(CH4)/k(CD4) = 10.8 +/- 1.0, T = 296 K), consistent with a rate-limiting step of C-H bond homolysis through a linear transition state. Activation parameters for reaction of 1 with methanol (DeltaH = 15.6 +/- 1.0 kcal mol-1; DeltaS = -14 +/- 5 cal K-1 mol-1) and methane (DeltaH = 9.8 +/- 0.5 kcal mol-1; DeltaS = -30 +/- 3 cal K-1 mol-1) are reported.

  7. Electrochemical removal of hydrogen atoms in Mg-doped GaN epitaxial layers

    NASA Astrophysics Data System (ADS)

    Lee, June Key; Hyeon, Gil Yong; Tawfik, Wael Z.; Choi, Hee Seok; Ryu, Sang-Wan; Jeong, Tak; Jung, Eunjin; Kim, Hyunsoo

    2015-05-01

    Hydrogen atoms inside of an Mg-doped GaN epitaxial layer were effectively removed by the electrochemical potentiostatic activation (EPA) method. The role of hydrogen was investigated in terms of the device performance of light-emitting diodes (LEDs). The effect of the main process parameters for EPA such as solution type, voltage, and time was studied and optimized for application to LED fabrication. In optimized conditions, the light output of 385-nm LEDs was improved by about 26% at 30 mA, which was caused by the reduction of the hydrogen concentration by ˜35%. Further removal of hydrogen seems to be involved in the breaking of Ga-H bonds that passivate the nitrogen vacancies. An EPA process with high voltage breaks not only Mg-H bonds that generate hole carriers but also Ga-H bonds that generate electron carriers, thus causing compensation that impedes the practical increase of hole concentration, regardless of the drastic removal of hydrogen atoms. A decrease in hydrogen concentration affects the current-voltage characteristics, reducing the reverse current by about one order and altering the forward current behavior in the low voltage region.

  8. Shock response of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX): The C-N bond scission studied by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Yuan, Jiao-Nan; Wei, Yong-Kai; Zhang, Xiu-Qing; Chen, Xiang-Rong; Ji, Guang-Fu; Kotni, Meena Kumari; Wei, Dong-Qing

    2017-10-01

    The shock response has a great influence on the design, synthesis, and application of energetic materials in both industrial and military areas. Therefore, the initial decomposition mechanism of bond scission at the atomistic level of condensed-phase α-RDX under shock loading has been studied based on quantum molecular dynamics simulations in combination with a multi-scale shock technique. First, based on the frontier molecular orbital theory, our calculated result shows that the N-NO2 bond is the weakest bond in the α-RDX molecule in the ground state, which may be the initial bond for pyrolysis. Second, the changes of bonds under shock loading are investigated by the changes of structures, kinetic bond lengths, and Laplacian bond orders during the simulation. Also, the variation of thermodynamic properties with time in shocked α-RDX at 10 km/s along the lattice vector a for a timescale of up to 3.5 ps is presented. By analyzing the detailed structural changes of RDX under shock loading, we find that the shocked RDX crystal undergoes a process of compression and rotation, which leads to the C-N bond initial rupture. The time variation of dynamic bond lengths in a shocked RDX crystal is calculated, and the result indicates that the C-N bond is easier to rupture than other bonds. The Laplacian bond orders are used to predict the molecular reactivity and stability. The values of the calculated bond orders show that the C-N bonds are more sensitive than other bonds under shock loading. In a word, the C-N bond scission has been validated as the initial decomposition in a RDX crystal shocked at 10 km/s. Finally, the bond-length criterion has been used to identify individual molecules in the simulation. The distance thresholds up to which two particles are considered direct neighbors and assigned to the same cluster have been tested. The species and density numbers of the initial decomposition products are collected according to the trajectory.

  9. Study of the physical properties of Ge-S-Ga glassy alloy

    NASA Astrophysics Data System (ADS)

    Rana, Anjli; Sharma, Raman

    2018-05-01

    In the present work, we have studied the effect of Ga doping on the physical properties of Ge20S80-xGax glassy alloy. The basic physical parameters which have important role in determining the structure and strength of the material viz. average coordination number, lone-pair electrons, mean bond energy, glass transition temperature, electro negativity, probabilities for bond distribution and cohesive energy have been computed theoretically for Ge-S-Ga glassy alloy. Here, the glass transition temperature and mean bond energy have been investigated using the Tichy-Ticha approach. The cohesive energy has been calculated by using chemical bond approach (CBA) method. It has been found that while average coordination number increases, all the other parameters decrease with the increase in Ga content in Ge-S-Ga system.

  10. Ground-state phases of the spin-1 J1-J2 Heisenberg antiferromagnet on the honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Li, P. H. Y.; Bishop, R. F.

    2016-06-01

    We study the zero-temperature quantum phase diagram of a spin-1 Heisenberg antiferromagnet on the honeycomb lattice with both nearest-neighbor exchange coupling J1>0 and frustrating next-nearest-neighbor coupling J2≡κ J1>0 , using the coupled cluster method implemented to high orders of approximation, and based on model states with different forms of classical magnetic order. For each we calculate directly in the bulk thermodynamic limit both ground-state low-energy parameters (including the energy per spin, magnetic order parameter, spin stiffness coefficient, and zero-field uniform transverse magnetic susceptibility) and their generalized susceptibilities to various forms of valence-bond crystalline (VBC) order, as well as the energy gap to the lowest-lying spin-triplet excitation. In the range 0 <κ <1 we find evidence for four distinct phases. Two of these are quasiclassical phases with antiferromagnetic long-range order, one with two-sublattice Néel order for κ <κc1=0.250(5 ) , and another with four-sublattice Néel-II order for κ >κc 2=0.340 (5 ) . Two different paramagnetic phases are found to exist in the intermediate region. Over the range κc1<κ<κci=0.305 (5 ) we find a gapless phase with no discernible magnetic order, which is a strong candidate for being a quantum spin liquid, while over the range κci<κ <κc 2 we find a gapped phase, which is most likely a lattice nematic with staggered dimer VBC order that breaks the lattice rotational symmetry.

  11. Design/Analysis of Metal/Composite Bonded Joints for Survivability at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Bartoszyk, Andrew E.

    2004-01-01

    A major design and analysis challenge for the JWST ISM structure is the metal/composite bonded joints that will be required to survive down to an operational ultra-low temperature of 30K (-405 F). The initial and current baseline design for the plug-type joint consists of a titanium thin walled fitting (1-3mm thick) bonded to the interior surface of an M555/954-6 composite truss square tube with an axially stiff biased lay-up. Metallic fittings are required at various nodes of the truss structure to accommodate instrument and lift-point bolted interfaces. Analytical experience and design work done on metal/composite bonded joints at temperatures below liquid nitrogen are limited and important analysis tools, material properties, and failure criteria for composites at cryogenic temperatures are virtually nonexistent. Increasing the challenge is the difficulty in testing for these required tools and parameters at 30K. A preliminary finite element analysis shows that failure due to CTE mismatch between the biased composite and titanium or aluminum is likely. Failure is less likely with Invar, however an initial mass estimate of Invar fittings demonstrates that Invar is not an automatic alternative. In order to gain confidence in analyzing and designing the ISM joints, a comprehensive joint development testing program has been planned and is currently running. The test program is designed for the correlation of the analysis methodology, including tuning finite element model parameters, and developing a composite failure criterion for the effect of multi-axial composite stresses on the strength of a bonded joint at 30K. The testing program will also consider stress mitigation using compliant composite layers and potential strength degradation due to multiple thermal cycles. Not only will the finite element analysis be correlated to the test data, but the FEA will be used to guide the design of the test. The first phase of the test program has been completed and the preliminary analysis has been revisited based on the test data In this work, we present an overview of the test plan, results today, and resulting design improvements.

  12. Parametrization of Combined Quantum Mechanical and Molecular Mechanical Methods: Bond-Tuned Link Atoms.

    PubMed

    Wu, Xin-Ping; Gagliardi, Laura; Truhlar, Donald G

    2018-05-30

    Combined quantum mechanical and molecular mechanical (QM/MM) methods are the most powerful available methods for high-level treatments of subsystems of very large systems. The treatment of the QM-MM boundary strongly affects the accuracy of QM/MM calculations. For QM/MM calculations having covalent bonds cut by the QM-MM boundary, it has been proposed previously to use a scheme with system-specific tuned fluorine link atoms. Here, we propose a broadly parametrized scheme where the parameters of the tuned F link atoms depend only on the type of bond being cut. In the proposed new scheme, the F link atom is tuned for systems with a certain type of cut bond at the QM-MM boundary instead of for a specific target system, and the resulting link atoms are call bond-tuned link atoms. In principle, the bond-tuned link atoms can be as convenient as the popular H link atoms, and they are especially well adapted for high-throughput and accurate QM/MM calculations. Here, we present the parameters for several kinds of cut bonds along with a set of validation calculations that confirm that the proposed bond-tuned link-atom scheme can be as accurate as the system-specific tuned F link-atom scheme.

  13. Tetrel bond-σ-hole bond as a preliminary stage of the SN2 reaction.

    PubMed

    Grabowski, Sławomir J

    2014-02-07

    MP2/aug-cc-pVTZ calculations were carried out on complexes of ZH4, ZFH3 and ZF4 (Z = C, Si and Ge) molecules with HCN, LiCN and Cl(-) species acting as Lewis bases through nitrogen centre or chlorine ion. Z-Atoms in these complexes usually act as Lewis acid centres forming σ-hole bonds with Lewis bases. Such noncovalent interactions may adopt a name of tetrel bonds since they concern the elements of the group IV. There are exceptions for complexes of CH4 and CF4, as well as for the F4SiNCH complex where the tetrel bond is not formed. The energetic and geometrical parameters of the complexes were analyzed and numerous correlations between them were found. The Quantum Theory of 'Atoms in Molecules' and Natural Bonds Orbital (NBO) method used here should deepen the understanding of the nature of the tetrel bond. An analysis of the electrostatic potential surfaces of the interacting species is performed. The electron charge redistribution, being the result of the tetrel bond formation, is the same as that of the SN2 reaction. The energetic and geometrical parameters of the complexes analyzed here correspond to different stages of the SN2 process.

  14. Trapping a Highly Reactive Nonheme Iron Intermediate That Oxygenates Strong C-H Bonds with Stereoretention.

    PubMed

    Serrano-Plana, Joan; Oloo, Williamson N; Acosta-Rueda, Laura; Meier, Katlyn K; Verdejo, Begoña; García-España, Enrique; Basallote, Manuel G; Münck, Eckard; Que, Lawrence; Company, Anna; Costas, Miquel

    2015-12-23

    An unprecedentedly reactive iron species (2) has been generated by reaction of excess peracetic acid with a mononuclear iron complex [Fe(II)(CF3SO3)2(PyNMe3)] (1) at cryogenic temperatures, and characterized spectroscopically. Compound 2 is kinetically competent for breaking strong C-H bonds of alkanes (BDE ≈ 100 kcal·mol(-1)) through a hydrogen-atom transfer mechanism, and the transformations proceed with stereoretention and regioselectively, responding to bond strength, as well as to steric and polar effects. Bimolecular reaction rates are at least an order of magnitude faster than those of the most reactive synthetic high-valent nonheme oxoiron species described to date. EPR studies in tandem with kinetic analysis show that the 490 nm chromophore of 2 is associated with two S = 1/2 species in rapid equilibrium. The minor component 2a (∼5% iron) has g-values at 2.20, 2.19, and 1.99 characteristic of a low-spin iron(III) center, and it is assigned as [Fe(III)(OOAc)(PyNMe3)](2+), also by comparison with the EPR parameters of the structurally characterized hydroxamate analogue [Fe(III)(tBuCON(H)O)(PyNMe3)](2+) (4). The major component 2b (∼40% iron, g-values = 2.07, 2.01, 1.95) has unusual EPR parameters, and it is proposed to be [Fe(V)(O)(OAc)(PyNMe3)](2+), where the O-O bond in 2a has been broken. Consistent with this assignment, 2b undergoes exchange of its acetate ligand with CD3CO2D and very rapidly reacts with olefins to produce the corresponding cis-1,2-hydroxoacetate product. Therefore, this work constitutes the first example where a synthetic nonheme iron species responsible for stereospecific and site selective C-H hydroxylation is spectroscopically trapped, and its catalytic reactivity against C-H bonds can be directly interrogated by kinetic methods. The accumulated evidence indicates that 2 consists mainly of an extraordinarily reactive [Fe(V)(O)(OAc)(PyNMe3)](2+) (2b) species capable of hydroxylating unactivated alkyl C-H bonds with stereoretention in a rapid and site-selective manner, and that exists in fast equilibrium with its [Fe(III)(OOAc)(PyNMe3)](2+) precursor.

  15. Facile synthesis, single crystal analysis, and computational studies of sulfanilamide derivatives

    NASA Astrophysics Data System (ADS)

    Tahir, Muhammad Nawaz; Khalid, Muhammad; Islam, Ayesha; Ali Mashhadi, Syed Muddassir; Braga, Ataualpa A. C.

    2017-01-01

    Antibacterial resistance is a worldwide problem. Sulfanilamide is widely used antibacterial. For the first time, we report here a simple method for the derivative synthesis of the title drugs, single crystal XRD and density functional theory (DFT) studies. The optimized molecular structure, natural bond orbital (NBO), frontier molecular orbitals (FMOs) molecular electrostatic potential studies (MEP) and Mulliken population analysis (MPA) have been performed using M06-2X/6-31G(d, p). The FT-IR spectra and thermodynamic parameters were calculated at M06-2X/6-311 + G(2d,p) and B3LYP/6-31G(d, p) levels respectively, while, the UV-Vis analysis was performed using TD-DFT/B3LYP/6-31G(d, p) method. The experimental FT-IR spectra of both compounds were also carried out to reconfirm sbnd H⋯Osbnd hydrogen bonds. The DFT optimized parameters exhibiting good agreement with the experimental data. NBO analysis explored the hyper conjugative interaction and stability of title crystals, especially, reconfirmed the existence of sbnd H⋯Osbnd hydrogen bonds between the dimers. The FT-IR, thermodynamic parameters, MEP and MPA also revealed the hydrogen bonding detail is harmonious to XRD data. As a matter of the fact, the hydrogen bonding is a significant parameter for the understanding and design of molecular crystals, subsequently; it can also play a vital role in the supramolecular chemistry. Moreover, the global reactivity descriptors suggest that title compounds might be bioactive.

  16. Parallel computing and first-principles calculations: Applications to complex ceramics and Vitamin B12

    NASA Astrophysics Data System (ADS)

    Ouyang, Lizhi

    A systematic improvement and extension of the orthogonalized linear combinations of atomic orbitals method was carried out using a combined computational and theoretical approach. For high performance parallel computing, a Beowulf class personal computer cluster was constructed. It also served as a parallel program development platform that helped us to port the programs of the method to the national supercomputer facilities. The program, received a language upgrade from Fortran 77 to Fortran 90, and a dynamic memory allocation feature. A preliminary parallel High Performance Fortran version of the program has been developed as well. To be of more benefit though, scalability improvements are needed. In order to circumvent the difficulties of the analytical force calculation in the method, we developed a geometry optimization scheme using the finite difference approximation based on the total energy calculation. The implementation of this scheme was facilitated by the powerful general utility lattice program, which offers many desired features such as multiple optimization schemes and usage of space group symmetry. So far, many ceramic oxides have been tested with the geometry optimization program. Their optimized geometries were in excellent agreement with the experimental data. For nine ceramic oxide crystals, the optimized cell parameters differ from the experimental ones within 0.5%. Moreover, the geometry optimization was recently used to predict a new phase of TiNx. The method has also been used to investigate a complex Vitamin B12-derivative, the OHCbl crystals. In order to overcome the prohibitive disk I/O demand, an on-demand version of the method was developed. Based on the electronic structure calculation of the OHCbl crystal, a partial density of states analysis and a bond order analysis were carried out. The calculated bonding of the corrin ring of OHCbl model was coincident with the big open-ring pi bond. One interesting find of the calculation was that the Co-OH bond was weak. This, together with the ongoing projects studying different Vitamin B12 derivatives, might help us to answer questions about the Co-C cleavage of the B12 coenzyme, which is involved in many important B12 enzymatic reactions.

  17. Hexatic smectic phase with algebraically decaying bond-orientational order

    NASA Astrophysics Data System (ADS)

    Agosta, Lorenzo; Metere, Alfredo; Dzugutov, Mikhail

    2018-05-01

    The hexatic phase predicted by the theories of two-dimensional melting is characterized by the power-law decay of the orientational correlations, whereas the in-layer bond orientational order in all the hexatic smectic phases observed so far was found to be long range. We report a hexatic smectic phase where the in-layer bond orientational correlations decay algebraically, in quantitative agreement with the hexatic ordering predicted by the theory for two dimensions. The phase was formed in a molecular dynamics simulation of a one-component system of particles interacting via a spherically symmetric potential. The present results thus demonstrate that the theoretically predicted two-dimensional hexatic order can exist in a three-dimensional system.

  18. An Ultrasonic Technique to Determine the Residual Strength of Adhesive Bonds

    NASA Technical Reports Server (NTRS)

    Achenbach, J. D.; Tang, Z.

    1999-01-01

    In this work, ultrasonic techniques to nondestructively evaluate adhesive bond degradation have been studied. The key to the present approach is the introduction of an external factor which pulls the adhesive bond in the nonlinear range, simultaneously with the application of an ultrasonic technique. With the aid of an external static tensile loading, a superimposed longitudinal wave has.been used to obtain the slopes of the stress-strain curve of an adhesive bond at a series of load levels. The critical load, at which a reduction of the slope is detected by the superimposed longitudinal wave, is an indication of the onset of nonlinear behavior of the adhesive bond, and therefore of bond degradation. This approach has been applied to the detection of adhesive bond degradation induced by cyclic fatigue loading. Analogously to the longitudinal wave case, a superimposed shear wave has been used to obtain the effective shear modulus of adhesive layers at different shear load levels. The onset of the nonlinear behavior of an adhesive bond under shear loading has been detected by the use of a superimposed shear wave. Experiments show that a longitudinal wave can also detect the nonlinear behavior when an adhesive bond is subjected to shear loading. An optimal combination of ultrasonic testing and mechanical loading methods for the detection of degradation related nonlinear behavior of adhesive bonds has been discussed. For the purpose of a practical application, an ultrasonic technique that uses a temperature increase as an alternative to static loading has also been investigated. A general strain-temperature correspondence principle that relates a mechanical strain to a temperature has been presented. Explicit strain-temperature correspondence relations for both the tension and shear cases have been derived. An important parameter which quantifies the relation between the wave velocity and temperature has been defined. This parameter, which is indicative of adhesive bond nonlinearity and which can be conveniently obtained by an ultrasonic measurement, has been used as an indication of adhesive bond degradation. Experimental results have shown that the temperature increase method is a convenient and productive alternative to static loading. A technique which uses the reflected waveform data to obtain the fundamental ultrasonic parameters (transit time, reflection coefficient and attenuation coefficient) of an adhesive bond has also been presented.

  19. Experimental and theoretical investigations on the EPR parameters and molecular orbital bonding coefficients of VO2+ ions in BTTB glasses

    NASA Astrophysics Data System (ADS)

    Srinivas, B.; Hameed, Abdul; Vijaya Kumar, R.; Narasimha Chary, M.; Shareefuddin, Md.

    2018-06-01

    The effect of the spin probe VO2+ in 15BaO-15TeO2-10TiO2-(60-x) B2O3-xV2O5 (x = 0.2, 0.4, 0.6, 0.8 mol %) glasses has been studied by employing Electron Paramagnetic Resonance (EPR) and optical absorption spectroscopic techniques. The observed EPR spectra of VO2+ ions were attributed on the basis of well-known spin-Hamiltonian of C4V symmetry. The simulated EPR spectra for VO2+ ions in the present glass system were drawn using Easy spin software. Both the experimental and simulated spectra were found to be in good agreement with each other. The optical absorption spectra exhibited three d-d transition bands due to crystal and tetragonal fields of VO2+ ions. These bands were assigned to 2B2g→ 2Eg, 2B2g→ 2B1g and 2B2g→ 2A1g transitions. The crystal field parameters Dq, Ds and Dt values are calculated. From the EPR and optical data, the molecular bonding coefficients were evaluated. Employing the higher order perturbation formulae of the g factors for 3d1 ion under tetragonally compressed octahedral fields, theoretical studies were carried out. The spin-Hamiltonian parameters ? and ? obtained from both the experimental and theoretical methods were in good agreement with each other.

  20. Symmetry breaking in the planar configurations of disilicon tetrahalides: Pseudo-Jahn-Teller effect parameters, hardness and electronegativity.

    PubMed

    Kouchakzadeh, Ghazaleh; Nori-Shargh, Davood

    2015-11-21

    CCSD(T), MP2, LC-BLYP, LC-ωPBE and B3LYP methods with the Def2-TZVPP basis set and natural bond orbital (NBO) interpretations were performed to investigate the correlations between the Pseudo-Jahn-Teller Effect (PJTE) parameters [i.e. vibronic coupling constant values (F), energy gaps between reference states (Δ) and the primary force constant (K0)], structural and configurational properties, global hardness, global electronegativity, natural bond orders, stabilization energies associated with electron delocalizations and natural atomic charges of disilicon tetrafluoride (1), disilicon tetrachloride (2), disilicon tetrabromide (3) and disilicon tetraiodide (4). All levels of theory showed the trans-bent (C2h) configurations as the energy minimum structures of compounds 1-4, and the flap angles between the X2Si planes and the Si=Si bonds in the distorted (C2h) configurations decrease from compound 1 to compound 4. The negative curvatures of the ground state electronic configurations and the positive curvatures of the excited states of the adiabatic potential energy surfaces (APESs) which resulted from the mixing of the ground Ag and excited B2g states are due to the PJTE (i.e. PJT(Ag + B2g) ⊗ b2g problem). Contrary to the usual expectation, with the decrease of the energy gaps between reference states (Δ), the PJTE stabilization energy, E(PJT), decreases from compound 1 to compound 4. The canonical molecular orbital (CMO) analysis revealed that the contributions of the ψ(HOMO)(b3u) and ψL(UMO)(b1u) molecular orbitals in the vibronic coupling constant (F) decrease from compound 1 to compound 4. This fact clearly justifies the decrease of the vibronic coupling constant (F) and the primary force constant (the force constant without the PJTE) values on going from compound 1 to compound 4, leading to the decrease of the negative curvatures of the ground state electronic configuration curves of their corresponding APESs. The results obtained showed that the stabilization energies associated with the mixing of the distorted donor π(Si-Si)(b(u)) bonding and acceptor σ(Si-Si)*(b(u)) antibonding orbitals along the b2g bending distortions decrease from compound 1 to compound 4. This fact reasonably explains the increase of the Si-Si natural bond orders (nbo) on going from compound 1 to compound 4. With the increase of the Si-Si natural bond orders, the corresponding E(PJT) decreases from compound 1 to compound 4. Importantly, the variations of the global hardness (η) differences (Δ[η(C2h) - η(D2h)]) do not correlate with the trend observed for their corresponding total energy differences, justifying that the configurational properties of compounds 1-4 do not obey the maximum hardness principle. Interestingly, the trans-bent (C2h) configurations of compounds 1-4 are more electronegative than their corresponding planar (D2h) forms and the variations of their global electronegativity (χ) differences (Δ[χ(C2h) - χ(D2h)]) succeed in accounting for the decrease of the E(PJT) stabilization energies for the D2h → C2h conversion processes on going from compound 1 to compound 4.

  1. Gas phase chemistry in gallium nitride CVD: Theoretical determination of the Arrhenius parameters for the first Ga-C bond homolysis of trimethylgallium.

    PubMed

    Schmid, Rochus; Basting, Daniel

    2005-03-24

    Experimental evidence suggests that the energy of activation for the first homolytic Ga-C bond fission of GaMe3 of Ea = 249 kJ/mol, measured by Jacko and Price in a hot-wall tube reactor, is affected by surface catalytic effects. In this contribution, the rate constant for this crucial step in the gas-phase pyrolysis of GaMe3 has been calculated by variational transition state theory. By a basis set extrapolation on the MP2/cc-pVXZ level and a correlation correction from CCSD(T)/cc-pVDZ level, a theoretical "best estimate" for the bond energy of Delta H(289K) = 327.2 kJ/mol was derived. For the VTST calculation on the B3LYP/cc-pVDZ level, the energies were corrected to reproduce this bond energy. Partition functions of the transitional modes were approximated by a hindered rotor approximation to be valid along the whole reaction coordinate defined by the Ga-C bond length. On the basis of the canonical transition state theory, reaction rates were determined using the maxima of the free energy Delta G++. An Arrhenius-type rate law was fitted to these rate constants, yielding an apparent energy of activation of Ea = 316.7 kJ/mol. The preexponential factor A = 3.13 x 10(16) 1/s is an order of magnitude larger than the experimental results because of a larger release of entropy at the transition state as compared to that of the unknown surface catalyzed mechanism.

  2. A second order thermodynamic perturbation theory for hydrogen bond cooperativity in water

    NASA Astrophysics Data System (ADS)

    Marshall, Bennett D.

    2017-05-01

    It has been extensively demonstrated through first principles quantum mechanics calculations that water exhibits strong hydrogen bond cooperativity. Equations of state developed from statistical mechanics typically assume pairwise additivity, meaning they cannot account for these 3-body and higher cooperative effects. In this paper, we extend a second order thermodynamic perturbation theory to correct for hydrogen bond cooperativity in 4 site water. We demonstrate that the theory predicts hydrogen bonding structure consistent spectroscopy, neutron diffraction, and molecular simulation data. Finally, we implement the approach into a general equation of state for water.

  3. Understanding cation ordering and oxygen vacancy site preference in Ba3CaNb2O9 from first-principles

    NASA Astrophysics Data System (ADS)

    Ding, Hepeng; Virkar, Anil; Liu, Feng

    2014-03-01

    We investigate the physical mechanism underlying the formation of the B-site cation ordering and the oxygen vacancy site selection in Ba3CaNb2O9 using density functional theory calculations. We found that either cation site exchange or oxygen vacancy formation induces negligible lattice strain. This implies that the ionic radius plays an insignificant role in governing these two processes. Furthermore, the electrostatic interactions are found dominant in the ordering of mixed valence species on one or more sites, the ionic bond strength is identified as the dominant force in governing both the 1:2 B-site cation ordering along the <111>direction and the oxygen vacancy site preference in Ba3CaNb2O9. Specifically, the cation ordering can be rationalized by the increased mixing bonding energy of the Ca-O-Nb bonds over the Ca-O-Ca and Nb-O-Nb bonds, i.e., 1/2(Ca-O-Ca + Nb-O-Nb)

  4. Kinetics of the Multistep Rupture of Fibrin ‘A-a’ Polymerization Interactions Measured Using Atomic Force Microscopy

    PubMed Central

    Averett, Laurel E.; Schoenfisch, Mark H.; Akhremitchev, Boris B.; Gorkun, Oleg V.

    2009-01-01

    Abstract Fibrin, the structural scaffold of blood clots, spontaneously polymerizes through the formation of ‘A-a’ knob-hole bonds. When subjected to external force, the dissociation of this bond is accompanied by two to four abrupt changes in molecular dimension observable as rupture events in a force curve. Herein, the configuration, molecular extension, and kinetic parameters of each rupture event are examined. The increases in contour length indicate that the D region of fibrinogen can lengthen by ∼50% of the length of a fibrin monomer before rupture of the ‘A-a’ interaction. The dependence of the dissociation rate on applied force was obtained using probability distributions of rupture forces collected at different pull-off velocities. These distributions were fit using a model in which the effects of the shape of the binding potential are used to quantify the kinetic parameters of forced dissociation. We found that the weak initial rupture (i.e., event 1) was not well approximated by these models. The ruptured bonds comprising the strongest ruptures, events 2 and 3, had kinetic parameters similar to those commonly found for the mechanical unfolding of globular proteins. The bonds ruptured in event 4 were well described by these analyses, but were more loosely bound than the bonds in events 2 and 3. We propose that the first event represents the rupture of an unknown interaction parallel to the ‘A-a’ bond, events 2 and 3 represent unfolding of structures in the D region of fibrinogen, and event 4 is the rupture of the ‘A-a’ knob-hole bond weakened by prior structural unfolding. Comparison of the activation energy obtained via force spectroscopy measurements with the thermodynamic free energy of ‘A-a’ bond dissociation indicates that the ‘A-a’ bond may be more resistant to rupture by applied force than to rupture by thermal dissociation. PMID:19917237

  5. CFRTP and stainless steel laser joining: Thermal defects analysis and joining parameters optimization

    NASA Astrophysics Data System (ADS)

    Jiao, Junke; Xu, Zifa; Wang, Qiang; Sheng, Liyuan; Zhang, Wenwu

    2018-07-01

    Experiments with different joining parameters were carried out on fiber laser welding system to explore the mechanism of CFRTP/stainless steel joining and the influence of the parameters on the joining quality. The thermal defect and the microstructure of the joint was tested by SEM, EDS. The joint strength and the thermal defect zone width was measured by the tensile tester and the laser confocal microscope, respectively. The influence of parameters such as the laser power, the joining speed and the clamper pressure on the stainless steel surface thermal defect and the joint strength was analyzed. The result showed that the thermal defect on the stainless steel surface would change metal's mechanical properties and reduce its service life. A chemical bonding was found between the CFRTP and the stainless steel besides the physical bonding and the mechanical bonding. The highest shear stress was obtained as the laser power, the joining speed and the clamper pressure is 280 W, 4 mm/s and 0.15 MPa, respectively.

  6. Comparison of Degrees of Potential-Energy-Surface Anharmonicity for Complexes and Clusters with Hydrogen Bonds

    NASA Astrophysics Data System (ADS)

    Kozlovskaya, E. N.; Doroshenko, I. Yu.; Pogorelov, V. E.; Vaskivskyi, Ye. V.; Pitsevich, G. A.

    2018-01-01

    Previously calculated multidimensional potential-energy surfaces of the MeOH monomer and dimer, water dimer, malonaldehyde, formic acid dimer, free pyridine-N-oxide/trichloroacetic acid complex, and protonated water dimer were analyzed. The corresponding harmonic potential-energy surfaces near the global minima were constructed for series of clusters and complexes with hydrogen bonds of different strengths based on the behavior of the calculated multidimensional potential-energy surfaces. This enabled the introduction of an obvious anharmonicity parameter for the calculated potential-energy surfaces. The anharmonicity parameter was analyzed as functions of the size of the analyzed area near the energy minimum, the number of points over which energies were compared, and the dimensionality of the solved vibrational problem. Anharmonicity parameters for potential-energy surfaces in complexes with strong, medium, and weak H-bonds were calculated under identical conditions. The obtained anharmonicity parameters were compared with the corresponding diagonal anharmonicity constants for stretching vibrations of the bridging protons and the lengths of the hydrogen bridges.

  7. Molecular dynamics study of some non-hydrogen-bonding base pair DNA strands

    NASA Astrophysics Data System (ADS)

    Tiwari, Rakesh K.; Ojha, Rajendra P.; Tiwari, Gargi; Pandey, Vishnudatt; Mall, Vijaysree

    2018-05-01

    In order to elucidate the structural activity of hydrophobic modified DNA, the DMMO2-D5SICS, base pair is introduced as a constituent in different set of 12-mer and 14-mer DNA sequences for the molecular dynamics (MD) simulation in explicit water solvent. AMBER 14 force field was employed for each set of duplex during the 200ns production-dynamics simulation in orthogonal-box-water solvent by the Particle-Mesh-Ewald (PME) method in infinite periodic boundary conditions (PBC) to determine conformational parameters of the complex. The force-field parameters of modified base-pair were calculated by Gaussian-code using Hartree-Fock /ab-initio methodology. RMSD Results reveal that the conformation of the duplex is sequence dependent and the binding energy of the complex depends on the position of the modified base-pair in the nucleic acid strand. We found that non-bonding energy had a significant contribution to stabilising such type of duplex in comparison to electrostatic energy. The distortion produced within strands by such type of base-pair was local and destabilised the duplex integrity near to substitution, moreover the binding energy of duplex depends on the position of substitution of hydrophobic base-pair and the DNA sequence and strongly supports the corresponding experimental study.

  8. Vibrational zero point energy for H-doped silicon

    NASA Astrophysics Data System (ADS)

    Karazhanov, S. Zh.; Ganchenkova, M.; Marstein, E. S.

    2014-05-01

    Most of the studies addressed to computations of hydrogen parameters in semiconductor systems, such as silicon, are performed at zero temperature T = 0 K and do not account for contribution of vibrational zero point energy (ZPE). For light weight atoms such as hydrogen (H), however, magnitude of this parameter might be not negligible. This Letter is devoted to clarify the importance of accounting the zero-point vibrations when analyzing hydrogen behavior in silicon and its effect on silicon electronic properties. For this, we estimate the ZPE for different locations and charge states of H in Si. We show that the main contribution to the ZPE is coming from vibrations along the Si-H bonds whereas contributions from other Si atoms apart from the direct Si-H bonds play no role. It is demonstrated that accounting the ZPE reduces the hydrogen formation energy by ˜0.17 eV meaning that neglecting ZPE at low temperatures one can underestimate hydrogen solubility by few orders of magnitude. In contrast, the effect of the ZPE on the ionization energy of H in Si is negligible. The results can have important implications for characterization of vibrational properties of Si by inelastic neutron scattering, as well as for theoretical estimations of H concentration in Si.

  9. Activation energy for diamond growth from the carbon-hydrogen gas system at low substrate temperatures

    NASA Astrophysics Data System (ADS)

    Stiegler, J.; Lang, T.; von Kaenel, Y.; Michler, J.; Blank, E.

    1997-01-01

    The growth kinetics of diamond films deposited at low substrate temperatures (600-400 °C) from the carbon-hydrogen gas system have been studied. When the substrate temperature alone was varied, independently of all other process parameters in the microwave plasma reactor, an activation energy in the order of 7 kcal/mol was observed. This value did not change with different carbon concentrations in hydrogen. It is supposed that growth kinetics in this temperature range are controlled by a single chemical reaction, probably the abstraction of surface bonded hydrogen by gas phase atomic hydrogen.

  10. A theoretical and experimental study on the pulsed laser dressing of bronze-bonded diamond grinding wheels

    NASA Astrophysics Data System (ADS)

    Deng, H.; Chen, G. Y.; Zhou, C.; Zhou, X. C.; He, J.; Zhang, Y.

    2014-09-01

    A series of theoretical analyses and experimental investigations were performed to examine a pulsed fiber-laser tangential profiling and radial sharpening technique for bronze-bonded diamond grinding wheels. The mechanisms for the pulsed laser tangential profiling and radial sharpening of grinding wheels were theoretically analyzed, and the four key processing parameters that determine the quality, accuracy, and efficiency of pulsed laser dressing, namely, the laser power density, laser spot overlap ratio, laser scanning track line overlap ratio, and number of laser scanning cycles, were proposed. Further, by utilizing cylindrical bronze wheels (without diamond grains) and bronze-bonded diamond grinding wheels as the experimental subjects, the effects of these four processing parameters on the removal efficiency and the surface smoothness of the bond material after pulsed laser ablation, as well as the effects on the contour accuracy of the grinding wheels, the protrusion height of the diamond grains, the sharpness of the grain cutting edges, and the graphitization degree of the diamond grains after pulsed laser dressing, were explored. The optimal values of the four key processing parameters were identified.

  11. Sealing Penetrating Eye Injuries With Photoactivated Bonding

    DTIC Science & Technology

    2013-09-01

    penetrating eye injuries. Scope: To establish, in ex vitro and in vivo animal models, the treatment parameters for sealing corneal and scleral...cornea surface was compared to that produced by our conventional, bare fiber system using ex vivo rabbit eyes and the standard treatment protocol...Identified the PTB treatment parameters that produce strong bonding of an amnion patch over corneal wounds in ex vivo rabbit eyes . • Determined that a

  12. Interplay between Peptide Bond Geometrical Parameters in Nonglobular Structural Contexts

    PubMed Central

    Esposito, Luciana; De Simone, Alfonso; Vitagliano, Luigi

    2013-01-01

    Several investigations performed in the last two decades have unveiled that geometrical parameters of protein backbone show a remarkable variability. Although these studies have provided interesting insights into one of the basic aspects of protein structure, they have been conducted on globular and water-soluble proteins. We report here a detailed analysis of backbone geometrical parameters in nonglobular proteins/peptides. We considered membrane proteins and two distinct fibrous systems (amyloid-forming and collagen-like peptides). Present data show that in these systems the local conformation plays a major role in dictating the amplitude of the bond angle N-Cα-C and the propensity of the peptide bond to adopt planar/nonplanar states. Since the trends detected here are in line with the concept of the mutual influence of local geometry and conformation previously established for globular and water-soluble proteins, our analysis demonstrates that the interplay of backbone geometrical parameters is an intrinsic and general property of protein/peptide structures that is preserved also in nonglobular contexts. For amyloid-forming peptides significant distortions of the N-Cα-C bond angle, indicative of sterical hidden strain, may occur in correspondence with side chain interdigitation. The correlation between the dihedral angles Δω/ψ in collagen-like models may have interesting implications for triple helix stability. PMID:24455689

  13. Interplay between peptide bond geometrical parameters in nonglobular structural contexts.

    PubMed

    Esposito, Luciana; Balasco, Nicole; De Simone, Alfonso; Berisio, Rita; Vitagliano, Luigi

    2013-01-01

    Several investigations performed in the last two decades have unveiled that geometrical parameters of protein backbone show a remarkable variability. Although these studies have provided interesting insights into one of the basic aspects of protein structure, they have been conducted on globular and water-soluble proteins. We report here a detailed analysis of backbone geometrical parameters in nonglobular proteins/peptides. We considered membrane proteins and two distinct fibrous systems (amyloid-forming and collagen-like peptides). Present data show that in these systems the local conformation plays a major role in dictating the amplitude of the bond angle N-C(α)-C and the propensity of the peptide bond to adopt planar/nonplanar states. Since the trends detected here are in line with the concept of the mutual influence of local geometry and conformation previously established for globular and water-soluble proteins, our analysis demonstrates that the interplay of backbone geometrical parameters is an intrinsic and general property of protein/peptide structures that is preserved also in nonglobular contexts. For amyloid-forming peptides significant distortions of the N-C(α)-C bond angle, indicative of sterical hidden strain, may occur in correspondence with side chain interdigitation. The correlation between the dihedral angles Δω/ψ in collagen-like models may have interesting implications for triple helix stability.

  14. Production of Chemical Structure Drawings Using an Interactive Graphics System.

    DTIC Science & Technology

    1981-02-01

    E Structure display program flowcharts 32 Appendix F Execution exception conditions 39 Table I Order of search for a match between the bonds of a link...see Fig I). Shapes are connected together by a straight line known as a bond and one shape can have several bonds . Each shape definition contains...for each bond , the coordinates of the end of the bond nearest its parent shape together with the angle between the bond and the horizontal. Bonds are

  15. Influence of Hydrogen Bonding on the Kinetic Stability of Vapor Deposited Glasses of Triazine Derivatives

    DOE Data Explorer

    Laventure, Audrey [Departement de chimie, Universite de Montreal, C.P. 6128, Succ. Centre-Ville, Montreal, Quebec H3C 3J7, Canada] (ORCID:0000000208670231); Gujral, Ankit [Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States] (ORCID:0000000250652694); Lebel, Olivier [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario K7K 7B4] (ORCID:0000000217376843); Ediger, Mark [Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States] (ORCID:0000000347158473); Pellerin, Christian [Departement de chimie, Universite de Montreal, C.P. 6128, Succ. Centre-Ville, Montreal, Quebec H3C 3J7, Canada] (ORCID:0000000161441318)

    2017-02-01

    It has recently been established that physical vapor deposition (PVD) can produce organic glasses with enhanced kinetic stability, high density, and anisotropic packing, with the substrate temperature during deposition (Tsubstrate) as the key control parameter. The influence of hydrogen bonding on the formation of PVD glasses has not been fully explored. Herein, we use a high-throughput preparation method to vapor-deposit three triazine derivatives over a wide range of Tsubstrate, from 0.69 to 1.08Tg, where Tg is the glass transition temperature. These model systems are structural analogues containing a functional group with different H-bonding capability at the 2-position of a triazine ring: (1) 2-methylamino-4,6-bis(3,5-dimethyl-phenylamino)-1,3,5-triazine (NHMe) (H-bond donor), (2) 2-methoxy-4,6-bis(3,5-dimethyl-phenylamino)-1,3,5-triazine (OMe) (H-bond acceptor), and (3) 2-ethyl-4,6-bis(3,5-dimethyl-phenylamino)-1,3,5-triazine (Et) (none). Using spectroscopic ellipsometry, we find that the Et and OMe compounds form PVD glasses with relatively high kinetic stability, with the transformation time (scaled by the α-relaxation time) on the order of 103, comparable to other highly stable glasses formed by PVD. In contrast, PVD glasses of NHMe are only slightly more stable than the corresponding liquid-cooled glass. Using IR spectroscopy, we find that both the supercooled liquid and the PVD glasses of the NHMe derivative show a higher average number of bonded NH per molecule than that in the other two compounds. These results suggest that H-bonds hinder the formation of stable glasses, perhaps by limiting the surface mobility. Interestingly, despite this difference in kinetic stability, all three compounds show properties typically observed in highly stable glasses prepared by PVD, including a higher density and anisotropic molecular packing (as characterized by IR and wide-angle X-ray scattering).

  16. Photoelectron spectroscopy of B4O4-: Dual 3c-4e π hyperbonds and rhombic 4c-4e o-bond in boron oxide clusters

    NASA Astrophysics Data System (ADS)

    Tian, Wen-Juan; Zhao, Li-Juan; Chen, Qiang; Ou, Ting; Xu, Hong-Guang; Zheng, Wei-Jun; Zhai, Hua-Jin; Li, Si-Dian

    2015-04-01

    Gas-phase anion photoelectron spectroscopy (PES) is combined with global structural searches and electronic structure calculations at the hybrid Becke 3-parameter exchange functional and Lee-Yang-Parr correlation functional (B3LYP) and single-point coupled-cluster with single, double, and perturbative triple excitations (CCSD(T)) levels to probe the structural and electronic properties and chemical bonding of the B4O40/- clusters. The measured PES spectra of B4O4- exhibit a major band with the adiabatic and vertical detachment energies (ADE and VDE) of 2.64 ± 0.10 and 2.81 ± 0.10 eV, respectively, as well as a weak peak with the ADE and VDE of 1.42 ± 0.08 and 1.48 ± 0.08 eV. The former band proves to correspond to the Y-shaped global minimum of Cs B4O4- (2A″), with the calculated ADE/VDE of 2.57/2.84 eV at the CCSD(T) level, whereas the weak band is associated with the second lowest-energy, rhombic isomer of D2h B4O4- (2B2g) with the predicted ADE/VDE of 1.43/1.49 eV. Both anion structures are planar, featuring a B atom or a B2O2 core bonded with terminal BO and/or BO2 groups. The same Y-shaped and rhombic structures are also located for the B4O4 neutral cluster, albeit with a reversed energy order. Bonding analyses reveal dual three-center four-electron (3c-4e) π hyperbonds in the Y-shaped B4O40/- clusters and a four-center four-electron (4c-4e) π bond, that is, the so-called o-bond in the rhombic B4O40/- clusters. This work is the first experimental study on a molecular system with an o-bond.

  17. A crunch on thermocompression flip chip bonding

    NASA Astrophysics Data System (ADS)

    Suppiah, Sarveshvaran; Ong, Nestor Rubio; Sauli, Zaliman; Sarukunaselan, Karunavani; Alcain, Jesselyn Barro; Mahmed, Norsuria; Retnasamy, Vithyacharan

    2017-09-01

    This study discussed the evolution and important findings, critical technical challenges, solutions and bonding equipment of flip chip thermo compression bonding (TCB). The bonding force, temperature and time were the key bonding parameters that need to be tweaked based on the researches done by others. TCB technology worked well with both pre-applied underfill and flux (still under development). Lower throughput coupled with higher processing costs was example of challenges in the TCB technology. The paper is concluded with a brief description of the current equipment used in thermo compression process.

  18. Diffusion bonding of IN 718 to VM 350 grade maraging steel

    NASA Technical Reports Server (NTRS)

    Crosby, S. R.; Biederman, R. R.; Reynolds, C. C.

    1972-01-01

    Diffusion bonding studies have been conducted on IN 718, VM 350 and the dissimilar alloy couple, IN 718 to maraging steel. The experimental processing parameters critical to obtaining consistently good diffusion bonds between IN 718 and VM 350 were determined. Interrelationships between temperature, pressure and surface preparation were explored for short bending intervals under vacuum conditions. Successful joining was achieved for a range of bonding cycle temperatures, pressures and surface preparations. The strength of the weaker parent material was used as a criterion for a successful tensile test of the heat treated bond. Studies of VM-350/VM-350 couples in the as-bonded condition showed a greater yielding and failure outside the bond region.

  19. Moderate point: Balanced entropy and enthalpy contributions in soft matter

    NASA Astrophysics Data System (ADS)

    He, Baoji; Wang, Yanting

    2017-03-01

    Various soft materials share some common features, such as significant entropic effect, large fluctuations, sensitivity to thermodynamic conditions, and mesoscopic characteristic spatial and temporal scales. However, no quantitative definitions have yet been provided for soft matter, and the intrinsic mechanisms leading to their common features are unclear. In this work, from the viewpoint of statistical mechanics, we show that soft matter works in the vicinity of a specific thermodynamic state named moderate point, at which entropy and enthalpy contributions among substates along a certain order parameter are well balanced or have a minimal difference. Around the moderate point, the order parameter fluctuation, the associated response function, and the spatial correlation length maximize, which explains the large fluctuation, the sensitivity to thermodynamic conditions, and mesoscopic spatial and temporal scales of soft matter, respectively. Possible applications to switching chemical bonds or allosteric biomachines determining their best working temperatures are also briefly discussed. Project supported by the National Basic Research Program of China (Grant No. 2013CB932804) and the National Natural Science Foundation of China (Grant Nos. 11274319 and 11421063).

  20. Protein Conformational Entropy is Independent of Solvent

    NASA Astrophysics Data System (ADS)

    Nucci, Nathaniel; Moorman, Veronica; Gledhill, John; Valentine, Kathleen; Wand, A. Joshua

    Proteins exhibit most of their conformational entropy in individual bond vector motions on the ps-ns timescale. These motions can be examined through determination of the Lipari-Szabo generalized squared order parameter (O2) using NMR spin relaxation measurements. It is often argued that most protein motions are intimately dependent on the nature of the solvating environment. Here the solvent dependence of the fast protein dynamics is directly assessed. Using the model protein ubiquitin, the order parameters of the backbone and methyl groups are shown to be generally unaffected by up to a six-fold increase in bulk viscosity or by encapsulation in the nanoscale interior of a reverse micelle. In addition, the reverse micelle condition permits direct comparison of protein dynamics to the mobility of the hydration layer; no correlation is observed. The dynamics of aromatic side chains are also assessed and provide an estimate of the length- and timescale of protein motions where solvent dependence is seen. These data demonstrate the solvent independence of conformational entropy, clarifying a long-held misconception in the fundamental behavior of biological macromolecules. Supported by the National Science Foundation.

  1. Comparative studies on structures, mechanical properties, sensitivity, stabilities and detonation performance of CL-20/TNT cocrystal and composite explosives by molecular dynamics simulation.

    PubMed

    Hang, Gui-Yun; Yu, Wen-Li; Wang, Tao; Wang, Jin-Tao; Li, Zhen

    2017-09-19

    To investigate and compare the differences of structures and properties of CL-20/TNT cocrystal and composite explosives, the CL-20/TNT cocrystal and composite models were established. Molecular dynamics simulations were performed to investigate the structures, mechanical properties, sensitivity, stabilities and detonation performance of cocrystal and composite models with COMPASS force field in NPT ensemble. The lattice parameters, mechanical properties, binding energies, interaction energy of trigger bond, cohesive energy density and detonation parameters were determined and compared. The results show that, compared with pure CL-20, the rigidity and stiffness of cocrystal and composite models decreased, while plastic properties and ductility increased, so mechanical properties can be effectively improved by adding TNT into CL-20 and the cocrystal model has better mechanical properties. The interaction energy of the trigger bond and the cohesive energy density is in the order of CL-20/TNT cocrystal > CL-20/TNT composite > pure CL-20, i.e., cocrystal model is less sensitive than CL-20 and the composite model, and has the best safety parameters. Binding energies show that the cocrystal model has higher intermolecular interaction energy values than the composite model, thus illustrating the better stability of the cocrystal model. Detonation parameters vary as CL-20 > cocrystal > composite, namely, the energy density and power of cocrystal and composite model are weakened; however, the CL-20/TNT cocrystal explosive still has desirable energy density and detonation performance. This results presented in this paper help offer some helpful guidance to better understand the mechanism of CL-20/TNT cocrystal explosives and provide some theoretical assistance for cocrystal explosive design.

  2. Vibrational properties of the amide group in acetanilide: A molecular-dynamics study

    NASA Astrophysics Data System (ADS)

    Campa, Alessandro; Giansanti, Andrea; Tenenbaum, Alexander

    1987-09-01

    A simplified classical model of acetanilide crystal is built in order to study the mechanisms of vibrational energy transduction in a hydrogen-bonded solid. The intermolecular hydrogen bond is modeled by an electrostatic interaction between neighboring excess charges on hydrogen and oxygen atoms. The intramolecular interaction in the peptide group is provided by a dipole-charge interaction. Forces are calculated up to second-order terms in the atomic displacements from equilibrium positions; the model is thus a chain of nonlinear coupled oscillators. Numerical molecular-dynamics experiments are performed on chain segments of five molecules. The dynamics is ordered, at all temperatures. Energy is widely exchanged between the stretching and the bending of the N-H bond, with characteristic times of the order of 0.2 ps. Energy transduction through the H bond is somewhat slower and of smaller amplitude, and is strongly reduced when the energies of the two bound molecules are very different: This could reduce the dissipation of localized energy fluctuations.

  3. Linear Response Function of Bond-Order

    PubMed Central

    Suzuki, Nayuta; Mitsuta, Yuki; Okumura, Mitsutaka; Yamanaka, Shusuke

    2016-01-01

    We present the linear response function of bond-orders (LRF-BO) based on a real space integration scheme for molecular systems. As in the case of the LRF of density, the LRF-BO is defined as the response of the bond order of the molecule for the virtual perturbation. Our calculations show that the LRF-BO enables us not only to detect inductive and resonating effects of conjugating systems, but also to predict pKa values on substitution groups via linear relationships between the Hammett constants and the LRF-BO values for meta- and para-substituted benzoic acids. More importantly, the LRF-BO values for the O-H bonds strongly depend on the sites to which the virtual perturbation is applied, implying that the LRF-BO values include essential information about reaction mechanism of the acid-dissociation of substituted benzoic acids. PMID:27792148

  4. Bond length variation in Zn substituted NiO studied from extended X-ray absorption fine structure

    NASA Astrophysics Data System (ADS)

    Singh, S. D.; Poswal, A. K.; Kamal, C.; Rajput, Parasmani; Chakrabarti, Aparna; Jha, S. N.; Ganguli, Tapas

    2017-06-01

    Bond length behavior for Zn substituted NiO is determined through extended x-ray absorption fine structure (EXAFS) measurements performed at ambient conditions. We report bond length value of 2.11±0.01 Å for Zn-O of rock salt (RS) symmetry, when Zn is doped in RS NiO. Bond length for Zn substituted NiO RS ternary solid solutions shows relaxed behavior for Zn-O bond, while it shows un-relaxed behavior for Ni-O bond. These observations are further supported by first-principles calculations. It is also inferred that Zn sublattice remains nearly unchanged with increase in lattice parameter. On the other hand, Ni sublattice dilates for Zn compositions up to 20% to accommodate increase in the lattice parameter. However, for Zn compositions more than 20%, it does not further dilate. It has been attributed to the large disorder that is incorporated in the system at and beyond 20% of Zn incorporation in the cubic RS lattice of ternary solid solutions. For these large percentages of Zn incorporation, the Ni and the Zn atoms re-arrange themselves microscopically about the same nominal bond length rather than systematically increase in magnitude to minimize the energy of the system. This results in an increase in the Debye-Waller factor with increase in the Zn concentration rather than a systematic increase in the bond lengths.

  5. The influence of various excipients on the conversion kinetics of carbamazepine polymorphs in aqueous suspension.

    PubMed

    Tian, Fang; Saville, Dorothy J; Gordon, Keith C; Strachan, Clare J; Zeitler, J Axel; Sandler, Niklas; Rades, Thomas

    2007-02-01

    The influence of various excipients on the conversion of carbamazepine polymorphs to the dihydrate in aqueous suspension has been investigated. Ten excipients having functional groups which were potentially able to form hydrogen bonds with carbamazepine (group 1: methylcellulose, hypromellose (hydroxypropyl methylcellulose), hydroxypropylcellulose (HPC), 2-hydroxyethylcellulose (HEC), carmellose sodium (sodium carboxymethylcellulose), cellobiose; group 2: povidone (polyvinylpyrrolidone), povidone-vinyl acetate copolymer (povidone/VA) and N-methyl-2-pyrrolidone; group 3: macrogol (polyethylene glycol) and polyethylene oxide-polypropylene oxide copolymer (PEO/PPO)) were selected. Carbamazepine polymorphic forms III and I were dispersed separately into each aqueous excipient solution (0.1%, w/v) for 30 min at room temperature. The inhibition effect of each excipient was quantified using Raman spectroscopy combined with multivariate analyses. The solubility parameter of each excipient was calculated and used for categorizing excipients. Excipients in groups 1 and 2, which had both low solubility parameters (< 27.0 MPa(1/2)) and strong hydrogen bonding groups, inhibited the conversion completely. With increasing solubility parameter, the inhibition effect decreased for group 1 excipients, especially for carbamazepine form I, which had a higher specific surface area. Also, the excipients of group 3, lacking strong hydrogen bonding groups, showed poor inhibition although they had low solubility parameters (< 21.0 MPa(1/2)). This study indicated the importance of both hydrogen bonding interaction and a suitable hydrophobicity (expressed by the solubility parameter) in the inhibition of the conversion of carbamazepine to the dihydrate.

  6. Modified pulse laser deposition of Ag nanostructure as intermediate for low temperature Cu-Cu bonding

    NASA Astrophysics Data System (ADS)

    Liu, Ziyu; Cai, Jian; Wang, Qian; Liu, Lei; Zou, Guisheng

    2018-07-01

    To lower the Cu-Cu bonding temperature and save the time of the bonding process applied for 3D integration, the Ag nanostructure deposited by pulsed laser deposition (PLD) was designed and decorated on the Cu pads as intermediate. Influences of different PLD process parameters on the designed Ag nanostructure morphology were investigated in this work. The large nanoparticles (NP) defects, NPs coverage rate on the Cu pad, and NPs size distribution were adopted to evaluate the PLD parameters based on the NPs morphology observation and the Cu-Cu bonding quality. The medium laser power of 0.8 W, smaller distance between target and substrate, and protective container should be applied in the optimized PLD to obtain the Ag nanostructure. Then a loose 3D mesh Ag nanostructure consisted of the protrusions and grooves was formed and the morphology observation proved the nanostructure deposition mechanism was contributed to the block of nano-film nucleation and nanoparticles absorption. Finally, the relationship between the bonding temperature and pressure suitable for the Ag nanostructure had been determined based on shear strength and interface observation. The results revealed the combination of higher bonding temperature (250 °C) and lower pressure (20 MPa), or lower bonding temperature (180 °C) and higher pressure (50 MPa) can both achieve the bonding process with the short bonding time of 5 min and annealing at 200 °C for 25 min in vacuum furnace.

  7. Stress intensity factors for bonded orthotropic strips with cracks

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1978-01-01

    The elastostatic problem for a nonhomogeneous plane which consists of two sets of periodically arranged dissimilar orthotropic strips is considered. It is assumed that the plane contains a series of collinear cracks perpendicular to the interfaces and is loaded in tension away from and perpendicular to the cracks. Cracks fully imbedded into the homogenous strips were analyzed as well as the singular behavior of the stresses for two special crack geometries. The analysis of cracks crossing interfaces indicates that, for certain orthotropic material combinations, the stress state at the point of intersection of a crack and an interface may be bounded. A number of numerical examples are worked out in order to separate the primary material parameters influencing the stress intensity factors and the powers of stress singularity, and to determine the trends regarding the influence of the secondary parameters.

  8. Bond compressibility and bond Grüneisen parameters of CdTe

    NASA Astrophysics Data System (ADS)

    Fornasini, P.; Grisenti, R.; Irifune, T.; Shinmei, T.; Mathon, O.; Pascarelli, S.; Rosa, A. D.

    2018-06-01

    Extended x-ray absorption fine structure (EXAFS) at the Cd K edge and diffraction patterns have been measured on CdTe as a function of pressure from 100 kPa (1 bar) to 5 GPa using a cell with nano-polycrystalline diamond anvils and an x-ray focussing scanning spectrometer. Three phases—zincblende (ZB), mixed cinnabar-ZB and rocksalt (RS)—are well distinguished in different pressure intervals. The bond compressibility measured by EXAFS in the ZB phase is slightly smaller than the one measured by diffraction and decreases significantly faster when the pressure increases; the difference is attributed to the effect of relative vibrations perpendicular to the Cd–Te bond. The parallel mean square relative displacement (MSRD) decreases, the perpendicular MSRD increases when the pressure increases, leading to an increasing anisotropy of relative atomic vibrations. A constant-temperature bond Grüneisen parameter (GP) has been evaluated for the ZB phase and compared with the constant-pressure bond GP measured in a previous experiment; an attempt is made to connect the bond GPs measured by EXAFS and the more familiar thermodynamic GP and mode GPs; the comparisons suggest the inadequacy of the quasi-harmonic approximation to deal with the local vibrational properties sampled by EXAFS.

  9. Theoretical investigation of HNgNH{sub 3}{sup +} ions (Ng = He, Ne, Ar, Kr, and Xe)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Kunqi; Sheng, Li, E-mail: shengli@hit.edu.cn

    2015-04-14

    The equilibrium geometries, harmonic frequencies, and dissociation energies of HNgNH{sub 3}{sup +} ions (Ng = He, Ne, Ar, Kr, and Xe) were investigated using the following method: Becke-3-parameter-Lee-Yang-Parr (B3LYP), Boese-Matrin for Kinetics (BMK), second-order Møller-Plesset perturbation theory (MP2), and coupled-cluster with single and double excitations as well as perturbative inclusion of triples (CCSD(T)). The results indicate that HHeNH{sub 3}{sup +}, HArNH{sub 3}{sup +}, HKrNH{sub 3}{sup +}, and HXeNH{sub 3}{sup +} ions are metastable species that are protected from decomposition by high energy barriers, whereas the HNeNH{sub 3}{sup +} ion is unstable because of its relatively small energy barrier for decomposition.more » The bonding nature of noble-gas atoms in HNgNH{sub 3}{sup +} was also analyzed using the atoms in molecules approach, natural energy decomposition analysis, and natural bond orbital analysis.« less

  10. Friction Stir Welding of Al-B4C Composite Fabricated by Accumulative Roll Bonding: Evaluation of Microstructure and Mechanical Behavior

    NASA Astrophysics Data System (ADS)

    Moradi Faradonbeh, Alireza; Shamanian, Morteza; Edris, Hossein; Paidar, Moslem; Bozkurt, Yahya

    2018-02-01

    In this investigation, friction stir welding (FSW) of Al-B4C composite fabricated by 10 cycles accumulative roll bonding was conducted. In order to investigate the influences of pin geometry on microstructure and mechanical properties, four different pin geometries (cylindrical, square, triangular and hexagonal) were selected. It was found that FSW parameters had a major effect on the fragmentation and distribution of reinforcement particles in stir zone. When the tool travel speed was increased, the distribution of B4C particles was become gradually uniform in the aluminum matrix. The effect of tool rotational speed on the peak temperature was determined to be greater than the tool travel speed. The attained data of tensile properties and microhardness tests showed that the tool travel speed had bilateral effect on the tensile strength. The maximum tensile joint efficiency was obtained as 238% for FSWed of Al-2%B4C composite to annealed base Al sheet.

  11. Skeleton-based tracing of curved fibers from 3D X-ray microtomographic imaging

    NASA Astrophysics Data System (ADS)

    Huang, Xiang; Wen, Donghui; Zhao, Yanwei; Wang, Qinghui; Zhou, Wei; Deng, Daxiang

    A skeleton-based fiber tracing algorithm is described and applied on a specific fibrous material, porous metal fiber sintered sheet (PMFSS), featuring high porosity and curved fibers. The skeleton segments are firstly categorized according to the connectivity of the skeleton paths. Spurious segments like fiber bonds are detected making extensive use of the distance transform (DT) values. Single fibers are then traced and reconstructed by consecutively choosing the connecting skeleton segment pairs that show the most similar orientations and radius. Moreover, to reduce the misconnection due to the tracing orders, a multilevel tracing strategy is proposed. The fibrous network is finally reconstructed by dilating single fibers according to the DT values. Based on the traced single fibers, various morphology information regarding fiber length, radius, orientation, and tortuosity are quantitatively analyzed and compared with our previous results (Wang et al., 2013). Moreover, the number of bonds per fibers are firstly accessed. The methodology described in this paper can be expanded to other fibrous materials with adapted parameters.

  12. Low Conductive Thermal Barrier Coatings Produced by Ion Beam Assisted EB-PVD with Controlled Porosity, Microstructure Refinement and Alloying Additions for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Wolfe, Douglas E.; Singh, Jogender

    2005-01-01

    Various advanced Hafnia-based thermal barrier coatings (TBC) were applied on nickel-based superalloy coupons by electron beam physical vapor deposition. In addition, microstructural modifications to the coating material were made in an effort to reduce the thermal conductivity of the coating materials. Various processing parameters and coating system modifications were made in order to deposit the alloyed TBC with the desired microstructure and thus coating performance, some of which include applying coatings at substrate temperatures of 1150 C on both PtAl and CoNiCrAlY bond coated samples, as well as using 8YSZ as a bond layer. In addition, various characterization techniques including thermal cyclic tests, scanning electron microscopy, x-ray diffraction, thermal conductivity, and reflectivity measurements were performed. Although the coating microstructure was never fully optimized due to funding being cut short, significant reductions in thermal conductivity were accomplished through both chemistry changes (composition) and microstructural modifications.

  13. Crystal structure of acetanilide at 15 and 295 K by neutron diffraction. Lack of evidence for proton transfer along the N-H...O hydrogen bond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, S.W.; Eckert, J.; Barthes, M.

    1995-11-02

    The crystal structure of acetanilide C{sub 8}H{sub 9}NO, M{sub r} = 135.17, orthorhombic, space group Pbca, Z=8, has been determined from neutron diffraction data at 15 and 295 K. The crystal data obtained are presented. This new investigation of the structure of acetanilide has been undertaken in order to assess a recent suggestion that confirmational substates in the amide proton position may be responsible for the vibrational anomalies. We found no evidence for multiple conformations or transfer along the N-H...O hydrogen bond of the amide proton at either temperature. However the intramolecular O...H6 distance from O to the nearest phenylmore » ring proton is unusually short and the amide proton has relatively close contacts with one of the phenyl and one of the methyl protons, which may well affect the vibrational parameters of the respective molecular groups. 44 refs., 6 figs., 5 tabs.« less

  14. Effect of microwave argon plasma on the glycosidic and hydrogen bonding system of cotton cellulose.

    PubMed

    Prabhu, S; Vaideki, K; Anitha, S

    2017-01-20

    Cotton fabric was processed with microwave (Ar) plasma to alter its hydrophilicity. The process parameters namely microwave power, process gas pressure and processing time were optimized using Box-Behnken method available in the Design Expert software. It was observed that certain combinations of process parameters improved existing hydrophilicity while the other combinations decreased it. ATR-FTIR spectral analysis was used to identify the strain induced in inter chain, intra chain, and inter sheet hydrogen bond and glycosidic covalent bond due to plasma treatment. X-ray diffraction (XRD) studies was used to analyze the effect of plasma on unit cell parameters and degree of crystallinity. Fabric surface etching was identified using FESEM analysis. Thus, it can be concluded that the increase/decrease in the hydrophilicity of the plasma treated fabric was due to these structural and physical changes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Transient liquid phase bonding of titanium-, iron- and nickel-based alloys

    NASA Astrophysics Data System (ADS)

    Rahman, A. H. M. Esfakur

    The operating temperature of land-based gas turbines and jet engines are ever-increasing to increase the efficiency, decrease the emissions and minimize the cost. Within the engines, complex-shaped parts experience extreme temperature, fatigue and corrosion conditions. Ti-based, Ni-based and Fe-based alloys are commonly used in gas turbines and jet engines depending on the temperatures of different sections. Although those alloys have superior mechanical, high temperature and corrosion properties, severe operating conditions cause fast degradation and failure of the components. Repair of these components could reduce lifecycle costs. Unfortunately, conventional fusion welding is not very attractive, because Ti reacts very easily with oxygen and nitrogen at high temperatures, Ni-based superalloys show heat affected zone (HAZ) cracking, and stainless steels show intergranular corrosion and knife-line attack. On the other hand, transient liquid phase (TLP) bonding method has been considered as preferred joining method for those types of alloys. During the initial phase of the current work commercially pure Ti, Fe and Ni were diffusion bonded using commercially available interlayer materials. Commercially pure Ti (Ti-grade 2) has been diffusion bonded using silver and copper interlayers and without any interlayer. With a silver (Ag) interlayer, different intermetallics (AgTi, AgTi2) appeared in the joint centerline microstructure. While with a Cu interlayer eutectic mixtures and Ti-Cu solid solutions appeared in the joint centerline. The maximum tensile strengths achieved were 160 MPa, 502 MPa, and 382 MPa when Ag, Cu and no interlayers were used, respectively. Commercially pure Fe (cp-Fe) was diffusion bonded using Cu (25 m) and Au-12Ge eutectic interlayer (100 microm). Cu diffused predominantly along austenite grain boundaries in all bonding conditions. Residual interlayers appeared at lower bonding temperature and time, however, voids were observed in the joint centerline at higher joining temperature and time. Dispersed Au-rich particles were observed in the base metal near interface. The highest ultimate tensile strengths obtained for the bonded Fe were 291+/-2 MPa using a Cu interlayer at 1030°C for 10 h and 315+/-4 MPa using a Au-12Ge interlayer at 950°C for 15 h. Commercially pure Ni (cp-Ni) was diffusion bonded using a Al, Au-12Ge or Cu interlayer. The formation of intermetallics could not be avoided when Al interlayer was used. Even though no intermetallics were obtained with Au-12Ge or Cu interlayer, appreciable strength of the joint was not found. Next, the simple bonding systems were modeled numerically. It is hoped that the simple models can be extended for higher order alloys. The modeling of TLP joint means to come up with a mathematical model which can predict the concentration profiles of diffusing species. The concentration dependence of diffusivity in a multi-component diffusion system makes it complicated to predict the concentration profiles of diffusing species. The so-called chemical diffusivity can be expressed as a function of thermodynamic and kinetic data. DICTRA software can calculate the concentration profiles using appropriate mobility and thermodynamic data. It can also optimize the diffusivity data using experimental diffusivity data. Then the optimized diffusivity data is stored as mobility data which is a linear function of temperature. In this work, diffusion bonding of commercially pure Ni using Cu interlayers is reported. The mobility parameters of Ni-Cu alloy binary systems were optimized using DICTRA/Thermocalc software from the available self-, tracer and chemical diffusion coefficients. The optimized mobility parameters were used to simulate concentration profiles of Ni-Cu diffusion joints using DICTRA/Thermocalc software. The calculated and experimental concentration profiles agreed well at 1100 °C. This method could not be extended for higher order alloys because of the lack of appropriate thermodynamic and kinetic database. In the third phase industrially important alloys such as SS 321, Inconel 718 and Ti-6Al-4V were diffusion bonded. Diffusion bonded SS 321 with Au-12Ge interlayer provided the best microstructure when bonded in either vacuum or argon at 1050°C for 20 h and cooled in air. The maximum strength obtained of the joint was 387+/-4 MPa bonded in vacuum at 1050°C for 20 h and cooled in air. The microstructure of joint centerline of diffusion bonded Inconel 718 using Au-12Ge interlayer at 1050°C for 15 h and cooled in air consisted of residual interlayer (1.3-2.5 microm). The residual interlayer was disappeared by increasing the bonding time by 5 h, however, pores appeared in the joint centerline. As a result, the strength obtained for bonded Inconel 718 was much lower than that of the base alloy. The joint centerline microstructure of bonded Ti-6Al-4V using Cu interlayer was free of intermetallics and solid solution of Cu and base alloy. The strength of the joint is yet to be determined.

  16. Valuation of Indonesian catastrophic earthquake bonds with generalized extreme value (GEV) distribution and Cox-Ingersoll-Ross (CIR) interest rate model

    NASA Astrophysics Data System (ADS)

    Gunardi, Setiawan, Ezra Putranda

    2015-12-01

    Indonesia is a country with high risk of earthquake, because of its position in the border of earth's tectonic plate. An earthquake could raise very high amount of damage, loss, and other economic impacts. So, Indonesia needs a mechanism for transferring the risk of earthquake from the government or the (reinsurance) company, as it could collect enough money for implementing the rehabilitation and reconstruction program. One of the mechanisms is by issuing catastrophe bond, `act-of-God bond', or simply CAT bond. A catastrophe bond issued by a special-purpose-vehicle (SPV) company, and then sold to the investor. The revenue from this transaction is joined with the money (premium) from the sponsor company and then invested in other product. If a catastrophe happened before the time-of-maturity, cash flow from the SPV to the investor will discounted or stopped, and the cash flow is paid to the sponsor company to compensate their loss because of this catastrophe event. When we consider the earthquake only, the amount of discounted cash flow could determine based on the earthquake's magnitude. A case study with Indonesian earthquake magnitude data show that the probability of maximum magnitude can model by generalized extreme value (GEV) distribution. In pricing this catastrophe bond, we assumed stochastic interest rate that following the Cox-Ingersoll-Ross (CIR) interest rate model. We develop formulas for pricing three types of catastrophe bond, namely zero coupon bonds, `coupon only at risk' bond, and `principal and coupon at risk' bond. Relationship between price of the catastrophe bond and CIR model's parameter, GEV's parameter, percentage of coupon, and discounted cash flow rule then explained via Monte Carlo simulation.

  17. The influence of the energy density and other clinical parameters on bond strength of Er:YAG-conditioned dentin compared to conventional dentin adhesion.

    PubMed

    Gisler, Gottfried; Gutknecht, Norbert

    2014-01-01

    The aim of this in vitro study was to optimise clinical parameters and the energy density of Er:YAG laser-conditioned dentin for class V fillings. Shear tests in three test series were conducted with 24 freshly extracted human third molars as samples for each series. For every sample, two orofacial and two approximal dentin surfaces were prepared. The study design included different laser energies, a thin vs a thick bond layer, the influence of adhesives as well as one-time- vs two-time treatment. The best results with Er:YAG-conditioned dentin were obtained with fluences just above the ablation threshold (5.3 J/cm(2)) in combination with a self-etch adhesive, a thin bond layer and when bond and composite were two-time cured. Dentin conditioned this way reached an averaged bond strength of 23.32 MPa (SD 5.3) and 24.37 MPa (SD 6.06) for two independent test surfaces while showing no statistical significance to conventional dentin adhesion and two-time treatment with averaged bond strength of 24.93 MPa (SD 11.51). Significant reduction of bond strength with Er:YAG-conditioned dentin was obtained when using either a thick bond layer, twice the laser energy (fluence 10.6 J/cm(2)) or with no dentin adhesive. The discussion showed clearly that in altered (sclerotic) dentin, e.g. for class V fillings of elderly patients, bond strengths in conventional dentin adhesion are constantly reduced due to the change of the responsibles, bond giving dentin structures, whereas for Er:YAG-conditioned dentin, the only way to get an optimal microretentive bond pattern is a laser fluence just above the ablation threshold of sclerotic dentin.

  18. Scaled MP3 non-covalent interaction energies agree closely with accurate CCSD(T) benchmark data.

    PubMed

    Pitonák, Michal; Neogrády, Pavel; Cerný, Jirí; Grimme, Stefan; Hobza, Pavel

    2009-01-12

    Scaled MP3 interaction energies calculated as a sum of MP2/CBS (complete basis set limit) interaction energies and scaled third-order energy contributions obtained in small or medium size basis sets agree very closely with the estimated CCSD(T)/CBS interaction energies for the 22 H-bonded, dispersion-controlled and mixed non-covalent complexes from the S22 data set. Performance of this so-called MP2.5 (third-order scaling factor of 0.5) method has also been tested for 33 nucleic acid base pairs and two stacked conformers of porphine dimer. In all the test cases, performance of the MP2.5 method was shown to be superior to the scaled spin-component MP2 based methods, e.g. SCS-MP2, SCSN-MP2 and SCS(MI)-MP2. In particular, a very balanced treatment of hydrogen-bonded compared to stacked complexes is achieved with MP2.5. The main advantage of the approach is that it employs only a single empirical parameter and is thus biased by two rigorously defined, asymptotically correct ab-initio methods, MP2 and MP3. The method is proposed as an accurate but computationally feasible alternative to CCSD(T) for the computation of the properties of various kinds of non-covalently bound systems.

  19. Novel kinetic model of the removal of divalent heavy metal ions from aqueous solutions by natural clinoptilolite.

    PubMed

    Jovanovic, Mina; Rajic, Nevenka; Obradovic, Bojana

    2012-09-30

    Removal of heavy metal ions from aqueous solutions using zeolites is widely described by pseudo-second order kinetics although this model may not be valid under all conditions. In this work, we have extended approaches used for derivation of this model in order to develop a novel kinetic model that is related to the ion exchange mechanism underlying sorption of metal ions in zeolites. The novel model assumed two reversible steps, i.e. release of sodium ions from the zeolite lattice followed by bonding of the metal ion. The model was applied to experimental results of Cu(II) sorption by natural clinoptilolite-rich zeolitic tuff at different initial concentrations and temperatures and then validated by predictions of ion exchange kinetics of other divalent heavy metal ions (i.e. Mn(II), Zn(II) and Pb(II)). Model predictions were in excellent agreements with experimental data for all investigated systems. In regard to the proposed mechanism, modeling results implied that the sodium ion release rate was constant for all investigated metals while the overall rate was mainly determined by the rate of heavy metal ion bonding to the lattice. In addition, prediction capabilities of the novel model were demonstrated requiring one experimentally determined parameter, only. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Bonding and nondestructive evaluation of graphite/PEEK composite and titanium adherends with thermoplastic adhesives

    NASA Technical Reports Server (NTRS)

    Hodges, W. T.; Tyeryar, J. R.; Berry, M.

    1985-01-01

    Bonded single overlap shear specimens were fabricated from Graphite/PEEK (Polyetheretherketone) composite adherends and titanium adherends. Six advanced thermoplastic adhesives were used for the bonding. The specimens were bonded by an electromagnetic induction technique producing high heating rates and high-strength bonds in a few minutes. This contrasts with conventionally heated presses or autoclaves that take hours to process comparable quality bonds. The Graphite/PEEK composites were highly resistant to delamination during the testing. This allowed the specimen to fail exclusively through the bondline, even at very high shear loads. Nondestructive evaluation of bonded specimens was performed ultrasonically by energizing the entire thickness of the material through the bondline and measuring acoustic impedance parameters. Destructive testing confirmed the unique ultrasonic profiles of strong and weak bonds, establishing a standard for predicting relative bond strength in subsequent specimens.

  1. A Discontinuous Potential Model for Protein-Protein Interactions.

    PubMed

    Shao, Qing; Hall, Carol K

    2016-01-01

    Protein-protein interactions play an important role in many biologic and industrial processes. In this work, we develop a two-bead-per-residue model that enables us to account for protein-protein interactions in a multi-protein system using discontinuous molecular dynamics simulations. This model deploys discontinuous potentials to describe the non-bonded interactions and virtual bonds to keep proteins in their native state. The geometric and energetic parameters are derived from the potentials of mean force between sidechain-sidechain, sidechain-backbone, and backbone-backbone pairs. The energetic parameters are scaled with the aim of matching the second virial coefficient of lysozyme reported in experiment. We also investigate the performance of several bond-building strategies.

  2. Kubelka-Munk reflectance theory applied to porcelain veneer systems using a colorimeter.

    PubMed

    Davis, B K; Johnston, W M; Saba, R F

    1994-01-01

    The purpose of this study was to demonstrate the ability of Kubelka-Munk reflectance theory to predict color parameters of veneer porcelain on various backings using colorimetric measurements. Tristimulus absorption and scattering coefficients were used to predict the respective tristimulus reflectance values of A1, D3, and translucent porcelain samples after they had been bonded to light and dark substrates using universal, opaque, and untinted shades of bonding resin. Observed and predicted reflectance values exhibited high correlation (r2 > or = 0.93 for each porcelain shade). Kubelka-Munk theory offers an accurate prediction for the resultant colorimetric reflectance parameters of veneer porcelain bonded to variously colored backings.

  3. Bonding durability between acrylic resin adhesives and titanium with surface preparations.

    PubMed

    Yanagida, Hiroaki; Minesaki, Yoshito; Matsumura, Kousuke; Tanoue, Naomi; Muraguchi, Koichi; Minami, Hiroyuki

    2017-01-31

    The purpose of the present study was to evaluate the efficacy of pretreatment on the bonding durability between titanium casting and two acrylic adhesives. Cast titanium disk specimens treated with four polymer-metal bonding systems as follow: 1) air-abraded with 50-70 μm alumina, 2) 1)+Alloy Primer, 3) 1)+M.L. Primer and 4) tribochemical silica/silane coating system (Rocatec System). The specimens were bonded with M bond or Super-bond C&B adhesive. The shear bond strengths were determined before and after thermocycling (20,000 cycles). The surface characteristics after polishing, and for the 1) and 4) preparations were determined. The bond strengths for all combinations significantly decreased after thermocycling. The combination of Super-bond C&B adhesive and 2) led to significantly higher bond strength than the other preparations after thermocycling. The maximum height of the profile parameters for the polishing group was lower than other preparations.

  4. Corrosion Analysis of an Experimental Noble Alloy on Commercially Pure Titanium Dental Implants

    PubMed Central

    Bortagaray, Manuel Alberto; Ibañez, Claudio Arturo Antonio; Ibañez, Maria Constanza; Ibañez, Juan Carlos

    2016-01-01

    Objective: To determine whether the Noble Bond® Argen® alloy was electrochemically suitable for the manufacturing of prosthetic superstructures over commercially pure titanium (c.p. Ti) implants. Also, the electrolytic corrosion effects over three types of materials used on prosthetic suprastructures that were coupled with titanium implants were analysed: Noble Bond® (Argen®), Argelite 76sf +® (Argen®), and commercially pure titanium. Materials and Methods: 15 samples were studied, consisting in 1 abutment and one c.p. titanium implant each. They were divided into three groups, namely: Control group: five c.p Titanium abutments (B&W®), Test group 1: five Noble Bond® (Argen®) cast abutments and, Test group 2: five Argelite 76sf +® (Argen®) abutments. In order to observe the corrosion effects, the surface topography was imaged using a confocal microscope. Thus, three metric parameters (Sa: Arithmetical mean height of the surface. Sp: Maximum height of peaks. Sv: Maximum height of valleys.), were measured at three different areas: abutment neck, implant neck and implant body. The samples were immersed in artificial saliva for 3 months, after which the procedure was repeated. The metric parameters were compared by statistical analysis. Results: The analysis of the Sa at the level of the implant neck, abutment neck and implant body, showed no statistically significant differences on combining c.p. Ti implants with the three studied alloys. The Sp showed no statistically significant differences between the three alloys. The Sv showed no statistically significant differences between the three alloys. Conclusion: The effects of electrogalvanic corrosion on each of the materials used when they were in contact with c.p. Ti showed no statistically significant differences. PMID:27733875

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Jingui; Zhang, Dongzhou; Fan, Dawei

    Pyroxenes are among the most important minerals of Earth's crust and upper mantle and play significant role in controlling subduction at convergent margins. In this study, synchrotron-based single-crystal X-ray diffraction experiments were carried out on a natural aegirine [NaFe 3+Si 2O 6] sample at ambient temperature and high pressures to 60 GPa, simulating conditions within the coldest part of a subduction zone consisting of old lithosphere. The diffraction data reveal no obvious sign of structural phase transition in aegirine within this pressure range; however, several relevant structural parameter trends change noticeably at approximately 24 GPa, indicating the presence of themore » previously predicted isosymmetric bonding change, related to increase of coordination number of Na + at M2 site. The pressure-volume data, fit with third-order Birch-Murnaghan (BM3) equation of state over the whole pressure range, yields K T0 = 126(2) GPa and K' T0 = 3.3(1), while separate BM3 fits performed for the 0–24.0 GPa and 29.9–60.4 GPa pressure ranges give K T0 = 118(3) GPa, K' T0 = 4.2(3) and K T0 = 133(2) GPa, K' T0 = 3.0(1), suggesting that the structure stiffens as a result of the new bond formation. Aegirine exhibits strong anisotropic compression with unit strain axial ratios ε1:ε2:ε3 = 1.00:2.44:1.64. Structural refinements reveal that NaO 8 polyhedron is the most compressible and SiO 4 tetrahedron has the lowest compressibility. The consequence of bonding transition is that the compressional behavior of aegirine below ~24 GPa and above that pressure is quite different, with likely consequences for relevant thermodynamic parameters and ion diffusion coefficients.« less

  6. Test and analysis of Celion 3000/PMR-15, graphite/polyimide bonded composite joints: Data report

    NASA Technical Reports Server (NTRS)

    Cushman, J. B.; Mccleskey, S. F.; Ward, S. H.

    1982-01-01

    Standard single lap, double lap and symmetric step lap bonded joints of Celion 3000/PMR-15 graphite/polyimide composite were evaluated. Composite to composite and composite to titanium joints were tested at 116 K (-250 F), 294 K (70 F) and 561 K (550 F). Joint parameters evaluated are lap length, adherend thickness, adherend axial stiffness, lamina stacking sequence and adherend tapering. Advanced joint concepts were examined to establish the change in performance of preformed adherends, scalloped adherends and hybrid systems. The material properties of the high temperature adhesive, designated A7F, used for bonding were established. The bonded joint tests resulted in interlaminar shear or peel failures of the composite and there were very few adhesive failures. Average test results agree with expected performance trends for the various test parameters. Results of finite element analyses and of test/analysis correlations are also presented.

  7. Bond Graph Model of Cerebral Circulation: Toward Clinically Feasible Systemic Blood Flow Simulations.

    PubMed

    Safaei, Soroush; Blanco, Pablo J; Müller, Lucas O; Hellevik, Leif R; Hunter, Peter J

    2018-01-01

    We propose a detailed CellML model of the human cerebral circulation that runs faster than real time on a desktop computer and is designed for use in clinical settings when the speed of response is important. A lumped parameter mathematical model, which is based on a one-dimensional formulation of the flow of an incompressible fluid in distensible vessels, is constructed using a bond graph formulation to ensure mass conservation and energy conservation. The model includes arterial vessels with geometric and anatomical data based on the ADAN circulation model. The peripheral beds are represented by lumped parameter compartments. We compare the hemodynamics predicted by the bond graph formulation of the cerebral circulation with that given by a classical one-dimensional Navier-Stokes model working on top of the whole-body ADAN model. Outputs from the bond graph model, including the pressure and flow signatures and blood volumes, are compared with physiological data.

  8. On the strength of random fiber networks

    NASA Astrophysics Data System (ADS)

    Deogekar, S.; Picu, R. C.

    2018-07-01

    Damage accumulation and failure in random fiber networks is of importance in a variety of applications, from design of synthetic materials, such as paper and non-wovens, to accidental tearing of biological tissues. In this work we study these processes using three-dimensional models of athermal fiber networks, focusing attention on the modes of failure and on the relationship between network strength and network structural parameters. We consider network failure at small and large strains associated with the rupture of inter-fiber bonds. It is observed that the strength increases linearly with the network volume fraction and with the bond strength, while the stretch at peak stress is inversely related to these two parameters. A small fraction of the bonds rupture before peak stress and this fraction increases with increasing failure stretch. Rendering the bond strength stochastic causes a reduction of the network strength. However, heterogeneity retards damage localization and increases the stretch at peak stress, therefore promoting ductility.

  9. Innovations in bonding to zirconia based ceramics: Part III. Phosphate monomer resin cements.

    PubMed

    Mirmohammadi, Hesam; Aboushelib, Moustafa N M; Salameh, Ziad; Feilzer, Albert J; Kleverlaan, Cornelis J

    2010-08-01

    To compare the bond strength values and the ranking order of three phosphate monomer containing resin cements using microtensile (microTBS) and microshear (microSBS) bond strength tests. Zirconia discs (Procera Zirconia) were bonded to resin composite discs (Filtek Z250) using three different cements (Panavia F 2.0, RelyX UniCem, and Multilink). Two bond strength tests were used to determine zirconia resin bond strength; microtensile bond strength test (microTBS) and microshear bond strength test (microSBS). Ten specimens were tested for each group (n=10). Two-way analysis of variance (ANOVA) was used to analyze the data (alpha=0.05). There were statistical significant differences in bond strength values and in the ranking order obtained using the two test methods. microTBS reported significant differences in bond strength values, whereas microSBS failed to detect such effect. Both Multilink and Panavia demonstrated basically cohesive failure in the resin cement while RelyX UniCem demonstrated interfacial failure. Based on the findings of this study, the data obtained using either microTBS or microSBS could not be directly compared. microTBS was more sensitive to material differences compared to microSBS which failed to detect such differences. Copyright 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  10. Nd-ordering-driven Mn spin reorientation and magnetization reversal in the magnetostructurally coupled compound NdMn O3

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Yusuf, S. M.; Ritter, C.

    2017-07-01

    A detailed neutron diffraction study on NdMn O3 infers that the low temperature transition at 15 K is due to the ordering of Nd sublattice moment with a (0 ,-Fy,0 ) type spin arrangement. Interestingly, the ordering of the Nd sublattice drives a reorientation (by 180∘) of the net ferromagnetic moment of the Mn sublattice along the b axis. Such a Mn spin reorientation from (Ax,Fy,0 ) (with an antiferromagnetic ordering temperature of 73 K) to (Ax,-Fy,0 ) at 15 K, explains the magnetization reversal phenomenon present in this perovskite compound at 15 K. Moreover at 15 K, significant crystallographic structural distortions in terms of temperature variations of lattice parameters and bond angles are found. A sign change in the temperature variation of magnetic entropy is also found at 15 K. The present study signifies the role of rare-earth (Nd) moment ordering in tuning various physical properties, such as magnetocaloric and magnetoelastic of the larger size (>0.912 Å ) R ion based R Mn O3 compounds.

  11. FT-IR and Raman spectra, DFT and SQMFF calculations for geometrical interpretation and vibrational analysis of 3-nitro-p-toluic acid

    NASA Astrophysics Data System (ADS)

    Nataraj, A.; Balachandran, V.; Karthick, T.

    2012-08-01

    The Fourier transform infrared (FT-IR) and FT-Raman of 3-nitro-p-toluic acid (NTA) have been recorded and analyzed. The equilibrium geometry, bonding features and harmonic vibrational frequencies have been investigated with the help of ab initio and density functional theory (DFT) methods. The assignments of the vibrational spectra have been carried out with the help of normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology (SQMFF). The optimized geometric bond lengths and bond angles obtained by computation show good agreement with experimental data of the relative compound. The computed dimer parameters also show good agreement with experimental data. The first hyperpolarizability (β0) of this noval molecular system and related properties (β, α0, and Δα) of NTA are calculated using B3LYP/6-311++G(d,p) method on the finite-field approach. Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital (NBO) analysis. The results show that charge in electron density (ED) in the σ* and π* antibonding orbital and second order delocalization energies E(2) confirms the occurrence of intramolecular charge transfer (ICT) within the molecule. The calculated HOMO and LUMO energies also show that charge transfer occurs within the molecule. Finally the calculations results were applied to simulated infrared and Raman spectra of the title compound which show good agreement with observed spectra.

  12. Moving beyond Definitions: What Student-Generated Models Reveal about Their Understanding of Covalent Bonding and Ionic Bonding

    ERIC Educational Resources Information Center

    Luxford, Cynthia J.; Bretz, Stacey Lowery

    2013-01-01

    Chemistry students encounter a variety of terms, definitions, and classification schemes that many instructors expect students to memorize and be able to use. This research investigated students' descriptions of ionic and covalent bonding beyond definitions in order to explore students' knowledge about chemical bonding. Using Johnstone's Multiple…

  13. Early Returns: Tax Credit Bonds and School Construction? Policy Report.

    ERIC Educational Resources Information Center

    Mead, Sara

    A small federal program piloting tax credit bonds to support school construction, the Qualified Zone Academy Bond (QZAB), has existed since 1997--providing evidence of how tax credit bonds could work. This paper analyzes the results of QZABs to date in order to inform policymakers, advance the debate over federal school construction aid, and…

  14. On the complexity of Engh and Huber refinement restraints: the angle τ as example

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Touw, Wouter G.; Vriend, Gert, E-mail: vriend@cmbi.ru.nl

    2010-12-01

    The angle τ (backbone N—C{sup α}—C) is the most contested Engh and Huber refinement target parameter. It is shown that this parameter is ‘correct’ as a PDB-wide average, but can be improved by taking into account residue types, secondary structures and many other aspects of our knowledge of the biophysical relations between residue type and protein structure. The Engh and Huber parameters for bond lengths and bond angles have been used uncontested in macromolecular structure refinement from 1991 until very recently, despite critical discussion of their ubiquitous validity by many authors. An extensive analysis of the backbone angle τ (N—C{supmore » α}—C) illustrates that the Engh and Huber parameters can indeed be improved and a recent study [Tronrud et al. (2010 ▶), Acta Cryst. D66, 834–842] confirms these ideas. However, the present study of τ shows that improving the Engh and Huber parameters will be considerably more complex than simply making the parameters a function of the backbone ϕ, ψ angles. Many other aspects, such as the cooperativity of hydrogen bonds, the bending of secondary-structure elements and a series of biophysical aspects of the 20 amino-acid types, will also need to be taken into account. Different sets of Engh and Huber parameters will be needed for conceptually different refinement programs.« less

  15. Identification and Characterization of Molecular Bonding Structures by ab initio Quasi-Atomic Orbital Analyses.

    PubMed

    West, Aaron C; Duchimaza-Heredia, Juan J; Gordon, Mark S; Ruedenberg, Klaus

    2017-11-22

    The quasi-atomic analysis of ab initio electronic wave functions in full valence spaces, which was developed in preceding papers, yields oriented quasi-atomic orbitals in terms of which the ab initio molecular wave function and energy can be expressed. These oriented quasi-atomic orbitals are the rigorous ab initio counterparts to the conceptual bond forming atomic hybrid orbitals of qualitative chemical reasoning. In the present work, the quasi-atomic orbitals are identified as bonding orbitals, lone pair orbitals, radical orbitals, vacant orbitals and orbitals with intermediate character. A program determines the bonding characteristics of all quasi-atomic orbitals in a molecule on the basis of their occupations, bond orders, kinetic bond orders, hybridizations and local symmetries. These data are collected in a record and provide the information for a comprehensive understanding of the synergism that generates the bonding structure that holds the molecule together. Applications to a series of molecules exhibit the complete bonding structures that are embedded in their ab initio wave functions. For the strong bonds in a molecule, the quasi-atomic orbitals provide quantitative ab initio amplifications of the Lewis dot symbols. Beyond characterizing strong bonds, the quasi-atomic analysis also yields an understanding of the weak interactions, such as vicinal, hyperconjugative and radical stabilizations, which can make substantial contributions to the molecular bonding structure.

  16. Macroscopic aspects of interfacial reactions

    NASA Technical Reports Server (NTRS)

    Heckel, R. W.

    1976-01-01

    The extent of interdiffusion and formation of new phases is determined by the constitution diagram of the alloy system, the interdiffusion coefficients of the phases present, and the thermal conditions (temperature and time) associated with the bonding process and/or subsequent use of the bonded structure. In many instance, the kinetics of interdiffusion and phase formation can be predicted from known parameters using numerical methods and computer techniques. Predictions are compared with experimentally determined parameters for a variety of metallurgical alloy systems.

  17. Surface Redox Chemistry of Immobilized Nanodiamond: Effects of Particle Size and Electrochemical Environment

    NASA Astrophysics Data System (ADS)

    Gupta, S.; McDonald, B.; Carrizosa, S. B.

    2017-07-01

    The size of the diamond particle is tailored to nanoscale (nanodiamond, ND), and the ND surface is engineered targeting specific (electrochemical and biological) applications. In this work, we investigated the complex surface redox chemistry of immobilized ND layer on conductive boron-doped diamond electrode with a broad experimental parameter space such as particle size (nano versus micron), scan rate, pH (cationic/acidic versus anionic/basic), electrolyte KCl concentration (four orders of magnitude), and redox agents (neutral and ionic). We reported on the significant enhancement of ionic currents while recording reversible oxidation of neutral ferrocene methanol (FcMeOH) by almost one order of magnitude than traditional potassium ferricyanide (K3Fe(CN)6) redox agent. The current enhancement is inversely related to ND particle diameter in the following order: 1 μm << 1000 nm < 100 nm < 10 nm ≤ 5 nm < 2 nm. We attribute the current enhancement to concurrent electrocatalytic processes, i.e. the electron transfer between redox probes and electroactive surface functional (e.g. hydroxyl, carboxyl, epoxy) moieties and the electron transfer mediated by adsorbed FcMeOH+ (or Fe(CN) 6 3+ ) ions onto ND surface. The first process is pH dependent since it depends upon ND surface functionalities for which the electron transfer is coupled to proton transfer. The adsorption mediated process is observed most apparently at slower scan rates owing to self-exchange between adsorbed FcMeOH+ ions and FcMeOH redox agent molecules in diffusion-limited bulk electrolyte solution. Alternatively, it is hypothesized that the surface functionality and defect sites ( sp 2-bonded C shell and unsaturated bonds) give rise to surface electronic states with energies within the band gap (midgap states) in undoped ND. These surface states serve as electron donors (and acceptors) depending upon their bonding (and antibonding) character and, therefore, they can support electrocatalytic redox processes in the presence of specific redox-active molecules via feedback mechanism. Apparently, FcMeOH+ tended to have electrostatic affinity for negatively charged ND surface functionalities, corroborated by present experiments. We also attempted to study biocatalytic process using model metalloprotein (cytochrome c; Cyt c) immobilized on ND particles for investigating interfacial electron transfer kinetics and compared with those of functionalized graphene (graphene oxide; GO and reduced GO). The findings are discussed in terms of interplay of sp 3-bonded C (ND core) and sp 2-bonded C (ND shell and graphene-based systems).

  18. Computational Study of Quasi-2D Liquid State in Free Standing Platinum, Silver, Gold, and Copper Monolayers.

    PubMed

    Yang, Li-Ming; Ganz, Ariel B; Dornfeld, Matthew; Ganz, Eric

    2016-12-01

    Recently, freestanding atomically thick Fe metal patches up to 10 atoms wide have been fabricated experimentally in tiny pores in graphene. This concept can be extended conceptually to extended freestanding monolayers. We have therefore performed ab initio molecular dynamics simulations to evaluate the early melting stages of platinum, silver, gold, and copper freestanding metal monolayers. Our calculations show that all four freestanding monolayers will form quasi-2D liquid layers with significant out-of-plane motion and diffusion in the plane. Remarkably, we observe a 4% reduction in the Pt most likely bond length as the system enters the liquid state at 2400 K (and a lower effective spring constant), compared to the system at 1200 and 1800 K. We attribute this to the reduced average number of bonds per atom in the Pt liquid state. We used the highly accurate and reliable Density Functional Theory (DFT-D) method that includes dispersion corrections. These liquid states are found at temperatures of 2400 K, 1050 K, 1600 K, and 1400 K for platinum, silver, gold, and copper respectively. The pair correlation function drops in the liquid state, while the bond orientation order parameter is reduced to a lesser degree. Movies of the simulations can be viewed online (see Supplementary Material).

  19. Modeling of Laser Material Interactions

    NASA Astrophysics Data System (ADS)

    Garrison, Barbara

    2009-03-01

    Irradiation of a substrate by laser light initiates the complex chemical and physical process of ablation where large amounts of material are removed. Ablation has been successfully used in techniques such as nanolithography and LASIK surgery, however a fundamental understanding of the process is necessary in order to further optimize and develop applications. To accurately describe the ablation phenomenon, a model must take into account the multitude of events which occur when a laser irradiates a target including electronic excitation, bond cleavage, desorption of small molecules, ongoing chemical reactions, propagation of stress waves, and bulk ejection of material. A coarse grained molecular dynamics (MD) protocol with an embedded Monte Carlo (MC) scheme has been developed which effectively addresses each of these events during the simulation. Using the simulation technique, thermal and chemical excitation channels are separately studied with a model polymethyl methacrylate system. The effects of the irradiation parameters and reaction pathways on the process dynamics are investigated. The mechanism of ablation for thermal processes is governed by a critical number of bond breaks following the deposition of energy. For the case where an absorbed photon directly causes a bond scission, ablation occurs following the rapid chemical decomposition of material. The study provides insight into the influence of thermal and chemical processes in polymethyl methacrylate and facilitates greater understanding of the complex nature of polymer ablation.

  20. Comparison of S-adsorption on (111) and (100) facets of Cu nanoclusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boschen, Jeffery S.; Lee, Jiyoung; Windus, Theresa L.

    2016-10-31

    In order to gain insight into the nature of chemical bonding of sulfur atoms on coinage metal surfaces, we compare the adsorption energy and structural parameters for sulfur at four-fold hollow (4fh) sites on (100) facets and at three-fold hollow (3fh) sites on (111) facets of Cu nanoclusters. Consistent results are obtained from localized atomic orbital and plane-wave based density functional theory using the same functionals. PBE and its hybrid counterpart (PBE0 or HSE06) also give similar results. 4fh sites are preferred over 3fh sites with stronger bonding by ~0.6 eV for nanocluster sizes above ~280 atoms. However, for smallermore » sizes there are strong variations in the binding strength and the extent of the binding site preference. In addition, we show that suitable averaging over clusters of different sizes, or smearing the occupancy of orbitals, provide useful strategies to aid assessment of the behavior in extended surface systems. From site-projected density of states analysis using the smearing technique, we show that S adsorbed on a 4fh site has similar bonding interactions with the substrate as that on a 3fh site, but with much weaker antibonding interactions.« less

  1. Aplysia attractin: biophysical characterization and modeling of a water-borne pheromone.

    PubMed Central

    Schein, C H; Nagle, G T; Page, J S; Sweedler, J V; Xu, Y; Painter, S D; Braun, W

    2001-01-01

    Attractin, a 58-residue protein secreted by the mollusk Aplysia californica, stimulates sexually mature animals to approach egg cordons. Attractin from five different Aplysia species are approximately 40% identical in sequence. Recombinant attractin, expressed in insect cells and purified by reverse-phase high-performance liquid chromatography (RP-HPLC), is active in a bioassay using A. brasiliana; its circular dichroism (CD) spectrum indicates a predominantly alpha-helical structure. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) characterization of proteolytic fragments identified disulfide bonds between the six conserved cysteines (I-VI, II-V, III-IV, where the Roman numeral indicates the order of occurrence in the primary sequence). Attractin has no significant similarity to any other sequence in the database. The protozoan Euplotes pheromones were selected by fold recognition as possible templates. These diverse proteins have three alpha-helices, with six cysteine residues disulfide-bonded in a different pattern from attractin. Model structures with good stereochemical parameters were prepared using the EXDIS/DIAMOD/FANTOM program suite and constraints based on sequence alignments with the Euplotes templates and the attractin disulfide bonds. A potential receptor-binding site is suggested based on these data. Future structural characterization of attractin will be needed to confirm these models. PMID:11423429

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gil, D.M.; Osiry, H.; Pomiro, F.

    The hydrogen bond and π-π stacking are two non-covalent interactions able to support cooperative magnetic ordering between paramagnetic centers. This contribution reports the crystal structure and related magnetic properties for VO[Fe(CN){sub 5}NO]·2H{sub 2}O, which has a layered structure. This solid crystallizes with an orthorhombic unit cell, in the Pna2{sub 1} space group, with cell parameters a=14.1804(2), b=10.4935(1), c=7.1722(8) Å and four molecules per unit cell (Z=4). Its crystal structure was solved and refined from powder X-ray diffraction data. Neighboring layers remain linked through a network of hydrogen bonds involving a water molecule coordinated to the axial position for the Vmore » atom and the unbridged axial NO and CN ligands. An uncoordinated water molecule is found forming a triple bridge between these last two ligands and the coordinated water molecule. The magnetic measurements, recorded down to 2 K, shows a ferromagnetic interaction between V atoms located at neighboring layers, with a Curie-Weiss constant of 3.14 K. Such ferromagnetic behavior was interpreted as resulting from a superexchange interaction through the network of strong OH····O{sub H2O}, OH····N{sub CN}, and OH····O{sub NO} hydrogen bonds that connects neighboring layers. The interaction within the layer must be of antiferromagnetic nature and it was detected close to 2 K. - Graphical abstract: Coordination environment for the metals in vanadyl (II) nitroprusside dihydrate. Display Omitted - Highlights: • Crystal structure of vanadyl nitroprusside dehydrate. • Network of hydrogen bonds. • Magnetic interactions through a network of hydrogen bonds. • Layered transition metal nitroprussides.« less

  3. Mass spectrometric investigation of buspirone drug in comparison with thermal analyses and MO-calculations

    NASA Astrophysics Data System (ADS)

    Zayed, M. A.; Fahmey, M. A.; Hawash, M. A.; El-Habeeb, Abeer A.

    2007-06-01

    The buspirone drug is usually present as hydrochloride form of general formula C 21H 31N 5O 2·HCl, and of molecular weight (MW) = 421.96. It is an analgesic anxiolytic drug, which does not cause sedative or depression of central nervous system. In the present work it is investigated using electron impact mass spectral (EI-MS) fragmentation at 70 eV, in comparison with thermal analyses (TA) measurements (TG/DTG and DTA) and molecular orbital calculation (MOC). Semi-empirical MO calculation, PM3 procedure, has been carried out on buspirone both as neutral molecule (in TA) and the corresponding positively charged species (in MS). The calculated MOC parameters include bond length, bond order, particle charge distribution on different atoms and heats of formation. The fragmentation pathways of buspirone in EI-MS lead to the formation of important primary and secondary fragment ions. The mechanism of formation of some important daughter ions can be illuminated from comparing with that obtained using electrospray ESIMS/MS mode mass spectrometer through the accurate mass measurement determination. The losses of the intermediate aliphatic part (CH 2) 4 due to cleavage of N-C bond from both sides is the primary cleavage in both techniques (MS and TA). The PM3 provides a base for fine distinction among sites of initial bond cleavage and subsequent fragmentation of drug molecule in both TA and MS techniques; consequently the choice of the correct pathway of such fragmentation knowing this structural session of bonds can be used to decide the active sites of this drug responsible for its chemical, biological and medical reactivity.

  4. The effect of a 980 nm diode laser with different parameters of irradiation on the bond strength of fiberglass posts.

    PubMed

    Garcia, Lucas da Fonseca Roberti; Naves, Lucas Zago; Farina, Ana Paula; Walker, Cristiane Mezzena; Consani, Simonides; Pires-de-Souza, Fernanda de Carvalho Panzeri

    2011-01-01

    The aim of this study was to assess bond strength of fiberglass posts to root canal dentin irradiated with a 980 nm diode laser at different parameters of power and frequency. Fifty human maxillary canines were separated into five groups (n = 10) according to the following parameters of laser power and frequency: Group 1 (1.5 W/100 Hz), Group 2 (1.5 W/continuous wave [CW]), Group 3 (3.0 W/100 Hz), Group 4 (3.0 W/CW), and Group 5 (no irradiation). Following post cementation, samples underwent a push-out test (0.5 mm/min); next, fracture analysis was performed with a light microscope at 50x and 100x magnification. All of the irradiated groups had increased bond strength values compared to the nonirradiated group. Groups 1 and 2 demonstrated the highest bond strength values; however, statistically significant differences were observed for only the cervical third of Group 4 and the cervical/apical thirds of Group 5. Fracture analysis showed a predominance of mixed failures for Groups 1 and 2 and adhesive failures between dentin and cement for the other groups.

  5. Cold Gas-Sprayed Deposition of Metallic Coatings onto Ceramic Substrates Using Laser Surface Texturing Pre-treatment

    NASA Astrophysics Data System (ADS)

    Kromer, R.; Danlos, Y.; Costil, S.

    2018-04-01

    Cold spraying enables a variety of metals dense coatings onto metal surfaces. Supersonic gas jet accelerates particles which undergo with the substrate plastic deformation. Different bonding mechanisms can be created depending on the materials. The particle-substrate contact time, contact temperature and contact area upon impact are the parameters influencing physicochemical and mechanical bonds. The resultant bonding arose from plastic deformation of the particle and substrate and temperature increasing at the interface. The objective was to create specific topography to enable metallic particle adhesion onto ceramic substrates. Ceramic did not demonstrate deformation during the impact which minimized the intimate bonds. Laser surface texturing was hence used as prior surface treatment to create specific topography and to enable mechanical anchoring. Particle compressive states were necessary to build up coating. The coating deposition efficiency and adhesion strength were evaluated. Textured surface is required to obtain strong adhesion of metallic coatings onto ceramic substrates. Consequently, cold spray coating parameters depend on the target material and a methodology was established with particle parameters (diameters, velocities, temperatures) and particle/substrate properties to adapt the surface topography. Laser surface texturing is a promising tool to increase the cold spraying applications.

  6. Correlations between skin hydration parameters and corneocyte-derived parameters to characterize skin conditions.

    PubMed

    Masaki, Hitoshi; Yamashita, Yuki; Kyotani, Daiki; Honda, Tatsuya; Takano, Kenichi; Tamura, Toshiyasu; Mizutani, Taeko; Okano, Yuri

    2018-03-30

    Skin hydration is generally assessed using the parameters of skin surface water content (SWC) and trans-epidermal water loss (TEWL). To date, few studies have characterized skin conditions using correlations between skin hydration parameters and corneocyte parameters. The parameters SWC and TEWL allow the classification of skin conditions into four distinct Groups. The purpose of this study was to assess the characteristics of skin conditions classified by SWC and TEWL for correlations with parameters from corneocytes. A human volunteer test was conducted that measured SWC and TEWL. As corneocyte-derived parameters, the size and thick abrasion ratios, the ratio of sulfhydryl groups and disulfide bonds (SH/SS) and CP levels were analyzed. Volunteers were classified by their median SWC and TEWL values into 4 Groups: Group I (high SWC/low TEWL), Group II (high SWC/high TEWL), Group III (low SWC/low TEWL), and Group IV (low SWC/high TEWL). Group IV showed a significantly smaller size of corneocytes. Groups III and IV had significantly higher thick abrasion ratios and CP levels. Group I had a significantly lower SH/SS value. The SWC/TEWL value showed a decline in order from Group I to Group IV. Groups classified by their SWC and TEWL values showed characteristic skin conditions. We propose that the SWC and TEWL ratio is a comprehensive parameter to assess skin conditions. © 2018 Wiley Periodicals, Inc.

  7. Tensile bond strength of filled and unfilled adhesives to dentin.

    PubMed

    Braga, R R; Cesar, P F; Gonzaga, C C

    2000-04-01

    To determine the tensile bond strength of three filled and two unfilled adhesives applied to bovine dentin. Fragments of the labial dentin of bovine incisors were embedded in PVC cylinders with self-cure acrylic resin, and ground flat using 200 grit and 600 grit sandpaper. The following adhesive systems were tested (n=10): Prime & Bond NT, Prime & Bond NT dual cure, Prime & Bond 2.1, OptiBond Solo and Single Bond. A 3 mm-diameter bonding surface was delimited using a perforated adhesive tape. After etching with 37% phosphoric acid and adhesive application, a resin-based composite truncated cone (TPH, shade A3) was built. Tensile test was performed after 24 hrs storage in distilled water at 37 degrees C. Failure mode was accessed using a x10 magnification stereomicroscope. Weibull statistical analysis revealed significant differences in the characteristic strength between Single Bond and Prime & Bond NT dual cure, and between Single Bond and Prime & Bond 2.1. The Weibull parameter (m) was statistically similar among the five groups. Single Bond and Prime & Bond NT showed areas of dentin cohesive failure in most of the specimens. For OptiBond Solo, Prime & Bond NT dual cure and Prime & Bond 2.1 failure was predominantly adhesive.

  8. Multiferroic behavior associated with an order-disorder hydrogen bonding transition in metal-organic frameworks (MOFs) with the perovskite ABX3 architecture.

    PubMed

    Jain, Prashant; Ramachandran, Vasanth; Clark, Ronald J; Zhou, Hai Dong; Toby, Brian H; Dalal, Naresh S; Kroto, Harold W; Cheetham, Anthony K

    2009-09-30

    Multiferroic behavior in perovskite-related metal-organic frameworks of general formula [(CH(3))(2)NH(2)]M(HCOO)(3), where M = Mn, Fe, Co, and Ni, is reported. All four compounds exhibit paraelectric-antiferroelectric phase transition behavior in the temperature range 160-185 K (Mn: 185 K, Fe: 160 K; Co: 165 K; Ni: 180 K); this is associated with an order-disorder transition involving the hydrogen bonded dimethylammonium cations. On further cooling, the compounds become canted weak ferromagnets below 40 K. This research opens up a new class of multiferroics in which the electrical ordering is achieved by means of hydrogen bonding.

  9. Elasticity Imaging of Polymeric Media

    PubMed Central

    Sridhar, Mallika; Liu, Jie; Insana, Michael F.

    2009-01-01

    Viscoelastic properties of soft tissues and hydropolymers depend on the strength of molecular bonding forces connecting the polymer matrix and surrounding fluids. The basis for diagnostic imaging is that disease processes alter molecular-scale bonding in ways that vary the measurable stiffness and viscosity of the tissues. This paper reviews linear viscoelastic theory as applied to gelatin hydrogels for the purpose of formulating approaches to molecular-scale interpretation of elasticity imaging in soft biological tissues. Comparing measurements acquired under different geometries, we investigate the limitations of viscoelastic parameters acquired under various imaging conditions. Quasistatic (step-and-hold and low-frequency harmonic) stimuli applied to gels during creep and stress relaxation experiments in confined and unconfined geometries reveal continuous, bimodal distributions of respondance times. Within the linear range of responses, gelatin will behave more like a solid or fluid depending on the stimulus magnitude. Gelatin can be described statistically from a few parameters of low-order rheological models that form the basis of viscoelastic imaging. Unbiased estimates of imaging parameters are obtained only if creep data are acquired for greater than twice the highest retardance time constant and any steady-state viscous response has been eliminated. Elastic strain and retardance time images are found to provide the best combination of contrast and signal strength in gelatin. Retardance times indicate average behavior of fast (1–10 s) fluid flows and slow (50–400 s) matrix restructuring in response to the mechanical stimulus. Insofar as gelatin mimics other polymers, such as soft biological tissues, elasticity imaging can provide unique insights into complex structural and biochemical features of connectives tissues affected by disease. PMID:17408331

  10. Sealing ability and bond strength of four contemporary adhesives to enamel and to dentine.

    PubMed

    Atash, R; Vanden Abbeele, A

    2005-12-01

    To compare the shear bond strength and microleakage of four adhesive systems to the enamel and dentine of primary bovine teeth. 120 bovine primary mandibular incisors were collected and stored in an aqueous 1% chloramine solution at room temperature for no longer than 3 months after extraction (80 for shear bond testing and 40 for microleakage evaluation). The adhesives tested were Clearfil SE bond (SE), Adper Prompt L Pop (LP), Xeno III (XE), and Prime and Bond NT (PB). For shear bond strength testing the specimens were wet ground to 600 grit SiC paper to expose a flat enamel or dentine surface. After bonding and restoration with Dyract AP (DAP), the teeth were subjected to shear stress using a universal testing machine. For microleakage evaluation, facial class V cavities were prepared half in enamel and half in cementum. All cavities were restored with DAP. After thermocycling and immersion in 2% methylene blue, the dye penetration was evaluated under a stereomicroscope. All data were analysed by Chi-square tests or Fisher's tests when adapted in order to determine the significant differences between groups. Results were considered as significant for p < 0.05. Results were analysed with an ANOVA test and a Bonferroni's multiple comparison. The level of significance was p < 0.05. Shear bond strength values (MPa,) ranged from: on enamel 11.06 to 5.34, in decreasing order SE, LP, XE and PB and on dentine 10.47 to 4.74, in decreasing order SE, XE, LP and PB. Differences in bond strengths between the four systems on enamel and dentine were all statistically significant, excepted for XE vs LP (shear bond at dentine). No significant differences were recorded in the microleakage degree between the four adhesive systems on enamel and on dentine (p > 0.0.5). The highest shear bond strength was achieved by Clearfil SE bond and the lowest by Prime and Bond NT. There was no significant difference concerning the sealing ability of the four adhesive systems.

  11. Anisotropy of the monomer random walk in a polymer melt: local-order and connectivity effects

    NASA Astrophysics Data System (ADS)

    Bernini, S.; Leporini, D.

    2016-05-01

    The random walk of a bonded monomer in a polymer melt is anisotropic due to local order and bond connectivity. We investigate both effects by molecular-dynamics simulations on melts of fully-flexible linear chains ranging from dimers (M  =  2) up to entangled polymers (M  =  200). The corresponding atomic liquid is also considered a reference system. To disentangle the influence of the local geometry and the bond arrangements, and to reveal their interplay, we define suitable measures of the anisotropy emphasising either the former or the latter aspect. Connectivity anisotropy, as measured by the correlation between the initial bond orientation and the direction of the subsequent monomer displacement, shows a slight enhancement due to the local order at times shorter than the structural relaxation time. At intermediate times—when the monomer displacement is comparable to the bond length—a pronounced peak and then decays slowly as t -1/2, becoming negligible when the displacement is as large as about five bond lengths, i.e. about four monomer diameters or three Kuhn lengths. Local-geometry anisotropy, as measured by the correlation between the initial orientation of a characteristic axis of the Voronoi cell and the subsequent monomer dynamics, is affected at shorter times than the structural relaxation time by the cage shape with antagonistic disturbance by the connectivity. Differently, at longer times, the connectivity favours the persistence of the local-geometry anisotropy, which vanishes when the monomer displacement exceeds the bond length. Our results strongly suggest that the sole consideration of the local order is not enough to understand the microscopic origin of the rattling amplitude of the trapped monomer in the cage of the neighbours.

  12. Valuation of Indonesian catastrophic earthquake bonds with generalized extreme value (GEV) distribution and Cox-Ingersoll-Ross (CIR) interest rate model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunardi,; Setiawan, Ezra Putranda

    Indonesia is a country with high risk of earthquake, because of its position in the border of earth’s tectonic plate. An earthquake could raise very high amount of damage, loss, and other economic impacts. So, Indonesia needs a mechanism for transferring the risk of earthquake from the government or the (reinsurance) company, as it could collect enough money for implementing the rehabilitation and reconstruction program. One of the mechanisms is by issuing catastrophe bond, ‘act-of-God bond’, or simply CAT bond. A catastrophe bond issued by a special-purpose-vehicle (SPV) company, and then sold to the investor. The revenue from this transactionmore » is joined with the money (premium) from the sponsor company and then invested in other product. If a catastrophe happened before the time-of-maturity, cash flow from the SPV to the investor will discounted or stopped, and the cash flow is paid to the sponsor company to compensate their loss because of this catastrophe event. When we consider the earthquake only, the amount of discounted cash flow could determine based on the earthquake’s magnitude. A case study with Indonesian earthquake magnitude data show that the probability of maximum magnitude can model by generalized extreme value (GEV) distribution. In pricing this catastrophe bond, we assumed stochastic interest rate that following the Cox-Ingersoll-Ross (CIR) interest rate model. We develop formulas for pricing three types of catastrophe bond, namely zero coupon bonds, ‘coupon only at risk’ bond, and ‘principal and coupon at risk’ bond. Relationship between price of the catastrophe bond and CIR model’s parameter, GEV’s parameter, percentage of coupon, and discounted cash flow rule then explained via Monte Carlo simulation.« less

  13. The operating regime in mechanical pulps--the significance of fiber failure

    Treesearch

    Lauri K. Lehtonen; Alan W. Rudie; Douglas W. Coffin; Derek H. Page

    2004-01-01

    In order to circumvent the problem of altering the sheet composition to increase bonding, in this study the bonding was increased by wet pressing and press drying sheets to various levels of RBA. The operating regime problem was then studied by interpreting the tear relative to bonding (where bonding is measured as T/Z, Tensile index/Zero span tensile index)...

  14. Novel Bonding Technology for Hermetically Sealed Silicon Micropackage

    NASA Astrophysics Data System (ADS)

    Lee, Duck-Jung; Ju, Byeong-Kwon; Choi, Woo-Beom; Jeong, Jee-Won; Lee, Yun-Hi; Jang, Jin; Lee, Kwang-Bae; Oh, Myung-Hwan

    1999-01-01

    We performed glass-to-silicon bonding and fabricated a hermetically sealed silicon wafer using silicon direct bonding followed by anodic bonding (SDAB). The hydrophilized glass and silicon wafers in solution were dried and initially bonded in atmosphere as in the silicon direct bonding (SDB) process, but annealing at high temperature was not performed. Anodic bonding was subsequently carried out for the initially bonded specimens. Then the wafer pairs bonded by the SDAB method were different from those bonded by the anodic bonding process only. The effects of the bonding process on the bonded area and tensile strength were investigated as functions of bonding temperature and voltage. Using scanning electron microscopy (SEM), the cross-sectional view of the bonded interface region was observed. In order to investigate the migration of the sodium ions in the bonding process, the concentration of the bonded glass was compared with that of standard glass. The specimen bonded using the SDAB process had higher efficiency than that using the anodic bonding process only.

  15. Crystal structure of hydrogen-bearing vuonnemite from the Lovozero alkaline massif

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rastsvetaeva, R. K., E-mail: rast@ns.crys.ras.ru; Aksenov, S. M.; Verin, I. A.

    2011-05-15

    Hydrogen-bearing vuonnemite from the Shkatulka hyperagpaitic pegmatite (the Lovozero alkaline massif, Kola Peninsula) was studied by single-crystal X-ray diffraction. The triclinic unit-cell parameters are as follows: a = 5.4712(1) Angstrom-Sign , b = 7.1626(1) Angstrom-Sign , c = 14.3702(3) Angstrom-Sign , {alpha} = 92.623(2) Degree-Sign , {beta} = 95.135(1) Degree-Sign , {gamma} = 90.440(1) Degree-Sign , sp. gr. P1, R = 3.4%. The Na{sup +} cations and H{sub 2}O molecules are ordered in sites between the packets. The water molecules are hydrogen bonded to the PO{sub 4} tetrahedra.

  16. X-ray imaging inspection of fiberglass reinforced by epoxy composite

    NASA Astrophysics Data System (ADS)

    Rique, A. M.; Machado, A. C.; Oliveira, D. F.; Lopes, R. T.; Lima, I.

    2015-04-01

    The goal of this work was to study the voids presented in bonded joints in order to minimize failures due to low adhesion of the joints in the industry field. One of the main parameters to be characterized is the porosity of the glue, since these pores are formed by several reasons in the moment of its adhesion, which are formed by composite of epoxy resin reinforced by fiberglass. For such purpose, it was used high energy X-ray microtomography and the results show its potential effective in recognizing and quantifying directly in 3D all the occlusions regions presented at glass fiber-epoxy adhesive joints.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, L. H.; Wang, X. D.; Yu, Q.

    Temperature-dependent atomistic structure evolution of liquid gallium (Ga) has been investigated by using in situ high energy X-ray diffraction experiment and ab initio molecular dynamics simulation. Both experimental and theoretical results reveal the existence of a liquid structural change around 1000 K in liquid Ga. Below and above this temperature the liquid exhibits differences in activation energy for selfdiffusion, temperature-dependent heat capacity, coordination numbers, density, viscosity, electric resistivity and thermoelectric power, which are reflected from structural changes of the bond-orientational order parameter Q6, fraction of covalent dimers, averaged string length and local atomic packing. This finding will trigger more studiesmore » on the liquid-to-liquid crossover in metallic melts.« less

  18. Electronic absorption spectral studies of Pr(III) chelates with some amino acids

    NASA Astrophysics Data System (ADS)

    Kachhawa, Chanchal; Solanki, Kanika; Bhandari, H. S.

    2018-05-01

    Investigations on Pr(III) systems with 1:1 metal-ligand stoichiometric ratio have been carried out in different solvents. β - Alanine, Taurine and anthranilic acid have been opted as ligands for the investigations. The Study is based on doped crystal phenomenon. The Slater-Condon, spin-orbit, nephelauxetic, bonding, Racah and Judd-Ofelt parameters have been explored during the study. Four bands for Pr(III) have been observed and recorded in the region 350 nm to 900nm. Partial regression method has been used for calculations. Use of computational chemistry has been explored in order to develop better and easier methods of calculations.

  19. Bond angle variations in XH3 [X = N, P, As, Sb, Bi]: the critical role of Rydberg orbitals exposed using a diabatic state model.

    PubMed

    Reimers, Jeffrey R; McKemmish, Laura K; McKenzie, Ross H; Hush, Noel S

    2015-10-14

    Ammonia adopts sp(3) hybridization (HNH bond angle 108°) whereas the other members of the XH3 series PH3, AsH3, SbH3, and BiH3 instead prefer octahedral bond angles of 90-93°. We use a recently developed general diabatic description for closed-shell chemical reactions, expanded to include Rydberg states, to understand the geometry, spectroscopy and inversion reaction profile of these molecules, fitting its parameters to results from Equation of Motion Coupled-Cluster Singles and Doubles (EOM-CCSD) calculations using large basis sets. Bands observed in the one-photon absorption spectrum of NH3 at 18.3 eV, 30 eV, and 33 eV are reassigned from Rydberg (formally forbidden) double excitations to valence single-excitation resonances. Critical to the analysis is the inclusion of all three electronic states in which two electrons are placed in the lone-pair orbital n and/or the symmetric valence σ* antibonding orbital. An illustrative effective two-state diabatic model is also developed containing just three parameters: the resonance energy driving the high-symmetry planar structure, the reorganization energy opposing it, and HXH bond angle in the absence of resonance. The diabatic orbitals are identified as sp hybrids on X; for the radical cations XH3(+) for which only 2 electronic states and one conical intersection are involved, the principle of orbital following dictates that the bond angle in the absence of resonance is acos(-1/5) = 101.5°. The multiple states and associated multiple conical intersection seams controlling the ground-state structure of XH3 renormalize this to acos[3 sin(2)(2(1/2)atan(1/2))/2 - 1/2] = 86.7°. Depending on the ratio of the resonance energy to the reorganization energy, equilibrium angles can vary from these limiting values up to 120°, and the anomalously large bond angle in NH3 arises because the resonance energy is unexpectedly large. This occurs as the ordering of the lowest Rydberg orbital and the σ* orbital swap, allowing Rydbergization to compresses σ* to significantly increase the resonance energy. Failure of both the traditional and revised versions of the valence-shell electron-pair repulsion (VSEPR) theory to explain the ground-state structures in simple terms is attributed to exclusion of this key physical interaction.

  20. Intermolecular CH···O/N H-bonds in the biologically important pairs of natural nucleobases: a thorough quantum-chemical study.

    PubMed

    Brovarets', Ol'ha O; Yurenko, Yevgen P; Hovorun, Dmytro M

    2014-01-01

    This study aims to cast light on the physico-chemical nature and energetic of the non-conventional CH···O/N H-bonds in the biologically important natural nucleobase pairs using a comprehensive quantum-chemical approach. As a whole, the 36 biologically important pairs, involving canonical and rare tautomers of nucleobases, were studied by means of all available up-to-date state-of-the-art quantum-chemical techniques along with quantum theory "Atoms in molecules" (QTAIM), Natural Bond Orbital (NBO) analysis, Grunenberg's compliance constants theory, geometrical and vibrational analyses to identify the CH···O/N interactions, reveal their physico-chemical nature and estimate their strengths as well as contribution to the overall base-pairs stability. It was shown that all the 38 CH···O/N contacts (25 CH···O and 13 CH···N H-bonds) completely satisfy all classical geometrical, electron-topological, in particular Bader's and "two-molecule" Koch and Popelier's, and vibrational criteria of H-bonding. The positive values of Grunenberg's compliance constants prove that the CH···O/N contacts in nucleobase pairs are stabilizing interactions unlike electrostatic repulsion and anti-H-bonds. NBO analysis indicates the electron density transfer from the lone electron pair of the acceptor atom (O/N) to the antibonding orbital corresponding to the donor group σ(∗)(CH). Moreover, significant increase in the frequency of the out-of-plane deformation modes γ (CH) under the formation of the CH···O (by 17.2÷81.3/10.8÷84.7 cm(-1)) and CH···N (by 32.7÷85.9/9.0÷77.9 cm(-1)) H-bonds at the density functional theory (DFT)/second-order Møller-Plesset (MP2) levels of theory, respectively, and concomitant changes of their intensities can be considered as reliable indicators of H-bonding. The strengths of the CH···O/N interactions, evaluated by means of Espinosa-Molins-Lecomte formula, lie within the range 0.45÷3.89/0.62÷4.10 kcal/mol for the CH···O H-bonds and 1.45÷3.17/1.70÷3.43 kcal/mol for the CH···N H-bonds at the DFT/MP2 levels of theory, respectively. We revealed high linear mutual correlations between the H-bond energy and different physico-chemical parameters of the CH···O/N H-bonds. Based on these observations, the authors asserted that the most reliable descriptors of the H-bonding are the electron density ρ at the СН···О/N H-bond critical points and the NBO calculated stabilization energy E((2)). The linear dependence of the H-bond energy ECH···O/N (in kcal/mol) on the electron density ρ (in atomic units) was established (DFT/MP2): ECH···O = 248.501[Formula: see text]ρ-0.367/260.518[Formula: see text]ρ-0.373 and ECH···N = 218.125[Formula: see text]ρ-0.339/243.599[Formula: see text]ρ-0.441. Red-shifted and blue-shifted CH···O/N H-bonds behave in a similar way and can be described with the same fit parameters. It was found that the A-U HH2 and U-U3 nucleobase pairs are stabilized solely by the CH···O/N H-bonds. At the same time, in the A-U HH1, A-U HH2, A-Asyn 1, A-Asyn 2, A-Asyn 3, A-A4, A-G1, A-G2, G-U1, G-U2, G-U3, G-C HH1, U-U1, U-U2, U-U3 and A-C nucleobase pairs the CH···O/N H-bonds play a prominent role (>30%) in their stabilization. We suppose that unconventional CH···O/N H-bond plays the role of the third "fulcrum", ensuring structurally dynamic similarity of the isomorphic base pairs of different origin, which are incorporated equally well into the structure of the DNA double helix.

  1. Characterizing ceramics and the interfacial adhesion to resin: II- the relationship of surface treatment, bond strength, interfacial toughness and fractography.

    PubMed

    Della-Bona, Alvaro

    2005-06-01

    The clinical success of resin bonding procedures for indirect ceramic restorations and ceramic repairs depends on the quality and durability of the bond between the ceramic and the resin. The quality of this bond will depend upon the bonding mechanisms that are controlled in part by the surface treatment that promote micromechanical and/or chemical bonding to the substrate. The objective of this review is to correlate interfacial toughness (K A) with fracture surface morphological parameters of the dental ceramic-resin systems as a function of ceramic surface treatment. This analysis is designed to identify mechanisms that promote adhesion of these ceramic-resin systems and an appropriate bond test method to yield relevant adhesion performance data.

  2. Pulse laser head with monolithic thermally bonded microchip operating at 1.5 μm wavelength

    NASA Astrophysics Data System (ADS)

    Młyńczak, Jarosław; Kopczyński, Krzysztof; Belghachem, Nabil; Kisielewski, Jarosław; Stepień, Ryszard; Wychowaniec, Marek; Galas, Jacek; Litwin, Dariusz; CzyŻewski, Adam

    2016-12-01

    On the basis of thermally bonded Er,Yb:glass/Co:MALO microchip a laser head pumped by fiber coupled laser diode was designed. The performance of the laser head were investigated and the main output parameters were determined. The energy over 40 μJ in 3.8 ns pulse with repetition rate of 0.735 kHz was achieved. The laser head characterized by such parameters can successfully be used in tele-detection applications.

  3. Stabilized nonlinear optical chromophore alignment in high-? guest - host polycarbonates

    NASA Astrophysics Data System (ADS)

    Healy, D.; Bloor, D.; Gray, D.; Cross, G. H.

    1997-11-01

    Electric-field-poling studies of two polycarbonates doped with 2-(N,N dimethylamino)-5-nitroacetanilide revealed a long-term room-temperature alignment stability. This stability at room temperature is compared with that of similarly doped poly(methyl methacrylate) (PMMA) which displays short-term relaxation. Despite several previous suggestions that hydrogen bonding between guest and host plays a major role in these effects, infra-red spectroscopic studies refuted the idea that stronger hydrogen bond formation in the polycarbonate rather than in PMMA is the dominant influence. Rather we show, using an examination of the poling currents during poling, that the re-orientation dynamics in the polycarbonate systems are markedly different. In the case of PMMA-doped films, the deposited surface charge is compensated by poling currents at a rate at least comparable to the rate of deposition of corona charge. The compensation rate for polycarbonate-doped systems was markedly lower, however, suggesting that polar re-orientation is slower. Studies of the second-order optical nonlinearities of poled thin films using second-harmonic generation revealed an apparent enhancement of the second-harmonic coefficient compared with the predictions of conventional theories. However, we note that the use of microscopic parameters (the dipole moment and the first hyperpolarizability) obtained from measurements in non-dipolar media may give rise to the apparent anomaly since high reaction fields in polycarbonate films may act to modify these parameters.

  4. Structural differences between single crystal and polycrystalline UBe 13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volz, Heather Michelle; Vogel, Sven C.; Smith, Alice Iulia

    Here, we report on observations of structural and chemical differences between samples of UBe 13 that were synthesised using two different methods. Unexplained discrepancies in properties between samples with differing synthesis had previously been found in this heavy fermion superconductor. A polycrystalline UBe13 sample was made by arc-melting the constituents. Single crystals were grown using an aluminium flux and had a consistently slightly larger lattice parameter than the polycrystals, which merited further study. Neutron diffraction data were collected at the Lujan Center at LANSCE on the HIPPO diffractometer. Aluminium was detected by inductively coupled plasma mass spectrometry (ICP-MS) in themore » flux-grown single crystal (0.803 wt%), and small amounts (~0.2 wt%) of thorium were detected in the UBe 13 polycrystalline sample. In order to probe the implications of the presence of Al, calculations by spin-polarised DFT-GGA+U show that the incorporation of Al onto the 96i site (the lowest symmetry site in the structure) is energetically more favourable than on other sites. In general, the trends calculated by DFT for bond lengths and lattice parameter increases are consistent with bond lengths experimentally observed by neutron diffraction, but specific percentage changes with aluminium incorporation may be obscured by the unexpected thorium in the polycrystalline sample. The aggregate of our initial observations suggests that incorporation of aluminium from the flux into single crystal UBe 13 is significant.« less

  5. Structural differences between single crystal and polycrystalline UBe 13

    DOE PAGES

    Volz, Heather Michelle; Vogel, Sven C.; Smith, Alice Iulia; ...

    2018-05-16

    Here, we report on observations of structural and chemical differences between samples of UBe 13 that were synthesised using two different methods. Unexplained discrepancies in properties between samples with differing synthesis had previously been found in this heavy fermion superconductor. A polycrystalline UBe13 sample was made by arc-melting the constituents. Single crystals were grown using an aluminium flux and had a consistently slightly larger lattice parameter than the polycrystals, which merited further study. Neutron diffraction data were collected at the Lujan Center at LANSCE on the HIPPO diffractometer. Aluminium was detected by inductively coupled plasma mass spectrometry (ICP-MS) in themore » flux-grown single crystal (0.803 wt%), and small amounts (~0.2 wt%) of thorium were detected in the UBe 13 polycrystalline sample. In order to probe the implications of the presence of Al, calculations by spin-polarised DFT-GGA+U show that the incorporation of Al onto the 96i site (the lowest symmetry site in the structure) is energetically more favourable than on other sites. In general, the trends calculated by DFT for bond lengths and lattice parameter increases are consistent with bond lengths experimentally observed by neutron diffraction, but specific percentage changes with aluminium incorporation may be obscured by the unexpected thorium in the polycrystalline sample. The aggregate of our initial observations suggests that incorporation of aluminium from the flux into single crystal UBe 13 is significant.« less

  6. Hydrogen bond effects on compressional behavior of isotypic minerals: high-pressure polymorphism of cristobalite-like Be(OH) 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shelton, Hannah; Barkley, Madison C.; Downs, Robert T.

    2016-05-31

    Three isotypic crystals, SiO 2 (α-cristobalite), ε-Zn(OH) 2 (wülfingite), and Be(OH) 2 (β-behoite), with topologically identical frameworks of corner-connected tetrahedra, undergo displacive compression drivenphase transitions at similar pressures (1.5–2.0 GPa), but each transition is characterized by a different mechanism resulting in different structural modifications. In this study, we report the crystal structure of the high pressure γ-phase of beryllium hydroxide and compare it with the high pressure structures of the other two minerals. In Be(OH) 2, the transition from the ambient β-behoite phase with the orthorhombic space group P2 12 12 1 and ambient unit cell parameters a = 4.5403(4)more » Å, b = 4.6253(5) Å, c = 7.0599(7) Å, to the high pressure orthorhombic γ-polymorph with space group Fdd2 and unit cell parameters (at 5.3(1) GPa) a = 5.738(2) Å, b = 6.260(3) Å, c = 7.200(4) Å takes place between 1.7 and 3.6 GPa. This transition is essentially second order, is accompanied by a negligible volume discontinuity, and exhibits both displacive and reversible character. The mechanism of the phase transition results in a change to the hydrogen bond connectivities and rotation of the BeO 4 tetrahedra.« less

  7. Hydrogen bond effects on compressional behavior of isotypic minerals: high-pressure polymorphism of cristobalite-like Be(OH) 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shelton, Hannah; Barkley, Madison C.; Downs, Robert T.

    2016-05-31

    Three isotypic crystals, SiO 2 (α-cristobalite), ε-Zn(OH) 2 (wülfingite), and Be(OH) 2 (β-behoite), with topologically identical frameworks of corner-connected tetrahedra, undergo displacive compression-driven phase transitions at similar pressures (1.5–2.0 GPa), but each transition is characterized by a different mechanism resulting in different structural modifications. In this study, we report the crystal structure of the high-pressure γ-phase of beryllium hydroxide and compare it with the high-pressure structures of the other two minerals. In Be(OH) 2, the transition from the ambient β-behoite phase with the orthorhombic space group P2 12 12 1 and ambient unit cell parameters a = 4.5403(4) Å, bmore » = 4.6253(5) Å, c = 7.0599(7) Å, to the high-pressure orthorhombic γ-polymorph with space group Fdd2 and unit cell parameters (at 5.3(1) GPa) a = 5.738(2) Å, b = 6.260(3) Å, c = 7.200(4) Å takes place between 1.7 and 3.6 GPa. This transition is essentially second order, is accompanied by a negligible volume discontinuity, and exhibits both displacive and reversible character. The mechanism of the phase transition results in a change to the hydrogen bond connectivities and rotation of the BeO 4 tetrahedra.« less

  8. Elastic and thermal properties of the layered thermoelectrics BiOCuSe and LaOCuSe

    NASA Astrophysics Data System (ADS)

    Saha, S. K.; Dutta, G.

    2016-09-01

    We determine the elastic properties of the layered thermoelectrics BiOCuSe and LaOCuSe using first-principles density functional theory calculations. To predict their stability, we calculate six distinct elastic constants, where all of them are positive, and suggest mechanically stable tetragonal crystals. As elastic properties relate to the nature and the strength of the chemical bond, the latter is analyzed by means of real-space descriptors, such as the electron localization function (ELF) and Bader charge. From elastic constants, a set of related properties, namely, bulk modulus, shear modulus, Young's modulus, sound velocity, Debye temperature, Grüneisen parameter, and thermal conductivity, are evaluated. Both materials are found to be ductile in nature and not brittle. We find BiOCuSe to have a smaller sound velocity and, hence, within the accuracy of the used Slack's model, a smaller thermal conductivity than LaOCuSe. Our calculations also reveal that the elastic properties and the related lattice thermal transport of both materials exhibit a much larger anisotropy than their electronic band properties that are known to be moderately anisotropic because of a moderate effective-electron-mass anisotropy. Finally, we determine the lattice dynamical properties, such as phonon dispersion, atomic displacement, and mode Grüneisen parameters, in order to correlate the elastic response, chemical bonding, and lattice dynamics.

  9. Viscosity effects on the thermal decomposition of bis(perfluoro-2-N-propoxypropionyl) peroxide in dense carbon dioxide and fluorinated solvents.

    PubMed

    Bunyard, W C; Kadla, J F; DeYoung, J; DeSimone, J M

    2001-08-01

    The thermal decomposition of the free-radical initiator bis(perfluoro-2-N-propoxyprionyl) peroxide (BPPP) was studied in dense carbon dioxide and a series of fluorinated solvents. For the fluorinated solvents, the observed first-order decomposition rate constants, k(obs), increased with decreasing solvent viscosity, suggesting a single-bond decomposition mechanism. The k(obs) values are comparatively larger in dense carbon dioxide and similar to the "zero-viscosity" rate constants extrapolated from the decomposition kinetics in the fluorinated solvents. The decomposition activation parameters demonstrate a compensation behavior of the activation enthalpy with the activation entropy upon change in solvent viscosity. Comparison of the change in activation parameter values upon change in solvent viscosity for BPPP with two additional initiators, acetyl peroxide (AP) and trifluoroacetyl peroxide (TFAP), further suggests that carbon dioxide exerts a very minimal influence on the decomposition mechanism of these initiators through solvent-cage effects.

  10. Insights into the interaction of methotrexate and human serum albumin: A spectroscopic and molecular modeling approach.

    PubMed

    Cheng, Li-Yang; Fang, Min; Bai, Ai-Min; Ouyang, Yu; Hu, Yan-Jun

    2017-08-01

    In this study, fluorescence spectroscopy and molecular modeling approaches were employed to investigate the binding of methotrexate to human serum albumin (HSA) under physiological conditions. From the mechanism, it was demonstrated that fluorescence quenching of HSA by methotrexate results from the formation of a methotrexate/HSA complex. Binding parameters calculated using the Stern-Volmer method and the Scatchard method showed that methotrexate binds to HSA with binding affinities in the order 10 4  L·mol -1 . Thermodynamic parameter studies revealed that the binding reaction is spontaneous, and that hydrogen bonds and van der Waals interactions play a major role in the reaction. Site marker competitive displacement experiments and a molecular modeling approach demonstrated that methotrexate binds with appropriate affinity to site I (subdomain IIA) of HSA. Furthermore, we discuss some factors that influence methotrexate binding to HSA. Copyright © 2017 John Wiley & Sons, Ltd.

  11. The Strength of Hydrogen Bonds between Fluoro-Organics and Alcohols, a Theoretical Study.

    PubMed

    Rosenberg, Robert E

    2018-05-10

    Fluorinated organic compounds are ubiquitous in the pharmaceutical and agricultural industries. To better discern the mode of action of these compounds, it is critical to understand the strengths of hydrogen bonds involving fluorine. There are only a few published examples of the strengths of these bonds. This study provides a high level ab initio study of inter- and intramolecular hydrogen bonds between RF and R'OH, where R and R' are aryl, vinyl, alkyl, and cycloalkyl. Intermolecular binding energies average near 5 kcal/mol, while intramolecular binding energies average about 3 kcal/mol. Inclusion of zero-point energies and applying a counterpoise correction lessen the difference. In both series, modest increases in binding energies are seen with increased acidity of R'OH and increased electron donation of R in RF. In the intramolecular compounds, binding energy increases with the rigidity of the F-(C) n -OH ring. Inclusion of free energy corrections at 298 K results in exoergic binding energies for the intramolecular compounds and endoergic binding energies for the intermolecular compounds. Parameters such as bond lengths, vibrational frequencies, and atomic populations are consistent with formation of a hydrogen bond and with slightly stronger binding in the intermolecular cases over the intramolecular cases. However, these parameters correlated poorly with binding energies.

  12. Variable character of O—O and M—O bonding in side-on (η2) 1:1 metal complexes of O2

    PubMed Central

    Cramer, Christopher J.; Tolman, William B.; Theopold, Klaus H.; Rheingold, Arnold L.

    2003-01-01

    The structures and the O—O and M—O bonding characters of a series of reported side-on (η2) 1:1 metal complexes of O2 are analyzed by using density functional theory calculations. Comparison of the calculated and experimental systems with respect to O—O bond distance, O—O stretching frequency, and O—O and M—O bond orders provides new insights into subtle influences relevant to O2 activation processes in biology and catalysis. The degree of charge transfer from the generally electron-rich metals to the dioxygen fragment is found to be variable, such that there are species well described as superoxides, others well described as peroxides, and several cases having intermediate character. Increased charge transfer to dioxygen takes place via overlap of the metal dxy orbital with the in-plane π* orbital of O2 and results in increased M—O bond orders and decreased O—O bond orders. Comparison of theory and experiment over the full range of compounds studied suggests that reevaluation of the O—O bond lengths determined from certain x-ray crystal structures is warranted; in one instance, an x-ray crystal structure redetermination was performed at low temperature, confirming the theoretical prediction. Librational motion of the coordinated O2 is identified as a basis for significant underestimation of the O—O distance at high temperature. PMID:12634422

  13. Local Bonding Influence on the Band Edge and Band Gap Formation in Quaternary Chalcopyrites.

    PubMed

    Miglio, Anna; Heinrich, Christophe P; Tremel, Wolfgang; Hautier, Geoffroy; Zeier, Wolfgang G

    2017-09-01

    Quaternary chalcopyrites have shown to exhibit tunable band gaps with changing anion composition. Inspired by these observations, the underlying structural and electronic considerations are investigated using a combination of experimentally obtained structural data, molecular orbital considerations, and density functional theory. Within the solid solution Cu 2 ZnGeS 4- x Se x , the anion bond alteration parameter changes, showing larger bond lengths for metal-selenium than for metal-sulfur bonds. The changing bonding interaction directly influences the valence and conduction band edges, which result from antibonding Cu-anion and Ge-anion interactions, respectively. The knowledge of the underlying bonding interactions at the band edges can help design properties of these quaternary chalcopyrites for photovoltaic and thermoelectric applications.

  14. Effect of the Microstructure on Diffusion Bonded AA5083, AA6082 and AA7075 Aluminium Alloys

    NASA Astrophysics Data System (ADS)

    Venugopal, S.; Mahendran, G.

    2018-05-01

    Rolled plates of aluminium alloys AA5083, AA6082 and AA7075 of 5 mm thickness are joined by diffusion bonding at varied parameters. The microstructure evolution of AA5083, AA6082 and AA7075 aluminium alloys is characterized by Transmission Electron Microscopy (TEM). Metallurgical investigations and mechanical tests are also performed to correlate the results of the TEM investigations with the mechanical properties of the produced diffusion bonded joints. It is observed that the bonding and shear strength of the alloys increase with the increase in bonding temperature, due to the diffusion of micro-constituents in the interface. High temperature enhances the uniform distribution of secondary phase particles and reduces pore formation/defects in the bonded joints.

  15. Automation Tools for Finite Element Analysis of Adhesively Bonded Joints

    NASA Technical Reports Server (NTRS)

    Tahmasebi, Farhad; Brodeur, Stephen J. (Technical Monitor)

    2002-01-01

    This article presents two new automation creation tools that obtain stresses and strains (Shear and peel) in adhesively bonded joints. For a given adhesively bonded joint Finite Element model, in which the adhesive is characterised using springs, these automation tools read the corresponding input and output files, use the spring forces and deformations to obtain the adhesive stresses and strains, sort the stresses and strains in descending order, and generate plot files for 3D visualisation of the stress and strain fields. Grids (nodes) and elements can be numbered in any order that is convenient for the user. Using the automation tools, trade-off studies, which are needed for design of adhesively bonded joints, can be performed very quickly.

  16. Gingival crevicular fluid volume and periodontal parameters alterations after use of conventional and self-ligating brackets.

    PubMed

    Bergamo, Ana Zn; Nelson-Filho, Paulo; Romano, Fábio L; da Silva, Raquel Ab; Saraiva, Maria Cp; da Silva, Lea Ab; Matsumoto, Mirian An

    2016-12-01

    The aim of this study was to evaluate the alterations on plaque index (PI), gingival index (GI), gingival bleeding index (GBI), and gingival crevicular fluid (GCF) volume after use of three different brackets types for 60 days. Setting Participants: The sample comprised 20 patients of both sexes aged 11-15 years (mean age: 13.3 years), with permanent dentition, adequate oral hygiene, and mild tooth crowding, overjet, and overbite. A conventional metallic bracket Gemini™, and two different brands of self-ligating brackets - In-Ovation ® R and SmartClip™ - were bonded to the maxillary incisors and canines. PI, GI, GBI scores, and GCF volume were measured before and 30 and 60 days after bonding of the brackets. Data were analysed statistically using non-parametric tests coefficient at a 5% significance level. There was no statistically significant correlation (P > 0.05) between tooth crowding, overjet, and overbite and the PI, GI, GBI scores, and GCF volume before bonding, indicating no influence of malocclusion on the clinical parameters. Regardless of the bracket design, no statistically significant difference (P > 0.05) was found for GI, GBI scores. PI and GCF volume showed a significant difference among the brackets in different periods. In pairwise comparisons a significant difference was observed when compared before with 60 days after bonding, for the teeth bonded with SmartClip™ self-ligating bracket, (PI P = 0.009; GCF volume P = 0.001). There was an increase in PI score and GCF volume 60 days after bonding of SmartClip™ self-ligating brackets, indicating the influence of bracket design on these clinical parameters.

  17. Metal–Metal Bonding in Uranium–Group 10 Complexes

    PubMed Central

    2016-01-01

    Heterobimetallic complexes containing short uranium–group 10 metal bonds have been prepared from monometallic IUIV(OArP-κ2O,P)3 (2) {[ArPO]− = 2-tert-butyl-4-methyl-6-(diphenylphosphino)phenolate}. The U–M bond in IUIV(μ-OArP-1κ1O,2κ1P)3M0, M = Ni (3–Ni), Pd (3–Pd), and Pt (3–Pt), has been investigated by experimental and DFT computational methods. Comparisons of 3–Ni with two further U–Ni complexes XUIV(μ-OArP-1κ1O,2κ1P)3Ni0, X = Me3SiO (4) and F (5), was also possible via iodide substitution. All complexes were characterized by variable-temperature NMR spectroscopy, electrochemistry, and single crystal X-ray diffraction. The U–M bonds are significantly shorter than any other crystallographically characterized d–f-block bimetallic, even though the ligand flexes to allow a variable U–M separation. Excellent agreement is found between the experimental and computed structures for 3–Ni and 3–Pd. Natural population analysis and natural localized molecular orbital (NLMO) compositions indicate that U employs both 5f and 6d orbitals in covalent bonding to a significant extent. Quantum theory of atoms-in-molecules analysis reveals U–M bond critical point properties typical of metallic bonding and a larger delocalization index (bond order) for the less polar U–Ni bond than U–Pd. Electrochemical studies agree with the computational analyses and the X-ray structural data for the U–X adducts 3–Ni, 4, and 5. The data show a trend in uranium–metal bond strength that decreases from 3–Ni down to 3–Pt and suggest that exchanging the iodide for a fluoride strengthens the metal–metal bond. Despite short U–TM (transition metal) distances, four other computational approaches also suggest low U–TM bond orders, reflecting highly transition metal localized valence NLMOs. These are more so for 3–Pd than 3–Ni, consistent with slightly larger U–TM bond orders in the latter. Computational studies of the model systems (PH3)3MU(OH)3I (M = Ni, Pd) reveal longer and weaker unsupported U–TM bonds vs 3. PMID:26942560

  18. Processing parameter optimization for the laser dressing of bronze-bonded diamond wheels

    NASA Astrophysics Data System (ADS)

    Deng, H.; Chen, G. Y.; Zhou, C.; Li, S. C.; Zhang, M. J.

    2014-01-01

    In this paper, a pulsed fiber-laser dressing method for bronze-bonded diamond wheels was studied systematically and comprehensively. The mechanisms for the laser dressing of bronze-bonded diamond wheels were theoretically analyzed, and the key processing parameters that determine the results of laser dressing, including the laser power density, pulse overlap ratio, ablation track line overlap ratio, and number of scanning cycles, were proposed for the first time. Further, the effects of these four key parameters on the oxidation-damaged layer of the material surface, the material removal efficiency, the material surface roughness, and the average protrusion height of the diamond grains were explored and summarized through pulsed laser ablation experiments. Under the current experimental conditions, the ideal values of the laser power density, pulse overlap ratio, ablation track line overlap ratio, and number of scanning cycles were determined to be 4.2 × 107 W/cm2, 30%, 30%, and 16, respectively. Pulsed laser dressing experiments were conducted on bronze-bonded diamond wheels using the optimized processing parameters; next, both the normal and tangential grinding forces produced by the dressed grinding wheel were measured while grinding alumina ceramic materials. The results revealed that the normal and tangential grinding forces produced by the laser-dressed grinding wheel during grinding were smaller than those of grinding wheels dressed using the conventional mechanical method, indicating that the pulsed laser dressing technology provides irreplaceable advantages relative to the conventional mechanical dressing method.

  19. Estimation of the thermodynamic parameters of hydrogen bonding in alcohol solutions by the method of infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Vedernikova, E. V.; Gafurov, M. M.; Ataev, M. B.

    2011-01-01

    Hydrogen bonding (H-bonding) is a specific type of intermolecular interaction being formed for favorable mutual orientations of the interacting molecules. One of the authors had developed a model concept relating the H-bonding energy with the change of stretching vibrations Δν = νOH - νOH-NC of the alcohol OH-group in acetonitrile and acetone solutions: Δ H = 89.24Δν/ν0. The calculated H-bond energy was 10.45 kJ/mole for acetonitrile and Δ H = 12.12 kJ/mole for acetone. The results obtained are compared with the data calculated using the equilibrium constant of H-bonding reaction; they can also be used to calculate all other thermodynamic H-bond parameters by measuring the equilibrium constant K c in a certain temperature interval. The equilibrium constant is calculated from the Lambert-Bouguer-Beer law: {K_c} = {{C_{{text{OH}} \\cdots {text{NC}}}}}/{{C_{text{OH}} \\cdot {C_{text{NC}}}}} , ∆ F = - RT ṡ ln K c , ∆ H = RT 2 ṡ d(ln K c )/ dT, and Δ S = {Δ H - Δ F}/T . For the methanol solution in acetonitrile, Δν = 115 cm-1, Δ H = 10.87 kJ/mole, and K c = 42 L/mole. For the ethanol solution in acetonitrile, Δν = 118 cm-1, Δ H = 10.01 kJ/mole, and K c = 34 L/mole. For the propanol solution in acetonitrile, Δν = 110 cm-1, Δ H = 8.36 kJ/mole, and K c = 13 L/mole. All calculations are performed using the developed programs. The spectra are recorded on Perkin-Elmer-180 and Specord-84 IR-spectrometers. The values of the thermodynamic parameters calculated and estimated from K c - f( T) are in good agreement with each other and with the available literature data.

  20. Reconstruction of the spatial dependence of dielectric and geometrical properties of adhesively bonded structures

    NASA Astrophysics Data System (ADS)

    Mackay, C.; Hayward, D.; Mulholland, A. J.; McKee, S.; Pethrick, R. A.

    2005-06-01

    An inverse problem motivated by the nondestructive testing of adhesively bonded structures used in the aircraft industry is studied. Using transmission line theory, a model is developed which, when supplied with electrical and geometrical parameters, accurately predicts the reflection coefficient associated with such structures. Particular attention is paid to modelling the connection between the structures and the equipment used to measure the reflection coefficient. The inverse problem is then studied and an optimization approach employed to recover these electrical and geometrical parameters from experimentally obtained data. In particular the approach focuses on the recovery of spatially varying geometrical parameters as this is paramount to the successful reconstruction of electrical parameters. Reconstructions of structure geometry using this method are found to be in close agreement with experimental observations.

  1. Two-Center/Three-Electron Sigma Half-Bonds in Main Group and Transition Metal Chemistry.

    PubMed

    Berry, John F

    2016-01-19

    First proposed in a classic Linus Pauling paper, the two-center/three-electron (2c/3e) σ half-bond challenges the extremes of what may or may not be considered a chemical bond. Two electrons occupying a σ bonding orbital and one electron occupying the antibonding σ* orbital results in bond orders of ∼0.5 that are characteristic of metastable and exotic species, epitomized in the fleetingly stable He2(+) ion. In this Account, I describe the use of coordination chemistry to stabilize such fugacious three-electron bonded species at disparate ends of the periodic table. A recent emphasis in the chemistry of metal-metal bonds has been to prepare compounds with extremely short metal-metal distances and high metal-metal bond orders. But similar chemistry can be used to explore metal-metal bond orders less than one, including 2c/3e half-bonds. Bimetallic compounds in the Ni2(II,III) and Pd2(II,III) oxidation states were originally examined in the 1980s, but the evidence collected at that time suggested that they did not contain 2c/3e σ bonds. Both classes of compounds have been re-examined using EPR spectroscopy and modern computational methods that show the unpaired electron of each compound to occupy a M-M σ* orbital, consistent with 2c/3e Ni-Ni and Pd-Pd σ half-bonds. Elsewhere on the periodic table, a seemingly unrelated compound containing a trigonal bipyramidal Cu3S2 core caused a stir, leaving prominent theorists at odds with one another as to whether the compound contains a S-S bond. Due to my previous experience with 2c/3e metal-metal bonds, I suggested that the Cu3S2 compound could contain a 2c/3e S-S σ half-bond in the previously unknown oxidation state of S2(3-). By use of the Cambridge Database, a number of other known compounds were identified as potentially containing S2(3-) ligands, including a noteworthy set of cyclopentadienyl-supported compounds possessing diamond-shaped Ni2E2 units with E = S, Se, and Te. These compounds were subjected to extensive studies using X-ray absorption spectroscopy, X-ray photoelectron spectroscopy, density functional theory, and wave function-based computational methods, as well as chemical oxidation and reduction. The compounds contain E-E 2c/3e σ half-bonds and unprecedented E2(3-) "subchalcogenide" ligands, ushering in a new oxidation state paradigm for transition metal-chalcogen chemistry.

  2. Comparing and Correlating Solubility Parameters Governing the Self-Assembly of Molecular Gels Using 1,3:2,4-Dibenzylidene Sorbitol as the Gelator

    PubMed Central

    2014-01-01

    Solvent properties play a central role in mediating the aggregation and self-assembly of molecular gelators and their growth into fibers. Numerous attempts have been made to correlate the solubility parameters of solvents and gelation abilities of molecular gelators, but a comprehensive comparison of the most important parameters has yet to appear. Here, the degree to which partition coefficients (log P), Henry’s law constants (HLC), dipole moments, static relative permittivities (εr), solvatochromic ET(30) parameters, Kamlet–Taft parameters (β, α, and π), Catalan’s solvatochromic parameters (SPP, SB, and SA), Hildebrand solubility parameters (δi), and Hansen solubility parameters (δp, δd, δh) and the associated Hansen distance (Rij) of 62 solvents (covering a wide range of properties) can be correlated with the self-assembly and gelation of 1,3:2,4-dibenzylidene sorbitol (DBS) gelation, a classic molecular gelator, is assessed systematically. The approach presented describes the basis for each of the parameters and how it can be applied. As such, it is an instructional blueprint for how to assess the appropriate type of solvent parameter for use with other molecular gelators as well as with molecules forming other types of self-assembled materials. The results also reveal several important insights into the factors favoring the gelation of solvents by DBS. The ability of a solvent to accept or donate a hydrogen bond is much more important than solvent polarity in determining whether mixtures with DBS become solutions, clear gels, or opaque gels. Thermodynamically derived parameters could not be correlated to the physical properties of the molecular gels unless they were dissected into their individual HSPs. The DBS solvent phases tend to cluster in regions of Hansen space and are highly influenced by the hydrogen-bonding HSP, δh. It is also found that the fate of this molecular gelator, unlike that of polymers, is influenced not only by the magnitude of the distance between the HSPs for DBS and the HSPs of the solvent, Rij, but also by the directionality of Rij: if the solvent has a larger hydrogen-bonding HSP (indicating stronger H-bonding) than that of the DBS, then clear gels are formed; opaque gels form when the solvent has a lower δh than does DBS. PMID:24849281

  3. Comparing and correlating solubility parameters governing the self-assembly of molecular gels using 1,3:2,4-dibenzylidene sorbitol as the gelator.

    PubMed

    Lan, Yaqi; Corradini, Maria G; Liu, Xia; May, Tim E; Borondics, Ferenc; Weiss, Richard G; Rogers, Michael A

    2014-12-02

    Solvent properties play a central role in mediating the aggregation and self-assembly of molecular gelators and their growth into fibers. Numerous attempts have been made to correlate the solubility parameters of solvents and gelation abilities of molecular gelators, but a comprehensive comparison of the most important parameters has yet to appear. Here, the degree to which partition coefficients (log P), Henry's law constants (HLC), dipole moments, static relative permittivities (ε(r)), solvatochromic E(T)(30) parameters, Kamlet-Taft parameters (β, α, and π), Catalan's solvatochromic parameters (SPP, SB, and SA), Hildebrand solubility parameters (δ(i)), and Hansen solubility parameters (δ(p), δ(d), δ(h)) and the associated Hansen distance (R(ij)) of 62 solvents (covering a wide range of properties) can be correlated with the self-assembly and gelation of 1,3:2,4-dibenzylidene sorbitol (DBS) gelation, a classic molecular gelator, is assessed systematically. The approach presented describes the basis for each of the parameters and how it can be applied. As such, it is an instructional blueprint for how to assess the appropriate type of solvent parameter for use with other molecular gelators as well as with molecules forming other types of self-assembled materials. The results also reveal several important insights into the factors favoring the gelation of solvents by DBS. The ability of a solvent to accept or donate a hydrogen bond is much more important than solvent polarity in determining whether mixtures with DBS become solutions, clear gels, or opaque gels. Thermodynamically derived parameters could not be correlated to the physical properties of the molecular gels unless they were dissected into their individual HSPs. The DBS solvent phases tend to cluster in regions of Hansen space and are highly influenced by the hydrogen-bonding HSP, δ(h). It is also found that the fate of this molecular gelator, unlike that of polymers, is influenced not only by the magnitude of the distance between the HSPs for DBS and the HSPs of the solvent, R(ij), but also by the directionality of R(ij): if the solvent has a larger hydrogen-bonding HSP (indicating stronger H-bonding) than that of the DBS, then clear gels are formed; opaque gels form when the solvent has a lower δ(h) than does DBS.

  4. Bond Graph Model of Cerebral Circulation: Toward Clinically Feasible Systemic Blood Flow Simulations

    PubMed Central

    Safaei, Soroush; Blanco, Pablo J.; Müller, Lucas O.; Hellevik, Leif R.; Hunter, Peter J.

    2018-01-01

    We propose a detailed CellML model of the human cerebral circulation that runs faster than real time on a desktop computer and is designed for use in clinical settings when the speed of response is important. A lumped parameter mathematical model, which is based on a one-dimensional formulation of the flow of an incompressible fluid in distensible vessels, is constructed using a bond graph formulation to ensure mass conservation and energy conservation. The model includes arterial vessels with geometric and anatomical data based on the ADAN circulation model. The peripheral beds are represented by lumped parameter compartments. We compare the hemodynamics predicted by the bond graph formulation of the cerebral circulation with that given by a classical one-dimensional Navier-Stokes model working on top of the whole-body ADAN model. Outputs from the bond graph model, including the pressure and flow signatures and blood volumes, are compared with physiological data. PMID:29551979

  5. Argon-oxygen atmospheric pressure plasma treatment on carbon fiber reinforced polymer for improved bonding

    NASA Astrophysics Data System (ADS)

    Chartosias, Marios

    Acceptance of Carbon Fiber Reinforced Polymer (CFRP) structures requires a robust surface preparation method with improved process controls capable of ensuring high bond quality. Surface preparation in a production clean room environment prior to applying adhesive for bonding would minimize risk of contamination and reduce cost. Plasma treatment is a robust surface preparation process capable of being applied in a production clean room environment with process parameters that are easily controlled and documented. Repeatable and consistent processing is enabled through the development of a process parameter window utilizing techniques such as Design of Experiments (DOE) tailored to specific adhesive and substrate bonding applications. Insight from respective plasma treatment Original Equipment Manufacturers (OEMs) and screening tests determined critical process factors from non-factors and set the associated factor levels prior to execution of the DOE. Results from mode I Double Cantilever Beam (DCB) testing per ASTM D 5528 [1] standard and DOE statistical analysis software are used to produce a regression model and determine appropriate optimum settings for each factor.

  6. Market-implied spread for earthquake CAT bonds: financial implications of engineering decisions.

    PubMed

    Damnjanovic, Ivan; Aslan, Zafer; Mander, John

    2010-12-01

    In the event of natural and man-made disasters, owners of large-scale infrastructure facilities (assets) need contingency plans to effectively restore the operations within the acceptable timescales. Traditionally, the insurance sector provides the coverage against potential losses. However, there are many problems associated with this traditional approach to risk transfer including counterparty risk and litigation. Recently, a number of innovative risk mitigation methods, termed alternative risk transfer (ART) methods, have been introduced to address these problems. One of the most important ART methods is catastrophe (CAT) bonds. The objective of this article is to develop an integrative model that links engineering design parameters with financial indicators including spread and bond rating. The developed framework is based on a four-step structural loss model and transformed survival model to determine expected excess returns. We illustrate the framework for a seismically designed bridge using two unique CAT bond contracts. The results show a nonlinear relationship between engineering design parameters and market-implied spread. © 2010 Society for Risk Analysis.

  7. Structural instability in polyacene: A projector quantum Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Srinivasan, Bhargavi; Ramasesha, S.

    1998-04-01

    We have studied polyacene within the Hubbard model to explore the effect of electron correlations on the Peierls' instability in a system marginally away from one dimension. We employ the projector quantum Monte Carlo method to obtain ground-state estimates of the energy and various correlation functions. We find strong similarities between polyacene and polyacetylene which can be rationalized from the real-space valence-bond arguments of Mazumdar and Dixit. Electron correlations tend to enhance the Peierls' instability in polyacene. This enhancement appears to attain a maximum at U/t~3.0, and the maximum shifts to larger values when the alternation parameter is increased. The system shows no tendency to destroy the imposed bond-alternation pattern, as evidenced by the bond-bond correlations. The cis distortion is seen to be favored over the trans distortion. The spin-spin correlations show that undistorted polyacene is susceptible to a spin-density-wave distortion for large interaction strength. The charge-charge correlations indicate the absence of a charge-density-wave distortion for the parameters studied.

  8. A non-collinear mixing technique to measure the acoustic nonlinearity parameter of adhesive bond

    NASA Astrophysics Data System (ADS)

    Ju, Taeho; Achenbach, Jan. D.; Jacobs, Laurence J.; Qu, Jianmin

    2018-04-01

    In this work, we employed a wave mixing technique with an incident longitudinal wave and a shear wave to measure the Acoustic Nonlinearity Parameter (ANLP) of adhesive bonds. An adhesive transfer tape (F-9473PC) was used as an adhesive material: two aluminum plates are bonded together by the tape. To achieve a high signal to noise ratio, the optimal interaction angle and frequency ratio between the two incident waves were carefully selected so resonance occurs primarily in the adhesive layer, which somewhat suppressed the resonance in the aluminum plates. One of the most significant features of this method is that the measurements need only one-side access to the sample being measured. To demonstrate the effectiveness of the proposed technique, the adhesively bonded aluminum sample was placed in a temperature-controlled chamber for thermal aging. The ANLP of the thermally aged sample was compared with that of a freshly made adhesive sample. The results show that the ANLP increases with aging time and temperature.

  9. Chemical bonds and vibrational properties of ordered (U, Np, Pu) mixed oxides

    NASA Astrophysics Data System (ADS)

    Yang, Yu; Zhang, Ping

    2013-01-01

    We use density functional theory +U to investigate the chemical bonding characters and vibrational properties of the ordered (U, Np, Pu) mixed oxides (MOXs), UNpO4,NpPuO4, and UPuO4. It is found that the 5f electronic states of different actinide elements keep their localized characters in all three MOXs. The occupied 5f electronic states of different actinide elements do not overlap with each other and tend to distribute over the energy band gap of the other actinide element's 5f states. As a result, the three ordered MOXs all show smaller band gaps than those of the component dioxides, with values of 0.91, 1.47, and 0.19 eV for UNpO4,NpPuO4, and UPuO4, respectively. Through careful charge density analysis, we further show that the U-O and Pu-O bonds in MOXs show more ionic character than in UO2 and PuO2, while the Np-O bonds show more covalent character than in NpO2. The change in covalencies in the chemical bonds leads to vibrational frequencies of oxygen atoms that are different in MOXs.

  10. Coupling of the Distal H-bond Network to the Exogenous Ligand in Substrate-bound, Resting State Human Heme Oxygenase ‡

    PubMed Central

    Peng, Dungeng; Ogura, Hiroshi; Zhu, Wenfeng; Ma, Li-Hua; Evans, John P.; Ortiz de Montellano, Paul R.; La Mar, Gerd N.

    2010-01-01

    Mammalian heme oxygenase, HO, possesses catalytically implicated distal ordered water molecules within an extended H-bond network, with one of the ordered water molecules (#1) providing a bridge between the iron-coordinated ligand and the catalytically critical Asp140, that, in turn, serves as an acceptor for the Tyr58 OH H-bond. The degree of H-bonding by the ligated water molecule and the coupling of this water molecule to the H-bond network are of current interest and are herein investigated by 1H NMR. 2D NMR allowed sufficient assignments to provide both the H-bond strength and hyperfine shifts, the latter of which were used to quantify the magnetic anisotropy in both the ferric high-spin aquo and low-spin hydroxo complexes. The anisotropy in the aquo complex indicates that the H-bond donation to water #1 is marginally stronger than in a bacterial HO, while the anisotropy for the hydroxo complex reveals a conventional (dxz, dyz)1 ground state indicative of only moderate to weak H-bond acceptance by the ligated hydroxide. Mapping out the changes of the H-bond strengths in the network during the ligated water → hydroxide conversion by correcting for the effects of magnetic anisotropy, reveals a very substantial change in H-bond strength for Tyr58 OH, and lesser effects on nearby H-bonds. The effect of pH on the H-bonding network in human HO is much larger and transmitted much further from the iron than in a pathogenic bacterial HO. The implications for the HO mechanism of the H-bond of Tyr58 to Asp140 are discussed. PMID:19842713

  11. Molecular beam epitaxial growth and characterization of InSb{sub 1-x}N{sub x} on GaAs for long wavelength infrared applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patra, Nimai C.; Bharatan, Sudhakar; Li, Jia

    2012-04-15

    Recent research progress and findings in InSbN have attracted great attention due to its use in long wavelength infrared applications. A large bandgap reduction in InSb resulting from high N incorporation with minimal crystal defects is challenging due to relatively small atomic size of N. Hence optimization of growth conditions plays an important role in the growth of high-quality InSbN epilayers for device purposes. In this paper, we report on the correlation of structural, vibrational, electrical, and optical properties of molecular beam epitaxially grown InSbN epilayers grown on GaAs substrates, as a function of varying growth temperatures. Two dimensional growthsmore » of InSb and InSbN were confirmed from dynamic reflection high energy electron diffraction patterns and growth parameters were optimized. High crystalline quality of the epilayers is attested to by a low full width at half maximum of 200 arcsec from high resolution x-ray diffraction (HRXRD) scans and by the high intensity and well-resolved InSb longitudinal optical (LO) and 2{sup nd} order InSb LO mode observed from micro-Raman spectroscopy. The N incorporation in these InSbN epilayers is estimated to be 1.4% based on HRXRD simulation. X-ray photoelectron spectroscopy (XPS) studies reveal that most of the N present in the layers are in the form of In-N bonding. Variation of the lattice disorder with growth temperature is correlated with the types of N bonding present, the carrier concentration and mobility, observed in the corresponding XPS spectra and Hall measurements, respectively. XPS analysis, HRXRD scans, and Raman spectral analysis indicate that lower growth temperature favors In-N bonding which dictates N incorporation in the substitutional sites and lattice disorder, whereas, high growth temperature promotes the formation of In-N-Sb bonding. The best room temperature and 77 K electrical transport parameters and maximum redshift in the absorption edge have been achieved in the InSbN epilayer grown in the 290 deg. C {approx} 330 deg. C temperature range.« less

  12. Molecular beam epitaxial growth and characterization of InSb1 - xNx on GaAs for long wavelength infrared applications

    NASA Astrophysics Data System (ADS)

    Patra, Nimai C.; Bharatan, Sudhakar; Li, Jia; Tilton, Michael; Iyer, Shanthi

    2012-04-01

    Recent research progress and findings in InSbN have attracted great attention due to its use in long wavelength infrared applications. A large bandgap reduction in InSb resulting from high N incorporation with minimal crystal defects is challenging due to relatively small atomic size of N. Hence optimization of growth conditions plays an important role in the growth of high-quality InSbN epilayers for device purposes. In this paper, we report on the correlation of structural, vibrational, electrical, and optical properties of molecular beam epitaxially grown InSbN epilayers grown on GaAs substrates, as a function of varying growth temperatures. Two dimensional growths of InSb and InSbN were confirmed from dynamic reflection high energy electron diffraction patterns and growth parameters were optimized. High crystalline quality of the epilayers is attested to by a low full width at half maximum of 200 arcsec from high resolution x-ray diffraction (HRXRD) scans and by the high intensity and well-resolved InSb longitudinal optical (LO) and 2nd order InSb LO mode observed from micro-Raman spectroscopy. The N incorporation in these InSbN epilayers is estimated to be 1.4% based on HRXRD simulation. X-ray photoelectron spectroscopy (XPS) studies reveal that most of the N present in the layers are in the form of In-N bonding. Variation of the lattice disorder with growth temperature is correlated with the types of N bonding present, the carrier concentration and mobility, observed in the corresponding XPS spectra and Hall measurements, respectively. XPS analysis, HRXRD scans, and Raman spectral analysis indicate that lower growth temperature favors In-N bonding which dictates N incorporation in the substitutional sites and lattice disorder, whereas, high growth temperature promotes the formation of In-N-Sb bonding. The best room temperature and 77 K electrical transport parameters and maximum redshift in the absorption edge have been achieved in the InSbN epilayer grown in the 290 °C ˜ 330 °C temperature range.

  13. Multinuclear Solid-State Magnetic Resonance as a Sensitive Probe of Structural Changes upon the Occurrence of Halogen Bonding in Co-crystals.

    PubMed

    Widdifield, Cory M; Cavallo, Gabriella; Facey, Glenn A; Pilati, Tullio; Lin, Jingxiang; Metrangolo, Pierangelo; Resnati, Giuseppe; Bryce, David L

    2013-09-02

    Although the understanding of intermolecular interactions, such as hydrogen bonding, is relatively well-developed, many additional weak interactions work both in tandem and competitively to stabilize a given crystal structure. Due to a wide array of potential applications, a substantial effort has been invested in understanding the halogen bond. Here, we explore the utility of multinuclear ((13)C, (14/15)N, (19)F, and (127)I) solid-state magnetic resonance experiments in characterizing the electronic and structural changes which take place upon the formation of five halogen-bonded co-crystalline product materials. Single-crystal X-ray diffraction (XRD) structures of three novel co-crystals which exhibit a 1:1 stoichiometry between decamethonium diiodide (i.e., [(CH3)3N(+)(CH2)10N(+)(CH3)3][2 I(-)]) and different para-dihalogen-substituted benzene moieties (i.e., p-C6X2Y4, X=Br, I; Y=H, F) are presented. (13)C and (15)N NMR experiments carried out on these and related systems validate sample purity, but also serve as indirect probes of the formation of a halogen bond in the co-crystal complexes in the solid state. Long-range changes in the electronic environment, which manifest through changes in the electric field gradient (EFG) tensor, are quantitatively measured using (14)N NMR spectroscopy, with a systematic decrease in the (14)N quadrupolar coupling constant (CQ) observed upon halogen bond formation. Attempts at (127)I solid-state NMR spectroscopy experiments are presented and variable-temperature (19)F NMR experiments are used to distinguish between dynamic and static disorder in selected product materials, which could not be conclusively established using solely XRD. Quantum chemical calculations using the gauge-including projector augmented-wave (GIPAW) or relativistic zeroth-order regular approximation (ZORA) density functional theory (DFT) approaches complement the experimental NMR measurements and provide theoretical corroboration for the changes in NMR parameters observed upon the formation of a halogen bond. Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Photoelectron spectroscopy of B4O4 (-): Dual 3c-4e π hyperbonds and rhombic 4c-4e o-bond in boron oxide clusters.

    PubMed

    Tian, Wen-Juan; Zhao, Li-Juan; Chen, Qiang; Ou, Ting; Xu, Hong-Guang; Zheng, Wei-Jun; Zhai, Hua-Jin; Li, Si-Dian

    2015-04-07

    Gas-phase anion photoelectron spectroscopy (PES) is combined with global structural searches and electronic structure calculations at the hybrid Becke 3-parameter exchange functional and Lee-Yang-Parr correlation functional (B3LYP) and single-point coupled-cluster with single, double, and perturbative triple excitations (CCSD(T)) levels to probe the structural and electronic properties and chemical bonding of the B4O4 (0/-) clusters. The measured PES spectra of B4O4 (-) exhibit a major band with the adiabatic and vertical detachment energies (ADE and VDE) of 2.64 ± 0.10 and 2.81 ± 0.10 eV, respectively, as well as a weak peak with the ADE and VDE of 1.42 ± 0.08 and 1.48 ± 0.08 eV. The former band proves to correspond to the Y-shaped global minimum of Cs B4O4 (-) ((2)A″), with the calculated ADE/VDE of 2.57/2.84 eV at the CCSD(T) level, whereas the weak band is associated with the second lowest-energy, rhombic isomer of D2h B4O4 (-) ((2)B2g) with the predicted ADE/VDE of 1.43/1.49 eV. Both anion structures are planar, featuring a B atom or a B2O2 core bonded with terminal BO and/or BO2 groups. The same Y-shaped and rhombic structures are also located for the B4O4 neutral cluster, albeit with a reversed energy order. Bonding analyses reveal dual three-center four-electron (3c-4e) π hyperbonds in the Y-shaped B4O4 (0/-) clusters and a four-center four-electron (4c-4e) π bond, that is, the so-called o-bond in the rhombic B4O4 (0/-) clusters. This work is the first experimental study on a molecular system with an o-bond.

  15. Microtensile bond strength of contemporary adhesives to primary enamel and dentin.

    PubMed

    Marquezan, Marcela; da Silveira, Bruno Lopes; Burnett, Luiz Henrique; Rodrigues, Célia Regina Martins Delgado; Kramer, Paulo Floriani

    2008-01-01

    The purpose of this study was to assess bond strength of three self-etching and two total-etch adhesive systems bonded to primary tooth enamel and dentin. Forty extracted primary human molars were selected and abraded in order to create flat buccal enamel and occlusal dentin surfaces. Teeth were assigned to one of the adhesive systems: Adper Scotch Bond Multi Purpose, Adper Single Bond 2, Adper Prompt L-Pop, Clearfil SE Bond and AdheSE. Immediately to adhesive application, a composite resin (Filtek Z250) block was built up. After 3 months of water storage, each sample was sequentially sectioned in order to obtain sticks with a square cross-sectional area of about 0.72 mm2. The specimens were fixed lengthways to a microtensile device and tested using a universal testing machine with a 50-N load cell at a crosshead speed of 0.5 mm/min. Microtensile bond strength values were recorded in MPa and compared by Analysis of Variance and the post hoc Tukey test (a = 0.05). In enamel, Clearfil SE Bond presented the highest values, followed by Adper Single Bond 2, AdheSE and Adper Scotch Bond Multi Purpose, without significant difference. The highest values in dentin were obtained with Adper Scotch Bond Multi Purpose and all other adhesives did not present significant different values from that, except Adper Prompt L-Pop that achieved the lowest bond strength in both substrates. Adper Scotch Bond Multi Purpose and Adper Single Bond 2 presented significantly lower values in enamel than in dentin although all other adhesives presented similar results in both substrates. contemporary adhesive systems present similar behaviors when bonded to primary teeth, with the exception of the one-step self-etching system; and self-etching systems can achieve bond strength values as good in enamel as in dentin of primary teeth.

  16. Direct computation of general chemical energy differences: Application to ionization potentials, excitation, and bond energies.

    PubMed

    Beste, A; Harrison, R J; Yanai, T

    2006-08-21

    Chemists are mainly interested in energy differences. In contrast, most quantum chemical methods yield the total energy which is a large number compared to the difference and has therefore to be computed to a higher relative precision than would be necessary for the difference alone. Hence, it is desirable to compute energy differences directly, thereby avoiding the precision problem. Whenever it is possible to find a parameter which transforms smoothly from an initial to a final state, the energy difference can be obtained by integrating the energy derivative with respect to that parameter (cf. thermodynamic integration or adiabatic connection methods). If the dependence on the parameter is predominantly linear, accurate results can be obtained by single-point integration. In density functional theory and Hartree-Fock, we applied the formalism to ionization potentials, excitation energies, and chemical bond breaking. Example calculations for ionization potentials and excitation energies showed that accurate results could be obtained with a linear estimate. For breaking bonds, we introduce a nongeometrical parameter which gradually turns the interaction between two fragments of a molecule on. The interaction changes the potentials used to determine the orbitals as well as the constraint on the orbitals to be orthogonal.

  17. Tuning Solvatochromism of Azo Dyes with Intramolecular Hydrogen Bonding in Solution and on Titanium Dioxide Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lei; Cole, Jacqueline M.; Liu, Xiaogang

    2013-11-25

    “Smart tuning” of optical properties in three azo dyes containing intramolecular hydrogen bonding is realized by the judicious control of solvents, when the dyes are in solution or adsorbed onto titanium dioxide nanoparticles. In solution, certain solvents destabilizing intramolecular hydrogen bonding induce a distinctive ≈70 nm “blue-shifted” absorption peak, compared with other solvents. In parallel, the optical properties of azo dye/TiO2 nanocomposites can be tuned using solvents with different hydrogen-bond accepting/donating abilities, giving insights into smart materials and dye-sensitized solar cell device design. It is proposed that intramolecular hydrogen bonding alone plays the leading role in such phenomena, which ismore » fundamentally different to other mechanisms, such as tautomerism and cis–trans isomerization, that explain the optical control of azo dyes. Hybrid density functional theory (DFT) is employed in order to trace the origin of this optical control, and these calculations support the mechanism involving intramolecular hydrogen bonding. Two complementary studies are also reported: 1H NMR spectroscopy is conducted in order to further understand the solvent effects on intramolecular hydrogen bonding; crystal structure analysis from associated research indicates the importance of intramolecular hydrogen bonding on intramolecular charge transfer.« less

  18. Unifying Exchange Sensitivity in Transition-Metal Spin-State Ordering and Catalysis through Bond Valence Metrics.

    PubMed

    Gani, Terry Z H; Kulik, Heather J

    2017-11-14

    Accurate predictions of spin-state ordering, reaction energetics, and barrier heights are critical for the computational discovery of open-shell transition-metal (TM) catalysts. Semilocal approximations in density functional theory, such as the generalized gradient approximation (GGA), suffer from delocalization error that causes them to overstabilize strongly bonded states. Descriptions of energetics and bonding are often improved by introducing a fraction of exact exchange (e.g., erroneous low-spin GGA ground states are instead correctly predicted as high-spin with a hybrid functional). The degree of spin-splitting sensitivity to exchange can be understood based on the chemical composition of the complex, but the effect of exchange on reaction energetics within a single spin state is less well-established. Across a number of model iron complexes, we observe strong exchange sensitivities of reaction barriers and energies that are of the same magnitude as those for spin splitting energies. We rationalize trends in both reaction and spin energetics by introducing a measure of delocalization, the bond valence of the metal-ligand bonds in each complex. The bond valence thus represents a simple-to-compute property that unifies understanding of exchange sensitivity for catalytic properties and spin-state ordering in TM complexes. Close agreement of the resulting per-metal-organic-bond sensitivity estimates, together with failure of alternative descriptors demonstrates the utility of the bond valence as a robust descriptor of how differences in metal-ligand delocalization produce differing relative energetics with exchange tuning. Our unified description explains the overall effect of exact exchange tuning on the paradigmatic two-state FeO + /CH 4 reaction that combines challenges of spin-state and reactivity predictions. This new descriptor-sensitivity relationship provides a path to quantifying how predictions in transition-metal complex screening are sensitive to the method used.

  19. New method for calculations of nanostructure kinetic stability at high temperature

    NASA Astrophysics Data System (ADS)

    Fedorov, A. S.; Kuzubov, A. A.; Visotin, M. A.; Tomilin, F. N.

    2017-10-01

    A new universal method is developed for determination of nanostructure kinetic stability (KS) at high temperatures, when nanostructures can be destroyed by chemical bonds breaking due to atom thermal vibrations. The method is based on calculation of probability for any bond in the structure to stretch more than a limit value Lmax, when the bond breaks. Assuming the number of vibrations is very large and all of them are independent, using the central limit theorem, an expression for the probability of a given bond elongation up to Lmax is derived in order to determine the KS. It is shown that this expression leads to the effective Arrhenius formula, but unlike the standard transition state theory it allows one to find the contributions of different vibrations to a chemical bond cleavage. To determine the KS, only calculation of frequencies and eigenvectors of vibrational modes in the groundstate of the nanostructure is needed, while the transition states need not be found. The suggested method was tested on calculating KS of bonds in some alkanes, octene isomers and narrow graphene nanoribbons of different types and widths at the temperature T=1200 K. The probability of breaking of the C-C bond in the center of these hydrocarbons is found to be significantly higher than at the ends of the molecules. It is also shown that the KS of the octene isomers decreases when the double C˭C bond is moved to the end of the molecule, which agrees well with the experimental data. The KS of the narrowest graphene nanoribbons of different types varies by 1-2 orders of magnitude depending on the width and structure, while all of them are by several orders of magnitude less stable at high temperature than the hydrocarbons and benzene.

  20. Screening Adhesively Bonded Single-Lap-Joint Testing Results Using Nonlinear Calculation Parameters

    DTIC Science & Technology

    2012-03-01

    versus displacement response for single-lap-joints bonded with damage-tolerant adhe- sives, such the polyurea adhesive plotted in Figure 2, is much...displacement response for a single-lap-joint bonded with a polyurea adhesive. Complex x-y plots are commonly fitted using the Levenberg-Marquardt...expected decrease in maximum strength for the polyurea in compar- ison to the epoxy, which could have been obtained using a traditional analysis approach

  1. Structural analysis of two tetraketones and theoretical investigation of the reactions involved in their preparation

    NASA Astrophysics Data System (ADS)

    da Silva, Milene Lopes; Teixeira, Róbson Ricardo; de Azevedo Santos, Lucas; Martins, Felipe Terra; Ramalho, Teodorico Castro

    2018-03-01

    The 2,2'-((5-(4-bromophenyl)furan-2-yl)methylene) bis (5,5-dimethylcyclohexane-1,3-dione) (3) and 2,2'-((5-(4-chlorophenyl)furan-2-yl)methylene) bis (5,5-dimethylcyclohexane-1,3-dione) (4) were prepared in, respectively, 63% and 59% yield, via ZrOCl2ṡ8H2O catalyzed condensation reactions between dimedone and appropriate aldehydes. Their structures were investigated by IR, NMR, and X-ray spectroscopy techniques. The asymmetric unit of tetraketone 3 is composed of just one molecule, while two almost identical crystallographically independent molecules of compound 4 are present there. Compound 3 is conformationally similar to both molecules of 4. The diketone rings assume a half-chair conformation with the flaps oriented toward the same side of the substituent at C1. Each diketone ring is featured by an electronic delocalization path encompassed through the keto-enol moiety. All bond lengths inside this conjugated system are intermediate between those of pure double and single bonds. Furthermore, the furan plane of the substituent at C1 is almost parallel to the bond axes bridging the diketone rings as a consequence of steric hindrance effects between the heterocycle moiety and two hydrogen bonded oxygens. The enol forms of compounds 3 and 4 were noticed via IR and NMR spectroscopies. Furthermore, thermodynamics parameters were calculated in order to interpret the experimental results. In this line, theoretical findings reveal that electronic and solvent effects play an important role in the chemical reactions involved in the preparation of tetraketones.

  2. Adsorptive removal of pharmaceuticals from water by commercial and waste-based carbons.

    PubMed

    Calisto, Vânia; Ferreira, Catarina I A; Oliveira, João A B P; Otero, Marta; Esteves, Valdemar I

    2015-04-01

    This work describes the single adsorption of seven pharmaceuticals (carbamazepine, oxazepam, sulfamethoxazole, piroxicam, cetirizine, venlafaxine and paroxetine) from water onto a commercially available activated carbon and a non-activated carbon produced by pyrolysis of primary paper mill sludge. Kinetics and equilibrium adsorption studies were performed using a batch experimental approach. For all pharmaceuticals, both carbons presented fast kinetics (equilibrium times varying from less than 5 min to 120 min), mainly described by a pseudo-second order model. Equilibrium data were appropriately described by the Langmuir and Freundlich isotherm models, the last one giving slightly higher correlation coefficients. The fitted parameters obtained for both models were quite different for the seven pharmaceuticals under study. In order to evaluate the influence of water solubility, log Kow, pKa, polar surface area and number of hydrogen bond acceptors of pharmaceuticals on the adsorption parameters, multiple linear regression analysis was performed. The variability is mainly due to log Kow followed by water solubility, in the case of the waste-based carbon, and due to water solubility in the case of the commercial activated carbon. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Quantized Self-Assembly of Discotic Rings in a Liquid Crystal Confined in Nanopores

    NASA Astrophysics Data System (ADS)

    Sentker, Kathrin; Zantop, Arne W.; Lippmann, Milena; Hofmann, Tommy; Seeck, Oliver H.; Kityk, Andriy V.; Yildirim, Arda; Schönhals, Andreas; Mazza, Marco G.; Huber, Patrick

    2018-02-01

    Disklike molecules with aromatic cores spontaneously stack up in linear columns with high, one-dimensional charge carrier mobilities along the columnar axes, making them prominent model systems for functional, self-organized matter. We show by high-resolution optical birefringence and synchrotron-based x-ray diffraction that confining a thermotropic discotic liquid crystal in cylindrical nanopores induces a quantized formation of annular layers consisting of concentric circular bent columns, unknown in the bulk state. Starting from the walls this ring self-assembly propagates layer by layer towards the pore center in the supercooled domain of the bulk isotropic-columnar transition and thus allows one to switch on and off reversibly single, nanosized rings through small temperature variations. By establishing a Gibbs free energy phase diagram we trace the phase transition quantization to the discreteness of the layers' excess bend deformation energies in comparison to the thermal energy, even for this near room-temperature system. Monte Carlo simulations yielding spatially resolved nematic order parameters, density maps, and bond-orientational order parameters corroborate the universality and robustness of the confinement-induced columnar ring formation as well as its quantized nature.

  4. Bond order potential module for LAMMPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2012-09-11

    pair_bop is a module for performing energy calculations using the Bond Order Potential (BOP) for use in the parallel molecular dynamics code LAMMPS. The bop pair style computes BOP based upon quantum mechanical incorporating both sigma and pi bondings. By analytically deriving the BOP pair bop from quantum mechanical theory its transferability to different phases can approach that of quantum mechanical methods. This potential is extremely effective at modeling 111-V and II-VI compounds such as GaAs and CdTe. This potential is similar to the original BOP developed by Pettifor and later updated by Murdock et al. and Ward et al.

  5. Effect of intermolecular hydrogen bonding, vibrational analysis and molecular structure of a biomolecule: 5-Hydroxymethyluracil

    NASA Astrophysics Data System (ADS)

    Çırak, Çağrı; Sert, Yusuf; Ucun, Fatih

    2014-06-01

    In the present work, the experimental and theoretical vibrational spectra of 5-hydroxymethyluracil were investigated. The FT-IR (4000-400 cm-1) spectrum of the molecule in the solid phase was recorded. The geometric parameters (bond lengths and bond angles), vibrational frequencies, Infrared intensities of the title molecule in the ground state were calculated using density functional B3LYP and M06-2X methods with the 6-311++G(d,p) basis set for the first time. The optimized geometric parameters and theoretical vibrational frequencies were found to be in good agreement with the corresponding experimental data, and with the results found in the literature. The vibrational frequencies were assigned based on the potential energy distribution using the VEDA 4 program. The dimeric form of 5-hydroxymethyluracil molecule was also simulated to evaluate the effect of intermolecular hydrogen bonding on its vibrational frequencies. It was observed that the Nsbnd H stretching modes shifted to lower frequencies, while its in-plane and out-of-plane bending modes shifted to higher frequencies due to the intermolecular Nsbnd H⋯O hydrogen bond. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies and diagrams were presented.

  6. Bond lifetime and diffusion coefficient in colloids with short-range interactions.

    PubMed

    Ndong Mintsa, E; Germain, Ph; Amokrane, S

    2015-03-01

    We use molecular dynamics simulations to study the influence of short-range structures in the interaction potential between hard-sphere-like colloidal particles. Starting from model potentials and effective potentials in binary mixtures computed from the Ornstein-Zernike equations, we investigate the influence of the range and strength of a possible tail beyond the usual core repulsion or the presence of repulsive barriers. The diffusion coefficient and mean "bond" lifetimes are used as indicators of the effect of this structure on the dynamics. The existence of correlations between the variations of these quantities with the physical parameters is discussed to assess the interpretation of dynamics slowing down in terms of long-lived bonds. We also discuss the question of a universal behaviour determined by the second virial coefficient B ((2)) and the interplay of attraction and repulsion. While the diffusion coefficient follows the B ((2)) law for purely attractive tails, this is no longer true in the presence of repulsive barriers. Furthermore, the bond lifetime shows a dependence on the physical parameters that differs from that of the diffusion coefficient. This raises the question of the precise role of bonds on the dynamics slowing down in colloidal gels.

  7. Predictive Models for the Free Energy of Hydrogen Bonded Complexes with Single and Cooperative Hydrogen Bonds.

    PubMed

    Glavatskikh, Marta; Madzhidov, Timur; Solov'ev, Vitaly; Marcou, Gilles; Horvath, Dragos; Varnek, Alexandre

    2016-12-01

    In this work, we report QSPR modeling of the free energy ΔG of 1 : 1 hydrogen bond complexes of different H-bond acceptors and donors. The modeling was performed on a large and structurally diverse set of 3373 complexes featuring a single hydrogen bond, for which ΔG was measured at 298 K in CCl 4 . The models were prepared using Support Vector Machine and Multiple Linear Regression, with ISIDA fragment descriptors. The marked atoms strategy was applied at fragmentation stage, in order to capture the location of H-bond donor and acceptor centers. Different strategies of model validation have been suggested, including the targeted omission of individual H-bond acceptors and donors from the training set, in order to check whether the predictive ability of the model is not limited to the interpolation of H-bond strength between two already encountered partners. Successfully cross-validating individual models were combined into a consensus model, and challenged to predict external test sets of 629 and 12 complexes, in which donor and acceptor formed single and cooperative H-bonds, respectively. In all cases, SVM models outperform MLR. The SVM consensus model performs well both in 3-fold cross-validation (RMSE=1.50 kJ/mol), and on the external test sets containing complexes with single (RMSE=3.20 kJ/mol) and cooperative H-bonds (RMSE=1.63 kJ/mol). © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Searching the Force Field Electrostatic Multipole Parameter Space.

    PubMed

    Jakobsen, Sofie; Jensen, Frank

    2016-04-12

    We show by tensor decomposition analyses that the molecular electrostatic potential for amino acid peptide models has an effective rank less than twice the number of atoms. This rank indicates the number of parameters that can be derived from the electrostatic potential in a statistically significant way. Using this as a guideline, we investigate different strategies for deriving a reduced set of atomic charges, dipoles, and quadrupoles capable of reproducing the reference electrostatic potential with a low error. A full combinatorial search of selected parameter subspaces for N-methylacetamide and a cysteine peptide model indicates that there are many different parameter sets capable of providing errors close to that of the global minimum. Among the different reduced multipole parameter sets that have low errors, there is consensus that atoms involved in π-bonding require higher order multipole moments. The possible correlation between multipole parameters is investigated by exhaustive searches of combinations of up to four parameters distributed in all possible ways on all possible atomic sites. These analyses show that there is no advantage in considering combinations of multipoles compared to a simple approach where the importance of each multipole moment is evaluated sequentially. When combined with possible weighting factors related to the computational efficiency of each type of multipole moment, this may provide a systematic strategy for determining a computational efficient representation of the electrostatic component in force field calculations.

  9. Nondestructive Evaluation and Health Monitoring of Adhesively Bonded Composite Structures

    NASA Astrophysics Data System (ADS)

    Roth, William Walker

    As the growth of fiber reinforced composite materials continues in many industries, structural designers will have to look to new methods of joining components. In order to take full advantage of composite materials, such as increased stiffness, decreased weight, tailored material properties and increased fatigue life, mechanical fasteners will need to be replaced by adhesive bonding or welding, when possible. Mechanical fasteners require the drilling of holes, which damages the laminate and becomes the source of further fatigue damage. Also, an increase in laminate thickness or inclusion of other features is required for the material to withstand the bearing stress needed to preload fasteners. Adhesives transfer the load over a large area, do not require additional machining operations, provide increased stiffness through the joint, provide corrosion protection when joining dissimilar materials, and provide vibrational damping. Additionally, the repair of composite structures, which will become a major concern in the near future, will require the use of adhesive bonding for thermoset composites. In order for adhesives to be used to join primary aerospace structures they must meet certification requirements, which includes proof that the joint can withstand the required ultimate load without structural failure. For most components, nondestructive inspection is used to find critical flaws, which is combined with fracture mechanics to ensure that the structure can meet the requirements. This process works for some of the adhesive flaws, but other critical defects are not easily detected. Weak interface bonding is particularly challenging. This type of defect results in an interphase zone that may be only a dozen microns in thickness. Traditional bulk wave ultrasonic techniques cannot easily distinguish this zone from the interface between adherend and adhesive. This work considers two approaches to help solve this problem. Guided elastic wave propagation along laminate structures is highly dependent on the boundary conditions at the surface and between plies, especially at high frequencies. This work investigates how interfacial defects can alter the propagation of guided waves through bonded fiber reinforced composite materials. As well as how this information can be used to determine the interface properties and correlate the results with fracture parameters. The second approach investigates how structural health monitoring can be used to detect the growth of disbonds from service loads. A mode selection technique is proposed for selecting frequency ranges for electromechanical impedance spectroscopy.

  10. Molecules in high spin states: The millimeter and submillimeter spectrum of the MnS radical (X 6Sigma+)

    NASA Astrophysics Data System (ADS)

    Thompsen, J. M.; Brewster, M. A.; Ziurys, L. M.

    2002-06-01

    The pure rotational spectrum of MnS (v=0) in its X 6Sigma+ ground state has been recorded using millimeter and submillimeter direct absorption techniques in the range 160-502 GHz. MnS was synthesized in the gas phase by the reaction of manganese vapor and CS2 in a high-temperature Broida-type oven. Fourteen rotational transitions for this radical were measured, each consisting of six fine-structure components. In the lower rotational lines, hyperfine structure, arising from the 55Mn nuclear spin of 5/2, was also resolved in each spin component. These data were analyzed using a case (b) Hamiltonian, and rotational, fine structure, and hyperfine parameters determined for MnS. In the analysis, the third-order correction to the spin-rotation interaction, gammaS, and the fourth-order spin-spin coupling term, theta, were found necessary for an acceptable fit. The hyperfine constants determined suggest that MnS is more covalent than MnO, but more ionic than MnH. There additionally appears to be considerable sdsigma hybridization in molecular orbital formation for this molecule. Bond lengths of the 3d transition-metal sulfides were compared as well, and those of MnS, CuS, and TiS do not follow the trend of their oxide analogs. This result indicates that there are significant bonding differences between transition-metal sulfides and transition-metal oxides.

  11. Computational and spectral studies of 6-phenylazo-3-(p-tolyl)-2H-chromen-2-one

    NASA Astrophysics Data System (ADS)

    Manimekalai, A.; Vijayalakshmi, N.

    2015-02-01

    6-Phenylazo-3-(p-tolyl)-2H-chromen-2-one 4 was prepared and characterized by IR, 1H, and 13C NMR spectral studies. The optimized structure of the chromen-2-one 4 was investigated by the Gaussian 03 B3LYP density functional method calculations at 6-31G(d,p) basis set. The gauge-independent atomic orbital (GIAO) 13C and 1H chemical shift calculations for the synthesized chromen-2-one in CDCl3 were also made by the same method. The computed IR frequencies of the chromen-2-one and the corresponding vibrational assignments were analyzed by means of potential energy distribution (PED%) calculation using vibrational energy distribution analysis (VEDA) program. The first order hyperpolarizability (βtot), polarizability (α) and dipole moment (μ) were calculated using 6-311G(d,p) basis set and the nonlinear optical (NLO) properties are also addressed theoretically. Stability of the chromen-2-one 4 molecule has been analyzed by calculating the intramolecular charge transfer using natural bond order (NBO) analysis. The molecular electrostatic potentials, HOMO-LUMO energy gap and geometrical parameters were also computed. Topological properties of the electronic charge density in chromen-2-one 4 were analyzed employing the Bader's Atoms in Molecule (AIM) theory which indicated the presence of intramolecular hydrogen bond in the molecule.

  12. Computational and spectral studies of 6-phenylazo-3-(p-tolyl)-2H-chromen-2-one.

    PubMed

    Manimekalai, A; Vijayalakshmi, N

    2015-02-05

    6-Phenylazo-3-(p-tolyl)-2H-chromen-2-one 4 was prepared and characterized by IR, (1)H, and (13)C NMR spectral studies. The optimized structure of the chromen-2-one 4 was investigated by the Gaussian 03 B3LYP density functional method calculations at 6-31G(d,p) basis set. The gauge-independent atomic orbital (GIAO) (13)C and (1)H chemical shift calculations for the synthesized chromen-2-one in CDCl3 were also made by the same method. The computed IR frequencies of the chromen-2-one and the corresponding vibrational assignments were analyzed by means of potential energy distribution (PED%) calculation using vibrational energy distribution analysis (VEDA) program. The first order hyperpolarizability (βtot), polarizability (α) and dipole moment (μ) were calculated using 6-311G(d,p) basis set and the nonlinear optical (NLO) properties are also addressed theoretically. Stability of the chromen-2-one 4 molecule has been analyzed by calculating the intramolecular charge transfer using natural bond order (NBO) analysis. The molecular electrostatic potentials, HOMO-LUMO energy gap and geometrical parameters were also computed. Topological properties of the electronic charge density in chromen-2-one 4 were analyzed employing the Bader's Atoms in Molecule (AIM) theory which indicated the presence of intramolecular hydrogen bond in the molecule. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. FT-IR, FT-Raman spectra and ab initio HF and DFT calculations of 7-chloro-5-(2-chlorophenyl)-3-hydroxy-2,3-dihydro-1H-1,4-benzodiazepin-2-one.

    PubMed

    Muthu, S; Prasath, M; Paulraj, E Isac; Balaji, R Arun

    2014-01-01

    The Fourier Transform infrared and Fourier Transform Raman spectra of 7-chloro-5 (2-chlorophenyl)-3-hydroxy-2,3-dihydro-1H-1,4-benzodiazepin-2-one (7C3D4B) were recorded in the regions 4000-400 and 4000-100 cm(-1), respectively. The appropriate theoretical spectrograms for the IR and Raman spectra of the title molecule were also constructed. The calculated results show that the predicted geometry can well reproduce the structural parameters. Predicted vibrational frequencies have been assigned and compared with experimental IR spectra and they supported each other. Stability of the molecule arising from hyperconjugative interactions, charge delocalization and intramolecular hydrogen bond-like weak interaction has been analyzed using natural bond orbital (NBO) analysis by using B3LYP/6-31G(d,p) method. The results show that electron density (ED) in the σ* and π* antibonding orbitals and second-order delocalization energies E(2) confirm the occurrence of intramolecular charge transfer (ICT) within the molecule. The first order hyperpolarizability (βtotal) of this molecular system and related properties (β, μ, and Δα) are calculated using HF/6-31G(d,p) and B3LYP/6-31G(d,p) methods based on the finite-field approach. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Structural characterization of the packings of granular regular polygons.

    PubMed

    Wang, Chuncheng; Dong, Kejun; Yu, Aibing

    2015-12-01

    By using a recently developed method for discrete modeling of nonspherical particles, we simulate the random packings of granular regular polygons with three to 11 edges under gravity. The effects of shape and friction on the packing structures are investigated by various structural parameters, including packing fraction, the radial distribution function, coordination number, Voronoi tessellation, and bond-orientational order. We find that packing fraction is generally higher for geometrically nonfrustrated regular polygons, and can be increased by the increase of edge number and decrease of friction. The changes of packing fraction are linked with those of the microstructures, such as the variations of the translational and orientational orders and local configurations. In particular, the free areas of Voronoi tessellations (which are related to local packing fractions) can be described by log-normal distributions for all polygons. The quantitative analyses establish a clearer picture for the packings of regular polygons.

  15. Reinforcement of dentin in self-etch adhesive technology: a new concept.

    PubMed

    Waidyasekera, Kanchana; Nikaido, Toru; Weerasinghe, Dinesh S; Ichinose, Shizuko; Tagami, Junji

    2009-08-01

    Characterize the ultramorphology and secondary caries inhibition potential of different dentin adhesive systems in order to find a satisfactory explanation resist to recurrent caries. Human premolar dentin was treated with one of the two self-etching adhesive systems, Clearfil SE Bond, Clearfil Protect Bond or an acid-etching adhesive system, Single Bond. The bonded interface was exposed to an artificial demineralizing solution (pH 4.5) for 90 min and then 5% sodium hypochlorite for 20 min. Transmission electron microscopic observation was performed at the adhesive-dentin interface. The width of the reinforced zone was measured and data were analyzed with univariate analysis of variance under general linear model. In order to identify type of crystallites in the reinforced zone selected area electron diffraction was performed. An acid-base resistant zone (ABRZ) was found adjacent to the hybrid layer in the outer lesion front with only Clearfil SE Bond and Clearfil Protect Bond, while Single Bond was devoid of this protective zone. Crystallite arrangement and the ultramorphology were almost similar in the corresponding regions of Clearfil SE Bond and Clearfil Protect Bond. However, thickness of the ABRZ at the mid portion was 1159(+/-41.91)nm in Clearfil protect Bond, which was significantly thicker than that of Clearfil SE Bond (F=514.84, p<0.001). Selected area electron diffraction confirmed the crystallites in the zone as apatite. The self-etching adhesive systems created a new reinforced acid resistant dentin under the hybrid layer. Difference in the thickness of the zone expressed a different potential for demineralization inhibition.

  16. Hydrogen bonding between nitriles and hydrogen halides and the topological properties of molecular charge distributions

    NASA Astrophysics Data System (ADS)

    Boyd, Russell J.; Choi, Sai Cheng

    1986-08-01

    The topological properties of the charge density of the hydrogen-bonded complexes between nitrites and hydrogen chloride correlate linearly with theoretical estimates of the hydrogen-bond energy. At the 6-31G ** level, the hydrogenbond energies range from a low of 10 kJ/mol m NCCN—HC1 to a high of 38 kJ/mol in LiCN—HCl. A linear relationship between the charge density at the hydrogen-bond critical point and the NH internuclear distance of the RCN—HC1 complexes indicates that the generalization of the bond-length-bond-order relationship of CC bonds due to Bader, Tang, Tal and Biegler-König can be extended to intermolecular hydrogen bonding.

  17. 27 CFR 70.281 - Form of bond and security required.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., express or telegraph money order; (v) Secured by corporate bonds or stocks, or by bonds issued by a State... of business or legal residence of the primary obligor is located; (ii) The surety must have property... which the principal place of business or legal residence of the primary obligor is located; (iv) The...

  18. 78 FR 56251 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Order Granting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-12

    ..., Secretary, Commission, from: Dorothy Donohue, Deputy General Counsel--Securities Regulation, Investment... Investment Grade corporate bonds and $1 million (``$1MM'') for Non-Investment Grade corporate bonds \\16... result, the size of a Rule 144A Investment Grade corporate bond transaction in excess of $5MM would be...

  19. Clinical quality is independently associated with favorable bond ratings.

    PubMed

    Haydar, Ziad; Nicewander, David; Convery, Paul; Black, Michael; Ballard, David

    2010-01-01

    The relation between clinical quality and bond rating for nonprofit hospitals has been proposed but never fully studied. We analyzed the relation between bond rating, clinical quality measures (The Joint Commission/Centers for Medicare and Medicaid Services [CMS] core measures), and balance sheet and income statement financial measures of 236 hospitals across the United States that are rated by Moody's Investors Service and that reported clinical quality measures to CMS during the study period. We found a statistically significant relation between higher quality measures and more favorable bond ratings. This association remained significant after controlling for traditional financial parameters.

  20. Parameters governing the corrosion protection efficiency of fusion-bonded epoxy coatings on reinforcing steel.

    DOT National Transportation Integrated Search

    2008-01-01

    The purpose of this study was to investigate various epoxy coating and exposure parameters to determine their effects on the corrosion of reinforcing steel. The parameters investigated were: chloride content at the bar depth, coated bar corroded area...

  1. Geometry- and QTAIM-Based Comparison of Intramolecular Charge-Inverted Hydrogen Bonds, M···(H-Si) "Agostic Bond", and M···(η(2)-SiH) σ Interactions.

    PubMed

    Jabłoński, Mirosław

    2015-11-19

    Using large sets of systems having an intramolecular charge-inverted hydrogen bond (IMCIHB), M···(Ha-Si) "agostic bond" or M···(η(2)-SiH) σ interaction, we have compared both geometric and QTAIM-based topological parameters characterizing all these three types of interactions. It is shown that IMCIHBs can be distinguished from the other relevant interactions by the significantly less elongated Si-H bond. The other geometric parameters are not characteristic because they accept wide ranges of values in systems having either an M···(Ha-Si) "agostic bond" or M···(η(2)-SiH) σ interaction. If QTAIM-based results are investigated, then it is shown that an IMCIHB can be characterized by the position of the BCPH···M that is closer to the metal atom, whereas, quite the contrary, this BCP has been found to be closer to the agostic hydrogen in complexes having either M···(Ha-Si) or M···(η(2)-SiH) interactions. Another difference is in the curvature of the M···H bond path. If the M···H bond path tracing the M···(H-E) (E = Si, C) interaction is curved, then this curvature appears near the agostic hydrogen-a property particularly pronounced in M···(Ha-C) agostic bonds. Moreover, it has also been shown that an IMCIHB can be characterized by lower curvatures and, in general, lower values of the electron density computed at BCPH···Al than at BCPs of either M···(Ha-Si) or M···(η(2)-SiH) interactions. Importantly, IMCIHBs can be distinguished from the other two types of interactions on the basis of values of delocalization index, which are significantly lower for IMCIHBs. Other QTAIM-based parameters have occurred to be not characteristic for IMCIHBs due to wide ranges of their values obtained for M···(Ha-Si) and M···(η(2)-SiH) interactions. It has also been shown that the PBE0 functional gives the best molecular structure in comparison with experimental data.

  2. Non-collinear magnetism with analytic Bond-Order Potentials

    NASA Astrophysics Data System (ADS)

    Ford, Michael E.; Pettifor, D. G.; Drautz, Ralf

    2015-03-01

    The theory of analytic Bond-Order Potentials as applied to non-collinear magnetic structures of transition metals is extended to take into account explicit rotations of Hamiltonian and local moment matrix elements between locally and globally defined spin-coordinate systems. Expressions for the gradients of the energy with respect to the Hamiltonian matrix elements, the interatomic forces and the magnetic torques are derived. The method is applied to simulations of the rotation of magnetic moments in α iron, as well as α and β manganese, based on d-valent orthogonal tight-binding parametrizations of the electronic structure. A new weighted-average terminator is introduced to improve the convergence of the Bond-Order Potential energies and torques with respect to tight-binding reference values, although the general behavior is qualitatively correct for low-moment expansions.

  3. Molecular structure, spectroscopic studies and first-order molecular hyperpolarizabilities of p-amino acetanilide.

    PubMed

    Abraham, Jose P; Sajan, D; Joe, I Hubert; Jayakumar, V S

    2008-11-15

    The infrared absorption, Raman spectra and SERS spectra of p-amino acetanilide have been analyzed with the aid of density functional theory calculations at B3LYP/6-311G(d,p) level. The electric dipole moment (mu) and the first hyperpolarizability (beta) values of the investigated molecule have been computed using ab initio quantum mechanical calculations. The calculation results also show that the synthesized molecule might have microscopic nonlinear optical (NLO) behavior with non-zero values. Computed geometries reveal that the PAA molecule is planar, while secondary amide group is twisted with respect to the phenyl ring is found, upon hydrogen bonding. The hyperconjugation of the C=O group with adjacent C-C bond and donor-acceptor interaction associated with the secondary amide have been investigated using computed geometry. The carbonyl stretching band position is found to be influenced by the tendency of phenyl ring to withdraw nitrogen lone pair, intermolecular hydrogen bonding, conjugation and hyperconjugation. The existence of intramolecular C=O...H hydrogen bonded have been investigated by means of the natural bonding orbital (NBO) analysis. The influence of the decrease of N-H and C=O bond orders and increase of C-N bond orders due to donor-acceptor interaction has been identified in the vibrational spectra. The SERS spectral analysis reveals that the large enhancement of in-plane bending, out of plane bending and ring breathing modes in the surface-enhanced Raman scattering spectrum indicates that the molecule is adsorbed on the silver surface in a 'atleast vertical' configuration, with the ring perpendicular to the silver surface.

  4. Molecular structure, spectroscopic studies and first-order molecular hyperpolarizabilities of p-amino acetanilide

    NASA Astrophysics Data System (ADS)

    Abraham, Jose P.; Sajan, D.; Joe, I. Hubert; Jayakumar, V. S.

    2008-11-01

    The infrared absorption, Raman spectra and SERS spectra of p-amino acetanilide have been analyzed with the aid of density functional theory calculations at B3LYP/6-311G(d,p) level. The electric dipole moment ( μ) and the first hyperpolarizability ( β) values of the investigated molecule have been computed using ab initio quantum mechanical calculations. The calculation results also show that the synthesized molecule might have microscopic nonlinear optical (NLO) behavior with non-zero values. Computed geometries reveal that the PAA molecule is planar, while secondary amide group is twisted with respect to the phenyl ring is found, upon hydrogen bonding. The hyperconjugation of the C dbnd O group with adjacent C-C bond and donor-acceptor interaction associated with the secondary amide have been investigated using computed geometry. The carbonyl stretching band position is found to be influenced by the tendency of phenyl ring to withdraw nitrogen lone pair, intermolecular hydrogen bonding, conjugation and hyperconjugation. The existence of intramolecular C dbnd O⋯H hydrogen bonded have been investigated by means of the natural bonding orbital (NBO) analysis. The influence of the decrease of N-H and C dbnd O bond orders and increase of C-N bond orders due to donor-acceptor interaction has been identified in the vibrational spectra. The SERS spectral analysis reveals that the large enhancement of in-plane bending, out of plane bending and ring breathing modes in the surface-enhanced Raman scattering spectrum indicates that the molecule is adsorbed on the silver surface in a 'atleast vertical' configuration, with the ring perpendicular to the silver surface.

  5. Local structural aspects of metal-metal transition in IrTe2 from x-ray PDF

    NASA Astrophysics Data System (ADS)

    Yu, Runze; Abeykoon, Milinda; Zhou, Haidong; Yin, Weiguo; Bozin, Emil S.

    Evolution of local atomic structure across the metal-metal transition in IrTe2 is explored by pair distribution function (PDF) analysis of x-ray total scattering data over 80 K

  6. Photodegradation of Polyfluorinated Dibenzo-p-Dioxins in Organic Solvents: Experimental and Theoretical Studies.

    PubMed

    Zeng, Xiaolan; Qu, Ruijuan; Feng, Mingbao; Chen, Jing; Wang, Liansheng; Wang, Zunyao

    2016-08-02

    Eighteen polyfluorinated dibenzo-p-dioxins (PFDDs) were synthesized by pyrolysis of fluorophenols. Using a 500 W Xe lamp as the light source, the PFDDs photodegradation kinetics in n-hexane were investigated. The photolysis reactions obeyed the pseudo-first-order rate equation, and higher fluorinated PFDDs tended to photolyze more slowly. Theoretically calculated parameters reflecting the molecular structural properties were used to develop a new model of PFDDs photolysis rates. The results indicated that the substitution pattern for fluorine atoms and the C-O bond length were major factors in the photolysis of PFDDs. We selected octafluorinated dibenzo-p-dioxin (OFDD) as a representative PFDDs to explore the influence of solvent on the photolysis rate of PFDDs, and the results indicated that neither the polarity nor donor hydrogen of organic solvents are independent influencing factors. Mechanistic pathways for the photolysis of OFDD in n-hexane were first studied. The results indicated that photodegradation of OFDD produces octafluorinated dihydroxybiphenyls, octafluorinated phenoxyphenols, and fluorinated phenols. The major pathway for photodegradation of OFDD was C-O bond cleavage. Defluorination reactions did not occur during the photolysis process.

  7. Supercooling of aqueous NaCl and KCl solutions under acoustic levitation.

    PubMed

    Lü, Y J; Wei, B

    2006-10-14

    The supercooling capability of aqueous NaCl and KCl solutions is investigated at containerless state by using acoustic levitation method. The supercooling of water is obviously enhanced by the alkali metal ions and increases linearly with the augmentation of concentrations. Furthermore, the supercooling depends on the nature of ions and is 2-3 K larger for NaCl solution than that for KCl solution in the present concentration range: Molecular dynamics simulations are performed to reveal the intrinsic correlation between supercoolability and microstructure. The translational and orientational order parameters are applied to quantitatively demonstrate the effect of ionic concentration on the hydrogen-bond network and ice melting point. The disrupted hydrogen-bond structure determines essentially the concentration dependence of supercooling. On the other hand, the introduced acoustic pressure suppresses the increase of supercooling by promoting the growth and coalescence of microbubbles, the effective nucleation catalysts, in water. However, the dissolved ions can weaken this effect, and moreover the degree varies with the ion type. This results in the different supercoolability for NaCl and KCl solutions under the acoustic levitation conditions.

  8. Predictive models in hazard assessment of Great Lakes contaminants for fish

    USGS Publications Warehouse

    Passino, Dora R. May

    1986-01-01

    A hazard assessment scheme was developed and applied to predict potential harm to aquatic biota of nearly 500 organic compounds detected by gas chromatography/mass spectrometry (GC/MS) in Great Lakes fish. The frequency of occurrence and estimated concentrations of compounds found in lake trout (Salvelinus namaycush) and walleyes (Stizostedion vitreum vitreum) were compared with available manufacturing and discharge information. Bioconcentration potential of the compounds was estimated from available data or from calculations of quantitative structure-activity relationships (QSAR). Investigators at the National Fisheries Research Center-Great Lakes also measured the acute toxicity (48-h EC50's) of 35 representative compounds to Daphnia pulex and compared the results with acute toxicity values generated by QSAR. The QSAR-derived toxicities for several chemicals underestimated the actual acute toxicity by one or more orders of magnitude. A multiple regression of log EC50 on log water solubility and molecular volume proved to be a useful predictive model. Additional models providing insight into toxicity incorporate solvatochromic parameters that measure dipolarity/polarizability, hydrogen bond acceptor basicity, and hydrogen bond donor acidity of the solute (toxicant).

  9. Comprehensive physicochemical studies of a new hybrid material: 2-Amino-4-methyl-3-nitropyridinium hydrogen oxalate

    NASA Astrophysics Data System (ADS)

    Bryndal, I.; Kucharska, E.; Wandas, M.; Lorenc, J.; Hermanowicz, K.; Mączka, M.; Lis, T.; Marchewka, M.; Hanuza, J.

    2014-01-01

    A new organic-organic salt, 2-amino-4-methyl-3-nitropyridinium hydrogen oxalate (AMNPO), and its deuterium analogue have been synthesized and characterized by means of FT-IR, FT-Raman, DSC and single crystal X-ray studies. The DSC measurements and temperature dependence of the IR and Raman spectra in the range 4-295 K show that it undergoes a reversible phase transition at ∼240 K. At room temperature it crystallizes in noncentrosymmetric space group P21. The unit-cell is built of the 2-amino-4-methyl-3-nitropyridinium cations and oxalate monoanions which are connected via the Nsbnd H⋯O and Osbnd H⋯O hydrogen bonds. The geometrical and hydrogen bond parameters are similar for non-deuterated (at 120 and 293 K) and deuterated compounds (at 90 K). The phase transition is probably a consequence of order-disorder transition inside of hydrogen network. The 6-311G(2d,2p) basis set with B3LYP functional have been used to discuss the structure and vibrational spectra of the studied compound.

  10. Application of the bond valence method in the non-isovalent semiconductor alloy (GaN) 1–x (ZnO) x

    DOE PAGES

    Liu, Jian

    2016-09-29

    This paper studies the bond valence method (BVM) and its application in the non-isovalent semiconductor alloy (GaN) 1-x(ZnO) x. Particular attention is paid to the role of short-range order (SRO). A physical interpretation based on atomic orbital interaction is proposed and examined by density-functional theory (DFT) calculations. Combining BVM with Monte-Carlo simulations and a DFT-based cluster expansion model, bond-length distributions and bond-angle variations are predicted. The correlation between bond valence and bond stiffness is also revealed. Lastly the concept of bond valence is extended into the modelling of an atomistic potential.

  11. Analysis of the geometric parameters of a solitary waves-based harvester to enhance its power output

    NASA Astrophysics Data System (ADS)

    Rizzo, Piervincenzo; Li, Kaiyuan

    2017-07-01

    We present a harvester formed by a metamaterial, an isotropic medium bonded to the metamaterial, and a wafer-type transducer glued to the medium. The harvester conveys the distributed energy of a mechanical oscillator into a focal point where this energy is converted into electricity. The metamaterial is made with an array of granular chains that host the propagation of highly nonlinear solitary waves triggered by the impact of the oscillator. At the interface between the chains and the isotropic solid, part of the acoustic energy refracts into the solid where it triggers the vibration of the solid and coalesces at a point. Here, the transducer converts the focalized stress wave and the waves generated by the reverberation with the edges into electric potential. The effects of the harvester’s geometric parameters on the amount of electrical power that can be harvested are quantified numerically. The results demonstrate that the power output of the harvester increases a few orders of magnitude when the appropriate geometric parameters are selected.

  12. Silver plating ensures reliable diffusion bonding of dissimilar metals

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Dissimilar metals are reliably joined by diffusion bonding when the surfaces are electroplated with silver. The process involves cleaning and etching, anodization, silver striking, and silver plating with a conventional plating bath. It minimizes the formation of detrimental intermetallic phases and provides greater tolerance of processing parameters.

  13. Microscopic structural descriptor of liquid water

    NASA Astrophysics Data System (ADS)

    Shi, Rui; Tanaka, Hajime

    2018-03-01

    The microscopic structure of liquid water has been believed to be the key to the understanding of the unique properties of this extremely important substance. Many structural descriptors have been developed for revealing local structural order in water, but their properties are still not well understood. The essential difficulty comes from structural fluctuations due to thermal noise, which are intrinsic to the liquid state. The most popular and widely used descriptors are the local structure index (LSI) and d5. Recently, Russo and Tanaka [Nat. Commun. 3, 3556 (2014)] introduced a new descriptor ζ which measures the translational order between the first and second shells considering hydrogen bonding (H-bonding) in the first shell. In this work, we compare the performance of these three structural descriptors for a popular water model known as TIP5P water. We show that local structural ordering can be properly captured only by the structural descriptor ζ, but not by the other two descriptors particularly at a high temperature, where thermal noise effects are severe. The key difference of ζ from LSI and d5 is that only ζ considers H-bonding which is crucial to detect high translational and tetrahedral order of not only oxygen but also hydrogen atoms. The importance of H-bonding is very natural, considering the fact that the locally favored structures are stabilized by energy gain due to the formation of four hydrogen bonds between the central water molecule and its neighboring ones in the first shell. Our analysis of the water structure by using ζ strongly supports the two-state model of water: water is a dynamic mixture of locally favored (ordered) and normal-liquid (disordered) structures. This work demonstrates the importance of H-bonding in the characterization of water's structures and provides a useful structural descriptor for water-type tetrahedral liquids to study their structure and dynamics.

  14. Atomic bonding effects in annular dark field scanning transmission electron microscopy. I. Computational predictions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odlyzko, Michael L.; Mkhoyan, K. Andre, E-mail: mkhoyan@umn.edu; Himmetoglu, Burak

    2016-07-15

    Annular dark field scanning transmission electron microscopy (ADF-STEM) image simulations were performed for zone-axis-oriented light-element single crystals, using a multislice method adapted to include charge redistribution due to chemical bonding. Examination of these image simulations alongside calculations of the propagation of the focused electron probe reveal that the evolution of the probe intensity with thickness exhibits significant sensitivity to interatomic charge transfer, accounting for observed thickness-dependent bonding sensitivity of contrast in all ADF-STEM imaging conditions. Because changes in image contrast relative to conventional neutral atom simulations scale directly with the net interatomic charge transfer, the strongest effects are seen inmore » crystals with highly polar bonding, while no effects are seen for nonpolar bonding. Although the bonding dependence of ADF-STEM image contrast varies with detector geometry, imaging parameters, and material temperature, these simulations predict the bonding effects to be experimentally measureable.« less

  15. Surface separation investigation of ultrafast pulsed laser welding

    NASA Astrophysics Data System (ADS)

    Chen, Jianyong; Carter, Richard M.; Thomson, Robert R.; Hand, Duncan P.

    2016-03-01

    Techniques for joining materials, especially optical materials such as glass to structural materials such as metals, or to other optical materials, while maintaining their surface and optical properties are essential for a wide range of industrial applications. Adhesive bonding is commonly used but leads to many issues including optical surface contamination and outgassing. It is possible to generate welds using an ultra-short pulsed laser process, whereby two flat material surfaces are brought into close contact and the laser is focused through the optical material onto the interface. Highly localised melting and rapid resolidification form a strong bond between the two surfaces whilst avoiding significant heating of the surrounding material, which is important for joining materials with different thermal expansion coefficients. Previous reports on ultrafast laser welding have identified a requirement for the surface separation gap to be less than 500nm in order to avoid cracking or ablation at the interface. We have investigated techniques for increasing this gap (to reduce weld fit-up problems), and tested by bonding two surfaces with a weld-controlled gap. These gaps were generated either by a series of etched grooves on the surface of one of the substrates, or by using a cylindrical lens as a substrate. By careful optimisation of parameters such as laser power, process speed and focal position, we were able to demonstrate successful welding with a gap of up to 3μm.

  16. Increased Degree of Unsaturation in the Lipid of Antifungal Cationic Amphiphiles Facilitates Selective Fungal Cell Disruption.

    PubMed

    Steinbuch, Kfir B; Benhamou, Raphael I; Levin, Lotan; Stein, Reuven; Fridman, Micha

    2018-05-11

    Antimicrobial cationic amphiphiles derived from aminoglycosides act through cell membrane permeabilization but have limited selectivity for microbial cell membranes. Herein, we report that an increased degree of unsaturation in the fatty acid segment of antifungal cationic amphiphiles derived from the aminoglycoside tobramycin significantly reduced toxicity to mammalian cells. A collection of tobramycin-derived cationic amphiphiles substituted with C 18 lipid chains varying in degree of unsaturation and double bond configuration were synthesized. All had potent activity against a panel of important fungal pathogens including strains with resistance to a variety of antifungal drugs. The tobramycin-derived cationic amphiphile substituted with linolenic acid with three cis double bonds (compound 6) was up to an order of magnitude less toxic to mammalian cells than cationic amphiphiles composed of lipids with a lower degree of unsaturation and than the fungal membrane disrupting drug amphotericin B. Compound 6 was 12-fold more selective (red blood cell hemolysis relative to antifungal activity) than compound 1, the derivative with a fully saturated lipid chain. Notably, compound 6 disrupted the membranes of fungal cells without affecting the viability of cocultured mammalian cells. This study demonstrates that the degree of unsaturation and the configuration of the double bond in lipids of cationic amphiphiles are important parameters that, if optimized, result in compounds with broad spectrum and potent antifungal activity as well as reduced toxicity toward mammalian cells.

  17. Experimental Raman and IR spectral and theoretical studies of vibrational spectrum and molecular structure of Pantothenic acid (vitamin B5)

    NASA Astrophysics Data System (ADS)

    Srivastava, Mayuri; Singh, N. P.; Yadav, R. A.

    2014-08-01

    Vibrational spectrum of Pantothenic acid has been investigated using experimental IR and Raman spectroscopies and density functional theory methods available with the Gaussian 09 software. Vibrational assignments of the observed IR and Raman bands have been proposed in light of the results obtained from computations. In order to assign the observed IR and Raman frequencies the potential energy distributions (PEDs) have also been computed using GAR2PED software. Optimized geometrical parameters suggest that the overall symmetry of the molecule is C1. The molecule is found to possess eight conformations. Conformational analysis was carried out to obtain the most stable configuration of the molecule. In the present paper the vibrational features of the lowest energy conformer C-I have been studied. The two methyl groups have slightly distorted symmetries from C3V. The acidic Osbnd H bond is found to be the smallest one. To investigate molecular stability and bond strength we have used natural bond orbital analysis (NBO). Charge transfer occurs in the molecule have been shown by the calculated highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) energies. The mapping of electron density iso-surface with electrostatic potential (ESP), has been carried out to get the information about the size, shape, charge density distribution and site of chemical reactivity of the molecule.

  18. Critical and subcritical damage monitoring of bonded composite repairs using innovative non-destructive techniques

    NASA Astrophysics Data System (ADS)

    Grammatikos, S. A.; Kordatos, E. Z.; Aggelis, D. G.; Matikas, T. E.; Paipetis, A. S.

    2012-04-01

    Infrared Thermography (IrT) has been shown to be capable of detecting and monitoring service induced damage of repair composite structures. Full-field imaging, along with portability are the primary benefits of the thermographic technique. On-line lock-in thermography has been reported to successfully monitor damage propagation or/and stress concentration in composite coupons, as mechanical stresses in structures induce heat concentration phenomena around flaws. During mechanical fatigue, cyclic loading plays the role of the heating source and this allows for critical and subcritical damage identification and monitoring using thermography. The Electrical Potential Change Technique (EPCT) is a new method for damage identification and monitoring during loading. The measurement of electrical potential changes at specific points of Carbon Fiber Reinforced Polymers (CFRPs) under load are reported to enable the monitoring of strain or/and damage accumulation. Along with the aforementioned techniques Finally, Acoustic Emission (AE) method is well known to provide information about the location and type of damage. Damage accumulation due to cyclic loading imposes differentiation of certain parameters of AE like duration and energy. Within the scope of this study, infrared thermography is employed along with AE and EPCT methods in order to assess the integrity of bonded repair patches on composite substrates and to monitor critical and subcritical damage induced by the mechanical loading. The combined methodologies were effective in identifying damage initiation and propagation of bonded composite repairs.

  19. Estimating enthalpy of vaporization from vapor pressure using Trouton's rule.

    PubMed

    MacLeod, Matthew; Scheringer, Martin; Hungerbühler, Konrad

    2007-04-15

    The enthalpy of vaporization of liquids and subcooled liquids at 298 K (delta H(VAP)) is an important parameter in environmental fate assessments that consider spatial and temporal variability in environmental conditions. It has been shown that delta H(VAP)P for non-hydrogen-bonding substances can be estimated from vapor pressure at 298 K (P(L)) using an empirically derived linear relationship. Here, we demonstrate that the relationship between delta H(VAP)and PL is consistent with Trouton's rule and the ClausiusClapeyron equation under the assumption that delta H(VAP) is linearly dependent on temperature between 298 K and the boiling point temperature. Our interpretation based on Trouton's rule substantiates the empirical relationship between delta H(VAP) degree and P(L) degrees for non-hydrogen-bonding chemicals with subcooled liquid vapor pressures ranging over 15 orders of magnitude. We apply the relationship between delta H(VAP) degrees and P(L) degrees to evaluate data reported in literature reviews for several important classes of semivolatile environmental contaminants, including polycyclic aromatic hydrocarbons, chlorobenzenes, polychlorinated biphenyls and polychlorinated dibenzo-dioxins and -furans and illustrate the temperature dependence of results from a multimedia model presented as a partitioning map. The uncertainty associated with estimating delta H(VAP)degrees from P(L) degrees using this relationship is acceptable for most environmental fate modeling of non-hydrogen-bonding semivolatile organic chemicals.

  20. Plaquette order in a dimerized frustrated spin ladder

    NASA Astrophysics Data System (ADS)

    Shlagman, Ofer; Shimshoni, Efrat

    2014-11-01

    We study the effect of dimerization (due to, e.g., spin-Peierls instability) on the phase diagram of a frustrated antiferromagnetic spin-1/2 ladder, with weak transverse and diagonal rung coupling. Our analysis focuses on a one-dimensional version of the model (i.e., a single two-leg ladder) where we consider two forms of dimerization on the legs: columnar dimers (CDs) and staggered dimers (SDs). We examine in particular the regime of parameters (corresponding to an intermediate X X Z anisotropy) in which the leg dimerization and the rung coupling terms are equally relevant. In both the CD and SD cases, we find that the effective field theory describing the system is a self-dual sine-Gordon model, which favors ordering and the opening of a gap to excitations. The order parameter, which reflects the interplay between the leg and rung dimerization interactions, represents a crystal of 4-spin plaquettes on which longitudinal and transverse dimers are in a coherent superposition. Depending on the leg dimerization mode, these plaquettes are closed or open, however both types spontaneously break reflection symmetry across the ladder. The closed plaquettes are stable, while the open plaquette order is relatively fragile and the corresponding gap may be tuned to zero under extreme conditions. We further find that a first-order transition occurs from the plaquette order to a valence bond crystal (VBC) of dimers on the legs. This suggests that in a higher-dimensional version of this system, this variety of distinct VBC states with comparable energies leads to the formation of domains. Effectively one-dimensional gapless spinon modes on domain boundaries may account for the experimental observation of spin-liquid behavior in a physical realization of the model.

  1. Theoretical investigations of the local distortion and spectral properties for VO2+ in SiO2 Glass

    NASA Astrophysics Data System (ADS)

    Li, Mu-Neng; Zhang, Zhi-Hong; Wu, Shao-Yi

    2017-11-01

    The local distortions and the spin Hamiltonian parameters g factors g∥, g⊥ and the hyperfine structure constants A∥ and A⊥ for isolated vanadyl ions VO2+ doped in SiO2 glass at 700°C are theoretically investigated from the perturbation formulas of these parameters for a 3d1 ion in tetragonally compressed octahedra. In these formulas, the relationships between local structure of VO2+ ions center and the tetragonal crystal field parameters are established. As a result, the distortion of the ligand octahedron is attributed to the strong axial crystal-fields associated with the short V4+-O2- bond due to the strong V=O bonding in the silica matrix. The theoretical spin Hamiltonian parameters obtained in this work show reasonable agreement with the experimental data.

  2. Structuring of composite hydrogel bioadhesives and its effect on properties and bonding mechanism.

    PubMed

    Pinkas, Oded; Goder, Daniella; Noyvirt, Roni; Peleg, Sivan; Kahlon, Maayan; Zilberman, Meital

    2017-03-15

    Bioadhesives are polymeric hydrogels that can adhere to a tissue after crosslinking and are an essential element in nearly all surgeries worldwide. Several bioadhesives are commercially available. However, none of them are ideal. The main limitation of current tissue adhesives is the tradeoff between biocompatibility and mechanical strength, especially in wet hemorrhagic environments. Our novel bioadhesives are based on the natural polymers gelatin (coldwater fish) and alginate, crosslinked by carbodiimide (EDC). Two types of hemostatic agents with a layered silicate structure, montmorillonite (MMT) and kaolin, were loaded in order to improve the sealing ability in a hemorrhagic environment. The effect of the adhesive's components on its mechanical strength was studied by three different methods - burst strength, lap shear and compression. The viscosity, gelation time and structural features of the adhesive were also studied. A qualitative model that describes the effect of the bioadhesive's parameters on the cohesive and adhesive strength was developed. A formulation based on 400mg/mL gelatin, 10mg/mL alginate and 20mg/mL EDC was found as optimal, enabling a burst strength of 387mmHg. Incorporation of kaolin increased the burst strength by 25% due to microcomposite structuring, whereas MMT increased the burst strength by 50% although loaded in a smaller concentration, due to nano-structuring effects. This research clearly shows that the incorporation of kaolin and MMT in gelatin-alginate surgical sealants is a very promising novel approach for improving the bonding strength and physical properties of surgical sealants for use in hemorrhagic environments. The current manuscript focuses on novel bioadhesives, based on natural polymers and loaded with hemostatic agents with a layered silicate structure, in order to improve the sealing ability in hemorrhagic environment. Such composite bioadhesives have not been developed and studied before. The effect of the adhesive's components on its mechanical strength was studied by three different methods, as well as the physical properties and structural features. Thorough understanding of these unique biomaterials resulted in a qualitative model which describes the effect of the bioadhesive's parameters on the cohesive and adhesive strength. Thus, structure-property-function relationships are presented. Structuring of the composite bioadhesives and its effect of the properties and bonding mechanism, are expected to be of high interest to Acta readership. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Comparative efficacy of Er,Cr:YSGG and Er:YAG lasers for etching of composite for orthodontic bracket bonding.

    PubMed

    Mirhashemi, Amir Hossein; Chiniforush, Nasim; Sharifi, Nastaran; Hosseini, Amir Mehdi

    2018-05-01

    Several techniques have been proposed to obtain a durable bond, and the efficacy of these techniques is assessed by measuring parameters such as bond strength. Laser has provided a bond strength as high as that of acid etching in vitro and has simpler use with shorter clinical time compared to acid etching. This study aimed to compare the efficacy of Er:YAG and Er,Cr:YSGG lasers for etching and bonding of composite to orthodontic brackets. No previous study has evaluated the effect of these particular types of laser. A total of 70 composite blocks were randomly divided into five groups (n = 14): group 1, etching with phosphoric acid for 20 s; group 2, Er:YAG laser irradiation with 2 W power for 10 s; group 3, Er:YAG laser with 3 W power for 10 s; group 4, Er,Cr:YSGG laser with 2 W power for 10 s; group 5, Er,Cr:YSGG laser with 3 W power for 10 s. Metal brackets were then bonded to composites, and after 5000 thermal cycles, they were subjected to shear bond strength test in a universal testing machine after 24 h of water storage. One sample of each group was evaluated under a scanning electron microscope (SEM) to assess changes in composite surface after etching. The adhesive remnant index (ARI) was calculated under a stereomicroscope. Data were statistically analyzed. The mean and standard deviation of shear bond strength were 18.65 ± 3.36, 19.68 ± 5.34, 21.31 ± 4.03, 17.38 ± 6.94, and 16.45 ± 4.26 MPa in groups 1-5, respectively. The ARI scores showed that the bond failure mode in all groups was mainly mixed. The groups were not significantly different in terms of shear bond strength. Er:YAG and Er,Cr:YSGG lasers with the mentioned parameters yield optimal shear bond strength and can be used as an alternative to acid etching for bracket bond to composite.

  4. Taming Radical Pairs in Nanocrystalline Ketones: Photochemical Syn-thesis of Compounds with Vicinal Stereogenic All-Carbon Quaternary Centers.

    PubMed

    Dotson, Jordan J; Perez-Estrada, Salvador; Garcia-Garibay, Miguel A

    2018-05-29

    Here we describe the use of crystalline ketones to control the fate of the radical pair intermediates generated in the Norrish type I photodecarbonylation reaction to render it a powerful tool in the challenging synthesis of sterically congested carbon-carbon bonds. This methodology makes the synthetically more accessible hexasusbtituted ketones as ideal synthons for the construction of adjacent, all-carbon substituted, stereogenic quaternary stereocenters. We describe here the structural and thermochemical parameters required of the starting ketone in order to react in the solid state. Finally, the scope and scalability of the reaction and its application in the total synthesis of two natural products is described.

  5. Structure-activity correlations for organophosphorus ester anticholinesterases. Part 2: CNDO/2 calculations applied to ester hydrolysis rates

    NASA Technical Reports Server (NTRS)

    Johnson, H.; Kenley, R. A.; Rynard, C.; Golub, M. A.

    1984-01-01

    Quantitative structure-activity relationships are presented for the hydrolysis of organophosphorus esters, RR'P(O)X, where R and R' are alkyl and/or alkoxy groups and X is fluorine, chlorine or a phenoxy group. CNDO/2 calculations provide values for molecular parameters that correlate with alkaline hydrolysis rates. For each subset of esters with the same leaving group, X, the CNDO-derived net atomic charge at the central phosphorus atom correlates well with the alkaline hydrolysis rate constants. For the whole set of esters with different leaving groups, equations are derived that relate charge, orbital energy and bond order to the hydrolysis rate constants.

  6. Effect of Ion Binding in Palmitoyl-Oleoyl Phosphatidylserine Monolayers

    NASA Astrophysics Data System (ADS)

    Eckler, Matthew; Matysiak, Silvina

    2013-03-01

    Molecular dynamics simulations of palmitoyl-oleoyl phosphatidylserine (POPS) monolayers at the air-water interface were performed with different ionic strengths with the aim of determining the specific organization and dynamics of counterion binding events. Na + ions penetrated the monolayers into both the ester carbonyl and carboxylate regions of the phospholipids. The binding events increase with the addition of salt. Differences in lipid order parameter, headgroup orientation, and prevalence of inter- and intramolecular hydrogen bonding events between the amine group of the lipid and oxygen groups are observed depending on whether the Na + is binding near the carboxylate or ester region of the lipid. The observed changes are explained in terms of the salting-out effect.

  7. Structure and Electronic Properties of Nano-complex CCl4…Cr(AcacCl)3 on Evidence Derived from Vibrational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Slabzhennikov, S. N.; Kuarton, L. A.; Ryabchenko, O. B.

    In order to specify influence of intermolecular interaction on IR spectrum of interacting species, an investigation of a process CCl4 + Cr(AcacCl)3 → CCl4…Cr(AcacCl)3 has been performed by means of Hartree-Fock-Roothaan method in MIDI basis set with p- and d- polarization functions. An estimation of intermolecular interaction in geometrical parameters, electron density function both between interacting particles and inside themselves, frequencies and intensities of normal modes has been carried out. Chemical bonds with the most significant shifts of characteristics under formation of nano-complex CCl4…Cr(AcacCl)3 have been noted.

  8. NMR Analysis of Amide Hydrogen Exchange Rates in a Pentapeptide-Repeat Protein from A. thaliana.

    PubMed

    Xu, Shenyuan; Ni, Shuisong; Kennedy, Michael A

    2017-05-23

    At2g44920 from Arabidopsis thaliana is a pentapeptide-repeat protein (PRP) composed of 25 repeats capped by N- and C-terminal α-helices. PRP structures are dominated by four-sided right-handed β-helices typically consisting of mixtures of type II and type IV β-turns. PRPs adopt repeated five-residue (Rfr) folds with an Rfr consensus sequence (STAV)(D/N)(L/F)(S/T/R)(X). Unlike other PRPs, At2g44920 consists exclusively of type II β-turns. At2g44920 is predicted to be located in the thylakoid lumen although its biochemical function remains unknown. Given its unusual structure, we investigated the biophysical properties of At2g44920 as a representative of the β-helix family to determine if it had exceptional global stability, backbone dynamics, or amide hydrogen exchange rates. Circular dichroism measurements yielded a melting point of 62.8°C, indicating unexceptional global thermal stability. Nuclear spin relaxation measurements indicated that the Rfr-fold core was rigid with order parameters ranging from 0.7 to 0.9. At2g44920 exhibited a striking range of amide hydrogen exchange rates spanning 10 orders of magnitude, with lifetimes ranging from minutes to several months. A weak correlation was found among hydrogen exchange rates, hydrogen bonding energies, and amino acid solvent-accessible areas. Analysis of contributions from fast (approximately picosecond to nanosecond) backbone dynamics to amide hydrogen exchange rates revealed that the average order parameter of amides undergoing fast exchange was significantly smaller compared to those undergoing slow exchange. Importantly, the activation energies for amide hydrogen exchange were found to be generally higher for the slowest exchanging amides in the central Rfr coil and decreased toward the terminal coils. This could be explained by assuming that the concerted motions of two preceding or following coils required for hydrogen bond disruption and amide hydrogen exchange have a higher activation energy compared to that required for displacement of a single coil to facilitate amide hydrogen exchange in either the terminal or penultimate coils. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  9. Hydrolysis of Surfactants Containing Ester Bonds: Modulation of Reaction Kinetics and Important Aspects of Surfactant Self-Assembly

    ERIC Educational Resources Information Center

    Lundberg, Dan; Stjerndahl, Maria

    2011-01-01

    The effects of self-assembly on the hydrolysis kinetics of surfactants that contain ester bonds are discussed. A number of examples on how reaction rates and apparent reaction orders can be modulated by changes in the conditions, including an instance of apparent zero-order kinetics, are presented. Furthermore, it is shown that the examples on…

  10. Effective bond orders from two-step spin–orbit coupling approaches: The I{sub 2}, At{sub 2}, IO{sup +}, and AtO{sup +} case studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maurice, Rémi, E-mail: remi.maurice@subatech.in2p3.fr; Montavon, Gilles; Réal, Florent

    2015-03-07

    The nature of chemical bonds in heavy main-group diatomics is discussed from the viewpoint of effective bond orders, which are computed from spin–orbit wave functions resulting from spin–orbit configuration interaction calculations. The reliability of the relativistic correlated wave functions obtained in such two-step spin–orbit coupling frameworks is assessed by benchmark studies of the spectroscopic constants with respect to either experimental data, or state-of-the-art fully relativistic correlated calculations. The I{sub 2}, At{sub 2}, IO{sup +}, and AtO{sup +} species are considered, and differences and similarities between the astatine and iodine elements are highlighted. In particular, we demonstrate that spin–orbit coupling weakensmore » the covalent character of the bond in At{sub 2} even more than electron correlation, making the consideration of spin–orbit coupling compulsory for discussing chemical bonding in heavy (6p) main group element systems.« less

  11. Damage mechanism of hydroxyl radicals toward adenine—thymine base pair

    NASA Astrophysics Data System (ADS)

    Tan, Rong-Ri; Wang, Dong-Qi; Zhang, Feng-Shou

    2014-02-01

    The adenine—thymine base pair was studied in the presence of hydroxyl radicals in order to probe the hydrogen bond effect. The results show that the hydrogen bonds have little effect on the hydroxylation and dehydrogenation happened at the sites, which are not involved in a hydrogen bond, while at the sites involved in hydrogen bond formation in the base pair, the reaction becomes more difficult, both in view of the free energy barrier and the exothermicity. With a 6-311++G(d,p) level of description, both B3LYP and MP2 methods confirm that the C8 site of isolated adenine has the highest possibility to form covalent bond with the hydroxyl radicals, though with different energetics: B3LYP predicts a barrierless pathway, while MP2 finds a transition state with an energy of 106.1 kJ/mol. For the dehydrogenation reactions, B3LYP method predicts that the free energy barrier increases in the order of HN9 < HN61 < HN62 < H2 < H8.

  12. Geometrical correlations in the nucleosomal DNA conformation and the role of the covalent bonds rigidity

    PubMed Central

    Ghorbani, Maryam; Mohammad-Rafiee, Farshid

    2011-01-01

    We develop a simple elastic model to study the conformation of DNA in the nucleosome core particle. In this model, the changes in the energy of the covalent bonds that connect the base pairs of each strand of the DNA double helix, as well as the lateral displacements and the rotation of adjacent base pairs are considered. We show that because of the rigidity of the covalent bonds in the sugar-phosphate backbones, the base pair parameters are highly correlated, especially, strong twist-roll-slide correlation in the conformation of the nucleosomal DNA is vividly observed in the calculated results. This simple model succeeds to account for the detailed features of the structure of the nucleosomal DNA, particularly, its more important base pair parameters, roll and slide, in good agreement with the experimental results. PMID:20972223

  13. 78 FR 41968 - Self-Regulatory Organizations; The NASDAQ Stock Market LLC; Order Granting Approval of Proposed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-12

    ... Modified by Amendment No. 1 Thereto, Relating to the WisdomTree Global Corporate Bond Fund and the WisdomTree Emerging Markets Corporate Bond Fund July 8, 2013. I. Introduction On May 17, 2013, The NASDAQ...-4 thereunder,\\2\\ a proposed rule change relating to the WisdomTree Global Corporate Bond Fund...

  14. 26 CFR 301.7101-1 - Form of bond and security required.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., bank, express or telegraph money order; (v) Secured by corporate bonds or stocks, or by bonds issued by... legal residence of the primary obligor is located; (ii) He must have property subject to execution of a... or legal residence of the primary obligor is located; (iv) He must agree not to mortgage, or...

  15. Mo(CO)/sub 6/-promoted reductive cleavage of the carbon-sulfur bond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luh, T.Y.; Wong, C.S.

    1985-12-13

    In order to study the reductive cleavage of carbon-sulfur bonds by Mo(CO/sub 6/, various organosulfur compounds are reacted with Mo(CO)/sub 6/ in THF. Results of these experiments demonstrate that benzylic-, aryl-, or ..cap alpha..-acyl-activated carbon-sulfur bonds are reduced by treatment with Mo(CO)/sub 6/. 1 table.

  16. Ab initio EPR parameters for dangling-bond defect complexes in silicon: Effect of Jahn-Teller distortion

    NASA Astrophysics Data System (ADS)

    Pfanner, Gernot; Freysoldt, Christoph; Neugebauer, Jörg; Gerstmann, Uwe

    2012-05-01

    A dangling bond (db) is an important point defect in silicon. It is realized in crystalline silicon by defect complexes of the monovacancy V with impurities. In this work, we present spin-polarized density-functional theory calculations of EPR parameters (g and hyperfine tensors) within the GIPAW formalism for two kinds of db defect complexes. The first class characterizes chemically saturated db systems, where three of the four dangling bonds of the isolated vacancy are saturated by hydrogen (VH3) or hydrogen and oxygen (hydrogen-oxygen complex, VOH). The second kind of db consists of systems with a Jahn-Teller distortion, where the vacancy includes either a substitutional phosphorus atom (the E center, VP) or a single hydrogen atom (VH). For all systems we obtain excellent agreement with available experimental data, and we are therefore able to quantify the effect of the Jahn-Teller distortion on the EPR parameters. Furthermore we study the influence of strain to obtain further insights into the structural and electronic characteristics of the considered defects.

  17. Influence of aluminum oxide film on thermocompression bonding of gold wire to evaporated aluminum film

    NASA Technical Reports Server (NTRS)

    Iwata, S.; Ishizaka, A.; Yamamoto, H.

    1984-01-01

    The influence of Al surface condition on the thermocompression bonding of Au wires to Al electrodes for integrated electric circuits was studied. Au wires were connected to Al electrodes by nail-head bonding after various Al surface treatments. Bonding was evaluated by measuring the wire pull strength and fraction of the number of failures at Au-Al bonds to the total number of failures. Dependence of the fraction on applied load was derived theoretically with a parameter named critical load to take into consideration the differences in Al surface condition. The relation also held explicately for various surface treatments. Characterization of the Al surface was carried out by electron microscopy for chemical analysis.

  18. The effect of diffuse basis functions on valence bond structural weights

    NASA Astrophysics Data System (ADS)

    Galbraith, John Morrison; James, Andrew M.; Nemes, Coleen T.

    2014-03-01

    Structural weights and bond dissociation energies have been determined for H-F, H-X, and F-X molecules (-X = -OH, -NH2, and -CH3) at the valence bond self-consistent field (VBSCF) and breathing orbital valence bond (BOVB) levels of theory with the aug-cc-pVDZ and 6-31++G(d,p) basis sets. At the BOVB level, the aug-cc-pVDZ basis set yields a counterintuitive ordering of ionic structural weights when the initial heavy atom s-type basis functions are included. For H-F, H-OH, and F-X, the ordering follows chemical intuition when these basis functions are not included. These counterintuitive weights are shown to be a result of the diffuse polarisation function on one VB fragment being spatially located, in part, on the other VB fragment. Except in the case of F-CH3, this problem is corrected with the 6-31++G(d,p) basis set. The initial heavy atom s-type functions are shown to make an important contribution to the VB orbitals and bond dissociation energies and, therefore, should not be excluded. It is recommended to not use diffuse basis sets in valence bond calculations unless absolutely necessary. If diffuse basis sets are needed, the 6-31++G(d,p) basis set should be used with caution and the structural weights checked against VBSCF values which have been shown to follow the expected ordering in all cases.

  19. Effect of laser parameters on the microstructure of bonding porcelain layer fused on titanium

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoyuan; Guo, Litong; Liu, Xuemei; Feng, Wei; Li, Baoe; Tao, Xueyu; Qiang, Yinghuai

    2017-09-01

    Bonding porcelain layer was fused on Ti surface by laser cladding process using a 400 W pulse CO2 laser. The specimens were studied by field-emission scanning electron microscopy, X-ray diffraction and bonding tests. During the laser fusion process, the porcelain powders were heated by laser energy and melted on Ti to form a chemical bond with the substrate. When the laser scanning speed decreased, the sintering temperature and the extent of the oxidation of Ti surface increased accordingly. When the laser scanning speed is 12.5 mm/s, the bonding porcelain layers were still incomplete sintered and there were some micro-cracks in the porcelain. When the laser scanning speed decreased to 7.5 mm/s, vitrified bonding porcelain layers with few pores were synthesized on Ti.

  20. Shear horizontal guided wave modes to infer the shear stiffness of adhesive bond layers.

    PubMed

    Le Crom, Bénédicte; Castaings, Michel

    2010-04-01

    This paper presents a non-destructive, ultrasonic technique to evaluate the quality of bonds between substrates. Shear-horizontally polarized (SH) wave modes are investigated to infer the shear stiffness of bonds, which is necessarily linked to the shear resistance that is a critical parameter for bonded structures. Numerical simulations are run for selecting the most appropriate SH wave modes, i.e., with higher sensitivity to the bond than to other components, and experiments are made for generating-detecting pre-selected SH wave modes and for measuring their phase velocities. An inverse problem is finally solved, consisting of the evaluation of the shear stiffness modulus of a bond layer at different curing times between a metallic plate and a composite patch, such assembly being investigated in the context of repair of aeronautical structures.

  1. Fractional viscoelasticity in fractal and non-fractal media: Theory, experimental validation, and uncertainty analysis

    NASA Astrophysics Data System (ADS)

    Mashayekhi, Somayeh; Miles, Paul; Hussaini, M. Yousuff; Oates, William S.

    2018-02-01

    In this paper, fractional and non-fractional viscoelastic models for elastomeric materials are derived and analyzed in comparison to experimental results. The viscoelastic models are derived by expanding thermodynamic balance equations for both fractal and non-fractal media. The order of the fractional time derivative is shown to strongly affect the accuracy of the viscoelastic constitutive predictions. Model validation uses experimental data describing viscoelasticity of the dielectric elastomer Very High Bond (VHB) 4910. Since these materials are known for their broad applications in smart structures, it is important to characterize and accurately predict their behavior across a large range of time scales. Whereas integer order viscoelastic models can yield reasonable agreement with data, the model parameters often lack robustness in prediction at different deformation rates. Alternatively, fractional order models of viscoelasticity provide an alternative framework to more accurately quantify complex rate-dependent behavior. Prior research that has considered fractional order viscoelasticity lacks experimental validation and contains limited links between viscoelastic theory and fractional order derivatives. To address these issues, we use fractional order operators to experimentally validate fractional and non-fractional viscoelastic models in elastomeric solids using Bayesian uncertainty quantification. The fractional order model is found to be advantageous as predictions are significantly more accurate than integer order viscoelastic models for deformation rates spanning four orders of magnitude.

  2. Measuring Two Key Parameters of H3 Color Centers in Diamond

    NASA Technical Reports Server (NTRS)

    Roberts, W. Thomas

    2005-01-01

    A method of measuring two key parameters of H3 color centers in diamond has been created as part of a continuing effort to develop tunable, continuous-wave, visible lasers that would utilize diamond as the lasing medium. (An H3 color center in a diamond crystal lattice comprises two nitrogen atoms substituted for two carbon atoms bonded to a third carbon atom. H3 color centers can be induced artificially; they also occur naturally. If present in sufficient density, they impart a yellow hue.) The method may also be applicable to the corresponding parameters of other candidate lasing media. One of the parameters is the number density of color centers, which is needed for designing an efficient laser. The other parameter is an optical-absorption cross section, which, as explained below, is needed for determining the number density. The present method represents an improvement over prior methods in which optical-absorption measurements have been used to determine absorption cross sections or number densities. Heretofore, in order to determine a number density from such measurements, it has been necessary to know the applicable absorption cross section; alternatively, to determine the absorption cross section from such measurements, it has been necessary to know the number density. If, as in this case, both the number density and the absorption cross section are initially unknown, then it is impossible to determine either parameter in the absence of additional information.

  3. Fabrication of nano-scale Cu bond pads with seal design in 3D integration applications.

    PubMed

    Chen, K N; Tsang, C K; Wu, W W; Lee, S H; Lu, J Q

    2011-04-01

    A method to fabricate nano-scale Cu bond pads for improving bonding quality in 3D integration applications is reported. The effect of Cu bonding quality on inter-level via structural reliability for 3D integration applications is investigated. We developed a Cu nano-scale-height bond pad structure and fabrication process for improved bonding quality by recessing oxides using a combination of SiO2 CMP process and dilute HF wet etching. In addition, in order to achieve improved wafer-level bonding, we introduced a seal design concept that prevents corrosion and provides extra mechanical support. Demonstrations of these concepts and processes provide the feasibility of reliable nano-scale 3D integration applications.

  4. Description of pnicogen bonding with the help of vibrational spectroscopy-The missing link between theory and experiment

    NASA Astrophysics Data System (ADS)

    Setiawan, D.; Kraka, E.; Cremer, D.

    2014-10-01

    The nature of the E⋯E‧ pnicogen bond (E = N, P, As) in dimers such as H2FP⋯PH2F (1) and H3N⋯PHNO2 (2) can be described using vibrational spectroscopy in form of the calculated infrared and depolarized Raman scattering spectra. Utilizing the six calculated intermonomer frequencies, the corresponding local mode E⋯E‧ stretching frequency and force constant are obtained, where the latter provides a unique measure of the E⋯E‧ bond strength. Pnicogen bonding in 1 is relative strong (bond strength order n = 0.151) and covalent whereas pnicogen bonding in 2 is electrostatic (n = 0.047) because of a different bonding mechanism.

  5. Efficient parallelization of analytic bond-order potentials for large-scale atomistic simulations

    NASA Astrophysics Data System (ADS)

    Teijeiro, C.; Hammerschmidt, T.; Drautz, R.; Sutmann, G.

    2016-07-01

    Analytic bond-order potentials (BOPs) provide a way to compute atomistic properties with controllable accuracy. For large-scale computations of heterogeneous compounds at the atomistic level, both the computational efficiency and memory demand of BOP implementations have to be optimized. Since the evaluation of BOPs is a local operation within a finite environment, the parallelization concepts known from short-range interacting particle simulations can be applied to improve the performance of these simulations. In this work, several efficient parallelization methods for BOPs that use three-dimensional domain decomposition schemes are described. The schemes are implemented into the bond-order potential code BOPfox, and their performance is measured in a series of benchmarks. Systems of up to several millions of atoms are simulated on a high performance computing system, and parallel scaling is demonstrated for up to thousands of processors.

  6. Composition dependence of solid-phase epitaxy in silicon-germanium alloys: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Haynes, T. E.; Antonell, M. J.; Lee, C. Archie; Jones, K. S.

    1995-03-01

    The rates of solid-phase epitaxy (SPE) in unstrained Si1-xGex alloys have been measured by time-resolved reflectivity for eight different alloy compositions, including both Si-rich and Ge-rich layers. Amorphous layers 300-400 nm thick were first formed in 8-μm-thick, relaxed, epitaxial Si1-xGex layers (0.02<=x<=0.87) by ion implantation of Si+. For each composition, the measured SPE rates spanned approximately two orders of magnitude. The alloy SPE rates are shown to be related to the regrowth rates of the two pure elements by a simple equation expressed in terms of the composition parameter x and having no adjustable parameters. The form of this equation implies that crystallization occurs by a serial attachment process at the amorphous-crystal interface and that the rate of attachment of each individual atom is determined by the identities of its four nearest neighbors. Such a process is consistent with the dangling-bond model proposed by Spaepen and Turnbull [in Laser-Solid Interactions and Laser Processing, edited by S. D. Ferris, H. J. Leamy, and J. M. Poate, AIP Conf. Proc. No. 50 (AIP, New York, 1979)] if the SPE rate is limited by the migration rate of dangling bonds rather than by their formation rate. Based on this analysis, an interpretation is proposed for the anomalously large activation energies that have been measured for SPE in some Si-rich compositions.

  7. Measuring the relative hydrogen-bonding strengths of alcohols in aprotic organic solvents.

    PubMed

    Tessensohn, Malcolm E; Lee, Melvyn; Hirao, Hajime; Webster, Richard D

    2015-01-12

    Voltammetric experiments with 9,10-anthraquinone and 1,4-benzoquinone performed under controlled moisture conditions indicate that the hydrogen-bond strengths of alcohols in aprotic organic solvents can be differentiated by the electrochemical parameter ΔEp (red) =|Ep (red(1)) -Ep (red(2)) |, which is the potential separation between the two one-electron reduction processes. This electrochemical parameter is inversely related to the strength of the interactions and can be used to differentiate between primary, secondary, tertiary alcohols, and even diols, as it is sensitive to both their steric and electronic properties. The results are highly reproducible across two solvents with substantially different hydrogen-bonding properties (CH3 CN and CH2 Cl2 ) and are supported by density functional theory calculations. This indicates that the numerous solvent-alcohol interactions are less significant than the quinone-alcohol hydrogen-bonding interactions. The utility of ΔEp (red) was illustrated by comparisons between 1) 3,3,3-trifluoro-n-propanol and 1,3-difluoroisopropanol and 2) ethylene glycol and 2,2,2-trifluoroethanol. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Experimental Investigation of the Acoustic Nonlinear Behavior in Granular Polymer Bonded Explosives with Progressive Fatigue Damage

    PubMed Central

    Yang, Zhanfeng; Tian, Yong; Li, Weibin; Zhou, Haiqiang; Zhang, Weibin; Li, Jingming

    2017-01-01

    The measurement of acoustic nonlinear response is known as a promising technique to characterize material micro-damages. In this paper, nonlinear ultrasonic approach is used to characterize the evolution of fatigue induced micro-cracks in polymer bonded explosives. The variations of acoustic nonlinearity with respect to fatigue cycles in the specimens are obtained in this investigation. The present results show a significant increase of acoustic nonlinearity with respect to fatigue cycles. The experimental observation of the correlation between the acoustic nonlinearity and fatigue cycles in carbon/epoxy laminates, verifies that an acoustic nonlinear response can be used to evaluate the progressive fatigue damage in the granular polymer bonded explosives. The sensitivity comparison of nonlinear and linear parameters of ultrasonic waves in the specimens shows that nonlinear acoustic parameters are more promising indicators to fatigue induced micro-damage than linear ones. The feasibility study of the micro-damage assessment of polymer bonded explosives by nonlinear ultrasonic technique in this work can be applied to damage identification, material degradation monitoring, and lifetime prediction of the explosive parts. PMID:28773017

  9. Experimental Investigation of the Acoustic Nonlinear Behavior in Granular Polymer Bonded Explosives with Progressive Fatigue Damage.

    PubMed

    Yang, Zhanfeng; Tian, Yong; Li, Weibin; Zhou, Haiqiang; Zhang, Weibin; Li, Jingming

    2017-06-16

    The measurement of acoustic nonlinear response is known as a promising technique to characterize material micro-damages. In this paper, nonlinear ultrasonic approach is used to characterize the evolution of fatigue induced micro-cracks in polymer bonded explosives. The variations of acoustic nonlinearity with respect to fatigue cycles in the specimens are obtained in this investigation. The present results show a significant increase of acoustic nonlinearity with respect to fatigue cycles. The experimental observation of the correlation between the acoustic nonlinearity and fatigue cycles in carbon/epoxy laminates, verifies that an acoustic nonlinear response can be used to evaluate the progressive fatigue damage in the granular polymer bonded explosives. The sensitivity comparison of nonlinear and linear parameters of ultrasonic waves in the specimens shows that nonlinear acoustic parameters are more promising indicators to fatigue induced micro-damage than linear ones. The feasibility study of the micro-damage assessment of polymer bonded explosives by nonlinear ultrasonic technique in this work can be applied to damage identification, material degradation monitoring, and lifetime prediction of the explosive parts.

  10. Development of a shock wave adhesion test for composite bonds by pulsed laser and mechanical impacts

    NASA Astrophysics Data System (ADS)

    Ecault, R.; Boustie, M.; Touchard, F.; Arrigoni, M.; Berthe, L.

    2014-05-01

    Evaluating the bonding quality of composite material is becoming one of the main challenges faced by aeronautic industries. This work aims to the development of a technique using shock wave, which would enable to quantify the bonding mechanical quality. Laser shock experiments were carried out. This technique enables high tensile stress generation in the thickness of composite bonds. The resulting damage has been quantified using different methods such as confocal microscopy, ultrasound and cross section observation. The discrimination between a correct bond and a weak bond was possible thanks to these experiments. Nevertheless, laser sources are not well adapted for optimization of such a test because of often fixed settings. That is why mechanical impacts on bonded composites were also performed in this work. By changing the thickness of aluminum projectiles, the generated tensile stresses by the shock wave propagation were moved toward the composite/bond interface. The made observations prove that the technique optimization is possible. The key parameters for the development of a bonding test using shock waves have been identified.

  11. Superplastic Forming/Diffusion Bonding Without Interlayer of 5A90 Al-Li Alloy Hollow Double-Layer Structure

    NASA Astrophysics Data System (ADS)

    Jiang, Shaosong; Jia, Yong; Lu, Zhen; Shi, Chengcheng; Zhang, Kaifeng

    2017-09-01

    The hollow double-layer structure of 5A90 Al-Li alloy was fabricated by SPF/DB process in this study. The characteristics and mechanism of 5A90 Al-Li alloy with respect to superplasticity and diffusion bonding were investigated. Tensile tests showed that the optimal elongation of tensile specimens was 243.97% at the temperature of 400 °C and the strain rate of 0.001 s-1. Effect of the surface roughness, bonding temperature and bonding time to determine the microstructure and mechanical properties of diffusion bonding joints was investigated, and the optimum bonding parameters were 540 °C/2.5 h/Ra18. Through the finite element simulation, it could be found that the SPF/DB process of hollow double-layer structure was feasible. The hollow double-layer structure of 5A90 Al-Li alloy was manufactured, showing that the thickness distribution of the bonding area was uniform and the thinnest part was the round corner. The SEM images of diffusion bonding joints showed that sound bonding interfaces were obtained in which no discontinuity existed.

  12. Nanoparticle Superlattice Engineering with DNA

    NASA Astrophysics Data System (ADS)

    Mirkin, Chad

    2012-02-01

    Recent developments in strategies for assembling nanomaterials have allowed us to draw a direct analogy between the assembly of solid state atomic lattices and the construction of nanoparticle superlattices. Herein, we present a set of six design rules for using DNA as a programmable linker to deliberately stabilize nine distinct colloidal crystal structures, with lattice parameters that are tailorable over the 25-150 nm size regime. These rules are analogous to those put forth by Pauling decades ago to explain the relative stability of lattices composed of atoms and small molecules. It is ideal to use DNA as a nanoscale bond to connect nanoparticles to achieve colloidal superlattice structures in this system, since its programmable nature allows for facile control over nanoparticle bond length and strength, and nanoparticle bond selectivity. This assembly method affords simultaneous and independent control over nanoparticle structure, crystallographic symmetry, and lattice parameters with nanometer scale precision. Further, we have developed a phase diagram that predicts the design parameters necessary to achieve a lattice with a given symmetry and lattice parameters a priori. The rules developed in this work present a major advance towards true materials by design, as they effectively separate the identity of a particle core (and thereby its physical properties) from the variables that control its assembly.

  13. Effect of intermolecular hydrogen bonding, vibrational analysis and molecular structure of a biomolecule: 5-Hydroxymethyluracil.

    PubMed

    Çırak, Çağrı; Sert, Yusuf; Ucun, Fatih

    2014-06-05

    In the present work, the experimental and theoretical vibrational spectra of 5-hydroxymethyluracil were investigated. The FT-IR (4000-400cm(-1)) spectrum of the molecule in the solid phase was recorded. The geometric parameters (bond lengths and bond angles), vibrational frequencies, Infrared intensities of the title molecule in the ground state were calculated using density functional B3LYP and M06-2X methods with the 6-311++G(d,p) basis set for the first time. The optimized geometric parameters and theoretical vibrational frequencies were found to be in good agreement with the corresponding experimental data, and with the results found in the literature. The vibrational frequencies were assigned based on the potential energy distribution using the VEDA 4 program. The dimeric form of 5-hydroxymethyluracil molecule was also simulated to evaluate the effect of intermolecular hydrogen bonding on its vibrational frequencies. It was observed that the NH stretching modes shifted to lower frequencies, while its in-plane and out-of-plane bending modes shifted to higher frequencies due to the intermolecular NH⋯O hydrogen bond. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies and diagrams were presented. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Effect of intermolecular hydrogen bonding, vibrational analysis and molecular structure of 4-chlorobenzothioamide

    NASA Astrophysics Data System (ADS)

    Çırak, Çağrı; Sert, Yusuf; Ucun, Fatih

    2013-09-01

    In the present work, the experimental and theoretical vibrational spectra of 4-chlorobenzothioamide were investigated. The FT-IR (400-4000 cm-1) and μ-Raman spectra (100-4000 cm-1) of 4-chlorobenzothioamide in the solid phase were recorded. The geometric parameters (bond lengths and bond angles), vibrational frequencies, Infrared and Raman intensities of the title molecule in the ground state were calculated using ab initio Hartree-Fock and density functional theory (B3LYP) methods with the 6-311++G(d,p) basis set for the first time. The optimized geometric parameters and the theoretical vibrational frequencies were found to be in good agreement with the corresponding experimental data and with the results found in the literature. The vibrational frequencies were assigned based on the potential energy distribution using the VEDA 4 program. The dimeric form of 4-chlorobenzothioamide was also simulated to evaluate the effect of intermolecular hydrogen bonding on the vibrational frequencies. It was observed that the Nsbnd H stretching modes shifted to lower frequencies, while the in-plane and out-of-plane bending modes shifted to higher frequencies due to the intermolecular Nsbnd H⋯S hydrogen bond. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies and diagrams were presented.

  15. Printability Optimization For Fine Pitch Solder Bonding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Sang-Hyun; Lee, Chang-Woo; Yoo, Sehoon

    2011-01-17

    Effect of metal mask and pad design on solder printability was evaluated by DOE in this study. The process parameters were stencil thickness, squeegee angle, squeegee speed, mask separating speed, and pad angle of PCB. The main process parameters for printability were stencil thickness and squeegee angle. The response surface showed that maximum printability of 1005 chip was achieved at the stencil thickness of 0.12 mm while the maximum printability of 0603 and 0402 chip was obtained at the stencil thickness of 0.05 mm. The bonding strength of the MLCC chips was also directly related with the printability.

  16. Kinetics of CH4 and CO2 hydrate dissociation and gas bubble evolution via MD simulation.

    PubMed

    Uddin, M; Coombe, D

    2014-03-20

    Molecular dynamics simulations of gas hydrate dissociation comparing the behavior of CH4 and CO2 hydrates are presented. These simulations were based on a structurally correct theoretical gas hydrate crystal, coexisting with water. The MD system was first initialized and stabilized via a thorough energy minimization, constant volume-temperature ensemble and constant volume-energy ensemble simulations before proceeding to constant pressure-temperature simulations for targeted dissociation pressure and temperature responses. Gas bubble evolution mechanisms are demonstrated as well as key investigative properties such as system volume, density, energy, mean square displacements of the guest molecules, radial distribution functions, H2O order parameter, and statistics of hydrogen bonds. These simulations have established the essential similarities between CH4 and CO2 hydrate dissociation. The limiting behaviors at lower temperature (no dissociation) and higher temperature (complete melting and formation of a gas bubble) have been illustrated for both hydrates. Due to the shift in the known hydrate stability curves between guest molecules caused by the choice of water model as noted by other authors, the intermediate behavior (e.g., 260 K) showed distinct differences however. Also, because of the more hydrogen-bonding capability of CO2 in water, as reflected in its molecular parameters, higher solubility of dissociated CO2 in water was observed with a consequence of a smaller size of gas bubble formation. Additionally, a novel method for analyzing hydrate dissociation based on H-bond breakage has been proposed and used to quantify the dissociation behaviors of both CH4 and CO2 hydrates. Activation energies Ea values from our MD studies were obtained and evaluated against several other published laboratory and MD values. Intrinsic rate constants were estimated and upscaled. A kinetic reaction model consistent with macroscale fitted kinetic models has been proposed to indicate the macroscopic consequences of this analysis.

  17. High pressure structural, elastic and vibrational properties of green energetic oxidizer ammonium dinitramide

    NASA Astrophysics Data System (ADS)

    Yedukondalu, N.; Ghule, Vikas D.; Vaitheeswaran, G.

    2016-08-01

    Ammonium DiNitramide (ADN) is one of the most promising green energetic oxidizers for future rocket propellant formulations. In the present work, we report a detailed theoretical study on structural, elastic, and vibrational properties of the emerging oxidizer under hydrostatic compression using various dispersion correction methods to capture weak intermolecular (van der Waals and hydrogen bonding) interactions. The calculated ground state lattice parameters, axial compressibilities, and equation of state are in good accord with the available experimental results. Strength of intermolecular interactions has been correlated using the calculated compressibility curves and elastic moduli. Apart from this, we also observe discontinuities in the structural parameters and elastic constants as a function of pressure. Pictorial representation and quantification of intermolecular interactions are described by the 3D Hirshfeld surfaces and 2D finger print maps. In addition, the computed infra-red (IR) spectra at ambient pressure reveal that ADN is found to have more hygroscopic nature over Ammonium Perchlorate (AP) due to the presence of strong hydrogen bonding. Pressure dependent IR spectra show blue- and red-shift of bending and stretching frequencies which leads to weakening and strengthening of the hydrogen bonding below and above 5 GPa, respectively. The abrupt changes in the calculated structural, mechanical, and IR spectra suggest that ADN might undergo a first order structural transformation to a high pressure phase around 5-6 GPa. From the predicted detonation properties, ADN is found to have high and low performance characteristics (DCJ = 8.09 km/s and PCJ = 25.54 GPa) when compared with ammonium based energetic oxidizers (DCJ = 6.50 km/s and PCJ = 17.64 GPa for AP, DCJ = 7.28 km/s and PCJ = 18.71 GPa for ammonium nitrate) and well-known secondary explosives for which DCJ = ˜8-10 km/s and PCJ = ˜30-50 GPa, respectively.

  18. Thermochemical Ablation Analysis of the Orion Heatshield

    NASA Technical Reports Server (NTRS)

    Sixel, William

    2015-01-01

    The Orion Multi-Purpose Crew Vehicle will one day carry astronauts to the Moon and beyond, and Orion's heatshield is a critical component in ensuring their safe return to Earth. The Orion heatshield is the structural component responsible for absorbing the intense heating environment caused by re-entry to Earth's atmosphere. The heatshield is primarily composed of Avcoat, an ablative material that is consumed during the re-entry process. Ablation is primarily characterized by two processes: pyrolysis and recession. The decomposition of in-depth virgin material is known as pyrolysis. Recession occurs when the exposed surface of the heatshield reacts with the surrounding flow. The Orion heatshield design was changed from an individually filled Avcoat honeycomb to a molded block Avcoat design. The molded block Avcoat heatshield relies on an adhesive bond to keep it attached to the capsule. In some locations on the heatshield, the integrity of the adhesive bond cannot be verified. For these locations, a mechanical retention device was proposed. Avcoat ablation was modelled in CHAR and the in-depth virgin material temperatures were used in a Thermal Desktop model of the mechanical retention device. The retention device was analyzed and shown to cause a large increase in the maximum bondline temperature. In order to study the impact of individual ablation modelling parameters on the heatshield sizing process, a Monte Carlo simulation of the sizing process was proposed. The simulation will give the sensitivity of the ablation model to each of its input parameters. As part of the Monte Carlo simulation, statistical uncertainties on material properties were required for Avcoat. Several properties were difficult to acquire uncertainties for: the pyrolysis gas enthalpy, non-dimensional mass loss rate (B´c), and Arrhenius equation parameters. Variability in the elemental composition of Avcoat was used as the basis for determining the statistical uncertainty in pyrolysis gas enthalpy and B´c. A MATLAB program was developed to allow for faster, more accurate and automated computation of Arrhenius reaction parameters. These parameters are required for a material model to be used in the CHAR ablation analysis program. This MATLAB program, along with thermogravimetric analysis (TGA) data, was used to generate uncertainties on the Arrhenius parameters for Avcoat. In addition, the TGA fitting program was developed to provide Arrhenius parameters for the ablation model of the gap filler material, RTV silicone.

  19. Structural studies of TiC{sub 1−x}O{sub x} solid solution by Rietveld refinement and first-principles calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Bo, E-mail: youqin5912@yahoo.com.cn; Hou, Na; Huang, Shanyan

    2013-08-15

    The lattice parameters, structural stability and electronic structure of titanium oxycarbides (TiC{sub 1−x}O{sub x}, 0≤x≤1) solid solution were investigated by Rietveld refinement and first-principles calculations. Series of TiC{sub 1−x}O{sub x} were precisely synthesized by sintering process under the vacuum. Rietveld refinement results of XRD patterns show the properties of continuous solid solution in TiC{sub 1−x}O{sub x} over the whole composition range. The lattice parameters vary from 0.4324 nm to 0.4194 nm decreasing with increasing oxygen concentration. Results of first-principles calculations reveal that the disorder C/O structure is stable than the order C/O structure. Further investigations of the vacancy in Ti{submore » 1−Va}(C{sub 1−x}O{sub x}){sub 1−Va} solid solution present that the structure of vacancy segregated in TiO-part is more stable than the disorder C/O structure, which can be ascribed to the Ti–Ti bond across O-vacancy and the charge redistributed around Ti-vacancy via the analysis of the electron density difference plots and PDOS. - Graphical abstract: XRD of series of titanium oxycarbides (TiC{sub 1−x}O{sub x}, 0≤x≤1) solid solution prepared by adjusting the proportion of TiO in the starting material. Highlights: • Titanium oxycarbides were obtained by sintering TiO and TiC under carefully controlled conditions. • Rietveld refinement results show continuous solid solution with FCC structure in TiC{sub 1−x}O{sub x}. • The disorder C/O structure is stable than the order C/O structure. • Introduction of vacancy segregated in TiO-part is more stable than disorder C/O structure. • Ti–Ti bond across O-vacancy and the charge redistributed around Ti-vacancy enhance structural stability.« less

  20. Machine learnt bond order potential to model metal-organic (Co-C) heterostructures.

    PubMed

    Narayanan, Badri; Chan, Henry; Kinaci, Alper; Sen, Fatih G; Gray, Stephen K; Chan, Maria K Y; Sankaranarayanan, Subramanian K R S

    2017-11-30

    A fundamental understanding of the inter-relationships between structure, morphology, atomic scale dynamics, chemistry, and physical properties of mixed metallic-covalent systems is essential to design novel functional materials for applications in flexible nano-electronics, energy storage and catalysis. To achieve such knowledge, it is imperative to develop robust and computationally efficient atomistic models that describe atomic interactions accurately within a single framework. Here, we present a unified Tersoff-Brenner type bond order potential (BOP) for a Co-C system, trained against lattice parameters, cohesive energies, equation of state, and elastic constants of different crystalline phases of cobalt as well as orthorhombic Co 2 C derived from density functional theory (DFT) calculations. The independent BOP parameters are determined using a combination of supervised machine learning (genetic algorithms) and local minimization via the simplex method. Our newly developed BOP accurately describes the structural, thermodynamic, mechanical, and surface properties of both the elemental components as well as the carbide phases, in excellent accordance with DFT calculations and experiments. Using our machine-learnt BOP potential, we performed large-scale molecular dynamics simulations to investigate the effect of metal/carbon concentration on the structure and mechanical properties of porous architectures obtained via self-assembly of cobalt nanoparticles and fullerene molecules. Such porous structures have implications in flexible electronics, where materials with high electrical conductivity and low elastic stiffness are desired. Using unsupervised machine learning (clustering), we identify the pore structure, pore-distribution, and metallic conduction pathways in self-assembled structures at different C/Co ratios. We find that as the C/Co ratio increases, the connectivity between the Co nanoparticles becomes limited, likely resulting in low electrical conductivity; on the other hand, such C-rich hybrid structures are highly flexible (i.e., low stiffness). The BOP model developed in this work is a valuable tool to investigate atomic scale processes, structure-property relationships, and temperature/pressure response of Co-C systems, as well as design organic-inorganic hybrid structures with a desired set of properties.

  1. Use of a CCD camera for the thermographic study of a transient liquid phase bonding process in steel

    NASA Astrophysics Data System (ADS)

    Castro, Eduardo H.; Epelbaum, Carlos; Carnero, Angel; Arcondo, Bibiana

    2001-03-01

    The bonding of steel pieces and the development of novel soldering methods, appropriate to the extended variety of applications of steels nowadays, bring the sensing of temperature an outstanding role in any metallurgical process. Transient liquid phase bonding (TLPB) processes have been successfully employed to join metals, among them steels. A thin layer of metal A, with a liquids temperature TLA, is located between two pieces of metal B, with a liquids temperature TLB higher than TLA. The joining zone is heated up to a temperature T(TLA

  2. Interface bonding of NiCrAlY coating on laser modified H13 tool steel surface

    NASA Astrophysics Data System (ADS)

    Reza, M. S.; Aqida, S. N.; Ismail, I.

    2016-06-01

    Bonding strength of thermal spray coatings depends on the interfacial adhesion between bond coat and substrate material. In this paper, NiCrAlY (Ni-164/211 Ni22 %Cr10 %Al1.0 %Y) coatings were developed on laser modified H13 tool steel surface using atmospheric plasma spray (APS). Different laser peak power, P p, and duty cycle, DC, were investigated in order to improve the mechanical properties of H13 tool steel surface. The APS spraying parameters setting for coatings were set constant. The coating microstructure near the interface was analyzed using IM7000 inverted optical microscope. Interface bonding of NiCrAlY was investigated by interfacial indentation test (IIT) method using MMT-X7 Matsuzawa Hardness Tester Machine with Vickers indenter. Diffusion of atoms along NiCrAlY coating, laser modified and substrate layers was investigated by energy-dispersive X-ray spectroscopy (EDXS) using Hitachi Tabletop Microscope TM3030 Plus. Based on IIT method results, average interfacial toughness, K avg, for reference sample was 2.15 MPa m1/2 compared to sample L1 range of K avg from 6.02 to 6.96 MPa m1/2 and sample L2 range of K avg from 2.47 to 3.46 MPa m1/2. Hence, according to K avg, sample L1 has the highest interface bonding and is being laser modified at lower laser peak power, P p, and higher duty cycle, DC, prior to coating. The EDXS analysis indicated the presence of Fe in the NiCrAlY coating layer and increased Ni and Cr composition in the laser modified layer. Atomic diffusion occurred in both coating and laser modified layers involved in Fe, Ni and Cr elements. These findings introduce enhancement of coating system by substrate surface modification to allow atomic diffusion.

  3. Bond-orientational analysis of hard-disk and hard-sphere structures.

    PubMed

    Senthil Kumar, V; Kumaran, V

    2006-05-28

    We report the bond-orientational analysis results for the thermodynamic, random, and homogeneously sheared inelastic structures of hard-disks and hard-spheres. The thermodynamic structures show a sharp rise in the order across the freezing transition. The random structures show the absence of crystallization. The homogeneously sheared structures get ordered at a packing fraction higher than the thermodynamic freezing packing fraction, due to the suppression of crystal nucleation. On shear ordering, strings of close-packed hard-disks in two dimensions and close-packed layers of hard-spheres in three dimensions, oriented along the velocity direction, slide past each other. Such a flow creates a considerable amount of fourfold order in two dimensions and body-centered-tetragonal (bct) structure in three dimensions. These transitions are the flow analogs of the martensitic transformations occurring in metals due to the stresses induced by a rapid quench. In hard-disk structures, using the bond-orientational analysis we show the presence of fourfold order. In sheared inelastic hard-sphere structures, even though the global bond-orientational analysis shows that the system is highly ordered, a third-order rotational invariant analysis shows that only about 40% of the spheres have face-centered-cubic (fcc) order, even in the dense and near-elastic limits, clearly indicating the coexistence of multiple crystalline orders. When layers of close-packed spheres slide past each other, in addition to the bct structure, the hexagonal-close-packed (hcp) structure is formed due to the random stacking faults. Using the Honeycutt-Andersen pair analysis and an analysis based on the 14-faceted polyhedra having six quadrilateral and eight hexagonal faces, we show the presence of bct and hcp signatures in shear ordered inelastic hard-spheres. Thus, our analysis shows that the dense sheared inelastic hard-spheres have a mixture of fcc, bct, and hcp structures.

  4. Influence of ceramic thickness and type on micromechanical properties of light-cured adhesive bonding agents.

    PubMed

    Öztürk, Elif; Bolay, Sükran; Hickel, Reinhard; Ilie, Nicoleta

    2014-10-01

    The aim of this study was to evaluate the micromechanical properties of different adhesive bonding agents when polymerized through ceramics. Sixty sound extracted human third molars were selected and the crowns were sectioned perpendicular to the long axis in order to obtain dentin slices to be bonded with one of the following adhesives: Syntac/Heliobond (Ivoclar-Vivadent) or Adper-Scotchbond-1XT (3M-ESPE). The adhesives were cured by using a LED-unit (Bluephase®, Ivoclar Vivadent) with three different curing times (10 s, 20 s and 30 s) under two ceramics (IPS-e.max-Press, Ivoclar-Vivadent; IPS-Empress®CAD, Ivoclar-Vivadent) of different thicknesses (0 mm, 0.75 mm, 2 mm). Thirty groups were included, each containing 60 measurements. Micromechanical properties (Hardness, HV; indentation modulus, E; and creep, Cr) of the adhesives were measured with an automatic microhardness indenter (Fisherscope H100C, Germany). Data were statistically analyzed by using one-way ANOVA and Tukey's post-hoc test, as well as a multivariate analysis to test the influence of the study parameters (SPSS 18.0). Significant differences were observed between the micromechanical properties of the adhesives (p < 0.05). The ceramic type showed the highest effect on HV (Partial-eta squared (η(2)) = 0.109) of the tested adhesives, while E (η(2) = 0.275) and Cr (η(2) = 0.194) were stronger influenced by the adhesive type. Ceramic thickness showed no effect on the E and Cr of the adhesives. The adhesive bonding agents used in this study performed well by curing through different thicknesses of ceramics. The micromechanical properties of the adhesives were determined by the adhesive type and were less influenced by ceramic type and curing time.

  5. An opsin shift in rhodopsin: retinal S0-S1 excitation in protein, in solution, and in the gas phase.

    PubMed

    Bravaya, Ksenia; Bochenkova, Anastasia; Granovsky, Alexander; Nemukhin, Alexander

    2007-10-31

    We considered a series of model systems for treating the photoabsorption of the 11-cis retinal chromophore in the protonated Schiff-base form in vacuum, solutions, and the protein environment. A high computational level, including the quantum mechanical-molecular mechanical (QM/MM) approach for solution and protein was utilized in simulations. The S0-S1 excitation energies in quantum subsystems were evaluated by means of an augmented version of the multiconfigurational quasidegenerate perturbation theory (aug-MCQDPT2) with the ground-state geometry parameters optimized in the density functional theory PBE0/cc-pVDZ approximation. The computed positions of absorption bands lambdamax, 599(g), 448(s), and 515(p) nm for the gas phase, solution, and protein, respectively, are in excellent agreement with the corresponding experimental data, 610(g), 445(s), and 500(p) nm. Such consistency provides a support for the formulated qualitative conclusions on the role of the chromophore geometry, environmental electrostatic field, and the counterion in different media. An essentially nonplanar geometry conformation of the chromophore group in the region of the C14-C15 bond was obtained for the protein, in particular, owing to the presence of the neighboring charged amino acid residue Glu181. Nonplanarity of the C14-C15 bond region along with the influence of the negatively charged counterions Glu181 and Glu113 are found to be important to reproduce the spectroscopic features of retinal chromophore inside the Rh cavity. Furthermore, the protein field is responsible for the largest bond-order decrease at the C11-C12 double bond upon excitation, which may be the reason for the 11-cis photoisomerization specificity.

  6. Anomalous perovskite PbRuO3 stabilized under high pressure

    PubMed Central

    Cheng, J.-G.; Kweon, K. E.; Zhou, J.-S.; Alonso, J. A.; Kong, P.-P.; Liu, Y.; Jin, Changqing; Wu, Junjie; Lin, Jung-Fu; Larregola, S. A.; Yang, Wenge; Shen, Guoyin; MacDonald, A. H.; Manthiram, Arumugam; Hwang, G. S.; Goodenough, John B.

    2013-01-01

    Perovskite oxides ABO3 are important materials used as components in electronic devices. The highly compact crystal structure consists of a framework of corner-shared BO6 octahedra enclosing the A-site cations. Because of these structural features, forming a strong bond between A and B cations is highly unlikely and has not been reported in the literature. Here we report a pressure-induced first-order transition in PbRuO3 from a common orthorhombic phase (Pbnm) to an orthorhombic phase (Pbn21) at 32 GPa by using synchrotron X-ray diffraction. This transition has been further verified with resistivity measurements and Raman spectra under high pressure. In contrast to most well-studied perovskites under high pressure, the Pbn21 phase of PbRuO3 stabilized at high pressure is a polar perovskite. More interestingly, the Pbn21 phase has the most distorted octahedra and a shortest Pb—Ru bond length relative to the average Pb—Ru bond length that has ever been reported in a perovskite structure. We have also simulated the behavior of the PbRuO3 perovskite under high pressure by first principles calculations. The calculated critical pressure for the phase transition and evolution of lattice parameters under pressure match the experimental results quantitatively. Our calculations also reveal that the hybridization between a Ru:t2g orbital and an sp hybrid on Pb increases dramatically in the Pbnm phase under pressure. This pressure-induced change destabilizes the Pbnm phase to give a phase transition to the Pbn21 phase where electrons in the overlapping orbitals form bonding and antibonding states along the shortest Ru—Pb direction at P > Pc. PMID:24277807

  7. Different dynamics and pathway of disulfide bonds reduction of two human defensins, a molecular dynamics simulation study.

    PubMed

    Zhang, Liqun

    2017-04-01

    Human defensins are a class of antimicrobial peptides that are crucial components of the innate immune system. Both human α defensin type 5 (HD5) and human β defensin type 3 (hBD-3) have 6 cysteine residues which form 3 pairs of disulfide bonds in oxidizing condition. Disulfide bond linking is important to the protein structure stabilization, and the disulfide bond linking and breaking order have been shown to influence protein function. In this project, microsecond long molecular dynamics simulations were performed to study the structure and dynamics of HD5 and hBD-3 wildtype and analogs which have all 3 disulfide bonds released in reducing condition. The structure of hBD-3 was found to be more dynamic and flexible than HD5, based on RMSD, RMSF, and radius of gyration calculations. The disulfide bridge breaking order of HD5 and hBD-3 in reducing condition was predicted by two kinds of methods, which gave consistent results. It was found that the disulfide bonds breaking pathways for HD5 and hBD-3 are very different. The breaking of disulfide bonds can influence the dimer interface by making the dimer structure less stable for both kinds of defensin. In order to understand the difference in dynamics and disulfide bond breaking pathway, hydrophilic and hydrophobic accessible surface areas (ASA), buried surface area between cysteine pairs, entropy of cysteine pairs, and internal energy were calculated. Comparing to the wildtype, hBD-3 analog is more hydrophobic, while HD5 is more hydrophilic. For hBD-3, the disulfide breaking is mainly entropy driven, while other factors such as the solvation effects may take the major role in controlling HD5 disulfide breaking pathway. Proteins 2017; 85:665-681. © 2016 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. High-pressure effect on the dynamics of solvated peptides.

    PubMed

    Nellas, Ricky B; Glover, Mary M; Hamelberg, Donald; Shen, Tongye

    2012-04-14

    The dynamics of peptides has a direct connection to how quickly proteins can alter their conformations. The speed of exploring the free energy landscape depend on many factors, including the physical parameters of the environment, such as pressure and temperature. We performed a series of molecular dynamics simulations to investigate the pressure-temperature effects on peptide dynamics, especially on the torsional angle and peptide-water hydrogen bonding (H-bonding) dynamics. Here, we show that the dynamics of the omega angle and the H-bonding dynamics between water and the peptide are affected by pressure. At high temperature (500 K), both the dynamics of the torsional angle ω and H-bonding slow down significantly with increasing pressure, interestingly, at approximately the same rate. However, at a lower temperature of 300 K, the observed trend on H-bonding dynamics as a function of pressure reverses, i.e., higher pressure speeds up H-bonding dynamics.

  9. Electric Field Effects on the Intermolecular Interactions in Water Whiskers: Insight from Structures, Energetics, and Properties

    DOE PAGES

    Bai, Yang; He, Hui-Min; Li, Ying; ...

    2015-02-19

    Modulation of intermolecular interactions in response to external electric fields could be fundamental to the formation of unusual forms of water, such as water whiskers. However, a detailed understanding of the nature of intermolecular interactions in such systems is lacking. In this study, we present novel theoretical results based on electron correlation calculations regarding the nature of H-bonds in water whiskers, which is revealed by studying their evolution under external electric fields with various field strengths. We find that the water whiskers consisting of 2-7 water molecules all have a chain-length dependent critical electric field. Under the critical electric field,more » the most compact chain structures are obtained, featuring very strong H-bonds, herein referred to as covalent H-bonds. In the case of a water dimer whisker, the bond length of the novel covalent H-bond shortens by 25%, the covalent bond order increases by 9 times, and accordingly the H-bond energy is strengthened by 5 times compared to the normal H-bond in a (H 2O) 2 cluster. Below the critical electric field, it is observed that with increasing field strength, H-bonding orbitals display gradual evolutions in the orbital energy, orbital ordering, and orbital nature (i.e., from typical -style orbital to unusual -style double H-bonding orbital). We also show that beyond the critical electric field, a single water whisker may disintegrate to form a loosely bound zwitterionic chain due to a relay-style proton transfer, whereas two water whiskers may undergo intermolecular cross-linking to form a quasi-two-dimensional water network. In conclusion, these results help shed new insight on the effects of electric fields on water whisker formation.« less

  10. Vibrational tug-of-war: The pKA dependence of the broad vibrational features of strongly hydrogen-bonded carboxylic acids

    NASA Astrophysics Data System (ADS)

    Van Hoozen, Brian L.; Petersen, Poul B.

    2018-04-01

    Medium and strong hydrogen bonds give rise to broad vibrational features frequently spanning several hundred wavenumbers and oftentimes exhibiting unusual substructures. These broad vibrational features can be modeled from first principles, in a reduced dimensional calculation, that adiabatically separates low-frequency modes, which modulate the hydrogen bond length, from high-frequency OH stretch and bend modes that contribute to the vibrational structure. Previously this method was used to investigate the origin of an unusual vibrational feature frequently found in the spectra of dimers between carboxylic acids and nitrogen-containing aromatic bases that spans over 900 cm-1 and contains two broad peaks. It was found that the width of this feature largely originates from low-frequency modes modulating the hydrogen bond length and that the structure results from Fermi resonance interactions. In this report, we examine how these features change with the relative acid and base strength of the components as reflected by their aqueous pKA values. Dimers with large pKA differences are found to have features that can extend to frequencies below 1000 cm-1. The relationships between mean OH/NH frequency, aqueous pKA, and O-N distance are examined in order to obtain a more rigorous understanding of the origin and shape of the vibrational features. The mean OH/NH frequencies are found to correlate well with O-N distances. The lowest OH stretch frequencies are found in dimer geometries with O-N distances between 2.5 and 2.6 Å. At larger O-N distances, the hydrogen bonding interaction is not as strong, resulting in higher OH stretch frequencies. When the O-N distance is smaller than 2.5 Å, the limited space between the O and N determines the OH stretch frequency, which gives rise to frequencies that decrease with O-N distances. These two effects place a lower limit on the OH stretch frequency which is calculated to be near 700 cm-1. Understanding how the vibrational features of strongly hydrogen-bonded structures depend on the relative pKA and other structural parameters will guide studies of biological structures and analysis of proton transfer studies using photoacids.

  11. Study on the bonding strength between calcium phosphate/chitosan composite coatings and a Mg alloy substrate

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Dai, Chang-Song; Wei, Jie; Wen, Zhao-Hui

    2012-11-01

    In order to improve the bonding strength between calcium phosphate/chitosan composite coatings and a micro-arc oxidized (MAO)-AZ91D Mg alloy, different influencing parameters were investigated in the process of electrophoretic deposition (EPD) followed by conversion in a phosphate buffer solution (PBS). Surface morphology and phase constituents of the as-prepared materials were investigated by using X-ray diffractometer (XRD), Fourier-transformed infrared spectrophotometer (FTIR), Raman spectrometer, scanning electron microscope (SEM) with an energy dispersive spectrometer (EDS), and a thermo gravimetric and differential thermal analyzer (TG-DTA). Scratch tests were carried out to study the bonding properties between the coatings and the substrates. In vitro immersion tests were conducted to determine the corrosion behaviors of samples with and without deposit layers through electrochemical experiments. In the EPD process, the acetic acid content in the electrophoresis suspension and the electrophoretic voltage played important roles in improving the bonding properties, while the contents of chitosan (CS) and nano-hydroxyapatite (nHA, Ca10(PO4)6(OH)2) in the suspension had less significant influences on the mechanical bonding strength. It was observed that the coatings showed the excellent bonding property when an electrophoretic voltage was in a range of 40-110 V with other reagent amounts as follows: acetic acid: 4.5 vol.%, CS ≤ 0.25 g, nHA ≤ 2.0 g in 200 ml of a CS-acetic acid aqueous solution and nHA ≤ 2.5 g in 300 ml of absolute ethanol. The morphology of the composite coating obtained under the above optimal condition had a flake-like crystal structure. The EPD in the nHA/CS-acetic acid/ethanol suspension resulted in hydroxyapatite, chitosan, brushite (DCPD, CaHPO4·2H2O) and Ca(OH)2 in the coatings. After the as-prepared coating materials were immersed into PBS, Ca(OH)2 could be converted into HA and DCPD. The results of the electrochemical tests manifested that the corrosion resistance of the Mg alloy was improved by coating this composite film.

  12. Chemical bonding in TiSb(2) and VSb(2): a quantum chemical and experimental study.

    PubMed

    Armbrüster, Marc; Schnelle, Walter; Schwarz, Ulrich; Grin, Yuri

    2007-08-06

    The chemical bonding in the isostructural intermetallic compounds TiSb2 and VSb2, crystallizing in the CuAl2 type, was investigated by means of quantum chemical calculations, particularly the electron localization function (ELF), as well as by Raman spectroscopy, Hall effect and conductivity measurements on oriented single crystals, and high-pressure X-ray powder diffraction. The homogeneity ranges of the compounds were determined by powder X-ray diffraction, WDXS, and DSC measurements. TiSb2 exhibits no significant homogeneity range, while VSb2 shows a small homogeneity range of approximately 0.3 at. %. According to the ELF calculations, the Sb atoms form dumbbells via a two-center two-electron bond, while the T atoms (T = Ti, V) build up chains along the crystallographic c-axis. Both building units are connected by covalent T-Sb-T three-center bonds, thus forming a three-dimensional network. The strength of the bonds involving Sb was determined by fitting a force constant model to the vibrational mode frequencies observed by polarized Raman measurements on oriented single crystals. The resulting bond order of the Sb2 dumbbells is 1, while the strength of the three-center bonds resembles a bond order of 1.5. The weak pressure dependence of the c/a ratio confirms the slightly different bonding picture in TiSb2 compared to that in CuAl2. Electrical transport measurements show the presence of free charge carriers, as well as a metal-like temperature dependence of the electrical resistivity.

  13. Tuning jammed frictionless disk packings from isostatic to hyperstatic.

    PubMed

    Schreck, Carl F; O'Hern, Corey S; Silbert, Leonardo E

    2011-07-01

    We perform extensive computational studies of two-dimensional static bidisperse disk packings using two distinct packing-generation protocols. The first involves thermally quenching equilibrated liquid configurations to zero temperature over a range of thermal quench rates r and initial packing fractions followed by compression and decompression in small steps to reach packing fractions φ(J) at jamming onset. For the second, we seed the system with initial configurations that promote micro- and macrophase-separated packings followed by compression and decompression to φ(J). Using these protocols, we generate more than 10(4) static packings over a wide range of packing fraction, contact number, and compositional and positional order. We find that disordered, isostatic packings exist over a finite range of packing fractions in the large-system limit. In agreement with previous calculations, the most dilute mechanically stable packings with φ min ≈ 0.84 are obtained for r > r*, where r* is the rate above which φ(J) is insensitive to rate. We further compare the structural and mechanical properties of isostatic versus hyperstatic packings. The structural characterizations include the contact number, several order parameters, and mixing ratios of the large and small particles. We find that the isostatic packings are positionally and compositionally disordered (with only small changes in a number of order parameters), whereas bond-orientational and compositional order increase strongly with contact number for hyperstatic packings. In addition, we calculate the static shear modulus and normal mode frequencies (in the harmonic approximation) of the static packings to understand the extent to which the mechanical properties of disordered, isostatic packings differ from partially ordered packings. We find that the mechanical properties of the packings change continuously as the contact number increases from isostatic to hyperstatic.

  14. Direct atomic force microscopic evidence of hydrogen bonding interaction in phosphatidic acid Langmuir-Blodgett bilayer

    NASA Astrophysics Data System (ADS)

    Chunbo, Yuan; Ying, Wu; Yueming, Sun; Zuhong, Lu; Juzheng, Liu

    1997-12-01

    Molecularly resolved atomic force microscopic images of phosphatidic acid Langmuir-Blodgett bilayers show that phosphate groups in polar region of the films are packing in a distorted hexagonal organization with long-range orientational and positional order. Intermolecular hydrogen bonding interactions, which should be responsible for the ordering and stability of bilayers, are visualized directly between adjacent phosphate groups in the polar region of the bilayer. Some adjacent phosphatidic acid molecules link each other through the formation of intermolecular hydrogen bonds between phosphate groups in polar region to form local supramolecules, which provide the bilayer's potential as a functionized film in the investigation on the lateral conductions of protons in the biological bilayers.

  15. On the nature of a supposed water model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heckmann, Lotta, E-mail: lotta@fkp.tu-darmstadt.de; Drossel, Barbara

    2014-08-15

    A cell model that has been proposed by Stanley and Franzese in 2002 for modeling water is based on Potts variables that represent the possible orientations of bonds between water molecules. We show that in the liquid phase, where all cells are occupied by a molecule, the Hamiltonian of the cell model can be rewritten as a Hamiltonian of a conventional Potts model, albeit with two types of coupling constants. We argue that such a model, while having a first-order phase transition, cannot display the critical end point that is postulated for the phase transition between a high- and low-densitymore » liquid. A closer look at the mean-field calculations that claim to find such an end point in the cell model reveals that the mean-field theory is constructed such that the symmetry constraints on the order parameter are violated. This is equivalent to introducing an external field. The introduction of such a field can be given a physical justification due to the fact that water does not have the type of long-range order occurring in the Potts model.« less

  16. Symmetry-protected topological phases of one-dimensional interacting fermions with spin-charge separation

    NASA Astrophysics Data System (ADS)

    Montorsi, Arianna; Dolcini, Fabrizio; Iotti, Rita C.; Rossi, Fausto

    2017-06-01

    The low energy behavior of a huge variety of one-dimensional interacting spinful fermionic systems exhibits spin-charge separation, described in the continuum limit by two sine-Gordon models decoupled in the charge and spin channels. Interaction is known to induce, besides the gapless Luttinger liquid phase, eight possible gapped phases, among which are the Mott, Haldane, charge-/spin-density, and bond-ordered wave insulators, and the Luther Emery liquid. Here we prove that some of these physically distinct phases have nontrivial topological properties, notably the presence of degenerate protected edge modes with fractionalized charge/spin. Moreover, we show that the eight gapped phases are in one-to-one correspondence with the symmetry-protected topological (SPT) phases classified by group cohomology theory in the presence of particle-hole symmetry P. The latter result is also exploited to characterize SPT phases by measurable nonlocal order parameters which follow the system evolution to the quantum phase transition. The implications on the appearance of exotic orders in the class of microscopic Hubbard Hamiltonians, possibly without P symmetry at higher energies, are discussed.

  17. Fermion-induced quantum critical points in two-dimensional Dirac semimetals

    NASA Astrophysics Data System (ADS)

    Jian, Shao-Kai; Yao, Hong

    2017-11-01

    In this paper we investigate the nature of quantum phase transitions between two-dimensional Dirac semimetals and Z3-ordered phases (e.g., Kekule valence-bond solid), where cubic terms of the order parameter are allowed in the quantum Landau-Ginzberg theory and the transitions are putatively first order. From large-N renormalization-group (RG) analysis, we find that fermion-induced quantum critical points (FIQCPs) [Z.-X. Li et al., Nat. Commun. 8, 314 (2017), 10.1038/s41467-017-00167-6] occur when N (the number of flavors of four-component Dirac fermions) is larger than a critical value Nc. Remarkably, from the knowledge of space-time supersymmetry, we obtain an exact lower bound for Nc, i.e., Nc>1 /2 . (Here the "1/2" flavor of four-component Dirac fermions is equivalent to one flavor of four-component Majorana fermions). Moreover, we show that the emergence of two length scales is a typical phenomenon of FIQCPs and obtain two different critical exponents, i.e., ν ≠ν' , by large-N RG calculations. We further give a brief discussion of possible experimental realizations of FIQCPs.

  18. Investigation on Bond-Slip Behavior of Z-Pin Interfaces in X-Cor® Sandwich Structures Using Z-Pin Pull-Out Test

    NASA Astrophysics Data System (ADS)

    Shan, Hangying; Xiao, Jun; Chu, Qiyi

    2018-05-01

    The Z-Pin interfacial bond properties play an important role in the structural performance of X-Cor® sandwich structures. This paper presents an experimental investigation on bond-slip behavior of Z-Pin interfaces using Z-Pin pull-out test. Based on the experimental data the whole Z-Pin pull-out process consists of three stages: initial bonding, debonding and frictional sliding. Comparative experimental study on the influence of design parameters on bond-slip behavior of Z-Pin interfaces has also been performed. Numerical analyses were conducted with the ABAQUS finite element (FE) program to simulate the Z-Pins bond-slip response of the pull-out test. The Z-Pins interfacial bond-slip behavior was implemented using nonlinear spring elements characterized with the constitutive relation from experimental results. Numerical results were validated by comparison with experimental data, and reasonably good agreement was achieved between experimental and analytical pull-out force-slip curves.

  19. Quantum mechanical electronic structure calculation reveals orientation dependence of hydrogen bond energy in proteins.

    PubMed

    Mondal, Abhisek; Datta, Saumen

    2017-06-01

    Hydrogen bond plays a unique role in governing macromolecular interactions with exquisite specificity. These interactions govern the fundamental biological processes like protein folding, enzymatic catalysis, molecular recognition. Despite extensive research work, till date there is no proper report available about the hydrogen bond's energy surface with respect to its geometric parameters, directly derived from proteins. Herein, we have deciphered the potential energy landscape of hydrogen bond directly from the macromolecular coordinates obtained from Protein Data Bank using quantum mechanical electronic structure calculations. The findings unravel the hydrogen bonding energies of proteins in parametric space. These data can be used to understand the energies of such directional interactions involved in biological molecules. Quantitative characterization has also been performed using Shannon entropic calculations for atoms participating in hydrogen bond. Collectively, our results constitute an improved way of understanding hydrogen bond energies in case of proteins and complement the knowledge-based potential. Proteins 2017; 85:1046-1055. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Self-assembled monolayer and method of making

    DOEpatents

    Fryxell, Glen E [Kennewick, WA; Zemanian, Thomas S [Richland, WA; Liu, Jun [West Richland, WA; Shin, Yongsoon [Richland, WA

    2003-03-11

    According to the present invention, the previously known functional material having a self-assembled monolayer on a substrate has a plurality of assembly molecules each with an assembly atom with a plurality of bonding sites (four sites when silicon is the assembly molecule) wherein a bonding fraction (or fraction) of fully bonded assembly atoms (the plurality of bonding sites bonded to an oxygen atom) has a maximum when made by liquid solution deposition, for example a maximum of 40% when silicon is the assembly molecule, and maximum surface density of assembly molecules was 5 silanes per square nanometer. Note that bonding fraction and surface population are independent parameters. The method of the present invention is an improvement to the known method for making a siloxane layer on a substrate, wherein instead of a liquid phase solution chemistry, the improvement is a supercritical phase chemistry. The present invention has the advantages of greater fraction of oxygen bonds, greater surface density of assembly molecules and reduced time for reaction of about 5 minutes to about 24 hours.

Top