Science.gov

Sample records for bond oxidation reaction

  1. Oxidation Protection of Porous Reaction-Bonded Silicon Nitride

    NASA Technical Reports Server (NTRS)

    Fox, D. S.

    1994-01-01

    Oxidation kinetics of both as-fabricated and coated reaction-bonded silicon nitride (RBSN) were studied at 900 and 1000 C with thermogravimetry. Uncoated RBSN exhibited internal oxidation and parabolic kinetics. An amorphous Si-C-O coating provided the greatest degree of protection to oxygen, with a small linear weight loss observed. Linear weight gains were measured on samples with an amorphous Si-N-C coating. Chemically vapor deposited (CVD) Si3N4 coated RBSN exhibited parabolic kinetics, and the coating cracked severely. A continuous-SiC-fiber-reinforced RBSN composite was also coated with the Si-C-O material, but no substantial oxidation protection was observed.

  2. Reduction reaction analysis of nanoparticle copper oxide for copper direct bonding using formic acid

    NASA Astrophysics Data System (ADS)

    Fujino, Masahisa; Akaike, Masatake; Matsuoka, Naoya; Suga, Tadatomo

    2017-04-01

    Copper direct bonding is required for electronics devices, especially power devices, and copper direct bonding using formic acid is expected to lower the bonding temperature. In this research, we analyzed the reduction reaction of copper oxide using formic acid with a Pt catalyst by electron spin resonance analysis and thermal gravimetry analysis. It was found that formic acid was decomposed and radicals were generated under 200 °C. The amount of radicals generated was increased by adding the Pt catalyst. Because of these radicals, both copper(I) oxide and copper(II) oxide start to be decomposed below 200 °C, and the reduction of copper oxide is accelerated by reactants such as H2 and CO from the decomposition of formic acid above 200 °C. The Pt catalyst also accelerates the reaction of copper oxide reduction. Herewith, it is considered that the copper surface can be controlled more precisely by using formic acid to induce direct bonding.

  3. Concurrent Formation of Carbon–Carbon Bonds and Functionalized Graphene by Oxidative Carbon-Hydrogen Coupling Reaction

    NASA Astrophysics Data System (ADS)

    Morioku, Kumika; Morimoto, Naoki; Takeuchi, Yasuo; Nishina, Yuta

    2016-05-01

    Oxidative C–H coupling reactions were conducted using graphene oxide (GO) as an oxidant. GO showed high selectivity compared with commonly used oxidants such as (diacetoxyiodo) benzene and 2,3-dichloro-5,6-dicyano-p-benzoquinone. A mechanistic study revealed that radical species contributed to the reaction. After the oxidative coupling reaction, GO was reduced to form a material that shows electron conductivity and high specific capacitance. Therefore, this system could concurrently achieve two important reactions: C–C bond formation via C–H transformation and production of functionalized graphene.

  4. Concurrent Formation of Carbon–Carbon Bonds and Functionalized Graphene by Oxidative Carbon-Hydrogen Coupling Reaction

    PubMed Central

    Morioku, Kumika; Morimoto, Naoki; Takeuchi, Yasuo; Nishina, Yuta

    2016-01-01

    Oxidative C–H coupling reactions were conducted using graphene oxide (GO) as an oxidant. GO showed high selectivity compared with commonly used oxidants such as (diacetoxyiodo) benzene and 2,3-dichloro-5,6-dicyano-p-benzoquinone. A mechanistic study revealed that radical species contributed to the reaction. After the oxidative coupling reaction, GO was reduced to form a material that shows electron conductivity and high specific capacitance. Therefore, this system could concurrently achieve two important reactions: C–C bond formation via C–H transformation and production of functionalized graphene. PMID:27181191

  5. Oxidation behavior in reaction-bonded aluminum-silicon alloy/alumina powder compacts

    SciTech Connect

    Yokota, S.H.

    1992-12-01

    Goal of this research is to determine the feasibility of producing low-shrinkage mullite/alumina composites by applying the reaction-bonded alumina (RBAO) process to an aluminum-silicon alloy/alumina system. Mirostructural and compositional changes during heat treatment were studied by removing samples from the furnace at different steps in the heating schedule and then using optical and scanning electron microscopy, EDS and XRD to characterize the powder compacts. Results suggest that the oxidation behavior of the alloy compact is different from the model proposed for the pure Al/alumina system.

  6. Oxidation stability of advanced reaction-bonded Si3N4 materials

    NASA Technical Reports Server (NTRS)

    Lindberg, L. J.; Richerson, D. W.; Carruthers, W. D.; Gersch, H. M.

    1982-01-01

    Four slip-cast, injection-molded and isostatically-pressed specimens of reaction-bonded silicon nitride (RBSN) were subjected to static oxidation tests at 900 C for 10 hours. Specimens containing 8-10% interconnected open porosity of size greater than one micron exhibited a 20-30% decrease in average room temperature four-point flexure strength, while those with 10% open porosity of magnitudes much smaller than one micron as well as those with 2-4% interconnected open porosity of about one micron did not decrease in strength after 900 C exposure. It was determined that preoxidation treatment at 1350 C prevents the 20-30% strength degradation due to internal oxidation, and evidence is presented which suggests that surface pit formation in some RBSN may result from contamination by the furnace environment rather than any intrinsic material properties.

  7. Oxidation effects on porcelain-titanium interface reactions and bond strength.

    PubMed

    Kimura, H; Horng, C J; Okazaki, M; Takahashi, J

    1990-06-01

    Titanium is strong, resists corrosion and has a low density and excellent biocompatibility. Conventional ceramic-metal restorations have been extensively used in dentistry because of their esthetic appearance and good mechanical properties. This study investigates oxidation effects on the porcelain-titanium interface reactions and bond strength. Pure titanium was treated in a porcelain furnace at temperatures of 600 to 1000 degrees C under either vacuum or air. X-ray diffraction analysis of the surface of pure titanium revealed that the relative peak intensity of alpha-Ti decreased and that of TiO2 increased, with increasing firing temperature. The Vickers hardness number of titanium increased with temperature especially over 900 degrees C, and was harder in air than in vacuum. The tension-shear bond strength of the porcelain-titanium system was the highest in the green stage and lowest after 900 degrees C treatment. Metallographic microscopy of the porcelain-titanium interface revealed a thick band-like zone in the sample treated over 900 degrees C. The excess thick layer of TiO2 apparently weakened the bond strength of porcelain-titanium. Unlike the conventional ceramic-gold alloy system the recommended degassing procedure was not suitable for porcelain-pure titanium restoration.

  8. Effects of aluminum and zirconia contents on the reaction bonded aluminum oxide process

    NASA Astrophysics Data System (ADS)

    Sheedy, Paul Martin

    The effects of aluminum and ZrO2 contents on the reaction and sintering of reaction bonded aluminum oxide (RBAO) were investigated. It was apparent that ZrO2-containing RBAO powders with higher initial aluminum contents (>45 vol%) were increasingly more difficult to react and sinter. During oxidation in air, samples often underwent a self-propagating high-temperature synthesis (SHS) reaction which led to catastrophic failure. This reaction and cracking behavior was more pronounced with increasing aluminum and ZrO2 contents of the powders. Subsequently, it was shown that the SHS reaction was actually two combustion phenomena: a thermal explosion reaction on the surface of the sample between aluminum and oxygen, which (in ZrO2-containing samples) triggered a self propagating aluminothermic reduction of ZrO2, forming Al2O3 and Al 3Zr. Therefore, methods for controlling the rate of the initial oxidation reaction were effective since both SHS reactions were prevented. Despite the use of controlled firing, initial samples with increasing aluminum contents proved difficult to densify. It was found that in all RBAO samples (regardless of ZrO2 content), the reactively formed Al 2O3 underwent the gamma to alpha-Al2O 3 transformation, which resulted in the development of a vermicular microstructure. In ZrO2-containing RBAO samples, this transformation was inhibited and occurred concurrently with the start of densification. In addition, the start of bulk shrinkage in these samples was delayed and the densification rates were decreased in comparison to samples without ZrO 2. This ultimately resulted in a decrease in the limiting density to which ZrO2-containing RBAO samples could be sintered. Surprisingly, in samples without ZrO2, increasing the aluminum content did not appear to have any effects upon the densification behavior of RBAO. In examining RBAO samples with similar aluminum contents but increasing ZrO2 contents, it became apparent that the grain growth inhibiting

  9. Reactions of fourth-period metal ions (Ca + - Zn + ) with O2: Metal-oxide ion bond energies

    NASA Astrophysics Data System (ADS)

    Fisher, Ellen R.; Elkind, J. L.; Clemmer, D. E.; Georgiadis, R.; Loh, S. K.; Aristov, N.; Sunderlin, L. S.; Armentrout, P. B.

    1990-08-01

    Reactions of Ca+, Zn+ and all first-row atomic transition metal ions with O2 are studied using guided ion beam techniques. While reactions of the ground states of Sc+, Ti+, and V+ are exothermic, the remaining metal ions react with O2 in endothermic processes. Analyses of these endothermic reactions provide new determinations of the M+-O bond energies for these eight elements. Source conditions are varied such that the contributions of excited states of the metal ions can be explicitly considered for Mn+, Co+, Ni+, and Cu+. Results (in eV) at 0 K are D0(Ca+-O)= 3.57±0.05, D0(Cr+-O)=3.72±0.12, D0(Mn+-O)=2.95±0.13, D0(Fe+-O)=3.53±0.06 (reported previously), D0(Co+-O)=3.32±0.06, D0(Ni+-O) =2.74±0.07, D0(Cu+-O)=1.62±0.15, and D0(Zn+-O)=1.65±0.12. These values along with literature data for neutral metal oxide bond energies and ionization energies are critically evaluated. Periodic trends in the ionic metal oxide bond energies are compared with those of the neutral metal oxides and those of other related molecules.

  10. Consequences of metal-oxide interconversion for C-H bond activation during CH4 reactions on Pd catalysts.

    PubMed

    Chin, Ya-Huei Cathy; Buda, Corneliu; Neurock, Matthew; Iglesia, Enrique

    2013-10-16

    Mechanistic assessments based on kinetic and isotopic methods combined with density functional theory are used to probe the diverse pathways by which C-H bonds in CH4 react on bare Pd clusters, Pd cluster surfaces saturated with chemisorbed oxygen (O*), and PdO clusters. C-H activation routes change from oxidative addition to H-abstraction and then to σ-bond metathesis with increasing O-content, as active sites evolve from metal atom pairs (*-*) to oxygen atom (O*-O*) pairs and ultimately to Pd cation-lattice oxygen pairs (Pd(2+)-O(2-)) in PdO. The charges in the CH3 and H moieties along the reaction coordinate depend on the accessibility and chemical state of the Pd and O centers involved. Homolytic C-H dissociation prevails on bare (*-*) and O*-covered surfaces (O*-O*), while C-H bonds cleave heterolytically on Pd(2+)-O(2-) pairs at PdO surfaces. On bare surfaces, C-H bonds cleave via oxidative addition, involving Pd atom insertion into the C-H bond with electron backdonation from Pd to C-H antibonding states and the formation of tight three-center (H3C···Pd···H)(‡) transition states. On O*-saturated Pd surfaces, C-H bonds cleave homolytically on O*-O* pairs to form radical-like CH3 species and nearly formed O-H bonds at a transition state (O*···CH3(•)···*OH)(‡) that is looser and higher in enthalpy than on bare Pd surfaces. On PdO surfaces, site pairs consisting of exposed Pd(2+) and vicinal O(2-), Pd(ox)-O(ox), cleave C-H bonds heterolytically via σ-bond metathesis, with Pd(2+) adding to the C-H bond, while O(2-) abstracts the H-atom to form a four-center (H3C(δ-)···Pd(ox)···H(δ+)···O(ox))(‡) transition state without detectable Pd(ox) reduction. The latter is much more stable than transition states on *-* and O*-O* pairs and give rise to a large increase in CH4 oxidation turnover rates at oxygen chemical potentials leading to Pd to PdO transitions. These distinct mechanistic pathways for C-H bond activation, inferred from theory

  11. Consequences of Metal–Oxide Interconversion for C–H Bond Activation during CH₄ Reactions on Pd Catalysts

    SciTech Connect

    Chin, Ya-Huei; Buda, Corneliu; Neurock, Matthew; Iglesia, Enrique

    2013-10-01

    Mechanistic assessments based on kinetic and isotopic methods combined with density functional theory are used to probe the diverse pathways by which C-H bonds in CH₄ react on bare Pd clusters, Pd cluster surfaces saturated with chemisorbed oxygen (O*), and PdO clusters. C-H activation routes change from oxidative addition to Habstraction and then to σ-bond metathesis with increasing O-content, as active sites evolve from metal atom pairs (*-*) to oxygen atom (O*-O*) pairs and ultimately to Pd cationlattice oxygen pairs (Pd2+-O2-) in PdO. The charges in the CH₃ and H moieties along the reaction coordinate depend on the accessibility and chemical state of the Pd and O centers involved. Homolytic C-H dissociation prevails on bare (*-*) and O*- covered surfaces (O*-O*), while C-H bonds cleave heterolytically on Pd2+-O2- pairs at PdO surfaces. On bare surfaces, C-H bonds cleave via oxidative addition, involving Pd atom insertion into the C-H bond with electron backdonation from Pd to C-H antibonding states and the formation of tight three-center (H₃C···Pd···H)‡ transition states. On O*-saturated Pd surfaces, C-H bonds cleave homolytically on O*-O* pairs to form radical-like CH3 species and nearly formed O-H bonds at a transition state (O*···CH3 •···*OH)‡ that is looser and higher in enthalpy than on bare Pd surfaces. On PdO surfaces, site pairs consisting of exposed Pd2+ and vicinal O2-, Pdox-Oox, cleave C-H bonds heterolytically via σ-bond metathesis, with Pd2+ adding to the C-H bond, while O2- abstracts the H-atom to form a four-center (H3Cδ-···Pdox···Hδ+···Oox) transition state without detectable Pdox reduction. The latter is much more stable than transition states on *-* and O*-O* pairs and give rise to a large increase in CH₄ oxidation turnover rates at oxygen chemical

  12. Reaction mechanism of oxidation, hydroxylation, and epoxidation by hypofluorous acid: a theoretical study of unusual H-bond-assisted catalysis.

    PubMed

    Srnec, Martin; Oncak, Milan; Zahradník, Rudolf

    2008-04-24

    The oxidation of organic molecules by hypofluorous acid (HOF) was studied extensively and systematically by Rozen et al. Therefore, it seems appropriate to refer to the process as Rozen oxidation. An entire set of model molecules was selected for quantum chemical investigation of the oxidation mechanism: a C=C double bond in ethylene, sulfur and selenium in dimethyl derivatives, nitrogen and phosphorus in trimethyl derivatives, as well as methyl azides. In the gas phase, van der Waals complexes between HOF and the previously mentioned species easily are formed, but these complexes are reluctant to undergo oxidation. The addition of another HOF molecule connected with the formation of a cyclic complex (i.e., substrate and two molecules of HOF) seems to be decisive for the oxidation process. The attempt to substitute the second HOF molecule with H2O demonstrated the superiority of HOF. Complexes of this kind decompose along the reaction path smoothly (i.e., with a low activation energy) to the respective oxidation product. A potential role of the hydroxyl cation (HO+) in the oxidation step is mentioned. Besides an oxidation product, one HOF molecule is released (an essential feature of catalysis), and furthermore, hydrogen fluoride is formed. It was suggested by Sertchook et al. (J. Phys. Chem. A 2006, 110, 8275) that the interaction between the substrate to be oxidized and HOF is catalytically influenced by the HF molecule. The mechanism suggested here is more feasible and, particularly at the early stages of the oxidation process, decisive. Also, the role of acetonitrile, used as a solvent by Rozen et al., is discussed in terms of a continuum model. Moreover, passing from potential energies to Gibbs energies is considered.

  13. Role of bonding mechanisms during transfer hydrogenation reaction on heterogeneous catalysts of platinum nanoparticles supported on zinc oxide nanorods

    NASA Astrophysics Data System (ADS)

    Al-Alawi, Reem A.; Laxman, Karthik; Dastgir, Sarim; Dutta, Joydeep

    2016-07-01

    For supported heterogeneous catalysis, the interface between a metal nanoparticle and the support plays an important role. In this work the dependency of the catalytic efficiency on the bonding chemistry of platinum nanoparticles supported on zinc oxide (ZnO) nanorods is studied. Platinum nanoparticles were deposited on ZnO nanorods (ZnO NR) using thermal and photochemical processes and the effects on the size, distribution, density and chemical state of the metal nanoparticles upon the catalytic activities are presented. The obtained results indicate that the bonding at Pt-ZnO interface depends on the deposition scheme which can be utilized to modulate the surface chemistry and thus the activity of the supported catalysts. Additionally, uniform distribution of metal on the catalyst support was observed to be more important than the loading density. It is also found that oxidized platinum Pt(IV) (platinum hydroxide) provided a more suitable surface for enhancing the transfer hydrogenation reaction of cyclohexanone with isopropanol compared to zero valent platinum. Photochemically synthesized ZnO supported nanocatalysts were efficient and potentially viable for upscaling to industrial applications.

  14. Oxidation effects on the mechanical properties of SiC fiber-reinforced reaction-bonded silicon nitride matrix composites

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.

    1989-01-01

    The room temperature mechanical properties of SiC fiber reinforced reaction bonded silicon nitride composites were measured after 100 hrs exposure at temperatures to 1400 C in nitrogen and oxygen environments. The composites consisted of approx. 30 vol percent uniaxially aligned 142 micron diameter SiC fibers in a reaction bonded Si3N4 matrix. The results indicate that composites heat treated in a nitrogen environment at temperatures to 1400 C showed deformation and fracture behavior equivalent to that of the as-fabricated composites. Also, the composites heat treated in an oxidizing environment beyond 400 C yielded significantly lower tensile strength values. Specifically in the temperature range from 600 to 1000 C, composites retained approx. 40 percent of their as-fabricated strength, and those heat treated in the temperatures from 1200 to 1400 C retained 70 percent. Nonetheless, for all oxygen heat treatment conditions, composite specimens displayed strain capability beyond the matrix fracture stress; a typical behavior of a tough composite.

  15. Selective Gas-Phase Ion/Ion Reactions: Enabling Disulfide Mapping via Oxidation and Cleavage of Disulfide Bonds in Intermolecularly-Linked Polypeptide Ions.

    PubMed

    Pilo, Alice L; McLuckey, Scott A

    2016-09-20

    The selective gas-phase oxidation of disulfide bonds to their thiosulfinate form using ion/ion reactions and subsequent cleavage is demonstrated here. Oxidizing reagent anions are observed to attach to all polypeptides, regardless of amino acid composition. Direct proton transfer yielding a charge-reduced peptide is also frequently observed. Activation of the ion/ion complex between an oxidizing reagent anion and a disulfide-containing peptide cation results in oxygen transfer from the reagent anion to the peptide cation to form the [M+H+O](+) species. This thiosulfinate derivative can undergo one of several rearrangements that result in cleavage of the disulfide bond. Species containing an intermolecular disulfide bond undergo separation of the two chains upon activation. Further activation can be used to generate more sequence information from each chain. These oxidation ion/ion reactions have been used to illustrate the identification of S-glutathionylated and S-cysteinylated peptides, in which low molecular weight thiols are attached to cysteine residues in peptides via disulfide bonds. The oxidation chemistry effectively labels peptide ions with readily oxidized groups, such as disulfide bonds. This enables a screening approach for the identification of disulfide-linked peptides in a disulfide mapping application involving enzymatic digestion. The mixtures of ions generated by tryptic and peptic digestions of lysozyme and insulin, respectively, without prior separation or isolation were subjected both to oxidation and proton transfer ion/ion chemistry to illustrate the identification of peptides in the mixtures with readily oxidized groups.

  16. Aromatic Cations from Oxidative Carbon–Hydrogen Bond Cleavage in Bimolecular Carbon–Carbon Bond Forming Reactions

    PubMed Central

    Clausen, Dane J.

    2012-01-01

    Chromenes and isochromenes react quickly with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) to form persistent aromatic oxocarbenium ions through oxidative carbon–hydrogen cleavage. This process is tolerant of electron-donating and electron-withdrawing groups on the benzene ring and additional substitution on the pyran ring. A variety of nucleophiles can be added to these cations to generate a diverse set of structures. PMID:22780559

  17. A hydrogen-bonding network is important for oxidation and isomerization in the reaction catalyzed by cholesterol oxidase

    SciTech Connect

    Lyubimov, Artem Y.; Chen, Lin; Sampson, Nicole S.; Vrielink, Alice

    2009-11-01

    The importance of active-site electrostatics for oxidative and reductive half-reactions in a redox flavoenzyme (cholesterol oxidase) have been investigated by a combination of biochemistry and atomic resolution crystallography. A detailed examination of active-site dynamics demonstrates that the oxidation of substrate and the re-oxidation of the flavin cofactor by molecular oxygen are linked by a single active-site asparagine. Cholesterol oxidase is a flavoenzyme that catalyzes the oxidation and isomerization of 3β-hydroxysteroids. Structural and mutagenesis studies have shown that Asn485 plays a key role in substrate oxidation. The side chain makes an NH⋯π interaction with the reduced form of the flavin cofactor. A N485D mutant was constructed to further test the role of the amide group in catalysis. The mutation resulted in a 1800-fold drop in the overall k{sub cat}. Atomic resolution structures were determined for both the N485L and N485D mutants. The structure of the N485D mutant enzyme (at 1.0 Å resolution) reveals significant perturbations in the active site. As predicted, Asp485 is oriented away from the flavin moiety, such that any stabilizing interaction with the reduced flavin is abolished. Met122 and Glu361 form unusual hydrogen bonds to the functional group of Asp485 and are displaced from the positions they occupy in the wild-type active site. The overall effect is to disrupt the stabilization of the reduced FAD cofactor during catalysis. Furthermore, a narrow transient channel that is shown to form when the wild-type Asn485 forms the NH⋯π interaction with FAD and that has been proposed to function as an access route of molecular oxygen, is not observed in either of the mutant structures, suggesting that the dynamics of the active site are altered.

  18. Effect of Oxidation on the Densification of Sinterable RBSN (Reaction-Bonded Silicon Nitride).

    DTIC Science & Technology

    1986-01-01

    pressure/temperature cycle. Some bars were preoxidized at 10000C prior to sintering to increase the oxygen content (SiO2 ) of the speci- - mens and...tering process. Those kinetics are influenced by the amount and stability of each component or compound formed and the reaction path. Additionally...yttrium-nitrogen apatite (Y5Si301 2N) with a small amount of free silicon also detected. The densities of the specimens were between 2.4 and 2.5 g/cc

  19. Sintered-reaction Bonded Silicon Nitride Densified by a Gas Pressure Sintering Process Effects of Rare Earth Oxide Sintering Additives

    SciTech Connect

    Lee, S. H.; Ko, J. W.; Park, Y. J.; Kim, H. D.; Lin, Hua-Tay; Becher, Paul F

    2012-01-01

    Reaction-bonded silicon nitrides containing rare-earth oxide sintering additives were densified by gas pressure sintering. The sintering behavior, microstructure and mechanical properties of the resultant specimens were analyzed. For that purpose, Lu2O3-SiO2 (US), La2O3-MgO (AM) and Y2O3-Al2O3 (YA) additive systems were selected. Among the tested compositions, densification of silicon nitride occurred at the lowest temperature when using the La2O3-MgO system. Since the Lu2O3-SiO2 system has the highest melting temperature, full densification could not be achieved after sintering at 1950oC. However, the system had a reasonably high bending strength of 527 MPa at 1200oC in air and a high fracture toughness of 9.2 MPa m1/2. The Y2O3-Al2O3 system had the highest room temperature bending strength of 1.2 GPa

  20. Light-mediated heterogeneous cross dehydrogenative coupling reactions: metal oxides as efficient, recyclable, photoredox catalysts in C-C bond-forming reactions.

    PubMed

    Rueping, Magnus; Zoller, Jochen; Fabry, David C; Poscharny, Konstantin; Koenigs, René M; Weirich, Thomas E; Mayer, Joachim

    2012-03-19

    Let there be light: A heterogeneous photocatalytic system based on easily recyclable TiO(2) or ZnO allows cross dehydrogenative coupling reactions of tertiary amines. The newly developed protocols have successfully been applied to various C-C and C-P bond-forming reactions to provide nitro amines as well as amino ketones, nitriles and phosphonates.

  1. From a theoretical concept to biochemical reactions: strain-induced bond localization (SIBL) in oxidation of vitamin E.

    PubMed

    Rosenau, Thomas; Ebner, Gerald; Stanger, Amnon; Perl, Sharon; Nuri, Limor

    2004-12-17

    The regioselectivity of the oxidation of alpha-tocopherol (the main component of vitamin E) to an ortho-quinone methide (oQM) has been explained in the literature mostly by the ill-defined term "Mills-Nixon effect". In this paper we describe the preparation of eleven alpha-tocopherol derivatives, different from each other by the sum of annulation angles, but keeping the electronic factors unchanged. These compounds underwent Ag(2)O oxidation, forming two isomeric oQMs that were trapped by vinylmethyl ether. It was found that the isomeric product ratio changes smoothly as a function of the annulation angles, not abruptly from one regioisomer to the other on going from five- to six- and seven-membered rings, as predicted by the Mills-Nixon effect. The relative amounts of the products were determined at four different temperatures, and assuming that the product ratio represents the relative rates ratio, the relative enthalpy of activations could be obtained. Theoretically (at B3LYP/6-31G* theoretical level) four different intermediates were considered. Each of these underwent angular angles deformations to model the two regioisomers. At each deformation angle the energy difference between the two intermediates models was correlated to the experimental data for each of the four intermediates. It was found that the angle-deformed lithium (6-methyl-2-benzylium)phenolate correlated best (R>0.994) to the experimental data. This study confirms that the regioselectivity of the two isomeric oQMs in the oxidation of alpha-tocopherol and related compounds is simply a function of angular strain, best explained by the SIBL (strain-induced bond localization) model. In addition, this study provides evidence that the highest energy intermediate in the oxidation of vitamin E is a phenolate-benzyl cation.

  2. Diastereoselective Synthesis of Highly Substituted Tetrahydrofurans by Pd-Catalyzed Tandem Oxidative Cyclization-Redox Relay Reactions Controlled by Intramolecular Hydrogen Bonding.

    PubMed

    Brooks, Joshua L; Xu, Liping; Wiest, Olaf; Tan, Derek S

    2017-01-06

    Palladium-catalyzed oxidative cyclization of alkenols provides a convenient entry into cyclic ethers but typically proceeds with little or no diastereoselectivity for cyclization of trisubstituted olefins to form tetrahydrofurans due to the similar energies of competing 5-membered transition-state conformations. Herein, a new variant of this reaction has been developed in which a PdCl2/1,4-benzoquinone catalyst system coupled with introduction of a hydrogen-bond acceptor in the substrate enhances both diastereoselectivity and reactivity. Cyclization occurs with 5-exo Markovnikov regioselectivity. Mechanistic and computational studies support an anti-oxypalladation pathway in which intramolecular hydrogen bonding increases the nucleophilicity of the alcohol and enforces conformational constraints that enhance diastereoselectivity. The cyclization is followed by a tandem redox-relay process that provides versatile side-chain functionalities for further derivatization.

  3. Oxidation effects on the mechanical properties of a SiC-fiber-reinforced reaction-bonded Si3N4 matrix composite

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.

    1992-01-01

    The room-temperature mechanical properties of SiC fiber reinforced reaction bonded silicon nitride composites were measured after 100 hrs exposure at temperatures to 1400 C in nitrogen and oxygen environments. The composites consisted of approx. 30 vol percent uniaxially aligned 142 micron diameter SiC fibers in a reaction bonded Si3N4 matrix. The results indicate that composites heat treated in a nitrogen environment at temperatures to 1400 C showed deformation and fracture behavior equivalent to that of the as-fabricated composites. Also, the composites heat treated in an oxidizing environment beyond 400 C yielded significantly lower tensile strength values. Specifically in the temperature range from 600 to 1000 C, composites retained approx. 40 percent of their as-fabricated strength, and those heat treated in the temperatures from 1200 to 1400 C retained 70 percent. Nonetheless, for all oxygen heat treatment conditions, composite specimens displayed strain capability beyond the matrix fracture stress; a typical behavior of a tough composite.

  4. The amide C-N bond of isatins as the directing group and the internal oxidant in Ru-catalyzed C-H activation and annulation reactions: access to 8-amido isocoumarins.

    PubMed

    Kaishap, Partha Pratim; Sarma, Bipul; Gogoi, Sanjib

    2016-07-28

    The N-O, N-N and O-O bonds are the frequently used internally oxidative directing groups used in various redox-neutral coupling reactions. The sole use of the C-N bond as the oxidizing directing group was reported recently by Li X. and co-workers for the Rh(iii)-catalyzed C-H activation of phenacyl ammonium salts. Herein, we report the use of the amide C-N bond of isatins as the oxidizing directing group for the Ru(ii)-catalyzed redox-neutral C-H activation and annulation reactions with alkynes which afford 8-amido isocoumarins. The reaction also features excellent regioselectivity with alkyl aryl substituted alkynes.

  5. Bulk gold catalyzed oxidation reactions of amines and isocyanides and iron porphyrin catalyzed N-H and O-H bond insertion/cyclization reactions of diamines and aminoalcohols

    SciTech Connect

    Klobukowski, Erik

    2011-01-01

    conditions, it was found that the oxidative dehydrogenation of dibenzylamine to Nbenzylidenebenzylamine, with N-methylmorpholine N-oxide (NMMO), was nearly quantitative (96%) within 24 h. However, the reaction with oxygen was much slower, with only a 52% yield of imine product over the same time period. Moreover, the rate of reaction was found to be influenced by the nature of the amine N-oxide. For example, the use of the weakly basic pyridine N-oxide (PyNO) led to an imine yield of only 6% after 24 h. A comparison of amine N-oxide and O2 was also examined in the oxidation of PhCH{sub 2}OH to PhCHO catalyzed by bulk gold. In this reaction, a 52% yield of the aldehyde was achieved when NMMO was used, while only a 7% product yield was afforded when O{sub 2} was the oxidant after 48 h. The bulk gold-catalyzed oxidative dehydrogenation of cyclic amines generates amidines, which upon treatment with Aerosil and water were found to undergo hydrolysis to produce lactams. Moreover, 5-, 6-, and 7-membered lactams could be prepared through a one-pot reaction of cyclic amines by treatment with oxygen, water, bulk gold, and Aerosil. This method is much more atom economical than industrial processes, does not require corrosive acids, and does not generate undesired byproducts. Additionally, the gold and Aerosil catalysts can be readily separated from the reaction mixture. The second project involved studying iron(III) tetraphenylporphyrin chloride, Fe(TPP)Cl, as a homogeneous catalyst for the generation of carbenes from diazo reagents and their reaction with heteroatom compounds. Fe(TPP)Cl, efficiently catalyzed the insertion of carbenes derived from methyl 2-phenyldiazoacetates into O-H bonds of aliphatic and aromatic alcohols. Fe(TPP)Cl was also found to be an effective catalyst for tandem N-H and O-H insertion/cyclization reactions when 1,2-diamines and 1,2-alcoholamines were treated with diazo reagents. This approach provides a one-pot process for synthesizing piperazinones and

  6. Thermodynamic and kinetic study of cleavage of the N-O bond of N-oxides by a vanadium(III) complex: enhanced oxygen atom transfer reaction rates for adducts of nitrous oxide and mesityl nitrile oxide.

    PubMed

    Palluccio, Taryn D; Rybak-Akimova, Elena V; Majumdar, Subhojit; Cai, Xiaochen; Chui, Megan; Temprado, Manuel; Silvia, Jared S; Cozzolino, Anthony F; Tofan, Daniel; Velian, Alexandra; Cummins, Christopher C; Captain, Burjor; Hoff, Carl D

    2013-07-31

    Thermodynamic, kinetic, and computational studies are reported for oxygen atom transfer (OAT) to the complex V(N[t-Bu]Ar)3 (Ar = 3,5-C6H3Me2, 1) from compounds containing N-O bonds with a range of BDEs spanning nearly 100 kcal mol(-1): PhNO (108) > SIPr/MesCNO (75) > PyO (63) > IPr/N2O (62) > MesCNO (53) > N2O (40) > dbabhNO (10) (Mes = mesityl; SIPr = 1,3-bis(diisopropyl)phenylimidazolin-2-ylidene; Py = pyridine; IPr = 1,3-bis(diisopropyl)phenylimidazol-2-ylidene; dbabh = 2,3:5,6-dibenzo-7-azabicyclo[2.2.1]hepta-2,5-diene). Stopped flow kinetic studies of the OAT reactions show a range of kinetic behavior influenced by both the mode and strength of coordination of the O donor and its ease of atom transfer. Four categories of kinetic behavior are observed depending upon the magnitudes of the rate constants involved: (I) dinuclear OAT following an overall third order rate law (N2O); (II) formation of stable oxidant-bound complexes followed by OAT in a separate step (PyO and PhNO); (III) transient formation and decay of metastable oxidant-bound intermediates on the same time scale as OAT (SIPr/MesCNO and IPr/N2O); (IV) steady-state kinetics in which no detectable intermediates are observed (dbabhNO and MesCNO). Thermochemical studies of OAT to 1 show that the V-O bond in O≡V(N[t-Bu]Ar)3 is strong (BDE = 154 ± 3 kcal mol(-1)) compared with all the N-O bonds cleaved. In contrast, measurement of the N-O bond in dbabhNO show it to be especially weak (BDE = 10 ± 3 kcal mol(-1)) and that dissociation of dbabhNO to anthracene, N2, and a (3)O atom is thermodynamically favorable at room temperature. Comparison of the OAT of adducts of N2O and MesCNO to the bulky complex 1 show a faster rate than in the case of free N2O or MesCNO despite increased steric hindrance of the adducts.

  7. Gadolinium (Gd) Oxide, Carbide, and Carbonyl Cation Bond Energies and Evaluation of the Gd + O → GdO(+) + e(-) Chemi-Ionization Reaction Enthalpy.

    PubMed

    Demireva, Maria; Kim, JungSoo; Armentrout, P B

    2016-11-03

    Guided ion beam mass spectrometry (GIBMS) is used to measure the kinetic energy dependent product ion cross sections for reactions of the lanthanide metal gadolinium cation (Gd(+)) with O2, CO2, and CO and for reactions of GdO(+) with CO, O2, and Xe. GdO(+) is formed through barrierless and exothermic processes in the reactions of Gd(+) with O2 and CO2. All other reactions observed are endothermic, and analyses of their kinetic energy dependent cross sections yield 0 K bond dissociation energies (BDEs) for GdO(+), GdC(+), and GdCO(+). The 0 K BDE for GdO(+) is determined from five different reactions to be 7.69 ± 0.10 eV, and this value is combined with literature data to derive the ionization energy (IE) of GdO as 5.82 ± 0.16 eV. Additionally, GdC(+) and GdCO(+) BDEs of 3.18 ± 0.18 eV and 0.65 ± 0.06 eV are obtained from analysis of the Gd(+) reactions with CO and CO2, respectively. Theoretical GdO(+), GdC(+), and GdCO(+) BDEs are calculated for comparison with experiment using various Gd basis sets with an effective core potential and several levels of theory. For calculations that correctly predict a (10)D ground state for Gd(+), good agreement between theoretical and measured GdC(+) and GdCO(+) BDEs is obtained, whereas the GdO(+) BDE is underestimated in these calculations by about 0.8 eV. Additional BDEs for GdO(+) and GdC(+) are calculated using triple- and quadruple-ζ correlation consistent all-electron basis sets for Gd. Calculations with these basis sets provide better agreement with experiment for GdO(+) but not for GdC(+). The measured Gd(+) oxide, carbide, and carbonyl BDEs are similar to those for the group 3 metal ions, Sc(+) and Y(+). This is attributed to similarities in the ground state electronic configurations of these metal ions leading to similar interaction strengths. The experimental GdO(+) BDE measured here combined with the known IE of Gd is used to determine an exothermicity of 1.54 ± 0.10 eV for the Gd chemi-ionization reaction

  8. Metal-Free Oxidative C-C Bond Formation through C-H Bond Functionalization.

    PubMed

    Narayan, Rishikesh; Matcha, Kiran; Antonchick, Andrey P

    2015-10-12

    The formation of C-C bonds embodies the core of organic chemistry because of its fundamental application in generation of molecular diversity and complexity. C-C bond-forming reactions are well-known challenges. To achieve this goal through direct functionalization of C-H bonds in both of the coupling partners represents the state-of-the-art in organic synthesis. Oxidative C-C bond formation obviates the need for prefunctionalization of both substrates. This Minireview is dedicated to the field of C-C bond-forming reactions through direct C-H bond functionalization under completely metal-free oxidative conditions. Selected important developments in this area have been summarized with representative examples and discussions on their reaction mechanisms.

  9. Reactions of nitrogen oxides with polymers

    NASA Astrophysics Data System (ADS)

    Pariiskii, Georgii B.; Gaponova, I. S.; Davydov, Evgenii Ya

    2000-11-01

    The mechanisms of the reactions of nitrogen oxides and different classes of solid polymers are considered. Particular emphasis is given to the analysis of the mechanisms of the formation of stable nitroxyl radicals. Double bonds and amide groups of macromolecules, as well as hydroperoxides and peroxide macroradicals are shown to be involved in the reactions with nitrogen oxides. The application of nitrogen oxides for the preparation of spin-labelled polymers and the use of the ESR imaging technique (ESR tomography) for the investigation of the structure of the reaction front during nitration of solid polymers are considered. The bibliography includes 111 references.

  10. First insertion of NO into a transition-metal cluster-carbon bond: regioselective formation, structure, and reactions of the first alkanenitrile oxide complexes

    SciTech Connect

    Goldhaber, A.; Vollhardt, K.P.C.; Walborsky, E.C.; Wolfgruber, M.

    1986-02-05

    The chemistry of NO in the presence of transition metals is receiving considerable current attention because of its role in air pollution, its potential in organic synthesis by carbon-nitrogen bond formation, and an increasing interest in its basic features. The nitrosyl cation has been reacted with many mono and polynuclear metal systems, leading mainly to substitution and reduction. Insertion into alkyl and aryl metal bonds in mono-metallic complexes is documented. The unprecedented title reaction and some preliminary chemistry of the products are reported here. 27 references, 1 figure.

  11. Enhanced Electro-Kinetics of C-C Bond-Splitting during Ethanol Oxidation Reaction using Pt/Rh/Sn Catalyst with a Partially Oxidized Pt and Rh Core and a SnO2 Shell

    DOE PAGES

    Yang, G.; Su, D.; Frenkel, A. I.; ...

    2016-09-04

    Direct ethanol fuel cell (DEFC) is a promising technology for generating electricity via the electro-oxidation of liquid ethanol. Its implementation requires the development of anode catalysts capable of producing CO2 and yielding 12-electron transfer through breaking C-C bond of ethanol. Here we presented comprehensive studies of electro-kinetics of the CO2 generation on Pt/Rh/Sn ternary catalysts. Our studies showed that, for the first time, the tri–phase PtRhOx- SnO2 catalysts with a partially oxidized Pt and Rh core and a SnO2 shell, validated by X-ray absorption analyses and scanning transmission electron microscope-electron energy loss spectroscopy line scan, coincided with a 2.5-fold increasemore » in the CO2 generation rate towards ethanol oxidation reaction, compared with the bi-phase PtRh-SnO2 catalysts with a metallic PtRh alloy core and commercial Pt. These studies provided insight on the design of a new genre of electro-catalysts with a partially oxidized noble metal.« less

  12. Enhanced Electro-Kinetics of C-C Bond-Splitting during Ethanol Oxidation Reaction using Pt/Rh/Sn Catalyst with a Partially Oxidized Pt and Rh Core and a SnO2 Shell

    SciTech Connect

    Yang, G.; Su, D.; Frenkel, A. I.; Teng, X.

    2016-09-04

    Direct ethanol fuel cell (DEFC) is a promising technology for generating electricity via the electro-oxidation of liquid ethanol. Its implementation requires the development of anode catalysts capable of producing CO2 and yielding 12-electron transfer through breaking C-C bond of ethanol. Here we presented comprehensive studies of electro-kinetics of the CO2 generation on Pt/Rh/Sn ternary catalysts. Our studies showed that, for the first time, the tri–phase PtRhOx- SnO2 catalysts with a partially oxidized Pt and Rh core and a SnO2 shell, validated by X-ray absorption analyses and scanning transmission electron microscope-electron energy loss spectroscopy line scan, coincided with a 2.5-fold increase in the CO2 generation rate towards ethanol oxidation reaction, compared with the bi-phase PtRh-SnO2 catalysts with a metallic PtRh alloy core and commercial Pt. These studies provided insight on the design of a new genre of electro-catalysts with a partially oxidized noble metal.

  13. Transition-metal-free oxidative carboazidation of acrylamides via cascade C-N and C-C bond-forming reactions.

    PubMed

    Qiu, Jun; Zhang, Ronghua

    2014-07-07

    A novel transition-metal-free oxidative carboazidation of acrylamides using inexpensive NaN3 and K2S2O8 was achieved, which not only provided an efficient method to prepare various N3-substituted oxindoles, but also represented a novel strategy for C-N and C-C bond formation via a free-radical cascade process. This transformation exhibits excellent functional group tolerance, affording the desired oxindoles in good to excellent yields.

  14. Sintering of reaction bonded silicon nitride

    NASA Technical Reports Server (NTRS)

    Mangels, J. A.

    1983-01-01

    A process to produce sintered reaction-bonded Si3N4 (SRBSN) articles has been developed. This process consists of the addition of an appropriate sintering aid to reaction-bonded Si3N4 followed by sintering between 1780 and 2000 C, using an over pressure of nitrogen. The principal advantage of this process is the low sintering shrinkages of 5 to 10 percent. The properties and microstructure of two SRBSN systems sintered with MgO and Y2O3 additives are described and were found to be comparable to corresponding hot-pressed Si3N4 systems. Examples of applications of both systems are illustrated, demonstrating near net shape fabrication capability of the process.

  15. Effect of processing parameters on reaction bonding of silicon nitride

    NASA Technical Reports Server (NTRS)

    Richman, M. H.; Gregory, O. J.; Magida, M. B.

    1980-01-01

    Reaction bonded silicon nitride was developed. The relationship between the various processing parameters and the resulting microstructures was to design and synthesize reaction bonded materials with improved room temperature mechanical properties.

  16. Reaction-bonded Si3N4 and SiC matrix composites

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.; Behrendt, Donald R.

    1992-01-01

    A development status evaluation is presented for the reaction-bonded SiC- and Si3N4-matrix types of fiber-reinforced ceramic-matrix composite (FRCMC). A variety of reaction-bonding methods are being pursued for FRCMC fabrication: CVI, CVD, directed metal oxidation, and self-propagating high-temperature synthesis. Due to their high specific modulus and strength, toughness, and fabricability, reaction-bonded FRCMC are important candidate materials for such heat-engine components as combustor liners, nozzles, and turbine and stator blading. The improvement of long-term oxidative stability in these composites is a major goal of current research.

  17. Palladium nanoparticles bonded to two-dimensional iron oxide graphene nanosheets: a synergistic and highly reusable catalyst for the Tsuji-Trost reaction in water and air.

    PubMed

    Liu, Jian; Huo, Xing; Li, Tianrong; Yang, Zhengyin; Xi, Pinxian; Wang, Zhiyi; Wang, Baodui

    2014-09-01

    Low cost, high activity and selectivity, convenient separation, and increased reusability are the main requirements for noble-metal-nanocatalyst-catalyzed reactions. Despite tremendous efforts, developing noble-metal nanocatalysts to meet the above requirements remains a significant challenge. Here we present a general strategy for the preparation of strongly coupled Fe(3)O(4) and palladium nanoparticles (PdNPs) to graphene sheets by employing polyethyleneimine as the coupling linker. Transmission electron microscopic images show that Pd and Fe(3)O(4) nanoparticles are highly dispersed on the graphene surface, and the mean particle size of Pd is around 3 nm. This nanocatalyst exhibits synergistic catalysis by Pd nanoparticles supported on reduced graphene oxide (rGO) and a tertiary amine of polyethyleneimine (Pd/Fe(3)O(4)/PEI/rGO) for the Tsuji-Trost reaction in water and air. For example, the reaction of ethyl acetoacetate with allyl ethyl carbonate afforded the allylated product in more than 99 % isolated yield, and the turnover frequency reached 2200 h(-1). The yield of allylated products was 66 % for Pd/rGO without polyethyleneimine. The catalyst could be readily recycled by a magnet and reused more than 30 times without appreciable loss of activity. In addition, only about 7.5 % of Pd species leached off after 20 cycles, thus rendering this catalyst safer for the environment.

  18. N-Heterocyclic Carbene Complexes in Oxidation Reactions

    NASA Astrophysics Data System (ADS)

    Jurčík, Václav; Cazin, Catherine S. J.

    This chapter describes applications of N-heterocyclic carbenes (NHCs) in oxidation chemistry. The strong σ-donation capabilities of the NHCs allow an efficient stabilisation of metal centres in high oxidation states, while high metal-NHC bond dissociation energies suppress their oxidative decomposition. These properties make NHCs ideal ligands for oxidation processes. The first part of this chapter is dedicated to the reactivity of NHC-metal complexes towards molecular oxygen whilst the second half highlights all oxidation reactions catalysed by such complexes. These include oxidation of alcohols and olefins, oxidative cyclisations, hydrations of alkynes and nitriles, oxidative cleavage of alkenes and the oxidation of methane.

  19. Cyclization Reactions through DDQ-Mediated Vinyl Oxazolidinone Oxidation

    PubMed Central

    Liu, Lei; Floreancig, Paul E.

    2009-01-01

    Vinyl oxazolidinones react with DDQ to form α,β-unsaturated acyliminium ions in a new method for forming electrophiles under oxidative conditions. Appended nucleophiles undergo 1,4-addition reactions with these intermediates to form cyclic vinyl oxazolidinones with good levels of diastereocontrol, highlighting a new approach to utilizing oxidative carbon–hydrogen bond functionalization to increase molecular complexity. PMID:19552390

  20. Cu-catalyzed cross-dehydrogenative coupling: A versatile strategy for C-C bond formations via the oxidative activation of sp3 C-H bonds

    NASA Astrophysics Data System (ADS)

    Li, Zhiping; Bohle, D. Scott; Li, Chao-Jun

    2006-06-01

    Cu-catalyzed cross-dehydrogenative coupling (CDC) methodologies were developed based on the oxidative activation of sp3 C-H bonds adjacent to a nitrogen atom. Various sp, sp2, and sp3 C-H bonds of pronucleophiles were used in the Cu-catalyzed CDC reactions. Based on these results, the mechanisms of the CDC reactions also are discussed. C-H activation | catalysis | Baylis-Hillman reaction | Mannich reaction | Friedel-Crafts reaction

  1. Metal-free oxidative olefination of primary amines with benzylic C-H bonds through direct deamination and C-H bond activation.

    PubMed

    Gong, Liang; Xing, Li-Juan; Xu, Tong; Zhu, Xue-Ping; Zhou, Wen; Kang, Ning; Wang, Bin

    2014-09-14

    An oxidative olefination reaction between aliphatic primary amines and benzylic sp(3) C-H bonds has been achieved using N-bromosuccinimide as catalyst and tert-butyl hydroperoxide as oxidant. The olefination proceeds under mild metal-free conditions through direct deamination and benzylic C-H bond activation, and provides easy access to biologically active 2-styrylquinolines with (E)-configuration.

  2. A Bioorthogonal Reaction of N-Oxide and Boron Reagents.

    PubMed

    Kim, Justin; Bertozzi, Carolyn R

    2015-12-21

    The development of bioorthogonal reactions has classically focused on bond-forming ligation reactions. In this report, we seek to expand the functional repertoire of such transformations by introducing a new bond-cleaving reaction between N-oxide and boron reagents. The reaction features a large dynamic range of reactivity, showcasing second-order rate constants as high as 2.3×10(3)  M(-1)  s(-1) using diboron reaction partners. Diboron reagents display minimal cell toxicity at millimolar concentrations, penetrate cell membranes, and effectively reduce N-oxides inside mammalian cells. This new bioorthogonal process based on miniscule components is thus well-suited for activating molecules within cells under chemical control. Furthermore, we demonstrate that the metabolic diversity of nature enables the use of naturally occurring functional groups that display inherent biocompatibility alongside abiotic components for organism-specific applications.

  3. Hydrogen and Dihydrogen Bonds in the Reactions of Metal Hydrides.

    PubMed

    Belkova, Natalia V; Epstein, Lina M; Filippov, Oleg A; Shubina, Elena S

    2016-08-10

    The dihydrogen bond-an interaction between a transition-metal or main-group hydride (M-H) and a protic hydrogen moiety (H-X)-is arguably the most intriguing type of hydrogen bond. It was discovered in the mid-1990s and has been intensively explored since then. Herein, we collate up-to-date experimental and computational studies of the structural, energetic, and spectroscopic parameters and natures of dihydrogen-bonded complexes of the form M-H···H-X, as such species are now known for a wide variety of hydrido compounds. Being a weak interaction, dihydrogen bonding entails the lengthening of the participating bonds as well as their polarization (repolarization) as a result of electron density redistribution. Thus, the formation of a dihydrogen bond allows for the activation of both the MH and XH bonds in one step, facilitating proton transfer and preparing these bonds for further transformations. The implications of dihydrogen bonding in different stoichiometric and catalytic reactions, such as hydrogen exchange, alcoholysis and aminolysis, hydrogen evolution, hydrogenation, and dehydrogenation, are discussed.

  4. Dynamic fracture toughnesses of reaction-bonded silicon nitride

    NASA Technical Reports Server (NTRS)

    Kobayashi, A. S.; Emery, A. F.; Liaw, B. M.

    1983-01-01

    The room-temperature dynamic fracture response of reaction-bonded silicon nitride is investigated using a hybrid experimental-numerical procedure. In this procedure, experimentally determined crack velocities are utilized to drive a dynamic finite-element code or dynamic finite-difference code in its generation mode in order to extract numerically the dynamic stress intensity factor of the fracturing specimen. Results show that the dynamic fracture toughness vs crack velocity relations of the two reaction-bonded silicon nitrides do not follow the general trend in those relations of brittle polymers and steel. A definite slow crack velocity during the initial phase of dynamic crack propagation is observed in reaction-bonded silicon nitride, which results in a nonunique dynamic fracture toughness vs crack velocity relation. In addition, it is found that a propagating crack will continue to propagate under a static stress intensity factor substantially lower than K(IC).

  5. Oxygen atom transfer reactions from Mimoun complexes to sulfides and sulfoxides. A bonding evolution theory analysis.

    PubMed

    González-Navarrete, Patricio; Sensato, Fabricio R; Andrés, Juan; Longo, Elson

    2014-08-07

    In this research, a comprehensive theoretical investigation has been conducted on oxygen atom transfer (OAT) reactions from Mimoun complexes to sulfides and sulfoxides. The joint use of the electron localization function (ELF) and Thom's catastrophe theory (CT) provides a powerful tool to analyze the evolution of chemical events along a reaction pathway. The progress of the reaction has been monitored by structural stability domains from ELF topology while the changes between them are controlled by turning points derived from CT which reveal that the reaction mechanism can be separated in several steps: first, a rupture of the peroxo O1-O2 bond, then a rearrangement of lone pairs of the sulfur atom occurs and subsequently the formation of S-O1 bond. The OAT process involving the oxidation of sulfides and sulfoxides is found to be an asynchronous process where O1-O2 bond breaking and S-O1 bond formation processes do not occur simultaneously. Nucleophilic/electrophilic characters of both dimethyl sulfide and dimethyl sulfoxide, respectively, are sufficiently described by our results, which hold the key to unprecedented insight into the mapping of electrons that compose the bonds while the bonds change.

  6. Oxidation and Reduction Reactions in Organic Chemistry

    ERIC Educational Resources Information Center

    Shibley, Ivan A., Jr.; Amaral, Katie E.; Aurentz, David J.; McCaully, Ronald J.

    2010-01-01

    A variety of approaches to the concept of oxidation and reduction appear in organic textbooks. The method proposed here is different than most published approaches. The oxidation state is calculated by totaling the number of heterogeneous atoms, [pi]-bonds, and rings. A comparison of the oxidation states of reactant and product determine what type…

  7. Organometallic nickel(III) complexes relevant to cross-coupling and carbon-heteroatom bond formation reactions.

    PubMed

    Zheng, Bo; Tang, Fengzhi; Luo, Jia; Schultz, Jason W; Rath, Nigam P; Mirica, Liviu M

    2014-04-30

    Nickel complexes have been widely employed as catalysts in C-C and C-heteroatom bond formation reactions. In addition to Ni(0) and Ni(II) intermediates, several Ni-catalyzed reactions are proposed to also involve odd-electron Ni(I) and Ni(III) oxidation states. We report herein the isolation, structural and spectroscopic characterization, and organometallic reactivity of Ni(III) complexes containing aryl and alkyl ligands. These Ni(III) species undergo transmetalation and/or reductive elimination reactions to form new C-C or C-heteroatom bonds and are also competent catalysts for Kumada and Negishi cross-coupling reactions. Overall, these results provide strong evidence for the direct involvement of organometallic Ni(III) species in cross-coupling reactions and oxidatively induced C-heteroatom bond formation reactions.

  8. Structure, Bonding and Surface Chemistry of Metal Oxide Nanoclusters

    DTIC Science & Technology

    2015-06-23

    AFRL-OSR-VA-TR-2015-0191 Structure , Bonding and Surface Chemistry of Metal Oxide Nanoclusters Michael Duncan UNIVERSITY OF GEORGIA RESEARCH...2015 4. TITLE AND SUBTITLE Structure , Bonding and Surface Chemistry of Metal Oxide Nanoclusters 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-12-1...Back (Rev. 8/98) DISTRIBUTION A: Distribution approved for public release. Final Report Project title: Structure , Bonding and Surface Chemistry of

  9. Metal-free oxidation of aromatic carbon-hydrogen bonds through a reverse-rebound mechanism.

    PubMed

    Yuan, Changxia; Liang, Yong; Hernandez, Taylor; Berriochoa, Adrian; Houk, Kendall N; Siegel, Dionicio

    2013-07-11

    Methods for carbon-hydrogen (C-H) bond oxidation have a fundamental role in synthetic organic chemistry, providing functionality that is required in the final target molecule or facilitating subsequent chemical transformations. Several approaches to oxidizing aliphatic C-H bonds have been described, drastically simplifying the synthesis of complex molecules. However, the selective oxidation of aromatic C-H bonds under mild conditions, especially in the context of substituted arenes with diverse functional groups, remains a challenge. The direct hydroxylation of arenes was initially achieved through the use of strong Brønsted or Lewis acids to mediate electrophilic aromatic substitution reactions with super-stoichiometric equivalents of oxidants, significantly limiting the scope of the reaction. Because the products of these reactions are more reactive than the starting materials, over-oxidation is frequently a competitive process. Transition-metal-catalysed C-H oxidation of arenes with or without directing groups has been developed, improving on the acid-mediated process; however, precious metals are required. Here we demonstrate that phthaloyl peroxide functions as a selective oxidant for the transformation of arenes to phenols under mild conditions. Although the reaction proceeds through a radical mechanism, aromatic C-H bonds are selectively oxidized in preference to activated Csp3-H bonds. Notably, a wide array of functional groups are compatible with this reaction, and this method is therefore well suited for late-stage transformations of advanced synthetic intermediates. Quantum mechanical calculations indicate that this transformation proceeds through a novel addition-abstraction mechanism, a kind of 'reverse-rebound' mechanism as distinct from the common oxygen-rebound mechanism observed for metal-oxo oxidants. These calculations also identify the origins of the experimentally observed aryl selectivity.

  10. Copper-catalyzed oxaziridine-mediated oxidation of C-H bonds.

    PubMed

    Motiwala, Hashim F; Gülgeze, Belgin; Aubé, Jeffrey

    2012-08-17

    The highly regio- and chemoselective oxidation of activated C-H bonds has been observed via copper-catalyzed reactions of oxaziridines. The oxidation proceeded with a variety of substrates, primarily comprising allylic and benzylic examples, as well as one example of an otherwise unactivated tertiary C-H bond. The mechanism of the reaction is proposed to involve single-electron transfer to the oxaziridines to generate a copper-bound radical anion, followed by hydrogen atom abstraction and collapse to products, with regeneration of the catalyst by a final single-electron transfer event. The involvement of allylic radical intermediates was supported by a radical-trapping experiment with TEMPO.

  11. Hydrogen-bond-assisted activation of allylic alcohols for palladium-catalyzed coupling reactions.

    PubMed

    Gumrukcu, Yasemin; de Bruin, Bas; Reek, Joost N H

    2014-03-01

    We report direct activation of allylic alcohols using a hydrogen-bond-assisted palladium catalyst and use this for alkylation and amination reactions. The novel catalyst comprises a palladium complex based on a functionalized monodentate phosphoramidite ligand in combination with urea additives and affords linear alkylated and aminated allylic products selectively. Detailed kinetic analysis show that oxidative addition of the allyl alcohol is the rate-determining step, which is facilitated by hydrogen bonds between the alcohol, the ligand functional group, and the additional urea additive.

  12. Alkali metal mediated C-C bond coupling reaction

    NASA Astrophysics Data System (ADS)

    Tachikawa, Hiroto

    2015-02-01

    Metal catalyzed carbon-carbon (C-C) bond formation is one of the important reactions in pharmacy and in organic chemistry. In the present study, the electron and hole capture dynamics of a lithium-benzene sandwich complex, expressed by Li(Bz)2, have been investigated by means of direct ab-initio molecular dynamics method. Following the electron capture of Li(Bz)2, the structure of [Li(Bz)2]- was drastically changed: Bz-Bz parallel form was rapidly fluctuated as a function of time, and a new C-C single bond was formed in the C1-C1' position of Bz-Bz interaction system. In the hole capture, the intermolecular vibration between Bz-Bz rings was only enhanced. The mechanism of C-C bond formation in the electron capture was discussed on the basis of theoretical results.

  13. Alkali metal mediated C–C bond coupling reaction

    SciTech Connect

    Tachikawa, Hiroto

    2015-02-14

    Metal catalyzed carbon-carbon (C–C) bond formation is one of the important reactions in pharmacy and in organic chemistry. In the present study, the electron and hole capture dynamics of a lithium-benzene sandwich complex, expressed by Li(Bz){sub 2}, have been investigated by means of direct ab-initio molecular dynamics method. Following the electron capture of Li(Bz){sub 2}, the structure of [Li(Bz){sub 2}]{sup −} was drastically changed: Bz–Bz parallel form was rapidly fluctuated as a function of time, and a new C–C single bond was formed in the C{sub 1}–C{sub 1}′ position of Bz–Bz interaction system. In the hole capture, the intermolecular vibration between Bz–Bz rings was only enhanced. The mechanism of C–C bond formation in the electron capture was discussed on the basis of theoretical results.

  14. Alkali metal mediated C-C bond coupling reaction.

    PubMed

    Tachikawa, Hiroto

    2015-02-14

    Metal catalyzed carbon-carbon (C-C) bond formation is one of the important reactions in pharmacy and in organic chemistry. In the present study, the electron and hole capture dynamics of a lithium-benzene sandwich complex, expressed by Li(Bz)2, have been investigated by means of direct ab-initio molecular dynamics method. Following the electron capture of Li(Bz)2, the structure of [Li(Bz)2](-) was drastically changed: Bz-Bz parallel form was rapidly fluctuated as a function of time, and a new C-C single bond was formed in the C1-C1' position of Bz-Bz interaction system. In the hole capture, the intermolecular vibration between Bz-Bz rings was only enhanced. The mechanism of C-C bond formation in the electron capture was discussed on the basis of theoretical results.

  15. Oxygen-transfer reactions of methylrhenium oxides

    SciTech Connect

    Abu-Omar, M.M.; Espenson, J.H.; Appelman, E.H.

    1996-12-18

    Methylrhenium dioxide, CH{sub 3}ReO{sub 2} (or MDO), is produced from methylrhenium trioxide, CH{sub 3}ReO{sub 3} (or MTO), and hypophosphorous acid in acidic aqueous medium. Its mechanism is discussed in light of MTO`s coordination ability and the inverse kinetic isotope effect (kie): H{sub 2}P(O)OH, k = 0.028 L mol{sup -1} s{sup -1}; D{sub 2}P(O)OH, k = 0.039 L mol{sup -1} s{sup -1}. The Re(V) complex, MDO, reduces perchlorate and other inorganic oxoanions (XO{sub n}{sup -}, where X = Cl, Br, or I and N = 4 or 3). The rate is controlled by the first oxygen abstraction from perchlorate to give chlorate, with a second-order rate constant at pH 0 and 25 {degrees}C of 7.3 L mol{sup -1} s{sup -1}. Organic oxygen-donors such as sulfoxides and pyridine N-oxides oxidize MDO to MTO as do metal oxo complexes: VO{sup 2+}{sub (aq)}, VO{sub 2}{sup +}{sub (aq)}, HOMoO{sub 2}{sup +}{sub (aq)}, and MnO{sub 4}{sup -}. The reaction between V{sup 2+}{sub (aq)} with MTO and the reduction of VO{sup 2+} with MDO made it possible to determine the free energy for MDO/MTO. Oxygen-atom transfer from oxygen-donors to MDO involves nucleophilic attack of X-O on the electrophilic Re(V) center of MDO; the reaction proceeds via an [MDO{center_dot}XO] adduct, which is supported by the saturation kinetics observed for some. The parameters that control and facilitate the kinetics of such oxygen-transfer processes are suggested and include the force constant for the asymmetric stretching of the element-oxygen bond.

  16. Phase Evolution in Boride-Based Cermets and Reaction Bonding onto Plain Low Carbon Steel Substrate

    NASA Astrophysics Data System (ADS)

    Palanisamy, B.; Upadhyaya, A.

    2012-04-01

    Reaction sinter bonding is a process that aims to bond two materials for improvement in properties through reactive sintering technique. The process has been effectively used to sinter hard materials like borides in situ which not only possess excellent oxidation resistance, good corrosion resistance but also resistant to abrasive wear. Sinter bonding is a unique surface modification process achieved through powder metallurgy and is competent with other techniques like boronizing sintering and sinter-brazing since it eliminates the additional operations of heat treatment and assembly and removes the inherent setbacks with these processes. This study focuses on identifying the phase evolution mechanism using characterization tools like x-ray diffractometry and energy dispersive spectroscopy and study of sinter bonding of the boron containing precursors (Mo-Cr-Fe-Ni-FeB-MoB) onto plain carbon steel. A microstructure containing Fe-based matrix dispersed with complex borides develops with temperature in the tape cast sheets. A fivefold increase in hardness between plain carbon steel in wrought condition and sinter bonded steel was observed. The multilayer consisted of a reaction zone adjacent to the interface and was investigated with the composition profile and hardness measurements. A model of sinter bonding between the cermet and the steel has also been proposed.

  17. Recent aspects of the proton transfer reaction in H-bonded complexes

    NASA Astrophysics Data System (ADS)

    Szafran, Mirosław

    1996-07-01

    Proton transfer processes cover a very wide range of situations and time scales and they are of great interest from the viewpoint of chemical reactions in solution. These processes can occur via thermally activated crossing or tunneling. This review considers various aspects of this many-faceted field. Spectroscopic, dielectric, colligative and energetic properties and structures of various species with H-bonds are examined. Proton transfer reactions in water and organic solvents, and the contribution of various H-bonded species and ions to these processes are discussed. Among other topics, this survey includes the effects of solvent, acid-base stoichiometry, concentration, temperature and impurity on proton transfer reactions in complexes of phenols and carboxylic acids with amines, pyridines and pyridine N-oxides. The contribution of the nonstoichiometric acid-base complexes and ionic species to the reversible proton transfer mechanism is discussed.

  18. Towards ideal synthesis: alkenylation of aryl C-H bonds by a Fujiwara-Moritani reaction.

    PubMed

    Zhou, Lihong; Lu, Wenjun

    2014-01-13

    An overview of recent progress in the Fujiwara-Moritani reaction, which is the palladium-catalyzed oxidative coupling of arenes with olefins to afford alkenyl arenes, is described. It is emphasized that regioselectivity on aryl ortho- or meta-CH activation could be controlled very well in the presence of Pd, Rh, or Ru catalysts with the assistance of various chelation groups on aromatic rings in this coupling reaction. Catalytic alkenylation of aryl CH bonds from simple arenes is also discussed, especially from electron-deficient arenes. These advanced protocols would not only make the Fujiwara-Moritani reaction more useful and applicable in organic synthesis but also light the way for the further development of the functionalization of normal CH bonds.

  19. Tetrel bond-σ-hole bond as a preliminary stage of the SN2 reaction.

    PubMed

    Grabowski, Sławomir J

    2014-02-07

    MP2/aug-cc-pVTZ calculations were carried out on complexes of ZH4, ZFH3 and ZF4 (Z = C, Si and Ge) molecules with HCN, LiCN and Cl(-) species acting as Lewis bases through nitrogen centre or chlorine ion. Z-Atoms in these complexes usually act as Lewis acid centres forming σ-hole bonds with Lewis bases. Such noncovalent interactions may adopt a name of tetrel bonds since they concern the elements of the group IV. There are exceptions for complexes of CH4 and CF4, as well as for the F4SiNCH complex where the tetrel bond is not formed. The energetic and geometrical parameters of the complexes were analyzed and numerous correlations between them were found. The Quantum Theory of 'Atoms in Molecules' and Natural Bonds Orbital (NBO) method used here should deepen the understanding of the nature of the tetrel bond. An analysis of the electrostatic potential surfaces of the interacting species is performed. The electron charge redistribution, being the result of the tetrel bond formation, is the same as that of the SN2 reaction. The energetic and geometrical parameters of the complexes analyzed here correspond to different stages of the SN2 process.

  20. Fracture of yttria-doped, sintered reaction-bonded silicon nitride

    NASA Technical Reports Server (NTRS)

    Govila, R. K.; Mangels, J. A.; Baer, J. R.

    1985-01-01

    Flexural strength of an yttria-doped, slip-cast, sintered reaction-bonded silicon nitride was evaluated as a function of temperature (20 to 1400 C in air), applied stress, and time. Static oxidation at 700 to 1400 C was investigated in detail; in tests at 1000 C in air, the material showed anomalous weight gain. Flexural stress-rupture testing at 800 to 1200 C in air indicated that the material is susceptible to stress-enhanced oxidation and early failure. Fractographic evidence for time-dependent and -independent failures is presented.

  1. The nitric oxide producing reactions of hydroxyurea.

    PubMed

    King, S Bruce

    2003-03-01

    Hydroxyurea is used to treat a variety of cancers and sickle cell disease. Despite this widespread use, a complete mechanistic understanding of the beneficial actions of this compound remains to be understood. Hydroxyurea inhibits ribonucleotide reductase and increases the levels of fetal hemoglobin, which explains a portion of the effects of this drug. Administration of hydroxyurea to patients results in a significant increase in levels of iron nitrosyl hemoglobin, nitrite and nitrate suggesting the in vivo metabolism of hydroxyurea to nitric oxide. Formation of nitric oxide from hydroxyurea may explain a portion of the observed effects of hydroxyurea treatment. At the present, the mechanism or mechanisms of nitric oxide release, the identity of the in vivo oxidant and the site of metabolism remain to be identified. Chemical oxidation of hydroxyurea produces nitric oxide and nitroxyl, the one-electron reduced form of nitric oxide. These oxidative pathways generally proceed through the nitroxide radical (2) or C-nitrosoformamide (3). Biological oxidants, including both iron and copper containing enzymes and proteins, also convert hydroxyurea to nitric oxide or its decomposition products in vitro and these reactions also occur through these intermediates. A number of other reactions of hydroxyurea including the reaction with ribonucleotide reductase and irradiation demonstrate the potential to release nitric oxide and should be further investigated. Gaining an understanding of the metabolism of hydroxyurea to nitric oxide will provide valuable information towards the treatment of these disorders and may lead to the development of better therapeutic agents.

  2. Oxidation-Reduction Condensation of Diazaphosphites for Carbon-Heteroatom Bond Formation Based on Mitsunobu Mechanism.

    PubMed

    Huang, Hai; Kang, Jun Yong

    2017-02-03

    An efficient oxidation-reduction condensation reaction of diazaphosphites with various nonacidic pronucleophiles in the presence of DIAD as a weak oxidant has been developed for carbon-heteroatom bond formation. This mild process affords structurally diverse tertiary amines, secondary amines, esters, ethers, and thioethers in moderate to excellent yields. The selective synthesis of secondary amines from primary amines has been achieved. Importantly, a practical application to the synthesis of antiparkinsonian agent piribedil has been demonstrated.

  3. Oxidative addition of the C-I bond on aluminum nanoclusters

    NASA Astrophysics Data System (ADS)

    Sengupta, Turbasu; Das, Susanta; Pal, Sourav

    2015-07-01

    Energetics and the in-depth reaction mechanism of the oxidative addition step of the cross-coupling reaction are studied in the framework of density functional theory (DFT) on aluminum nanoclusters. Aluminum metal in its bulk state is totally inactive towards carbon-halogen bond dissociation but selected Al nanoclusters (size ranging from 3 to 20 atoms) have shown a significantly lower activation barrier towards the oxidative addition reaction. The calculated energy barriers are lower than the gold clusters and within a comparable range with the conventional and most versatile Pd catalyst. Further investigations reveal that the activation energies and other reaction parameters are highly sensitive to the geometrical shapes and electronic structures of the clusters rather than their size, imposing the fact that comprehensive studies on aluminum clusters can be beneficial for nanoscience and nanotechnology. To understand the possible reaction mechanism in detail, the reaction pathway is investigated with the ab initio Born Oppenheimer Molecular Dynamics (BOMD) simulation and the Natural Bond Orbital (NBO) analysis. In short, our theoretical study highlights the thermodynamic and kinetic details of C-I bond dissociation on aluminum clusters for future endeavors in cluster chemistry.Energetics and the in-depth reaction mechanism of the oxidative addition step of the cross-coupling reaction are studied in the framework of density functional theory (DFT) on aluminum nanoclusters. Aluminum metal in its bulk state is totally inactive towards carbon-halogen bond dissociation but selected Al nanoclusters (size ranging from 3 to 20 atoms) have shown a significantly lower activation barrier towards the oxidative addition reaction. The calculated energy barriers are lower than the gold clusters and within a comparable range with the conventional and most versatile Pd catalyst. Further investigations reveal that the activation energies and other reaction parameters are highly

  4. Catalyzed hydrolytic cleavage reaction of carbon-carbon bond

    SciTech Connect

    Ioffe, I.I.; Rubinskaya, E.V.

    1986-12-01

    The authors split the carbon-carbon bond for a series of simple and complex organic compounds in neutral aqueous solutions on a heterogeneous metal-containing catalyst, palladium on carbon. The experimental results are given. In each case, the catalytic effect was controlled by a blank experiment, without a catalyst, where there was no decomposition of the substrate. The occurrence of the heterogeneous-catalytic cleavage reaction of the carbon-carbon bonds in the molecules is indicated not only by their extensive conversion, but also by the almost complete depletion of the content of organic carbon, confirmed by a similar decrease in the chemical consumption of oxygen coefficient in the system, which is possible only in the complete decomposition of the organic compounds to gaseous products or with the formation of inappreciable amounts of low-molecular-weight water-soluble compounds.

  5. Friedel-Crafts reaction of benzyl fluorides: selective activation of C-F bonds as enabled by hydrogen bonding.

    PubMed

    Champagne, Pier Alexandre; Benhassine, Yasmine; Desroches, Justine; Paquin, Jean-François

    2014-12-08

    A Friedel-Crafts benzylation of arenes with benzyl fluorides has been developed. The reaction produces 1,1-diaryl alkanes in good yield under mild conditions without the need for a transition metal or a strong Lewis acid. A mechanism involving activation of the C-F bond through hydrogen bonding is proposed. This mode of activation enables the selective reaction of benzylic C-F bonds in the presence of other benzylic leaving groups.

  6. Allenes and computational chemistry: from bonding situations to reaction mechanisms.

    PubMed

    Soriano, Elena; Fernández, Israel

    2014-05-07

    The present review is focused on the application of computational/theoretical methods to the wide and rich chemistry of allenes. Special emphasis is made on the interplay and synergy between experimental and computational methodologies, rather than on recent developments in methods and algorithms. Therefore, this review covers the state-of-the-art applications of computational chemistry to understand and rationalize the bonding situation and vast reactivity of allenes. Thus, the contents of this review span from the most fundamental studies on the equilibrium structure and chirality of allenes to recent advances in the study of complex reaction mechanisms involving allene derivatives in organic and organometallic chemistry.

  7. Exothermic Surface Reactions in Alumina-Aluminum Shell-Core Nanoparticles with Iodine Oxide Decomposition Fragments

    DTIC Science & Technology

    2014-02-22

    AND SUBTITLE Sa. CONTRACT NUMBER Exothennic smface reactions in alumina-aluminum shell-core W911NF-11-1-0439 nanoprui icles with iodine oxide...is observed for aluminum and an iodine -containing oxidizer. This PIR is exothermic and precedes the main exothennic reaction conesponding to aluminum...combustion. For the aluminum and iodine oxide system, exothennic smface chemistiy was recently predicted for I-0 fragments fonning bridge bonds with

  8. Oxidative Reactions with Nonaqueous Enzymes

    SciTech Connect

    Jonathan S. Dordick; Douglas Clark; Brian H Davison; Alexander Klibanov

    2001-12-30

    The objective of this work is to demonstrate a proof-of-concept of enzymatic oxidative processing in nonaqueous media using alkene epoxidation and phenolic polymerization as relevant targets. This project will provide both the fundamental and applied investigations necessary to initiate the implementation of oxidative biocatalysts as commercially relevant alternatives to chemical processing in general, and to phenolic polymerizations and alkene epoxidation specifically. Thus, this work will address the Bioprocessing Solicitation Area to: (1) makes major improvements to phenolic polymerization and alkene epoxidation technologies; (2) is expected to be cost competitive with competing conventional processes; and (3) produces higher yields with less waste.

  9. Method of densifying an article formed of reaction bonded silicon nitride

    NASA Technical Reports Server (NTRS)

    Mangels, John A. (Inventor)

    1982-01-01

    A method of densifying an article formed of reaction bonded silicon nitride is disclosed. The reaction bonded silicon nitride article is packed in a packing mixture consisting of silicon nitride powder and a densification aid. The reaction bonded silicon nitride article and packing powder are sujected to a positive, low pressure nitrogen gas treatment while being heated to a treatment temperature and for a treatment time to cause any open porosity originally found in the reaction bonded silicon nitride article to be substantially closed. Thereafter, the reaction bonded silicon nitride article and packing powder are subjected to a positive high pressure nitrogen gas treatment while being heated to a treatment temperature and for a treatment time to cause a sintering of the reaction bonded silicon nitride article whereby the strength of the reaction bonded silicon nitride article is increased.

  10. Dynamics of photoinduced reactions at oxide surfaces

    NASA Astrophysics Data System (ADS)

    Al-Shamery, K.

    1996-11-01

    This report summarizes our work on UV-laser induced desorption of small molecules and atoms from transition metal oxides. The systems presented serve as examples for a simple photochemical reaction, the fission of the molecule surface bond. State resolved detection methods were used to record the final state distributions of the desorbing neutral molecules. Detailed results on the systems NO/NiO(1 1 1) and CO/Cr2O3(0 0 0 1) are presented. The experiments include investigations on stereodynamic aspects like the angular distributions of the desorbing molecules and, in the case of CO desorption, the rotational alignment with respect to the surface normal. Large desorption cross sections of (6±1) ṡ 10-17 cm2 for NO and (3.5±1) ṡ 10-17 cm2 for CO have been found for the desorption at 6.4 eV. The wavelength dependence indicates that the primary excitation step is substrate induced. The final state distributions show a high degree of translational, rotational and vibrational excitation and are clearly nonthermal of origin. The results are consistent with the formation of a negative ion intermediate state of the adsorbate. This observation is supported from a comparison to former results on NO/NiO(1 0 0) for which extensive ab initio calculations including electronically excited states exist. A spin state dependence of the vibrational excitation of NO could only be observed for NO/NiO(1 1 1) and is absent for NO/NiO(1 0 0). We attribute this observation to a spin state dependent coupling of the desorbing molecule to the surface in case the spin lattice orientation of the surface shows a preferential orientation. In the (1 1 1) plane the spin orientation is parallel within neighbour nickel ions while it is alternating in the (1 0 0) plane. For both systems studied the velocity component parallel to the surface is constant leading to a strong peaking along the surface normal for the fast molecules. The change from a preferred helicopter rotation (angular momentum

  11. REACTION OF AMINO-ACIDS AND PEPTIDE BONDS WITH FORMALDEHYDE AS MEASURED BY CHANGES IN THE ULTRA-VIOLET SPECTRA,

    DTIC Science & Technology

    AMINO ACIDS , CHEMICAL REACTIONS), (*PEPTIDES, CHEMICAL REACTIONS), (*FORMALDEHYDE, CHEMICAL REACTIONS), (*ULTRAVIOLET SPECTROSCOPY, PROTEINS), ABSORPTION SPECTRA, CHEMICAL BONDS, AMIDES, CHEMICAL EQUILIBRIUM, REACTION KINETICS

  12. Iron Complex Catalyzed Selective C-H Bond Oxidation with Broad Substrate Scope.

    PubMed

    Jana, Sandipan; Ghosh, Munmun; Ambule, Mayur; Sen Gupta, Sayam

    2017-02-17

    The use of a peroxidase-mimicking Fe complex has been reported on the basis of the biuret-modified TAML macrocyclic ligand framework (Fe-bTAML) as a catalyst to perform selective oxidation of unactivated 3° C-H bonds and activated 2° C-H bonds with low catalyst loading (1 mol %) and high product yield (excellent mass balance) under near-neutral conditions and broad substrate scope (18 substrates which includes arenes, heteroaromatics, and polar functional groups). Aliphatic C-H oxidation of 3° and 2° sites of complex substrates was achieved with predictable selectivity using steric, electronic, and stereoelectronic rules that govern site selectivity, which included oxidation of (+)-artemisinin to (+)-10β-hydroxyartemisinin. Mechanistic studies indicate Fe(V)(O) to be the active oxidant during these reactions.

  13. Regio-selectivity of the Oxidative C-S Bond Formation in Ergothioneine and Ovothiol Biosyntheses

    PubMed Central

    Song, Heng; Leninger, Maureen; Lee, Norman

    2014-01-01

    Ergothioneine (5) and ovothiol (8) are two novel thiol-containing natural products. Their C-S bonds are formed by oxidative coupling reactions catalyzed by EgtB and OvoA enzymes, respectively. In this work, it was discovered that besides catalyzing the oxidative coupling between histidine and cysteine (1 → 6 conversion), OvoA can also catalyze a direct oxidative coupling between hercynine (2) and cysteine (2 → 4 conversion), which can shorten the ergothioneine biosynthetic pathway by two steps. PMID:24016264

  14. Regioselectivity of the oxidative C-S bond formation in ergothioneine and ovothiol biosyntheses.

    PubMed

    Song, Heng; Leninger, Maureen; Lee, Norman; Liu, Pinghua

    2013-09-20

    Ergothioneine (5) and ovothiol (8) are two novel thiol-containing natural products. Their C-S bonds are formed by oxidative coupling reactions catalyzed by EgtB and OvoA enzymes, respectively. In this work, it was discovered that in addition to catalyzing the oxidative coupling between histidine and cysteine (1 → 6 conversion), OvoA can also catalyze a direct oxidative coupling between hercynine (2) and cysteine (2 → 4 conversion), which can shorten the ergothioneine biosynthetic pathway by two steps.

  15. Production of pesticide metabolites by oxidative reactions.

    PubMed

    Hodgson, E

    1982-08-01

    The cytochrome P-450-dependent monooxygenase system catalyzes a wide variety of oxidations of pesticide chemicals and related compounds. These reactions include epoxidation and aromatic hydroxylation, aliphatic hydroxylation, O-, N- and S-dealkylation, N-oxidation, oxidative deamination, S-oxidation, P-oxidation, desulfuration and ester cleavage and may result in either detoxication or activation of the pesticide. The current status of such reactions, relative to the production, in vivo, of biologically active intermediates in pesticide metabolism is summarized. More recently we have shown that the FAD-containing monooxygenase of mammalian liver (E.C.1.14.13.8), a xenobiotic metabolizing enzyme of broad specificity formerly known as an amine oxidase, is involved in a variety of pesticide oxidations. These include sulfoxidation of organophosphorus insecticides such as phorate and disulfoton, oxidative desulfuration of phosphonate insecticides such as fonofos and oxidation at the phosphorus atom in such compounds as the cotton defoliant, folex. The relative importance of the FAD-containing monooxygenase vis-a-vis the cytochrome P-450-dependent monooxygenase system is discussed, based on in vitro studies on purified enzymes.

  16. Chemical bonding in electron-deficient boron oxide clusters: core boronyl groups, dual 3c-4e hypervalent bonds, and rhombic 4c-4e bonds.

    PubMed

    Chen, Qiang; Lu, Haigang; Zhai, Hua-Jin; Li, Si-Dian

    2014-04-28

    We explore the structural and bonding properties of the electron-deficient boron oxide clusters, using a series of B3On(-/0/+) (n = 2-4) clusters as examples. Global-minimum structures of these boron oxide clusters are identified via unbiased Coalescence Kick and Basin Hopping searches, which show a remarkable size and charge-state dependence. An array of new bonding elements are revealed: core boronyl groups, dual 3c-4e hypervalent bonds (ω-bonds), and rhombic 4c-4e bonds (o-bonds). In favorable cases, oxygen can exhaust all its 2s/2p electrons to facilitate the formation of B-O bonds. The current findings should help understand the bonding nature of low-dimensional boron oxide nanomaterials and bulk boron oxides.

  17. BN Bonded BN fiber article from boric oxide fiber

    DOEpatents

    Hamilton, Robert S.

    1978-12-19

    A boron nitride bonded boron nitride fiber article and the method for its manufacture which comprises forming a shaped article with a composition comprising boron oxide fibers and boric acid, heating the composition in an anhydrous gas to a temperature above the melting point of the boric acid and nitriding the resulting article in ammonia gas.

  18. Bonding of sapphire to sapphire by eutectic mixture of aluminum oxide and zirconium oxide

    NASA Technical Reports Server (NTRS)

    Deluca, J. J. (Inventor)

    1975-01-01

    Bonding of an element comprising sapphire, ruby or blue sapphire to another element of such material with a eutectic mixture of aluminum oxide and zirconium oxide is discussed. The bonding mixture may be applied in the form of a distilled water slurry or by electron beam vapor deposition. In one embodiment the eutectic is formed in situ by applying a layer of zirconium oxide and then heating the assembly to a temperature above the eutectic temperature and below the melting point of the material from which the elements are formed. The formation of a sapphire rubidium maser cell utilizing eutectic bonding is shown.

  19. Bonding of sapphire to sapphire by eutectic mixture of aluminum oxide and zirconium oxide

    NASA Technical Reports Server (NTRS)

    Deluca, J. J. (Inventor)

    1979-01-01

    An element comprising sapphire, ruby or blue sapphire can be bonded to another element of such material with a eutectic mixture of aluminum oxide and zirconium oxide. The bonding mixture may be applied in the form of a distilled water slurry or by electron beam vapor deposition. In one embodiment the eutectic is formed in situ by applying a layer of zirconium oxide and then heating the assembly to a temperature above the eutectic temperature and below the melting point of the material from which the elements are formed. The formation of a sapphire rubidium maser cell utilizing eutectic bonding is shown.

  20. Hydrogen multicenter bond in oxide and nitride semiconductors

    NASA Astrophysics Data System (ADS)

    Janotti, Anderson

    2009-03-01

    Hydrogen is a very reactive atom, occurring in virtually all organic and in many inorganic compounds. It can form a purely covalent bond, in which two hydrogen atoms share a pair of electrons in a two-electron two-center bond, as well as polar covalent bonds, such as in an H2O molecule. In solids, hydrogen is usually considered as an interstitial impurity. In elemental semiconductors, such as silicon, hydrogen forms a three-center bond when located at the bond center. In compound semiconductors, hydrogen bonds to the anionic species in p-type material, and to the cationic species in n-type. Thus far, hydrogen in solids has been found to form chemical bonds with one, two, or at most three other atoms. Higher coordination numbers are exceedingly rare and have been reported only for clusters. In this talk we will show that hydrogen is capable of forming multicenter bonds in solids, occupying substitutional sites. As examples, we discuss substitutional hydrogen impurities in oxides (ZnO, MgO, SnO2, TiO2) [1,2] and nitrides (InN, AlN, GaN) [3]. Based on first-principles calculations we show that hydrogen replaces oxygen (nitrogen) and forms genuine chemical bonds with multiple metal atoms, in truly multicoordinated configurations. These multicenter bonds are surprisingly strong despite the large hydrogen-metal distances when compared to typical values in hydrogen two-center bonds. Hydrogen in the multicenter bond configuration is a shallow donor in a number of materials. In conducting oxides, it provides a consistent explanation for the observed dependence of electrical conductivity on oxygen partial pressure, thus resolving a long-standing controversy on the role of point defects in unintentional n-type conductivity [1,2]. [4pt] [1] A. Janotti and C. G Van de Walle, Nature Materials 6, 44 (2007). [0pt] [2] A. K. Singh, A. Janotti, M. Scheffler, and C. G. Van de Walle, Phys. Rev. Lett. 101, 055502 (2008). [0pt] [3] A. Janotti and C. G. Van de Walle, Appl. Phys. Lett. 92

  1. Tantalum surface oxidation: Bond relaxation, energy entrapment, and electron polarization

    NASA Astrophysics Data System (ADS)

    Guo, Yongling; Bo, Maolin; Wang, Yan; Liu, Yonghui; Sun, Chang Q.; Huang, Yongli

    2017-02-01

    A combination of photoelectron spectrometric analysis and density functional theory calculations has enabled reconciliation of the bond-energy-electron relaxation for the Ta(100, 110, 111) surfaces chemisorbed with oxygen at different coverages. Results show that increasing oxygen coverage lowers the adsorption energy associated with lattice reconstruction. Valence electrons transfer from Ta surface atoms to oxygen to create four excessive DOS features in terms of Osbnd Ta bonding, lone pairs of oxygen, Ta+ electron holes, and polarized Ta dipoles. Oxidation proceeds in the following dynamics: oxygen gets electrons from two neighboring Ta atoms left behind Ta+; the sp3-orbital hybridization takes place with additional two electron lone pairs, the lone pairs polarize the other two Ta neighbors becoming dipoles. X-ray photoelectron spectral analysis results in the 4f binding energy of an isolated Ta atom and its shift upon bond formation and oxidation. Exercises provide not only a promising numerical approach for the quantitative information about the bond and electronic behavior but also consistent insight into the electronic dynamics of metal oxidation.

  2. Chemical Reactions and Mechanical Properties of the Directly Bonded Ge-Si Interface

    NASA Astrophysics Data System (ADS)

    Byun, Ki Yeol; Ferain, Isabelle; Yu, Ran; Colinge, Cindy

    2011-12-01

    In this study, chemical reactions and mechanical properties of directly bonded Ge-Si interfaces are investigated. The Ge-Si bonded interface has been systematically characterized as a function of the thermal budget (200 °C and 300 °C), which demonstrated that the formation of a thin GeO2 cap layer by radical pre-treatment can reduce the generation rate of voids at the bonded interface significantly. Patterning of one of the wafers prior to bonding can help to achieve high bonding quality thanks to enhanced out-diffusion of reaction by-products and stress reduction at the bonded interface. Both numerical modeling and structural analysis show that the presence of diffusion path (channels) at the bonded interfaces result in a maximum bond strength and minimum stress at the bonded interface.

  3. Noncovalent Bonding Controls Selectivity in Heterogeneous Catalysis: Coupling Reactions on Gold.

    PubMed

    Karakalos, Stavros; Xu, Yunfei; Cheenicode Kabeer, Fairoja; Chen, Wei; Rodríguez-Reyes, Juan Carlos F; Tkatchenko, Alexandre; Kaxiras, Efthimios; Madix, Robert J; Friend, Cynthia M

    2016-11-23

    Enhancing the selectivity of catalytic processes has potential for substantially increasing the sustainability of chemical production. Herein, we establish relationships between reaction selectivity and molecular structure for a homologous series of key intermediates for oxidative coupling of alcohols on gold using a combination of experiment and theory. We establish a scale of binding for molecules with different alkyl structures and chain lengths and thereby demonstrate the critical nature of noncovalent van der Waals interactions in determining the selectivity by modulating the stability of key reaction intermediates bound to the surface. The binding hierarchy is the same for Au(111) and Au(110), which demonstrates a relative lack of sensitivity to the surface structure. The hierarchy of binding established in this work provides guiding principles for predicting how molecular structure affects the competition for binding sites more broadly. Besides the nature of the primary surface-molecule bonding, three additional factors that affect the stabilities of the reactive intermediates are clearly established: (1) the number of C atoms in the alkyl chain, (2) the presence of C-C bond unsaturation, and (3) the degree of branching of the alkyl group of the adsorbed molecules. We suggest that this is a fundamental principle that is generally applicable to a broad range of reactions on metal catalysts.

  4. Copper-catalyzed oxidative carbon-heteroatom bond formation: a recent update.

    PubMed

    Zhu, Xu; Chiba, Shunsuke

    2016-08-08

    This review updates recent advances in Cu-catalyzed (anaerobic) oxidative carbon-heteroatom bond formation on sp(3)- and sp(2)-C-H bonds as well as alkenes, classified according to the types of stoichiometric oxidants.

  5. Polyorganosilazane preceramic binder development for reaction bonded silicon nitride composites

    SciTech Connect

    Mohr, D.L.; Starr, T.L.

    1992-11-01

    This study has examined the use of two commercially available polyorganosilazanes for application as preceramic binders in a composite composed of silicon carbide fibers in a reaction bonded silicon nitride (RBSN) matrix. Ceramic monolithic and composite samples were produced. Density of monolithic and whisker reinforced RBSN samples containing the polysilazane binder was increased. Mercury intrusion porosimetry revealed a significant decrease in the pore sizes of samples containing a polyorganosilazane binder. Electron micrographs of samples containing the preceramic binder looked similar to control samples containing no precursor. Overall, incorporation of the polysilazane into monolithic and whisker reinforced samples resulted in significantly increased density and decreased porosity. Nitriding of the RBSN was slightly retarded by addition of the polysilazane binder. Samples with the preceramic binders contained increased contents of {alpha} versus {beta}-silicon nitride which may be due to interaction of hydrogen evolved from polysilazane pyrolysis with the nitriding process. Initial efforts to produce continuous fiber reinforced composites via this method have not realized the same improvements in density and porosity which have been observed for monolithic and whisker reinforced samples. Further, the addition of perceramic binder resulted in a more brittle fracture morphology as compared to similar composites made without the binder.

  6. Polyorganosilazane preceramic binder development for reaction bonded silicon nitride composites

    SciTech Connect

    Mohr, D.L.; Starr, T.L. )

    1992-11-01

    This study has examined the use of two commercially available polyorganosilazanes for application as preceramic binders in a composite composed of silicon carbide fibers in a reaction bonded silicon nitride (RBSN) matrix. Ceramic monolithic and composite samples were produced. Density of monolithic and whisker reinforced RBSN samples containing the polysilazane binder was increased. Mercury intrusion porosimetry revealed a significant decrease in the pore sizes of samples containing a polyorganosilazane binder. Electron micrographs of samples containing the preceramic binder looked similar to control samples containing no precursor. Overall, incorporation of the polysilazane into monolithic and whisker reinforced samples resulted in significantly increased density and decreased porosity. Nitriding of the RBSN was slightly retarded by addition of the polysilazane binder. Samples with the preceramic binders contained increased contents of [alpha] versus [beta]-silicon nitride which may be due to interaction of hydrogen evolved from polysilazane pyrolysis with the nitriding process. Initial efforts to produce continuous fiber reinforced composites via this method have not realized the same improvements in density and porosity which have been observed for monolithic and whisker reinforced samples. Further, the addition of perceramic binder resulted in a more brittle fracture morphology as compared to similar composites made without the binder.

  7. Oxidation state of BZ reaction mixtures.

    PubMed

    Sobel, Sabrina G; Hastings, Harold M; Field, Richard J

    2006-01-12

    The unstirred, ferroin (Fe(phen)(3)2+)-catalyzed Belousov-Zhabotinsky (BZ) reaction1-4 is the prototype oscillatory chemical system. After an induction period of several minutes, one sees "spontaneous" formation of "pacemaker" sites, which oscillate between a blue, oxidized state (high [Fe(phen)3(3+)]) and a red, reduced state (low [Fe(phen)(3)3+]). The reaction medium appears red (reduced) during the induction phase, and the pacemaker sites generate target patterns of concentric, outwardly moving waves of oxidation (blue). Auto-oscillatory behavior is also seen in the Oregonator model of Field, Korös, and Noyes (FKN), a robust, reduced model which captures qualitative BZ kinetics in the auto-oscillatory regime. However, the Oregonator model predicts a blue (oxidized) induction phase. Here, we show that including reaction R8 of the FKN mechanism, not incorporated in the original Oregonator, accounts for bromide release during the induction phase, thus producing the observed red oxidation state.

  8. Mullite fiber reinforced reaction bonded Si3N4 composites

    NASA Technical Reports Server (NTRS)

    Saleh, T.; Sayir, A.; Lightfoot, A.; Haggerty, J.

    1996-01-01

    Fracture toughnesses of brittle ceramic materials have been improved by introducing reinforcements and carefully tailored interface layers. Silicon carbide and Si3N4 have been emphasized as matrices of structural composites intended for high temperature service because they combine excellent mechanical, chemical, thermal and physical properties. Both matrices have been successfully toughened with SiC fibers, whiskers and particles for ceramic matrix composite (CMC) parts made by sintering, hot pressing or reaction forming processes. These SiC reinforced CMCs have exhibited significantly improved toughnesses at low and intermediate temperature levels, as well as retention of properties at high temperatures for selected exposures; however, they are vulnerable to attack from elevated temperature dry and wet oxidizing atmospheres after the matrix has cracked. Property degradation results from oxidation of interface layers and/or reinforcements. The problem is particularly acute for small diameter (-20 tim) polymer derived SiC fibers used for weavable toes. This research explored opportunities for reinforcing Si3N4 matrices with fibers having improved environmental stability; the findings should also be applicable to SiC matrix CMCs.

  9. If C–H Bonds Could Talk – Selective C–H Bond Oxidation

    PubMed Central

    Newhouse, Timothy; Baran, Phil S.

    2014-01-01

    C–H oxidation has a long history and an ongoing presence in research at the forefront of chemistry and interrelated fields. As such, numerous highly useful texts and reviews have been written on this subject. Logically, these are generally written from the perspective of the scope and limitations of the reagents employed. This minireview instead attempts to emphasize chemoselectivity imposed by the nature of the substrate. Consequently many landmark discoveries in the field of C–H oxidation are not discussed, but hopefully the perspective taken herein will allow for the more ready incorporation of C–H oxidation reactions into synthetic planning. PMID:21413105

  10. The Proximal Hydrogen Bond Network Modulates Bacillus subtilis Nitric-oxide Synthase Electronic and Structural Properties

    PubMed Central

    Brunel, Albane; Wilson, Adjélé; Henry, Laura; Dorlet, Pierre; Santolini, Jérôme

    2011-01-01

    Bacterial nitric-oxide synthase (NOS)-like proteins are believed to be genuine NOSs. As for cytochromes P450 (CYPs), NOS-proximal ligand is a thiolate that exerts a push effect crucial for the process of dioxygen activation. Unlike CYPs, this catalytic electron donation seems controlled by a hydrogen bond (H-bond) interaction between the thiolate ligand and a vicinal tryptophan. Variations of the strength of this H-bond could provide a direct way to tune the stability along with the electronic and structural properties of NOS. We generated five different mutations of bsNOS Trp66, which can modulate this proximal H-bond. We investigated the effects of these mutations on different NOS complexes (FeIII, FeIICO, and FeIINO), using a combination of UV-visible absorption, EPR, FTIR, and resonance Raman spectroscopies. Our results indicate that (i) the proximal H-bond modulation can selectively decrease or increase the electron donating properties of the proximal thiolate, (ii) this modulation controls the σ-competition between distal and proximal ligands, (iii) this H-bond controls the stability of various NOS intermediates, and (iv) a fine tuning of the electron donation by the proximal ligand is required to allow at the same time oxygen activation and to prevent uncoupling reactions. PMID:21310962

  11. The proximal hydrogen bond network modulates Bacillus subtilis nitric-oxide synthase electronic and structural properties.

    PubMed

    Brunel, Albane; Wilson, Adjélé; Henry, Laura; Dorlet, Pierre; Santolini, Jérôme

    2011-04-08

    Bacterial nitric-oxide synthase (NOS)-like proteins are believed to be genuine NOSs. As for cytochromes P450 (CYPs), NOS-proximal ligand is a thiolate that exerts a push effect crucial for the process of dioxygen activation. Unlike CYPs, this catalytic electron donation seems controlled by a hydrogen bond (H-bond) interaction between the thiolate ligand and a vicinal tryptophan. Variations of the strength of this H-bond could provide a direct way to tune the stability along with the electronic and structural properties of NOS. We generated five different mutations of bsNOS Trp66, which can modulate this proximal H-bond. We investigated the effects of these mutations on different NOS complexes (FeIII, FeIICO, and FeIINO), using a combination of UV-visible absorption, EPR, FTIR, and resonance Raman spectroscopies. Our results indicate that (i) the proximal H-bond modulation can selectively decrease or increase the electron donating properties of the proximal thiolate, (ii) this modulation controls the σ-competition between distal and proximal ligands, (iii) this H-bond controls the stability of various NOS intermediates, and (iv) a fine tuning of the electron donation by the proximal ligand is required to allow at the same time oxygen activation and to prevent uncoupling reactions.

  12. A Macroscopic Reaction: Direct Covalent Bond Formation between Materials Using a Suzuki-Miyaura Cross-Coupling Reaction

    PubMed Central

    Sekine, Tomoko; Kakuta, Takahiro; Nakamura, Takashi; Kobayashi, Yuichiro; Takashima, Yoshinori; Harada, Akira

    2014-01-01

    Cross-coupling reactions are important to form C–C covalent bonds using metal catalysts. Although many different cross-coupling reactions have been developed and applied to synthesize complex molecules or polymers (macromolecules), if cross-coupling reactions are realized in the macroscopic real world, the scope of materials should be dramatically broadened. Here, Suzuki-Miyaura coupling reactions are realized between macroscopic objects. When acrylamide gel modified with an iodophenyl group (I-gel) reacts with a gel possessing a phenylboronic group (PB-gel) using a palladium catalyst, the gels bond to form a single object. This concept can also be adapted for bonding between soft and hard materials. I-gel or PB-gel selectively bonds to the glass substrates whose surfaces are modified with an electrophile or nucleophile, respectively. PMID:25231557

  13. An unusual carbon-carbon bond cleavage reaction during phosphinothricin biosynthesis

    SciTech Connect

    Cicchillo, Robert M; Zhang, Houjin; Blodgett, Joshua A.V.; Whitteck, John T; Li, Gongyong; Nair, Satish K; van derDonk, Wilfred A; Metcalf, William W

    2010-01-12

    Natural products containing phosphorus-carbon bonds have found widespread use in medicine and agriculture. One such compound, phosphinothricin tripeptide, contains the unusual amino acid phosphinothricin attached to two alanine residues. Synthetic phosphinothricin (glufosinate) is a component of two top-selling herbicides (Basta and Liberty), and is widely used with resistant transgenic crops including corn, cotton and canola. Recent genetic and biochemical studies showed that during phosphinothricin tripeptide biosynthesis 2-hydroxyethylphosphonate (HEP) is converted to hydroxymethylphosphonate (HMP). Here we report the in vitro reconstitution of this unprecedented C(sp{sup 3})-C(sp{sup 3}) bond cleavage reaction and X-ray crystal structures of the enzyme. The protein is a mononuclear non-haem iron(II)-dependent dioxygenase that converts HEP to HMP and formate. In contrast to most other members of this family, the oxidative consumption of HEP does not require additional cofactors or the input of exogenous electrons. The current study expands the scope of reactions catalysed by the 2-His-1-carboxylate mononuclear non-haem iron family of enzymes.

  14. Peptide Bond Synthesis by a Mechanism Involving an Enzymatic Reaction and a Subsequent Chemical Reaction.

    PubMed

    Abe, Tomoko; Hashimoto, Yoshiteru; Zhuang, Ye; Ge, Yin; Kumano, Takuto; Kobayashi, Michihiko

    2016-01-22

    We recently reported that an amide bond is unexpectedly formed by an acyl-CoA synthetase (which catalyzes the formation of a carbon-sulfur bond) when a suitable acid and l-cysteine are used as substrates. DltA, which is homologous to the adenylation domain of nonribosomal peptide synthetase, belongs to the same superfamily of adenylate-forming enzymes, which includes many kinds of enzymes, including the acyl-CoA synthetases. Here, we demonstrate that DltA synthesizes not only N-(d-alanyl)-l-cysteine (a dipeptide) but also various oligopeptides. We propose that this enzyme catalyzes peptide synthesis by the following unprecedented mechanism: (i) the formation of S-acyl-l-cysteine as an intermediate via its "enzymatic activity" and (ii) subsequent "chemical" S → N acyl transfer in the intermediate, resulting in peptide formation. Step ii is identical to the corresponding reaction in native chemical ligation, a method of chemical peptide synthesis, whereas step i is not. To the best of our knowledge, our discovery of this peptide synthesis mechanism involving an enzymatic reaction and a subsequent chemical reaction is the first such one to be reported. This new process yields peptides without the use of a thioesterified fragment, which is required in native chemical ligation. Together with these findings, the same mechanism-dependent formation of N-acyl compounds by other members of the above-mentioned superfamily demonstrated that all members most likely form peptide/amide compounds by using this novel mechanism. Each member enzyme acts on a specific substrate; thus, not only the corresponding peptides but also new types of amide compounds can be formed.

  15. Oxidation of a P-C Bond under Mild Conditions.

    PubMed

    Ilić, Gordana; Gaguly, Rakesh; Petković, Milena; Vidović, Dragoslav

    2015-12-14

    The reactivity of phosphenium dication [(Ph3P)2C-P-NiPr2](2+), 1(2+), towards pyridine N-oxide (O-py) has been investigated. The resulting oxophosphonium dication [(Ph3P)2C(NiPr2)P(O)(O-py)](2+), 2(2+), was surprisingly stabilized by a less nucleophilic O-py ligand instead of pyridine (py). This compound was then identified as an analogue of the elusive Criegee intermediate as it underwent oxygen insertion into the P-C bond through a mechanism usually observed for Baeyer-Villiger oxidations. This oxygen insertion appears to be the first example of a Baeyer-Villiger oxidation involving O-py.

  16. Reaction of lincosamide antibiotics with manganese oxide in aqueous solution.

    PubMed

    Chen, Wan-Ru; Ding, Yunjie; Johnston, Cliff T; Teppen, Brian J; Boyd, Stephen A; Li, Hui

    2010-06-15

    Lincosamides are among the most frequently detected antibacterial agents in effluents from wastewater treatment plants and surface runoff at agricultural production systems. Little is known about their transformations in the environment. This study revealed that manganese oxide caused rapid and extensive decomposition of clindamycin and lincomycin in aqueous solution. The reactions occurred mainly at the pyranose ring of lincosamides, initially by formation of complexes with Mn and cleavage of the ether linkage, leading to the formation of a variety of degradation products via subsequent hydrolytic and oxidative reactions. The results of LC-MS/MS and FTIR analysis confirm cleavage of the C-O-C bond in the pyranose ring, formation of multiple carbonyl groups, and transformation of the methylthio moiety to sulfur oxide. The overall transformation was controlled by interactions of cationic species of lincosamides with MnO(2) surfaces. The presence of electrolytes (i.e., NaCl, CaCl(2), and MnCl(2)) and dissolved organic matter in aqueous solution, and increase of solution pH, diminished lincosamide binding to MnO(2) hence reducing the rate and magnitude of the transformations. Results from this study indicate that manganese dioxides in soils and sediments could contribute to the decomposition of lincosamide antibiotics released into the environment.

  17. Valence-bond description of chemical reactions on Born-Oppenheimer molecular dynamics trajectories

    NASA Astrophysics Data System (ADS)

    Noguchi, Nao; Nakano, Haruyuki

    2009-04-01

    The nature of chemical bonds on dynamic paths was investigated using the complete active space valence-bond (CASVB) method and the Born-Oppenheimer dynamics. To extract the chemical bond picture during reactions, a scheme to collect contributions from several VB (resonance) structures into a small numbers of indices was introduced. In this scheme, a tree diagram for the VB structures is constructed with the numbers of the ionic bonds treated as generation. A pair of VB structures is related to each other if one VB structure is transferred into the other by changing a covalent bond to an ionic bond. The former and latter VB structures are named parent and child structures, respectively. The weights of the bond pictures are computed as the sum of the CASVB occupation numbers running from the top generation to the bottom along the descent of the VB structures. Thus, a number of CASVB occupation numbers are collected into a small number of indices, and a clear bond picture may be obtained from the CASVB wave function. The scheme was applied to the hydrogen exchange reaction H2+F→H+HF and the Diels-Alder reaction C5H6(cyclopentadiene)+CH2=CH2(ethylene)→C7H10(norbornene). In both the reactions, the scheme gave a clear picture for the Born-Oppenheimer dynamics trajectories. The reconstruction of the bonds during reactions was well described by following the temporal changes in weight.

  18. The Mechanism of N-O Bond Cleavage in Rhodium-Catalyzed C-H Bond Functionalization of Quinoline N-oxides with Alkynes: A Computational Study.

    PubMed

    Li, Yingzi; Liu, Song; Qi, Zisong; Qi, Xiaotian; Li, Xingwei; Lan, Yu

    2015-07-06

    Metal-catalyzed C-H activation not only offers important strategies to construct new bonds, it also allows the merge of important research areas. When quinoline N-oxide is used as an arene source in C-H activation studies, the N-O bond can act as a directing group as well as an O-atom donor. The newly reported density functional theory method, M11L, has been used to elucidate the mechanistic details of the coupling between quinoline N-O bond and alkynes, which results in C-H activation and O-atom transfer. The computational results indicated that the most favorable pathway involves an electrophilic deprotonation, an insertion of an acetylene group into a Rh-C bond, a reductive elimination to form an oxazinoquinolinium-coordinated Rh(I) intermediate, an oxidative addition to break the N-O bond, and a protonation reaction to regenerate the active catalyst. The regioselectivity of the reaction has also been studied by using prop-1-yn-1-ylbenzene as a model unsymmetrical substrate. Theoretical calculations suggested that 1-phenyl-2-quinolinylpropanone would be the major product because of better conjugation between the phenyl group and enolate moiety in the corresponding transition state of the regioselectivity-determining step. These calculated data are consistent with the experimental observations.

  19. Understanding bond formation in polar one-step reactions. Topological analyses of the reaction between nitrones and lithium ynolates.

    PubMed

    Roca-López, David; Polo, Victor; Tejero, Tomás; Merino, Pedro

    2015-04-17

    The mechanism of the reaction between nitrones and lithium ynolates has been studied using DFT methods at the M06-2X/cc-pVTZ/PCM=THF level. After the formation of a starting complex an without energy barrier, in which the lithium atom is coordinated to both nitrone and ynolate, the reaction takes place in one single kinetic step through a single transition structure. However, the formation of C-C and C-O bonds takes place sequentially through a typical two-stage, one-step process. A combined study of noncovalent interactions (NCIs) and electron localization function (ELFs) of selected points along the intrinsic reaction coordinate (IRC) of the reaction confirmed that, in the transition structure, only the C-C bond is being formed to some extent, whereas an electrostatic interaction is present between carbon and oxygen atoms previous to the formation of the C-O bond. Indeed, the formation of the second C-O bond only begins when the first C-C bond is completely formed without formation of any intermediate. Once the C-C bond is formed and before the C-O bond formation starts the RMS gradient norm dips, approaching but not reaching 0, giving rise to a hidden intermediate.

  20. Heterogeneous reaction of ozone with aluminum oxide

    NASA Technical Reports Server (NTRS)

    Keyser, L. F.

    1976-01-01

    Rates and collision efficiencies for ozone decomposition on aluminum oxide surfaces were determined. Samples were characterized by BET surface area, X-ray diffraction, particle size, and chemical analysis. Collision efficiencies were found to be between 2 times 10 to the -10 power and 2 times 10 to the -9 power. This is many orders of magnitude below the value of 0.000001 to 0.00001 needed for appreciable long-term ozone loss in the stratosphere. An activation energy of 7.2 kcal/mole was found for the heterogeneous reaction between -40 C and 40 C. Effects of pore diffusion, outgassing and treatment of the aluminum oxide with several chemical species were also investigated.

  1. Synthesis of substituted β-diketiminate gallium hydrides via oxidative addition of H-O bonds.

    PubMed

    Herappe-Mejía, Eduardo; Trujillo-Hernández, Karla; Carlos Garduño-Jiménez, Juan; Cortés-Guzmán, Fernando; Martínez-Otero, Diego; Jancik, Vojtech

    2015-10-14

    Oxidative addition of LGa into the OH bonds from HCCCH2OH, Ph2Si(OH)2, (nBuO)2P(O)(OH) and 4-MeC6H4S(O)2(OH) results in the formation of four compounds of the general formula LGa(H)(O-X). The correlation of the Ga-O bond length and the strength of the Ga-H bond depending on the acidity of the OH group in the starting materials has been demonstrated. The molecular structures of all four compounds have been determined using single crystal X-ray diffraction experiments. DFT calculations were performed on the reacting complex of LGa with propargyl alcohol and show an OHGa hydrogen bond as the first interaction between the reagents. This reacting complex changes into a D-A complex where the oxygen atom of the propargyl alcohol coordinates to the gallium atom and in a concerted reaction the oxidative addition product is formed.

  2. Pinpointing double bonds in lipids by Paternò-Büchi reactions and mass spectrometry.

    PubMed

    Ma, Xiaoxiao; Xia, Yu

    2014-03-03

    The positions of double bonds in lipids play critical roles in their biochemical and biophysical properties. In this study, by coupling Paternò-Büchi (P-B) reaction with tandem mass spectrometry, we developed a novel method that can achieve confident, fast, and sensitive determination of double bond locations within various types of lipids. The P-B reaction is facilitated by UV irradiation of a nanoelectrospray plume entraining lipids and acetone. Tandem mass spectrometry of the on-line reaction products via collision activation leads to the rupture of oxetane rings and the formation of diagnostic ions specific to the double bond location.

  3. Reversible Silylene Insertion Reactions into Si-H and P-H σ-Bonds at Room Temperature.

    PubMed

    Rodriguez, Ricardo; Contie, Yohan; Nougué, Raphael; Baceiredo, Antoine; Saffon-Merceron, Nathalie; Sotiropoulos, Jean-Marc; Kato, Tsuyoshi

    2016-11-07

    Phosphine-stabilized silylenes react with silanes and a phosphine by silylene insertion into E-H σ-bonds (E=Si,P) at room temperature to give the corresponding silanes. Of special interest, the process occurs reversibly at room temperature. These results demonstrate that both the oxidative addition (typical reaction for transient silylenes) and the reductive elimination processes can proceed at the silicon center under mild reaction conditions. DFT calculations provide insight into the importance of the coordination of the silicon center to achieve the reductive elimination step.

  4. Understanding the hydrogen bonds in ionic liquids and their roles in properties and reactions.

    PubMed

    Dong, Kun; Zhang, Suojiang; Wang, Jianji

    2016-05-21

    Ionic liquids (ILs) have many potential applications in the chemical industry. In order to understand ILs, their molecular details have been extensively investigated. Intuitively, electrostatic forces are solely important in ILs. However, experiments and calculations have provided strong evidence for the existence of H-bonds in ILs and their roles in the properties and applications of ILs. As a structure-directing force, H-bonds are responsible for ionic pairing, stacking and self-assembling. Their geometric structure, interaction energy and electronic configuration in the ion-pairs of imidazolium-based ILs and protic ionic liquids (PILs) show a great number of differences compared to conventional H-bonds. In particular, their cooperation with electrostatic, dispersion and π interactions embodies the physical nature of H-bonds in ILs, which anomalously influences their properties, leading to a decrease in their melting points and viscosities and thus fluidizing them. Using ILs as catalysts and solvents, many reactions can be activated by the presence of H-bonds, which reduce the reaction barriers and stabilize the transition states. In the dissolution of lignocellulosic biomass by ILs, H-bonds exhibit a most important role in disrupting the H-bonding network of cellulose and controlling microscopic ordering into domains. In this article, a critical review is presented regarding the structural features of H-bonds in ILs and PILs, the correlation between H-bonds and the properties of ILs, and the roles of H-bonds in typical reactions.

  5. SN2-like reaction in hydrogen-bonded complexes: a theoretical study.

    PubMed

    Wang, Weizhou; Zhang, Yu; Huang, Kaixun

    2005-10-20

    S(N)2-like reactions in hydrogen-bonded complexes have been investigated in this paper at a correlated MP2(full)/6-311++G(3df,3pd) level, employing FH...NH(3)...HF and ClH...NH(3)...HCl as model systems. The unconventional F(Cl)-H...N noncovalent bond and the conventional F(Cl)-H...N hydrogen bond can coexist in one complex which is taken as the reactant of the S(N)2-like reaction. The S(N)2-like reaction occurs along with the inversion of NH(3) and the interconversion of the unconventional F(Cl)-H...N noncovalent bond and the conventional F(Cl)-H...N hydrogen bond. In comparison with that of the isolated NH(3), the inversion barriers of the two complexes both are significantly reduced. The effect of carbon nanotube confinement on the inversion barrier is also discussed.

  6. Thermochemistry and reaction paths in the oxidation reaction of benzoyl radical: C6H5C•(═O).

    PubMed

    Sebbar, Nadia; Bozzelli, Joseph W; Bockhorn, Henning

    2011-10-27

    Alkyl substituted aromatics are present in fuels and in the environment because they are major intermediates in the oxidation or combustion of gasoline, jet, and other engine fuels. The major reaction pathways for oxidation of this class of molecules is through loss of a benzyl hydrogen atom on the alkyl group via abstraction reactions. One of the major intermediates in the combustion and atmospheric oxidation of the benzyl radicals is benzaldehyde, which rapidly loses the weakly bound aldehydic hydrogen to form a resonance stabilized benzoyl radical (C6H5C(•)═O). A detailed study of the thermochemistry of intermediates and the oxidation reaction paths of the benzoyl radical with dioxygen is presented in this study. Structures and enthalpies of formation for important stable species, intermediate radicals, and transition state structures resulting from the benzoyl radical +O2 association reaction are reported along with reaction paths and barriers. Enthalpies, ΔfH298(0), are calculated using ab initio (G3MP2B3) and density functional (DFT at B3LYP/6-311G(d,p)) calculations, group additivity (GA), and literature data. Bond energies on the benzoyl and benzoyl-peroxy systems are also reported and compared to hydrocarbon systems. The reaction of benzoyl with O2 has a number of low energy reaction channels that are not currently considered in either atmospheric chemistry or combustion models. The reaction paths include exothermic, chain branching reactions to a number of unsaturated oxygenated hydrocarbon intermediates along with formation of CO2. The initial reaction of the C6H5C(•)═O radical with O2 forms a chemically activated benzoyl peroxy radical with 37 kcal mol(-1) internal energy; this is significantly more energy than the 21 kcal mol(-1) involved in the benzyl or allyl + O2 systems. This deeper well results in a number of chemical activation reaction paths, leading to highly exothermic reactions to phenoxy radical + CO2 products.

  7. Structure, bonding and formation of molecular germanium oxides, hydroxides and oxyhydroxides

    NASA Astrophysics Data System (ADS)

    Johnson, J. R. Tobias; Panas, Itai

    1999-11-01

    Molecular germanium oxides, hydroxides and oxyhydroxides were studied by means of density functional theory. The polymerization reactions of GeO and GeO 2 were found exothermic up to the tetramer, and possible product structures were characterized. Important features are the instability of larger ring structures, and how Ge 2O 2 rings become important building blocks, independently on whether the long-range order resembles clusters or chains. This unit is proposed to provide a clue to the unknown bulk structure of GeO(s). Water additions to both (GeO) n and (GeO 2) n polymers are investigated. The reactions with GeO bonds are found exothermic by 230-250 kJ/mol, while similar water additions to Ge-O-Ge bridges are exothermic only when reacting with one of the bridges in the strained Ge 2O 2 ring. Reactions with larger clusters as well as further fragmentation are found slightly endothermic. The most stable product of water addition to Ge 2O 4 is (HO) 3GeOGe(OH) 3, which has one Ge-O-Ge bridge and two intramolecular hydrogen bonds. In addition, structures and stabilities of the `odd' oxides Ge 2O, Ge 2O 3, Ge 3O 4 and GeO 3 are investigated.

  8. Reactions of the cumyloxyl and benzyloxyl radicals with strong hydrogen bond acceptors. Large enhancements in hydrogen abstraction reactivity determined by substrate/radical hydrogen bonding.

    PubMed

    Salamone, Michela; DiLabio, Gino A; Bietti, Massimo

    2012-12-07

    A kinetic study on hydrogen abstraction from strong hydrogen bond acceptors such as DMSO, HMPA, and tributylphosphine oxide (TBPO) by the cumyloxyl (CumO(•)) and benzyloxyl (BnO(•)) radicals was carried out in acetonitrile. The reactions with CumO(•) were described in terms of a direct hydrogen abstraction mechanism, in line with the kinetic deuterium isotope effects, k(H)/k(D), of 2.0 and 3.1 measured for reaction of this radical with DMSO/DMSO-d(6) and HMPA/HMPA-d(18). Very large increases in reactivity were observed on going from CumO(•) to BnO(•), as evidenced by k(H)(BnO(•))/k(H)(CumO(•)) ratios of 86, 4.8 × 10(3), and 1.6 × 10(4) for the reactions with HMPA, TBPO, and DMSO, respectively. The k(H)/k(D) of 0.91 and 1.0 measured for the reactions of BnO(•) with DMSO/DMSO-d(6) and HMPA/HMPA-d(18), together with the k(H)(BnO(•))/k(H)(CumO(•)) ratios, were explained on the basis of the formation of a hydrogen-bonded prereaction complex between the benzyloxyl α-C-H and the oxygen atom of the substrates followed by hydrogen abstraction. This is supported by theoretical calculations that show the formation of relatively strong prereaction complexes. These observations confirm that in alkoxyl radical reactions specific hydrogen bond interactions can dramatically influence the hydrogen abstraction reactivity, pointing toward the important role played by structural and electronic effects.

  9. Gas-Phase Oxidation via Ion/Ion Reactions: Pathways and Applications

    NASA Astrophysics Data System (ADS)

    Pilo, Alice L.; Zhao, Feifei; McLuckey, Scott A.

    2017-01-01

    Here, we provide an overview of pathways available upon the gas-phase oxidation of peptides and DNA via ion/ion reactions and explore potential applications of these chemistries. The oxidation of thioethers (i.e., methionine residues and S-alkyl cysteine residues), disulfide bonds, S-nitrosylated cysteine residues, and DNA to the [M+H+O]+ derivative via ion/ion reactions with periodate and peroxymono-sulfate anions is demonstrated. The oxidation of neutral basic sites to various oxidized structures, including the [M+H+O]+, [M-H]+, and [M-H-NH3]+ species, via ion/ion reactions is illustrated and the oxidation characteristics of two different oxidizing reagents, periodate and persulfate anions, are compared. Lastly, the highly efficient generation of molecular radical cations via ion/ion reactions with sulfate radical anion is summarized. Activation of the newly generated molecular radical peptide cations results in losses of various neutral side chains, several of which generate dehydroalanine residues that can be used to localize the amino acid from which the dehydroalanine was generated. The chemistries presented herein result in a diverse range of structures that can be used for a variety of applications, including the identification and localization of S-alkyl cysteine residues, the oxidative cleavage of disulfide bonds, and the generation of molecular radical cations from even-electron doubly protonated peptides.

  10. Topological description of the bond-breaking and bond-forming processes of the alkene protonation reaction in zeolite chemistry: an AIM study.

    PubMed

    Zalazar, María Fernanda; Peruchena, Nélida Maria

    2011-10-01

    Density functional theory and atoms in molecules theory were used to study bond breakage and bond formation in the trans-2-butene protonation reaction in an acidic zeolitic cluster. The progress of this reaction along the intrinsic reaction coordinate, in terms of several topological properties of relevant bond critical points and atomic properties of the key atoms involved in these concerted mechanisms, were analyzed in depth. At B3LYP/6-31++G(d,p)//B3LYP/6-31G(d,p) level, the results explained the electron density redistributions associated with the progressive bond breakage and bond formation of the reaction under study, as well as the profiles of the electronic flow between the different atomic basins involved in these electron reorganization processes. In addition, we found a useful set of topological indicators that are useful to show what is happening in each bond/atom involved in the reaction site as the reaction progresses.

  11. Concerted proton-electron transfer in the oxidation of hydrogen-bonded phenols.

    PubMed

    Rhile, Ian J; Markle, Todd F; Nagao, Hirotaka; DiPasquale, Antonio G; Lam, Oanh P; Lockwood, Mark A; Rotter, Katrina; Mayer, James M

    2006-05-10

    Three phenols with pendant, hydrogen-bonded bases (HOAr-B) have been oxidized in MeCN with various one-electron oxidants. The bases are a primary amine (-CPh(2)NH(2)), an imidazole, and a pyridine. The product of chemical and quasi-reversible electrochemical oxidations in each case is the phenoxyl radical in which the phenolic proton has transferred to the base, (*)OAr-BH(+), a proton-coupled electron transfer (PCET) process. The redox potentials for these oxidations are lower than for other phenols, predominately from the driving force for proton movement. One-electron oxidation of the phenols occurs by a concerted proton-electron transfer (CPET) mechanism, based on thermochemical arguments, isotope effects, and DeltaDeltaG(++)/DeltaDeltaG degrees . The data rule out stepwise paths involving initial electron transfer to form the phenol radical cations [(*)(+)HOAr-B] or initial proton transfer to give the zwitterions [(-)OAr-BH(+)]. The rate constant for heterogeneous electron transfer from HOAr-NH(2) to a platinum electrode has been derived from electrochemical measurements. For oxidations of HOAr-NH(2), the dependence of the solution rate constants on driving force, on temperature, and on the nature of the oxidant, and the correspondence between the homogeneous and heterogeneous rate constants, are all consistent with the application of adiabatic Marcus theory. The CPET reorganization energies, lambda = 23-56 kcal mol(-)(1), are large in comparison with those for electron transfer reactions of aromatic compounds. The reactions are not highly non-adiabatic, based on minimum values of H(rp) derived from the temperature dependence of the rate constants. These are among the first detailed analyses of CPET reactions where the proton and electron move to different sites.

  12. Transition-metal-catalyzed group transfer reactions for selective C-H bond functionalization of artemisinin.

    PubMed

    Liu, Yungen; Xiao, Wenbo; Wong, Man-Kin; Che, Chi-Ming

    2007-10-11

    Three types of novel artemisinin derivatives have been synthesized through transition-metal-catalyzed intramolecular carbenoid and nitrenoid C-H bond insertion reactions. With rhodium complexes as catalysts, lactone 11 was synthesized via carbene insertion reaction at the C16 position in 90% yield; oxazolidinone 13 was synthesized via nitrene insertion reaction at the C10 position in 87% yield based on 77% conversion; and sulfamidate 14 was synthesized via nitrene insertion reaction at the C8 position in 87% yield.

  13. Graphene-hemin hybrid material as effective catalyst for selective oxidation of primary C-H bond in toluene

    NASA Astrophysics Data System (ADS)

    Li, Yongjia; Huang, Xiaoqing; Li, Yujing; Xu, Yuxi; Wang, Yang; Zhu, Enbo; Duan, Xiangfeng; Huang, Yu

    2013-05-01

    An effective hemin catalyst on graphene support for selective oxidation of primary C-H bond in toluene is reported with an over 50% conversion rate achieved at mild conditions. Significantly this hybrid material shows catalytic efficiency in toluene oxidation with selectivity towards benzoic acid. The role of graphene support is discussed here as providing large contact area between the catalyst and the substrate, maintaining hemin in catalytically active monomer form, attracting electron to promote site isolation, as well as protecting hemin from oxidative degradation during the reaction. Moreover, graphene is suggested to largely alter the final product selectivity, due to the different π-π interaction strength between the graphene support and the substrate/oxidized products. With longer reaction time, overall conversion rate tends to maintain relatively unchanged while toluene undergoes a series of oxidation to convert mostly to benzoic acid.

  14. Graphene-hemin hybrid material as effective catalyst for selective oxidation of primary C-H bond in toluene

    PubMed Central

    Li, Yongjia; Huang, Xiaoqing; Li, Yujing; Xu, Yuxi; Wang, Yang; Zhu, Enbo; Duan, Xiangfeng; Huang, Yu

    2013-01-01

    An effective hemin catalyst on graphene support for selective oxidation of primary C-H bond in toluene is reported with an over 50% conversion rate achieved at mild conditions. Significantly this hybrid material shows catalytic efficiency in toluene oxidation with selectivity towards benzoic acid. The role of graphene support is discussed here as providing large contact area between the catalyst and the substrate, maintaining hemin in catalytically active monomer form, attracting electron to promote site isolation, as well as protecting hemin from oxidative degradation during the reaction. Moreover, graphene is suggested to largely alter the final product selectivity, due to the different π-π interaction strength between the graphene support and the substrate/oxidized products. With longer reaction time, overall conversion rate tends to maintain relatively unchanged while toluene undergoes a series of oxidation to convert mostly to benzoic acid.

  15. A molecular dynamics study of bond exchange reactions in covalent adaptable networks.

    PubMed

    Yang, Hua; Yu, Kai; Mu, Xiaoming; Shi, Xinghua; Wei, Yujie; Guo, Yafang; Qi, H Jerry

    2015-08-21

    Covalent adaptable networks are polymers that can alter the arrangement of network connections by bond exchange reactions where an active unit attaches to an existing bond then kicks off its pre-existing peer to form a new bond. When the polymer is stretched, bond exchange reactions lead to stress relaxation and plastic deformation, or the so-called reforming. In addition, two pieces of polymers can be rejoined together without introducing additional monomers or chemicals on the interface, enabling welding and reprocessing. Although covalent adaptable networks have been researched extensively in the past, knowledge about the macromolecular level network alternations is limited. In this study, molecular dynamics simulations are used to investigate the macromolecular details of bond exchange reactions in a recently reported epoxy system. An algorithm for bond exchange reactions is first developed and applied to study a crosslinking network formed by epoxy resin DGEBA with the crosslinking agent tricarballylic acid. The trace of the active units is tracked to show the migration of these units within the network. Network properties, such as the distance between two neighboring crosslink sites, the chain angle, and the initial modulus, are examined after each iteration of the bond exchange reactions to provide detailed information about how material behaviors and macromolecular structure evolve. Stress relaxation simulations are also conducted. It is found that even though bond exchange reactions change the macroscopic shape of the network, microscopic network characteristic features, such as the distance between two neighboring crosslink sites and the chain angle, relax back to the unstretched isotropic state. Comparison with a recent scaling theory also shows good agreement.

  16. Carbon-Carbon Bond Cleavage Reaction: Synthesis of Multisubstituted Pyrazolo[1,5-a]pyrimidines.

    PubMed

    Saikia, Pallabi; Gogoi, Sanjib; Boruah, Romesh C

    2015-07-02

    A new carbon-carbon bond cleavage reaction was developed for the efficient synthesis of multisubstituted pyrazolo[1,5-a]pyrimidines. This base induced reaction of 1,3,5-trisubstituted pentane-1,5-diones and substituted pyrazoles afforded good yields of the pyrazolo[1,5-a]pyrimidines.

  17. Catalytic B-H Bond Insertion Reactions Using Alkynes as Carbene Precursors.

    PubMed

    Yang, Ji-Min; Li, Zi-Qi; Li, Mao-Lin; He, Qiao; Zhu, Shou-Fei; Zhou, Qi-Lin

    2017-03-01

    Herein, we report transition-metal-catalyzed B-H bond insertion reactions between borane adducts and alkynes to afford organoboron compounds in excellent yields under mild reaction conditions. This successful use of alkynes as carbene precursors in these reactions constitutes a new route to organoboron compounds. The starting materials are safe and readily available, and the reaction exhibits 100% atom-economy. Moreover, an asymmetric version catalyzed by chiral dirhodium complexes produced chiral boranes with excellent enantioselectivity (up to 96% ee). This is the first report of highly enantioselective heteroatom-hydrogen bond insertion reactions of metal carbenes generated in situ from alkynes. The chiral products of the reaction could be easily transformed to widely used borates and diaryl methanol compounds without loss of optical purity, which demonstrates its potential utility in organic synthesis. A kinetics study indicated that the Cu-catalyzed B-H bond insertion reaction is first order with respect to the catalyst and the alkyne and zero order with respect to the borane adduct, and no kinetic isotopic effect was observed in the reaction of the adduct. These results, along with density functional theory calculations, suggest that the formation of the Cu carbene is the rate-limiting step and that the B-H bond insertion is a fast, concerted process.

  18. Effects of Thermal Cycling on Thermal Expansion and Mechanical Properties of Sic Fiber-reinforced Reaction-bonded Si3n4 Composites

    NASA Technical Reports Server (NTRS)

    Bhatt, R. T.; Palczer, A. R.

    1994-01-01

    Thermal expansion curves for SiC fiber-reinforced reaction-bonded Si3N4 matrix composites (SiC/RBSN) and unreinforced RBSN were measured from 25 to 1400 C in nitrogen and in oxygen. The effects of fiber/matrix bonding and cycling on the thermal expansion curves and room-temperature tensile properties of unidirectional composites were determined. The measured thermal expansion curves were compared with those predicted from composite theory. Predicted thermal expansion curves parallel to the fiber direction for both bonding cases were similar to that of the weakly bonded composites, but those normal to the fiber direction for both bonding cases resulted in no net dimensional changes at room temperature, and no loss in tensile properties from the as-fabricated condition. In contrast, thermal cycling in oxygen for both composites caused volume expansion primarily due to internal oxidation of RBSN. Cyclic oxidation affected the mechanical properties of the weakly bonded SiC/RBSN composites the most, resulting in loss of strain capability beyond matrix fracture and catastrophic, brittle fracture. Increased bonding between the SiC fiber and RBSN matrix due to oxidation of the carbon-rich fiber surface coating and an altered residual stress pattern in the composite due to internal oxidation of the matrix are the main reasons for the poor mechanical performance of these composites.

  19. Bimolecular Coupling Reactions through Oxidatively Generated Aromatic Cations: Scope and Stereocontrol

    PubMed Central

    Cui, Yubo; Villafane, Louis A.; Clausen, Dane J.

    2013-01-01

    Chromenes, isochromenes, and benzoxathioles react with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone to form stable aromatic cations that react with a range of nucleophiles. These oxidative fragment coupling reactions provide rapid access to structurally diverse heterocycles. Conducting the reactions in the presence of a chiral Brønsted acid results in the formation of an asymmetric ion pair that can provide enantiomerically enriched products in a rare example of a stereoselective process resulting from the generation of a chiral electrophile through oxidative carbon–hydrogen bond cleavage. PMID:23913987

  20. 40 CFR 721.10375 - Hydroxypropyl methacrylate, reaction products with propylene oxide and ethylene oxide, copolymer...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... products with propylene oxide and ethylene oxide, copolymer with N-vinyl caprolactam (generic). 721.10375... Substances § 721.10375 Hydroxypropyl methacrylate, reaction products with propylene oxide and ethylene oxide... products with propylene oxide and ethylene oxide, copolymer with N-vinyl caprolactam (PMN P-10-200)...

  1. 40 CFR 721.10375 - Hydroxypropyl methacrylate, reaction products with propylene oxide and ethylene oxide, copolymer...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... products with propylene oxide and ethylene oxide, copolymer with N-vinyl caprolactam (generic). 721.10375... Substances § 721.10375 Hydroxypropyl methacrylate, reaction products with propylene oxide and ethylene oxide... products with propylene oxide and ethylene oxide, copolymer with N-vinyl caprolactam (PMN P-10-200)...

  2. 40 CFR 721.10375 - Hydroxypropyl methacrylate, reaction products with propylene oxide and ethylene oxide, copolymer...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... products with propylene oxide and ethylene oxide, copolymer with N-vinyl caprolactam (generic). 721.10375... Substances § 721.10375 Hydroxypropyl methacrylate, reaction products with propylene oxide and ethylene oxide... products with propylene oxide and ethylene oxide, copolymer with N-vinyl caprolactam (PMN P-10-200)...

  3. Bonding situation and N-O-bond strengths in amine-N-oxides--a combined experimental and theoretical study.

    PubMed

    Rogachev, Andrey Yu; Burger, Peter

    2012-02-14

    The bonding situation and energetics of the N-O bond in a series of amine-N-oxides, Ph(x)(CH(3))(3-x)N-O, where x = 0-3, were analyzed experimentally and theoretically. There is a notable nearly linear decrease of the N-O bond dissociation energies (BDEs) for this series with an increasing number of phenyl groups x. This was investigated experimentally by X-ray high angle multipole refinement techniques in combination with subsequent topological analysis of the electron density for the representative (CH(3))(2)PhN-O, 2, and complementary theoretical calculations at the DFT and multireference CASSCF and MR-perturbation theory (MCQDPT2) levels. Both the theoretical and experimental results unambiguously revealed a polar covalent σ-bond for the N-O bond with an essentially identical bonding situation for all amine-N-oxides studied. This apparent disparity between the bonding situation and the trend of BDEs is attributed to the large differences of the relaxation energies of the corresponding amines Ph(x)(CH(3))(3-x)N, (x = 0-3), respectively, the required preparation energies (ΔE(prep)) for the reverse N-O bond forming process. The detailed theoretical analysis of the amines allowed us to trace the trend of larger values of ΔE(prep) for a higher number of phenyl groups x to an increase of n(N) → π*(C-C) delocalization interactions.

  4. Mechanism of a C-H bond activation reaction in room-temperature alkane solution

    SciTech Connect

    Bromberg, S.E.; Yang, H.; Asplund, M.C.

    1997-10-10

    Chemical reactions that break alkane carbon-hydrogen (C-H) bonds are normally carried out under conditions of high temperature and pressure because these bonds are extremely strong ({approx} 100 kilocalories per mole), but certain metal complexes can activate C-H bonds in alkane solution under the mild conditions of room temperature and pressure. Time-resolved infrared experiments probing the initial femtosecond dynamics through the nano- and microsecond kinetics to the final stable products have been used to generate a detailed picture of the C-H activation reaction. Structures of all of the intermediates involved in the reaction of Tp*Rh(CO){sub 2} (Tp* = HB-Pz{sub 3}*, Pz* = 3,5-di-methylpyrazolyl) in alkane solution have been identified and assigned, and energy barriers for each reaction step from solvation to formation of the final alkyl hydride product have been estimated from transient lifetimes. 27 refs., 6 figs.

  5. The mechanism of a C-H Bond Activation reaction in roomtemperature alkane solution

    SciTech Connect

    Bromberg, Steven E.; Yang, Haw; Asplund, Matthew C.; Lian, T.; McNamara, B.K.; Kotz, K.T.; Yeston, J.S.; Wilkens, M.; Frei, H.; Bergman,Robert G.; Harris, C.B.

    1997-07-31

    Chemical reactions that break alkane carbon-hydrogen (C-H) bonds are normally carried out under conditions of high temperature and pressure because these bonds are extremely strong ({approx}100 kilocalories per mole), but certain metal complexes can activate C-H bonds in alkane solution under the mild conditions of room temperature and pressure. Time-resolved infrared experiments probing the initial femtosecond dynamics through the nano- and microsecond kinetics to the final stable products have been used to generate a detailed picture of the C-H activation reaction. Structures of all of the intermediates involved in the reaction of Tp*Rh(CO)2 (Tp* = HB-Pz3*, Pz* = 3,5-dimethylpyrazolyl) in alkane solution have been identified and assigned, and energy barriers for each reaction step from solvation to formation of the final alkylhydride product have been estimated from transient lifetimes.

  6. Radical Chain Polymerization Catalyzed by Graphene Oxide and Cooperative Hydrogen Bonding.

    PubMed

    Zhu, Zhongcheng; Shi, Shengjie; Wang, Huiliang

    2016-01-01

    Graphene oxide (GO) is effective in catalyzing a wide variety of organic reactions and a few types of polymerization reactions. No radical chain polymerizations catalyzed by GO have been reported. In this article, we probe the catalytic role and acceleration effect of GO for self-initiated radical chain polymerizations of acrylic acid (AA) in the presence of GO and a pre-existing polymer, poly(N-vinylpyrrolidone) (PVP), from a calorimetric perspective. Gelation experiments and DSC studies show that GO can function as a catalyst to accelerate the radical chain polymerization of AA. Isothermal polymerization kinetic data shows that the addition of GO diminishes the induction periods and increases the polymerization rates, as indicated by the much enhanced overall kinetic rate constants and lowered activation energies. The catalytic effect of GO for the polymerization of AA is attributed to the acidity of GO and the hydrogen bonding interactions between GO and monomer molecules and/or polymers.

  7. Aliphatic C-C Bond Cleavage in α-Hydroxy Ketones by a Dioxygen-Derived Nucleophilic Iron-Oxygen Oxidant.

    PubMed

    Bhattacharya, Shrabanti; Rahaman, Rubina; Chatterjee, Sayanti; Paine, Tapan K

    2017-03-17

    A nucleophilic iron-oxygen oxidant, formed in situ in the reaction between an iron(II)-benzilate complex and O2 , oxidatively cleaves the aliphatic C-C bonds of α-hydroxy ketones. In the cleavage reaction, α-hydroxy ketones without any α-C-H bond afford a 1:1 mixture of carboxylic acid and ketone. Isotope labeling studies established that one of the oxygen atoms from dioxygen is incorporated into the carboxylic acid product. Furthermore, the iron(II) complex cleaves an aliphatic C-C bond of 17-α-hydroxyprogesterone affording androstenedione and acetic acid. The O2 -dependent aliphatic C-C bond cleavage of α-hydroxy ketones containing no α-C-H bond bears similarity to the lyase activity of the heme enzyme, cytochrome P450 17A1 (CYP17A1).

  8. Rhodium Complexes Promoting C-O Bond Formation in Reactions with Oxygen: The Role of Superoxo Species.

    PubMed

    Vilella-Arribas, Laia; García-Melchor, Max; Balcells, David; Lledós, Agustí; López, José A; Sancho, Sofía; Villarroya, B Eva; Del Río, M Pilar; Ciriano, Miguel A; Tejel, Cristina

    2017-01-28

    C-O bond formation in reactions of olefins with oxygen is a long standing challenge in chemistry for which the very complicated-sometimes controversial-mechanistic panorama slows down the design of catalysts for oxygenations. In this regard, the mechanistic details of the oxidation of the complex [Rh(cod)(Ph2 N3 )] (1) (cod=1,5-cyclooctadiene) with oxygen to the unique 2-rhodaoxetane compound [{Rh(OC8 H12 )(Ph2 N3 )}2 ] (2) has been investigated by DFT calculations. The results of this study provide evidences for a novel bimetallic mechanism in which two rhodium atoms redistribute the four electrons involved in the cleavage of the O=O bond. Furthermore, both oxygen atoms are used to create two new C-O bonds in a controlled fashion with 100 % atom economy. The key intermediates that we have found in this process are a mononuclear open-shell triplet superoxo compound, an open-shell singlet "μ-(peroxo)" derivative, and a closed-shell singlet "bis(μ-oxo)" complex. Some of the findings are used to predict the reactions of Rh(I) complexes with oxygen, exemplified by that of the complex [Rh(cod)(OnapyMe2 )] (3). Starting from 3, [{Rh(OC8 H12 )(OnapyMe2 )}2 ] (4) has been prepared and characterized, which represents the second example of a 2-rhodaoxetane compound coming from an oxygenation reaction with oxygen.

  9. New Insights into the Diels-Alder Reaction of Graphene Oxide.

    PubMed

    Brisebois, Patrick P; Kuss, Christian; Schougaard, Steen B; Izquierdo, Ricardo; Siaj, Mohamed

    2016-04-18

    Graphene oxide is regarded as a major precursor for graphene-based materials. The development of graphene oxide based derivatives with new functionalities requires a thorough understanding of its chemical reactivity, especially for canonical synthetic methods such as the Diels-Alder cycloaddition. The Diels-Alder reaction has been successfully extended with graphene oxide as a source of diene by using maleic anhydride as a dienophile, thereby outlining the presence of the cis diene present in the graphene oxide framework. This reaction provides fundamental information for understanding the exact structure and chemical nature of graphene oxide. On the basis of high-resolution (13) C-SS NMR spectra, we show evidence for the formation of new sp(3) carbon centers covalently bonded to graphene oxide following hydrolysis of the reaction product. DFT calculations are also used to show that the presence of a cis dihydroxyl and C vacancy on the surface of graphene oxide are promoting the reaction with significant negative reaction enthalpies.

  10. Method and reaction pathway for selectively oxidizing organic compounds

    DOEpatents

    Camaioni, Donald M.; Lilga, Michael A.

    1998-01-01

    A method of selectively oxidizing an organic compound in a single vessel comprises: a) combining an organic compound, an acid solution in which the organic compound is soluble, a compound containing two oxygen atoms bonded to one another, and a metal ion reducing agent capable of reducing one of such oxygen atoms, and thereby forming a mixture; b) reducing the compound containing the two oxygen atoms by reducing one of such oxygen atoms with the metal ion reducing agent to, 1) oxidize the metal ion reducing agent to a higher valence state, and 2) produce an oxygen containing intermediate capable of oxidizing the organic compound; c) reacting the oxygen containing intermediate with the organic compound to oxidize the organic compound into an oxidized organic intermediate, the oxidized organic intermediate having an oxidized carbon atom; d) reacting the oxidized organic intermediate with the acid counter ion and higher valence state metal ion to bond the acid counter ion to the oxidized carbon atom and thereby produce a quantity of an ester incorporating the organic intermediate and acid counter ion; and e) reacting the oxidized organic intermediate with the higher valence state metal ion and water to produce a quantity of alcohol which is less than the quantity of ester, the acid counter ion incorporated in the ester rendering the carbon atom bonded to the counter ion less reactive with the oxygen containing intermediate in the mixture than is the alcohol with the oxygen containing intermediate.

  11. Bond selectivity in electron-induced reaction due to directed recoil on an anisotropic substrate

    NASA Astrophysics Data System (ADS)

    Anggara, Kelvin; Huang, Kai; Leung, Lydie; Chatterjee, Avisek; Cheng, Fang; Polanyi, John C.

    2016-12-01

    Bond-selective reaction is central to heterogeneous catalysis. In heterogeneous catalysis, selectivity is found to depend on the chemical nature and morphology of the substrate. Here, however, we show a high degree of bond selectivity dependent only on adsorbate bond alignment. The system studied is the electron-induced reaction of meta-diiodobenzene physisorbed on Cu(110). Of the adsorbate's C-I bonds, C-I aligned `Along' the copper row dissociates in 99.3% of the cases giving surface reaction, whereas C-I bond aligned `Across' the rows dissociates in only 0.7% of the cases. A two-electronic-state molecular dynamics model attributes reaction to an initial transition to a repulsive state of an Along C-I, followed by directed recoil of C towards a Cu atom of the same row, forming C-Cu. A similar impulse on an Across C-I gives directed C that, moving across rows, does not encounter a Cu atom and hence exhibits markedly less reaction.

  12. Implications of sterically constrained n-butane oxidation reactions on the reaction mechanism and selectivity to 1-butanol

    NASA Astrophysics Data System (ADS)

    Dix, Sean T.; Gómez-Gualdrón, Diego A.; Getman, Rachel B.

    2016-11-01

    Density functional theory (DFT) is used to analyze the reaction network in n-butane oxidation to 1-butanol over a Ag/Pd alloy catalyst under steric constraints, and the implications on the ability to produce 1-butanol selectively using MOF-encapsulated catalysts are discussed. MOFs are porous crystalline solids comprised of metal nodes linked by organic molecules. Recently, they have been successfully grown around metal nanoparticle catalysts. The resulting porous networks have been shown to promote regioselective chemistry, i.e., hydrogenation of trans-1,3-hexadiene to 3-hexene, presumably by forcing the linear alkene to stand "upright" on the catalyst surface and allowing only the terminal C-H bonds to be activated. In this work, we extend this concept to alkane oxidation. Our goal is to determine if a MOF-encapsulated catalyst could be used to selectively produce 1-butanol. Reaction energies and activation barriers are presented for more than 40 reactions in the pathway for n-butane oxidation. We find that C-H bond activation proceeds through an oxygen-assisted pathway and that butanal and 1-butanol are some of the possible products.

  13. Oxidative addition of methane and benzene C--H bonds to rhodium center: A DFT study

    NASA Astrophysics Data System (ADS)

    Bi, Siwei; Zhang, Zhenwei; Zhu, Shufen

    2006-11-01

    A density functional theory study on mechanisms of the oxidative addition of methane and benzene C-H bonds to the rhodium center containing Cp and PMe 3 ligands has been performed. Our calculated results confirm that the C-H bond cleavage from a sigma complex to a hydride alkyl complex is the rate-determining step. Compared with the case of methane C-H bond, the oxidative addition of benzene C-H bond is more favorable kinetically and thermodynamically. Stronger backdonation from metal center to the σ ∗ antibonding orbital of benzene C-H bond is responsible for the observations.

  14. Parental bonding during childhood affects stress-coping ability and stress reaction.

    PubMed

    Ohtaki, Yuh; Ohi, Yuichi; Suzuki, Shun; Usami, Kazuya; Sasahara, Shinichiro; Matsuzaki, Ichiyo

    2016-01-10

    An online survey examined the effects of parental bonding during childhood on adult workers' stress-coping ability (Sense of Coherence) and stress reactions (General Health Questionnaire and Self-Rating Depression Scale). Participants who completed the questionnaire were grouped into optimal bonding and poor bonding groups. Analyses of covariance by gender with age as a covariate were conducted for the Sense of Coherence, General Health Questionnaire, and Self-Rating Depression Scale scores for 9525 participants. For both genders, the scores of the poor bonding group were significantly lower for the Sense of Coherence and significantly higher for the General Health Questionnaire and Self-Rating Depression Scale compared to those of the optimal bonding group.

  15. The calculation of bond dissociation energies of transition metal complexes using isostructural reactions

    NASA Astrophysics Data System (ADS)

    Dapprich, S.; Pidun, U.; Ehlers, A. W.; Frenking, G.

    1995-08-01

    The metal-ligand bond dissociation energies (CO) nM-L are theoretically predicted at the HF, MP2 and CCSD(T) levels of theory using effective core potentials for the metals for M = Cr, Mo, W, Ni, Pd, Pt and for L = CO, NO +, CN -, NC -, CS, SiO, N 2. The bond energies at the HF level are too low and the MP2 values are too high, while the CCSD(T) results are in good agreement with experimental data. The bond energies at MP2 show the same trend as the CCSD(T) values and may therefore be used for the prediction of relative bond dissociation energies. The absolute values for the bond energies calculated at MP2 are significantly improved when they are corrected using the energies of isostructural reactions M(CO) n + L → M(CO) n-1 L + CO.

  16. Functionalization of Hydrogenated Graphene: Transition-Metal-Catalyzed Cross-Coupling Reactions of Allylic C-H Bonds.

    PubMed

    Chua, Chun Kiang; Sofer, Zdeněk; Pumera, Martin

    2016-08-26

    The chemical functionalization of hydrogenated graphene can modify its physical properties and lead to better processability. Herein, we describe the chemical functionalization of hydrogenated graphene through a dehydrogenative cross-coupling reaction between an allylic C-H bond and the α-C-H bond of tetrahydrothiophen-3-one using Cu(OTf)2 as the catalyst and DDQ as the oxidant. The chemical functionalization was confirmed by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy and visualized by scanning electron microscopy. The functionalized hydrogenated graphene material demonstrated improved dispersion stability in water, bringing new quality to the elusive hydrogenated graphene (graphane) materials. Hydrogenated graphene provides broad possibilities for chemical modifications owing to its reactivity.

  17. Constraint Theory and Roken Bond Bending Constraints in Oxide Glasses

    NASA Astrophysics Data System (ADS)

    Zhang, Min

    The molecular structure of sodium tellurate glasses was established using ^{125}Te absorption and ^{129}I emission Mossbauer spectroscopies, differential scanning calorimetry (DSC), molar volume measurements and powder x-ray diffraction (XRD). The local atomic arrangement in these glasses is found to be different from that in corresponding crystals. This picture does not follow the usual thinking (Ioffe-Regel rule) about glass structure. The experimental evidence for this conclusion derives not only from Mossbauer spectroscopy but also from time-temperature -transformation curve and powder XRD measurements used to examine the crystallization of the bulk glasses. The TTT -curve exhibits both nucleation and growth branches, while XRD scans reveal growth of metastable phases before forming the stable crystalline phases. These results are in harmony with ^{23}Na solid state NMR results that reveal that sodium local environment in a x = 0.20 glass differs qualitatively from that of the crystalline counterpart. Results from DCS and XRD measurements reveal that at x = 0.18 several observables such as, dT_{g}/dx, activation energy for enthalpy relaxation, molar volume and Lamb-Mossbauer f factor, each display a threshold behavior. We believe that the physical origin of this threshold behavior comes from the rigidity percolation threshold. The constraint theory has recently been extended to include one-fold coordinated species and broken bond bending (beta) constraints. The latter was developed and has been applied successfully to many glass systems including the oxides, as we did for the first time in our Science paper, but also to chalcogenides and chalcohalides, etc.. In the experiments, the observed threshold apparently shifts to the over-constrained regime, i.e. > 2.4 in many glass systems. This shift is largely due to broken beta -constraint at some two-fold coordinated atoms, e.g. Se/S in chain segments and oxygen atoms. An example is g-Ge _{x}Se_{1-x } where one

  18. Transition-Metal-Catalyzed Laboratory-Scale Carbon–Carbon Bond-Forming Reactions of Ethylene

    PubMed Central

    Saini, Vaneet; Stokes, Benjamin J.; Sigman, Matthew S.

    2014-01-01

    Ethylene, the simplest alkene, is the most abundantly synthesized organic molecule by volume. It is readily incorporated into transitionmetal–catalyzed carbon-carbon bond-forming reactions through migratory insertions into alkylmetal intermediates. Because of its D2h symmetry, only one insertion outcome is possible. This limits byproduct formation and greatly simplifies analysis. As described within this Minireview, many carbon–carbon bond-forming reactions incorporate a molecule (or more) of ethylene at ambient pressure and temperature. In many cases, a useful substituted alkene is incorporated into the product. PMID:24105881

  19. Reaction-diffusion analysis for one-step plasma etching and bonding of microfluidic devices

    SciTech Connect

    Rosso, Michel; Steijn, Volkert van; Smet, Louis C. P. M. de; Sudhoelter, Ernst J. R.; Kreutzer, Michiel T.; Kleijn, Chris R.

    2011-04-25

    A self-similar reaction front develops in reactive ion etching when the ions penetrate channels of shallow height h. This relates to the patterning of microchannels using a single-step etching and bonding, as described by Rhee et al. [Lab Chip 5, 102 (2005)]. Experimentally, we report that the front location scales as x{sub f{approx}}ht{sup 1/2} and the width is time-invariant and scales as {delta}{approx}h. Mean-field reaction-diffusion theory and Knudsen diffusion give a semiquantitative understanding of these observations and allow optimization of etching times in relation to bonding requirements.

  20. Empirical valence bond model of an SN2 reaction in polar and nonpolar solvents

    NASA Astrophysics Data System (ADS)

    Benjamin, Ilan

    2008-08-01

    A new model for the substitution nucleophilic reaction (SN2) in solution is described using the empirical valence bond (EVB) method. The model includes a generalization to three dimensions of a collinear gas phase EVB model developed by Mathis et al. [J. Mol. Liq. 61, 81 (1994)] and a parametrization of solute-solvent interactions of four different solvents (water, ethanol, chloroform, and carbon tetrachloride). The model is used to compute (in these four solvents) reaction free energy profiles, reaction and solvent dynamics, a two-dimensional reaction/solvent free energy map, as well as a number of other properties that in the past have mostly been estimated.

  1. Computational study of peptide bond formation in the gas phase through ion-molecule reactions.

    PubMed

    Redondo, Pilar; Martínez, Henar; Cimas, Alvaro; Barrientos, Carmen; Largo, Antonio

    2013-08-21

    A computational study of peptide bond formation from gas-phase ion-molecule reactions has been carried out. We have considered the reaction between protonated glycine and neutral glycine, as well as the reaction between two neutral glycine molecules for comparison purposes. Two different mechanisms, concerted and stepwise, were studied. Both mechanisms show significant energy barriers for the neutral reaction. The energy requirements for peptide bond formation are considerably reduced upon protonation of one of the glycine molecules. For the reaction between neutral glycine and N-protonated glycine the lowest energy barrier is observed for the concerted mechanism. For the reaction between neutral glycine and protonated glycine at carbonyl oxygen, the preferred mechanism is the stepwise one, with a relatively small energy barrier (23 kJ mol(-1) at 0 K) and leading to the lowest-lying protonated glycylglycine isomer. In the case that the reaction could be initiated by protonated glycine at hydroxyl oxygen the process would be barrier-free and clearly exothermic. In that case peptide bond formation could take place even under interstellar conditions if glycine is present in space.

  2. Prediction of Reliable Metal-PH₃ Bond Energies for Ni, Pd, and Pt in the 0 and +2 Oxidation States

    SciTech Connect

    Craciun, Raluca; Vincent, Andrew J.; Shaughnessy, Kevin H.; Dixon, David A.

    2010-06-21

    Phosphine-based catalysts play an important role in many metal-catalyzed carbon-carbon bond formation reactions yet reliable values of their bond energies are not available. We have been studying homogeneous catalysts consisting of a phosphine bonded to a Pt, Pd, or Ni. High level electronic structure calculations at the CCSD(T)/complete basis set level were used to predict the M-PH₃ bond energy (BE) for the 0 and +2 oxidation states for M=Ni, Pd, and Pt. The calculated bond energies can then be used, for example, in the design of new catalyst systems. A wide range of exchange-correlation functionals were also evaluated to assess the performance of density functional theory (DFT) for these important bond energies. None of the DFT functionals were able to predict all of the M-PH3 bond energies to within 5 kcal/mol, and the best functionals were generalized gradient approximation functionals in contrast to the usual hybrid functionals often employed for main group thermochemistry.

  3. Nitrogen-doped and simultaneously reduced graphene oxide with superior dispersion as electrocatalysts for oxygen reduction reaction

    SciTech Connect

    Lee, Cheol-Ho; Yun, Jin-Mun; Lee, Sungho; Jo, Seong Mu; Yoo, Sung Jong; Cho, Eun Ae; Khil, Myung-Seob; Joh, Han-Ik

    2014-11-15

    Nitrogen doped graphene oxide (Nr-GO) with properties suitable for electrocatalysts is easily synthesized using phenylhydrazine as a reductant at relatively low temperature. The reducing agent removes various oxygen functional groups bonded to graphene oxide and simultaneously dope the nitrogen atoms bonded with phenyl group all over the basal planes and edge sites of the graphene. The Nr-GO exhibits remarkable electrocatalytic activities for oxygen reduction reaction compared to the commercial carbon black and graphene oxide due to the electronic modification of the graphene structure. In addition, Nr-GO shows excellent dispersibility in various solvent due to the dopant molecules.

  4. High-density-plasma (HDP)-CVD oxide to thermal oxide wafer bonding for strained silicon layer transfer applications

    NASA Astrophysics Data System (ADS)

    Singh, R.; Radu, I.; Reiche, M.; Himcinschi, C.; Kuck, B.; Tillack, B.; Gösele, U.; Christiansen, S. H.

    2007-01-01

    Direct wafer bonding between high-density-plasma chemical vapour deposited (HDP-CVD) oxide and thermal oxide (TO) has been investigated. HDP-CVD oxides, about 230 nm in thickness, were deposited on Si(0 0 1) control wafers and the wafers of interest that contain a thin strained silicon (sSi) layer on a so-called virtual substrate that is composed of relaxed SiGe (˜4 μm thick) on Si(0 0 1) wafers. The surfaces of the as-deposited HDP-CVD oxides on the Si control wafers were smooth with a root-mean-square (RMS) roughness of <1 nm, which is sufficiently smooth for direct wafer bonding. The surfaces of the sSi/SiGe/Si(0 0 1) substrates show an RMS roughness of >2 nm. After HDP-CVD oxide deposition on the sSi/SiGe/Si substrates, the RMS roughness of the oxide surfaces was also found to be the same, i.e., >2 nm. To use these wafers for direct bonding the RMS roughness had to be reduced below 1 nm, which was carried out using a chemo-mechanical polishing (CMP) step. After bonding the HDP-CVD oxides to thermally oxidized handle wafers, the bonded interfaces were mostly bubble- and void-free for the silicon control and the sSi/SiGe/Si(0 0 1) wafers. The bonded wafer pairs were then annealed at higher temperatures up to 800 °C and the bonded interfaces were still found to be almost bubble- and void-free. Thus, HDP-CVD oxide is quite suitable for direct wafer bonding and layer transfer of ultrathin sSi layers on oxidized Si wafers for the fabrication of novel sSOI substrates.

  5. Radical formation in the FMN-photosensitized reactions of unsaturated fatty acids bearing double bonds at different positions.

    PubMed

    Nishihama, Nao; Iwahashi, Hideo

    2016-08-15

    Although the reaction mechanisms through which flavin mononucleotide works as an endogenous photosensitizer have been investigated (Baier et al., 2006; Edwards and Silva, 2001; Pajares et al., 2001; Criado et al., 2003; Massad et al., 2008) [23-27], few studies have been performed for the reactions of flavin mononucleotide with unsaturated fatty acids. To examine the reactions of flavin mononucleotide with unsaturated fatty acids bearing a double bond at different positions, an electron spin resonance, a high performance liquid chromatography-electron spin resonance and a high performance liquid chromatography-electron spin resonance-mass spectrometry were employed. The control reaction mixtures contained 25μmolL(-1) of flavin mononucleotide, 1.0mmolL(-1) of FeSO4(NH4)2SO4, 10mmolL(-1) of cholic acid, 30mmolL(-1) of phosphate buffer (pH 7.4) and 0.1molL(-1) of α-(4-pyridyl-1-oxide)-N-tert-butylnitrone in deuterium oxide. In addition, it also contained 4.3mmolL(-1) of one of the following: (z)-11-octadecenoic acid, (z)-6-octadecenoic acid, (z)-9-octadecenoic acid or (z, z)-9, 12-octadecadienoic acid. The control reaction mixtures without FeSO4(NH4)2SO4 and α-(4-pyridyl-1-oxide)-N-tert-butylnitrone were exposed to the visible light at 436nm (7.8Jcm(-2)). After the irradiation, α-(4-pyridyl-1-oxide)-N-tert-butylnitrone was added. The reactions started from adding FeSO4(NH4)2SO4 and performed at 25°C for 1min. Electron spin resonance measurements of the control reaction mixtures showed prominent signals (α(N)=1.58mT and α(Hβ)=0.26mT). High performance liquid chromatography-electron spin resonance analyses of the control reaction mixtures showed prominent peaks at the retention times of 31.1min {(z)-6-octadecenoic acid}, 39.6min {(z)-9-octadecenoic acid}, 44.9min {(z)-11-octadecenoic acid} and 40.2min {(z, z)-9, 12-octadecadienoic acid}. High performance liquid chromatography-electron spin resonance-mass analyses of the control reaction mixtures showed that 4

  6. Kinetics of the C-C bond beta scission reactions in alkyl radical reaction class.

    PubMed

    Ratkiewicz, Artur; Truong, Thanh N

    2012-06-28

    Kinetics of the β-scission in alkyl radical reaction class was studied using the reaction class transition state theory (RC-TST) combined with the linear energy relationship (LER) and the barrier height grouping (BHG) approach. All necessary parameters were derived from first-principle density functional calculations for a representative set of 21 reactions. Different error analyses and comparisons with available literature data were made. Direct comparison with available experimental data indicates that the RC-TST/LER, where only reaction energy is needed, can predict rate constants for any reaction in this reaction class with excellent accuracy. Specifically for this reaction class, the RC-TST/LER method has less than 60% systematic errors on average in the predicted rate constants when compared to explicit rate calculations.

  7. Correlation among electronegativity, cation polarizability, optical basicity and single bond strength of simple oxides

    SciTech Connect

    Dimitrov, Vesselin; Komatsu, Takayuki

    2012-12-15

    A suitable relationship between free-cation polarizability and electronegativity of elements in different valence states and with the most common coordination numbers has been searched on the basis of the similarity in physical nature of both quantities. In general, the cation polarizability increases with decreasing element electronegativity. A systematic periodic change in the polarizability against the electronegativity has been observed in the isoelectronic series. It has been found that generally the optical basicity increases and the single bond strength of simple oxides decreases with decreasing the electronegativity. The observed trends have been discussed on the basis of electron donation ability of the oxide ions and type of chemical bonding in simple oxides. - Graphical abstract: This figure shows the single bond strength of simple oxides as a function of element electronegativity. A remarkable correlation exists between these independently obtained quantities. High values of electronegativity correspond to high values of single bond strength and vice versa. It is obvious that the observed trend in this figure is closely related to the type of chemical bonding in corresponding oxide. Highlights: Black-Right-Pointing-Pointer A suitable relationship between free-cation polarizability and electronegativity of elements was searched. Black-Right-Pointing-Pointer The cation polarizability increases with decreasing element electronegativity. Black-Right-Pointing-Pointer The single bond strength of simple oxides decreases with decreasing the electronegativity. Black-Right-Pointing-Pointer The observed trends were discussed on the basis of type of chemical bonding in simple oxides.

  8. Reaction pattern and mechanism of light induced oxidative water splitting in photosynthesis.

    PubMed

    Renger, Gernot; Kühn, Philipp

    2007-06-01

    This mini review is an attempt to briefly summarize our current knowledge on light driven oxidative water splitting in photosynthesis. The reaction leading to molecular oxygen and four protons via photosynthesis comprises thermodynamic and kinetic constraints that require a balanced fine tuning of the reaction coordinates. The mode of coupling between electron (ET) and proton transfer (PT) reactions is shown to be of key mechanistic relevance for the redox turnover of Y(Z) and the reactions within the WOC. The WOC is characterized by peculiar energetics of its oxidation steps in the WOC. In all oxygen evolving photosynthetic organisms the redox state S(1) is thermodynamically most stable and therefore this general feature is assumed to be of physiological relevance. Available information on the Gibbs energy differences between the individual redox states S(i+1) and S(i) and on the activation energies of their oxidative transitions are used to construct a general reaction coordinate of oxidative water splitting in photosystem II (PS II). Finally, an attempt is presented to cast our current state of knowledge into a mechanism of oxidative water splitting with special emphasis on the formation of the essential O-O bond and the active role of the protein environment in tuning the local proton activity that depends on time and redox state S(i). The O-O linkage is assumed to take place within a multistate equilibrium at the redox level of S(3), comprising both redox isomerism and proton tautomerism. It is proposed that one state, S(3)(P), attains an electronic configuration and nuclear geometry that corresponds with a hydrogen bonded peroxide which acts as the entatic state for the generation of complexed molecular oxygen through S(3)(P) oxidation by Y(Z)(ox).

  9. Students' Understandings of Chemical Bonds and the Energetics of Chemical Reactions.

    ERIC Educational Resources Information Center

    Boo, Hong Kwen

    1998-01-01

    Investigates Grade 12 students' understandings of the nature of chemical bonds and the energetics elicited across five familiar chemical reactions following a course of instruction. Discusses the many ways in which students can misconstruct concepts and principles. Contains 63 references. (DDR)

  10. Low-oxidation state indium-catalyzed C-C bond formation.

    PubMed

    Schneider, Uwe; Kobayashi, Shu

    2012-08-21

    The development of innovative metal catalysis for selective bond formation is an important task in organic chemistry. The group 13 metal indium is appealing for catalysis because indium-based reagents are minimally toxic, selective, and tolerant toward various functional groups. Among elements in this group, the most stable oxidation state is typically +3, but in molecules with larger group 13 atoms, the chemistry of the +1 oxidation state is also important. The use of indium(III) compounds in organic synthesis has been well-established as Lewis acid catalysts including asymmetric versions thereof. In contrast, only sporadic examples of the use of indium(I) as a stoichiometric reagent have been reported: to the best of our knowledge, our investigations represent the first synthetic method that uses a catalytic amount of indium(I). Depending on the nature of the ligand or the counteranion to which it is coordinated, indium(I) can act as both a Lewis acid and a Lewis base because it has both vacant p orbitals and a lone pair of electrons. This potential ambiphilicity may offer unique reactivity and unusual selectivity in synthesis and may have significant implications for catalysis, particularly for dual catalytic processes. We envisioned that indium(I) could be employed as a metallic Lewis base catalyst to activate Lewis acidic boron-based pronucleophiles for selective bond formation with suitable electrophiles. Alternatively, indium(I) could serve as an ambiphilic catalyst that activates both reagents at a single center. In this Account, we describe the development of low-oxidation state indium catalysts for carbon-carbon bond formation between boron-based pronucleophiles and various electrophiles. We discovered that indium(I) iodide was an excellent catalyst for α-selective allylations of C(sp(2)) electrophiles such as ketones and hydrazones. Using a combination of this low-oxidation state indium compound and a chiral semicorrin ligand, we developed catalytic

  11. Highly efficient C-C bond-forming reactions in aqueous media catalyzed by monomeric vanadate species in an apatite framework.

    PubMed

    Hara, Takayoshi; Kanai, Satoko; Mori, Kohsuke; Mizugaki, Tomoo; Ebitani, Kohki; Jitsukawa, Koichiro; Kaneda, Kiyotomi

    2006-09-15

    A calcium vanadate apatite (VAp), in which PO4(3-) of hydroxyapatite (HAP), Ca10(PO4)6(OH)2, is completely substituted by VO4(3-) in the apatite framework, was synthesized. Physicochemical analysis of the VAp reveals the presence of isolated VO4 tetrahedron units with a pentavalent oxidation state. The VAp acts as a high-performance heterogeneous base catalyst for various carbon-carbon bond-forming reactions such as Michael and aldol reactions in aqueous media and the H-D exchange reactions using deuterium oxide. For example, a 200-mmol-scale Michael reaction under triphasic conditions proceeded rapidly, with an extremely high turnover number of up to 260 400 and an excellent turnover frequency of 48 s(-1). No vanadium leaching was detected during the above reactions, and the catalyst was readily recycled with no loss of activity.

  12. Accurate thermochemistry of hydrocarbon radicals via an extended generalized bond separation reaction scheme.

    PubMed

    Wodrich, Matthew D; Corminboeuf, Clémence; Wheeler, Steven E

    2012-04-05

    Detailed knowledge of hydrocarbon radical thermochemistry is critical for understanding diverse chemical phenomena, ranging from combustion processes to organic reaction mechanisms. Unfortunately, experimental thermochemical data for many radical species tend to have large errors or are lacking entirely. Here we develop procedures for deriving high-quality thermochemical data for hydrocarbon radicals by extending Wheeler et al.'s "generalized bond separation reaction" (GBSR) scheme (J. Am. Chem. Soc., 2009, 131, 2547). Moreover, we show that the existing definition of hyperhomodesmotic reactions is flawed. This is because transformation reactions, in which one molecule each from the predefined sets of products and reactants can be converted to a different product and reactant molecule, are currently allowed. This problem is corrected via a refined definition of hyperhomodesmotic reactions in which there are equal numbers of carbon-carbon bond types inclusive of carbon hybridization and number of hydrogens attached. Ab initio and density functional theory (DFT) computations using the expanded GBSRs are applied to a newly derived test set of 27 hydrocarbon radicals (HCR27). Greatly reduced errors in computed reaction enthalpies are seen for hyperhomodesmotic and other highly balanced reactions classes, which benefit from increased matching of hybridization and bonding requirements. The best performing DFT methods for hyperhomodesmotic reactions, M06-2X and B97-dDsC, give average deviations from benchmark computations of only 0.31 and 0.44 (±0.90 and ±1.56 at the 95% confidence level) kcal/mol, respectively, over the test set. By exploiting the high degree of error cancellation provided by hyperhomodesmotic reactions, accurate thermochemical data for hydrocarbon radicals (e.g., enthalpies of formation) can be computed using relatively inexpensive computational methods.

  13. Catalyst-Controlled Regioselectivity in the Synthesis of Branched Conjugated Dienes via Aerobic Oxidative Heck Reactions

    PubMed Central

    Zheng, Changwu; Wang, Dian; Stahl, Shannon S.

    2012-01-01

    Pd-catalyzed aerobic oxidative coupling of vinylboronic acids and electronically unbiased alkyl olefins provides regioselective access to 1,3-disubstituted conjugated dienes. Catalyst-controlled regioselectivity is achieved by using 2,9-dimethylphenanthroline as a ligand. The observed regioselectivity is opposite to that observed from a traditional (non-oxidative) Heck reaction between a vinyl bromide and an alkene. DFT computational studies reveal that steric effects of the 2,9-dimethylphenanthroline ligand promote C–C bond-formation at the internal position of the alkene. PMID:22998540

  14. Design Insights for Tuning the Electrocatalytic Activity of Perovskite Oxides for the Oxygen Evolution Reaction

    SciTech Connect

    Malkhandi, S; Trinh, P; Manohar, AK; Manivannan, A; Balasubramanian, M; Prakash, GKS; Narayanan, SR

    2015-04-16

    Rechargeable metal-air batteries and water electrolyzers based on aqueous alkaline electrolytes hold the potential to be sustainable solutions to address the challenge of storing large amounts of electrical energy generated from solar and wind resources. For these batteries and electrolyzers to be economically viable, it is essential to have efficient, durable, and inexpensive electrocatalysts for the oxygen evolution reaction. In this article, we describe new insights for predicting and tuning the activity of inexpensive transition metal oxides for designing efficient and inexpensive electrocatalysts. We have focused on understanding the factors determining the electrocatalytic activity for oxygen evolution in a strong alkaline medium. To this end, we have conducted a systematic investigation of nanophase calcium-doped lanthanum cobalt manganese oxide, an example of a mixed metal oxide that can be tuned for its electrocatalytic activity by varying the transition metal composition. Using X-ray absorption spectroscopy (XANES), X-ray photoelectron spectroscopy (XPS), electrochemical polarization experiments, and analysis of mechanisms, we have identified the key determinants of electrocatalytic activity. We have found that the Tafel slopes are determined by the oxidation states and the bond energy of the surface intermediates of Mn-OH and Co-OH bonds while the catalytic activity increased with the average d-electron occupancy of the sigma* orbital of the M-OH bond. We anticipate that such understanding will be very useful in predicting the behavior of other transition metal oxide catalysts.

  15. Oxides formation on hydrophilic bonding interface in plasma-assisted InP/Al2O3/SOI direct wafer bonding

    NASA Astrophysics Data System (ADS)

    Gong, Kewei; Sun, Changzheng; Xiong, Bing; Han, Yanjun; Hao, Zhibiao; Wang, Jian; Wang, Lai; Li, Hongtao

    2017-01-01

    Successful direct wafer bonding between InP and silicon-on-insulator (SOI) wafers has been demonstrated by adopting a 20-nm-thick Al2O3 as the intermediate layer. A detailed investigation on the property of the bonding interface is carried out. Water contact angle test reveals an improved hydrophilicity for both the InP and the Al2O3/SOI wafers after oxygen plasma surface activation. X-ray photoelectron spectroscopy is employed to characterize the bonding interface before and after the wafer bonding process. It is found that oxides are formed on the bonding interface during bonding, which helps ensure high quality hydrophilic bonding.

  16. Studying Chemical Reactions, One Bond at a Time, with Single Molecule AFM Techniques

    NASA Astrophysics Data System (ADS)

    Fernandez, Julio M.

    2008-03-01

    The mechanisms by which mechanical forces regulate the kinetics of a chemical reaction are unknown. In my lecture I will demonstrate how we use single molecule force-clamp spectroscopy and protein engineering to study the effect of force on the kinetics of thiol/disulfide exchange. Reduction of disulfide bond via the thiol/disulfide exchange chemical reaction is crucial in regulating protein function and is of common occurrence in mechanically stressed proteins. While reduction is thought to proceed through a substitution nucleophilic bimolecular (SN2) reaction, the role of a mechanical force in modulating this chemical reaction is unknown. We apply a constant stretching force to single engineered disulfide bonds and measure their rate of reduction by dithiothreitol (DTT). We find that while the reduction rate is linearly dependent on the concentration of DTT, it is exponentially dependent on the applied force, increasing 10-fold over a 300 pN range. This result predicts that the disulfide bond lengthens by 0.34 å at the transition state of the thiol/disulfide exchange reaction. In addition to DTT, we also study the reduction of the engineered disulfide bond by the E. coli enzyme thioredoxin (Trx). Thioredoxins are enzymes that catalyze disulfide bond reduction in all organisms. As before, we apply a mechanical force in the range of 25-450 pN to the engineered disulfide bond substrate and monitor the reduction of these bonds by individual enzymes. In sharp contrast with the data obtained with DTT, we now observe two alternative forms of the catalytic reaction, the first requiring a reorientation of the substrate disulfide bond, causing a shortening of the substrate polypeptide by 0.76±0.07 å, and the second elongating the substrate disulfide bond by 0.21±0.01 å. These results support the view that the Trx active site regulates the geometry of the participating sulfur atoms, with sub-ångström precision, in order to achieve efficient catalysis. Single molecule

  17. CONTAMINANT ADSORPTION AND OXIDATION VIA FENTON REACTION

    EPA Science Inventory

    A ground water treatment process is proposed involving two cgemical processes: adsorption and oxidation. Adsorption of an organic compound onto granulated activated carbon (GAC) containing iron conveniently results in immobilizing and concentrating contaminants from the ground w...

  18. Palladium(II)-Catalyzed C-H Bond Activation/C-C and C-O Bond Formation Reaction Cascade: Direct Synthesis of Coumestans.

    PubMed

    Neog, Kashmiri; Borah, Ashwini; Gogoi, Pranjal

    2016-12-02

    A palladium catalyzed cascade reaction of 4-hydroxycoumarins and in situ generated arynes has been developed for the direct synthesis of coumestans. This cascade strategy proceeds via C-H bond activation/C-O and C-C bond formations in a single reaction vessel. This methodology affords moderate to good yields of coumestans and is tolerant of a variety of functional groups including halide. The methodology was applied to the synthesis of natural product flemichapparin C.

  19. Acetaldehyde partial oxidation on the Au(111) model catalyst surface: C-C bond activation and formation of methyl acetate as an oxidative coupling product

    NASA Astrophysics Data System (ADS)

    Karatok, Mustafa; Vovk, Evgeny I.; Shah, Asad A.; Turksoy, Abdurrahman; Ozensoy, Emrah

    2015-11-01

    Partial oxidation of acetaldehyde (CH3CHO) on the oxygen pre-covered Au(111) single crystal model catalyst was investigated via Temperature Programmed Desorption (TPD) and Temperature Programmed Reaction Spectroscopy (TPRS) techniques, where ozone (O3) was utilized as the oxygen delivery agent providing atomic oxygen to the reacting surface. We show that for low exposures of O3 and small surface oxygen coverages, two partial oxidation products namely, methyl acetate (CH3COOCH3) and acetic acid (CH3COOH) can be generated without the formation of significant quantities of carbon dioxide. The formation of methyl acetate as the oxidative coupling reaction product implies that oxygen pre-covered Au(111) single crystal model catalyst surface can activate C-C bonds. In addition to the generation of these products; indications of the polymerization of acetaldehyde on the gold surface were also observed as an additional reaction route competing with the partial and total oxidation pathways. The interplay between the partial oxidation, total oxidation and polymerization pathways reveals the complex catalytic chemistry associated with the interaction between the acetaldehyde and atomic oxygen on catalytic gold surfaces.

  20. Reaction Mechanism for m-Xylene Oxidation in the Claus Process by Sulfur Dioxide.

    PubMed

    Sinha, Sourab; Raj, Abhijeet; Al Shoaibi, Ahmed S; Chung, Suk Ho

    2015-09-24

    In the Claus process, the presence of aromatic contaminants such benzene, toluene, and xylenes (BTX), in the H2S feed stream has a detrimental effect on catalytic reactors, where BTX form soot particles and clog and deactivate the catalysts. Among BTX, xylenes are proven to be most damaging contaminant for catalysts. BTX oxidation in the Claus furnace, before they enter catalyst beds, provides a solution to this problem. A reaction kinetics study on m-xylene oxidation by SO2, an oxidant present in Claus furnace, is presented. The density functional theory is used to study the formation of m-xylene radicals (3-methylbenzyl, 2,6-dimethylphenyl, 2,4-dimethylphenyl, and 3,5-dimethylphenyl) through H-abstraction and their oxidation by SO2. The mechanism begins with SO2 addition on the radicals through an O-atom rather than the S-atom with the release of 180.0-183.1 kJ/mol of reaction energies. This exothermic reaction involves energy barriers in the range 3.9-5.2 kJ/mol for several m-xylene radicals. Thereafter, O-S bond scission takes place to release SO, and the O-atom remaining on aromatics leads to CO formation. Among four m-xylene radicals, the resonantly stabilized 3-methylbenzyl exhibited the lowest SO2 addition and SO elimination rates. The reaction rate constants are provided to facilitate Claus process simulations to find conditions suitable for BTX oxidation.

  1. Guanine oxidation: one- and two-electron reactions.

    PubMed

    Pratviel, Geneviève; Meunier, Bernard

    2006-08-07

    Guanine bases in DNA are the most sensitive to oxidation. A lot of effort has been devoted to the understanding of the chemical modifications of guanine under different oxidizing conditions, the final goal being to know which lesions in DNA can be expected in vivo and their biological consequences. This article analyses the mechanisms underlying guanine oxidation by the comparison between one- and two-electron transfer processes. The different oxidants used in vitro give complementary answers. This overview presents a choice of some key intermediates and the predictive description of G-oxidation products that can be generated from these intermediates depending on the reaction conditions.

  2. Evaluation of reaction mechanism of coal-metal oxide interactions in chemical-looping combustion

    SciTech Connect

    Siriwardane, Ranjani; Richards, George; Poston, James; Tian, Hanjing; Miller, Duane; Simonyi, Thomas

    2010-11-15

    The knowledge of reaction mechanism is very important in designing reactors for chemical-looping combustion (CLC) of coal. Recent CLC studies have considered the more technically difficult problem of reactions between abundant solid fuels (i.e. coal and waste streams) and solid metal oxides. A definitive reaction mechanism has not been reported for CLC reaction of solid fuels. It has often been assumed that the solid/solid reaction is slow and therefore requires that reactions be conducted at temperatures high enough to gasify the solid fuel, or decompose the metal oxide. In contrast, data presented in this paper demonstrates that solid/solid reactions can be completed at much lower temperatures, with rates that are technically useful as long as adequate fuel/metal oxide contact is achieved. Density functional theory (DFT) simulations as well as experimental techniques such as thermo-gravimetric analysis (TGA), flow reactor studies, in situ X-ray photo electron spectroscopy (XPS), in situ X-ray diffraction (XRD) and scanning electron microscopy (SEM) are used to evaluate how the proximal interaction between solid phases proceeds. The data indicate that carbon induces the Cu-O bond breaking process to initiate the combustion of carbon at temperatures significantly lower than the spontaneous decomposition temperature of CuO, and the type of reducing medium in the vicinity of the metal oxide influences the temperature at which the oxygen release from the metal oxide takes place. Surface melting of Cu and wetting of carbon may contribute to the solid-solid contacts necessary for the reaction. (author)

  3. Oxidative C-H/C-H Coupling Reactions between Two (Hetero)arenes.

    PubMed

    Yang, Yudong; Lan, Jingbo; You, Jingsong

    2017-01-13

    Transition metal-mediated C-H bond activation and functionalization represent one of the most straightforward and powerful tools in modern organic synthetic chemistry. Bi(hetero)aryls are privileged π-conjugated structural cores in biologically active molecules, organic functional materials, ligands, and organic synthetic intermediates. The oxidative C-H/C-H coupling reactions between two (hetero)arenes through 2-fold C-H activation offer a valuable opportunity for rapid assembly of diverse bi(hetero)aryls and further exploitation of their applications in pharmaceutical and material sciences. This review provides a comprehensive overview of the fundamentals and applications of transition metal-mediated/catalyzed oxidative C-H/C-H coupling reactions between two (hetero)arenes. The substrate scope, limitation, reaction mechanism, regioselectivity, and chemoselectivity, as well as related control strategies of these reactions are discussed. Additionally, the applications of these established methods in the synthesis of natural products and exploitation of new organic functional materials are exemplified. In the last section, a short introduction on oxidant- or Lewis acid-mediated oxidative Ar-H/Ar-H coupling reactions is presented, considering that it is a very powerful method for the construction of biaryl units and polycylic arenes.

  4. High temperature heterogeneous reaction kinetics and mechanisms of tungsten oxidation

    NASA Astrophysics Data System (ADS)

    Sabourin, Justin L.

    Tungsten, which is a material used in many high temperature applications, is limited by its susceptibility to oxidation at elevated temperatures. Although tungsten has the highest melting temperature of any metal, at much lower temperatures volatile oxides are formed during oxidation with oxygen containing species. This differs from many heterogeneous oxidation reactions involving metals since most reactions form very stable oxides that have higher melting or boiling points than the pure metal (e.g., aluminum, iron). Understanding heterogeneous oxidation and vaporization processes may allow for the expansion and improvement of high temperature tungsten applications. In order to increase understanding of the oxidation processes of tungsten, there is a need to develop reaction mechanisms and kinetics for oxidation processes involving oxidizers and environmental conditions of interest. Tungsten oxidation was thoroughly studied in the past, and today there is a good phenomenological understanding of these processes. However, as the design of large scale systems increasingly relies on computer modeling there becomes a need for improved descriptions of chemical reactions. With the increase in computing power over the last several decades, and the development of quantum chemistry and physics theories, heterogeneous systems can be modeled in detail at the molecular level. Thermochemical parameters that may not be measured experimentally may now be determined theoretically, a tool that was previously unavailable to scientists and engineers. Additionally, chemical kinetic modeling software is now available for both homogeneous and heterogeneous reactions. This study takes advantage of these new theoretical tools, as well as a thermogravimetric (TG) flow reactor developed as part of this study to learn about mechanisms and kinetics of tungsten oxidation. Oxidizers of interest are oxygen (O2), carbon dioxide (CO 2), water (H2O), and other oxidizers present in combustion and

  5. CH stretching excitation in the early barrier F + CHD3 reaction inhibits CH bond cleavage.

    PubMed

    Zhang, Weiqing; Kawamata, Hiroshi; Liu, Kopin

    2009-07-17

    Most studies of the impact of vibrational excitation on molecular reactivity have focused on reactions with a late barrier (that is, a transition state resembling the products). For an early barrier reaction, conventional wisdom predicts that a reactant's vibration should not couple efficiently to the reaction coordinate and thus should have little impact on the outcome. We report here an in-depth experimental study of the reactivity effects exerted by reactant C-H stretching excitation in a prototypical early-barrier reaction, F + CHD3. Rather counterintuitively, we find that the vibration hinders the overall reaction rate, inhibits scission of the excited bond itself (favoring the DF + CHD2 product channel), and influences the coproduct vibrational distribution despite being conserved in the CHD2 product. The results highlight substantial gaps in our predictive framework for state-selective polyatomic reactivity.

  6. The Effect of Metal Oxide on Nanoparticles from Thermite Reactions

    ERIC Educational Resources Information Center

    Moore, Lewis Ryan

    2006-01-01

    The purpose of this research was to determine how metal oxide used in a thermite reaction can impact the production of nanoparticles. The results showed the presence of nanoparticles (less than 1 micron in diameter) of at least one type produced by each metal oxide. The typical particles were metallic spheres, which ranged from 300 nanometers in…

  7. Theoretical Study of Proton Coupled Electron Transfer Reactions: The Effect of Hydrogen Bond Bending Motion.

    PubMed

    Liu, Yang; Liu, Hao; Song, Kai; Xu, Yang; Shi, Qiang

    2015-06-25

    We investigate theoretically the effect of hydrogen bond bending motion on the proton coupled electron transfer (PCET) reaction, using a model system where an intramolecular hydrogen-bonded phenol group is the proton donor. It is shown that, in a two-dimensional (2D) model of the PCET reaction, the bending and stretching vibrational motions are separated, and due to the hydrogen bond configuration and anharmonicity of the potential energy surface, the bending vibration can play a role in the PCET reaction. The results are also compared with two different sets of one-dimensional models (1D-linear and 1D-curved). Due to contributions of the bending motion, the rate constants in the 2D model are larger than those in the 1D-linear model, although the differences between the total rate constants and KIEs for 2D and 1D models are not major. Results from the 1D-curved model lie between the 2D- and 1D-linear models, indicating that it can include some effect of bending motion in reducing the potential energies along the reaction path.

  8. A bond, ring and cage resolved Poincaré-Hopf relationship for isomerisation reaction pathways

    NASA Astrophysics Data System (ADS)

    Jenkins, Samantha; Liu, Zeyu; Kirk, Steven R.

    2013-10-01

    We introduce a new tool for reaction pathway analysis based on a chemical bonding density descriptor obtained from the higher resolution Poincaré-Hopf relation. To remove the degeneracy of the Poincaré-Hopf relationship for critical points of the electron density, we introduce the concepts of bonding cardinality and characterise the topology of rings and cages. This allows us to relate the changes in the relative energetic stability along an isomerisation reaction pathway with changes in the topology of the electron density. To demonstrate the utility of this approach, we consider the complete circuit of the reaction pathway connecting the various Möbius and Hückel structures in Au and/or Pd bis-metallated octaphyrins. Where the topological feature 'cages' exist in adjacent topologies, the degeneracy in the Poincaré-Hopf relationship is completely removed even for differences in relative energies of only 0.1 kcal/mol. Metallation of the Möbius and Hückel structures was found to increase the topological complexity and bonding density. Combining Pd and Au nuclei in the octaphyrin complexes reduced the smoothness of the potential energy surface. The presence of long, weak C-H contacts correlates in all cases with the lowest energy enantiomers and the most negative nuclear-independent chemical shift values of the reaction pathways in Au and/or Pd bis-metallated octaphyrins.

  9. Shape and Mechanical Control of Poly(ethylene oxide) Based Polymersome with Polyoxometalates via Hydrogen Bond.

    PubMed

    Jing, Benxin; Wang, Xiaofeng; Wang, Haitao; Qiu, Jie; Shi, Yi; Gao, Haifeng; Zhu, Yingxi

    2017-02-23

    Polymersomes are self-assembled vesicles of amphiphilic block copolymers and have been explored for wide applications from drug delivery to micro/nanoreactors. As polymersomes are soft and highly deformable, their shape instability due to osmolarity difference across polymer membranes and low elasticity could conversely limit their practical use. Instead of selecting particular polymer chemical reactions to enhance the mechanical properties, we have employed inorganic polyoxometalate (POM) clusters as simple physical cross-linkers to control the shape and mechanical stability of polymersomes in aqueous suspensions. Robust spherical shape with enhanced elastic and bending moduli of POM-dressed poly(ethylene oxide) (PEO) based polymersomes is achieved. We have accounted for the hydrogen bonding between POM and PEO blocks for the adsorption and stabilization of POMS on polymersomes, whose interaction strength could also be tuned by mixing solvents of hydrogen bond donors or receptors with water. The stimuli-responsive properties of POMs are introduced in POM-dressed polymersomes upon the interaction of POMs with PEO blocks in aqueous media. As POM can be used as nanomedicines, catalysts, and other functional nanomaterials, POM-dressed polymersomes with significant shape and mechanical reinforcement could broaden the applications of PEO-based polymersomes and other PEO-tethered nanocolloids.

  10. Classification of metal-oxide bonded interactions based on local potential- and kinetic-energy densities

    SciTech Connect

    Gibbs, Gerald V.; Cox, David; Crawford, T Daniel; Rosso, Kevin M.; Ross, Nancy; Downs, R. T.

    2006-02-28

    A classification of the HF bonded interactions comprising a large number of molecules has been proposed by Espinosa et al. [J. Chem. Phys. 117, 5529 (2002)] based on the ratio |V(rc)|/G(rc) where |V(rc)| is the magnitude of the local potential energy density and G(rc) is the local kinetic density evaluated at the bond critical points, rc. A calculation of the ratio for the MO bonded interactions comprising a relatively large number of molecules and earth materials, together with the constraints imposed by the values of Ñ2ρ(rc) and the local electronic energy density H(rc) = G(rc) + V(rc) in the HF study, yielded the same classification for the oxides as found for the fluorides. This is true despite the different trends of the bond critical point and local energy properties with the bond length displayed by the HF and MO bonded interactions. LiO, NaO and MgO bonded interactions classify as closed shell ionic bonds, BeO, AlO, SiO, BO and PO bonded interactions classify as bonds of intermediate character and NO bonded interactions classify as shared covalent bonds. CO and SO bonded interactions classify as both intermediate and covalent bonded interactions. The CO triple bonded interaction classifies as a bond of intermediate character and the CO single bonded interaction classifies as a covalent bond whereas their H(rc) value indicates that they are both covalent bonds. The |V(rc)|/G(rc) ratios for the BeO, AlO and SiO bonded interactions indicate that they have a substantial component of ionic character despite their classification as bonds of intermediate character. The trend between |V(rc)|/G(rc) and the character of the bonded interaction is consistent with trends expected from electronegativity considerations. The connection between the net charges and the experimental SiO bond length evaluated for the Si and O atoms comprising two orthosilicates are examined in terms of the |V(rc)|/G(rc) values.

  11. Thermal oxidative degradation reactions of perfluoroalkylethers

    NASA Technical Reports Server (NTRS)

    Paciorek, K. L.; Ito, T. I.; Kratzer, R. H.

    1981-01-01

    The mechanisms operative in thermal oxidative degradation of Fomblin Z and hexafluoropropene oxide derived fluids and the effect of alloys and additives upon these processes are investigated. The nature of arrangements responsible for the inherent thermal oxidative instability of the Fomblin Z fluids is not established. It was determined that this behavior is not associated with hydrogen end groups or peroxy linkages. The degradation rate of these fluids at elevated temperatures in oxidizing atmospheres is dependent on the surface/volume ratio. Once a limiting ratio is reached, a steady rate appears to be attained. Based on elemental analysis and oxygen consumption data, CF2OCF2CF2O2, no. CF2CF2O, is one of the major arrangements present. The action of the M-50 and Ti(4 Al, 4 Mn) alloys is much more drastic in the case of Fomblin Z fluids than that observed for the hexafluoropropene derived materials. The effectiveness of antioxidation anticorrosion additives, P-3 and phospha-s-triazine, in the presence of metal alloys is very limited at 316 C; at 288 C the additives arrested almost completely the fluid degradation. The phospha-s-triazine appears to be at least twice as effective as the P-3 compound; it also protected the coupon better. The Ti(4 Al, 4 Mn) alloy degraded the fluid mainly by chain scission processes this takes place to a much lesser degree with M-50.

  12. The role of intramolecular hydrogen bonds in nucleophilic addition reactions of ketenaminals

    NASA Astrophysics Data System (ADS)

    Isaev, A. N.

    2012-08-01

    Quantum-chemical calculations of the geometries and electronic structures of molecules of ketenaminals 3-(diaminomethylene)-2,4-pentanedione and dimethyl-2-(diaminomethylene)-malonate and calculations of the structures of intermediates in the reaction of the nucleophilic addition of the ketenaminals to the acetonitrile molecule are performed by B3LYP/6-31+G** method. Two possible scenarios of the process are shown, depending on the mutual orientation of reacting molecules. The nucleophilic addition proceeds in two stages. It is found that the rate-limiting stage of the process is the transfer of the proton of the intramolecular hydrogen bond in a ketenaminal molecule. The experimentally observed faster reaction of pyrimidine formation for the 3-(diaminomethylene)-2,4-pentanedione molecule relative to that for dimethyl-2-(diaminomethylene)-malonate is explained by the hydrogen bond being stronger and the barrier of proton transfer from the aminogroup to the ketogroup oxygen falling upon nucleophilic attack in the former molecule.

  13. A novel protocol for the facile construction of tetrahydroquinoline fused tricyclic frameworks via an intramolecular 1,3-dipolar nitrile oxide cycloaddition reaction.

    PubMed

    Bakthadoss, Manickam; Vinayagam, Varathan

    2015-10-21

    An efficient method towards the synthesis of quinoline fused tricyclic compounds involving an intramolecular 1,3-dipolar nitrile oxide cycloaddition reaction utilizing Baylis-Hillman derivatives in good yields has been described for the first time. A highly functionalized tricyclic framework was created by forming two rings and two adjacent stereocentres through the formation of two N-C bonds, one C-C bond and one O-C bond in a highly regio and diastereoselective manner.

  14. A bond-topological approach to theoretical mineralogy: crystal structure, chemical composition and chemical reactions

    NASA Astrophysics Data System (ADS)

    Hawthorne, Frank C.

    2012-11-01

    Here, I describe a theoretical approach to the structure and chemical composition of minerals based on their bond topology. This approach allows consideration of many aspects of minerals and mineral behaviour that cannot be addressed by current theoretical methods. It consists of combining the bond topology of the structure with aspects of graph theory and bond-valence theory (both long range and short range), and using the moments approach to the electronic energy density-of-states to interpret topological aspects of crystal structures. The structure hierarchy hypothesis states that higher bond-valence polyhedra polymerize to form the (usually anionic) structural unit, the excess charge of which is balanced by the interstitial complex (usually consisting of large low-valence cations and (H2O) groups). This hypothesis may be justified within the framework of bond topology and bond-valence theory, and may be used to hierarchically classify oxysalt minerals. It is the weak interaction between the structural unit and the interstitial complex that controls the stability of the structural arrangement. The principle of correspondence of Lewis acidity-basicity states that stable structures will form when the Lewis-acid strength of the interstitial complex closely matches the Lewis-base strength of the structural unit, and allows us to examine the factors that control the chemical composition and aspects of the structural arrangements of minerals. It also provides a connection between a structure, the speciation of its constituents in aqueous solution and its mechanism of crystallization. The moments approach to the electronic energy density-of-states provides a link between the bond topology of a structure and its thermodynamic properties, as indicated by correlations between average anion coordination number and reduced enthalpy of formation from the oxides for [6]Mg{/m [4]}Si n O( m+2 n) and MgSO4(H2O) n .

  15. Irreversible bonding of polyimide and polydimethylsiloxane (PDMS) based on a thiol-epoxy click reaction

    NASA Astrophysics Data System (ADS)

    Hoang, Michelle V.; Chung, Hyun-Joong; Elias, Anastasia L.

    2016-10-01

    Polyimide is one of the most popular substrate materials for the microfabrication of flexible electronics, while polydimethylsiloxane (PDMS) is the most widely used stretchable substrate/encapsulant material. These two polymers are essential in fabricating devices for microfluidics, bioelectronics, and the internet of things; bonding these materials together is a crucial challenge. In this work, we employ click chemistry at room temperature to irreversibly bond polyimide and PDMS through thiol-epoxy bonds using two different methods. In the first method, we functionalize the surfaces of the PDMS and polyimide substrates with mercaptosilanes and epoxysilanes, respectively, for the formation of a thiol-epoxy bond in the click reaction. In the second method, we functionalize one or both surfaces with mercaptosilane and introduce an epoxy adhesive layer between the two surfaces. When the surfaces are bonded using the epoxy adhesive without any surface functionalization, an extremely small peel strength (<0.01 N mm-1) is measured with a peel test, and adhesive failure occurs at the PDMS surface. With surface functionalization, however, remarkably higher peel strengths of ~0.2 N mm-1 (method 1) and  >0.3 N mm-1 (method 2) are observed, and failure occurs by tearing of the PDMS layer. We envision that the novel processing route employing click chemistry can be utilized in various cases of stretchable and flexible device fabrication.

  16. Optimized Reaction Conditions for Amide Bond Formation in DNA-Encoded Combinatorial Libraries.

    PubMed

    Li, Yizhou; Gabriele, Elena; Samain, Florent; Favalli, Nicholas; Sladojevich, Filippo; Scheuermann, Jörg; Neri, Dario

    2016-08-08

    DNA-encoded combinatorial libraries are increasingly being used as tools for the discovery of small organic binding molecules to proteins of biological or pharmaceutical interest. In the majority of cases, synthetic procedures for the formation of DNA-encoded combinatorial libraries incorporate at least one step of amide bond formation between amino-modified DNA and a carboxylic acid. We investigated reaction conditions and established a methodology by using 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide, 1-hydroxy-7-azabenzotriazole and N,N'-diisopropylethylamine (EDC/HOAt/DIPEA) in combination, which provided conversions greater than 75% for 423/543 (78%) of the carboxylic acids tested. These reaction conditions were efficient with a variety of primary and secondary amines, as well as with various types of amino-modified oligonucleotides. The reaction conditions, which also worked efficiently over a broad range of DNA concentrations and reaction scales, should facilitate the synthesis of novel DNA-encoded combinatorial libraries.

  17. Kinetics of the C-C bond beta scission reactions in alkyl radicals.

    PubMed

    Ratkiewicz, Artur

    2011-09-07

    High pressure limits of thermal rate constants of four C-C bond beta scission reactions of propyl, 1-butyl, 2-butyl and isobutyl radicals were calculated using the canonical variational transition state theory (CVT) with a multi-dimensional small-curvature tunneling (SCT) correction over the temperature range of 300-3000 K. The CCSD(T)/cc-pVDZ//BH&HLYP/cc-pVDZ method was used to provide necessary potential energy surface information. Rate constants for these reactions were used to extrapolate rate constants for reactions in larger alkyls where experimental data are available using the Reaction Class Transition State Theory (RC-TST). Excellent agreement with experimental data confirms the validity of the RC-TST methodology and the accuracy of the calculated kinetic data in this study.

  18. B-H bond activation using an electrophilic metal complex: insights into the reaction pathway.

    PubMed

    Kumar, Rahul; Jagirdar, Balaji R

    2013-01-07

    A highly electrophilic ruthenium center in the [RuCl(dppe)(2)][OTf] complex brings about the activation of the B-H bond in ammonia borane (H(3)N·BH(3), AB) and dimethylamine borane (Me(2)HN·BH(3), DMAB). At room temperature, the reaction between [RuCl(dppe)(2)][OTf] and AB or DMAB results in trans-[RuH(η(2)-H(2))(dppe)(2)][OTf], trans-[RuCl(η(2)-H(2))(dppe)(2)][OTf], and trans-[RuH(Cl)(dppe)(2)], as noted in the NMR spectra. Mixing the ruthenium complex and AB or DMAB at low temperature (198/193 K) followed by NMR spectral measurements as the reaction mixture was warmed up to room temperature allowed the observation of various species formed enroute to the final products that were obtained at room temperature. On the basis of the variable-temperature multinuclear NMR spectroscopic studies of these two reactions, the mechanistic insights for B-H bond activation were obtained. In both cases, the reaction proceeds via an η(1)-B-H moiety bound to the metal center. The detailed mechanistic pathways of these two reactions as studied by NMR spectroscopy are described.

  19. Bond length estimates for oxide crystals with a molecular power law expression

    NASA Astrophysics Data System (ADS)

    Gibbs, G. V.; Ross, Nancy L.; Cox, David F.

    2015-07-01

    A molecular power law bond length regression expression, R(M-O) = 1.39( s/ r)-0.22, defined in terms of the quotient, s/ r, where s is the averaged Pauling bond strength for the bonded interaction comprising a given molecular coordination polyhedron and r is the periodic table row number for the M atom, serves to replicate the bulk of the 470 individual experimental M-O average bond lengths estimated with Shannon's (Acta Crystallogr A 32(5):751-767, 1976) crystal radii for oxides to within 0.10 Å. The success of the molecular expression is ascribed to a one-to-one deep-seated connection that obtains between the electron density accumulated between bonded pairs of atoms and the average Pauling bond strength. It also implies that the bonded interactions that constitute oxide crystals are governed in large part by local forces. Although the expression reproduces the bond lengths involving rare earth atoms typically to within ~0.05 Å, it does not reproduce the lanthanide ionic radius contraction. It also fails to reproduce the experimental bond lengths for selected transition cations like Cu1+, Ag1+ and VILSFe2+ and for cations like IVK+, VIBa2+ and IIU6+.

  20. Graphene Oxide Catalyzed C-H Bond Activation: The Importance Oxygen Functional Groups for Biaryl Construction

    SciTech Connect

    Gao, Yongjun; Tang, Pei; Zhou, Hu; Zhang, Wei; Yang, Hanjun; Yan, Ning; Hu, Gang; Mei, Donghai; Wang, Jianguo; Ma, Ding

    2016-02-24

    A heterogeneous, inexpensive and environment-friendly carbon catalytic system was developed for the C-H bond arylation of benzene resulting in the subsequent formation of biaryl compounds. The oxygen-containing groups on these graphene oxide sheets play an essential role in the observed catalytic activity. The catalytic results of model compounds and DFT calculations show that these functional groups promote this reaction by stabilization and activation of K ions at the same time of facilitating the leaving of I. And further mechanisms studies show that it is the charge induced capabilities of oxygen groups connected to specific carbon skeleton together with the giant π-reaction platform provided by the π-domain of graphene that played the vital roles in the observed excellent catalytic activity. D. Mei acknowledges the support from the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory.

  1. Cleavage of ether, ester, and tosylate C(sp3)-O bonds by an iridium complex, initiated by oxidative addition of C-H bonds. Experimental and computational studies.

    PubMed

    Kundu, Sabuj; Choi, Jongwook; Wang, David Y; Choliy, Yuriy; Emge, Thomas J; Krogh-Jespersen, Karsten; Goldman, Alan S

    2013-04-03

    A pincer-ligated iridium complex, (PCP)Ir (PCP = κ(3)-C6H3-2,6-[CH2P(t-Bu)2]2), is found to undergo oxidative addition of C(sp(3))-O bonds of methyl esters (CH3-O2CR'), methyl tosylate (CH3-OTs), and certain electron-poor methyl aryl ethers (CH3-OAr). DFT calculations and mechanistic studies indicate that the reactions proceed via oxidative addition of C-H bonds followed by oxygenate migration, rather than by direct C-O addition. Thus, methyl aryl ethers react via addition of the methoxy C-H bond, followed by α-aryloxide migration to give cis-(PCP)Ir(H)(CH2)(OAr), followed by iridium-to-methylidene hydride migration to give (PCP)Ir(CH3)(OAr). Methyl acetate undergoes C-H bond addition at the carbomethoxy group to give (PCP)Ir(H)[κ(2)-CH2OC(O)Me] which then affords (PCP-CH2)Ir(H)(κ(2)-O2CMe) (6-Me) in which the methoxy C-O bond has been cleaved, and the methylene derived from the methoxy group has migrated into the PCP Cipso-Ir bond. Thermolysis of 6-Me ultimately gives (PCP)Ir(CH3)(κ(2)-O2CR), the net product of methoxy group C-O oxidative addition. Reaction of (PCP)Ir with species of the type ROAr, RO2CMe or ROTs, where R possesses β-C-H bonds (e.g., R = ethyl or isopropyl), results in formation of (PCP)Ir(H)(OAr), (PCP)Ir(H)(O2CMe), or (PCP)Ir(H)(OTs), respectively, along with the corresponding olefin or (PCP)Ir(olefin) complex. Like the C-O bond oxidative additions, these reactions also proceed via initial activation of a C-H bond; in this case, C-H addition at the β-position is followed by β-migration of the aryloxide, carboxylate, or tosylate group. Calculations indicate that the β-migration of the carboxylate group proceeds via an unusual six-membered cyclic transition state in which the alkoxy C-O bond is cleaved with no direct participation by the iridium center.

  2. Concerted O atom–proton transfer in the O—O bond forming step in water oxidation

    PubMed Central

    Chen, Zuofeng; Concepcion, Javier J.; Hu, Xiangqian; Yang, Weitao; Hoertz, Paul G.; Meyer, Thomas J.

    2010-01-01

    As the terminal step in photosystem II, and a potential half-reaction for artificial photosynthesis, water oxidation (2H2O → O2 + 4e- + 4H+) is key, but it imposes a significant mechanistic challenge with requirements for both 4e-/4H+ loss and O—O bond formation. Significant progress in water oxidation catalysis has been achieved recently by use of single-site Ru metal complex catalysts such as [Ru(Mebimpy)(bpy)(OH2)]2+ [Mebimpy = 2,6-bis(1-methylbenzimidazol-2-yl)pyridine; bpy = 2,2′-bipyridine]. When oxidized from to RuV = O3+, these complexes undergo O—O bond formation by O-atom attack on a H2O molecule, which is often the rate-limiting step. Microscopic details of O—O bond formation have been explored by quantum mechanical/molecular mechanical (QM/MM) simulations the results of which provide detailed insight into mechanism and a strategy for enhancing catalytic rates. It utilizes added bases as proton acceptors and concerted atom–proton transfer (APT) with O-atom transfer to the O atom of a water molecule in concert with proton transfer to the base (B). Base catalyzed APT reactivity in water oxidation is observed both in solution and on the surfaces of oxide electrodes derivatized by attached phosphonated metal complex catalysts. These results have important implications for catalytic, electrocatalytic, and photoelectrocatalytic water oxidation. PMID:20360565

  3. Concerted O atom-proton transfer in the O—O bond forming step in water oxidation

    SciTech Connect

    Chen, Zuofeng; Concepcion, Javier C.; Hu, Xiangqian; Yang, Weitao; Hoertz, Paul G.; Meyer, Thomas J

    2010-04-20

    As the terminal step in photosystem II, and a potential half-reaction for artificial photosynthesis, water oxidation (2H2O → O2 + 4e- + 4H+) is key, but it imposes a significant mechanistic challenge with requirements for both 4e-/4H- loss and O—O bond formation. Significant progress in water oxidation catalysis has been achieved recently by use of single-site Ru metal complex catalysts such as [Ru(Mebimpy)(bpy)(OH2)]2+ [Mebimpy = 2,6-bis(1-methylbenzimidazol-2-yl)pyridine; bpy = 2,2'-bipyridine]. When oxidized from RuII-OH22+ to RuV = O3+, these complexes undergo O—O bond formation by O-atom attack on a H2O molecule, which is often the rate-limiting step. Microscopic details of O—O bond formation have been explored by quantum mechanical/molecular mechanical (QM/MM) simulations the results of which provide detailed insight into mechanism and a strategy for enhancing catalytic rates. It utilizes added bases as proton acceptors and concerted atom–proton transfer (APT) with O-atom transfer to the O atom of a water molecule in concert with proton transfer to the base (B). Base catalyzed APT reactivity in water oxidation is observed both in solution and on the surfaces of oxide electrodes derivatized by attached phosphonated metal complex catalysts. These results have important implications for catalytic, electrocatalytic, and photoelectrocatalytic water oxidation.

  4. Reactions of calcium orthosilicate and barium zirconate with oxides and sulfates of various elements

    NASA Technical Reports Server (NTRS)

    Zaplatynsky, I.

    1979-01-01

    Calcium orthosilicate and barium zirconate were evaluated as the insulation layer of thermal barrier coatings for air cooled gas turbine components. Their reactions with various oxides and sulfates were studied at 1100 C and 1300 C for times ranging up to 400 and 200 hours, respectively. These oxides and sulfates represent potential impurities or additives in gas turbine fuels and in turbine combustion air, as well as elements of potential bond coat alloys. The phase compositions of the reaction products were determined by X-ray diffraction analysis. BaZrO3 and 2CaO-SiO2 both reacted with P2O5, V2O5, Cr2O3, Al2O3, and SiO2. In addition, 2CaO-SiO2 reacted with Na2O, BaO, MgO, and CoO and BaZrO3 reacted with Fe2O3.

  5. Reaction pathways during oxidation of cereal β-glucans.

    PubMed

    Mäkelä, Noora; Sontag-Strohm, Tuula; Schiehser, Sonja; Potthast, Antje; Maaheimo, Hannu; Maina, Ndegwa H

    2017-02-10

    Oxidation of cereal β-glucans may affect their stability in food products. Generally, polysaccharides oxidise via different pathways leading to chain cleavage or formation of oxidised groups within the polymer chain. In this study, oxidation pathways of oat and barley β-glucans were assessed with different concentrations of hydrogen peroxide (H2O2) or ascorbic acid (Asc) with ferrous iron (Fe(2+)) as a catalyst. Degradation of β-glucans was evaluated using high performance size exclusion chromatography and formation of carbonyl groups using carbazole-9-carbonyloxyamine labelling. Furthermore, oxidative degradation of glucosyl residues was studied. Based on the results, the oxidation with Asc mainly resulted in glycosidic bond cleavage. With H2O2, both glycosidic bond cleavage and formation of carbonyl groups within the β-glucan chain was found. Moreover, H2O2 oxidation led to production of formic acid, which was proposed to result from Ruff degradation where oxidised glucose (gluconic acid) is decarboxylated to form arabinose.

  6. Nitrous Oxide-dependent Iron-catalyzed Coupling Reactions of Grignard Reagents.

    PubMed

    Döhlert, Peter; Weidauer, Maik; Enthaler, Stephan

    2015-01-01

    The formation of carbon-carbon bonds is one of the fundamental transformations in chemistry. In this regard the application of palladium-based catalysts has been extensively investigated during recent years, but nowadays research focuses on iron catalysis, due to sustainability, costs and toxicity issues; hence numerous examples for iron-catalyzed cross-coupling reactions have been established, based on the coupling of electrophiles (R(1)-X, X = halide) with nucleophiles (R(2)-MgX). Only a small number of protocols deals with the iron-catalyzed oxidative coupling of nucleophiles (R(1)-MgX + R(2)-MgX) with the aid of oxidants (1,2-dihaloethanes). However, some issues arise with these oxidants; hence more recently the potential of the industrial waste product nitrous oxide (N(2)O) was investigated, because the unproblematic side product N(2) is formed. Based on that, we demonstrate the catalytic potential of easily accessible iron complexes in the oxidative coupling of Grignard reagents. Importantly, nitrous oxide was essential to obtain yields up to >99% at mild conditions (e.g. 1 atm, ambient temperature) and low catalyst loadings (0.1 mol%) Excellent catalyst performance is realized with turnover numbers of up to 1000 and turnover frequencies of up to 12000 h(-1). Moreover, a good functional group tolerance is observed (e.g. amide, ester, nitrile, alkene, alkyne). Afterwards the reaction of different Grignard reagents revealed interesting results with respect to the selectivity of cross-coupling product formation.

  7. Reactions of Propylene Oxide on Supported Silver Catalysts: Insights into Pathways Limiting Epoxidation Selectivity

    SciTech Connect

    Kulkarni, Apoorva; Bedolla-Pantoja, Marco; Singh, Suyash; Lobo, Raul F.; Mavrikakis, Manos; Barteau, Mark A.

    2012-02-04

    The reactions of propylene oxide (PO) on silver catalysts were studied to understand the network of parallel and sequential reactions that may limit the selectivity of propylene epoxidation by these catalysts. The products of the anaerobic reaction of PO on Ag/a-Al2O3 were propanal, acetone and allyl alcohol for PO conversions below 2–3%. As the conversion of PO was increased either by increasing the temperature or the contact time, acrolein was formed at the expense of propanal, indicating that acrolein is a secondary reaction product in PO decomposition. With addition of oxygen to the feedstream the conversion of PO increased moderately. In contrast to the experiments in absence of oxygen, CO2 was a significant product while the selectivity to propanal decreased as soon as oxygen was introduced in the system. Allyl alcohol disappeared completely from the product stream in the presence of oxygen, reacting to form acrolein and CO2. The product distribution may be explained by a network of reactions involving two types of oxametallacycles formed by ring opening of PO: one with the oxygen bonded to C1 (OMC1, linear) and the other with oxygen bonded to C2 (OMC2, branched). OMC1 reacts to form PO, propanal, and allyl alcohol.

  8. The role of hydrogen-bonding interactions in acidic sugar reaction pathways.

    PubMed

    Qian, Xianghong; Johnson, David K; Himmel, Michael E; Nimlos, Mark R

    2010-09-03

    Previously, theoretical multiple sugar (beta-d-xylose and beta-d-glucose) reaction pathways were discovered that depended on the initial protonation site on the sugar molecules using Car-Parrinello-based molecular dynamics (CPMD) simulations [Qian, X. H.; Nimlos, M. R.; Davis, M.; Johnson, D. K.; Himmel, M. E. Carbohydr. Res.2005, 340, 2319-2327]. In addition, simulation results showed that water molecules could participate in the sugar reactions, thus altering the reaction pathways. In the present study, the temperature and water density effects on the sugar degradation pathways were investigated with CPMD. We found that changes in both temperature and water density could profoundly affect the mechanisms and pathways. We attributed these effects to both the strength of hydrogen bonding and proton affinity of water.

  9. Efficient and directed peptide bond formation in the gas phase via ion/ion reactions.

    PubMed

    McGee, William M; McLuckey, Scott A

    2014-01-28

    Amide linkages are among the most important chemical bonds in living systems, constituting the connections between amino acids in peptides and proteins. We demonstrate the controlled formation of amide bonds between amino acids or peptides in the gas phase using ion/ion reactions in a mass spectrometer. Individual amino acids or peptides can be prepared as reagents by (i) incorporating gas phase-labile protecting groups to silence otherwise reactive functional groups, such as the N terminus; (ii) converting the carboxyl groups to the active ester of N-hydroxysuccinimide; and (iii) incorporating a charge site. Protonation renders basic sites (nucleophiles) unreactive toward the N-hydroxysuccinimide ester reagents, resulting in sites with the greatest gas phase basicities being, in large part, unreactive. The N-terminal amines of most naturally occurring amino acids have lower gas phase basicities than the side chains of the basic amino acids (i.e., those of histidine, lysine, or arginine). Therefore, reagents may be directed to the N terminus of an existing "anchor" peptide to form an amide bond by protonating the anchor peptide's basic residues, while leaving the N-terminal amine unprotonated and therefore reactive. Reaction efficiencies of greater than 30% have been observed. We propose this method as a step toward the controlled synthesis of peptides in the gas phase.

  10. Enthalpy of hydrogen bond formation in a protein-ligand binding reaction.

    PubMed

    Connelly, P R; Aldape, R A; Bruzzese, F J; Chambers, S P; Fitzgibbon, M J; Fleming, M A; Itoh, S; Livingston, D J; Navia, M A; Thomson, J A

    1994-03-01

    Parallel measurements of the thermodynamics (free-energy, enthalpy, entropy and heat-capacity changes) of ligand binding to FK506 binding protein (FKBP-12) in H2O and D2O have been performed in an effort to probe the energetic contributions of single protein-ligand hydrogen bonds formed in the binding reactions. Changing tyrosine-82 to phenylalanine in FKBP-12 abolishes protein-ligand hydrogen bond interactions in the FKBP-12 complexes with tacrolimus or rapamycin and leads to a large apparent enthalpic stabilization of binding in both H2O and D2O. High-resolution crystallographic analysis reveals that two water molecules bound to the tyrosine-82 hydroxyl group in unliganded FKBP-12 are displaced upon formation of the protein-ligand complexes. A thermodynamic analysis is presented that suggests that the removal of polar atoms from water contributes a highly unfavorable enthalpy change to the formation of C=O...HO hydrogen bonds as they occur in the processes of protein folding and ligand binding. Despite the less favorable enthalpy change, the entropic advantage of displacing two water molecules upon binding leads to a slightly more favorable free-energy change of binding in the reactions with wild-type FKBP-12.

  11. Enthalpy of hydrogen bond formation in a protein-ligand binding reaction.

    PubMed Central

    Connelly, P R; Aldape, R A; Bruzzese, F J; Chambers, S P; Fitzgibbon, M J; Fleming, M A; Itoh, S; Livingston, D J; Navia, M A; Thomson, J A

    1994-01-01

    Parallel measurements of the thermodynamics (free-energy, enthalpy, entropy and heat-capacity changes) of ligand binding to FK506 binding protein (FKBP-12) in H2O and D2O have been performed in an effort to probe the energetic contributions of single protein-ligand hydrogen bonds formed in the binding reactions. Changing tyrosine-82 to phenylalanine in FKBP-12 abolishes protein-ligand hydrogen bond interactions in the FKBP-12 complexes with tacrolimus or rapamycin and leads to a large apparent enthalpic stabilization of binding in both H2O and D2O. High-resolution crystallographic analysis reveals that two water molecules bound to the tyrosine-82 hydroxyl group in unliganded FKBP-12 are displaced upon formation of the protein-ligand complexes. A thermodynamic analysis is presented that suggests that the removal of polar atoms from water contributes a highly unfavorable enthalpy change to the formation of C=O...HO hydrogen bonds as they occur in the processes of protein folding and ligand binding. Despite the less favorable enthalpy change, the entropic advantage of displacing two water molecules upon binding leads to a slightly more favorable free-energy change of binding in the reactions with wild-type FKBP-12. Images PMID:7510408

  12. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOEpatents

    Cortright, Randy D.; Dumesic, James A.

    2013-04-02

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  13. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOEpatents

    Cortright, Randy D [Madison, WI; Dumesic, James A [Verona, WI

    2012-04-10

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  14. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOEpatents

    Cortright, Randy D [Madison, WI; Dumesic, James A [Verona, WI

    2011-01-18

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  15. Direct functionalization of M-C (M = Pt(II), Pd(II)) bonds using environmentally benign oxidants, O2 and H2O2.

    PubMed

    Vedernikov, Andrei N

    2012-06-19

    Atom economy and the use of "green" reagents in organic oxidation, including oxidation of hydrocarbons, remain challenges for organic synthesis. Solutions to this problem would lead to a more sustainable economy because of improved access to energy resources such as natural gas. Although natural gas is still abundant, about a third of methane extracted in distant oil fields currently cannot be used as a chemical feedstock because of a dearth of economically and ecologically viable methodologies for partial methane oxidation. Two readily available "atom-economical" "green" oxidants are dioxygen and hydrogen peroxide, but few methodologies have utilized these oxidants effectively in selective organic transformations. Hydrocarbon oxidation and C-H functionalization reactions rely on Pd(II) and Pt(II) complexes. These reagents have practical advantages because they can tolerate moisture and atmospheric oxygen. But this tolerance for atmospheric oxygen also makes it challenging to develop novel organometallic palladium and platinum-catalyzed C-H oxidation reactions utilizing O(2) or H(2)O(2). This Account focuses on these challenges: the development of M-C bond (M = Pt(II), Pd(II)) functionalization and related selective hydrocarbon C-H oxidations with O(2) or H(2)O(2). Reactions discussed in this Account do not involve mediators, since the latter can impart low reaction selectivity and catalyst instability. As an efficient solution to the problem of direct M-C oxidation and functionalization with O(2) and H(2)O(2), this Account introduces the use of facially chelating semilabile ligands such as di(2-pyridyl)methanesulfonate and the hydrated form of di(2-pyridyl)ketone that enable selective and facile M(II)-C(sp(n)) bond functionalization with O(2) (M = Pt, n = 3; M = Pd, n = 3 (benzylic)) or H(2)O(2) (M = Pd, n = 2). The reactions proceed efficiently in protic solvents such as water, methanol, or acetic acid. With the exception of benzylic Pd(II) complexes, the

  16. Studies of the kinetics and mechanisms of perfluoroether reactions on iron and oxidized iron surfaces

    NASA Technical Reports Server (NTRS)

    Napier, Mary E.; Stair, Peter C.

    1992-01-01

    Polymeric perfluoroalkylethers are being considered for use as lubricants in high temperature applications, but have been observed to catalytically decompose in the presence of metals. X-ray photoelectron spectroscopy (XPS) and temperature programmed desorption (TPD) were used to explore the decomposition of three model fluorinated ethers on clean polycrystalline iron surfaces and iron surfaces chemically modified with oxygen. Low temperature adsorption of the model fluorinated ethers on the clean, oxygen modified and oxidized iron surfaces was molecular. Thermally activated defluorination of the three model compounds was observed on the clean iron surface at remarkably low temperatures, 155 K and below, with formation of iron fluoride. Preferential C-F bond scission occurred at the terminal fluoromethoxy, CF3O, of perfluoro-1-methoxy-2-ethoxy ethane and perfluoro-1-methoxy-2-ethoxy propane and at CF3/CF2O of perfluoro-1,3-diethoxy propane. The reactivity of the clean iron toward perfluoroalkylether decomposition when compared to other metals is due to the strength of the iron fluoride bond and the strong electron donating ability of the metallic iron. Chemisorption of an oxygen overlayer lowered the reactivity of the iron surface to the adsorption and decomposition of the three model fluorinated ethers by blocking active sites on the metal surface. Incomplete coverage of the iron surface with chemisorbed oxygen results in a reaction which resembles the defluorination reaction observed on the clean iron surface. Perfluoro-1-methoxy-2-ethoxy ethane reacts on the oxidized iron surface at 138 K, through a Lewis acid assisted cleavage of the carbon oxygen bond, with preferential attack at the terminal fluoromethoxy, CF3O. The oxidized iron surface did not passivate, but became more reactive with time. Perfluoro-1-methoxy-2-ethoxy propane and perfluoro-1,3-diethoxy propane desorbed prior to the observation of decomposition on the oxidized iron surface.

  17. Transition-metal-catalyzed enantioselective heteroatom-hydrogen bond insertion reactions.

    PubMed

    Zhu, Shou-Fei; Zhou, Qi-Lin

    2012-08-21

    Carbon-heteroatom bonds (C-X) are ubiquitous and are among the most reactive components of organic compounds. Therefore investigations of the construction of C-X bonds are fundamental and vibrant fields in organic chemistry. Transition-metal-catalyzed heteroatom-hydrogen bond (X-H) insertions via a metal carbene or carbenoid intermediate represent one of the most efficient approaches to form C-X bonds. Because of the availability of substrates, neutral and mild reaction conditions, and high reactivity of these transformations, researchers have widely applied transition-metal-catalyzed X-H insertions in organic synthesis. Researchers have developed a variety of rhodium-catalyzed asymmetric C-H insertion reactions with high to excellent enantioselectivities for a wide range of substrates. However, at the time that we launched our research, very few highly enantioselective X-H insertions had been documented primarily because of a lack of efficient chiral catalysts and indistinct insertion mechanisms. In this Account, we describe our recent studies of copper- and iron-catalyzed asymmetric X-H insertion reactions by using chiral spiro-bisoxazoline and diimine ligands. The copper complexes of chiral spiro-bisoxazoline ligands proved to be highly enantioselective catalysts for N-H insertions of α-diazoesters into anilines, O-H insertions of α-diazoesters into phenols and water, O-H insertions of α-diazophosphonates into alcohols, and S-H insertions of α-diazoesters into mercaptans. The iron complexes of chiral spiro-bisoxazoline ligands afforded the O-H insertion of α-diazoesters into alcohols and water with unprecedented enantioselectivities. The copper complexes of chiral spiro-diimine ligands exhibited excellent reactivity and enantioselectivity in the Si-H insertion of α-diazoacetates into a wide range of silanes. These transition-metal-catalyzed X-H insertions have many potential applications in organic synthesis because the insertion products, including chiral

  18. Kinetics of oxytetracycline reaction with a hydrous manganese oxide.

    PubMed

    Rubert, Kennedy F; Pedersen, Joel A

    2006-12-01

    Tetracycline antibiotics comprise a class of broad spectrum antimicrobial agents finding application in human therapy, animal husbandry, aquaculture, and fruit crop production. To better understand the processes affecting these antibiotics in soils and sediments, the kinetics of oxytetracycline transformation by a hydrous manganese oxide (MnO2) were investigated as a function of reactant concentration, pH, and temperature. Oxytetracycline was rapidly degraded by MnO2. Initial reaction rates exhibited pronounced pH-dependence, increasing as pH decreased. Reaction of oxytetracycline with MnO2 was accompanied by generation of Mn(II) ions, suggesting oxidative transformation of the antibiotic. At pH 5.6, apparent reaction orders for oxytetracycline and MnO2 were 0.7 and 0.8. Reaction order with respect to H+ was 0.6 between pH 4 and 9. Initial reaction rates increased by a factor of approximately 2.4 for 10 degrees C temperature increases; the apparent activation energy (60 kJ x mol(-1)) was consistent with a surface-controlled reaction. Reactivity of tetracycline antibiotics toward MnO2 increased in the following order: rolitetracyline oxytetracycline < or =tetracycline approximately meclocycline < chlortetracycline. The initial rate of chlortetracycline degradation by MnO2 was substantially larger than that of the other tetracycline antibiotics investigated. MnO2 reactivity toward oxytetracycline decreased with time; a retarded rate equation was used to describe oxytetracycline reaction with MnO2 under declining rate conditions. This study indicates that natural manganese oxides in soils and sediments are likely to promote appreciable degradation of tetracycline antibiotics, and that reaction rates are strongly dependent on reaction time scale and solution conditions.

  19. Effect of Oxidation on the Bonding Formation of Plasma-Sprayed Stainless Steel Splats onto Stainless Steel Substrate

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Li, Chang-Jiu; Yang, Guan-Jun; Li, Cheng-Xin

    2017-01-01

    Stainless steel splats were deposited on 304 stainless substrates with different thicknesses of oxide layer to examine the effect of substrate oxidation on splat morphology and splat-substrate interface bonding by inert low-pressure plasma spraying. The cross sections of splats showing the splat-substrate interface were prepared by focus ion beam (FIB). The splat morphology and splat-substrate interface bonding state were characterized by scanning electron microscopy. The interface bonding was also examined by an electrolytic etching process. Results showed that with increasing oxide layer thickness and surface roughness, the morphology of splat changed from disk shape to splashed finger-like shape. The examination into the interface bonding by using FIB-prepared cross-sectional samples revealed that the splat interface bonding depended on the oxide roughness and composition. The interface bonding with a ratio of 44% was formed at the inner part of a splat on the pre-oxidized substrate when iron oxide presented on the surface, and the roughness of oxide scale was <5 nm. When the pre-oxidizing temperature exceeded 800 °C, the surface roughness increased to 14 nm and chromium oxide covered the pre-oxidized surface, resulting in no effective bonding forming at the whole interface. Thus, surface roughness and oxide composition have a significant influence on the splat interface bonding formation.

  20. Photocatalytic reaction of catechol on rutile titanium oxide

    NASA Astrophysics Data System (ADS)

    Jacobson, Peter; Wang, Chundao; Diebold, Ulrike

    2008-03-01

    In an attempt to understand the fundamental aspects of photocatalysis we have studied the substituted benzene catechol on TiO2(110). Previous studies have given detailed information about the catechol bonding configuration letting our group focus on molecular level interactions with scanning tunneling microscopy and X ray photoelectron spectroscopy. Under UV exposure (248 nm) in an oxygen background, catechol is observed to degrade via oxidation. This oxidation process results in removal of roughly 10% of the initial monolayer. The removal of carbon from the TiO2 surface is shown to depend upon the background gas. Formation of a residual carbon layer is achieved by annealing the catechol monolayer to 600C. This carbon layer is more difficult to remove by photocatalytic oxidation than a pristine catechol monolayer. Work supported by Intel Corporation

  1. Early hydrogen-bonding events in the folding reaction of ubiquitin.

    PubMed

    Briggs, M S; Roder, H

    1992-03-15

    The formation of hydrogen-bonded structure in the folding reaction of ubiquitin, a small cytoplasmic protein with an extended beta-sheet and an alpha-helix surrounding a pronounced hydrophobic core, has been investigated by hydrogen-deuterium exchange labeling in conjunction with rapid mixing methods and two-dimensional NMR analysis. The time course of protection from exchange has been measured for 26 back-bone amide protons that form stable hydrogen bonds upon refolding and exchange slowly under native conditions. Amide protons in the beta-sheet and the alpha-helix, as well as protons involved in hydrogen bonds at the helix/sheet interface, become 80% protected in an initial 8-ms folding phase, indicating that the two elements of secondary structure form and associate in a common cooperative folding event. Somewhat slower protection rates for residues 59, 61, and 69 provide evidence for the subsequent stabilization of a surface loop. Most probes also exhibit two minor phases with time constants of about 100 ms and 10 s. Only two of the observed residues, Gln-41 and Arg-42, display significant slow folding phases, with amplitudes of 37% and 22%, respectively, which can be attributed to native-like folding intermediates containing cis peptide bonds for Pro-37 and/or Pro-38. Compared with other proteins studied by pulse labeling, including cytochrome c, ribonuclease, and barnase, the initial formation of hydrogen-bonded structure in ubiquitin occurs at a more rapid rate and slow-folding species are less prominent.

  2. A critical study of the role of the surface oxide layer in titanium bonding

    NASA Technical Reports Server (NTRS)

    Dias, S.; Wightman, J. P.

    1983-01-01

    Scanning electron microscope/X-ray photoelectron spectroscopy (SEM/XPS) analysis of fractured adhesively bonded Ti 6-4 samples is discussed. The text adhesives incuded NR 056X polyimide, polypheylquinoxaline (PPQ), and LARC-13 polyimide. Differentiation between cohesive and interfacial failure was based on the absence of presence of a Ti 2p XPS photopeak. In addition, the surface oxide layer on Ti-(6A1-4V) adherends is characterized and bond strength and durability are addressed. Bond durability in various environmental conditions is discussed.

  3. Theoretical Study of the Reaction Formalhydrazone with Singlet Oxygen. Fragmentation of the C=N Bond, Ene Reaction, and Other Processes†

    PubMed Central

    Rudshteyn, Benjamin; Castillo, Álvaro; Ghogare, Ashwini A.; Liebman, Joel F.; Greer, Alexander

    2013-01-01

    Photobiologic and synthetic versatility of hydrazones has not yet been established with 1O2 as a route to commonly encountered nitrosamines. Thus, to determine whether the “parent” reaction of formalhydrazone and 1O2 leads to facile C=N bond cleavage and resulting nitrosamine formation, we have carried out CCSD(T)//DFT calculations and analyzed the energetics of the oxidation pathways. A [2 + 2] pathway occurs via diradicals and formation of 3-amino-1,2,3-dioxazetidine in a 16 kcal/mol process. Reversible addition or physical quenching of 1O2 occurs either on the formalhydrazone carbon for triplet diradicals at 2–3 kcal/mol, or on the nitrogen (N(3)) atom forming zwitterions at ~15 kcal/mol, although the quenching channel by charge-transfer interaction was not computed. The computations also predict a facile conversion of formalhydrazone and 1O2 to hydroperoxymethyl diazene in a low-barrier ‘ene’ process, but no 2-amino-oxaziridine-O-oxide (perepoxide-like) intermediate was found. A Benson-like analysis (group increment calculations) on the closed shell species are in accord with the quantum chemical results. PMID:24354600

  4. Electrochemical Formation of Fe(V) (O) and Mechanism of Its Reaction with Water During O-O Bond Formation.

    PubMed

    Pattanayak, Santanu; Chowdhury, Debarati Roy; Garai, Bikash; Singh, Kundan K; Paul, Amit; Dhar, Basab B; Gupta, Sayam Sen

    2017-03-08

    A detailed electrochemical investigation of a series of iron complexes (biuret-modified tetraamido iron macrocycles Fe(III) -bTAML), including the first electrochemical generation of Fe(V) (O), and demonstration of their efficacy as homogeneous catalysts for electrochemical water oxidation (WO) in aqueous medium are reported. Spectroelectrochemical and mass spectral studies indicated Fe(V) (O) as the active oxidant, formed due to two redox transitions, which were assigned as Fe(IV) (O)/Fe(III) (OH2 ) and Fe(V) (O)/Fe(IV) (O). The spectral properties of both of these high-valent iron oxo species perfectly match those of their chemically synthesised versions, which were thoroughly characterised by several spectroscopic techniques. The O-O bond-formation step occurs by nucleophilic attack of H2 O on Fe(V) (O). A kinetic isotope effect of 3.2 indicates an atom-proton transfer (APT) mechanism. The reaction of chemically synthesised Fe(V) (O) in CH3 CN and water was directly probed by electrochemistry and was found to be first-order in water. The pKa value of the buffer base plays a critical role in the rate-determining step by increasing the reaction rate several-fold. The electronic effect on redox potential, WO rates, and onset overpotential was studied by employing a series of iron complexes. The catalytic activity was enhanced by the presence of electron-withdrawing groups on the bTAML framework. Changing the substituents from OMe to NO2 resulted in an eightfold increase in reaction rate, while the overpotential increased threefold.

  5. Bonding between oxide ceramics and adhesive cement systems: a systematic review.

    PubMed

    Papia, Evaggelia; Larsson, Christel; du Toit, Madeleine; Vult von Steyern, Per

    2014-02-01

    The following aims were set for this systematic literature review: (a) to make an inventory of existing methods to achieve bondable surfaces on oxide ceramics and (b) to evaluate which methods might provide sufficient bond strength. Current literature of in vitro studies regarding bond strength achieved using different surface treatments on oxide ceramics in combination with adhesive cement systems was selected from PubMed and systematically analyzed and completed with reference tracking. The total number of publications included for aim a was 127 studies, 23 of which were used for aim b. The surface treatments are divided into seven main groups: as-produced, grinding/polishing, airborne particle abrasion, surface coating, laser treatment, acid treatment, and primer treatment. There are large variations, making comparison of the studies difficult. An as-produced surface of oxide ceramic needs to be surface treated to achieve durable bond strength. Abrasive surface treatment and/or silica-coating treatment with the use of primer treatment can provide sufficient bond strength for bonding oxide ceramics. This conclusion, however, needs to be confirmed by clinical studies. There is no universal surface treatment. Consideration should be given to the specific materials to be cemented and to the adhesive cement system to be used.

  6. Chemical Reactions of Metal-Metal Bonded Compounds of the Transition Elements.

    DTIC Science & Technology

    1981-05-18

    M-M bonds. For example, PPh3 is lost by thermolysis of Pt(PPh3 )3 and ethylene is lost from Pt(PPh3 )2 (C2H4 ) to yield dinuclear and trinuclear...PPh3 )2, generates both 1- octene and octane, though the Ir-Ir dimer or cluster complex was nol ident-ified (46). 15 The reductive-coupling reaction...although Os 3 (CO) 1 2 reacts with ethylene at elevated temperatures, the product is not a simple substitution product, but H2 Os3 (CO)9 (C=CH2), in

  7. Relationships between toughness and microstructure of reaction bonded Si3N4

    NASA Technical Reports Server (NTRS)

    Lightfoot, Annamarie; Sigalovsky, Julia; Haggerty, John S.

    1992-01-01

    Fracture toughnesses of nominally identical batches of reaction bonded silicon nitride (RBSN) differed significantly (about 2.0 and about 2.7 MPa sq rt m). Detailed fractographic and microstructural characterizations investigated underlying factors. Subtile differences between high and low toughness RBSN and between constituent Si powders have been revealed through SEM/FEG, TEM, BET, Hg-porosimetry, and XRD. The results illustrate the need for behavioral models to guide microstructural design and to interpret properties of brittle materials with intermediate levels of porosity.

  8. Te-Te and Te-C bond cleavage reactions using a monovalent gallanediyl.

    PubMed

    Ganesamoorthy, Chelladurai; Bendt, Georg; Bläser, Dieter; Wölper, Christoph; Schulz, Stephan

    2015-03-21

    LGa (L = [(2,6-i-Pr2-C6H3)NC(Me)]2CH) reacts with elemental tellurium with formation of the Te-bridged compound [LGa-μ-Te]2 1, whereas the reactions with Ph2Te2 and i-Pr2Te occurred with cleavage of the Te-Te and Te-C bond, respectively, and subsequent formation of LGa(TePh)2 2 and LGa(i-Pr)Tei-Pr 3. 1-3 were characterized by heteronuclear NMR ((1)H, (13)C, (125)Te) and IR spectroscopy and their solid state structures were determined by single crystal X-ray analyses.

  9. Selective molecular recognition, C-H bond activation, and catalysis in nanoscale reaction vessels

    SciTech Connect

    Fiedler, Dorothea; Leung, Dennis H.; Raymond, Kenneth N.; Bergman, Robert G.

    2004-11-27

    Supramolecular chemistry represents a way to mimic enzyme reactivity by using specially designed container molecules. We have shown that a chiral self-assembled M{sub 4}L{sub 6} supramolecular tetrahedron can encapsulate a variety of cationic guests, with varying degrees of stereoselectivity. Reactive iridium guests can be encapsulated and the C-H bond activation of aldehydes occurs, with the host cavity controlling the ability of substrates to interact with the metal center based upon size and shape. In addition, the host container can act as a catalyst by itself. By restricting reaction space and preorganizing the substrates into reactive conformations, it accelerates the sigmatropic rearrangement of enammonium cations.

  10. Bend strengths of reaction bonded silicon nitride prepared from dry attrition milled silicon powder

    NASA Technical Reports Server (NTRS)

    Herbell, T. P.; Glasgow, T. K.

    1979-01-01

    Dry attrition milled silicon powder was compacted, sintered in helium, and reaction bonded in nitrogen-4 volume percent hydrogen. Bend strengths of bars with as-nitrided surfaces averaged as high as 210 MPa at room temperature and 220 MPa at 1400 C. Bars prepared from the milled powder were stronger than those prepared from as-received powder at both room temperature and at 1400 C. Room temperature strength decreased with increased milling time and 1400 C strength increased with increased milling time.

  11. Oligomerization reactions of deoxyribonucleotides on montmorillonite clay - The effect of mononucleotide structure on phosphodiester bond formation

    NASA Technical Reports Server (NTRS)

    Ferris, James P.; KAMALUDDIN

    1989-01-01

    The formation of oligomers from deoxynucleotides, catalyzed by Na(+)-montmorillonite, was investigated with special attention given to the effect of the monomer structure on the phosphodiester bond formation. It was found that adenine deoxynucleotides bind more strongly to montmorillonite than do the corresponding ribonucleotides and thymidine nucleotides. Tetramers of 2-prime-dpA were detected in the reaction of 2-prime-d-5-prime-AMP with a water-soluble carbodiimide EDAC in the presence of Na(+)-montmorillonite, illustrating the possible role of minerals in the formation of biopolymers on the primitive earth.

  12. Influence of composition of reaction mixture on selectivity in oxidation of aromatic compounds on oxide catalysts

    SciTech Connect

    Belokopytov, Yu.V.; Pyatnitskii, Yu.I.; Tatarinova, T.A.; Strashnenko, A.V.

    1985-07-01

    A general outline is given of a kinetic model of oxidation of a hydrocarbon under the conditions of coexistence on the catalyst surface of sections of different oxidation levels. An analytical dependence has been obtained of the selectivity of the process and conversion on the composition of the reaction mixture. A qualitative agreement has been established between the theoretical and experimental dependences of selectivity and conversion on the ratio of the benzene and oxygen concentrations in the reaction mixture.

  13. Acid-catalyzed oxidative addition of a C-H bond to a square planar d⁸ iridium complex.

    PubMed

    Hackenberg, Jason D; Kundu, Sabuj; Emge, Thomas J; Krogh-Jespersen, Karsten; Goldman, Alan S

    2014-06-25

    While the addition of C-H bonds to three-coordinate Ir(I) fragments is a central theme in the field of C-H bond activation, addition to square planar four-coordinate complexes is far less precedented. The dearth of such reactions may be attributed, at least in part, to kinetic factors elucidated in seminal work by Hoffmann. C-H additions to square planar carbonyl complexes in particular are unprecedented, in contrast to the extensive chemistry of oxidative addition of other substrates (e.g., H2, HX) to Vaska's Complex and related species. We report that Bronsted acids will catalyze the addition of the alkynyl C-H bond of phenylacetylene to the pincer complex (PCP)Ir(CO). The reaction occurs to give exclusively the trans-C-H addition product. Our proposed mechanism, based on kinetics and DFT calculations, involves initial protonation of (PCP)Ir(CO) to generate a highly active five-coordinate cationic intermediate, which forms a phenylacetylene adduct that is then deprotonated to give product.

  14. 'Dynamic Distance' Reaction Coordinate for Competing Bonds:  Applications in Classical and Ab Initio Simulations.

    PubMed

    Burisch, Christian; Markwick, Phineus R L; Doltsinis, Nikos L; Schlitter, Jürgen

    2008-01-01

    A versatile reaction coordinate, the "dynamic distance", is introduced for the study of reactions involving the rupture and formation of a series of chemical bonds or contacts. The dynamic distance is a mass-weighted mean of selected distances. When implemented as a generalized constraint, the dynamic distance is particularly suited for driving activated processes by controlled increase during a simulation. As a single constraint acting upon multiple degrees of freedom, the sequence of events along the resulting reaction pathway is determined unambiguously by the underlying energy landscape. Free energy profiles can be readily obtained from the mean constraint force. In this paper both theoretical aspects and numerical implementation are discussed, and the unique and diverse properties of this reaction coordinate are demonstrated using three examples:  In the framework of Car-Parrinello molecular dynamics, we present results for the prototypical double proton-transfer reaction in formic acid dimer and the photocycle of the guanine-cytosine DNA base pair. As a classical mechanical example, the opening of the binding pocket of the enzyme rubisco is analyzed.

  15. Oxidation reactions performed by soluble methane monooxygenase hydroxylase intermediates H(peroxo) and Q proceed by distinct mechanisms.

    PubMed

    Tinberg, Christine E; Lippard, Stephen J

    2010-09-14

    Soluble methane monooxygenase is a bacterial enzyme that converts methane to methanol at a carboxylate-bridged diiron center with exquisite control. Because the oxidizing power required for this transformation is demanding, it is not surprising that the enzyme is also capable of hydroxylating and epoxidizing a broad range of hydrocarbon substrates in addition to methane. In this work we took advantage of this promiscuity of the enzyme to gain insight into the mechanisms of action of H(peroxo) and Q, two oxidants that are generated sequentially during the reaction of reduced protein with O(2). Using double-mixing stopped-flow spectroscopy, we investigated the reactions of the two intermediate species with a panel of substrates of varying C-H bond strength. Three classes of substrates were identified according to the rate-determining step in the reaction. We show for the first time that an inverse trend exists between the rate constant of reaction with H(peroxo) and the C-H bond strength of the hydrocarbon examined for those substrates in which C-H bond activation is rate-determining. Deuterium kinetic isotope effects revealed that reactions performed by Q, but probably not H(peroxo), involve extensive quantum mechanical tunneling. This difference sheds light on the observation that H(peroxo) is not a sufficiently potent oxidant to hydroxylate methane, whereas Q can perform this reaction in a facile manner. In addition, the reaction of H(peroxo) with acetonitrile appears to proceed by a distinct mechanism in which a cyanomethide anionic intermediate is generated, bolstering the argument that H(peroxo) is an electrophilic oxidant that operates via two-electron transfer chemistry.

  16. Thermochemical properties and bond dissociation enthalpies of 3- to 5-member ring cyclic ether hydroperoxides, alcohols, and peroxy radicals: cyclic ether radical + (3)O(2) reaction thermochemistry.

    PubMed

    Auzmendi-Murua, Itsaso; Bozzelli, Joseph W

    2014-05-01

    The formation of cyclic ethers is a major product in the oxidation of hydrocarbons, and the oxidation of biomass derived alcohols. Cyclic ethers are formed in the initial reactions of alkyl radicals with dioxygen in combustion and precombustion processes that occur at moderate temperatures. They represent a significant part of the oxygenated pollutants found in the exhaust gases of engines. Cyclic ethers can also be formed from atmospheric reactions of olefins. Additionally, cyclic ethers have been linked to the formation of the secondary organic aerosol (SOA) in the atmosphere. In combustion and thermal oxidation processes these cyclic ethers will form radicals that react with (3)O2 to form peroxy radicals. Density functional theory and higher level ab initio calculations are used to calculate thermochemical properties and bond dissociation enthalpies of 3 to 5 member ring cyclic ethers (oxirane, yC2O, oxetane, yC3O, and oxolane, yC4O), corresponding hydroperoxides, alcohols, hydroperoxy alkyl, and alkyl radicals which are formed in these oxidation reaction systems. Trends in carbon-hydrogen bond dissociation energies for the ring and hydroperoxide group relative to ring size and to distance from the ether group are determined. Bond dissociation energies are calculated for use in understanding effects of the ether oxygen in the cyclic ethers, their stability, and kinetic properties. Geometries, vibration frequencies, and enthalpies of formation, ΔH°f,298, are calculated at the B3LYP/6-31G(d,p), B3LYP/6-31G(2d,2p), the composite CBS-QB3, and G3MP2B3 methods. Entropy and heat capacities, S°(T) and Cp°(T) (5 K ≤ T ≤ 5000), are determined using geometric parameters and frequencies from the B3LYP/6-31G(d,p) calculations. The strong effects of ring strain on the bond dissociation energies in these peroxy systems are also of fundamental interest. Oxetane and oxolane exhibit a significant stabilization, 10 kcal mol(-1), lower ΔfH°298 when an oxygen group is on

  17. Method for facilitating catalyzed oxidation reactions, device for facilitating catalyzed oxidation reactions

    DOEpatents

    Beuhler, Robert J.; White, Michael G.; Hrbek, Jan

    2006-08-15

    A catalytic process for the oxidation of organic. Oxygen is loaded into a metal foil by heating the foil while in contact with an oxygen-containing fluid. After cooling the oxygen-activated foil to room temperature, oxygen diffuses through the foil and oxidizes reactants exposed to the other side of the foil.

  18. Raman spectroscopic characterization of the core-rim structure in reaction bonded boron carbide ceramics

    SciTech Connect

    Jannotti, Phillip; Subhash, Ghatu; Zheng, James Q.; Halls, Virginia; Karandikar, Prashant G.; Salamone, S.; Aghajanian, Michael K.

    2015-01-26

    Raman spectroscopy was used to characterize the microstructure of reaction bonded boron carbide ceramics. Compositional and structural gradation in the silicon-doped boron carbide phase (rim), which develops around the parent boron carbide region (core) due to the reaction between silicon and boron carbide, was evaluated using changes in Raman peak position and intensity. Peak shifting and intensity variation from the core to the rim region was attributed to changes in the boron carbide crystal structure based on experimental Raman observations and ab initio calculations reported in literature. The results were consistent with compositional analysis determined by energy dispersive spectroscopy. The Raman analysis revealed the substitution of silicon atoms first into the linear 3-atom chain, and then into icosahedral units of the boron carbide structure. Thus, micro-Raman spectroscopy provided a non-destructive means of identifying the preferential positions of Si atoms in the boron carbide lattice.

  19. A cascade reaction: ring-opening insertion of dioxaphospholane into lutetium alkyl bonds.

    PubMed

    Johnson, Kevin R D; Hayes, Paul G

    2014-02-14

    Geometrically constrained dioxaphospholane rings were incorporated into a bis(phosphinimine)carbazole ligand (HL) in an effort to generate an ancillary ligand system that is capable of supporting reactive lutetium alkyl functionalities and resistant to cyclometalation reactivity. This new ligand was used to prepare a lutetium dialkyl species, LLu(CH2SiMe3)2; however, the complex exhibited low thermal stability at ambient temperature. This dialkyl compound was found to be highly susceptible to a cascading inter- and intramolecular reaction that resulted in the sole formation of an asymmetric bimetallic tetraalkoxide complex. The product of this reaction, generated by the ring-opening insertion of dioxaphospholane moieties into lutetium-carbon bonds, was characterized by multinuclear NMR spectroscopy and single crystal X-ray diffraction.

  20. Catalysis of Heterocyclic Azadiene Cycloaddition Reactions by Solvent Hydrogen Bonding: Concise Total Synthesis of Methoxatin.

    PubMed

    Glinkerman, Christopher M; Boger, Dale L

    2016-09-28

    Although it has been examined for decades, no general approach to catalysis of the inverse electron demand Diels-Alder reactions of heterocyclic azadienes has been introduced. Typically, additives such as Lewis acids lead to nonproductive consumption of the electron-rich dienophiles without productive activation of the electron-deficient heterocyclic azadienes. Herein, we report the first general method for catalysis of such cycloaddition reactions by using solvent hydrogen bonding of non-nucleophilic perfluoroalcohols, including hexafluoroisopropanol (HFIP) and trifluoroethanol (TFE), to activate the electron-deficient heterocyclic azadienes. Its use in promoting the cycloaddition of 1,2,3-triazine 4 with enamine 3 as the key step of a concise total synthesis of methoxatin is described.

  1. Developing mononuclear copper-active-oxygen complexes relevant to reactive intermediates of biological oxidation reactions.

    PubMed

    Itoh, Shinobu

    2015-07-21

    Active-oxygen species generated on a copper complex play vital roles in several biological and chemical oxidation reactions. Recent attention has been focused on the reactive intermediates generated at the mononuclear copper active sites of copper monooxygenases such as dopamine β-monooxygenase (DβM), tyramine β-monooxygenase (TβM), peptidylglycine-α-hydroxylating monooxygenase (PHM), and polysaccharide monooxygenases (PMO). In a simple model system, reaction of O2 and a reduced copper(I) complex affords a mononuclear copper(II)-superoxide complex or a copper(III)-peroxide complex, and subsequent H(•) or e(-)/H(+) transfer, which gives a copper(II)-hydroperoxide complex. A more reactive species such as a copper(II)-oxyl radical type species could be generated via O-O bond cleavage of the peroxide complex. However, little had been explored about the chemical properties and reactivity of the mononuclear copper-active-oxygen complexes due to the lack of appropriate model compounds. Thus, a great deal of effort has recently been made to develop efficient ligands that can stabilize such reactive active-oxygen complexes in synthetic modeling studies. In this Account, I describe our recent achievements of the development of a mononuclear copper(II)-(end-on)superoxide complex using a simple tridentate ligand consisting of an eight-membered cyclic diamine with a pyridylethyl donor group. The superoxide complex exhibits a similar structure (four-coordinate tetrahedral geometry) and reactivity (aliphatic hydroxylation) to those of a proposed reactive intermediate of copper monooxygenases. Systematic studies based on the crystal structures of copper(I) and copper(II) complexes of the related tridentate supporting ligands have indicated that the rigid eight-membered cyclic diamine framework is crucial for controlling the geometry and the redox potential, which are prerequisites for the generation of such a unique mononuclear copper(II)-(end-on)superoxide complex

  2. Bond ionicity of alkaline-earth oxides studied by low-energy D+ scattering

    NASA Astrophysics Data System (ADS)

    Souda, R.; Yamamoto, K.; Hayami, W.; Aizawa, T.; Ishizawa, Y.

    1994-08-01

    Low-energy D+ scattering is employed to explore the nature of the bonding of polycrystalline alkaline-earth oxides MgO, CaO, SrO, and BaO, with particular emphasis on the investigation of the ionicity of the topmost-layer atoms. Increasing ionicity as one goes to the heavier cations is concluded from the probability of the resonance neutraliztion of the D+ ions, which is consistent with the conventional chemical arguments based on electronegativity scales but is in apparent contradiction to the results of recent ab initio cluster-model calculations. It is also concluded that the metallic Ba layer is formed rather patchily on the BaO surface after the heat treatment up to 1000 °C. This is probably because free Ba atoms, being supplied by the reaction of BaO with the Ta substrate, are precipitated at the BaO surface. Another example is concerned with the interactions of the Ba adatoms with Si(001) and Pt(111) surfaces; Ba is found to have marked covalency with the substrate atoms.

  3. Non-statistical effects in bond fission reactions of 1,2-difluoroethane

    NASA Astrophysics Data System (ADS)

    Schranz, Harold W.; Raff, Lionel M.; Thompson, Donald L.

    1991-08-01

    A microcanonical, classical variational transition-state theory based on the use of the efficient microcanonical sampling (EMS) procedure is applied to simple bond fission in 1,2-difluoroethane. Comparison is made with results of trajectory calculations performed on the same global potential-energy surface. Agreement between the statistical theory and trajectory results for CC CF and CH bond fissions is poor with differences as large as a factor of 125. Most importantly, at the lower energy studied, 6.0 eV, the statistical calculations predict considerably slower rates than those computed from trajectories. We conclude from these results that the statistical assumptions inherent in the transition-state theory method are not valid for 1,2-difluoroethane in spite of the fact that the total intramolecular energy transfer rate out of CH and CC normal and local modes is large relative to the bond fission rates. The IVR rate is not globally rapid and the trajectories do not access all of the energetically available phase space uniformly on the timescale of the reactions.

  4. Organometallic Bonding in an Ullmann-Type On-Surface Chemical Reaction Studied by High-Resolution Atomic Force Microscopy.

    PubMed

    Kawai, Shigeki; Sadeghi, Ali; Okamoto, Toshihiro; Mitsui, Chikahiko; Pawlak, Rémy; Meier, Tobias; Takeya, Jun; Goedecker, Stefan; Meyer, Ernst

    2016-10-01

    The on-surface Ullmann-type chemical reaction synthesizes polymers by linking carbons of adjacent molecules on solid surfaces. Although an organometallic compound is recently identified as the reaction intermediate, little is known about the detailed structure of the bonded organometallic species and its influence on the molecule and the reaction. Herein atomic force microscopy at low temperature is used to study the reaction with 3,9-diiododinaphtho[2,3-b:2',3'-d]thiophene (I-DNT-VW), which is polymerized on Ag(111) in vacuum. Thermally sublimated I-DNT-VW picks up a Ag surface atom, forming a CAg bond at one end after removing an iodine. The CAg bond is usually short-lived, and a CAgC organometallic bond immediately forms with an adjacent molecule. The existence of the bonded Ag atoms strongly affects the bending angle and adsorption height of the molecular unit. Density functional theory calculations reveal the bending mechanism, which reveals that charge from the terminus of the molecule is transferred via the Ag atom into the organometallic bond and strengths the local adsorption to the substrate. Such deformations vanish when the Ag atoms are removed by annealing and CC bonds are established.

  5. Observation of Spontaneous C=C Bond Breaking in the Reaction between Atomic Boron and Ethylene in Solid Neon.

    PubMed

    Jian, Jiwen; Lin, Hailu; Luo, Mingbiao; Chen, Mohua; Zhou, Mingfei

    2016-07-11

    A ground-state boron atom inserts into the C=C bond of ethylene to spontaneously form the allene-like compound H2 CBCH2 on annealing in solid neon. This compound can further isomerize to the propyne-like HCBCH3 isomer under UV light excitation. The observation of this unique spontaneous C=C bond insertion reaction is consistent with theoretical predictions that the reaction is thermodynamically exothermic and kinetically facile. This work demonstrates that the stronger C=C bond, rather than the less inert C-H bond, can be broken to form organoboron species from the reaction of a boron atom with ethylene even at cryogenic temperatures.

  6. Thermomechanics of a temperature sensitive covalent adaptable polymer with bond exchange reactions.

    PubMed

    Sun, XiaoHao; Wu, HengAn; Long, Rong

    2016-11-04

    We study a covalent adaptable polymer that can rearrange its network topology through thermally activated bond exchange reactions. When the polymer is deformed, such a network rearrangement leads to macroscopic stress relaxation, which allows the polymer to be thermoformed without a mold. Based on a previously developed constitutive model, we investigate thermal-mechanical behaviors of this material under a non-uniform and evolving temperature field through numerical simulations. Our focus is on the complex coupling between mechanical deformation, heat conduction and bond exchange reactions. Several examples are presented to illustrate the effects of non-uniform heating: uniaxial tension under heat conduction, torsion of a thin strip with local heating and thermal imprinting. Our results show that during non-uniform heating the material in the high temperature region creeps. This causes a redistribution of the deformation field and thus results in a final shape that deviates from the prescribed shape. The final shapes after thermoforming can be tuned by controlling the extent of heat conduction through different combinations of heating temperature and time. For example, with high temperature and a short heating time, it is possible to approximately confine stress relaxation and thus shape fixity within the local heating region. This is not the case if low temperature and a long heating time are used. These results can be utilized to design the temporal and spatial sequences of local heating during thermoforming to achieve various complex final shapes.

  7. Biotransformations Utilizing β-Oxidation Cycle Reactions in the Synthesis of Natural Compounds and Medicines

    PubMed Central

    Œwizdor, Alina; Panek, Anna; Milecka-Tronina, Natalia; Kołek, Teresa

    2012-01-01

    β-Oxidation cycle reactions, which are key stages in the metabolism of fatty acids in eucaryotic cells and in processes with a significant role in the degradation of acids used by microbes as a carbon source, have also found application in biotransformations. One of the major advantages of biotransformations based on the β-oxidation cycle is the possibility to transform a substrate in a series of reactions catalyzed by a number of enzymes. It allows the use of sterols as a substrate base in the production of natural steroid compounds and their analogues. This route also leads to biologically active compounds of therapeutic significance. Transformations of natural substrates via β-oxidation are the core part of the synthetic routes of natural flavors used as food additives. Stereoselectivity of the enzymes catalyzing the stages of dehydrogenation and addition of a water molecule to the double bond also finds application in the synthesis of chiral biologically active compounds, including medicines. Recent advances in genetic, metabolic engineering, methods for the enhancement of bioprocess productivity and the selectivity of target reactions are also described. PMID:23443116

  8. A Gallium Oxide-Graphene Oxide Hybrid Composite for Enhanced Photocatalytic Reaction

    PubMed Central

    Kim, Seungdu; Han, Kook In; Lee, In Gyu; Park, Won Kyu; Yoon, Yeojoon; Yoo, Chan Sei; Yang, Woo Seok; Hwang, Wan Sik

    2016-01-01

    Hybrid composites (HCs) made up of gallium oxide (GaO) and graphene oxide (GO) were investigated with the intent of enhancing a photocatalytic reaction under ultraviolet (UV) radiation. The material properties of both GaO and GO were preserved, even after the formation of the HCs. The incorporation of the GO into the GaO significantly enhanced the photocatalytic reaction, as indicated by the amount of methylene blue (MB) degradation. The improvements in the reaction were discussed in terms of increased surface area and the retarded recombination of generated charged carriers. PMID:28335255

  9. The oxidative burst reaction in mammalian cells depends on gravity.

    PubMed

    Adrian, Astrid; Schoppmann, Kathrin; Sromicki, Juri; Brungs, Sonja; von der Wiesche, Melanie; Hock, Bertold; Kolanus, Waldemar; Hemmersbach, Ruth; Ullrich, Oliver

    2013-12-20

    Gravity has been a constant force throughout the Earth's evolutionary history. Thus, one of the fundamental biological questions is if and how complex cellular and molecular functions of life on Earth require gravity. In this study, we investigated the influence of gravity on the oxidative burst reaction in macrophages, one of the key elements in innate immune response and cellular signaling. An important step is the production of superoxide by the NADPH oxidase, which is rapidly converted to H2O2 by spontaneous and enzymatic dismutation. The phagozytosis-mediated oxidative burst under altered gravity conditions was studied in NR8383 rat alveolar macrophages by means of a luminol assay. Ground-based experiments in "functional weightlessness" were performed using a 2 D clinostat combined with a photomultiplier (PMT clinostat). The same technical set-up was used during the 13th DLR and 51st ESA parabolic flight campaign. Furthermore, hypergravity conditions were provided by using the Multi-Sample Incubation Centrifuge (MuSIC) and the Short Arm Human Centrifuge (SAHC). The results demonstrate that release of reactive oxygen species (ROS) during the oxidative burst reaction depends greatly on gravity conditions. ROS release is 1.) reduced in microgravity, 2.) enhanced in hypergravity and 3.) responds rapidly and reversible to altered gravity within seconds. We substantiated the effect of altered gravity on oxidative burst reaction in two independent experimental systems, parabolic flights and 2D clinostat / centrifuge experiments. Furthermore, the results obtained in simulated microgravity (2D clinorotation experiments) were proven by experiments in real microgravity as in both cases a pronounced reduction in ROS was observed. Our experiments indicate that gravity-sensitive steps are located both in the initial activation pathways and in the final oxidative burst reaction itself, which could be explained by the role of cytoskeletal dynamics in the assembly and function

  10. The oxidative burst reaction in mammalian cells depends on gravity

    PubMed Central

    2013-01-01

    Gravity has been a constant force throughout the Earth’s evolutionary history. Thus, one of the fundamental biological questions is if and how complex cellular and molecular functions of life on Earth require gravity. In this study, we investigated the influence of gravity on the oxidative burst reaction in macrophages, one of the key elements in innate immune response and cellular signaling. An important step is the production of superoxide by the NADPH oxidase, which is rapidly converted to H2O2 by spontaneous and enzymatic dismutation. The phagozytosis-mediated oxidative burst under altered gravity conditions was studied in NR8383 rat alveolar macrophages by means of a luminol assay. Ground-based experiments in “functional weightlessness” were performed using a 2 D clinostat combined with a photomultiplier (PMT clinostat). The same technical set-up was used during the 13th DLR and 51st ESA parabolic flight campaign. Furthermore, hypergravity conditions were provided by using the Multi-Sample Incubation Centrifuge (MuSIC) and the Short Arm Human Centrifuge (SAHC). The results demonstrate that release of reactive oxygen species (ROS) during the oxidative burst reaction depends greatly on gravity conditions. ROS release is 1.) reduced in microgravity, 2.) enhanced in hypergravity and 3.) responds rapidly and reversible to altered gravity within seconds. We substantiated the effect of altered gravity on oxidative burst reaction in two independent experimental systems, parabolic flights and 2D clinostat / centrifuge experiments. Furthermore, the results obtained in simulated microgravity (2D clinorotation experiments) were proven by experiments in real microgravity as in both cases a pronounced reduction in ROS was observed. Our experiments indicate that gravity-sensitive steps are located both in the initial activation pathways and in the final oxidative burst reaction itself, which could be explained by the role of cytoskeletal dynamics in the assembly and

  11. Hydrolysis of Surfactants Containing Ester Bonds: Modulation of Reaction Kinetics and Important Aspects of Surfactant Self-Assembly

    ERIC Educational Resources Information Center

    Lundberg, Dan; Stjerndahl, Maria

    2011-01-01

    The effects of self-assembly on the hydrolysis kinetics of surfactants that contain ester bonds are discussed. A number of examples on how reaction rates and apparent reaction orders can be modulated by changes in the conditions, including an instance of apparent zero-order kinetics, are presented. Furthermore, it is shown that the examples on…

  12. Reactions of metal ions at surfaces of hydrous iron oxide

    USGS Publications Warehouse

    Hem, J.D.

    1977-01-01

    Cu, Ag and Cr concentrations in natural water may be lowered by mild chemical reduction involving ferric hydroxide-ferrous ion redox processes. V and Mo solubilities may be controlled by precipitation of ferrous vanadate or molybdate. Concentrations as low as 10-8.00 or 10-9.00 M are readily attainable for all these metals in oxygen-depleted systems that are relatively rich in Fe. Deposition of manganese oxides such as Mn3O4 can be catalyzed in oxygenated water by coupling to ferrous-ferric redox reactions. Once formed, these oxides may disproportionate, giving Mn4+ oxides. This reaction produces strongly oxidizing conditions at manganese oxide surfaces. The solubility of As is significantly influenced by ferric iron only at low pH. Spinel structures such as chromite or ferrites of Cu, Ni, and Zn, are very stable and if locally developed on ferric hydroxide surfaces could bring about solubilities much below 10-9.00 M for divalent metals near neutral pH. Solubilities calculated from thermodynamic data are shown graphically and compared with observed concentrations in some natural systems. ?? 1977.

  13. Intrinsic Bonding Defects in Transition Metal Elemental Oxides

    DTIC Science & Technology

    2006-01-01

    deposition, ALD. Spectroscopic studies have also been performed on nanocrystalline TiO2 , ZrO2, HfO2, and complex mixed oxides such as ZrTiO4, LaAlO3 and...5d-state and defect features are identified. Figure 2(b). SXPS valence band spectrum of TiO2 . 5d-state and defect features... TiO2 . 3d-state features are identified. Figure 4. Ti L3 edge XAS spectrum of TiO2 . Ti 3d J-T term split states are

  14. Oxidative addition of C--H bonds in organic molecules to transition metal centers

    SciTech Connect

    Bergman, R.G.

    1989-04-01

    Alkanes are among the most chemically inert organic molecules. They are reactive toward a limited range of reagents, such as highly energetic free radicals and strongly electrophilic and oxidizing species. This low reactivity is a consequence of the C--H bond energies in most saturated hydrocarbons. These values range from 90 to 98 kcal/mole for primary and secondary C--H bonds; in methane, the main constituent of natural gas, the C--H bond energy is 104 kcal/mole. This makes methane one of the most common but least reactive organic molecules in nature. This report briefly discusses the search for metal complexes capable of undergoing the C--H oxidative addition process allowing alkane chemistry to be more selective than that available using free radical reagents. 14 refs.

  15. Disulfide Bond Formation and Activation of Escherichia coli β-Galactosidase under Oxidizing Conditions

    PubMed Central

    Seras-Franzoso, Joaquin; Affentranger, Roman; Ferrer-Navarro, Mario; Daura, Xavier; Villaverde, Antonio

    2012-01-01

    Escherichia coli β-galactosidase is probably the most widely used reporter enzyme in molecular biology, cell biology, and biotechnology because of the easy detection of its activity. Its large size and tetrameric structure make this bacterial protein an interesting model for crystallographic studies and atomic mapping. In the present study, we investigate a version of Escherichia coli β-galactosidase produced under oxidizing conditions, in the cytoplasm of an Origami strain. Our data prove the activation of this microbial enzyme under oxidizing conditions and clearly show the occurrence of a disulfide bond in the β-galactosidase structure. Additionally, the formation of this disulfide bond is supported by the analysis of a homology model of the protein that indicates that two cysteines located in the vicinity of the catalytic center are sufficiently close for disulfide bond formation. PMID:22286993

  16. III-V/Si wafer bonding using transparent, conductive oxide interlayers

    SciTech Connect

    Tamboli, Adele C. Hest, Maikel F. A. M. van; Steiner, Myles A.; Essig, Stephanie; Norman, Andrew G.; Bosco, Nick; Stradins, Paul; Perl, Emmett E.

    2015-06-29

    We present a method for low temperature plasma-activated direct wafer bonding of III-V materials to Si using a transparent, conductive indium zinc oxide interlayer. The transparent, conductive oxide (TCO) layer provides excellent optical transmission as well as electrical conduction, suggesting suitability for Si/III-V hybrid devices including Si-based tandem solar cells. For bonding temperatures ranging from 100 °C to 350 °C, Ohmic behavior is observed in the sample stacks, with specific contact resistivity below 1 Ω cm{sup 2} for samples bonded at 200 °C. Optical absorption measurements show minimal parasitic light absorption, which is limited by the III-V interlayers necessary for Ohmic contact formation to TCOs. These results are promising for Ga{sub 0.5}In{sub 0.5}P/Si tandem solar cells operating at 1 sun or low concentration conditions.

  17. Oxidation of Annelated Diarylamines: Analysis of Reaction Pathways to Nitroxide Diradical and Spirocyclic Products

    SciTech Connect

    Rajca, Andrzej; Shiraishi, Kouichi; Boraty; #324; ski, Przemyslaw J.; Pink, Maren; Miyasaka, Makoto; Rajca, Suchada

    2012-02-06

    Oxidation of diaryldiamine 2, a tetrahydrodiazapentacene derivative, provides diarylnitroxide diradical 1 accompanied by an intermediate nitroxide monoradical and a multitude of isolable diamagnetic products. DFT-computed tensors for EPR spectra and paramagnetic {sup 1}H NMR isotropic shifts for nitroxide diradical 1 show good agreement with the experimental EPR spectra in rigid matrices and paramagnetic {sup 1}H NMR spectra in solution, respectively. Examination of the diamagnetic products elucidates their formation via distinct pathways involving C-O bond-forming reactions, including Baeyer-Villiger-type oxidations. An unusual diiminoketone structure and two spirocyclic structures of the predominant diamagnetic products are confirmed by either X-ray crystallography or correlations between DFT-computed and experimental spectroscopic data such as {sup 1}H, {sup 13}C, and {sup 15}N NMR chemical shifts and electronic absorption spectra.

  18. Homogeneous and heterogeneous reactions of anthracene with selected atmospheric oxidants.

    PubMed

    Zhang, Yang; Shu, Jinian; Zhang, Yuanxun; Yang, Bo

    2013-09-01

    The reactions of gas-phase anthracene and suspended anthracene particles with O3 and O3-NO were conducted in a 200-L reaction chamber, respectively. The secondary organic aerosol (SOA) formations from gas-phase reactions of anthracene with O3 and O3-NO were observed. Meanwhile, the size distributions and mass concentrations of SOA were monitored with a scanning mobility particle sizer (SMPS) during the formation processes. The rapid exponential growths of SOA reveal that the atmospheric lifetimes of gas-phase anthracene towards O3 and O3-NO are less than 20.5 and 4.34 hr, respectively. The particulate oxidation products from homogeneous and heterogeneous reactions were analyzed with a vacuum ultraviolet photoionization aerosol time-of-flight mass spectrometer (VUV-ATOFMS). Gas chromatograph/mass spectrometer (GC/MS) analyses of oxidation products of anthracene were carried out for assigning the time-of-flight (TOF) mass spectra of products from homogeneous and heterogeneous reactions. Anthrone, anthraquinone, 9,10-dihydroxyanthracene, and 1,9,10-trihydroxyanthracene were the ozonation products of anthracene, while anthrone, anthraquinone, 9-nitroanthracene, and 1,8-dihydroxyanthraquinone were the main products of anthracene with O3-NO.

  19. Indium Zinc Oxide Mediated Wafer Bonding for III-V/Si Tandem Solar Cells

    SciTech Connect

    Tamboli, Adele C.; Essig, Stephanie; Horowitz, Kelsey A. W.; Woodhouse, Michael; van Hest, Maikel F. A. M.; Norman, Andrew G.; Steiner, Myles A.; Stradins, Paul

    2015-06-14

    Silicon-based tandem solar cells are desirable as a high efficiency, economically viable approach to one sun or low concentration photovoltaics. We present an approach to wafer bonded III-V/Si solar cells using amorphous indium zinc oxide (IZO) as an interlayer. We investigate the impact of a heavily doped III-V contact layer on the electrical and optical properties of bonded test samples, including the predicted impact on tandem cell performance. We present economic modeling which indicates that the path to commercial viability for bonded cells includes developing low-cost III-V growth and reducing constraints on material smoothness. If these challenges can be surmounted, bonded tandems on Si can be cost-competitive with incumbent PV technologies, especially in low concentration, single axis tracking systems.

  20. Theoretical study of the reaction mechanism of platinum oxide with methane

    NASA Astrophysics Data System (ADS)

    Hwang, Der-Yan; Mebel, Alexander M.

    2002-10-01

    Density functional B3LYP calculations have been employed to investigate the reaction of platinum oxide with methane. PtO is shown to form a molecular complex with CH 4 bound by ˜13 kcal/mol. At elevated temperatures, direct abstraction of a hydrogen atom is possible leading to PtOH and free methyl radical with a barrier of ˜26 kcal/mol. A minor reaction channel is insertion into a C-H bond to produce a CH 3PtOH molecule, which can be also formed by recombination of PtOH and CH 3. CH 3PtOH would preferably dissociates through a mechanism involving 1,2-CH 3 migration to produce a PtCH 3OH complex and eventually Pt+CH 3OH.

  1. Polyvinylamine-graft-TEMPO adsorbs onto, oxidizes, and covalently bonds to wet cellulose.

    PubMed

    Pelton, Robert; Ren, Pengchao; Liu, Jieyi; Mijolovic, Darijo

    2011-04-11

    Described is a new, greener approach to increasing adhesion between wet cellulose surfaces. Polyvinylamine (PVAm) with grafted TEMPO spontaneously adsorbs onto cellulose and oxidizes the C6 hydroxyl to aldehyde groups that react to form covalent bonds with primary amines on PVAm. Grafted TEMPO offers two important advantages over solutions of low-molecular-weight water-soluble TEMPO derivatives. First, the oxidation of porous cellulose wood fibers is restricted to the exterior surfaces accessible to high-molecular-weight PVAm. Thus, fibers are not weakened by excessive oxidation of the interior fiber wall surfaces. The second advantage of tethered TEMPO is that the total dose of TEMPO required to oxidize dilute fiber suspensions is much less than that required by water-soluble TEMPO derivatives. PVAm-TEMPO is stable under oxidizing conditions. The oxidation activity of the immobilized TEMPO was demonstrated by the conversion of methylglyoxal to pyruvic acid.

  2. Hydrogen bonding. Part 26. Thermodynamics of dissociation and infrared spectracrystal structure correlations for betaine monohydrate and trimethylamine oxide dihydrate

    NASA Astrophysics Data System (ADS)

    Toccalino, Patricia L.; Harmon, Kenneth M.; Harmon, Jennifer

    1988-10-01

    Thermodynamic parameters for the dissociation of betaine monohydrate and trimethylamine oxide dihydrate have been determined by equilibrium vapor pressure measurements. Betaine monohydrate appears in two slightly different crystalline forms, one obtained by crystallization from water and the other by addition of water vapor to solid anhydrous betaine. Hydrogen bond energies in these hydrates are at least 8-9 kcal mol -1 per OH⋯O bond. Hydrogen bond energies in trimethylamine oxide dihydrate average at least 14 kcal mol -1 per OH⋯O bond; however, as there are two distinct types of hydrogen bonds in this hydrate, some bonds are stronger and some weaker than 14 kcal mol -1. These studies show conclusively that trimethylamine oxide monohydrate does not exist. The infrared spectrum of trimethylamine oxide dihydrate is correlated with the crystal structure.

  3. Evaluation of the surface bonding energy of an InP membrane bonded oxide-free to Si using instrumented nanoindentation

    NASA Astrophysics Data System (ADS)

    Pantzas, Konstantinos; Patriarche, Gilles; Le Bourhis, Eric; Troadec, David; Itawi, Ahmad; Beaudoin, Grégoire; Sagnes, Isabelle; Talneau, Anne

    2013-08-01

    Instrumented nanoindentation is used in conjunction with scanning transmission electron microscopy to evaluate the mechanical resistance at the bonding interface of a 450 nm thick InP membrane bonded oxide-free to Si. Indentation using a Berkovich tip is shown to cause the planes in InP to rotate by as much as 16°. The shear stress resulting from this rotation causes the InP membrane to buckle, forming a debonded blister around the indented zone. The geometry of this blister is used to compute the surface bond energy of InP bonded oxide-free to Si. An average surface bonding energy of 585 mJ m-2 is reported.

  4. Hydrogen production from methane through catalytic partial oxidation reactions

    NASA Astrophysics Data System (ADS)

    Freni, S.; Calogero, G.; Cavallaro, S.

    This paper reviews recent developments in syn-gas production processes used for partial methane oxidation with and/or without steam. In particular, we examined different process charts (fixed bed, fluidised bed, membrane, etc.), kinds of catalysts (powders, foams, monoliths, etc.) and catalytically active phases (Ni, Pt, Rh, etc.). The explanation of the various suggested technical solutions accounted for the reaction mechanism that may selectively lead to calibrated mixtures of CO and H 2 or to the unwanted formation of products of total oxidation (CO 2 and H 2O) and pyrolysis (coke). Moreover, the new classes of catalysts allow the use of small reactors to treat large amounts of methane (monoliths) or separate hydrogen in situ from the other reaction products (membrane). This leads to higher conversions and selectivity than could have been expected thermodynamically. Although catalysts based on Rh are extremely expensive, they can be used to minimise H 2O formation by maximising H 2 yield.

  5. Nonenzymatic oxidative cleavage of peptide bonds in apoprotein B-100.

    PubMed

    Fong, L G; Parthasarathy, S; Witztum, J L; Steinberg, D

    1987-12-01

    Incubation of low density lipoprotein (LDL) with endothelial cells converts it to a form that is avidly degraded by macrophages via the acetyl LDL receptor. This modification has previously been shown to be accompanied by extensive breakdown of the major LDL protein (apoB-100) to smaller peptides. ApoB-100 is known to undergo partial degradation during isolation and purification which is commonly attributed to proteolytic enzymes derived from plasma or to contaminant bacteria. In the present studies addition of any of ten different inhibitors of proteolytic enzymes failed to inhibit the endothelial cell-induced degradation of LDL apoB-100 or its subsequent enhanced rate of degradation by macrophages (termed biological modification). Conversely, deliberate digestion of LDL with any of five well-characterized proteolytic enzymes degraded apoB-100 extensively but did not cause biological modification. The disappearance of intact apoB-100 during incubation with endothelial cells paralleled the formation of thiobarbituric acid (TBA)-reactive substances and the breakdown could be completely prevented by the addition of antioxidants or metal chelators. Finally, the incubation of LDL with a free radical-generating system (dihydroxyfumaric acid and Fe3+-ADP) in the absence of cells resulted in the breakdown of apoB-100. These results suggest that the breakdown of apoB-100 during oxidative modification of LDL, whether cell-induced or catalyzed by transition metals, is not mediated by proteolytic enzymes but rather is linked to oxidative attack on the polypeptide chain, either directly or secondary to peroxidation of closely associated LDL lipids.

  6. Does a higher metal oxidation state necessarily imply higher reactivity toward H-atom transfer? A computational study of C-H bond oxidation by high-valent iron-oxo and -nitrido complexes.

    PubMed

    Geng, Caiyun; Ye, Shengfa; Neese, Frank

    2014-04-28

    In this work, the reactions of C-H bond activation by two series of iron-oxo ( (Fe(IV)), (Fe(V)), (Fe(VI))) and -nitrido model complexes ( (Fe(IV)), (Fe(V)), (Fe(VI))) with a nearly identical coordination geometry but varying iron oxidation states ranging from iv to vi were comprehensively investigated using density functional theory. We found that in a distorted octahedral coordination environment, the iron-oxo species and their isoelectronic nitrido analogues feature totally different intrinsic reactivities toward C-H bond cleavage. In the case of the iron-oxo complexes, the reaction barrier monotonically decreases as the iron oxidation state increases, consistent with the gradually enhanced electrophilicity across the series. The iron-nitrido complex is less reactive than its isoelectronic iron-oxo species, and more interestingly, a counterintuitive reactivity pattern was observed, i.e. the activation barriers essentially remain constant independent of the iron oxidation states. The detailed analysis using the Polanyi principle demonstrates that the different reactivities between these two series originate from the distinct thermodynamic driving forces, more specifically, the bond dissociation energies (BDEE-Hs, E = O, N) of the nascent E-H bonds in the FeE-H products. Further decomposition of the BDEE-Hs into the electron and proton affinity components shed light on how the oxidation states modulate the BDEE-Hs of the two series.

  7. Hypochlorous acid-mediated protein oxidation: how important are chloramine transfer reactions and protein tertiary structure?

    PubMed

    Pattison, David I; Hawkins, Clare L; Davies, Michael J

    2007-08-28

    Hypochlorous acid (HOCl) is a powerful oxidant generated from H2O2 and Cl- by the heme enzyme myeloperoxidase, which is released from activated leukocytes. HOCl possesses potent antibacterial properties, but excessive production can lead to host tissue damage that occurs in numerous human pathologies. As proteins and amino acids are highly abundant in vivo and react rapidly with HOCl, they are likely to be major targets for HOCl. In this study, two small globular proteins, lysozyme and insulin, have been oxidized with increasing excesses of HOCl to determine whether the pattern of HOCl-mediated amino acid consumption is consistent with reported kinetic data for isolated amino acids and model compounds. Identical experiments have been carried out with mixtures of N-acetyl amino acids (to prevent reaction at the alpha-amino groups) that mimic the protein composition to examine the role of protein structure on reactivity. The results indicate that tertiary structure facilitates secondary chlorine transfer reactions of chloramines formed on His and Lys side chains. In light of these data, second-order rate constants for reactions of Lys side chain and Gly chloramines with Trp side chains and disulfide bonds have been determined, together with those for further oxidation of Met sulfoxide by HOCl and His side chain chloramines. Computational kinetic models incorporating these additional rate constants closely predict the experimentally observed amino acid consumption. These studies provide insight into the roles of chloramine formation and three-dimensional structure on the reactions of HOCl with isolated proteins and demonstrate that kinetic models can predict the outcome of HOCl-mediated protein oxidation.

  8. Reaction Mechanism and Kinetics of Enargite Oxidation at Roasting Temperatures

    NASA Astrophysics Data System (ADS)

    Padilla, Rafael; Aracena, Alvaro; Ruiz, Maria C.

    2012-10-01

    Roasting of enargite (Cu3AsS4) in the temperature range of 648 K to 898 K (375 °C to 625 °C) in atmospheres containing variable amounts of oxygen has been studied by thermogravimetric methods. From the experimental results of weight loss/gain data and X-ray diffraction (XRD) analysis of partially reacted samples, the reaction mechanism of the enargite oxidation was determined, which occurred in three sequential stages:

  9. Carbon-sulfur bond-forming reaction catalysed by the radical SAM enzyme HydE

    NASA Astrophysics Data System (ADS)

    Rohac, Roman; Amara, Patricia; Benjdia, Alhosna; Martin, Lydie; Ruffié, Pauline; Favier, Adrien; Berteau, Olivier; Mouesca, Jean-Marie; Fontecilla-Camps, Juan C.; Nicolet, Yvain

    2016-05-01

    Carbon-sulfur bond formation at aliphatic positions is a challenging reaction that is performed efficiently by radical S-adenosyl-L-methionine (SAM) enzymes. Here we report that 1,3-thiazolidines can act as ligands and substrates for the radical SAM enzyme HydE, which is involved in the assembly of the active site of [FeFe]-hydrogenase. Using X-ray crystallography, in vitro assays and NMR spectroscopy we identified a radical-based reaction mechanism that is best described as the formation of a C-centred radical that concomitantly attacks the sulfur atom of a thioether. To the best of our knowledge, this is the first example of a radical SAM enzyme that reacts directly on a sulfur atom instead of abstracting a hydrogen atom. Using theoretical calculations based on our high-resolution structures we followed the evolution of the electronic structure from SAM through to the formation of S-adenosyl-L-cysteine. Our results suggest that, at least in this case, the widely proposed and highly reactive 5‧-deoxyadenosyl radical species that triggers the reaction in radical SAM enzymes is not an isolable intermediate.

  10. Design of heterogeneous photocatalysts based on metal oxides to control the selectivity of chemical reactions.

    PubMed

    Maldotti, Andrea; Molinari, Alessandra

    2011-01-01

    Photocatalysis is particularly relevant in order to realize chemical transformations of interest in synthesis and, at the same time, to move towards a "sustainable chemistry" with a minimal environmental impact. Heterogeneous systems with well-defined textural characteristics represent a suitable means to tailor the selectivity of photocatalytic processes. Here, we summarize and classify the significant features of photocatalysts consisting of photoactive metal oxides dispersed on high-surface-area solid supports, or constrained inside their porous network. These systems are based on the use of titanium dioxide, highly dispersed oxides of titanium, chromium, vanadium, and polyoxotungstates. They share similar primary photoprocesses: light absorption induces a charge separation process with formation of positive holes able to oxidize organic substrates. A great number of the papers discussed here concern oxidation reactions carried out in the presence of O₂ for inducing partial oxidation of alcohols and monooxygenation of hydrocarbons. We also devote some attention to photocatalysis in the absence of O₂. In these conditions, the photogenerated charge separation offers the possibility to induce the formation of C-C and C-N bonds. We emphasize that the optimal tailoring of photoactive materials for synthetic purposes can be achieved by combining recent advances in the preparation of nanostructured materials with mechanistic knowledge derived from surface science and molecular level investigations.

  11. Short Access to Belt Compounds with Spatially Close C=C Bonds and Their Transannular Reactions.

    PubMed

    Camps, Pelayo; Gómez, Tània; Otermin, Ane; Font-Bardia, Mercè; Estarellas, Carolina; Luque, Francisco Javier

    2015-09-28

    Two domino Diels-Alder adducts were obtained from 3,7-bis(cyclopenta-2,4-dien-1-ylidene)-cis-bicyclo[3.3.0]octane and dimethyl acetylenedicarboxylate or N-methylmaleimide under microwave irradiation. From the first adduct, a C20H24 diene with C2v symmetry was obtained by Zn/AcOH reduction, hydrolysis, oxidative decarboxylation, and selective hydrogenation. Photochemical [2+2] cycloaddition of this diene gave a thermally unstable cyclobutane derivative, which reverts to the diene. However, both the diene and the cyclobutane derivatives could be identified by X-ray diffraction analysis upon irradiation of the diene crystal. New six-membered rings are formed upon the transannular addition of bromine or iodine to the diene. The N-type selectivity of the addition was examined by theoretical calculations, which revealed the distinct susceptibility of the doubly bonded carbon atoms to the bromine attack.

  12. ESCA investigations on plastic-bonded nickel oxide electrodes

    NASA Astrophysics Data System (ADS)

    Jindra, J.; Krejčí, I.; Mrha, J.; Folkesson, B.; Johansson, L. Y.; Larsson, R.

    Electrode samples, prepared by a rolling technique from an active mass, graphite and Teflon mixture, were characterized by ESCA (X-ray photoelectron spectroscopy) before operation, after a short electrochemical formation, and after a certain number of charge—discharge cycles. The spectra of F 1s, C 1s, O 1s and Ni 2p 3/2 were measured in detail. A splitting of the F and C signals (from Teflon) in the Teflon—graphite mixture was interpreted as indicating different qualities of contacts between the Teflon and graphite particles. The change in character of this contact resulting from cycling of the electrode was followed and was considered to be the cause of the change of the electric resistance in the electrode. From the decrease of the intensity of the Ni signal one can conclude that part of the Ni(OH) 2/NiO(OH) system withdraws from the surface of the graphite particle structure during prolonged operation of the electrode. This effect is caused by a partial crystallization of the hydrated Ni(II)Ni(III) oxide system which, in its turn, causes discontinuities in the hydrogel to appear, reflected by an increase in the F 1s signal intensity.

  13. Reaction rate oscillations during catalytic CO oxidation: A brief overview

    NASA Technical Reports Server (NTRS)

    Tsotsis, T. T.; Sane, R. C.

    1987-01-01

    It is not the intent here to present a comprehensive review of the dynamic behavior of the catalytic oxidation of CO. This reaction is one of the most widely studied in the field of catalysis. A review paper by Engel and Ertl has examined the basic kinetic and mechanistic aspects, and a comprehensive paper by Razon and Schmitz was recently devoted to its dynamic behavior. Those interested in further study of the subject should consult these reviews and a number of general review papers on catalytic reaction dynamics. The goal is to present a brief overview of certain interesting aspects of the dynamic behavior of this reaction and to discuss a few questions and issues, which are still the subject of study and debate.

  14. Reaction rate oscillations during catalytic CO oxidation: A brief overview

    NASA Astrophysics Data System (ADS)

    Tsotsis, T. T.; Sane, R. C.

    1987-04-01

    It is not the intent here to present a comprehensive review of the dynamic behavior of the catalytic oxidation of CO. This reaction is one of the most widely studied in the field of catalysis. A review paper by Engel and Ertl has examined the basic kinetic and mechanistic aspects, and a comprehensive paper by Razon and Schmitz was recently devoted to its dynamic behavior. Those interested in further study of the subject should consult these reviews and a number of general review papers on catalytic reaction dynamics. The goal is to present a brief overview of certain interesting aspects of the dynamic behavior of this reaction and to discuss a few questions and issues, which are still the subject of study and debate.

  15. Kinetics of the reaction of nitric oxide with hydrogen

    NASA Technical Reports Server (NTRS)

    Flower, W. L.; Hanson, R. K.; Kruger, C. H.

    1974-01-01

    Mixtures of NO and H2 diluted in argon or krypton were heated by incident shock waves, and the infrared emission from the fundamental vibration-rotation band of NO at 5.3 microns was used to monitor the time-varying NO concentration. The reaction kinetics were studied in the temperature range 2400-4500 K using a shock-tube technique. The decomposition of nitric oxide behind the shock was found to be modeled well by a fifteen-reaction system. A principle result of the study was the determination of the rate constant for the reaction H + NO yields N + OH, which may be the rate-limiting step for NO removal in some combustion systems. Experimental values of k sub 1 were obtained for each test through comparisons of measured and numerically predicted NO profiles.

  16. Reaction between nitric oxide and ozone in solid nitrogen

    NASA Technical Reports Server (NTRS)

    Lucas, D.; Pimentel, G. C.

    1979-01-01

    Nitrogen dioxide, NO2, is produced when nitric oxide, NO, and ozone, O3, are suspended in a nitrogen matrix at 11-20 K. The NO2 is formed with first-order kinetics, a 12 K rate constant of (1.4 + or - 0.2) x 0.00001/sec, and an apparent activation energy of 106 + or - 10 cal/mol. Isotopic labeling, variation of concentrations, and cold shield experiments show that the growth of NO2 is due to reaction between ozone molecules and NO monomers, and that the reaction is neither infrared-induced nor does it seem to be a heavy atom tunneling process. Reaction is attributed to nearest-neighbor NO.O3 pairs probably held in a specific orientational relationship that affects the kinetic behavior. When the temperature is raised, more such reactive pairs are generated, presumably by local diffusion. Possible mechanisms are discussed.

  17. Electrophilic, Ambiphilic, and Nucleophilic C-H bond Activation. Understanding the electronic continuum of C-H bond activation through transition-state and reaction pathway interaction energy decompositions

    SciTech Connect

    Ess, Daniel H.; Goddard, William A.; Periana, Roy A.

    2010-10-29

    The potential energy and interaction energy profiles for metal- and metal-ligand-mediated alkane C-H bond activation were explored using B3LYP density functional theory (DFT) and the absolutely localized molecular orbital energy decomposition analysis (ALMO-EDA). The set of complexes explored range from late transition metal group 10 (Pt and Pd) and group 11 (Au) metal centers to group 7-9 (Ir, Rh, Ru, and W) metal centers as well as a group 3 Sc complex. The coordination geometries, electron metal count (d8, d6, d4, and d0), and ligands (N-heterocycles, O-donor, phosphine, and Cp*) are also diverse. Quantitative analysis using ALMO-EDA of both directions of charge-transfer stabilization (occupied to unoccupied orbital stabilization) energies between the metal-ligand fragment and the coordinated C-H bond in the transition state for cleavage of the C-H bond allows classification of C-H activation reactions as electrophilic, ambiphilic, or nucleophilic on the basis of the net direction of charge-transfer energy stabilization. This bonding pattern transcends any specific mechanistic or bonding paradigm, such as oxidative addition, σ-bond metathesis, or substitution. Late transition metals such as Au(III), Pt(II), Pd(II), and Rh(III) metal centers with N-heterocycle, halide, or O-donor ligands show electrophilically dominated reaction profiles with forward charge-transfer from the C-H bond to the metal, leading to more stabilization than reverse charge transfer from the metal to the C-H bond. Transition states and reaction profiles for d6 Ru(II) and Ir(III) metals with Tp and acac ligands were found to have nearly equal forward and reverse charge-transfer energy stabilization. This ambiphilic region also includes the classically labeled electrophilic cationic species Cp*(PMe3)Ir(Me). Nucleophilic character, where the metal to C-H bond charge-transfer interaction is most stabilizing, was found in

  18. Transition-metal-free C-C bond forming reactions of aryl, alkenyl and alkynylboronic acids and their derivatives.

    PubMed

    Roscales, S; Csákÿ, A G

    2014-12-21

    Investigation of new methods for the synthesis of C-C bonds is fundamental for the development of new organic drugs and materials. Aryl-, alkenyl- and alkynylboronic acids and their derivatives constitute attractive reagents towards this end, due to their stability, low toxicity and ease of handling. However, these compounds are only moderately nucleophilic. Consequently, the most popular C-C bond forming reactions of these boronic acids, such as the Suzuki-Miyaura, Heck, and Hayashi-Miyaura reactions, or additions to C=O and C=N bonds, require catalysis by transition metals. However, due to the toxicity and cost of transition metals, some new methods for C-C bond formation using aryl-, alkenyl- and alkynylboronic acids under transition-metal-free conditions are beginning to emerge. In this tutorial review, the recent synthetic advances in this field are highlighted and discussed.

  19. Gelcasting of silicon preforms for the production of sintered reaction-bonded silicon nitride

    SciTech Connect

    Kiggans, J.O. Jr.; Nunn, S.D.; Tiegs, T.N.; Davisson, C.C.; Coffey, D.W.; Maria, J.P.

    1995-12-31

    Gelcasting of silicon metal for the production of sintered reaction-bonded silicon nitride (SRBSN) was investigated in order to identify associated advantages over conventional forming techniques, i.e., die and isostatic pressing. Compacts were formed from identical powder mixtures by both gelcasting and pressing, and were nitrided and sintered to produce SRBSN ceramics using both conventional and microwave heating. Characterization of the samples included measurement of green density, green and nitrided pore structure, weight gain during nitridation, final density, microstructure, toughness, and flexural strength. It was found that a more uniform pore structure existed in the green gelcast samples. It is believed that this pore configuration aided in nitridation, and manifested itself in a more uniform final microstructure. In addition, improved mechanical properties were achieved in the gelcast samples. This improvement can be attributed to green microstructure homogeneity. An additional finding of this study was that microwave hearing combined with gelcast forming resulted in SRBSN materials with improved mechanical properties.

  20. Oxidative degradation of decabromodiphenyl ether (BDE 209) by potassium permanganate: reaction pathways, kinetics, and mechanisms assisted by density functional theory calculations.

    PubMed

    Shi, Jiaqi; Qu, Ruijuan; Feng, Mingbao; Wang, Xinghao; Wang, Liansheng; Yang, Shaogui; Wang, Zunyao

    2015-04-07

    This study found that decabromodiphenyl ether (BDE 209) could be oxidized effectively by potassium permanganate (KMnO4) in sulfuric acid medium. A total of 15 intermediate oxidative products were detected. The reaction pathways were proposed, which primarily included cleavage of the ether bond to form pentabromophenol. Direct oxidation on the benzene ring also played an important role because hydroxylated polybrominated diphenyl ethers (PBDEs) were produced during the oxidation process. The degradation occurred dramatically in the first few minutes and fitted pseudo-first-order kinetics. Increasing the water content decelerated the reaction rate, whereas increasing the temperature facilitated the reaction. In addition, density functional theory (DFT) was employed to determine the frontier molecular orbital (FMO) and frontier electron density (FED) of BDE 209 and the oxidative products. The theoretical calculation results confirmed the proposed reaction pathways.

  1. Synthesis, Characterization, and Electrochemistry of sigma-Bonded Cobalt Corroles in High Oxidation States.

    PubMed

    Will, Stefan; Lex, Johann; Vogel, Emanuel; Adamian, Victor A.; Van Caemelbecke, Eric; Kadish, Karl M.

    1996-09-11

    The synthesis, electrochemistry, spectroscopy, and structural characterization of two high-valent phenyl sigma-bonded cobalt corroles containing a central cobalt ion in formal +IV and +V oxidation states is presented. The characterized compounds are represented as phenyl sigma-bonded cobalt corroles, (OEC)Co(C(6)H(5)) and [(OEC)Co(C(6)H(5))]ClO(4), where OEC is the trianion of 2,3,7,8,12,13,17,18-octaethylcorrole. The electronic distribution in both molecules is discussed in terms of their NMR and EPR spectroscopic data, magnetic susceptibility, and electrochemistry.

  2. Acid-base bifunctional catalysis of silica-alumina-supported organic amines for carbon-carbon bond-forming reactions.

    PubMed

    Motokura, Ken; Tomita, Mitsuru; Tada, Mizuki; Iwasawa, Yasuhiro

    2008-01-01

    Acid-base bifunctional heterogeneous catalysts were prepared by the reaction of an acidic silica-alumina (SA) surface with silane-coupling reagents possessing amino functional groups. The obtained SA-supported amines (SA-NR2) were characterized by solid-state 13C and 29Si NMR spectroscopy, FT-IR spectroscopy, and elemental analysis. The solid-state NMR spectra revealed that the amines were immobilized by acid-base interactions at the SA surface. The interactions between the surface acidic sites and the immobilized basic amines were weaker than the interactions between the SA and free amines. The catalytic performances of the SA-NR2 catalysts for various carbon-carbon bond-forming reactions, such as cyano-ethoxycarbonylation, the Michael reaction, and the nitro-aldol reaction, were investigated and compared with those of homogeneous and other heterogeneous catalysts. The SA-NR2 catalysts showed much higher catalytic activities for the carbon-carbon bond-forming reactions than heterogeneous amine catalysts using other supports, such as SiO2 and Al2O3. On the other hand, homogeneous amines hardly promoted these reactions under similar reaction conditions, and the catalytic behavior of SA-NR2 was also different from that of MgO, which was employed as a typical heterogeneous base. An acid-base dual-activation mechanism for the carbon-carbon bond-forming reactions is proposed.

  3. Reaction and spectroscopic study of supported metal oxide catalysts

    NASA Astrophysics Data System (ADS)

    Ramani, Narayanan C.

    The role of surface structure, cation reducibility, surface acidity and the effect of the support was examined in the reaction of 1-butene over well characterized, supported metal oxide catalysts. Cr, Mo and W oxides supported on SiOsb2 were used to study the effect of structure, surface acidity and cation reducibility in the isomerization and selective oxidation of 1-butene. Supported oxides of Mo on TiOsb2,\\ Alsb2Osb3 and SiOsb2 were used to understand the role of the support in the selective oxidation of 1-butene. The surface acidity of SiOsb2 supported Cr, Mo, W and V oxide catalysts was examined by pyridine adsorption. Existing theoretical models of acidity were compared against experimental data. Over Mo(VI)/SiOsb2 and W(VI)/SiOsb2, isomerization through both a Bronsted catalyzed pathway and an allylic pathway were observed, while only the allylic pathway was observed over Cr(VI)/SiOsb2. The greater reducibility of the Cr cation compared to Mo and W cations was identified as the reason for the allylic pathway being dominant over Cr(VI)/SiOsb2. Cation reducibility was again seen to play an important role in the selective oxidation of 1-butene over SiOsb2 supported metal oxides. The turn over frequencies for 1,3-butadiene formation followed the trend in red-ox ability, with Cr > Mo > W. The activity to 1,3-butadiene formation did not change with increasing weight loading of Mo over TiOsb2 and Alsb2Osb3 supports. An analysis of the turn over frequencies of the supports and the supported cations revealed that a support effect, through the bridging oxygen ligand, dominated the intrinsic cation reducibility of Mo for these catalysts. The existence of Bronsted acidity over SiOsb2 supported Cr, Mo and V oxides was shown by an analysis of the OH region of the infrared spectrum, and by the adsorption of 1-butene and pyridine. Existing theoretical models for Bronsted acidity over supported metal oxides were shown to be inadequate to describe the observed results over

  4. Photovoltaic-driven organic electrosynthesis and efforts toward more sustainable oxidation reactions

    PubMed Central

    Nguyen, Bichlien H; Perkins, Robert J; Smith, Jake A

    2015-01-01

    Summary The combination of visible light, photovoltaics, and electrochemistry provides a convenient, inexpensive platform for conducting a wide variety of sustainable oxidation reactions. The approach presented in this article is compatible with both direct and indirect oxidation reactions, avoids the need for a stoichiometric oxidant, and leads to hydrogen gas as the only byproduct from the corresponding reduction reaction. PMID:25815081

  5. 40 CFR 721.10574 - Alkylcarboxy polyester acrylate reaction products with mixed metal oxides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... reaction products with mixed metal oxides (generic). 721.10574 Section 721.10574 Protection of Environment... reaction products with mixed metal oxides (generic). (a) Chemical substance and significant new uses... reaction products with mixed metal oxides (PMN P-09-48) is subject to reporting under this section for...

  6. 40 CFR 721.10574 - Alkylcarboxy polyester acrylate reaction products with mixed metal oxides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... reaction products with mixed metal oxides (generic). 721.10574 Section 721.10574 Protection of Environment... reaction products with mixed metal oxides (generic). (a) Chemical substance and significant new uses... reaction products with mixed metal oxides (PMN P-09-48) is subject to reporting under this section for...

  7. Ionic Conductivity and its Role in Oxidation Reactions

    NASA Astrophysics Data System (ADS)

    Tamimi, Mazin Abdulla

    In the field of solid oxide fuel cells (SOFCs), a substantial portion of research is focused on the ability of some oxide materials to conduct oxygen anions through their structure. For electrolytes, the benefits of improving bulk transport of ions are obvious: decrease the resistive losses of the electrolyte, and device efficiency goes up and higher power densities are possible. Even for cathode materials, better bulk ion transport leads to an increase in the oxygen exchange rate at the cathode surface, and the oxygen reduction reaction at the cathode surface is the rate limiting step for SOFC operation at intermediate temperatures (500-700ºC). As operation in this regime is a key step towards lowering the manufacturing cost and increasing the lifetime of devices, much effort is spent searching for new, more conductive materials, and analyzing existing materials to discover the structure-activity relationships that influence ionic conductivity. In the first part of this work, an overview is given of the neutron powder diffraction (NPD) techniques that are used to probe the structure of the materials in later parts. In the second part, NPD was used to analyze the structures of perovskite-type cathode materials, and show that increases in bulk conductivity led to increases in the surface oxygen exchange rate of these materials. In the final part, the methods used for SOFC cathode design were applied towards the design of oxide catalysts used for certain hydrocarbon partial oxidation reactions. The reactions studied follow the Mars van Krevelen mechanism, where oxygen atoms in the catalyst are consumed as part of the reaction and are subsequently replenished by oxygen in the gas phase. Similar to SOFC cathode operation, these processes include an oxygen reduction step, so it was hypothesized that increasing the ionic conductivity of the catalysts would improve their performance, just as it does for SOFC cathode materials. While the results are preliminary, the

  8. Crystal Structure of Reduced and of Oxidized Peroxiredoxin IV Enzyme Reveals a Stable Oxidized Decamer and a Non-disulfide-bonded Intermediate in the Catalytic Cycle*

    PubMed Central

    Cao, Zhenbo; Tavender, Timothy J.; Roszak, Aleksander W.; Cogdell, Richard J.; Bulleid, Neil J.

    2011-01-01

    Peroxiredoxin IV (PrxIV) is an endoplasmic reticulum-localized enzyme that metabolizes the hydrogen peroxide produced by endoplasmic reticulum oxidase 1 (Ero1). It has been shown to play a role in de novo disulfide formation, oxidizing members of the protein disulfide isomerase family of enzymes, and is a member of the typical 2-Cys peroxiredoxin family. We have determined the crystal structure of both reduced and disulfide-bonded, as well as a resolving cysteine mutant of human PrxIV. We show that PrxIV has a similar structure to other typical 2-Cys peroxiredoxins and undergoes a conformational change from a fully folded to a locally unfolded form following the formation of a disulfide between the peroxidatic and resolving cysteine residues. Unlike other mammalian typical 2-Cys peroxiredoxins, we show that human PrxIV forms a stable decameric structure even in its disulfide-bonded state. In addition, the structure of a resolving cysteine mutant reveals an intermediate in the reaction cycle that adopts the locally unfolded conformation. Interestingly the peroxidatic cysteine in the crystal structure is sulfenylated rather than sulfinylated or sulfonylated. In addition, the peroxidatic cysteine in the resolving cysteine mutant is resistant to hyper-oxidation following incubation with high concentrations of hydrogen peroxide. These results highlight some unique properties of PrxIV and suggest that the equilibrium between the fully folded and locally unfolded forms favors the locally unfolded conformation upon sulfenylation of the peroxidatic cysteine residue. PMID:21994946

  9. Energetics of tert-butoxyl addition reaction to norbornadiene: a method for estimating the pi-bond strength of a carbon-carbon double bond.

    PubMed

    Nunes, Paulo M; Estácio, Sílvia G; Lopes, Gustavo T; Agapito, Filipe; Santos, Rui C; Costa Cabral, Benedito J; Borges dos Santos, Rui M; Martinho Simões, José A

    2009-06-11

    The energetics of tert-butoxyl radical addition reaction to norbornadiene was investigated by time-resolved photoacoustic calorimetry (TR-PAC). The result, together with the C-O bond dissociation enthalpy (BDE) in the addition product, allowed us to calculate the pi-bond dissociation enthalpy in norbornadiene. Quantum chemistry (QC) methods were also used to obtain several enthalpies of reaction of the addition of oxygen-centered radicals to alkenes. The pi-bond dissociation enthalpies in these molecules were calculated by a procedure similar to that used in the case of norbornadiene and were compared with the pi-BDE values obtained by the method proposed by Benson. These two different approaches yield similar values for the pi-BDEs in alkenes, indicating that the addition method proposed in the present study is a valid way to derive that quantity. The influence of strain in the pi-BDEs of cyclic alkenes was investigated and allowed us to justify the difference between the pi-BDE in norbornene and norbornadiene. Finally, the thermochemistry of the addition and abstraction reactions involving these two molecules and tert-butoxyl radical was analyzed.

  10. Redox control and hydrogen bonding networks: proton-coupled electron transfer reactions and tyrosine Z in the photosynthetic oxygen-evolving complex.

    PubMed

    Keough, James M; Zuniga, Ashley N; Jenson, David L; Barry, Bridgette A

    2013-02-07

    In photosynthetic oxygen evolution, redox active tyrosine Z (YZ) plays an essential role in proton-coupled electron transfer (PCET) reactions. Four sequential photooxidation reactions are necessary to produce oxygen at a Mn(4)CaO(5) cluster. The sequentially oxidized states of this oxygen-evolving cluster (OEC) are called the S(n) states, where n refers to the number of oxidizing equivalents stored. The neutral radical, YZ•, is generated and then acts as an electron transfer intermediate during each S state transition. In the X-ray structure, YZ, Tyr161 of the D1 subunit, is involved in an extensive hydrogen bonding network, which includes calcium-bound water. In electron paramagnetic resonance experiments, we measured the YZ• recombination rate, in the presence of an intact Mn(4)CaO(5) cluster. We compared the S(0) and S(2) states, which differ in Mn oxidation state, and found a significant difference in the YZ• decay rate (t(1/2) = 3.3 ± 0.3 s in S(0); t(1/2) = 2.1 ± 0.3 s in S(2)) and in the solvent isotope effect (SIE) on the reaction (1.3 ± 0.3 in S(0); 2.1 ± 0.3 in S(2)). Although the YZ site is known to be solvent accessible, the recombination rate and SIE were pH independent in both S states. To define the origin of these effects, we measured the YZ• recombination rate in the presence of ammonia, which inhibits oxygen evolution and disrupts the hydrogen bond network. We report that ammonia dramatically slowed the YZ• recombination rate in the S(2) state but had a smaller effect in the S(0) state. In contrast, ammonia had no significant effect on YD•, the stable tyrosyl radical. Therefore, the alterations in YZ• decay, observed with S state advancement, are attributed to alterations in OEC hydrogen bonding and consequent differences in the YZ midpoint potential/pK(a). These changes may be caused by activation of metal-bound water molecules, which hydrogen bond to YZ. These observations document the importance of redox control in proton

  11. Fabrication of Direct Silicon Bonded Hybrid Orientation Substrate by Separation by Implanted Oxygen Layer Transfer and Oxide Dissolution Annealing

    NASA Astrophysics Data System (ADS)

    Wei, Xing; Xue, Zhongying; Wu, Aimin; Cao, Gongbai; Zhang, Bo; Lin, Chenglu; Zhang, Miao; Wang, Xi

    2011-03-01

    The quasi direct Si bonded (DSB) hybrid orientation substrate with a 3 nm interfacial oxide layer between the (100) superficial Si and the (110) handle wafer is fabricated by the separation by implanted oxygen layer transfer (SLT) process. The quasi DSB hybrid orientation substrates are annealed in oxygen-containing and oxygen-free ambient. The cross-sectional transmission electron microscopy (XTEM) results show the oxide-free (100) Si/(110) Si bonding interface, indicating that the direct Si-Si bonded structure is realized by these two processes. The anisotropic bonding interface morphology of the DSB hybrid orientation substrates is observed, and the formation mechanism is discussed in detail.

  12. Identification and cleavage of breakable single bonds by selective oxidation, reduction, and hydrolysis. Annual report, October 1, 1980-September 30, 1981

    SciTech Connect

    Hirschon, A.S.; Zevely, J.; Mayo, F.R.

    1981-11-12

    The objective of this project is to determine the structure of bituminous coal by determining the proportions of the various kinds of connecting bonds and how they can best be broken. Results obtained during the past quarter are presented for the following tasks: (1) extractions and fractionations of coal products which covers pyridine extraction, fractionation of TIPS fractions, EDA extraction of Illinois No. 6 coal and swelling ratios of coal samples; (2) experiments on breakable single bonds which cover reactions of ethylenediamine and model ethers, reaction of pyridine-extracted coal with Me/sub 3/SiI, Baeyer-Villiger oxidations, reaction to diphenylmethane with 15% HNO/sub 3/, cleavage of TIPS with ZnI/sub 2/, and cleavage of black acids; and (3) oxygen oxidation No. 18. Some of the highlights of these studies are: (1) some model ethers are not cleaved by EDA under extraction conditions; (2) oxidation of diaryl ketones with m-chloroperbenzoic acid and saponification of the resulting esters in promising for identifying ketones, (3) treatment of a black acid with pyridine hydroiodide reduced the acid's molecular weight and increased its solubility in pyridine, but treatment with ZnI/sub 2/ was ineffective; (4) in comparison with 0.1 M K/sub 2/S/sub 2/O/sub 8/, 0.01 M persulfate is relatively ineffective in accelerating oxidation of BnNH/sub 2/-extracted coal in water suspension. 2 figures, 3 tables.

  13. Bond and mode selectivity in the OH + NH2D reaction: a quasi-classical trajectory calculation.

    PubMed

    Monge-Palacios, M; Espinosa-Garcia, J

    2013-11-28

    A state-to-state dynamics study was performed to analyze the effects of vibrational excitation on the dynamics of the OH + NH2D gas-phase reaction, which are connected to issues such as bond and mode selectivity. This reaction can evolve along two channels: H-abstraction, H2O(ν) + NHD(ν); and D-abstraction, HOD(ν) + NH2(ν). Based on an analytical potential energy surface previously developed by our group, quasi-classical trajectory calculations and subsequent normal mode analysis were performed. While vibrational excitation of the NH-sym mode of NH2D slightly favours H-abstraction over the D-abstraction, vibrational excitation of the ND mode shows that there is no clear preference for the H- or D-abstraction. These results show that this reaction does not exhibit bond selectivity, suggesting a breakdown of the spectator model. For H-abstraction, vibrational excitation of the non-reactive ND mode is partially retained in the NHD product; and for D-abstraction, excitation of the non-reactive NH mode is also partially retained in the products, indicating that this reaction exhibits mode selectivity only partially. In sum, we rule out bond and mode selectivity for this reaction. All these results were interpreted on the basis of strong coupling between modes along the reaction path, a behaviour which seems to be more the general tendency than the exception in polyatomic reactions.

  14. Laccase-Functionalized Graphene Oxide Assemblies as Efficient Nanobiocatalysts for Oxidation Reactions

    PubMed Central

    Patila, Michaela; Kouloumpis, Antonios; Gournis, Dimitrios; Rudolf, Petra; Stamatis, Haralambos

    2016-01-01

    Multi-layer graphene oxide-enzyme nanoassemblies were prepared through the multi-point covalent immobilization of laccase from Trametes versicolor (TvL) on functionalized graphene oxide (fGO). The catalytic properties of the fGO-TvL nanoassemblies were found to depend on the number of the graphene oxide-enzyme layers present in the nanostructure. The fGO-TvL nanoassemblies exhibit an enhanced thermal stability at 60 °C, as demonstrated by a 4.7-fold higher activity as compared to the free enzyme. The multi-layer graphene oxide-enzyme nanoassemblies can efficiently catalyze the oxidation of anthracene, as well as the decolorization of an industrial dye, pinacyanol chloride. These materials retained almost completely their decolorization activity after five reaction cycles, proving their potential as efficient nano- biocatalysts for various applications. PMID:26927109

  15. Reactions of oxidatively activated arylamines with thiols: reaction mechanisms and biologic implications. An overview.

    PubMed Central

    Eyer, P

    1994-01-01

    Aromatic amines belong to a group of compounds that exert their toxic effects usually after oxidative biotransformation, primarily in the liver. In addition, aromatic amines also undergo extrahepatic activation to yield free arylaminyl radicals. The reactive intermediates are potential promutagens and procarcinogens, and responsible for target tissue toxicity. Since thiols react with these intermediates at high rates, it is of interest to know the underlying reaction mechanisms and the toxicologic implications. Phenoxyl radicals from aminophenols and aminyl radicals from phenylenediamines quickly disproportionate to quinone imines and quinone diimines. Depending on the structure, Michael addition or reduction reactions with thiols may prevail. Products of sequential oxidation/addition reactions (e.g., S-conjugates of aminophenols) are occasionally more toxic than the parent compounds because of their higher autoxidizability and their accumulation in the kidney. Even after covalent binding of quinone imines to protein SH groups, the resulting thioethers are able to autoxidize. The quinoid thioethers can then cross-link the protein by addition to neighboring nucleophiles. The reactions of nitrosoarenes with thiols yield a so-called "semimercaptal" from which various branching reactions detach, depending on substituents. Compounds with strong pi-donors, like 4-nitrosophenetol, give a resonance-stabilized N-(thiol-S-yl)-arylamine cation that may lead to bicyclic products, thioethers, and DNA adducts. Examples of toxicologic implications of the interactions of nitroso compounds with thiols are given for nitrosoimidazoles, heterocyclic nitroso compounds from protein pyrolysates, and nitrosoarenes. These data indicate that interactions of activated arylamines with thiols may not be regarded exclusively as detoxication reactions. PMID:7889834

  16. Improvement of the Thermal Stability of TEMPO-Oxidized Cellulose Nanofibrils by Heat-Induced Conversion of Ionic Bonds to Amide Bonds.

    PubMed

    Lavoine, Nathalie; Bras, Julien; Saito, Tsuguyuki; Isogai, Akira

    2016-07-01

    Improving thermal stability of TEMPO-oxidized cellulose nanofibrils (TOCNs) is a major challenge for the development and preparation of new nanocomposites. However, thermal degradation of TOCNs occurs at 220 °C. The present study reports a simple way to improve thermal stability of TOCNs by the heat-induced conversion of ionic bonds to amide bonds. Coupling amine-terminated polyethylene glycol to the TOCNs is performed through ionic bond formation. Films are produced from the dispersions by the casting method. Infrared spectroscopy and thermogravimetric analysis confirm conversion of ionic bonds to amide bonds for the modified TOCN samples after heating. As a result, improvement of TOCNs' thermal stability by up to 90 °C is successfully achieved.

  17. Ti-O-O coordination bond caused visible light photocatalytic property of layered titanium oxide

    PubMed Central

    Kong, Xingang; Zeng, Chaobin; Wang, Xing; Huang, Jianfeng; Li, Cuiyan; Fei, Jie; Li, Jiayin; Feng, Qi

    2016-01-01

    The layered titanium oxide is a useful and unique precursor for the facile and rapid preparation of the peroxide layered titanium oxide H1.07Ti1.73O4·nH2O (HTO) crystal with enhanced visible light photoactivity. The H2O2 molecules as peroxide chemicals rapidly enter into the interlayers of HTO crystal, and coordinate with Ti within TiO6 octahedron to form a mass of Ti-O-O coordination bond in the interlayers. The introduction of these Ti-O-O coordination bonds result in lowering the band gap of HTO, and promoting the separation efficiency of the photo induced electron–hole pairs. Meanwhile, the photocatalytic investigation indicates that such peroxide HTO crystal has the enhanced photocatalytic performance for RhB degradation and water splitting to generate oxygen under visible light irradiating. PMID:27350285

  18. Extended protein/water H-bond networks in photosynthetic water oxidation.

    PubMed

    Bondar, Ana-Nicoleta; Dau, Holger

    2012-08-01

    Oxidation of water molecules in the photosystem II (PSII) protein complex proceeds at the manganese-calcium complex, which is buried deeply in the lumenal part of PSII. Understanding the PSII function requires knowledge of the intricate coupling between the water-oxidation chemistry and the dynamic proton management by the PSII protein matrix. Here we assess the structural basis for long-distance proton transfer in the interior of PSII and for proton management at its surface. Using the recent high-resolution crystal structure of PSII, we investigate prominent hydrogen-bonded networks of the lumenal side of PSII. This analysis leads to the identification of clusters of polar groups and hydrogen-bonded networks consisting of amino acid residues and water molecules. We suggest that long-distance proton transfer and conformational coupling is facilitated by hydrogen-bonded networks that often involve more than one protein subunit. Proton-storing Asp/Glu dyads, such as the D1-E65/D2-E312 dyad connected to a complex water-wire network, may be particularly important for coupling protonation states to the protein conformation. Clusters of carboxylic amino acids could participate in proton management at the lumenal surface of PSII. We propose that rather than having a classical hydrophobic protein interior, the lumenal side of PSII resembles a complex polyelectrolyte with evolutionary optimized hydrogen-bonding networks. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.

  19. Isotopic Studies of O-O Bond Formation During Water Oxidation (SISGR)

    SciTech Connect

    Roth, Justine P.

    2015-03-03

    Isotopic Studies of O-O Bond Formation During Water Oxidation (SISGR) Research during the project period focused primarily on mechanisms of water oxidation by structurally defined transition metal complexes. Competitive oxygen isotope fractionation of water, mediated by oxidized precursors or reduced catalysts together with ceric, Ce(IV), ammonium nitrate in aqueous media, afforded oxygen-18 kinetic isotope effects (O-18 KIEs). Measurement, calculation, and interpretation of O-18 KIEs, described in the accompanying report has important ramifications for the production of electricity and solar hydrogen (as fuel). The catalysis division of BES has acknowledged that understanding mechanisms of transition metal catalyzed water oxidation has major ramifications, potentially leading to transformation of the global economy and natural environment in years to come. Yet, because of program restructuring and decreased availability of funds, it was recommended that the Solar Photochemistry sub-division of BES would be a more appropriate parent program for support of continued research.

  20. Ternary Electrocatalysts for Oxidizing Ethanol to Carbon Dioxide: Making Ir Capable of Splitting C-C bond

    SciTech Connect

    Li, Meng; Cullen, David A; Sasaki, Kotaro; Marinkovic, N.; More, Karren Leslie; Adzic, Radoslav R.

    2013-01-01

    Splitting the C-C bond is the main obstacle to electroxidation of ethanol (EOR) to CO2. We recently demonstrated that the ternary PtRhSnO2 electrocatalyst can accomplish that reaction at room temperature with Rh having a unique capability to split the C-C bond. In this article we report the finding that Ir can be induced to split the C-C bond as a component of the ternary catalyst. We synthesized, characterized and compared the properties of several ternary electrocatalysts. Carbon-supported nanoparticle (NP) electrocatalysts comprising a SnO2 NP core decorated with multi-metallic nanoislands (MM = PtIr, PtRh, IrRh, PtIrRh) were prepared using a seeded growth approach. An array of characterization techniques were employed to establish the composition and architecture of the synthesized MM /SnO2 NPs, while electrochemical and in situ infrared reflection absorption spectroscopy studies elucidated trends in activity and the nature of the reaction intermediates and products. Both EOR reactivity and selectivity towards CO2 formation of several of these MM /SnO2/C electrocatalysts are significantly higher compared to conventional Pt/C and Pt/SnO2/C catalysts. We demonstrate that the PtIr/SnO2/C catalyst with high Ir content shows outstanding catalytic property with the most negative EOR onset potential and reasonably good selectivity towards ethanol complete oxidation to CO2. PtRh/SnO2/C catalysts with a moderate Rh content exhibit the highest EOR selectivity, as deduced from infrared studies.

  1. A radical process towards the development of transition-metal-free aromatic carbon-carbon bond-forming reactions.

    PubMed

    Chan, Tek Long; Wu, Yinuo; Choy, Pui Ying; Kwong, Fuk Yee

    2013-11-18

    Transition-metal-free cross-coupling reactions have been a hot topic in recent years. With the aid of a radical initiator, a number of unactivated arene C-H bonds can be directly arylated/functionalized by using aryl halides through homolytic aromatic substitution. Commercially available or specially designed promoters (e.g. diamines, diols, and amino alcohols) have been used to make this synthetically attractive method viable. This protocol offers an inexpensive, yet efficient route to aromatic C-C bond formations since transition metal catalysts and impurities can be avoided by using this reaction system. In this article, we focus on the significance of the reaction conditions (e.g. bases and promoters), which allow this type of reaction to proceed smoothly. Substrate scope limitations and challenges, as well as mechanistic discussion are also included.

  2. Fly Ash and Mercury Oxidation/Chlorination Reactions

    SciTech Connect

    Sukh Sidhu; Patanjali Varanasi

    2008-12-31

    Mercury is a known pollutant that has detrimental effect on human health and environment. The anthropogenic emissions of mercury account for 10 to 30% of worldwide mercury emissions. There is a need to control/reduce anthropogenic mercury emissions. Many mercury control technologies are available but their effectiveness is dependent on the chemical form of mercury, because different chemical forms of mercury have different physical and chemical properties. Mercury leaves the boiler in its elemental form but goes through various transformations in the post-combustion zone. There is a need to understand how fly ash and flue gas composition affect speciation, partitioning, and reactions of mercury under the full range of post-combustion zone conditions. This knowledge can then be used to predict the chemical transformation of mercury (elemental, oxidized or particulate) in the post combustion zone and thus help with the control of mercury emissions from coal-burning power plants. To accomplish this goal present study was conducted using five coal fly ashes. These ashes were characterized and their catalytic activity was compared under selected reaction conditions in a fixed bed reactor. Based on the results from these fly ash experiments, three key components (carbon, iron oxide and calcium oxide) were chosen. These three components were then used to prepare model fly ashes. Silica/alumina was used as a base for these model fly ashes. One, two or three component model fly ashes were then prepared to investigate mercury transformation reactions. The third set of experiments was performed with CuO and CuCl2 catalysts to further understand the mercury oxidation process. Based on the results of these three studies the key components were predicted for different fly ash compositions under variety of flue gas conditions. A fixed bed reactor system was used to conduct this study. In all the experiments, the inlet concentration of Hg0(g) was maintained at 35 {micro}g/m3 using

  3. Laminate behavior for SiC fiber-reinforced reaction-bonded silicon nitride matrix composites

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.; Phillips, Ronald E.

    1990-01-01

    The room temperature mechanical properties of SiC fiber reinforced reaction-bonded silicon nitride matrix composite laminates (SiC/RBSN) have been measured. The laminates contained approx 30 volume fraction of aligned 142-micron diameter SiC fiber in a porous RBSN matrix. Three types of laminate studied were unidirectional: (1) (0) sub 8, (2) (10) sub 8, and (3) (45) sub 8, and (90) sub 8; cross plied laminates (0 sub 2/90 sub 2); and angle plied laminates: (+45 sub 2/-45 sub 2). Each laminate contained eight fiber plies. Results of the unidirectionally reinforced composites tested at various angles to the reinforcement direction indicate large anisotropy in in-plane properties. In addition, strength properties of these composites along the fiber direction were independent of specimen gage length and were unaffected by notches normal to the fiber direction. Splitting parallel to the fiber at the notch tip appears to be the dominant crack blunting mechanism responsible for notch insensitive behavior of these composites. In-plane properties of the composites can be improved by 2-D laminate construction. Mechanical property results for (0 sub 2/90 sub 2) sub s and (+45/-45 sub 2) sub s laminates showed that their matrix failure strains were similar to that for (0) sub 8 laminates, but their primary elastic moduli, matrix cracking strengths, and ultimate composite strengths were lower. The elastic properties of unidirectional, cross-ply, and angle-ply composites can be predicted from modified constitutive equations and laminate theory. Further improvements in laminate properties may be achieved by reducing the matrix porosity and by optimizing the bond strength between the SiC fiber and RBSN matrix.

  4. Laminate behavior for SiC fiber-reinforced reaction-bonded silicon nitride matrix composites

    NASA Technical Reports Server (NTRS)

    Rhatt, R. T.; Phillips, R. E.

    1988-01-01

    The room temperature mechanical properties of SiC fiber reinforced reaction-bonded silicon nitride matrix composite laminates (SiC/RBSN) have been measured. The laminates contained approx 30 volume fraction of aligned 142-micron diameter SiC fiber in a porous RBSN matrix. Three types of laminate studied were unidirectional: (1) (0) sub 8, (2) (10) sub 8, and (3) (45) sub 8, and (90) sub 8; cross plied laminates (0 sub 2/90 sub 2); and angle plied laminates: (+45 sub 2/-45 sub 2). Each laminate contained eight fiber plies. Results of the unidirectionally reinforced composites tested at various angles to the reinforcement direction indicate large anisotropy in in-plane properties. In addition, strength properties of these composites along the fiber direction were independent of specimen gage length and were unaffected by notches normal to the fiber direction. Splitting parallel to the fiber at the notch tip appears to be the dominant crack blunting mechanism responsible for notch insensitive behavior of these composites. In-plane properties of the composites can be improved by 2-D laminate construction. Mechanical property results for (0 sub 2/90 sub 2)sub s and (+45/-45 sub 2) sub s laminates showed that their matrix failure strains were similar to that for (0) sub 8 laminates, but their primary elastic moduli, matrix cracking strengths, and ultimate composite strengths were lower. The elastic properties of unidirectional, cross-ply, and angle-ply composites can be predicted from modified constitutive equations and laminate theory. Further improvements in laminate properties may be achieved by reducing the matrix porosity and by optimizing the bond strength between the SiC fiber and RBSN matrix.

  5. Chiral BINOL-derived phosphoric acids: privileged Brønsted acid organocatalysts for C-C bond formation reactions.

    PubMed

    Zamfir, Alexandru; Schenker, Sebastian; Freund, Matthias; Tsogoeva, Svetlana B

    2010-12-07

    BINOL-derived phosphoric acids have emerged during the last five years as powerful chiral Brønsted acid catalysts in many enantioselective processes. The most successful transformations carried out with chiral BINOL phosphates include C-C bond formation reactions. The recent advances have been reviewed in this article with a focus being placed on hydrocyanations, aldol-type, Mannich, Friedel-Crafts, aza-ene-type, Diels-Alder, as well as cascade and multi-component reactions.

  6. Shear bond strength of orthodontic brackets cemented with a zinc oxide-polyvinyl cement.

    PubMed

    Martin, S; Garcia-Godoy, F

    1994-12-01

    The purpose of this study was to compare the shear bond strengths and enamel surface structure after debonding a conventional metal bracket and a polycrystalline ceramic bracket bonded with a bipolar zinc oxide-polyvinyl cement (F-21) or a light-cured resin cement (Transbond). Forty extracted human premolars were used. The buccal enamel surfaces were used, and the teeth randomly divided into four groups of 10 teeth each: group 1: conventional metal bracket (Unitek) bonded with Transbond; group 2: metal bracket bonded with F-21; group 3: ceramic bracket (Transcend 2000) bonded with Transbond; and group 4: ceramic bracket bonded with F-21. The brackets were bonded to the etched enamel surfaces according to manufacturer's instructions. All specimens were stored in distilled water for 24 hours and then thermocycled for 300 cycles between 5 degrees C and 55 degrees C. The specimens were mounted in dental stone and placed in the Instron at a crosshead speed of 0.5 mm/min with a knife-edged blade. Immediately after debonding, the enamel surface and bracket-enamel interface were evaluated visually and with a stereomicroscope. Representative samples were then examined with the scanning electron microscope. The analysis of variance and Student-Newman-Keuls tests were performed. The results in megapascals were Group 1: 19,6 (+/- 9,6); group 2: 14,3 (+/- 4,6); group 3: 28,8 (+/- 12,6); and group 4: 18,5 (+/- 7,5). Group 3 was statistically significantly different (P < 0.008) from all other groups. Groups 1, 2, and 4 were not significantly different.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Bond energies in polyunsaturated acids and kinetics of co-oxidation of protiated and deuterated acids

    NASA Astrophysics Data System (ADS)

    Andrianova, Z. S.; Breslavskaya, N. N.; Pliss, E. M.; Buchachenko, A. L.

    2016-10-01

    A computational program specially designed to analyze co-oxidation of substances in mixtures is suggested. The rigorous kinetic scheme of 32 reactions describing co-oxidation of isotope differing polyunsaturated fatty acids was computed to enlighten experimentally detected enormously large H/D isotope effects. The latter were shown to depend on the kinetic chain length and exhibit two extreme regimes of short and long chains which characterize isotope effects on the initiation and propagation chain reactions of hydrogen (deuterium) atom abstraction. No protective effect of deuterated polyunsaturated acids on the oxidation of protiated acids was detected. Protective effect of the deuterated compounds on the biologically important processes seems to be induced by the low yield of products formed in the chain termination reactions due to the low rate of initiation by deuterated compounds.

  8. Reactions in 1,1,1-trifluoroacetone triggered by low energy electrons (0-10 eV): from simple bond cleavages to complex unimolecular reactions.

    PubMed

    Illenberger, Eugen; Meinke, Martina C

    2014-08-21

    The impact of low energy electrons (0-10 eV) to 1,1,1-trifluoroacetone yields a variety of fragment anions which are formed via dissociative electron attachment (DEA) through three pronounced resonances located at 0.8 eV, near 4 eV, and in the energy range 8-9 eV. The fragment ions arise from different reactions ranging from the direct cleavage of one single or double bond (formation of F(-), CF3(-), O(-), (M-H)(-), and M-F)(-)) to remarkably complex unimolecular reactions associated with substantial geometric and electronic rearrangement in the transitory intermediate (formation of OH(-), FHF(-), (M-HF)(-), CCH(-), and HCCO(-). The ion CCH(-), for example, is formed by an excision of unit from the target molecule through the concerted cleavage of four bonds and recombination to H2O within the neutral component of the reaction.

  9. Evidence of a reduction reaction of oxidized iron/cobalt by boron atoms diffused toward naturally oxidized surface of CoFeB layer during annealing

    SciTech Connect

    Sato, Soshi Honjo, Hiroaki; Niwa, Masaaki; Ikeda, Shoji; Ohno, Hideo; Endoh, Tetsuo

    2015-04-06

    We have investigated the redox reaction on the surface of Ta/CoFeB/MgO/CoFeB magnetic tunnel junction stack samples after annealing at 300, 350, and 400 °C for 1 h using angle-resolved X-ray photoelectron spectroscopy for precise analysis of the chemical bonding states. At a capping tantalum layer thickness of 1 nm, both the capping tantalum layer and the surface of the underneath CoFeB layer in the as-deposited stack sample were naturally oxidized. By comparison of the Co 2p and Fe 2p spectra among the as-deposited and annealed samples, reduction of the naturally oxidized cobalt and iron atoms occurred on the surface of the CoFeB layer. The reduction reaction was more significant at higher annealing temperature. Oxidized cobalt and iron were reduced by boron atoms that diffused toward the surface of the top CoFeB layer. A single CoFeB layer was prepared on SiO{sub 2}, and a confirmatory evidence of the redox reaction with boron diffusion was obtained by angle-resolved X-ray photoelectron spectroscopy analysis of the naturally oxidized surface of the CoFeB single layer after annealing. The redox reaction is theoretically reasonable based on the Ellingham diagram.

  10. Optimization of reaction conditions in selective oxidation of styrene over fine crystallite spinel-type CaFe{sub 2}O{sub 4} complex oxide catalyst

    SciTech Connect

    Pardeshi, Satish K.; Pawar, Ravindra Y.

    2010-05-15

    The CaFe{sub 2}O{sub 4} spinel-type catalyst was synthesized by citrate gel method and well characterized by thermogravimetric analysis, atomic absorption spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction and transmission electron microscopy. The crystallization temperature of the spinel particle prepared by citrate gel method was 600 {sup o}C which was lower than that of ferrite prepared by other methods. CaFe{sub 2}O{sub 4} catalysts prepared by citrate gel method show better activity for styrene oxidation in the presence of dilute H{sub 2}O{sub 2} (30%) as an oxidizing agent. In this reaction the oxidative cleavage of carbon-carbon double bond of styrene takes place selectively with 38 {+-} 2 mol% conversion. The major product of the reaction is benzaldehyde up to 91 {+-} 2 mol% and minor product phenyl acetaldehyde up to 9 {+-} 2 mol%, respectively. The products obtained in the styrene oxidation reaction were analyzed by gas chromatography and mass spectroscopy. The influence of the catalyst, reaction time, temperature, amount of catalyst, styrene/H{sub 2}O{sub 2} molar ratio and solvents on the conversion and product distribution were studied.

  11. Proton-electron transfer pathways in the reactions of peroxyl and dpph˙ radicals with hydrogen-bonded phenols.

    PubMed

    Amorati, Riccardo; Menichetti, Stefano; Viglianisi, Caterina; Foti, Mario C

    2012-12-18

    The kinetics of the reaction of peroxyl and dpph˙ radicals with phenols H-bonded to N-bases have been studied for the first time. Electron-transfer processes are observed in MeCN but only with the dpph˙ radical.

  12. Communication: Energetics of reaction pathways for reactions of ethenol with the hydroxyl radical: the importance of internal hydrogen bonding at the transition state.

    PubMed

    Tishchenko, Oksana; Ilieva, Sonia; Truhlar, Donald G

    2010-07-14

    We find high multireference character for abstraction of H from the OH group of ethenol (also called vinyl alcohol); therefore we adopt a multireference approach to calculate barrier heights for the various possible reaction channels of OH+C(2)H(3)OH. The relative barrier heights of ten possible saddle points for reaction of OH with ethenol are predicted by multireference Møller-Plesset perturbation theory with active spaces based on correlated participating orbitals (CPOs) and CPO plus a correlated pi orbital (CPO+pi). Six barrier heights for abstracting H from a C-H bond range from 3.1 to 7.7 kcal/mol, two barrier heights for abstracting H from an O-H bond are both 6.0 kcal/mol, and two barrier heights for OH addition to the double bond are -1.8 and -2.8 kcal/mol. Thus we expect abstraction at high-temperature and addition at low temperature. The factor that determines which H is most favorable to abstract is an internal hydrogen bond that constitutes part of a six-membered ring at one of the abstraction saddle points; the hydrogen bond contributes about 3 kcal/mol stabilization.

  13. Palladium-catalyzed oxidative arylalkylation of activated alkenes: dual C-H bond cleavage of an arene and acetonitrile.

    PubMed

    Wu, Tao; Mu, Xin; Liu, Guosheng

    2011-12-23

    Not one but two: The title reaction proceeds through the dual C-H bond cleavage of both aniline and acetonitrile. The reaction affords a variety of cyano-bearing indolinones in excellent yield. Mechanistic studies demonstrate that this reaction involves a fast arylation of the olefin and a rate-determining C-H activation of the acetonitrile.

  14. Unlocking the binding and reaction mechanism of hydroxyurea substrates as biological nitric oxide donors

    PubMed Central

    Vankayala, Sai Lakshmana; Hargis, Jacqueline C.; Woodcock, H. Lee

    2012-01-01

    Hydroxyurea is the only FDA approved treatment of sickle cell disease. It is believed the primary mechanism of action is associated with the pharmacological elevation of nitric oxide in the blood; however, the exact details of this are still unclear. In the current work, we investigate the atomic level details of this process using a combination of flexible-ligand / flexible-receptor virtual screening coupled with energetic analysis that decomposes interaction energies. Utilizing these methods we were able to elucidate the previously unknown substrate binding modes of a series of hydroxyurea analogs to hemoglobin and the concomitant structural changes of the enzyme. We identify a backbone carbonyl that forms a hydrogen bond with bound substrates. Our results are consistent with kinetic and EPR measurements of hydroxyurea-hemoglobin reactions and a full mechanism is proposed that offers new insights into possibly improving substrate binding and/or reactivity. PMID:22519847

  15. Density Functional Theory Calculations and Analysis of Reaction Pathways for Reduction of Nitric Oxide by Hydrogen on Pt(111)

    SciTech Connect

    Farberow, Carrie A.; Dumesic, James A.; Mavrikakis, Manos

    2014-10-03

    Reaction pathways are explored for low temperature (e.g., 400 K) reduction of nitric oxide by hydrogen on Pt(111). First-principles electronic structure calculations based on periodic, self-consistent density functional theory(DFT-GGA, PW91) are employed to obtain thermodynamic and kinetic parameters for proposed reaction schemes on Pt(111). The surface of Pt(111) during NO reduction by H₂ at low temperatures is predicted to operate at a high NO coverage, and this environment is explicitly taken into account in the DFT calculations. Maximum rate analyses are performed to assess the most likely reaction mechanisms leading to formation of N₂O, the major product observed experimentally at low temperatures. The results of these analyses suggest that the reaction most likely proceeds via the addition of at least two H atoms to adsorbed NO, followed by cleavage of the N-O bond.

  16. Using multi-layered roll bonding and reaction annealing to process gamma-titanium aluminide sheet material

    NASA Astrophysics Data System (ADS)

    Chaudhari, Gajanan Prabhakar

    The process of roll bonding and reaction annealing was used to process gamma-titanium aluminide sheets with a nearly fully lamellar microstructure. Cold roll bonding was employed to bond elemental Al and Ti foils. The bonded sheets were annealed at 600 °C to convert all of the Al into TiAl3. The effect of rolling strain on the reaction kinetics was studied. Accumulative roll bonding was also employed to study the effect of increased rolling strain on the microstructures resulting after annealing. After the first annealing stage, a cold rolling step resulted in a denser microstructure. A second annealing treatment at 1300 °C for 6 h resulted in a microstructure consisting of two phases, gamma and alpha2, along with Kirkendall porosity. Further densification of the sheets was carried out using hot rolling. A final heat treatment at 1400 °C for 0.3 h resulted in nearly fully lamellar microstructure. The porosity evolution was evaluated at different stages of processing. The mechanical properties of the processed sheet were determined and compared with the data available in the literature. The process of bi-metal multi-layer roll bonding was modeled using the equilibrium force balance method (slab method). The effect of anisotropy and strain hardening was included in the model. The effect of different variables such as total reduction, coefficient of friction, roll radius and initial foil thickness ratio, on the thickness fraction of metals in the bonded composite was investigated. The model enables the estimation of the final composition of the roll bonded composite. The results of the model were compared with the experimental results, and good agreement was observed.

  17. Chlorine atom-initiated low-temperature oxidation of prenol and isoprenol: The effect of C=C double bonds on the peroxy radical chemistry in alcohol oxidation

    DOE PAGES

    Welz, Oliver; Savee, John D.; Osborn, David L.; ...

    2014-07-04

    The chlorine atom-initiated oxidation of two unsaturated primary C5 alcohols, prenol (3-methyl-2-buten-1-ol, (CH3)2CCHCH2OH) and isoprenol (3-methyl-3-buten-1-ol, CH2C(CH3)CH2CH2OH), is studied at 550 K and low pressure (8 Torr). The time- and isomer-resolved formation of products is probed with multiplexed photoionization mass spectrometry (MPIMS) using tunable vacuum ultraviolet ionizing synchrotron radiation. The peroxy radical chemistry of the unsaturated alcohols appears much less rich than that of saturated C4 and C5 alcohols. The main products observed are the corresponding unsaturated aldehydes – prenal (3-methyl-2-butenal) from prenol oxidation and isoprenal (3-methyl-3-butenal) from isoprenol oxidation. No significant products arising from QOOH chemistry are observed. Thesemore » results can be qualitatively explained by the formation of resonance stabilized allylic radicals via H-abstraction in the Cl + prenol and Cl + isoprenol initiation reactions. The loss of resonance stabilization upon O2 addition causes the energies of the intermediate wells, saddle points, and products to increase relative to the energy of the initial radicals and O2. These energetic shifts make most product channels observed in the peroxy radical chemistry of saturated alcohols inaccessible for these unsaturated alcohols. The experimental findings are underpinned by quantum-chemical calculations for stationary points on the potential energy surfaces for the reactions of the initial radicals with O2. Under our conditions, the dominant channels in prenol and isoprenol oxidation are the chain-terminating HO2-forming channels arising from radicals, in which the unpaired electron and the –OH group are on the same carbon atom, with stable prenal and isoprenal co-products, respectively. These results suggest that the presence of C=C double bonds in alcohols will reduce low-temperature reactivity during autoignition.« less

  18. Mechanism of heterogeneous reaction of carbonyl sulfide on magnesium oxide.

    PubMed

    Liu, Yongchun; He, Hong; Xu, Wenqing; Yu, Yunbo

    2007-05-24

    Heterogeneous reaction of carbonyl sulfide (OCS) on magnesium oxide (MgO) under ambient conditions was investigated by in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), quadrupole mass spectrometer (QMS), and density functional theory (DFT) calculations. It reveals that OCS can be catalytically hydrolyzed by surface hydroxyl on MgO to produce carbon dioxide (CO2) and hydrogen sulfide (H2S), and then H2S can be further catalytically oxidized by surface oxygen or gaseous oxygen on MgO to form sulfite (SO3(2-)) and sulfate (SO4(2-)). Hydrogen thiocarbonate (HSCO2-) was found to be the crucial intermediate. Surface hydrogen sulfide (HS), sulfur dioxide (SO2), and surface sulfite (SO3(2-)) were also found to be intermediates for the formation of sulfate. Furthermore, the surface hydroxyl contributes not only to the formation of HSCO2- but also to HSCO2- decomposition. On the basis of experimental results, the heterogeneous reaction mechanism of OCS on MgO was discussed.

  19. Extended reaction scope of thiamine diphosphate dependent cyclohexane-1,2-dione hydrolase: from C-C bond cleavage to C-C bond ligation.

    PubMed

    Loschonsky, Sabrina; Wacker, Tobias; Waltzer, Simon; Giovannini, Pier Paolo; McLeish, Michael J; Andrade, Susana L A; Müller, Michael

    2014-12-22

    ThDP-dependent cyclohexane-1,2-dione hydrolase (CDH) catalyzes the CC bond cleavage of cyclohexane-1,2-dione to 6-oxohexanoate, and the asymmetric benzoin condensation between benzaldehyde and pyruvate. One of the two reactivities of CDH was selectively knocked down by mutation experiments. CDH-H28A is much less able to catalyze the CC bond formation, while the ability for CC bond cleavage is still intact. The double variant CDH-H28A/N484A shows the opposite behavior and catalyzes the addition of pyruvate to cyclohexane-1,2-dione, resulting in the formation of a tertiary alcohol. Several acyloins of tertiary alcohols are formed with 54-94 % enantiomeric excess. In addition to pyruvate, methyl pyruvate and butane-2,3-dione are alternative donor substrates for CC bond formation. Thus, the very rare aldehyde-ketone cross-benzoin reaction has been solved by design of an enzyme variant.

  20. Quantification of reaction violence and combustion enthalpy of plastic bonded explosive 9501 under strong confinement

    NASA Astrophysics Data System (ADS)

    Perry, W. Lee; Dickson, Peter M.; Parker, Gary R.; Asay, B. W.

    2005-01-01

    The confinement experienced by an explosive during thermal self-initiation can substantially affect performance in terms of deflagration-to-detonation characteristics and explosion/detonation violence. To this end, we have developed an experiment to quantitatively observe enthalpy change and reaction violence in thermally initiated plastic bonded explosive (PBX) 9501. Traditionally, researchers attempt to quantify violence using terminal observations of fragment size, fragment velocity, and through subjective observations. In the work presented here, the explosive was loaded into a heated gun assembly where we subjected a 300 mg charge to a cook-off schedule and a range of static and inertial confinements. Static confinement was controlled using rupture disks calibrated at 34.5 and 138 MPa. The use of 3.15 and 6.3 g projectile masses provided a variation in inertial confinement. This was a regime of strong confinement; a significant fraction of the explosive energy was required to rupture the disk, and the projectile mass was large compared to the charge mass. The state variables pressure and volume were measured in the breech. From these data, we quantified both the reaction enthalpy change and energy release rate of the explosive on a microsecond time scale using a thermodynamic analyisis. We used these values to unambiguously quantify explosion violence as a function of confinement at a fixed cook-off schedule of 190 C for 1 h. P2τ, a measure of critical shock energy required for shock ignition of an adjacent explosive was also computed. We found variations in this confinement regime to have a weak effect on enthalpy change, power, violence and shock energy. Violence was approximately 100 times lower than detonating trinitrotoluene, but the measured shock energy approached the critical shock energy for initiating secondary high explosives.

  1. Thermochemical benchmarking of hydrocarbon bond separation reaction energies: Jacob's ladder is not reversed!

    NASA Astrophysics Data System (ADS)

    Krieg, Helge; Grimme, Stefan

    2010-10-01

    We reinvestigate the performance of Kohn-Sham density functional (DF) methods for a thermochemical test set of bond separation reactions of alkanes (BSR36) published recently by Steinmann et al. [J. Chem. Theory Comput. 5, 2950 (2009)]. According to our results, the tested approximations perform for this rather special benchmark as usual. We show that the choice of reference enthalpies plays a crucial role in the assessment. Due to the large stoichiometric factors involved, errors of various origin are strongly amplified. Inconsistent reference data are avoided by computing reference energies at the CCSD(T)/CBS level. These are compared to results for a variety of standard DFs. Two different versions of London dispersion corrections (DFT-D2 and DFT-D3) are applied and found to be very significant. The most accurate results are obtained with B2GPPLYP-D2 (MAD = 0.4 kcal mol-1) B2PLYP-D2 (MAD = 0.5 kcal mol-1) and B97-D2 (MAD = 0.9 kcal mol-1 methods. Dispersion corrections not only improve the computed BSR energies but also diminish the accuracy differences between the DFs. The previous DFT-D2 version performs better due to error compensation of medium-range correlation effects between the semi-classical and the density-based description. We strongly recommend not to overinterpret results regarding DF accuracy when based on a single set of chemical reactions and to use high-level theoretical data for benchmarking purposes.

  2. Coupling of the guanosine glycosidic bond conformation and the ribonucleotide cleavage reaction: implications for barnase catalysis.

    PubMed

    Roca, Maite; De Maria, Leonardo; Wodak, Shoshana J; Moliner, Vicente; Tuñón, Iñaki; Giraldo, Jesús

    2008-02-01

    To examine the possible relationship of guanine-dependent GpA conformations with ribonucleotide cleavage, two potential of mean force (PMF) calculations were performed in aqueous solution. In the first calculation, the guanosine glycosidic (Gchi) angle was used as the reaction coordinate, and computations were performed on two GpA ionic species: protonated (neutral) or deprotonated (negatively charged) guanosine ribose O2 '. Similar energetic profiles featuring two minima corresponding to the anti and syn Gchi regions were obtained for both ionic forms. For both forms the anti conformation was more stable than the syn, and barriers of approximately 4 kcal/mol were obtained for the anti --> syn transition. Structural analysis showed a remarkable sensitivity of the phosphate moiety to the conformation of the Gchi angle, suggesting a possible connection between this conformation and the mechanism of ribonucleotide cleavage. This hypothesis was confirmed by the second PMF calculations, for which the O2 '--P distance for the deprotonated GpA was used as reaction coordinate. The computations were performed from two selected starting points: the anti and syn minima determined in the first PMF study of the deprotonated guanosine ribose O2'. The simulations revealed that the O2 ' attack along the syn Gchi was more favorable than that along the anti Gchi: energetically, significantly lower barriers were obtained in the syn than in the anti conformation for the O--P bond formation; structurally, a lesser O2 '--P initial distance, and a better suited orientation for an in-line attack was observed in the syn relative to the anti conformation. These results are consistent with the catalytically competent conformation of barnase-ribonucleotide complex, which requires a guanine syn conformation of the substrate to enable abstraction of the ribose H2 ' proton by the general base Glu73, thereby suggesting a coupling between the reactive substrate conformation and enzyme structure

  3. Bond strength of selected composite resin-cements to zirconium-oxide ceramic

    PubMed Central

    Fons-Font, Antonio; Amigó-Borrás, Vicente; Granell-Ruiz, María; Busquets-Mataix, David; Panadero, Rubén A.; Solá-Ruiz, Maria F.

    2013-01-01

    Objectives: The aim of this study was to evaluate bond strengths of zirconium-oxide (zirconia) ceramic and a selection of different composite resin cements. Study Design: 130 Lava TM cylinders were fabricated. The cylinders were sandblasted with 80 µm aluminium oxide or silica coated with CoJet Sand. Silane, and bonding agent and/or Clearfil Ceramic Primer were applied. One hundred thirty composite cement cylinders, comprising two dual-polymerizing (Variolink II and Panavia F) and two autopolymerizing (Rely X and Multilink) resins were bonded to the ceramic samples. A shear test was conducted, followed by an optical microscopy study to identify the location and type of failure, an electron microscopy study (SEM and TEM) and statistical analysis using the Kruskal-Wallis test for more than two independent samples and Mann-Whitney for two independent samples. Given the large number of combinations, Bonferroni correction was applied (α=0.001). Results: Dual-polymerizing cements provided better adhesion values (11.7 MPa) than the autopolymerizing (7.47 MPa) (p-value M-W<0.001). The worst techniques were Lava TM + sandblasting + Silane + Rely X; Lava TM + sandblasting + Silane + Multilink and Lava TM + CoJet + silane + Multilink. Adhesive failure (separation of cement and ceramic) was produced at a lesser force than cohesive failure (fracture of cement) (p-value M-W<0.001). Electron microscopy confirmed that the surface treatments modified the zirconium-oxide ceramic, creating a more rough and retentive surface, thus providing an improved micromechanical interlocking between the cement and the ceramic. Key words:Shear bond strength, silica coating, surface treatment, zirconia ceramics, phosphate monomer. PMID:22926485

  4. Porous platinum mesoflowers with enhanced activity for methanol oxidation reaction

    SciTech Connect

    Zhuang Lina; Wang Wenjin; Hong Feng; Yang Shengchun; You Hongjun; Fang Jixiang; Ding Bingjun

    2012-07-15

    Porous Pt and Pt-Ag alloy mesoflowers (MFs) with about 2 {mu}m in diameter and high porosity were synthesized using Ag mesoflowers as sacrificial template by galvanic reaction. The silver content in Pt-Ag alloys can be facilely controlled by nitric acid treatment. And the pure Pt MFs can be obtained by selective removal of silver element from Pt{sub 72}Ag{sub 28} MFs electrochemically. Both Pt{sub 45}Ag{sub 55}, Pt{sub 72}Ag{sub 28} and pure Pt show a high catalytic performance in methanol oxidation reaction (MOR). Especially, pure Pt MFs exhibited a 2 to 3 times current density enhancement in MOR compared with the commercial used Pt black, which can be attributed to their porous nanostructure with 3-dimentional nature and small crystal sizes. - Graphical Abstract: The CVs of MOR on Pt (red) and Pt black (green) catalysts in 0.1 M HClO{sub 4} and 0.5 M CH{sub 3}OH for specific mass current. The insert shows the SEM images of two porous Pt MFs. Platinum mesoflowers (MFs) with about 2 {mu}m in diameter and high porosity were synthesised with Ag mesoflowers as sacrificial template by galvanic replacement. The porous Pt MFs exhibited a more than 3 times enhancement in electrocatalytic performance for methanol oxidation reaction compared the commercial used Pt black. Highlights: Black-Right-Pointing-Pointer Porous Pt and Pt-Ag mesoflowers (MFs) were synthesized using Ag MFs sacrifical template. Black-Right-Pointing-Pointer Pt MFs presents an improved catalytic activity in MOR compared with Pt black. Black-Right-Pointing-Pointer We provided a facile approach for the development of high performance Pt electrocatalysts for fuel cells.

  5. Effect of composition on the processing and properties of sintered reaction-bonded silicon nitride

    SciTech Connect

    Tiegs, T.N.; Kiggans, J.O.; Montgomery, F.C.; Lin, H.T.; Barker, D.L.; Snodgrass, J.D.; Sabolsky, E.M.; Coffey, D.W.

    1996-04-01

    The type of silicon powder and sintering additive were found to influence the processing and final mechanical properties of sintered reaction bonded silicon nitride. High purity silicon powders produced low {alpha}-Si{sub 3}N{sub 4} content during nitridation. The Si powder type had no apparent effect on densification. More complete nitridation and higher room temperature mechanical properties were observed for the Si powders with higher Fe contents. However, the higher Fe contents resulted in greater high temperature strength degradation and so there was better high temperature strength retention with the higher purity Si. High {alpha}-Si{sub 3}N{sub 4} contents were found after nitridation with {alpha}-Si{sub 3}N{sub 4} seeded materials and with MgO-Y{sub 2}O{sub 3} as the sintering additive. Densification was inhibited by refractory additives, such as Y{sub 2}O{sub 3}-SiO{sub 2}. The highest room temperature strength and fracture toughness values correlated to high nitrided {alpha}-Si{sub 3}N{sub 4} contents. The high temperature strength behavior was similar for all additive types.

  6. Mass transfer model for two-layer TBP oxidation reactions

    SciTech Connect

    Laurinat, J.E.

    1994-09-28

    To prove that two-layer, TBP-nitric acid mixtures can be safely stored in the canyon evaporators, it must be demonstrated that a runaway reaction between TBP and nitric acid will not occur. Previous bench-scale experiments showed that, at typical evaporator temperatures, this reaction is endothermic and therefore cannot run away, due to the loss of heat from evaporation of water in the organic layer. However, the reaction would be exothermic and could run away if the small amount of water in the organic layer evaporates before the nitric acid in this layer is consumed by the reaction. Provided that there is enough water in the aqueous layer, this would occur if the organic layer is sufficiently thick so that the rate of loss of water by evaporation exceeds the rate of replenishment due to mixing with the aqueous layer. This report presents measurements of mass transfer rates for the mixing of water and butanol in two-layer, TBP-aqueous mixtures, where the top layer is primarily TBP and the bottom layer is comprised of water or aqueous salt solution. Mass transfer coefficients are derived for use in the modeling of two-layer TBP-nitric acid oxidation experiments. Three cases were investigated: (1) transfer of water into the TBP layer with sparging of both the aqueous and TBP layers, (2) transfer of water into the TBP layer with sparging of just the TBP layer, and (3) transfer of butanol into the aqueous layer with sparging of both layers. The TBP layer was comprised of 99% pure TBP (spiked with butanol for the butanol transfer experiments), and the aqueous layer was comprised of either water or an aluminum nitrate solution. The liquid layers were air sparged to simulate the mixing due to the evolution of gases generated by oxidation reactions. A plastic tube and a glass frit sparger were used to provide different size bubbles. Rates of mass transfer were measured using infrared spectrophotometers provided by SRTC/Analytical Development.

  7. Synthesis of Active Hexafluoroisopropyl Benzoates through a Hydrogen-Bond-Enabled Palladium(II)-Catalyzed C-H Alkoxycarbonylation Reaction.

    PubMed

    Wang, Yang; Gevorgyan, Vladimir

    2017-03-13

    A Pd(II) -catalyzed ortho C-H alkoxycarbonylation reaction of aryl silanes toward active hexafluoroisopropyl (HFIP) benzoate esters has been developed. This efficient reaction features high selectivity and good functional-group tolerance. Notably, given the general nature of the silyl-tethered directing group, this method delivers products bearing two independently modifiable sites. NMR studies reveal the presence of hydrogen bonding between HFIP and a pyrimidine nitrogen atom of the directing group, and it is thought to be crucial for the success of this alkoxycarbonylation reaction.

  8. Oxidative-coupling reaction of TNT reduction products by manganese oxide.

    PubMed

    Kang, Ki-Hoon; Lim, Dong-Min; Shin, Hyunsang

    2006-03-01

    Abiotic transformation of TNT reduction products via oxidative-coupling reaction was investigated using Mn oxide. In batch experiments, all the reduction products tested were completely transformed by birnessite, one of natural Mn oxides present in soil. Oxidative-coupling was the major transformation pathway, as confirmed by mass spectrometric analysis. Using observed pseudo-first-order rate constants with respect to birnessite loadings, surface area-normalized specific rate constants, ksurf, were determined. As expected, ksurf of diaminonitrotoluenes (DATs) (1.49-1.91L/m2 d) are greater about 2 orders than that of dinitroaminotoluenes (DNTs) (1.15 x 10(-2)-2.09 x 10(-2)L/m2d) due to the increased number of amine group. In addition, by comparing the value of ksurf between DNTs or DATs, amine group on ortho position is likely to be more preferred for the oxidation by birnessite. Although cross-coupling of TNT in the presence of various mediator compounds was found not to be feasible, transformation of TNT by reduction using Fe0 followed by oxidative-coupling using Mn oxide was efficient, as evaluated by UV-visible spectrometry.

  9. Insertion of Isocyanides into N-Si Bonds: Multicomponent Reactions with Azines Leading to Potent Antiparasitic Compounds.

    PubMed

    Kishore, Kranti G; Ghashghaei, Ouldouz; Estarellas, Carolina; Mestre, M Mar; Monturiol, Cristina; Kielland, Nicola; Kelly, John M; Francisco, Amanda Fortes; Jayawardhana, Shiromani; Muñoz-Torrero, Diego; Pérez, Belén; Luque, F Javier; Gámez-Montaño, Rocío; Lavilla, Rodolfo

    2016-07-25

    Trimethylsilyl chloride is an efficient activating agent for azines in isocyanide-based reactions, which then proceed through a key insertion of the isocyanide into a N-Si bond. The reaction is initiated by N activation of the azine, followed by nucleophilic attack of an isocyanide in a Reissert-type process. Finally, a second equivalent of the same or a different isocyanide inserts into the N-Si bond leading to the final adduct. The use of distinct nucleophiles leads to a variety of α-substituted dihydroazines after a selective cascade process. Based on computational studies, a mechanistic hypothesis for the course of these reactions was proposed. The resulting products exhibit significant activity against Trypanosoma brucei and T. cruzi, featuring favorable drug-like properties and safety profiles.

  10. Ligand-based carbon-nitrogen bond forming reactions of metal dinitrosyl complexes with alkenes and their application to C-H bond functionalization.

    PubMed

    Zhao, Chen; Crimmin, Mark R; Toste, F Dean; Bergman, Robert G

    2014-02-18

    Over the past few decades, researchers have made substantial progress in the development of transition metal complexes that activate and functionalize C-H bonds. For the most part, chemists have focused on aliphatic and aromatic C-H bonds and have put less effort into complexes that activate and functionalize vinylic C-H bonds. Our groups have recently developed a novel method to functionalize vinylic C-H bonds that takes advantage of the unique ligand-based reactivity of a rare class of metal dinitrosyl complexes. In this Account, we compare and discuss the chemistry of cobalt and ruthenium dinitrosyl complexes, emphasizing alkene binding, C-H functionalization, and catalysis. Initially discovered in the early 1970s by Brunner and studied more extensively in the 1980s by the Bergman group, the cyclopentadienylcobalt dinitrosyl complex CpCo(NO)2 reacts reversibly with alkenes to give, in many cases, stable and isolable cobalt dinitrosoalkane complexes. More recently, we found that treatment with strong bases, such as lithium hexamethyldisilazide, Verkade's base, and phosphazene bases, deprotonates these complexes and renders them nucleophilic at the carbon α to the nitroso group. This conjugate anion of metal dinitrosoalkanes can participate in conjugate addition to Michael acceptors to form new carbon-carbon bonds. These functionalized cobalt complexes can further react through alkene exchange to furnish the overall vinylic C-H functionalized organic product. This stepwise sequence of alkene binding, functionalization, and retrocycloaddition represents an overall vinylic C-H functionalization reaction of simple alkenes and does not require directing groups. We have also developed an asymmetric variant of this reaction sequence and have used this method to synthesize C1- and C2-symmetric diene ligands with high enantioinduction. Building upon these stepwise reactions, we eventually developed a simple one-pot procedure that uses stoichiometric amounts of a cobalt

  11. Thermo-oxidative and hydrothermal ageing of epoxy-dicyandiamide adhesive in bonded stainless steel joints

    NASA Astrophysics Data System (ADS)

    Gaukler, J. Ch; Fehling, P.; Possart, W.

    2009-09-01

    The ageing behaviour of stainless steel joints bonded with hot-curing adhesives is crucial for their reliability and durability in engineering applications. In industry, accelerated artificial ageing regimes are combined with short-term mechanical tests to simulate the in-service long-term behaviour and to predict the life time of the adhesive joints. With such a focus on mechanical bond strength, chemical changes in the adhesive are widely disregarded. Hence, neither the very causes for the decreasing performance of the joint nor their relevance for application can be revealed. Reasoning this study, lap shear samples of the stainless steel alloy 1.4376 are bonded with an epoxy-dicyandiamide adhesive and aged artificially under moderate thermo-oxidative (60 °C, dried air) or hydrothermal (60 °C, distilled water) condition. After testing (shear stress-strain analysis), chemical modifications of this adhesive due to ageing are detected on the fracture faces by μ-ATR-FTIR-spectroscopy as function of ageing time and position in the adhesive joint. The results attest high thermo-oxidative stability to these adhesive joints. For hydrothermal ageing, permeating water deteriorates the EP network from the edges towards the centre of the joint via hydrolysis of imine groups to ammonia, amine species and carbonyls.

  12. Chemical bonds and vibrational properties of ordered (U, Np, Pu) mixed oxides

    NASA Astrophysics Data System (ADS)

    Yang, Yu; Zhang, Ping

    2013-01-01

    We use density functional theory +U to investigate the chemical bonding characters and vibrational properties of the ordered (U, Np, Pu) mixed oxides (MOXs), UNpO4,NpPuO4, and UPuO4. It is found that the 5f electronic states of different actinide elements keep their localized characters in all three MOXs. The occupied 5f electronic states of different actinide elements do not overlap with each other and tend to distribute over the energy band gap of the other actinide element's 5f states. As a result, the three ordered MOXs all show smaller band gaps than those of the component dioxides, with values of 0.91, 1.47, and 0.19 eV for UNpO4,NpPuO4, and UPuO4, respectively. Through careful charge density analysis, we further show that the U-O and Pu-O bonds in MOXs show more ionic character than in UO2 and PuO2, while the Np-O bonds show more covalent character than in NpO2. The change in covalencies in the chemical bonds leads to vibrational frequencies of oxygen atoms that are different in MOXs.

  13. Application of chemical structure and bonding of actinide oxide materials for forensic science

    SciTech Connect

    Wilkerson, Marianne Perry

    2010-01-01

    We are interested in applying our understanding of actinide chemical structure and bonding to broaden the suite of analytical tools available for nuclear forensic analyses. Uranium- and plutonium-oxide systems form under a variety of conditions, and these chemical species exhibit some of the most complex behavior of metal oxide systems known. No less intriguing is the ability of AnO{sub 2} (An: U, Pu) to form non-stoichiometric species described as AnO{sub 2+x}. Environmental studies have shown the value of utilizing the chemical signatures of these actinide oxide materials to understand transport following release into the environment. Chemical speciation of actinide-oxide samples may also provide clues as to the age, source, or process history of the material. The scientific challenge is to identify, measure and understand those aspects of speciation of actinide analytes that carry information about material origin and history most relevant to forensics. Here, we will describe our efforts in material synthesis and analytical methods development that we will use to provide the fundamental science to characterize actinide oxide molecular structures for forensic science. Structural properties and initial results to measure structural variability of uranium oxide samples using synchrotron-based X-ray Absorption Fine Structure will be discussed.

  14. Kinetic solvent effects on hydrogen abstraction reactions from carbon by the cumyloxyl radical. The role of hydrogen bonding.

    PubMed

    Bietti, Massimo; Salamone, Michela

    2010-08-20

    A kinetic study of the H-atom abstraction reactions from 1,4-cyclohexadiene and triethylamine by the cumyloxyl radical has been carried out in different solvents. Negligible effects are observed with 1,4-cyclohexadiene, whereas with triethylamine a significant decrease in rate constant (k(H)) is observed on going from benzene to MeOH. A good correlation between log k(H) and the solvent hydrogen bond donor parameter alpha is observed, indicative of an H-bonding interaction between the amine lone pair and the solvent.

  15. Pressure dependence in the methyl vinyl ketone + OH and methacrolein + OH oxidation reactions: an electronic structure study.

    PubMed

    Ochando-Pardo, Montserrat; Nebot-Gil, Ignacio; González-Lafont, Angels; Lluch, José M

    2005-08-12

    High-level electronic structure calculations were carried out for the study of the reaction pathways in the OH-initiated oxidations of methyl vinyl ketone (MVK) and methacrolein (MACR). For the two conformers of MVK (called synperiplanar and antiperiplanar), the addition channels of OH to the terminal and central carbon atom of the double bond dominate the overall rate constant, whereas the abstraction of the methyl hydrogen atoms has no significant kinetic role. In the case of MACR, only the antiperiplanar conformer is important in its reactivity. In addition, the lower Gibbs free energy barrier for MACR corresponds to the aldehydic hydrogen abstraction reaction, which will be somewhat more favorable than the addition processes. The subtle balance between the different pathways (additions versus abstractions) serves to give an understanding of the pressure dependence of the rate constants of these tropospheric oxidation processes.

  16. Electrode Reaction Pathway in Oxide Anode for Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Li, Wenyuan

    Oxide anodes for solid oxide fuel cells (SOFC) with the advantage of fuel flexibility, resistance to coarsening, small chemical expansion and etc. have been attracting increasing interest. Good performance has been reported with a few of perovskite structure anodes, such as (LaSr)(CrMn)O3. However, more improvements need to be made before meeting the application requirement. Understanding the oxidation mechanism is crucial for a directed optimization, but it is still on the early stage of investigation. In this study, reaction mechanism of oxide anodes is investigated on doped YCrO 3 with H2 fuel, in terms of the origin of electrochemical activity, rate-determining steps (RDS), extension of reactive zone, and the impact from overpotential under service condition to those properties. H2 oxidation on the YCs anodes is found to be limited by charge transfer and H surface diffusion. A model is presented to describe the elementary steps in H2 oxidation. From the reaction order results, it is suggested that any models without taking H into the charge transfer step are invalid. The nature of B site element determines the H2 oxidation kinetics primarily. Ni displays better adsorption ability than Co. However, H adsorption ability of such oxide anode is inferior to that of Ni metal anode. In addition, the charge transfer step is directly associated with the activity of electrons in the anode; therefore it can be significantly promoted by enhancement of the electron activity. It is found that A site Ca doping improves the polarization resistance about 10 times, by increasing the activity of electrons to promote the charge transfer process. For the active area in the oxide anode, besides the traditional three-phase boundary (3PB), the internal anode surface as two-phase boundary (2PB) is proven to be capable of catalytically oxidizing the H2 fuel also when the bulk lattice is activated depending on the B site elements. The contribution from each part is estimated by switching

  17. Thermochemical properties and bond dissociation energies of C3-C5 cycloalkyl hydroperoxides and peroxy radicals: cycloalkyl radical + (3)O2 reaction thermochemistry.

    PubMed

    Auzmendi-Murua, Itsaso; Bozzelli, Joseph W

    2012-07-19

    Cyclic aliphatic hydrocarbons are major components in modern fuels; they can be present in the reactants, and they can be formed during the gas-phase oxidation processes. In combustion and thermal oxidation processes, these cyclics will form radicals that react with (3)O(2) to form peroxy radicals. In this study, density functional theory and higher level ab initio calculations are used to calculate thermochemical properties and bond dissociation energies of 3-5-membered cycloalkanes, corresponding hydroperoxides, hydroperoxycycloalkyl radicals, and cycloalkyl radicals that occur in these reaction systems. Geometries, vibration frequencies, and thermochemical properties, ΔH(f 298)°, are calculated with the B3LYP/6-31 g(d,p), B3LYP/6-31 g(2d,2p), composite CBS-QB3, and G3MP2B3 methods. Standard enthalpies of formation at 298 K are evaluated using isodesmic reaction schemes with several work reactions for each species. Group additivity contributions are developed, and application of group additivity with comparison to calculated values is illustrated. Entropy and heat capacities, S°(T) and C(p)°(T) (5 K ≤ T ≤ 5000), are determined using geometric parameters and frequencies from the B3LYP/6-31 g(d,p) calculations.

  18. Multiple-site concerted proton-electron transfer reactions of hydrogen-bonded phenols are nonadiabatic and well described by semiclassical Marcus theory.

    PubMed

    Schrauben, Joel N; Cattaneo, Mauricio; Day, Thomas C; Tenderholt, Adam L; Mayer, James M

    2012-10-10

    Photo-oxidations of hydrogen-bonded phenols using excited-state polyarenes are described to derive fundamental understanding of multiple-site concerted proton-electron transfer reactions (MS-CPET). Experiments have examined phenol bases having -CPh(2)NH(2), -Py, and -CH(2)Py groups ortho to the phenol hydroxyl group and tert-butyl groups in the 4,6-positions for stability (HOAr-NH(2), HOAr-Py, and HOAr-CH(2)Py, respectively; Py = pyridyl; Ph = phenyl). The photo-oxidations proceed by intramolecular proton transfer from the phenol to the pendent base concerted with electron transfer to the excited polyarene. For comparison, 2,4,6-(t)Bu(3)C(6)H(2)OH, a phenol without a pendent base and tert-butyl groups in the 2,4,6-positions, has also been examined. Many of these bimolecular reactions are fast, with rate constants near the diffusion limit. Combining the photochemical k(CPET) values with those from prior thermal stopped-flow kinetic studies gives data sets for the oxidations of HOAr-NH(2) and HOAr-CH(2)Py that span over 10(7) in k(CPET) and nearly 0.9 eV in driving force (ΔG(o)'). Plots of log(k(CPET)) vs ΔG(o)', including both excited-state anthracenes and ground state aminium radical cations, define a single Marcus parabola in each case. These two data sets are thus well described by semiclassical Marcus theory, providing a strong validation of the use of this theory for MS-CPET. The parabolas give λ(CPET) ≅ 1.15-1.2 eV and H(ab) ≅ 20-30 cm(-1). These experiments represent the most direct measurements of H(ab) for MS-CPET reactions to date. Although rate constants are available only up to the diffusion limit, the parabolas clearly peak well below the adiabatic limit of ca. 6 × 10(12) s(-1). Thus, this is a very clear demonstration that the reactions are nonadiabatic. The nonadiabatic character slows the reactions by a factor of ~45. Results for the oxidation of HOAr-Py, in which the phenol and base are conjugated, and for oxidation of 2,4,6-(t)Bu(3)C(6)H(2

  19. Oxidation Numbers, Oxidants, and Redox Reactions: Variants of the Electrophilic Bromination of Alkenes and Variants of the Application of Oxone

    ERIC Educational Resources Information Center

    Eissen, Marco; Strudthoff, Merle; Backhaus, Solveig; Eismann, Carolin; Oetken, Gesa; Kaling, Soren; Lenoir, Dieter

    2011-01-01

    Oxidation-state and donor-acceptor concepts are important areas in the chemical education. Student worksheets containing problems that emphasize oxidation numbers, redox reactions of organic compounds, and stoichiometric reaction equations are presented. All of the examples are incorporated under one unifying topic: the production of vicinal…

  20. Calmodulin Methionine Residues are Targets For One-Electron Oxidation by Hydroxyl Radicals: Formation of S therefore N three-electron bonded Radical Complexes

    SciTech Connect

    Nauser, Thomas; Jacoby, Michael E.; Koppenol, Willem H.; Squier, Thomas C.; Schoneich, Christian

    2005-02-01

    The one-electron (1e) oxidation of organic sulfides and methionine (Met) constitutes an important reaction mechanism in vivo.1,2 Evidence for a Cu(II)-catalyzed oxidation of Met35 in the Alzheimer's disease -amyloid peptide was obtained,3 and, based on theoretical studies, Met radical cations were proposed as intermediates.4 In the structure of -amyloid peptide, the formation of Met radical cations appears to be facilitated by a preexisting close sulfur-oxygen (S-O) interaction between the Met35 sulfur and the carbonyl oxygen of the peptide bond C-terminal to Ile31.5 Substitution of Ile31 with Pro31 abolishes this S-O interaction,5 significantly reducing the ability of -amyloid to reduce Cu(II), and converts the neurotoxic wild-type -amyloid into a non-toxic peptide.6 The preexisting S-O bond characterized for wild-type -amyloid suggests that electron transfer from Met35 to Cu(II) is supported through stabilization of the Met radical cation by the electron-rich carbonyl oxygen, generating an SO-bonded7 sulfide radical cation (Scheme 1, reaction 1).5

  1. Demonstration of the heterolytic O-O bond cleavage of putative nonheme iron(II)-OOH(R) complexes for Fenton and enzymatic reactions.

    PubMed

    Bang, Suhee; Park, Sora; Lee, Yong-Min; Hong, Seungwoo; Cho, Kyung-Bin; Nam, Wonwoo

    2014-07-21

    One-electron reduction of mononuclear nonheme iron(III) hydroperoxo (Fe(III)-OOH) and iron(III) alkylperoxo (Fe(III)-OOR) complexes by ferrocene (Fc) derivatives resulted in the formation of the corresponding iron(IV) oxo complexes. The conversion rates were dependent on the concentration and oxidation potentials of the electron donors, thus indicating that the reduction of the iron(III) (hydro/alkyl)peroxo complexes to their one-electron reduced iron(II) (hydro/alkyl)peroxo species is the rate-determining step, followed by the heterolytic O-O bond cleavage of the putative iron(II) (hydro/alkyl)peroxo species to give the iron(IV) oxo complexes. Product analysis supported the heterolytic O-O bond-cleavage mechanism. The present results provide the first example showing the one-electron reduction of iron(III) (hydro/alkyl)peroxo complexes and the heterolytic O-O bond cleavage of iron(II) (hydro/alkyl)peroxo species to form iron(IV) oxo intermediates which occur in nonheme iron enzymatic and Fenton reactions.

  2. Evaluating the Microshear Bond Strength and Microleakage of Flowable Composites Containing Zinc Oxide Nano-particles

    PubMed Central

    Teymoornezhad, Koorosh; Alaghehmand, Homayoun; Daryakenari, Ghazaleh; Khafri, Soraya; Tabari, Mitra

    2016-01-01

    Introduction Preventive resin restorations (PRR) are the conservative choice for the most common carious lesions in children. Thus, new age flowable resin composites with higher filler content are readily used. The aim of this study was to evaluate the microshear bond strength and microleakage of two flowable resin composites containing different percentages of nano zinc oxide (NZnO) particles, which have proven to have antimicrobial properties. Methods This experimental in-vitro study was carried out in the Dental Material Research Center of Babol University of Medical Sciences in 2015. One nanohybrid and one nanofill flowable resin composite were chosen and modified with the incorporation of 1% and 3% Wt NZnO particles. Six groups (n=10, 0%, 1%, and 3%) of resin composite sticks on dental enamel (2×2mm) were prepared to be placed in the microtensile tester. The microshear bond strength magnitude (MPa) was recorded at the point of failure. A class I box (3×0.8×1 mm) was prepared on 60 premolars and filled using the resin composites (6 groups, n=10). The specimens were immersed in a 5% basic fuschin solution and sectioned bucco-lingually to view the microleakage using a stereomicroscope. One-way ANOVA and Tukey tests for microshear and Wilcoxon and Kruskal–Wallis tests for microleakage were used to analyze the data in the IBM SPSS Statistics version 22 software. Results The bond strength of the 3% clearfill group significantly decreased while no significant change occurred in the bond strength in other groups. The Z-350 group had significantly lower microleakage as nanoparticles increased. No significant difference was observed in the clearfill group. Conclusion Up to 3% Wt incorporation of NZnO particles will not diversely alter the bond strength, but it will be beneficial in providing antimicrobial effects with lower microleakage rates. PMID:28070263

  3. Specific Bonds between an Iron Oxide Surface and Outer Membrane Cytochromes MtrC and OmcA from Shewanella oneidensis MR-1

    SciTech Connect

    Lower, Brian H.; Shi, Liang; Yongsunthon, Ruchirej; Droubay, Timothy C.; Mccready, David E.; Lower, Steven

    2007-07-31

    Shewanella oneidensis MR-1 is purported to express outer membrane cytochromes (e.g., MtrC and OmcA) that transfer electrons directly to Fe(III) in a mineral during anaerobic respiration.  A prerequisite for this type of reaction would be the formation of a stable bond between a cytochrome and an iron oxide surface.  Atomic force microscopy (AFM) was used to detect whether a specific bond forms between a hematite (Fe2O3) thin film, created with oxygen plasma assisted molecular beam epitaxy (MBE), and recombinant MtrC or OmcA molecules coupled to gold substrates.  Force spectra displayed a unique force signature indicative of a specific bond between each cytochrome and the hematite surface.  The strength of the OmcA-hematite bond was approximately twice as strong as the MtrC-hematite bond, but direct binding to hematite was twice as favorable for MtrC.  Reversible folding/unfolding reactions were observed for mechanically denatured MtrC molecules bound to hematite.  The force measurements for the hematite-cytochrome pairs were compared to spectra collected between an iron oxide and S. oneidensis under anaerobic conditions.  There is a strong correlation between the whole cell and pure protein force spectra suggesting that the unique binding attributes of each cytochrome complement one another and allow both MtrC and OmcA to play a prominent role in the transfer of electrons to Fe(III) in minerals.  Finally, by comparing the magnitude of binding force for the whole cell vs. pure protein data, we were able to estimate that a single bacterium of S. oneidensis (2 x 0.5 μm) expresses ~104 cytochromes on its outer surface. 

  4. Effectively Exerting the Reinforcement of Dopamine Reduced Graphene Oxide on Epoxy-Based Composites via Strengthened Interfacial Bonding.

    PubMed

    Li, Wenbin; Shang, Tinghua; Yang, Wengang; Yang, Huichuan; Lin, Song; Jia, Xiaolong; Cai, Qing; Yang, Xiaoping

    2016-05-25

    The effects of dopamine reduced graphene oxide (pDop-rGO) on the curing activity and mechanical properties of epoxy-based composites were evaluated. Taking advantage of self-polymerization of mussel-inspired dopamine, pDop-rGO was prepared through simultaneous functionalization and reduction of graphene oxide (GO) via polydopamine coating. Benefiting from the universal binding ability of polydopamine, good dispersion of pDop-rGO in epoxy matrix was able to be achieved as the content of pDop-rGO being below 0.2 wt %. Curing kinetics of epoxy composites with pDop-rGO were systematically studied by nonisothermal differential scanning calorimetry (DSC). Compared to the systems of neat epoxy or epoxy composites containing GO, epoxy composites loaded with pDop-rGO showed lower activation energy (Eα) over the range of cure (α). It revealed that the amino-bearing pDop-rGO was able to react with epoxy matrix and enhance the curing reactions as an amine-type curing agent. The nature of the interactions at GO-epoxy interface was further evaluated by Raman spectroscopy, confirming the occurrence of chemical bonding. The strengthened interfacial adhesion between pDop-rGO and epoxy matrix thus enhanced the effective stress transfer in the composites. Accordingly, the tensile and flexural properties of EP/pDop-rGO composites were enhanced due to both the well dispersion and strong interfacial bonding of pDop-rGO in epoxy matrix.

  5. Oxidative stress and inflammatory reaction modulation by white wine.

    PubMed

    Bertelli, Alberto A E; Migliori, Massamiliano; Panichi, Vincenzo; Longoni, Bianamaria; Origlia, Nicola; Ferretti, Agnese; Cuttano, Maria Giuseppa; Giovannini, Luca

    2002-05-01

    Wine and olive oil, essential components of the Mediterranean diet, are considered important factors for a healthy life style. Tyrosol (T) and caffeic acid (CA) are found in both extra virgin olive oil and in white wine. Three white wines from the northeast Italy and four white wines from Germany were analyzed for their content of T and CA. These compounds were tested for their antioxidant activity and their capacity to modulate three different cytokines: IL-1 beta, IL-6, and TNF-alpha, which are currently considered to be the major cytokines influencing the acute phase of the inflammatory response. Furthermore, the antioxidant activity of T and CA was analyzed by monitoring the oxidation of a redox-sensitive probe by using laser scanning confocal microscopy. T and CA, applied at nanomolar range, were found to significantly reduce the generation of oxidants induced by azobis-amidinopropanedihydrochloride. Peripheral blood mononuclear cells (PBMC) from healthy volunteers were incubated at 37 degrees C for 12 hours with 100 ng LPS (E. coli and P. maltofilia). Increasing doses of T and CA (150 nM to 300 microM) were added and cell-associated IL-1 beta and TNF-alpha were determined by immunoreactive tests after three freeze-thaw cycles. IL-6 release was also determined in cell surnatants. LPS-stimulated PBMC showed a significant increase in cytokine release, while T and CA, used at nanomolar concentrations, were able to modulate their expression. Taken together, these results suggest a remarkable effect of white wine non-alcoholic compounds on oxidative stress and inflammatory reaction.

  6. Two-dimensional gold nanostructures with high activity for selective oxidation of carbon-hydrogen bonds

    NASA Astrophysics Data System (ADS)

    Wang, Liang; Zhu, Yihan; Wang, Jian-Qiang; Liu, Fudong; Huang, Jianfeng; Meng, Xiangju; Basset, Jean-Marie; Han, Yu; Xiao, Feng-Shou

    2015-04-01

    Efficient synthesis of stable two-dimensional (2D) noble metal catalysts is a challenging topic. Here we report the facile synthesis of 2D gold nanosheets via a wet chemistry method, by using layered double hydroxide as the template. Detailed characterization with electron microscopy and X-ray photoelectron spectroscopy demonstrates that the nanosheets are negatively charged and [001] oriented with thicknesses varying from single to a few atomic layers. X-ray absorption spectroscopy reveals unusually low gold-gold coordination numbers. These gold nanosheets exhibit high catalytic activity and stability in the solvent-free selective oxidation of carbon-hydrogen bonds with molecular oxygen.

  7. Two-dimensional gold nanostructures with high activity for selective oxidation of carbon–hydrogen bonds

    PubMed Central

    Wang, Liang; Zhu, Yihan; Wang, Jian-Qiang; Liu, Fudong; Huang, Jianfeng; Meng, Xiangju; Basset, Jean-Marie; Han, Yu; Xiao, Feng-Shou

    2015-01-01

    Efficient synthesis of stable two-dimensional (2D) noble metal catalysts is a challenging topic. Here we report the facile synthesis of 2D gold nanosheets via a wet chemistry method, by using layered double hydroxide as the template. Detailed characterization with electron microscopy and X-ray photoelectron spectroscopy demonstrates that the nanosheets are negatively charged and [001] oriented with thicknesses varying from single to a few atomic layers. X-ray absorption spectroscopy reveals unusually low gold–gold coordination numbers. These gold nanosheets exhibit high catalytic activity and stability in the solvent-free selective oxidation of carbon–hydrogen bonds with molecular oxygen. PMID:25902034

  8. Efficient photocatalytic selective nitro-reduction and C-H bond oxidation over ultrathin sheet mediated CdS flowers.

    PubMed

    Pahari, Sandip Kumar; Pal, Provas; Srivastava, Divesh N; Ghosh, Subhash Ch; Panda, Asit Baran

    2015-06-28

    We report here a visible light driven selective nitro-reduction and oxidation of saturated sp(3) C-H bonds using ultrathin (0.8 nm) sheet mediated uniform CdS flowers as catalyst under a household 40 W CFL lamp and molecular oxygen as oxidant. The CdS flowers were synthesized using a simple surfactant assisted hydrothermal method.

  9. Te(II)/Te(IV) Mediated C-N Bond Formation on 2,5-Diphenyltellurophene and a Reassignment of the Product from the Reaction of PhI(OAc)2 with 2 TMS-OTf.

    PubMed

    Aprile, Antonino; Iversen, Kalon J; Wilson, David J D; Dutton, Jason L

    2015-05-18

    We report a novel C-H to C-N bond metathesis at the 3-position of 1,2-diphenyltellurophene via oxidation of the Te(II) center to Te(IV) using the I(III) oxidant [PhI(4-DMAP)2](2+). Spontaneous reduction of a transient Te(IV) coordination compound to Te(II) generates an electrophilic equivalent of 4-DMAP that substitutes at a C-H bond at the 3-position of the tellurophene. Theoretical and synthetic reaction pathway studies confirm that a Te(IV) coordination complex with 4-DMAP is an intermediate. In the course of these pathway studies, it was also found that the identity of the I(III) oxidant generated from PhI(OAc)2 and 2 TMS-OTf is PhI(OAc)(OTf) and not PhI(OTf)2, as had been previously thought.

  10. Making Fe(BPBP)-catalyzed C-H and C[double bond, length as m-dash]C oxidations more affordable.

    PubMed

    Yazerski, Vital A; Spannring, Peter; Gatineau, David; Woerde, Charlotte H M; Wieclawska, Sara M; Lutz, Martin; Kleijn, Henk; Gebbink, Robertus J M Klein

    2014-04-07

    The limited availability of catalytic reaction components may represent a major hurdle for the practical application of many catalytic procedures in organic synthesis. In this work, we demonstrate that the mixture of isomeric iron complexes [Fe(OTf)2(mix-BPBP)] (mix-1), composed of Λ-α-[Fe(OTf)2(S,S-BPBP)] (S,S-1), Δ-α-[Fe(OTf)2(R,R-BPBP)] (R,R-1) and Δ/Λ-β-[Fe(OTf)2(R,S-BPBP)] (R,S-1), is a practical catalyst for the preparative oxidation of various aliphatic compounds including model hydrocarbons and optically pure natural products using hydrogen peroxide as an oxidant. Among the species present in mix-1, S,S-1 and R,R-1 are catalytically active, act independently and represent ca. 75% of mix-1. The remaining 25% of mix-1 is represented by mesomeric R,S-1 which nominally plays a spectator role in both C-H and C[double bond, length as m-dash]C bond oxidation reactions. Overall, this mixture of iron complexes displays the same catalytic profile as its enantiopure components that have been previously used separately in sp(3) C-H oxidations. In contrast to them, mix-1 is readily available on a multi-gram scale via two high yielding steps from crude dl/meso-2,2'-bipyrrolidine. Next to its use in C-H oxidation, mix-1 is active in chemospecific epoxidation reactions, which has allowed us to develop a practical catalytic protocol for the synthesis of epoxides.

  11. Poly(ethylene oxide)-bonded stationary phase for separation of inorganic anions in capillary ion chromatography.

    PubMed

    Linda, Roza; Lim, Lee Wah; Takeuchi, Toyohide

    2013-06-14

    A tosylated-poly(ethylene oxide) (PEO) reagent was reacted with primary amino groups of an aminopropylsilica packing material (TSKgel NH2-60) in acetonitrile to form PEO-bonded stationary phase. The reaction was a single and simple step reaction. The prepared stationary phase was able to separate inorganic anions. The retention behavior of six common inorganic anions on the prepared stationary phase was examined under various eluent conditions in order to clarify its separation/retention mechanism. The elution order of the tested anions was iodate, bromate, bromide, nitrate, iodide, and thiocyanate, which was similar as observed in common ion chromatography. The retention of inorganic anions could be manipulated by ion exchange interaction which is expected that the eluent cation is coordinated among the PEO chains and it works as the anion-exchange site. Cations and anions of the eluent therefore affected the retention of sample anions. We demonstrated that the retention of the analyte anions decreased with increasing eluent concentration. The repeatability of retention time for the six anions was satisfactory on this column with relative standard deviation values from 1.1 to 4.3% when 10mM sodium chloride was used as the eluent. Compared with the unmodified TSKgel NH2-60, the prepared stationary phase retained inorganic anions more strongly and the selectivity was also improved. The present stationary phase was applied for the determination of inorganic anions contained in various water samples.

  12. An Effective Hamiltonian Molecular Orbital-Valence Bond (MOVB) Approach for Chemical Reactions Applied to the Nucleophilic Substitution Reaction of Hydrosulfide Ion and Chloromethane.

    PubMed

    Song, Lingchun; Mo, Yirong; Gao, Jiali

    2009-01-01

    An effective Hamiltonian mixed molecular orbital and valence bond (EH-MOVB) method is described to obtain an accurate potential energy surface for chemical reactions. Building upon previous results on the construction of diabatic and adiabatic potential surfaces using ab initio MOVB theory, we introduce a diabatic-coupling scaling factor to uniformly scale the ab initio off-diagonal matrix element H(12) such that the computed energy of reaction from the EH-MOVB method is in agreement with the target value. The scaling factor is very close to unity, resulting in minimal alteration of the potential energy surface of the original MOVB model. Furthermore, the relative energy between the reactant and product diabatic states in the EH-MOVB method can be improved to match the experimental energy of reaction. A key ingredient in the EH-MOVB theory is that the off-diagonal matrix elements are functions of all degrees of freedom of the system and the overlap matrix is explicitly evaluated. The EH-MOVB method has been applied to the nucleophilic substitution reaction between hydrosulfide and chloromethane to illustrate the methodology and the results were matched to reproduce the results from ab initio valence bond self-consistent valence bond (VBSCF) calculations. The diabatic coupling (the off-diagonal matrix element in the generalized secular equation) has small variations along the minimum energy reaction path in the EH-MOVB model, whereas it shows a maximum value at the transition state and has nearly zero values in the regions of the ion-dipole complexes from VBSCF calculations. The difference in the diabatic coupling stabilization is attributed to the large overlap integral in the computationally efficient MOVB method.

  13. Effects of alkoxy groups on arene rings of lignin β-O-4 model compounds on the efficiencies of single electron transfer-promoted photochemical and enzymatic C-C Bond Cleavage Reactions.

    PubMed

    Lim, Suk Hyun; Nahm, Keepyung; Ra, Choon Sup; Cho, Dae Won; Yoon, Ung Chan; Latham, John A; Dunaway-Mariano, Debra; Mariano, Patrick S

    2013-09-20

    To gain information about how alkoxy substitution in arene rings of β-O-4 structural units within lignin governs the efficiencies/rates of radical cation C1-C2 bond cleavage reactions, single electron transfer (SET) photochemical and lignin peroxidase-catalyzed oxidation reactions of dimeric/tetrameric model compounds have been explored. The results show that the radical cations derived from less alkoxy-substituted dimeric β-O-4 models undergo more rapid C1-C2 bond cleavage than those of more alkoxy-substituted analogues. These findings gained support from the results of DFT calculations, which demonstrate that C1-C2 bond dissociation energies of β-O-4 radical cations decrease as the degree of alkoxy substitution decreases. In SET reactions of tetrameric compounds consisting of two β-O-4 units, containing different degrees of alkoxy substitution, regioselective radical cation C-C bond cleavage was observed to occur in one case at the C1-C2 bond in the less alkoxy-substituted β-O-4 moiety. However, regioselective C1-C2 cleavage in the more alkoxy-substituted β-O-4 moiety was observed in another case, suggesting that other factors might participate in controlling this process. These observations show that lignins containing greater proportions of less rather than more alkoxylated rings as part of β-O-4 units would be more efficiently cleaved by SET mechanisms.

  14. Methandiide as a non-innocent ligand in carbene complexes: from the electronic structure to bond activation reactions and cooperative catalysis.

    PubMed

    Becker, Julia; Modl, Tanja; Gessner, Viktoria H

    2014-09-01

    The synthesis of a ruthenium carbene complex based on a sulfonyl-substituted methandiide and its application in bond activation reactions and cooperative catalysis is reported. In the complex, the metal-carbon interaction can be tuned between a Ru-C single bond with additional electrostatic interactions and a Ru=C double bond, thus allowing the control of the stability and reactivity of the complex. Hence, activation of polar and non-polar bonds (O-H, H-H) as well as dehydrogenation reactions become possible. In these reactions the carbene acts as a non-innocent ligand supporting the bond activation as nucleophilic center in the 1,2-addition across the metal-carbon double bond. This metal-ligand cooperativity can be applied in the catalytic transfer hydrogenation for the reduction of ketones. This concept opens new ways for the application of carbene complexes in catalysis.

  15. Kinetics and Mechanism of Iodide Oxidation by Iron(III): A Clock Reaction Approach

    ERIC Educational Resources Information Center

    Bauer, Jurica; Tomisic, Vladislav; Vrkljan, Petar B. A.

    2008-01-01

    A simple method for studying the kinetics of a chemical reaction is described and the significance of reaction orders in deducing reaction mechanisms is demonstrated. In this student laboratory experiment, oxidation of iodide by iron(III) ions in an acidic medium is transformed into a clock reaction. By means of the initial rates method, it is…

  16. The reaction of hydrogen peroxide with nitrogen dioxide and nitric oxide.

    NASA Technical Reports Server (NTRS)

    Gray, D.; Lissi, E.; Heicklen, J.

    1972-01-01

    The reactions were studied with the aid of a mass spectrometer. A pinhole bleed system provided continuous sampling of the gas mixture in the cell during the reaction. It was found that the homogeneous reactions of nitric oxide and nitrogen dioxide with hydrogen peroxide are too slow to be of any significance in the upper atmosphere. However, the heterogeneous reactions may be important in the conversion of nitric oxide to nitrogen dioxide in the case of polluted urban atmospheres.

  17. Insight into shock-induced chemical reaction from the perspective of ring strain and rotation of chemical bonds.

    PubMed

    Tan, Bisheng; Long, Xinping; Li, Jinshan; Nie, Fude; Huang, Jinglun

    2012-12-01

    Density functional theory BLYP/DNP and hyperhomodesmotic equations were employed to calculate ring strain energy, the bond dissociation energy of X-NO(2) (X=C, N) and the charges on the nitro groups of several four-membered and six-membered heterocycle compounds. BLYP/DNP and LST/QST + CG method were also applied to calculate bond rotational energy of X-NO(2) (X=C, N) of above mentioned compounds. It indicated that ring strain energy of four-membered heterocycle nitro compounds is apparently higher than that of six-membered heterocycle nitro compounds. Predictably, ring-opening reactions may preferentially occur for those compounds containing higher ring strain energy under shock. In addition, C-NO(2) bonds in these compounds may rotate easier than N-NO(2) bonds in response to the external shock. As for N-NO(2) bonds in these compounds, they also respond to the external shock by the rotation of N-NO(2) bonds, once to the saddle point of the rotational energy barrier, the whole molecule will become relaxed, N-NO(2) bond becomes weaker and eventually leads to the breakage. When one -C=O, -C=NH or -NH(2) group is introduced to the six-membered heterocycle, the charges on the nitro groups of the new compound decrease drastically, and ring strains increase remarkably. It can be predicted that the new compounds will be more sensitive to shock, and the viewpoint is confirmed by the experimental results of shock sensitivity (small scale gap test) of several explosives.

  18. Uraninite oxidation and dissolution induced by manganese oxide: A redox reaction between two insoluble minerals

    NASA Astrophysics Data System (ADS)

    Wang, Zimeng; Lee, Sung-Woo; Kapoor, Pratyul; Tebo, Bradley M.; Giammar, Daniel E.

    2013-01-01

    The longevity of subsurface U(IV) produced by reduction of U(VI) during in situ bioremediation can be limited by reoxidation to more mobile U(VI) species. Coupling of the biogeochemical cycles of U and Mn may affect the fate and transport of uranium. Manganese oxides can act as a powerful oxidant that accelerates the oxidative dissolution of UO2. This study investigated the physical and chemical factors controlling the interaction between UO2 and MnO2, which are both poorly soluble minerals. A multi-chamber reactor with a permeable membrane was used to eliminate direct contact of the two minerals while still allowing transport of aqueous species. The oxidation of UO2 was not significantly enhanced by MnO2 if the two solids were physically separated. Complete mixing of MnO2 with UO2 led to a much greater extent and rate of U oxidation. When direct contact is not possible, the reaction slowly progresses through release of soluble U(IV) with its adsorption and oxidation on MnO2. Continuously-stirred tank reactors (CSTRs) were used to quantify the steady-state rates of UO2 dissolution induced by MnO2. MnO2 dramatically promoted UO2 dissolution, but the degree of promotion leveled off once the MnO2:UO2 ratio exceeded a critical value. Substantial amounts of U(VI) and Mn(II) were retained on MnO2 surfaces. The total production of Mn(II) was less than that of U(VI), indicating that the fate of Mn products and their impact on UO2-MnO2 reaction kinetics were complicated and may involve formation of Mn(III) phases. At higher dissolved inorganic carbon concentrations, UO2 oxidation by MnO2 was faster and less U(VI) was adsorbed to MnO2. Such an inverse relationship suggested that U(VI) may passivate MnO2 surfaces. A conceptual model was developed to describe the oxidation rate of UO2 by MnO2. This model is potentially applicable to a broad range of water chemistry conditions and is relevant to other environmental redox processes involving two poorly soluble minerals.

  19. Pentavalent uranium oxide via reduction of [UO2]2+ under hydrothermal reaction conditions.

    PubMed

    Belai, Nebebech; Frisch, Mark; Ilton, Eugene S; Ravel, Bruce; Cahill, Christopher L

    2008-11-03

    The synthesis, crystal structure, and spectroscopic characterization of [U(V)(H2O)2(U(VI)O2)2O4(OH)](H2O)4 (1), a mixed-valent U(V)/U(VI) oxide material, are reported. The hydrothermal reaction of UO2(2+) with Zn and hydrazine at 120 degrees C for three days yields 1 in the form of a dark red crystalline solid. Compound 1 has been characterized by a combination of single-crystal and powder X-ray diffraction (XRD), elemental analysis, thermogravimetric analysis, X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS). The structure consists of an extended sheet of edge and corner shared U(VI) pentagonal bipyramids that are further connected by edge sharing to square bipyramidal U(V) units. The overall topology is similar to the mineral ianthinite. The uranium L(III)-edge XAS revealed features consistent with those observed by single-crystal X-ray diffraction. High resolution XPS data analysis of the U4f region confirmed the oxidation states of U as originally assigned from XRD analysis and bond valence summations.

  20. Pentavalent Uranium Oxide via Reduction of [UO2]2+ Under Hydrothermal Reaction Conditions

    SciTech Connect

    Balai, N.; Frisch, M; Ilton, E; Ravel, B; Cahill, C

    2008-01-01

    The synthesis, crystal structure, and spectroscopic characterization of [UV(H2O)2(UVIO2)2O4(OH)](H2O)4 (1), a mixed-valent UV/UVI oxide material, are reported. The hydrothermal reaction of UO22+ with Zn and hydrazine at 120 degrees C for three days yields 1 in the form of a dark red crystalline solid. Compound 1 has been characterized by a combination of single-crystal and powder X-ray diffraction (XRD), elemental analysis, thermogravimetric analysis, X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS). The structure consists of an extended sheet of edge and corner shared UVI pentagonal bipyramids that are further connected by edge sharing to square bipyramidal UV units. The overall topology is similar to the mineral ianthinite. The uranium L|||-edge XAS revealed features consistent with those observed by single-crystal X-ray diffraction. High resolution XPS data analysis of the U4f region confirmed the oxidation states of U as originally assigned from XRD analysis and bond valence summations.

  1. Pentavalent Uranium Oxide via Reduction of [UO2]2+ Under Hydrothermal Reaction Conditions

    SciTech Connect

    Belai, Nebebech; Frisch, Mark; Ilton, Eugene S.; Ravel, Bruce; Cahill, Christopher L.

    2008-11-03

    The synthesis, crystal structure and spectroscopic characterization of [UV(H2O)2(UVIO2)2O4(OH)](H2O)4 (1), a mixed-valent UV/UVI oxide material, are reported. The hydrothermal reaction of UO22+ with Zn and hydrazine at 120 °C for three days yields 1 in the form of a dark red crystalline solid. Compound 1 has been characterized by a combination of single-crystal and powder X-ray diffraction (XRD), elemental analysis, thermogravimetric analysis, X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS). The structure consists of an extended sheet of edge and point shared UVI pentagonal bipyramids that are further connected by edge sharing to square bipyramidal UV units. The overall topology is similar to the mineral ianthinite. The uranium L|||-edge XAS revealed features consistent with those observed by single-crystal X-ray diffraction. High resolution XPS data analysis of the U4f region confirmed the oxidation states of U as originally assigned from XRD analysis and bond valence summations.

  2. Destruction of hydrogen bonds of poly(N-isopropylacrylamide) aqueous solution by trimethylamine N-oxide

    NASA Astrophysics Data System (ADS)

    Reddy, P. Madhusudhana; Taha, Mohamed; Venkatesu, Pannuru; Kumar, Awanish; Lee, Ming-Jer

    2012-06-01

    Trimethylamine N-oxide (TMAO) is a compatible or protective osmolyte that stabilizes the protein native structure through non-bonding mechanism between TMAO and hydration surface of protein. However, we have shown here first time the direct binding mechanism for naturally occurring osmolyte TMAO with hydration structure of poly(N-isopropylacrylamide) (PNIPAM), an isomer of polyleucine, and subsequent aggregation of PNIPAM. The influence of TMAO on lower critical solution temperature (LCST) of PNIPAM was investigated as a function of TMAO concentration at different temperatures by fluorescence spectroscopy, viscosity (η), multi angle dynamic light scattering, zeta potential, and Fourier transform infrared (FTIR) spectroscopy measurements. To address some of the basis for further analysis of FTIR spectra of PNIPAM, we have also measured FTIR spectra for the monomer of N-isopropylacrylamide (NIPAM) in deuterium oxide (D2O) as a function of TMAO concentration. Our experimental results purportedly elucidate that the LCST values decrease with increasing TMAO concentration, which is mainly contributing to the direct hydrogen bonding of TMAO with the water molecules that are bound to the amide (-CONH) functional groups of the PNIPAM. We believed that the present work may act as a ladder to reach the heights of understanding of molecular mechanism between TMAO and macromolecule.

  3. Low-index nanopatterned barrier for hybrid oxide-free III-V silicon conductive bonding.

    PubMed

    Bougot-Robin, Kristelle; Talneau, Anne; Benisty, Henri

    2014-09-22

    Oxide-free bonding of a III-V active stack emitting at 1300-1600 nm to a silicon-on-insulator wafer offers the capability to electrically inject lasers from the silicon side. However, a typical 500-nm-thick silicon layer notably attracts the fundamental guided mode of the silicon + III-V stack, a detrimental feature compared to established III-V Separate-Confinement Heterostructure (SCH) stacks. We experimentally probe with photoluminescence as an internal light source the guiding behavior for oxide-free bonding to a nanopatterned silicon wafer that acts as a low-index barrier. We use a sub-wavelength square array of small holes as an effective "low-index silicon" medium. It is weakly modulated along one dimension (superperiodic array) to outcouple the resulting guided modes to free space, where we use an angle-resolved spectroscopy study. Analysis of experimental branches confirms the capability to operate with a fundamental mode well localized in the III-V heterostructures.

  4. Creep analysis of solid oxide fuel cell with bonded compliant seal design

    NASA Astrophysics Data System (ADS)

    Jiang, Wenchun; Zhang, Yucai; Luo, Yun; Gong, J. M.; Tu, S. T.

    2013-12-01

    Solid oxide fuel cell (SOFC) requires good sealant because it works in harsh conditions (high temperature, thermal cycle, oxidative and reducing gas environments). Bonded compliant seal (BCS) is a new sealing method for planar SOFC. It uses a thin foil metal to bond the window frame and cell, achieving the seal between window frame and cell. At high temperature, a comprehensive evaluation of its creep strength is essential for the adoption of BCS design. In order to characterize the creep behavior, the creep induced by thermal stresses in SOFC with BCS design is simulated by finite element method. The results show that the foil is compressed and large thermal stresses are generated. The initial peak thermal stress is located in the thin foil because the foil acts as a spring stores the thermal stresses by elastic and plastic deformation in itself. Serving at high temperature, initial thermal displacement is partially recovered because of the creep relaxation, which becomes a new discovered advantage for BCS design. It predicts that the failures are likely to happen in the middle of the cell edge and BNi-2 filler metal, because the maximum residual displacement and creep strain are located.

  5. Basic character of rare earth metal alkoxides. Utilization in catalytic C-C bond-forming reactions and catalytic asymmetric nitroaldol reactions

    SciTech Connect

    Sasai, H.; Suzuki, T.; Arai, S.

    1992-05-20

    In a recent paper, the authors reported that Zr(O-t-Bu){sub 4} was an efficient and convenient basic reagent in organic synthesis. However, all reactions examined were performed with stoichiometric quantities of the reagent. The authors envisioned that rare earth metal alkoxides would be stronger bases than group 4 metal alkoxides due to the lower ionization potential (ca. 5.4-6.4 eV) and the lower electronegativity (1.1-1.3) of rare earth elements; thus, the catalytic use of rare earth metal alkoxides in organic synthesis was expected. Although a variety of rare earth metal alkoxides have been prepared for the last three decades, to the authors knowledge, there have been few reports concerning the basicity of rare earth metal alkoxides. Herein, the authors report several carbon-carbon bond-forming reactions catalyzed by rare earth metal alkoxides and their application to a catalytic asymmetric nitroaldol reaction.

  6. Temporary zinc oxide-eugenol cement: eugenol quantity in dentin and bond strength of resin composite.

    PubMed

    Koch, Tamara; Peutzfeldt, Anne; Malinovskii, Vladimir; Flury, Simon; Häner, Robert; Lussi, Adrian

    2013-08-01

    Uptake of eugenol from eugenol-containing temporary materials may reduce the adhesion of subsequent resin-based restorations. This study investigated the effect of duration of exposure to zinc oxide-eugenol (ZOE) cement on the quantity of eugenol retained in dentin and on the microtensile bond strength (μTBS) of the resin composite. The ZOE cement (IRM Caps) was applied onto the dentin of human molars (21 per group) for 1, 7, or 28 d. One half of each molar was used to determine the quantity of eugenol (by spectrofluorimetry) and the other half was used for μTBS testing. The ZOE-exposed dentin was treated with either OptiBond FL using phosphoric acid (H₃PO₄) or with Gluma Classic using ethylenediaminetetraacetic acid (EDTA) conditioning. One group without conditioning (for eugenol quantity) and two groups not exposed to ZOE (for eugenol quantity and μTBS testing) served as controls. The quantity of eugenol ranged between 0.33 and 2.9 nmol mg⁻¹ of dentin (median values). No effect of the duration of exposure to ZOE was found. Conditioning with H₃PO₄ or EDTA significantly reduced the quantity of eugenol in dentin. Nevertheless, for OptiBond FL, exposure to ZOE significantly decreased the μTBS, regardless of the duration of exposure. For Gluma Classic, the μTBS decreased after exposure to ZOE for 7 and 28 d. OptiBond FL yielded a significantly higher μTBS than did Gluma Classic. Thus, ZOE should be avoided in cavities later to be restored with resin-based materials.

  7. Lubricating Properties of Some Bonded Fluoride and Oxide Coatings for Temperature to 1500 F

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.

    1960-01-01

    The lubricating properties of some experimental ceramic coatings, diffusion-bonded fluoride coatings, and ceramic-bonded fluoride coatings were determined. The experiments were conducted in an air atmosphere at a sliding velocity of 430 feet per minute and at temperatures from 75 to 1500 F. Several ceramic coatings provided substantial reductions in friction coefficient and rider wear (compared with the unlubricated metals). For example, a cobaltous oxide (CoO) base coating gave friction coefficients of 0.24 to 0.36 within the temperature range of 75 to 1400 F; serious galling and welding of the metal surfaces were prevented. The friction coefficients were higher than the arbitrary maximum (0.2) usually considered for effective boundary lubrication. However, when a moderately high friction coefficient can be tolerated, this type of coating may be a useful antiwear composition. Diffusion-bonded calcium fluoride (CaF2) on Haynes Stellite 21 and on Inconel X gave friction coefficients of 0.1 to 0.2 at 1500 F. Endurance life was dependent on the thermal history of the coating; life improved with increased exposure time at elevated temperatures prior to running. Promising results were obtained with ceramic-bonded CaF2 on Inconel X. Effective lubrication and good adherence were obtained with a 3 to 1 ratio of CaF2 to ceramic. A very thin sintered and burnished film of CaF2 applied to the surface of this coating further improved lubrication, particularly above 1350 F. The friction coefficient was 0.2 at 500 F and decreased with increasing temperature to 0.06-at 1500 F. It was 0.25 at 75 F and 0.22 at 250 F.

  8. A comprehensive theoretical study on the coupling reaction mechanism of propylene oxide with carbon dioxide catalyzed by copper(I) cyanomethyl.

    PubMed

    Guo, Cai-Hong; Wu, Hai-Shun; Zhang, Xian-Ming; Song, Jiang-Yu; Zhang, Xiang

    2009-06-18

    The mechanistic details of the coupling reaction of propylene oxide with carbon dioxide catalyzed by copper(I) cyanomethyl to yield cyclic carbonate were elucidated by density functional theory (DFT) calculations at the B3LYP/6-311G** level. Our results reveal that the overall reaction is stepwise and considered to include two processes. In process 1, CO(2) insertion into the Cu(I)-C bond of copper(I) cyanomethyl affords activated carbon dioxide carriers. In process 2, O-coordination of propylene oxide molecule to the electrophilic copper center of carriers occurs. Herein, three possible pathways were investigated, and the calculated reaction free energy profiles were compared. It was found that carrier 8 reacting with propylene oxide is more favored than the other two carriers (6 and 7) both kinetically and thermodynamically. Several factors, such as the composition of catalyst, the coordinate environment of copper, and the symmetry of frontier molecular orbitals, affected the reaction mechanisms, and the outcomes were identified. The overall reaction is exothermic. In addition, natural bond orbital (NBO) analysis has been performed to study the effects of charge transfer and understand the nature of different interactions between atoms and groups. The present theoretical study explains satisfactorily the early reported experimental observations well and provides a clear profile for the cycloaddition of carbon dioxide with propylene oxide promoted by NCCH(2)Cu.

  9. Thermal barrier coating life and isothermal oxidation of low-pressure plasma-sprayed bond coat alloys

    NASA Technical Reports Server (NTRS)

    Brindley, W. J.; Miller, R. A.

    1990-01-01

    The paper investigates the isothermal oxidation kinetics of Ni-35Cr-6Al-0.95Y, Ni-18Cr-12Al-0.3Y, and Ni-16Cr-6Al-0.3Y low-pressure plasma-sprayed bond coat alloys and examines the effect of these alloys on the thermal barrier coating (TBC) cyclic life. TBC life was examined by cycling substrates coated with the different bond coats and a ZrO2-7 wt pct Y2O3 TBC in an air-rich burner rig flame between 1150 C and room temperature. The oxidation kinetics of the three bond coat alloys was examined by isothermal oxidation of monolithic NJiCrAlY coupons at 1083 C. The Ni-35Cr-6Al-0.95Y alloy exhibits comparatively high isothermal oxidation weight gains and provides the longest TBC life, whereas the Ni-16Cr-6Al-0.3Y alloy had the lowest weight gains and provided the shortest TBC life. The results show that, although bond coat oxidation is known to have a strong detrimental effect on TBC life, it is not the only bond coat factor that determines TBC life.

  10. A DFT study on the reaction pathways for carbon-carbon bond-forming reactions between propargylic alcohols and alkenes or ketones catalyzed by thiolate-bridged diruthenium complexes.

    PubMed

    Sakata, Ken; Miyake, Yoshihiro; Nishibayashi, Yoshiaki

    2009-01-05

    The reaction pathways of two types of the carbon-carbon bond-forming reactions catalyzed by thiolate-bridged diruthenium complexes have been investigated by density-functional-theory calculations. It is clarified that both carbon-carbon bond-forming reactions proceed through a ruthenium-allenylidene complex as a common reactive intermediate. The attack of pi electrons on propene or the vinyl alcohol on the ruthenium-allenylidene complex is the first step of the reaction pathways. The reaction pathways are different after the attack of nucleophiles on the ruthenium-alkynyl complex. In the reaction with propene, the carbon-carbon bond-forming reaction proceeds through a stepwise process, whereas in the reaction with vinyl alcohol, it proceeds through a concerted process. The interactions between the ruthenium-allenylidene complex and propene or vinyl alcohol have been investigated by applying a simple way of looking at orbital interactions.

  11. Air oxidation method employed for the disulfide bond formation of natural and synthetic peptides.

    PubMed

    Calce, Enrica; Vitale, Rosa Maria; Scaloni, Andrea; Amodeo, Pietro; De Luca, Stefania

    2015-08-01

    Among the available protocols, chemically driven approaches to oxidize cysteine may not be required for molecules that, under the native-like conditions, naturally fold in conformations ensuring an effective pairing of the right disulfide bridge pattern. In this contest, we successfully prepared the distinctin, a natural heterodimeric peptide, and some synthetic cyclic peptides that are inhibitors of the CXCR4 receptor. In the first case, the air oxidation reaction allowed to connect two peptide chains via disulfide bridge, while in the second case allowed the cyclization of rationally designed peptides by an intramolecular disulfide bridge. Computational approaches helped to either drive de-novo design or suggest structural modifications and optimal oxidization protocols for disulfide-containing molecules. They are able to both predict and to rationalize the propensity of molecules to spontaneously fold in suitable conformations to achieve the right disulfide bridges.

  12. Activation energy of tantalum-tungsten oxide thermite reactions

    SciTech Connect

    Cervantes, Octavio G.; Munir, Zuhair A.; Kuntz, Joshua D.; Gash, Alexander E.

    2011-01-15

    The activation energy of a sol-gel (SG) derived tantalum-tungsten oxide thermite composite was determined using the Kissinger isoconversion method. The SG derived powder was consolidated using the high-pressure spark plasma sintering (HPSPS) technique at 300 and 400 C. The ignition temperatures were investigated under high heating rates (500-2000 C min{sup -1}). Such heating rates were required in order to ignite the thermite composite. Samples consolidated at 300 C exhibit an abrupt change in temperature response prior to the main ignition temperature. This change in temperature response is attributed to the crystallization of the amorphous WO{sub 3} in the SG derived Ta-WO{sub 3} thermite composite and not to a pre-ignition reaction between the constituents. Ignition temperatures for the Ta-WO{sub 3} thermite ranged from approximately 465 to 670 C. The activation energies of the SG derived Ta-WO{sub 3} thermite composite consolidated at 300 and 400 C were determined to be 38{+-} 2 kJ mol{sup -1} and 57 {+-} 2 kJ mol{sup -1}, respectively. (author)

  13. Activation Energy of Tantalum-Tungsten Oxide Thermite Reaction

    SciTech Connect

    Cervantes, O; Kuntz, J; Gash, A; Munir, Z

    2010-02-25

    The activation energy of a high melting temperature sol-gel (SG) derived tantalum-tungsten oxide thermite composite was determined using the Kissinger isoconversion method. The SG derived powder was consolidated using the High Pressure Spark Plasma Sintering (HPSPS) technique to 300 and 400 C to produce pellets with dimensions of 5 mm diameter by 1.5 mm height. A custom built ignition setup was developed to measure ignition temperatures at high heating rates (500-2000 C {center_dot} min{sup -1}). Such heating rates were required in order to ignite the thermite composite. Unlike the 400 C samples, results show that the samples consolidated to 300 C undergo an abrupt change in temperature response prior to ignition. This change in temperature response has been attributed to the crystallization of the amorphous WO{sub 3} in the SG derived Ta-WO{sub 3} thermite composite and not to a pre-ignition reaction between the constituents. Ignition temperatures for the Ta-WO{sub 3} thermite ranged from approximately 465-670 C. The activation energy of the SG derived Ta-WO{sup 3} thermite composite consolidated to 300 and 400 C were determined to be 37.787 {+-} 1.58 kJ {center_dot} mol{sup -1} and 57.381 {+-} 2.26 kJ {center_dot} mol{sup -1}, respectively.

  14. Tunneling Effect That Changes the Reaction Pathway from Epoxidation to Hydroxylation in the Oxidation of Cyclohexene by a Compound I Model of Cytochrome P450.

    PubMed

    Gupta, Ranjana; Li, Xiao-Xi; Cho, Kyung-Bin; Guo, Mian; Lee, Yong-Min; Wang, Yong; Fukuzumi, Shunichi; Nam, Wonwoo

    2017-04-06

    The rate constants of the C═C epoxidation and the C-H hydroxylation (i.e., allylic C-H bond activation) in the oxidation of cyclohexene by a high-valent iron(IV)-oxo porphyrin π-cation radical complex, [(TMP(•+))Fe(IV)(O)(Cl)] (1, TMP = meso-tetramesitylporphyrin dianion), were determined at various temperatures by analyzing the overall rate constants and the products obtained in the cyclohexene oxidation by 1, leading us to conclude that reaction pathway changes from the C═C epoxidation to C-H hydroxylation by decreasing reaction temperature. When cyclohexene was replaced by deuterated cyclohexene (cyclohexene-d10), the epoxidation pathway dominated irrespective of the reaction temperature. The temperature dependence of the rate constant of the C-H hydroxylation pathway in the reactions of cyclohexene and cyclohexene-d10 by 1 suggests that there is a significant tunneling effect on the hydrogen atom abstraction of allylic C-H bonds of cyclohexene by 1, leading us to propose that the tunneling effect is a determining factor for the switchover of the reaction pathway from the C═C epoxidation pathway to the C-H hydroxylation pathway by decreasing reaction temperature. By performing density functional theory (DFT) calculations, the reaction energy barriers of the C═C epoxidation and C-H bond activation reactions by 1 were found to be similar, supporting the notion that small environmental changes, such as the reaction temperature, can flip the preference for one reaction to another.

  15. Elemental Mercury Oxidation over Fe-Ti-Mn Spinel: Performance, Mechanism, and Reaction Kinetics.

    PubMed

    Xiong, Shangchao; Xiao, Xin; Huang, Nan; Dang, Hao; Liao, Yong; Zou, Sijie; Yang, Shijian

    2017-01-03

    The design of a high-performance catalyst for Hg(0) oxidation and predicting the extent of Hg(0) oxidation are both extremely limited due to the uncertainties of the reaction mechanism and the reaction kinetics. In this work, Fe-Ti-Mn spinel was developed as a high-performance catalyst for Hg(0) oxidation, and the reaction mechanism and the reaction kinetics of Hg(0) oxidation over Fe-Ti-Mn spinel were studied. The reaction orders of Hg(0) oxidation over Fe-Ti-Mn spinel with respect to gaseous Hg(0) concentration and gaseous HCl concentration were approximately 1 and 0, respectively. Therefore, Hg(0) oxidation over Fe-Ti-Mn spinel mainly followed the Eley-Rideal mechanism (i.e., the reaction of gaseous Hg(0) with adsorbed HCl), and the rate of Hg(0) oxidation mainly depended on Cl(•) concentration on the surface. As H2O, SO2, and NO not only inhibited Cl(•) formation on the surface but also interfered with the interface reaction between gaseous Hg(0) and Cl(•) on the surface, Hg(0) oxidation over Fe-Ti-Mn spinel was obviously inhibited in the presence of H2O, SO2, and NO. Furthermore, the extent of Hg(0) oxidation over Fe-Ti-Mn spinel can be predicted according to the kinetic parameter kE-R, and the predicted result was consistent with the experimental result.

  16. Highly diastereoselective and regioselective copper-catalyzed nitrosoformate dearomatization reaction under aerobic-oxidation conditions.

    PubMed

    Yang, Weibo; Huang, Long; Yu, Yang; Pflästerer, Daniel; Rominger, Frank; Hashmi, A Stephen K

    2014-04-01

    An unprecedented copper-catalyzed acylnitroso dearomatization reaction, which expands the traditional acylnitroso ene reaction and acylnitroso Diels-Alder reaction to a new type of transformation, has been developed under aerobic oxidation. Intermolecular and intra-/intermolecular reaction modes demonstrate an entirely different N- or O-acylnitroso selectivity. Hence, we can utilize this reaction as a highly diastereoselective access to a series of new pyrroloindoline derivatives, which are important structural motifs for natural-product synthesis.

  17. Chlorine atom-initiated low-temperature oxidation of prenol and isoprenol: The effect of C=C double bonds on the peroxy radical chemistry in alcohol oxidation

    SciTech Connect

    Welz, Oliver; Savee, John D.; Osborn, David L.; Taatjes, Craig A.

    2014-07-04

    The chlorine atom-initiated oxidation of two unsaturated primary C5 alcohols, prenol (3-methyl-2-buten-1-ol, (CH3)2CCHCH2OH) and isoprenol (3-methyl-3-buten-1-ol, CH2C(CH3)CH2CH2OH), is studied at 550 K and low pressure (8 Torr). The time- and isomer-resolved formation of products is probed with multiplexed photoionization mass spectrometry (MPIMS) using tunable vacuum ultraviolet ionizing synchrotron radiation. The peroxy radical chemistry of the unsaturated alcohols appears much less rich than that of saturated C4 and C5 alcohols. The main products observed are the corresponding unsaturated aldehydes – prenal (3-methyl-2-butenal) from prenol oxidation and isoprenal (3-methyl-3-butenal) from isoprenol oxidation. No significant products arising from QOOH chemistry are observed. These results can be qualitatively explained by the formation of resonance stabilized allylic radicals via H-abstraction in the Cl + prenol and Cl + isoprenol initiation reactions. The loss of resonance stabilization upon O2 addition causes the energies of the intermediate wells, saddle points, and products to increase relative to the energy of the initial radicals and O2. These energetic shifts make most product channels observed in the peroxy radical chemistry of saturated alcohols inaccessible for these unsaturated alcohols. The experimental findings are underpinned by quantum-chemical calculations for stationary points on the potential energy surfaces for the reactions of the initial radicals with O2. Under our conditions, the dominant channels in prenol and isoprenol oxidation are the chain-terminating HO2-forming channels arising from radicals, in which the unpaired electron and the –OH group are on the same carbon atom, with stable prenal and isoprenal co-products, respectively. These results suggest that the presence of C=C double bonds in alcohols will reduce

  18. Mechanisms of Bond Cleavage during Manganese Oxide and UV Degradation of Glyphosate: Results from Phosphate Oxygen Isotopes and Molecular Simulations.

    PubMed

    Jaisi, Deb P; Li, Hui; Wallace, Adam F; Paudel, Prajwal; Sun, Mingjing; Balakrishna, Avula; Lerch, Robert N

    2016-11-16

    Degradation of glyphosate in the presence of manganese oxide and UV light was analyzed using phosphate oxygen isotope ratios and density function theory (DFT). The preference of C-P or C-N bond cleavage was found to vary with changing glyphosate/manganese oxide ratios, indicating the potential role of sorption-induced conformational changes on the composition of intermediate degradation products. Isotope data confirmed that one oxygen atom derived solely from water was incorporated into the released phosphate during glyphosate degradation, and this might suggest similar nucleophilic substitution at P centers and C-P bond cleavage both in manganese oxide- and UV light-mediated degradation. The DFT results reveal that the C-P bond could be cleaved by water, OH(-) or (•)OH, with the energy barrier opposing bond dissociation being lowest in the presence of the radical species, and that C-N bond cleavage is favored by the formation of both nitrogen- and carbon-centered radicals. Overall, these results highlight the factors controlling the dominance of C-P or C-N bond cleavage that determines the composition of intermediate/final products and ultimately the degradation pathway.

  19. Reactions of. cap alpha. -oxides in the presence of hexamethylenetetramine and glycerine diphenyl ether

    SciTech Connect

    Nikolaev, P.V.; Sveshnikova, N.F.; Ignatov, V.A.

    1987-11-20

    Hexamethylenetetramine (HMTA) is widely used as a catalyst for the condensation and hardening of compositions based on epoxide oligomer. To provide objective information about the reaction scheme and the kinetics of reactions in which epoxide oligomers participate we studied a model reaction system. The model epoxide oligomer selected was phenyl glycidyl ether (PGE) and the ..cap alpha..,..gamma..-diphenyl ether of glycerine (GDPE). The reference substances in the differential thermal analysis were magnesium oxide, aluminum oxide, and GDPE. Monitoring of the progress of the isothermal reaction was effected by determining the ..cap alpha..-oxide group mercurimetrically. The concentration of HMTA was determined iodometrically.

  20. Controlling hydrolysis reaction rates with binary ionic liquid mixtures by tuning hydrogen-bonding interactions.

    PubMed

    Weber, Cameron C; Masters, Anthony F; Maschmeyer, Thomas

    2012-02-16

    The ability of a binary ionic liquid (IL) system consisting of a phosphonium transition state analogue (TSA) and 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([BMIM][NTf(2)]) to accelerate the rate of the well-studied hydrolysis of a tert-alkyl picolinium salt by influencing the solvent structure was investigated. A significant rate enhancement was observed in the presence of the TSA; however, comparison with other cations illustrated that this enhancement was not unique to the chosen TSA. Instead, the rate enhancements were correlated with the dilution of hydrogen bonding by the added cations. This phenomenon was further examined by the use of 1-butyl-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide ([BMMIM][NTf(2)]) as a cosolvent and the use of Reichardt's dye to measure the extent of hydrogen bonding on solutes in these systems. The rate increases are rationalized in terms of weaker hydrogen bonding from the solvent system to water.

  1. Structure, stability and electrochromic properties of polyaniline film covalently bonded to indium tin oxide substrate

    NASA Astrophysics Data System (ADS)

    Zhang, Wenzhi; Ju, Wenxing; Wu, Xinming; Wang, Yan; Wang, Qiguan; Zhou, Hongwei; Wang, Sumin; Hu, Chenglong

    2016-03-01

    Indium tin oxide (ITO) substrate was modified with 4-aminobenzylphosphonic acid (ABPA), and then the polyaniline (PANI) film covalently bonded to ITO substrate was prepared by the chemical oxidation polymerization. X-ray photoelectron spectroscopy (XPS), attenuated total reflection infrared (ATR-IR) spectroscopy, and atomic force microscopy (AFM) measurements demonstrated that chemical binding was formed between PANI and ABPA-modified ITO surface, and the maximum thickness of PANI layer is about 30 nm. The adhesive strength of PANI film on ITO substrate was tested by sonication. It was found that the film formed on the modified ITO exhibited a much better stability than that on bare one. Cyclic voltammetry (CV) and UV-vis spectroscopy measurements indicated that the oxidative potentials of PANI film on ABPA-modified ITO substrate were decreased and the film exhibited high electrochemical activities. Moreover, the optical contrast increased from 0.58 for PANI film (without ultrasound) to 1.06 for PANI film (after ultrasound for 60 min), which had an over 83% enhancement. The coloration time was 20.8 s, while the bleaching time was 19.5 s. The increase of electrochromic switching time was due to the lower ion diffusion coefficient of the large cation of (C4H9)4N+ under the positive and negative potentials as comparison with the small Li+ ion.

  2. Surface Reactions of Uranium Oxide Powder, Thin Films and Single Crystals

    SciTech Connect

    Idriss, H.

    2010-01-01

    The review deals with surface reactions of the complex uranium oxide systems with relevance to catalysis and the environment. After a brief introduction on the properties of uranium oxides, the focus of the review is on surface science studies of defined structures of uranium oxides which are entirely on UO{sub 2} because of the lack of available model on other uranium oxide systems. Powder work is also included as it has given considerable information related to the dynamics between the many phases of uranium oxides. Many chemical reactions are mapped and these include water dissociative adsorption and reaction, CO oxidation and reductive coupling, as well as the reaction of oxygen containing organic compounds such as alcohols, aldehydes, ketones and carboxylic acids in addition to a few examples of sulfur and nitrogen containing compounds.

  3. Efficient C–C bond splitting on Pt monolayer and sub-monolayer catalysts during ethanol electro-oxidation: Pt layer strain and morphology effects

    SciTech Connect

    Loukrakpam, Rameshwori; Yuan, Qiuyi; Petkov, Valeri; Gan, Lin; Rudi, Stefan; Yang, Ruizhi; Huang, Yunhui; Brankovic, Stanko R.; Strasser, Peter

    2014-07-23

    Efficient catalytic C–C bond splitting coupled with complete 12-electron oxidation of the ethanol molecule to CO2 is reported on nanoscale electrocatalysts comprised of a Pt monolayer (ML) and sub-monolayer (sML) deposited on Au nanoparticles (Au@Pt ML/sML). The Au@Pt electrocatalysts were synthesized using surface limited redox replacement (SLRR) of an underpotentially deposited (UPD) Cu monolayer in an electrochemical cell reactor. Au@Pt ML showed improved catalytic activity for ethanol oxidation reaction (EOR) and, unlike their Pt bulk and Pt sML counterparts, was able to generate CO2 at very low electrode potentials owing to efficient C–C bond splitting. To explain this, we explore the hypothesis that competing strain effects due to the Pt layer coverage/morphology (compressive) and the Pt–Au lattice mismatch (tensile) control surface chemisorption and overall activity. Control experiments on well-defined model Pt monolayer systems are carried out involving a wide array of methods such as high-energy X-ray diffraction, pair-distribution function (PDF) analysis, in situ electrochemical FTIR spectroscopy, and in situ scanning tunneling microscopy. The vibrational fingerprints of adsorbed CO provide compelling evidence on the relation between surface bond strength, layer strain and morphology, and catalytic activity.

  4. Reaction dynamics. Extremely short-lived reaction resonances in Cl + HD (v = 1) → DCl + H due to chemical bond softening.

    PubMed

    Yang, Tiangang; Chen, Jun; Huang, Long; Wang, Tao; Xiao, Chunlei; Sun, Zhigang; Dai, Dongxu; Yang, Xueming; Zhang, Dong H

    2015-01-02

    The Cl + H2 reaction is an important benchmark system in the study of chemical reaction dynamics that has always appeared to proceed via a direct abstraction mechanism, with no clear signature of reaction resonances. Here we report a high-resolution crossed-molecular beam study on the Cl + HD (v = 1, j = 0) → DCl + H reaction (where v is the vibrational quantum number and j is the rotational quantum number). Very few forward scattered products were observed. However, two distinctive peaks at collision energies of 2.4 and 4.3 kilocalories per mole for the DCl (v' = 1) product were detected in the backward scattering direction. Detailed quantum dynamics calculations on a highly accurate potential energy surface suggested that these features originate from two very short-lived dynamical resonances trapped in the peculiar H-DCl (v' = 2) vibrational adiabatic potential wells that result from chemical bond softening. We anticipate that dynamical resonances trapped in such wells exist in many reactions involving vibrationally excited molecules.

  5. Development of Nitric Oxide Oxidation Catalysts for the Fast SCR Reaction

    SciTech Connect

    Mark Crocker

    2005-09-30

    This study was undertaken in order to assess the potential for oxidizing NO to NO{sub 2} in flue gas environments, with the aim of promoting the so-called fast SCR reaction. In principle this can result in improved SCR kinetics and reduced SCR catalyst volumes. Prior to commencing experimental work, a literature study was undertaken to identify candidate catalysts for screening. Selection criteria comprised (1) proven (or likely) activity for NO oxidation, (2) low activity for SO2 oxidation (where data were available), and (3) inexpensive component materials. Catalysts identified included supported base metal oxides, supported and unsupported mixed metal oxides, and metal ion exchanged ZSM-5 (Fe, Co, Cu). For comparison purposes, several low loaded Pt catalysts (0.5 wt% Pt) were also included in the study. Screening experiments were conducted using a synthetic feed gas representative of flue gas from coal-fired utility boilers: [NO] = 250 ppm, [SO{sub 2}] = 0 or 2800 ppm, [H{sub 2}O] = 7%, [CO{sub 2}] = 12%, [O{sub 2}] = 3.5%, balance = N{sub 2}; T = 275-375 C. Studies conducted in the absence of SO{sub 2} revealed a number of supported and unsupported metal oxides to be extremely active for NO oxidation to NO{sub 2}. These included known catalysts (Co{sub 3}O{sub 4}/SiO{sub 2}, FeMnO{sub 3}, Cr{sub 2}O{sub 3}/TiO{sub 2}), as well as a new one identified in this work, CrFeO{sub x}/SiO{sub 2}. However, in the presence of SO{sub 2}, all the catalysts tested were found to be severely deactivated with respect to NO oxidation. Of these, Co{sub 3}O{sub 4}/SiO{sub 2}, Pt/ZSM-5 and Pt/CeO{sub 2} showed the highest activity for NO oxidation in the presence of SO{sub 2} (based on peak NO conversions to NO{sub 2}), although in no cases did the NO conversion exceed 7%. Reactor studies indicate there are two components to SO{sub 2}-induced deactivation of Co{sub 3}O{sub 4}/SiO{sub 2}, corresponding to an irreversible deactivation due to sulfation of the surface of the Co{sub 3

  6. Reactions Leading to Ignition in Nanocomposite Al-oxide Systems

    DTIC Science & Technology

    2010-03-01

    processing at room temperature, and the nature of the interface present between aluminum and the oxidizer (metal oxide, e.g., CuO, MoO3, Bi2O3 , etc...at room temperature, and the nature of the interface present between aluminum and the oxidizer (metal oxide, e.g., CuO, MoO3, Bi2O3 , etc.) is

  7. Computational studies of the isomerization and hydration reactions of acetaldehyde oxide and methyl vinyl carbonyl oxide.

    PubMed

    Kuwata, Keith T; Hermes, Matthew R; Carlson, Matthew J; Zogg, Cheryl K

    2010-09-02

    Alkene ozonolysis is a major source of hydroxyl radical (*OH), the most important oxidant in the troposphere. Previous experimental and computational work suggests that for many alkenes the measured *OH yields should be attributed to the combined impact of both chemically activated and thermalized syn-alkyl Criegee intermediates (CIs), even though the thermalized CI should be susceptible to trapping by molecules such as water. We have used RRKM/master equation and variational transition state theory calculations to quantify the competition between unimolecular isomerization and bimolecular hydration reactions for the syn and anti acetaldehyde oxide formed in trans-2-butene ozonolysis and for the CIs formed in isoprene ozonolysis possessing syn-methyl groups. Statistical rate theory calculations were based on quantum chemical data provided by the B3LYP, QCISD, and multicoefficient G3 methods, and thermal rate constants were corrected for tunneling effects using the Eckart method. At tropospheric temperatures and pressures, all thermalized CIs with syn-methyl groups are predicted to undergo 1,4-hydrogen shifts from 2 to 8 orders of magnitude faster than they react with water monomer at its saturation number density. For thermalized anti acetaldehyde oxide, the rates of dioxirane formation and hydration should be comparable.

  8. Oxo iron(IV) as an oxidative active intermediate of p-chlorophenol in the Fenton reaction: a DFT study.

    PubMed

    Mignon, Pierre; Pera-Titus, Marc; Chermette, Henry

    2012-03-21

    Debate continues over which active species plays the role of oxidative agent during the Fenton reaction-the HO˙ radical or oxo iron [Fe(IV)O](2+). In this context, the present study investigates the oxidation of p-chlorophenol by [Fe(IV)O(H(2)O)(5)](2+) using DFT calculations, within gas-phase and micro-solvated models, in order to explore the possible role of oxo iron as a reactant. The results show that the chlorine atom substitution of p-chlorophenol by oxo iron is a highly stabilising step (ΔH = -83 kcal mol(-1)) with a free energy barrier of 5.8 kcal mol(-1) in the micro-solvated model. This illustrates the high oxidising power of the [Fe(IV)O(H(2)O)(5)](2+) complex. On the other hand, the breaking of the Fe-O bond, leading to the formation of hydroquinone, is observed to be the rate-determining step of the reaction. The rather large free energy barrier corresponding to this bond cleavage amounts to 10.2 and 9.3 kcal mol(-1) in the gas-phase and micro-solvated models, respectively. Elsewhere, the lifetime of the HO˙ radical has previously been shown to be extremely small. These facts, combined with observations of oxo iron under certain experimental conditions, suggest that oxo iron is a highly plausible oxidative species of the reaction. In addition, a trigonal bipyramidal iron complex, coordinated either by hydroxyl groups and/or by water molecules, has been found in all described mechanisms. This structure appears to be a stable intermediate; and to our knowledge, it has not been characterised by previous studies.

  9. Bimetallic PtAu superlattice arrays: Highly electroactive and durable catalyst for oxygen reduction and methanol oxidation reactions

    NASA Astrophysics Data System (ADS)

    Feng, Jiu-Ju; He, Li-Li; Fang, Rui; Wang, Qiao-Li; Yuan, Junhua; Wang, Ai-Jun

    2016-10-01

    Superlattice arrays, an important type of nanomaterials, have wide applications in catalysis, optic/electronics and energy storage for the synergetic effects determined by both individual metals and collective interactions. Herein, a simple one-pot solvothermal coreduction approach is developed for facile preparation of bimetallic PtAu alloyed superlattice arrays (PtAu SLAs) in oleylamine, with the assistance of urea via hydrogen bonding induced self-assembly. Urea is essential in morphology-controlled process and prevents PtAu nanoparticles from the disordered aggregation. The characterization and formation mechanism of PtAu SLAs are investigated in details. The as-synthesized hybrid nanocrystals exhibit enhanced electrocatalytic performances for oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR) in alkaline electrolyte in comparison with commercial Pt-C (50%, wt.%) and Pt black catalysts.

  10. Wollastonite based-Chemically Bonded Phosphate Ceramics with lead oxide contents under gamma irradiation

    NASA Astrophysics Data System (ADS)

    Colorado, H. A.; Pleitt, J.; Hiel, C.; Yang, J. M.; Hahn, H. T.; Castano, C. H.

    2012-06-01

    The shielding properties to gamma rays as well as the effect of lead concentration incorporated into Chemically Bonded Phosphate Ceramics (CBPCs) composites are presented. The Wollastonite-based CBPC was fabricated by mixing a patented aqueous phosphoric acid formulation with Wollastonite powder. CBPC has been proved to be good structural material, with excellent thermal resistant properties, and research already showed their potential for radiation shielding applications. Wollastonite-based CBPC is a composite material itself with several crystalline and amorphous phases. Irradiation experiments were conducted on different Wollastonite-based CBPCs with lead oxide. Radiation shielding potential, attenuation coefficients in a broad range of energies pertinent to engineering applications and density experiments showing the effect of the PbO additions (to improve gamma shielding capabilities) are also presented. Microstructure was identified by using scanning electron microscopy and X-ray diffraction.

  11. Nucleation and growth of cracks in vitreous-bonded aluminum oxide at elevated temperatures

    SciTech Connect

    Jakus, K.; Wiederhorn, S.M.; Hockey, B.J.

    1986-10-01

    The nucleation and growth of cracks was studied at elevated temperatures on a grade of vitreous-bonded aluminium oxide that contained approx. =8 vol% glass at the grain boundaries. Cracks were observed to nucleate within the vitreous phase, close to the tensile surface of the flexural test specimens used in these experiments. Crack nucleation occurred at a strain of approx. =0.08% to 0.12% which corresponded to a crack nucleation time of approx. =35% of the time to failure by creep rupture. Once nucleated, cracks propagated along grain boundaries, as long as the stress for crack propagation was maintained. The crack velocity for cracks that were nucleated by the creep process was found to be linearly proportional to the apparent stress intensity factor, whereas for cracks that were nucleated by indentation, the crack velocity was proportional to the fourth power of the apparent stress intensity factor.

  12. Competition between covalent bonding and charge transfer at complex-oxide interfaces.

    PubMed

    Salafranca, Juan; Rincón, Julián; Tornos, Javier; León, Carlos; Santamaria, Jacobo; Dagotto, Elbio; Pennycook, Stephen J; Varela, Maria

    2014-05-16

    Here we study the electronic properties of cuprate-manganite interfaces. By means of atomic resolution electron microscopy and spectroscopy, we produce a subnanometer scale map of the transition metal oxidation state profile across the interface between the high Tc superconductor YBa2Cu3O7-δ and the colossal magnetoresistance compound (La,Ca)MnO3. A net transfer of electrons from manganite to cuprate with a peculiar nonmonotonic charge profile is observed. Model calculations rationalize the profile in terms of the competition between standard charge transfer tendencies (due to band mismatch), strong chemical bonding effects across the interface, and Cu substitution into the Mn lattice, with different characteristic length scales.

  13. Formation of C-C and C-O bonds and oxygen removal in reactions of alkanediols, alkanols, and alkanals on copper catalysts.

    PubMed

    Sad, María E; Neurock, Matthew; Iglesia, Enrique

    2011-12-21

    This study reports evidence for catalytic deoxygenation of alkanols, alkanals, and alkanediols on dispersed Cu clusters with minimal use of external H(2) and with the concurrent formation of new C-C and C-O bonds. These catalysts selectively remove O-atoms from these oxygenates as CO or CO(2) through decarbonylation or decarboxylation routes, respectively, that use C-atoms present within reactants or as H(2)O using H(2) added or formed in situ from CO/H(2)O mixtures via water-gas shift. Cu catalysts fully convert 1,3-propanediol to equilibrated propanol-propanal intermediates that subsequently form larger oxygenates via aldol-type condensation and esterification routes without detectable involvement of the oxide supports. Propanal-propanol-H(2) equilibration is mediated by their chemisorption and interconversion at surfaces via C-H and O-H activation and propoxide intermediates. The kinetic effects of H(2), propanal, and propanol pressures on turnover rates, taken together with measured selectivities and the established chemical events for base-catalyzed condensation and esterification reactions, indicate that both reactions involve kinetically relevant bimolecular steps in which propoxide species, acting as the base, abstract the α-hydrogen in adsorbed propanal (condensation) or attack the electrophilic C-atom at its carbonyl group (esterification). These weakly held basic alkoxides render Cu surfaces able to mediate C-C and C-O formation reactions typically catalyzed by basic sites inherent in the catalyst, instead of provided by coadsorbed organic moieties. Turnover rates for condensation and esterification reactions decrease with increasing Cu dispersion, because low-coordination corner and edge atoms prevalent on small clusters stabilize adsorbed intermediates and increase the activation barriers for the bimolecular kinetically relevant steps required for both reactions.

  14. Ruthenium-catalyzed alkylation of indoles with tertiary amines by oxidation of a sp3 C-H bond and Lewis acid catalysis.

    PubMed

    Wang, Ming-Zhong; Zhou, Cong-Ying; Wong, Man-Kin; Che, Chi-Ming

    2010-05-17

    Ruthenium porphyrins (particularly [Ru(2,6-Cl(2)tpp)CO]; tpp=tetraphenylporphinato) and RuCl(3) can act as oxidation and/or Lewis acid catalysts for direct C-3 alkylation of indoles, giving the desired products in high yields (up to 82% based on 60-95% substrate conversions). These ruthenium compounds catalyze oxidative coupling reactions of a wide variety of anilines and indoles bearing electron-withdrawing or electron-donating substituents with high regioselectivity when using tBuOOH as an oxidant, resulting in the alkylation of N-arylindoles to 3-{[(N-aryl-N-alkyl)amino]methyl}indoles (yield: up to 82%, conversion: up to 95%) and the alkylation of N-alkyl or N-H indoles to 3-[p-(dialkylamino)benzyl]indoles (yield: up to 73%, conversion: up to 92%). A tentative reaction mechanism involving two pathways is proposed: an iminium ion intermediate may be generated by oxidation of an sp(3) C-H bond of the alkylated aniline by an oxoruthenium species; this iminium ion could then either be trapped by an N-arylindole (pathway A) or converted to formaldehyde, allowing a subsequent three-component coupling reaction of the in situ generated formaldehyde with an N-alkylindole and an aniline in the presence of a Lewis acid catalyst (pathway B). The results of deuterium-labeling experiments are consistent with the alkylation of N-alkylindoles via pathway B. The relative reaction rates of [Ru(2,6-Cl(2)tpp)CO]-catalyzed oxidative coupling reactions of 4-X-substituted N,N-dimethylanilines with N-phenylindole (using tBuOOH as oxidant), determined through competition experiments, correlate linearly with the substituent constants sigma (R(2)=0.989), giving a rho value of -1.09. This rho value and the magnitudes of the intra- and intermolecular deuterium isotope effects (k(H)/k(D)) suggest that electron transfer most likely occurs during the initial stage of the oxidation of 4-X-substituted N,N-dimethylanilines. Ruthenium-catalyzed three-component reaction of N-alkyl/N-H indoles

  15. Chemical Bonding, Interfaces and Defects in Hafnium Oxide/Germanium Oxynitride Gate Stacks on Ge (100)

    SciTech Connect

    Oshima, Yasuhiro; Sun, Yun; Kuzum, Duygu; Sugawara, Takuya; Saraswat, Krishna C.; Pianetta, Piero; McIntyre, Paul C.; /Stanford U., Materials Sci. Dept.

    2008-10-31

    Correlations among interface properties and chemical bonding characteristics in HfO{sub 2}/GeO{sub x}N{sub y}/Ge MIS stacks were investigated using in-situ remote nitridation of the Ge (100) surface prior to HfO{sub 2} atomic layer deposition (ALD). Ultra thin ({approx}1.1 nm), thermally stable and aqueous etch-resistant GeO{sub x}N{sub y} interfaces layers that exhibited Ge core level photoelectron spectra (PES) similar to stoichiometric Ge{sub 3}N{sub 4} were synthesized. To evaluate GeO{sub x}N{sub y}/Ge interface defects, the density of interface states (D{sub it}) was extracted by the conductance method across the band gap. Forming gas annealed (FGA) samples exhibited substantially lower D{sub it} ({approx} 1 x 10{sup 12} cm{sup -2} eV{sup -1}) than did high vacuum annealed (HVA) and inert gas anneal (IGA) samples ({approx} 1x 10{sup 13} cm{sup -2} eV{sup -1}). Germanium core level photoelectron spectra from similar FGA-treated samples detected out-diffusion of germanium oxide to the HfO{sub 2} film surface and apparent modification of chemical bonding at the GeO{sub x}N{sub y}/Ge interface, which is related to the reduced D{sub it}.

  16. Influence of Copper Oxidation State on the Bonding and Electronic Structure of Cobalt-Copper Complexes

    SciTech Connect

    Eisenhart, Reed J.; Carlson, Rebecca K.; Clouston, Laura J.; Victor G. Young Jr.; Chen, Yu-Sheng; Bill, Eckhard; Gagliardi, Laura; Lu, Connie C.

    2016-03-04

    Heterobimetallic complexes that pair cobalt and copper were synthesized and characterized by a suite of physical methods, including X-ray diffraction, X-ray anomalous scattering, cyclic voltammetry, magnetometry, electronic absorption spectroscopy, electron paramagnetic resonance, and quantum chemical methods. Both Cu(II) and Cu(I) reagents were independently added to a Co(II) metalloligand to provide (py3tren)CoCuCl (1-Cl) and (py3tren)CoCu(CH3CN) (2-CH3CN), respectively, where py3tren is the triply deprotonated form of N,N,N-tris(2-(2-pyridylamino)ethyl)amine. Complex 2-CH3CN can lose the acetonitrile ligand to generate a coordination polymer consistent with the formula “(py3tren)CoCu” (2). One-electron chemical oxidation of 2-CH3CN with AgOTf generated (py3tren)CoCuOTf (1-OTf). The Cu(II)/Cu(I) redox couple for 1-OTf and 2-CH3CN is reversible at -0.56 and -0.33 V vs Fc+/Fc, respectively. The copper oxidation state impacts the electronic structure of the heterobimetallic core, as well as the nature of the Co–Cu interaction. Quantum chemical calculations showed modest electron delocalization in the (CoCu)+4 state via a Co–Cu σ bond that is weakened by partial population of the Co–Cu σ antibonding orbital. By contrast, no covalent Co–Cu bonding is predicted for the (CoCu)+3 analogue, and the d-electrons are fully localized at individual metals.

  17. Palladium and gold nanotubes as oxygen reduction reaction and alcohol oxidation reaction catalysts in base.

    PubMed

    Alia, Shaun M; Duong, Kathlynne; Liu, Toby; Jensen, Kurt; Yan, Yushan

    2014-06-01

    Palladium (PdNTs) and gold nanotubes (AuNTs) were synthesized by the galvanic displacement of silver nanowires. PdNTs and AuNTs have wall thicknesses of 6 nm, outer diameters of 60 nm, and lengths of 5-10 and 5-20 μm, respectively. Rotating disk electrode experiments showed that the PdNTs and AuNTs have higher area normalized activities for the oxygen reduction reaction (ORR) than conventional nanoparticle catalysts. The PdNTs produced an ORR area activity that was 3.4, 2.2, and 3.7 times greater than that on carbon-supported palladium nanoparticles (Pd/C), bulk polycrystalline palladium, and carbon-supported platinum nanoparticles (Pt/C), respectively. The AuNTs produced an ORR area activity that was 2.3, 9.0, and 2.0 times greater than that on carbon-supported gold nanoparticles (Au/C), bulk polycrystalline gold, and Pt/C, respectively. The PdNTs also had lower onset potentials than Pd/C and Pt/C for the oxidation of methanol (0.236 V), ethanol (0.215 V), and ethylene glycol (0.251 V). In comparison to Pt/C, the PdNTs and AuNTs further demonstrated improved alcohol tolerance during the ORR.

  18. Atomic-Scale Chemical Imaging of Composition and Bonding at Perovskite Oxide Interfaces

    NASA Astrophysics Data System (ADS)

    Fitting Kourkoutis, L.

    2010-03-01

    Scanning transmission electron microscopy (STEM) in combination with electron energy loss spectroscopy (EELS) has proven to be a powerful technique to study buried perovskite oxide heterointerfaces. With the recent addition of 3^rd order and now 5^th order aberration correction, which provides a factor of 100x increase in signal over an uncorrected system, we are now able to record 2D maps of composition and bonding of oxide interfaces at atomic resolution [1]. Here, we present studies of the microscopic structure of oxide/oxide multilayers and heterostructures by STEM in combination with EELS and its effect on the properties of the film. Using atomic-resolution spectroscopic imaging we show that the degradation of the magnetic and transport properties of La0.7Sr0.3MnO3/SrTiO3 multilayers correlates with atomic intermixing at the interfaces and the presence of extended defects in the La0.7Sr0.3MnO3 layers. When these defects are eliminated, metallic ferromagnetism at room temperature can be stabilized in 5 unit cell thick manganite layers, almost 40% thinner than the previously reported critical thickness of 3-5 nm for sustaining metallic ferromagnetism below Tc in La0.7Sr0.3MnO3 thin films grown on SrTiO3.[4pt] [1] D.A. Muller, L. Fitting Kourkoutis, M. Murfitt, J.H. Song, H.Y. Hwang, J. Silcox, N. Dellby, O.L. Krivanek, Science 319, 1073-1076 (2008).

  19. Nitric oxide in star-forming regions - Further evidence for interstellar N-O bonds

    NASA Technical Reports Server (NTRS)

    Ziurys, L. M.; Mcgonagle, D.; Minh, Y.; Irvine, W. M.

    1991-01-01

    Nitric oxide has been newly detected toward several star-forming clouds, including Orion-KL, Sgr B2(N), W33A, W51M, and DR21(OH) via its J = 3/2-1/2 transitions near 150 GHz, using the FCRAO 14 m telescope. Both lambda-doubling components of NO were observed toward all sources. Column densities derived for nitric oxide in these clouds are 10 to the 15th-10 to the 16th/sq cm, corresponding to fractional abundances of 0.5-1.0 x 10 to the -8th, relative to H2. Toward Orion-KL, the NO line profile suggests that the species arises primarily from hot, dense gas. Nitric oxide may arise from warm material toward the other clouds as well. Nitric oxide in star-forming regions could be synthesized by high-temperature reactions, although the observed abundances do not disagree with values predicted from low-temperature, ion-molecule chemistry by more than one order of magnitude.

  20. Mechanism and Stereoselectivity in an Asymmetric N-Heterocyclic Carbene-Catalyzed Carbon-Carbon Bond Activation Reaction.

    PubMed

    Pareek, Monika; Sunoj, Raghavan B

    2016-11-18

    The mechanism and origin of stereoinduction in a chiral N-heterocyclic carbene (NHC) catalyzed C-C bond activation of cyclobutenone has been established using B3LYP-D3 density functional theory computations. The activation of cyclobutenone as an NHC-bound vinyl enolate and subsequent reaction with the electrophilic sulfonyl imine leads to the lactam product. The most preferred stereocontrolling transition state exhibits a number of noncovalent interactions rendering additional stabilization. The computed enantio- and diastereoselectivities are in good agreement with the previous experimental observations.

  1. Comparison of properties of sintered and sintered reaction-bonded silicon nitride fabricated by microwave and conventional heating

    SciTech Connect

    Tiegs, T.N.; Kiggans, J.O. Jr.; Lin, H.T.; Willkens, C.A.

    1994-10-01

    A comparison of microwave and conventional processing of silicon nitride-based ceramics was performed to identify any differences between the two, such as improved fabrication parameters or increased mechanical properties. Two areas of thermal processing were examined: (1) sintered silicon nitride (SSN) and (2) sintered reaction-bonded silicon nitride (SRBSN). The SSN powder compacts showed improved densification and enhanced grain growth. SRBSN materials were fabricated in the microwave with a one-step process using cost-effective raw materials. The SRBSN materials had properties appropriate for structural applications. Observed increases in fracture toughness for the microwave processed SRBSN materials were attributable to enhanced elongated grain growth.

  2. Comparison of properties of sintered and sintered reaction-bonded silicon nitride fabricated by microwave and conventional heating

    SciTech Connect

    Tiegs, T.N.; Kiggans, J.O. Jr.; Lin, H.T.

    1995-10-01

    A comparison of microwave and conventional processing of silicon nitride-based ceramics was performed to identify any differences between the two, such as improved fabrication parameters or increased mechanical properties. Two areas of thermal processing were examined: sintered silicon nitride (SSN) and sintered reaction-bonded silicon nitride (SRBSN). The SSN powder compacts showed improved densification and enhanced grain growth. SRBSN materials were fabricated in the microwave with a one-step process using cost-effective raw materials. The SRBSN materials had properties appropriate for structural applications. Observed increases in fracture toughness for the microwave processed SRBSN materials were attributable to enhanced elongated grain growth.

  3. Influence of Ligand Architecture in Tuning Reaction Bifurcation Pathways for Chlorite Oxidation by Non-Heme Iron Complexes.

    PubMed

    Barman, Prasenjit; Faponle, Abayomi S; Vardhaman, Anil Kumar; Angelone, Davide; Löhr, Anna-Maria; Browne, Wesley R; Comba, Peter; Sastri, Chivukula V; de Visser, Sam P

    2016-10-05

    Reaction bifurcation processes are often encountered in the oxidation of substrates by enzymes and generally lead to a mixture of products. One particular bifurcation process that is common in biology relates to electron transfer versus oxygen atom transfer by high-valent iron(IV)-oxo complexes, which nature uses for the oxidation of metabolites and drugs. In biomimicry and bioremediation, an important reaction relates to the detoxification of ClOx(-) in water, which can lead to a mixture of products through bifurcated reactions. Herein we report the first three water-soluble non-heme iron(II) complexes that can generate chlorine dioxide from chlorite at ambient temperature and physiological pH. These complexes are highly active oxygenation oxidants and convert ClO2(-) into either ClO2 or ClO3¯ via high-valent iron(IV)-oxo intermediates. We characterize the short-lived iron(IV)-oxo species and establish rate constants for the bifurcation mechanism leading to ClO2 and ClO3(-) products. We show that the ligand architecture of the metal center plays a dominant role by lowering the reduction potential of the metal center. Our experiments are supported by computational modeling, and a predictive valence bond model highlights the various factors relating to the substrate and oxidant that determine the bifurcation pathway and explains the origins of the product distributions. Our combined kinetic, spectroscopic, and computational studies reveal the key components necessary for the future development of efficient chlorite oxidation catalysts.

  4. Electrochemical oxidation of cholesterol

    PubMed Central

    2015-01-01

    Summary Indirect cholesterol electrochemical oxidation in the presence of various mediators leads to electrophilic addition to the double bond, oxidation at the allylic position, oxidation of the hydroxy group, or functionalization of the side chain. Recent studies have proven that direct electrochemical oxidation of cholesterol is also possible and affords different products depending on the reaction conditions. PMID:25977713

  5. Ultrasonic and micromechanical study of damage and elastic properties of SiC/RBSN ceramic composites. [Reaction Bonded Silicon Nitride

    NASA Technical Reports Server (NTRS)

    Chu, Y. C.; Hefetz, M.; Rokhlin, S. I.; Baaklini, G. Y.

    1992-01-01

    Ultrasonic techniques are employed to develop methods for nondestructive evaluation of elastic properties and damage in SiC/RBSN composites. To incorporate imperfect boundary conditions between fibers and matrix into a micromechanical model, a model of fibers having effective anisotropic properties is introduced. By inverting Hashin's (1979) microstructural model for a composite material with microscopic constituents the effective fiber properties were found from ultrasonic measurements. Ultrasonic measurements indicate that damage due to thermal shock is located near the surface, so the surface wave is most appropriate for estimation of the ultimate strength reduction and critical temperature of thermal shock. It is concluded that bonding between laminates of SiC/RBSN composites is severely weakened by thermal oxidation. Generally, nondestructive evaluation of thermal oxidation effects and thermal shock shows good correlation with measurements previously performed by destructive methods.

  6. Intramolecular Oxyl Radical Coupling Promotes O-O Bond Formation in a Homogeneous Mononuclear Mn-based Water Oxidation Catalyst: A Computational Mechanistic Investigation.

    PubMed

    Crandell, Douglas W; Xu, Song; Smith, Jeremy M; Baik, Mu-Hyun

    2017-04-04

    The mechanism of water oxidation performed by a recently discovered manganese pyridinophane catalyst [Mn(Py2N(t)Bu2)(H2O)2](2+) is studied using density functional theory methods. A complete catalytic cycle is constructed and the catalytically active species is identified to consist of a Mn(V)-bis(oxo) moiety that is generated from the resting state by a series of proton-coupled electron transfer reactions. Whereas the electronic ground state of this key intermediate is found to be a triplet, the most favorable pathway for O-O bond formation is found on the quintet potential energy surface and involves an intramolecular coupling of two oxyl radicals with opposite spins bound to the Mn-center that adopts an electronic structure most consistent formally with a high-spin Mn(III) ion. Therefore, the thermally accessible high-spin quintet state that constitutes a typical and innate property of a first-row transition metal center plays a critical role for catalysis. It enables facile electron transfer between the oxo moieties and the Mn-center and promotes O-O bond formation via a radical coupling reaction with a calculated reaction barrier of only 14.7 kcal mol(-1). This mechanism of O-O coupling is unprecedented and provides a novel possible pathway to coupling two oxygen atoms bound to a single metal site.

  7. Reaction products and mechanisms for the reaction of n-butyl vinyl ether with the oxidants OH and Cl: Atmospheric implications

    NASA Astrophysics Data System (ADS)

    Colmenar, Inmaculada; Martín, Pilar; Cabañas, Beatriz; Salgado, Sagrario; Tapia, Araceli; Martínez, Ernesto

    2015-12-01

    A reaction product study for the degradation of butyl vinyl ether (CH3(CH2)3OCHdbnd CH2) by reaction with chlorine atoms (Cl) and hydroxyl radicals (OH) has been carried out using Fourier Transform Infrared absorption spectroscopy (FTIR) and/or Gas Chromatography-Mass Spectrometry with a Time of Flight analyzer (GC-TOFMS). The rate coefficient for the reaction of butyl vinyl ether (BVE) with chlorine atoms has also been evaluated for the first time at room temperature (298 ± 2) K and atmospheric pressure (708 ± 8) Torr. The rate coefficient obtained was (9.9 ± 1.5) × 10-10 cm3 molecule-1 s-1 and this indicates the high reactivity of butyl vinyl ether with Cl atoms. However, this value may be affected by the dark reaction of BVE with Cl2. The results of a qualitative study of the Cl reaction show that the main oxidation products are butyl formate (CH3(CH2)3OC(O)H), butyl chloroacetate (CH3(CH2)3OC(O)CH2Cl and formyl chloride (HCOCl). Individual yields in the ranges ∼16-40% and 30-70% in the absence and presence of NOx, respectively, have been estimated for these products. In the OH reaction, butyl formate and formic acid were identified as the main products, with yields of around 50 and 20%, respectively. Based on the results of this work and a literature survey, the addition of OH radicals and Cl atoms at the terminal C atom of the double bond in CH3(CH2)3OCHdbnd CH2 has been proposed as the first step in the reaction mechanism for both of the studied oxidants. The tropospheric lifetime of butyl vinyl ether is very short and, as a consequence, it will be rapidly degraded and will only be involved in tropospheric chemistry at a local level. The degradation products of these reactions should be considered when evaluating the atmospheric impact.

  8. High-temperature oxidation behavior of reaction-formed silicon carbide ceramics

    NASA Technical Reports Server (NTRS)

    Ogbuji, Linus U. J. T.; Singh, M.

    1995-01-01

    The oxidation behavior of reaction-formed silicon carbide (RFSC) ceramics was investigated in the temperature range of 1100 to 1400 C. The oxidation weight change was recorded by TGA; the oxidized materials were examined by light and electron microscopy, and the oxidation product by x-ray diffraction analysis (XRD). The materials exhibited initial weight loss, followed by passive weight gain (with enhanced parabolic rates, k(sub p)), and ending with a negative (logarithmic) deviation from the parabolic law. The weight loss arose from the oxidation of residual carbon, and the enhanced k(sub p) values from internal oxidation and the oxidation of residual silicon, while the logarithmic kinetics is thought to have resulted from crystallization of the oxide. The presence of a small amount of MoSi, in the RFSC material caused a further increase in the oxidation rate. The only solid oxidation product for all temperatures studied was silica.

  9. Competition between covalent bonding and charge transfer tendencies at complex-oxides interfaces

    NASA Astrophysics Data System (ADS)

    Salafranca, J.; Tornos, J.; García-Barriocanal, J.; León, C.; Santamaria, J.; Rincón, J.; Álvarez, G.; Pennycook, S. J.; Dagotto, E.; Varela, M.

    2013-03-01

    Interfaces alter the subtle balance among different degrees of freedom responsible for exotic phenomena in complex oxides, such as cuprate-manganite interfaces. We study these interfaces by means of scanning transmission electron microscopy and theoretical calculations. Microscopy and EEL spectroscopy indicate that the interfaces are sharp, and the chemical profile is symmetric with two equivalent interfaces. Spectroscopy also allows us to establish an oxidation state profile with sub-nanometer resolution. We find an anomalous charge redistribution: a non-monotonic behavior of the occupancy of d orbitals in the manganite layers as a function of distance to the interface. Relying on model calculations, we establish that this profile is a result of the competition between standard charge transfer tendencies involving materials with different chemical potentials and strong bonding effects across the interface. The competition can be tuned by different factors (temperature, doping, magnetic fields...). As examples, we report different charge distributions as a function of doping of the manganite layers. ACKNOWLEDGEMENTS ORNL:U.S. DOE-BES, Material Sciences and Engineering Division & ORNL's ShaRE. UCM:Juan de la Cierva, Ramon y Cajal, & ERC Starting Investigator Award programs.

  10. Reactions of the alkoxy radicals formed following OH-addition to alpha-pinene and beta-pinene. C-C bond scission reactions.

    PubMed

    Dibble, T S

    2001-05-09

    The atmospheric degradation pathways of the atmospherically important terpenes alpha-pinene and beta-pinene are studied using density functional theory. We employ the correlation functional of Lee, Yang, and Parr and the three-parameter HF exchange functional of Becke (B3LYP) together with the 6-31G(d) basis set. The C-C bond scission reactions of the beta-hydroxyalkoxy radicals that are formed after OH addition to alpha-pinene and beta-pinene are investigated. Both of the alkoxy radicals formed from the alpha-pinene-OH adduct possess a single favored C-C scission pathway with an extremely low barrier (approximately 3 kcal/mol) leading to the formation of pinonaldehyde. Neither of these pathways produces formaldehyde, and preliminary computational results offer some support for suggestions that 1,5 or 1,6 H-shift (isomerization) reactions of alkoxy radicals contribute to formaldehyde production. In the case of the alkoxy radical formed following OH addition to the methylene group of beta-pinene, there exists two C-C scission reactions with nearly identical barrier heights (approximately 7.5 kcal/mol); one leads to known products (nopinone and formaldehyde) but the ultimate products of the competing reaction are unknown. The single C-C scission pathway of the other alkoxy radical from beta-pinene possesses a very low (approximately 4 kcal/mol) barrier. The kinetically favored C-C scission reactions of all four alkoxy radicals appear to be far faster than expected rates of reaction with O2. The rearrangement of the alpha-pinene-OH adduct, a key step in the proposed mechanism of formation of acetone from alpha-pinene, is determined to possess a barrier of 11.6 kcal/mol. This value is consistent with another computational result and is broadly consistent with the modest acetone yields observed in product yield studies.

  11. Non-precious metal electrocatalysts with high activity for hydrogen oxidation reaction in alkaline electrolytes

    SciTech Connect

    Sheng, WC; Bivens, AP; Myint, M; Zhuang, ZB; Forest, RV; Fang, QR; Chen, JG; Yan, YS

    2014-05-01

    A ternary metallic CoNiMo catalyst is electrochemically deposited on a polycrystalline gold (Au) disk electrode using pulse voltammetry, and characterized for hydrogen oxidation reaction (HOR) activity by temperature-controlled rotating disk electrode measurements in 0.1 M potassium hydroxide (KOH). The catalyst exhibits the highest HOR activity among all non-precious metal catalysts (e.g., 20 fold higher than Ni). At a sufficient loading, the CoNiMo catalyst is expected to outperform Pt and thus provides a promising low cost pathway for alkaline or alkaline membrane fuel cells. Density functional theory (DFT) calculations and parallel H-2-temperature programmed desorption (TPD) experiments on structurally much simpler model alloy systems show a trend that CoNiMo has a hydrogen binding energy (HBE) similar to Pt and much lower than Ni, suggesting that the formation of multi-metallic bonds modifies the HBE of Ni and is likely a significant contributing factor for the enhanced HOR activity.

  12. Photo- and thermal-oxidation studies on methyl and phenyl linoleate: anti-oxidant behaviour and rates of reaction.

    PubMed

    Chacón, J N; Gaggini, P; Sinclair, R S; Smith, F J

    2000-09-01

    Photo-peroxidation of methyl and phenyl linoleate in methanol solutions at 25 degrees C, in the presence of methylene blue or 5,10,15,20-tetra(4-pyridyl)-porphyrin (TPP) as sensitisers of singlet oxygen, was found to proceed at more than 30 times the rate of the same polyunsaturated fatty acid (PUFA) ester species undergoing thermal-peroxidation in the bulk phase at 50 degrees C. The addition of anti-oxidants such as butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) quench the thermal-oxidation effectively but appear to only partially inhibit the photosensitized peroxidation reactions. The kinetics of the overall peroxidation reactions were followed by ultraviolet spectroscopy, measurements of hydroperoxide concentration and by high performance liquid chromatography (HPLC). The photo-peroxidation reaction proceeds more rapidly in chloroform solution as the lifetime of singlet oxygen is shown to be over ten times longer in chloroform than methanol. The initial fast reaction kinetics of the photo-peroxidation reactions were evaluated using a pulsed laser technique to show that singlet oxygen reacts competitively with both the anti-oxidants and the polyunsaturated fatty acid ester. Second order kinetic rate constants (in the range 10(5)-10(7) dm(3) mol(-1) s(-1)) were evaluated for the reactivity of singlet oxygen with a range of anti-oxidants and a singlet oxygen quencher, and the results used to explain the effect of anti-oxidants at different concentrations on the rate of the linoleate photo-peroxidation reaction.

  13. Novel carbon–carbon bond formations for biocatalysis

    PubMed Central

    Resch, Verena; Schrittwieser, Joerg H; Siirola, Elina; Kroutil, Wolfgang

    2011-01-01

    Carbon–carbon bond formation is the key transformation in organic synthesis to set up the carbon backbone of organic molecules. However, only a limited number of enzymatic C–C bond forming reactions have been applied in biocatalytic organic synthesis. Recently, further name reactions have been accomplished for the first time employing enzymes on a preparative scale, for instance the Stetter and Pictet–Spengler reaction or oxidative C–C bond formation. Furthermore, novel enzymatic C–C bond forming reactions have been identified like benzylation of aromatics, intermolecular Diels-Alder or reductive coupling of carbon monoxide. PMID:21354781

  14. A dielectric barrier discharge terminally inactivates RNase A by oxidizing sulfur-containing amino acids and breaking structural disulfide bonds

    NASA Astrophysics Data System (ADS)

    Lackmann, J.-W.; Baldus, S.; Steinborn, E.; Edengeiser, E.; Kogelheide, F.; Langklotz, S.; Schneider, S.; Leichert, L. I. O.; Benedikt, J.; Awakowicz, P.; Bandow, J. E.

    2015-12-01

    RNases are among the most stable proteins in nature. They even refold spontaneously after heat inactivation, regaining full activity. Due to their stability and universal presence, they often pose a problem when experimenting with RNA. We investigated the capabilities of nonthermal atmospheric-pressure plasmas to inactivate RNase A and studied the inactivation mechanism on a molecular level. While prolonged heating above 90 °C is required for heat inactivating RNase A, direct plasma treatment with a dielectric barrier discharge (DBD) source caused permanent inactivation within minutes. Circular dichroism spectroscopy showed that DBD-treated RNase A unfolds rapidly. Raman spectroscopy indicated methionine modifications and formation of sulfonic acid. A mass spectrometry-based analysis of the protein modifications that occur during plasma treatment over time revealed that methionine sulfoxide formation coincides with protein inactivation. Chemical reduction of methionine sulfoxides partially restored RNase A activity confirming that sulfoxidation is causal and sufficient for RNase A inactivation. Continued plasma exposure led to over-oxidation of structural disulfide bonds. Using antibodies, disulfide bond over-oxidation was shown to be a general protein inactivation mechanism of the DBD. The antibody’s heavy and light chains linked by disulfide bonds dissociated after plasma exposure. Based on their ability to inactivate proteins by oxidation of sulfur-containing amino acids and over-oxidation of disulfide bonds, DBD devices present a viable option for inactivating undesired or hazardous proteins on heat or solvent-sensitive surfaces.

  15. Effect of Layer-Graded Bond Coats on Edge Stress Concentration and Oxidation Behavior of Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Ghosn, Louis J.; Miller, Robert A.

    1998-01-01

    Thermal barrier coating (TBC) durability is closely related to design, processing and microstructure of the coating Z, tn systems. Two important issues that must be considered during the design of a thermal barrier coating are thermal expansion and modulus mismatch between the substrate and the ceramic layer, and substrate oxidation. In many cases, both of these issues may be best addressed through the selection of an appropriate bond coat system. In this study, a low thermal expansion and layer-graded bond coat system, that consists of plasma-sprayed FeCoNiCrAl and FeCrAlY coatings, and a high velocity oxyfuel (HVOF) sprayed FeCrAlY coating, is developed to minimize the thermal stresses and provide oxidation resistance. The thermal expansion and oxidation behavior of the coating system are also characterized, and the strain isolation effect of the bond coat system is analyzed using the finite element method (FEM). Experiments and finite element results show that the layer-graded bond coat system possesses lower interfacial stresses. better strain isolation and excellent oxidation resistance. thus significantly improving the coating performance and durability.

  16. Self-Assembled Amphiphilic Water Oxidation Catalysts: Control of O-O Bond Formation Pathways by Different Aggregation Patterns.

    PubMed

    Yang, Bing; Jiang, Xin; Guo, Qing; Lei, Tao; Zhang, Li-Ping; Chen, Bin; Tung, Chen-Ho; Wu, Li-Zhu

    2016-05-17

    The oxidation of water to molecular oxygen is the key step to realize water splitting from both biological and chemical perspective. In an effort to understand how water oxidation occurs on a molecular level, a large number of molecular catalysts have been synthesized to find an easy access to higher oxidation states as well as their capacity to make O-O bond. However, most of them function in a mixture of organic solvent and water and the O-O bond formation pathway is still a subject of intense debate. Herein, we design the first amphiphilic Ru-bda (H2 bda=2,2'-bipyridine-6,6'-dicarboxylic acid) water oxidation catalysts (WOCs) of formula [Ru(II) (bda)(4-OTEG-pyridine)2 ] (1, OTEG=OCH2 CH2 OCH2 CH2 OCH3 ) and [Ru(II) (bda)(PySO3 Na)2 ] (2, PySO3 (-) =pyridine-3-sulfonate), which possess good solubility in water. Dynamic light scattering (DLS), scanning electron microscope (SEM), critical aggregation concentration (CAC) experiments and product analysis demonstrate that they enable to self-assemble in water and form the O-O bond through different routes even though they have the same bda(2-) backbone. This work illustrates for the first time that the O-O bond formation pathway can be regulated by the interaction of ancillary ligands at supramolecular level.

  17. Stable Gold(III) Catalysts by Oxidative Addition of a Carbon-Carbon Bond

    PubMed Central

    Wu, Chung-Yeh; Horibe, Takahiro; Jacobsen, Christian Borch

    2014-01-01

    Whereas low-valent late transition metal catalysis has become indispensible for chemical synthesis, homogeneous high-valent transition metal catalysis is underdeveloped, mainly due to the reactivity of high-valent transition metal complexes and the challenges associated with synthesizing them. In this manuscript, we report a mild carbon-carbon bond cleavage reaction by a Au(I) complex that generates a stable Au(III) cationic complex. Complementary to the well-established soft and carbophilic Au(I) catalyst, this Au(III) complex exhibits hard, oxophilic Lewis acidity. This is exemplified by catalytic activation of α,β-unsaturated aldehydes towards selective conjugate additions as well as activation of an unsaturated aldehyde-allene for a [2 + 2] cycloaddition reaction. The origin of the regioselectivity and catalytic activity was elucidated by X-ray crystallographic analysis of an isolated Au(III)-activated cinnamaldehyde intermediate. The concepts revealed in this study provide a strategy for accessing high-valent transition metal catalysis from readily available precursors. PMID:25612049

  18. Microelectrode arrays: a general strategy for using oxidation reactions to site selectively modify electrode surfaces.

    PubMed

    Nguyen, Bichlien H; Kesselring, David; Tesfu, Eden; Moeller, Kevin D

    2014-03-04

    Oxidation reactions are powerful tools for synthesis because they allow for the functionalization of molecules. Here, we present a general method for conducting these reactions on a microelectrode array in a site-selective fashion. The reactions are run as a competition between generation of a chemical oxidant at the electrodes in the array and reduction of the oxidant by a "confining agent" in the solution above the array. The "confining agent" does not need to be more reactive than the substrate fixed to the surface of the array. In many cases, the same substrate placed on the surface of the array can also be used in solution as the confining agent.

  19. Double bond stereochemistry influences the susceptibility of short-chain isoprenoids and polyprenols to decomposition by thermo-oxidation.

    PubMed

    Molińska, Ewa; Klimczak, Urszula; Komaszyło, Joanna; Derewiaka, Dorota; Obiedziński, Mieczysław; Kania, Magdalena; Danikiewicz, Witold; Swiezewska, Ewa

    2015-04-01

    Isoprenoid alcohols are common constituents of living cells. They are usually assigned a role in the adaptation of the cell to environmental stimuli, and this process might give rise to their oxidation by reactive oxygen species. Moreover, cellular isoprenoids may also undergo various chemical modifications resulting from the physico-chemical treatment of the tissues, e.g., heating during food processing. Susceptibility of isoprenoid alcohols to heat treatment has not been studied in detail so far. In this study, isoprenoid alcohols differing in the number of isoprene units and geometry of the double bonds, β-citronellol, geraniol, nerol, farnesol, solanesol and Pren-9, were subjected to thermo-oxidation at 80 °C. Thermo-oxidation resulted in the decomposition of the tested short-chain isoprenoids as well as medium-chain polyprenols with simultaneous formation of oxidized derivatives, such as hydroperoxides, monoepoxides, diepoxides and aldehydes, and possible formation of oligomeric derivatives. Oxidation products were monitored by GC-FID, GC-MS, ESI-MS and spectrophotometric methods. Interestingly, nerol, a short-chain isoprenoid with a double bond in the cis (Z) configuration, was more oxidatively stable than its trans (E) isomer, geraniol. However, the opposite effect was observed for medium-chain polyprenols, since Pren-9 (di-trans-poly-cis-prenol) was more susceptible to thermo-oxidation than its all-trans isomer, solanesol. Taken together, these results experimentally confirm that both short- and long-chain polyisoprenoid alcohols are prone to thermo-oxidation.

  20. The Molybdenum Active Site of Formate Dehydrogenase Is Capable of Catalyzing C-H Bond Cleavage and Oxygen Atom Transfer Reactions.

    PubMed

    Hartmann, Tobias; Schrapers, Peer; Utesch, Tillmann; Nimtz, Manfred; Rippers, Yvonne; Dau, Holger; Mroginski, Maria Andrea; Haumann, Michael; Leimkühler, Silke

    2016-04-26

    Formate dehydrogenases (FDHs) are capable of performing the reversible oxidation of formate and are enzymes of great interest for fuel cell applications and for the production of reduced carbon compounds as energy sources from CO2. Metal-containing FDHs in general contain a highly conserved active site, comprising a molybdenum (or tungsten) center coordinated by two molybdopterin guanine dinucleotide molecules, a sulfido and a (seleno-)cysteine ligand, in addition to a histidine and arginine residue in the second coordination sphere. So far, the role of these amino acids in catalysis has not been studied in detail, because of the lack of suitable expression systems and the lability or oxygen sensitivity of the enzymes. Here, the roles of these active site residues is revealed using the Mo-containing FDH from Rhodobacter capsulatus. Our results show that the cysteine ligand at the Mo ion is displaced by the formate substrate during the reaction, the arginine has a direct role in substrate binding and stabilization, and the histidine elevates the pKa of the active site cysteine. We further found that in addition to reversible formate oxidation, the enzyme is further capable of reducing nitrate to nitrite. We propose a mechanistic scheme that combines both functionalities and provides important insights into the distinct mechanisms of C-H bond cleavage and oxygen atom transfer catalyzed by formate dehydrogenase.

  1. Influence of interfacial shear strength on the mechanical properties of SiC fiber reinforced reaction-bonded silicon nitride matrix composites

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.

    1990-01-01

    The influence of fiber/matrix interface microstructure and interfacial shear strength on the mechanical properties of a fiber-reinforced ceramic composite was evaluated. The composite consisted of approximately 30 vol percent uniaxially aligned 142 microns diameter SiC fibers (Textron SCS-6) in a reaction-bonded Si3N4 matrix (SiC/RBSN). The interface microstructure was varied by controlling the composite fabrication conditions and by heat treating the composite in an oxidizing environment. Interfacial shear strength was determined by the matrix crack spacing method. The results of microstructural examination indicate that the carbon-rich coating provided with the as-produced SiC fibers was stable in composites fabricated at 1200 C in a nitrogen or in a nitrogen plus 4 percent hydrogen mixture for 40 hr. However this coating degraded in composites fabricated at 1350 C in N2 + 4 percent H2 for 40 and 72 hr and also in composites heat treated in an oxidizing environment at 600 C for 100 hr after fabrication at 1200 C in a nitrogen. It was determined that degradation occurred by carbon removal which in turn had a strong influence on interfacial shear strength and other mechanical properties. Specifically, as the carbon coating was removed, the composite interfacial shear strength, primary elastic modulus, first matrix cracking stress, and ultimate tensile strength decreased, but the first matrix cracking strain remained nearly the same.

  2. Molecular Recognition in Mn-Catalyzed C-H Oxidation. Reaction Mechanism and Origin of Selectivity from a DFT Perspective

    PubMed Central

    Balcells, David; Moles, Pamela; Blakemore, James; Raynaud, Christophe; Brudvig, Gary W.; Crabtree, Robert H.

    2010-01-01

    Experimental studies have shown that the C-H oxidation of ibuprofen and methylcyclohexane acetic acid can be carried out with high selectivies using [(terpy’)Mn(OH2)(μ-O)2Mn(OH2)(terpy’)]3+ as catalyst, where terpy’ is a terpyridine ligand functionalized with a phenylene linker and a Kemp’s triacid serving to recognize the reactant via H-bonding. Experiments, described here, suggest that the sulfate counter anion, present in stochiometric amounts, coordinates to manganese in place of water. DFT calculations have been carried out using [(terpy’)Mn(O)(μ-O)2Mn(SO4)(terpy’)]+ as model catalyst, to analyze the origin of selectivity and its relation to molecular recognition, as well as the mechanism of catalyst inhibition by tert-butyl benzoic acid. The calculations show that a number of spin states, all having radical oxygen character, are energetically accessible. All these spin states promote C-H oxidation via a rebound mechanism. The catalyst recognizes the substrate by a double H bond. This interaction orients the substrate inducing highly selective C-H oxidation. The double hydrogen bond stabilizes the reactant, the transition state and the product to the same extent. Consequently, the reaction occurs at lower energy than without molecular recognition. The association of the catalyst with tert-butyl benzoic acid is shown to shield the access of unbound substrate to the reactive oxo site, hence preventing non-selective hydroxylation. It is shown that the two recognition sites of the catalyst can be used in a cooperative manner to control the access to the reactive centre. PMID:19623399

  3. Weak Intermolecular Hydrogen Bonds with Fluorine: Detection and Implications for Enzymatic/Chemical Reactions, Chemical Properties, and Ligand/Protein Fluorine NMR Screening.

    PubMed

    Dalvit, Claudio; Vulpetti, Anna

    2016-05-23

    It is known that strong hydrogen-bonding interactions play an important role in many chemical and biological systems. However, weak or very weak hydrogen bonds, which are often difficult to detect and characterize, may also be relevant in many recognition and reaction processes. Fluorine serving as a hydrogen-bond acceptor has been the subject of many controversial discussions and there are different opinions about it. It now appears that there is compelling experimental evidence for the involvement of fluorine in weak intramolecular or intermolecular hydrogen bonds. Using established NMR methods, we have previously characterized and measured the strengths of intermolecular hydrogen-bond complexes involving the fluorine moieties CH2 F, CHF2 , and CF3 , and have compared them with the well-known hydrogen-bond complex formed between acetophenone and the strong hydrogen-bond donor p-fluorophenol. We now report evidence for the formation of hydrogen bonds involving fluorine with significantly weaker donors, namely 5-fluoroindole and water. A simple NMR method is proposed for the simultaneous measurement of the strengths of hydrogen bonds between an acceptor and a donor or water. Important implications of these results for enzymatic/chemical reactions involving fluorine, for chemical and physical properties, and for ligand/protein (19) F NMR screening are analyzed through experiments and theoretical simulations.

  4. Influence of Alumina Reaction Tube Impurities on the Oxidation of Chemically-Vapor-Deposited Silicon Carbide

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth

    1995-01-01

    Pure coupons of chemically vapor deposited (CVD) SiC were oxidized for 100 h in dry flowing oxygen at 1300 C. The oxidation kinetics were monitored using thermogravimetry (TGA). The experiments were first performed using high-purity alumina reaction tubes. The experiments were then repeated using fused quartz reaction tubes. Differences in oxidation kinetics, scale composition, and scale morphology were observed. These differences were attributed to impurities in the alumina tubes. Investigators interested in high-temperature oxidation of silica formers should be aware that high-purity alumina can have significant effects on experiment results.

  5. Fundamental kinetics and mechanistic pathways for oxidation reactions in supercritical water

    NASA Technical Reports Server (NTRS)

    Webley, Paul A.; Tester, Jefferson W.

    1988-01-01

    Oxidation of the products of human metabolism in supercritical water has been shown to be an efficient way to accomplish the on-board water/waste recycling in future long-term space flights. Studies of the oxidation kinetics of methane to carbon dioxide in supercritical water are presented in this paper in order to enhance the fundamental understanding of the oxidation of human waste compounds in supercritical water. It is concluded that, although the elementary reaction models remain the best hope for simulating oxidation in supercritical water, several modifications to existing mechanisms need to be made to account for the role of water in the reaction mechanism.

  6. Thermal oxidative degradation reactions of linear perfluoroalky lethers

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Paciorek, K. J. L.; Ito, T. I.; Kratzer, R. H.

    1982-01-01

    Thermal and thermal oxidative stability studies were performed on linear perfluoro alkyl ether fluids. The effect on degradation by metal catalysts and degradation inhibitors are reported. The liner perfluoro alkylethers are inherently unstable at 316 C in an oxidizing atmosphere. The metal catalysts greatly increased the rate of degradation in oxidizing atmospheres. In the presence of these metals in an oxidizing atmosphere, the degradation inhibitors were highly effective in arresting degradation at 288 C. However, the inhibitors had only limited effectiveness at 316 C. The metals promote degradation by chain scission. Based on elemental analysis and oxygen consumption data, the linear perfluoro alkylether fluids have a structural arrangement based on difluoroformyl and tetrafluoroethylene oxide units, with the former predominating.

  7. Thermal oxidative degradation reactions of linear perfluoroalkyl ethers

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Paclorek, K. J. L.; Ito, T. I.; Kratzer, R. H.

    1983-01-01

    Thermal and thermal oxidative stability studies were performed on linear perfluoroalkyl ether fluids. The effect on degradation by metal catalysts and degradation inhibitors is reported. The linear perfluoroalkyl ethers are inherently unstable at 316 C in an oxidizing atmosphere. The metal catalysts greatly increased the rate of degradation in oxidizing atmospheres. In the presence of these metals in an oxidizing atmosphere, the degradation inhibitors were highly effective in arresting degradation at 288 C. However, the inhibitors had only limited effectiveness at 316 C. The metals promote degradation by chain scission. Based on elemental analysis and oxygen consumption data, the linear perfluoroalkyl ether fluids have a structural arrangement based on difluoroformyl and tetrafluoroethylene oxide units, with the former predominating. Previously announced in STAR as N82-26468

  8. Silver nanoparticles sensitized C60(Ag@C60) as efficient electrocatalysts for hydrazine oxidation: Implication for hydrogen generation reaction

    NASA Astrophysics Data System (ADS)

    Narwade, Shankar S.; Mulik, Balaji B.; Mali, Shivsharan M.; Sathe, Bhaskar R.

    2017-02-01

    Herein, we report the synthesis of silver nanoparticles (Ag NPs; 10 ± 0.5 nm) sensitized Fullerene (C60; 15 ±2 nm) nanocatalysts (Ag@C60) for the first time showing efficient electroatalytic activity for the oxidation of hydrazine demonstrating activity comparable to that of Pt in acidic, neutral and basic media. The performance is comparable with the best available electrocatalytic system and plays a vital role in the overall hydrogen generation reactions from hydrazine as a one of the fuel cell reaction. The materials are synthesized by a simple and scalable synthetic route involving acid functionalization of C60 followed by chemical reduction of Ag+ ions in ethylene glycol at high temperature. The distributation of Silver nanoparticles (Ag NPs) (morphological information) on C60, bonding, its crystal structure, along with activity towards hydrazine oxidation (electrocatalytic) is studied using TEM, XRD, UV-vis, XPS, FTIR and electrochemical (cyclic voltammetry) studies, respectively. The observed efficient electrocatalytic activity of the as-synthesized electrode is attributed to the co-operative response and associated structural defects due to their oxidative functionalization along with thier cooperative functioning at nanodimensions.

  9. Pyroprocessing of oxidized sodium-bonded fast reactor fuel - An experimental study of treatment options for degraded EBR-II fuel

    SciTech Connect

    Hermann, S.D.; Gese, N.J.; Wurth, L.A.

    2013-07-01

    An experimental study was conducted to assess pyrochemical treatment options for degraded EBR-II fuel. As oxidized material, the degraded fuel would need to be converted back to metal to enable electrorefining within an existing electro-metallurgical treatment process. A lithium-based electrolytic reduction process was studied to assess the efficacy of converting oxide materials to metal with a particular focus on the impact of zirconium oxide and sodium oxide on this process. Bench-scale electrolytic reduction experiments were performed in LiCl-Li{sub 2}O at 650 C. degrees with combinations of manganese oxide (used as a surrogate for uranium oxide), zirconium oxide, and sodium oxide. In the absence of zirconium or sodium oxide, the electrolytic reduction of MnO showed nearly complete conversion to metal. The electrolytic reduction of a blend of MnO-ZrO{sub 2} in LiCl - 1 wt% Li{sub 2}O showed substantial reduction of manganese, but only 8.5% of the zirconium was found in the metal phase. The electrolytic reduction of the same blend of MnO-ZrO{sub 2} in LiCl - 1 wt% Li{sub 2}O - 6.2 wt% Na{sub 2}O showed substantial reduction of manganese, but zirconium reduction was even less at 2.4%. This study concluded that ZrO{sub 2} cannot be substantially reduced to metal in an electrolytic reduction system with LiCl - 1 wt% Li{sub 2}O at 650 C. degrees due to the perceived preferential formation of lithium zirconate. This study also identified a possible interference that sodium oxide may have on the same system by introducing a parasitic and cyclic reaction of dissolved sodium metal between oxidation at the anode and reduction at the cathode. When applied to oxidized sodium-bonded EBR-II fuel (e.g., U-10Zr), the prescribed electrolytic reduction system would not be expected to substantially reduce zirconium oxide, and the accumulation of sodium in the electrolyte could interfere with the reduction of uranium oxide, or at least render it less efficient.

  10. Aerobic oxidation of methanol to formic acid on Au20-: a theoretical study on the reaction mechanism.

    PubMed

    Bobuatong, Karan; Karanjit, Sangita; Fukuda, Ryoichi; Ehara, Masahiro; Sakurai, Hidehiro

    2012-03-07

    The aerobic oxidation of methanol to formic acid catalyzed by Au(20)(-) has been investigated quantum chemically using density functional theory with the M06 functional. Possible reaction pathways are examined taking account of full structure relaxation of the Au(20)(-) cluster. The proposed reaction mechanism consists of three elementary steps: (1) formation of formaldehyde from methoxy species activated by a superoxo-like anion on the gold cluster; (2) nucleophilic addition by the hydroxyl group of a hydroperoxyl-like complex to formaldehyde resulting in a hemiacetal intermediate; and (3) formation of formic acid by hydrogen transfer from the hemiacetal intermediate to atomic oxygen attached to the gold cluster. A comparison of the computed energetics of various elementary steps indicates that C-H bond dissociation of the methoxy species leading to formation of formaldehyde is the rate-determining step. A possible reaction pathway involving single-step hydrogen abstraction, a concerted mechanism, is also discussed. The stabilities of reactants, intermediates and transition state structures are governed by the coordination number of the gold atoms, charge distribution, cooperative effect and structural distortion, which are the key parameters for understanding the relationship between the structure of the gold cluster and catalytic activity in the aerobic oxidation of alcohols.

  11. Influence of a reaction medium on the oxidation of aromatic nitrogen-containing compounds by peroxyacids

    NASA Astrophysics Data System (ADS)

    Dutka, V. S.; Matsyuk, N. V.; Dutka, Yu. V.

    2011-01-01

    The influence of different solvents on the oxidation reaction rate of pyridine (Py), quinoline (QN), acridine (AN), α-oxyquinoline (OQN) and α-picolinic acid (APA) by peroxydecanoic acid (PDA) was studied. It was found that the oxidation rate grows in the series Py < QN < AN, and the rate of the oxidation reaction of compounds containing a substituent in the α position from a reactive center is significantly lower than for unsubstituted analogues. The effective energies of activation of the oxidation reaction were found. It was shown that in the first stage, the reaction mechanism includes the rapid formation of an intermediate complex nitrogen-containing compound, peroxyacid, which forms products upon decomposing in the second stage. A kinetic equation that describes the studied process is offered. The constants of equilibrium of the intermediate complex formation ( K eq) and its decomposition constant ( k 2) in acetone and benzene were calculated. It was shown that the nature of the solvent influences the numerical values of both K p and k 2. It was established that introduction of acetic acid (which is able to form compounds with Py) into the reaction medium slows the rate of the oxidation process drastically. Correlation equations linking the polarity, polarizability, electrophilicity, and basicity of solvents with the constant of the PDA oxidation reaction rate for Py were found. It was concluded that the basicity and polarity of the solvent have a decisive influence on the oxidation reaction rate, while the polarizability and electrophilicity of the reaction medium do not influence the oxidation reaction rate.

  12. Phytosphingosine degradation pathway includes fatty acid α-oxidation reactions in the endoplasmic reticulum.

    PubMed

    Kitamura, Takuya; Seki, Naoya; Kihara, Akio

    2017-03-28

    Although normal fatty acids (FAs) are degraded via β-oxidation, unusual FAs such as 2-hydroxy (2-OH) FAs and 3-methyl-branched FAs are degraded via α-oxidation. Phytosphingosine (PHS) is one of the long-chain bases (the sphingolipid components) and exists in specific tissues, including the epidermis and small intestine in mammals. In the degradation pathway, PHS is converted to 2-OH palmitic acid and then to pentadecanoic acid (C15:0-COOH) via FA α-oxidation. However, the detailed reactions and genes involved in the α-oxidation reactions of the PHS degradation pathway have yet to be determined. In the present study, we reveal the entire PHS degradation pathway: PHS is converted to C15:0-COOH via six reactions [phosphorylation, cleavage, oxidation, CoA addition, cleavage (C1 removal), and oxidation], in which the last three reactions correspond to the α-oxidation. The aldehyde dehydrogenase ALDH3A2 catalyzes both the first and second oxidation reactions (fatty aldehydes to FAs). In Aldh3a2-deficient cells, the unmetabolized fatty aldehydes are reduced to fatty alcohols and are incorporated into ether-linked glycerolipids. We also identify HACL2 (2-hydroxyacyl-CoA lyase 2) [previous name, ILVBL; ilvB (bacterial acetolactate synthase)-like] as the major 2-OH acyl-CoA lyase involved in the cleavage (C1 removal) reaction in the FA α-oxidation of the PHS degradation pathway. HACL2 is localized in the endoplasmic reticulum. Thus, in addition to the already-known FA α-oxidation in the peroxisomes, we have revealed the existence of FA α-oxidation in the endoplasmic reticulum in mammals.

  13. Tuning the mechanical properties of graphene oxide paper and its associated polymer nanocomposites by controlling cooperative intersheet hydrogen bonding.

    PubMed

    Compton, Owen C; Cranford, Steven W; Putz, Karl W; An, Zhi; Brinson, L Catherine; Buehler, Markus J; Nguyen, SonBinh T

    2012-03-27

    The mechanical properties of pristine graphene oxide paper and paper-like films of polyvinyl alcohol (PVA)-graphene oxide nanocomposite are investigated in a joint experimental-theoretical and computational study. In combination, these studies reveal a delicate relationship between the stiffness of these papers and the water content in their lamellar structures. ReaxFF-based molecular dynamics (MD) simulations elucidate the role of water molecules in modifying the mechanical properties of both pristine and nanocomposite graphene oxide papers, as bridge-forming water molecules between adjacent layers in the paper structure enhance stress transfer by means of a cooperative hydrogen-bonding network. For graphene oxide paper at an optimal concentration of ~5 wt % water, the degree of cooperative hydrogen bonding within the network comprising adjacent nanosheets and water molecules was found to optimally enhance the modulus of the paper without saturating the gallery space. Introducing PVA chains into the gallery space further enhances the cooperativity of this hydrogen-bonding network, in a manner similar to that found in natural biomaterials, resulting in increased stiffness of the composite. No optimal water concentration could be found for the PVA-graphene oxide nanocomposite papers, as dehydration of these structures continually enhances stiffness until a final water content of ~7 wt % (additional water cannot be removed from the system even after 12 h of annealing).

  14. Intramolecular C-N bond activation and ring-expansion reactions of N-heterocyclic carbenes.

    PubMed

    Hemberger, Patrick; Bodi, Andras; Berthel, Johannes H J; Radius, Udo

    2015-01-19

    Intramolecular ring-expansion reactions (RER) of the N-heterocyclic carbene 1,3-dimethylimidazolin-2-ylidene were observed upon vacuum ultraviolet (VUV) photoexcitation. Similarly to RERs reported in the solvent phase, for the reaction of NHCs with main-group-element hydrides, hydrogen transfer to the NHC carbon atom is the crucial initial step. In an ionization-mediated protonation, 1,3-dimethylimidazolin-2-ylidene forms an imidazolium ion, which is the rate-limiting step on the pathway to two six-membered ring products, namely, methylpyrimidinium and -pyrazinium ions. To unravel the reaction path, we have used imaging photoelectron photoion coincidence spectroscopy with VUV synchrotron radiation, as well as high-level composite method calculations. Similarities and differences between the mechanism in the gas phase and in the condensed phase are discussed.

  15. Local Electron Attachment Energy and Its Use for Predicting Nucleophilic Reactions and Halogen Bonding.

    PubMed

    Brinck, Tore; Carlqvist, Peter; Stenlid, Joakim H

    2016-12-22

    A new local property, the local electron attachment energy [E(r)], is introduced and is demonstrated to be a useful guide to predict intermolecular interactions and chemical reactivity. The E(r) is analogous to the average local ionization energy but indicates susceptibility toward interactions with nucleophiles rather than electrophiles. The functional form E(r) is motivated based on Janak's theorem and the piecewise linear energy dependence of electron addition to atomic and molecular systems. Within the generalized Kohn-Sham method (GKS-DFT), only the virtual orbitals with negative eigenvalues contribute to E(r). In the present study, E(r) has been computed from orbitals obtained from GKS-DFT computations with a hybrid exchange-correlation functional. It is shown that E(r) computed on a molecular isodensity surface, ES(r), reflects the regioselectivity and relative reactivity for nucleophilic aromatic substitution, nucleophilic addition to activated double bonds, and formation of halogen bonds. Good to excellent correlations between experimental or theoretical measures of interaction strengths and minima in ES(r) (ES,min) are demonstrated.

  16. Process of forming catalytic surfaces for wet oxidation reactions

    NASA Technical Reports Server (NTRS)

    Jagow, R. B. (Inventor)

    1977-01-01

    A wet oxidation process was developed for oxidizing waste materials, comprising dissolved ruthenium salt in a reactant feed stream containing the waste materials. The feed stream is introduced into a reactor, and the reactor contents are then raised to an elevated temperature to effect deposition of a catalytic surface of ruthenium black on the interior walls of the reactor. The feed stream is then maintained in the reactor for a period of time sufficient to effect at least partial oxidation of the waste materials.

  17. Aerosol synthesis and electrochemical analysis of niobium mixed-metal oxides for the ethanol oxidation reaction in acid and alkaline electrolyte

    NASA Astrophysics Data System (ADS)

    Konopka, Daniel A.

    . For the first time, in situ FTIR measurements in acid electrolyte showed that highly dispersed Pt nanoparticles (2--5nm) on NbRuyO z (at% 8Nb:1Ru) catalyze the formation of CO2 from ethanol in greater yield, and 0.35--0.4V lower, than Pt(111). Compared to conventional Pt/carbon, this indicates that, (1) Pt supported on NbRuyO z can be more effective at splitting the C---C bond in ethanol and, (2) the scission occurs at potentials more ideal for a higher efficiency fuel cell anode. Ex situ-microscopy revealed the polarization-induced two- and three-dimensional formation of Pt-NbOx interfacial adsorption sites responsible for the facilitation of the total oxidation pathway of ethanol. The results show that synthesis and post-treatment of niobia supports can bias the utility of Pt/niobia systems towards the ethanol oxidation reaction at the anode or the oxygen reduction reaction at the cathode. Experimental and computational-theoretical analyses indicate that the mechanism of interfacial site formation is dependent upon the local oxygen concentration, as well as the availability of multiple, energetically accessible oxidation states like those inherent to niobia. Future directions for the development of highly active, niobium-based materials tailored for efficient catalysis of the total oxidation pathway of ethanol are discussed.

  18. A method of coupling the Paternò-Büchi reaction with direct infusion ESI-MS/MS for locating the C[double bond, length as m-dash]C bond in glycerophospholipids.

    PubMed

    Stinson, Craig A; Xia, Yu

    2016-06-21

    Tandem mass spectrometry (MS/MS) coupled with soft ionization is established as an essential platform for lipid analysis; however, determining high order structural information, such as the carbon-carbon double bond (C[double bond, length as m-dash]C) location, remains challenging. Recently, our group demonstrated a method for sensitive and confident lipid C[double bond, length as m-dash]C location determination by coupling online the Paternò-Büchi (PB) reaction with nanoelectrospray ionization (nanoESI) and MS/MS. Herein, we aimed to expand the scope of the PB reaction for lipid analysis by enabling the reaction with infusion ESI-MS/MS at much higher flow rates than demonstrated in the nanoESI setup (∼20 nL min(-1)). In the new design, the PB reaction was effected in a fused silica capillary solution transfer line, which also served as a microflow UV reactor, prior to ESI. This setup allowed PB reaction optimization and kinetics studies. Under optimized conditions, a maximum of 50% PB reaction yield could be achieved for a standard glycerophosphocholine (PC) within 6 s of UV exposure over a wide flow rate range (0.1-10 μL min(-1)). A solvent composition of 7 : 3 acetone : H2O (with 1% acid or base modifier) allowed the highest PB yields and good lipid ionization, while lower yields were obtained with an addition of a variety of organic solvents. Radical induced lipid peroxidation was identified to induce undesirable side reactions, which could be effectively suppressed by eliminating trace oxygen in the solution via N2 purge. Finally, the utility of coupling the PB reaction with infusion ESI-MS/MS was demonstrated by analyzing a yeast polar lipid extract where C[double bond, length as m-dash]C bond locations were revealed for 35 glycerophospholipids (GPs).

  19. PALLADIUM-CATALYZED OXIDATION OF STYRENE AND ALKENES IN PRESENCE OF IONIC LIQUIDS (WACKER REACTION)

    EPA Science Inventory

    The use of ionic liquids in various synthetic transformations is gaining significance due to the enhanced reaction rates, potential for recycling and compatibility with various organic compounds and organometallic catalysts. Palladium-catalyzed oxidation of styrene and other alk...

  20. Carbon-coated magnetic palladium: applications in partial oxidation of alcohols and coupling reactions.

    EPA Science Inventory

    Magnetic carbon supported Pd catalyst has been synthesized via in situ generation of nanoferrites and incorporation of carbon from renewable cellulose via calcination; catalyst can be used for oxidation of alcohols, amination reaction and arylation of aryl halides (cross coupli...

  1. Bulk Gold-Catalyzed Reactions of Isocyanides, Amines, and Amine N-Oxides

    SciTech Connect

    Klobukowski, Erik; Angelici, Robert; Woo, Keith L.

    2012-01-26

    Bulk gold powder (5–50 μm particles) catalyzes the reactions of isocyanides with amines and amine N-oxides to produce ureas. The reaction of n-butyl isocyanide (nBu–N≡C) with di-n-propylamine and N-methylmorpholine N-oxide in acetonitrile, which was studied in the greatest detail, produced 3-butyl-1,1-dipropylurea (O═C(NHnBu)(NnPr2)) in 99% yield at 60 °C within 2 h. Sterically and electronically different isocyanides, amines, and amine N-oxides react successfully under these conditions. Detailed studies support a two-step mechanism that involves a gold-catalyzed reaction of adsorbed isocyanide with the amine N-oxide to form an isocyanate (RN═C═O), which rapidly reacts with the amine to give the urea product. These investigations show that bulk gold, despite its reputation for poor catalytic activity, is capable of catalyzing these reactions.

  2. Intramolecular general acid catalysis of the hydrolysis of 2-(2'-imidazolium)phenyl phosphate, and bond length-reactivity correlations for reactions of phosphate monoester monoanions.

    PubMed

    Brandão, Tiago A S; Orth, Elisa S; Rocha, Willian R; Bortoluzzi, Adailton J; Bunton, Clifford A; Nome, Faruk

    2007-05-11

    Rate constants for the hydrolysis of 2-(2'-imidazolium)phenyl hydrogen phosphate (IMPP) in water at pH<6 indicate that activation by the imidazolium moiety disappears with the deprotonation of the phosphate group, and the reaction involves the hydrogen-bonding of the imidazolium NH with the aryl oxygen leaving group. The reaction should involve a near-planar conformation of the imidazolium and the phenyl groups in the activated complex, which favors proton-transfer. The crystal structure of IMPP was solved, and a bond length-reactivity correlation for reactions of phosphate monoester monoanions is described.

  3. Chemical bonding, optical constants, and electrical resistivity of sputter-deposited gallium oxide thin films

    SciTech Connect

    Ramana, C. V. Rubio, E. J.; Barraza, C. D.; Miranda Gallardo, A.; McPeak, Samantha; Kotru, Sushma; Grant, J. T.

    2014-01-28

    Gallium oxide (Ga{sub 2}O{sub 3}) thin films were made by sputter deposition employing a Ga{sub 2}O{sub 3} ceramic target for sputtering. The depositions were made over a wide range of substrate temperatures (T{sub s}), from 25 to 600 °C. The effect of T{sub s} on the chemical bonding, surface morphological characteristics, optical constants, and electrical properties of the grown films was evaluated using X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), spectroscopic ellipsometry (SE), and four-point probe measurements. XPS analyses indicate the binding energies (BE) of the Ga 2p doublet, i.e., the Ga 2p{sub 3/2} and Ga 2p{sub 1/2} peaks, are located at 1118.0 and 1145.0 eV, respectively, characterizing gallium in its highest chemical oxidation state (Ga{sup 3+}) in the grown films. The core level XPS spectra of O 1s indicate that the peak is centered at a BE ∼ 531 eV, which is also characteristic of Ga-O bonds in the Ga{sub 2}O{sub 3} phase. The granular morphology of the nanocrystalline Ga{sub 2}O{sub 3} films was evident from AFM measurements, which also indicate that the surface roughness of the films increases from 0.5 nm to 3.0 nm with increasing T{sub s}. The SE analyses indicate that the index of refraction (n) of Ga{sub 2}O{sub 3} films increases with increasing T{sub s} due to improved structural quality and packing density of the films. The n(λ) of all the Ga{sub 2}O{sub 3} films follows the Cauchy's dispersion relation. The room temperature electrical resistivity was high (∼200 Ω-cm) for amorphous Ga{sub 2}O{sub 3} films grown at T{sub s} = RT-300 °C and decreased to ∼1 Ω-cm for nanocrystalline Ga{sub 2}O{sub 3} films grown at T{sub s} ≥ 500–600 °C. A correlation between growth conditions, microstructure, optical constants, and electrical properties of Ga{sub 2}O{sub 3} films is derived.

  4. Evolution of chemical bonding and electron density rearrangements during D(3h) → D(3d) reaction in monolayered TiS2: a QTAIM and ELF study.

    PubMed

    Ryzhikov, Maxim R; Slepkov, Vladimir A; Kozlova, Svetlana G; Gabuda, Svyatoslav P

    2014-08-15

    Monolayered titanium disulfide TiS2, a prospective nanoelectronic material, was previously shown to be subject to an exothermic solid-state D3h -D3d reaction that proceeds via a newly discovered transition state. Here, we study the reaction in detail using topological methods of quantum chemistry (quantum theory of atoms in molecules and electron localization function analysis) and show how electron density and chemical bonding between the atoms change in the course of the reaction. The reaction is shown to undergo a series of topological catastrophes, associated with elementary chemical events such as break and formation of bonds (including the unexpected formation of S-S bonding between sulfur layers), and rearrangement of electron density of outer valence and core shells.

  5. Effect of oxidation heat treatment on the bond strength between a ceramic and cast and milled cobalt-chromium alloys.

    PubMed

    Li, Jieyin; Ye, Xiuhua; Li, Bohua; Liao, Juankun; Zhuang, Peilin; Ye, Jiantao

    2015-08-01

    There is a dearth of dental scientific literature on the effect of different oxidation heat treatments (OHTs) (as surface pretreatments) on the bonding performance of cast and milled cobalt-chromium (CoCr) alloys. The objective of this study was to evaluate the effect of different OHTs on the bond strength between a ceramic and cast and milled CoCr alloys. Cobalt-chromium metallic specimens were prepared using either a cast or a milled method. Specimens were subjected to four different OHT methods: without OHT; OHT under normal atmospheric pressure; OHT under vacuum; and OHT under vacuum followed by sandblasting. The metal-ceramic bond strength was evaluated using a three-point bending test according to ISO9693. Scanning electron microscopy and energy-dispersive spectroscopy were used to study the specimens' microstructure and elemental composition. The bond strength was not affected by the CoCr manufacturing method. Oxidation heat treatment performed under normal atmospheric pressure resulted in the highest bond strength. The concentration of oxygen on the alloy surfaces varied with the different pretreatment methods in the following order: OHT under normal atmospheric pressure > OHT under vacuum > without OHT ≈ OHT under vacuum followed by sandblasting.

  6. In Pursuit of an Ideal C-C Bond-Forming Reaction

    PubMed Central

    RajanBabu, T. V.

    2009-01-01

    Attempts to introduce the highly versatile vinyl group into other organic molecules in a chemo-, regio- and stereoselective fashion via catalytic activation of ethylene provided challenging opportunities to explore new ligand and salt effects in homogeneous catalysis. This review provides a personal account of the development of enantioselective reactions involving ethylene. PMID:19606231

  7. Enantioselective Synthesis of (+)-Estrone Exploiting a Hydrogen Bond-Promoted Diels−Alder Reaction

    PubMed Central

    2010-01-01

    Starting from Dane’s diene and methylcyclopentenedione, (+)-estrone is synthesized along the Quinkert−Dane route in 24% total yield. The key step is an enantioselective Diels−Alder reaction promoted by an amidinium catalyst as efficiently as by a traditional Ti-TADDOLate Lewis acid. PMID:20302330

  8. Preferential activation of primary C-H bonds in the reactions of small alkanes with the diatomic MgO(+*) cation.

    PubMed

    Schröder, Detlef; Roithová, Jana; Alikhani, Esmail; Kwapien, Karolina; Sauer, Joachim

    2010-04-06

    The C-H bond activation of small alkanes by the gaseous MgO(+*) cation is probed by mass spectrometric means. In addition to H-atom abstraction from methane, the MgO(+*) cation reacts with ethane, propane, n- and iso-butane through several pathways, which can all be assigned to the occurrence of initial C-H bond activations. Specifically, the formal C-C bond cleavages observed are assigned to C-H bond activation as the first step, followed by cleavage of a beta-C-C bond concomitant with release of the corresponding alkyl radical. Kinetic modeling of the observed product distributions reveals a high preference of MgO(+*) for the attack of primary C-H bonds. This feature represents a notable distinction of the main-group metal oxide MgO(+*) from various transition-metal oxide cations, which show a clear preference for the attack of secondary C-H bonds. The results of complementary theoretical calculations indicate that the C-H bond activation of larger alkanes by the MgO(+*) cation is subject to pronounced kinetic control.

  9. Effect of Cyclic Oxidation Exposure on Tensile Properties of a Pt-Aluminide Bond-Coated Ni-Base Superalloy

    NASA Astrophysics Data System (ADS)

    Zafir Alam, Md.; Hazari, N.; Varma, Vijay K.; Das, Dipak K.

    2011-12-01

    The tensile behavior of a directionally solidified (DS) Ni-base superalloy, namely, CM-247LC, was evaluated in the presence of a Pt-aluminide bond coat. The effect of the thermal cycling exposure of the coated alloy at 1373 K (1100 °C) on its tensile properties was examined. The tensile properties were evaluated at a temperature of 1143 K (870 °C). The presence of the bond coating caused an approximately 8 pct drop in the strength of the alloy in the as-coated condition. However, the coating did not appreciably affect the tensile ductility of the substrate alloy. The bond coat prevented oxidation-related surface damage to the superalloy during thermal cycling exposure in air at 1373 K (1100 °C). Such cyclic oxidation exposure (up to 750 hours) did not cause any further reduction in yield strength (YS) of the coated alloy. There was a marginal decrease in the ultimate tensile strength (UTS) with increased exposure duration. Because of the oxidation protection provided by the bond coat, the drastic loss in ductility of the alloy, which would have happened in the absence of the coating, was prevented.

  10. Polyhydrides of Platinum Group Metals: Nonclassical Interactions and σ-Bond Activation Reactions.

    PubMed

    Esteruelas, Miguel A; López, Ana M; Oliván, Montserrat

    2016-08-10

    The preparation, structure, dynamic behavior in solution, and reactivity of polyhydride complexes of platinum group metals, described during the last three decades, are contextualized from both organometallic and coordination chemistry points of view. These compounds, which contain dihydrogen, elongated dihydrogen, compressed dihydride, and classical dihydride ligands promote the activation of B-H, C-H, Si-H, N-H, O-H, C-C, C-N, and C-F, among other σ-bonds. In this review, it is shown that, unlike other more mature areas, the chemistry of polyhydrides offers new exciting conceptual challenges and at the same time the possibility of interacting with other fields including the conversion and storage of regenerative energy, organic synthetic chemistry, drug design, and material science. This wide range of possible interactions foresees promising advances in the near future.

  11. Heterogeneous photochemical reactions of a propylene-nitrogen dioxide-metal oxide-dry air system

    NASA Astrophysics Data System (ADS)

    Takeuchi, Koji; Ibusuki, Takashi

    Photochemical reactions of a C 3H 6-NO 2-air system in the presence of metal oxide were investigated. The metal oxides showing strong photooxidation activity were found to be n-type semiconductor oxides with the energy band gap around 3 eV. Formation of cyano-compounds (HCN and CH 3CN) was also observed and the activity can be explained in terms of the adsorptivity of NO onto metal oxides. Coalfired fly ash as a model of mixed metal oxides was also examined and their photocatalytic action was discussed.

  12. Oxidative condensation reactions of (diethylenetriamine)cobalt(III) complexes with substituted bis(pyridin-2-yl)methane ligands

    NASA Astrophysics Data System (ADS)

    Zhou, Xiangting; Hockless, David C. R.; Willis, Anthony C.; Jackson, W. Gregory

    2005-04-01

    The synthesis and characterisation of Co(III) complexes derived from a condensation reaction with a central or terminal nitrogen of a dien ligand and the α-carbon of a range of substituted bis(pyridin-2-yl)methane ligands are described. Aerial oxidation of bpm {bis(pyridin-2-yl)methane with Co(II)/dien or direct reaction with Co(dien)Cl 3 provided in low yield a single C-N condensation product 1 (at the primary terminal NH 2) after the pyridyl -CH 2- is formally oxidised to -CH +-. The methyl substituted ligand bpe {1,1-bis(pyridin-2-yl)ethane} behaves likewise, except both terminal (prim) and central (sec) amines condense to yield isomeric products 2 and 3. Two of these three materials have been characterised by single crystal X-ray crystallography. The corresponding reactions for the bis(pyridyl) ligand bpk {bis(pyridin-2-yl)ketone} provided C-N condensation products without the requirement for oxidation at the α-C center; two carbinolamine complexes in different geometrical configurations resulted, mer-anti-[Co(dienbpc)Cl]ZnCl 4, 5, and unsym- fac-[Co(dienbpc)Cl]ZnCl 4, 6, {dienbpc=[2-(2-aminoethylamino)-ethylamino]-di-pyridin-2-yl-methanol}. In addition, a novel complex, [Co(bpk)(bpd-OH)Cl]ZnCl 4, 4, in which one bidentate N, N-bonded bpk ligand and one tridentate N, O, N-bonded bpd (the diol from bpk+OH -) were coordinated, was obtained via the Co(II)/O 2 synthetic route. When the bpc ligand (bpc=bis(pyridin-2-yl)methanol) was employed directly as a reagent along with dien, no condensation reactions were observed, but rather a single isomeric complex [Co(dien)(bpc)]Cl.ZnCl 4, 7, in which the ligand bpc acted as a N,N,O-bonded tridentate ligand rather than as a N,N-bidentate ligand was isolated. 13C, 1D and 2D 1H NMR studies are reported for all the complexes; they establish the structures unambiguously.

  13. Imbalance of heterologous protein folding and disulfide bond formation rates yields runaway oxidative stress

    PubMed Central

    2012-01-01

    Background The protein secretory pathway must process a wide assortment of native proteins for eukaryotic cells to function. As well, recombinant protein secretion is used extensively to produce many biologics and industrial enzymes. Therefore, secretory pathway dysfunction can be highly detrimental to the cell and can drastically inhibit product titers in biochemical production. Because the secretory pathway is a highly-integrated, multi-organelle system, dysfunction can happen at many levels and dissecting the root cause can be challenging. In this study, we apply a systems biology approach to analyze secretory pathway dysfunctions resulting from heterologous production of a small protein (insulin precursor) or a larger protein (α-amylase). Results HAC1-dependent and independent dysfunctions and cellular responses were apparent across multiple datasets. In particular, processes involving (a) degradation of protein/recycling amino acids, (b) overall transcription/translation repression, and (c) oxidative stress were broadly associated with secretory stress. Conclusions Apparent runaway oxidative stress due to radical production observed here and elsewhere can be explained by a futile cycle of disulfide formation and breaking that consumes reduced glutathione and produces reactive oxygen species. The futile cycle is dominating when protein folding rates are low relative to disulfide bond formation rates. While not strictly conclusive with the present data, this insight does provide a molecular interpretation to an, until now, largely empirical understanding of optimizing heterologous protein secretion. This molecular insight has direct implications on engineering a broad range of recombinant proteins for secretion and provides potential hypotheses for the root causes of several secretory-associated diseases. PMID:22380681

  14. Structural and medium effects on the reactions of the cumyloxyl radical with intramolecular hydrogen bonded phenols. The interplay between hydrogen-bonding and acid-base interactions on the hydrogen atom transfer reactivity and selectivity.

    PubMed

    Salamone, Michela; Amorati, Riccardo; Menichetti, Stefano; Viglianisi, Caterina; Bietti, Massimo

    2014-07-03

    A time-resolved kinetic study on the reactions of the cumyloxyl radical (CumO(•)) with intramolecularly hydrogen bonded 2-(1-piperidinylmethyl)phenol (1) and 4-methoxy-2-(1-piperidinylmethyl)phenol (2) and with 4-methoxy-3-(1-piperidinylmethyl)phenol (3) has been carried out. In acetonitrile, intramolecular hydrogen bonding protects the phenolic O-H of 1 and 2 from attack by CumO(•) and hydrogen atom transfer (HAT) exclusively occurs from the C-H bonds that are α to the piperidine nitrogen (α-C-H bonds). With 3 HAT from both the phenolic O-H and the α-C-H bonds is observed. In the presence of TFA or Mg(ClO4)2, protonation or Mg(2+) complexation of the piperidine nitrogen removes the intramolecular hydrogen bond in 1 and 2 and strongly deactivates the α-C-H bonds of the three substrates. Under these conditions, HAT to CumO(•) exclusively occurs from the phenolic O-H group of 1-3. These results clearly show that in these systems the interplay between intramolecular hydrogen bonding and Brønsted and Lewis acid-base interactions can drastically influence both the HAT reactivity and selectivity. The possible implications of these findings are discussed in the framework of the important role played by tyrosyl radicals in biological systems.

  15. Applied reaction dynamics: Efficient synthesis gas production via single collision partial oxidation of methane to CO on Rh(111)

    NASA Astrophysics Data System (ADS)

    Gibson, K. D.; Viste, M.; Sibener, S. J.

    2006-10-01

    Supersonic molecular beams have been used to determine the yield of CO from the partial oxidation of CH4 on a Rh(111) catalytic substrate, CH4+(1/2)O2→CO +2H2, as a function of beam kinetic energy. These experiments were done under ultrahigh vacuum conditions with concurrent molecular beams of O2 and CH4, ensuring that there was only a single collision for the CH4 to react with the surface. The fraction of CH4 converted is strongly dependent on the normal component of the incident beam's translational energy, and approaches unity for energies greater than ˜1.3eV. Comparison with a simplified model of the methane-Rh(111) reactive potential gives insight into the barrier for methane dissociation. These results demonstrate the efficient conversion of methane to synthesis gas, CO +2H2, are of interest in hydrogen generation, and have the optimal stoichiometry for subsequent utilization in synthetic fuel production (Fischer-Tropsch or methanol synthesis). Moreover, under the reaction conditions explored, no CO2 was detected, i.e., the reaction proceeded with the production of very little, if any, unwanted greenhouse gas by-products. These findings demonstrate the efficacy of overcoming the limitations of purely thermal reaction mechanisms by coupling nonthermal mechanistic steps, leading to efficient C-H bond activation with subsequent thermal heterogeneous reactions.

  16. Conversion Reaction-Based Oxide Nanomaterials for Lithium Ion Battery Anodes.

    PubMed

    Yu, Seung-Ho; Lee, Soo Hong; Lee, Dong Jun; Sung, Yung-Eun; Hyeon, Taeghwan

    2016-04-27

    Developing high-energy-density electrodes for lithium ion batteries (LIBs) is of primary importance to meet the challenges in electronics and automobile industries in the near future. Conversion reaction-based transition metal oxides are attractive candidates for LIB anodes because of their high theoretical capacities. This review summarizes recent advances on the development of nanostructured transition metal oxides for use in lithium ion battery anodes based on conversion reactions. The oxide materials covered in this review include oxides of iron, manganese, cobalt, copper, nickel, molybdenum, zinc, ruthenium, chromium, and tungsten, and mixed metal oxides. Various kinds of nanostructured materials including nanowires, nanosheets, hollow structures, porous structures, and oxide/carbon nanocomposites are discussed in terms of their LIB anode applications.

  17. Rapid and effective oxidative pretreatment of woody biomass at mild reaction conditions and low oxidant loadings

    PubMed Central

    2013-01-01

    Background One route for producing cellulosic biofuels is by the fermentation of lignocellulose-derived sugars generated from a pretreatment that can be effectively coupled with an enzymatic hydrolysis of the plant cell wall. While woody biomass exhibits a number of positive agronomic and logistical attributes, these feedstocks are significantly more recalcitrant to chemical pretreatments than herbaceous feedstocks, requiring higher chemical and energy inputs to achieve high sugar yields from enzymatic hydrolysis. We previously discovered that alkaline hydrogen peroxide (AHP) pretreatment catalyzed by copper(II) 2,2΄-bipyridine complexes significantly improves subsequent enzymatic glucose and xylose release from hybrid poplar heartwood and sapwood relative to uncatalyzed AHP pretreatment at modest reaction conditions (room temperature and atmospheric pressure). In the present work, the reaction conditions for this catalyzed AHP pretreatment were investigated in more detail with the aim of better characterizing the relationship between pretreatment conditions and subsequent enzymatic sugar release. Results We found that for a wide range of pretreatment conditions, the catalyzed pretreatment resulted in significantly higher glucose and xylose enzymatic hydrolysis yields (as high as 80% for both glucose and xylose) relative to uncatalyzed pretreatment (up to 40% for glucose and 50% for xylose). We identified that the extent of improvement in glucan and xylan yield using this catalyzed pretreatment approach was a function of pretreatment conditions that included H2O2 loading on biomass, catalyst concentration, solids concentration, and pretreatment duration. Based on these results, several important improvements in pretreatment and hydrolysis conditions were identified that may have a positive economic impact for a process employing a catalyzed oxidative pretreatment. These improvements include identifying that: (1) substantially lower H2O2 loadings can be used that

  18. Ceramic oxide reactions with V2O5 and SO3

    NASA Technical Reports Server (NTRS)

    Jones, R. L.; Williams, C. E.

    1985-01-01

    Ceramic oxides are not inert in combustion environments, but can react with, inter alia, SO3, and Na2SO4 to yield low melting mixed sulfate eutectics, and with vanadium compounds to produce vanadates. Assuming ceramic degradation to become severe only when molten phases are generated in the surface salt (as found for metallic hot corrosion), the reactivity of ceramic oxides can be quantified by determining the SO3 partial pressure necessary for molten mixed sulfate formation with Na2SO3. Vanadium pentoxide is an acidic oxide that reacts with Na2O, SO3, and the different ceramic oxides in a series of Lux-Flood type of acid-base displacement reactions. To elucidate the various possible vanadium compound-ceramic oxide interactions, a study was made of the reactions of a matrix involving, on the one axis, ceramix oxides of increasing acidity, and on the other axis, vanadium compounds of increasing acidity. Resistance to vanadium compound reaction increased as the oxide acidity increased. Oxides more acidic than ZrO2 displaced V2O5. Examination of Y2O3- and CeO2-stabilized ZrO2 sintered ceramics which were degraded in 700 C NaVO3 has shown good agreement with the reactions predicted above, except that the CeO2-ZrO2 ceramic appears to be inexplicably degraded by NaVO3.

  19. Reaction-driven surface restructuring and selectivity control in allylic alcohol catalytic aerobic oxidation over Pd.

    PubMed

    Lee, Adam F; Ellis, Christine V; Naughton, James N; Newton, Mark A; Parlett, Christopher M A; Wilson, Karen

    2011-04-20

    Synchronous, time-resolved DRIFTS/MS/XAS cycling studies of the vapor-phase selective aerobic oxidation of crotyl alcohol over nanoparticulate Pd have revealed surface oxide as the desired catalytically active phase, with dynamic, reaction-induced Pd redox processes controlling selective versus combustion pathways.

  20. Biomimetic oxidation with molecular oxygen. Selective carbon-carbon bond cleavage of 1,2-diols by molecular oxygen and dihydropyridine in the presence of iron-porphyrin catalysts

    SciTech Connect

    Okamoto, T.; Sasaki, K.; Oka, S.

    1988-02-17

    The selective carbon-carbon bond cleavage of 1,2-diols in the presence of an iron-porphyrin complex, molecular oxygen, and 1-benzyl-3-carbamoyl-1,4-dihydropyridine is reported. The C-C bonds of aryl-substituted ethane-1,2-diols were cleaved exclusively to aldehydes or ketones as the oxidation products at room temperature. The reaction rates were influenced by the steric hindrance of the substituents both in the catalysts and diols, but no differences in the reactivities were observed between the two stereo isomers (meso and dl) of diols. A kinetic analysis of this bond cleavage reaction is consistent with the reaction mechanism consisting of the initial binding of diol on the active catalyst forming an intermediate complex and its subsequent breakdown in the rate-determining step of the catalytic cycle. The initial binding step is favorable for electron-deficient diols and is influenced by steric hindrance, whereas the rate-determining bond cleavage step is accelerated by electron-rich diols and unaffected by the steric effect. The mechanism of this diol cleavage reaction is discussed on the basis of these observations.

  1. Selective covalent bond formation in polypeptide ions via gas-phase ion/ion reaction chemistry.

    PubMed

    Han, Hongling; McLuckey, Scott A

    2009-09-16

    Primary amines present in protonated polypeptides can be covalently modified via gas-phase ion/ion reactions using bifunctional reagent ions. The use of reagent anions with a charge-bearing site that leads to strong interactions with the polypeptide, such as sulfonic acid, gives rise to the formation of a long-lived adduct. A distinct reactive functional group, an aldehyde in the present case, can then undergo reaction with the peptide. Collisional activation of the adduct ion formed from a reagent with an aldehyde group and a peptide ion with a primary amine gives rise to water loss in conjunction with imine (Schiff base) formation. The covalently bound modification is retained upon subsequent collisional activation. This work demonstrates the ability to selectively modify polypeptide ions in the gas phase within the context of a multistage mass spectrometry experiment.

  2. [Formation and reactions of biogenic manganese oxides with heavy metals in environment].

    PubMed

    Meng, You-Ting; Zheng, Yuan-Ming; Zhang, Li-Mei; He, Ji-Zheng

    2009-02-15

    Manganese (Mn) oxides are common minerals in natural environments that may play an important role in the biogeochemical cycles of heavy metals. Increasing evidences have shown that Mn (II) oxidation is a microbially-mediated process, and the Mn oxidizing microorganisms are thus recognized as the major drivers of the global Mn cycle. The major pathway for bacterial Mn (II) oxidation is catalysed by a multicopper oxidizing enzyme family. The primary Mn (IV) biooxides are phyllomanganate-like minerals most similar to delta-MnO2 or acid birnessite. Manganese oxides are known to have high sorption capacities for a wide variety of metal ions and considered to be the important environmental oxidant to many metal ions. This paper reviewed the mechanisms of biogenic manganese oxides formation and their reactions with heavy metal ions in environment.

  3. Catalytic reactions on neutral Rh oxide clusters more efficient than on neutral Rh clusters.

    PubMed

    Yamada, Akira; Miyajima, Ken; Mafuné, Fumitaka

    2012-03-28

    Gas phase catalytic reactions involving the reduction of N(2)O and oxidation of CO were observed at the molecular level on isolated neutral rhodium clusters, Rh(n) (n = 10-28), using mass spectrometry. Sequential oxygen transfer reactions, Rh(n)O(m-1) + N(2)O → Rh(n)O(m) + N(2) (m = 1, 2, 3,…), were monitored and the rate constant for each reaction step was determined as a function of the cluster size. Oxygen extraction reactions by a CO molecule, Rh(n)O(m) + CO → Rh(n)O(m-1) + CO(2) (m = 1, 2, 3,…), were also observed when a small amount of CO was mixed with the reactant N(2)O gas. The rate constants of the oxygen extraction reactions by CO for m ≥ 4 were found to be two or three orders of magnitude higher than the rate constants for m ≤ 3, which indicates that the catalytic reaction proceeds more efficiently when the reaction cycles turn over around Rh(n)O(m) (m ≥ 4) than around bare Rh(n). Rhodium clusters operate as more efficient catalysts when they are oxidized than non- or less-oxidized rhodium clusters, which is consistent with theoretical and experimental studies on the catalytic CO oxidation reaction on a rhodium surface.

  4. Catalytic Enantioselective Carbon-Oxygen Bond Formation: Phosphine-Catalyzed Synthesis of Benzylic Ethers via the Oxidation of Benzylic C-H Bonds.

    PubMed

    Ziegler, Daniel T; Fu, Gregory C

    2016-09-21

    Benzylic alcohols and ethers are common subunits in bioactive molecules, as well as useful intermediates in organic chemistry. In this Communication, we describe a new approach to the enantioselective synthesis of benzylic ethers through the chiral phosphine-catalyzed coupling of two readily available partners, γ-aryl-substituted alkynoates and alcohols, under mild conditions. In this process, the alkynoate partner undergoes an internal redox reaction. Specifically, the benzylic position is oxidized with good enantioselectivity, and the alkyne is reduced to the alkene.

  5. Determination of carbon by the oxidation reduction reaction with chromium

    NASA Technical Reports Server (NTRS)

    Mashkovich, L.; Kuteynikov, A. F.

    1978-01-01

    Free carbon was determined in silicon and boron carbides in ash, oxides, and other materials by oxidation to carbon dioxide with a mixture of K2Cr2O7 + H2SO4. The determination was made from the amount of CR(6) consumed, by adding excess Mohr's salt and titrating with a standard solution of KMnO4. The amount of Cr(6) self reduced was determined in a blank test. Optimum oxidation and conditions were achieved when the volumes of 5% k2Cr2Oz and H2SO4 were equal. The mixture was boiled for 1-2 hours using a reflex condenser. The volume should not be reduced, in order to avoid an increase in the sulfuric acid concentration. The relative error was 4-7% for 0.005-0.04 g C and less than or equal to 3.5% for 0.1 g C.

  6. Water-medium and solvent-free organic reactions over a bifunctional catalyst with Au nanoparticles covalently bonded to HS/SO3H functionalized periodic mesoporous organosilica.

    PubMed

    Zhu, Feng-Xia; Wang, Wei; Li, He-Xing

    2011-08-03

    An operationally simple approach for the preparation of a new class of bifunctional Au nanoparticle-acid catalysts has been developed. In situ reduction of Au(3+) with HS-functionalized periodic mesoporous organosilicas (PMOs) creates robust, fine Au nanoparticles and concomitantly produces a sulfonic acid moiety strongly bonded to PMOs. Characterizations of the nanostructures reveal that Au nanoparticles are formed with uniformed, narrow size distribution around 1-2 nm, which is very critical for essential catalytic activities. Moreover, the Au nanoparticles are mainly attached onto the pore surface rather than onto the outer surface with ordered mesoporous channels, allowing for maximal exposure to reaction substrates while minimizing Au nanoparticle leaching. Their higher S(BET), V(P), and D(P) than either the Au-HS-PMO(Et) or the Au/SO(3)H-PMO(Et) render the catalyst with comparably even higher catalytic efficiency than its homogeneous counterparts. Furthermore, the unique amphiphilic compartment of the Au-HS/SO(3)H-PMO(Et) nanostructures enables organic reactions to proceed efficiently in a pure aqueous solution without using any organic solvents or even without water. As demonstrated experimentally, remarkably, the unique bifunctional Au-HS/SO(3)H-PMO(Et) catalyst displays higher efficiencies in promoting water-medium alkyne hydration, intramolecular hydroamination, styrene oxidation, and three-component coupling reactions and even the solvent-free alkyne hydration process than its homogeneous catalysts. The robust catalyst can be easily recycled and used repetitively at least 10 times without loss of catalytic efficiency. These features render the catalyst particularly attractive in the practice of organic synthesis in an environmentally friendly manner.

  7. Effect of Oxidation and SiO2 Coating on the Bonding Strength of Ti-Porcelain

    NASA Astrophysics Data System (ADS)

    Guo, Litong; Liu, Xiaochen; Zhu, Yabo; Xu, Cheng; Gao, Jiqiang; Guo, Tianwen

    2010-11-01

    Investigations on the effect of oxidation on titanium-ceramic adhesion were performed. Cast pure titanium was subjected to surface modification by preoxidation and introduction of an intermediate layer of SiO2 by sol-gel process. Specimens were characterized by TG-DSC, XRD, and SEM/EDS. The adhesion between the titanium and porcelain was evaluated by three-point flexure bond test. Failure of the titanium-porcelain with preoxidation treatment predominantly occurred at the titanium-oxide interface. Preoxidation treatment did not affect the fracture mode of the titanium-ceramic system and did not increase the bonding strength of Ti-porcelain. The SEM results revealed the existence of microcracks on the SiO2 coating surface oxidized at 800 °C in an air furnace. During the porcelain fusion, minute amounts of oxygen were able to penetrate the cracks and caused localized oxidation of the Ti-substrate. Failure of the titanium-porcelain with SiO2 coating predominantly occurred at the SiO2 layer. The SiO2 coating served as an effective oxygen diffusion barrier and improved the mechanical and chemical bonding between porcelain and titanium.

  8. Mutagenicity screening of reaction products from the enzyme-catalyzed oxidation of phenolic pollutants

    SciTech Connect

    Massey, I.J.; Aitken, M.D.; Ball, L.M.; Heck, P.E. . Dept. of Environmental Sciences and Engineering)

    1994-11-01

    Phenol-oxidizing enzymes such as peroxidases, laccases, and mushroom polyphenol oxidase are capable of catalyzing the oxidation of a wide range of phenolic pollutants. Although the use of these enzymes in waste-treatment applications has been proposed by a number of investigators, little information exists on the toxicological characteristics of the oxidation products. The enzymes chloroperoxidase, horseradish peroxidase, lignin peroxidase, and mushroom polyphenol oxidase were used in this study to catalyze the oxidation of phenol, several mono-substituted phenols, and pentachlorophenol. Seventeen reaction mixtures representing selected combinations of enzyme and parent phenol were subjected to mutagenicity screening using the Ames Salmonella typhimurium plate incorporation assay; five selected mixtures were also incubated with the S9 microsomal preparation to detect the possible presence of promutagens. The majority of reaction mixtures tested were not directly mutagenic, and none of those tested with S9 gave a positive response. Such lack of mutagenicity of enzymatic oxidation products provides encouragement for establishing the feasibility of enzyme-catalyzed oxidation as a waste-treatment process. The only positive responses were obtained with reaction products from the lignin peroxidase-catalyzed oxidation of 2-nitrophenol and 4-nitrophenol. Clear positive responses were observed when strain TA100 was incubated with 2-nitrophenol reaction-product mixtures, and when strain TA98 was incubated with the 4-nitrophenol reaction mixture. Additionally, 2,4-dinitrophenol was identified as a reaction product from 4-nitrophenol, and preliminary evidence indicates that both 2,4- and 2,6-dinitrophenol are produced from the oxidation of 2-nitrophenol. Possible mechanism by which these nitration reactions occur are discussed.

  9. Stable gold(III) catalysts by oxidative addition of a carbon-carbon bond

    NASA Astrophysics Data System (ADS)

    Wu, Chung-Yeh; Horibe, Takahiro; Jacobsen, Christian Borch; Toste, F. Dean

    2015-01-01

    Low-valent late transition-metal catalysis has become indispensable to chemical synthesis, but homogeneous high-valent transition-metal catalysis is underdeveloped, mainly owing to the reactivity of high-valent transition-metal complexes and the challenges associated with synthesizing them. Here we report a carbon-carbon bond cleavage at ambient conditions by a Au(I) complex that generates a stable Au(III) cationic complex. In contrast to the well-established soft and carbophilic Au(I) catalyst, this Au(III) complex exhibits hard, oxophilic Lewis acidity. For example, we observed catalytic activation of α,β-unsaturated aldehydes towards selective conjugate additions as well as activation of an unsaturated aldehyde-allene for a [2 + 2] cycloaddition reaction. The origin of the regioselectivity and catalytic activity was elucidated by X-ray crystallographic analysis of an isolated Au(III)-activated cinnamaldehyde intermediate. The concepts revealed suggest a strategy for accessing high-valent transition-metal catalysis from readily available precursors.

  10. Method for catalyzing oxidation/reduction reactions of simple molecules

    SciTech Connect

    Bicker, D.; Bonaventura, J.

    1988-06-14

    A method for oxidizing carbon monoxide to carbon dioxide is described comprising: (1) contacting, together, carbon monoxide, a nitrogen-containing chelating agent and water; wherein the chelating agent is at least one member selected from the group consisting of methmeoglobin bound to a support, ferric hemoglobin bound to a support, iron-containing porphyrins bound to a support, and sperm whale myoglobin bound to a support, wherein the support is glass, a natural fiber, a synthetic fiber, a gel, charcoal, carbon ceramic material, a metal oxide, a synthetic polymer, a zeolite, a silica compound of an alumina compound; and (2) obtaining carbon dioxide.

  11. Nitrogen oxide reactions in the urban plume of Boston.

    PubMed

    Spicer, C W

    1982-02-26

    The rate of removal or conversion of nitrogen oxides has been determined from airborne measurements in the urban plume of Boston. The average pseudo-first-order rate constant for removal was 0.18 per hour, with a range of 0.14 to 0.24 per hour under daylight conditions for four study days. The removal process is dominated by chemical conversion to nitric acid and organic nitrates. The removal rate suggests an atmospheric lifetime for nitrogen oxides of about 5 to 6 hours in urban air.

  12. A comparative theoretical study of CO oxidation reaction by O2 molecule over Al- or Si-decorated graphene oxide.

    PubMed

    Esrafili, Mehdi D; Sharifi, Fahimeh; Nematollahi, Parisa

    2016-09-01

    Using density functional theory calculations, the probable CO oxidation reaction mechanisms are investigated over Al- or Si-decorated graphene oxide (GO). The equilibrium geometry and electronic structure of these metal decorated-GOs along with the O2/CO adsorption configurations are studied in detail. The relatively large adsorption energies reveal that both Al and Si atoms can disperse on GO quite stably without clustering problem. Hence, both Al- and Si-decorated GOs are stable enough to be utilized in catalytic oxidation of CO by molecular O2. The two possible reaction pathways proposed for the oxidation of CO with O2 molecule are as follows: O2+CO→CO2+Oads and CO+Oads→CO2. The estimated energy barriers of the first oxidation reaction on Si-decorated GOs, following the Eley-Rideal (ER) reaction, are lower than that on Al-decorated ones. This is most likely due to the larger atomic charge on the Si atom than the Al one, which tends to stabilize the corresponding transition state structure. The results of this study can be useful for better understanding the chemical properties of Al- and Si-decorated GOs, and are valuable for the development of an automobile catalytic converter in order to remove the toxic CO molecule.

  13. The aniline-to-azobenzene oxidation reaction on monolayer graphene or graphene oxide surfaces fabricated by benzoic acid.

    PubMed

    Lee, Myungjin; Kim, Kijeong; Lee, Hangil

    2013-09-02

    The oxidation of aniline to azobenzene was conducted in the presence of either monolayer graphene (EG) or graphene-oxide-like surface, such as GOx, under ultra-high vacuum conditions maintaining a 365-nm UV light exposure to enhance the oxidation reaction. The surface-bound products were investigated using micro Raman spectroscopy, high-resolution photoemission spectroscopy, and work function measurements. The oxygen carriers present on the GOx surfaces, but not on the EG surfaces, acted as reaction reagents to facilitate the oxidation reaction from aniline to azobenzene. Increasing the aniline concentration at 300 K confirmed that the exchange ratio from the aniline to the azobenzene was enhanced, as determined by the intensity ratio between the aniline- and azobenzene-induced N 1 s core-level spectra. The work function changed dramatically as the aniline concentration increased, indicating that the aniline on the GOx surface conveyed n-type doping characteristics at a low coverage level. A higher aniline concentration increased the p-type doping character by increasing the azobenzene concentration on the GOx surface. A comparison of the oxidation reactivity of aniline molecules on the EG or GOx surfaces revealed the role of the oxygen carriers on the GOx surfaces in the context of catalytic oxidation.

  14. The aniline-to-azobenzene oxidation reaction on monolayer graphene or graphene oxide surfaces fabricated by benzoic acid

    PubMed Central

    2013-01-01

    The oxidation of aniline to azobenzene was conducted in the presence of either monolayer graphene (EG) or graphene-oxide-like surface, such as GOx, under ultra-high vacuum conditions maintaining a 365-nm UV light exposure to enhance the oxidation reaction. The surface-bound products were investigated using micro Raman spectroscopy, high-resolution photoemission spectroscopy, and work function measurements. The oxygen carriers present on the GOx surfaces, but not on the EG surfaces, acted as reaction reagents to facilitate the oxidation reaction from aniline to azobenzene. Increasing the aniline concentration at 300 K confirmed that the exchange ratio from the aniline to the azobenzene was enhanced, as determined by the intensity ratio between the aniline- and azobenzene-induced N 1 s core-level spectra. The work function changed dramatically as the aniline concentration increased, indicating that the aniline on the GOx surface conveyed n-type doping characteristics at a low coverage level. A higher aniline concentration increased the p-type doping character by increasing the azobenzene concentration on the GOx surface. A comparison of the oxidation reactivity of aniline molecules on the EG or GOx surfaces revealed the role of the oxygen carriers on the GOx surfaces in the context of catalytic oxidation. PMID:24229051

  15. REACTION OF BENZENE OXIDE WITH THIOLS INCLUDING GLUTATHIONE

    EPA Science Inventory

    This study accounts for the observations that the metabolism of benzene is dominated by the formation of phenol. As demonstrated here, the pathway leading to S-phenylmercapturic acid is necessarily minor on account of the low efficiency of benzene oxide capture by glutathione at ...

  16. Bond cleavage reactions in the tripeptide trialanine upon free electron capture

    NASA Astrophysics Data System (ADS)

    Puschnigg, Benjamin; Huber, Stefan E.; Scheier, Paul; Probst, Michael; Denifl, Stephan

    2014-05-01

    In the present study we performed dissociative electron attachment (DEA) measurements with the tripeptide trialanine, C9H17N3O4, utilizing a crossed electron-molecular beam experiment with high electron energy resolution (~100 meV). Anion efficiency yields as a function of the incident electron energy are obtained for the most abundant anions up to electron energies of ~4 eV. Quantum chemical calculations are performed to determine the thermochemical thresholds for the anions observed in the measurements. There is no evidence of a molecular anion with lifetime of mass spectrometric timescales. The dehydrogenated closed shell anion (M-H)- is one of the fragment anions observed for which the calculations show that H-loss is energetically possible from carboxyl, as well as amide groups. In contrast to the dipeptide dialanine and monomer alanine the cleavage of the N-Cα bond in the peptide chain is already possible by attachment of electrons at ~0 eV. Contribution to the Topical Issue "Nano-scale Insights into Ion-beam Cancer Therapy", edited by Andrey V. Solov'yov, Nigel Mason, Paulo Limão-Vieira and Malgorzata Smialek-Telega.

  17. Processing and properties of SiC whisker- and particulate-reinforced reaction bonded Si3N4

    NASA Technical Reports Server (NTRS)

    Lightfoot, A.; Ewart, L.; Haggerty, J.; Cai, Z. Q.; Ritter, J.; Nair, S.

    1991-01-01

    The microstructure and mechanical properties of reaction bonded Si3N4 (RBSN) reinforced with SiC whiskers of particles were investigated using RBSN composites made from colloidally pressed octanol dispersions of high-purity Si powders mixed with either SiC whiskers or alpha-SiC particles. Results of investigations, revealing high conversions of Si to Si3N4, specific surface areas, and constant relative densities and strengths, showed that the uniform microstructure and small flaw size of the matrix were maintained in the composites and that no degradation of the reinforcements was taking place. Neither the monolithic nor the composite materials exhibited R-curve behavior. A modest increase in fracture toughness was observed only in the RBSN containing 33 vol pct SiC(p).

  18. The first chiral diene-based metal-organic frameworks for highly enantioselective carbon-carbon bond formation reactions

    SciTech Connect

    Sawano, Takahiro; Ji, Pengfei; McIsaac, Alexandra R.; Lin, Zekai; Abney, Carter W.; Lin, Wenbin

    2016-02-01

    We have designed the first chiral diene-based metal–organic framework (MOF), E₂-MOF, and postsynthetically metalated E₂-MOF with Rh(I) complexes to afford highly active and enantioselective single-site solid catalysts for C–C bond formation reactions. Treatment of E₂-MOF with [RhCl(C₂H₄)₂]₂ led to a highly enantioselective catalyst for 1,4-additions of arylboronic acids to α,β-unsaturated ketones, whereas treatment of E₂-MOF with Rh(acac)(C₂H₄)₂ afforded a highly efficient catalyst for the asymmetric 1,2-additions of arylboronic acids to aldimines. Interestingly, E₂-MOF·Rh(acac) showed higher activity and enantioselectivity than the homogeneous control catalyst, likely due to the formation of a true single-site catalyst in the MOF. E₂-MOF·Rh(acac) was also successfully recycled and reused at least seven times without loss of yield and enantioselectivity.

  19. Mechanical properties of SiC fiber-reinforced reaction-bonded Si3N4 composites

    NASA Technical Reports Server (NTRS)

    Bhatt, R. T.

    1985-01-01

    The room temperature mechanical and physical properties of silicon carbide fiber reinforced reaction-bonded silicon nitride composites (SiC/RBSN) have been evaluated. The composites contained 23 and 40 volume fraction of aligned 140 micro m diameter chemically vapor deposited SiC fibers. Preliminary results for composite tensile and bend strengths and fracture strain indicate that the composites displayed excellent properties when compared with unreinforced RBSN of comparable porosity. Fiber volume fraction showed little influence on matrix first cracking strain but did influence the stressed required for matrix first cracking and for ultimate composite fracture strength. It is suggested that by reducing matrix porosity and by increasing the volume fraction of the large diameter SiC fiber, it should be possible to further improve the composite stress at which the matrix first cracks.

  20. Thermal effects on the mechanical properties of SiC fibre reinforced reaction-bonded silicon nitride matrix composites

    NASA Technical Reports Server (NTRS)

    Bhatt, R. T.; Phillips, R. E.

    1990-01-01

    The elevated temperature four-point flexural strength and the room temperature tensile and flexural strength properties after thermal shock were measured for ceramic composites consisting of 30 vol pct uniaxially aligned 142 micron diameter SiC fibers in a reaction bonded Si3N4 matrix. The elevated temperature strengths were measured after 15 min of exposure in air at temperatures to 1400 C. Thermal shock treatment was accomplished by heating the composite in air for 15 min at temperatures to 1200 C and then quenching in water at 25 C. The results indicate no significant loss in strength properties either at temperature or after thermal shock when compared with the strength data for composites in the as-fabricated condition.

  1. Study of the racemization observed in the amide bond forming reaction on silica gel.

    PubMed

    Norick, Amanda L; Li, Tingyu

    2005-01-01

    Racemization resulting from the coupling of N-(3,5-dinitrobenzoyl)-L-leucine and 3-aminopropyl silica gel with several amide-coupling reagents is further investigated in order to explain the much higher degree of racemization on silica gel, as compared with the similar reaction in solution. Based on experiments using different types of solid supports, limited pore access and surface microchemical environment are ruled out as the possible reason for the higher degree of racemization that occurred on silica gel. Steric hindrance of the solid support is thought to have caused the amino group to be more basic relative to its nucleophilicity, leading to a higher degree of racemization.

  2. [Study on apparent kinetics of photocatalytic oxidation degradation Rhodamine B by photo-Fenton reaction].

    PubMed

    Li, Hong; Zheng, Huai-Li; Li, Xiao-Hong; Xie, Li-Guo; Tang, Xue

    2008-11-01

    The Fenton process, mixed by hydrogen peroxide and iron salts with highly oxidative effect, is recognized as one of powerful advanced oxidation technologies available and can be used to destroy a variety of persistent organic pollutants. The oxidation power of Fenton reagent is due to the generation of hydroxyl radical (* OH) during the iron catalysed decomposition of hydrogen peroxide in acid medium. The hydroxyl radical with a high oxidation potential (2.8 eV) attacks and completely destroys the pollutants in Fenton process. The degradation of pollutants can be considerably improved by using sunlight radiation, which is due to the generation of additional hydroxyl radicals. This photo-Fenton process had been effectively used to degrade the pollutants. In this paper, the definite quantity of Fenton reagent was added in the definite concentration of Rhodamine B solution. The degradation reaction was carried out at pH 3.5 under natural sunlight. The factors influencing on photocatalytic oxidation degradation rate of Rhodamine B were studied following: the initial concentration of Rhodamine B, initial concentrateions of Fe2+ and H2O2. The orders of degradation reaction were obtained by solving exponential kinetics equations of curve fitting, thereby gaining the kinetic parameters and reaction dynamics equation of the reaction system. The research contents included mainly: the UV-Vis spectra of Rhodamine B solution, the concentration-absorbency work curve of Rhodamine B solution, the analysis of the reaction system at various initial Rhodamine B concentrations, the analysis of the reaction system at various initial Fe2+ concentrateions, the analysis of the reaction system at various initial H2O2 concentrations, and the calculation of the apparent kinetics parameters in reaction dynamics equation. The reaction dynamics equation from experiments was constructed: V = 5 x 10(-9) P1.28 F0.366 E0.920, and overall reaction order was 2.57.

  3. The reactions of imidogen with nitric oxide and molecular oxygen

    SciTech Connect

    Miller, J.A.; Melius, C.F.

    1991-01-01

    Using potential energy surface information from BAC-MP4 calculations and statistical-dynamical methods, we have calculated the branching fraction for the NH + NO reaction, NH + NO {r arrow} N{sub 2} + H (1) NH + NO {r arrow} N{sub 2}O + H (2). We find that reaction (2) dominates over the entire temperature range considered, 300 K < T < 3500 K, with f=k{sub 1}/(k{sub 1} + K{sub 2}) varying from about 0.07 at room temperature to about 0.20 at 3500 K. In addition, we have calculated rate coefficients for the two-channel process, NH + O{sub 2} {r arrow} HNO + O (3) NH + O{sub 2} {r arrow} NO + OH (4). In this case we find that reaction (4) dominates at low temperature, reaction (3) at high temperature. All these results are discussed in terms of the experimental results available and compared with previous theoretical investigations where appropriate. 21 refs., 4 figs., 3 tabs.

  4. The reactions of imidogen with nitric oxide and molecular oxygen

    SciTech Connect

    Miller, J.A.; Melius, C.F.

    1991-12-31

    Using potential energy surface information from BAC-MP4 calculations and statistical-dynamical methods, we have calculated the branching fraction for the NH + NO reaction, NH + NO {r_arrow} N{sub 2} + H (1) NH + NO {r_arrow} N{sub 2}O + H (2). We find that reaction (2) dominates over the entire temperature range considered, 300 K < T < 3500 K, with f=k{sub 1}/(k{sub 1} + K{sub 2}) varying from about 0.07 at room temperature to about 0.20 at 3500 K. In addition, we have calculated rate coefficients for the two-channel process, NH + O{sub 2} {r_arrow} HNO + O (3) NH + O{sub 2} {r_arrow} NO + OH (4). In this case we find that reaction (4) dominates at low temperature, reaction (3) at high temperature. All these results are discussed in terms of the experimental results available and compared with previous theoretical investigations where appropriate. 21 refs., 4 figs., 3 tabs.

  5. Iron oxide mineral-water interface reactions studied by AFM

    SciTech Connect

    Hawley, M.E.; Rogers, P.S.Z.

    1994-07-01

    Natural iron mineral surfaces have been examined in air by atomic force (AFM) and scanning tunneling (STM) microscopies. A number of different surface features were found to be characteristic of the native surface. Even surfaces freshly exposed by crushing larger crystals were found to have a pebbly surface texture caused by the presence of thin coatings of what might be surface precipitates. This finding is interpreted as evidence for previous exposure to water, probably through an extensive network of microfractures. Surface reactions on the goethite crystals were studied by AFM at size resolutions ranging from microns to atomic resolution before, during, and after reaction with distilled water and 0.lN HCl. Immediate and extensive surface reconfiguration occurred on contact with water. In one case, after equilibration with water for 3 days, surface reprecipitation, etching and pitting were observed. Atomic resolution images taken under water were found to be disordered. The result of surface reaction was generally to increase the surface area substantially through the extension of surface platelet arrays, present prior to reaction. This work is being done in support of the site characterization project at Yucca Mountain.

  6. Elementary Steps of Syngas Reactions on Mo2C(001): Adsorption Thermochemistry and Bond Dissociation

    SciTech Connect

    Medford, Andrew

    2012-02-16

    Density functional theory (DFT) and ab initio thermodynamics are applied in order to investigate the most stable surface and subsurface terminations of Mo{sub 2}C(001) as a function of chemical potential and in the presence of syngas. The Mo-terminated (001) surface is then used as a model surface to evaluate the thermochemistry and energetic barriers for key elementary steps in syngas reactions. Adsorption energy scaling relations and Broensted-Evans-Polanyi relationships are established and used to place Mo{sub 2}C into the context of transition metal surfaces. The results indicate that the surface termination is a complex function of reaction conditions and kinetics. It is predicted that the surface will be covered by either C{sub 2}H{sub 2} or O depending on conditions. Comparisons to transition metals indicate that the Mo-terminated Mo{sub 2}C(001) surface exhibits carbon reactivity similar to transition metals such as Ru and Ir, but is significantly more reactive towards oxygen.

  7. Are dangling bond centers important interface traps in 4H-SiC metal oxide semiconductor field effect transistors?

    NASA Astrophysics Data System (ADS)

    Anders, M. A.; Lenahan, P. M.; Lelis, A. J.

    2016-10-01

    Silicon carbide (SiC) based metal-oxide-semiconductor field-effect transistors (MOSFETs) have great promise in high power and high temperature applications. Unfortunately, effective channel mobilities remain disappointingly low, typically about 30 cm2/Vs. A major contributor to the disappointing effective channel mobilities is the presence of substantial densities of interface traps at the SiC/SiO2 interface. Many investigators have invoked silicon or carbon dangling bonds to be the dominating source of these interface defects, but very little, if any, direct experimental evidence exists to support this assumption in the SiC/SiO2 system. Cantin et al. [Phys. Rev. Lett. 92, 1 (2004)] have used conventional electron paramagnetic resonance measurements on porous oxidized SiC structures to measure the g tensor for the SiC/SiO2 interface carbon dangling bond. These results provide a particularly straightforward means to search for the presence of carbon dangling bonds in fully processed SiC MOSFETs using electrically detected magnetic resonance. Additionally, simple theory provides guidance to search for silicon dangling bond defects. In this study, we utilize K band electrically detected magnetic resonance via spin dependent charge pumping measurements in which almost all of the SiC band gap at the SiC/SiO2 interface is accessed. Although quite high signal to noise measurements are achieved, we are unable to detect any trace of the carbon dangling bond spectra. However, in very poor quality p-channel devices, we observe a spectrum which could be consistent with silicon dangling bonds. Other defect centers are clearly present and we conclude that these other centers dominate the interface trap density of states.

  8. Tailoring the composition of ultrathin, ternary alloy PtRuFe nanowires for the methanol oxidation reaction and formic acid oxidation reaction

    DOE PAGES

    Scofield, Megan E.; Koenigsmann, Christopher; Wang, Lei; ...

    2014-11-25

    In the search for alternatives to conventional Pt electrocatalysts, we have synthesized ultrathin, ternary PtRuFe nanowires (NW), possessing different chemical compositions in order to probe their CO tolerance as well as electrochemical activity as a function of composition for both (i) the methanol oxidation reaction (MOR) and (ii) the formic acid oxidation reaction (FAOR). As-prepared ‘multifunctional’ ternary NW catalysts exhibited both higher MOR and FAOR activity as compared with binary Pt₇Ru₃ NW, monometallic Pt NW, and commercial catalyst control samples. In terms of synthetic novelty, we utilized a sustainably mild, ambient wet-synthesis method never previously applied to the fabrication ofmore » crystalline, pure ternary systems in order to fabricate ultrathin, homogeneous alloy PtRuFe NWs with a range of controlled compositions. Thus, these NWs were subsequently characterized using a suite of techniques including XRD, TEM, SAED, and EDAX in order to verify not only the incorporation of Ru and Fe into the Pt lattice but also their chemical homogeneity, morphology, as well as physical structure and integrity. Lastly, these NWs were electrochemically tested in order to deduce the appropriateness of conventional explanations such as (i) the bi-functional mechanism as well as (ii) the ligand effect to account for our MOR and FAOR reaction data. Specifically, methanol oxidation appears to be predominantly influenced by the Ru content, whereas formic acid oxidation is primarily impacted by the corresponding Fe content within the ternary metal alloy catalyst itself.« less

  9. Tailoring the composition of ultrathin, ternary alloy PtRuFe nanowires for the methanol oxidation reaction and formic acid oxidation reaction

    SciTech Connect

    Scofield, Megan E.; Koenigsmann, Christopher; Wang, Lei; Liu, Haiqing; Wong, Stanislaus S.

    2014-11-25

    In the search for alternatives to conventional Pt electrocatalysts, we have synthesized ultrathin, ternary PtRuFe nanowires (NW), possessing different chemical compositions in order to probe their CO tolerance as well as electrochemical activity as a function of composition for both (i) the methanol oxidation reaction (MOR) and (ii) the formic acid oxidation reaction (FAOR). As-prepared ‘multifunctional’ ternary NW catalysts exhibited both higher MOR and FAOR activity as compared with binary Pt₇Ru₃ NW, monometallic Pt NW, and commercial catalyst control samples. In terms of synthetic novelty, we utilized a sustainably mild, ambient wet-synthesis method never previously applied to the fabrication of crystalline, pure ternary systems in order to fabricate ultrathin, homogeneous alloy PtRuFe NWs with a range of controlled compositions. Thus, these NWs were subsequently characterized using a suite of techniques including XRD, TEM, SAED, and EDAX in order to verify not only the incorporation of Ru and Fe into the Pt lattice but also their chemical homogeneity, morphology, as well as physical structure and integrity. Lastly, these NWs were electrochemically tested in order to deduce the appropriateness of conventional explanations such as (i) the bi-functional mechanism as well as (ii) the ligand effect to account for our MOR and FAOR reaction data. Specifically, methanol oxidation appears to be predominantly influenced by the Ru content, whereas formic acid oxidation is primarily impacted by the corresponding Fe content within the ternary metal alloy catalyst itself.

  10. Evaluation of Salivary Nitric Oxide Levels in Smokers, Tobacco Chewers and Patients with Oral Lichenoid Reactions

    PubMed Central

    Jose, Joy Idiculla; Sivapathasundharam, B.; Sabarinath, B.

    2016-01-01

    Introduction Nitric oxide (NO), a free radical, acts as a signalling molecule affecting numerous physiological and pathological processes. Role of nitric oxide as a mediator in tobacco related habits and the resultant oral lichenoid reactions was assessed. Aim The aim of the study is to evaluate and compare the salivary nitric oxide levels in normal patients with that of smokers, tobacco chewers and patients with oral lichenoid reactions. Materials and Methods One hundred and twenty patients were enrolled in the study which included 30 healthy patients without any chronic inflammatory lesion and habit as controls (group I), 30 smokers without the habit of tobacco/betel nut chewing and any oral lesion (group II), 30 tobacco chewers without the habit of smoking and any oral lesion (group III) and 30 histologically confirmed cases of oral lichenoid reaction with the habit of tobacco usage (group IV). Saliva from these patients was collected and the nitrite concentration was assessed. Results Our results concluded that there was highly significant increase in the nitric oxide levels in smokers, tobacco chewers and patients with oral lichenoid reactions compared to that of controls. Also, there was a significant increase in nitric oxide levels in patients with smoking associated oral lichenoid reactions in comparison with smokers and in patients with lichenoid reactions associated with tobacco chewing in comparison with tobacco chewers. Conclusion Estimation of salivary nitric oxide levels is a simple, non-invasive procedure and could be analysed to suggest the role of nitric oxide in the pathogenesis of these lesions. The increased activity of the enzyme may indicate that nitric oxide has a pathophysiological role in these lesions. PMID:26894179

  11. Multilayered thermal insulation formed of zirconia bonded layers of zirconia fibers and metal oxide fibers and method for making same

    DOEpatents

    Wrenn, Jr., George E.; Holcombe, Jr., Cressie E.

    1988-01-01

    A multilayered thermal insulating composite is formed of a first layer of zirconia-bonded zirconia fibers for utilization near the hot phase or surface of a furnace or the like. A second layer of zirconia-bonded metal oxide fibers is attached to the zirconia fiber layer by a transition layer formed of intermingled zirconia fibers and metal oxide fibers. The thermal insulation is fabricated by vacuum molding with the layers being sequentially applied from aqueous solutions containing the fibers to a configured mandrel. A portion of the solution containing the fibers forming the first layer is intermixed with the solution containing the fibers of the second layer for forming the layer of mixed fibers. The two layers of fibers joined together by the transition layer are saturated with a solution of zirconium oxynitrate which provides a zirconia matrix for the composite when the fibers are sintered together at their nexi.

  12. Multilayered thermal insulation formed of zirconia bonded layers of zirconia fibers and metal oxide fibers and method for making same

    DOEpatents

    Wrenn, G.E. Jr.; Holcombe, C.E. Jr.

    1988-09-13

    A multilayered thermal insulating composite is formed of a first layer of zirconia-bonded zirconia fibers for utilization near the hot phase or surface of a furnace or the like. A second layer of zirconia-bonded metal oxide fibers is attached to the zirconia fiber layer by a transition layer formed of intermingled zirconia fibers and metal oxide fibers. The thermal insulation is fabricated by vacuum molding with the layers being sequentially applied from aqueous solutions containing the fibers to a configured mandrel. A portion of the solution containing the fibers forming the first layer is intermixed with the solution containing the fibers of the second layer for forming the layer of mixed fibers. The two layers of fibers joined together by the transition layer are saturated with a solution of zirconium oxynitrate which provides a zirconia matrix for the composite when the fibers are sintered together at their nexi.

  13. Hydrogen bonding and spin density distribution in the Qb semiquinone of bacterial reaction centers and comparison with the Qa site.

    PubMed

    Martin, Erik; Samoilova, Rimma I; Narasimhulu, Kupala V; Lin, Tzu-Jen; O'Malley, Patrick J; Wraight, Colin A; Dikanov, Sergei A

    2011-04-13

    In the photosynthetic reaction center from Rhodobacter sphaeroides, the primary (Q(A)) and secondary (Q(B)) electron acceptors are both ubiquinone-10, but with very different properties and functions. To investigate the protein environment that imparts these functional differences, we have applied X-band HYSCORE, a 2D pulsed EPR technique, to characterize the exchangeable protons around the semiquinone (SQ) in the Q(A) and Q(B) sites, using samples of (15)N-labeled reaction centers, with the native high spin Fe(2+) exchanged for diamagnetic Zn(2+), prepared in (1)H(2)O and (2)H(2)O solvent. The powder HYSCORE method is first validated against the orientation-selected Q-band ENDOR study of the Q(A) SQ by Flores et al. (Biophys. J.2007, 92, 671-682), with good agreement for two exchangeable protons with anisotropic hyperfine tensor components, T, both in the range 4.6-5.4 MHz. HYSCORE was then applied to the Q(B) SQ where we found proton lines corresponding to T ≈ 5.2, 3.7 MHz and T ≈ 1.9 MHz. Density functional-based quantum mechanics/molecular mechanics (QM/MM) calculations, employing a model of the Q(B) site, were used to assign the observed couplings to specific hydrogen bonding interactions with the Q(B) SQ. These calculations allow us to assign the T = 5.2 MHz proton to the His-L190 N(δ)H···O(4) (carbonyl) hydrogen bonding interaction. The T = 3.7 MHz spectral feature most likely results from hydrogen bonding interactions of O1 (carbonyl) with both Gly-L225 peptide NH and Ser-L223 hydroxyl OH, which possess calculated couplings very close to this value. The smaller 1.9 MHz coupling is assigned to a weakly bound peptide NH proton of Ile-L224. The calculations performed with this structural model of the Q(B) site show less asymmetric distribution of unpaired spin density over the SQ than seen for the Q(A) site, consistent with available experimental data for (13)C and (17)O carbonyl hyperfine couplings. The implications of these interactions for Q

  14. Metal-Organic Frameworks as Catalysts for Oxidation Reactions.

    PubMed

    Dhakshinamoorthy, Amarajothi; Asiri, Abdullah M; Garcia, Hermenegildo

    2016-06-06

    This Concept is aimed at describing the current state of the art in metal-organic frameworks (MOFs) as heterogeneous catalysts for liquid-phase oxidations, focusing on three important substrates, namely, alkenes, alkanes and alcohols. Emphases are on the nature of active sites that have been incorporated within MOFs and on future targets to be set in this area. Thus, selective alkene epoxidation with peroxides or oxygen catalyzed by constitutional metal nodes of MOFs as active sites are still to be developed. Moreover, no noble metal-free MOF has been reported to date that can act as a general catalyst for the aerobic oxidation of primary and secondary aliphatic alcohols. In contrast, in the case of alkanes, a target should be to tune the polarity of MOF internal pores to control the outcome of the autooxidation process, resulting in the selective formation of alcohol/ketone mixtures at high conversion.

  15. High Temperature Reactions of Uranium Dioxide with Various Metal Oxides

    DTIC Science & Technology

    1956-02-20

    less oxygen than that in U308, even at low tem- peratures; (b) reduction of oxides such as U205 , U30,, and UO3 at temperatures above 1,450’ C to a...Corporation. Thorium dioxide (ThO2). Lindsay Light & Power Co. low-tem- perature, calcined material of 99.99-percent purity. Vanadium pentoxide (V2O6

  16. Method to Improve Indium Bump Bonding via Indium Oxide Removal Using a Multi-Step Plasma Process

    NASA Technical Reports Server (NTRS)

    Greer, H. Frank (Inventor); Jones, Todd J. (Inventor); Vasquez, Richard P. (Inventor); Hoenk, Michael E. (Inventor); Dickie, Matthew R. (Inventor); Nikzad, Shouleh (Inventor)

    2012-01-01

    A process for removing indium oxide from indium bumps in a flip-chip structure to reduce contact resistance, by a multi-step plasma treatment. A first plasma treatment of the indium bumps with an argon, methane and hydrogen plasma reduces indium oxide, and a second plasma treatment with an argon and hydrogen plasma removes residual organics. The multi-step plasma process for removing indium oxide from the indium bumps is more effective in reducing the oxide, and yet does not require the use of halogens, does not change the bump morphology, does not attack the bond pad material or under-bump metallization layers, and creates no new mechanisms for open circuits.

  17. Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures.

    PubMed

    Christopher, Phillip; Xin, Hongliang; Marimuthu, Andiappan; Linic, Suljo

    2012-12-01

    The field of heterogeneous photocatalysis has almost exclusively focused on semiconductor photocatalysts. Herein, we show that plasmonic metallic nanostructures represent a new family of photocatalysts. We demonstrate that these photocatalysts exhibit fundamentally different behaviour compared with semiconductors. First, we show that photocatalytic reaction rates on excited plasmonic metallic nanostructures exhibit a super-linear power law dependence on light intensity (rate ∝ intensity(n), with n > 1), at significantly lower intensity than required for super-linear behaviour on extended metal surfaces. We also demonstrate that, in sharp contrast to semiconductor photocatalysts, photocatalytic quantum efficiencies on plasmonic metallic nanostructures increase with light intensity and operating temperature. These unique characteristics of plasmonic metallic nanostructures suggest that this new family of photocatalysts could prove useful for many heterogeneous catalytic processes that cannot be activated using conventional thermal processes on metals or photocatalytic processes on semiconductors.

  18. Application of hydrogen peroxide encapsulated in silica xerogels to oxidation reactions.

    PubMed

    Bednarz, Szczepan; Ryś, Barbara; Bogdał, Dariusz

    2012-07-04

    Hydrogen peroxide was encapsulated into a silica xerogel matrix by the sol-gel technique. The composite was tested as an oxidizing agent both under conventional and microwave conditions in a few model reactions: Noyori's method of octanal and 2-octanol oxidation and cycloctene epoxidation in a 1,1,1-trifluoroethanol/Na2WO4 system. The results were compared with yields obtained for reactions with 30% H2O2 and urea-hydrogen peroxide (UHP) as oxidizing agents. It was found that the composite has activity similar to 30% H2O2 and has a several advantages over UHP such as the fact that silica and H2O are the only products of the composite decomposition or no contamination by urea or its derivatives occurs; the xerogel is easier to heated by microwave irradiation than UHP and could be used as both an oxidizing agent and as solid support for microwave assisted solvent-free oxidations.

  19. Time-resolved spectroscopic characterization of a novel photodecarboxylation reaction mediated by homolysis of a carbon α-bond in flurbiprofen.

    PubMed

    Su, Tao; Ma, Jiani; Wong, Naikei; Phillips, David Lee

    2013-07-18

    Flurbiprofen (Fp), a nonsteroidal anti-inflammatory drug (NSAID) currently in use for arthritis pain relief and in clinical trials for metastatic prostate cancer, can induce photosensitization and phototoxicity upon exposure to sunlight. The mechanisms responsible for Fp phototoxicity are poorly understood and deserve investigation. In this study, the photodecarboxylation reaction of Fp, which has been assumed to underpin its photoinduced side effects, was explored by femtosecond transient absorption (fs-TA), nanosecond transient absorption (ns-TA), and nanosecond time-resolved resonance Raman (ns-TR(3)) spectroscopic techniques in pure acetonitrile (MeCN) solvent. Density functional theory (DFT) calculations were also performed to facilitate the assignments of transient species. The resonance Raman and DFT calculation results reveal that the neutral form of Fp was the predominant species present in MeCN. Analysis of the ultraviolet/visible absorption spectrum and results from TD-DFT calculations indicate that the second excited singlet (S2) can be excited by 266 nm light. Due to its intrinsic instability, S2 rapidly underwent internal conversion (IC) to decay to the lowest lying excited singlet (S1), which was observed in the fs-TA spectra at very early delay times. Intriguingly, three distinct pathways for S1 decay seem to coexist. Specifically, other than fluorescence emission back to the ground state and transformation to the lowest triplet state T1 through intersystem crossing (ISC), the homolysis of the carbon α-bond decarboxylation reaction proceeded simultaneously to give rise to two radical species, one being carboxyl and another being the residual, denoted as FpR. The coexistence of the triplet Fp (T1) and FpR species was verified by means of TR(3) spectra along with ns-TA spectra. As a consequence of its apparent high reactivity, the FpR intermediate was observed to undergo oxidation under oxygen-saturated conditions to yield another radical species

  20. Boundary effects in a surface reaction model for CO oxidation

    NASA Astrophysics Data System (ADS)

    Brosilow, Benjamin J.; Gulari, Erdogan; Ziff, Robert M.

    1993-01-01

    The surface reaction model of Ziff, Gulari, and Barshad (ZGB) is investigated on finite systems with ``hard'' oxygen boundary conditions. The rate of production of CO2 is calculated as a function of y and system size. When the rate of CO adsorption y is above the first-order transition value y2, the reactive region is found to extend into the system a distance ξ which scales as (y-y2)-0.40 when y→y2.

  1. Theoretical study of reactions of HO{sub 2} in low-temperature oxidation of benzene

    SciTech Connect

    Altarawneh, Mohammednoor; Dlugogorski, Bogdan Z.; Kennedy, Eric M.; Mackie, John C.

    2010-07-15

    We have generated a set of thermodynamic and kinetic parameters for the reactions involving HO{sub 2} in the very early stages of benzene oxidation at low temperatures using density functional theory (DFT). In particular, we report the rate constants for the reactions of HO{sub 2} with benzene and phenyl. The calculated reaction rate constant for the abstraction of H-C{sub 6}H{sub 5} by HO{sub 2} is found to be in good agreement with the limited experimental values. HO{sub 2} addition to benzene is found to be more important than direct abstraction. We show that the reactions of HO{sub 2} with the phenyl radical generate the propagating radical OH in a highly exoergic reaction. The results presented herein should be useful in modeling the oxidation of aromatic compounds at low temperatures. (author)

  2. Influence of zinc-oxide eugenol, formocresol, and ferric sulfate on bond strength of dentin adhesives to primary teeth.

    PubMed

    Salama, Fouad Saad

    2005-08-15

    This study evaluated in vitro the influence of a temporary filling {zinc oxide-eugenol (ZOE)} and two pulpotomy agents {formocresol (FC) and ferric sulfate (FS)} on shear bond strength (SBS) of two dentin adhesives to the dentin of primary molars. A total of 80 dentin surfaces were prepared and randomly allocated into 10 groups of 8 specimens each. Groups were subjected to different treatments, which included covering with a paste of ZOE mixed at different powder:liquid (P:L) ratios, placement on a gauze soaked in FC or FS, or they received no pretreatment and served as a control. XRV Herculite composite cylinders were bonded to dentin surfaces using Prime and Bond NT adhesive resin or Opti Bond Solo Plus adhesive resin. SBSs were determined using the lnstron testing machine running at a crosshead speed of 0.5 mm/min. The use of ZOE mixed at the lower P:L ratio of 10g:2g significantly decreased the values of SBS of the two adhesives. The use of two pulpotomy agents (FC and FS) significantly decreased the SBS of the two adhesives. The bond strength to dentin of primary teeth was influenced by the pulpotomy agents used and the ZOE P:L ratio but not by the adhesive system used.

  3. Synthesis of 1,2,4-Triazoles via Oxidative Heterocyclization: Selective C-N Bond Over C-S Bond Formation.

    PubMed

    Gogoi, Anupal; Guin, Srimanta; Rajamanickam, Suresh; Rout, Saroj Kumar; Patel, Bhisma K

    2015-09-18

    The higher propensity of C-N over C-S bond forming ability was demonstrated, through formal C-H functionalization during the construction of 4,5-disubstituted 1,2,4-triazole-3-thiones from arylidenearylthiosemicarbazides catalyzed by Cu(II). However, steric factors imparted by the o-disubstituted substrates tend to change the reaction path giving thiodiazole as the major or an exclusive product. Upon prolonging the reaction time, the in situ generated thiones are transformed to 4,5-disubstituted 1,2,4-triazoles via a desulfurization process. Two classes of heterocycles viz. 4,5-disubstituted 1,2,4-triazole-3-thiones and 4,5-disubstituted 1,2,4-triazoles can be synthesized from arylidenearylthiosemicarbazides by simply adjusting the reaction time. Desulfurization of 1,2,4-triazole-3-thiones is assisted by thiophilic Cu to provide 1,2,4-triazoles with concomitant formation of CuS and polynuclear sulfur anions as confirmed from scanning electron microscope and energy dispersive X-ray spectroscopy measurements. A one-pot synthesis of an antimicrobial compound has been successfully achieved following this strategy.

  4. Mixed chloride/phosphine complexes of the dirhenium core. 10. Redox reactions of an edge-sharing dirhenium(III) non-metal-metal-bonded complex, Re(2)(mu-Cl)(2)Cl(4)(PMe(3))(4).

    PubMed

    Cotton, F A; Dikarev, E V; Petrukhina, M A

    2001-12-17

    Reduction and oxidation reactions of the dirhenium(III) non-metal-metal-bonded edge-sharing complex, Re(2)(mu-Cl)(2)Cl(4)(PMe(3))(4) (1), have been studied. Several new mono- and dinuclear rhenium compounds have been isolated and structurally characterized in the course of this study. Reductions of 1 with 1 and 2 equiv of KC(8) result in an unusual face-sharing complex having an Re(2)(5+) core, Re(2)(mu-Cl)(3)Cl(2)(PMe(3))(4) (2), and a triply bonded Re(II) compound, 1,2,7,8-Re(2)Cl(4)(PMe(3))(4) (3), respectively. Two-electron reduction of 1 in the presence of tetrabutylammonium chloride affords a new triply bonded complex of the Re(2)(4+) core, [Bu(n)()(4)N][1,2,7-Re(2)Cl(5)(PMe(3))(3)] (4). Oxidation of 1 with NOBF(4) yields a Re(IV) mononuclear compound, trans-ReCl(4)(PMe(3))(2) (5). Two isomers of the monomeric Re(III) anion, [ReCl(4)(PMe(3))(2)](-) (6, 7), have been isolated as side products. The crystal structures of compounds 2 and 4-7 have been determined by X-ray crystallography. The Re-Re distance in the face-sharing complex 2 of 2.686(1) A is relatively short. The metal-metal bond length in anion 4 of 2.2354(7) A is consistent with the usual values for the triply bonded Re(2)(4+) core compounds. In addition, a cis arrangement of trimethylphosphine ligands in the starting material 1 is retained upon reduction in the dinuclear products 2-4.

  5. Reaction of SO2 with pure and metal-doped MgO: Basic principles for the cleavage of S-O bonds

    NASA Astrophysics Data System (ADS)

    Rodriguez, J. A.; Jirsak, T.; González, L.; Evans, J.; Pérez, M.; Maiti, A.

    2001-12-01

    Synchrotron-based high-resolution photoemission, x-ray absorption near-edge spectroscopy, and first-principles density-functional calculations are used to examine the interaction of SO2 with pure and modified surfaces of magnesium oxide. On a MgO(100) single crystal, SO2 reacts with O centers to form SO3 and SO4 species. The bonding interactions with the Mg cations are weak and do not lead to cleavage of S-O bonds. An identical result is found after adsorbing SO2 on pure stoichiometric powders of MgO and other oxides (TiO2, Cr2O3, Fe2O3, NiO, CuO, ZnO, V2O5, CeO2, BaO). In these systems, the occupied cations bands are too stable for effective bonding interactions with the LUMO of SO2. To activate an oxide for S-O bond cleavage, one has to create occupied metal states above the valence band of the oxide. DF calculations predict that in the presence of these "extra" electronic states the adsorption energy of SO2 should increase, and there should be a significant oxide→SO2(LUMO) charge transfer that facilitates the cleavage of the S-O bonds. In this article, we explore three different approaches (formation of O vacancies, promotion with alkali metals, and doping with transition metals) that lead to the activation of SO2 and S-O bond breaking on MgO and oxides in general. Basic principles for a rational design of catalysts with a high efficiency for the destruction of SO2 are presented.

  6. Electronic Structure and Bonding in Co-Based Single and Mixed Valence Oxides: A Quantum Chemical Perspective.

    PubMed

    Singh, Vijay; Major, Dan Thomas

    2016-04-04

    The mixed valence cobalt oxide, Co3O4, is a potential candidate as a photovoltaic (PV) material, which also exhibits intriguing chemical and catalytic properties. Here, we present a comparative study of the electronic, magnetic, and chemical bonding properties of mixed valence Co3O4 (i.e., Co(2+/3+)) with the related single valence CoO (i.e., Co(2+)) and Co2O3 (i.e., Co(3+)) oxides using density functional theory (DFT). We have employed a range of theoretical methods, including pure DFT, DFT+U, and a range-separated exchange-correlation functional (HSE06). We compare the electronic structure and band gap of the oxide materials, with available photoemission spectroscopy and optical band gaps. Our calculations suggest that the bonding between Co(3+) and O(2-) ions in Co2O3 and Co3O4 and Co(2+) and O(2-) ions in CoO and Co3O4 are rather different. We find that Co2O3 and Co3O4 are weakly correlated materials, whereas CoO is a strongly correlated material. Furthermore, our computed one-electron energy level diagrams reveal that strong Co-O antibonding states are present at the top of the valence band for all the cobalt oxides, hinting at a defect tolerant capacity in these materials. These results, which give a detailed picture of the chemical bonding in related single and mixed valence cobalt oxides, may serve as a guide to enhance the PV or photoelectrochemical activity of Co3O4, by reducing its internal defect states or changing its electronic structure by doping or alloying with suitable elements.

  7. Extensive Bone Reaction From Catastrophic Oxidized Zirconium Wear.

    PubMed

    Cassar-Gheiti, Adrian J; Collins, Dennis; McCarthy, Tom

    2016-01-01

    The use of alternative bearing surfaces for total hip arthroplasty has become popular to minimize wear and increase longevity, especially in young patients. Oxidized zirconium (Oxinium; Smith & Nephew, Memphis, Tennessee) femoral heads were introduced in the past decade for use in total hip arthroplasty. The advantages of oxidized zirconium include less risk of fracture compared with traditional ceramic heads. This case report describes a patient with a history of bilateral avascular necrosis of the femoral head after chemotherapy for acute lymphoblastic leukemia. Nonoperative management of avascular necrosis failed, and the patient was treated with bilateral total hip arthroplasty. The patient was followed at regular intervals and had slow eccentric polyethylene wear during a 10-year period. After 10 years, the patient had accelerated wear, with femoral and acetabular bone changes as a result of Oxinium and ultrahigh-molecular-weight polyethylene wear during a 6-month period. This article highlights the unusual accelerated bone changes that occurred as a result of Oxinium wear particles.

  8. Low interface defect density of atomic layer deposition BeO with self-cleaning reaction for InGaAs metal oxide semiconductor field effect transistors

    SciTech Connect

    Shin, H. S.; Yum, J. H.; Johnson, D. W.; Harris, H. R.; Hudnall, Todd W.; Oh, J.; Kirsch, P.; Wang, W.-E.; Bielawski, C. W.; Banerjee, S. K.; Lee, J. C.; Lee, H. D.

    2013-11-25

    In this paper, we discuss atomic configuration of atomic layer deposition (ALD) beryllium oxide (BeO) using the quantum chemistry to understand the theoretical origin. BeO has shorter bond length, higher reaction enthalpy, and larger bandgap energy compared with those of ALD aluminum oxide. It is shown that the excellent material properties of ALD BeO can reduce interface defect density due to the self-cleaning reaction and this contributes to the improvement of device performance of InGaAs MOSFETs. The low interface defect density and low leakage current of InGaAs MOSFET were demonstrated using X-ray photoelectron spectroscopy and the corresponding electrical results.

  9. Oxidative catalysis using the stoichiometric oxidant as a reagent: an efficient strategy for single-electron-transfer-induced tandem anion-radical reactions.

    PubMed

    Kafka, František; Holan, Martin; Hidasová, Denisa; Pohl, Radek; Císařová, Ivana; Klepetářová, Blanka; Jahn, Ullrich

    2014-09-08

    Oxidative single-electron transfer-catalyzed tandem reactions consisting of a conjugate addition and a radical cyclization are reported, which incorporate the mandatory terminal oxidant as a functionality into the product.

  10. Through-space and through-bond mixed charge transfer mechanisms on the hydrazine oxidation by cobalt(II) phthalocyanine in the gas phase.

    PubMed

    Paredes-García, V; Cardenas-Jirón, G I; Venegas-Yazigi, D; Zagal, J H; Paez, M; Costamagna, J

    2005-02-17

    Two quantum chemistry theoretical models in the gas phase at the density functional theory B3LYP/LACVP(d) level of calculation are proposed to rationalize the hydrazine oxidation by cobalt(II) phthalocyanine (Co(II)Pc). This oxidation reaction involves the net transfer of four electrons. These theoretical models that are described in terms of energy profiles include a through-space mechanism for the transfer of the first electron of the hydrazine and a through-bond mechanism proposed for the transfer of the three electrons remaining. The main difference between both models arises from a one-electron and one-proton alternate transfer for model 1 and a two-electron and two-proton alternate transfer for model 2. The main problem for experimental studies is to determine if the first transfer corresponds to an electron or a chemical transfer. Under this point of view, we proposed two models which deal with this problem. We conclude that model 1 is more reasonable than model 2 because the whole oxidation process is always exergonic.

  11. Chemoselective hydroxylation of aliphatic sp3 C-H bonds using a ketone catalyst and aqueous H2O2.

    PubMed

    Pierce, Conor J; Hilinski, Michael K

    2014-12-19

    The first ketone-catalyzed method for the oxidation of aliphatic C-H bonds is reported. The reaction conditions employ aryl trifluoromethyl ketones in catalytic amounts and hydrogen peroxide as the terminal oxidant. Hydroxylation is stereospecific and chemoselective for tertiary over secondary C-H bonds. A catalytic cycle invoking a dioxirane as the active oxidant is proposed.

  12. Effect of Water Content in N-Methylmorpholine N-Oxide/Cellulose Solutions on Thermodynamics, Structure, and Hydrogen Bonding.

    PubMed

    Rabideau, Brooks D; Ismail, Ahmed E

    2015-12-03

    Native crystalline cellulose is notoriously difficult to dissolve due to its dense hydrogen bond network between chains and weaker hydrophobic forces between cellulose sheets. N-Methylmorpholine N-oxide (NMMO), the solvent behind the Lyocell process, is one of the most successful commercial solvents for the nonderivatized dissolution of cellulose. In this process, water plays a very important role. Its presence at low concentrations allows NMMO to dissolve substantial amounts of cellulose, while at much higher concentrations it precipitates the crystalline fibers. Using all-atom molecular dynamics, we study the thermodynamic and structural properties of ternary solutions of cellulose, NMMO, and water. Using the two-phase thermodynamic method to calculate solvent entropy, we estimate the free energy of dissolution of cellulose as a function of the water concentration and find a transition of spontaneity that is in excellent agreement with experiment. In pure water, we find that cellulose dissolution is nonspontaneous, a result that is due entirely to strong decreases in water entropy. Although the combined effect of enthalpy on dissolution in water is negligible, we observe a net loss of hydrogen bonds, resulting in a change in hydrogen bond energy that opposes dissolution. At lower water concentrations, cellulose dissolution is spontaneous and largely driven by decreases in enthalpy, with solvent entropy playing only a very minor role. When searching for the root causes of this enthalpy decrease, a complex picture emerges in which not one but many different factors contribute to NMMO's good solvent behavior. The reduction in enthalpy is led by the formation of strong hydrogen bonds between cellulose and NMMO's N-oxide, intensified through van der Waals interactions between NMMO's nonpolar body and the nonpolar surfaces of cellulose and unhindered by water at low concentrations due to the formation of efficient hydrogen bonds between water and cellulose.

  13. Relationship between reaction rate constants of organic pollutants and their molecular descriptors during Fenton oxidation and in situ formed ferric-oxyhydroxides.

    PubMed

    Jia, Lijuan; Shen, Zhemin; Su, Pingru

    2016-05-01

    Fenton oxidation is a promising water treatment method to degrade organic pollutants. In this study, 30 different organic compounds were selected and their reaction rate constants (k) were determined for the Fenton oxidation process. Gaussian09 and Material Studio software sets were used to carry out calculations and obtain values of 10 different molecular descriptors for each studied compound. Ferric-oxyhydroxide coagulation experiments were conducted to determine the coagulation percentage. Based upon the adsorption capacity, all of the investigated organic compounds were divided into two groups (Group A and Group B). The percentage adsorption of organic compounds in Group A was less than 15% (wt./wt.) and that in the Group B was higher than 15% (wt./wt.). For Group A, removal of the compounds by oxidation was the dominant process while for Group B, removal by both oxidation and coagulation (as a synergistic process) took place. Results showed that the relationship between the rate constants (k values) and the molecular descriptors of Group A was more pronounced than for Group B compounds. For the oxidation-dominated process, EHOMO and Fukui indices (f(0)x, f(-)x, f(+)x) were the most significant factors. The influence of bond order was more significant for the synergistic process of oxidation and coagulation than for the oxidation-dominated process. The influences of all other molecular descriptors on the synergistic process were weaker than on the oxidation-dominated process.

  14. SiC-Si interfacial thermal and mechanical properties of reaction bonded SiC/Si ceramic composites

    NASA Astrophysics Data System (ADS)

    Hsu, Chun-Yen; Deng, Fei; Karandikar, Prashant; Ni, Chaoying

    Reaction bonded SiC/Si (RBSC) ceramic composites are broadly utilized in military, semiconductor and aerospace industries. RBSC affords advanced specific stiffness, hardness and thermal. Interface is a key region that has to be considered when working with any composites. Both thermal and mechanical behaviors of the RBSC are highly dependent on the SiC-Si interface. The SiC-Si interface had been found to act as a thermal barrier in restricting heat transferring at room temperature and to govern the energy absorption ability of the RBSC. However, up to present, the role of the SiC-Si interface to transport heat at higher temperatures and the interfacial properties in the nanoscale have not been established. This study focuses on these critically important subjects to explore scientific phenomena and underlying mechanisms. The RBSC thermal conductivity with volume percentages of SiC at 80 and 90 vol% was measured up to 1,200 °C, and was found to decrease for both samples with increasing environmental temperature. The RBSC with 90 vol% SiC has a higher thermal conductivity than that of the 80 vol%; however, is still significantly lower than that of the SiC. The interfacial thermal barrier effect was found to decrease at higher temperatures close 1200 °C. A custom-made in-situ tensile testing device which can be accommodated inside a ZEISS Auriga 60 FIB/SEM has been setup successfully. The SiC-Si interfacial bonding strength was measured at 98 MPa. The observation and analysis of crack propagation along the SiC-Si interface was achieved with in-situ TEM.

  15. Photocatalytic activity of layered perovskite-like oxides in practically valuable chemical reactions

    NASA Astrophysics Data System (ADS)

    Rodionov, I. A.; Zvereva, I. A.

    2016-03-01

    The photocatalytic properties of layered perovskite-like oxides corresponding to the Ruddlesen-Popper, Dion-Jacobson and Aurivillius phases are considered. Of the photocatalytic reactions, the focus is on the reactions of water splitting, hydrogen evolution from aqueous solutions of organic substances and degradation of model organic pollutants. Possibilities to conduct these reactions under UV and visible light in the presence of layered perovskite-like oxides and composite photocatalysts based on them are shown. The specific surface area, band gap energy, particle morphology, cation and anion doping and surface modification are considered as factors that affect the photocatalytic activity. Special attention is paid to the possibilities to enhance the photocatalytic activity by intercalation, ion exchange and exfoliation, which are inherent in this class of compounds. Conclusions are made about the prospects for the use of layered perovskite-like oxides in photocatalysis. The bibliography includes 253 references.

  16. Nitrososynthase triggered oxidative carbon-carbon bond cleavage in baumycin biosynthesis

    PubMed Central

    Al-Mestarihi, Ahmad; Romo, Anthony; Liu, Hung-wen; Bachmann, Brian O.

    2013-01-01

    Baumycins are coproduced with clinically important anticancer secondary metabolites daunorubicin and doxorubicin, which are glycosylated anthracyclines isolated from Streptomyces peucetius. The distinguishing feature of baumycins is the presence of an unusual acetal moiety appended to daunosamine, which is hydrolyzed during acidic extraction of daunorubicin from fermentation broth. The structure of the baumycin acetal suggests that it is likely derived from an unknown C-3” methyl deoxysugar cleaved between the C-3” and C-4” positions. This is supported by analysis of the baumycin/daunorubicin biosynthetic gene cluster (dox), which also encodes putative proteins consistent with production of an anthracycline dissacharide containing a branched sugar. Notably, the dnmZ gene in the dox gene cluster possesses high translated sequence similarity to nitrososynthases, which are flavin-dependent amine monooxygenases involved in the four electron oxidation of aminosugars to nitrososugars. Herein we demonstrate that DnmZ is an amino sugar nitrososynthase initiating the conversion of thymidine-5’-diphosphate-l-epi-vancosamine to a ring opened product via a previously uncharacterized retro oxime-aldol reaction. PMID:23885759

  17. Reaction of cytochrome P450 with cumene hydroperoxide: ESR spin-trapping evidence for the homolytic scission of the peroxide O-O bond by ferric cytochrome P450 1A2.

    PubMed

    Barr, D P; Martin, M V; Guengerich, F P; Mason, R P

    1996-01-01

    ESR spin trapping was used to investigate the reaction of rabbit cytochrome P450 (P450) 1A2 with cumene hydroperoxide. Cumene hydroperoxide-derived peroxyl, alkoxyl, and carbon-centered radicals were formed and trapped during the reaction. The relative contributions of each radical adduct to the composite ESR spectrum were influenced by the concentration of the spin trap. Computer simulation of the experimental data obtained at various 5,5-dimethyl-1-pyrroline N-oxide (DMPO) concentrations was used to quantitate the contributions of each radical adduct to the composite ESR spectrum. The alkoxyl radical was the initial radical produced during the reaction. Experiments with 2-methyl-2-nitrosopropane identified the carbon-centered adducts as those of the methyl radical, hydroxymethyl radical, and a secondary carbon-centered radical. The reaction did not require NADPH-cytochrome P450 reductase or NADPH. It is concluded that the reaction involves the initial homolytic scission of the peroxide O-O bond to produce the cumoxyl radical. Methyl radicals were produced from the beta-scission of the cumoxyl radical. The peroxyl adduct was not observed in the absence of molecular oxygen. We conclude that the DMPO peroxyl radical adduct detected in the presence of oxygen was due to the methylperoxyl radical formed by the reaction of the methyl radical with oxygen. At a higher P450 concentration, a protein-derived radical adduct was also detected.

  18. Surface-catalyzed air oxidation reactions of hydrazines: Tubular reactor studies

    NASA Technical Reports Server (NTRS)

    Kilduff, Jan E.; Davis, Dennis D.; Koontz, Steven L.

    1988-01-01

    The surface-catalyzed air oxidation reactions of hydrazine, monomethylhydrazine, unsymmetrical dimethylhydrazine, symmetrical dimethylhydrazine, trimethylhydrazine and tetramethylhydrazine were investigated in a metal-powder packed turbular flow reactor at 55 plus or minus 3 C. Hydrazine was completely reacted on all surfaces studied. The major products of monomethylhydrazine (MMH) oxidation were methanol, methane and methyldiazene. The di-, tri- and tetra-methyl hydrazines were essentially unreactive under these conditions. The relative catalytic reactivities toward MMH are: Fe greater than Al2O3 greater than Ti greater than Zn greater than 316 SS greater than Cr greater than Ni greater than Al greater than 304L SS. A kinetic scheme and mechanism involving adsorption, oxidative dehydrogenation and reductive elimination reactions on a metal oxide surface are proposed.

  19. Process for the oxidation of materials in water at supercritical temperatures utilizing reaction rate enhancers

    SciTech Connect

    Swallow, K.C.; Killilea, W.R.; Hong, G.T.; Bourhis, A.L.

    1993-08-03

    A method is described for substantially completely oxidizing combustible materials in which an aqueous stream bearing the combustible materials is reacted in the presence of an oxidant comprising diatomic oxygen and at a temperature greater than the critical temperature of water and at a pressure greater than about 25 bar, within a reactor for a period of less than about 5 minutes to produce a reaction product stream, wherein the reaction is initiated in the presence of a rate enhancer comprising at least one oxidizing agent in addition to said oxidant selected from the group consisting of ozone, hydrogen peroxide, salts containing persulfate, salts containing permanganate, nitric acid, salts containing nitrate, oxyacids of chlorine and their corresponding salts, hypochlorous acid, salts containing hypochlorite, chlorous acid, salts containing chlorite, chloric acid, salts containing chlorate, perchloric acid, and salts containing perchlorate.

  20. Interfacial Cu+ promoted surface reactivity: Carbon monoxide oxidation reaction over polycrystalline copper-titania catalysts

    DOE PAGES

    Senanayake, S. D.; Pappoe, N. A.; Nguyen-Phan, T. -D.; ...

    2016-10-01

    We have studied the catalytic carbon monoxide (CO) oxidation (CO+0.5O2 → CO2) reaction using a powder catalyst composed of both copper (5wt% loading) and titania (CuOx-TiO2). Our study was focused on revealing the role of Cu, and the interaction between Cu and TiO2, by systematic comparison between two nanocatalysts, CuOx-TiO2 and pure CuOx. We interrogated these catalysts under in situ conditions using X-ray Diffraction (XRD), X-ray Absorption Fine Structure (XAFS) and Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) to probe the structure and electronic properties of the catalyst at all stages of the reaction and simultaneously probe the surface statesmore » or intermediates of this reaction. With the aid of several ex situ characterization techniques including Transmission Electron Microscopy (TEM), the local catalyst morphology and structure was also studied. Our results show that a CuOx-TiO2 system is more active than bulk CuOx for the CO oxidation reaction due to its lower onset temperature and better stability at higher temperatures. Our results also suggests that a surface Cu+ species observed in the CuOx-TiO2 interface are likely to be a key player in the CO oxidation mechanism, while implicating that the stabilization of this species is probably associated with the oxide-oxide interface. Both in situ DRIFTS and XAFS measurements reveal that there is likely to be a Cu(Ti)-O mixed oxide at this interface. We discuss the nature of this Cu(Ti)-O interface and interpret its role on the CO oxidation reaction.« less