Kusakabe, Shusuke; Rawls, H Ralph; Hotta, Masato
2016-03-01
To evaluate thin-film bond strength between a bonding agent and human dentin, using a scratch test, and the characteristics and accuracy of measurement. One-step bonding agents (BeautiBond; Bond Force; Adper Easy Bond; Clearfil tri-S Bond) and two-step bonding agents (Cleafil SE Bond; FL-Bond II) were investigated in this study. Flat dentin surfaces were prepared for extracted human molars. The dentin surfaces were ground and bonding agents were applied and light cured. The thin-film bond strength test of the specimens was evaluated by the critical load at which the coated bonding agent failed and dentin appeared. The scratch mark sections were then observed under a scanning electron microscope. Indentation hardness was evaluated by the variation in depth under an applied load of 10gf. Data were compared by one-way ANOVA with the Scheffé's post hoc multiple comparison test (p<0.05). In addition, thin-film bond strength and indentation hardness were analyzed using analysis of correlation and covariance. The thin-film bond strength of two-step bonding agents were found to be significantly higher than that of one-step bonding agents with small standard deviations. Scratch marks consistently showed adhesive failure in the vicinity of the bonding agent/dentin interface. The indentation hardness showed a trend that two-step bonding agents have greater hardness than one-step bonding agents. A moderately significant correlation (r(2)=0.31) was found between thin-film bond strength and indentation hardness. Thin-film bond strength test is a valid and reliable means of evaluating bond strength in the vicinity of the adhesive interface and is more accurate than other methods currently in use. Further, the thin-film bond strength is influenced by the hardness of the cued bonding agent. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Ekren, Orhun; Ozkomur, Ahmet; Ucar, Yurdanur
2018-03-01
Direct metal laser sintering (DMLS) and direct metal laser melting (DMLM) have become popular for fabricating the metal frameworks of metal-ceramic restorations. How the type of layered manufacturing device, layer thickness, and alloy powder may affect the bond strength of ceramic to metal substructure is unclear. The purpose of this in vitro study was to evaluate the bond strength of dental porcelain to metal frameworks fabricated using different layered manufacturing techniques (DMLS and DMLM), Co-Cr alloy powders, and layer thicknesses and to evaluate whether a correlation exists between the bond strength and the number of ceramic remnants on the metal surface. A total of 75 bar-shaped metal specimens (n=15) were fabricated using either DMLS or DMLM. The powder alloys used were Keramit NP-S and EOS-Cobalt-Chrome SP-2 with layer thicknesses of 20 μm and 30 μm. After ceramic application, the metal-ceramic bond strength was evaluated with a 3-point-bend test. Three-way ANOVA followed by the Tukey honest significance difference test were used for statistical analysis (α=.05). De-bonding surface microstructure was observed with scanning electron microscopy. Energy dispersive spectroscopy analysis was conducted to evaluate the correlation between ceramic remnants on the metal surface and bond strength values. The mean bond strength value of DMLS was significantly higher than that of DMLM. While no statistically significant difference was found between layer thicknesses, alloy powders closely affected bond strength. Statistical comparisons revealed that the highest bond strength could be achieved with DMLS-Cobalt-Chrome SP2-20μm, and the lowest bond strength was observed in DMLS-Keramit NP-S-20μm (P≤.05). No correlation was found between porcelain remnants on the metal surface and bond strength values. The layered manufacturing device and the alloy powders evaluated in the current study closely affected the bond strength of dental porcelain to a metal framework. However, layer thickness did not affect the bond strength. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Mechanical and bond strength properties of light-cured and chemically cured glass ionomer cements.
McCarthy, M F; Hondrum, S O
1994-02-01
The purpose of this study was to evaluate the mechanical and bond strength properties of a commercially available light-cured glass ionomer cement and of a chemically cured glass ionomer cement. Sixty recently extracted human molars were randomly divided into six equal groups, and the bond strengths of the two cement types were evaluated at 1 hour, 24 hours, and 7 days. Stainless steel lingual buttons were bonded to prepared enamel surfaces, and the samples were placed in a water bath at 37 degrees C until testing. The shear bond strength of each sample was determined with a universal testing instrument. The mechanical strength properties of the two cements were then evaluated. The transverse flexural strength, compressive strength, rigidity, and diametral tensile strength were tested for each cement at 1 hour, 24 hours, and 7 days. The results of the mechanical property strength tests were then compared with the results of the bond strength tests.(ABSTRACT TRUNCATED AT 250 WORDS)
Proceedings of the Second Annual Symposium for Nondestructive Evaluation of Bond Strength
NASA Technical Reports Server (NTRS)
Roberts, Mark J. (Compiler)
1999-01-01
Ultrasonics, microwaves, optically stimulated electron emission (OSEE), and computational chemistry approaches have shown relevance to bond strength determination. Nonlinear ultrasonic nondestructive evaluation methods, however, have shown the most effectiveness over other methods on adhesive bond analysis. Correlation to changes in higher order material properties due to microstructural changes using nonlinear ultrasonics has been shown related to bond strength. Nonlinear ultrasonic energy is an order of magnitude more sensitive than linear ultrasound to these material parameter changes and to acoustic velocity changes caused by the acoustoelastic effect when a bond is prestressed. Signal correlations between non-linear ultrasonic measurements and initialization of bond failures have been measured. This paper reviews bond strength research efforts presented by university and industry experts at the Second Annual Symposium for Nondestructive Evaluation of Bond Strength organized by the NDE Sciences Branch at NASA Langley in November 1998.
Singh, Shamsher; Adlakha, Vivek; Babaji, Prashant; Chandna, Preetika; Thomas, Abi M; Chopra, Saroj
2013-10-01
Newer technologies and the development of pit and fissure sealants have shifted the treatment philosophy from 'drill and fill' to that of 'seal and heal'. The purpose of this in-vitro study was to evaluate the effects of bonding agents on the tensile bond strengths of two pit and fissure sealants by using invasive and non-invasive techniques. One hundred and twenty bicuspids were collected and teeth were divided into two groups: Group-I (Clinpro) and Group-II (Conseal f) with 60 teeth in each group. For evaluating tensile bond strengths, occlusal surfaces of all the teeth were flattened by reducing buccal and lingual cusps without disturbing fissures. Standardised polyvinyl tube was bonded to occlusal surfaces with respective materials. Sealants were applied, with or without bonding agents, in increments and they were light cured. Tensile bond strengths were determined by using Universal Testing Machine. Data were then statistically analysed by using Student t-test for comparison. A statistically significant difference was found in tensile bond strength in invasive with bonding agent group than in non-invasive with bonding agent group. This study revealed that invasive techniques increase the tensile bond strengths of sealants as compared to non- invasive techniques and that the use of a bonding agent as an intermediate layer between the tooth and fissure sealant is beneficial for increasing the bond strength.
Sen, D; Nayir, E; Pamuk, S
2000-11-01
Although the bond strengths of various resin composite luting materials have been reported in the literature, the evaluation of these systems with various cast alloys of different compositions has not been completely clarified. To evaluate the tensile bond strength of sandblasted high-noble, noble, and base metal alloys bonded to etched enamel by 2 different bonding agents of different chemical composition: Panavia-Ex (BIS-GMA) and Super-Bond (4-META acrylic). Flat enamel surfaces were prepared on buccal surfaces of 60 extracted noncarious human incisors. Teeth were divided into 3 groups of 20 each. Twenty circular disks of 5 mm diameter were prepared for casting for each group. Group I was cast with a high-noble, group II with a noble, and group III with a base metal alloy. The surfaces of the disks were sandblasted with 250 microm Al(2)O(3). Ten disks of each group were bonded to exposed enamel surfaces with Super-Bond and 10 disks with Panavia-Ex as recommended by the manufacturer. The tensile bond strength was measured with an Instron universal testing machine with a crosshead speed of 0.5 mm/min until failure occurred. Two-way ANOVA was used to evaluate the results. The differences in bond strengths of Super-Bond and Panavia-Ex with different alloys were not significant. The highest bond strengths were obtained in base metal alloys, followed by noble and high-noble alloys. These results were significant. Panavia-Ex and Super-Bond exhibited comparable tensile bond strengths. For both luting agents, the highest bond strengths were achieved with base metal alloys and the lowest with high-noble alloys.
Knight, Beau; Love, Robert M; George, Roy
2017-10-24
This study evaluated the effect of time and concentrations of sodium hypochlorite on the bond strength of a glass fibre post cemented in a root canal with resin cement. A total of 45 single-rooted extracted human teeth were prepared with Protaper ® universal files, randomly allocated into nine groups and then subjected to 1% or 4% NaOCl for a period of 1 min or 2 min. Fibre posts were then bonded into the root canal, sectioned and the bond strength tested using a push-out test. A longer irrigation time resulted in a significant reduction (P < 0.05) in bond strength, while a final additional irrigation with distilled water significantly reduced bond strength. The concentration of NaOCl did not significantly affect bond strength. Within the limitations of this study, it was observed that regardless of the concentration of NaOCl used, shorter irrigation times favoured better fibre post bonding. © 2017 Australian Society of Endodontology Inc.
Pane, Epita S; Palamara, Joseph E A; Messer, Harold H
2015-12-01
This study aims to evaluate tensile and shear bond strengths of one epoxy (AH) and two methacrylate resin-based sealers (EZ and RS) in thin and thick layers bonded to root dentine. An alignment device was prepared for accurate positioning of 20 root dentine cylinders in a predefined gap of 0.1 or 1 mm. Sealer was placed in the interface. Bond strength tests were conducted. Mode of failures and representative surfaces were evaluated. Data were analysed using anova and post-hoc tests, with P < 0.05. The thick layer of sealer produced higher bond strength, except for the shear bond strength of EZ. Significant differences between thin and thick layers were found only in tensile bond strengths of AH and RS. Mixed type of failure was constantly found with all sealers. Bond strengths of thick layers of resin-based sealers to root dentine tended to be higher than with thin layers. © 2015 Australian Society of Endodontology.
Yu, Ling; Liu, Jing-Ming; Wang, Xiao-Yan; Gao, Xue-Jun
2009-03-01
To evaluate the shear bond strengths of four dental adhesives in vitro. The facial surfaces of 20 human maxillary incisors were prepared to expose fresh enamel and randomly divided into four groups, in each group 5 teeth were bonded with one adhesives: group A (Clearfil Protect Bond, self-etching two steps), group B (Adper( Prompt, self-etching one step), group C (SwissTEC SL Bond, total-etching two steps), group D (Single Bond, total-etching two steps). Shear bond strengths were determined using an universal testing machine after being stored in distilled water for 24 h at 37 degrees C. The bond strengths to enamel and dentin were (25.33 +/- 2.84) and (26.07 +/- 5.56) MPa in group A, (17.08 +/- 5.13) and (17.93 +/- 4.70) MPa in group B, (33.14 +/- 6.05) and (41.92 +/- 6.25) MPa in group C, (22.51 +/- 6.25) and (21.45 +/- 7.34) MPa in group D. Group C showed the highest and group B the lowest shear bond strength to enamel and dentin among the four groups. The two-step self-etching adhesive showed comparable shear bond strength to some of the total-etching adhesives and higher shear bond strength than one-step self-etching adhesive.
NASA Technical Reports Server (NTRS)
Ray, Asit K.
1991-01-01
Two studies are presented, and in the first study, Surlyn 8920 (an ionic and amorphous low density polyethylene made by Dupont) was evaluated as a possible replacement of Plexyglass G as PHE visor material. Four formulations of the polymer were made by adding different amounts of UV stabilizer, energy quencher, and antioxident in a Brabender Plasticorder. The formulated polymers were molded in the form of sheets in a compression molder. Cut samples from the molded sheets were exposed in a weatherometer and tested on Instron Tensile Tester for strength and elongation. Specially molded samples of the formulated polymers were subjected to Charpy Impact Tests. In the second study, preliminary evaluations of adhesives for improvement of bonding between Teflon and stainless steel (SS) were performed. Kapton, a high temperature polyimide made by Dupont, and a rubber based adhesive made by Potter Paint Co., were evaluated against industrial quality epoxy, the current material used to bond Teflon and SS. The degreased surfaces of the SS discs were etched mechanically, with a few of these etched chemically. The surfaces of the SS discs were etched mechanically, with a few of these etched chemically. Bonding strengths were evaluated using lap shear tests on the Instron Tensile Tester for the samples bonded by Kapton and industrial quality epoxy. Bond strengths were also evaluated using a pull test on the Instron for the samples bonded by Potter adhesive (CWL-152) and industrial quality epoxy. Based on limited lap shear data, Kapton gave bond strength favorable compared to that of industrial epoxy. Based on limited pull test data, Kapton bonded and CWL-152 bonded samples showed poor strength compared to epoxy bonded sample.
Montero, Manuela M Haro; Vicente, Ascensión; Alfonso-Hernández, Noelia; Jiménez-López, Manuel; Bravo-González, Luis-Alberto
2015-05-01
To evaluate in vitro the shear bond strength of brackets recycled by sandblasting with aluminum oxide particles of different sizes or reconditioned industrially after successive rebonding. Eighty brackets were bonded and debonded sequentially three times. After the first debonding, brackets were divided into four groups: (group 1) sandblasting with aluminum oxide particles of 25 μ, (group 2) 50 μ, and (group 3) 110 μ, and (group 4) industrial recycling. Bond strength and adhesive material remaining on debonded bracket bases were evaluated for each successive debond. No significant differences were detected between the four groups following the first recycle (P > .05). After the second recycle, bond strength was significantly greater for the industrially recycled group than the other groups (P < .016). When shear bond strength was compared within each recycling method, the bond strength of sandblasted brackets decreased with the increase of particle size and with each recycle; for the industrially recycled group, no significant differences were detected between the three sequences (P > .016). In the evaluation of bond material remnant, the industrially recycled group left significantly less bond material after successive recycling than the other groups did (P < .016). Within each recycling method, the adhesive remnant decreased significantly after successive debond (P < .016). Industrial recycling obtained better results than sandblasting after three successive debondings. The brackets' shear bond strength decreased as the size of the aluminum oxide particle used for sandblasting increased and as recycling was repeated.
Kulkarni, Girish; Mishra, Vinay K
2016-05-01
The purpose of this study was to compare the effect of enamel wetness on microshear bond strength using different adhesive systems. To evaluate microshear bond strength of three bonding agents on dry enamel; to evaluate microshear bond strength of three bonding agents on wet enamel; and to compare microshear bond strength of three different bonding agents on dry and wet enamel. Sixty extracted noncarious human premolars were selected for this study. Flat enamel surfaces of approximately 3 mm were obtained by grinding the buccal surfaces of premolars with water-cooled diamond disks. This study evaluated one etch-and-rinse adhesive system (Single Bond 2) and two self-etching adhesive systems (Clearfil SE Bond and Xeno-V). The specimens were divided into two groups (n = 30). Group I (dry) was air-dried for 30 seconds and in group II (wet) surfaces were blotted with absorbent paper to remove excess water. These groups were further divided into six subgroups (n = 10) according to the adhesives used. The resin composite, Filtek Z 250, was bonded to flat enamel surfaces that had been treated with one of the adhesives, following the manufacturer's instructions. After being stored in water at 37°C for 24 hours, bonded specimens were stressed in universal testing machine (Fig. 3) at a crosshead speed of 1 mm/min. The data were evaluated with one-way and two-way analysis of variance (ANOVA), t-test, and Tukey's Multiple Post hoc tests (a = 0.05). The two-way ANOVA and Tukey's Multiple Post hoc tests showed significant differences among adhesive systems, but wetness did not influence microshear bond strength (p = 0.1762). The one-way ANOVA and t-test showed that the all-in-one adhesive (Xeno-V) was the only material influenced by the presence of water on the enamel surface. Xeno-V showed significantly higher microshear bond strength when the enamel was kept wet. Single Bond 2 adhesive showed significantly higher microshear bond strength as compared with Xeno-V adhesive but no significant difference when compared with Clearfil SE Bond adhesive in dry enamel. Single Bond 2 adhesive showed no significant difference in microshear bond strength as compared with self-etching adhesive systems (Clearfil SE Bond and Xeno-V), when the enamel was kept wet. From the findings of the results, it was concluded that self-etching adhesives were not negatively affected by the presence of water on the enamel surface. The all-in-one adhesive showed different behavior depending on whether the enamel surface was dry or wet. So the enamel surface should not be desiccated, when self-etching adhesives are used.
Bond strength of fiber-reinforced posts to deproteinized root canal dentin.
Furuse, Adilson Yoshio; Cunha, Leonardo Fernandes; Baratto, Samantha Pugsley; Leonardi, Denise Piotto; Haragushiku, Gisele Aihara; Gonzaga, Carla Castiglia
2014-09-01
This study evaluated the push-out bond strength of cemented fiber posts after deproteinization of root canal dentin walls with NaOCl. The effect of the application of an antioxidant solution (sodium ascorbate) was also evaluated. A three-step etch-and-rinse (Scotch-bond - 3M Espe) and a one-step self-etching adhesive (Xeno III - Dentsply Caulk) were evaluated. Thirty bovine incisor roots were divided into 3 groups: a. Irrigation with physiologic solution (control). b. Deproteinization with 10 minutes irrigation of 5% NaOCl. c. Deproteinization with NaOCl followed by 10 minutes irrigation with 10% ascorbic acid. Fiber posts were cemented with a dual-cured cement (Rely X ARC - 3M ESPE). The push-out bond strength was evaluated after 24 hours of storage in distilled water. The data were analyzed with three-way ANOVA, one-way ANOVA and Tukey's test (α = 0.05). There were significant differences between groups (p < 0.05). The bond strength of Scotchbond was not influenced by the deproteinization. Xeno III showed a decrease in bond strength when deproteinized with 5% NaOCl (p < 0.05). For Xeno III, the subsequent irrigation with ascorbic acid was able to reverse the effect of the deproteinization. Considering the radicular thirds, the bond strength varied in the sequence-apical < middle < coronal. Only the all-in-one adhesive was influenced by the deproteinization. Considering the respective control groups, both systems showed similar bond strength results. The decreased bond strength of the self-etching adhesive following deproteinization seams to be related to the oxidant effect of the NaOCl solution and the subsequent irrigation with ascorbic acid was able to reverse the effect of the deproteinization.
In vitro analysis of shear bond strength and adhesive remnant index of different metal brackets
Henkin, Fernanda de Souza; de Macêdo, Érika de Oliveira Dias; Santos, Karoline da Silva; Schwarzbach, Marília; Samuel, Susana Maria Werner; Mundstock, Karina Santos
2016-01-01
ABSTRACT Introduction: There is a great variety of orthodontic brackets in the Brazilian market, and constantly evaluating them is critical for professionals to know their properties, so as to be able to choose which product best suits their clinical practice. Objectives: To evaluate the bond strength and the adhesive remnant index (ARI) of different brands of metal brackets. Material and Methods: A total of 105 bovine incisors were used, and brackets of different brands were bonded to teeth. Seven different bracket brands were tested (MorelliTM, American OrthodonticsTM, TP OrthodonticsTM, Abzil-3MTM, OrthometricTM, TecnidentTM and UNIDENTM). Twenty-four hours after bonding, shear bond strength test was performed; and after debonding, the ARI was determined by using an optical microscope at a 10-fold increase. Results: Mean shear bond strength values ranged from 3.845 ± 3.997 (MorelliTM) to 9.871 ± 5.106 MPa (TecnidentTM). The majority of the ARI index scores was 0 and 1. Conclusion: Among the evaluated brackets, the one with the lowest mean shear bond strength values was MorelliTM. General evaluation of groups indicated that a greater number of bond failure occurred at the enamel/adhesive interface. PMID:28125142
Farokh Gisovar, Elham; Hedayati, Nassim; Shadman, Niloofar; Shafiee, Leila
2015-02-01
CPP-ACP (Phosphopeptide-Amorphous Calcium Phosphate) has an important role in caries prevention in pediatric patients. This study was done, because of the great use of CPP-ACP and the need for restoration for teeth treated with CPP-ACP as well as the importance of shear bond strength of adhesives in the success of restorations. This study aimed to evaluate the effect of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) on shear bond strength of dental adhesives to enamel of primary teeth molars. This in vitro study was conducted on 180 extracted primary molars. They were randomly divided into 6 groups and each group was divided into 2 subgroups (treated with CPP-ACP and untreated). In subgroups with CPP-ACP, enamel was treated with CPP-ACP paste 1 h/d for 5 days. Types of adhesives that were evaluated in this study were Tetric N-Bond, AdheSE, AdheSE One F, single Bond 2, SE Bond, and Adper Prompt L-Pop. Shear bond strength was tested with a universal testing machine and mode of failure was evaluated under stereomicroscope. Data were analyzed by T test, 2-way analysis of variance (ANOVA), Tukey and Fisher exact test using SPSS18. P < 0.05 was considered as significance level. Shear bond strengths of different adhesive systems to enamel of primary teeth treated and untreated with CPP-ACP showed no significant difference (P > 0.05). Mode of failure in all groups regardless of CPP-ACP administration was mainly adhesive type. Our results indicated that CPP-ACP did not affect shear bond strength of studied adhesives to primary teeth enamel. To have a successful and durable composite restoration, having a high strength bonding is essential. Considering the wide use of CPP-ACP in preventing tooth decay and the role of adhesive shear bond strength (SBS) in success of composite restoration, we conducted the present study to evaluate the effect of CPP-ACP on the SBS of adhesives to primary teeth enamel.
Jaidka, Shipra; Somani, Rani; Singh, Deepti J; Shafat, Shazia
2016-04-01
To comparatively evaluate the compressive strength, diametral tensile strength, and shear bond strength of glass ionomer cement type IX, chlorhexidine-incorporated glass ionomer cement, and triclosan-incorporated glass ionomer cement. In this study, glass ionomer cement type IX was used as a control. Chlorhexidine diacetate, and triclosan were added to glass ionomer cement type IX powder, respectively, in order to obtain 0.5, 1.25, and 2.5% concentrations of the respective experimental groups. Compressive strength, diametral tensile strength, and shear bond strength were evaluated after 24 h using Instron Universal Testing Machine. The results obtained were statistically analyzed using the independent t-test, Dunnett test, and Tukey test. There was no statistical difference in the compressive strength, diametral tensile strength, and shear bond strength of glass ionomer cement type IX (control), 0.5% triclosan-glass ionomer cement, and 0.5% chlorhexidine-glass ionomer cement. The present study suggests that the compressive strength, diametral tensile strength, and shear bond strength of 0.5% triclosan-glass ionomer cement and 0.5% chlorhexidine-glass ionomer cement were similar to those of the glass ionomer cement type IX, discernibly signifying that these can be considered as viable options for use in pediatric dentistry with the additional value of antimicrobial property along with physical properties within the higher acceptable range.
Bond strength and microleakage of current dentin adhesives.
Fortin, D; Swift, E J; Denehy, G E; Reinhardt, J W
1994-07-01
The purpose of this in vitro study was to evaluate shear bond strengths and microleakage of seven current-generation dentin adhesive systems. Standard box-type Class V cavity preparations were made at the cemento-enamel junction on the buccal surfaces of eighty extracted human molars. These preparations were restored using a microfill composite following application of either All-Bond 2 (Bisco), Clearfil Liner Bond (Kuraray), Gluma 2000 (Miles), Imperva Bond (Shofu), OptiBond (Kerr), Prisma Universal Bond 3 (Caulk), Scotchbond Multi-Purpose (3M), or Scotchbond Dual-Cure (3M) (control). Lingual dentin of these same teeth was exposed and polished to 600-grit. Adhesives were applied and composite was bonded to the dentin using a gelatin capsule technique. Specimens were thermocycled 500 times. Shear bond strengths were determined using a universal testing machine, and microleakage was evaluated using a standard silver nitrate staining technique. Clearfill Liner Bond and OptiBond, adhesive systems that include low-viscosity, low-modulus intermediate resins, had the highest shear bond strengths (13.3 +/- 2.3 MPa and 12.9 +/- 1.5 MPa, respectively). Along with Prisma Universal Bond 3, they also had the least microleakage at dentin margins of Class V restorations. No statistically significant correlation between shear bond strength and microleakage was observed in this study. Adhesive systems that include a low-viscosity intermediate resin produced the high bond strengths and low microleakage. Similarly, two materials with bond strengths in the intermediate range had significantly increased microleakage, and one material with a bond strength in the low end of the spectrum exhibited microleakage that was statistically greater. Thus, despite the lack of statistical correlation, there were observable trends.
Marigo, Luca; D' Arcangelo, Camillo; DE Angelis, Francesco; Cordaro, Massimo; Vadini, Mirco; Lajolo, Carlo
2017-02-01
The purpose of this study was to evaluate the push-out bond strengths of four commercially available adhesive luting systems (two self-adhesive and two etch-and-rinse systems) after mechanical aging. Forty single-rooted anterior teeth were divided into four groups according to the luting cement system used: Cement-One (Group 1); One-Q-adhesive Bond + Axia Core Dual (Group 2); SmartCem® 2 (Group 3); and XP Bond® + Core-X™ Flow (Group 4). Anatomical Post was cemented in groups 1 and 2, and D.T. Light-Post Illusion was cemented in groups 3 and 4. All samples were subjected to masticatory stress simulation consisting of 300,000 cycles applied with a computer-controlled chewing simulator. Push-out bond strength values (MPa) were calculated at cervical, middle, and apical each level, and the total bond strengths were calculated as the averages of the three levels. Statistical analysis was performed with data analysis software and significance was set at P<0.05. Statistically significant differences in total bond strength were detected between the cements (Group 4: 3.28 MPa, Group 1: 2.77 MPa, Group 2: 2.36 MPa, Group 3: 1.13 MPa; P<0.05). Specifically, Group 1 exhibited a lower bond strength in the apical zone, Group 3 exhibited a higher strength in this zone, and groups 2 and 4 exhibited more homogeneous bonding strengths across the different anatomical zones. After artificial aging, etch-and-rinse luting systems exhibited more homogeneous bond strengths; nevertheless, Cement-One exhibited a total bond strength second only to Core-X Flow.
Gupta, Neeraj; Kumar, Dilip; Palla, Aparna
2017-04-01
Orthodontists are commonly faced with the decision of what to do with debonded or inaccurately positioned brackets. An economical option to this dilemma is to recycle the brackets. Many recycling methods have been proposed, but the optimal bond strength of these recycled brackets needs further evaluation. Objectives: To evaluate and compare the effect of three recycling methods: (i) Sandblasting (ii) Sandblasting / direct flaming (iii) Sandblasting /direct flaming /acid bath solution on shear bond strength (SBS) of stainless steel brackets. Eighty human premolars were bonded with premolar stainless steel brackets as per manufacturer's instructions. The teeth were divided into 4 groups (n=20): Recycling and initial debonding was not done in Control group (Group I). After initial bonding, the brackets in the rest of the three experimental groups were debonded and recycled by following methods: (i) Sandblasting (Group II) (ii) Sandblasting /direct flaming (Group III) (iii) Sandblasting /direct flaming /acid bath solution (Group IV). Further the recycled brackets were bonded. The specimens were then subjected to testing in a Universal machine. The evaluation of the variation of the shear bond strength (SBS) among test groups was done using one-way ANOVA test and inter-experimental group comparison was done by Newman-Keuls multiple post hoc procedure. Group I (8.6510±1.3943MPa) showed the highest bond strength followed by Group II (5.0185±0.9758MPa), Group IV (2.30±0.65MPa) and Group III (2.0455± 0.6196MPa). Statistically significant variations existed in the shear bond strength (SBS) in all groups analyzed except between Group III and Group IV. The following conclusions were drawn from the study: 1. Shear bond strength of new brackets is significantly higher than the recycled brackets. 2. Brackets sandblasted with 90µm aluminium oxide particle air-abrasion showed significantly higher shear bond strength compared to direct flaming/sandblasting and direct flaming/sandblasting/acid bath solution. 3. Sandblasting with 90µm aluminium oxide particle air-abrasion is the simplest, most efficient and hence, the preferred method of recycling debonded brackets. Key words: Orthodontic bracket, recycling, shear bond strength.
Asakawa, Yuya; Takahashi, Hidekazu; Iwasaki, Naohiko; Kobayashi, Masahiro
2014-01-01
The aim of this study was to evaluate the effects of ultraviolet light (UV) irradiation and sandblasting treatment on the shear bond strength between polyamide and chemical-cured resin. Three types of commercial polyamides were treated using UV irradiation, sandblasting treatment, and a combining sandblasting and UV irradiation. The shear bond strength was measured and analyzed using the Kruskal-Wallis test (α=0.05). Comparing shear bond strengths without surface treatment, from 4.1 to 5.7 MPa, the UV irradiation significantly increased the shear bond strengths except for Valplast, whose shear bond strengths ranged from 5.2 to 9.3 MPa. The sandblasting treatment also significantly increased the shear bond strengths (8.0 to 11.4 MPa). The combining sandblasting and UV irradiation significantly increased the shear bond strengths (15.2 to 18.3 MPa) comparing without surface treatment. This combined treatment was considered the most effective at improving the shear bond strength between polyamide and chemical-cured resin.
Kapoor, Saumya; Balakrishnan, Dhanasekar
2017-01-01
Background For success of any indirect metal restoration, a strong bond between cement and the intaglio surface of metal is imperative. The aim of this study is to evaluate and compare the effect of different surface treatment on the tensile and shear bond strength of different cements with nickel–chromium alloy. Material and Methods 120 premolars were sectioned horizontally parallel to the occlusal surface to expose the dentin. Wax patterns were fabricated for individual tooth followed by casting them in nickel chromium alloy. 60 samples were tested for tensile bond strength, and the remaining 60 for shear bond strength. The samples were divided into three groups (of 20 samples each) as per the following surface treatment: oxidation only, oxidation and sandblasting, or oxidation, sandblasting followed by application of alloy primer. Each group was subdivided into 2 subgroups of 10 samples each, according to the bonding cement i.e RM-GIC and resin cement. Samples were subjected to thermocycling procedure followed by evaluation of bond strength. Results Two-way analyses of variance (ANOVA) was performed to compare the means of tensile and shear bond strength across type of surface treatment and cement, followed by post hoc parametric analysis. For all tests ‘p’ value of less than 0.05 was considered statistically significant. Conclusions The surface treatment of oxidation and sandblasting followed by application of alloy primer offered the maximum tensile and shear bond strength for both RM GIC and resin cement. Resin cement exhibited greater tensile and shear bond strength than RM-GIC for all the three surface treatment methods. Key words:Resin cement, resin modified glass ionomer cement, oxidation, sandblasting, alloy primer, tensile bond strength, shear bond strength, universal testing machine. PMID:28828160
Mahboub, Farhang; Salehsaber, Fariba; Parnia, Fereydoon; Gharekhani, Vahedeh; Kananizadeh, Yousef; Taghizadeh, Mahsa
2017-01-01
Background. The aim of the present study was to evaluate the effect of Corega and 2.5% sodium hypochlorite cleansing agents on the shear and tensile bond strengths of GC soft liner to denture base. Methods. A total of 144 samples (72 samples for tensile and 72 for shear bond strength evaluations) were prepared. The samples in each group were subdivided into three subgroups in terms of the cleansing agent used (2.5% sodium hypochlorite, Corega and distilled water [control group]). All the samples were stored in distilled water, during which each sample was immersed for 15 minutes daily in sodium hypochlorite or Corega solutions. After 20 days the tensile and shear bond strengths were determined using a universal testing machine. In addition, a stereomicroscope was used to evaluate fracture modes. Data were analyzed with one-way ANOVA, using SPSS 16. Results. The results of post hoc Tukey tests showed significant differences in the mean tensile and shear bond strength values between the sodium hypochlorite group with Corega and control groups (P=0.001 for comparison of tensile bond strengths between the sodium hypochlorite and control groups, and P<0.001 for the comparison of tensile bond strengths between the sodium hypochlorite and Corega groups and the shear bond strengths between the sodium hypochlorite and Corega groups, and sodium hypochlorite and control groups).The majority of failures were cohesive in the control and Corega groups and cohesive/adhesive in the sodium hypochlorite group. Conclusion. Immersion of soft liners in Corega will result in longevity of soft liners compared to immersion in sodium hypochlorite solution and sodium hypochlorite solution significantly decreased the tensile and shear bond strengths compared to the control and Corega groups.
Mahboub, Farhang; Salehsaber, Fariba; Parnia, Fereydoon; Gharekhani, Vahedeh; Kananizadeh, Yousef; Taghizadeh, Mahsa
2017-01-01
Background. The aim of the present study was to evaluate the effect of Corega and 2.5% sodium hypochlorite cleansing agents on the shear and tensile bond strengths of GC soft liner to denture base. Methods. A total of 144 samples (72 samples for tensile and 72 for shear bond strength evaluations) were prepared. The samples in each group were subdivided into three subgroups in terms of the cleansing agent used (2.5% sodium hypochlorite, Corega and distilled water [control group]). All the samples were stored in distilled water, during which each sample was immersed for 15 minutes daily in sodium hypochlorite or Corega solutions. After 20 days the tensile and shear bond strengths were determined using a universal testing machine. In addition, a stereomicroscope was used to evaluate fracture modes. Data were analyzed with one-way ANOVA, using SPSS 16. Results. The results of post hoc Tukey tests showed significant differences in the mean tensile and shear bond strength values between the sodium hypochlorite group with Corega and control groups (P=0.001 for comparison of tensile bond strengths between the sodium hypochlorite and control groups, and P<0.001 for the comparison of tensile bond strengths between the sodium hypochlorite and Corega groups and the shear bond strengths between the sodium hypochlorite and Corega groups, and sodium hypochlorite and control groups).The majority of failures were cohesive in the control and Corega groups and cohesive/adhesive in the sodium hypochlorite group. Conclusion. Immersion of soft liners in Corega will result in longevity of soft liners compared to immersion in sodium hypochlorite solution and sodium hypochlorite solution significantly decreased the tensile and shear bond strengths compared to the control and Corega groups. PMID:29184635
Kamble, Suresh S; Kandasamy, Baburajan; Thillaigovindan, Ranjani; Goyal, Nitin Kumar; Talukdar, Pratim; Seal, Mukut
2015-05-01
Newer dentin bonding agents were developed to improve the quality of composite restoration and to reduce time consumption in its application. The aim of the present study was to evaluate tensile bond strength of 6(th), 7(th) and 8(th) generation bonding agents by in vitro method. Selected 60 permanent teeth were assigned into 20 in each group (Group I: 6(th) generation bonding agent-Adper SE plus 3M ESPE, Group II: 7(th) generation bonding agent-G-Bond GC Corp Japan and Group III: 8(th) generation dentin adhesives-FuturaBond, DC, Voco, Germany). With high-speed diamond disc, coronal dentin was exposed, and selected dentin bonding agents were applied, followed by composite restoration. All samples were saved in saline for 24 h and tensile bond strength testing was done using a universal testing machine. The obtained data were tabulated and statistically analyzed using ANOVA test. The tensile bond strength readings for 6(th) generation bonding agent was 32.2465, for 7(th) generation was 31.6734, and for 8(th)-generation dentine bonding agent was 34.74431. The highest tensile bond strength was seen in 8(th) generation bonding agent compared to 6(th) and 7(th) generation bonding agents. From the present study it can be conclude that 8(th) generation dentine adhesive (Futura DC, Voco, Germany) resulted in highest tensile bond strength compared to 6(th) (Adper SE plus, 3M ESPE) and 7(th) generation (G-Bond) dentin bonding agents.
Shear bond strengths of composite to dentin using six dental adhesive systems.
Triolo, P T; Swift, E J; Barkmeier, W W
1995-01-01
The development of adhesive agents for bonding composite to dentin has rapidly evolved in recent years. It is postulated that dentin bond strengths in the range of 17 MPa are sufficient to resist the polymerization shrinkage of composite resins. The purpose of this study was to evaluate the shear bond strengths of the following dentin adhesive systems: All-Bond 2 (Bisco), Imperva Bond (Shofu), Optibond (Kerr), Permagen (Ultradent), ProBond (Caulk/Dentsply), and Scotchbond Multi-Purpose (3M). Sixty human molars (10 per group) were mounted in phenolic rings, and the occlusal surfaces were flat ground in dentin to 600 grit. The prepared dentin bonding sites were treated according to the directions for each of the systems evaluated. A gelatin capsule technique was used to bond Bis-Fil composite cylinders to the teeth. The specimens were stored in water at 37 degrees C for 24 hours. Mean shear bond strengths were as follows: Scotchbond Multi-Purpose: 23.1 +/- 2.6 MPa, All-Bond 2: 21.4 +/- 7.8 MPa, Imperva Bond: 19.8 +/- 6.1 MPa, Optibond: 19.7 +/- 3.6 MPa, ProBond: 16.3 +/- 4.5 MPa, and Permagen: 16.2 +/- 3.0 MPa. There was not a significant difference (P<0.05) in the bond strengths of Scotchbond Multi-Purpose, All-Bond 2, Imperva Bond, and Optibond. The bond strengths of Scotchbond Multi-Purpose and All-Bond 2 were significantly greater (P<0.05) than ProBond and Permagen. Current-generation dentin adhesive systems have approached or exceeded the theoretical threshold value to resist contraction stresses during polymerization of resin materials.
Evaluation of bonding agent application on concrete patch performance.
DOT National Transportation Integrated Search
2014-08-01
The durability of partial depth repair is directly related to the bond strength between the repair material and existing : concrete. Bond strength development sensitivity to wait time with the use of bonding agents in partial depth repair was : inves...
[Bond strength evaluation of four adhesive systems to dentin in vitro].
Xiao, Ximei; Xing, Lu; Xu, Haiping; Jiang, Zhe; Su, Qin
2012-08-01
To compare the adhesive strength and observe the bonding interface. According to statistic analysis and scanning electron microscope (SEM) observation, the resistance capacity of four adhesive systems is evaluated. Prime & Bond NT (PBNT), Tetric N-Bond (TNB), Clearfil SE Bond (CSEB), G Bond (GB) were bonded to the occlusal surfaces and mesial surfaces of third molars respectively. The mesial resins received shear force experiment and the fracture load were recorded. The tensile bond strength (TBS) of the remaining parts were tested. The interfacial configuration were observed under SEM. In the shear bond strength (SBS) experiment, PBNT and TNB showed the best result, but there was no significant difference between them (P>0.05). The SBS of PBNT was stronger than that of CSEB and GB (P<0.05). The SBS of TNB was stronger than that of GB (P<0.05). There was no significant difference between TNB and CSEB (P>0.05). In accordance with the shear force result, the TBS of PBNT and TNB was larger than CSEB and GB (P<0.05). Under SEM, resin tags of PBNT and TNB were longer and slender, the bonding layer was thick. Resin tags of CSEB were shorter, the ones of GB were the fewest and shortest. Compared to self-etching system, total-etching system could reach better bonding strength. There is some connection between the interfacial configuration of adhesives and bond strength of them.
Souza-Junior, Eduardo José; Borges, Boniek Castillo Dutra; Montes, Marcos Antônio Japiassú Resende; Alonso, Roberta Caroline Bruschi; Ambrosano, Glaucia Maria Bovi; Sinhoreti, Mário Alexandre Coelho
2012-01-01
This study evaluated the impact of extended etching and bonding strategies on the microshear bond strength of three sealant materials. Two pit-and-fissure sealants [FluroShield, Dentsply (light-cured) and AlphaSeal, DFL (self-cured)] and one light-cured flowable composite resin (Permaflo, Ultradent) were evaluated according to different enamel etching times (15 s or 30 s) and bonding procedures (no adhesive application, application of primer/hydrophobic resin or hydrophobic resin only). Intact enamel blocks were obtained from bovine teeth and sealed via the tested protocols. After 24 h, the microshear bond strength test was performed in a universal testing machine at a crosshead speed of 0.5 mm/min. Failure modes were classified by stereomicroscopy. Data were submitted to a three-way ANOVA and to Tukey's test (α=0.05). There was no statistically significant difference (p>0.05) among the materials. Permaflo showed higher bond strength when etched for 30 s alone. Enamel overetching decreased the bond strength of the light-cured sealant. Primer/bond previous treatment improved bond performance for AlphaSeal. In conclusion, from the tested conditions, all sealant materials presented similar bond strength values in relation to bonding protocol and etching time. The flowable composite can be used as a pit-and-fissure sealant. The use of a three-step adhesive system was essential for the self-cured sealant application.
Evaluating the bonding of two adhesive systems to enamel submitted to whitening dentifrices.
Briso, André Luiz Fraga; Toseto, Roberta Mariano; de Arruda, Alex Mendes; Tolentino, Patricia Ramos; de Alexandre, Rodrigo Sversut; dos Santos, Paulo Henrique
2010-01-01
The aim of this study was to evaluate by micro-shear bond strength test, the bond strength of composite resin restoration to enamel submitted to whitening dentifrices. Forty bovine teeth were embedded in polystyrene resin and polished. The specimens were randomly divided into eight groups (n=5), according to the dentifrice (carbamide peroxide, hydrogen peroxide and conventional dentifrice) and the adhesive system (Prime & Bond 2.1 and Adper Single Bond 2). Dentifrice was applied for 15 minutes a day, for 21 days. Thirty minutes after the last exposure to dentifrice, the samples were submitted to a bonding procedure with the respective adhesive system. After that, four buttons of resin were bonded in each sample using transparent cylindrical molds. After 24 hours, the teeth were submitted to the micro-shear bond strength test and subsequent analysis of the fracture mode. Data were submitted to analysis of variance and Fisher's PLSD test (alpha = 0.05). The micro-shear bond strength showed no difference between adhesives systems but a significant reduction was found between the control and carbamide groups (p = 0.0145) and the control and hydrogen groups (p = 0.0370). The evaluation of the failures modes showed that adhesive failures were predominant. Cohesive failures were predominant in group IV The use of dentifrice with peroxides can decrease bonding strength in enamel.
Venugopal, L; Lakshmi, M Narasimha; Babu, Devatha Ashok; Kiran, V Ravi
2014-01-01
Background: To test and compare the impact strength of fragment bonded teeth with that of intact teeth by using impact testing machine (pendulum type) as a mode of load. Materials and Methods: Forty extracted, maxillary, central incisors selected for this study (20 control group and 20 experimental group). In experimental group, teeth crowns were fractured with a microtome at 2.5 mm from mesioincisal angle cervically, fractured portion is attached to original crown portion with 3 M single bond dentin bonding agent and 3 M Z ‘100’, composite resin. Impact strength of fragment bonded teeth and intact teeth tested with impact testing machine and compared. Results: Mean impact strength of fragment bonded teeth (30.76 KJ/M2 ) is not statistically significant deferent from mean impact strength of intact teeth (31.11 KJ/M2 ). Conclusion: Mean impact strength of fragment bonded teeth is not statistically different with that of intact teeth. Hence, after fracture of teeth if it is restored with fragment reattachment by using 3 M single bond dentin bonding agent and 3 M Z ‘100’ composite resin is having impact strength like that of intact teeth. How to cite the article: Venugopal L, Lakshmi MN, Babu DA, Kiran VR. Comparative evaluation of impact strength of fragment bonded teeth and intact teeth: An in vitro study. J Int Oral Health 2014;6(3):73-6. PMID:25083037
Evaluation of bond strength of various epoxy resin based sealers in oval shaped root canals.
Cakici, Fatih; Cakici, Elif Bahar; Ceyhanli, Kadir Tolga; Celik, Ersan; Kucukekenci, Funda Fundaoglu; Gunseren, Arif Onur
2016-09-30
The aim of this study was to evaluate the bond strength of AH plus, Acroseal, and Adseal to the root canal dentin. A total of 36 single-rooted, mandibular premolar teeth were used. Root canal shaping procedures were performed with ProTaper rotary instruments (Dentsply Maillefer) up to size F4. The prepared samples were then randomly assembled into 3 groups (n = 12). For each group, an ultrasonic tip (size 15, 0.02 taper) which was also coated with an epoxy resin based sealer and placed 2 mm shorter than the working length. The sealer was then activated for 10 s. A push-out test was used to measure the bond strength between the root canal dentine and the sealer. Kruskal-Wallis test to evaluate the push-out bond strength of epoxy based sealer (P = 0.05). The failure mode data were statistically analyzed using Pearson's chi square test (P = 0.05). Kruskal-Wallis test indicated that there were no statistically significant difference among the push out bond strength values of 3 mm (p = 0.123) and 6 mm (P = 0.057) for groups, there was statistically significant difference push out bond strength value of 9 mm (P = 0.032). Pearson's chi square test showed statistically significant differences for the failure types among the groups. Various epoxy resin based sealers activated ultrasonically showed similar bond strength in oval shaped root canals. Apical sections for all groups have higher push out bond strength values than middle and coronal sections.
Ergas, R P; Hondrum, S O; Mathieu, G P; Koonce, J D
1995-01-01
The adhesive monomer, Clearfil New Bond, was used to enhance the bond strength between orthodontic brackets and primary molars, premolars, and NiCr crowns. Twenty specimens of each had this dental adhesive applied according to the manufacturer's instructions in addition to a chemically cured composite material. The remaining specimens (20 each) were bonded without the adhesive monomer. Shear bond strengths were determined using a universal testing machine. Fracture sites were examined to determine the type of bond failure. All bond strengths were significantly increased with the addition of Clearfil New Bond (P < or = 0.0001). The shear bond strength to NiCr crowns with the addition of the adhesive monomer was 7.76 kg. This is comparable to the shear bond strength observed for primary molars (8.66 kg) and premolars (8.65 kg) without adhesive monomer. The observed decrease in adhesive bond failures with the addition of Clearfil New Bond indicated a stronger shear bond strength between the tooth surface and the bracket base. Clearfil New Bond can significantly increase the shear bond strength of orthodontic brackets to both primary molars and premolars. Additionally, it was shown that orthodontic brackets can be successfully bonded to Ni-Cr crowns at strengths comparable to primary or permanent enamel.
Samadi, Firoza; Jaiswal, JN; Saha, Sonali
2014-01-01
ABSTRACT% Aim: To compare the effect of different chemical solvents on glass fiber reinforced posts and to study the effect of these solvents on the shear bond strength of glass fiber reinforced post to core material. Materials and methods: This study was conducted to evaluate the effect of three chemical solvents, i.e. silane coupling agent, 6% H2O2 and 37% phosphoric acid on the shear bond strength of glass fiber post to a composite resin restorative material. The changes in post surface characteristics after different treatments were also observed, using scanning electron microscopy (SEM) and shear bond strength was analyzed using universal testing machine (UTM). Results: Surface treatment with hydrogen peroxide had greatest impact on the post surface followed by 37% phosphoric acid and silane. On evaluation of the shear bond strength, 6% H2O2 exhibited the maximum shear bond strength followed in descending order by 37% phosphoric acid and silane respectively. Conclusion: The surface treatment of glass fiber post enhances the adhesion between the post and composite resin which is used as core material. Failure of a fiber post and composite resin core often occurs at the junction between the two materials. This failure process requires better characterization. How to cite this article: Sharma A, Samadi F, Jaiswal JN, Saha S. A Comparative Evaluation of Effect of Different Chemical Solvents on the Shear Bond Strength of Glass Fiber Reinforced Post to Core Material. Int J Clin Pediatr Dent 2014;7(3):192-196. PMID:25709300
Farokh Gisovar, Elham; Hedayati, Nassim; Shadman, Niloofar; Shafiee, Leila
2015-01-01
Background: CPP-ACP (Phosphopeptide-Amorphous Calcium Phosphate) has an important role in caries prevention in pediatric patients. This study was done, because of the great use of CPP-ACP and the need for restoration for teeth treated with CPP-ACP as well as the importance of shear bond strength of adhesives in the success of restorations. Objectives: This study aimed to evaluate the effect of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) on shear bond strength of dental adhesives to enamel of primary teeth molars. Materials and Methods: This in vitro study was conducted on 180 extracted primary molars. They were randomly divided into 6 groups and each group was divided into 2 subgroups (treated with CPP-ACP and untreated). In subgroups with CPP-ACP, enamel was treated with CPP-ACP paste 1 h/d for 5 days. Types of adhesives that were evaluated in this study were Tetric N-Bond, AdheSE, AdheSE One F, single Bond 2, SE Bond, and Adper Prompt L-Pop. Shear bond strength was tested with a universal testing machine and mode of failure was evaluated under stereomicroscope. Data were analyzed by T test, 2-way analysis of variance (ANOVA), Tukey and Fisher exact test using SPSS18. P < 0.05 was considered as significance level. Results: Shear bond strengths of different adhesive systems to enamel of primary teeth treated and untreated with CPP-ACP showed no significant difference (P > 0.05). Mode of failure in all groups regardless of CPP-ACP administration was mainly adhesive type. Our results indicated that CPP-ACP did not affect shear bond strength of studied adhesives to primary teeth enamel. Conclusions: To have a successful and durable composite restoration, having a high strength bonding is essential. Considering the wide use of CPP-ACP in preventing tooth decay and the role of adhesive shear bond strength (SBS) in success of composite restoration, we conducted the present study to evaluate the effect of CPP-ACP on the SBS of adhesives to primary teeth enamel. PMID:25793113
Kumar, Dilip; Palla, Aparna
2017-01-01
Background Orthodontists are commonly faced with the decision of what to do with debonded or inaccurately positioned brackets. An economical option to this dilemma is to recycle the brackets. Many recycling methods have been proposed, but the optimal bond strength of these recycled brackets needs further evaluation. Objectives: To evaluate and compare the effect of three recycling methods: (i) Sandblasting (ii) Sandblasting / direct flaming (iii) Sandblasting /direct flaming /acid bath solution on shear bond strength (SBS) of stainless steel brackets. Material and Methods Eighty human premolars were bonded with premolar stainless steel brackets as per manufacturer’s instructions. The teeth were divided into 4 groups (n=20): Recycling and initial debonding was not done in Control group (Group I). After initial bonding, the brackets in the rest of the three experimental groups were debonded and recycled by following methods: (i) Sandblasting (Group II) (ii) Sandblasting /direct flaming (Group III) (iii) Sandblasting /direct flaming /acid bath solution (Group IV). Further the recycled brackets were bonded. The specimens were then subjected to testing in a Universal machine. The evaluation of the variation of the shear bond strength (SBS) among test groups was done using one-way ANOVA test and inter-experimental group comparison was done by Newman-Keuls multiple post hoc procedure. Results Group I (8.6510±1.3943MPa) showed the highest bond strength followed by Group II (5.0185±0.9758MPa), Group IV (2.30±0.65MPa) and Group III (2.0455± 0.6196MPa). Statistically significant variations existed in the shear bond strength (SBS) in all groups analyzed except between Group III and Group IV. Conclusions The following conclusions were drawn from the study: 1. Shear bond strength of new brackets is significantly higher than the recycled brackets. 2. Brackets sandblasted with 90µm aluminium oxide particle air-abrasion showed significantly higher shear bond strength compared to direct flaming/sandblasting and direct flaming/sandblasting/acid bath solution. 3. Sandblasting with 90µm aluminium oxide particle air-abrasion is the simplest, most efficient and hence, the preferred method of recycling debonded brackets. Key words:Orthodontic bracket, recycling, shear bond strength. PMID:28469821
Shear bond strength of a new one-bottle dentin adhesive.
Swift, E J; Bayne, S C
1997-08-01
To test the shear bond strength of a new adhesive, 3M Single Bond, to dentin surfaces containing different degrees of moisture. Two commercially available one-bottle adhesives (Prime & Bond, One-Step) and a conventional three-step system (Scotchbond Multi-Purpose Plus) were included for comparison. 120 bovine teeth were embedded in acrylic and the labial surfaces were polished to 600 grit to create standardized dentin surfaces for testing. Resin composite was bonded to dentin using a gelatin capsule technique. Four adhesive systems were evaluated with three different degrees of surface moisture (moist, wet, and overwet). Shear bond strengths of adhesives to dentin were determined using a universal testing machine and analyzed by ANOVA and Tukey's post hoc tests. Single Bond had mean shear bond strengths of 19.2, 23.2 and 20.3 MPa to moist, wet, and overwet dentin, respectively. Bond strengths of the three-component system Scotchbond Multi-Purpose Plus ranged from 23.1 to 25.3 MPa, but were not significantly higher than the values for Single Bond. Prime & Bond had bond strengths similar to those of Single Bond, but One-Step had significantly lower bond strengths (P < 0.05) in the wet and overwet conditions.
AlJehani, Yousef A; Baskaradoss, Jagan K; Geevarghese, Amrita; AlShehry, Marey A; Vallittu, Pekka K
2016-07-01
The aim of this research was to evaluate the shear bond strength of different laboratory resin composites bonded to a fiber-reinforced composite substrate with some intermediate adhesive resins. Mounted test specimens of a bidirectional continuous fiber-reinforced substrate (StickNet) were randomly assigned to three equal groups. Three types of commercially available veneering resin composites - BelleGlass®, Sinfony®, and GC Gradia® were bonded to these specimens using four different adhesive resins. Half the specimens per group were stored for 24 hours; the remaining were stored for 30 days. There were 10 specimens in the test group (n). The shear bond strengths were calculated and expressed in MPa. Data were analyzed statistically, and variations in bond strength within each group were additionally evaluated by calculating the Weibull modulus. Shear bond values of those composites are influenced by the different bonding resins and different indirect composites. There was a significant difference in the shear bond strengths using different types of adhesive resins (p = 0.02) and using different veneering composites (p < 0.01). Belle-Glass® had the highest mean shear bond strength when bonded to StickNet substrate using both Prime & Bond NT and OptiBond Solo Plus. Sinfony® composite resin exhibited the lowest shear bond strength values when used with the same adhesive resins. The adhesive mode of failure was higher than cohesive with all laboratory composite resins bonded to the StickNet substructure at both storage times. Water storage had a tendency to lower the bond strengths of all laboratory composites, although the statistical differences were not significant. Within the limitations of this study, it was found that bonding of the veneering composite to bidirectional continuous fiber-reinforced substrate is influenced by the brand of the adhesive resin and veneering composite. © 2015 by the American College of Prosthodontists.
Tedesco, Tamara K; Calvo, Ana F B; Yoshioka, Laysa; Fukushima, Karen A; Cesar, Paulo F; Raggio, Daniela P
2018-05-31
To evaluate the effect of acidic challenge (AC) on the properties and bond stability of restorative materials to primary enamel and dentin. One hundred twenty primary molars were assigned to 12 groups according to substrate (enamel or dentin), restorative material (composite, high-viscosity glass ionomer cement [HV-GIC] or resin-modified glass-ionomer cement [RM-GIC]), and immersion after restoration (control [saline solution/7 days] or AC [cola-based drink/5 min/3x per day/7 days]). Twenty-four hours after the restorative procedure, specimens were submitted to one of the proposed challenges. Half of the specimens were immediately subjected to the microshear bond strength test, and the other half after 12 months. To determine flexural strength flexural strength and superficial roughness (SR), 30 specimens were built up. After 24 h, the first measurement of SR from 10 specimens was performed. Specimens were then immersed in one of proposed challenges and SR was measured again. Subsequently, flexural strength testing was performed. Bond strength, surface roughness, and flexural strength data were subjected to ANOVA and Tukey's test. Composite showed the highest bond strengths compared to the others materials on both substrates. The storage period negatively influenced the bond strength only for composite groups in dentin. AC after restoration negatively influenced bond strength when the materials were evaluated in eroded dentin. AC affected the second SR measurement, showing increased SR for all restorative materials. AC did not affect flexural strength. The acidic challenge jeopardizes the surface roughness and bond strength of restorations to eroded dentin.
Influence of enamel surface preparation on composite bond strength.
Matos, Adriana Bona; Tate, William H; Powers, John M
2003-09-01
To evaluate the influence of air-particle abrasion and treatments on in vitro tensile bond strength of resin composite bonded to human enamel was evaluated using a single-bottle adhesive. Human teeth were divided into 12 groups of three treatments (none, 27-microm Al2O3 air-particle abrasion, 50-microm Al2O3 air-particle abrasion) and four conditioners [none, phosphoric acid (PA), NRC (no-rinse conditioner), and PA/NRC]. Bonding agent (Prime & Bond NT) and a resin composite (TPH Spectrum) were applied as inverted cones. Specimens were stored for 24 hours at 37 degrees C and debonded in tension using a testing machine at 0.5 mm/minute. Phosphoric acid treatment used with Prime & Bond NT produced the best bond strengths (24 MPa) to enamel for surfaces treated with 27-microm air-particle abrasion and for surfaces not treated with air-particle abrasion (control). With one exception, air-particle abraded surfaces resulted in bond strengths between 9 to 16 MPa. NRC with or without the use of phosphoric acid in general did not improve tensile bond strength to enamel when compared to surfaces not treated with NRC.
Evaluation of bond strength between pavement layers.
DOT National Transportation Integrated Search
2005-12-01
The primary objective of this project was to develop a test for measuring the bond strength : between pavement layers. The research was also to evaluate tack coat materials and application : rates for the Alabama Department of Transportation (ALDOT)....
Rapid adhesive bonding of advanced composites and titanium
NASA Technical Reports Server (NTRS)
Stein, B. A.; Tyeryart, J. R.; Hodgest, W. T.
1985-01-01
Rapid adhesive bonding (RAB) concepts utilize a toroid induction technique to heat the adhesive bond line directly. This technique was used to bond titanium overlap shear specimens with 3 advanced thermoplastic adhesives and APC-2 (graphite/PEEK) composites with PEEK film. Bond strengths equivalent to standard heated-platen press bonds were produced with large reductions in process time. RAB produced very strong bonds in APC-2 adherend specimens; the APC-2 adherends were highly resistant to delamination. Thermal cycling did not significantly affect the shear strengths of RAB titanium bonds with polyimide adhesives. A simple ultrasonic non-destructive evaluation process was found promising for evaluating bond quality.
Accelerated aging of adhesive-mediated fiber post-resin composite bonds: A modeling approach.
Radovic, Ivana; Monticelli, Francesca; Papacchini, Federica; Magni, Elisa; Cury, Alvaro Hafiz; Vulicevic, Zoran R; Ferrari, Marco
2007-08-01
Although fiber posts luted in root canals are not directly exposed to oral fluids, water storage is considered as in vitro accelerated aging test for bonded interfaces. The aim of the study was to evaluate the influence of accelerated water aging on fiber post-resin composite adhesion. Forty fiber posts (DT Light Post, RTD) were randomly divided into two main groups, according to the surface treatment performed. Group I: XPBond adhesive (Dentsply Caulk); Group II: sandblasting (Rocatec-Pre, 3M ESPE) and XPBond. Dual-cured resin cement (Calibra, Dentsply Caulk) and flowable composite (X-Flow, Dentsply Caulk) were applied on the posts to produce cylindrical specimens. The bond strength at the interface between post and cement/composite was measured with the microtensile test according to the non-trimming technique. Half of the sticks were tested immediately for bond strength, while in the other half testing was performed after 1 month of water storage at 37 degrees C. Post-cement/composite interfaces were evaluated under SEM prior and after water aging. Statistical analysis was performed using the Kruskal-Wallis ANOVA followed by Dunn's multiple range test (p<0.05). Immediate bond strength was higher on sandblasted posts. After water aging the two post surface treatments resulted comparable in bond strength. Resin cement achieved higher bond strength to fiber posts than flowable composite. Water aging significantly reduced bond strength. Sandblasting followed by adhesive coating may improve immediate post-resin bond strength in comparison to adhesive alone. However, fiber post-resin bond strength mediated by hydrophilic adhesive tends to decrease after water aging.
Santana, Fernanda Ribeiro; Soares, Carlos José; Silva, Júlio Almeida; Alencar, Ana Helena Gonçalves; Renovato, Sara Rodrigues; Lopes, Lawrence Gonzaga; Estrela, Carlos
2015-07-01
To evaluate the effect of instrumentation techniques, irrigant solutions and specimen aging on fiberglass posts bond strength to intraradicular dentine. A total of 120 bovine teeth were prepared and randomized into control and experimental groups resulting from three study factors (instrumentation techniques, irrigant solutions, specimen aging). Posts were cemented with RelyX U100. Samples were submitted to push-out test and failure mode was evaluated under a confocal microscope. In specimens submitted to water artificial aging, nickel-titanium rotary instruments group presented higher bond strength values in apical third irrigated with NaOCl or chlorhexi-dine. Irrigation with NaOCl resulted in higher bond strength than ozonated water. Artificial aging resulted in significant bond strength increase. Adhesive cement-dentin failure was prevalent in all the groups. Root canal preparation with NiTi instruments associated with NaOCl irrigation and ethylenediaminetetra acetic acid (EDTA) increased bond strength of fiberglass posts cemented with self-adhesive resin cement to intraradicular dentine. Water artificial aging significantly increased post-Clinical significance: The understanding of factors that may influence the optimal bond between post-cement and cement-dentin are essential to the success of endodontically treated tooth restoration.
Claire, J; Williams, P T
2001-03-01
Gallium and indium-containing alloys have demonstrated an ability to wet and bond to many types of materials including enamel. The purpose of this study was to evaluate and compare the bond strengths of a gallium-and-indium-containing alloy and a dental amalgam to human enamel surfaces. A flat enamel bonding surface was created by slicing recently extracted human molars with a 180-grit diamond wheel. Cylinders of amalgam or a gallium-indium alloy were bonded to the as-cut surfaces or to as-cut surfaces that had been pumiced, air-abraded or acid-etched for various times. Before testing, samples were stored under different conditions (100% humidity, immersed in water, thermocycled). The shear-bond strength was determined using a crosshead speed of 0.1 mm x min(-1). Sample size was 10. Data was subjected to ANOVA and a post-hoc Tukey's test. The bond strength of amalgam to enamel was zero. The bond strength of the gallium-indium alloy ranged between 6.5 MPa (10s etch with 10% phosphoric acid) and 4.2 MPa (pumiced enamel). Acid-etching significantly increased the bond strength (P>0.0001) The bond strength was not significantly affected by the type of mechanical surface preparation, storage conditions, thermocycling, etching times or acid concentrations. Bonding, particularly chemical bonding, suggests a greater potential for better wetting and therefore better sealing of a cavity. Since microleakage of restorations is one of the principal causes of restoration failure, materials that can bond may in turn posses enhanced resistance to microleakage and ultimately, resistance to restoration failure. The gallium-indium alloy evaluated in this study may be such an alloy.
Bonding quality of contemporary dental cements to sandblasted esthetic crown copings.
Abdelaziz, Khalid M; Al-Qahtani, Nasser M; Al-Shehri, Abdulrahman S; Abdelmoneam, Adel M
2012-05-01
To evaluate the shear bond strength of current luting cements to sandblasted crown-coping substrates. Specimens of nickel-chromium, pressable glass ceramic, and zirconia crown-coping substrates were sandblasted in three groups (n = 30 each) with 50 (group 1), 110 (group 2), and 250 μm (group 3) alumina particles at a pressure of 250 kPa. Cylinders of glass ionomer, universal resin, and self-adhesive resin cements were then built up on the sandblasted substrate surfaces of each group (n = 10). All bonded specimens were stressed to evaluate the cement-substrate shear bond strength. Both the mode and incidence of bond failure were also considered. No difference was noticed between all test groups in terms of cement-substrate bond strength. In comparison to self-adhesive type, the universal resin cement provided lower bond strengths to both metal and glass-ceramic substrates in group 1. The self-adhesive resin cement provided the highest bond strengths to the zirconia substrates in groups 2 and 3. The adhesive type of bond failure was common in the metal and zirconia substrates in all groups. Cement-substrate bonding quality is not affected by the size of sandblasting particles. Resin cements bond better to different coping substrates. Self-adhesive resin cement is the best choice to bond zirconia-based substrates. © 2011 Blackwell Publishing Asia Pty Ltd.
Patil, Narendra P; Dandekar, Minal; Nadiger, Ramesh K; Guttal, Satyabodh S
2010-09-01
The aim of this study was to evaluate the shear bond strength of porcelain to laser welded titanium surface and to determine the mode of bond failure through scanning electron microscopy (SEM) and energy dispersive spectrophotometry (EDS). Forty five cast rectangular titanium specimens with the dimension of 10 mm x 8 mm x 1 mm were tested. Thirty specimens had a perforation of 2 mm diameter in the centre. These were randomly divided into Group A and B. The perforations in the Group B specimens were repaired by laser welding using Cp Grade II titanium wire. The remaining 15 specimens were taken as control group. All the test specimens were layered with low fusing porcelain and tested for shear bond strength. The debonded specimens were subjected to SEM and EDS. Data were analysed with 1-way analysis of variance and Student's t-test for comparison among the different groups. One-way analysis of variance (ANOVA) showed no statistically significant difference in shear bond strength values at a 5% level of confidence. The mean shear bond strength values for control group, Group A and B was 8.4 +/- 0.5 Mpa, 8.1 +/- 0.4 Mpa and 8.3 +/- 0.3 Mpa respectively. SEM/EDS analysis of the specimens showed mixed and cohesive type of bond failure. Within the limitations of the study laser welding did not have any effect on the shear bond strength of porcelain bonded to titanium.
NASA Astrophysics Data System (ADS)
Ducousso, M.; Bardy, S.; Rouchausse, Y.; Bergara, T.; Jenson, F.; Berthe, L.; Videau, L.; Cuvillier, N.
2018-03-01
Intense acoustic shock waves were applied to evaluate the mechanical strength of structural epoxy bonds between a TA6V4 titanium alloy and a 3D woven carbon/epoxy composite material. Two bond types with different mechanical strengths were obtained from two different adhesive reticulations, at 50% and 90% of conversion, resulting in longitudinal static strengths of 10 and 39 MPa and transverse strengths of 15 and 35 MPa, respectively. The GPa shock waves were generated using ns-scale intense laser pulses and reaction principles to a confined plasma expansion. Simulations taking into account the laser-matter interaction, plasma relaxation, and non-linear shock wave propagation were conducted to aid interpretation of the experiments. Good correlations were obtained between the experiments and the simulation and between different measurement methods of the mechanical strength (normalized tests vs laser-generated shock waves). Such results open the door toward certification of structural bonding.
Noda, Yukari; Nakajima, Masatoshi; Takahashi, Masahiro; Mamanee, Teerapong; Hosaka, Keiichi; Takagaki, Tomohiro; Ikeda, Masaomi; Foxton, Richard M; Tagami, Junji
2017-11-29
This study evaluated the effects of ceramic surface treatment agents on shear bond strengths to ceramic materials with and without thermocycling. Ceramic plates were prepared from feldspathic ceramic; AAA, lithium disilicate ceramic material; IPS e.max Press, zirconia ceramic; Lava. Ceramic surfaces were pretreated with one of five surface treatment agents (Clearfil PhotoBond mixed with Porcelainbond activator (PB), Clearfil SE One mixed with Porcelainbond activator (SO), Ceramic Primer (CP), Universal Primer (UP), Scotchbond Universal (SU)), and then a resin cement (Clapearl DC) was filled. After 0, 5,000, and 10,000 thermocycles, micro-shear bond strengths between ceramic-cement interfaces were determined. SU exhibited significantly lower initial bond strength to AAA and e.max than PB, SO, CP, and UP. For Lava, PB, SO, CP and SU exhibited higher initial bond strengths than UP. Thermocycles reduced bond strengths to all the ceramic materials with any surface treatment.
Bond strength comparison of 2 self-etching primers over a 3-month storage period.
Trites, Brian; Foley, Timothy F; Banting, David
2004-12-01
The purpose of this in vitro study was to evaluate the shear-peel bond strength of 2 self-etching primer systems, Transbond Plus (3M/ Unitek, Monrovia, Calif) and First Step (Reliance Orthodontic Products, Itasca, Ill), with their respective adhesives, and compare them with a control adhesive system (Transbond XT, 3M/ Unitek) over a 3-month period. Two hundred seventy extracted human premolars were obtained and randomly divided into 9 groups of 30 teeth. Metal orthodontic brackets were bonded to the enamel, and each adhesive group was stored for 24 horrs (T1), 30 days (T2), or 3 months (T3) in deionized water at 37 degrees C. All bonded specimens were thermocycled at 10 degrees C and 50 degrees C for 24 hours before debonding. Brackets were debonded by using a shear-peel load on a testing machine at a cross-head speed of 2 mm/min. Bond failure was also evaluated. The shear-peel bond strengths of the 3 bonding systems were clinically acceptable with the possible exception of First Step at 30-day storage. Repeated measures analysis of variance showed a statistically significant (P < .0001) difference in mean bond strengths between the 3 adhesive systems. The shear-peel bond strength of the adhesives over the 3 time intervals showed statistically significant (P = .005) changes. In each group, there were statistically significant differences in shear-peel bond strength between time intervals T1-T2 and T2-T3 for Transbond Plus and T2-T3 for First Step. The change in mean shear-peel bond strength of the 3 adhesives demonstrated a consistent pattern of behavior over the 3 storage intervals. The lowest mean shear-peel bond strength values were noted at the 30-day storage. Bond failure analysis (adhesive remnant index) demonstrated mainly cohesive bond failures.
Tsujimoto, Akimasa; Barkmeier, Wayne W; Hosoya, Yumiko; Nojiri, Kie; Nagura, Yuko; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi
2017-10-01
To comparatively evaluate universal adhesives and two-step self-etch adhesives for enamel bond fatigue durability in self-etch mode. Three universal adhesives (Clearfil Universal Bond; G-Premio Bond; Scotchbond Universal Adhesive) and three two-step self-etch adhesives (Clearfil SE Bond; Clearfil SE Bond 2; OptiBond XTR) were used. The initial shear bond strength and shear fatigue strength of the adhesive to enamel in self-etch mode were determined. The initial shear bond strengths of the universal adhesives to enamel in self-etch mode was significantly lower than those of two-step self-etch adhesives and initial shear bond strengths were not influenced by type of adhesive in each adhesive category. The shear fatigue strengths of universal adhesives to enamel in self-etch mode were significantly lower than that of Clearfil SE Bond and Clearfil SE Bond 2, but similar to that OptiBond XTR. Unlike two-step self-etch adhesives, the initial shear bond strength and shear fatigue strength of universal adhesives to enamel in self-etch mode was not influenced by the type of adhesive. This laboratory study showed that the enamel bond fatigue durability of universal adhesives was lower than Clearfil SE Bond and Clearfil SE Bond 2, similar to Optibond XTR, and was not influenced by type of adhesive, unlike two-step self-etch adhesives.
Li, Yinghui; Wu, Buling; Sun, Fengyang
2013-03-01
To evaluate the effects of sandblasting and different orthodontic adhesives on shear bond strength between zirconia and enamel. Zirconia ceramic samples were designed and manufactured for 40 extracted human maxillary first premolars with CAD/CAM system. The samples were randomized into 4 groups for surface treatment with sandblasting and non-treated with adhesives of 3M Transbond XT or Jingjin dental enamel bonding resin. After 24 h of bonded fixation, the shear bond strengths were measured by universal mechanical testing machine and analyzed with factorial variance analysis. The shear bond strength was significantly higher in sandblasting group than in untreated group (P<0.05) and comparable between the two groups with the adhesives of Transbond XT and dental enamel bonding resin (P>0.05). The shear bond strength between zirconia and enamel is sufficient after sandblasting regardless of the application of either adhesive.
Niat, Alireza Boruzi; Yazdi, Fatmeh Maleknejad; Koohestanian, Niloufar
2012-12-01
To determine the effect of drying agents and adhesive solvents on the bond strength of resin composite to enamel immediately after bleaching. Sixty healthy human premolars were bleached using 15% carbamide peroxide gel and randomly divided into three groups according to the immersing solutions applied immediately after bleaching: 70% alcohol, acetone, and distilled water. Each group was randomly divided into two subgroups according to the adhesives that were applied: an alcohol-based adhesive (Single Bond) and an acetone-based adhesive (One Step). By using rubber washers, composite Z100 was placed onto the enamel and shear bond strength was evaluated in a universal testing machine at a crosshead speed of 1 mm/min. The type of failure was also assessed using a stereomicroscope. The data were statistically analyzed by two-way ANOVA and Tukey's post-hoc test (α = 0.05). Fisher's Exact test was used to evaluate differences in the failure modes. Statistical analysis showed that the bond strength of the distilled water groups was significantly lower than that of the other groups, but the bond strengths of the two groups where a drying agent was applied were similar to that of the unbleached group. The acetone-based adhesive (One Step) provided higher bond strength than did the alcohol-based adhesive (Single Bond) (p < 0.05). There was no interaction between the two variables (p > 0.05). Fisher's Exact test showed there was no significant difference in the failure mode of all the experimental groups (p > 0.05). The application of drying agents improves the bond strength of resin composite to bleached enamel. Furthermore, the acetone-based adhesive used in the study had a higher bond strength to bleached enamel than did the alcohol-based adhesive used.
Shear bond strengths of self-etching adhesives to caries-affected dentin on the gingival wall.
Koyuturk, Alp Erdin; Sengun, Abdulkadir; Ozer, Fusun; Sener, Yagmur; Gokalp, Alparslan
2006-03-01
The purpose of this study was to evaluate the bonding ability of five current self-etching adhesives to caries-affected dentin on the gingival wall. Seventy extracted human molars with approximal dentin caries were employed in this study. In order to obtain caries-affected dentin on the gingival wall, grinding was performed under running water. Following which, specimens mounted in acrylic blocks and composite resins of the bonding systems were bonded to dentin with plastic rings and then debonded by shear bond strength. With Clearfil SE Bond, bonding to caries-affected dentin showed the highest bond strength. With Optibond Solo Plus Self-Etch, bonding to caries-affected dentin showed higher shear bond strength than AQ Bond, Tyrian SPE & One-Step Plus, and Prompt-L-Pop (p<0.05). Further, the bond strengths of Clearfil SE Bond and Optibond Solo Plus Self-Etch to sound dentin were higher than those of Prompt-L-Pop, AQ Bond, and Tyrian SPE & One-Step Plus (p<0.05). In conclusion, besides micromechanical interlocking through hybrid layer formation, bond strength of self-etch adhesives to dentin may be increased from additional chemical interaction between the functional monomer and residual hydroxyapatite. The results of this study confirmed that differences in bond strength among self-etching adhesives to both caries-affected and sound dentin were due to chemical composition rather than acidity.
Xu, Kan; He, Fan; Geng, Yi
2009-12-01
To study the influence of different opaque thickness on the bond strength of porcelain-fused-to metal (PFM) restorations. The testing sheets were made as the samples of ISO9693. With different sintering temperature and different opaque thickness on the bond strength of PFM restorations, the primary pressure of porcelain crack was measured by using three-points-bending test. Statistical analysis was carried out using a SPSS 10.0 software package. A post hoc multiple comparison test (Student-Newman-Keuls) was performed to evaluate the differences between the individual groups. In low sintering temperature group, the thin layer of opaque significantly improved the bond strength compared with thick layer of opaque (P<0.05). In high sintering temperature group, the thickness of opaque has no significant influence on the PFM bonding strength. Using the opaque, the bonding strength was better than those without opaque. The thickness of opaque has a little influence on the PFM bonding strength.
Gaddala, Naresh; Veeramachineni, Chandrasekhar; Tummala, Muralidhar
2015-05-01
Smear layer which was formed during the instrumentation of root canals hinders the penetration of root canal sealers to root dentin and affect the bond strength of root canal sealers to root dentin. Final irrigant such as demineralizing agents are used to remove the inorganic portion of the smear layer. In the present study, peracetic acid used as a final rinse, to effect the bond strength of root canal sealers to root dentin. The purpose of the present study was to evaluate the efficacy of peracetic acid as a final irrigant on bond strength of root canal sealers to root dentin. Sixty six freshly extracted human single rooted mandibular premolars were used for this study. After decoronation the samples were instrumented with Protaper upto F3 and irrigated with 5.25% NaOcl. The teeth were then divided into three groups based on final irrigant used: Group-1(control group) Canals were irrigated with distilled water. Group-2: Canals were irrigated with peracetic acid. Group-3: Canals were irrigated with smear clear. Each group was further divided into three subgroups (n=30) based on the sealer used to obturate the canals. Subgroup-1: kerr, Subgroup-2: Apexit plus, Subgroup-3: AH PLUS. Each sealer was mixed and coated to master cone and placed in the canal. The bonding between sealer and dentin surface was evaluated using push out bond strength by universal testing machine. The mean bond strength values of each group were statistically evaluated using Two-way ANOVA followed by Tukey post-hoc test. Significant difference was found among the bond strength of the sealers. But, there is no statistically significant difference between the groups irrigated with peracetic acid and smear clear compared to control group. AH Plus showed highest bond strength irrespective of the final irrigant used. Peracetic acid when employed as final irrigant improved the bond strength of root canal sealers compared to control group but not statistically significant than smear clear.
Gaddala, Naresh; Veeramachineni, Chandrasekhar
2015-01-01
Background Smear layer which was formed during the instrumentation of root canals hinders the penetration of root canal sealers to root dentin and affect the bond strength of root canal sealers to root dentin. Final irrigant such as demineralizing agents are used to remove the inorganic portion of the smear layer. In the present study, peracetic acid used as a final rinse, to effect the bond strength of root canal sealers to root dentin. Aim The purpose of the present study was to evaluate the efficacy of peracetic acid as a final irrigant on bond strength of root canal sealers to root dentin. Materials and Methods Sixty six freshly extracted human single rooted mandibular premolars were used for this study. After decoronation the samples were instrumented with Protaper upto F3 and irrigated with 5.25% NaOcl. The teeth were then divided into three groups based on final irrigant used: Group-1(control group) Canals were irrigated with distilled water. Group-2: Canals were irrigated with peracetic acid. Group-3: Canals were irrigated with smear clear. Each group was further divided into three subgroups (n=30) based on the sealer used to obturate the canals. Subgroup-1: kerr, Subgroup-2: Apexit plus, Subgroup-3: AH PLUS. Each sealer was mixed and coated to master cone and placed in the canal. The bonding between sealer and dentin surface was evaluated using push out bond strength by universal testing machine. The mean bond strength values of each group were statistically evaluated using Two-way ANOVA followed by Tukey post-hoc test. Results Significant difference was found among the bond strength of the sealers. But, there is no statistically significant difference between the groups irrigated with peracetic acid and smear clear compared to control group. AH Plus showed highest bond strength irrespective of the final irrigant used. Conclusion Peracetic acid when employed as final irrigant improved the bond strength of root canal sealers compared to control group but not statistically significant than smear clear. PMID:26155568
Shear bond strength of one-step self-etch adhesives to dentin: Evaluation of NaOCl pretreatment.
Colombo, Marco; Beltrami, Riccardo; Chiesa, Marco; Poggio, Claudio; Scribante, Andrea
2018-02-01
The aim of this study was to evaluate the influence of dentin pretreatment with NaOCl on shear bond strength of four one-step self-etch adhesives with different pH values. Bovine permanent incisors were used. Four one-step self-etch adhesives were tested: Adper™ Easy Bond, Futurabond NR, G-aenial Bond, Clearfil S3 Bond. One two-step self-etch adhesive (Clearfil SE Bond) was used as control. Group 1- no pretreatment; group 2- pretratment with 5,25 % NaOCl; group 3- pretreatment with 37 % H3PO4 etching and 5,25 % NaOCl. A hybrid composite resin was inserted into the dentin surface. The specimens were tested in a universal testing machine. The examiners evaluated the fractured surfaces in optical microscope to determine failure modes, quantified with adhesive remnant index (ARI). Dentin pretreatment variably influenced bond strength values of the different adhesive systems. When no dentin pretreatment was applied, no significant differences were found ( P >.05) among four adhesives tested. No significant differences were recorded when comparing NaOCl pretreatment with H3PO4 + NaOCl pretreatment for all adhesive tested ( P >.05) except Clearfil S3 Bond that showed higher shear bond strength values when H3PO4 was applied. Frequencies of ARI scores were calculated. The influence of dentin pretreatment with NaOCl depends on the composition of each adhesive system used. There was no difference in bond strength values among self-etch adhesives with different pH values. Key words: Dentin, pretreatment, self-etch adhesives.
Ahn, Joonghee; Jung, Kyoung-Hwa; Son, Sung-Ae; Hur, Bock; Kwon, Yong-Hoon
2015-01-01
Objectives This study examined the effects of additional acid etching on the dentin bond strength of one-step self-etch adhesives with different compositions and pH. The effect of ethanol wetting on etched dentin bond strength of self-etch adhesives was also evaluated. Materials and Methods Forty-two human permanent molars were classified into 21 groups according to the adhesive types (Clearfil SE Bond [SE, control]; G-aenial Bond [GB]; Xeno V [XV]; Beauti Bond [BB]; Adper Easy Bond [AE]; Single Bond Universal [SU]; All Bond Universal [AU]), and the dentin conditioning methods. Composite resins were placed on the dentin surfaces, and the teeth were sectioned. The microtensile bond strength was measured, and the failure mode of the fractured specimens was examined. The data were analyzed statistically using two-way ANOVA and Duncan's post hoc test. Results In GB, XV and SE (pH ≤ 2), the bond strength was decreased significantly when the dentin was etched (p < 0.05). In BB, AE and SU (pH 2.4 - 2.7), additional etching did not affect the bond strength (p > 0.05). In AU (pH = 3.2), additional etching increased the bond strength significantly (p < 0.05). When adhesives were applied to the acid etched dentin with ethanol-wet bonding, the bond strength was significantly higher than that of the no ethanol-wet bonding groups, and the incidence of cohesive failure was increased. Conclusions The effect of additional acid etching on the dentin bond strength was influenced by the pH of one-step self-etch adhesives. Ethanol wetting on etched dentin could create a stronger bonding performance of one-step self-etch adhesives for acid etched dentin. PMID:25671215
Evaluation of a conditioning method to improve core-veneer bond strength of zirconia restorations.
Teng, Jili; Wang, Hang; Liao, Yunmao; Liang, Xing
2012-06-01
The high strength and fracture toughness of zirconia have supported its extensive application in esthetic dentistry. However, the fracturing of veneering porcelains remains one of the primary causes of failure. The purpose of this study was to evaluate, with shear bond strength testing, the effect of a simple and novel surface conditioning method on the core-veneer bond strength of a zirconia ceramic system. The shear bond strength of a zirconia core ceramic to the corresponding veneering porcelain was tested by the Schmitz-Schulmeyer method. Thirty zirconia core specimens (10 × 5 × 5 mm) were layered with a veneering porcelain (5 × 3 × 3 mm). Three different surface conditioning methods were evaluated: polishing with up to 1200 grit silicon carbide paper under water cooling, airborne-particle abrasion with 110 μm alumina particles, and modification with zirconia powder coating before sintering. A metal ceramic system was used as a control group. All specimens were subjected to shear force in a universal testing machine at a crosshead speed of 0.5 mm/min. The shear bond strength values were analyzed with 1-way ANOVA and Tukey's post hoc pairwise comparisons (α=.05). The fractured specimens were examined with a scanning electron microscope to observe the failure mode. The mean (SD) shear bond strength values in MPa were 47.02 (6.4) for modified zirconia, 36.66 (8.6) for polished zirconia, 39.14 (6.5) for airborne-particle-abraded zirconia, and 46.12 (7.1) for the control group. The mean bond strength of the control (P=.028) and modified zirconia groups (P=.014) was significantly higher than that of the polished zirconia group. The airborne-particle-abraded group was not significantly different from any other group. Scanning electron microscopy evaluation showed that cohesive fracture in the veneering porcelain was the predominant failure mode of modified zirconia, while the other groups principally fractured at the interface. Modifying the zirconia surface with powder coating could significantly increase the shear bond strength of zirconia to veneering porcelain. Copyright © 2012 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
Composite bonding to stainless steel crowns using a new universal bonding and single-bottle systems.
Hattan, Mohammad Ali; Pani, Sharat Chandra; Alomari, Mohammad
2013-01-01
Aim. The aim of this study is to evaluate the shear bond strength of nanocomposite to stainless steel crowns using a new universal bonding system. Material and Methods. Eighty (80) stainless steel crowns (SSCs) were divided into four groups (20 each). Packable nanocomposite was bonded to the lingual surface of the crowns in the following methods: Group A without adhesive (control group), Group B using a new universal adhesive system (Scotchbond Universal Adhesive, 3M ESPE, Seefeld, Germany), and Group C and Group D using two different brands of single-bottle adhesive systems. Shear bond strengths were calculated and the types of failure also were recorded. Results. The shear strength of Group B was significantly greater than that of other groups. No significant differences were found between the shear bond strengths of Groups C and D. The control group had significantly lower shear bond strength (P < 0.05) to composite than the groups that utilized bonding agents. Conclusion. Composites bonding to stainless steel crowns using the new universal bonding agent (Scotchbond Universal Adhesive, 3M ESPE, Seefeld, Germany) show significantly greater shear bond strengths and fewer adhesive failures when compared to traditional single-bottle systems.
Philip, Jacob M; Ganapathy, Dhanraj M; Ariga, Padma
2012-07-01
This study was formulated to evaluate and estimate the influence of various denture base resin surface pre-treatments (chemical and mechanical and combinations) upon tensile bond strength between a poly vinyl acetate-based denture liner and a denture base resin. A universal testing machine was used for determining the bond strength of the liner to surface pre-treated acrylic resin blocks. The data was analyzed by one-way analysis of variance and the t-test (α =.05). This study infers that denture base surface pre-treatment can improve the adhesive tensile bond strength between the liner and denture base specimens. The results of this study infer that chemical, mechanical, and mechano-chemical pre-treatments will have different effects on the bond strength of the acrylic soft resilient liner to the denture base. Among the various methods of pre-treatment of denture base resins, it was inferred that the mechano-chemical pre-treatment method with air-borne particle abrasion followed by monomer application exhibited superior bond strength than other methods with the resilient liner. Hence, this method could be effectively used to improve bond strength between liner and denture base and thus could minimize delamination of liner from the denture base during function.
Bond strengths of custom cast and prefabricated posts luted with two cements.
Aleisa, Khalil Ibrahim
2011-02-01
This in vitro study evaluated the bond strength of custom cast and prefabricated posts luted with resin or zinc phosphate cements into unobturated canals of extracted teeth. Forty-eight custom cast and prefabricated posts were placed into extracted single-rooted human teeth. Post-cavity preparation was 1.5 mm in diameter and 10 mm in depth. Specimens were randomly divided into 4 groups of 12 each. Two of the groups were then luted with resin cement, while the other two groups were luted with zinc phosphate cement. A pull-out bond strength evaluation was performed using a universal testing machine. The Kolmogorov-Smirnov test was used to prove normal distribution. Data were statistically analyzed using two-way ANOVA and the Student t test (alpha = .05). For both luting agents, the prefabricated posts group exhibited significantly less bond strength than the custom cast posts group (P = .0001). There were statistically significant differences in mean bond strength for the prefabricated posts group luted with resin cement vs the group cemented with zinc phosphate cement (P = .002). There was no significant difference between the mean bond strength values of custom cast posts luted with resin cement or zinc phosphate cement. Custom cast posts showed significantly greater bond strength than prefabricated posts when luted with either resin or zinc phosphate cements. The type of cement had less significance on the retention of custom cast posts.
Sakamoto, Harumi; Hirohashi, Yohei; Doi, Hisashi; Tsutsumi, Yusuke; Suzuki, Yoshiaki; Noda, Kazuhiko; Hanawa, Takao
2008-01-01
The objective of this study was to investigate the effect of UV irradiation on shear bond strength between a titanium (Ti) and a segmented polyurethane (SPU) composite through gamma-mercapto propyl trimethoxysilane (gamma-MPS). To this end, the shear bond strength of Ti/SPU interface of Ti-SPU composite under varying conditions of ultraviolet ray (UV) irradiation was evaluated by a shear bond test. The glass transition temperatures of SPU with and without UV irradiation were also determined using differential scanning calorimetry. It was found that the shear bond strength of Ti/SPU interface increased with UV irradiation. However, excessive UV irradiation decreased the shear bond strength of Ti/SPU interface. Glass transition temperature was found to increase during 40-60 seconds of UV irradiation. In terms of durability after immersion in water at 37 degrees C for 30 days, shear bond strength was found to improve with UV irradiation. In conclusion, UV irradiation to a Ti-SPU composite was clearly one of the means to improve the shear bond strength of Ti/SPU interface.
Kanashiro, Lylian K; Robles-Ruíz, Julissa J; Ciamponi, Ana L; Medeiros, Igor S; Tortamano, André; Paiva, João B
2014-09-01
To determine the influence on shear bond strength and bond failure location of four cleaning methods for orthodontic bracket custom bases. In vitro laboratory study. Eighty bovine teeth were divided at random into four groups. The bracket custom bases were cleaned with different methods: group 1 with methyl methacrylate monomer, group 2 with acetone, group 3 with 50 μm aluminium oxide particles and group 4 with detergent. The brackets were indirectly bonded onto the teeth with the Sondhi Rapid-Set self-curing adhesive. The maximum required shear bond strength to debond the brackets was recorded. The bond failure location was evaluated using the Adhesive Remnant Index (ARI). One-way analysis of variance (ANOVA) analysis (P<0·05) was used to detect significant differences in the bond strength. Kaplan-Meier survival plots and log-rank test were done to compare the survival distribution between the groups. The Kruskal-Wallis test (P<0·05) was used to evaluate the differences in the ARI scores. The mean bond strengths in groups 1, 2, 3 and 4 were 23·7±5·0, 25·3±5·1, 25·6±3·7 and 25·7±4·2 MPa, respectively. There were no significant statistically differences in either the bond strength or the ARI score between the groups. The four custom base-cleaning methods presented the same efficiencies on indirect bond of the brackets; thus, practitioners can choose the method that works best for them. © 2014 British Orthodontic Society.
Khanehmasjedi, Mashallah; Naseri, Mohammad Ali; Khanehmasjedi, Samaneh; Basir, Leila
2017-02-01
This study compared the shear bond strength of metallic brackets bonded with Single Bond and Assure bonding agents under dry and saliva-contamination conditions. Sixty sound premolar teeth were selected, and stainless-steel brackets were bonded on enamel surfaces with Single Bond and Assure bonding agents under dry condition or with saliva contamination. Shear bond strength values of brackets were measured in a universal testing machine. The adhesive remnant index scores were determined after debonding of the brackets under a stereomicroscope. One-way analysis of variance (ANOVA) was used to analyze bond strength. Two-by-two comparisons were made with post hoc Tukey tests (p<0.001). Frequencies of adhesive remnant index scores were analyzed by Kruskal-Wallis test. Bond strength values of brackets to tooth structure were 9.29±8.56 MPa and 21.25±8.93 MPa with the use of Assure resin bonding agent under saliva-contamination and dry conditions, respectively. These values were 10.13±6.69 MPa and 14.09±6.6 MPa, respectively, under the same conditions with the use of Single Bond adhesive. Contamination with saliva resulted in a significant decrease in the bond strength of brackets to tooth structure with the application of Assure adhesive resin (p<0.001). There were no significant differences in the adhesive remnant index scores between the study groups. Application of Single Bond and Assure bonding agents resulted in adequate bond strength of brackets to tooth structures. Contamination with saliva significantly decreased the bond strength of Assure bonding agent compared with dry conditions. Copyright © 2016. Published by Elsevier Taiwan LLC.
Ebrahimi Chaharom, Mohammad Esmaeel; Ajami, Amir Ahmad; Bahari, Mahmoud; Rezazadeh, Haleh
2017-01-01
There are concerns in relation to the bonding efficacy of self-adhesive resin cements to dentin covered with the smear layer. This study aims to evaluate the effect of smear layer thickness and different pH values of self-adhesive resin cements on the shear bond strength to dentin. The dentin on the buccal and lingual surfaces of 48 sound human premolars were abraded with 60- and 600-grit silicon carbide papers to achieve thick and thin smear layers, respectively. The samples were divided into three groups (n = 16) based on the cement pH: Rely-X Unicem (RXU) (pH < 2); Clearfil SA Luting (CSL) (pH = 3); and Speed CEM (SPC) (pH = 4.5). In each group, composite resin blocks were bonded to the buccal and lingual surfaces. After 24 h, the shear bond strength values were measured in MPa, and the failure modes were evaluated under a stereomicroscope. Data were analyzed with two-way ANOVA and post hoc least significant difference tests (P < 0.05). Cement pH had a significant effect on the shear bond strength (P = 0.02); however, the smear layer thickness had no significant effect on the shear bond strength (P > 0.05). The cumulative effect of these variables was not significant, either (P = 0.11). The shear bond strengths of SPC and CSL self-adhesive resin cements were similar and significantly lower than that of RXU. The smear layer thickness was not a determining factor for the shear bond strength value of self-adhesive resin cements.
Sharafeddin, Farahnaz; Shoale, Soodabe
2018-01-01
Statement of the Problem: The clinical success of ceramic depends on the quality of the bond between the zirconia and resin cement. Purpose: In the present study, the effects of universal and conventional MDP-containing primers were evaluated on the shear bond strength of zirconia ceramic and nanofilled composite resin. Materials and Method: Thirty blocks of zirconia ceramic (6mm×2mm) were prepared. Then the inner surfaces were air-abraded and divided into three groups (n= 10) as follows: untreated with primer (control group, I); All- Bond Universal (group II) and Z-Prime Plus (group III). The specimens in each group were bonded with Variolink N cement to cylinders of composite resin Z350XT. After 24 hour water storage, the shear bond strength test was performed with a universal testing machine at a crosshead speed of 1mm/ min and bond strength values (MPa) were calculated and analyzed with one-way ANOVA and post hoc Tukey tests (p< 0.05). The failure mode of each specimen was evaluated under a stereomicroscope and representative specimens were analyzed by scanning electron microscopy (SEM). Results: The mean shear bond strength values (MPa) were 7.58±1.62, 17.51±1.34 and 22.45±3.60 in groups I, II and III, respectively. These results indicated that the shear bond strength were significantly higher in groups II and III compared to the control group (p< 0.001). Chemical pre-treatment of zirconia with Z- Prime Plus revealed significantly higher bond strength than the All-Bond Universal adhesive (p< 0.002). All the failure modes were adhesive in the control group (I) and when using primer treatment, mixed failures occurred in 40% and 50% of specimens in groups II and III, respectively. Conclusion: Treatment with both primers resulted in higher bond strength values compared to the control group. The use of Z-Prime Plus treatment in combination with air-abrasion procedure resulted in the highest bond strength. PMID:29492416
Gotti, Valeria Bisinoto; Feitosa, Victor Pinheiro; Sauro, Salvatore; Correr-Sobrinho, Lourenço; Correr, Americo Bortolazzo
2014-10-01
To evaluate the effects of an electric current-assisted application on the bond strength and interfacial morphology of self-adhesive resin cements bonded to dentin. Indirect resin composite build-ups were luted to prepared dentin surfaces using two self-adhesive resin cements (RelyX Unicem and BisCem) and an ElectroBond device under 0, 20, or 40 μA electrical current. All specimens were submitted to microtensile bond strength test and to interfacial SEM analysis. The electric current-assisted application induced no change (P > 0.05) on the overall bond strength, although RelyX Unicem showed significantly higher bond strength (P < 0.05) than BisCem. Similarly, no differences were observed in terms of interfacial integrity when using the electrical current applicator.
Latour, R A; Black, J
1992-05-01
Fiber reinforced polymer (FRP) composites are being developed as alternatives to metals for structural orthopedic implant applications. FRP composite fracture behavior and environmental interactions are distinctly different from those which occur in metals. These differences must be accounted for in the design and evaluation of implant performance. Fiber/matrix interfacial bond strength in a FRP composite is known to strongly influence fracture behavior. The interfacial bond strength of four candidate fiber/matrix combinations (carbon fiber/polycarbonate, carbon fiber/polysulfone, polyaramid fiber/polycarbonate, polyaramid fiber/polysulfone) were investigated at 37 degrees C in dry and in vivo simulated (saline, exudate) environments. Ultimate bond strength was measured by a single fiber-microdroplet pull-out test. Dry bond strengths were significantly decreased following exposure to either saline or exudate with bond strength loss being approximately equal in both the saline and exudate. Bond strength loss is attributed to the diffusion of water and/or salt ions into the sample and their interaction with interfacial bonding. Because bond degradation is dependent upon diffusion, diffusional equilibrium must be obtained in composite test samples before the full effect of the test environment upon composite mechanical behavior can be determined.
Enamel and dentin bond strength following gaseous ozone application.
Cadenaro, Milena; Delise, Chiara; Antoniollo, Francesca; Navarra, Ottavia Chiara; Di Lenarda, Roberto; Breschi, Lorenzo
2009-08-01
To evaluate the effects of gaseous ozone application on enamel and dentin bond strength produced by two self-etching adhesive systems. The shear bond strength test was conducted to assess adhesion on enamel (protocol 1), while the microtensile bond strength test was performed on dentin (protocol 2). Protocol 1: 96 bovine incisors were randomly divided into 4 groups, and enamel surfaces were bonded in accordance with the following treatments: (1E) ozone + Clearfil Protect Bond; (2E) Clearfil Protect Bond (control); (3E) ozone + Xeno III; (4E) Xeno III (control). Ozone gas was applied for 80 s. Shear bond strength was measured with a universal testing machine. Protocol 2: 40 noncarious human molars were selected. Middle/deep dentin was exposed and bonded in accordance with the following treatments: (1D) ozone+Clearfil Protect Bond; (2D) Clearfil Protect Bond (control); (3D) ozone+Xeno III (4D) Xeno III (control). Four-mm-thick buildups were built on the adhesives, then specimens were sectioned in accordance with the nontrimming technique. Specimens were stressed until failure occurred, and failure modes were analyzed. Shear bond and microtensile bond strength data were analyzed using two-way ANOVA and Tukey's post-hoc test. No statistical differences were found between ozone treated specimens and controls, neither on enamel nor on dentin irrespective of the tested adhesive. Clearfil Protect Bond showed higher bond strength to enamel than Xeno III, irrespective of the ozone treatment (p < 0.05). The use of ozone gas to disinfect the cavity before placing a restoration had no influence on immediate enamel and dentin bond strength.
Jhingan, Pulkit; Sachdev, Vinod; Sandhu, Meera; Sharma, Karan
2015-12-01
To compare and evaluate shear bond strength of self-etching adhesives bonded to cavities prepared by diamond bur or Er,Cr:YSGG laser and the effect of prior acid etching on shear bond strength. Ninety-six caries-free human premolars were selected and divided into 2 groups depending on mode of cavity preparation (48 teeth each). Cavities were prepared with Er,Cr:YSGG laser in group 1 and diamond burs in an air-turbine handpiece in group 2. Groups 1 and 2 were further subdivided into three subgroups of 8 teeth each, which were bonded with sixth- or seventh-generation adhesives with or without prior acid etching, followed by restoration of all samples with APX Flow. These samples were subjected to shear bond strength testing. In addition, the surface morphology of 24 samples each from groups 1 and 2 was evaluated using SEM. Data were analyzed using the Shapiro-Wilk test, one- and two-way ANOVA, the t-test, and the least significant difference test, which showed that the data were normally distributed (p > 0.05). The shear bond strength of adhesives in cavities prepared by Er,Cr:YSGG laser was significantly higher than in diamond bur-prepared cavities (p < 0.05). SEM analysis showed a smear-layer-free anfractuous surface on laser-ablated teeth, in contrast to conventional bur-prepared teeth. The Er,Cr:YSGG laser-ablated surface proved to be more receptive for adhesion than those prepared by diamond bur irrespective of the bonding agent used. Seventh-generation adhesives yielded higher shear bond strength than did sixth-generation adhesives. Prior acid etching decreased the shear bond strength of self-etching adhesives.
The effect of remin pro and MI paste plus on bleached enamel surface roughness.
Ahmad Akhoundi, Mohammad Sadegh; Aghajani, Farzaneh; Chalipa, Javad; Sadrhaghighi, Amir Hooman
2014-03-01
Increased number of adult patients requesting orthodontic treatment result in bonding bracket to ceramic restorations more than before. The aim of this study was to evaluate and compare the shear bond strength of orthodontic brackets bonded to two types of ceramic bases with conventional orthodontic bonding resin and a new nano-filled composite resin. Twenty four feldespathic porcelain and 24 lithium disilicate ceramic disks were fabricated. All of the samples were conditioned by sandblasting, hydrofluoric acid and silane. Maxillary incisor metal brackets were bonded to half of the disks in each group by conventional orthodontic bonding resin and the other half bonded with a nano-filled composite. The samples then were thermocycled for 2000 cycle between 5-55° C. Shear bond strength was measured and the mode of failure was examined. Randomly selected samples were also evaluated by SEM. The lowest bond strength value was found infeldespathic ceramic bonded by nano-filled composite (p<0.05). There was not any statistically significant difference between other groups regarding bond strength. The mode of failure in the all groups except group 1 was cohesive and porcelain damages were detected. Since less damages to feldspathic porcelain was observed when the nano-filled composite was used to bond brackets, the use of nano-filled composite resins can be suggested for bonding brackets to feldspathic porcelain restorations.
The Effect of Remin Pro and MI Paste Plus on Bleached Enamel Surface Roughness
Ahmad Akhoundi, Mohammad Sadegh; Aghajani, Farzaneh; Chalipa, Javad; Sadrhaghighi, Amir Hooman
2014-01-01
Objective Increased number of adult patients requesting orthodontic treatment result in bonding bracket to ceramic restorations more than before. The aim of this study was to evaluate and compare the shear bond strength of orthodontic brackets bonded to two types of ceramic bases with conventional orthodontic bonding resin and a new nano-filled composite resin. Materials and Methods: Twenty four feldespathic porcelain and 24 lithium disilicate ceramic disks were fabricated. All of the samples were conditioned by sandblasting, hydrofluoric acid and silane. Maxillary incisor metal brackets were bonded to half of the disks in each group by conventional orthodontic bonding resin and the other half bonded with a nano-filled composite. The samples then were thermocycled for 2000 cycle between 5–55° C. Shear bond strength was measured and the mode of failure was examined. Randomly selected samples were also evaluated by SEM. Results: The lowest bond strength value was found infeldespathic ceramic bonded by nano-filled composite (p<0.05). There was not any statistically significant difference between other groups regarding bond strength. The mode of failure in the all groups except group 1 was cohesive and porcelain damages were detected. Conclusion: Since less damages to feldspathic porcelain was observed when the nano-filled composite was used to bond brackets, the use of nano-filled composite resins can be suggested for bonding brackets to feldspathic porcelain restorations. PMID:24910698
NASA Astrophysics Data System (ADS)
Armwood, Catherine K.
In this project, 26 fiber-reinforced mortar (FRM) mixtures are evaluated for their workability and strength characteristics. The specimens tested include two control mixtures and 24 FRMs. The mixtures were made of two types of binders; Type N Portland cement lime (Type N-PCL) and Natural Hydrated Lime 5 (NHL5); and 6 fiber types (5 synthetic fibers and one organic). When tested in flexure, the results indicate that majority of the synthetic fiber mixtures enhanced the performance of the mortar and the nano-nylon and horse hair fibers were the least effective in improving the mortar's modulus of rupture, ductility, and energy absorption. Four FRMs that improved the mortar's mechanical properties most during the flexural strength test were then used to conduct additional experiments. The FRM's compressive strength, as well as flexural and shear bond strength with clay and concrete masonry units were determined. Those four mixtures included Type N-PCL as the binder and 4 synthetic fibers. They were evaluated at a standard laboratory flow rate of 110% +/- 5% and a practical field flow rate of 130% +/- 5%. Results indicate that the use of fibers decreases the compressive strength of the mortar most of the time. However, the bond strength test results were promising: 81% of the FRM mixtures increased the flexural bond strength of the prism. The mixtures at 110 +/- 5% flow rate bonded better with concrete bricks and those ate 130+/-5% flow rate bonded better with clay bricks. The results of the shear bond strength show 50% of the FRM mixtures improved the shear bond strength. The FRM mixtures at 110+/-5% flow rate bonded with clay units provided the most improvement in shear bond strength compared to control specimen results. Along with detailed discussions and derived conclusions of these experiments, this dissertation includes recommendations for the most feasible FRM for different applications.
Effects of etching time on enamel bond strengths.
Triolo, P T; Swift, E J; Mudgil, A; Levine, A
1993-12-01
This study evaluated the effects of etching time on bond strengths of composite to enamel. Proximal surfaces of extracted molars were etched with either a conventional etchant (35% phosphoric acid) or one of two dentin/enamel conditioners, 10% maleic acid (Scotchbond Multi-Purpose Etchant), or a solution of oxalic acid, aluminum nitrate, and glycine (Gluma 1 & 2 Conditioner). Each agent was applied for 15, 30, or 60 seconds. Specimens etched with 35% phosphoric acid had the highest mean bond strengths at each etching time. At the manufacturer's recommended application times, the other two agents gave significantly lower shear bond strengths than phosphoric acid.
Cho, S D; Rajitrangson, P; Matis, B A; Platt, J A
2013-01-01
Aged resin composites have a limited number of carbon-carbon double bonds to adhere to a new layer of resin. Study objectives were to 1) evaluate various surface treatments on repaired shear bond strength between aged and new resin composites and 2) to assess the influence of a silane coupling agent after surface treatments. Eighty disk-shape resin composite specimens were fabricated and thermocycled 5000 times prior to surface treatment. Specimens were randomly assigned to one of the three surface treatment groups (n=20): 1) air abrasion with 50-μm aluminum oxide, 2) tribochemical silica coating (CoJet), or 3) Er,Cr:YSGG (erbium, chromium: yttrium-scandium-gallium-garnet) laser or to a no-treatment control group (n=20). Specimens were etched with 35% phosphoric acid, rinsed, and dried. Each group was divided into two subgroups (n=10): A) no silanization and B) with silanization. The adhesive agent was applied and new resin composite was bonded to each conditioned surface. Shear bond strength was evaluated and data analyzed using two-way analysis of variance (ANOVA). Air abrasion with 50-μm aluminum oxide showed significantly higher repair bond strength than the Er,Cr:YSGG laser and control groups. Air abrasion with 50-μm aluminum oxide was not significantly different from tribochemical silica coating. Tribochemical silica coating had significantly higher repair bond strength than Er,Cr:YSGG laser and the control. Er,Cr:YSGG laser and the control did not have significantly different repair bond strengths. Silanization had no influence on repair bond strength for any of the surface treatment methods. Air abrasion with 50-μm aluminum oxide and tribochemical silica followed by the application of bonding agent provided the highest repair shear bond strength values, suggesting that they might be adequate methods to improve the quality of repairs of resin composites.
Rani, Sapna; Verma, Mahesh; Gill, Shubhra; Gupta, Rekha
2016-01-01
Background/Purpose: The aim of this study was to compare the shear bond strength of computer aided design/computer aided machined ceramic (CAD/CAM), pressable ceramic, and milled metal implant copings on abutment and the effect of surface conditioning on bonding strength. Materials and Methods: A total of 90 test samples were fabricated on three titanium abutments. Among 90 test samples, 30 copings were fabricated by CAD/CAM, 30 by pressable, and 30 by milling of titanium metal. These 30 test samples in each group were further subdivided equally for surface treatment. Fifteen out of 30 test samples in each group were surface conditioned with airborne particle abrasion. All the 90 test samples were luted on abutment with glass ionomer cement. Bonding strength was evaluated for all the samples using universal testing machine at a crosshead speed of 5 mm/min. The results obtained were compared and evaluated using one-way ANOVA with post-hoc and unpaired t-test at a significance level of 0.05. Results: The mean difference for CAD/CAM surface conditioned subgroup was 1.28 ± 0.12, for nonconditioned subgroup was 1.20 ± 0.11. The mean difference for pressable surface conditioned subgroup was 1.18 ± 0.04, and for nonconditioned subgroup was 0.75 ± 0.28. The mean difference for milled metal surface conditioned subgroup was 2.57 ± 0.58, and for nonconditioned subgroup was 1.49 ± 0.15. Conclusions: On comparison of bonding strength, milled metal copings had an edge over the other two materials, and surface conditioning increased the bond strength. PMID:27141163
Bond strength of self-etch adhesives after saliva contamination at different application steps.
Cobanoglu, N; Unlu, N; Ozer, F F; Blatz, M B
2013-01-01
This study evaluated and compared the effect of saliva contamination and possible decontamination methods on bond strengths of two self-etching adhesive systems (Clearfil SE Bond [CSE], Optibond Solo Plus SE [OSE]). Flat occlusal dentin surfaces were created on 180 extracted human molar teeth. The two bonding systems and corresponding composite resins (Clearfil AP-X, Kerr Point 4) were bonded to the dentin under six surface conditions (n=15/group): group 1 (control): primer/bonding/composite; group 2: saliva/drying/primer/bonding/composite; group 3: primer/saliva/rinsing/drying/primer/bonding/composite; group 4: primer/saliva/rinsing/drying/bonding/composite; group 5: primer/bonding (cured)/saliva/rinsing/drying/primer/bonding/composite; group 6: primer/bonding (cured)/saliva/removing contaminated layer with a bur/rinsing/drying/primer/bonding/composite. Shear bond strength was tested after specimens were stored in distilled water at 37°C for 24 hours. One-way analysis of variance and Tukey post hoc tests were used for statistical analyses. For CSE, groups 2, 3, and 4 and for OSE, groups 6, 2, and 4 showed significantly lower bond strengths than the control group (p<0.05). CSE groups 5 and 6 and OSE groups 3 and 5 revealed bond strengths similar to the control. When saliva contamination occurred after light polymerization of the bonding agent, repeating the bonding procedure recovered the bonding capacity of both self-etch adhesives. However, saliva contamination before or after primer application negatively affected their bond strength.
ETV Program Report: Coatings for Wastewater Collection ...
The Standard Cement Materials, Inc. Standard Epoxy Coating 4553™ (SEC 4553) epoxy coating used for wastewater collection system rehabilitation was evaluated by EPA’s Environmental Technology Verification Program under laboratory conditions at the Center for Innovative Grouting Material and Technology (CIGMAT) Laboratory at the University of Houston. Testing was conducted over a period of six months to evaluate the coating’s (1) chemical resistance and (2) bonding strength for infrastructure applications. For chemical resistance, coated concrete and clay bricks with holidays (holes created in the coating) were used to evaluate the chemical resistance of the coating/substrate bond under a corrosive environment. Twenty coated concrete (dry and wet) and 20 coated clay brick (dry and wet) specimens were exposed to DI water and sulfuric acid solution (pH=1), and the specimens were visually inspected and weight changes measured. Evaluation of the coating-to-substrate bonding strength was determined using two modified ASTM test methods – one to determine bond strength of the coating with two specimens sandwiched together using the coating, and the second to determine the bond strength by applying a tensile load to the coating applied to specimens of each substrate. Forty-eight bonding tests were performed over the six month evaluation. The tests resulted in the following conclusions about Standard Cement’s SEC 4553 coating: • After the six-month chemi
Batra, Charu; Nagpal, Rajni; Tyagi, Shashi Prabha; Singh, Udai Pratap; Manuja, Naveen
2014-08-01
To evaluate the effect of additional enamel etching on the shear bond strength of three self-etch adhesives. Class II box type cavities were made on extracted human molars. Teeth were randomly divided into one control group of etch and rinse adhesive and three test groups of self-etch adhesives (Clearfil S3 Bond, Futurabond NR, Xeno V). The teeth in the control group (n = 10) were treated with Adper™ Single Bond 2. The three test groups were further divided into two subgroups (n = 10): (i) self-etch adhesive was applied as per the manufacturer's instructions; (ii) additional etching of enamel surfaces was done prior to the application of self-etch adhesives. All cavities were restored with Filtek Z250. After thermocycling, shear bond strength was evaluated using a Universal testing machine. Data were analyzed using anova independent sample's 't' test and Dunnett's test. The failure modes were evaluated with a stereomicroscope at a magnification of 10×. Additional phosphoric acid etching of the enamel surface prior to the application of the adhesive system significantly increased the shear bond strength of all the examined self-etch adhesives. Additional phosphoric acid etching of enamel surface significantly improved the shear bond strength. © 2013 Wiley Publishing Asia Pty Ltd.
Iwasaki, Taro; Komine, Futoshi; Fushiki, Ryosuke; Kubochi, Kei; Shinohara, Mitsuyo; Matsumura, Hideo
2016-01-01
This study evaluated shear bond strengths of a layering indirect composite material to a zirconia framework material treated with tribochemical silica coating. Zirconia disks were divided into two groups: ZR-PRE (airborne-particle abrasion) and ZR-PLU (tribochemical silica coating). Indirect composite was bonded to zirconia treated with one of the following primers: Clearfil Ceramic Primer (CCP), Clearfil Mega Bond Primer with Clearfil Porcelain Bond Activator (MGP+Act), ESPE-Sil (SIL), Estenia Opaque Primer, MR. Bond, Super-Bond PZ Primer Liquid A with Liquid B (PZA+PZB), and Super-Bond PZ Primer Liquid B (PZB), or no treatment. Shear bond testing was performed at 0 and 20,000 thermocycles. Post-thermocycling shear bond strengths of ZR-PLU were higher than those of ZR-PRE in CCP, MGP+Act, SIL, PZA+PZB, and PZB groups. Application of silane yielded better durable bond strengths of a layering indirect composite material to a tribochemically silica-coated zirconia framework material.
In Vitro Evaluation of Shear Bond Strength of Nanocomposites to Dentin
Vellanki, Vinay Kumar; Shetty, Vikram K; Kushwah, Sudhanshu; Goyal, Geeta; Chandra, S.M. Sharath
2015-01-01
Aims: To compare the shear bond strength of nanocomposites to dentin using three different types of adhesive systems; and to test few specimens under Scanning Electron Microscope (SEM) for analysing whether the bond failure is adhesive or cohesive. Materials and Methods: Sixty human premolar teeth were selected and were randomly grouped, with 20 specimens in each group: group 1 - fluoride releasing dentin bonding agent; group 2 - antibacterial containing dentin bonding agent; and group 3 - one step conventional self etch adhesive. Each group was treated with its respective bonding agents, composite resin build up was done, and shear bond strengths were tested using Instron Universal testing machine. Few of the specimens were tested under SEM. Results: The results were statistically analysed using One-way ANOVA and paired t-test. It was observed that group 3 has the highest shear bond strength followed by group 2, and then group 1. Adhesive failures and mixed failures were most frequent types of failures as seen under SEM. Conclusion: Addition of antimicrobial agent decreases the bond strength of dentin bonding agent and addition of fluoride further decreases the bond strength. From SEM results it can be concluded that the zone of failure could not be defined and also that the failure mode was independent of the dentin bonding agent used. PMID:25738077
Sealing ability and bond strength of four contemporary adhesives to enamel and to dentine.
Atash, R; Vanden Abbeele, A
2005-12-01
To compare the shear bond strength and microleakage of four adhesive systems to the enamel and dentine of primary bovine teeth. 120 bovine primary mandibular incisors were collected and stored in an aqueous 1% chloramine solution at room temperature for no longer than 3 months after extraction (80 for shear bond testing and 40 for microleakage evaluation). The adhesives tested were Clearfil SE bond (SE), Adper Prompt L Pop (LP), Xeno III (XE), and Prime and Bond NT (PB). For shear bond strength testing the specimens were wet ground to 600 grit SiC paper to expose a flat enamel or dentine surface. After bonding and restoration with Dyract AP (DAP), the teeth were subjected to shear stress using a universal testing machine. For microleakage evaluation, facial class V cavities were prepared half in enamel and half in cementum. All cavities were restored with DAP. After thermocycling and immersion in 2% methylene blue, the dye penetration was evaluated under a stereomicroscope. All data were analysed by Chi-square tests or Fisher's tests when adapted in order to determine the significant differences between groups. Results were considered as significant for p < 0.05. Results were analysed with an ANOVA test and a Bonferroni's multiple comparison. The level of significance was p < 0.05. Shear bond strength values (MPa,) ranged from: on enamel 11.06 to 5.34, in decreasing order SE, LP, XE and PB and on dentine 10.47 to 4.74, in decreasing order SE, XE, LP and PB. Differences in bond strengths between the four systems on enamel and dentine were all statistically significant, excepted for XE vs LP (shear bond at dentine). No significant differences were recorded in the microleakage degree between the four adhesive systems on enamel and on dentine (p > 0.0.5). The highest shear bond strength was achieved by Clearfil SE bond and the lowest by Prime and Bond NT. There was no significant difference concerning the sealing ability of the four adhesive systems.
Effect of surface treatments on the bond strengths of facing composite resins to zirconia copings.
Tsumita, M; Kokubo, Y; Kano, T
2012-09-01
The present study evaluated and compared the bond strength between zirconia and facing composite resin using different surface conditioning methods before and after thermocycling. Four primers, three opaque resins, and two facing composite resins were used, and 10 surface treatment procedures were conducted. The bond strength was measured before and after 4,000 cycles of thermocycling. The mean values of each group were statistically analyzed using one-way analysis of variance (ANOVA). The bond strengths of facing composite resins to zirconia after various treatments varied depending on the primers, opaque resins, body resins, and thermocycling. The application of primers and opaque resins to the zirconia surface after sandblasting is expected to yield strong bond strength of the facing composite resin (Estenia CG&B) even after thermocycling.
Sutil, Bruna Gabrielle da Silva; Susin, Alexandre Henrique
2017-01-01
To evaluate the effects of dentin pretreatment and temperature on the bond strength of a universal adhesive system to dentin. Ninety-six extracted non-carious human third molars were randomly divided into 12 groups (n=8) according to Scotchbond Universal Adhesive (SbU) applied in self-etch (SE) and etch-and-rinse (ER) mode, adhesive temperature (20°C or 37°C) and sodium bicarbonate or aluminum oxide air abrasion. After composite build up, bonded sticks with cross-sectional area of 1 mm2 were obtained to evaluate the microtensile bond strength (μTBS). The specimens were tested at a crosshead speed of 0.5 mm/min on a testing machine until failure. Fractured specimens were analyzed under stereomicroscope to determine the failure patterns in adhesive, cohesive (dentin or resin) and mixed fractures. The microtensile bond strength data was analyzed using two-way ANOVA and Tukey's test (α=5%). Interaction between treatment and temperature was statistically significant for SbU applied in self-etch technique. Both dentin treatments showed higher bond strength for ER mode, regardless of adhesive temperature. When compared to control group, sodium bicarbonate increased bond strength of SbU in SE technique. Adhesive temperature did not significantly affect the μTBS of tested groups. Predominantly, adhesive failure was observed for all groups. Dentin surface treatment with sodium bicarbonate air abrasion improves bond strength of SbU, irrespective of adhesive application mode, which makes this approach an alternative to increase adhesive performance of Scotchbond Universal Adhesive to dentin.
Sutil, Bruna Gabrielle da Silva; Susin, Alexandre Henrique
2017-01-01
Abstract Objectives: To evaluate the effects of dentin pretreatment and temperature on the bond strength of a universal adhesive system to dentin. Material and Methods: Ninety-six extracted non-carious human third molars were randomly divided into 12 groups (n=8) according to Scotchbond Universal Adhesive (SbU) applied in self-etch (SE) and etch-and-rinse (ER) mode, adhesive temperature (20°C or 37°C) and sodium bicarbonate or aluminum oxide air abrasion. After composite build up, bonded sticks with cross-sectional area of 1 mm2 were obtained to evaluate the microtensile bond strength (μTBS). The specimens were tested at a crosshead speed of 0.5 mm/min on a testing machine until failure. Fractured specimens were analyzed under stereomicroscope to determine the failure patterns in adhesive, cohesive (dentin or resin) and mixed fractures. The microtensile bond strength data was analyzed using two-way ANOVA and Tukey's test (α=5%). Results: Interaction between treatment and temperature was statistically significant for SbU applied in self-etch technique. Both dentin treatments showed higher bond strength for ER mode, regardless of adhesive temperature. When compared to control group, sodium bicarbonate increased bond strength of SbU in SE technique. Adhesive temperature did not significantly affect the μTBS of tested groups. Predominantly, adhesive failure was observed for all groups. Conclusions: Dentin surface treatment with sodium bicarbonate air abrasion improves bond strength of SbU, irrespective of adhesive application mode, which makes this approach an alternative to increase adhesive performance of Scotchbond Universal Adhesive to dentin. PMID:29069151
Bond characteristics of reinforcing steel embedded in geopolymer concrete
NASA Astrophysics Data System (ADS)
Kathirvel, Parthiban; Thangavelu, Manju; Gopalan, Rashmi; Raja Mohan Kaliyaperumal, Saravana
2017-07-01
The force transferring between reinforcing steel and the surrounding concrete in reinforced concrete is influenced by several factors. Whereas, the study on bond behaviour of geopolymer concrete (GPC) is lagging. In this paper, an experimental attempt has been made to evaluate the geopolymer concrete bond with reinforcing steel of different diameter and embedded length using standard pull out test. The geopolymer concrete is made of ground granulated blast furnace slag (GGBFS) as geopolymer source material (GSM). The tests were conducted to evaluate the development of bond between steel and concrete of grade M40 and M50 with 12 and 16 mm diameter reinforcing steel for geopolymer and cement concrete mixes and to develop a relation between bond strength and compressive strength. From the experimental results, it has been observed that the bond strength of the geopolymer concrete mixes was more compared to the cement concrete mixes and increases with the reduction in the diameter of the bar.
Effect of ultrasonic tip and root-end filling material on bond strength.
Vivan, Rodrigo Ricci; Guerreiro-Tanomaru, Juliane Maria; Bernardes, Ricardo Affonso; Reis, José Mauricio Santos Nunes; Hungaro Duarte, Marco Antonio; Tanomaru-Filho, Mário
2016-11-01
The objective of this study was to evaluate the bond strength of three root-end filling materials (MTAA-MTA Angelus, MTAS-experimental MTA Sealer, and ZOE- zinc oxide and eugenol cement) in retrograde preparations performed with different ultrasonic tips (CVD, Trinity, and Satelec). Ninety 2-mm root sections from single-rooted human teeth were used. The retrograde cavities were prepared by using the ultrasonic tips, coupled to a device for position standardization. The specimens were randomly divided into nine groups: CVD MTAA; CVD MTAS; CVD ZOE; Trinity MTAA; Trinity MTAS; Trinity ZOE; Satelec MTAA; Satelec MTAS; Satelec ZOE. Each resin disc/dentin/root-end filling material was placed in the machine to perform the push-out test. The specimens were examined in a stereomicroscope to evaluate the type of failure. Data were submitted to statistical analysis using ANOVA and Tukey tests (α = 0.05). The highest bond strength was observed for the CVD tip irrespective of the material used (P < 0.05). There was no significant difference for the Trinity TU-18 diamond and S12 Satelec tips (P > 0.05). MTAA and MTAS showed highest bond strength. The most common type of failure was adhesion between the filling material and dentin wall, except for ZOE, where mixed failure was predominant. The CVD tip favored higher bond strength of the root-end filling materials. MTA Angelus and experimental MTAS presented bond strength to dentin prepared with ultrasonic tips. Root-end preparation with the CVD tip positively influences the bond strength of root-end filling materials. MTA Angelus and experimental MTAS present bond strength to be used as root-end filling materials.
Shear bond strength of indirect composite material to monolithic zirconia.
Sari, Fatih; Secilmis, Asli; Simsek, Irfan; Ozsevik, Semih
2016-08-01
This study aimed to evaluate the effect of surface treatments on bond strength of indirect composite material (Tescera Indirect Composite System) to monolithic zirconia (inCoris TZI). Partially stabilized monolithic zirconia blocks were cut into with 2.0 mm thickness. Sintered zirconia specimens were divided into different surface treatment groups: no treatment (control), sandblasting, glaze layer & hydrofluoric acid application, and sandblasting + glaze layer & hydrofluoric acid application. The indirect composite material was applied to the surface of the monolithic zirconia specimens. Shear bond strength value of each specimen was evaluated after thermocycling. The fractured surface of each specimen was examined with a stereomicroscope and a scanning electron microscope to assess the failure types. The data were analyzed using one-way analysis of variance (ANOVA) and Tukey LSD tests (α=.05). Bond strength was significantly lower in untreated specimens than in sandblasted specimens (P<.05). No difference between the glaze layer and hydrofluoric acid application treated groups were observed. However, bond strength for these groups were significantly higher as compared with the other two groups (P<.05). Combined use of glaze layer & hydrofluoric acid application and silanization are reliable for strong and durable bonding between indirect composite material and monolithic zirconia.
Mumcu, Emre; Erdemir, Ugur; Topcu, Fulya Toksoy
2010-05-01
By means of a micro push-out test, this study compared the bond strengths of two types of fiber-reinforced posts cemented with luting cements based on two currently available adhesive approaches as well as evaluated their failure modes. Sixty extracted single-rooted human maxillary central incisor and canine teeth were sectioned below the cementoenamel junction, and the roots were endodontically treated. Following standardized post space preparation, the roots were divided into two fiber post groups and then further into three subgroups of 10 specimens each according to the luting cements. A push-out test was performed to measure regional bond strengths, and the fracture modes were evaluated using a stereomicroscope. At the root section, there were no statistically significant differences (p>0.05) in push-out bond strength among the tested luting cements. Nevertheless, the push-out bond strength values of glass fiber-reinforced posts were higher than those of carbon fiber-reinforced posts, irrespective of the adhesive approach used. On failure mode, the predominant failure mode was adhesive failure between dentin and the luting cement.
Berger, Sandrine Bittencourt; Guiraldo, Ricardo Danil; Lopes, Murilo Baena; Oltramari-Navarro, Paula Vanessa; Fernandes, Thais Maria; Schwertner, Renata de Castro Alves; Ursi, Wagner José Silva
2016-01-01
The application of bleaching agents before placement of resin-bonded fixed appliances significantly, but temporarily, reduces bond strength to tooth structure. Antioxidants have been studied as a means to remove residual oxygen that compromises bonding to bleached enamel. This in vitro study evaluated whether green tea (GT) could restore the shear bond strength between bonded orthodontic brackets and bleached enamel. Six experimental groups were compared: group 1, no bleaching plus bracket bonding (positive control); group 2, bleaching with 35% hydrogen peroxide (HP) plus bracket bonding (negative control); group 3, 35% HP plus 10% sodium ascorbate (SA) plus bracket bonding; group 4, 35% HP plus 10% GT plus bracket bonding; group 5, no bleaching plus 10% SA plus bracket bonding; group 6, no bleaching plus 10% GT plus bracket bonding. Results suggested that GT, like SA, may be beneficial for bracket bonding immediately after bleaching.
Mathew, Vinod Babu; Ramachandran, S; Indira, R; Shankar, P
2011-01-01
Background: Dental amalgam is the primary direct posterior restorative material used worldwide, but it have certain shortcomings due to the lack of adhesiveness to the cavity. The introduction of the concept of bonded amalgam helped improve the use of amalgam as a restorative material. Aim: Evaluation of the comparative push-out shear bond strength of four types of conventional glass ionomers used to bond amalgam to tooth in simulated class I situations. Materials and Methods: Four chemical cure glass ionomers are used: GC Fuji I, GC Fuji II, GC Fuji III and GC Fuji VII, and are compared with unbonded amalgam. The push-out bond strength was tested using the Instron Universal Testing Machine at a crosshead speed of 0.5 mm/min. Statistical Analysis: One-way ANOVA and post hoc Bonferroni tests were used to analyze the data. Results: The results showed that the use of glass ionomer to bond amalgam resulted in an increase in the bond strength of amalgam. The Type VII glass ionomer showed the highest bond strength in comparison with the other glass ionomers. Conclusions: Conventional glass ionomer bonds to amalgam and shows a beneficial increase in the bond strength of the restoration in comparison with unbonded amalgam. PMID:22144798
In vitro comparison of the tensile bond strength of denture adhesives on denture bases.
Kore, Doris R; Kattadiyil, Mathew T; Hall, Dan B; Bahjri, Khaled
2013-12-01
With several denture adhesives available, it is important for dentists to make appropriate patient recommendations. The purpose of this study was to evaluate the tensile bond strength of denture adhesives on denture base materials at time intervals of up to 24 hours. Fixodent, Super Poligrip, Effergrip, and SeaBond denture adhesives were tested with 3 denture base materials: 2 heat-polymerized (Lucitone 199 and SR Ivocap) and 1 visible-light-polymerized (shade-stable Eclipse). Artificial saliva with mucin was used as a control. Tensile bond strength was tested in accordance with American Dental Association specifications at 5 minutes, 3 hours, 6 hours, 12 hours, and 24 hours after applying the adhesive. Maximum forces before failure were recorded in megapascals (MPa), and the data were subjected to a 2-way analysis of variance (α=.05). All 4 adhesives had greater tensile bond strength than the control. Fixodent, Super Poligrip, and SeaBond had higher tensile bond strength values than Effergrip. All adhesives had the greatest tensile bond strength at 5 minutes and the least at 24 hours. The 3 denture bases produced significantly different results with each adhesive (P<.001). Lucitone 199 with the adhesives had the greatest tensile bond strength, followed by Ivocap and Eclipse. All 4 adhesives had greater tensile bond strength than the control, and all 4 adhesives were strongest at the 5-minute interval. On all 3 types of denture bases, Effergrip produced significantly lower tensile bond strength, and Fixodent, Super Poligrip, and SeaBond produced significantly higher tensile bond strength. At 24 hours, the adhesive-base combinations with the highest tensile bond strength were Fixodent on Lucitone 199, Fixodent on Eclipse, Fixodent on Ivocap, and Super Poligrip on Ivocap. Copyright © 2013 Editorial Council for the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
Komine, Futoshi; Koizuka, Mai; Fushiki, Ryosuke; Taguchi, Kohei; Kamio, Shingo; Matsumura, Hideo
2013-09-01
To evaluate shear bond strength of a gingiva-colored indirect composite to three implant framework materials, before and after thermocycling, and verify the effect of surface pre-treatment for each framework. Commercially pure titanium (CP-Ti), American Dental Association (ADA) type 4 casting gold alloy (Type IV) and zirconia ceramics (Zirconia) were assessed. For each substrate, 96 disks were divided into six groups and primed with one of the following primers: Alloy Primer (ALP), Clearfil Photo Bond (CPB), Clearfil Photo Bond with Clearfil Porcelain Bond Activator (CPB+Activator), Estenia Opaque Primer (EOP), Metal Link (MLP) and V-Primer (VPR). The specimens were then bonded to a gingiva-colored indirect composite (Ceramage Concentrate GUM-D). Shear bond strengths were measured at 0 and 20 000 thermocycles and data were analyzed with the Steel-Dwass test and Mann-Whitney U-test. Shear bond strengths were significantly lower after thermocycling, with the exception of Type IV specimens primed with CPB (p = 0.092) or MLP (p = 0.112). For CP-Ti and Zirconia specimens, priming with CPB or CPB+Activator produced significantly higher bond strengths at 0 and 20 000 thermocycles, as compared with the other groups. For Type IV specimens, priming with ALP or MLP produced higher bond strengths at 0 and 20 000 thermocycles. Shear bond strength of a gingiva-colored indirect composite to CP-Ti, gold alloy and zirconia ceramics was generally lower after thermocycling. Application of a hydrophobic phosphate monomer and polymerization initiator was effective in maintaining bond strength of CP-Ti and zirconia ceramics. Combined use of a thione monomer and phosphoric monomer enhanced the durable bond strength of gold alloy.
UV irradiation improves the bond strength of resin cement to fiber posts.
Zhong, Bo; Zhang, Yong; Zhou, Jianfeng; Chen, Li; Li, Deli; Tan, Jianguo
2011-01-01
The purpose is to evaluate the effect of UV irradiation on the bond strength between epoxy-based glass fiber posts and resin cement. Twelve epoxy-based glass fiber posts were randomly divided into three groups. Group 1 (Cont.): No surface treatment. Group 2 (Low-UV): UV irradiation was conducted from a distance of 10 cm for 10 min. Group 3 (High-UV): UV irradiation was conducted from a distance of 1 cm for 3 min. A resin cement (CLEARFIL SA LUTING) was used for the post cementation to form resin slabs which contained fiber posts in the center. Microtensile bond strengths were tested and the mean bond strengths (MPa) were 18.81 for Cont. group, 23.65 for Low-UV group, 34.75 for High-UV group. UV irradiation had a significant effect on the bond strength (p<0.05). UV irradiation demonstrates its capability to improve the bond strength between epoxy-based glass fiber posts and resin cement.
Kubochi, Kei; Komine, Futoshi; Fushiki, Ryosuke; Yagawa, Shogo; Mori, Serina; Matsumura, Hideo
2017-04-01
To evaluate the shear bond strengths of two gingiva-colored materials (an indirect composite material and a denture base acrylic resin) to zirconia ceramics and determine the effects of surface treatment with various priming agents. A gingiva-colored indirect composite material (CER) or denture base acrylic resin (PAL) was bonded to zirconia disks with unpriming (UP) or one of seven priming agents (n=11 each), namely, Alloy Primer (ALP), Clearfil Photo Bond (CPB), Clearfil Photo Bond with Clearfil Porcelain Bond Activator (CPB+Act), Metal Link (MEL), Meta Fast Bonding Liner (MFB), MR. bond (MRB), and V-Primer (VPR). Shear bond strength was determined before and after 5000 thermocycles. The data were analyzed with the Kruskal-Wallis test and Steel-Dwass test. The mean pre-/post-thermalcycling bond strengths were 1.0-14.1MPa/0.1-12.1MPa for the CER specimen and 0.9-30.2MPa/0.1-11.1MPa for the PAL specimen. For the CER specimen, the ALP, CPB, and CPB+Act groups had significantly higher bond strengths among the eight groups, at both 0 and 5000 thermocycles. For the PAL specimen, shear bond strength was significantly lower after thermalcycling in all groups tested. After 5000 thermocycles, bond strengths were significantly higher in the CPB and CPB+Act groups than in the other groups. For the PAL specimens, bond strengths were significantly lower after thermalcycling in all groups tested. The MDP functional monomer improved bonding of a gingiva-colored indirect composite material and denture base acrylic resin to zirconia ceramics. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Santana, Fernanda-Ribeiro; Soares, Carlos-José; Ferreira, Josemar-Martins; Valdivi, Andréa-Dolores-Correia-Miranda; Souza, João-Batista-de; Estrela, Carlos
2014-10-01
To evaluate the effect of root canal sealers (RCS) and specimen aging on the bond strength of fibre posts to bovine intraradicular dentin. 80 teeth were used according the groups - Sealapextm, Sealer 26®, AH Plus® and specimens aging - test with no aging and with aging. The canals prepared were filled using one of each RCS. The posts were cemented. Roots were cross-sectioned to obtain two slices of each third. Samples were submitted to push-out test. Failure mode was evaluated under a confocal microscope. The data were analysed by ANOVA, Tukey's, and Dunnet tests (α = 0.05). No significant difference was detected among RCS. Aged control presented higher bond strength than immediate control. The aging did not result significant difference. Adhesive cement-dentin failure was prevalent in all groups. RCS interfered negatively with bonding of fibreglass posts cemented with self-adhesive resin cement to intraradicular dentin. Key words:Fibreglass post, bond strength, root dentin, endodontic sealer, aging.
Influence of Hemostatic Solution on Bond Strength and Physicochemical Properties of Resin Cement.
Araújo, Isabela Sousa de; Prado, Célio Jesus do; Raposo, Luís Henrique Araújo; Soares, Carlos José; Zanatta, Rayssa Ferreira; Torres, Carlos Rocha Gomes; Ruggiero, Reinaldo; Silva, Gisele Rodrigues da
2017-01-01
The aim of this study was to evaluate the degree of conversion, color stability, chemical composition, and bond strength of a light-cured resin cement contaminated with three different hemostatic solutions. Specimens were prepared for the control (uncontaminated resin cement) and experimental groups (resin cement contaminated with one of the hemostatic solutions) according to the tests. For degree of conversion, DC (n = 5) and color analyses (n = 10), specimens (3 mm in diameter and 2 mm thick) were evaluated by Fourier transform infrared spectroscopy (FTIR) and CIELAB spectrophotometry (L*, a*, b*), respectively. For elemental chemical analysis (n = 1), specimens (2 mm thick and 6 mm in diameter) were evaluated by x-ray energy-dispersive spectroscopy (EDS). The bond strengths of the groups were assessed by the microshear test (n = 20) in a leucite-reinforced glass ceramic substrate, followed by failure mode analysis by scanning electron microscopy (SEM). The mean values, except for the elemental chemical evaluation and failure mode, were evaluated by ANOVA and Tukey's HSD test. The color stability was influenced by storage time (p<0.001) and interaction between contamination and storage time (p<0.001). Hemostop and Viscostat Clear contamination did not affect the DC, however Viscostat increased the DC. Bond strength of the resin cement to ceramic was negatively affected by the contaminants (p<0.001). Contamination by hemostatic agents affected the bond strength, degree of conversion, and color stability of the light-cured resin cement tested.
Collaboration of polymer composite reinforcement and cement concrete
NASA Astrophysics Data System (ADS)
Khozin, V. G.; Gizdatullin, A. R.
2018-04-01
The results of experimental study of bond strength of cement concrete of different types with fiber reinforcing polymer (FRP) bars are reported. The reinforcing bars were manufactured of glass fibers and had a rebar with different types of the surface relief formed by winding a thin strip impregnated with a binder or by “sanding”. The pullout tests were carried out simultaneously for the steel reinforcing ribbed bars A400. The impact of friction, adhesion and mechanical bond on the strength of bonds between FRP and concrete was studied. The influence of the concrete strength and different operation factors on the bond strength of concrete was evaluated.
Öztürk, Elif; Bolay, Şükran; Hickel, Reinhard; Ilie, Nicoleta
2013-02-01
The aim of this study was to evaluate the shear bond strength of porcelain laminate veneers to 3 different surfaces by means of enamel, dentine, and enamel-dentine complex. One hundred thirty-five extracted human maxillary central teeth were used, and the teeth were randomly divided into 9 groups (n=15). The teeth were prepared with 3 different levels for bonding surfaces of enamel (E), dentine (D), and enamel-dentine complex (E-D). Porcelain discs (IPS e.max Press, Ivoclar Vivadent) of 2mm in thickness and 4mm in diameter were luted to the tooth surfaces by using 2 light-curing (RelyX Veneer [RV], 3M ESPE; Variolink Veneer [VV], Ivoclar Vivadent) and a dual-curing (Variolink II [V2], Ivoclar Vivadent) adhesive systems according to the manufacturers' instructions. Shear bond strength test was performed in a universal testing machine at 0.5mm/min until bonding failure. Failure modes were determined under a stereomicroscope, and fracture surfaces were evaluated with a scanning electron microscope. The data were statistically analysed (SPSS 17.0) (p=0.05). Group RV-D exhibited the lowest bond strength value (5.42±6.6MPa). There was statistically no difference among RV-D, V2-D (13.78±8.8MPa) and VV-D (13.84±6.2MPa) groups (p>0.05). Group VV-E exhibited the highest bond strength value (24.76±8.8MPa). The type of tooth structure affected the shear bond strength of the porcelain laminate veneers to the 3 different types of tooth structures (enamel, dentine, and enamel-dentine complex). When dentine exposure is necessary during preparation, enough sound enamel must be protected as much as possible to maintain a good bonding; to obtain maximum bond strength, preparation margins should be on sound enamel. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Pohlchuck, Bobby; Zeller, Mary V.
1992-01-01
The adhesive bond between ceramic cement and a titanium matrix composite substrate to be used in the National Aerospace Plane program is evaluated. Two commercially available adhesion testers, the Sebastian Adherence Tester and the CSEM REVETEST Scratch Tester, are evaluated to determine their suitability for quantitatively measuring adhesion strength. Various thicknesses of cements are applied to several substrates, and bond strengths are determined with both testers. The Sabastian Adherence Tester has provided limited data due to an interference from the sample mounting procedure, and has been shown to be incapable of distinguishing adhesion strength from tensile and shear properties of the cement itself. The data from the scratch tester has been found to be difficult to interpret due to the porosity and hardness of the cement. Recommendations are proposed for a more reliable adhesion test method.
Tensile Bond Strength of Self Adhesive Resin Cement After Various Surface Treatment of Enamel.
Sekhri, Sahil; Mittal, Sanjeev; Garg, Sandeep
2016-01-01
In self adhesive resin cements adhesion is achieved to dental surface without surface pre-treatment, and requires only single step application. This makes the luting procedure less technique-sensitive and decreases postoperative sensitivity. The purpose of this study was to evaluate bond strength of self adhesive resin after surface treatment of enamel for bonding base metal alloy. On the labial surface of 64 central incisor rectangular base metal block of dimension 6 mm length, 5mm width and 1 mm height was cemented with RelyX U200 and Maxcem Elite self adhesive cements with and without surface treatment of enamel. Surface treatment of enamel was application of etchant, one step bonding agent and both. Tensile bond strength of specimen was measured with universal testing machine at a cross head speed of 1mm/min. Least tensile bond strength (MPa) was in control group i.e. 1.33 (0.32) & 1.59 (0.299), Highest bond strength observed when enamel treated with both etchant and bonding agent i.e. 2.72 (0.43) & 2.97 (0.19) for Relyx U200 and Elite cement. When alone etchant and bonding agent were applied alone bond strength is 2.19 (0.18) & 2.24 (0.47) for Relyx U200, and 2.38 (0.27) 2.49 (0.16) for Max-cem elite. Mean bond strength was higher in case of Max-cem Elite as compared to RelyX U200 resin cement, although differences were non-significant (p > 0.05). Surface treatment of enamel increases the bond strength of self adhesive resin cement.
Effects of various final irrigants on the shear bond strength of resin-based sealer to dentin.
Kandaswamy, Deivanayagam; Venkateshbabu, Nagendrababu; Arathi, Ganesh; Roohi, Riaz; Anand, Suresh
2011-01-01
This study has been designed to evaluate the effect of strong (MTAD) or soft (1- hydroxyethylidene - 1, 1-bisphosphonate (HEBP) final irrigating solution on the shear bond strength of AH plus sealer to coronal dentin. 17% EDTA was used as the reference. Forty freshly extracted human maxillary first premolars were prepared using different irrigation protocols (n=10). All the test groups had 1.3% NaOCl as initial rinse and followed by specific final rinse for each group: G1 - distilled water(control), G2 - 17% EDTA, G3- 18% HEBP and G4 - MTAD. Sections of polyethylene tubes that are 3mm long were filled with freshly mixed sealer and placed on the dentin surfaces. The bonding between the sealer and dentine surface was evaluated using shear bond testing. The values were statistically evaluated using one-way ANOVA followed by Tukey's test. Significant difference was found among the irrigating regimes. EDTA showed highest bond strength followed by HEBP and MTAD.
Bonding Effectiveness of Luting Composites to Different CAD/CAM Materials.
Peumans, Marleen; Valjakova, Emilija Bajraktarova; De Munck, Jan; Mishevska, Cece Bajraktarova; Van Meerbeek, Bart
To evaluate the influence of different surface treatments of six novel CAD/CAM materials on the bonding effectiveness of two luting composites. Six different CAD/CAM materials were tested: four ceramics - Vita Mark II; IPS Empress CAD and IPS e.max CAD; Celtra Duo - one hybrid ceramic, Vita Enamic, and one composite CAD/CAM block, Lava Ultimate. A total of 60 blocks (10 per material) received various mechanical surface treatments: 1. 600-grit SiC paper; 2. sandblasting with 30-μm Al2O3; 3. tribochemical silica coating (CoJet). Subsequent chemical surface treatments involved either no further treatment (control), HF acid etching (HF), silanization (S, or HF acid etching followed by silanization (HF+S). Two specimens with the same surface treatment were bonded together using two dual-curing luting composites: Clearfil Esthetic Cement (self-etching) or Panavia SA Cement (self-adhesive). After 1 week of water storage, the microtensile bond strength of the sectioned microspecimens was measured and the failure mode was evaluated. The bonding performance of the six CAD/CAM materials was significantly influenced by surface treatment (linear mixed models, p < 0.05). The luting cement had a significant influence on bond strength for Celtra Duo and Lava Ultimate (linear mixed models, p < 0.05). Mechanical surface treatment significantly influenced the bond strength for Celtra Duo (p = 0.0117), IPS e.max CAD (p = 0.0115), and Lava Ultimate (p < 0.0001). Different chemical surface treatments resulted in the highest bond strengths for the six CAD/CAM materials: Vita Mark II and IPS Empress CAD: S, HF+S; Celtra Duo: HF, HF+S; IPS e.max CAD: HF+S; Vita Enamic: HF+S, S. For Lava Ultimate, the highest bond strengths were obtained with HF, S, HF+S. Failure analysis showed a relation between bond strength and failure type: more mixed failures were observed with higher bond strengths. Mainly adhesive failures were noticed if no further surface treatment was done. The percentage of adhesive failures was higher for CAD/CAM materials with higher flexural strength (Celtra Duo, IPS e.max CAD, and Lava Ultimate). The bond strength of luting composites to novel CAD/CAM materials is influenced by surface treatment. For each luting composite, an adhesive cementation protocol can be specified in order to obtain the highest bond to the individual CAD/CAM materials.
Rechmann, Peter; Bartolome, N; Kinsel, R; Vaderhobli, R; Rechmann, B M T
2017-12-01
The objective of this study was to evaluate the influence of CO 2 9.3 μm short-pulsed laser irradiation on the shear bond strength of composite resin to enamel and dentin. Two hundred enamel and 210 dentin samples were irradiated with a 9.3 µm carbon dioxide laser (Solea, Convergent Dental, Inc., Natick, MA) with energies which either enhanced caries resistance or were effective for ablation. OptiBond Solo Plus [OptiBondTE] (Kerr Corporation, Orange, CA) and Peak Universal Bond light-cured adhesive [PeakTE] (Ultradent Products, South Jordan, UT) were used. In addition, Scotchbond Universal [ScotchbondSE] (3M ESPE, St. Paul, MN) and Peak SE self-etching primer with Peak Universal Bond light-cured adhesive [PeakSE] (Ultradent Products) were tested. Clearfil APX (Kuraray, New York, NY) was bonded to the samples. After 24 h, a single plane shear bond test was performed. Using the caries preventive setting on enamel resulted in increased shear bond strength for all bonding agents except for self-etch PeakSE. The highest overall bond strength was seen with PeakTE (41.29 ± 6.04 MPa). Etch-and-rinse systems achieved higher bond strength values to ablated enamel than the self-etch systems did. PeakTE showed the highest shear bond strength with 35.22 ± 4.40 MPa. OptiBondTE reached 93.8% of its control value. The self-etch system PeakSE presented significantly lower bond strength. The shear bond strength to dentin ranged between 19.15 ± 3.49 MPa for OptiBondTE and 43.94 ± 6.47 MPa for PeakSE. Etch-and-rinse systems had consistently higher bond strength to CO 2 9.3 µm laser-ablated enamel. Using the maximum recommended energy for dentin ablation, the self-etch system PeakSE reached the highest bond strength (43.9 ± 6.5 MPa).
The impact of artificially caries-affected dentin on bond strength of multi-mode adhesives
Follak, Andressa Cargnelutti; Miotti, Leonardo Lamberti; Lenzi, Tathiane Larissa; Rocha, Rachel de Oliveira; Maxnuck Soares, Fabio Zovico
2018-01-01
Aim: The aim of this study is to evaluate the impact of dentin condition on bond strength of multi-mode adhesive systems (MMAS) to sound and artificially induced caries-affected dentin (CAD). Methods: Flat dentin surfaces of 112 bovine incisors were assigned to 16 subgroups (n = 7) according to the substrate condition (sound and CAD– pH-cycling for 14 days); adhesive systems (Scotchbond Universal, All-Bond Universal, Prime and Bond Elect, Adper Single Bond Plus and Clearfil SE Bond) and etching strategy (etch-and-rinse and self-etch). All systems were applied according to the manufacturer's instructions, and resin composite restorations were built. After 24 h of water storage, specimens were sectioned (0.8 mm2) and submitted to the microtensile test. Statistical Analysis: Data (MPa) were analyzed using three-way analysis of variance and Tukey's test (α = 0.05). Results: MMAS presented similar bond strength values, regardless etching strategy in each substrate condition. Bond strength values were lower when MMAS were applied to CAD in the etch-and-rinse strategy. Conclusion: The etching strategy did not influence the bond strength of MMAS to sound or CAD, considering each substrate separately. However, CAD impact negatively on bond strength of MMAS in etch-and rinse mode. PMID:29674813
Defying ageing: An expectation for dentine bonding with universal adhesives?
Zhang, Zheng-yi; Tian, Fu-cong; Niu, Li-na; Ochala, Kirsten; Chen, Chen; Fu, Bai-ping; Wang, Xiao-yan; Pashley, David H; Tay, Franklin R
2016-02-01
The present study evaluated the long-term dentine bonding effectiveness of five universal adhesives in etch-and-rinse or self-etch mode after 12 months of water-ageing. The adhesives evaluated included All-Bond Universal, Clearfil Universal Bond, Futurabond U Prime&Bond Elect and Scotchbond Universal. Microtensile bond strength and transmission electron microscopy of the resin-dentine interfaces created in human coronal dentine were examined after 24h or 12 months. Microtensile bond strength were significantly affected by bonding strategy (etch-and-rinse vs self-etch) and ageing (24h vs 12 months). All subgroups showed significantly decreased bond strength after ageing except for Prime&Bond Elect and Scotchbond Universal used in self-etch mode. All five adhesives employed in etch-and-rinse mode exhibited ultrastructural features characteristic of collagen degradation and resin hydrolysis. A previously-unobserved inside-out collagen degradation pattern was identified in hybrid layers created by 10-MDP containing adhesives (All-Bond Universal, Scotchbond Universal and Clearfil Universal Bond) in the etch-and-rinse mode, producing partially degraded collagen fibrils with intact periphery and a hollow core. In the self-etch mode, all adhesives except for Prime&Bond Elect exhibited degradation of the collagen fibrils along the thin hybrid layers. The three 10-MDP containing universal adhesives did not protect surface collagen fibrils from degradation when bonding was performed in the self-etch mode. Despite the adjunctive conclusion that bonds created by universal adhesives in the self-etch bonding mode are more resistant to decline in bond strength when compared with those bonds created using the etch-and-rinse mode, bonds created by universal adhesives are generally incapable of defying ageing. Copyright © 2015 Elsevier Ltd. All rights reserved.
Influence of hydrophilic pre-treatment on resin bonding to zirconia ceramics.
Noro, Akio; Kameyama, Atsushi; Haruyama, Akiko; Takahashi, Toshiyuki
2015-01-01
Atmospheric plasma or ultraviolet (UV) treatment alters the surface characteristics of tetragonal zirconia polycrystal (TZP), increasing its hydrophilicity by reducing the contact angle against water to zero. This suggests that such treatment would increase the wettability of bonding resin. The purpose of this study was to determine how increasing the hydrophilicity of TZP through plasma irradiation, UV treatment, or application of ceramic primer affected initial bonding with resin composites. Here, the effect of each pre-treatment on the hydrophilicity of TZP surfaces was determined by evaluating change in shear bond strength. Plasma irradiation, UV, or ceramic primer pre-treatment showed no significant effect on bonding strength between TZP surfaces and resin composites. In addition, alumina blasting yielded no significant increase in bond strength. Plasma irradiation, UV treatment, or ceramic primer pre-treatment did not lead to significant increase in bond strength between TZP and resin composites.
NASA Technical Reports Server (NTRS)
Hodges, W. T.; Tyeryar, J. R.; Berry, M.
1985-01-01
Bonded single overlap shear specimens were fabricated from Graphite/PEEK (Polyetheretherketone) composite adherends and titanium adherends. Six advanced thermoplastic adhesives were used for the bonding. The specimens were bonded by an electromagnetic induction technique producing high heating rates and high-strength bonds in a few minutes. This contrasts with conventionally heated presses or autoclaves that take hours to process comparable quality bonds. The Graphite/PEEK composites were highly resistant to delamination during the testing. This allowed the specimen to fail exclusively through the bondline, even at very high shear loads. Nondestructive evaluation of bonded specimens was performed ultrasonically by energizing the entire thickness of the material through the bondline and measuring acoustic impedance parameters. Destructive testing confirmed the unique ultrasonic profiles of strong and weak bonds, establishing a standard for predicting relative bond strength in subsequent specimens.
Does endodontic post space irrigation affect smear layer removal and bonding effectiveness?
Gu, Xin-Hua; Mao, Cai-Yun; Liang, Cong; Wang, Hui-Ming; Kern, Matthias
2009-10-01
The effect of different post space irrigants on smear layer removal and dentin bond strength was evaluated. Sixty-six extracted sound maxillary central incisors were endodontically treated. After post space preparation, the teeth were assigned to three groups of 22 teeth each. The teeth of these three groups were irrigated for 1 min with 17% ethylenediaminetetracetic acid (EDTA) (group 1), 5.25% sodium hypochlorite (NaOCl) (group 2), or 0.9% sodium chloride (NaCl) (group 3). In each group, eight specimens were split longitudinally for smear layer evaluation, and the other fourteen specimens were filled with a self-etching adhesive system (Panavia F). Four of 14 specimens of each group were prepared for evaluation of the resin-dentin interdiffusion zone (RDIZ) and resin tags, and the other 10 specimens were serially sectioned for push-out test analysis. Smear layer removal and bond strength were affected by different post space irrigants. EDTA removed the smear layer extremely effectively and, as a result, improved the bond strength at each region (apical, middle, and coronal) of the roots. Resin tag formation and the RDIZ were also affected by different irrigants and in accordance with bond strength. Therefore, removal of the smear layer use a self-etching luting system plays an important role in bonding effectiveness.
Fushiki, Ryosuke; Komine, Futoshi; Blatz, Markus B; Koizuka, Mai; Taguchi, Kohei; Matsumura, Hideo
2012-10-01
This study aims to evaluate the effect of both feldspathic porcelain coating of zirconia frameworks and priming agents on shear bond strength between an indirect composite material and zirconia frameworks. A total of 462 airborne-particle-abraded zirconia disks were divided into three groups: untreated disks (ZR-AB), airborne-particle-abraded zirconia disks coated with feldspathic porcelain, (ZR-PO-AB), and hydrofluoric acid-etched zirconia disks coated with feldspathic porcelain (ZR-PO-HF). Indirect composite (Estenia C&B) was bonded to zirconia specimens with no (CON) or one of four priming agents--Clearfil Photo Bond (CPB), Clearfil Photo Bond with Clearfil Porcelain Bond Activator (CPB + activator), Estenia Opaque primer, or Porcelain Liner M Liquid B (PLB)--with or without an opaque material (Estenia C&B Opaque). All specimens were tested for shear bond strength before and after 20,000 thermocycles. The Steel-Dwass test and Mann-Whitney U test were used to compare shear bond strength. In ZR-AB specimens, the initial bond strength of the CPB and CPB + Activator groups was significantly higher as compared with the other three groups (P < 0.05), whereas the PLB and CPB + Activator groups had the highest pre- and post-thermocycling bond strengths in ZR-PO-AB and ZR-PO-HF specimens. Among CON disks without opaque material, bond strength was significantly lower in ZR-AB specimens than in ZR-PO-AB and ZR-PO-HF specimens (P < 0.05). Feldspathic porcelain coating of a Katana zirconia framework enhanced the bond strength of Estenia C&B indirect composite to zirconia independent of surface treatment. The use of a silane coupling agent and opaque material yields durable bond strength between the indirect composite and feldspathic-porcelain-coated zirconia. The results of the present study suggest that feldspathic porcelain coating of zirconia frameworks is an effective method to obtain clinically acceptable bond strengths of a layering indirect composite material to a zirconia framework.
Saraiva, Letícia O; Aguiar, Thaiane R; Costa, Leonardo; Cavalcanti, Andrea N; Giannini, Marcelo; Mathias, Paula
2015-01-01
The effect of the intraoral environment during adhesive restorative procedures remains a concern, especially in the absence of rubber dam isolation. To evaluate the temperature and relative humidity (RH) at anterior and posterior intraoral sites and their effects on the dentin bond strength of two-step etch-and-rinse adhesive systems. Sixty human molars were assigned to six groups according to the adhesive systems (Adper Single Bond Plus and One Step Plus) and intraoral sites (incisor and molar sites). The room condition was used as a control group. Dentin fragments were individually placed in custom-made acetate trays and direct composite restorations were performed. The intraoral temperature and RH were recorded during adhesive procedures. Then, specimens were removed from the acetate trays and sectioned to obtain multiple beams for the microtensile bond strength test. In addition, the adhesive interface morphology was evaluated through scanning electron microscopy. Intraoral conditions were statistically analyzed by paired Students' t-tests and the bond strength data by two-way analysis of variance and Tukey test (α = 0.05). The posterior intraoral site showed a significant increase in the temperature and RH when compared with the anterior site. However, both intraoral sites revealed higher temperatures and RH than the room condition. In regards to the adhesive systems, the intraoral environment did not affect the bond strength, and the One Step Plus system showed the highest bond strength means. Despite the fact that remarkable changes in the intraoral conditions were observed for both anterior and posterior sites, the intraoral environment was not able to compromise the immediate dentin bond strength. Some conditions of intraoral temperature and relative humidity may not impair the dentin bond strength of two-step etch-and-rinse adhesive systems. Thus, an adequate relative isolation seems to be a good alternative under the specific clinical conditions in which rubber dam isolation is either impossible or very difficult to perform. © 2014 Wiley Periodicals, Inc.
Dundar, Mine; Gungor, Mehmet Ali; Cal, Ebru; Darcan, Alev; Erdem, Adalet
2007-01-01
Because adherence of base metal alloys is important for the long-term clinical success of adhesive fixed partial dentures, it has been necessary to improve adhesion to metal substrate by using different surface treatments. This study used different surface conditioning methods and two different luting resins to evaluate the shear bond strength of base metal alloys to dentin and enamel. Sixty noncarious freshly extracted human teeth were mounted in a plastic holder filled with autopolymerized acrylic resin. After the roots were removed and 30 flat enamel and 30 flat dentin surfaces were exposed, the specimens were divided randomly into two main luting cement groups. Sixty nickel chromium (NiCr) metal specimens were fabricated and subjected to three different surface conditioning procedures: sandblasting with 50 microm aluminum oxide, tribochemical silica coating, and a combination of the two. Scanning electron mircoscopy (SEM) evaluations revealed mainly cohesive failures. Self-cure adhesive resulted in higher bond strengths to dental substrates. Higher bond strengths were achieved through a combination of sandblasting and tribochemical silica coating; however, further clinical research is required. A surface treatment that combines sandblasting with tribochemical silica coating can achieve a more effective bond for adhesive restorations with metal substrates.
2013-06-06
El Banna MS, Elsaka SE. Twelve-month bracket failure rate with amorphous calcium phosphate bonding system. Eur J Orthod 2012; doi:10.1093/ejo...material, Cambridge University Press. 1993;3. Willems G, Carels CEL, Verbeke G. In vitro peel /shear bond strength evaluation of orthodontic bracket
Viswanathan, R; Shashibhushan, K K; Subba Reddy, V V
2011-12-01
To evaluate and compare shear bond strengths of composite resins to primary enamel and dentine when the adhesives are pre-cured (light cured before the application of the resin) or co-cured (adhesive and the resin light cured together). Buccal surfaces of 80 caries-free primary molars were wet ground to create bonding surfaces on enamel and dentine and specimens mounted on acrylic blocks. Two bonding agents (Prime and Bond NT® and Xeno III®) were applied to either enamel or dentine as per manufacturer's instructions. In 40 specimens, the bonding agent was light cured immediately after the application (pre-cured). The other 40 specimens were not light cured until the composite resin application (co-cured). Resin composite cylinders were made incrementally using acrylic moulds over the adhesives and light cured. Specimens were stored in deionised water for 24 hours at room temperature. Shear bond strength was measured using an Instron universal testing machine (in MPa) and was analysed with Student's unpaired t test. Light curing the adhesive separately produced significantly higher bond strengths to primary dentine than co-curing (p<0.001). At the same time light curing the adhesive separately did not produce significantly different bond strengths to primary enamel (p>0.05). Curing sequence had no significant effect on shear bond strength of adhesives on the primary enamel. Pre-curing adhesives before curing composite resins produced greater shear bond strength to primary dentine.
Kasraei, Shahin; Yarmohammadi, Ebrahim; Ghazizadeh, Mohammad Vahid
2016-01-01
Introduction: This study aimed to compare the microshear bond strength of composite to enamel treated with Erbium-Doped Yttrium Aluminum Garnet (Er:YAG) laser using a self-etch one step bonding agent. Methods: Seventy-six enamel surfaces were prepared from 38 sound human third molar teeth. Specimens were randomly divided into four groups of 18. The enamel surface in half the specimens was irradiated with Er:YAG laser. One extra specimen from each group was evaluated under a scanning electron microscope (SEM). Composite micro-cylinders were bonded to the specimen surfaces using OptiBond All-In-One (OB) adhesive agent and stored in distilled water for 24 hours. Half the specimens were thermocycled (2000 cycles) and stored in distilled water at 37°C for three months (TW). The microshear bond strength of composite to enamel was measured using a universal testing machine at a crosshead speed of 1 mm/min. The fractured surfaces were evaluated under a stereomicroscope at ×40 magnification to determine the mode of failure. Data were analyzed using repeated measures analysis of variance (ANOVA) and t test. Results: The mean values (±standard deviation) were 17.96 ± 2.92 MPa in OB group, 22.29 ± 4.25 MPa in laser + OB group, 18.11 ± 3.52 MPa in laser + OB + TW group and 9.42 ± 2.47 MPa in OB + TW group. Repeated measures ANOVA showed that laser irradiation increased the microshear bond strength ( P < 0.001). Bond strength decreased when the samples were thermocycled and stored for three months ( P < 0.001). The interaction effect of water storage and laser treatment on bond strength was significant ( P < 0.05). Conclusion: Enamel surface preparation with Er:YAG laser is recommended to enhance the durability of the bond of self-etch bonding systems to enamel.
Kasraei, Shahin; Yarmohammadi, Ebrahim; Ghazizadeh, Mohammad Vahid
2016-01-01
Introduction: This study aimed to compare the microshear bond strength of composite to enamel treated with Erbium-Doped Yttrium Aluminum Garnet (Er:YAG) laser using a self-etch one step bonding agent. Methods: Seventy-six enamel surfaces were prepared from 38 sound human third molar teeth. Specimens were randomly divided into four groups of 18. The enamel surface in half the specimens was irradiated with Er:YAG laser. One extra specimen from each group was evaluated under a scanning electron microscope (SEM). Composite micro-cylinders were bonded to the specimen surfaces using OptiBond All-In-One (OB) adhesive agent and stored in distilled water for 24 hours. Half the specimens were thermocycled (2000 cycles) and stored in distilled water at 37°C for three months (TW). The microshear bond strength of composite to enamel was measured using a universal testing machine at a crosshead speed of 1 mm/min. The fractured surfaces were evaluated under a stereomicroscope at ×40 magnification to determine the mode of failure. Data were analyzed using repeated measures analysis of variance (ANOVA) and t test. Results: The mean values (±standard deviation) were 17.96 ± 2.92 MPa in OB group, 22.29 ± 4.25 MPa in laser + OB group, 18.11 ± 3.52 MPa in laser + OB + TW group and 9.42 ± 2.47 MPa in OB + TW group. Repeated measures ANOVA showed that laser irradiation increased the microshear bond strength (P < 0.001). Bond strength decreased when the samples were thermocycled and stored for three months (P < 0.001). The interaction effect of water storage and laser treatment on bond strength was significant (P < 0.05). Conclusion: Enamel surface preparation with Er:YAG laser is recommended to enhance the durability of the bond of self-etch bonding systems to enamel. PMID:28144434
Dos Santos, Angélica Feltrin; Sandes de Lucena, Fernanda; Sanches Borges, Ana Flávia; Lisboa-Filho, Paulo Noronha; Furuse, Adilson Yoshio
2018-04-05
Despite numerous advantages such as high strength, the bond of yttria-stabilized zirconia polycrystal (Y-TZP) to tooth structure requires improvement. The purpose of this in vitro study was to evaluate the incorporation of TiO 2 nanotubes into zirconia surfaces and the bond strength of resin cement to the modified ceramic. TiO 2 nanotubes were produced by alkaline synthesis, mixed with isopropyl alcohol (50 wt%) and applied on presintered zirconia disks. The ceramics were sintered, and the surfaces were characterized by confocal laser microscopy, scanning electron microscopy (SEM), and energy-dispersive x-ray spectroscopy (EDS) analysis. For bond strength, the following 6 groups (n=16) were evaluated: without TiO 2 and Single Bond Universal; with TiO 2 nanotubes and Single Bond Universal; without TiO 2 nanotubes and Z-prime; with TiO 2 nanotubes and Z-prime; without TiO 2 and Signum Zirconia Bond; with TiO 2 and Signum Zirconia Bond. After sintering, resin cement cylinders, diameter of 1.40 mm and 1 mm in height, were prepared and polymerized for 20 seconds. Specimens were stored in water at 37°C for 30 days and submitted to a shear test. Data were analyzed by 2-way ANOVA and Tukey honest significant difference (α=.05) tests. EDS analysis confirmed that nanoagglomerates were composed of TiO 2 . The shear bond strength showed statistically significant differences among bonding agents (P<.001). No significant differences were found with the application of nanotubes, regardless of the group analyzed (P=.682). The interaction among the bonding agent factors and addition of nanotubes was significant (P=.025). Nanotubes can be incorporated into zirconia surfaces. However, this incorporation did not improve bond strength. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Navimipour, Elmira Jafari; Oskoee, Siavash Savadi; Oskoee, Parnian Alizadeh; Bahari, Mahmoud; Rikhtegaran, Sahand; Ghojazadeh, Morteza
2012-03-01
Success in sandwich technique procedures can be achieved through an acceptable bond between the materials. The aim of this study was to compare the effect of 35% phosphoric acid and Er,Cr:YSGG laser on shear bond strength of conventional glass-ionomer cement (GIC) and resin-modified glass-ionomer cement (RMGIC) to composite resin in sandwich technique. Sixty-six specimens were prepared from each type of glass-ionomer cements and divided into three treatment groups as follows: without pretreatment, acid etching by 35% phosphoric acid for 15 s, and 1-W Er,Cr:YSGG laser treatment for 15 s with a 600-μm-diameter tip aligned perpendicular to the target area at a distance of 1 mm from the surface. Energy density of laser irradiation was 17.7 J/cm(2). Two specimens in each group were prepared for evaluation under a scanning electron microscope (SEM) after surface treatment and the remainder underwent bonding procedure with a bonding agent and composite resin. Then the shear bond strength was measured at a crosshead speed of 0.5 mm/min. Two-factor analysis of variance and post-hoc Tukey test showed that the cement type, surface treatment method, and the interaction of these two factors significantly affect the shear bond strength between glass-ionomer cements and composite resin (p < 0.05). Surface treatment with phosphoric acid or Er,Cr:YSGG laser increased the shear bond strength of GIC to composite resin; however, in RMGIC only laser etching resulted in significantly higher bond strength. These findings were supported by SEM results. The fracture mode was evaluated under a stereomicroscope at ×20.
Bonding durability between acrylic resin adhesives and titanium with surface preparations.
Yanagida, Hiroaki; Minesaki, Yoshito; Matsumura, Kousuke; Tanoue, Naomi; Muraguchi, Koichi; Minami, Hiroyuki
2017-01-31
The purpose of the present study was to evaluate the efficacy of pretreatment on the bonding durability between titanium casting and two acrylic adhesives. Cast titanium disk specimens treated with four polymer-metal bonding systems as follow: 1) air-abraded with 50-70 μm alumina, 2) 1)+Alloy Primer, 3) 1)+M.L. Primer and 4) tribochemical silica/silane coating system (Rocatec System). The specimens were bonded with M bond or Super-bond C&B adhesive. The shear bond strengths were determined before and after thermocycling (20,000 cycles). The surface characteristics after polishing, and for the 1) and 4) preparations were determined. The bond strengths for all combinations significantly decreased after thermocycling. The combination of Super-bond C&B adhesive and 2) led to significantly higher bond strength than the other preparations after thermocycling. The maximum height of the profile parameters for the polishing group was lower than other preparations.
Li, Jieyin; Ye, Xiuhua; Li, Bohua; Liao, Juankun; Zhuang, Peilin; Ye, Jiantao
2015-08-01
There is a dearth of dental scientific literature on the effect of different oxidation heat treatments (OHTs) (as surface pretreatments) on the bonding performance of cast and milled cobalt-chromium (CoCr) alloys. The objective of this study was to evaluate the effect of different OHTs on the bond strength between a ceramic and cast and milled CoCr alloys. Cobalt-chromium metallic specimens were prepared using either a cast or a milled method. Specimens were subjected to four different OHT methods: without OHT; OHT under normal atmospheric pressure; OHT under vacuum; and OHT under vacuum followed by sandblasting. The metal-ceramic bond strength was evaluated using a three-point bending test according to ISO9693. Scanning electron microscopy and energy-dispersive spectroscopy were used to study the specimens' microstructure and elemental composition. The bond strength was not affected by the CoCr manufacturing method. Oxidation heat treatment performed under normal atmospheric pressure resulted in the highest bond strength. The concentration of oxygen on the alloy surfaces varied with the different pretreatment methods in the following order: OHT under normal atmospheric pressure > OHT under vacuum > without OHT ≈ OHT under vacuum followed by sandblasting. © 2015 Eur J Oral Sci.
Shear bond strength of indirect composite material to monolithic zirconia
2016-01-01
PURPOSE This study aimed to evaluate the effect of surface treatments on bond strength of indirect composite material (Tescera Indirect Composite System) to monolithic zirconia (inCoris TZI). MATERIALS AND METHODS Partially stabilized monolithic zirconia blocks were cut into with 2.0 mm thickness. Sintered zirconia specimens were divided into different surface treatment groups: no treatment (control), sandblasting, glaze layer & hydrofluoric acid application, and sandblasting + glaze layer & hydrofluoric acid application. The indirect composite material was applied to the surface of the monolithic zirconia specimens. Shear bond strength value of each specimen was evaluated after thermocycling. The fractured surface of each specimen was examined with a stereomicroscope and a scanning electron microscope to assess the failure types. The data were analyzed using one-way analysis of variance (ANOVA) and Tukey LSD tests (α=.05). RESULTS Bond strength was significantly lower in untreated specimens than in sandblasted specimens (P<.05). No difference between the glaze layer and hydrofluoric acid application treated groups were observed. However, bond strength for these groups were significantly higher as compared with the other two groups (P<.05). CONCLUSION Combined use of glaze layer & hydrofluoric acid application and silanization are reliable for strong and durable bonding between indirect composite material and monolithic zirconia. PMID:27555895
Sano, H; Shono, T; Sonoda, H; Takatsu, T; Ciucchi, B; Carvalho, R; Pashley, D H
1994-07-01
The purpose of this study was to test the null hypothesis that there is no relationship between the bonded surface area of dentin and the tensile strength of adhesive materials. The enamel was removed from the occlusal surface of extracted human third molars, and the entire flat surface was covered with resin composite bonded to the dentin to form a flat resin composite crown. Twenty-four hours later, the bonded specimens were sectioned parallel to the long axis of the tooth into 10-20 thin sections whose upper part was composed of resin composite with the lower half being dentin. These small sections were trimmed using a high speed diamond bur into an hourglass shape with the narrowest portion at the bonded interface. Surface area was varied by altering the specimen thickness and width. Tensile bond strength was measured using custom-made grips in a universal testing machine. Tensile bond strength was inversely related to bonded surface area. At surface areas below 0.4 mm2, the tensile bond strengths were about 55 MPa for Clearfil Liner Bond 2 (Kuraray Co., Ltd.), 38 MPa for Scotchbond MP (3M Dental Products), and 20 MPa for Vitremer (3M Dental Products). At these small surface areas all of the bond failures were adhesive in nature. This new method permits measurement of high bond strengths without cohesive failure of dentin. It also permits multiple measurements to be made within a single tooth.
Effect of light aging on silicone-resin bond strength in maxillofacial prostheses.
Polyzois, Gregory; Pantopoulos, Antonis; Papadopoulos, Triantafillos; Hatamleh, Muhanad
2015-04-01
The aim of this study was to investigate the effect of accelerated light aging on bond strength of a silicone elastomer to three types of denture resin. A total of 60 single lap joint specimens were fabricated with auto-, heat-, and photopolymerized (n = 20) resins. An addition-type silicone elastomer (Episil-E) was bonded to resins treated with the same primer (A330-G). Thirty specimens served as controls and were tested after 24 hours, and the remaining were aged under accelerated exposure to daylight for 546 hours (irradiance 765 W/m(2) ). Lap shear joint tests were performed to evaluate bond strength at 50 mm/min crosshead speed. Two-way ANOVA and Tukey's test were carried out to detect statistical significance (p < 0.05). ANOVA showed that the main effect of light aging was the most important factor determining the shear bond strength. The mean bond strength values ranged from 0.096 to 0.136 MPa. The highest values were recorded for auto- (0.131 MPa) and photopolymerized (0.136 MPa) resins after aging. Accelerated light aging for 546 hours affects the bond strength of an addition-type silicone elastomer to three different denture resins. The bond strength significantly increased after aging for photo- and autopolymerized resins. All the bonds failed adhesively. © 2014 by the American College of Prosthodontists.
Olsen, M E; Bishara, S E; Damon, P; Jakobsen, J R
1997-05-01
Damage to the enamel surface during bonding and debonding of orthodontic brackets is a clinical concern. Alternative bonding methods that minimize enamel surface damage while maintaining a clinically useful bond strength is an aim of current research. The purpose of this study was to compare the effects on bond strength and bracket failure location of two adhesives (System 1+ and Scotchbond Multipurpose, 3M Dental Products Division) and two enamel conditioners (37% phosphoric acid and 10% maleic acid). Forty-eight freshly extracted human premolars were pumiced and divided into four groups of 12 teeth, and metal orthodontic brackets were attached to the enamel surface by one of four protocols: (1) System 1+ and phosphoric acid, (2) Scotchbond and phosphoric acid, (3) System 1+ and maleic acid, and (4) Scotchbond and maleic acid. After bracket attachment, the teeth were mounted in phenolic rings and stored in deionized water at 37 degrees C for 72 hours. A Zwick universal testing machine (Zwick GmbH & Co.) was used to determine shear bond strengths. The residual adhesive on the enamel surface was evaluated with the Adhesive Remnant Index. The analysis of variance was used to compare the four groups. Significance was predetermined at p < or = 0.05. The results indicated that there were no significant differences in bond strength among the four groups (p = 0.386). The results of the Chi square test, evaluating the residual adhesives on the enamel surfaces, revealed significant differences among the four groups (mean 2 = 0.005). A Duncan multiple range test revealed the difference occurred between the phosphoric acid and maleic acid groups, with maleic acid having bond failures at the enamel-adhesive interface. In conclusion, the use of Scotchbond Multipurpose and/or maleic acid does not significantly effect bond strength, however, the use of maleic acid resulted in an unfavorable bond failure location.
Influence of drying time and temperature on bond strength of contemporary adhesives to dentine.
Garcia, Fernanda C P; Almeida, Júlio C F; Osorio, Raquel; Carvalho, Ricardo M; Toledano, Manuel
2009-04-01
To evaluate the bond strength (microTBS) of self-etching adhesives in different solvent evaporation conditions. Flat dentine surfaces from extracted human third molars were bonded with: (1) 2 two-steps self-etching adhesives (Clearfil SE Bond-CSEB); (Protect Bond-PB) and (2) 2 one-step self-etch systems (Adper Prompt L Pop-ADPLP); (Xeno III-XIII). Bonded dentine surfaces were air-dried for 5s, 20s, 30s or 40s at either 21 degrees C or 38 degrees C. Composite build-ups were constructed incrementally. After storage in water for 24h at 37 degrees C, the specimens were prepared for microtensile bond strength testing. Data were analyzed by two-way ANOVA and Student-Newman-Keuls at alpha=0.05. CSEB and PB performed better at warm temperature with only 20s of air-blowing. The bond strength increased when XIII was performed at warm temperature at 40s air-blowing. Extended air-blowing not affect the performance of ADPLP, except at 30s air-blowing time at warm temperature. The use of a warm air-dry stream seems to be a clinical tool to improve the bond strength to self-etching adhesives.
Tensile Bond Strength of Self Adhesive Resin Cement After Various Surface Treatment of Enamel
Sekhri, Sahil; Garg, Sandeep
2016-01-01
Introduction In self adhesive resin cements adhesion is achieved to dental surface without surface pre-treatment, and requires only single step application. This makes the luting procedure less technique-sensitive and decreases postoperative sensitivity. Aim The purpose of this study was to evaluate bond strength of self adhesive resin after surface treatment of enamel for bonding base metal alloy. Materials and Methods On the labial surface of 64 central incisor rectangular base metal block of dimension 6 mm length, 5mm width and 1 mm height was cemented with RelyX U200 and Maxcem Elite self adhesive cements with and without surface treatment of enamel. Surface treatment of enamel was application of etchant, one step bonding agent and both. Tensile bond strength of specimen was measured with universal testing machine at a cross head speed of 1mm/min. Results Least tensile bond strength (MPa) was in control group i.e. 1.33 (0.32) & 1.59 (0.299), Highest bond strength observed when enamel treated with both etchant and bonding agent i.e. 2.72 (0.43) & 2.97 (0.19) for Relyx U200 and Elite cement. When alone etchant and bonding agent were applied alone bond strength is 2.19 (0.18) & 2.24 (0.47) for Relyx U200, and 2.38 (0.27) 2.49 (0.16) for Max-cem elite. Mean bond strength was higher in case of Max-cem Elite as compared to RelyX U200 resin cement, although differences were non–significant (p > 0.05). Conclusion Surface treatment of enamel increases the bond strength of self adhesive resin cement. PMID:26894165
The internal bond and shear strength of hardwood veneered particleboard composites
P. Chow; J.J. Janowiak; E.W. Price
1986-01-01
The effects of several accelerated aging tests and weather exposures on hardwood reconstituted structural composite panels were evaluated. The results indicated that the internal bond and shear by tension loading strength reductions of the panels were affected by the exposure test method. The ranking of the effects of various exposure tests on strength values in an...
Ab-Ghani, Zuryati; Jaafar, Wahyuni; Foo, Siew Fon; Ariffin, Zaihan; Mohamad, Dasmawati
2015-01-01
To evaluate the shear bond strength between the dentin substrate and computer-aided design and computer-aided manufacturing feldspathic ceramic and nano resin ceramics blocks cemented with resin cement. Sixty cuboidal blocks (5 mm × 5 mm × 5 mm) were fabricated in equal numbers from feldspathic ceramic CEREC(®) Blocs PC and nano resin ceramic Lava™ Ultimate, and randomly divided into six groups (n = 10). Each block was cemented to the dentin of 60 extracted human premolar using Variolink(®) II/Syntac Classic (multi-steps etch-and-rinse adhesive bonding), NX3 Nexus(®) (two-steps etch-and-rinse adhesive bonding) and RelyX™ U200 self-adhesive cement. All specimens were thermocycled, and shear bond strength testing was done using the universal testing machine at a crosshead speed of 1.0 mm/min. Data were analyzed using one-way ANOVA. Combination of CEREC(®) Blocs PC and Variolink(®) II showed the highest mean shear bond strength (8.71 Mpa), while the lowest of 2.06 Mpa were observed in Lava™ Ultimate and RelyX™ U200. There was no significant difference in the mean shear bond strength between different blocks. Variolink(®) II cement using multi-steps etch-and-rinse adhesive bonding provided a higher shear bond strength than the self-adhesive cement RelyX U200. The shear bond strength was not affected by the type of blocks used.
Follak, A C; Miotti, L L; Lenzi, T L; Rocha, R O; Soares, F Z
The purpose of this study was to evaluate the influence of water storage on bond strength of multimode adhesive systems to artificially induced caries-affected dentin. One hundred twelve sound bovine incisors were randomly assigned to 16 groups (n=7) according to the dentin condition (sound; SND, artificially induced caries-affected dentin; CAD, cariogenic challenge by pH cycling for 14 days); the adhesive system (SU, Scotchbond Universal Adhesive; AB, All-Bond Universal; PB, Prime & Bond Elect; SB, Adper Single Bond 2; and CS, Clearfil SE Bond), and the etching strategy (etch-and-rinse and self-etch). All adhesive systems were applied under manufacturer's instructions to flat dentin surfaces, and a composite block was built up on each dentin surface. After 24 hours of water storage, the specimens were sectioned into stick-shaped specimens (0.8 mm 2 ) and submitted to a microtensile test immediately (24 hours) or after six months of water storage. Bond strength data (MPa) were analyzed using three-way repeated-measures analysis of variance and post hoc Tukey test (α=5%), considering each substrate separately (SND and CAD). The etching strategy did not influence the bond strength of multimode adhesives, irrespective of the dentin condition. Water storage only reduced significantly the bond strength to CAD. The degradation of bond strength due to water storage was more pronounced in CAD, regardless of the etching strategy.
Influence of the processing route of porcelain/Ti-6Al-4V interfaces on shear bond strength.
Toptan, Fatih; Alves, Alexandra C; Henriques, Bruno; Souza, Júlio C M; Coelho, Rui; Silva, Filipe S; Rocha, Luís A; Ariza, Edith
2013-04-01
This study aims at evaluating the two-fold effect of initial surface conditions and dental porcelain-to-Ti-6Al-4V alloy joining processing route on the shear bond strength. Porcelain-to-Ti-6Al-4V samples were processed by conventional furnace firing (porcelain-fused-to-metal) and hot pressing. Prior to the processing, Ti-6Al-4V cylinders were prepared by three different surface treatments: polishing, alumina or silica blasting. Within the firing process, polished and alumina blasted samples were subjected to two different cooling rates: air cooling and a slower cooling rate (65°C/min). Metal/porcelain bond strength was evaluated by shear bond test. The data were analyzed using one-way ANOVA followed by Tuckey's test (p<0.05). Before and after shear bond tests, metallic surfaces and metal/ceramic interfaces were examined by Field Emission Gun Scanning Electron Microscope (FEG-SEM) equipped with Energy Dispersive X-Ray Spectroscopy (EDS). Shear bond strength values of the porcelain-to-Ti-6Al-4V alloy interfaces ranged from 27.1±8.9MPa for porcelain fused to polished samples up to 134.0±43.4MPa for porcelain fused to alumina blasted samples. According to the statistical analysis, no significant difference were found on the shear bond strength values for different cooling rates. Processing method was statistically significant only for the polished samples, and airborne particle abrasion was statistically significant only for the fired samples. The type of the blasting material did not cause a statistically significant difference on the shear bond strength values. Shear bond strength of dental porcelain to Ti-6Al-4V alloys can be significantly improved from controlled conditions of surface treatments and processing methods. Copyright © 2013 Elsevier Ltd. All rights reserved.
Guo, Jing; Zhu, Jia; Liu, Hon-Guang; Zhu, Hong-Shui
2017-02-01
To evaluate the effect of bond strength between 3mol% yttrium-stabilized tetragonal zirconium polycrystal (3Y-TZP) zirconia framework after modified wet particle erosion and veneering porcelain. A total of 174 [8 mm× 8 mm× 3 mm (±0.02)] specimens were prepared and then randomly divided into different groups according to different particle size, sandblasting pressure, sandblasting time through conventional sandblasting (experimental groups); specimens in the control group were not sandblasted. The bond strength between 3Y-TZP zirconia framework and veneering porcelain was measured using a universal testing machine. Statistical analysis was performed using SPSS17.0 software package. The bond strength of specimens treated by two methods-conventional sandblasting and modified wet particle erosion under the same condition (150 μm, 0.6 MPa, 30 s) were acquired, while the surface was analyzed microscopically before the specimens were veneered with the veneering ceramic under scanning electronic microscope (SEM). The bond strength of conventional sandblasting group under the condition (110 μm, 0.4 MPa,30 s) was maximal, and significantly higher than the control group (P<0.05). The bond strength of modified wet particle erosion group was significantly higher than the conventional sandblasting group and control group (P<0.01); SEM showed that the surface of specimen with modified wet particle erosion was homogeneously rough; the surface specimen with conventional sandblasting was heterogeneously rough, some microcracks were seen in some areas. Sandblasting can slightly enhance the bond strength between 3Y-TZP zirconia framework and veneering porcelain, modified wet particle erosion is recommended for 3Y-TZP zirconia framework surface treatment.
Uzun, I; Keleş, A; Arslan, H; Güler, B; Keskin, C; Gündüz, K
2016-12-01
To evaluate the percentage volume of voids within cement layers, to determine the push-out bond strength of circular and oval fibre posts luted with different commercial resin cements in oval cross-sectional root canals, and to correlate push-out bond strength values and volume of voids of circular and oval fibre posts. Seventy-two mandibular premolars with oval-shaped root canals were selected. The specimens were divided into two main groups according to the post type (oval and circular). Groups were further divided into three subgroups (n = 24) according to resin cement type: Maxcem Elite, Rely-X Unicem and Duo-Link. The volumes of voids within the cements were analysed by micro-computed tomography (micro-CT). The bond strength was then measured using a push-out test with an Instron universal testing machine. The failure modes were evaluated. Statistical analyses were performed using a three-way anova, Tukey's post hoc, Pearson's correlation and chi-square test (P = 0.05). The push-out bond strength values were significantly affected by root canal region, post type and cement type (P < 0.001). Root canal region, post type and cement type also significantly affected void volume (P < 0.001). There was a significant interaction between post type and cement type (P < 0.001). The most frequent failure type was adhesive failure in all the groups. There was no significant correlation between the push-out bond strength and void volume (P > 0.05). Void volume did not affect push-out bond strength of oval and circular posts luted in oval canals. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Tabari, Kasra; Hosseinpour, Sepanta; Mohammad-Rahimi, Hossein
2017-01-01
Introduction: In recent years, the use of ceramic base zirconia is considered in dentistry for all ceramic restorations because of its chemical stability, biocompatibility, and good compressive as well as flexural strength. However, due to its chemical stability, there is a challenge with dental bonding. Several studies have been done to improve zirconia bonding but they are not reliable. The purpose of this research is to study the effect of plasma treatment on bonding strength of zirconia. Methods: In this in vitro study, 180 zirconia discs' (thickness was 0.85-0.9 mm) surfaces were processed with plasma of oxygen, argon, air and oxygen-argon combination with 90-10 and 80-20 ratio (n=30 for each group) after being polished by sandblast. Surface modifications were assessed by measuring the contact angle, surface roughness, and topographical evaluations. Cylindrical Panavia f2 resin-cement and Diafill were used for microshear strength bond measurements. The data analysis was performed by SPSS 20.0 software and one-way analysis of variance (ANOVA) and Tukey test as the post hoc. Results: Plasma treatment in all groups significantly reduces contact angle compare with control ( P =0.001). Topographic evaluations revealed coarseness promotion occurred in all plasma treated groups which was significant when compared to control ( P <0.05), except argon plasma treated group that significantly decreased surface roughness ( P <0.05). In all treated groups, microshear bond strength increased, except oxygen treated plasma group which decreased this strength. Air and argon-oxygen combination (both groups) significantly increased microshear bond strength ( P <0.05). Conclusion: According to this research, plasmatic processing with dielectric barrier method in atmospheric pressure can increase zirconia bonding strength.
Influence of tooth brushing on adhesion strength of orthodontic brackets bonded to porcelain.
Durgesh, Bangalore H; Alhijji, Saleh; Hashem, Mohamed I; Al Kheraif, AbdulAziz A; Durgesh, Pavithra; Elsharawy, Mohamed; Vallittu, Pekka K
2016-09-28
Adhesive resin composite, which is used to bond orthodontic bracket to tooth surface is exposed to the influence of wear by tooth brushing and wear may influence loosening of the bracket. The aim of this study was to evaluate in vitro the effect of tooth brushing on the adhesion strength of orthodontic brackets bonded to surface treated porcelain. A total of 90 glazed porcelain fused to metal facets (PFM) were randomly assigned into 3 groups according to the surface treatment to be received. Group 1 was conditioned with hydrofluoric acid (HF), group 2 conditioned with grit-blasting (GB) and group 3 conditioned with tribochemical silica coating (RC). The groups were evaluated for surface roughness (Ra) before and after surface treatment. Next, 15 samples from each group were subjected to brushing and remaining 15 samples served as the baseline (n=15). Adhesion strength (shear bond strength)was recorded using a universal testing machine. Data collected were analyzed by ANOVA and Tukey's multiple comparison post hoc analysis. Tooth brushing decreased the bond strength in all groups. The highest adhesion strength (baseline and after brushing) was observed in group 3 (26.8 ± 1.77 MPa and 23.57 ± 1.02 MPa) and the lowest was found in group 1 (9.6 ± 1.5 MPa and 5.87 ± 0.77 MPa). Group 3 specimens exhibited the highest Ra (1.24 ± 0.08). It was found that tooth brushing of the exposed adhesive resin composite at the bracket-bonding substrate interface lowers the bonding strength regardless of the surface treatment of the substrate.
Valentini, Fernanda; Moraes, Rafael R; Pereira-Cenci, Tatiana; Boscato, Noéli
2014-05-01
This study investigated the effect of the filler particle size (micron or submicron) of experimental resin cements on the microtensile bond strength to a glass-ceramic pretreated with hydrofluoric acid (HFA) etching or alumina airborne-particle abrasion (AA). Cements were obtained from a Bis-GMA/TEGDMA mixture filled with 60 mass% micron-sized (1 ± 0.2 µm) or submicron-sized (180 ± 30 µm) Ba-Si-Al glass particles. Ceramic blocks (PM9; VITA) were treated with 10% HFA for 60 s or AA for 15 s. Silane and adhesive were applied. Ceramic blocks were bonded to resin composite blocks (Z250; 3M ESPE) using one of the cements. Bonded specimens were sectioned into beams (n = 20/group) and subjected to microtensile bond strength tests. Data were analyzed using ANOVA and Student-Newman-Keuls' tests (5%). Failure modes were classified under magnification. Morphologies of the treated ceramic surfaces and bonded interfaces were evaluated by scanning electron microscopy. The HFA-submicron group had lower bond strengths than the other groups. All AA-submicron specimens debonded prematurely. Mixed failures were predominant for HFA groups, whereas interfacial failures predominated for AA groups. SEM revealed a honeycomb-like aspect in the HFA-treated ceramic, whereas the AA-treated groups showed an irregular retentive pattern. Continuity of cement infiltration along the bonded interface was more uniform for HFA-treated compared to AA-treated specimens. Cracks toward the bulk of the ceramic were observed in AA-treated specimens. Particle size significantly influenced the ceramic bond strength, whereas surface treatment had a minor effect. Copyright © 2014 Wiley Periodicals, Inc.
Evaluation to the effect of B2O3-La2O3-SrO-Na2O-Al2O3 bonding agent on Ti6Al4V-porcelain bonding.
Zhao, C Q; Wu, S Q; Lu, Y J; Gan, Y L; Guo, S; Lin, J J; Huang, T T; Lin, J X
2016-10-01
Low-fusing bonding agents have been widely applied in Ti-ceramics restorations. As an important category, borate bonding agents have great potentials in increasing Ti-porcelain bonding. The purpose of this study is to evaluate the effect of borate bonding agent with addition of Na2O and Al2O3 on Ti6Al4V-porcelain bonding. The thermal properties of borate bonding agent, such as glass transition temperature (Tg) and crystallization peak temperature (Tp), were investigated to establish the sintering process. And the coefficient of thermal expansion (CTE) was to evaluate the matching effect of porcelain to Ti6Al4V. The bond strength was analyzed by the three point bending test. The microscopic morphology of the borate bonding agent surface after sintering, the interface of Ti-borate bonding agent-porcelain, and the fracture mode after porcelains fracture, were studied to assess the influence of borate bonding agent on Ti6Al4V-ceramics. With the addition of Na2O and Al2O3, the porcelain residues were observed increased indication on the Ti6Al4V surface after porcelain fracture and the bond strength was acquired the maximum (49.45MPa) in the bonding agent composition of 75.70B2O3-5.92La2O3-11.84SrO-4.67Na2O-1.87Al2O3. Those results suggest that borate bonding agent is an effective way to improve the Ti6Al4V-ceramics bond strength. And the addition of Na2O and Al2O3 strengthen this effect. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sayinsu, Korkmaz; Isik, Fulya; Sezen, Serdar; Aydemir, Bulent
2007-03-01
The application of a polymer coating to the labial enamel tooth surface before bonding can help keep white spot lesions from forming. Previous studies evaluating the effects of blood and saliva contamination on the bond strengths of light-cured composites showed significant reductions in bond strength values. The purpose of this study was to investigate whether the bond strength of a light-cured system (Transbond XT, 3M Unitek, Puchheim, Germany) used with a liquid polish (BisCover, Bisco, Schaumburg, Ill) is affected by contamination with blood or saliva. One hundred twenty permanent human premolars were randomly divided into 6 groups of 20. Various enamel surface conditions were studied: dry, blood contaminated, and saliva contaminated. A light-cured bonding system (Transbond XT) was used in all groups. The teeth in group 1 were bonded with Transbond XT. In the second group, BisCover polymeric resin polish was applied on the etched tooth surfaces before the brackets were bonded with Transbond XT resin. Comparison of the first and second groups showed no statistically significant difference. Groups 3 through 6 were bonded without Transbond XT. For groups 3 and 5, a layer of blood or saliva, respectively, was applied to the etched enamel followed by BisCover. In groups 4 and 6, blood or saliva, respectively, was applied on the light-cured BisCover. Shear forces were applied to the samples with a universal testing machine, and bond strengths were measured in megapascals. The protective liquid polish (BisCover) layer did not affect bond strength. Blood contamination on acid-etched surfaces affects bond strength more than saliva contamination. When a protective liquid polish (BisCover) is applied to the tooth surface, the effect of contamination by blood or saliva is prevented.
Toodehzaeim, Mohammad Hossein; Zandi, Hengameh; Meshkani, Hamidreza; Hosseinzadeh Firouzabadi, Azadeh
2018-01-01
Statement of the Problem: Orthodontic appliances facilitate microbial plaque accumulation and increase the chance of white spot lesions. There is a need for new plaque control methods independent of patient's cooperation. Purpose: The aim of this study was to determine the effects of incorporating copper oxide (CuO) nanoparticles on antimicrobial properties and bond strength of orthodontic adhesive. Materials and Method: CuO nanoparticles were added to the composite transbond XT at concentrations of 0.01, 0.5 and 1 wt.%. To evaluate the antimicrobial properties of composites containing nanoparticles, the disk agar diffusion test was used. For this purpose, 10 discs from each concentration of nano-composites (totally 30 discs) and 10 discs from conventional composite (as the control group) were prepared. Then the diameter of streptococcus mutans growth inhibition around each disc was determined in blood agar medium. To evaluate the shear bond strength, with each concentration of nano-composites as well as the control group (conventional composite), 10 metal brackets were bonded to the human premolars and shear bond strength was determined using a universal testing machine. Results: Nano-composites in all three concentrations showed significant antimicrobial effect compared to the control group (p< 0.001). With increasing concentration of nanoparticles, antimicrobial effect showed an upward trend, although statistically was not significant. There was no significant difference between the shear bond strength of nano-composites compared to control group (p= 0.695). Conclusion: Incorporating CuO nanoparticles into adhesive in all three studied concentrations added antimicrobial effects to the adhesive with no adverse effects on shear bond strength. PMID:29492409
Toodehzaeim, Mohammad Hossein; Zandi, Hengameh; Meshkani, Hamidreza; Hosseinzadeh Firouzabadi, Azadeh
2018-03-01
Orthodontic appliances facilitate microbial plaque accumulation and increase the chance of white spot lesions. There is a need for new plaque control methods independent of patient's cooperation. The aim of this study was to determine the effects of incorporating copper oxide (CuO) nanoparticles on antimicrobial properties and bond strength of orthodontic adhesive. CuO nanoparticles were added to the composite transbond XT at concentrations of 0.01, 0.5 and 1 wt.%. To evaluate the antimicrobial properties of composites containing nanoparticles, the disk agar diffusion test was used. For this purpose, 10 discs from each concentration of nano-composites (totally 30 discs) and 10 discs from conventional composite (as the control group) were prepared. Then the diameter of streptococcus mutans growth inhibition around each disc was determined in blood agar medium. To evaluate the shear bond strength, with each concentration of nano-composites as well as the control group (conventional composite), 10 metal brackets were bonded to the human premolars and shear bond strength was determined using a universal testing machine. Nano-composites in all three concentrations showed significant antimicrobial effect compared to the control group ( p < 0.001). With increasing concentration of nanoparticles, antimicrobial effect showed an upward trend, although statistically was not significant. There was no significant difference between the shear bond strength of nano-composites compared to control group ( p = 0.695). Incorporating CuO nanoparticles into adhesive in all three studied concentrations added antimicrobial effects to the adhesive with no adverse effects on shear bond strength.
Mortazavi, Vajihesadat; Fathi, Mohammadhosein; Ataei, Ebrahim; Khodaeian, Niloufar; Askari, Navid
2012-01-01
In this laboratory study shear bond strengths of three filled and one unfilled adhesive systems to enamel and dentine were compared. Forty-eight extracted intact noncarious human mandibular molars were randomly assigned to two groups of 24 one for bonding to enamel and the other for bonding to dentine. Buccal and lingual surfaces of each tooth were randomly assigned for application of each one of filled (Prime & Bond NT (PBNT), Optibond Solo Plus (OBSP), and Clearfil SE Bond (CSEB)) and unfilled (Single Bond (SB)) adhesive systems (n = 12). A universal resin composite was placed into the translucent plastic cylinders (3 mm in diameter and 2 mm in length) and seated against the enamel and dentine surfaces and polymerized for 40 seconds. Shear bond strength was determined using a universal testing machine, and the results were statistically analyzed using two-way ANOVA, one-way ANOVA, t-test, and Tukey HSD post hoc test with a 5% level of significance.There were no statistically significant differences in bond strength between the adhesive systems in enamel, but CSEB and SB exhibited significantly higher and lower bond strength to dentine, respectively, than the other tested adhesive systems while there were no statistically significant differences between PBNT and OBSP. PMID:23209471
Immediate vs delayed repair bond strength of a nanohybrid resin composite.
El-Askary, Farid S; El-Banna, Ahmed H; van Noort, Richard
2012-06-01
To evaluate both the immediate and water-stored repair tensile bond strength (TBS) of a nanohybrid resin composite using different bonding protocols. One hundred sixty half hourglass-shaped slabs were prepared. Eighty half-slabs were wet ground immediately after light curing using high-speed abrasive burs, while the other half-slabs were stored in water for one month (delayed) and then wet ground for repair. Each set of the 80 repaired slabs was split into two groups to be tested for TBS after 24 h or 1 month of water storage. For all repaired slabs, either immediate or delayed, four bonding procedures were used involving wet and dry bonding with a 3-step etch-and-rinse adhesive with or without silane pretreatment. TBS tests were performed at a crosshead speed of 0.5 mm/min. To determine the cohesive strength of the resin composite itself, which served as the reference, additional whole slabs were prepared and tested in tension after a 24-h (n = 10) and a 1-month storage period (n = 10). Failure modes were evaluated using a stereomicroscope at 40X magnification. Three-way ANOVA was run to test the effect of water storage, testing time, bonding protocols, and their interactions on the repair TBS, which was given as a percentage of the reference values. For the immediate repair groups, the repair TBS ranged from 40% to 61.9% after 24-h storage and from 26% to 53.1% after 1-month water storage compared to the TBS of the whole slabs. For the delayed repair group, the repaired TBS ranged from 47.2% to 63.6% for the 24-h repairs and from 32.2% to 44.2% for the test groups stored in water for 1 month. Three-way ANOVA revealed that water storage had no significant effect on the repair TBS (p = 0.619). Both testing time and bonding protocols had a significant effect on the repair TBS (p = 0.001). The interactions between the independent variables (water storage, testing time, and bonding protocols) had no significant effect (p = 0.067). The repair bond strength was consistently and highly significantly less than the cohesive strength of the composite. A delay of 1 month before carrying out the repair had no effect on the bond strength, irrespective of the bonding procedure used. Silane treatment did not improve the repair bond strength. In all instances, except for the immediate wet bonding plus silane procedure and delayed dry bonding, the bond strength of the repairs significantly dropped after 1 month of storage in water.
Pei, D D; Liu, S Y; Yang, H Y; Gan, J; Huang, C
2017-05-09
Objective: To evaluate a nano-hydroxyapatite (nano-HA) desensitizing paste application on the bond strength of three self-etch adhesives. Methods: Three dentin specimens of about 1 mm thick were cut from two teeth. Scanning electron microscope (SEM) was used to evaluate the dentin surfaces without treatment, after citric acid treatment and after nano-HA treatment. Thirty-six intact third molars extracted for surgical reasons were cut to remove the occlusal enamel with isomet, and then were etched with 1% citric acid for 20 s to simulate the sensitive dentin and divided into two groups randomly using a table of random numbers ( n= 18): the control group (no treatment) and the HA treated group (with nano-HA paste treatment). Each group was divided into three subgroups randomly using a table of random numbers ( n= 6). Subgroup A, B and C was bonded with G-Bond, Clearfil S(3) Bond and FL-Bond Ⅱ according to the manufacture's instruction separately. At 24 h after bonding procedure, and after water storage for 6 months, microtensile bond strength of the specimens was tested and the failure mode was analyzed. Results: SEM obeservation showed that citric acid could open the dentin tubules to set up the sensitive dentin model, and the nano-HA could occlude the dentin tubules effectively. For subgroup A, bonding strength of specimens treated with nano-HA ([41.14±8.91] MPa) was significantly high than that of the control group ([34.27±6.16] MPa) at 24 h after bonding procedure ( P< 0.05). However, after 6 month water ageing, the bonding strength of the control group and the HA treated group showed no significant difference ( P> 0.05). For subgroup B, specimens with nano-HA application showed lower bonding strength ([30.87±6.41] MPa) than that of the control group ([36.73±5.82] MPa) at 24 h after bonding procedure ( P< 0.05), and after 6 month water ageing, the bond strength of nano-HA application ([25.73±6.99] MPa) was also lower than that of the control group ([32.33±5.08] MPa) ( P< 0.05). For subgroup C, the bond strength of the control group and the HA treated group have no significant difference either before or after 6 month water ageing ( P> 0.05). Failure mode analysis showed that more than half of the samples in all groups were adhesive failure. Conclusions: Nano-HA treatment decreased the bond strength of subgroup B, while had no adverse effect on subgroup A and subgroup C.
Antoniazzi, Bruna Feltrin; Nicoloso, Gabriel Ferreira; Lenzi, Tathiane Larissa; Soares, Fabio Zovico Maxnuck; Rocha, Rachel de Oliveira
To evaluate the influence of enamel condition and etching strategy on bond strength of a universal adhesive in primary teeth. Thirty-six primary molars were randomly assigned to six groups (n = 6) according to the enamel condition (sound [S] and demineralized [DEM]/cariogenic challenge by pH cycling prior to restorative procedures) and adhesive system (Scotchbond Universal Adhesive [SBU]) used in either etch-and-rinse (ER) or selfetching (SE) mode, with Clearfil SE Bond as the self-etching control. The adhesives were applied to flat enamel surfaces and composite cylinders (0.72 mm2) were built up. After 24-h storage in water, specimens were subjected to the microshear test. Bond strength (MPa) data were analyzed using two-way ANOVA and Tukey's post-hoc tests (α = 0.05). Significant differences were found considering the factors adhesive system (p = 0.003) and enamel condition (p = 0.001). Demineralized enamel negatively affected the bond strength, with μSBS values approximately 50% lower than those obtained for sound enamel. SBU performed better in etch-and-rinse mode, and the bond strength found for SBU applied in self-etching mode was similar to that of CSE. Enamel etching with phosphoric acid improves the bond strength of a universal adhesive system to primary enamel. Demineralized primary enamel results in lower bond strength.
Shore hardness and tensile bond strength of long-term soft denture lining materials.
Kim, Bong-Jun; Yang, Hong-So; Chun, Min-Geoung; Park, Yeong-Joon
2014-11-01
Reduced softness and separation from the denture base are the most significant problems of long-term soft lining materials. The purpose of this study was to evaluate the durometer Shore A hardness and tensile bond strength of long-term soft denture lining materials and to investigate the correlation between these 2 properties. A group of 7 soft lining materials, 6 silicone based (Dentusil, GC Reline Soft, GC Reline Ultrasoft, Mucopren Soft, Mucosoft, Sofreliner Tough) and 1 acrylic resin based (Durabase), were evaluated for durometer Shore A hardness and tensile bond strength to heat-polymerized denture base resin (Lucitone 199). A specially designed split mold and loading assembly with a swivel connector were used for the durometer Shore A hardness test and tensile bond strength test to improve accuracy and facilitate measurement. Three specimens of each product were stored in a 37°C water bath, and durometer Shore A hardness tests were carried out after 24 hours and 28 days. A tensile bond strength test was carried out for 10 specimens of each product, which were stored in a 37°C water bath for 24 hours before the test. Repeated-measures ANOVA, the Kruskal-Wallis and Duncan multiple range tests, and the Spearman correlation were used for statistical analyses. The repeated-measures ANOVA found significant durometer Shore A hardness differences for the materials (P<.001) and the interaction effect (aging×materials) (P<.001). GC Reline Ultrasoft showed the lowest mean durometer Shore A hardness (21.30 ±0.29 for 24 hours, 34.73 ±0.47 for 28 days), and GC Reline Soft showed the highest mean durometer Shore A hardness (50.13 ±0.48 for 24 hours, 57.20 ±0.28 for 28 days). The Kruskal-Wallis test found a significant difference in the mean tensile bond strength values (P<.001). GC Reline Ultrasoft (0.82 ±0.32 MPa) and Mucopren Soft (0.96 ±0.46 MPa) had a significantly lower mean tensile bond strength (P<.05). GC Reline Soft had the highest mean tensile bond strength (2.99 ±0.43 MPa) (P<.05), and acrylic resin-based Durabase showed a significantly different tensile bond strength (1.32 ±0.16 MPa), except for Mucopren Soft, among the materials (P<.05). The tensile bond strength and Shore A hardness showed a statistically insignificant moderate positive correlation (r=0.571, P=.180 for Shore A hardness 24 hours versus tensile bond strength; r=0.607, P=.148 for Shore A hardness 28 days versus tensile bond strength). Within the limitations of this study, significant differences were found in durometer Shore A hardness (with aging time) and tensile bond strength among the materials. Adhesive failure was moderately correlated with durometer Shore A hardness, especially after 28 days, but was not significant. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
He, Zhengdi; Chen, Lingling; Shimada, Yasushi; Tagami, Junji; Ruan, Shuangchen
2017-03-31
This study aimed to investigate self-etching bonding systems penetrating in sub-surface dentin layer after Er:YAG laser irradiation and micro-shear bonding durability over a period of 1 year. Dentin slices obtained from extracted human third molars were prepared. Two self-etching adhesive systems were evaluated: Clearfil SE Bond and Clearfil Tri-S Bond. Specimens were tested for micro-shear bond strength with one of the following treatments: Er:YAG laser irradiation and 600-grit silicon paper polishing at 24 h, 7 days, 6 months and 1 year. The adhesive interfaces between bonding agents and lased cervical dentin were studied. No hybrid layer could be observed for lased dentin. The slim resin tags could be seen penetrating through the lased subsurface layer. Bond strength to lased dentin after 6 months and 1 year were significantly decreased (p<0.05).
Zorba, Yahya Orcun; Ilday, Nurcan Ozakar; Bayındır, Yusuf Ziya; Demirbuga, Sezer
2013-01-01
Objective: The aim of this study was to test the null hypothesis that different surface conditioning (etch and rinse and self-etch) and curing techniques (light cure/dual cure) had no effect on the shear bond strength of direct and indirect composite inlays. Materials and Methods: A total of 112 extracted human molar teeth were horizontally sectioned and randomly divided into two groups according to restoration technique (direct and indirect restorations). Each group was further subdivided into seven subgroups (n = 8) according to bonding agent (etch and rinse adhesives Scotchbond multi-purpose plus, All-Bond 3, Adper Single Bond and Prime Bond NT; and self-etch adhesives Clearfil Liner Bond, Futurabond DC and G bond). Indirect composites were cemented to dentin surfaces using dual-curing luting cement. Shear bond strength of specimens was tested using a Universal Testing Machine. Two samples from each subgroup were evaluated under Scanning electron microscopy to see the failing modes. Data was analyzed using independent sample t-tests and Tukey's tests. Results: Surface conditioning and curing of bonding agents were all found to have significant effects on shear bond strength (P < 0.05) of both direct and indirect composite inlays. With direct restoration, etch and rinse systems and dual-cured bonding agents yielded higher bond strengths than indirect restoration, self-etch systems and light-cured bonding agents. Conclusions: The results of the present study indicated that direct restoration to be a more reliable method than indirect restoration. Although etch and rinse bonding systems showed higher shear bond strength to dentin than self-etch systems, both systems can be safely used for the adhesion of direct as well as indirect restorations. PMID:24932118
Zorba, Yahya Orcun; Ilday, Nurcan Ozakar; Bayındır, Yusuf Ziya; Demirbuga, Sezer
2013-10-01
The aim of this study was to test the null hypothesis that different surface conditioning (etch and rinse and self-etch) and curing techniques (light cure/dual cure) had no effect on the shear bond strength of direct and indirect composite inlays. A total of 112 extracted human molar teeth were horizontally sectioned and randomly divided into two groups according to restoration technique (direct and indirect restorations). Each group was further subdivided into seven subgroups (n = 8) according to bonding agent (etch and rinse adhesives Scotchbond multi-purpose plus, All-Bond 3, Adper Single Bond and Prime Bond NT; and self-etch adhesives Clearfil Liner Bond, Futurabond DC and G bond). Indirect composites were cemented to dentin surfaces using dual-curing luting cement. Shear bond strength of specimens was tested using a Universal Testing Machine. Two samples from each subgroup were evaluated under Scanning electron microscopy to see the failing modes. Data was analyzed using independent sample t-tests and Tukey's tests. Surface conditioning and curing of bonding agents were all found to have significant effects on shear bond strength (P < 0.05) of both direct and indirect composite inlays. With direct restoration, etch and rinse systems and dual-cured bonding agents yielded higher bond strengths than indirect restoration, self-etch systems and light-cured bonding agents. The results of the present study indicated that direct restoration to be a more reliable method than indirect restoration. Although etch and rinse bonding systems showed higher shear bond strength to dentin than self-etch systems, both systems can be safely used for the adhesion of direct as well as indirect restorations.
Bond Strength of Composite CFRP Reinforcing Bars in Timber
Corradi, Marco; Righetti, Luca; Borri, Antonio
2015-01-01
The use of near-surface mounted (NSM) fibre-reinforced polymer (FRP) bars is an interesting method for increasing the shear and flexural strength of existing timber members. This article examines the behaviour of carbon FRP (CFRP) bars in timber under direct pull-out conditions. The objective of this experimental program is to investigate the bond strength between composite bars and timber: bars were epoxied into small notches made into chestnut and fir wood members using a commercially-available epoxy system. Bonded lengths varied from 150 to 300 mm. Failure modes, stress and strain distributions and the bond strength of CFRP bars have been evaluated and discussed. The pull-out capacity in NSM CFRP bars at the onset of debonding increased with bonded length up to a length of 250 mm. While CFRP bar’s pull-out was achieved only for specimens with bonded lengths of 150 and 200 mm, bar tensile failure was mainly recorded for bonded lengths of 250 and 300 mm. PMID:28793423
Effects of various final irrigants on the shear bond strength of resin-based sealer to dentin
Kandaswamy, Deivanayagam; Venkateshbabu, Nagendrababu; Arathi, Ganesh; Roohi, Riaz; Anand, Suresh
2011-01-01
Aim: This study has been designed to evaluate the effect of strong (MTAD) or soft (1- hydroxyethylidene – 1, 1-bisphosphonate (HEBP) final irrigating solution on the shear bond strength of AH plus sealer to coronal dentin. 17% EDTA was used as the reference. Materials and Methods: Forty freshly extracted human maxillary first premolars were prepared using different irrigation protocols (n=10). All the test groups had 1.3% NaOCl as initial rinse and followed by specific final rinse for each group: G1 – distilled water(control), G2 – 17% EDTA, G3- 18% HEBP and G4 – MTAD. Sections of polyethylene tubes that are 3mm long were filled with freshly mixed sealer and placed on the dentin surfaces. The bonding between the sealer and dentine surface was evaluated using shear bond testing. The values were statistically evaluated using one-way ANOVA followed by Tukey's test. Result: Significant difference was found among the irrigating regimes. EDTA showed highest bond strength followed by HEBP and MTAD PMID:21691504
Akhoundi, Ms Ahmad; Kamel, M Rahmati; Hashemi, Sh Mahmood; Imani, M
2011-01-01
The objective of this study was to compare the tensile bond strength of metal brackets bonding to glazed ceramic surfaces using three various surface treatments. Forty two glazed ceramic disks were assigned to three groups. In the first and second groups the specimens were etched with 9.5% hydrofluoric acid (HFA). Subsequently in first group, ceramic primer and adhesive were applied, but in second group a bonding agent alone was used. In third group, specimens were treated with 35% phosphoric acid followed by ceramic primer and adhesive application. Brackets were bonded with light cure composites. The specimens were stored in distilled water in the room temperature for 24 hours and thermocycled 500 times between 5°C and 55°C. The universal testing machine was used to test the tensile bond strength and the adhesive remenant index scores between three groups was evaluated. The data were subjected to one-way ANOVA, Tukey and Kruskal-Wallis tests respectively. The tensile bond strength was 3.69±0.52 MPa forfirst group, 2.69±0.91 MPa for second group and 3.60±0.41 MPa for third group. Group II specimens showed tensile strength values significantly different from other groups (P<0.01). In spite of limitations in laboratory studies it may be concluded that in application of Scotch bond multipurpose plus adhesive, phosphoric acid can be used instead of HFA for bonding brackets to the glazed ceramic restorations with enough tensile bond strength.
Microtensile bond strength of enamel after bleaching.
Lago, Andrea Dias Neves; Garone-Netto, Narciso
2013-01-01
To evaluate the bond strength of a composite resin to the bovine enamel bleached with 35% hydrogen peroxide. It was used an etching-and-rinse adhesive system employed immediately, 7 and 14 days after the bleaching. Twenty bovine teeth were randomly distributed into 4 groups (n = 5), 3 experimental and 1 control. G1: Unbleached + restoration 14 days after storage in artificial saliva (control); G2: Bleached + restoration immediately after bleaching; G3: Bleached + restoration 7 days after bleaching; G4: Bleached + restoration 14 days after bleaching. Their buccal enamel surfaces were flattened, and a 25 mm² (5 × 5 mm) area from each one of these regions was outlined so as to standardize the experimental region. Universal hybrid composite resin Filtek™Z350 was inserted into four layers of 1 mm each and photo-activated. The bond strength was quantitatively evaluated by a microtensile test (1.0 mm/min) 24 h after the restorative procedures. The failure mode was assessed through scanning electron microscopy (SEM). There was a significant reduction in the bond strength of the restored teeth immediately after the bleaching (G2). There were no significant differences in enamel bond strength between groups G1, G3, and G4. There was a predominance of adhesive and mixed (cohesive + adhesive) failure in all groups. The 7-day-period after the end of the bleaching with 35% hydrogen peroxide was enough to achieve the appropriate values of bond strength to the enamel.
Evaluating of NASA-Langley Research Center explosion seam welding
NASA Technical Reports Server (NTRS)
Otto, H. E.; Wittman, R.
1977-01-01
An explosion bonding technique to meet current fabrication requirements was demonstrated. A test program was conducted on explosion bonded joints, compared to fusion joints in 6061-T6 aluminum. The comparison was made in required fixtures, non-destructive testing, static strength and fatigue strength.
Usha, Carounanidy; Ramarao, Sathyanarayanan; John, Bindu Meera; Rajesh, Praveen; Swatha, S
2017-01-01
Bonding of composite resin to dentin mandates a wet substrate whereas, enamel should be dry. This may not be easily achievable in intracoronal preparations where enamel and dentin are closely placed to each other. Therefore, Dentin Bonding Agents (DBA) are recommended for enamel and dentinal bonding, where enamel is also left moist. A research question was raised if the "enamel-only" preparations will also benefit from wet enamel bonding and contemporary DBA. The aim of this study was to compare the shear bond strengths of composite resin, bonded to dry and wet enamel using fifth generation DBA (etch and rinse system) containing various solvents such as ethanol/water, acetone and ethanol. The crowns of 120 maxillary premolars were split into buccal and lingual halves. They were randomly allocated into four groups of DBA: Group 1-water/ethanol based, Group 2-acetone based, Group 3-ethanol based, Group 4-universal bonding agent (control group). The buccal halves and lingual halves were bonded using the wet bonding and dry bonding technique respectively. After application of the DBAs and composite resin build up, shear bond strength testing was done. Group 1 (ethanol/water based ESPE 3M, Adper Single Bond) showed highest bond strength of (23.15 MPa) in dry enamel. Group 2 (acetone based Denstply, Prime and Bond NT, showed equal bond strength in wet and dry enamel condition (18.87 MPa and 18.02 MPa respectively). Dry enamel bonding and ethanol/water based etch and rinse DBA can be recommended for "enamel-only" tooth preparations.
Kim, Bo-Ram; Oh, Man-Hwan; Shin, Dong-Hoon
2017-05-31
This study was performed to compare the antibacterial activities of three cavity disinfectants [chlorhexidine (CHX), NaOCl, urushiol] and to evaluate their effect on the microtensile bond strength of Scotchbond Universal Adhesive (3M-ESPE, St. Paul, MN, USA) in class I cavities. In both experiments, class I cavities were prepared in dentin. After inoculation with Streptococcus mutans, the cavities of control group were rinsed and those of CHX, NaOCl and urushiol groups were treated with each disinfectant. Standardized amounts of dentin chips were collected and number of S. mutans was determined. Following the same cavity treatment, same adhesive was applied in etch-and-rinse mode. Then, microtensile bond strength was evaluated. The number of S. mutans was significantly reduced in the cavities treated with CHX, NaOCl, and urushiol compared with control group (p<0.05). However, there was a significant bond strength reduction in NaOCl group, which showed statistical difference compared to the other groups (p<0.05).
Komine, Futoshi; Fushiki, Ryosuke; Koizuka, Mai; Taguchi, Kohei; Kamio, Shingo; Matsumura, Hideo
2012-03-01
The present study evaluated the effect of various surface treatments for zirconia ceramics on shear bond strength between an indirect composite material and zirconia ceramics. In addition, we investigated the durability of shear bond strength by using artificial aging (20,000 thermocycles). A total of 176 Katana zirconia disks were randomly divided into eight groups according to surface treatment, as follows: group CON (as-milled); group GRD (wet-ground with 600-grit silicon carbide abrasive paper); groups 0.05, 0.1, 0.2, 0.4, and 0.6 MPa (airborne-particle abrasion at 0.05, 0.1, 0.2, 0.4, and 0.6 MPa, respectively); and group HF (9.5% hydrofluoric acid etching). Shear bond strength was measured at 0 thermocycles in half the specimens after 24-h immersion. The remaining specimens were subjected to 20,000 thermocycles before shear bond strength testing. Among the eight groups, the 0.1, 0.2, 0.4, and 0.6 MPa airborne-particle abraded groups had significantly higher bond strengths before and after thermocycling. The Mann-Whitney U-test revealed no significant difference in shear bond strength between 0 and 20,000 thermocycles, except in the 0.2 MPa group (P = 0.013). From the results of this study, use of airborne-particle abrasion at a pressure of 0.1 MPa or higher increases initial and durable bond strength between an indirect composite material and zirconia ceramics.
Bond strength of different adhesives to normal and caries-affected dentins.
Xuan, Wei; Hou, Ben-xiang; Lü, Ya-lin
2010-02-05
Currently, several systems of dentin substrate-reacting adhesives are available for use in the restorative treatment against caries. However, the bond effectiveness and property of different adhesive systems to caries-affected dentin are not fully understood. The objective of this study was to evaluate the bond strength of different adhesives to both normal dentin (ND) and caries-affected dentin (CAD) and to analyze the dentin/adhesive interfacial characteristics. Twenty eight extracted human molars with coronal medium carious lesions were randomly assigned to four groups according to adhesives used. ND and CAD were bonded with etch-and-rinse adhesive Adper Single Bond 2 (SB2) or self-etching adhesives Clearfil SE Bond (CSE), Clearfil S(3) Bond (CS3), iBond GI (IB). Rectangular sticks of resin-dentin bonded interfaces 0.9 mm(2) were obtained. The specimens were subjected to microtensile bond strength (microTBS) testing at a crosshead speed of 1 mm/min. Mean microTBS was statistically analyzed with analysis of variance (ANOVA) and Student-Newman-Keuls tests. Interfacial morphologies were analyzed by Scanning Electron Microscopy (SEM). Etch-and-rinse adhesive Adper(TM) Single Bond 2 yielded high bond strength when applied to both normal and caries-affected dentin. The two-step self-etching adhesive Clearfil SE Bond generated the highest bond strength to ND among all adhesives tested but a significantly reduced strength when applied to CAD. For the one-step self-etching adhesives, Clearfil S(3) Bond and iBond GI, the bond strength was relatively low regardless of the dentin type. SEM interfacial analysis revealed that hybrid layers were thicker with poorer resin tag formation and less resin-filled lateral branches in the CAD than in the ND for all the adhesives tested. The etch-and-rinse adhesive performed more effectively to caries-affected dentin than the self-etching adhesives.
Shinohara, Ayano; Taira, Yohsuke; Sakihara, Michino; Sawase, Takashi
2018-01-01
Objective The objective of this study was to evaluate the effects of combinations of silane primers and adhesive agents on the bond strength of a composite block for a computer-aided design and manufacturing system. Material and Methods Three silane primers [Clearfil Ceramic Primer (CP), Super-Bond PZ Primer (PZ), and GC Ceramic Primer II (GP)] were used in conjunction with five adhesive agents [G-Premio Bond (P-Bond), Repair Adhe Adhesive (R-Adhesive), Super-Bond D-Liner Dual (SB-Dual), Super-Bond C&B (SB-Self), and SB-Dual without tributylborane derivative (SB-Light)]. The surface of a composite block (Gradia Block) was ground with silicon carbide paper. After treatment with a silane primer, a adhesive agent was applied to each testing specimen. The specimens were then bonded with a light-curing resin composite. After 24 h, the shear bond strength values were determined and compared using a post hoc test (α=0.05, n=8/group). We also prepared control specimens without primer (No primer) and/or without adhesive agent (No adhesive). Results PZ/SB-Dual and GP/SB-Dual presented the highest bond strength, followed by GP/P-Bond, CP/SB-Dual, CP/R-Adhesive, No primer/SB-Dual, GP/R-Adhesive, CP/P-Bond, No primer/R-Adhesive, PZ/R-Adhesive, CP/SB-Self, PZ/P-Bond, PZ/SB-Self, and GP/SB-Self in descending order of bond strength. No primer/P-Bond, No primer/SB-Self, and all specimens in the SB-Light and No adhesive groups presented the lowest bond strengths. Conclusion A dual-curing adhesive agent (SB-Dual) containing a tributylborane derivative in combination with a silane primer (GP or PZ) presents a greater bond strength between the composite block and the repairing resin composite than the comparators used in the study.
2018-01-01
Abstract Objective The objective of this study was to evaluate the effects of combinations of silane primers and adhesive agents on the bond strength of a composite block for a computer-aided design and manufacturing system. Material and Methods Three silane primers [Clearfil Ceramic Primer (CP), Super-Bond PZ Primer (PZ), and GC Ceramic Primer II (GP)] were used in conjunction with five adhesive agents [G-Premio Bond (P-Bond), Repair Adhe Adhesive (R-Adhesive), Super-Bond D-Liner Dual (SB-Dual), Super-Bond C&B (SB-Self), and SB-Dual without tributylborane derivative (SB-Light)]. The surface of a composite block (Gradia Block) was ground with silicon carbide paper. After treatment with a silane primer, a adhesive agent was applied to each testing specimen. The specimens were then bonded with a light-curing resin composite. After 24 h, the shear bond strength values were determined and compared using a post hoc test (α=0.05, n=8/group). We also prepared control specimens without primer (No primer) and/or without adhesive agent (No adhesive). Results PZ/SB-Dual and GP/SB-Dual presented the highest bond strength, followed by GP/P-Bond, CP/SB-Dual, CP/R-Adhesive, No primer/SB-Dual, GP/R-Adhesive, CP/P-Bond, No primer/R-Adhesive, PZ/R-Adhesive, CP/SB-Self, PZ/P-Bond, PZ/SB-Self, and GP/SB-Self in descending order of bond strength. No primer/P-Bond, No primer/SB-Self, and all specimens in the SB-Light and No adhesive groups presented the lowest bond strengths. Conclusion A dual-curing adhesive agent (SB-Dual) containing a tributylborane derivative in combination with a silane primer (GP or PZ) presents a greater bond strength between the composite block and the repairing resin composite than the comparators used in the study. PMID:29742254
In vitro evaluation of an alternative method to bond molar tubes
PINZAN-VERCELINO, Célia Regina Maio; PINZAN, Arnaldo; GURGEL, Júlio de Araújo; BRAMANTE, Fausto Silva; PINZAN, Luciana Maio
2011-01-01
Despite the advances in bonding materials, many clinicians today still prefer to place bands on molar teeth. Molar bonding procedures need improvement to be widely accepted clinically. Objective The purpose of this study was to evaluate the shear bond strength when an additional adhesive layer was applied on the occlusal tooth/tube interface to provide reinforcement to molar tubes. Material and methods Sixty third molars were selected and allocated to the 3 groups: group 1 received a conventional direct bond followed by the application of an additional layer of adhesive on the occlusal tooth/tube interface, group 2 received a conventional direct bond, and group 3 received a conventional direct bond and an additional cure time of 10 s. The specimens were debonded in a universal testing machine. The results were analyzed statistically by ANOVA and Tukey’s test (α=0.05). Results Group 1 had a significantly higher (p<0.05) shear bond strength compared to groups 2 and 3. No difference was detected between groups 2 and 3 (p>0.05). Conclusions The present in vitro findings indicate that the application of an additional layer of adhesive on the tooth/tube interface increased the shear bond strength of the bonded molar tubes. PMID:21437468
Koodaryan, Roodabeh; Hafezeqoran, Ali
2016-12-01
Polyamide polymers do not provide sufficient bond strength to auto-polymerized resins for repairing fractured denture or replacing dislodged denture teeth. Limited treatment methods have been developed to improve the bond strength between auto-polymerized reline resins and polyamide denture base materials. The objective of the present study was to evaluate the effect of surface modification by acetic acid on surface characteristics and bond strength of reline resin to polyamide denture base. 84 polyamide specimens were divided into three surface treatment groups (n=28): control (N), silica-coated (S), and acid-treated (A). Two different auto-polymerized reline resins GC and Triplex resins were bonded to the samples (subgroups T and G, respectively, n=14). The specimens were subjected to shear bond strength test after they were stored in distilled water for 1 week and thermo-cycled for 5000 cycles. Data were analyzed with independent t-test, two-way analysis of variance (ANOVA), and Tukey's post hoc multiple comparison test (α=.05). The bond strength values of A and S were significantly higher than those of N ( P <.001 for both). However, statistically significant difference was not observed between group A and group S. According to the independent Student's t-test, the shear bond strength values of AT were significantly higher than those of AG ( P <.001). The surface treatment of polyamide denture base materials with acetic acid may be an efficient and cost-effective method for increasing the shear bond strength to auto-polymerized reline resin.
Effects of blood contamination on resin-resin bond strength.
Eiriksson, Sigurdur O; Pereira, Patricia N R; Swift, Edward J; Heymann, Harald O; Sigurdsson, Asgeir
2004-02-01
Incremental placement and curing of resin composites has been recommended. However, this requires longer operating time, and therefore, increased risk of contamination. The purpose of this study was to evaluate the effects of blood contamination on microtensile bond strengths (microTBS) between resin interfaces and to determine the best decontamination method to re-establish the original resin-resin bond strength. The top surfaces of 64, 4-mm composite blocks (Z-250, Renew, APX, Pertac II) were untreated as the control, or were treated as follows: blood applied and dried on the surface (Treatment 1), blood applied, rinsed, dried (Treatment 2), blood applied, rinsed, and an adhesive applied (Single Bond, One-Step, Clearfil SE, Prompt L-Pop) (Treatment 3). Fresh composite was applied and light-cured in 2-mm increments. After 24 h storage in water, the specimens were sectioned into 0.7-mm thick slabs, trimmed to a cross-sectional area of 1 mm(2), and loaded to failure at a crosshead speed of 1 mm/min using an Instron universal testing machine. Data were analyzed using two-way ANOVA and Fisher's PLSD test (p<0.05). Control values ranged from 45.1 MPa for Pertac II to 71.5 MPa for APX. Untreated blood contamination resulted in resin-resin bond strengths of only 1.0-13.1 MPa. Rinsing raised bond strengths to over 40 MPa for each material. Use of an adhesive further increased bond strengths except for Pertac II. Rinsing blood from contaminated surfaces increases the resin-resin bond strength significantly and the application of an appropriate adhesive increases the bond strength to control levels.
Olsen, M E; Bishara, S E; Damon, P; Jakobsen, J R
1997-11-01
Recently, air-abrasion technology has been examined for potential applications within dentistry, including the field of orthodontics. The purpose of this study was to compare the traditional acid-etch technique with an air-abrasion surface preparation technique, with two different sizes of abrading particles. The following parameters were evaluated: (a) shear bond strength, (b) bond failure location, and (c) enamel surface preparation, as viewed through a scanning electron microscope. Sixty extracted human third molars were pumiced and divided into three groups of 20. The first group was etched with a 37% phosphoric acid gel for 30 seconds, rinsed for 30 seconds, and dried for 20 seconds. The second and third groups were air-abraded with (a) a 50 microm particle and (b) a 90 microm particle of aluminum oxide, with the Micro-etcher microabrasion machine (Danville Engineering Inc.). All three groups had molar stainless steel orthodontic brackets bonded to the buccal surface of each tooth with Transbond XT bonding system (3M Unitek). A Zwick Universal Testing Machine (Calitek Corp.) was used to determine shear bond strengths. The analysis of variance was used to compare the three groups. The Adhesive Remnant Index (ARI) was used to evaluate the residual adhesive on the enamel after bracket removal. The chi square test was used to evaluate differences in the ARI scores among the groups. The significance for all tests was predetermined at p < or = 0.05. The results indicated that there was a significant difference in shear bond strength among the three groups (p = 0.0001). The Duncan Multiple Range test showed a significant decrease in shear bond strength in the air-abraded groups. The chi square test revealed significant differences among the ARI scores of the acid-etched group and the air-abraded groups (chi(2) = 0.0001), indicating no adhesive remained on the enamel surface after debonding when air-abrasion was used. In conclusion, the current findings indicate that enamel surface preparation using air-abrasion results in a significant lower bond strength and should not be advocated for routine clinical use as an enamel conditioner at this time.
An evaluation of shear bond strength of self-etch adhesive on pre-etched enamel: an in vitro study.
Rao, Bhadra; Reddy, Satti Narayana; Mujeeb, Abdul; Mehta, Kanchan; Saritha, G
2013-11-01
To determine the shear bond strength of self-etch adhesive G-bond on pre-etched enamel. Thirty caries free human mandibular premolars extracted for orthodontic purpose were used for the study. Occlusal surfaces of all the teeth were flattened with diamond bur and a silicon carbide paper was used for surface smoothening. The thirty samples were randomly grouped into three groups. Three different etch systems were used for the composite build up: group 1 (G-bond self-etch adhesive system), group 2 (G-bond) and group 3 (Adper single bond). Light cured was applied for 10 seconds with a LED unit for composite buildup on the occlusal surface of each tooth with 8 millimeters (mm) in diameter and 3 mm in thickness. The specimens in each group were tested in shear mode using a knife-edge testing apparatus in a universal testing machine across head speed of 1 mm/ minute. Shear bond strength values in Mpa were calculated from the peak load at failure divided by the specimen surface area. The mean shear bond strength of all the groups were calculated and statistical analysis was carried out using one-way Analysis of Variance (ANOVA). The mean bond strength of group 1 is 15.5 Mpa, group 2 is 19.5 Mpa and group 3 is 20.1 Mpa. Statistical analysis was carried out between the groups using one-way ANOVA. Group 1 showed statistically significant lower bond strength when compared to groups 2 and 3. No statistical significant difference between groups 2 and 3 (p < 0.05). Self-etch adhesive G-bond showed increase in shear bond strength on pre-etched enamel.
Low-temperature poly(oxymethylene) direct bonding via self-assembled monolayer
NASA Astrophysics Data System (ADS)
Fu, Weixin; Ma, Bo; Kuwae, Hiroyuki; Shoji, Shuichi; Mizuno, Jun
2018-02-01
A direct bonding of poly(oxymethylene) (POM) was feasible at 100 °C by using self-assembled monolayer (SAM) as a surface modification method. (3-aminopropyl)triethoxysilane (APTES) and (3-glycidyloxypropyl)trimethoxysilane (GOPTS) were used in our work. X-ray photoelectron spectroscopy showed that both APTES and GOPTS modified the POM surface successfully. Bonding strength evaluation revealed that surface modification was affected by pretreatment (VUV/O3) process time. In addition, the bonding condition with highest strength had an average strength of 372 kPa. This technology is expected to be used in packaging for micro-/nano-electromechanical systems, such as biomedical devices.
Raji, S. Hamid; Ghorbanipour, Reza; Majdzade, Fateme
2011-01-01
Background: The aim of this study was to evaluate the shear bond strength of an antimicrobial and fluoride-releasing self-etch primer (clearfil protect bond) and compare it with transbond plus self-etch primer and conventional acid etching and priming system. Materials and Methods: Forty-eight extracted human premolars were divided randomly to three groups. In group 1, the teeth were bonded with conventional acid etching and priming method. In group 2, the teeth were bonded with clearfil protect bond self-etch primer, and transbond plus self-etch primer was used to bond the teeth in group 3. The samples were stored in 37°C distilled water and thermocycled. Then, the SBS of the sample was evaluated with Zwick testing machine. Descriptive statistics and the analysis of variances (ANOVA) and Tukey's test and Kruskal-Wallis were used to analyze the data. Results: The results of the ANOVA showed that the mean of group 3 was significantly lower than that of other groups. Most of the sample showed a pattern of failure within the adhesive resin. Conclusion: The shear bond strength of clearfil protect bond and transbond plus self-etch primer was enough for bonding the orthodontic brackets. The mode of failure of bonded brackets with these two self-etch primers is safe for enamel. PMID:23372605
Mohammadi, Narmin; Bahari, Mahmoud; Kimyai, Soodabeh; Rahbani Nobar, Behnam
2015-01-01
Objectives: Composite repair is a minimally invasive and conservative approach. This study aimed to evaluate the effect of an additional hydrophobic resin layer on the repair shear bond strength of a silorane-based composite repaired with silorane or methacrylate-based composite. Materials and Methods: Sixty bar-shaped composite blocks were fabricated and stored in saline for 72 hours. The surface of the samples were roughened by diamond burs and etched with phosphoric acid; then, they were randomly divided into three groups according to the repairing process: Group 1: Silorane composite-silorane bonding agent-silorane composite; group 2: Silorane composite-silorane bonding agent-hydrophobic resin-silorane composite, and group 3: Silorane composite-silorane bonding agent-hydrophobic resin methacrylate-based composite. Repairing composite blocks measured 2.5×2.5×5mm. After repairing, the samples were stored in saline for 24 hours and thermocycled for 1500 cycles. The repair bond strength was measured at a strain rate of 1mm/min. Twenty additional cylindrical composite blocks (diameter: 2.5mm, height: 6mm) were also fabricated for measuring the cohesive strength of silorane-based composite. The data were analyzed using One-way ANOVA and the post hoc Tukey’s test (α=0.05). Results: Cohesive bond strength of silorane composite was significantly higher than the repair bond strengths in other groups (P<0.001). The repair bond strength of group 3 was significantly higher than that of group 1 (P=0.001). Conclusion: Application of an additional hydrophobic resin layer for repair of silorane-based composite with a methacrylate-based composite enhanced the repair shear bond strength. PMID:27559348
Heravi, Farzin; Moazzami, Saied Mostafa; Ghaffari, Negin; Jalayer, Javad; Bozorgnia, Yasaman
2013-11-21
Although using light-cured composites for bonding orthodontic brackets has become increasingly popular, curing light cannot penetrate the metallic bulk of brackets and polymerization of composites is limited to the edges. Limited access and poor direct sight may be a problem in the posterior teeth. Meanwhile, effectiveness of the trans-illumination technique is questionable due to increased bucco-lingual thickness of the posterior teeth. Light-emitting diode (LED) light-curing units cause less temperature rise and lower risk to the pulpal tissue. The purpose of this study was to evaluate the clinical effectiveness of trans-illumination technique in bonding metallic brackets to premolars, using different light intensities and curing times of an LED light-curing unit. Sixty premolars were randomly divided into six groups. Bonding of brackets was done with 40- and 80-s light curing from the buccal or lingual aspect with different intensities. Shear bond strengths of brackets were measured using a universal testing machine. Data were analyzed by one-way analysis of variance test and Duncan's post hoc test. The highest shear bond belonged to group 2 (high intensity, 40 s, buccal) and the lowest belonged to group 3 (low intensity, 40 s, lingual). Bond strength means in control groups were significantly higher than those in experimental groups. In all experimental groups except group 6 (80 s, high intensity, lingual), shear bond strength was below the clinically accepted values. In clinical limitations where light curing from the same side of the bracket is not possible, doubling the curing time and increasing the light intensity during trans-illumination are recommended for achieving acceptable bond strengths.
Zhang, Zhe-Chen; Qian, Yu-Fen; Yang, Yi-Ming; Feng, Qi-Ping; Shen, Gang
2016-09-01
The purpose of this work was to evaluate the effects of several surface treatment methods on the shear bond strengths of metal brackets bonded to a silica-based ceramic with a light-cured adhesive. Silica-based ceramic (IPS Classic(®)) with glazed surfaces was cut into discs that were used as substrates. A total of 80 specimens were randomly divided into four groups according to the method used: 9.6 % hydrofluoric acid (group 1), 9.6 % hydrofluoric acid (HF) + silane coupling agent (group 2), sandblasting (aluminum trioxide, 50 μm) + silane (group 3), and tribochemical silica coating (CoJet™ sand, 30 μm) + silane (group 4). Brackets were bonded to the treated specimens with a light-cure adhesive (Transbond XT, 3 M Unitek). Shear bond strength was tested after bracket bonding, and the Adhesive Remnant Index (ARI) scores were quantified after debonding. Group 4 showed the highest bond strength (12.3 ± 1.0 MPa), which was not significantly different from that of group 3 (11.6 ± 1.2 MPa, P > 0.05); however, the bond strength of group 4 was substantially higher than that of group 2 (9.4 ± 1.1 MPa, P < 0.05). The shear bond strength of group 1 (3.1 ± 0.6 MPa, P< 0.05) was significantly lower than that of the other groups. Shear bond strengths exceeded the optimal range of ideal bond strength for clinical practice, except for the isolated HF group. HF acid etching followed by silane was the best suited method for bonding on IPS Classic(®). Failure modes in the sandblasting and silica-coating groups revealed signs of damaged ceramic surfaces.
Evaluation of a new nano-filled restorative material for bonding orthodontic brackets.
Bishara, Samir E; Ajlouni, Raed; Soliman, Manal M; Oonsombat, Charuphan; Laffoon, John F; Warren, John
2007-01-01
To compare the shear bond strength of a nano-hybrid restorative material, Grandio (Voco, Cuxhaven, Germany), to that of a traditional adhesive material (Transbond XT; 3M Unitek, Monrovia, CA, USA) when bonding orthodontic brackets. Forty teeth were randomly divided into 2 groups: 20 teeth were bonded with the Transbond adhesive system and the other 20 teeth with the Grandio restorative system, following manufacturer's instructions. Student t test was used to compare the shear bond strength of the 2 systems. Significance was predetermined at P 5 .05. The t test comparisons (t = 0.55) of the shear bond strength between the 2 adhesives indicated the absence of a significant (P = .585) difference. The mean shear bond strength for Grandio was 4.1 +/- 2.6 MPa and that for Transbond XT was 4.6 +/- 3.2 MPa. During debonding, 3 of 20 brackets (15%) bonded with Grandio failed without registering any force on the Zwick recording. None of the brackets bonded with Transbond XT had a similar failure mode. The newly introduced nano-filled composite materials can potentially be used to bond orthodontic brackets to teeth if its consistency can be more flowable to readily adhere to the bracket base.
Push-off tests and strength evaluation of joints combining shrink fitting with bonding
NASA Astrophysics Data System (ADS)
Yoneno, Masahiro; Sawa, Toshiyuki; Shimotakahara, Ken; Motegi, Yoichi
1997-03-01
Shrink fitted joints have been used in mechanical structures. Recently, joints combining shrink fitting with anaerobic adhesives bonded between the shrink fitted surfaces have been appeared in order to increase the joint strength. In this paper, push-off test was carried out on strength of joints combining shrink fitting with bonding by material testing machine. In addition, the push-off strength of shrink fitting joints without an anaerobic adhesive was also measured. In the experiments, the effects of the shrinking allowance and the outer diameter of the rings on the joint strength are examined. The interface stress distribution in bonded shrink fitted joints subjected to a push-off load is analyzed using axisymmetrical theory of elasticity as a four-body contact problem. Using the interface stress distribution, a method for estimating joint strength is proposed. The experimental results are in a fairly good agreement with the numerical results. It is found that the strength of combination joints is greater than that of shrink fitted joints.
Microshear bond strength of self-etching systems associated with a hydrophobic resin layer.
De Vito Moraes, André Guaraci; Francci, Carlos; Carvalho, Ceci Nunes; Soares, Silvio Peixoto; Braga, Roberto Ruggiero
2011-08-01
To evaluate in vitro the microshear bond strength of adhesive systems applied to dentin according to manufacturers' instructions, associated or not with a hydrophobic layer of unfilled resin. Six self-etching adhesives (Clearfil SE Bond, Kuraray Medical; AdheSE, Ivoclar Vivadent; Xeno III, Dentsply; I Bond, Heraeus-Kulzer; Bond Force, Tokuyama; Futurabond DC, Voco) were tested. The labial dentin of sixty bovine incisors was exposed, and the teeth were divided into two groups according to the application or not of an extra hydrophobic resin layer (Scotchbond Multi Purpose Plus, bottle 3). Six composite cylinders (Filtek Z250, 3M ESPE) were built up on each treated surface. Specimens were stored in distilled water at 37ºC for 24 h and then subjected to the microshear bond strength test in a universal testing machine at a crosshead speed of 0.5 mm/min. Microshear bond strength values were analyzed by 2-way ANOVA and Tukey's post-hoc test. Failure mode was determined using a stereomicroscope under 20X magnification. The application of the hydrophobic resin layer did not affect bond strength, except for AdheSE. However, the bond strengths with the hydrophobic layer were similar among the six tested systems (Clearfil: 17.1 ± 7.9; AdheSE: 14.5 ± 7.1; Xeno lll: 12.8 ± 7.7; I Bond: 9.5 ± 5.8; Bond Force: 17.5 ± 4.1; Futurabond: 7.7 ± 2.3). When used as recommended by the manufacturers, Bond Force presented statistically higher bond strength than AdheSE and I Bond (p < 0.05) (Clearfil 10.4 ± 4.9; AdheSE 1.6 ± 1.6; Xeno lll: 9.0 ± 3.8; I Bond: 3.0 ± 1.5; Bond Force: 14 ± 3.9; Futurabond: 8.8 ± 3.8). Failure mode was predominantly adhesive. The bond strength of the self-etching systems tested was not significantly affected by the application of a hydrophobic layer, but a significant improvement was observed in AdheSE.
Enhancing integration of articular cartilage grafts via photochemical bonding.
Arvayo, Alberto L; Wong, Ivan J; Dragoo, Jason L; Levenston, Marc E
2018-03-25
The integration of osteochondral grafts to native articular cartilage is critical as the lack of graft integration may lead to continued tissue degradation, poor load transfer and inadequate nutrient transport. Photochemical bonding promotes graft integration by activating a photosensitizer at the interface via a light source and avoids negative effects associated with other bonding techniques. We hypothesized that the bond strength depends on photosensitizer type and concentration in addition to light exposure. Photochemical bonding was evaluated using methylene blue (MB), a cationic phenothiazine photosensitizer, and two phthalocyanine photosensitizers, Al(III) phthalocyanine chloride tetrasulfonic acid (CASPc) and aluminum phthalocyanine chloride (AlPc). Exposure was altered by varying irradiation time for a fixed irradiance or by varying irradiance with a fixed irradiation time. MB was ineffective at producing bonding at the range of concentrations tested while CASPc produced a peak twofold bond strength increase over controls. AlPc produced substantial bonding at all concentrations with a peak 3.9-fold bond strength increase over controls. Parametric tests revealed that bond strength depended primarily on the total energy delivered to the bonding site rather than the rate of light delivery or light irradiance. Bond strength persisted for 1 week of in-vitro culture, which warrants further exploration for clinical applications. These studies indicate that photochemical bonding is a viable strategy for enhancing articular cartilage graft integration. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Leão, Juliana C.; Mota, Cláudia C. B. O.; Cassimiro-silva, Patricia F.; Gomes, Anderson S. L.
2016-02-01
This study aimed to evaluate the shear bond strength (SBS) of teeth prepared for orthodontic bracket bonding with 37% phosphoric acid and Er:YAG laser. Forty bovine incisors were divided into two groups. In Group I, the teeth were conditioned with 37% phosphoric acid and brackets were bonded with Transbond XT; in Group II, the teeth were irradiated with Er:YAG and bonding with Transbond XT. After SBS test, the adhesive remnant index was determined. Adhesion to dental hard tissues after Er:YAG laser etching was inferior to that obtained after acid etching but exceeded what is believed to be clinically sufficient strength, and therefore can be used in patients.
Nagar, Namit; Vaz, Anna C
2013-01-01
To compare the shear bond strength of a nano-ceramic restorative composite Ceram-X Mono(TM♦), a restorative resin with the traditional orthodontic composite Transbond XT(TM†) and to evaluate the site of bond failure using Adhesive Remnant Index. Sixty extracted human premolars were divided into two groups of 30 each. Stainless steel brackets were bonded using Transbond XT(TM†) (Group I) and Ceram-X Mono(TM♦) (Group II) according to manufacturer's protocol. Shear bond strength was measured on Universal testing machine at crosshead speed of 1 mm/minute. Adhesive Remnant Index scores were assigned to debonded brackets of each group. Data was analyzed using unpaired 't' test and Chi square test. The mean shear bond strength of Group I (Transbond XT(TM†)) was 12.89 MPa ± 2.19 and that of Group II (Ceram-X Mono(TM)) was 7.29 MPa ± 1.76. Unpaired 't' test revealed statistically significant differences amongst the shear bond strength of the samples measured. Chi-square test revealed statistically insignificant differences amongst the ARI scores of the samples measured. Ceram-X Mono(TM♦) had a lesser mean shear bond strength when compared to Transbond XT(TM†) which was statistically significant difference. However, the mean shear bond of Ceram X Mono was within the clinically acceptable range for bonding. Ceram-X Mono(TM†) and Transbond XT(TM†) showed cohesive fracture of adhesive in 72.6% and 66.6% of the specimens, respectively.
Yildirim, T; Ayar, M K; Yesilyurt, C; Kilic, S
2016-01-01
The aim of the present study was to compare two different bond strength test methods (tensile and microtensile) in investing the influence of erbium, chromium: yttrium-scandium-gallium-garnet (Er, Cr: YSGG) laser pulse frequency on resin-enamel bonding. One-hundred and twenty-five bovine incisors were used in the present study. Two test methods were used: Tensile bond strength (TBS; n = 20) and micro-TBS (μTBS; n = 5). Those two groups were further split into three subgroups according to Er, Cr: YSGG laser frequency (20, 35, and 50 Hz). Following adhesive procedures, microhybrid composite was placed in a custom-made bonding jig for TBS testing and incrementally for μTBS testing. TBS and μTBS tests were carried out using a universal testing machine and a microtensile tester, respectively. Analysis of TBS results showed that means were not significantly different. For μTBS, the Laser-50 Hz group showed the highest bond strength (P < 0.05), and increasing frequency significantly increased bond strength (P < 0.05). Comparing the two tests, the μTBS results showed higher means and lower standard deviations. It was demonstrated that increasing μTBS pulse frequency significantly improved immediate bond strength while TBS showed no significant effect. It can, therefore, be concluded that test method may play a significant role in determining optimum laser parameters for resin bonding.
Fushiki, Ryosuke; Komine, Futoshi; Honda, Junichi; Kamio, Shingo; Blatz, Markus B; Matsumura, Hideo
2015-06-01
This study evaluated the long-term shear bond strength between an indirect composite material and a zirconia framework coated with silica-based ceramics, taking the effect of different primers into account. A total of 165 airborne-particle abraded zirconia disks were subjected to one of three pretreatments: no pretreatment (ZR-AB), airborne-particle abrasion of zirconia coated with feldspathic porcelain (ZR-PO-AB), and 9.5% hydrofluoric acid etching of zirconia coated with feldspathic porcelain (ZR-PO-HF). An indirect composite material (Estenia C&B) was then bonded to the zirconia disks after they were treated with one of the following primers: Clearfil Photo Bond (CPB), Clearfil Photo Bond with Clearfil Porcelain Bond Activator (CPB + Activator), Estenia Opaque Primer (EOP), Porcelain Liner M Liquid B (PLB), or no priming (CON, control group). Shear bond strength was tested after 100,000 thermocycles, and the data were analyzed using the Steel-Dwass U-test (α = 0.05). For ZR-PO-AB and ZR-PO-HF specimens, bond strength was highest in the CPB+Activator group (25.8 MPa and 22.4 MPa, respectively). Bond strengths were significantly lower for ZR-AB specimens in the CON and PLB groups and for ZR-PO-AB specimens in the CON, CPB, and EOP groups. Combined application of a hydrophobic phosphate monomer (MDP) and silane coupling agent enhanced the long-term bond strength of indirect composite material to a zirconia coated with silica-based ceramics.
Minami, Hiroyuki; Murahara, Sadaaki; Suzuki, Shiro; Tanaka, Takuo
2011-12-01
Although the effectiveness of primers for resin bonding to noble alloys has been demonstrated, no effective clinical technique for bonding to noble metal ceramic alloys has been established. The purpose of this study was to evaluate the effects of metal primers on the shear bond strength of an adhesive resin to noble metal ceramic alloys after thermal cycling. Sixty-three disk-shaped specimens (10 × 2.5 mm) were cast from high-gold-content alloys (Super Metal W-85: W85 or IFK88 GR: IFK88), a high-palladium-content alloy (Super Metal N-40: N40), and an Ag-Pd-Cu-Au alloy (Castwell M.C.12: MC12). Smaller-sized disk-shaped specimens (8 × 2.5 mm) were fabricated with MC12. Bonding surfaces were finished with 600-grit SiC-paper and airborne-particle abraded with 50-μm alumina. Pairs of disks were primed (V-Primer: VP; ML Primer: ML; or Metaltite: MT) and bonded with an adhesive resin (Super-Bond C&B). The bond strengths were determined before and after 20,000 and 50,000 thermal cycles (n=7). Data were analyzed by using a 3-way ANOVA and the Bonferroni test (α=.05). Failure modes were determined by optical microscope and SEM observation. Bond strengths to high-gold-content alloys with VP and MT significantly decreased after the thermal cycling (P<.001). Bond strengths to W85 (35.27 ±4.25 MPa) and IFK88 (33.57 ±3.56 MPa) after 50,000 thermal cycles obtained by ML were the highest (P<.001), and these groups showed combination failures. Bond strengths to N40 significantly decreased after 50,000 thermal cycles (P<.001), regardless of primers. Shear bond strengths (SBS) to high-gold-content alloys were not degraded up to 50,000 thermal cycles when primed with ML. None of the primers evaluated was effective for high-palladium-content alloy. Copyright © 2011 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
Mirhashemi, Amir Hossein; Chiniforush, Nasim; Sharifi, Nastaran; Hosseini, Amir Mehdi
2018-05-01
Several techniques have been proposed to obtain a durable bond, and the efficacy of these techniques is assessed by measuring parameters such as bond strength. Laser has provided a bond strength as high as that of acid etching in vitro and has simpler use with shorter clinical time compared to acid etching. This study aimed to compare the efficacy of Er:YAG and Er,Cr:YSGG lasers for etching and bonding of composite to orthodontic brackets. No previous study has evaluated the effect of these particular types of laser. A total of 70 composite blocks were randomly divided into five groups (n = 14): group 1, etching with phosphoric acid for 20 s; group 2, Er:YAG laser irradiation with 2 W power for 10 s; group 3, Er:YAG laser with 3 W power for 10 s; group 4, Er,Cr:YSGG laser with 2 W power for 10 s; group 5, Er,Cr:YSGG laser with 3 W power for 10 s. Metal brackets were then bonded to composites, and after 5000 thermal cycles, they were subjected to shear bond strength test in a universal testing machine after 24 h of water storage. One sample of each group was evaluated under a scanning electron microscope (SEM) to assess changes in composite surface after etching. The adhesive remnant index (ARI) was calculated under a stereomicroscope. Data were statistically analyzed. The mean and standard deviation of shear bond strength were 18.65 ± 3.36, 19.68 ± 5.34, 21.31 ± 4.03, 17.38 ± 6.94, and 16.45 ± 4.26 MPa in groups 1-5, respectively. The ARI scores showed that the bond failure mode in all groups was mainly mixed. The groups were not significantly different in terms of shear bond strength. Er:YAG and Er,Cr:YSGG lasers with the mentioned parameters yield optimal shear bond strength and can be used as an alternative to acid etching for bracket bond to composite.
Composite adhesive bonds reinforced with microparticle filler based on egg shell waste
NASA Astrophysics Data System (ADS)
Müller, Miroslav; Valášek, Petr
2018-05-01
A research on composite adhesive bonds reinforced with waste from hen eggs processing, i.e. egg shell waste (ESW) is based on an assumption of the utilization of agricultural/food production waste. The aim of the research is to gain new pieces of knowledge about the material utilization of ESW, i.e. to evaluate possibilities of the use of various concentrations of ESW microparticles smaller than 100 µm based on hen egg shells as the filler in a structural resin used for a creation of adhesive bonds from bearing metal elements. An adhesive bond strength, an elongation at break and a fracture surface were evaluated within the research on adhesive bonds. The experiment results proved the efficiency of ESW filler in the area of composite adhesive bonds. The adhesive bond strength was increased up of more than 17 % by adding 40 wt.% of ESW microparticles.
The effect of enamel bleaching on the shear bond strengths of metal and ceramic brackets.
Oztaş, E; Bağdelen, G; Kiliçoğlu, H; Ulukapi, H; Aydin, I
2012-04-01
The aim of this study was to evaluate the effects of bleaching and delayed bonding on the shear bond strengths of metal and ceramic brackets bonded with light and chemically cure composite resin to human enamel. One hundred and twenty extracted human premolar teeth were randomly divided into three groups of 40 each. The first two groups were bleached with 20 per cent carbamide peroxide (CP) at-home bleaching agent. No bleaching procedures were applied to the third group and served as control. The first two and control groups were divided into equal subgroups according to different adhesive-bracket combinations. Specimens in group 1 (n = 40) were bonded 24 hours after bleaching process was completed while the specimens in group 2 (n = 40) were bonded 14 days after. The specimens in all groups were debonded with a Universal testing machine while the modified adhesive remnant index was used to evaluate fracture properties. No statistically significant differences were found between the shear bond strengths of metal and ceramic brackets bonded to bleached enamel after 24 hours, 14 days, and unbleached enamel with light or chemical cure adhesives (P > 0.05). The mode of failure was mostly at the bracket/adhesive interface and cohesive failures within the resin were also observed. Our findings indicated that at-home bleaching agents that contain 20 per cent CP did not significantly affect the shear bond strength of metal and ceramic orthodontic brackets to enamel when bonding is performed 24 hours or 14 days after bleaching.
Influence of Hot-Etching Surface Treatment on Zirconia/Resin Shear Bond Strength
Lv, Pin; Yang, Xin; Jiang, Ting
2015-01-01
This study was designed to evaluate the effect of hot-etching surface treatment on the shear bond strength between zirconia ceramics and two commercial resin cements. Ceramic cylinders (120 units; length: 2.5 mm; diameter: 4.7 mm) were randomly divided into 12 groups (n = 10) according to different surface treatments (blank control; airborne-particle-abrasion; hot-etching) and different resin cements (Panavia F2.0; Superbond C and B) and whether or not a thermal cycling fatigue test (5°–55° for 5000 cycles) was performed. Flat enamel surfaces, mounted in acrylic resin, were bonded to the zirconia discs (diameter: 4.7 mm). All specimens were subjected to shear bond strength testing using a universal testing machine with a crosshead speed of 1 mm/min. All data were statistically analyzed using one-way analysis of variance and multiple-comparison least significant difference tests (α = 0.05). Hot-etching treatment produced higher bond strengths than the other treatment with both resin cements. The shear bond strength of all groups significantly decreased after the thermal cycling test; except for the hot-etching group that was cemented with Panavia F2.0 (p < 0.05). Surface treatment of zirconia with hot-etching solution enhanced the surface roughness and bond strength between the zirconia and the resin cement. PMID:28793699
Bond strength of dental adhesive systems irradiated with ionizing radiation.
Dibo da Cruz, Adriana; Goncalves, Luciano de Souza; Rastelli, Alessandra Nara de Souza; Correr-Sobrinho, Lorenco; Bagnato, Vanderlei Salvador; Boscolo, Frab Norberto
2010-04-01
The aim of the present paper was to determine the effect of different types of ionizing radiation on the bond strength of three different dentin adhesive systems. One hundred twenty specimens of 60 human teeth (protocol number: 032/2007) sectioned mesiodistally were divided into 3 groups according to the adhesives systems used: SB (Adper Single Bond Plus), CB (Clearfil SE Bond) and AP (Adper Prompt Self-Etch). The adhesives were applied on dentin and photo-activated using LED (Lec 1000, MMoptics, 1000 mW/cm2). Customized elastomer molds (0.5 mm thickness) with three orifices of 1.2 mm diameter were placed onto the bonding areas and filled with composite resin (Filtek Z-250), which was photo-activated for 20 s. Each group was subdivided into 4 subgroups for application of the different types of ionizing radiation: ultraviolet radiation (UV), diagnostic x-ray radiation (DX), therapeutic x-ray radiation (TX) and without irradiation (control group, CG). Microshear tests were carried out (Instron, model 4411), and afterwards the modes of failure were evaluated by optical and scanning electron microscope and classified using 5 scores: adhesive failure, mixed failures with 3 significance levels, and cohesive failure. The results of the shear bond strength test were submitted to ANOVA with Tukey's test and Dunnett's test, and the data from the failure pattern evaluation were analyzed with the Mann Whitney test (p = 0.05). No change in bond strength of CB and AP was observed after application of the different radiation types, only SB showed increase in bond strength after UV (p = 0.0267) irradiation. The UV also changed the failure patterns of SB (p = 0.0001). The radio-induced changes did not cause degradation of the restorations, which means that they can be exposed to these types of ionizing radiation without weakening the bond strength.
Yoo, H M; Pereira, P N R
2006-01-01
This study evaluated the effect of blood contamination and decontamination methods on the microtensile bond strength of 1-step self-etching adhesive systems to dentin contaminated after adhesive application and light curing. Three commercially available "all-in-one" adhesives (One Up Bond F, Xeno III and Adper Prompt L-Pop) and 1 resin composite (Clearfil AP-X) were used. Third molars that had been stored in distilled water with 0.5% thymol at 4 degrees C were ground with #600 SiC paper under running water to produce a standardized smear layer. The specimens were randomly divided into groups according to the 3 adhesive systems. The adhesive systems were used under 3 conditions: no contamination, which was the control (C); contamination of the light-cured adhesive surface with blood and reapplication of adhesive (Contamination 1) and contamination of the light-cured adhesive surface with blood, then washing, drying and reapplication of the adhesive (Contamination 2). Following light curing of the adhesive, the resin composite was placed in 3 increments up to a 5-mm-thick layer on the bonded surface. All specimens were stored in distilled water at 37 degrees C for 24 hours. The microtensile bond strength was measured using a universal testing machine (EZ test), and data were analyzed by 1-way ANOVA followed by the Duncan test to make comparisons among the groups (p=0.05). After debonding, 5 specimens were selected from each group and examined in a scanning electron microscope to evaluate the modes of fracture. For all adhesives, contamination groups showed lower bond strength than the control (p<0.05). There was no statistically significant difference among the control groups (p>0.05). For Xeno III and Adper Prompt L-Pop, contamination group #2 showed the lowest bond strength among the groups (p<0.05). For One Up Bond F, contamination group #2 showed higher bond strength than contamination group #1 but showed no statistical significance between them (p>0.05).
Bijelic-Donova, Jasmina; Garoushi, Sufyan; Lassila, Lippo V J; Vallittu, Pekka K
2015-02-01
An oxygen inhibition layer develops on surfaces exposed to air during polymerization of particulate filling composite. This study assessed the thickness of the oxygen inhibition layer of short-fiber-reinforced composite in comparison with conventional particulate filling composites. The effect of an oxygen inhibition layer on the shear bond strength of incrementally placed particulate filling composite layers was also evaluated. Four different restorative composites were selected: everX Posterior (a short-fiber-reinforced composite), Z250, SupremeXT, and Silorane. All composites were evaluated regarding the thickness of the oxygen inhibition layer and for shear bond strength. An equal amount of each composite was polymerized in air between two glass plates and the thickness of the oxygen inhibition layer was measured using a stereomicroscope. Cylindrical-shaped specimens were prepared for measurement of shear bond strength by placing incrementally two layers of the same composite material. Before applying the second composite layer, the first increment's bonding site was treated as follows: grinding with 1,000-grit silicon-carbide (SiC) abrasive paper, or treatment with ethanol or with water-spray. The inhibition depth was lowest (11.6 μm) for water-sprayed Silorane and greatest (22.9 μm) for the water-sprayed short-fiber-reinforced composite. The shear bond strength ranged from 5.8 MPa (ground Silorane) to 36.4 MPa (water-sprayed SupremeXT). The presence of an oxygen inhibition layer enhanced the interlayer shear bond strength of all investigated materials, but its absence resulted in cohesive and mixed failures only with the short-fiber-reinforced composite. Thus, more durable adhesion with short-fiber-reinforced composite is expected. © 2014 Eur J Oral Sci.
Shori, Deepa; Pandey, Swapnil; Kubde, Rajesh; Rathod, Yogesh; Atara, Rahul; Rathi, Shravan
2013-10-01
Fiber posts are widely used for restoration of mutilated teeth that lack adequate coronal tooth structure to retain a core for definitive restoration, bond between the fiber post and composite material depends upon the chemical reaction between the post surface and the resin material used for building up the core. In attempt to maximize the resin bonding with fiber post, different post surface conditioning is advocated. Therefore the purpose of the study is to examine the interfacial strength between fiber post and composite, as core build-up material after different surface treatments of fiber posts. Twenty fiber posts were split into four groups off five each according to different surface treatments viz. Group I-(Negative Control), Group II-Silanization (Positive control), Group III-(37% Phosphoric Acid & Silanization) ,Group IV- (10% Hydrogen Peroxide and Silanization). With the preformed plastic mould, a core of dual cure composite resin around the fiber post having the uniform thickness was created. Tensile bond strength of each specimen was measured under Universal Testing Machine (UTM) at the cross head speed of 3mm/min. The results achieved with 10% Hydrogen peroxide had a marked effect on micro tensile bond strength values between the tested materials. Immense enhancement in the silanization efficiency of quartz fiber phase was observed with different surface chemical treatment of the resin phase of fiber posts with the marked increase in the micro-tensile bond strength between fiber post and composite core. Shori D, Pandey S, Kubde R, Rathod Y, Atara R, Rathi S. To evaluate and compare the effect of different Post Surface treatments on the Tensile Bond Strength between Fiber Posts and Composite Resin. J Int Oral Health 2013; 5(5):27-32.
Veneer Ceramic to Y-TZP Bonding: Comparison of Different Surface Treatments.
Kirmali, Omer; Kapdan, Alper; Kustarci, Alper; Er, Kursat
2016-06-01
The purpose of this study was to evaluate the effects of various surface-treatment techniques for enhancing the bond strength between veneering ceramic and yttria-stabilized tetragonal zirconia polycrystals (Y-TZP). Pre-sintered Y-TZP specimens were divided into eight groups (n = 10) according to the surface-treatment technique used: (a) untreated (control); (b) air abrasion with aluminum oxide particles; (c) erbium, chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser irradiation at different energy intensities (1 to 6 W). All specimens were then sintered and veneered with veneering ceramic according to the manufacturer's instructions. The obtained zirconia-ceramic specimens were immersed in 37°C distilled water for 24 hours before a shear bond strength test using a universal testing device at a 1 mm/min crosshead speed. The average values were calculated. After debonding, the Y-TZP surfaces were examined under a stereomicroscope to determine their fracture pattern, and the surface topography was evaluated with scanning electron microscopy after surface treatments. The bond strength ranged from 13.24 to 20.54 MPa. All surface treatments increased the bond strength between the veneering ceramic and Y-TZP; however, the value for the 6 W irradiation group was significantly different from the values for other groups (p ˂ 0.05). The present study's findings showed that higher energy densities were needed for the laser irradiation to improve the bond strength between the veneering ceramic and zirconia. Y-TZP is commonly used as a core material in fixed restorations. The bond strength between zirconia and the veneering ceramic can be affected by various surface treatments. © 2015 by the American College of Prosthodontists.
Hatamleh, Muhanad M; Watts, David C
2011-02-01
To evaluate the effect of three commonly used bond primers on the bending strength of glass fibers and their bond strength to maxillofacial silicone elastomer after 360 hours of accelerated daylight aging. Eighty specimens were fabricated by embedding resin-impregnated fiber bundles (1.5-mm diameter, 20-mm long) into maxillofacial silicone elastomer M511 (Cosmesil). Twenty fiber bundles served as control and did not receive surface treatment with primers, whereas the remaining 60 fibers were treated with three primers (n = 20): G611 (Principality Medical), A-304 (Factor II), and A-330-Gold (Factor II). Forty specimens were dry stored at room temperature (23 ± 1°C) for 24 hours, and the remaining specimens were aged using an environmental chamber under accelerated exposure to artificial daylight for 360 hours. The aging cycle included continuous exposure to quartz-filtered visible daylight (irradiance 760 W/m(2) ) under an alternating weathering cycle (wet for 18 minutes, dry for 102 minutes). Pull-out tests were performed to evaluate bond strength between fiber bundles and silicone using a universal testing machine at 1 mm/min crosshead speed. A 3-point bending test was performed to evaluate the bending strength of the fiber bundles. One-way Analysis of Variance (ANOVA), Bonferroni post hoc test, and an independent t-test were carried out to detect statistical significances (p < 0.05). Mean (SD) values of maximum pull-out forces (N) before aging for groups: no primer, G611, A-304, A-330-G were: 13.63 (7.45), 20.44 (2.99), 22.06 (6.69), and 57.91 (10.15), respectively. All primers increased bond strength in comparison to control specimens (p < 0.05). Primer A-330-G showed the greatest increase among all primers (p < 0.05); however, bonding degraded after aging (p < 0.05), and pull-out forces were 13.58 (2.61), 6.17 (2.89), 6.95 (2.61), and 11.72 (3.03). Maximum bending strengths of fiber bundles at baseline increased after treatment with primers and light aging in comparison with control specimens (p < 0.05), and were in the range of 917.72 to 1095.25 and 1124.06 to 1596.68 MPa at both baseline and after 360 hours aging (p < 0.05). The use of A-330-G primer in conjunction with silicone Cosmesil M511 produced the greatest bond strength for silicone-glass fiber surfaces at baseline; however, bond strength was significantly degraded after accelerated daylight aging. Treatment with primer and accelerated daylight aging increased bending strength of glass fibers. © 2011 by The American College of Prosthodontists.
NASA Technical Reports Server (NTRS)
Illg, W.
1986-01-01
A partial-bonding interlaminar toughening concept was evaluated for resistance to impact and for behavior of a loaded hole. Perforated Mylar sheets were interleaved between all 24 plies of a graphite/epoxy quasi-isotropic lay-up. Specimens were impacted by aluminum spheres while under tensile or compressive loads. Impact-failure thresholds and residual strengths were obtained. Loaded-hole specimens were tested in three configurations that were critical in bearing, shear, or tension. Partial bonding reduced the tensile and compressive strengths of undamaged specimens by about one-third. For impact, partial bonding did not change the threshold for impact failure under tensile preload. However, under compressive preload, partial bonding caused serious degradation of impact resistance. Partial bonding reduced the maximum load-carrying capacity of all three types of loaded-hole specimens. Overall, partial bonding degraded both impact resistance and bearing strength of holes.
Resin cementation of zirconia ceramics with different bonding agents
Tanış, Merve Çakırbay; Akay, Canan; Karakış, Duygu
2015-01-01
The aim of this study was to evaluate the effects of sandblasting and different chemical bonding agents on shear bond strength of zirconia and conventional resin cement. In this study, 35 zirconia specimens were treated as follows: Group I: control; Group II: sandblasting; Group III: sandblasting + Monobond S; Group IV: sandblasting + Monobond Plus; Group V: sandblasting + Z-Prime Plus. The specimens in each group were bonded with conventional composite resin cement Variolink II. After cementation, specimens were stored in distilled water (at 37 °C) for 24 h and shear test was performed. The highest shear bond strength values were observed in Groups IV and V. The lowest shear bond strength values were observed in Group I. Using 10-methacryloyloxy-decyl dihydrogenphosphate monomer-containing priming agents, e.g. Monobond Plus and Z-PRIME Plus, combined with sandblasting can be an effective method for resin bonding of zirconia restorations. PMID:26019653
Wu, Lin; Zhu, Haiting; Gai, Xiuying; Wang, Yanyan
2014-01-01
Limited information is available regarding the microstructure and mechanical properties of dental alloy fabricated by selective laser melting (SLM). The purpose of this study was to evaluate the mechanical properties of a cobalt-chromium (Co-Cr) dental alloy fabricated by SLM and to determine the correlation between its microstructure and mechanical properties and its porcelain bond strength. Five metal specimens and 10 metal ceramic specimens were fabricated to evaluate the mechanical properties of SLM Co-Cr dental alloy (SLM alloy) with a tensile test and its porcelain bond strength with a 3-point bending test. The relevant properties of the SLM alloy were compared with those of the currently used Co-Cr dental alloy fabricated with conventional cast technology (cast alloy). The Student t test was used to compare the results of the SLM alloy and the cast alloy (α=.05). The microstructure of the SLM alloy was analyzed with a metallographic microscope; the metal ceramic interface of the SLM porcelain bonded alloy was studied with scanning electron microscopy, energy dispersive x-ray spectroscopy, and an electron probe microanalyzer. Both the mean (standard deviation) yield strength (884.37 ± 8.96 MPa) and tensile strength (1307.50 ±10.65 MPa) of the SLM alloy were notably higher than yield strength (568.10 ± 30.94 MPa) and tensile strength (758.73 ± 25.85 MPa) of the currently used cast alloy, and the differences were significant (P<.05). The porcelain bond strength of the SLM alloy was 55.78 ± 3.02 MPa, which was similar to that of the cast alloy, 54.17 ± 4.96 MPa (P>.05). Microstructure analysis suggested that the SLM alloy had a dense and obviously orientated microstructure, which led to excellent mechanical properties. Analysis from scanning electron microscopy, energy dispersive x-ray spectroscopy, and the electron probe microanalyzer indicated that the SLM alloy had an intermediate layer with elemental interpenetration between the alloy and the porcelain, which resulted in an improved bonding interface. Compared with the currently used cast alloy, SLM alloy possessed improved mechanical properties and similar porcelain bond strength. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
Singh, Shipra; Nagpal, Rajni; Tyagi, Shashi Prabha; Manuja, Naveen
2015-01-01
Objective. This study evaluated the effect of ethylenediaminetetraacetic acid (EDTA) conditioning and carbodiimide (EDC) pretreatment on the shear bond strength of two all-in-one self-etch adhesives to dentin. Methods. Flat coronal dentin surfaces were prepared on one hundred and sixty extracted human molars. Teeth were randomly divided into eight groups according to two different self-etch adhesives used [G-Bond and OptiBond-All-In-One] and four different surface pretreatments: (a) adhesive applied following manufacturer's instructions; (b) dentin conditioning with 24% EDTA gel prior to application of adhesive; (c) EDC pretreatment followed by application of adhesive; (d) application of EDC on EDTA conditioned dentin surface followed by application of adhesive. Composite restorations were placed in all the samples. Ten samples from each group were subjected to immediate and delayed (6-month storage in artificial saliva) shear bond strength evaluation. Data collected was subjected to statistical analysis using three-way ANOVA and post hoc Tukey's test at a significance level of p < 0.05. Results and Conclusion. EDTA preconditioning as well as EDC pretreatment alone had no significant effect on the immediate and delayed bond strengths of either of the adhesives. However, EDC pretreatment on EDTA conditioned dentin surface resulted in preservation of resin-dentin bond strength of both adhesives with no significant fall over six months. PMID:26557850
Ramarao, Sathyanarayanan; John, Bindu Meera; Rajesh, Praveen; Swatha, S
2017-01-01
Introduction Bonding of composite resin to dentin mandates a wet substrate whereas, enamel should be dry. This may not be easily achievable in intracoronal preparations where enamel and dentin are closely placed to each other. Therefore, Dentin Bonding Agents (DBA) are recommended for enamel and dentinal bonding, where enamel is also left moist. A research question was raised if the “enamel-only” preparations will also benefit from wet enamel bonding and contemporary DBA. Aim The aim of this study was to compare the shear bond strengths of composite resin, bonded to dry and wet enamel using fifth generation DBA (etch and rinse system) containing various solvents such as ethanol/water, acetone and ethanol. Materials and Methods The crowns of 120 maxillary premolars were split into buccal and lingual halves. They were randomly allocated into four groups of DBA: Group 1-water/ethanol based, Group 2-acetone based, Group 3-ethanol based, Group 4-universal bonding agent (control group). The buccal halves and lingual halves were bonded using the wet bonding and dry bonding technique respectively. After application of the DBAs and composite resin build up, shear bond strength testing was done. Results Group 1 (ethanol/water based ESPE 3M, Adper Single Bond) showed highest bond strength of (23.15 MPa) in dry enamel. Group 2 (acetone based Denstply, Prime and Bond NT, showed equal bond strength in wet and dry enamel condition (18.87 MPa and 18.02 MPa respectively). Conclusion Dry enamel bonding and ethanol/water based etch and rinse DBA can be recommended for “enamel-only” tooth preparations. PMID:28274042
Firoozmand, Leily Macedo; Noleto, Lawanne Ellen Carvalho; Gomes, Isabella Azevedo; Bauer, José Roberto de Oliveira; Ferreira, Meire Coelho
2015-01-01
The aim of this study was evaluate in vitro the influence of simplified adhesive systems (etch-and-rinse and self-etching) and 1.23% acidulated phosphate fluoride (APF) on the microshear bond strength (μ-SBS) of composite resins on primary molars and incisors. Forty primary molars and forty incisors vestibular enamel was treated with either the self-etching Clearfil SE Bond (CSE, Kuraray) or etch-and-rinse Adper Single Bond 2 (SB2, 3M/ESPE) adhesive system. Each group was subdivided based on the prior treatment of the enamel with or without the topical application of 1.23% APF. Thereafter, matrices were positioned and filled with composite resin and light cured. After storage in distilled water at 37 ± 1°C for 24 h, the specimens were submitted to μ-SBS in a universal testing machine. Kruskal-Wallis and Mann-Whitney tests (p < 0.05) showed that the prior application of 1.23% APF led to a significant reduction in bond strength. The type of adhesive exerted no significant influence bond strength. In the inter-group analysis, however, significantly bond strength reduction was found for the incisors when CSE was employed with APF. Adhesive failure was the most common type of fracture. The bond strength was affected by the prior application of 1.23% APF and type of tooth.
Lu, Jing; Ding, Xiao-jun; Yu, Xiao-ping; Gong, Yi-ming
2015-10-01
To evaluate the effect of casein phosphopeptide-amorphouscalcium phosphate (CPP-ACP) treatment on the shear bond strength of orthodontic brackets after tooth bleaching. One hundred extracted human premolars were randomly divided and treated according to 5 groups (n=20) : (1) no treatment; (2) 10% carbamide peroxide bleaching; (3) 38% hydrogen peroxide bleaching; (4)10% carbamide peroxide bleaching and CPP-ACP paste; (5)38% hydrogen peroxide bleaching and CPP-ACP paste. In all groups, the brackets were bonded using a conventional acid-etch and bond system (Transbond XT, 3M Unitek, Monrovia, Calif). The shear bond strength adhesive remnant index (ARI) of the brackets were determined and the data was analyzed by ANOVA and Bonferroni test using SPSS13.0 software package. The use of 10% carbamide peroxide and 38% hydrogen peroxide bleaching significantly decreased the shear bond strength of orthodontic brackets when compared with untreated group (P<0.05). After combination of tooth bleaching and CPP-ACP treatment, group 4 (10% carbamide peroxide bleaching + CPP-ACP) and group 5 (38% hydrogen peroxide bleaching + CPP-ACP) showed higher levels of shear bond strength than group 2 and 3; however, no significant difference was found (P>0.05). The ARI did not show any significant difference before and after CPP-ACP treatment. After tooth bleaching, CPP-ACP treatment have little influence on the shear bond strength of orthodontic brackets.
Effects of dentin surface treatments on shear bond strength of glass-ionomer cements
Poggio, Claudio; Beltrami, Riccardo; Scribante, Andrea; Colombo, Marco; Lombardini, Marco
2014-01-01
Summary Aim The aim of this in vitro study was to evaluate the effect of different surface treatments on shear bond strength of a conventional glass-ionomer cement (GIC) and a resin-modified glass-ionomer cement (RMGIC) to dentin. Materials and methods 80 bovine permanent incisors were used. 40 cylindrical specimens of a GIC (Fuji IX GP Extra) and 40 cylindrical specimens of a RMGIC (Fuji II LC) were attached to the dentin. The teeth were then randomly assigned to 8 groups of equal size (n=10), 4 for every type of glass-ionomer cement, corresponding to type of dentin surface treatments. Group 1: GC Cavity Conditioner; Group 2: 37% phosphoric acid gel; Group 3: Clearfil SE Bond; Group 4: no dentin conditioning (control). The specimens were placed in a universal testing machine (Model 3343, Instron Corp., Canton, Mass., USA) and subsequently tested for shear bond strength (MPa). Results ANOVA showed the presence of significant differences among the various groups. Post hoc Tukey test showed different values of shear bond strength for Fuji IX GP Extra and for Fuji II LC. The different conditioners variably influence the adhesion of the glass-ionomer cements tested. Conclusions. RMGIC shear bond to dentin was higher than GIC. The use of a Self-etch adhesive system improved the shear bond strength values of RMGIC and lowered the shear bond strength values of GIC significantly. PMID:24753797
Holanda, Daniel Brandão Vilela; França, Fabiana Mantovani Gomes; do Amaral, Flávia Lucisano Botelho; Flório, Flávia Martão; Basting, Roberta Tarkany
2013-01-01
Aims: to evaluate the influence of preheating the bonding agent (Scotchbond Multipurpose Adhesive/3M ESPE) and the light-activated resin cement (RelyX Venner/3M ESPE) on dentin microtensile bond strength. Materials and Methods: The exposed flat dentin surface of 40 human third molars were randomly distributed into four groups for cementation (SR Adoro/Ivoclar Vivadent) (n = 10): G1-bond and resin cement, both at room temperature (22°C), G2-bond preheated to 58°C and cement at room temperature (22°C), G3-bond at room temperature (22°C) and the cement preheated to 58°C, G4-bond preheated to 58°C and cement preheated to 58°C. Sticks of dentin/block set measuring approximately 1 mm2 were obtained and used for the microtensile bond strength test. All sticks had their failure mode classified. Statistical analysis used: Factorial analysis of variance was applied, 2 × 2 (bond × cement) (P < 0.05). Results: Preheating the bonding agent (P = 0.8411) or the cement (P = 0.7155), yielded no significant difference. The interaction bond × cement was not significant (P = 0.9389). Conclusions: Preheating the bond and/or the light-activated resin cement did not influence dentin bond strength or fracture failure mode. PMID:24347889
Zhang, Li-jun; Wang, Zhong-yi; Gao, Bo; Gao, Yang; Zhang, Chun-bao
2009-11-01
To evaluate the effect of sandblasting particle sizes of Al2O3 on the bonding strength between porcelain and titanium fabricated by laser rapid forming (LRF). The thermal expansion coefficient, roughness (Ra), contact angle, surface morphology of titanium surface and the bonding strength between titanium and porcelain were evaluated after the titanium surface being sandblasted using different sizes of Al2O3 (50 microm, 120 microm, 250 microm) at a pressure of 0.5 MPa. The cast titanium specimens were used as control, and were sandblasted with 50 microm Al2O3 at the same pressure. The thermal expansion coefficient of cast titanium [(9.84 +/- 0.42) x 10(-6)/ degrees C] and LRF Ti [(9.79 +/- 0.31) x 10(-6)/ degrees C) matched that of Noritake Ti-22 dentin porcelain [(8.93 +/- 0.36) x 10(-6)/ degrees C). When larger size of Al2O3 was used, the value of Ra and contact angle increased as well. There was no significant difference in bonding strength between the LRF Ti-50 microm [(25.91 +/- 1.02) MPa] and cast titanium [(26.42 +/- 1.65) MPa]. Significantly lower bonding strength was found in LRF Ti-120 microm [(21.86 +/- 1.64) MPa] and LRF Ti-250 microm [(19.96 +/- 1.03) MPa]. The bond strength between LRF Ti and Noritake Ti-22 dentin porcelain was above the lower limit value in the ISO 9693 (25 MPa) after using 50 microm Al2O3 sandblasting in 0.5MPa air pressure.
Kaur, Harsimran; Datta, Kusum
2015-01-01
To examine, evaluate, and compare the tensile bond strength of two silicone-based liners; one autopolymerizing and one heat cured, when treated with different chemical etchants to improve their adhesion with denture base resin. Hundred and sixty test specimens of heat-cured polymethyl methacrylate (PMMA) were fabricated; out of which 80 specimens were tested for tensile bond strength after bonding it to autopolymerizing resilient liner (Ufigel P) and rest 80 to heat-cured resilient liner (Molloplast B). Each main group was further divided into four subgroups of 20 specimens each, one to act as a control and three were subjected to surface treatment with different chemical etchants namely dichloromethane, MMA monomer, and chloroform. The two silicone-based denture liners were processed between 2 PMMA specimens (10 mm × 10 mm × 40 mm) in the space provided by a spacer of 3 mm, thermocycled (5-55°C) for 500 cycles, and then their tensile strength measurements were done in the universal testing machine. One-way ANOVA technique showed a highly significant difference in the mean tensile bond strength values for all the groups. The Student's t-test computed values of statistics for the compared groups were greater than the critical values both at 5% and at 1% levels. Surface treatment of denture base resin with chemical etchants prior to the application of silicone-based liner (Ufigel P and Molloplast-B) increased the tensile bond strength. The increase was the highest with specimens subjected to 180 s of MMA surface treatment and the lowest with control group specimens.
Saladi, Hari Krishna; Bollu, Indira Priyadarshini; Burla, Devipriya; Ballullaya, Srinidhi Vishnu; Devalla, Srihari; Maroli, Sohani; Jayaprakash, Thumu
2015-01-01
Introduction The bond strength of the composite to the bleached enamel plays a very important role in the success and longevity of an aesthetic restoration. Aim The aim of this study was to compare and evaluate the effect of Aloe Vera with 10% Sodium Ascorbate on the Shear bond strength of composite resin to bleached human enamel. Materials and Methods Fifty freshly extracted human maxillary central incisors were selected and divided into 5 groups. Group I and V are unbleached and bleached controls groups respectively. Group II, III, IV served as experimental groups. The labial surfaces of groups II, III, IV, V were treated with 35% Carbamide Peroxide for 30mins. Group II specimens were subjected to delayed composite bonding. Group III and IV specimens were subjected to application of 10% Sodium Ascorbate and leaf extract of Aloe Vera following the Carbamide Peroxide bleaching respectively. Specimens were subjected to shear bond strength using universal testing machine and the results were statistically analysed using ANOVA test. Tukey (HSD) Honest Significant Difference test was used to comparatively analyse statistical differences between the groups. A p-value <0.05 is taken as statistically significant. Results The mean shear bond strength values of Group V showed significantly lower bond strengths than Groups I, II, III, IV (p-value <0.05). There was no statistically significant difference between the shear bond strength values of groups I, II, III, IV. Conclusion Treatment of the bleached enamel surface with Aloe Vera and 10% Sodium Ascorbate provided consistently better bond strength. Aloe Vera may be used as an alternative to 10% Sodium Ascorbate. PMID:26674656
Fatemi, Farzaneh Sadat; Vojdani, Mahroo; Khaledi, Amir Ali Reza
2018-06-08
To investigate the influence of food-simulating agents on the shear bond strength between direct hard liners and denture base acrylic resin. In addition, mode of failure was evaluated. One hundred fifty cylindrical columns of denture base resin were fabricated and bonded to three types of hard reline materials (Hard GC Reline, Tokuyama Rebase II Fast, TDV Cold Liner Rebase). Specimens of each reline material were divided into five groups (n = 10) to undergo 12-day immersion in distilled water, 0.02 N citric acid aqueous solution, heptane, and 40% ethanol/water solution at 37°C. The control group was not immersed in any solution. The shear bond strength test was performed, and the failure mode was determined. Statistics were analyzed with two-way ANOVA and chi-square test (α = 0.05). Significant interaction was found between the hard liners and food simulating agents (p < 0.001). The shear bond strength of Tokuyama in 40% ethanol and TDV in heptane decreased significantly (p = 0.001, p < 0.001 respectively); however, none of the solutions could significantly affect the shear bond strength of Hard GC Reline (p = 0.208). The mixed failure mode occurred more frequently in Hard GC Reline compared with the other liners (p < 0.001) and was predominant in specimens with higher bond strength values (p = 0.012). Food simulating agents did not adversely affect the shear bond strength of Hard GC Reline; however, ethanol and heptane decreased the bond strength of Tokuyama and TDV, respectively. These findings may provide support to dentists to recommend restricted consumption of some foods and beverages for patients who have to use dentures relined with certain hard liners. © 2018 by the American College of Prosthodontists.
Yi, Myong-Hee; Shim, Joon-Sung; Lee, Keun-Woo; Chung, Moon-Kyu
2009-07-01
Use of custom tray and tray adhesive is clinically recommended for elastomeric impression material. However there is not clear mention of drying time of tray adhesive in achieving appropriate bonding strength of tray material and impression material. This study is to investigate an appropriate drying time of tray adhesives by evaluating tensile bonding strength between two types of polyvinylsiloxane impression materials and resin tray, according to various drying time intervals of tray adhesives, and with different manufacturing company combination of impression material and tray adhesive. Adhesives used in this study were Silfix (Dentsply Caulk, Milford, Del, USA) and VPS Tray Adhesive (3M ESPE, Seefeld, Germany) and impression materials were Aquasil Ultra (monophase regular set, Dentsply Caulk, Milford, Del, USA) and Imprint II Garant (regular body, 3M ESPE, Seefeld, Germany). They were used combinations from the same manufacture and exchanged combinations of the two. The drying time was designed to air dry, 5 minutes, 10 minutes, 15 minutes, 20 minutes, and 25 minutes. Total 240 of test specimens were prepared by auto-polymerizing tray material (Instant Tray Mix, Lang, Wheeling, Il, USA) with 10 specimens in each group. The specimens were placed in the Universal Testing machine (Instron, model 3366, Instron Corp, University avenue, Nowood, MA, USA) to perform the tensile test (cross head speed 5 mm/min). The statistically efficient drying time was evaluated through ANOVA and Scheffe test. All the tests were performed at 95% confidence level. The results revealed that at least 10 minutes is needed for Silfix-Aquasil, and 15 minutes for VPS Tray Adhesive-Imprint II, to attain an appropriate tensile bonding strength. VPS Tray Adhesive-Imprint II had a superior tensile bonding strength when compared to Silfix-Aquasil over 15 minutes. Silfix-Aquasil had a superior bonding strength to VPS Tray Adhesive-Aquasil, and VPS Tray Adhesive-Imprint II had a superior tensile bonding strength to Silfix-Imprint II at all drying periods. Significant increase in tensile bonding strength with Silfix-Aquasil and VPS Tray adhesive-Imprint II combination until 10 and 15 minutes respectively. Tray adhesive-impression material combination from the same company presented higher tensile bonding strength at all drying time intervals than when using tray adhesive-impression material of different manufactures.
Hajizadeh, Hila; Nasseh, Atefeh; Rahmanpour, Naim
2015-01-01
Background Silorane-based composites and their specific self-etch adhesive were introduced to conquest the polymerization shrinkage of methacrylate-based composites. It has been shown that additional etching of enamel and dentin can improve the bond strength of self-etch methacrylate-based adhesives but this claim is not apparent about silorane-based adhesives. Our objective was to compare the shear bond strength (SBS) of enamel and dentin between silorane-based adhesive resin and a methacrylate-based resin with or without additional etching. Material and Methods 40 sound human premolars were prepared and divided into two groups: 1- Filtek P60 composite and Clearfil SE Bond adhesive; 2- Filtek P90 composite and Silorane adhesive. Each group divided into two subgroups: with or without additional etching. For additional etching, 37% acid phosphoric was applied before bonding procedure. A cylinder of the composite was bonded to the surface. After 24 hours storage and 500 thermo cycling between 5-55°C, shear bond strength was assessed with the cross head speed of 0.5 mm/min. Then, bonded surfaces were observed under stereomicroscope to determine the failure mode. Data were analyzed with two-way ANOVA and Fischer exact test. Results Shear bond strength of Filtek P60 composite was significantly higher than Filtek P90 composite both in enamel and dentin surfaces (P<0.05). However, additional etching had no significant effect on shear bond strength in enamel or dentin for each of the composites (P>0.05). There was no interaction between composite type and additional etching (P>0.05). Failure pattern was mainly adhesive and no significant correlation was found between failure and composite type or additional etching (P>0.05). Conclusions Shear bond strength of methacrylate-based composite was significantly higher than silorane-based composite both in enamel and dentin surfaces and additional etching had no significant effect on shear bond strength in enamel or dentin for each of the composites. The mode of failure had no meaningful relation to the type of composite and etching factor. Key words:Shear bond strength, adhesive, composite resin, silorane, methacrylate. PMID:26644830
NASA Astrophysics Data System (ADS)
Sittel, Wiebke; Basuki, Widodo W.; Aktaa, Jarir
2015-10-01
A modeling based optimization process of the solid state diffusion bonding is presented for joining ferritic oxide dispersion strengthened steels PM2000. An optimization study employing varying bonding temperatures and pressures results in almost the same strength and toughness of the bonded compared to the as received material. TEM investigations of diffusion bonded samples show a homogeneous distribution of oxide particles at the bonding seam similar to that in the bulk. Hence, no loss in strength or creep resistance due to oxide particle agglomeration is found, as verified by the mechanical properties observed for the joint.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Zemei; Department of Civil, Architectural and Environmental Engineering, Missouri University of Science and Technology, Rolla 65409, MO; Khayat, Kamal Henri, E-mail: khayatk@mst.edu
Bond properties between fibers and cementitious matrix have significant effect on the mechanical behavior of composite materials. In this study, the development of steel fiber-matrix interfacial bond properties in ultra-high strength concrete (UHSC) proportioned with nano-SiO{sub 2} varying between 0 and 2%, by mass of cementitious materials, was investigated. A statistical model relating either bond strength or pullout energy to curing time and nano-SiO{sub 2} content was proposed by using the response surface methodology. Mercury intrusion porosimetry (MIP) and backscatter scanning electron microscopy (BSEM) were used to characterize the microstructure of the matrix and the fiber-matrix interface, respectively. Micro-hardness aroundmore » the embedded fiber and hydration products of the matrix were evaluated as well. Test results indicated that the optimal nano-SiO{sub 2} dosage was 1% in terms of the bond properties and the microstructure. The proposed quadratic model efficiently predicted the bond strength and pullout energy with consideration of curing time and nano-SiO{sub 2} content. The improvement in bond properties associated with nano-silica was correlated with denser matrix and/or interface and stronger bond and greater strength of hydration products based on microstructural analysis.« less
Tanış, Merve Çakırbay; Akçaboy, Cihan
2015-01-01
Resin cements are generally preferred for cementation of zirconia ceramics. Resin bonding of zirconia ceramics cannot be done with the same methods of traditional ceramics because zirconia is a silica-free material. In recent years, many methods have been reported in the literature to provide the resin bonding of zirconia ceramics. The purpose of this in vitro study is to evaluate effects of different surface treatments and 10-metacryloxydecyl dihydrogen phosphate (MDP) monomer on shear bond strength between zirconia and resin cement. 120 zirconia specimens were treated as follows: Group I: sandblasting, group II: sandblasting + tribochemical silica coating + silane, group III: sandblasting + Nd:YAG (neodymium: yttrium-aluminum-garnet) laser. One specimen from each group was evaluated under scanning electron microscope (SEM). Specimens in each group were bonded either with conventional resin cement Variolink II or with a MDP containing resin cement Panavia F2.0. Subgroups of bonded specimens were stored in distilled water (37°C) for 24 hours or 14 days. Following water storage shear bond strength test was performed at a crosshead speed of 1 mm/min in a universal test machine. Then statistical analyses were performed. Highest shear bond strength values were observed in group II. No significant difference between group I and III was found when Panavia F2.0 resin cement was used. When Variolink II resin cement was used group III showed significantly higher bond strength than group I. In group I, Panavia F2.0 resin cement showed statistically higher shear bond strength than Variolink II resin cement. In group II no significant difference was found between resin cements. No significant difference was found between specimens stored in 37°C distilled water for 24 hours and 14 days. In group I surface irregularities with sharp edges and grooves were observed. In group II less roughened surface was observed with silica particles. In group III surface microcracks connecting each other were observed. Tribochemical silica coating is an effective method for achieving an acceptable bond between zirconia and resin cement. Use of a MDP monomer containing resin cement increases the bond strength of sandblasted zirconia.
Zhang, Hong; Jing, Ye; Nie, Rongrong; Meng, Xiangfeng
2015-10-01
To evaluate the bond strength and durability of a self-adhesive resin cement with a zirconia ceramic pretreated by a zirconia primer. Zirconia ceramic (Vita Inceram YZ) plates with a thickness of 2.5 mm were fired, polished, and then cleaned. Half of the polished ceramic plates were sandblasted with 50 μm alumina particles at 0.3 MPa for 20 s. The surface compound weight ratios were measured via X-ray fluorescence microscopy. The polished and sandblasted ceramic plates were directly bonded with self-adhesive resin cement (Biscem) or were pretreated by a zirconia primer (Z Primer Plus) before bonding with Biscem. The specimens of each test group were divided into two subgroups (n=10) and subjected to the shear test after 0 and 10,000 thermal cycles. The data were analyzed via three-way ANOVA. After air abrasion, 8.27% weight ratio of alumina attached to the zirconia surface. Compared with air abrasion, primer treatment more significantly improved the primary resin bond strength of the zirconia ceramic. The primary resin bond strength of the zirconia ceramic with no primer treatment was not affected by thermocycling (P>0.05). However, the primary resin bond strength of the zirconia ceramic with primer treatment was significantly decreased by thermocycling (P<0.05). Primer treatment can improve the primary resin bond strengths of zirconia ceramics. However, the bond interface of the primer is not stable and rapidly degraded during thermocycling.
Novais, Veridiana Resende; Raposo, Luís Henrique Araújo; Miranda, Rafael Resende de; Lopes, Camila de Carvalho Almança; Simamoto, Paulo Cézar; Soares, Carlos José
2017-01-01
The aim of this study was to assess the performance of resin cements when different curing modes are used, by evaluating the degree of conversion and bond strength to a ceramic substrate. Three resin cements were evaluated, two dual-cured (Variolink II and RelyX ARC) and one light-cured (Variolink Veneer). The dual-cured resin cements were tested by using the dual activation mode (base and catalyst) and light-activation mode (base paste only). For degree of conversion (DC) (n=5), a 1.0 mm thick feldspathic ceramic disc was placed over the resin cement specimens and the set was light activated with a QTH unit. After 24 h storage, the DC was measured with Fourier transform infrared spectroscopy (FTIR). For microshear bond strength testing, five feldspathic ceramic discs were submitted to surface treatment, and three cylindrical resin cement specimens were bonded to each ceramic surface according to the experimental groups. After 24 h, microshear bond testing was performed at 0.5 mm/min crosshead speed until the failure. Data were submitted to one-way ANOVA followed by Tukey test (p<0.05). Scanning electron microscopy (SEM) was used for classifying the failure modes. Higher DC and bond strength values were shown by the resin cements cured by using the dual activation mode. The Variolink II group presented higher DC and bond strength values when using light-activation only when compared with the Variolink Veneer group. The base paste of dual-cured resin cements in light-activation mode can be used for bonding translucent ceramic restorations of up to or less than 1.0 mm thick.
Singh, Payal; Nagpal, Rajni; Singh, Udai Pratap
2017-08-01
This in vitro study evaluated the effect of dentin biomodifiers on the immediate and long-term bond strengths of a simplified etch and rinse adhesive to dentin. Flat coronal dentin surfaces were prepared in 120 extracted human molars. Teeth were randomly divided into 5 groups ( n = 24) according to 5 different surface pre-treatments: No pre-treatment (control); 1M carbodiimide (EDC); 0.1% epigallocatechin-3-gallate (EGCG); 2% minocycline (MI); 10% sodium ascorbate (SA). After surface pre-treatment, adhesive (Adper Single Bond 2 [SB], 3M ESPE) was applied. Composite was applied into transparent plastic tubes (2.5 mm in diameter), which was placed over the bonded dentin surface. From each group, 10 samples were subjected to shear bond strength (SBS) evaluation at 24 hours (immediate) and remaining 10 samples were tested after 6 months (delayed). Additionally, 4 samples per group were subjected to scanning electron microscopic analysis for observation of resin-dentin interface. The data were statistically analysed with Shaperio‑Wilk W test, 2-way analysis of variance (ANOVA), and post hoc Tukey's test. At 24 hours, SBS of all surface pre-treatment groups were comparable with the control group, with significant differences found between EDC and SA groups only ( p = 0.009). After 6 months storage, EDC, EGCG, and MI pre-treatments preserved the resin-dentin bond strength with no significant fall. Dentin pre-treatment with all the dentin biomodifiers except SA resulted in significant preservation of resin-dentin bond over 6 months storage period, without negatively affecting the immediate bond strength of the etch and rinse adhesive tested.
Influence of Bond Coat on HVOF-Sprayed Gradient Cermet Coating on Copper Alloy
NASA Astrophysics Data System (ADS)
Ke, Peng; Cai, Fei; Chen, Wanglin; Wang, Shuoyu; Ni, Zhenhang; Hu, Xiaohong; Li, Mingxi; Zhu, Guanghong; Zhang, Shihong
2017-06-01
Coatings are required on mold copper plates to prolong their service life through enhanced hardness, wear resistance, and oxidation resistance. In the present study, NiCr-30 wt.%Cr3C2 ceramic-metallic (cermet) layers were deposited by high velocity oxy-fuel (HVOF) spraying on different designed bond layers, including electroplated Ni, HVOF-sprayed NiCr, and double-decker Ni-NiCr. Annealing was also conducted on the gradient coating (GC) with NiCr bond layer to improve the wear resistance and adhesion strength. Coating microstructure was investigated by scanning electron microscopy and x-ray diffraction analysis. Mechanical properties including microhardness, wear resistance, and adhesion strength of the different coatings were evaluated systematically. The results show that the types of metallic bond layer and annealing process had a significant impact on the mechanical properties of the GCs. The GCs with electroplated Ni bond layer exhibited the highest adhesion strength (about 70 MPa). However, the GC with HVOF-sprayed NiCr bond layer exhibited better wear resistance. The wear resistance and adhesion strength of the coating with NiCr metallic bond layer were enhanced after annealing.
Nondestructive test of regenerative chambers
NASA Technical Reports Server (NTRS)
Malone, G. A.; Stauffis, R.; Wood, R.
1972-01-01
Flat panels simulating internally cooled regenerative thrust chamber walls were fabricated by electroforming, brazing and diffusion bonding to evaluate the feasibility of nondestructive evaluation techniques to detect bonds of various strength integrities. Ultrasonics, holography, and acoustic emission were investigated and found to yield useful and informative data regarding the presence of bond defects in these structures.
Dentine bond strength and antimicrobial activity evaluation of adhesive systems.
André, Carolina Bosso; Gomes, Brenda Paula Figueiredo Almeida; Duque, Thais Mageste; Stipp, Rafael Nobrega; Chan, Daniel Chi Ngai; Ambrosano, Glaucia Maria Bovi; Giannini, Marcelo
2015-04-01
This study evaluated the dentine bond strength (BS) and the antibacterial activity (AA) of six adhesives against strict anaerobic and facultative bacteria. Three adhesives containing antibacterial components (Gluma 2Bond (glutaraldehyde)/G2B, Clearfil SE Protect (MDPB)/CSP and Peak Universal Bond (PUB)/chlorhexidine) and the same adhesive versions without antibacterial agents (Gluma Comfort Bond/GCB, Clearfil SE Bond/CSB and Peak LC Bond/PLB) were tested. The AA of adhesives and control groups was evaluated by direct contact method against four strict anaerobic and four facultative bacteria. After incubation, according to the appropriate periods of time for each microorganism, the time to kill microorganisms was measured. For BS, the adhesives were applied according to manufacturers' recommendations and teeth restored with composite. Teeth (n=10) were sectioned to obtain bonded beams specimens, which were tested after artificial saliva storage for one week and one year. BS data were analyzed using two-way ANOVA and Tukey test. Saliva storage for one year reduces the BS only for GCB. In general G2B and GCB required at least 24h for killing microorganisms. PUB and PLB killed only strict anaerobic microorganisms after 24h. For CSP the average time to eliminate the Streptococcus mutans and strict anaerobic oral pathogens was 30 min. CSB showed no AA against facultative bacteria, but had AA against some strict anaerobic microorganisms. Storage time had no effect on the BS for most of the adhesives. The time required to kill bacteria depended on the type of adhesive and never was less than 10 min. Most of the adhesives showed stable bond strength after one year and the Clearfil SE Protect may be a good alternative in restorative procedures performed on dentine, considering its adequate bond strength and better antibacterial activity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hammad, Shaza M; Enan, Enas T
2013-07-01
To evaluate the in vivo effects of two acidic soft drinks (Coca-Cola and Sprite) on the shear bond strength of metal orthodontic brackets with and without resin infiltration treatment. In addition, the enamel surface was evaluated, after debonding, using a scanning electron microscope. Sixty noncarious maxillary premolars, scheduled for extraction in 30 orthodontic patients, were used. Patients were randomly divided into two groups according to the soft drink tested (Coca-Cola or Sprite). In each group, application of resin infiltration (Icon. DMG, Hamburg, Germany) was done on one side only before bonding of brackets. Patients were told to rinse their mouth with their respective soft drink at room temperature for 5 minutes, three times a day for 3 months. Shear bond strength was tested with a universal testing machine. After shearing test, a scanning electron microscope was used to evaluate enamel erosion. Statistical analysis was performed by twoway analysis of variance followed by the least significant difference test. The Coca-Cola group without resin infiltration showed the lowest resistance to shearing forces. Scanning electron micrographs of both groups after resin application showed a significant improvement compared with results without resin use, as the enamel appeared smoother and less erosive. Pretreatment with the infiltrating resin has proved to result in a significant improvement in shear bond strength, regardless of the type of soft drink consumed.
Push-out bond strengths of two fiber post types bonded with different dentin bonding agents.
Topcu, Fulya Toksoy; Erdemir, Ugur; Sahinkesen, Gunes; Mumcu, Emre; Yildiz, Esra; Uslan, Ibrahim
2010-05-01
The aim of this study was to evaluate the regional push-out bond strengths for two fiber-reinforced post types using three different dentin bonding agents. Sixty single-rooted extracted human first premolar teeth were sectioned below the cemento-enamel junction, and the roots were endodontically treated. Following standardized post space preparations, the roots were divided into two fiber-post groups (Glassix and Carbopost), and further divided into three subgroups of 10 specimens each for the bonding systems self-etching dentin bonding agents (Clearfil SE Bond and Optibond all-in-one), and total-etching dentin bonding agent (XP Bond). A dual-cure resin luting cement (Maxcem) was then placed in the post spaces and posts were then seated into the root canals polymerized through the cervical portion. The roots were then cut into 3-mm thick sections. Push-out tests were performed at a crosshead speed of 0.5 mm/min. The data were analyzed with multivariate ANOVA (alpha = 0.05). The morphology of interface between different dentin bonding agents from the cervical sections were analyzed with SEM. Glass fiber-reinforced posts demonstrated significantly higher push-out bond strengths than carbon fiber-reinforced posts (p < 0.001). Bond strength values decreased significantly from the cervical to the apical root canal regions (p < 0.001). Self-etching dentin adhesive Clearfil SE Bond and total-etching dentin adhesive XP Bond demonstrated similar bond strengths values and this was significantly higher compared with the Optibond all-in-one in cervical root canal region. In conclusion, in all root segments, the glass fiber-reinforced posts provided significantly increased post retention than the carbon fiber-reinforced posts, regardless of the adhesive used. (c) 2010 Wiley Periodicals, Inc.
Two-year water degradation of self-etching adhesives bonded to bur ground enamel.
Abdalla, Ali I; Feilzer, Albert J
2009-01-01
To evaluate the effect of water storage on the microshear bond strength to ground enamel of three "all-in-one" self-etch adhesives: Futurabond DC, Clearfil S Tri Bond and Hybrid bond; a self-etching primer; Clearfil SE Bond and an etch-and-rinse adhesive system, Admira Bond. Sixty human molars were used. The root of each tooth was removed and the crown was sectioned into two halves. The convex enamel surfaces were reduced by polishing on silicon paper to prepare a flat surface that was roughened with a parallel-sided diamond bur with abundant water for five seconds. The bonding systems were applied on this surface. Prior to adhesive curing, a hollow cylinder (2.0 mm in height/0.75 mm in internal diameter) was placed on the treated surfaces and cured. A resin composite was then inserted into the tube and cured. For each adhesive, two procedures were carried out: A--the specimens were kept in water for 24 hours, then the tube was removed and the microshear bond strength was determined in a universal testing machine at a crosshead speed of 0.5 mm/minute; B--the specimens were stored in water for two-years before microshear testing. The fractured surface of the bonded specimens after each test procedure was examined by SEM. For the 24-hour control, there was no significant difference in bond strength between the tested adhesives. After two years of water storage, the bond strength of Admira Bond, Clearfil SE Bond and Futurabond DC decreased, but the reduction was not significantly different from that of 24 hours. For Clearfil S Tri Bond and Hybrid Bond, the bond strengths were significantly reduced compared to their 24-hour results.
Endo, Toshiya; Ishida, Rieko; Komatsuzaki, Akira; Sanpei, Shinya; Tanaka, Satoshi; Sekimoto, Tsuneo
2014-01-01
Objective: The purpose of this study was to assess the effects of long-term repeated topical application of fluoride before bonding and an adhesion promoter on the bond strength of orthodontic brackets. Materials and Methods: A total of 76 bovine incisors were collected and divided equally into four groups. In group 1, the brackets were bonded without topical fluoride application or adhesion promoter. In group 2, before bonding, the adhesion promoter was applied to nonfluoridated enamel. In group 3, the brackets were bonded without the application of the adhesion promoter to enamel, which had undergone long-term repeated topical fluoride treatments. Teeth in group 4 received the long-term repeated topical applications of fluoride, and the brackets were bonded using the adhesion promoter. All the brackets were bonded using BeautyOrtho Bond self-etching adhesive. The shear bond strength was measured and the bond failure modes were evaluated with the use of the adhesive remnant index (ARI) after debonding. Results: The mean shear bond strength was significantly lower in group 3 than in groups 1, 2, and 4, and there were no significant differences between the groups except for group 3. There were significant differences in the distribution of ARI scores between groups 2 and 3, and between groups 3 and 4. Conclusions: The adhesion promoter can recover the bond strength reduced by the long-term repeated topical applications of fluoride to the prefluoridation level and had a significantly great amount of adhesives left on either fluoridated or nonfluoridated enamel. PMID:25512720
Microshear Bond Strength of Tri-Calcium Silicate-based Cements to Different Restorative Materials.
Cengiz, Esra; Ulusoy, Nuran
To evaluate the microshear bond strength of tri-calcium silicate-based materials to different restorative materials. Thirty-five disks of TheraCal LC and Biodentine were fabricated using teflon molds according to manufacturers' instructions. Then the specimens were randomly divided into 7 groups according to the materials applied: Fuji IX, Fuji II, Equia Fil, Vertise Flow, Filtek Bulk Fill Posterior Restorative, Filtek Z250 with Prime&Bond NT and with Clearfil SE Bond. All restorative materials were placed onto the disks using tygon tubes. Following a storage period, the specimens underwent microshear bond strength testing in a universal testing machine, and fracture modes were analyzed. Data were analyzed using one-way ANOVA and Tukey's post-hoc test. For all restorative materials, TheraCal LC showed significantly higher μSBS values compared to Biodentine. GIC based materials showed the lowest μSBS for TheraCal and Biodentine. For Biodentine, Filtek Z250 applied with Prime&Bond NT and Filtek Bulk Fill Posterior Restorative applied with Scotchbond Universal Adhesive exhibited the highest μSBS, while Filtek Z250 applied with Clearfil SE Bond revealed the highest bond strength to TheraCal LC. For all restorative materials tested in this study, TheraCal LC showed higher μSBS compared to Biodentine. For both TheraCal LC and Biodentine, the placement of GIC-based materials prior to composite resin restorations might decrease the bond strength. Composite resins applied with self-etching adhesives increased the bond strength of TheraCal LC; however, for Biodentine, application of etch-and-rinse adhesives may improve the adhesion of composite resins.
Endo, Toshiya; Ozoe, Rieko; Sanpei, Sugako; Shinkai, Koichi; Katoh, Yoshiroh; Shimooka, Shohachi
2008-07-01
The purposes of this study were to evaluate the effects of different degrees of water contamination on the shear bond strength of orthodontic brackets bonded to dental enamel with a moisture-insensitive primer (MIP) adhesive system and to compare the modes of bracket/adhesive failure. A total of 68 human premolars were divided into four groups by primers and enamel surface conditions (desiccated, blot dry, and overwet). In group I, the hydrophobic Transbond XT primer adhesive system was used under desiccated conditions for bonding the brackets; in group II, the hydrophilic Transbond MIP adhesive system was used under desiccated conditions; in group III, the hydrophilic Transbond MIP adhesive system was used under blot dry conditions; and in group IV, the hydrophilic Transbond MIP adhesive system was used under overwet conditions. Shear bond strength was measured with a universal testing machine, and the mode of bracket/adhesive failure was determined according to the adhesive remnant index. The mean shear bond strengths were not significantly different among groups I, II, and III, and were higher than the clinically required range of 6 to 8 MPa. The mean shear bond strength achieved in group IV was significantly lower than that achieved in groups I, II, and III, and also lower than the clinically required values. Bond failure occurred at the enamel-adhesive interface more frequently in group IV than in groups I and III. To achieve clinically sufficient bond strengths with the hydrophilic MIP adhesive system, excess water should be blotted from the water-contaminated enamel surface.
Enamel and dentin bond strengths of a new self-etch adhesive system.
Walter, Ricardo; Swift, Edward J; Boushell, Lee W; Braswell, Krista
2011-12-01
statement of problem: Self-etch adhesives typically are mildly acidic and therefore less effective than etch-and-rinse adhesives for bonding to enamel. The purpose of this study was to evaluate the enamel and dentin shear bond strengths of a new two-step self-etch adhesive system, OptiBond XTR (Kerr Corporation, Orange, CA, USA). The labial surfaces of 80 bovine teeth were ground to create flat, 600-grit enamel or dentin surfaces. Composite was bonded to enamel or dentin using the new two-step self-etch system or a three-step etch-and-rinse (OptiBond FL, Kerr), two-step self-etch (Clearfil SE Bond, Kuraray America, Houston, TX, USA), or one-step self-etch adhesive (Xeno IV, Dentsply Caulk, Milford, DE, USA). Following storage in water for 24 hours, shear bond strengths were determined using a universal testing machine. The enamel and dentin data sets were subjected to separate analysis of variance and Tukey's tests. Scanning electron microscopy was used to evaluate the effects of each system on enamel. Mean shear bond strengths to enamel ranged from 18.1 MPa for Xeno IV to 41.0 MPa for OptiBond FL. On dentin, the means ranged from 33.3 MPa for OptiBond FL to 47.1 MPa for Clearfil SE Bond. OptiBond XTR performed as well as Clearfil SE Bond on dentin and as well as OptiBond FL on enamel. Field emission scanning electron microscope revealed that OptiBond XTR produced an enamel etch pattern that was less defined than that of OptiBond FL (37.5% phosphoric acid) but more defined than that of Clearfil SE Bond or Xeno IV. The new two-step self-etch adhesive system formed excellent bonds to enamel and dentin in vitro. OptiBond XTR, a new two-step self-etch adhesive system, is a promising material for bonding to enamel as well as to dentin. © 2011 Wiley Periodicals, Inc.
Rekha, C Vishnu; Varma, Balagopal; Jayanthi
2012-07-01
The purpose of this study was to evaluate and compare the tensile bond strength and microleakage of Fuji IX GP, Fuji II LC, and compoglass and to compare bond strength with degree of microleakage exhibited by the same materials. Occlusal surfaces of 96 noncarious primary teeth were ground perpendicular to long axis of the tooth. Preparations were distributed into three groups consisting of Fuji IX GP, Fuji II LC and Compoglass. Specimens were tested for tensile bond strength by mounting them on Instron Universal Testing Machine. Ninety-six primary molars were treated with Fuji IX GP, Fuji II LC, and compoglass on box-only prepared proximal surface. Samples were thermocycled, stained with dye, sectioned, and scored for microleakage under stereomicroscope. ANOVA and Bonferrani correction test were done for comparisons. Pearson Chi-square test and regression analysis were done to assess the association between the parameters. Compoglass showed highest tensile strength and Fuji II LC showed least microleakage. There was a significant difference between the three groups in tensile strength and microleakage levels. The correlation between tensile strength and microleakage level in each group showed that there was a significant negative correlation only in Group 3. Fuji II LC and compoglass can be advocated in primary teeth because of their superior physical properties when compared with Fuji IX GP.
Sampaio, Paula Costa Pinheiro; Kruly, Paula de Castro; Ribeiro, Clara Cabral; Hilgert, Leandro Augusto; Pereira, Patrícia Nóbrega Rodrigues; Scaffa, Polliana Mendes Candia; Di Hipólito, Vinicius; D'Alpino, Paulo Henrique Perlatti; Garcia, Fernanda Cristina Pimentel
2017-11-01
The purpose of this in vitro study was to evaluate the bonding ability and monomer conversion of a universal adhesive system applied to dentin as functions of different curing times and storage. The results were compared among a variety of commercial adhesives. Flat superficial dentin surfaces were exposed on human molars and assigned into one of the following adhesives (n = 15): total-etch Adper Single Bond 2 (SB) and Optibond Solo Plus (OS), self-etch Optibond All in One (OA) and Clearfil SE Bond (CSE), and Scotchbond Universal Adhesive in self-etch mode (SU). The adhesives were applied following the manufacturers' instructions and cured for 10, 20, or 40s. Specimens were processed for the microtensile bond strength (µTBS) test in accordance with the non-trimming technique and tested after 24h and 2 years. The fractured specimens were classified under scanning electron microscopy (SEM). Infrared (IR) spectra were obtained and monomer conversion (%) was calculated by comparing the aliphatic-to-aromatic IR absorption peak ratio before and after polymerization (n=5). Data were analyzed by 2-way ANOVA/Tukey's tests (α = 0.05). At 24-h evaluation, OA and CSE presented similar bond strength means irrespective of the curing time, whereas SB and SU exhibited significantly higher means when cured for 40s as did OS when cured for 20 or 40s (p < 0.05). At 2-year evaluation, only OA exhibited significantly higher bond strength when cured for 20 and 40s (p < 0.05). When the evaluation times were compared, OA also exhibited the same bonding ability when cured for longer periods of time (20 and 40s). All of the adhesives tested exhibited significantly lower monomer conversion when photoactivated according to the manufacturers' instructions (10s). Higher monomer conversions obtained with longer light exposure allow only higher immediate bond strength for most of the adhesives tested. After 2-year storage, only the self-etching adhesive Optibond All-In-One exhibited the same bonding ability when cured for longer periods of time. Copyright © 2017 Elsevier Ltd. All rights reserved.
Evaluation of composite adhesive bonds using digital image correlation
NASA Astrophysics Data System (ADS)
Shrestha, Shashi Shekhar
Advanced composite materials are widely used for many structural applications in the aerospace/aircraft industries today. Joining of composite structures using adhesive bonding offers several advantages over traditional fastening methods. However, this technique is not yet employed for fastening the primary structures of aircrafts or space vehicles. There are several reasons for this: There are not any reliable non-destructive evaluation (NDE) methods that can quantify the strength of the bonds, and there are no certifications of quality assurance for inspecting the bond quality. Therefore, there is a significant need for an effective, reliable, easy to use NDE method for the analysis of composite adhesive joints. This research aimed to investigate an adhesively bonded composite-aluminum joints of variable bond strength using digital image correlation (DIC). There are many future possibilities in continuing this research work. As the application of composite materials and adhesive bond are increasing rapidly, the reliability of the composite structures using adhesive bond should quantified. Hence a lot of similar research using various adhesive bonds and materials can be conducted for characterizing the behavior of adhesive bond. The results obtained from this research will set the foundation for the development of ultrasonic DIC as a nondestructive approach for the evaluation of adhesive bond line.
Fahmy, Amal Ezzeldin; Farrag, Nadia Moustafa
2010-01-01
This in vitro study aimed to evaluate the gingival microleakage in class II cavities in primary molars restored with a low shrink silorane resin composite (Filtek P90) or a nanohybride composite resin (Filtek supreme XT) using three different techniques, (total bonding, closed or open sandwich techniques) lined by nano-filled resin modified glass ionomer cement RMGIC (Ketac N100). Additionally, the shear punch bond strength between the two types of composite and KNIO0 was also examined. For microleakage test, two standardized class II slot cavities were prepared in proximal surfaces of 60 sound extracted primary molars which were divided into 2 groups of 30 each according to the type of composite. Each group was subdivided into 3 groups (n = 10) according to the restorative technique used. The restored teeth were examined for microleakage after immersion in 2% methylene blue dye using stereomicroscope at 20 X. Microleakage scores among the groups were compared using Kruskal Wallis test followed by pair wise Mann Whitney U test at P < or = 0.05. Thirty disc specimens were prepared for determining the shear punch bond strength between the two composite materials and the KN100. Specimens were divided into 5 groups (n = 6) according to the adhesive protocol. The differences in mean bond strength values in MPa between groups were statistically analyzed using ANOVA followed by pair wise Tukey Post hoc test at P < or = 0. 05. Mode of failure was also evaluated for all groups. Both the silorane resin and nano-composite resin showed superior marginal seal with the total bonding technique compared to closed and open sandwich techniques. The recorded mean shear punch bond strength values showed no statistical significant difference between the two resin composites without or with their adhesive bonding systems when bonded to the nano-ionomer. All specimens showed cohesive mode of failures except for silorane resin with Adper Easy Bond Self Etch Adhesive (AEBSEA) which showed adhesive mode of failure. The best marginal seal was obtained with the total bonding technique using both resin composites. The shear punch bond strength between KN100 and the two composite materials was not affected by either of the used adhesive bonding agent.
Verma, Radhika; Singh, Udai Pratap; Tyagi, Shashi Prabha; Nagpal, Rajni; Manuja, Naveen
2013-01-01
Objective: To evaluate the effect of 2% chlorhexidine (CHX) and 30% proanthocyanidin (PA) application on the immediate and long-term bond strength of simplified etch-and-rinse adhesives to dentin. Materials and Methods: One hundred twenty extracted human molar teeth were ground to expose the flat dentin surface. The teeth were equally divided into six groups according to the adhesives used, either Tetric N Bond or Solobond M and pretreatments given either none, CHX, or PA. Composite cylinder was bonded to each specimen using the respective adhesive technique. Half the samples from each group (n = 10) were then tested immediately. The remaining samples were tested after 6 month storage in distilled water. Results: The mean bond strength of samples was not significantly different upon immediate testing being in the range of 8.4(±0.7) MPa. The bond strength fell dramatically in the control specimens after 6 month storage to around 4.7(±0.33) MPa, while the bond strength was maintained in the samples treated with both CHX and PA. Conclusion: Thirty percent PA was comparable to 2% CHX with respect to preservation of the resin dentin bond over 6 months. PMID:23956543
[Bonding agent influence on shear bond strength of titanium/polyglass interface].
Oyafuso, Denise Kanashiro; Bottino, Marco Antonio; Itinoche, Marcos Koiti; Nasraui, Anna Paula; Costa, Elza Maria Valadares da
2003-09-01
There is little information regarding bond strengths of polyglass to metal alloys. This study evaluated the influence of bonding system on shear bond strength of a composite resin (Artglass/Heraeus Kulzer) to cast titanium (Ti). Twenty metallic structures (4mm in diameter, 5mm thick) of titanium grade I were cast shaped and abraded with 250mm aluminum oxide and separated into two groups. For each group was applied one bonding system (Siloc or Retention Flow) before opaque and dentin polymer superposition. This procedure was managed using teflon matrices. They were manipulated and polymerized according to the manufacturer's recommendations. The samples were stored in distilled water for 24 hours at 37º and thermocycled (5º and 55ºC/500 cycles). Shear bond strength tests were performed by using an Instron Universal testing machine at a crosshead speed of 5mm/min. Results were analyzed statistically with one-way ANOVA (a=0,5) and they indicated that the Retention Flow system was statistically better than Siloc (20.74 MPa and 11.65 MPa , respectively). It was possible to conclude that the bonding agent influenced the adhesion between polymer and cast titanium.
Ozmen, Bilal; Koyuturk, Alp Erdin; Tokay, Ugur; Cortcu, Murat; Sari, Mustafa Erhan
2015-10-16
The purpose of this in vitro study was to evaluate the dentin shear bond strength of 4 self-etching adhesives having a different pH on primary and permanent teeth dentin. The occlusal enamel was removed from 60 freshly extracted third molar and 60 primary second molar human teeth, which were randomly separated into 4 groups (n = 15). Four adhesive systems were applied: G-Bond (GC Corporation, Tokyo, Japan, pH: 1.5), Futura Bond M (Voco, Cuxhaver, Germany, pH: 1.4), Adper Prompt L-Pop (3M/ESPE, St Paul, MN, USA, pH: 0.8), and Clearfil S(3) Bond (Kuraray Medical, Tokyo, Japan, pH: 2.7) according to the manufacturer's instructions. After the application of dentin bonding agents, a composite resin material (Z250 Restorative A2, 3M ESPE, St. Paul, MN, USA) for permanent teeth and a compomer resin material (Dyract Extra A2, Dentsply, Konstanz, Germany) for primary teeth was applied onto the prepared dentin surfaces. The data were obtained by using a universal test machine at a crosshead speed of 1 mm/min. The mean values were compared using Tukey's multiple comparison test. Although there was no difference between adhesives on the permanent teeth, Clearfil S3 adhesive showed higher bond (18.07 ± 0.58 MPa) (P>0.05). Lower bond strength values were obtained from primary teeth and especially G-Bond adhesive (9.36 ± 0.48 MPa) (P<0.05). Self-etching adhesives with different pH and solvent types can be used successfully for permanent teeth dentin but adhesives with low pH did not provide greater shear bond strength values.
Shadman, Niloofar; Ebrahimi, Shahram Farzin; Shoul, Maryam Azizi; Sattari, Hasti
2015-01-01
Casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) is applied for remineralization of early caries lesions or tooth sensitivity conditions and may affect subsequent resin bonding. This in vitro study investigated the effect of CPP-ACP on the shear bond strength of dental adhesives to enamel. Sixty extracted human molar teeth were selected and randomly divided into three groups and six subgroups. Buccal or lingual surfaces of teeth were prepared to create a flat enamel surface. Adhesives used were Tetric N-Bond, AdheSE and AdheSE One F. In three subgroups, before applying adhesives, enamel surfaces were treated with Tooth Mousse CPP-ACP for one hour, rinsed and stored in 37°C temperature with 100% humidity. This procedure was repeated for 5 days and then adhesives were applied and Tetric N-Ceram composite was adhered to the enamel. This procedure was also fulfilled for the other three subgroups without CPP-ACP treatment. After 24 hour water storage, samples were tested for shear bond strength test in a universal testing machine. Failure modes were determined by stereomicroscope. Data were analyzed by t-test and one-way analysis of variance with P < 0.05 as the level of significance. In comparison between applied and non-applied CPP-ACP subgroups, there was no significant decrease in the shear bond strength to enamel only in Tetric N-Bond (P > 0.05). In non-applied CPP-ACP subgroups, there were statistically significant differences among all subgroups. Tetric N-Bond had the highest and AdheSE One F had the lowest shear bond strength. CPP-ACP application reduces the shear bond strength of AdheSE and AdheSE One F to enamel but not Tetric N-Bond.
Kılınç, Halil İbrahim; Aslan, Tuğrul; Kılıç, Kerem; Er, Özgür; Kurt, Gökmen
2016-07-01
This study evaluated the effect of delayed bonding and antioxidant application (AA, 10% sodium ascorbate) after internal bleaching (35% carbamide peroxide) on the shear bond strength of an adhesive cement to enamel. Eighty-four human maxillary central incisors were endodontically treated. The control group remained unbleached with no AA. Experimental groups were all internally bleached. The buccal enamel was finished and polished with metallographic paper to a refinement of #600, in order to obtain a 5-mm(2) flat bonding area. An adhesive cement (Clearfil Esthetic) was placed into a plastic tube with internal diameter of 3 mm and a 3-mm height and cured on the enamel. Bonding occurred either immediately after bleaching (group Im), a 7-day delay (group 7), or a 14-day delay (group 14), and half the specimens were treated with antioxidant application (groups Im-AA, 7-AA, and 14-AA). Shear bond strength testing was performed on a universal testing machine, and data were analyzed with ANOVA and Fisher test (5%). Delaying of bonding is a useful factor for enhancing shear bond strength (p < 0.05), whereas AA only enhanced shear bond strength after 7 days delayed bleaching (p < 0.05). The highest bond strength was noted in groups 7-AA (20.51 ± 4.5 MPa), 14 (19.82 ± 4.6), 14-AA (20.27 ± 4.4), and control (20.51 ± 5.1), which were not significantly different from each other. After internal bleaching, adhesive cementation to enamel is recommended only when delayed 14 days, or delayed 7 days with sodium ascorbate application. © 2015 by the American College of Prosthodontists.
Shadman, Niloofar; Ebrahimi, Shahram Farzin; Shoul, Maryam Azizi; Sattari, Hasti
2015-01-01
Background: Casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) is applied for remineralization of early caries lesions or tooth sensitivity conditions and may affect subsequent resin bonding. This in vitro study investigated the effect of CPP-ACP on the shear bond strength of dental adhesives to enamel. Materials and Methods: Sixty extracted human molar teeth were selected and randomly divided into three groups and six subgroups. Buccal or lingual surfaces of teeth were prepared to create a flat enamel surface. Adhesives used were Tetric N-Bond, AdheSE and AdheSE One F. In three subgroups, before applying adhesives, enamel surfaces were treated with Tooth Mousse CPP-ACP for one hour, rinsed and stored in 37°C temperature with 100% humidity. This procedure was repeated for 5 days and then adhesives were applied and Tetric N-Ceram composite was adhered to the enamel. This procedure was also fulfilled for the other three subgroups without CPP-ACP treatment. After 24 hour water storage, samples were tested for shear bond strength test in a universal testing machine. Failure modes were determined by stereomicroscope. Data were analyzed by t-test and one-way analysis of variance with P < 0.05 as the level of significance. Results: In comparison between applied and non-applied CPP-ACP subgroups, there was no significant decrease in the shear bond strength to enamel only in Tetric N-Bond (P > 0.05). In non-applied CPP-ACP subgroups, there were statistically significant differences among all subgroups. Tetric N-Bond had the highest and AdheSE One F had the lowest shear bond strength. Conclusion: CPP-ACP application reduces the shear bond strength of AdheSE and AdheSE One F to enamel but not Tetric N-Bond. PMID:25878683
Karadas, Muhammet; Çağlar, İpek
2017-07-01
The aim of this study was to evaluate the effect of Er:YAG laser irradiation on the micro-shear bond strength of self-etch adhesives to the superficial dentin and the deep dentin before and after thermocycling. Superficial dentin and deep dentin surfaces were prepared by flattening of the occlusal surfaces of extracted human third molars. The deep or superficial dentin specimens were randomized into three groups according to the following surface treatments: group I (control group), group II (Er:YAG laser; 1.2 W), and group III (Er:YAG laser; 0.5 W). Clearfil SE Bond or Clearfil S 3 Bond was applied to each group's dentin surfaces. After construction of the composite blocks on the dentin surface, the micro-shear bond testing of each adhesive was performed at 24 h or after 15,000 thermal cycles. The data were analyzed using a univariate analysis of variance and Tukey's test (p < 0.05). Laser irradiation in superficial dentin did not significantly affect bond strength after thermocycling (p > 0.05). However, deep-dentin specimens irradiated with laser showed significantly higher bond strengths than did control specimens after thermocycling (p < 0.05). Thermocycling led to significant deterioration in the bond strengths of all deep-dentin groups. The stable bond strength after thermocycling was measured for all of the superficial-dentin groups. No significant difference was found between the 0.5 and 1.2 W output power settings. In conclusion, the effect of laser irradiation on the bond strength of self-etch adhesives may be altered by the dentin depth. Regardless of the applied surface treatment, deep dentin showed significant bond degradation.
Influence of previous acid etching on bond strength of universal adhesives to enamel and dentin.
Torres, Carlos Rocha Gomes; Zanatta, Rayssa Ferreira; Silva, Tatiane Josefa; Huhtala, Maria Filomena Rocha Lima; Borges, Alessandra Bühler
2017-01-01
The objective of this study was to evaluate the effect of acid pretreatment on the bond strength of composite resin bonded to enamel and dentin with 2 different universal self-etching adhesives. The null hypothesis was that the acid treatment performed prior to adhesive application would not significantly change the bond strength to enamel or dentin for either universal adhesive tested. A sample of 112 bovine incisors were selected and embedded in acrylic resin. Half were ground until a flat enamel surface was obtained, and the other half were polished until a 6 × 6-mm area of dentin was exposed, resulting into 2 groups (n = 56). The enamel and dentin groups were divided into 2 subgroups according to the adhesive system applied: Futurabond U or Scotchbond Universal. Each of these subgroups was divided into 2 additional subgroups (n = 14); 1 subgroup received phosphoric acid pretreatment, and 1 subgroup did not. The bond strength was assessed with a microtensile test. Data from enamel and dentin specimens were analyzed separately using 1-way analysis of variance. The acid pretreatment did not significantly change the bond strength of the adhesives tested, either to enamel (P = 0.4161) or to dentin (P = 0.4857). The acid etching pretreatment did not affect the bond strength to dentin and enamel when the tested universal multipurpose adhesive systems were used.
Lee, Jung-Jin; Choi, Jung-Yun; Seo, Jae-Min
2017-04-01
The purpose of this study was to evaluate the effect of nano-structured alumina surface coating on shear bond strength between Y-TZP ceramic and various dual-cured resin cements. A total of 90 disk-shaped zirconia specimens (HASS CO., Gangneung, Korea) were divided into three groups by surface treatment method: (1) airborne particle abrasion, (2) tribochemicalsilica coating, and (3) nano-structured alumina coating. Each group was categorized into three subgroups of ten specimens and bonded with three different types of dual-cured resin cements. After thermocycling, shear bond strength was measured and failure modes were observed through FE-SEM. Two-way ANOVA and the Tukey's HSD test were performed to determine the effects of surface treatment method and type of cement on bond strength ( P <.05). To confirm the correlation of surface treatment and failure mode, the Chi-square test was used. Groups treated with the nanostructured alumina coating showed significantly higher shear bond strength compared to other groups treated with airborne particle abrasion or tribochemical silica coating. Clearfil SA Luting showed a significantly higher shear bond strength compared to RelyX ARC and RelyX Unicem. The cohesive failure mode was observed to be dominant in the groups treated with nano-structured alumina coating, while the adhesive failure mode was prevalent in the groups treated with either airborne particle abrasion or tribochemical silica coating. Nano-structured alumina coating is an effective zirconia surface treatment method for enhancing the bond strength between Y-TZP ceramic and various dual-cured resin cements.
Sadek, Fernanda T; Mazzoni, Annalisa; Breschi, Lorenzo; Tay, Franklin R; Braga, Roberto R
2010-04-01
To evaluate the efficacy of simplified dehydration protocols, in the absence of tubular occlusion, on bond strength and interfacial nanoleakage of a hydrophobic experimental adhesive blend to acid-etched, ethanol-dehydrated dentine immediately and after 6 months. Molars were randomly assigned to 6 treatment groups (n=5). Under pulpal pressure simulation, dentine crowns were acid-etched with 35% H(3)PO(4) and rinsed with water. Adper Scotchbond Multi-Purpose was used for the control group. The remaining groups had their dentine surface dehydrated with ethanol solutions: group 1=50%, 70%, 80%, 95% and 3x100%, 30s for each application; group 2 the same ethanol sequence with 15s for each solution; groups 3, 4 and 5 used 100% ethanol only, applied in seven, three or one 30s step, respectively. After dehydration, a primer (50% BisGMA+TEGDMA, 50% ethanol) was used, followed by the neat comonomer adhesive application. Resin composite build-ups were then prepared using an incremental technique. Specimens were stored for 24h, sectioned into beams and stressed to failure after 24h or after 6 months of artificial ageing. Interfacial silver leakage evaluation was performed for both storage periods (n=5 per subgroup). Group 1 showed higher bond strengths at 24h or after 6 months of ageing (45.6+/-5.9(a)/43.1+/-3.2(a)MPa) and lower silver impregnation. Bond strength results were statistically similar to control group (41.2+/-3.3(ab)/38.3+/-4.0(ab)MPa), group 2 (40.0+/-3.1(ab)/38.6+/-3.2(ab)MPa), and group 3 at 24h (35.5+/-4.3(ab)MPa). Groups 4 (34.6+/-5.7(bc)/25.9+/-4.1(c)MPa) and 5 (24.7+/-4.9(c)/18.2+/-4.2(c)MPa) resulted in lower bond strengths, extensive interfacial nanoleakage and more prominent reductions (up to 25%) in bond strengths after 6 months of ageing. Simplified dehydration protocols using one or three 100% ethanol applications should be avoided for the ethanol-wet bonding technique in the absence of tubular occlusion, as they showed decreased bond strength, more severe nanoleakage and reduced bond stability over time. Copyright 2009 Elsevier Ltd. All rights reserved.
Ghavamnasiri, Marjaneh; Eslami, Samaneh; Ameri, Hamide; Chasteen, Joseph E.; Majidinia, Sara; Moghadam, Fatemeh Velayaty
2015-01-01
Objectives: To evaluate the effect of amalgam corrosion products in non-discolored dentin on the bond strength of replaced composite resin. Materials and Methods: One hundred and sixty-one Class I cavities were prepared on extracted premolars and divided into seven groups. Group 1: Light-cured composite; Groups 2, 3, and 4: Amalgam stored in 37°C normal saline for respectively 1, 3, and 6 months and then replaced with composite leaving the cavity walls intact. Groups 5, 6, and 7: Identical to Groups 2, 3, and 4, except the cavity walls were extended 0.5 mm after amalgam removal. Eighteen specimens from each group were selected for shear bond strength testing, while on remaining five samples, elemental microanalysis was conducted. Data were analyzed using Mann-Whitney and Freidman (α = 0.05). Results: There was a significant difference between Groups 1 and 4 and also between Group 1 and Groups 5, 6, and 7. However, Groups 1, 2, and 3 showed no significant difference regarding bond strength. Bond strengths of Group 4 was significantly less than Groups 2 and 3. However, Groups 5, 6, and 7 showed similar bond strength. There was no difference among all groups in terms of metal elements at any storage times. PMID:25657522
Self-etching adhesive on intact enamel, with and without pre-etching.
Devarasa, G M; Subba Reddy, V V; Chaitra, N L; Swarna, Y M
2012-05-01
Bond strengths of composite resin to enamel using self-etch adhesive (SEA) Clearfil SE bond system on intact enamel and enamel pre-etched with phosphoric acid were compared. The objective was to determine if the pre-etching would increase the bond strengths of the SEA systems to intact enamel and to evaluate the effect of pre-etching on bond formation of self-etch adhesives on intact enamel. Labial surfaces of 40 caries free permanent upper central and lateral incisors were cleaned, sectioned of their roots. All specimens were mounted on acrylic block and divided randomly into four groups. In two groups the application of self-etch adhesive, Clearfil SE bond was carried as per manufacturer's instructions, composite cylinders were built, whereas in the other two groups, 37% phosphoric acid etching was done before the application of self-etching adhesives. Then the resin tags were analyzed using scanning electron microscope and shear bond strength was measured using Instron universal testing machine. When phosphoric acid was used, there was significant increase in the depth of penetration of resin tags and in the Shear Bond Strength of composite to enamel. The results indicate that out of both treatment groups, pre-etching the intact enamel with 37% phosphoric acid resulted in formation of longer resin tags and higher depth of penetration of resin tags of the Clearfil SE bond, and attaining higher bond strength of the Clearfil SE bond to intact enamel. Copyright © 2011 Wiley Periodicals, Inc.
da Cunha, Sandra Ribeiro de Barros; Ramos, Pedro Augusto Minorin Mendes; Haddad, Cecília Maria Kalil; da Silva, João Luis Fernandes; Fregnani, Eduardo Rodrigues; Aranha, Ana Cecília Corrêa
2016-01-01
To evaluate the effects of three different radiation doses on the bond strengths of two different adhesive systems to enamel and dentin. Eighty human third molars were randomly divided into four groups (n = 20) according to the radiation dose (control/no radiation, 20 Gy, 40 Gy, and 70 Gy). The teeth were sagittally sectioned into three slices: one mesial and one distal section containing enamel and one middle section containing dentin. The sections were then placed in the enamel and dentin groups, which were further divided into two subgroups (n = 10) according to the adhesive used. Three restorations were performed in each tooth (one per section) using Adper Single Bond 2 (3M ESPE) or Universal Single Bond (3M ESPE) adhesive system and Filtek Z350 XT (3M ESPE) resin composite and subjected to the microshear bond test. Data were analyzed using a two-way ANOVA followed by Tukey's test. Failure modes were examined under a stereoscopic loupe. Radiotherapy did not affect the bond strengths of the adhesives to either enamel or dentin. In dentin, the Universal Single Bond adhesive system showed higher bond strength values when compared with the Adper Single Bond adhesive system. More adhesive failures were observed in the enamel for all radiation doses and adhesives. Radiotherapy did not influence the bond strength to enamel or dentin, irrespective of the adhesive or radiation dose used.
Tooth surface treatment strategies for adhesive cementation
2017-01-01
PURPOSE The aim of this study was to evaluate the effect of tooth surface pre-treatment steps on shear bond strength, which is essential for understanding the adhesive cementation process. MATERIALS AND METHODS Shear bond strengths of different cements with various tooth surface treatments (none, etching, priming, or etching and priming) on enamel and dentin of human teeth were measured using the Swiss shear test design. Three adhesives (Permaflo DC, Panavia F 2.0, and Panavia V5) and one self-adhesive cement (Panavia SA plus) were included in this study. The interface of the cement and the tooth surface with the different pre-treatments was analyzed using SEM. pH values of the cements and primers were measured. RESULTS The highest bond strength values for all cements were achieved with etching and primer on enamel (25.6 ± 5.3 - 32.3 ± 10.4 MPa). On dentin, etching and priming produced the highest bond strength values for all cements (8.6 ± 2.9 - 11.7 ± 3.5 MPa) except for Panavia V5, which achieved significantly higher bond strengths when pre-treated with primer only (15.3 ± 4.1 MPa). Shear bond strength values were correlated with the micro-retentive surface topography of enamel and the tag length on dentin except for Panavia V5, which revealed the highest bond strength with primer application only without etching, resulting in short but sturdy tags. CONCLUSION The highest bond strength can be achieved for Panavia F 2.0, Permaflo DC, and Panavia SA plus when the tooth substrate is previously etched and the respective primer is applied. The new cement Panavia V5 displayed low technique-sensitivity and attained significantly higher adhesion of all tested cements to dentin when only primer was applied. PMID:28435616
Prototype to measure bracket debonding force in vivo.
Tonus, Jéssika Lagni; Manfroi, Fernanda Borguetti; Borges, Gilberto Antonio; Grigolo, Eduardo Correa; Helegda, Sérgio; Spohr, Ana Maria
2017-02-01
Material biodegradation that occurs in the mouth may interfere in the bonding strength between the bracket and the enamel, causing lower bond strength values in vivo, in comparison with in vitro studies. To develop a prototype to measure bracket debonding force in vivo and to evaluate, in vitro, the bond strength obtained with the prototype. A original plier (3M Unitek) was modified by adding one strain gauge directly connected to its claw. An electronic circuit performed the reading of the strain gauge, and the software installed in a computer recorded the values of the bracket debonding force, in kgf. Orthodontic brackets were bonded to the facial surface of 30 bovine incisors with adhesive materials. In Group 1 (n = 15), debonding was carried out with the prototype, while tensile bond strength testing was performed in Group 2 (n = 15). A universal testing machine was used for the second group. The adhesive remnant index (ARI) was recorded. According to Student's t test (α = 0.05), Group 1 (2.96 MPa) and Group 2 (3.08 MPa) were not significantly different. ARI score of 3 was predominant in the two groups. The prototype proved to be reliable for obtaining in vivo bond strength values for orthodontic brackets.
Bond strength of Bis-GMA and glass ionomer pit and fissure sealants using cyclic fatigue.
Dewji, H R; Drummond, J L; Fadavi, S; Punwani, I
1998-02-01
The aim of the study was to determine the bond strength of glass ionomer and resin-modified glass ionomer sealants compared to Bis-GMA sealants using both static and cyclic fatigue shear testing. Four materials were evaluated: D, a Bis-GMA sealant with 10% phosphoric acid etchant; FC, a resin-modified glass ionomer sealant with 20% polyacrylic acid etchant; FD, a resin-modified glass ionomer sealant with 10% polyacrylic acid etchant; and FSC, a self-cured glass ionomer sealant with no etchant. Gelatin capsules filled with the sealant material were bonded to the enamel surfaces of bovine teeth after appropriate surface conditioning and then tested in shear static and cyclic fatigue. Static and cyclic shear bond strengths, respectively, for each group were (MPa): FC: 21.1+/-2.8 and 17.1+/-3.1; FD: 14.6+/-5.9 and 8.5+/-3.1; D: 10.8+/-4.9 and 4.7+/-2.6; FSC: 8.7 (1.0 and 2.9+/-0.6. The resin-modified glass ionomer sealants had better fatigue bond strength than both Bis-GMA and self-cured glass ionomer sealants with the surface conditioning affecting the bond strength of the resin-modified glass ionomer sealants.
Akin, Hakan; Tugut, Faik; Guney, Umit; Kirmali, Omer; Akar, Turker
2013-01-01
This study evaluated the effect of various surface treatments on the tensile bond strength of a silicone-based soft denture liner to two chemically different denture base resins, heat-cured polymethyl methacrylate (PMMA), and light-activated urethane dimethacrylate or Eclipse denture base resin. PMMA test specimens were fabricated and relined with a silicone-based soft denture liner (group AC). Eclipse test specimens were prepared according to the manufacturer's recommendation. Before they were relined with a silicone-based soft denture liner, each received one of three surface treatments: untreated (control, group EC), Eclipse bonding agent applied (group EB), and laser-irradiated (group EL). Tensile bond strength tests (crosshead speed = 5 mm/min) were performed for all specimens, and the results were analyzed using the analysis of variance followed by Tukey's test (p = 0.05). Eclipse denture base and PMMA resins presented similar bond strengths to the silicone-based soft denture liner. The highest mean force was observed in group EL specimens, and the tensile bond strengths in group EL were significantly different (p < 0.05) from those in the other groups.
[Effect of silicon coating on bonding strength of ceramics and titanium].
Zhou, Shu; Wang, Yu; Zhang, Fei-Min; Guang, Han-Bing
2009-06-01
This study investigated the effect of silicon coating (SiO2) by solution-gelatin (Sol-Gel) technology on bonding strength of titanium and ceramics. Sixteen pure titanium specimens with the size of 25 mm x 3 mm x 0.5 mm were divided into two groups (n=8), test group was silicon coated by Sol-Gel technology, the other one was control group. The middle area of the samples were veneered with Vita Titankeramik system, the phase composition of two specimens were characterized by X-ray diffraction (XRD). The bonding strength of titanium/porcelain was evaluated using three-point bending test. The interface of titanium and porcelain and fractured titanium surface were investigated by scanning electron microscope (SEM) with energy depressive spectrum (EDS). Contents of surface silicon increased after modification with silicon coated by Sol-Gel technology. The mean bonding strength of test group and control group were (37.768 +/- 0.777) MPa and (29.483 +/- 1.007) MPa. There was a statistically significant difference (P=0.000) between them. The bonded ceramic boundary of test group was wider than control group. Silicon coating by Sol-Gel technology was significant in improving bonding strength of titanium/Vita Titankeramik system.
Meeran, Nazeer Ahmed; George, Ashwin Mathew
2013-01-01
Alcohol is known to degrade and dissolve the bisphenol A glycidyl methacrylate present in the composite resin. The effect of alcohol containing mouthrinses on the shear bond strength of orthodontic metal brackets bonded with composite resin has not been verified until date and is the purpose of this study. The aims and objectives of the present study were to evaluate (1) Whether there is a significant difference in the shear bond strength of metal orthodontic brackets after the 1 year (12 h) and 2 years simulation (24 h) of mouth rinsing with 4 different commercially available mouthrinses (2 alcoholic and 2 alcohol-free mouthrinses) when compared to the control. (2) Whether alcohol containing mouthrinses have more adverse effect on the shear bond strength when compared with alcohol-free mouthrinses. (3) To assess the site of bond failure using adhesive remnant index. Experimental - laboratory based. A total of 100 upper premolars extracted for orthodontic purpose were collected immediately after extraction, cleared soft-tissue debris and blood and immediately stored in distilled water with 0.1% thymol crystals added to inhibit bacterial growth. Two alcohol containing mouthrinses and two alcohol-free mouthrinses were used and the bonded teeth were placed in the mouthrinses for a stipulated period of time (1 year simulation and 2 years simulation) and shear bond strength were tested using Lloyd Universal Testing Machine. The data were analyzed using analysis of variance and paired samples t-test. After the 1 year and 2 years simulation time, samples stored in alcohol containing mouthrinses showed lower bond strength (P < 0.05) when compared to samples stored in alcohol free mouthrinses and distilled water (control). Alcohol containing mouthrinses affect the shear bond strength of the metal orthodontic brackets bonded with composite resin (Transbond XT in the present study), more when compared with alcohol-free mouthrinses. It is, therefore, highly advisable to avoid alcohol containing mouthrinses in patients undergoing orthodontic treatment and use alcohol-free mouthrinses as adjuncts to regular oral hygiene procedures for maintaining good enamel integrity and periodontal health, without compromising the shear bond strength of the bonded metal brackets.
Evaluation of Microtensile Bond Strength and Microleakage of a Self-adhering Flowable Composite.
Yuan, He; Li, Mingyang; Guo, Bin; Gao, Yuan; Liu, HongLing; Li, Jiyao
2015-12-01
To evaluate the microtensile bond strength (μTBS) and marginal sealing ability of a self-adhering flowable composite between dentin and composite interfaces, as well as the microleakage of Class V restorations. The occlusal thirds of 40 third molars were removed and randomly divided into 4 groups according to the applied adhesive: Adper Easy One (AEO, 3M ESPE), Clearfil SE Bond (CSEB, Kuraray), Prime & Bond NT (PBNT, Dentsply) and a self-adhering flowable composite (Dyad Flow, DF, Kerr). Filtek Flowable (3M ESPE) resin composite crowns were then built up in the first three groups; in group DF, composite crowns were built up without the application of an adhesive. Thirty stick-shaped microspecimens were prepared per group, 10 of which were used for morphological observation of bonded interfaces by scanning electron microscopy (SEM) after decalcification. The remaining microspecimens underwent microtensile bond strength testing and the failure mode was analyzed. Microleakage evaluation was performed on 10 premolars per group in which standardized box-shaped Class V cavities were prepared. After 500 thermocycles, the premolars were immersed in 1% methylene blue for 24 h, and three slices from each tooth were observed under a stereomicroscope and scored. Statistical analysis was performed using one-way ANOVA, Student-Newman-Keuls and chi-square tests. The PBNT group presented the highest μTBS values, followed by the CSEB and AEO groups, which did not differ significantly from each other. The DF group showed the lowest μTBS values. No significant differences in microleakage were observed among these four groups. Although individual usage of the self-adhering flowable composite showed the lowest bond strength, the same marginal sealing ability was observed as that of combining self-etching and etch-and-rinse adhesives with flowable composite.
Torres, Gabriele Barbosa; da Silva, Tânia Mara; Basting, Rosanna Tarkany; Bridi, Enrico Coser; França, Fabiana Mantovani Gomes; Turssi, Cecilia Pedroso; do Amaral, Flávia Lucisano Botelho; de Paiva Gonçalves, Sérgio Eduardo; Basting, Roberta Tarkany
2017-10-01
To evaluate the bond strength to superficial (SD) and deep (DD) dentin after the use of 2.5% (T2.5%) or 4% (T4%) titanium tetrafluoride (TiF 4 ) in aqueous solution as a dentin pretreatment, or when incorporated into the primer (T2.5%P and T4%P) of an adhesive system (Clearfil SE Bond/CL). Degree of conversion (DC), particle size (PS), polydispersity index (PI) and zeta potential (ZP) of the solutions were evaluated. Fifty molars were sectioned longitudinally to obtain two slices of each tooth, which were demarcated into SD and DD. Treatments were applied (n=10): CL; T2.5%; T4%; T2.5%P; T4%P. After 24h or 180days storage, microshear bond strength tests were performed. The DC values of T2.5%P and T4%P were evaluated by FTIR. PS, PI and ZP were measured using dynamic light scattering. Analysis of mixed models showed significant effect of concentration of TiF 4 * solution * storage time (p=0.0075). There were higher bond strength values in SD than in DD (p=0.0105) for all treatments in both times. The failure mode showed adhesive failures in the majority of groups, irrespective of depth and time (p=0.3746). The bond strength values were not affected by treatments. Lower average particle size was observed for T2.5%P and T4%P at baseline. T2.5% and T4% showed a trend towards agglomeration. Higher bond strength values were achieved at SD for all treatments and times. The failure modes observed were adhesive. TiF 4 incorporation did not affect DC. T2.5%P and T4%P presented excellent stability over time. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Ramdev, Poojya; Shruthi, C S
2017-01-01
Introduction Yttria stabilised tetragonal zirconia opens new vistas for all ceramic restoration by the mechanism of transformation toughening, making it much stronger compared to all other ceramic materials. Currently, it is the most recent core material for all ceramic fixed partial dentures due to its ability to withstand high simulated masticatory loads. Problems which have been reported with zirconia restorations involve the core cement interface leading to loss of retention of the prosthesis. Different reasons which have been reported for the same include the lack of adhesion between zirconia and commonly used cements due to absence of silica phase which makes zirconia not etchable. In addition, the hydrophobic nature of zirconia causes low wettability of zirconia surface by the adhesive cements which are commonly used. Aim The purpose of this in vitro study was to compare and evaluate the effect of two pre-treatments of zirconia, using plasma of argon and silane, on the shear bond strength values of two composite resin cements to zirconia and to evaluate the failure pattern of the debonded areas using stereomicroscopic analysis. Materials and Methods Sixty zirconia discs (10 mm×2 mm) were randomly divided into three groups (n=20), following surface treatment, with airborne particle abrasion, using 110 µm Al2O3: Group I (control), Group II (plasma of argon cleaning), and Group III (application of silane primer). Each group had two subgroups based on the type of resin cement used for bonding: subgroup A; Rely X Ultimate (3M ESPE) and subgroup B; Panavia F (Kuraray). In subgroup A, Rely X universal silane primer and in subgroup B Clearfil ceramic primer was used. Shear bond strengths were determined after water storage for one day and thermocycling for 5000 cycles. Data (megapascal) were analyzed using ANOVA and Bonferroni test. Specimens were subjected to stereomicroscopic analysis, for evaluation of failure pattern. Results Group III produced the highest shear bond strength followed by Group II and Group I. Subgroup A showed higher shear bond strength than Subgroup B. Stereomicroscopic analysis showed cohesive failure in Group III, while in Group I adhesive failure was seen. Conclusion Silane primer application caused maximum increase in shear bond strength due to increased wettability. Argon plasma treatment was less effective in comparison to silane treatment. Air abrasion when used alone resulted in lower bond strength values, thereby making it necessary to use a combination of surface treatments. Rely X Ultimate cement was superior to Panavia F in terms of adhesive bonding to zirconia. PMID:28969271
Koizuka, Mai; Komine, Futoshi; Blatz, Markus B; Fushiki, Ryosuke; Taguchi, Kohei; Matsumura, Hideo
2013-09-01
To evaluate and compare the shear-bond strength of a gingiva-colored indirect composite material to three different implant framework materials (zirconia ceramics, gold alloy, and titanium), and to investigate the effect of surface pretreatment by air-particle abrasion and four priming agents. A gingiva-colored indirect composite (Ceramage) was bonded to three framework materials (n = 80): commercially pure titanium (CP- Ti ), ADA (American Dental Association)-type 4 casting gold alloy (Type IV), and zirconia ceramics (Zirconia) with or without airborne-particle abrasion. Before bonding, the surface of the specimens was treated using no (control) or one of four priming agents: Alloy Primer (ALP), Estenia Opaque Primer (EOP), Metal Link Primer (MLP), and V-Primer (VPR). Shear-bond strength was determined after 24-h wet storage. Data were analyzed using Steel-Dwass for multiple comparisons, and Mann-Whitney U-test (P = 0.05). For both CP- Ti and Zirconia substrates, three groups, ALP, EOP, and MLP, showed significantly higher bond strengths (P < 0.05) than the other groups with or without airborne-particle abrasion. For Type IV substrates, significantly higher bond strengths were obtained in ALP and MLP groups (P < 0.01) compared with the other groups with airborne-particle abrasion. Application of priming agents containing specific phosphoric ester groups significantly enhances the bond strength of a gingiva-colored composite material to commercially pure titanium and zirconia frameworks. Combined use of a thione monomer with a phosphoric monomer enhances the bond strengths to airborne-particle abraded type IV gold alloy. © 2012 John Wiley & Sons A/S.
Evaluation of Tack Coat Bond Strength Tests
DOT National Transportation Integrated Search
2018-05-01
Poor bonding between asphalt pavement overlays and the substrate pavement layer can greatly influence the long term performance of hot mix asphalt (HMA) in the form of premature cracking and fatigue. The primary method to achieve bonding between laye...
Tsujimoto, Akimasa; Fischer, Nicholas; Barkmeier, Wayne; Baruth, Andrew; Takamizawa, Toshiki; Latta, Mark; Miyazaki, Masashi
2017-01-01
To examine the effect of reduced phosphoric acid pre-etching times on enamel fatigue bond strength of universal adhesives and surface characteristics by using atomic force microscopy (AFM). Three universal adhesives were used in this study (Clearfil Universal Bond [C], G-Premio Bond [GP], Scotchbond Universal Adhesive [SU]). Four pre-etching groups were employed: enamel pre-etched with phosphoric acid and immediately rinsed with an air-water spray, and enamel pre-etched with phosphoric acid for 5, 10, or 15 s. Ground enamel was used as the control group. For the initial bond strength test, 15 specimens per etching group for each adhesive were used. For the shear fatigue test, 20 specimens per etching group for each adhesive were loaded using a sine wave at a frequency of 20 Hz for 50,000 cycles or until failure occurred. Initial shear bond strengths and fatigue shear strengths of composite adhesively bonded to ground and pre-etched enamel were determined. AFM observations of ground and pre-etched enamel were also conducted, and surface roughness as well as surface area were evaluated. The initial shear bond strengths and fatigue shear strengths of the universal adhesives in the pre-etched groups were significantly higher than those of the control group, and were not influenced by the pre-etching time. Significantly higher surface roughness and surface area of enamel surfaces in pre-etched groups were observed compared with those in the control group. While the surface area was not significantly influenced by etching time, surface roughness of the enamel surfaces in the pre-etched groups significantly increased with pre-etching time. The results of this in vitro study suggest that reduced phosphoric acid pre-etching times do not impair the fatigue bond strength of universal adhesives. Although fatigue bond strength and surface area were not influenced by phosphoric-acid etching times, surface roughness increased with increasing etching time.
Surface fluorination of zirconia: adhesive bond strength comparison to commercial primers.
Piascik, Jeffrey R; Swift, Edward J; Braswell, Krista; Stoner, Brian R
2012-06-01
This study evaluated contact angle and shear bond strength of three commercial zirconia primers and compared them to a recently developed fluorination pre-treatment. Earlier investigations reported that plasma fluorinated zirconia modifies the chemical bonding structure creating a more reactive surface. Yttria-stabilized zirconia (LAVA, 3M ESPE) plates were highly polished using 3μm diamond paste (R(a) ∼200nm) prior to pretreatments. After primer and fluorination treatment, contact angles were measured to quantify surface hydrophobicity before and after ethanol clean. Additionally, simple shear bond tests were performed to measure the adhesion strength to a composite resin. Plasma fluorination produced the lowest contact angle (7.8°) and the highest shear bond strength (37.3MPa) suggesting this pretreatment facilitates a more "chemically" active surface for adhesive bonding. It is hypothesized that plasma fluorination increase hydroxylation at the surface, making it more reactive, thus allowing for covalent bonding between zirconia surface and resin cement. A strong correlation was observed between contact angle and adhesion strength for all specimens; a relationship which may help understand the frequency and modes of failures, clinically. It is also believed that this surface treatment can increase long-term viability of zirconia restorations over other adhesive techniques. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Liu, Chang; Liu, Hong; Qian, Yue-Tong; Zhu, Song; Zhao, Su-Qian
2014-01-01
In this study, we evaluate the influence of post surface pre-treatments on the bond strength of four different cements to glass fiber posts. Eighty extracted human maxillary central incisors and canines were endodontically treated and standardized post spaces were prepared. Four post pre-treatments were tested: (i) no pre-treatment (NS, control), (ii) sandblasting (SA), (iii) silanization (SI) and (iv) sandblasting followed by silanization (SS). Per pre-treatment, four dual-cure resin cements were used for luting posts: DMG LUXACORE Smartmix Dual, Multilink Automix, RelyX Unicem and Panavia F2.0. All the specimens were subjected to micro push-out test. Two-way analysis of variance and Tukey post hoc tests were performed (α=0.05) to analyze the data. Bond strength was significantly affected by the type of resin cement, and bond strengths of RelyX Unicem and Panavia F2.0 to the fiber posts were significantly higher than the other cement groups. Sandblasting significantly increased the bond strength of DMG group to the fiber posts. PMID:24177170
Spintzyk, Sebastian; Yamaguchi, Kikue; Sawada, Tomofumi; Schille, Christine; Schweizer, Ernst; Ozeki, Masahiko; Geis-Gerstorfer, Jürgen
2016-01-01
This study evaluated the bond strength of veneering porcelain with an experimental conditioner-coated zirconia. Pre-sintered Y-TZP specimens (n = 44) were divided in two groups based on conditioning type. After sintering, all sample surfaces were sandblasted and layered with veneering porcelain. Additionally, half of the specimens in each group underwent thermal cycling (10,000 cycles, 5–55 °C), and all shear bond strengths were measured. After testing, the failure mode of each fractured specimen was determined. Differences were tested by parametric and Fisher’s exact tests (α = 0.05). The differences in bond strength were not statistically significant. Adhesive fractures were dominantly observed for the non-thermal cycled specimens. After thermal cycling, the conditioner-coated group showed cohesive and mixed fractures (p = 0.0021), whereas the uncoated group showed more adhesive fractures (p = 0.0021). Conditioning of the pre-sintered Y-TZP did not change the shear bond strength of the veneering porcelain, but did improve the failure mode after thermal cycling. PMID:28773885
Bonding brackets on white spot lesions pretreated by means of two methods.
Vianna, Julia Sotero; Marquezan, Mariana; Lau, Thiago Chon Leon; Sant'Anna, Eduardo Franzotti
2016-01-01
The aim of this study was to evaluate the shear bond strength (SBS) of brackets bonded to demineralized enamel pretreated with low viscosity Icon Infiltrant resin (DMG) and glass ionomer cement (Clinpro XT Varnish, 3M Unitek) with and without aging. A total of 75 bovine enamel specimens were allocated into five groups (n = 15). Group 1 was the control group in which the enamel surface was not demineralized. In the other four groups, the surfaces were submitted to cariogenic challenge and white spot lesions were treated. Groups 2 and 3 were treated with Icon Infiltrant resin; Groups 4 and 5, with Clinpro XT Varnish. After treatment, Groups 3 and 5 were artificially aged. Brackets were bonded with Transbond XT adhesive system and SBS was evaluated by means of a universal testing machine. Statistical analysis was performed by one-way analysis of variance followed by Tukey post-hoc test. All groups tested presented shear bond strengths similar to or higher than the control group. Specimens of Group 4 had significantly higher shear bond strength values (p < 0.05) than the others. Pretreatment of white spot lesions, with or without aging, did not decrease the SBS of brackets.
Costa, Daniele Morosini; Somacal, Deise Caren; Borges, Gilberto Antonio; Spohr, Ana Maria
2017-01-01
Objective: The aim was to evaluate, in vitro, the tensile bond strength to dentin of Scotchbond Universal (SU), All-Bond Universal (AU) and One Coat 7 Universal (OC7) adhesives applied in self-etch mode, after 24 h of storage and after 500,000 loading cycles, using Clearfil SE Bond (SE) as a control. Materials and Methods: The adhesives were applied on the dentin of bovine teeth, followed by the application of a composite resin. Thirty specimens were obtained for each adhesive. Half of the specimens were submitted to cyclic loading for 500,000 cycles. All specimens were submitted to a tensile bond strength test in a universal testing machine at a crosshead speed of 0.5 mm/minute. Results: According to two-way ANOVA and Tukey’s test (α=5%), the interaction between the adhesive and cyclic loading factors was significant (p=0.001). The means followed by the same letter represent no significant difference in the bond strength (MPa) after 24 h: OC7=7.86A (±2.90), SU=6.78AB (±2.03), AU=5.61BC (±2.32), and SE=3.53C (±1.89). After cyclic loading, SE, SU and AU maintained bond strength comparable to 24 h period. There was a significant decrease only for OC7. Conclusion: SU, AU and OC7 had bond strength to dentin comparable to that of SE. Only OC7 had decreased bond strength to dentin after cyclic loading. PMID:28839476
Mahmoodi, Nasrin; Hooshmand, Tabassom; Heidari, Solmaz; Khoshro, Kimia
2016-02-01
The purpose of this in vitro study was to evaluate the effect of laser irradiation as well as other surface treatment methods on the microtensile bond strength of a dental zirconia ceramic to the two types of resin cements. Zirconia ceramic blocks (ICE Zirkon) were sintered according to the manufacturer's instructions and duplicated in resin composites. The ceramic specimens were divided into four groups according to the following surface treatments: no surface treatment (control), sandblasting with alumina, silica coating plus silanization, and Nd:YAG laser irradiation. The specimens were divided equally and then bonded with Panavia F2.0 (self-etching resin cement) and Clearfil SA Luting (self-adhesive resin cement) to the composite blocks. The bonded ceramic-composite blocks were stored in distilled water at 37 °C for 72 h, cut to prepare bar-shaped specimens with a bonding area of approximately 1 mm(2), and thermocycled for 3000 cycles between 5 and 55 °C, and the microtensile bond strengths were measured using a universal testing machine. The data were analyzed by ANOVA and Tukey post hoc test. The results showed that the self-adhesive resin cement used in this study did not improve the microtensile bond strength when the zirconia surface was sandblasted by alumina. The use of the Nd:YAG laser did not enhance the bond strength between the zirconia and both types of resin cements. In addition, silica coating of the zirconia surfaces plus silane application significantly improved the bond strength regardless of the type of resin cement utilized.
Shear bond strength comparison of implant-retained overdenture attachment pickup materials.
Cayouette, Monica J; Barnes, Logan; Vuthiganon, Jompobe; McPherson, Karen
2016-01-01
This study evaluated the shear bond strength (SBS) of 4 different retentive materials for the chairside pickup of dental implant attachments. Shear force was applied to determine the SBS of each material to denture acrylic resin. The difference between SBSs of polymethyl methacrylate and UBAR (claimed to bond to metal) to metal housings was also evaluated. There were no statistically significant differences among the SBSs of Jet Denture Repair Acrylic, EZ PickUp, and UBAR, but Quick Up had an SBS that was significantly lower than that of the other 3 materials. In addition, UBAR had a higher SBS to metal housings than did processed polymethyl methacrylate.
Castro, Martha C C; Sadek, Fernanda T; Batitucci, Eduardo; Miranda, Mauro S
2014-01-01
The bond strength of dental materials has been evaluated by tensile testing of micro-specimens. The cutting process used to obtain specimens may influence the results. The objective of this study was to investigate the influence of different types of diamond disks and cutting speeds on the bond strength of ceramic specimens and on specimen integrity. Lithium disilicate-based ceramic cubes were bonded with resin cement to composite resin cubes, according to the manufacturers' instructions. The ceramic/cement/resin blocks thus obtained were divided into two groups to be cut with Buehler(®) or Extec(®) disks and then sectioned at cutting speeds of 200 rpm and 400 rpm. The results showed that the bond strength values were affected by the cutting speed and disk/speed interaction (p<0.05). SEM analysis revealed better specimen properties when the blocks were cut at 200 rpm. It was concluded that ceramic specimens must be cut at low speeds.
Delfino, Carina Sinclér; Souza-Zaroni, Wanessa Christine; Corona, Silmara Aparecida Milori; Palma-Dibb, Regina Guenka
2007-02-01
The Erbium: Yttrium Aluminum Garnet (YAG) laser used for preparation of cavity can alter the substrate and it could influence the bond strength of enamel. The aim of this in vitro study was to evaluate the influence of Er:YAG laser's energy using microtensile bond test. Three groups were obtained (cavity preparation) and each group was divided into two subgroups (adhesive system). After that the adhesive protocol was performed, sections with a cross-sectional area of 0.8 mm2 (+/-0.2 mm2) were obtained. The specimens were mounted in a universal testing machine (0.5 mm/min). Statistical analysis showed a decrease in bond strength for lased groups (p < 0.01) and when the total-etching adhesive system was used the laser 300 mJ subgroup showed higher bond strength compared to the laser 250 mJ (p < 0.01). It was concluded that the cavities prepared using laser appear less receptive to adhesive procedures than conventional bur-cut cavities. Copyright 2006 Wiley Periodicals, Inc.
Wang, Hongmei; Feng, Qing; Li, Ning; Xu, Sheng
2016-12-01
Limited information is available regarding the metal-ceramic bond strength of dental Co-Cr alloys fabricated by casting (CAST), computer numerical control (CNC) milling, and selective laser melting (SLM). The purpose of this in vitro study was to evaluate the metal-ceramic bond characteristics of 3 dental Co-Cr alloys fabricated by casting, computer numerical control milling, and selective laser melting techniques using the 3-point bend test (International Organization for Standardization [ISO] standard 9693). Forty-five specimens (25×3×0.5 mm) made of dental Co-Cr alloys were prepared by CAST, CNC milling, and SLM techniques. The morphology of the oxidation surface of metal specimens was evaluated by scanning electron microscopy (SEM). After porcelain application, the interfacial characterization was evaluated by SEM equipped with energy-dispersive spectrometry (EDS) analysis, and the metal-ceramic bond strength was assessed with the 3-point bend test. Failure type and elemental composition on the debonding interface were assessed by SEM/EDS. The bond strength was statistically analyzed by 1-way ANOVA and Tukey honest significant difference test (α=.05). The oxidation surfaces of the CAST, CNC, and SLM groups were different. They were porous in the CAST group but compact and irregular in the CNC and SLM groups. The metal-ceramic interfaces of the SLM and CNC groups showed excellent combination compared with those of the CAST group. The bond strength was 37.7 ±6.5 MPa for CAST, 43.3 ±9.2 MPa for CNC, and 46.8 ±5.1 MPa for the SLM group. Statistically significant differences were found among the 3 groups tested (P=.028). The debonding surfaces of all specimens exhibited cohesive failure mode. The oxidation surface morphologies and thicknesses of dental Co-Cr alloys are dependent on the different fabrication techniques used. The bond strength of all 3 groups exceed the minimum acceptable value of 25 MPa recommended by ISO 9693; hence, dental Co-Cr alloy fabricated with the SLM techniques could be a promising alternative for metal ceramic restorations. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Gorler, Oguzhan; Saygin, Aysegul Goze
2017-06-01
Laser modalities and direct metal laser sintering (DMLS) have a potential to enhance micromechanical bonding between dental super- and infrastructures. However, the effect of different manufacturing methods on the metal-ceramic bond strength needs further evaluation. We investigated the effect of surface treatment with Er:YAG, Nd:YAG, and Ho:YAG lasers on the shear bond strength (SBS) of high-fusion dental porcelains (Vita and G-Ceram) to infrastructures prepared with DMLS in vitro settings. Study specimens (n = 128) were randomly divided into study subsets (n = 8), considering treatment types applied on the surface of infrastructures, including sandblasting and selected laser modalities; infrastructure types as direct laser sintered (DLS) and Ni-Cr based; and superstructure porcelains as Vita and G-Ceram. The SBS test was performed to assess the effectiveness of surface modifications that were also examined with a stereo microscope. Considering laser procedure types, the highest SBS values were obtained by Er:YAG laser, followed by, with a decreasing efficiency, Ho:YAG laser and sandblasting procedures, and Nd:YAG laser procedure (p < 0.05). Nd:YAG laser decreases the bonding of Vita and G-Ceram in all the infrastructures compared with sandblasting. Considering porcelains, the highest SBS values were obtained by Vita (p < 0.05). Considering infrastructures, the highest SBS values were obtained by DMLS procedure (p < 0.05). The laser procedures caused surface irregularities as revealed by the stereo microscopic examination. In current experimental settings, Er:YAG laser applied to DLS infrastructure veneered with Vita porcelain increases bonding strength more distinctly, and Nd:YAG laser applied to Ni-Cr-based infrastructure veneered with G-Ceram porcelain alters bonding strength unfavorably.
NASA Technical Reports Server (NTRS)
Bowles, Kenneth J.
1992-01-01
To date, the effect of thermo-oxidative aging on unidirectional composite mechanical properties has been monitored by the measurement of interlaminar shear strength (ILSS) and either three or four point longitudinal flexural strength (LFS) of the composites being tested. Both results are affected by the fiber-to-matrix bonding, the former being dependent on the shear resistance of the interface and the latter on the degree of load sharing by the fibers through the fiber/matrix interface. Recently, fiber/matrix interfacial bond strengths have been monitored using a transverse flexural strength (TFS) test method. This test method was used to evaluate the effect of fiber surface treatment on the fiber/matrix bond. The interface bonding was varied in these tests using Hercules A-fibers with three-types of surfaces that produce bonds of poor, better, and good quality. The TFS was found not only to be sensitive to the bonding, but also to the aging time of unidirectional A-fiber/PMR-15 composites. This relationship reflects the mechanism by which the PMR-15 degrades during thermal aging.
Effect of 2% Chlorhexidine Digluconate on the Bond Strength to Normal versus Caries-Affected Dentin
Komori, Paula C. P.; Pashley, David H.; Tjäderhane, Leo; Breschi, Lorenzo; Mazzoni, Annalisa; de Goes, Mario Fernando; Wang, Linda; Carrilho, Marcela R.
2013-01-01
SUMMARY This study evaluated the effect of 2% chlorhexidine digluconate (CHX) used as a therapeutic primer on the long-term bond strengths of two etch-and-rinse adhesives to normal (ND) and caries-affected (CAD) dentin. Forty extracted human molars with coronal carious lesions, surrounded by normal dentin, were selected for this study. Flat surfaces of two types of dentin (i.e. ND and CAD) were prepared with a water-cooled high speed diamond disc, and then acid-etched, rinsed and air-dried. In control groups, dentin was re-hydrated with distilled water, blot-dried and bonded with a three-step (Scotchbond Multi-Purpose-MP) or a two-step (Single Bond 2-SB) etch-and-rinse adhesive. In experimental groups, dentin was re-hydrated with 2% CHX (60 s), blot-dried and bonded with the same adhesives. Resin composite build-ups were made. Specimens were prepared for microtensile bond testing in accordance with the non-trimming technique and then tested either immediately or after 6-month storage in artificial saliva. Data were analyzed by ANOVA/Bonferroni tests (α = 0.05). CHX did not affect the immediate bond strength to ND or CAD (p>0.05). CHX treatment significantly lowered the loss of bond strength after 6 months seen in control bonds for ND (p<0.05), but it did not alter the bond strength of CAD (p>0.05). Application of MP on CHX-treated ND or CAD produced bonds that did not change over 6 months of storage. PMID:19363971
Effect of 2% chlorhexidine digluconate on the bond strength to normal versus caries-affected dentin.
Komori, Paula C P; Pashley, David H; Tjäderhane, Leo; Breschi, Lorenzo; Mazzoni, Annalisa; de Goes, Mario Fernando; Wang, Linda; Carrilho, Marcela R
2009-01-01
This study evaluated the effect of 2% chlorhexidine digluconate (CHX) used as a therapeutic primer on the long-term bond strengths of two etch-and-rinse adhesives to normal (ND) and caries-affected (CAD) dentin. Forty extracted human molars with coronal carious lesions, surrounded by normal dentin, were selected for this study. The flat surfaces of two types of dentin (ND and CAD) were prepared with a water-cooled high-speed diamond disc, then acid-etched, rinsed and air-dried. In the control groups, the dentin was re-hydrated with distilled water, blot-dried and bonded with a three-step (Scotchbond Multi-Purpose-MP) or two-step (Single Bond 2-SB) etch-and-rinse adhesive. In the experimental groups, the dentin was rehydrated with 2% CHX (60 seconds), blot-dried and bonded with the same adhesives. Resin composite build-ups were made. The specimens were prepared for microtensile bond testing in accordance with the non-trimming technique, then tested either immediately or after six-months storage in artificial saliva. The data were analyzed by ANOVA/Bonferroni tests (alpha = 0.05). CHX did not affect the immediate bond strength to ND or CAD (p > 0.05). CHX treatment significantly lowered the loss of bond strength after six months as seen in the control bonds for ND (p < 0.05), but it did not alter the bond strength of CAD (p > 0.05). The application of MP on CHX-treated ND or CAD produced bonds that did not change over six months of storage.
Gupta, Nimisha; Tripathi, Abhay Mani; Saha, Sonali; Dhinsa, Kavita; Garg, Aarti
2015-07-01
Newer development of bonding agents have gained a better understanding of factors affecting adhesion of interface between composite and dentin surface to improve longevity of restorations. The present study evaluated the influence of salivary contamination on the tensile bond strength of different generation adhesive systems (two-step etch-and-rinse, two-step self-etch and one-step self-etch) during different bonding stages to dentin where isolation is not maintained. Superficial dentin surfaces of 90 extracted human molars were randomly divided into three study Groups (Group A: Two-step etch-and-rinse adhesive system; Group B: Two-step self-etch adhesive system and Group C: One-step self-etch adhesive system) according to the different generation of adhesives used. According to treatment conditions in different bonding steps, each Group was further divided into three Subgroups containing ten teeth in each. After adhesive application, resin composite blocks were built on dentin and light cured subsequently. The teeth were then stored in water for 24 hours before sending for testing of tensile bond strength by Universal Testing Machine. The collected data were then statistically analysed using one-way ANOVA and Tukey HSD test. One-step self-etch adhesive system revealed maximum mean tensile bond strength followed in descending order by Two-step self-etch adhesive system and Two-step etch-and-rinse adhesive system both in uncontaminated and saliva contaminated conditions respectively. Unlike One-step self-etch adhesive system, saliva contamination could reduce tensile bond strength of the two-step self-etch and two-step etch-and-rinse adhesive system. Furthermore, the step of bonding procedures and the type of adhesive seems to be effective on the bond strength of adhesives contaminated with saliva.
Repair Strength in Simulated Restorations of Methacrylate- or Silorane-Based Composite Resins.
Consani, Rafael Leonardo Xediek; Marinho, Tatiane; Bacchi, Atais; Caldas, Ricardo Armini; Feitosa, Victor Pinheiro; Pfeifer, Carmem Silvia
2016-01-01
The study verified the bond strength in simulated dental restorations of silorane- or methacrylate-based composites repaired with methacrylate-based composite. Methacrylate- (P60) or silorane-based (P90) composites were used associated with adhesive (Adper Single Bond 2). Twenty-four hemi-hourglass-shaped samples were repaired with each composite (n=12). Samples were divided according to groups: G1= P60 + Adper Single Bond 2+ P60; G2= P60 + Adper Single Bond 2 + P60 + thermocycling; G3= P90 + Adper Single Bond 2 + P60; and G4= P90 + Adper Single Bond 2 + P60 + thermocycling. G1 and G3 were submitted to tensile test 24 h after repair procedure, and G2 and G4 after submitted to 5,000 thermocycles at 5 and 55 ?#61616;C for 30 s in each bath. Tensile bond strength test was accomplished in an universal testing machine at crosshead speed of 0.5 mm/min. Data (MPa) were analyzed by two-way ANOVA and Tukey's test (5%). Sample failure pattern (adhesive, cohesive in resin or mixed) was evaluated by stereomicroscope at 30?#61655; and images were obtained in SEM. Bond strength values of methacrylate-based composite samples repaired with methacrylate-based composite (G1 and G2) were greater than for silorane-based samples (G3 and G4). Thermocycling decreased the bond strength values for both composites. All groups showed predominance of adhesive failures and no cohesive failure in composite resin was observed. In conclusion, higher bond strength values were observed in methacrylate-based resin samples and greater percentage of adhesive failures in silorane-based resin samples, both composites repaired with methacrylate-based resin.
Bapna, M S; Mueller, H J
1993-01-01
Chevron-notch fracture toughness, diametrical tensile strength and fractography were evaluated for bulk amalgams and for bonds formed between new and 1-day-old amalgams of the same type. Three types of bonded specimens were prepared: 1) by mechanically roughening the 1-day-old amalgam with 600-grit paper; 2) using a new mercury-rich amalgam; and 3) using a bonding resin, either 4-META or a phosphate ester monomer. Similar values in bond properties were obtained with all bonding techniques for two commercial dispersed-phase bonded amalgams, one of which contained palladium; however, bulk fracture toughness of the palladium-containing amalgam was significantly less than for the palladium-free amalgam. This result reveals that the bonding of amalgam to amalgam, at least for these two amalgams, is a surface-related phenomenon, and thus, the traditional reporting of bonding properties as a percentage of bulk properties loses meaning. Short-rod geometry was more representative of the interfacial bond properties since these samples fractured within the interfacial bonds, while diametrical strength samples often fractured slightly away from the interface. The use of bonding resins did not improve bond fracture toughness for either amalgam, while the diametrical strength improved for one of the amalgams. The use of mercury-rich amalgam significantly improved the fracture toughness over all other techniques for one amalgam while proving to be similar to a 600-grit preparation for the second amalgam.(ABSTRACT TRUNCATED AT 250 WORDS)
Effect of air-blowing duration on the bond strength of current one-step adhesives to dentin.
Fu, Jiale; Saikaew, Pipop; Kawano, Shimpei; Carvalho, Ricardo M; Hannig, Matthias; Sano, Hidehiko; Selimovic, Denis
2017-08-01
To evaluate the influence of different air-blowing durations on the micro-tensile bond strength (μTBS) of five current one-step adhesive systems to dentin. One hundred and five caries-free human molars and five current one-step adhesive systems were used: ABU (All Bond Universal, Bisco, Inc.), CUB (CLEARFIL™ Universal Bond, Kuraray), GPB (G-Premio BOND, GC), OBA (OptiBond All-in-one, Kerr) and SBU (Scotchbond Universal, 3M ESPE). The adhesives were applied to 600 SiC paper-flat dentin surfaces according to each manufacturer's instructions and were air-dried with standard, oil-free air pressure of 0.25MPa for either 0s, 5s, 15s or 30s before light-curing. Bond strength to dentin was determined by using μTBS test after 24h of water storage. The fracture pattern on the dentin surface was analyzed by SEM. The resin-dentin interface of untested specimens was visualized by panoramic SEM image. Data from μTBS were analyzed using two-way ANOVA (adhesive vs. air-blowing time), and Games-Howell (a=0.05). Two-way ANOVA revealed a significant effect of materials (p=0.000) and air-blowing time (p=0.000) on bond strength to dentin. The interaction between factors was also significantly different (p=0.000). Maximum bond strength for each system were recorded, OBA/15s (76.34±19.15MPa), SBU/15s (75.18±12.83MPa), CUB/15s (68.23±16.36MPa), GPB/30s (55.82±12.99MPa) and ABU/15s (44.75±8.95MPa). The maximum bond strength of OBA and SUB were significantly higher than that of GPB and ABU (p<0.05). The bond strength of the current one-step adhesive systems is material-dependent (p=0.000), and was influenced by air-blowing duration (p=0.000). For the current one-step adhesive systems, higher bond strengths could be achieved with prolonged air-blowing duration between 15-30s. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
The effect of zoledronate-containing primer on dentin bonding of a universal adhesive.
Zenobi, Walter; Feitosa, Victor Pinheiro; Moura, Maria Elisa Martins; D'arcangelo, Camillo; Rodrigues, Lidiany Karla de Azevedo; Sauro, Salvatore
2018-01-01
To evaluate the bonding ability and nanoleakage of a universal adhesive applied to dentin pre-treated using a zoledronate-containing primer (zol-primer) before and after mechanical load cycling. Flat dentin surfaces obtained from human molars were assigned to one of the following adhesion procedures (n=6): 1-Single Bond Universal (SBU) applied in etch-and-rinse mode; 2- SBU applied as etch-and-rinse after the application of zol-primer; 3- SBU applied in self-etch strategy; 4- SBU applied as self-etch after the use of zol-primer. Half of the specimens were processed for microtensile bond strength test after 24h, while the other half part was submitted to 200,000 mechanical cycles. Further specimens were silver-impregnated and assessed for interface nanoleakage by SEM. Data were analyzed with two-way ANOVA and Tukey's test (p<0.05). At 24h evaluation, the four groups presented similar bond strengths, whilst both groups bonded with etch-and-rinse technique showed significant bond strength reduction after mechanical load (p<0.05), with the highest drop in bond strength for the specimens pre-treated with the zol-primer. No negative effects were found for self-etch strategy (p>0.05) in microtensile test. Lower nanoleakage expression was observed for etch-and-rinse specimens treated with zol-primer. However, noteworthy reduction of adhesive layer thickness was observed when combining the zol-primer with the self-etch bonding approach. It can be concluded that zol-primer should not be used along with a universal adhesive in etch-and-rinse mode, but its application before self-etch application may provide less degradation of the resin-dentin interface. Copyright © 2017 Elsevier Ltd. All rights reserved.
Solid-state Bonding of Superplastic Aluminum Alloy 7475 Sheet
NASA Technical Reports Server (NTRS)
Byun, T. D. S.; Vastava, R. B.
1985-01-01
Experimental works were carried out to study the feasibility of solid state bonding of superplastic aluminum 7475 sheet. Amount of deformation, bonding time, surface cleaning method and intermediate layer were the process parameters investigated. Other parameters, held constant by the superplastic forming condition which is required to obtain a concurrent solid state bonding, are bonding temperature, bonding pressure and atmosphere. Bond integrity was evaluated through metallographic examination, X-ray line scan analysis, SEM fractographic analysis and lap shear tests. The early results of the development program indicated that sound solid state bonding was accomplished for this high strength 7475 alloy with significant amounts of deformation. A thin intermediate layer of the soft 5052 aluminum alloy aided in achieving a solid state bonding by reducing the required amount of plastic deformation at the interface. Bond strength was substantially increased by a post bond heat treatment.
Mokhtari, Fatemeh; Anvar, Ehsan; Mirshahpanah, Mostafa; Hemati, Hamidreza; Danesh Kazemi, Alireza
2017-01-01
The aim of this study was to evaluate the effect of root canal irrigants on the microtensile bond strength of 2-step self-etch adhesive to dentin. n this study 36 sound extracted human third molars were used. After grinding 3 mm of occlusal surface, teeth were randomly divided into 6 groups based on irrigation material naming normal saline, 5.25% sodium hypochlorite (NaOCl) and 2% chlorhexidine (CHX) and also irrigation time (5 or 30 min). Next, teeth were restored with Clearfil SE bond adhesive resin system and Z250 composite. The teeth were then thermo cycled by thermo cycling machine, for 500 cycles between 5 º and 55 º C with 60 sec dwell time and 12 sec transfer time. All samples were sectioned into bucco-lingual slabs. The sections were submitted to the micro tensile testing machine at a crosshead speed of 0.5 mm/min until fracture. Data was analyzed using the one-way ANOVA test with the level of significance set at 0.05. Irrigation with normal saline, 5.25% NaOCl and 2% CHX for 5 or 30 min did not significantly change the microtensile bond strength of adhesive to dentin ( P =0.729 for time and P =0.153 for material). However the maximum and minimum microtensile bond strength was attributed to normal saline (44.13 N) and NaOCl (31.29 N) groups, respectively. Iirrigation solution and time have no influence on microtensile bond strength of two-step self-etch adhesive to coronal dentin.
Mokhtari, Fatemeh; Anvar, Ehsan; Mirshahpanah, Mostafa; Hemati, Hamidreza; Danesh Kazemi, Alireza
2017-01-01
Introduction: The aim of this study was to evaluate the effect of root canal irrigants on the microtensile bond strength of 2-step self-etch adhesive to dentin. Methods and Materials: n this study 36 sound extracted human third molars were used. After grinding 3 mm of occlusal surface, teeth were randomly divided into 6 groups based on irrigation material naming normal saline, 5.25% sodium hypochlorite (NaOCl) and 2% chlorhexidine (CHX) and also irrigation time (5 or 30 min). Next, teeth were restored with Clearfil SE bond adhesive resin system and Z250 composite. The teeth were then thermo cycled by thermo cycling machine, for 500 cycles between 5º and 55ºC with 60 sec dwell time and 12 sec transfer time. All samples were sectioned into bucco-lingual slabs. The sections were submitted to the micro tensile testing machine at a crosshead speed of 0.5 mm/min until fracture. Data was analyzed using the one-way ANOVA test with the level of significance set at 0.05. Results: Irrigation with normal saline, 5.25% NaOCl and 2% CHX for 5 or 30 min did not significantly change the microtensile bond strength of adhesive to dentin (P=0.729 for time and P=0.153 for material). However the maximum and minimum microtensile bond strength was attributed to normal saline (44.13 N) and NaOCl (31.29 N) groups, respectively. Conclusion: Iirrigation solution and time have no influence on microtensile bond strength of two-step self-etch adhesive to coronal dentin. PMID:29225638
WANG, LU-FEI; LUO, FENG; XUE, CHAO-RAN; DENG, MENG; CHEN, CHEN; WU, HAO
2016-01-01
Galla chinensis extract (GCE), a naturally-derived agent, has a significant inhibitory effect on cariogenic bacteria. The present study aims to evaluate the antibacterial effect and shear bond strength of an orthodontic adhesive cement containing GCE. A resin-modified glass ionomer cement incorporated GCE at five mass fractions (0, 0.1, 0.2, 0.4, and 0.8%) to prepare GCE-containing cement for analysis. For the agar diffusion test, cement specimens were placed on agar disk inoculated with Streptococcus mutans (strain ATCC 25175). Following 48 h incubation, the inhibition halo diameter was measured. To assess bacteria colonization susceptibility, S. mutans adhesion to cement specimens was detected by scanning electron microscopy (SEM) following 48 h incubation. To evaluate bond strength, a total of 50 metal brackets were bonded on premolar surfaces by using cement (10 teeth/group). Following immersion in an artificial saliva for 3 days, shear bond strength (SBS) was measured. The results demonstrated that GCE-containing samples exhibited a larger bacterial inhibition halo than control, and the inhibition zone increased as the GCE mass fraction increased. SEM analysis demonstrated that S. mutans presented a weaker adherent capacity to all GCE-containing cements compared with control, but the difference between each GCE-containing group was not significant. SBS values of each GCE-containing group exhibited no difference compared with the control. In conclusion, GCE-containing adhesive cement exhibits a promising inhibitory effect on S. mutans growth and adhesion. Without compromising bond strength, adding GCE in adhesive cement may be an attractive option for preventing white spot lesions during orthodontic treatment. PMID:27073642
Yoshinari, Masao; Uzawa, Shinobu; Komiyama, Yataro
2016-10-01
The aim of this in vitro study was to evaluate tensile bond strengths and corrosion resistance of CoCr alloys joined with gold cylinder by a soldering system in comparison with the conventional cast-joining system. CoCr alloys joined with gold cylinder by a soldering system using a high-fusing gold solder (CoCr/Solder/Gold cylinder), gold alloy joined with gold cylinder by a cast joining system (Gold alloy/Gold cylinder) and CoCr castings were fabricated. The tensile bond strength and corrosion resistance in 0.9% NaCl solution (pH 7.4 and pH 2.3) were evaluated. Scanning electron microscopy (SEM) of the fractured surface and electron probe microanalysis (EPMA) of the joined interfaces were also performed. The tensile bond strengths of the CoCr/Solder/Gold cylinder specimens showed similar values as the Gold alloy/Gold cylinder specimens. SEM observation and EPMA analyses suggested firm bonding between the CoCr alloy and gold cylinder. The released elements from the CoCr/Solder/Gold cylinder specimens were similar to ones from CoCr castings. Results showed that superstructures made of CoCr alloys joined with the gold cylinder using a high-fusing gold solder had sufficient bond strength and high corrosion resistance. These hybrid frameworks with cobalt-chromium alloy and gold cylinder are promising prosthesis for implant superstructures with the low cost and favorable mechanical properties instead of conventional high-gold alloys. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Influence of dentinal regions on bond strengths of different adhesive systems.
Ozer, F; Unlü, N; Sengun, A
2003-06-01
This in vitro study assessed comparatively the shear bond strengths of three composite resins, 3M Valux Plus (3MVP), Herculite (H), Clearfil AP-X (CAP-X), a polyacid modified composite resin Dyract (D), and a resin modified glass-ionomer materials Vitremer (V), to cervical and buccal dentine regions of extracted human molar teeth. Four different bonding systems, 3M ScotchBond Multipurpose (SB), Clearfil Liner Bond 2 (LB2), Opti Bond (OB), and Prime & Bond 2.1 (PB 2.1) were used with the manufacturer's respective composite and compomer materials. One hundred freshly extracted mandibular molar teeth were selected for this study. Flat buccal dentine surfaces were created on 50 teeth and cylindrical rods of the five materials were bonded to the dentine surfaces. For assessment of cervical bond strengths, the materials were bonded to mesial and distal enamel bordered occlusal dentinal surfaces of the remaining 50 teeth. The five groups of restorative procedures were applied as follows; Group 1: SB + 3MVP, Group 2: LB2 + CAP-X, Group 3: OB + H, Group 4: PB2.1 + D, Group 5: Vitremer primer (VP) VP + V. Each restorative procedure thus had 20 specimens (10 buccal + 10 cervical). After 24 h of water storage (37 degrees C), the specimens were tested on a Universal Testing machine in shear with a cross head speed of 0.5 mm min-1. The bond strength values were calculated in MPa and the results were evaluated statistically using Kruskal-Wallis one-way/anova and Mann-Whitney U-tests. It was found that the bond strengths of SB + 3MVP, LB2 + CAP-X and VP + V to buccal dentine surfaces were significantly stronger (P < 0.05) than those to the occluso-cervical dentine floors. When the bond strengths to the occluso-cervical dentine and buccal dentine surface were compared, there was no significant difference between the materials (P > 0.05). Vitremer was found the least successful adhesive material in terms of shear bond strength on both buccal and occluso-cervical dentine surfaces.
Influence of ultraviolet irradiation treatment on porcelain bond strength of titanium surfaces.
Kumasaka, Tomonari; Ohno, Akinori; Hori, Norio; Hoshi, Noriyuki; Maruo, Katsuichiro; Kuwabara, Atsushi; Seimiya, Kazuhide; Toyoda, Minoru; Kimoto, Katsuhiko
2018-01-26
To determine the effect of titanium (Ti) surface modification by ultraviolet irradiation (UVI) on the bond strength between Ti and porcelain. Grade 2 Ti plates were allotted to five groups: sandblasted (SA), 15 min UVI (UV), SA+5 min UVI (SA+UV5), SA+10 min UVI (SA+UV10), and SA+15 min UVI (SA+UV15). After surface treatment, porcelain was added. A precious metal (MC) was used for comparison with Ti. The effects of 24-h storage at room temperature versus thermal cycling only at 5 and 55°C in water were evaluated. Subsequently, the tensile strength of each sample was tested. Data were analyzed using one-way analysis of variance and the Tukey test. In both the room temperature and thermal cycling groups, the MC and SA+15 min UVI samples showed significantly greater bond strengths than the other samples (p<0.05). UVI processing efficiently increases the bond strength between porcelain and the Ti surface.
Bond strengths evaluation of laser ceramic bracket debonding
NASA Astrophysics Data System (ADS)
Dostalová, T.; Jelinková, H.; Šulc, J.; Němec, M.; Fibrich, M.; Jelínek, M.; Michalík, P.; Bučková, M.
2012-09-01
Ceramic brackets often used for an orthodontic treatment can lead to problems such as enamel tear outs because of their low fracture resistance and high bond strengths. Therefore the aim of our study was to investigate the positive laser radiation effect on bracket debonding. Moreover, the influence of the enamel shape surface under the bracket and laser radiation power on the debonding strength was investigated. The source of the radiation was the longitudinally diode-pumped Tm:YAP laser operating at 1997 nm. To eliminate the tooth surface roughness the flat enamel surface was prepared artificially and the bracket was bonded on it. The debonding was accomplished by Tm:YAP laser radiation with different the power value while recording the temperature rise in the pulp. To simulate the debonding process in vivo the actual bond strength was measured by the digital force gauge. The results were analyzed by scanning electron microscope.
Nondestructive Evaluation of Adhesive Bonds via Ultrasonic Phase Measurements
NASA Technical Reports Server (NTRS)
Haldren, Harold A.; Perey, Daniel F.; Yost, William T.; Cramer, K. Elliott; Gupta, Mool C.
2016-01-01
The use of advanced composites utilizing adhesively bonded structures offers advantages in weight and cost for both the aerospace and automotive industries. Conventional nondestructive evaluation (NDE) has proved unable to reliably detect weak bonds or bond deterioration during service life conditions. A new nondestructive technique for quantitatively measuring adhesive bond strength is demonstrated. In this paper, an ultrasonic technique employing constant frequency pulsed phased-locked loop (CFPPLL) circuitry to monitor the phase response of a bonded structure from change in thermal stress is discussed. Theoretical research suggests that the thermal response of a bonded interface relates well with the quality of the adhesive bond. In particular, the effective stiffness of the adhesive-adherent interface may be extracted from the thermal phase response of the structure. The sensitivity of the CFPPLL instrument allows detection of bond pathologies that have been previously difficult-to-detect. Theoretical results with this ultrasonic technique on single epoxy lap joint (SLJ) specimens are presented and discussed. This technique has the potential to advance the use of adhesive bonds - and by association, advanced composite structures - by providing a reliable method to measure adhesive bond strength, thus permitting more complex, lightweight, and safe designs.
NASA Technical Reports Server (NTRS)
Falcone, Anthony; Laakso, John H.
1993-01-01
Adhesive bonding materials and processes were evaluated for assembly of future high-temperature aluminum alloy structural components such as may be used in high-speed civil transport aircraft and space launch vehicles. A number of candidate high-temperature adhesives were selected and screening tests were conducted using single lap shear specimens. The selected adhesives were then used to bond sandwich (titanium core) test specimens, adhesive toughness test specimens, and isothermally aged lap shear specimens. Moderate-to-high lap shear strengths were obtained from bonded high-temperature aluminum and silicon carbide particulate-reinforced (SiC(sub p)) aluminum specimens. Shear strengths typically exceeded 3500 to 4000 lb/in(sup 2) and flatwise tensile strengths exceeded 750 lb/in(sup 2) even at elevated temperatures (300 F) using a bismaleimide adhesive. All faceskin-to-core bonds displayed excellent tear strength. The existing production phosphoric acid anodize surface preparation process developed at Boeing was used, and gave good performance with all of the aluminum and silicon carbide particulate-reinforced aluminum alloys investigated. The results of this program support using bonded assemblies of high-temperature aluminum components in applications where bonding is often used (e.g., secondary structures and tear stoppers).
Evaluation of capping systems for high-strength concrete cylinders.
DOT National Transportation Integrated Search
2006-03-01
This study focused on the effects of capping systems on the compressive strength of high-strength concrete. The compressive strength levels ranged from 6,000 psi to 14,000 psi. The three systems investigated were ground ends, bonded caps, and unbonde...
Sharafeddin, Farahnaz; Farhadpour, Hajar
2015-01-01
Statement of the Problem Hemostatic agents may influence the bond strength of different bonding agents. Also, chlorhexidine has shown positive effects on bond strength values and their combination effect has not been reported yet. Purpose The aim of this study was to evaluate the effect of contamination with a hemostatic agent on shear bond strength (SBS) of total- and self-etching adhesive systems and the effect of chlorhexidine application after removal of the hemostatic agent. Materials and Method In this experimental study, the occlusal enamel of each sixty caries-free mandibular molars was removed and their midcoronal dentin was exposed. The specimens were then mounted in auto-polymerizing resin 1mm apical to CEJ. Then, the specimens were divided into 6 groups (n=10) based on contamination with a hemostatic agent (H), application of chlorhexidine (CHX) and the adhesive system used; and then were classified as Group 1: Adper Single Bond (ASB); Group 2: H+ASB; Group 3: H+0.2% CHX+ASB; Group 4: Clearfil SE Bond (CSB); Group 5: H+CSB; Group 6: H+0.2% CHX+CSB. Then, composite resin rods (4×2 mm) were built up on the dentin surfaces and after thermocycling, the SBS (MPa) was evaluated. Statistical analysis was performed using two-way ANOVA and post hoc Tukey tests (p< 0.05). Results There were statistically significant differences between bond strength values of group 1 (ASB) and group 2 (H+ASB) (p< 0.001) and group 1 (ASB) and group 3 (H+CHX+ASB) (p< 0.001). Similarly, significant differences were seen between group 4 (CSB) and group 5 (H+CSB) (p< 0.001) and between group 4 (CSB) and group 6 (H+CHX+CSB) (p< 0.001). Conclusion Contamination with hemostatic agent reduced the SBS of both total- and self-etching adhesive systems. In addition, application of chlorhexidine after the removal of hemostatic agent had a negative effect on SBS of total- and self-etching adhesive systems. PMID:26331146
Tanış, Merve Çakırbay; Akçaboy, Cihan
2015-01-01
Introduction: Resin cements are generally preferred for cementation of zirconia ceramics. Resin bonding of zirconia ceramics cannot be done with the same methods of traditional ceramics because zirconia is a silica-free material. In recent years, many methods have been reported in the literature to provide the resin bonding of zirconia ceramics. The purpose of this in vitro study is to evaluate effects of different surface treatments and 10-metacryloxydecyl dihydrogen phosphate (MDP) monomer on shear bond strength between zirconia and resin cement. Methods: 120 zirconia specimens were treated as follows: Group I: sandblasting, group II: sandblasting + tribochemical silica coating + silane, group III: sandblasting + Nd:YAG (neodymium: yttrium-aluminum-garnet) laser. One specimen from each group was evaluated under scanning electron microscope (SEM). Specimens in each group were bonded either with conventional resin cement Variolink II or with a MDP containing resin cement Panavia F2.0. Subgroups of bonded specimens were stored in distilled water (37°C) for 24 hours or 14 days. Following water storage shear bond strength test was performed at a crosshead speed of 1 mm/min in a universal test machine. Then statistical analyses were performed. Results: Highest shear bond strength values were observed in group II. No significant difference between group I and III was found when Panavia F2.0 resin cement was used. When Variolink II resin cement was used group III showed significantly higher bond strength than group I. In group I, Panavia F2.0 resin cement showed statistically higher shear bond strength than Variolink II resin cement. In group II no significant difference was found between resin cements. No significant difference was found between specimens stored in 37°C distilled water for 24 hours and 14 days. In group I surface irregularities with sharp edges and grooves were observed. In group II less roughened surface was observed with silica particles. In group III surface microcracks connecting each other were observed. Conclusion: Tribochemical silica coating is an effective method for achieving an acceptable bond between zirconia and resin cement. Use of a MDP monomer containing resin cement increases the bond strength of sandblasted zirconia. PMID:26705464
NASA Technical Reports Server (NTRS)
Quade, Derek J.; Jana, Sadhan; McCorkle, Linda S.
2018-01-01
Strips of nickel-titanium (NiTi) shape memory alloy (SMA) and carbon fiber-reinforced polymer matrix composite (PMC) were bonded together using multiple thin film adhesives and their mechanical strengths were evaluated under pullout test configuration. Tensile and lap shear tests were conducted to confirm the deformation of SMAs at room temperature and to evaluate the adhesive strength between the NiTi strips and the PMC. Optical and scanning electron microscopy techniques were used to examine the interfacial bonding after failure. Simple equations on composite tensile elongation were used to fit the experimental data on tensile properties. ABAQUS models were generated to show the effects of enhanced bond strength and the distribution of stress in SMA and PMC. The results revealed that the addition of thin film adhesives increased the average adhesive strength between SMA and PMC while halting the room temperature shape memory effect within the pullout specimen.
García-Sanz, Verónica; Bellot-Arcís, Carlos; Mendoza-Yero, Omel; Doñate-Buendía, Carlos; Montero, Javier; Albaladejo, Alberto
2017-01-01
Femtosecond laser has been proposed as a method for conditioning zirconia surfaces to boost bond strength. However, metallic or ceramic bracket bonding to femtosecond laser-treated zirconia surfaces has not been tested. This study compared the effects of four conditioning techniques, including femtosecond laser irradiation, on shear bond strength (SBS) of metallic and ceramic brackets to zirconia.Three hundred zirconia plates were divided into five groups: 1) control (C); 2) sandblasting (APA); 3) silica coating and silane (SC); 4) femtosecond laser (FS); 5) sandblasting followed by femtosecond laser (APA+SC). A thermal imaging camera measured temperature changes in the zirconia during irradiation. Each group was divided into 2 subgroups (metallic vs ceramic brackets). SBS was evaluated using a universal testing machine. The adhesive remnant index (ARI) was registered and surfaces were observed under SEM. Surface treatment and bracket type significantly affected the bracket-zirconia bond strength. SBS was significantly higher (p<0.001) for ceramic brackets in all groups (APA+FS > APA > FS > SC > control) than metallic brackets (APA+FS > FS > SC > APA > control). For metallic brackets, groups SC (5.99 ± 1.86 MPa), FS (6.72 ± 2.30 MPa) and APA+FS (7.22 ± 2.73 MPa) reported significantly higher bond strengths than other groups (p < 0.05). For ceramic brackets, the highest bond strength values were obtained in groups APA (25.01 ± 4.45 MPa), FS (23.18 ± 6.51 MPa) and APA+FS (29.22 ± 8.20 MPa).Femtosecond laser enhances bond strength of ceramic and metallic brackets to zirconia. Ceramic brackets provide significantly stronger adhesion than metallic brackets regardless of the surface treatment method. PMID:29049418
Bergoli, Cesar Dalmolin; Amaral, Marina; Boaro, Leticia Cristina; Braga, Roberto Ruggiero; Valandro, Luiz Felipe
2012-08-01
To evaluate the effect of mechanical cycling and cementation strategies on the push-out bond strength between fiber posts and root dentin and the polymerization stresses produced using three resin cements. Eighty bovine mandibular teeth were sectioned to a length of 16 mm, prepared to 12 mm, and embedded in self-curing acrylic resin. The specimens were then distributed into 8 groups (n = 10): Gr1 - Scotchbond Multi Purpose + RelyX ARC; Gr2 - Scotchbond Multi Purpose + RelyX ARC + mechanical cycling; Gr3 - AdheSE + Multilink Automix; Gr4 - AdheSE + Multilink Automix + mechanical cycling; Gr5 - phosphoric acid + RelyX U100 (self-adhesive cement); Gr6 - phosphoric acid+ RelyX U100 + mechanical cycling; Gr7 - RelyX U100; Gr8 - RelyX U100 + mechanical cycling. The values obtained from the push-out bond strength test were submitted to two-way ANOVA and Tukey's test (p = 0.05), while the values obtained from the polymerization stress test were subjected to one-way ANOVA and Tukey's test (α = 0.05). Mechanical cycling did not affect the bond strength values (p = 0.236), while cementation strategies affected the push-out bond strength (p < 0.001). Luting with RelyX U100 and Scotch Bond Multi Purpose + RelyX ARC yielded higher push-out bond strength values. The polymerization stress results were affected by the factor "cement" (p = 0.0104): the self-adhesive cement RelyX U100 exhibited the lowest values, RelyX ARC resulted in the highest values, while Multilink Automix presented values statistically similar to the other two cements. The self-adhesive cement appears to be a good alternative for luting fiber posts due to the high push-out bond strengths and lower polymerization stress values.
García-Sanz, Verónica; Paredes-Gallardo, Vanessa; Bellot-Arcís, Carlos; Mendoza-Yero, Omel; Doñate-Buendía, Carlos; Montero, Javier; Albaladejo, Alberto
2017-01-01
Femtosecond laser has been proposed as a method for conditioning zirconia surfaces to boost bond strength. However, metallic or ceramic bracket bonding to femtosecond laser-treated zirconia surfaces has not been tested. This study compared the effects of four conditioning techniques, including femtosecond laser irradiation, on shear bond strength (SBS) of metallic and ceramic brackets to zirconia.Three hundred zirconia plates were divided into five groups: 1) control (C); 2) sandblasting (APA); 3) silica coating and silane (SC); 4) femtosecond laser (FS); 5) sandblasting followed by femtosecond laser (APA+SC). A thermal imaging camera measured temperature changes in the zirconia during irradiation. Each group was divided into 2 subgroups (metallic vs ceramic brackets). SBS was evaluated using a universal testing machine. The adhesive remnant index (ARI) was registered and surfaces were observed under SEM. Surface treatment and bracket type significantly affected the bracket-zirconia bond strength. SBS was significantly higher (p<0.001) for ceramic brackets in all groups (APA+FS > APA > FS > SC > control) than metallic brackets (APA+FS > FS > SC > APA > control). For metallic brackets, groups SC (5.99 ± 1.86 MPa), FS (6.72 ± 2.30 MPa) and APA+FS (7.22 ± 2.73 MPa) reported significantly higher bond strengths than other groups (p < 0.05). For ceramic brackets, the highest bond strength values were obtained in groups APA (25.01 ± 4.45 MPa), FS (23.18 ± 6.51 MPa) and APA+FS (29.22 ± 8.20 MPa).Femtosecond laser enhances bond strength of ceramic and metallic brackets to zirconia. Ceramic brackets provide significantly stronger adhesion than metallic brackets regardless of the surface treatment method.
Muratovska, Ilijana; Kitagawa, Haruaki; Hirose, Nanako; Kitagawa, Ranna; Imazato, Satoshi
2018-02-08
The aim of this study was to evaluate the antibacterial activity and dentin bonding ability of a commercial self-etch adhesive Clearfil SE Protect (Kuraray Noritake Dental, Tokyo, Japan) in combination with sodium hypochlorite (NaOCl). Agar disc diffusion tests and measurement of minimum inhibitory/bactericidal concentrations (MIC/MBC) against Streptococcus mutans were performed to evaluate antibacterial effects. The mixture solution of 5.25% NaOCl and the primer of Clearfil SE Protect demonstrated less antibacterial activity than primer only. In microtensile bond strength tests using non-carious human molars, pretreatment with 5.25% NaOCl aqueous solution had no influence on the bond strength of Clearfil SE Protect. These results indicate that pretreatment with NaOCl does not influence the bonding ability of Clearfil SE Protect, while their combined use does not enhance cavity disinfecting effects.
Ouchi, H; Tsujimoto, A; Nojiri, K; Hirai, K; Takamizawa, T; Barkmeier, W W; Latta, M A; Miyazaki, M
The purpose of this study was to evaluate the effect of the oxygen inhibition layer of universal adhesive on enamel bond fatigue durability and interfacial characteristics with different etching modes. The three universal adhesives used were Scotchbond Universal Adhesive (3M ESPE, St Paul, MN, USA), Adhese Universal (Ivoclar Vivadent, Schaan, Lichtenstein), and G-Premio Bond (GC, Tokyo, Japan). The initial shear bond strength and shear fatigue strength to enamel was determined in the presence and absence of the oxygen inhibition layer, with and without phosphoric acid pre-etching. The water contact angle was also measured in all groups using the sessile drop method. The enamel bonding specimens with an oxygen inhibition layer showed significantly higher (p<0.05) initial shear bond strengths and shear fatigue strengths than those without, regardless of the adhesive type and etching mode. Moreover, the water contact angles on the specimens with an oxygen inhibition layer were significantly lower (p<0.05) than on those without, regardless of etching mode. The results of this study suggest that the oxygen inhibition layer of universal adhesives significantly increases the enamel bond fatigue durability and greatly changes interfacial characteristics, suggesting that the bond fatigue durability and interfacial characteristics of these adhesives strongly rely on its presence.
Yuan, M J; Zhang, S J; Liu, J; Tan, F
2018-02-09
Objective: To investigate the effects of different concentrations of MgSiF(6) as electrolyte on the bond strength between titanium and porcelain after micro-arc oxidation (MAO) treatment and screen the suitable concentration of MgSiF(6) that can improve the bond strength between titanium and porcelain. Methods: Four different concentrations of MgSiF(6) (10, 20, 30, 40 g/L) were chosen as MAO reaction solutions. Sandblasting treatment was selected as a control group. After porcelain was fused to each specimen, titanium-porcelain bond strengths were evaluated by the three-point bending test according to ISO 9693. Scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS) were adopted to evaluate the morphologies and elemental compositions of both the MAO coatings and the interfaces of the titanium-porcelain restoration. Results: The surface of titanium specimen in the control group was sharp and rough, while specimens in both 10 g/L group and 20 g/L group were porous and homogeneous. However, the pores found on the specimens in the latter group were larger in diameter (approximately 1.0-2.0 μm) than those on the former one (0.2-0.5 μm). The bond strengths of the control group and the experimental groups (10, 20, 30, 40 g/L MgSiF(6)) were (27.08±3.16), (38.18±2.65), (44.75±2.21), (36.44±2.04), (31.04±2.59) MPa, respectively. All the experimental groups showed higher bond strengths than the control group did ( P< 0.05), and the bond strength of 20 g/L MgSiF(6) group was significantly higher than those of the other groups ( P< 0.05). Besides, the interfaces between titanium and porcelain were tight and compact in the 20 g/L group, while different amounts of pores and cracks were visible in the other groups. Additionally, after the three-point bending test, few residual porcelains could be observed on the surfaces of specimens in the control group. Conclusions: MAO treatment with 20 g/L MgSiF(6) on titanium can improve bonding strength between titanium and porcelain.
Magro, M G; Kuga, M C; Aranda-Garcia, A J; Victorino, K R; Chávez-Andrade, G M; Faria, G; Keine, K C; Só, M V R
2015-05-01
To evaluate the effectiveness of isopropyl alcohol, saline or distilled water to prevent the precipitate formed between sodium hypochlorite (NaOCl) and chlorhexidine (CHX) and its effect on the bond strength of an epoxy-based sealer in radicular dentine. The root canals of 50 extracted human canines (n = 10) were instrumented. In G1, root canals were irrigated with 17% EDTA and 2.5% NaOCl; G2, as G1, except that 2% CHX was used as the final irrigant. In the other groups, intermediate flushes with isopropyl alcohol (G3), saline (G4) or distilled water (G5) were used between NaOCl and CHX. The specimens were submitted to SEM analysis to evaluate the presence of debris and smear layer, in the apical and cervical segments. In sequence, fifty extracted human canines were distributed into five groups (n = 10), similar to the SEM study. After root filling, the roots were sectioned transversally to obtain dentine slices, in the cervical, middle and apical thirds. The root filling was submitted to a push-out bond strength test using an electromechanical testing machine. Statistical analysis was performed using Kruskal-Wallis and Dunn's tests (α = 5%). All groups had similar amounts of residue precipitated on the canal walls (P > 0.05). The push-out bond strength values were similar for all groups, independently of the root third evaluated (P > 0.05). Isopropyl alcohol, saline and distilled water failed to prevent the precipitation of residues on canal walls following the use of NaOCl and CHX. The residues did not interfere with the push-out bond strength of the root filling. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Shear bond strength of self-etch adhesives to enamel with additional phosphoric acid etching.
Lührs, Anne-Katrin; Guhr, Silke; Schilke, Reinhard; Borchers, Lothar; Geurtsen, Werner; Günay, Hüsamettin
2008-01-01
This study evaluated the shear bond strength of self-etch adhesives to enamel and the effect of additional phosphoric acid etching. Seventy sound human molars were randomly divided into three test groups and one control group. The enamel surfaces of the control group (n=10) were treated with Syntac Classic (SC). Each test group was subdivided into two groups (each n=10). In half of each test group, ground enamel surfaces were coated with the self-etch adhesives AdheSe (ADH), Xeno III (XE) or Futurabond NR (FNR). In the remaining half of each test group, an additional phosphoric acid etching of the enamel surface was performed prior to applying the adhesives. The shear bond strength was measured with a universal testing machine at a crosshead speed of 1 mm/minute after storing the samples in distilled water at 37 degrees C for 24 hours. Fracture modes were determined by SEM examination. For statistical analysis, one-way ANOVA and the two-sided Dunnett Test were used (p>0.05). Additional phosphoric etching significantly increased the shear bond strength of all the examined self-etch adhesives (p<0.001). The highest shear bond strength was found for FNR after phosphoric acid etching. Without phosphoric acid etching, only FNR showed no significant differences compared to the control (SC). SEM evaluations showed mostly adhesive fractures. For all the self-etch adhesives, a slight increase in mixed fractures occurred after conditioning with phosphoric acid. An additional phosphoric acid etching of enamel should be considered when using self-etch adhesives. More clinical studies are needed to evaluate the long-term success of the examined adhesives.
Klosa, Karsten; Wolfart, Stefan; Lehmann, Frank; Wenz, Hans-Jürgen; Kern, Matthias
2009-04-01
The purpose of this in-vitro study was to evaluate the resin bond strength to pre-etched lithium disilicate ceramic using different cleaning methods after two contamination modes (saliva or saliva and silicone). Plexiglas tubes filled with composite resin (MultiCore Flow) were bonded to etched and silanized ceramic disks made of lithium disilicate ceramic (IPS e.max Press) using a luting resin (Multilink Automix). Either etched or unetched ceramic surfaces were contaminated with saliva or with saliva followed by a disclosing silicone. Groups of 16 specimens each were bonded after pretreatment using 4 surface cleaning agents (37% phosphoric acid, 5% hydrofluoric acid, 96% isopropanol, air polishing device with sodium bicarbonate) in different combinations. Before measuring tensile bond strength, specimens were stored for 3 or 150 days with thermocycling. After 150 days of storage, etching of saliva-contaminated surfaces with 5% hydrofluoric acid and/or 37% phosphoric acid provided statistically significantly higher bond strengths (37.9 to 49.5 MPa) than the other cleaning methods (1.7 to 15.5 MPa). After saliva and silicone contamination, etching with 5% hydrofluoric acid provided statistically significantly higher bond strengths (44.5 to 50.3 MPa) than all other cleaning methods (0.3 to 13.5 MPa). Ceramic cleaning methods after try-in procedures have a significant influence on the resin bond strength and are dependent on the type of contamination. Re-etching lithium disilicate ceramic with 5% hydrofluoric acid is most effective in removing contamination with saliva and/or a silicone disclosing medium.
Abu Nawareg, Manar; Elkassas, Dina; Zidan, Ahmed; Abuelenain, Dalia; Abu Haimed, Tariq; Hassan, Ali H; Chiba, Ayaka; Bock, Thorsten; Agee, Kelli; Pashley, David H
2016-02-01
The aim of the current study was to evaluate the effect of 2% CHX and 2% CHX-methacrylate compared to the resin-dentin bonds created by a two-step etch-and-rinse adhesive system after 24h, 6min and 12min. Microtensile bond strengths and interfacial nanoleakage within resin-dentin interfaces created by Adper Single Bond 2, with or without CHX or CHX-methacrylate pre-treatment for 30s on acid-etched dentin surfaces, were evaluated after 24h, 6min and 12min of storage in distilled water at 37°C. Twelve months of storage resulted in a significant decrease in microtensile bond strength in the control group, and significant increases in silver nanoleakage. In contrast, Single Bond 2+CHX, and to a greater extent CHX-methacrylate, significantly reduced the rate of deterioration of resin-dentin interfaces over the 12min water storage period, in terms of bond strength. Similar to Single Bond 2+CHX, Single Bond+CHX-methacrylates reduced the degradation of resin-bonded interfaces over a 12 month storage period. Thus it can be concluded that Single Bond 2+CHX-methacrylate may be important to improve durability of bonded interfaces and therefore, prolong the life span of adhesive restorations. Although CHX primers have been shown to enhance the durability of etch-and-rinse adhesives, that protection is lost after 2h. The use of CHX-methacrylate should last much longer since it may copolymerize with adhesive monomers, unlike CHX. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effect of different root canal obturating materials on push-out bond strength of a fiber dowel.
Aggarwal, Vivek; Singla, Mamta; Miglani, Sanjay; Kohli, Sarita
2012-07-01
During dowel space preparation, the instrumentation forms a thick smear layer along with sealer-occluded dentinal tubules. The purpose of this study was to evaluate the effect of different obturating materials on push-out bond strength of a fiber dowel. Fifty human uniradicular teeth were decoronated and prepared using the step-back technique. The specimens were divided into five groups on the basis of obturating materials: group I received no obturation; group II (ZOE) gutta-percha and zinc oxide eugenol sealer; group III (ZOAH) gutta-percha and AH plus sealer; group IV (GF) GuttaFlow; and group V (RE) with Resilon Epiphany system. Dowel spaces were made with manufacturer's provided drills, and a fiber dowel was luted. Horizontal slices were obtained from the middle third, and push-out bond strength (S) was evaluated. Statistical analysis was carried out using one-way ANOVA and post hoc Tukey's test. The push-out bond strength values in the control group, ZOE, ZOAH, GF, and RE were 9.303 ± 0.565 MPa, 8.859 ± 0.539 MPa, 8.356 ± 0.618 MPa, 9.635 ± 0.435 MPa, and 8.572 ± 0.256 MPa, respectively. There was no statistically significant difference between the S values of all the groups (p > 0.05). There was no effect of different tested obturating materials on the push-out bond strength of fiber dowels; however, further studies should be conducted. © 2012 by the American College of Prosthodontists.
Nasseri, Ehsan Baradaran; Majidinia, Sara; Sharbaf, Davood Aghasizadeh
2017-05-01
Based on the frequent application of composite resins as tooth-colored fillings, this method is considered a viable alternative to dental amalgam. However, this method has the low bond strength of the composite to dentin. To solve this issue, various dental adhesive systems with different characteristics have been developed by dentistry experts. To assess the effect of an additional layer of unfilled resin in self-etch and total-etch dentin adhesives on the shear bond strength (SBS) of composite to dentin. Moreover, we assessed the effects of sample storage in artificial saliva on the SBS of composite to dentin. Methods: This experimental study was conducted on 160 freshly extracted human first or second premolar teeth, which were randomly divided into 16 groups. The teeth were prepared from Mashhad University of Medical Sciences, Mashhad, Iran (2008-2009). Scotchbond Multi-purpose (SBMP), single bond (SB), Clearfil SE Bond, and Clearfil S3 Bond were applied to dentin surface with or without the placement of hydrophobic resin (Margin Bond) in accordance with the instructions of the manufacturers. To expose the coronal dentin, the teeth were abraded with 600 grit SiC paper. Immediately after restoration, half of the samples were tested in terms of SBS, while the other samples were evaluated in terms of SBS after three months of storage in artificial saliva. SBS rates of dental composites evaluated by universal testing machine and samples were studied by optical stereomicroscopy to verify the failure type. Data analysis was performed in SPSS V.16 using Kolmogorov-Smirnov test, independent-samples t-test, ANOVA, and Duncan's logistic regression test. In this study, a significant reduction was observed in the SBS rates of SB and S3 bond adhesive systems after storage with and without hydrophobic resin (p>0.000). Without storage in normal saline, a significant increase was observed in the SBS rate of the SE bond (p=0.013). In addition, SBS rate of SBMP significantly increased after storage with hydrophobic resin (p=0.001). Finally, the highest and lowest rates of SBS were observed in the SE and S3 bonds in all the experimental groups, respectively. The effects of using a hydrophobic resin layer on shear bond strength values seem to be effective. The mild self-etch adhesive exhibited the best resin-dentine bond strength after aging.
Nasseri, Ehsan Baradaran; Majidinia, Sara; Sharbaf, Davood Aghasizadeh
2017-01-01
Background Based on the frequent application of composite resins as tooth-colored fillings, this method is considered a viable alternative to dental amalgam. However, this method has the low bond strength of the composite to dentin. To solve this issue, various dental adhesive systems with different characteristics have been developed by dentistry experts. Aim To assess the effect of an additional layer of unfilled resin in self-etch and total-etch dentin adhesives on the shear bond strength (SBS) of composite to dentin. Moreover, we assessed the effects of sample storage in artificial saliva on the SBS of composite to dentin. Methods Methods: This experimental study was conducted on 160 freshly extracted human first or second premolar teeth, which were randomly divided into 16 groups. The teeth were prepared from Mashhad University of Medical Sciences, Mashhad, Iran (2008–2009). Scotchbond Multi-purpose (SBMP), single bond (SB), Clearfil SE Bond, and Clearfil S3 Bond were applied to dentin surface with or without the placement of hydrophobic resin (Margin Bond) in accordance with the instructions of the manufacturers. To expose the coronal dentin, the teeth were abraded with 600 grit SiC paper. Immediately after restoration, half of the samples were tested in terms of SBS, while the other samples were evaluated in terms of SBS after three months of storage in artificial saliva. SBS rates of dental composites evaluated by universal testing machine and samples were studied by optical stereomicroscopy to verify the failure type. Data analysis was performed in SPSS V.16 using Kolmogorov-Smirnov test, independent-samples t-test, ANOVA, and Duncan’s logistic regression test. Results In this study, a significant reduction was observed in the SBS rates of SB and S3 bond adhesive systems after storage with and without hydrophobic resin (p>0.000). Without storage in normal saline, a significant increase was observed in the SBS rate of the SE bond (p=0.013). In addition, SBS rate of SBMP significantly increased after storage with hydrophobic resin (p=0.001). Finally, the highest and lowest rates of SBS were observed in the SE and S3 bonds in all the experimental groups, respectively. Conclusion The effects of using a hydrophobic resin layer on shear bond strength values seem to be effective. The mild self-etch adhesive exhibited the best resin-dentine bond strength after aging PMID:28713512
Effect of hydrostatic pressure on regional bond strengths of compomers to dentine.
Zheng, L; Pereira, P N; Somphone, P; Nikaido, T; Tagami, J
2000-09-01
The aim of this study was to evaluate the effect of hydrostatic pressure on the regional bond strengths of compomers to dentine. Thirty freshly extracted molars were ground flat to expose the dentine and randomly divided into two groups for bonding: no hydrostatic pressure and hydrostatic pressure of 15cm H(2)O. Xeno CF, Dyract AP and F 2000 were applied to dentine surfaces pretreated by the respective bonding systems following the manufactures' instructions, and then restored with Clearfil AP-X. After 24h storage in water, the teeth were sectioned into 0.7-mm thick slabs and visually divided into three regional subgroups: the region communicating with the pulp through dentinal tubules (pulp horn); the region between the pulp horns (center); and the region between the pulp horn and DEJ (periphery). The specimens were trimmed to a cross-sectional area of 1mm(2) and subjected to the micro-tensile bond test. The data were analyzed by one- and three-way ANOVA, and Fisher's PLSD (p<0.05). There were no significant regional differences of bond strengths for all the compomers tested (p>0.05). However, hydrostatic pressure significantly decreased the bond strength of F 2000 to all regions (p<0.05), while the bond strength of Dyract AP significantly decreased only at the pulp horn region (p<0.05). On the other hand, the bond strengths of Xeno CF seemed not to be affected by hydrostatic pressure (p>0.05). For Dyract AP and F 2000, the fracture modes were affected by hydrostatic pressure, while, for Xeno CF, there were no significant differences between the fracture modes with non- or positive hydrostatic pressure. Simulated pulpal pressure of 15cm H(2)O had a greater influence on the bond strengths of compomers to dentine than did dentine regions. Therefore, when measuring the bond strengths of compomers to dentine under the simulated in vivo conditions, the wetness of the dentine surface, as well as the intrinsic properties of each material should be seriously considered.
Influence of Different Etching Modes on Bond Strength to Enamel using Universal Adhesive Systems.
Diniz, Ana Cs; Bandeca, Matheus C; Pinheiro, Larissa M; Dos Santosh Almeida, Lauber J; Torres, Carlos Rg; Borges, Alvaro H; Pinto, Shelon Cs; Tonetto, Mateus R; De Jesus Tavarez, Rudys R; Firoozmand, Leily M
2016-10-01
The adhesive systems and the techniques currently used are designed to provide a more effective adhesion with reduction of the protocol application. The objective of this study was to evaluate the bond strength of universal adhesive systems on enamel in different etching modes (self-etch and total etch). The mesial and distal halves of 52 bovine incisors, healthy, freshly extracted, were used and divided into seven experimental groups (n = 13). The enamel was treated in accordance with the following experimental conditions: FUE-Universal System - Futurabond U (VOCO) with etching; FUWE - Futurabond U (VOCO) without etching; SB-Total Etch System - Single Bond 2 (3M); SBUE-Universal System - Single Bond Universal (3M ESPE) with etching; SBUWE - Single Bond Universal (3M ESPE) without etching; CLE-Self-etch System - Clearfil SE Bond (Kuraray) was applied with etching; CLWE - Clearfil SE Bond (Kuraray) without etching. The specimens were made using the composite spectrum TPH (Dentsply) and stored in distilled water (37 ± 1°C) for 1 month. The microshear test was performed using the universal testing machine EMIC DL 2000 with the crosshead speed of 0.5 mm/minute. The bond strength values were analyzed using statistical tests (Kruskal-Wallis test and Mann-Whitney test) with Bonferroni correction. There was no statistically significant difference between groups (p < 0.05), where FUE (36.83 ± 4.9 MPa) showed the highest bond strength values and SBUWE (18.40 ± 2.2 MPa) showed the lowest bond strength values. The analysis of adhesive interface revealed that most failures occurred between the interface composite resin and adhesive. The universal adhesive system used in dental enamel varies according to the trademark, and the previous enamel etching for universal systems and the self-etch both induced greater bond strength values. Selective enamel etching prior to the application of a universal adhesive system is a relevant strategy for better performance bonding.
De la Varga, I; Muñoz, J F; Bentz, D P; Spragg, R P; Stutzman, P E; Graybeal, B A
2018-05-01
Bond between two cementitious materials is crucial in applications such as repairs, overlays, and connections of prefabricated bridge elements (PBEs), to name just a few. It is the latter that has special interest to the authors of this paper. After performing a dimensional stability study on grout-like materials commonly used as connections between PBEs, it was observed that the so-called 'non-shrink' cementitious grouts showed a considerable amount of early-age shrinkage. This might have negative effects on the integrity of the structure, due not only to the grout material's early degradation, but also to a possible loss of bond between the grout and the prefabricated concrete element. Many factors affect the bond strength between two cementitious materials (e.g., grout-concrete), the presence of moisture at the existing concrete substrate surface being one of them. In this regard, pre-moistening the concrete substrate surface prior to the application of the grout material is sometimes recommended for bond enhancement. This topic has been the focus of numerous research studies in the past; however, there is still controversy among practitioners on the real benefits that this practice might provide. This paper evaluates the tensile bond performance of two non-shrink cementitious grouts applied to the exposed aggregate surface of a concrete substrate, and how the supply of moisture at the grout-concrete interface affects the bond strength. "Pull-off" bond results show increased tensile bond strength when the concrete surface is pre-moistened. Reasons to explain the observed increased bond strength are given after a careful microstructural analysis of the grout-concrete interface. Interfaces where sufficient moisture is provided to the concrete substrate such that moisture movement from the grout is prevented show reduced porosity and increased hydration on the grout side of the interface, which is thought to directly contribute to the increased tensile bond strength.
Theobaldo, J D; Catelan, A; Rodrigues-Filho, U; Marchi, G M; Lima, Danl; Aguiar, Fhb
2016-01-01
To evaluate the microshear bond strength of composite resin restorations in dental blocks with or without exposure to cigarette smoke. Eighty bovine dental blocks were divided into eight groups (n=10) according to the type of adhesive (Scotchbond Multi-Purpose, 3M ESPE, St Paul, MN, USA [SBMP]; Single Bond 2, 3M ESPE [SB]; Clearfil SE Bond, Kuraray Medical Inc, Okayama, Japan [CSEB]; Single Bond Universal, 3M ESPE [SBU]) and exposure to smoke (no exposure; exposure for five days/20 cigarettes per day). The adhesive systems were applied to the tooth structure, and the blocks received a composite restoration made using a matrix of perforated pasta. Data were statistically analyzed using analysis of variance and Tukey test (α<0.05). For enamel, there was no difference between the presence or absence of cigarette smoke (p=0.1397); however, there were differences among the adhesive systems (p<0.001). CSEB showed higher values and did not differ from SBU, but both were statistically different from SB. The SBMP showed intermediate values, while SB demonstrated lower values. For dentin, specimens subjected to cigarette smoke presented bond strength values that were lower when compared with those not exposed to smoke (p<0.001). For the groups without exposure to cigarette smoke, CSEB showed higher values, differing from SBMP. SB and SBU showed intermediary values. For the groups with exposure to cigarette smoke, SBU showed values that were higher and statistically different from SB and CSEB, which presented lower values of bond strength. SBMP demonstrated an intermediate value of bond strength. The exposure of dentin to cigarette smoke influenced the bonding strength of adhesives, but no differences were noted in enamel.
Eshghi, Alireza; Khoroushi, Maryam; Rezvani, Alireza
2014-01-01
Objective: Bioactive glass air abrasion is a conservative technique to remove initial decalcified tissue and caries. This study examined the shear bond strength of composite resin to sound and decalcified enamel air-abraded by bioactive glass (BAG) or alumina using etch-and-rinse and self-etch adhesives. Materials and Methods: Forty-eight permanent molars were root-amputated and sectioned mesiodistally. The obtained 96 specimens were mounted in acrylic resin; the buccal and lingual surfaces remained exposed. A demineralizing solution was used to decalcify half the specimens. Both sound and decalcified specimens were divided into two groups of alumina and bioactive glass air abrasion. In each group, the specimens were subdivided into two subgroups of Clearfil SE Bond or OptiBond FL adhesives (n=12). Composite resin cylinders were bonded on enamel surfaces cured and underwent thermocycling. The specimens were tested for shear bond strength. Data were analyzed using SPSS 16.0 and three-way ANOVA (α=0.05). Similar to the experimental groups, the enamel surface of one specimen underwent SEM evaluation. Results: No significant differences were observed in composite resin bond strength subsequent to alumina or bioactive glass air abrasion preparation techniques (P=0.987). There were no statistically significant differences between the bond strength of etch-and-rinse and self-etch adhesive groups (P=1). Also, decalcified or intact enamel groups had no significant difference (P=0.918). However, SEM analysis showed much less enamel irregularities with BAG air abrasion compared to alumina air abrasion. Conclusion: Under the limitations of this study, preparation of both intact and decalcified enamel surfaces with bioactive glass air abrasion results in similar bond strength of composite resin in comparison with alumina air abrasion using etch-&-rinse or self-etch adhesives. PMID:25628694
Oliveira, Denise Cerqueira; Manhães, Lussara Azevedo; Marques, Márcia Martins; Matos, Adriana Bona
2005-04-01
The aim of this study was to evaluate the bond strength of two adhesive systems (Single Bond and Clearfil SE Bond) subjected or not to a thermocycling procedure and applied to cavities prepared either with high-speed diamond bur or Er:YAG laser. One of the possible applications of dental lasers includes increasing the quality of bond strength. This in vitro study was carried out using a microtensile test on 16 bovine teeth, divided into eight groups. Cavities were prepared on superficial dentin of the medium portion of the buccal surface. After application of adhesive systems, composite restorations were performed at 5-mm height. After 24 h, four groups of teeth were immersed in water, and the other four were thermocycled. Bonded specimens were sectioned into serial 1x1-mm beams, which were subjected to a microtensile test. Final values of bond strength were measured, expressed in MPa, and statistically analyzed. Results were as follows: G1 (26.281 +/- 5.454 MPa); G2 (10.965 +/- 3.714 MPa); G3 (18.549 +/- 6.113 MPa); G4 (14.295 +/- 3.806 MPa); G5 (18.225 +/- 5.701 MPa); G6 (5.588 +/- 2.211 MPa); G7 (18.256 +/- 3.819 MPa); and G8 (15.423 +/- 4.714 MPa). Self-etching adhesive system (SE) produced more stable bond strength results than the system that indicates total etching (SB). For dentin prepared at high speed, the total etching adhesive system was more indicated, whereas Er:YAG laser-preparation dentin was not influenced by the adhesive system. The thermocycling procedure could negatively affect microtensile bond strength of both adhesive systems, being more deleterious to SB than to SE.
Prototype to measure bracket debonding force in vivo
Tonus, Jéssika Lagni; Manfroi, Fernanda Borguetti; Borges, Gilberto Antonio; Grigolo, Eduardo Correa; Helegda, Sérgio; Spohr, Ana Maria
2017-01-01
ABSTRACT Introduction: Material biodegradation that occurs in the mouth may interfere in the bonding strength between the bracket and the enamel, causing lower bond strength values in vivo, in comparison with in vitro studies. Objective: To develop a prototype to measure bracket debonding force in vivo and to evaluate, in vitro, the bond strength obtained with the prototype. Methods: A original plier (3M Unitek) was modified by adding one strain gauge directly connected to its claw. An electronic circuit performed the reading of the strain gauge, and the software installed in a computer recorded the values of the bracket debonding force, in kgf. Orthodontic brackets were bonded to the facial surface of 30 bovine incisors with adhesive materials. In Group 1 (n = 15), debonding was carried out with the prototype, while tensile bond strength testing was performed in Group 2 (n = 15). A universal testing machine was used for the second group. The adhesive remnant index (ARI) was recorded. Results: According to Student’s t test (α = 0.05), Group 1 (2.96 MPa) and Group 2 (3.08 MPa) were not significantly different. ARI score of 3 was predominant in the two groups. Conclusion: The prototype proved to be reliable for obtaining in vivo bond strength values for orthodontic brackets. PMID:28444011
Moravej-Salehi, Elham; Moravej-Salehi, Elahe; Valian, Azam
2016-11-01
The purpose of this study was to determine the bond strength of composite resin to feldspathic porcelain and its surface topography after sandblasting at different pressures. In this in vitro study, 68 porcelain disks were fabricated and randomly divided into four groups of 17. The porcelain surface in group 1 was etched with hydrofluoric acid. Groups 2, 3, and 4 were sandblasted at 2, 3 and 4 bars pressure, respectively. Surface topography of seven samples in each of the four groups was examined by a scanning electron microscope (SEM). The remaining 40 samples received the same silane agent, bonding agent, and composite resin and they were then subjected to 5000 thermal cycles and evaluated for shear bond strength. Data were analyzed using one-way anova. The mode of failure was determined using stereomicroscope and SEM. The highest shear bond strength was seen in group 4. however, statistically significant differences were not seen between the groups (P = 0.780). The most common mode of failure was cohesive in porcelain. The SEM showed different patterns of hydrofluoric acid etching and sandblasting. Increasing the sandblasting pressure increased the surface roughness of feldspathic porcelain but no difference in bond strength occurred. © 2015 Wiley Publishing Asia Pty Ltd.
Dos Santos, Victor Hugo; Griza, Sandro; de Moraes, Rafael Ratto; Faria-E-Silva, André Luis
2014-02-01
Extensively destroyed teeth are commonly restored with composite resin before cavity preparation for indirect restorations. The longevity of the restoration can be related to the proper bonding of the resin cement to the composite. This study aimed to evaluate the microshear bond strength of two self-adhesive resin cements to composite resin. COMPOSITE DISCS WERE SUBJECT TO ONE OF SIX DIFFERENT SURFACE PRETREATMENTS: none (control), 35% phosphoric acid etching for 30 seconds (PA), application of silane (silane), PA + silane, PA + adhesive, or PA + silane + adhesive (n = 6). A silicone mold containing a cylindrical orifice (1 mm(2) diameter) was placed over the composite resin. RelyX Unicem (3M ESPE) or BisCem (Bisco Inc.) self-adhesive resin cement was inserted into the orifices and light-cured. Self-adhesive cement cylinders were submitted to shear loading. Data were analyzed by two-way ANOVA and Tukey's test (p < 0.05). Independent of the cement used, the PA + Silane + Adhesive group showed higher microshear bond strength than those of the PA and PA + Silane groups. There was no difference among the other treatments. Unicem presented higher bond strength than BisCem for all experimental conditions. Pretreatments of the composite resin surface might have an effect on the bond strength of self-adhesive resin cements to this substrate.
Baeza-Robleto, Selene J; Villa-Negrete, Dulce M; García-Contreras, René; Scougall-Vílchis, Rogelio J; Guadarrama-Quiroz, Luis J; Robles-Bermeo, Norma L
2013-01-01
A technique whereby the practitioner could improve the esthetic appearance of anterior stainless steel crowns (SSC) could provide a cost-effective alternative to more expensive commercially available preveneered SSCs, which may not be uniformly available. The purpose of this study was to evaluate the effects of ultraviolet (UV) irradiation of the metal crown surface on the shear bond strength of composite resin adhered to stainless steel crowns. Seventy extracted anterior bovine teeth randomly divided into 2 groups (n=35/group), were restored with primary maxillary left central incisor SSCs. Surface roughening with a green stone was performed on the labial surfaces, and the crowns of the experimental group were exposed to UV irradiation for 80 minutes. All samples were treated with metal-composite adhesive, followed by composite opaquer. Standardized composite blocks were bonded on the treated surfaces, and the shear bond strength was tested at 1 mm/minute. The values were recorded in MPa and statistically analyzed. The mean value of shear bond strength was significantly higher for the experimental group (19.7 ± 4.3 MPa) than the control group (16.3 ± 4.5 MPa). Ultraviolet irradiation of primary tooth stainless steel crowns significantly increased the shear bond strength of composite resin adhered to the facial surface.
Türkmen, Cafer; Durkan, Meral; Cimilli, Hale; Öksüz, Mustafa
2011-08-01
The aims of this study were to evaluate the tensile bond strengths between indirect composites and dentin of 3 recently developed self-adhesive resin cements and to determine mode of failure by SEM. Exposed dentin surfaces of 70 mandibular third molars were used. Teeth were randomly divided into 7 groups: Group 1 (control group): direct composite resin restoration (Alert) with etch-and-rinse adhesive system (Bond 1 primer/adhesive), Group 2: indirect composite restoration (Estenia) luted with a resin cement (Cement-It) combined with the same etch-and-rinse adhesive, Group 3: direct composite resin restoration with self-etch adhesive system (Nano-Bond), Group 4: indirect composite restoration luted with the resin cement combined with the same self-etch adhesive, Groups 5-7: indirect composite restoration luted with self-adhesive resin cements (RelyX Unicem, Maxcem, and Embrace WetBond, respectively) onto the non-pretreated dentin surfaces. Tensile bond strengths of groups were tested with a universal testing machine at a constant speed of 1 mm/min using a 50 kgf load cell. Results were statistically analyzed by the Student's t-test. The failure modes of all groups were also evaluated. The indirect composite restorations luted with the self-adhesive resin cements (groups 5-7) showed better results compared to the other groups (p<0.05). Group 4 showed the weakest bond strength (p>0.05). The surfaces of all debonded specimens showed evidence of both adhesive and cohesive failure. The new universal self-adhesive resins may be considered an alternative for luting indirect composite restorations onto non-pretreated dentin surfaces.
Scheffel, Débora Lopes Salles; Ricci, Hérica Adad; de Souza Costa, Carlos Alberto; Pashley, David Henry; Hebling, Josimeri
2013-01-01
The purpose was to evaluate the effect of acid etching time on the bond strength of a simplified etch-and-rinse adhesive system to noncarious and caries-affected dentin of primary and permanent teeth. Twenty-four extracted primary and permanent teeth were divided into three groups, according to the acid etching time. Four teeth from each group were exposed to a microbiological caries-inducing protocol. After caries removal, noncarious and caries-affected dentin surfaces were etched with 37 percent phosphoric acid for five, 10, or 15 seconds prior to the application of Prime & Bond NT adhesive. Crowns were restored with resin composite and prepared for microtensile testing. Data were submitted to Kruskal-Wallis and Mann-Whitney tests (α=0.05). Higher bond strengths were obtained for noncarious dentin vs. caries-affected dentin for both primary and permanent teeth. Reducing the acid etching time from 15 to five seconds did not affect the bond strength to caries-affected or noncarious dentin in primary teeth. For permanent teeth, lower bond strength values were observed when the noncarious dentin was etched for five seconds, while no difference was seen between 10 and 15 seconds. For Prime & Bond NT, the etching of dentin for five seconds could be recommended for primary teeth, while 10 seconds would be the minimum time for permanent teeth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. A. Smith; D. L. Cottle; B. H. Rabin
2013-09-01
This report summarizes work conducted to-date on the implementation of new laser-based capabilities for characterization of bond strength in nuclear fuel plates, and presents preliminary results obtained from fresh fuel studies on as-fabricated monolithic fuel consisting of uranium-10 wt.% molybdenum alloys clad in 6061 aluminum by hot isostatic pressing. Characterization involves application of two complementary experimental methods, laser-shock testing and laser-ultrasonic imaging, collectively referred to as the Laser Shockwave Technique (LST), that allows the integrity, physical properties and interfacial bond strength in fuel plates to be evaluated. Example characterization results are provided, including measurement of layer thicknesses, elastic properties ofmore » the constituents, and the location and nature of generated debonds (including kissing bonds). LST provides spatially localized, non-contacting measurements with minimum specimen preparation, and is ideally suited for applications involving radioactive materials, including irradiated materials. The theoretical principles and experimental approaches employed in characterizing nuclear fuel plates are described, and preliminary bond strength measurement results are discussed, with emphasis on demonstrating the capabilities and limitations of these methods. These preliminary results demonstrate the ability to distinguish bond strength variations between different fuel plates. Although additional development work is necessary to validate and qualify the test methods, these results suggest LST is viable as a method to meet fuel qualification requirements to demonstrate acceptable bonding integrity.« less
Yuan, Youling; Chesnutt, Betsy M; Wright, Lee; Haggard, Warren O; Bumgardner, Joel D
2008-07-01
Chitosan has shown promise as a coating for dental/craniofacial and orthopaedic implants. However, the effects of degree of deacetylation (DDA) of chitosan on coating bond strength, degradation, and biological performance is not known. The aim of this project was to evaluate bonding, degradation, and bone cell growth on titanium coated with chitosans of different DDA and from different manufacturers. Three different chitosans, 80.6%, 81.7%, and 92.3% DDA were covalently bonded to titanium coupons via silane-glutaraldehyde molecules. Bond strengths were evaluated in mechanical tensile tests, and degradation, over 5 weeks, was conducted in cell culture medium with and without 100 microg/mL lysozyme. Cytocompatibility was evaluated for 10 days using UMR 106 osteoblastic cells. Results showed that mean chitosan coating bond strengths ranged from 2.2-3.8 MPa, and that there was minimal affect of DDA on coating bond strengths. The coatings exhibited little dissolution over 5 weeks in medium with or without lysozyme. However, the molecular weight (MW) of the chitosan coatings remaining on the titanium samples after 5 weeks decreased by 69-85% with the higher DDA chitosan coatings exhibiting less percent change in MW than the lower DDA materials. The growth of the UMR 106 osteoblast cells on the 81.7% DDA chitosan coating was lower on days 3 and 5, as compared with the other two coatings, but by day 10, there were no differences in growth among three coatings or to the uncoated titanium controls. Differences in growth were attributed to differences in manufacturer source material, though all coatings were judged to be osteocompatible in vitro. 2007 Wiley Periodicals, Inc.
Evaluation of a thermoplastic polyimide (422) for bonding GR/PI composite
NASA Technical Reports Server (NTRS)
Progar, Donald J.
1988-01-01
A hot-melt processable copolyimide previously studied and characterized as an adhesive for bonding Ti-6Al-4V was used to bond Celion 6000/LARC-160 composite. Comparisons are made for the two adherend systems. A bonding cycle was determined for the composite bonding and lap shear specimens were prepared which were thermally exposed in a forced-air oven for up to 5000 h at 204 C. The lap shear strengths (LSSs) were determined at RT, 177, and 204 C. After thermal exposure at RT, 177, and 204 C the LSS decreased significantly; however, a slight increase was noted for the 204 C tests. Initially the LSS values are higher for the bonded Ti-6Al-4V than for the bonded composite, however, the LSS decreases dramatically between 5000 and 10,000 h of 204 C thermal exposure. Longer periods of thermal exposure up to 20,000 h results in further decreases in the LSSs. Although the bonded composite retained useful strengths for exposures up to 5000 h, based on the poor results of the bonded Ti-6Al-4V beyond 5000 h, the 422 adhesive bonded composites would most likely also produce poor strengths beyond 5000 h exposure. Adhesive bonded composite lap shear specimens exposed to boiling water for 72 h exhibited greatly reduced strengths at all test temperatures. The percent retained after water boil for each test temperature was essentially the same for both systems.
Evaluation of a thermoplastic polyimide (422) for bonding GR/PI composite
NASA Technical Reports Server (NTRS)
Progar, Donald J.
1988-01-01
A hot-melt processable copolyimide previously studied and characterized as an adhesive for bonding Ti-6Al-4V was used to bond Celion 6000/LARC-160 composite. Comparisons are made for the two adherend systems. A bonding cycle was determined for the composite bonding and lap shear specimens were prepared which were thermally exposed in a forced-air oven for up to 5000 h at 204 C. The lap shear strengths (LSSs) were determined at RT, 177, and 204 C. After thermal exposure at RT, 177, and 204 C the LSS decreased significantly; however, a slight increase was noted for the 204 C tests. Initially the LSS values are higher for the bonded Ti-6Al-4V than for the bonded composite, however, the LSS decreases dramatically between 5000 and 10,000 h of 204 C thermal exposure. Longer periods of thermal exposure up to 20,000 h results in further decreases in the LSSs. Although the bonded composite retained useful strengths for exposures up to 5000 h, based on the por results of the bonded Ti-6Al-4V beyond 5000 h, the 422 adhesive bonded composites would most likely also produce poor strengths beyond 5000 h exposure. Adhesive bonded composite lap shear specimens exposed to boiling water for 72 h exhibited greatly reduced strengths at all test temperatures. The percent retained after water boil for each test temperature was essentially the same for both systems.
Effect of artificial aging on the bond durability of fissure sealants.
Yun, Xiaofei; Li, Wei; Ling, Chen; Fok, Alex
2013-06-01
To evaluate the effect of artificial aging on the bond durability of fissure sealants in vitro. Twenty bovine incisors received 4 different sealant treatments and were divided into four groups: 1. Ultraseal XT plus (UX); 2. Enamel Loc (EL); 3. 35% phosphoric acid plus Enamel Loc (PEL); 4. Adper Prompt L-Pop plus Clinpro (PPC). Beam-shaped specimens were prepared and randomly divided into three subgroups. One subgroup underwent the microtensile bond strength (µTBS) test after 24-h storage in 37°C water. The other two subgroups were also subjected to the microtensile bond strength test after 5000 and 10,000 thermal cycles, respectively. Another twelve intact human third molars were sealed using 1 of 3 methods and were divided into 3 groups of 4 each: 1. Ultraseal XT plus; 2. Adper Prompt L-Pop plus Clinpro; and 3. Enamel Loc. Two specimens from each group were immersed in a 50% silver nitrate solution for 24 h, followed by exposure to fluorescent light for 8 h, before being scanned in a micro-CT (microcomputer tomography) machine. The other two were handled in the same way after undergoing 10,000 thermal cycles. The CT images obtained were evaluated. All samples from the EL group were broken during preparation, so no µTBS results were available. After 5000 thermal cycles, the bond strengths of the three other groups (UX, PEL, PPC) decreased significantly (p < 0.05). Longer thermocycling (10,000 cycles) resulted in more decreases in µTBS for group PEL and PPC, while the strength of the UX group remained relatively unchanged. After thermocycling, considerable silver penetration could be seen at the sealant/enamel interface of the EL group in micro-CT images. The etch-and-rinse procedure for sealant application promotes higher bond strength under artificial aging. Micro-CT, a nondestructive analytical tool, may be used to evaluate the sealant/enamel interface effectively.
Er,Cr:YSGG Laser as a Novel Method for Rebonding Failed Ceramic Brackets.
Sohrabi, Aydin; Jafari, Sanaz; Kimyai, Soodabeh; Rikhtehgaran, Sahand
2016-10-01
Since there is no standard method for rebonding loose ceramic brackets, the aim of this study was to evaluate the possibility of using Er,Cr:YSGG laser to eliminate the remaining composite materials from the base of ceramic brackets and to compare the bond strength of rebonded brackets with the new ones. Sixty-two extracted human premolars were mounted in acrylic cylinders. Thirty-one ceramic brackets were bonded, and shear bond strength was tested using Hounsfield testing machine. The remnants of the bonding material were removed from the bases of brackets using Er,Cr:YSGG laser. These brackets were rebonded to 31 fresh teeth and again shear bond strength was measured. Pattern of debonding was assessed in both cases under a stereomicroscope and graded according to ARI index. Data were analyzed with independent t-test and Fisher's exact test. Mean shear bond strength of the bond and rebond groups was 12.29 ± 5.46 and 10.58 ± 5.16 MPa, respectively. There were no significant differences between the two groups (p = 0.21). Pattern of bond failure was not statistically different between the two groups. Er,Cr:YSGG laser was effective in removing the remnants of bonding material from the base of ceramic brackets without any interference with the ceramic base itself, demonstrating that it might be a suitable method for rebonding ceramic brackets.
Comparison of shear bond strength relative to two testing devices.
Pecora, Nikole; Yaman, Peter; Dennison, Joseph; Herrero, Alberto
2002-11-01
Dentin adhesives are characterized on the basis of their bond strength to dentin; however, great variation exists within the same material depending on the testing apparatus. To realistically compare bond strengths, the testing mechanisms must be the same. The purpose of this investigation was to use 2 testing devices to evaluate the shear bond strength of 3 single-bottle adhesives with their multistep counterparts. The occlusal surfaces of 120 freshly extracted third molars were ground to expose the dentin and polished with 600-grit silicon carbide paper. Three single-bottle, (Optibond Solo Plus, 3M Single Bond, and Excite) and 3 multistep adhesives (Optibond FL, 3M MultiPurpose Plus, and Syntac) were each used to bond a composite cylinder (made from a 2.379 +/-.001-mm diameter by 4-mm-high mold) of Tetric Ceram to 20 teeth. The specimens were stored in 100% humidity for 24 hours. The shear bond strength at failure was measured in kilograms and converted to megapascals for each material, using a knife (conventional method) and an Ultradent testing device on a universal testing machine (Instron) at a loading rate of 0.5 mm/min. A 2-way analysis of variance (ANOVA) test was performed comparing the 2 testing devices and the materials at P<.05. Where significant, a 1-way ANOVA test was conducted among the materials for each test group, and a Tukey multiple comparison test was used to determine significant differences among the materials tested (P<.05). An independent Student t test at P<.05 was used to determine significance between testing devices. The results showed that Optibond Solo Plus (26.85 +/- 8.76 MPa), Optibond FL (25.40 +/- 4.44 MPa), 3M Single Bond (28.12 +/- 5.01 MPa), and 3M MultiPurpose Plus (34.40 +/- 7.90 MPa) had significantly higher bond strengths when tested with the Ultradent testing device. The mean values for Excite (19.47 +/- 6.17 MPa) and Syntac (20.20 +/- 7.07 MPa) were also higher with the Ultradent testing device, but the difference was not significant. Within the limitations of this study, all bonding agents tested resulted in higher mean shear bond strengths when tested with the Ultradent testing device compared with the unrestricted knife. The single-step bonding agents exhibited mean bond strengths comparable to their multistep counterparts.
Hatamleh, Muhanad M; Watts, David C
2010-07-01
The purpose of this study was to test the effect of different periods of accelerated artificial daylight aging on bond strength of glass fiber bundles embedded into maxillofacial silicone elastomer and on bending strength of the glass fiber bundles. Forty specimens were fabricated by embedding resin-impregnated fiber bundles (1.5-mm diameter, 20-mm long) into maxillofacial silicone elastomer. Specimens were randomly allocated into four groups, and each group was subjected to different periods of accelerated daylight aging as follows (in hours); 0, 200, 400, and 600. The aging cycle included continuous exposure to quartz-filtered visible daylight (irradiance 760 W/m(2)) under an alternating weathering cycle (wet for 18 minutes, dry for 102 minutes). Pull-out tests were performed to evaluate bond strength between fiber bundles and silicone using a universal testing machine at 1 mm/min crosshead speed. Also a three-point bending test was performed to evaluate bending strength of the fiber bundles. One-way ANOVA and Bonferroni post hoc tests were carried out to detect statistical significance (p < 0.05). Mean (SD) values of maximum pull-out forces (in N) for groups 1 to 4 were: 13.63 (7.45), 19.67 (1.37), 13.58 (2.61), and 10.37 (2.52). Group 2 exhibited the highest pull-out force that was statistically significant when compared to the other groups. Maximum bending strengths of fiber bundles were in the range of 917.72 MPa to 1124.06 MPa. Bending strength significantly increased after 200 and 400 hours of aging only. After 200 hours of exposure to artificial daylight and moisture conditions, bond strength between glass fibers and heat-cured silicones is optimal, and the bending strength of the glass fiber bundles is enhanced.
Comparison of shear bond strength of universal adhesives on etched and nonetched enamel.
Beltrami, Riccardo; Chiesa, Marco; Scribante, Andrea; Allegretti, Jessica; Poggio, Claudio
2016-04-06
The purpose of this study was to evaluate the effect of surface pretreatment with 37% phosphoric acid on the enamel bond strength of different universal adhesives. One hundred and sixty bovine permanent mandibular incisors freshly extracted were used as a substitute for human teeth. The materials tested in this study included 6 universal adhesives, and 2 self-etch adhesives as control. The teeth were assigned into 2 groups: In the first group, etching was performed using 37% phosphoric acid for 30 seconds. In the second group, no pretreatment agent was applied. After adhesive application, a nanohybrid composite resin was inserted into the enamel surface by packing the material into cylindrical-shaped plastic matrices. After storing, the specimens were placed in a universal testing machine. The normality of the data was calculated using the Kolmogorov-Smirnov test. Analysis of variance (ANOVA) was applied to determine whether significant differences in debond strength values existed among the various groups. Groups with phosphoric acid pretreatment showed significantly higher shear bond strength values than groups with no enamel pretreatment (p<0.001). No significant variation in shear strength values was detected when comparing the different adhesive systems applied onto enamel after orthophosphoric acid application (p>0.05). All adhesives provide similar bond strength values when enamel pretreatment is applied even if compositions are different. Bond strength values are lower than promised by manufacturers.
Shear bond strength of one-step self-etch adhesives to enamel: effect of acid pretreatment.
Poggio, Claudio; Scribante, Andrea; Della Zoppa, Federica; Colombo, Marco; Beltrami, Riccardo; Chiesa, Marco
2014-02-01
The purposes of this study were to evaluate the effect of surface pretreatment with phosphoric acid on the enamel bond strength of four-one-step self-etch adhesives with different pH values. One hundred bovine permanent mandibular incisors were used. The materials used in this study included four-one-step self-etch adhesives with different pH values: Adper(™) Easy Bond Self-Etch Adhesive (ph = 0,8-1), Futurabond NR (ph = 1,4), G-aenial Bond (ph = 1,5), Clearfil(3) S Bond (ph = 2,7). One two-step self-etch adhesive (Clearfil SE Bond/ph = 0,8-1) was used as control. The teeth were assigned into two subgroups according to bonding procedure. In the first subgroup (n = 50), no pretreatment agent was applied. In the second subgroup (n = 50), etching was performed using 37% phosphoric acid for 30 s. After adhesive systems application, a nanohybrid composite resin was inserted into the enamel surface. The specimens were placed in a universal testing machine (Model 3343, Instron Corp., Canton, Mass., USA). After the testing procedure, the fractured surfaces were examined with an optical microscope at a magnification of 10× to determine failure modes. The adhesive remnant index (ARI) was used to assess the amount of adhesive left on the enamel surface. Descriptive statistics of the shear bond strength and frequency distribution of ARI scores were calculated. Enamel pretreatment with phosphoric acid significantly increased bond strength values of all the adhesives tested. No significant differences in bond strength were detected among the four different one-step self-etch adhesives with different pH. Two-step self-etch adhesive showed the highest bond strength. © 2013 John Wiley & Sons A/S.
Araújo, Cíntia Tereza Pimenta; Prieto, Lúcia Trazzi; Costa, Daiane Cristianismo; Bosso, Mariana Avalone; Coppini, Erick Kamiya; Dias, Carlos Tadeu Santos; Paulillo, Luis Alexandre Maffei Sartini
2017-08-01
Evaluate the composite-to-enamel bond after passive or active application of self-etching primer systems on polished or pre-etched enamel with phosphoric acid. Two self-etch adhesives systems (SEAS) were used: Clearfil SE Bond and Easy Bond. Third human molars were divided into 8 groups (N = 10). The crown of each tooth was sectioned into halves and the mesial/distal surfaces were used. The adhesives were actively or passively applied on enamel with or without prior phosphoric-acid etching. Resin composite cylinders were built after adhesive application. After stored in relative humidity for 24 hr/37°C the specimens were subjected to microshear test in universal testing a machine at a crosshead speed of 0.5 mm/minute. The results were analyzed with three-way ANOVA and the Tukey test. The enamel-etching pattern was evaluated under SEM. The 2-step SEAS system presented significantly higher adhesive bond strength means (47.37 MPa) than the 1-step (36.87 MPa). A poor enamel- etching pattern was observed in active mode showing irregular and short resin tags, however there was not compromised the bond strength. Active or passive application produced similar values of bond strength to enamel regardless of enamel pretreatment and type of SEAS. © 2017 Wiley Periodicals, Inc.
Innovations in bonding to zirconia-based materials: Part I.
Aboushelib, Moustafa N; Matinlinna, Jukka P; Salameh, Ziad; Ounsi, Hani
2008-09-01
Establishing a reliable bond to zirconia-based materials has proven to be difficult which is the major limitation against fabricating adhesive zirconia restorations. This bond could be improved using novel selective infiltration etching conditioning in combination with engineered zirconia primers. Aim of the work was to evaluate resin-to-zirconia bond strength using selective infiltration etching and novel silane-based zirconia primers. Zirconia discs (Procera Zirconia) received selective infiltration etching surface treatment followed by coating with either of five especially engineered experimental zirconia primers. Pre-aged resin-composite discs (Tetric Ivo Ceram) were bonded to the treated surface using an MDP-containing resin-composite (Panavia F 2.0). The bilayered specimens were cut into microbars and the microtensile bond strength (MTBS) was evaluated. 'As-sintered' zirconia discs served as a control (alpha=0.05). The broken microbars were examined using a scanning electron microscope (SEM). The combination of selective infiltration etching with experimental zirconia primers significantly improved (F=3805, P<0.0001) the MTBS values (41+/-5.8 MPa) compared to the 'as-sintered' surface using the same primers which demonstrated spontaneous failure and very low bond strength values (2.6+/-3.1 MPa). SEM analysis revealed that selective infiltration etching surface treatment resulted in a nano-retentive surface where the zirconia primers were able to penetrate and interlock which explained the higher MTBS values observed for the treated specimens.
Parhami, Parisa; Pourhashemi, Seyed Jalal; Ghandehari, Mehdi; Mighani, Ghasem; Chiniforush, Nasim
2014-01-01
Introduction: The aim of this study was to evaluate and compare the in vitro effect of the Erbium-Doped Yttrium Aluminum Garnet (Er:YAG) laser with different radiation distances and high-speed rotary treatment on the shear bond strength of flowable composite to enamel of human permanent posterior teeth. Methods: freshly extracted human molar teeth with no caries or other surface defects were used in this study (n=45). The teeth were randomly divided into 3 groups. Group 1: treated with non-contact Er:YAG Laser and etched with Er:YAG laser, Group 2: treated with contact Er:YAG Laser and etched with Er:YAG laser, Group 3 (control): treated with diamond fissure bur and etched with acid phosphoric 37%. Then the adhesive was applied on the surafces of the teeth and polymerized using a curing light appliance. Resin cylinders were fabricated from flowable composite. Shear bond strength was tested at a crosshead speed of 0.5 mm/min. Results: The amount of Shear Bond Strength (SBS) in the 3 treatment groups was not the same (P<0.05).The group in which enamel surfaces were treated with diamond fissure bur and etched with acid (conrtol group) had the highest mean shear bond strength (19.92±4.76) and the group in which the enamel surfaces were treated with contact Er:YAG laser and etched with Er:YAG laser had the lowest mean shear bond strength (10.89±2.89). Mann-whitney test with adjusted P-value detected significant difference in shear bond strength between the control group and the other 2 groups (P < 0.05). Conclusion: It was concluded that both contact and non-contact Er:YAG laser treatment reduced shear bond strength of flowable resin composite to enamel in comparison with conventional treatment with high speed rotary. Different Er:YAG laser distance irradiations did not influence the shear bond strength of flowable composite to enamel. PMID:25653813
Madan, Nishtha; Datta, Kusum
2012-01-01
To assess the effect of simulated mouth conditions reproduced with thermocycling on the tensile bond strength of two silicone based resilient denture liners with acrylic resin bases. Two silicone-based soft denture liners (Mollosil - Chairside autopolymerization and Molloplast B - Heat polymerization) were tested. For each liner, 30 specimens with a cross-sectional area of 10 Χ 10 mm and thickness 3 mm were processed between two acrylic blocks (Trevalon). Specimens were divided into a control group that was stored for 24 hours in water at 37°C and a test group that was thermocycled (2500 cycles) between baths of 5° and 55°C. Tensile bond strength (kg/cm²) was determined in a universal testing machine using crosshead speed of 5 mm/min. The student t-test was used to determine the significance of the difference in bond strength between the two liners. The mean tensile bond strength for control and thermocycled specimens of the two liners were: Mollosil (6.82 kg/cm² and 8.41 kg/cm²) and Molloplast-B (16.30 kg/cm² and 13.67 kg/cm²), respectively. Comparison of bond strength of control specimens with thermocycled specimens of the liners indicated a significant difference for both Mollosil (P=0.045) and Molloplast-B (P=0.027). Comparison between control specimens of both liners and thermocycled specimens of both liners indicated a highly significant difference (P<0.001). Heat polymerized resilient denture liner Molloplast-B had higher tensile bond strength than autopolymerizing liner Mollosil regardless of thermocycling. The bond strength of Mollosil increased after thermocycling while that of Molloplast-B decreased after thermocycling. Although heat-polymerized denture liners require more processing time than autopolymerizing liners, but they display much better adhesion properties to denture base resin and should thus be preferred when soft liner has to be used for a longer duration of time.
Microtensile bond strength of bulk-fill restorative composites to dentin.
Mandava, Jyothi; Vegesna, Divya-Prasanna; Ravi, Ravichandra; Boddeda, Mohan-Rao; Uppalapati, Lakshman-Varma; Ghazanfaruddin, M D
2017-08-01
To facilitate the easier placement of direct resin composite in deeper cavities, bulk fill composites have been introduced. The Mechanical stability of fillings in stress bearing areas restored with bulk-fill resin composites is still open to question, since long term clinical studies are not available so far. Thus, the objective of the study was to evaluate and compare the microtensile bond strength of three bulk-fill restorative composites with a nanohybrid composite. Class I cavities were prepared on sixty extracted mandibular molars. Teeth were divided into 4 groups (n= 15 each) and in group I, the prepared cavities were restored with nanohybrid (Filtek Z250 XT) restorative composite in an incremental manner. In group II, III and IV, the bulk-fill composites (Filtek, Tetric EvoCeram, X-tra fil bulk-fill restoratives) were placed as a 4 mm single increment and light cured. The restored teeth were subjected to thermocycling and bond strength testing was done using instron testing machine. The mode of failure was assessed by scanning electron microscope (SEM). The bond strength values obtained in megapascals (MPa) were subjected to statistical analysis, using SPSS/PC version 20 software.One-way ANOVA was used for groupwise comparison of the bond strength. Tukey's Post Hoc test was used for pairwise comparisons among the groups. The highest mean bond strength was achieved with Filtek bulk-fill restorative showing statistically significant difference with Tetric EvoCeram bulk-fill ( p < 0.003) and X-tra fil bulk-fill ( p <0.001) composites. Adhesive failures are mostly observed with X-tra fil bulk fill composites, whereas mixed failures are more common with other bulk fill composites. Bulk-fill composites exhibited adequate bond strength to dentin and can be considered as restorative material of choice in posterior stress bearing areas. Key words: Bond strength, Bulk-fill restoratives, Configuration factor, Polymerization shrinkage.
Bond strength evaluation in adhesive joints using NDE and DIC methods
NASA Astrophysics Data System (ADS)
Poudel, Anish
Adhesive bonding of graphite epoxy composite laminates to itself or traditional metal alloys in modern aerospace and aircraft structural applications offers an excellent opportunity to use the most efficient and intelligent combination of materials available thus providing an attractive package for efficient structural designs. However, one of the major issues of adhesive bonding is the occasional formation of interfacial defects such as kissing or weak bonds in the bondline interface. Also, there are shortcomings of existing non-destructive evaluation (NDE) methods to non-destructively detect/characterize these interfacial defects and reliably predicting the bond shear strength. As a result, adhesive bonding technology is still not solely implemented in primary structures of an aircraft. Therefore, there is a greater demand for a novel NDE tool that can meet the existing aerospace requirement for adhesive bondline characterization. This research implemented a novel Acoustography ultrasonic imaging and digital image correlation (DIC) technique to detect and characterize interfacial defects in the bondline and determine bond shear strength in adhesively bonded composite-metal joints. Adhesively bonded Carbon Fiber Reinforced Plastic (CFRP) laminate and 2024-T3 Aluminum single lap shear panels subjected to various implanted kissing/weak bond defects were the primary focus of this study. Kissing/weak bonds were prepared by controlled surface contamination in the composite bonding surface and also by improperly mixing the adhesive constituent. SEM analyses were also conducted to understand the surface morphology of substrates and their interaction with the contaminants. Morphological changes were observed in the microscopic scale and the chemical analysis confirmed the stability of the contaminant at or very close to the interface. In addition, it was also demonstrated that contaminants migrated during the curing of the adhesive from CFRP substrate which caused a decrease of bond shear strength in single lap shear test samples. Through-transmission ultrasonics (TTU) Acoustography at 3.8 MHz showed promising results on the detectability of bondline defects in adhesively bonded CFRP-Al lap shear test samples. A correlation between Acoustography ultrasonic attenuation and average bond shear strength in CFRP-Al lap shear panels demonstrated that differential attenuation increased with the reduction of the bond shear strength. Similarly, optical DIC tests were conducted to identify and quantify kissing bond defects in CFRP-Al single lap shear joints. DIC results demonstrated changes in the normal strain (epsilonyy) contour map of the contaminated specimens at relatively lower load levels (15% ~ 30% of failure loads). Kissing bond regions were characterized by negative strains, and these were attributed to high compressive bending strains and the localized disbonding taking placed at the bondline interface as a result of the load application. It was also observed that contaminated samples suffered from more compressive strains (epsilonyy) compared to the baseline sample along the loading direction and they suffered from less compressive strains (epsilonxx) compared to the baseline sample perpendicular to the loading direction. This demonstrated the adverse effect of the kissing bond on the adhesive joint integrity. This was a very significant finding for the reason that hybrid ultrasonic DIC is being developed as a faster, more efficient, and more reliable NDE technique for determining bond quality and predicting bond shear strength in adhesively bonded structures.
Santos, R L P; Silva, F S; Nascimento, R M; Souza, J C M; Motta, F V; Carvalho, O; Henriques, B
2016-07-01
The purpose of this study was to evaluate the shear bond strength of veneering feldspathic porcelain to zirconia substrates modified by CNC-milling process or by coating zirconia with a composite interlayer. Four types of zirconia-porcelain interface configurations were tested: RZ - porcelain bonded to rough zirconia substrate (n=16); PZ - porcelain bonded to zirconia substrate with surface holes (n=16); RZI - application of a composite interlayer between the veneering porcelain and the rough zirconia substrate (n=16); PZI - application of a composite interlayer between the porcelain and the zirconia substrate treated by CNC-milling (n=16). The composite interlayer was composed of zirconia particles reinforced porcelain (30%, vol%). The mechanical properties of the ceramic composite have been determined. The shear bond strength test was performed at 0.5mm/min using a universal testing machine. The interfaces of fractured and untested specimens were examined by FEG-SEM/EDS. Data was analyzed with Shapiro-Wilk test to test the assumption of normality. The one-way ANOVA followed by Tukey HSD multiple comparison test was used to compare shear bond strength results (α=0.05). The shear bond strength of PZ (100±15MPa) and RZI (96±11MPa) specimens were higher than that recorded for RZ (control group) specimens (89±15MPa), although not significantly (p>0.05). The highest shear bond strength values were recorded for PZI specimens (138±19MPa), yielding a significant improvement of 55% relative to RZ specimens (p<0.05). This study shows that it is possible to highly enhance the zirconia-porcelain bond strength - even by ~55% - by combining surface holes in zirconia frameworks and the application of a proper ceramic composite interlayer. Copyright © 2016 Elsevier Ltd. All rights reserved.
Stape, Thiago Henrique Scarabello; Tezvergil-Mutluay, Arzu; Mutluay, Mustafa Murat; Martins, Luís Roberto Marcondes; do Prado, Rosana Leal; Pizi, Eliane Cristina Gava; Tjäderhane, Leo
2016-12-01
To examine the feasibility of dimethyl sulfoxide (DMSO) incorporation into relatively hydrophilic resins as a new potential method to improve the durability of resin-dentin bonds. Six experimental light-curing BisGMA/HEMA resins solvated in ethanol and DMSO with increasing concentrations of DMSO (0, 0.5, 1, 2, 4 and 10wt%) were prepared. The degree of conversion (DC) was evaluated by Fourier Transform Infrared Spectroscopy (n=8); water sorption (Wsp) and water solubility (Wso) were gravimetrically assessed (n=10); and flexural strength (FS) and elastic modulus (E) were determined by a three-point bending flexural test (n=10). Flat dentin surfaces on sound third molars (n=10/group) were bonded with resins containing 0, 2, 4 and 10wt% DMSO used as a two-step etch-and-rinse system. Dentin microtensile bond strength was determined at 24h and after two-year aging in artificial saliva at 37°C. DMSO significantly affected Wsp (p=0.0006), DC, Wso, FS, and E (p<0.0001). In general, the resins' mechanical/physical properties were not affected by 2% or lower DMSO incorporation. Incorporation of 4% or higher DMSO content significantly increased DC, Wsp and Wso, but 2% or higher DMSO concentrations significantly reduced FS and E. No influence on immediate dentin bond strength occurred up to 4% DMSO incorporation. While 4% or higher DMSO concentrations impaired bond strength over time, the resin containing 2% DMSO presented significant higher dentin bond strength compared to the control resin after two year-aging. The use of DMSO as a new solvent in adhesive dentistry improves dentin bonding of relatively hydrophilic resins over time. 2% DMSO incorporation in BisGMA/HEMA resins should be sufficient to reduce bond strength loss without compromising polymer mechanical strength and physical properties. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nobuaki, ARAO; Keiichi, YOSHIDA; Takashi, SAWASE
2015-01-01
ABSTRACT Objective The study aimed to evaluate effects of air abrasion with alumina or glass beads on bond strengths of resin cements to CAD/CAM composite materials. Material and Methods CAD/CAM composite block materials [Cerasmart (CS) and Block HC (BHC)] were pretreated as follows: (a) no treatment (None), (b) application of a ceramic primer (CP), (c) alumina-blasting at 0.2 MPa (AB), (d) AB followed by CP (AB+CP), and (e) glass-beads blasting at 0.4 MPa (GBB) followed by CP (GBB+CP). The composite specimens were bonded to resin composite disks using resin cements [G-CEM Cerasmart (GCCS) and ResiCem (RC)]. The bond strengths after 24 h (TC 0) and after thermal cycling (TC 10,000 at 4–60°C) were measured by shear tests. Three-way ANOVA and the Tukey compromise post hoc tests were used to analyze statistically significant differences between groups (α=0.05). Results For both CAD/CAM composite materials, the None group exhibited a significant decrease in bond strength after TC 10,000 (p<0.05). AB showed significantly higher bond strength after TC 10,000 than the None group, while CP did not (p<0.05). GBB exhibited smaller surface defects than did AB; however, their surface roughnesses were not significantly different (p>0.05). The AB+CP group showed a significantly higher bond strength after TC 10,000 than did the AB group for RC (p<0.05), but not for GCCS. The GBB+CP group showed the highest bond strength for both thermal cyclings (p<0.05). Conclusions Air abrasion with glass beads was more effective in increasing bond durability between the resin cements and CAD/CAM composite materials than was using an alumina powder and a CP. PMID:26814465
Bond Strength and Interfacial Morphology of Different Dentin Adhesives in Primary Teeth
Vashisth, Pallavi; Mittal, Mudit; Goswami, Mousumi; Chaudhary, Seema; Dwivedi, Swati
2014-01-01
Objective: To evaluate the interfacial morphology and the bond strength produced by the three-step, two-step and single-step bonding systems in primary teeth. Materials and Methods: Occlusal surfaces of 72 extracted human deciduous teeth were ground to expose the dentin. The teeth were divided into four groups: (a) Scotchbond Multipurpose (3M, ESPE), (b) Adh Se (Vivadent), (d) OptiBond All-in-One (Kerr) and (e)Futurabond NR (VOCO, Cuxhaven, Germany). The adhesives were applied to each group following the manufacturer’s instructions. Then, teeth from each group were divided into two groups: (A) For viewing interfacial morphology (32 teeth), with 8 teeth in each group, and (B) For measurement of bond strength (40 teeth), with 10 teeth in each group. All the samples were prepared for viewing under SEM. The statistical analysis was done using SPSS version 15.0 software. Results: Observational measurement of tag length in different adhesives revealed that Scotchbond had the most widely spread values with a range from 12.20 to 89.10μm while OptiBond AIO had the narrowest range (0 to 22.50). The bond strength of Scotchbond Multipurpose was significantly higher (7.4744±1.88763) (p<0.001) as compared to Futurabond NR (3.8070±1.61345), Adhe SE (4.4478 ± 1.3820) and OptiBond-all-in-one (4.4856±1.07925). Conclusion: The three-step bonding system showed better results as compared to simplified studied bonding systems PMID:24910694
Sadr, Alireza; Shimada, Yasushi; Tagami, Junji
2007-09-01
The all-in-one adhesives are simplified forms of two-step self-etching adhesive systems that must be air dried to remove solvent and water before curing. It was investigated whether those two systems perform equally well and if their performance is affected by air-drying of the solvent containing agent. Two adhesive systems (both by Kuraray Medical) were evaluated; Clearfil Tri-S bond (TS) and Clearfil SE bond (SE). Micro-shear bond strengths to human dentin after solvent air-drying times of 2, 5 or 10 s for each group were measured (n=10). The indentation creep and hardness of the bonding layer were also determined for each group. The lowest micro-shear bond strength, nano-indentation hardness and creep stress exponents were obtained for 2 s air dried specimens of each material. After 10 s air blowing, SE showed superior properties compared to TS groups (p<0.05). When properly handled, two step self-etching material performs better than the all-in-one adhesive. Air-drying is a crucial step in the application of solvent containing adhesives and may affect the overall clinical performance of them, through changes in the bond strength and altering nano-scale mechanical properties.
Bastos, Laura Alves; Sousa, Ana Beatriz Silva; Drubi-Filho, Brahim; Panzeri Pires-de-Souza, Fernanda de Carvalho; Garcia, Lucas da Fonseca Roberti
2015-02-01
The aim of this study was to evaluate the effect of pre-etching on the bond strength of silorane-based composite specific adhesive system to dentin. Thirty human molars were randomly divided into 5 groups according to the different bonding strategies. For teeth restored with silorane-based composite (Filtek Silorane, 3M ESPE), the specific self-etching adhesive system (Adhesive System P90, 3M ESPE) was used with and without pre-etching (Pre-etching/Silorane and Silorane groups). Teeth restored with methacrylate based-composite (Filtek Z250, 3M ESPE) were hybridized with the two-step self-etching system (Clearfil SE Bond, Kuraray), with and without pre-etching (Pre-etching/Methacrylate and Methacrylate groups), or three-step adhesive system (Adper Scotchbond Multi-Purpose, 3M ESPE) (Three-step/Methacrylate group) (n = 6). The restored teeth were sectioned into stick-shaped test specimens (1.0 × 1.0 mm), and coupled to a universal test machine (0.5 mm/min) to perform microtensile testing. Pre-etching/Methacrylate group presented the highest bond strength values, with significant difference from Silorane and Three-step/Methacrylate groups (p < 0.05). However, it was not significantly different from Preetching/Silorane and Methacrylate groups. Pre-etching increased bond strength of silorane-based composite specific adhesive system to dentin.
Ritts, Andy Charles; Li, Hao; Yu, Qingsong; Xu, Changqi; Yao, Xiaomei; Hong, Liang; Wang, Yong
2010-01-01
The objective of this study is to investigate the treatment effects of non-thermal atmospheric gas plasmas on dentin surfaces for composite restoration. Extracted unerupted human third molars were used by removing the crowns and etching the exposed dentin surfaces with 35% phosphoric acid gel. The dentin surfaces were treated by using a non-thermal atmospheric argon plasma brush for various durations. The molecular changes of the dentin surfaces were analyzed using FTIR/ATR and an increase in carbonyl groups on dentin surfaces was detected with plasma treated dentin. Adper Single Bond Plus adhesive and Filtek Z250 dental composite were applied as directed. To evaluate the dentin/composite interfacial bonding, the teeth thus prepared were sectioned into micro-bars as the specimens for tensile test. Student Newman Keuls tests showed that the bonding strength of the composite restoration to peripheral dentin was significantly increased (by 64%) after 30 s plasma treatment. However, the bonding strength to plasma treated inner dentin did not show any improvement. It was found that plasma treatment of peripheral dentin surface up to 100 s gave an increase in interfacial bonding strength, while a prolong plasma treatment of dentin surfaces, e.g., 5 min treatments, showed a decrease in interfacial bonding strength. PMID:20831586
The effect of silica-coating by sol-gel process on resin-zirconia bonding.
Lung, Christie Ying Kei; Kukk, Edwin; Matinlinna, Jukka Pekka
2013-01-01
The effect of silica-coating by sol-gel process on the bond strength of resin composite to zirconia was evaluated and compared against the sandblasting method. Four groups of zirconia samples were silica-coated by sol-gel process under varied reagent ratios of ethanol, water, ammonia and tetraethyl orthosilicate and for different deposition times. One control group of zirconia samples were treated with sandblasting. Within each of these five groups, one subgroup of samples was kept in dry storage while another subgroup was aged by thermocycling for 6,000 times. Besides shear bond testing, the surface topography and surface elemental composition of silica-coated zirconia samples were also examined using scanning electron microscopy and X-ray photoelectron spectroscopy. Comparison of silica coating methods revealed significant differences in bond strength among the Dry groups (p<0.001) and Thermocycled groups (p<0.001). Comparison of sol-gel deposition times also revealed significant differences in bond strength among the Dry groups (p<0.01) and Thermocycled groups (p<0.001). Highest bond strengths were obtained after 141-h deposition: Dry (7.97±3.72 MPa); Thermocycled (2.33±0.79 MPa). It was concluded that silica-coating of zirconia by sol-gel process resulted in weaker resin bonding than by sandblasting.
Porcelain surface conditioning protocols and shear bond strength of orthodontic brackets.
Lestrade, Ashley M; Ballard, Richard W; Xu, Xiaoming; Yu, Qingzhao; Kee, Edwin L; Armbruster, Paul C
2016-05-01
The objective of the present study was to determine which of six bonding protocols yielded a clinically acceptable shear bond strength (SBS) of metal orthodontic brackets to CAD/CAM lithium disilicate porcelain restorations. A secondary aim was to determine which bonding protocol produced the least surface damage at debond. Sixty lithium disilicate samples were fabricated to replicate the facial surface of a mandibular first molar using a CEREC CAD/CAM machine. The samples were split into six test groups, each of which received different mechanical/chemical pretreatment protocols to roughen the porcelain surface prior to bonding a molar orthodontic attachment. Shear bond strength testing was conducted using an Instron machine. The mean, maximum, minimal, and standard deviation SBS values for each sample group including an enamel control were calculated. A t-test was used to evaluate the statistical significance between the groups. No significant differences were found in SBS values, with the exception of surface roughening with a green stone prior to HFA and silane treatment. This protocol yielded slightly higher bond strength which was statistically significant. Chemical treatment alone with HFA/silane yielded SBS values within an acceptable clinical range to withstand forces applied by orthodontic treatment and potentially eliminates the need to mechanically roughen the ceramic surface.
Topçuoğlu, Hüseyin Sinan; Tuncay, Öznur; Demirbuga, Sezer; Dinçer, Asiye Nur; Arslan, Hakan
2014-06-01
The aim of this study was to evaluate whether or not different final irrigation activation techniques affect the bond strength of an epoxy resin-based endodontic sealer (AH Plus; Dentsply DeTrey, Konstanz, Germany) to the root canal walls of different root thirds. Eighty single-rooted human mandibular premolars were prepared by using the ProTaper system (Dentsply Maillefer, Ballaigues, Switzerland) to size F4, and a final irrigation regimen using 3% sodium hypochlorite and 17% EDTA was performed. The specimens were randomly divided into 4 groups (n = 20) according to the final irrigation activation technique used as follows: no activation (control), manual dynamic activation (MDA), CanalBrush (Coltene Whaledent, Altststten, Switzerland) activation, and ultrasonic activation. Five specimens from each group were prepared for scanning electron microscopic observation to assess the smear layer removal after the final irrigation procedures. All remaining roots were then obturated with gutta-percha and AH Plus sealer. A push-out test was used to measure the bond strength between the root canal dentin and AH Plus sealer. The data obtained from the push-out test were analyzed using 2-way analysis of variance and Tukey post hoc tests. The bond strength values mostly decreased in the coronoapical direction (P < .001). In the coronal and middle thirds, ultrasonic activiation showed a higher bond strength than other groups (P < .05). In the apical third, MDA displayed the highest bond strength to root dentin (P < .05). The majority of specimens exhibited cohesive failures. The bond strength of AH Plus sealer to root canal dentin may improve with ultrasonic activation in the coronal and middle thirds and MDA in the apical third. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
[Effect of different heat treatment on the bonding strength of porcelain and Co-Cr alloy].
Liao, Juan-kun; Ye, Jian-tao; Zhu, Feng; Zhang, Cui-cui; Wen, Xiao-shan; Zhang, Yi-ping; Li, Bo-hua
2011-12-01
To investigate and compare the effect of different heat treatment on the metal- ceramic bonding strength and the interfacial microstructure of the Co-Cr alloy. Thirty specimens were made according to ISO 9693,and then divided into 3 groups (n=10) through the measurements .Group A(degassed 60s):degassed and then maintained 60s in 980 degrees centigrade Group B(degassed 60s and preoxidation 60s): degassed and maintained 60s in 980 degrees centigrade, then were maintained continuously for 60s in 980 degrees centigrade after re-gassed,Group C(degassed 120s): degassed and maintained 120s in 980 degrees centigrade. The bonding strengths of the three groups were evaluated through three point bending test. Six specimens divided into 3 group were made in the same method to observe the metal-ceramic interface through scanning electronic microscope(SEM) and energy dispersive spectrum(EDS).The bonding strength data were analyzed using ANOVA and Bonferroni's test by SPSS13.0 software package. The mean value of bonding strength was (39.03±2.70)MPa for group A, (34.43±2.36)MPa for group B, (31.65±1.49)MPa for group C, respectively. There were significant difference between every two groups (P<0.05). SEM demonstrated that the width of interfacial transition layer was 12.3-16.4μm in group A, 15.2-21.8μm in group B and 26.3-32.2μm in group C. Higher metal-ceramic bonding strength for Co-Cr alloy will be formed under the situation of degassed,and maintained 60s in 980 degrees centigrade ; while extending degassed time, prolonging the heat maintained time and preoxidation after degassing will reduce metal-ceramic bonding strength.
The effect of denture base surface pretreatments on bond strengths of two long term resilient liners
Parkhedkar, Rambhau
2011-01-01
PURPOSE Purpose of this study was to evaluate effect of two surface treatments, sandblasting and monomer treatment, on tensile bond strength between two long term resilient liners and poly (methyl methacrylate) denture base resin. MATERIALS AND METHODS Two resilient liners Super-Soft and Molloplast-B were selected.Sixty acrylic resin (Trevalon) specimens with cross sectional area of 10×10 mm were prepared and divided into two groups of 30 specimens each. Each group was surface treated (n = 10) by sandblasting (250 µ alumina particles), monomer treatment (for 180 sec) and control (no surface treatment). Resilient liners were processed between 2 poly(methyl methacrylate) surfaces, in the dimensions of 10×10×3 mm. Tensile strength was determined with Instron Universal testing machine, at a crosshead speed of 5 mm/min; and the modes of failure (adhesive, cohesive or mixed) were recorded. The data were analyzed using one-way ANOVA, followed by Tukey HSD test (α = 0.05). RESULTS Monomer pretreatment of acrylic resin produced significantly higher bond strengths when compared to sandblasting and control for both resilient liners (P < .001). Sandblasting significantly decreased the bond strength for both the liners when compared to monomer pretreatment and control (P < .001). Mean bond strength of Super-Soft lined specimens was significantly higher than Molloplast-B in various surface treatment groups (P < .05). CONCLUSION Surface pretreatment of the acrylic resin with monomer prior to resilient liner application is an effective method to increase bond strength between the base and soft liner. Sandblasting, on the contrary, is not recommended as it weakens the bond between the two. PMID:21503188
Bond Strength of Resin Cements to Zirconia Ceramic Using Adhesive Primers.
Stefani, Ariovaldo; Brito, Rui Barbosa; Kina, Sidney; Andrade, Oswaldo Scopin; Ambrosano, Gláucia Maria Bovi; Carvalho, Andreia Assis; Giannini, Marcelo
2016-07-01
To evaluate the influence of adhesive primers on the microshear bond strength of resin cements to zirconia ceramic. Fifty zirconia plates (12 mm × 5 mm × 1.5 mm thick) of a commercially available zirconium oxide ceramic (ZirCad) were sintered, sandblasted with aluminum oxide particles, and cleaned ultrasonically before bonding. The plates were randomly divided into five groups of 10. Three resin cements were selected (RelyX ARC, Multilink Automix, Clearfil SA Cement self-adhesive resin cement), along with two primers (Metal-Zirconia Primer, Alloy Primer) and one control group. The primers and resin cements were used according to manufacturers' recommendations. The control group comprised the conventional resin cement (RelyX ARC) without adhesive primer. Test cylinders (0.75 mm diameter × 1 mm high) were formed on zirconia surfaces by filling cylindrical Tygon tube molds with resin cement. The specimens were stored in distilled water for 24 hours at 37°C, then tested for shear strength on a Shimadzu EZ Test testing machine at 0.5 mm/min. Bond strength data were analyzed statistically by two-way ANOVA and Dunnett's test (5%). The bond strength means in MPa (± s.d.) were: RelyX ARC: 28.1 (6.6); Multilink Automix: 37.6 (4.5); Multilink Automix + Metal-Zirconia Primer: 55.7 (4.0); Clearfil SA Cement: 46.2 (3.3); and Clearfil SA Cement + Alloy Primer: 47.0 (4.1). Metal-Zirconia Primer increased the bond strength of Multilink Automix resin cement to zirconia, but no effect was observed for Alloy Primer using Clearfil SA Cement. RelyX ARC showed the lowest bond strength to zirconia. © 2015 by the American College of Prosthodontists.
Effect of endodontic chelating solutions on the bond strength of endodontic sealers.
Tuncel, Behram; Nagas, Emre; Cehreli, Zafer; Uyanik, Ozgur; Vallittu, Pekka; Lassila, Lippo
2015-01-01
The purpose of this in vitro study was to evaluate the effect of various chelating solutions on the radicular push-out bond strength of calcium silicate-based and resin-based root canal sealers. Root canals of freshly-extracted single-rooted teeth (n = 80) were instrumented by using rotary instruments. The specimens were randomly divided into 4 groups according to the chelating solutions being tested: (1) 17% ethylenediaminetetraacetic acid (EDTA); (2) 9% etidronic acid; (3) 1% peracetic acid (PAA); and (4) distilled water (control). In each group, the roots were further assigned into 2 subgroups according to the sealer used: (1) an epoxy resin-based sealer (AH Plus) and (2) a calcium silicate-based sealer (iRoot SP). Four 1 mm-thick sections were obtained from the coronal aspect of each root (n = 40 slices/group). Push-out bond strength test was performed at a crosshead speed of 1 mm/min., and the bond strength data were analyzed statistically with two-way analysis of variance (ANOVA) with Bonferroni's post hoc test (p < 0.05). Failure modes were assessed quantitatively under a stereomicroscope. Irrespective of the irrigation regimens, iRoot SP exhibited significantly higher push-out bond strength values than AH Plus (p < 0.05). For both the sealers, the use of chelating solutions increased the bond strength, but to levels that were not significantly greater than their respective controls (p > 0.05). iRoot SP showed higher resistance to dislocation than AH Plus. Final irrigation with 17% EDTA, 9% Etidronic acid, and 1% PAA did not improve the bond strength of AH Plus and iRoot SP to radicular dentin.
Long, Wu-Jian; Khayat, Kamal Henri; Lemieux, Guillaume; Hwang, Soo-Duck; Xing, Feng
2014-01-01
With the extensive use of self-consolidating concrete (SCC) worldwide, it is important to ensure that such concrete can secure uniform in-situ mechanical properties that are similar to those obtained with properly consolidated concrete of conventional fluidity. Ensuring proper stability of SCC is essential to enhance the uniformity of in-situ mechanical properties, including bond to embedded reinforcement, which is critical for structural engineers considering the specification of SCC for prestressed applications. In this investigation, Six wall elements measuring 1540 mm × 2150 mm × 200 mm were cast using five SCC mixtures and one reference high-performance concrete (HPC) of normal consistency to evaluate the uniformity of bond strength between prestressing strands and concrete as well as the distribution of compressive strength obtained from cores along wall elements. The evaluated SCC mixtures used for casting wall elements were proportioned to achieve a slump flow consistency of 680 ± 15 mm and minimum caisson filling capacity of 80%, and visual stability index of 0.5 to 1. Given the spreads in viscosity and static stability of the SCC mixtures, the five wall elements exhibited different levels of homogeneity in in-situ compressive strength and pull-out bond strength. Test results also indicate that despite the high fluidity of SCC, stable concrete can lead to more homogenous in-situ properties than HPC of normal consistency subjected to mechanical vibration. PMID:28788223
Long, Wu-Jian; Khayat, Kamal Henri; Lemieux, Guillaume; Hwang, Soo-Duck; Xing, Feng
2014-10-10
With the extensive use of self-consolidating concrete (SCC) worldwide, it is important to ensure that such concrete can secure uniform in-situ mechanical properties that are similar to those obtained with properly consolidated concrete of conventional fluidity. Ensuring proper stability of SCC is essential to enhance the uniformity of in-situ mechanical properties, including bond to embedded reinforcement, which is critical for structural engineers considering the specification of SCC for prestressed applications. In this investigation, Six wall elements measuring 1540 mm × 2150 mm × 200 mm were cast using five SCC mixtures and one reference high-performance concrete (HPC) of normal consistency to evaluate the uniformity of bond strength between prestressing strands and concrete as well as the distribution of compressive strength obtained from cores along wall elements. The evaluated SCC mixtures used for casting wall elements were proportioned to achieve a slump flow consistency of 680 ± 15 mm and minimum caisson filling capacity of 80%, and visual stability index of 0.5 to 1. Given the spreads in viscosity and static stability of the SCC mixtures, the five wall elements exhibited different levels of homogeneity in in-situ compressive strength and pull-out bond strength. Test results also indicate that despite the high fluidity of SCC, stable concrete can lead to more homogenous in-situ properties than HPC of normal consistency subjected to mechanical vibration.
Evaluating Embedded Heater Bonding for Composites
NASA Astrophysics Data System (ADS)
Carte, Casey
Out-of-autoclave bonding of high-strength carbon-fiber composites structures can reduce costs associated with autoclaves. Nevertheless, a concern is whether out-of-autoclave bonding results in a loss of delamination toughness. The main contribution of this paper is to comparatively evaluate the delamination toughness of adhesively bonded composite parts using carbon fiber embedded heaters and those bonded in an autoclave. Carbon Fiber Reinforced Polymer (CFRP) adherends were bonded by passing an electrical current through a layer of carbon fiber prepreg embedded at the bondline between two electrically insulating thin film adhesives. The delamination toughness was evaluated under mode I dominated loading conditions using a modified single cantilever beam test. Experimental results show that the delamination toughness of specimens bonded using a carbon fiber embedded heater was comparable to that of samples bonded in an autoclave.
Thermal barrier coating life prediction model
NASA Technical Reports Server (NTRS)
Hillery, R. V.; Pilsner, B. H.
1985-01-01
This is the first report of the first phase of a 3-year program. Its objectives are to determine the predominant modes of degradation of a plasma sprayed thermal barrier coating system, then to develop and verify life prediction models accounting for these degradation modes. The first task (Task I) is to determine the major failure mechanisms. Presently, bond coat oxidation and bond coat creep are being evaluated as potential TBC failure mechanisms. The baseline TBC system consists of an air plasma sprayed ZrO2-Y2O3 top coat, a low pressure plasma sprayed NiCrAlY bond coat, and a Rene'80 substrate. Pre-exposures in air and argon combined with thermal cycle tests in air and argon are being utilized to evaluate bond coat oxidation as a failure mechanism. Unexpectedly, the specimens pre-exposed in argon failed before the specimens pre-exposed in air in subsequent thermal cycles testing in air. Four bond coats with different creep strengths are being utilized to evaluate the effect of bond coat creep on TBC degradation. These bond coats received an aluminide overcoat prior to application of the top coat to reduce the differences in bond coat oxidation behavior. Thermal cycle testing has been initiated. Methods have been selected for measuring tensile strength, Poisson's ratio, dynamic modulus and coefficient of thermal expansion both of the bond coat and top coat layers.
A novel dentin bond strength measurement technique using a composite disk in diametral compression.
Huang, Shih-Hao; Lin, Lian-Shan; Rudney, Joel; Jones, Rob; Aparicio, Conrado; Lin, Chun-Pin; Fok, Alex
2012-04-01
New methods are needed that can predict the clinical failure of dental restorations that primarily rely on dentin bonding. Existing methods have shortcomings, e.g. severe deviation in the actual stress distribution from theory and a large standard deviation in the measured bond strength. We introduce here a novel test specimen by examining an endodontic model for dentin bonding. Specifically, we evaluated the feasibility of using the modified Brazilian disk test to measure the post-dentin interfacial bond strength. Four groups of resin composite disks which contained a slice of dentin with or without an intracanal post in the center were tested under diametral compression until fracture. Advanced nondestructive examination and imaging techniques in the form of acoustic emission (AE) and digital image correlation (DIC) were used innovatively to capture the fracture process in real time. DIC showed strain concentration first appearing at one of the lateral sides of the post-dentin interface. The appearance of the interfacial strain concentration also coincided with the first AE signal detected. Utilizing both the experimental data and finite-element analysis, the bond/tensile strengths were calculated to be: 11.2 MPa (fiber posts), 12.9 MPa (metal posts), 8.9 MPa (direct resin fillings) and 82.6 MPa for dentin. We have thus established the feasibility of using the composite disk in diametral compression to measure the bond strength between intracanal posts and dentin. The new method has the advantages of simpler specimen preparation, no premature failure, more consistent failure mode and smaller variations in the calculated bond strength. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Al Jabbari, Youssef S; Al Taweel, Sara M; Al Rifaiy, Mohammed; Alqahtani, Mohammed Q; Koutsoukis, Theodoros; Zinelis, Spiros
2014-07-01
To evaluate the combined effects of material type, surface treatment, and thermocycling on the bond strength of orthodontic brackets to materials used for the fabrication of provisional crowns. Four materials were included in this study (ProTemp, Trim Plus, Trim II, and Superpont C+B). Sixty cylindrical specimens (1 × 3 cm) were prepared from each material and equally divided into three groups. The first group was ground with silica carbide paper, the second was polished with pumice, and the last group was sandblasted with 50-µm aluminum oxide particles. Stainless-steel maxillary central incisor brackets (Victory Series, 3M) were bonded to the provisional material specimens with Transbond XT light-cured composite resin, and half of the specimens from each group were thermocycled 500 times in 5°C and 55°C water baths. Then the brackets were debonded with shear testing, and the results were statistically analyzed by three-way analysis of variance and Tukey's multiple-comparison tests at α = 0.05. Adhesive Remnant Index (ARI) was also identified. Before and after thermocycling, ProTemp materials showed the highest shear bond strength with orthodontic brackets (10.3 and 13.1 MPa, respectively). The statistical analysis indicated an interaction among the three independent variables (P < .05) and statistically significant differences in bond strength among provisional materials (P < .001), surface treatments (P < .001), and thermocycling (P < .05). According to the ARI, most groups demonstrated adhesive failure. The provisional material type, surface treatment, and artificial aging have a significant effect on bond strength. Sandblasting treatment exerts a beneficial effect on shear bond strength.
Bond strength of universal adhesives: A systematic review and meta-analysis.
Rosa, Wellington Luiz de Oliveira da; Piva, Evandro; Silva, Adriana Fernandes da
2015-07-01
A systematic review was conducted to determine whether the etch-and-rinse or self-etching mode is the best protocol for dentin and enamel adhesion by universal adhesives. This report followed the PRISMA Statement. A total of 10 articles were included in the meta-analysis. Two reviewers performed a literature search up to October 2014 in eight databases: PubMed, Web of Science, Scopus, BBO, SciELO, LILACS, IBECS and The Cochrane Library. In vitro studies evaluating the bond strength of universal adhesives to dentin and/or enamel by the etch-and-rinse and self-etch strategies were eligible to be selected. Statistical analyses were conducted using RevMan 5.1 (The Cochrane Collaboration, Copenhagen, Denmark). A global comparison was performed with random-effects models at a significance level of p<0.05. The analysis of dentin micro-tensile bond strength showed no statistically significant difference between the etch-and-rinse and self-etch strategies for mild universal adhesives (p≥0.05). However, for the ultra-mild All-Bond Universal adhesive, the etch-and-rinse strategy was significantly different than the self-etch mode in terms of dentin micro-tensile bond strength, as well as in the global analysis of enamel micro-tensile and micro-shear bond strength (p≤0.05). The enamel bond strength of universal adhesives is improved with prior phosphoric acid etching. However, this effect was not evident for dentin with the use of mild universal adhesives with the etch-and-rinse strategy. Selective enamel etching prior to the application of a mild universal adhesive is an advisable strategy for optimizing bonding. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sajadi, Soodabeh Sadat; Eslami Amirabadi, Gholamreza; Sajadi, Sepideh
2014-07-01
Bond failure of brackets during orthodontic treatment is a common problem; which results in treatment interference, increased treatment time and prolonged clinical time for rebonding of failed brackets. The purpose of this study was to evaluate the effects of Coca-Cola and a non-alcoholic beer on the shear bond strength and adhesive remnant index (ARI) of orthodontic metal brackets in vitro. Eighty intact human premolars were divided into two experimental groups of Coca-Cola and non-alcoholic beer (Istak), and a control group of artificial saliva. Over a period of thirty days, the test groups were immersed in the respective soft drinks for 5 minutes, twice a day. For the remainder of the time, they were kept in artificial saliva at 37°C. The control group was stored in artificial saliva during the experiment. All samples were subjected to shearing forces using Universal Testing Machine. ARI was determined with a stereomicroscope at ×12 magnification. The data of shear bond strength were statistically analyzed by one-way ANOVA and Tukey's Post-Hoc test and the data of ARI scores were analyzed by Kruskal-Wallis test. No significant difference was observed in ARIs of the three groups (P≤ 0.552). The shear bond strength of Coke group was significantly lower than that of the two other groups (P≤ 0.035); but there was no significant difference between the shear bond strength of Istak and the control group (P≤ 0.999). Coca-Cola decreased the shear bond strength of orthodontic brackets.
Sancakli, Hande Sar; Sancakli, Erkan; Eren, Meltem Mert; Ozel, Sevda; Yucel, Taner; Yildiz, Esra
2014-01-01
PURPOSE The purpose of this study was to evaluate and compare the effects of different surface pretreatment techniques on the surface roughness and shear bond strength of a new self-adhering flowable composite resin for use with lithium disilicate-reinforced CAD/CAM ceramic material. MATERIALS AND METHODS A total of one hundred thirty lithium disilicate CAD/CAM ceramic plates with dimensions of 6 mm × 4 mm and 3 mm thick were prepared. Specimens were then assigned into five groups (n=26) as follows: untreated control, coating with 30 µm silica oxide particles (Cojet™ Sand), 9.6% hydrofluoric acid etching, Er:YAG laser irradiation, and grinding with a high-speed fine diamond bur. A self-adhering flowable composite resin (Vertise Flow) was applied onto the pre-treated ceramic plates using the Ultradent shear bond Teflon mold system. Surface roughness was measured by atomic force microscopy. Shear bond strength test were performed using a universal testing machine at a crosshead speed of 1 mm/min. Surface roughness data were analyzed by one-way ANOVA and the Tukey HSD tests. Shear bond strength test values were analyzed by Kruskal-Wallis and Mann-Whitney U tests at α=.05. RESULTS Hydrofluoric acid etching and grinding with high-speed fine diamond bur produced significantly higher surface roughness than the other pretreatment groups (P<.05). Hydrofluoric acid etching and silica coating yielded the highest shear bond strength values (P<.001). CONCLUSION Self-adhering flowable composite resin used as repair composite resin exhibited very low bond strength irrespective of the surface pretreatments used. PMID:25551002
Singh, Kulshrest; Naik, Rajaram; Hegde, Srinidhi; Damda, Aftab
2015-01-01
This in vitro study is intended to compare the shear bond strength of recent self-etching primers to superficial, intermediate, and deep dentin levels. All teeth were sectioned at various levels and grouped randomly into two experimental groups and two control groups having three subgroups. The experimental groups consisted of two different dentin bonding system. The positive control group consisted of All Bond 2 and the negative control group was without the bonding agent. Finally, the specimens were subjected to shear bond strength study under Instron machine. The maximum shear bond strengths were noted at the time of fracture. The results were statistically analyzed. Comparing the shear bond strength values, All Bond 2 (Group III) demonstrated fairly higher bond strength values at different levels of dentin. Generally comparing All Bond 2 with the other two experimental groups revealed highly significant statistical results. In the present investigation with the fourth generation, higher mean shear bond strength values were recorded compared with the self-etching primers. When intermediate dentin shear bond strength was compared with deep dentin shear bond strength statistically significant results were found with Clearfil Liner Bond 2V, All Bond 2 and the negative control. There was a statistically significant difference in shear bond strength values both with self-etching primers and control groups (fourth generation bonding system and without bonding system) at superficial, intermediate, and deep dentin. There was a significant fall in bond strength values as one reaches deeper levels of dentin from superficial to intermediate to deep.
Effect of handpiece maintenance method on bond strength.
Roberts, Howard W; Vandewalle, Kraig S; Charlton, David G; Leonard, Daniel L
2005-01-01
This study evaluated the effect of dental handpiece lubricant on the shear bond strength of three bonding agents to dentin. A lubrication-free handpiece (one that does not require the user to lubricate it) and a handpiece requiring routine lubrication were used in the study. In addition, two different handpiece lubrication methods (automated versus manual application) were also investigated. One hundred and eighty extracted human teeth were ground to expose flat dentin surfaces that were then finished with wet silicon carbide paper. The teeth were randomly divided into 18 groups (n=10). The dentin surface of each specimen was exposed for 30 seconds to water spray from either a lubrication-free handpiece or a lubricated handpiece. Prior to exposure, various lubrication regimens were used on the handpieces that required lubrication. The dentin surfaces were then treated with total-etch, two-step; a self-etch, two-step or a self-etch, one-step bonding agent. Resin composite cylinders were bonded to dentin, the specimens were then thermocycled and tested to failure in shear at seven days. Mean bond strength data were analyzed using Dunnett's multiple comparison test at an 0.05 level of significance. Results indicated that within each of the bonding agents, there were no significant differences in bond strength between the control group and the treatment groups regardless of the type of handpiece or use of routine lubrication.
Morphology and the Strength of Intermolecular Contact in Protein Crystals
NASA Technical Reports Server (NTRS)
Matsuura, Yoshiki; Chernov, Alexander A.
2002-01-01
The strengths of intermolecular contacts (macrobonds) in four lysozyme crystals were estimated based on the strengths of individual intermolecular interatomic interaction pairs. The periodic bond chain of these macrobonds accounts for the morphology of protein crystals as shown previously. Further in this paper, the surface area of contact, polar coordinate representation of contact site, Coulombic contribution on the macrobond strength, and the surface energy of the crystal have been evaluated. Comparing location of intermolecular contacts in different polymorphic crystal modifications, we show that these contacts can form a wide variety of patches on the molecular surface. The patches are located practically everywhere on this surface except for the concave active site. The contacts frequently include water molecules, with specific intermolecular hydrogen-bonds on the background of non-specific attractive interactions. The strengths of macrobonds are also compared to those of other protein complex systems. Making use of the contact strengths and taking into account bond hydration we also estimated crystal-water interfacial energies for different crystal faces.
Feng, Xiaodong; Zhang, Ning; Xu, Hockin H K; Weir, Michael D; Melo, Mary Anne S; Bai, Yuxing; Zhang, Ke
2017-09-26
Orthodontic treatments increase the incidence of white spot lesions. The objectives of this study were to develop an antibacterial orthodontic cement to inhibit demineralization, and to evaluate its enamel shear bond strength and anti-biofilm properties. Novel antibacterial monomer dimethylaminohexadecyl methacrylate (DMAHDM) was synthesized and incorporated into Transbond XT at 0, 1.5 and 3% by mass. Anti-biofilm activity was assessed using a human dental plaque microcosm biofilm model. Shear bond strength and adhesive remnant index were also tested. Biofilm activity precipitously dropped when contacting orthodontic cement with DMAHDM. Orthodontic cement containing 3% DMAHDM significantly reduced biofilm metabolic activity and lactic acid production (p<0.05), and decreased biofilm colony-forming unit (CFU) by two log. Water-aging for 90 days had no adverse influence on enamel shear bond strength (p>0.1). By incorporating DMAHDM into Transbond XT for the first time, the modified orthodontic cement obtained a strong antibacterial capability without compromising the enamel bond strength.
Stape, T H S; Menezes, M S; Barreto, B C F; Aguiar, F H B; Martins, L R; Quagliatto, P S
2012-01-01
This study evaluated the effect of dentin pretreatment with 2% chlorhexidine (CHX) or 24% ethylenediamine tetra-acetic acid gel (EDTA) on the dentin microtensile bond strength (μTBS) of resin cements. Composite blocks were luted to superficial noncarious human dentin (n=10) using two resin cements (RelyX ARC [ARC] and RelyX U100 [U100]) and three dentin pretreatments (without pretreatment-control, CHX, and EDTA). CHX was applied for 60 seconds on the acid-etched dentin in the ARC/CHX group, and for the same time on smear layer-covered dentin in the U100/CHX group. EDTA was applied for 45 seconds on smear-covered dentin in the U100/EDTA group, and it replaced phosphoric acid conditioning in the ARC/EDTA group for 60 seconds. After storage in water for 24 hours, specimens were prepared for microtensile bond strength testing. The results were submitted to two-way analysis of variance (ANOVA) followed by Tukey test. ARC produced significantly higher μTBS (p<0.05) compared to the U100, except when EDTA was used. For ARC, no pretreatment and CHX produced higher μTBS than EDTA. For U100, EDTA produced higher μTBS; no statistical difference occurred between CHX pretreatment and when no pretreatment was performed. While CHX did not affect immediate dentin bond strength of both cements, EDTA improved bond strength of U100, but it reduced dentin bond strength of ARC.
Shahabi, Sima; Chiniforush, Nasim; Bahramian, Hoda; Monzavi, Abbas; Baghalian, Ali; Kharazifard, Mohammad Javad
2013-01-01
The purpose of this study was to evaluate the effect of Er:YAG and Er,Cr:YSGG laser on tensile bond strength of composite resin to dentine in comparison with bur-prepared cavities. Fifteen extracted caries-free human third molars were selected. The teeth were cut at a level below the occlusal pit and fissure plan and randomly divided into three groups. Five cavities were prepared by diamond bur, five cavities prepared by Er:YAG laser, and the other group prepared by Er,Cr:YSGG laser. Then, all the cavities were restored by composite resin. The teeth were sectioned longitudinally with Isomet and the specimens prepared in dumbbelled shape (n = 36). The samples were attached to special jigs, and the tensile bond strength of the three groups was measured by universal testing machine at a speed of 0.5 mm/min. The results of the three groups were analyzed with one-way ANOVA and Tamhane test. The means and standard deviations of tensile bond strength of bur-cut, Er:YAG laser-ablated, and Er,Cr:YSGG laser-ablated dentine were 5.04 ± 0.93, 13.37 ± 3.87, and 4.85 ± 0.93 MPa, respectively. There is little difference in tensile bond strength of composite resin in Er,Cr:YSGG lased-prepared cavities in comparison with bur-prepared cavities, but the Er:YAG laser group showed higher bond strength than the other groups.
Teymoornezhad, Koorosh; Alaghehmand, Homayoun; Daryakenari, Ghazaleh; Khafri, Soraya; Tabari, Mitra
2016-11-01
Preventive resin restorations (PRR) are the conservative choice for the most common carious lesions in children. Thus, new age flowable resin composites with higher filler content are readily used. The aim of this study was to evaluate the microshear bond strength and microleakage of two flowable resin composites containing different percentages of nano zinc oxide (NZnO) particles, which have proven to have antimicrobial properties. This experimental in-vitro study was carried out in the Dental Material Research Center of Babol University of Medical Sciences in 2015. One nanohybrid and one nanofill flowable resin composite were chosen and modified with the incorporation of 1% and 3% Wt NZnO particles. Six groups (n=10, 0%, 1%, and 3%) of resin composite sticks on dental enamel (2×2mm) were prepared to be placed in the microtensile tester. The microshear bond strength magnitude (MPa) was recorded at the point of failure. A class I box (3×0.8×1 mm) was prepared on 60 premolars and filled using the resin composites (6 groups, n=10). The specimens were immersed in a 5% basic fuschin solution and sectioned bucco-lingually to view the microleakage using a stereomicroscope. One-way ANOVA and Tukey tests for microshear and Wilcoxon and Kruskal-Wallis tests for microleakage were used to analyze the data in the IBM SPSS Statistics version 22 software. The bond strength of the 3% clearfill group significantly decreased while no significant change occurred in the bond strength in other groups. The Z-350 group had significantly lower microleakage as nanoparticles increased. No significant difference was observed in the clearfill group. Up to 3% Wt incorporation of NZnO particles will not diversely alter the bond strength, but it will be beneficial in providing antimicrobial effects with lower microleakage rates.
Patel, Kavan A.; Mathur, Somil; Upadhyay, Snehal
2015-01-01
Purpose of the Study: The purpose was to evaluate the effect of various surface treatments and sandblasting with different particle size on the bond strength of feldspathic porcelain with predominantly base metal alloys, using a universal testing machine. Materials and Methods: Totally, 40 specimen of nickel-chromium alloy were prepared in an induction casting machine. The groups divided were as follows: Group I-sandblasted with 50 μ Al2O3, Group II-sandblasted with 110 μ Al2O3, Group III-sandblasted with 250 μ Al2O3 and Group IV-sandblasted with 250 μ Al2O3, followed by oxidation and again sandblasted with 250 μ Al2O3. The dimensions of each specimen were adjusted so as to maintain the thickness of ceramic at 1 mm. The specimen were loaded on the assembly of the universal testing machine, and a cross head speed of 0.5 mm/min was used to apply a compressive force at the junction of metal and feldspathic porcelain. The force application continued until adhesive fracture occurred, and the readings of the load applied to that particular specimen were recorded. Results: The means for shear bond strength for Group I, II, III and IV were found to be (226.92 ± 1.67), (233.16 ± 3.85), (337.81 ± 16.97) and (237.08 ± 4.33), respectively. Means of shear bond strength among the groups were compared using one-way analysis of variance test. Comparison between individual groups were made with Tukey's Honestly Significant Difference post-hoc test. Conclusion: Different particle size and surface treatment have an important role on the bond strength of ceramic-metal interface. Greater particle size demonstrated higher bond strength. PMID:26929487
Baherimoghadam, Tahreh; Akbarian, Sahar; Rasouli, Reza; Naseri, Navid
2016-01-01
To evaluate shear bond strength (SBS) of the orthodontic brackets bonded to fluorosed and nonfluorosed teeth using Light Bond with and without adhesion promoters and compare their enamel damages following debonding. In this study, 30 fluorosed (Thylstrup and Fejerskov Index = 4-5) and 30 nonfluorosed teeth were randomly distributed between two subgroups according to the bonding materials: Group 1, fluorosed teeth bonded with Light Bond; Group 2, fluorosed teeth bonded with adhesion promoters and Light Bond; Group 3, nonfluorosed teeth bonded with Light Bond; Group 4, nonfluorosed bonded with adhesion promoters and Light Bond. After bonding, the SBS of the brackets was tested with a universal testing machine. Stereomicroscopic evaluation was performed by unbiased stereology in all teeth to determine the amount of adhesive remnants and the number and length of enamel cracks before bonding and after debonding. The data were analyzed using two-way analysis of variance, Kruskal-Wallis, Wilcoxon Signed Rank, and Mann-Whitney test. While fluorosis reduced the SBS of orthodontic bracket (P = 0.017), Enhance Locus Ceruleus LC significantly increased the SBS of the orthodontic bracket in fluorosed and nonfluorosed teeth (P = 0.039). Significant increasing in the number and length of enamel crack after debonding was found in all four groups. There were no significant differences in the length of enamel crack increased after debonding among four groups (P = 0.768) while increasing in the number of enamel cracks after debonding was significantly different among the four groups (P = 0.023). Teeth in Group 2 showed the highest enamel damages among four groups following debonding. Adhesion promoters could improve the bond strength of orthodontic brackets, but conservative debonding methods for decreasing enamel damages would be necessary.
Eliasson, Sigfus Thor; Dahl, Jon E.
2017-01-01
Abstract Objectives: To evaluate the micro-tensile repair bond strength between aged and new composite, using silane and adhesives that were cured or left uncured when new composite was placed. Methods: Eighty Filtek Supreme XLT composite blocks and four control blocks were stored in water for two weeks and thermo-cycled. Sandpaper ground, etched and rinsed specimens were divided into two experimental groups: A, no further treatment and B, the surface was coated with bis-silane. Each group was divided into subgroups: (1) Adper Scotchbond Multi-Purpose, (2) Adper Scotchbond Multi-Purpose adhesive, (3) Adper Scotchbond Universal, (4) Clearfil SE Bond and (5) One Step Plus. For each adhesive group, the adhesive was (a) cured according to manufacturer’s instructions or (b) not cured before repair. The substrate blocks were repaired with Filtek Supreme XLT. After aging, they were serially sectioned, producing 1.1 × 1.1 mm square test rods. The rods were prepared for tensile testing and tensile strength calculated at fracture. Type of fracture was examined under microscope. Results: Leaving the adhesive uncured prior to composite repair placement increased the mean tensile values statistically significant for all adhesives tested, with or without silane pretreatment. Silane surface treatment improved significantly (p < 0.001) tensile strength values for all adhesives, both for the cured and uncured groups. The mean strength of the control composite was higher than the strongest repair strength (p < 0.001). Conclusions: Application of freshly made silane and a thin bonding layer, rendered higher tensile bond strength. Not curing the adhesive before composite placement increased the tensile bond strength. PMID:28642928
Khmaj, Mofida R; Khmaj, Abdulfatah B; Brantley, William A; Johnston, William M; Dasgupta, Tridib
2014-11-01
New noble alloys for metal ceramic restorations introduced by manufacturers are generally lower-cost alternatives to traditional higher-gold alloys. Information about the metal-to-ceramic bond strength for these alloys, which is needed for rational clinical selection, is often lacking. The purpose of this study was to evaluate the bond strength of 4 recently introduced noble alloys by using 2 techniques for porcelain application. Aquarius Hard (high-gold: 86.1 gold, 8.5 platinum, 2.6 palladium, 1.4 indium; values in wt. %), Evolution Lite (reduced-gold: 40.3 gold, 39.3 palladium, 9.3 indium, 9.2 silver, 1.8 gallium), Callisto 75 Pd (palladium-silver containing gold: 75.2 palladium, 7.1 silver, 2.5 gold, 9.3 tin, 1.0 indium), and Aries, (conventional palladium-silver: 63.7 palladium, 26.0 silver, 7.0 tin, 1.8 gallium, 1.5 indium) were selected for bonding to leucite-containing veneering porcelains. Ten metal ceramic specimens that met dimensional requirements for International Organization for Standardization (ISO) Standard 9693 were prepared for each alloy by using conventional porcelain layering and press-on-metal methods. The 3-point bending test in ISO Standard 9693 was used to determine bond strength. Values were compared with 2-way ANOVA (maximum likelihood analysis, SAS Mixed Procedure) and the Tukey test (α=.05). Means (standard deviations) for bond strength with conventional porcelain layering were as follows: Aquarius Hard (50.7 ±5.5 MPa), Evolution Lite (40.2 ±3.3 MPa), Callisto 75 Pd (37.2 ±3.9 MPa), and Aries (34.0 ±4.9 MPa). For the press-on-metal technique, bond strength results were as follows: Aquarius Hard (33.7 ±11.5 MPa), Evolution Lite (34.9 ±4.5 MPa), Callisto 75 Pd (37.2 ±11.9 MPa), and Aries (30.7 ±10.8 MPa). From statistical analyses, the following 3 significant differences were found for metal-to-ceramic bond strength: the bond strength for Aquarius Hard was significantly higher for conventional porcelain layers compared with the press-on-metal technique; the bond strength for Aquarius Hard with conventional porcelain layers was significantly higher than the bond strengths for the other 3 alloys with conventional porcelain layers; and the bond strength for Aquarius Hard with conventional porcelain layers was significantly higher than the bond strength for Callisto 75 Pd with conventional porcelain layers and the other 3 alloys with the press-on-metal technique. For both conventional layering and press-on-metal techniques, all 4 noble alloys had a mean metal-to-ceramic bond strength that substantially exceeded the 25 MPa minimum in the ISO Standard 9693. The results for Aries support the manufacturer's recommendation not to use the press-on-metal technique for alloys that contain more than 10% silver. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
High-temperature adhesives for bonding polyimide film. [bonding Kapton film for solar sails
NASA Technical Reports Server (NTRS)
St.clair, A. K.; Slemp, W. S.; St.clair, T. L.
1980-01-01
Experimental polyimide resins were developed and evaluated as potential high temperature adhesives for bonding Kapton polyimide film. Lap shear strengths of Kapton/Kapton bonds were obtained as a function of test temperature, adherend thickness, and long term aging at 575 K (575 F) in vacuum. Glass transition temperatures of the polyimide/"Kapton" bondlines were monitored by thermomechanical analysis.
New method for rapid testing of bond strength for wood adhesives
James M. Wescott; Michael J. Birkeland; Amy E. Traska; Charles R. Frihart; Brice N. Dally
2007-01-01
In developing new adhesives for wood bonding, the testing of bond performance can often be a limiting factor in the development process. Evaluating the bond performance of an adhesive that can be prepared in less than a day often takes several days using standard performance tests. This testing slows the development process and may cause a company to abandon a...
The improvement of adhesive properties of PEEK through different pre-treatments
NASA Astrophysics Data System (ADS)
Hallmann, Lubica; Mehl, Albert; Sereno, Nuno; Hämmerle, Christoph H. F.
2012-07-01
The purpose of this in vitro study was the evaluation of the bond strength of the adhesives/composite resin to Poly Ether Ether Ketone (PEEK) based dental polymer after using different surface conditioning methods. PEEK blanks were cut into discs. All disc specimens were polished with 800 grit SiC paper and divided into 6 main groups. Main groups were divided into 2 subgroups. The main groups of 32 specimens each were treated as follow: (1) control specimens (no treatment), (2) piranha solution etching, (3) abraded with 50 μm alumina particles and chemical etching, (4) abraded with 110 μm alumina particles and chemical etching, (5) abraded with 30 μm silica-coated alumina particles and chemical etching, (6) abraded with 110 μm silica-coated alumina particles and chemical etching. Plexiglas tubes filled with a composite resin (RelyX Unicem) were bonded to the specimens. The adhesives used were Heliobond and Clearfil Ceramic Primer. Each specimen was stored in distilled water (37 °C) for 3 days. Tensile bond strength was measured in a universal testing machine and failure methods were evaluated. Abraded surface with 50 μm alumina particles followed by etching with piranha solution lead to the highest bond strength of 21.4 MPa when Heliobond like adhesive was used. Tribochemical silica coated/etched PEEK surfaces did not have an effect on the bond strength. Non-treated PEEK surface was not able to establish a bond with composite resin. The proper choice of adhesive/composite resin system leads to a strong bond. ConclusionAirborne particle abrasion in combination with piranha solution etching improves the adhesive properties of PEEK.
Dias, Francilena Maria Campos Santos; Pinzan-Vercelino, Célia Regina Maio; Tavares, Rudys Rodolfo de Jesus; Gurgel, Júlio de Araújo; Bramante, Fausto Silva; Fialho, Melissa Nogueira Proença
2015-01-01
To compare shear bond strength of different direct bonding techniques of orthodontic brackets to acrylic resin surfaces. The sample comprised 64 discs of chemically activated acrylic resin (CAAR) randomly divided into four groups: discs in group 1 were bonded by means of light-cured composite resin (conventional adhesive); discs in group 2 had surfaces roughened with a diamond bur followed by conventional direct bonding by means of light-cured composite resin; discs in group 3 were bonded by means of CAAR (alternative adhesive); and discs in group 4 had surfaces roughened with a diamond bur followed by direct bonding by means of CAAR. Shear bond strength values were determined after 24 hours by means of a universal testing machine at a speed of 0.5 mm/min, and compared by analysis of variance followed by post-hoc Tukey test. Adhesive remnant index (ARI) was measured and compared among groups by means of Kruskal-Wallis and Dunn tests. Groups 3 and 4 had significantly greater shear bond strength values in comparison to groups 1 and 2. Groups 3 and 4 yielded similar results. Group 2 showed better results when compared to group 1. In ARI analyses, groups 1 and 2 predominantly exhibited a score equal to 0, whereas groups 3 and 4 predominantly exhibited a score equal to 3. Direct bonding of brackets to acrylic resin surfaces using CAAR yielded better results than light-cured composite resin. Surface preparation with diamond bur only increased shear bond strength in group 2.
NASA Technical Reports Server (NTRS)
Malone, G. A.; Vecchies, L.; Wood, R.
1974-01-01
The capabilities and limitations of nondestructive evaluation methods were studied to detect and locate bond deficiencies in regeneratively cooled thrust chambers for rocket engines. Flat test panels and a cylinder were produced to simulate regeneratively cooled thrust chamber walls. Planned defects with various bond integrities were produced in the panels to evaluate the sensitivity, accuracy, and limitations of nondestructive methods to define and locate bond anomalies. Holography, acoustic emission, and ultrasonic scan were found to yield sufficient data to discern bond quality when used in combination and in selected sequences. Bonding techniques included electroforming and brazing. Materials of construction included electroformed nickel bonded to Nickel 200 and OFHC copper, electroformed copper bonded to OFHC copper, and 300 series stainless steel brazed to OFHC copper. Variations in outer wall strength, wall thickness, and defect size were evaluated for nondestructive test response.
Kim, Sun Jai; Shim, June Sung
2017-01-01
PURPOSE The aim of this study was to compare the surface roughness of zirconia when using Zircos E etching system (ZSAT), applying a nitric acid-hydrofluoric acid compound as a pretreatment agent, and also to compare the shear bonding strength according to different resin cements. MATERIALS AND METHODS ZSAT, air abrasion, and tribochemical silicacoating were applied on prepared 120 zirconia specimens (10 mm in diameter, 7 mm in height) using CAD/CAM. Each 12 specimens with 4 different resin cements (Panavia F 2.0, Rely X Unicem, Superbond C&B, and Hot bond) were applied to test interfacial bond strength. The statistical analysis was performed using SAS 9.1 (SAS Institute Inc., Cary, NC, USA). The results are as follows: after application of the ZSAT on the zirconia specimens, surface roughness value after 2-hour etching was higher than those after 1- and 3-hour etching on SEM images. RESULTS For Superbond C&B and Rely X Unicem, the specimens treated with ZSAT showed higher shear bond strength values than those treated with air abrasion and tribochemical silicacoating system. Regarding the failure mode of interface over cement and zirconia surface, Rely X Unicem and Hot bond showed cohesive failures and Panavia F 2.0 and Superbond C&B showed mixed failures. CONCLUSION Zircos E etching system in zirconia restoration could increase its shear bond strength. However, its long term success rate and clinical application should be further evaluated. PMID:28435615
Effect of Luting Cements On the Bond Strength to Turkom-Cera All-Ceramic Material
Al–Makramani, Bandar M. A.; Razak, Abdul A. A.; Abu–Hassan, Mohamed I.; Al–Sanabani, Fuad A.; Albakri, Fahad M.
2018-01-01
BACKGROUND: The selection of the appropriate luting cement is a key factor for achieving a strong bond between prepared teeth and dental restorations. AIM: To evaluate the shear bond strength of Zinc phosphate cement Elite, glass ionomer cement Fuji I, resin-modified glass ionomer cement Fuji Plus and resin luting cement Panavia-F to Turkom-Cera all-ceramic material. MATERIALS AND METHODS: Turkom-Cera was used to form discs 10mm in diameter and 3 mm in thickness (n = 40). The ceramic discs were wet ground, air - particle abraded with 50 - μm aluminium oxide particles and randomly divided into four groups (n = 10). The luting cement was bonded to Turkom-Cera discs as per manufacturer instructions. The shear bond strengths were determined using the universal testing machine at a crosshead speed of 0.5 mm/min. The data were analysed using the tests One Way ANOVA, the nonparametric Kruskal - Wallis test and Mann - Whitney Post hoc test. RESULTS: The shear bond strength of the Elite, Fuji I, Fuji Plus and Panavia F groups were: 0.92 ± 0.42, 2.04 ± 0.78, 4.37 ± 1.18, and 16.42 ± 3.38 MPa, respectively. There was the statistically significant difference between the four luting cement tested (p < 0.05). CONCLUSION: the phosphate-containing resin cement Panavia-F exhibited shear bond strength value significantly higher than all materials tested. PMID:29610618
Evaluation of flexural, diametral tensile, and shear bond strength of composite repairs.
Imbery, T A; Gray, T; DeLatour, F; Boxx, C; Best, A M; Moon, P C
2014-01-01
Repairing composite restorations may be a more conservative treatment than replacing the entire restoration. The objective of this in vitro study was to determine the best repair method by measuring flexural, diametral tensile, and shear bond strength of repaired composites in which the surfaces were treated with chemical primers (Add & Bond or Silane Bond Enhancer), a bonding agent (Optibond Solo Plus [OBSP]), or mechanical retention with a bonding agent. Filtek Supreme Ultra shade B1B was placed in special molds to fabricate specimens that served to test the flexural, diametral tensile, or shear strength of the inherent resin substrate. The same molds were modified to make specimens for testing repair strength of the resin. Repairs were made immediately or after aging in deionized water at 37°C for seven days. All repair sites were finished with coarse Sof-Lex discs to simulate finishing new restorations or partially removing aged restorations. Repair surfaces were treated with one of the following: 1) phosphoric-acid etching and OBSP; 2) Add & Bond; 3) phosphoric-acid etching, Silane Bond Enhancer, and OBSP; or 4) quarter round bur, phosphoric-acid etching, and OBSP. Specimens were placed back in the original molds to fabricate specimens for diametral tensile or flexural testing or in an Ultradent jig to make specimens for shear bond testing. Composite resin in shade B5B was polymerized against the treated surfaces to make repairs. Two negative control groups for the three testing methods consisted of specimens in which repairs were made immediately or after aging without any surface treatments. Controls and experimental repairs were aged (water 37°C, 24 hours) before flexural, diametral tensile, or shear testing in an Instron Universal testing machine at a crosshead speed of 0.5 mm/min. Experimental flexural repair strengths ranged from 26.4% to 88.6% of the inherent substrate strength. Diametral tensile repair strengths ranged from 40% to 80% of the inherent substrate strength, and shear bond strength repairs ranged from 56% to 102%. Geometric means were statistically analyzed with two-way analysis of variance on their log-transformed values. Significant differences were determined using Tukey honestly significant difference (p<0.05). Depending on the mechanical property being tested, surface treatments produced different results. OBSP produced more consistent results than chemical primers.
Effect of metal primers on bond strength of resin cements to base metals.
Fonseca, Renata Garcia; de Almeida, Juliana Gomes dos Santos Paes; Haneda, Isabella Gagliardi; Adabo, Gelson Luis
2009-04-01
A strong and durable bond between a metal framework and a resin-based luting agent is desired. Metal primers have been shown to be very effective on noble alloys. However, there is insufficient information about their effect on base metals. The purpose of this study was to evaluate the effect of metal primers on the shear bond strength of resin cements to base metals. A total of 160 cast commercially pure titanium (CP Ti) and NiCr alloy (VeraBond II) disks were embedded in a polyvinyl chloride ring, and their surfaces were smoothed with silicon carbide papers (320, 400, and 600 grit) and airborne-particle abraded with 50-mum aluminum oxide. Specimens of each metal were divided into 4 groups (n=20), which received one of the following luting techniques: (1) Panavia F, (2) Alloy Primer plus Panavia F, (3) Bistite II DC, or (4) Metaltite plus Bistite II DC. Forty minutes after preparation, all specimens were stored in distilled water at 37 degrees C for 24 hours and then thermal cycled (1000 cycles, 5-55 degrees C). After thermal cycling, the specimens were stored in 37 degrees C distilled water for an additional 24 hours or 6 months before being tested in shear mode. Data (MPa) were analyzed using 3-way ANOVA and the post hoc Tukey test (alpha=.05). Each specimen was examined under an optical microscope (x30), and the failure mode was classified as adhesive, cohesive, or a combination of these. The only significant difference between the Panavia F and Alloy Primer plus Panavia F groups occurred in the NiCr alloy at 24 hours, at which point Panavia F demonstrated superior bond strength compared to Alloy Primer plus Panavia F (P<.001). The Bistite II DC and Metaltite plus Bistite II DC groups were not significantly different. The Bistite II DC and Metaltite plus Bistite II DC groups demonstrated significantly lower bond strength to CP Ti (P<.001) than the Panavia F and Alloy Primer plus Panavia F groups, and significantly lower bond strength to NiCr alloy (P<.001) than Panavia F. The Panavia F (P<.01) and Alloy Primer plus Panavia F groups' bond strength to titanium presented a significant increase (P<.001) in shear bond strength at 6 months. In general, the groups exhibited higher shear bond strength to CP Ti than to NiCr alloy (P<.01). The failure mode was 100% adhesive for all groups. The metal primers did not promote an increase in adhesive bonding of resin cements to NiCr alloy and to CP Ti. Water storage had no adverse effect on the shear bond strength of the groups. The shear bond strengths to titanium were significantly higher than those to the NiCr alloy.
NASA Technical Reports Server (NTRS)
McCray, Daniel; Smith, Jeffrey; Rice, Brian; Blohowiak, Kay; Anderson, Robert; Shin, E. Eugene; McCorkle, Linda; Sutter, James
2003-01-01
NASA Glenn Research Center is currently evaluating the possibility of using high- temperature polymer matrix composites to reinforce the combustion chamber of a rocket engine. One potential design utilizes a honeycomb structure composed of a PMR-II- 50/M40J 4HS composite facesheet and titanium honeycomb core to reinforce a stainless steel shell. In order to properly fabricate this structure, adhesive bond PMR-II-50 composite. Proper prebond surface preparation is critical in order to obtain an acceptable adhesive bond. Improperly treated surfaces will exhibit decreased bond strength and durability, especially in metallic bonds where interface are susceptible to degradation due to heat and moisture. Most treatments for titanium and stainless steel alloys require the use of strong chemicals to etch and clean the surface. This processes are difficult to perform due to limited processing facilities as well as safety and environmental risks and they do not consistently yield optimum bond durability. Boeing Phantom Works previously developed sol-gel surface preparations for titanium alloys using a PETI-5 based polyimide adhesive. In support of part of NASA Glenn Research Center, UDRI and Boeing Phantom Works evaluated variations of this high temperature sol-gel surface preparation, primer type, and primer cure conditions on the adhesion performance of titanium and stainless steel using Cytec FM 680-1 polyimide adhesive. It was also found that a modified cure cycle of the FM 680-1 adhesive, i.e., 4 hrs at 370 F in vacuum + post cure, significantly increased the adhesion strength compared to the manufacturer's suggested cure cycle. In addition, the surface preparation of the PMR-II-50 composite was evaluated in terms of surface cleanness and roughness. This presentation will discuss the results of strength and durability testing conducted on titanium, stainless steel, and PMR-II-50 composite adherends to evaluate possible bonding processes.
In vitro evaluation of benzalkonium chloride in the preservation of adhesive interfaces.
Sabatini, C; Kim, J H; Ortiz Alias, P
2014-01-01
Inhibition of endogenous dentin matrix metalloproteinases (MMPs) by benzalkonium chloride (BAC) decreases collagen solubilization and may help improve resin-dentin bond stability. This study evaluated the resin-dentin bond stability of experimental adhesive blends containing BAC and the stability of dentin matrices by assessing the mass loss and collagen solubilization from dentin beams pretreated with BAC. Twenty-five healthy molars were used for the bond strength evaluation of a two-step etch-and-rinse adhesive (Adper Single Bond Plus, SB) modified with BAC or not. The following groups were tested: 1) SB with no inhibitor (control); 2) topical 2.0% chlorhexidine + SB; 3) 1.0% BAC etchant + SB; 4) 0.5% BAC-SB; and 5) 1.0% BAC-SB. Microtensile bond strength (μTBS) and failure mode distribution under standard error of the mean were evaluated after 24 hours and six months of storage in artificial saliva (AS). A two-way analysis of variance and Tukey test with a significance level of p<0.05 was used for data analysis. In addition, 30 completely demineralized dentin beams from human molars were either dipped in deionized water (DW, control) or dipped in 0.5% and 1.0% BAC for 60 seconds, and then incubated in AS. Collagen solubilization was assessed by evaluating the dry mass loss and quantifying the amount of hydroxyproline (HYP) released from hydrolyzed specimens after four weeks of incubation. The control group demonstrated lower μTBS than some of the experimental groups containing BAC at 24 hours and six months (p<0.05). When BAC was incorporated into the adhesive blend in concentrations of 0.5% and 1.0%, no reduction in dentin bond strength was observed after six months (p<0.05). Less mass loss and HYP release was seen for dentin matrices pretreated with BAC relative to the control pretreated with DW (p<0.05). This in vitro study demonstrates that BAC contributes to the preservation of resin-dentin bonds by reducing collagen degradation.
Schnebel, Bradley; Mateer, Scott; Maganzini, Anthony Louis; Freeman, Katherine
2012-12-01
To determine whether two self-adhesive resin cements, Clearfil SA and RelyX, can be used to successfully bond orthodontic brackets to enamel. Seventy extracted premolars were custom mounted, cleaned and randomly divided into three groups. In group 1 (control), orthodontic brackets were bonded to 25 premolars using the Transbond Plus and Transbond XT two step adhesive systerm adhesive. In group 2, brackets were bonded to 25 premolars using Clearfil SA. In group 3, brackets were bonded to 20 premolars using RelyX. The brackets were debonded using a universal testing machine and shear bond strengths recorded. After debonding, each tooth was examined under 20× magnification to evaluate the residual adhesive remaining. An ANOVA with Duncan's Multiple Range Test was used to determine whether there were significant differences in shear bond strength between the groups. A Kruskal-Wallis Test and a Bonferroni multiple comparison procedure were used to compare the bond failure modes (adhesive remnant index scores) between the groups. The mean shear bond strengths for the brackets bonded using Clearfil SA and RelyX were 5·930±1·840 and 3·334±1·953 MPa, respectively. Both were significantly lower than that for the brackets bonded using Transbond (7·875±3·611 MPa). Both self-etch adhesive resin cement groups showed a greater incidence of bracket failure at the enamel/adhesive interface while the Transbond group showed a higher incidence at the bracket/adhesive interface. The shear bond strengths of the self-etch adhesive resin cements may be inadequate to successfully bond orthodontic brackets to enamel.
Effects of water storage on bond strength and dentin sealing ability promoted by adhesive systems.
Cantanhede de Sá, Renata Bacelar; Oliveira Carvalho, Adriana; Puppin-Rontani, Regina Maria; Ambrosano, Glaúcia Maria; Nikaido, Toru; Tagami, Junji; Giannini, Marcelo
2012-12-01
To evaluate the dentin bond strength (BS) and sealing ability (SA) promoted by adhesive systems after 24 h or 6 months of water storage. The tested adhesive systems were: one three-step etch-and-rinse adhesive (Adper Scotchbond Multi-Purpose, SBMP) and three single-step self-etching systems (Adper Easy Bond, Bond Force, and G-Bond Plus). Bovine incisors were used for both evaluations, BS (n = 11) and SA (n = 5). To examine BS, the buccal surface was ground with SiC paper to expose a flat dentin surface. After adhesive application, a block of resin composite was incrementally built up over the bonded surface and sectioned into sticks. These bonded specimens were subjected to microtensile bond strength testing after 24 h and 6 months of water storage using a universal testing machine. For SA analysis, enamel was removed from the buccal surfaces. The teeth were connected to a device to measure the initial SA (10 psi), and the second measurement was taken after treating dentin with EDTA. Afterwards, the adhesive systems were applied to dentin and the SA was re-measured for each adhesive after 24 h and 6 months of water storage. The SA was expressed in terms of percentage of dentinal sealing. BS and SA data were submitted to two-way ANOVA and Tukey's test (α = 0.05). All adhesives showed a reduction of SA after 6 months of water storage. The SA promoted by self-etching adhesives was higher than that of SBMP. No adhesive system showed a reduction of the BS after 6 months. Sealing ability was affected by water storage, while no changes in microtensile bond strength were observed after 6 months of water storage. The single-step self-etching systems showed greater sealing ability than did SBMP, even after 6 months of storage in water.
[Bonding properties of four different cements to glass fiber posts after different treatments].
Li, Xiaojing; Zhao, Sanjun; Shen, Lijuan; Xu, Shuai; Sun, Jiaqi; Chen, Jihua
2014-03-01
To investigate the effect of four different cements on the bonding effectiveness of root canal dentine and fiber post before and after different treatments. A total of 216 freshly extracted sound single-root-canal mandibular premolars were randomly divided into four groups. After root canal treatment and post space preparation being conducted on the premolars, Fuji I, Fuji Cem, RelyX Unicem, RelyX ARC were used respectively to bond fiber posts and were marked with group A, B, C, and D. Microleakage, micromorphology of the bonded interfaces, and pull-out bond strength were evaluated in the immediate group, thermocycling group and thermomechanical loading group. In the immediate group, samples in group D showed the highest bond strength [(278 ± 26)N], followed by group C[ (219 ± 12) N], B[ (104 ± 23) N] and A[(73 ± 8) N]. Significant differences were found among all groups (P < 0.05) . A significant increase in bond strength was found in group A and B, whereas a decrease tendency was detected in group C and D after different treatments.Scanning electron microscope indicated that some little gaps were observed in group D after treatment, while a more intense bonding interface was found in group A and B. Microleakage scores in group A and B were lower than those in group C and D after aging treatments. Resin cement can achieve a better immediate bond strength, while resin-modified resin cement may acquire a better long-term retention.
Effect of saliva decontamination procedures on shear bond strength of a one-step adhesive system.
Ülker, E; Bilgin, S; Kahvecioğlu, F; Erkan, A I
2017-09-01
To evaluate the effect of different saliva decontamination procedures on the shear bond strength of a one-step universal adhesive system (Single Bond™ Universal Adhesive, 3M ESPE, St. Paul, MN, USA). The occlusal surfaces of 75 human third molars were ground to expose dentin. The teeth were divided into the following groups: Group 1 (control group): Single Bond™ Universal Adhesive was applied to the prepared tooth according to the manufacturer's recommendations and light cured; no contamination procedure was performed. Group 2: Bonding, light curing, saliva contamination, and dry. Group 3: Bonding, light curing, saliva contamination, rinse, and dry. Group 4: After the procedure performed in Group 2, reapplication of bonding. Group 5: After the procedure performed in Group 3, reapplication of bonding. Then, composite resins were applied with cylindrical-shaped plastic matrixes and light cured. For shear bond testing, a notch-shaped force transducer apparatus was applied to each specimen at the interface between the tooth and composite until failure occurred. The data were statistically analyzed using one-way ANOVA. One-way ANOVA revealed significant differences in shear bond strength between the control group and experimental Groups 2 and 4 (P < 0.05). No significant difference was found for experimental Groups 3 and 5 when compared to the control group (P > 0.05). The present in vitro study showed that water rinsing is necessary if cured adhesive resin is contaminated with saliva to ensure adequate bond strength.
Longevity of bond strength of resin cements to root dentine after radiation therapy.
Yamin, P A; Pereira, R D; Lopes, F C; Queiroz, A M; Oliveira, H F; Saquy, P C; Sousa-Neto, M D
2018-05-04
To evaluate the bond strength and adhesive interface between several resin cements and root dentine immediately and 6 months after radiotherapy. Sixty maxillary canines were selected and randomly assigned to two groups (n = 30): one group was not irradiated and the other one was subjected to a cumulative radiation dose of 60 Gy. The teeth were sectioned to obtain roots 16 mm long and the canals were prepared with the Reciproc system (R50) and filled using a lateral condensation technique with an epoxy resin sealer. Each group was divided into three subgroups (n = 10) according to the resin cement used for fibreglass fibre post cementation: RelyX-U200, Panavia-F2.0 and RelyX ARC. The posts were cemented in accordance with the manufacturer's recommendations. Three 1-mm-thick dentine slices were then obtained from each root third. The first two slices in the crown-apex direction of each third were selected for the push-out test. The failure mode after debonding was determined with a stereo microscope. The third slice from each root third was selected for scanning electron microscopy (SEM) analyses to examine the resin cement-dentine interface with 100, 1000, 2000 and 4000× magnification. Bond strength data were analysed by anova and Tukey's test (α = 0.05). Significantly lower bond strength (P < 0.0001) was obtained after irradiation compared to nonirradiated teeth. RelyX-U200 cemented fibre posts had the higher bond strength (15.17 ± 5.89) compared with RelyX ARC (P < 0.001) and Panavia-F2.0 (P < 0.001). The evaluation after 6 months revealed lower bond strength values compared to the immediate values (P < 0.001) for irradiated and nonirradiated teeth. Cohesive failures occurred in the irradiated dentine. SEM revealed fractures, microfractures and fewer collagen fibres in irradiated root dentine. RelyX-U200 and Panavia-F2.0 were associated with a juxtaposed interface of the cement with the radicular dentine in irradiated and nonirradiated teeth, and for RelyX ARC, hybrid layer formation and tags were observed in both irradiated and nonirradiated teeth. Radiation was associated with a decrease in the push-out bond strength and with lower resin cement/root dentine interface adaptation. Self-adhesive resin cement was a better alternative for fibre post cementation in teeth subjected to radiation therapy. The bond strength decreased after 6 months. © 2018 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Shibata, Shizuma; Vieira, Luiz Clovis Cardoso; Baratieri, Luiz Narciso; Fu, Jiale; Hoshika, Shuhei; Matsuda, Yasuhiro; Sano, Hidehiko
2016-01-01
The purpose of this study was to evaluate the µTBS (microtensile bond strength) of currently available self-etching adhesives with an experimental self-etch adhesive in normal and caries-affected dentin, using a portable hardness measuring device, in order to standardize dentin Knoop hardness. Normal (ND) and caries-affected dentin (CAD) were obtained from twenty human molars with class II natural caries. The following adhesive systems were tested: Mega Bond (MB), a 2-step self-etching adhesive; MTB-200 (MTB), an experimental 1-step self-etching adhesive (1-SEA), and two commercially available one-step self-etching systems, G-Bond Plus (GB) and Adper Easy Bond (EB). MB-ND achieved the highest µTBS (p<0.05). The mean µTBS was statistically lower in CAD than in ND for all adhesives tested (p<0.05), and the 2-step self-etch adhesive achieved better overall performance than the 1-step self-etch adhesives.
Evaluation of experimental coating to improve the zirconia-veneering ceramic bond strength.
Matani, Jay D; Kheur, Mohit; Jambhekar, Shantanu Subhashchandra; Bhargava, Parag; Londhe, Aditya
2014-12-01
To evaluate the shear bond strength (SBS) between zirconia and veneering ceramic following different surface treatments of zirconia. The efficacy of an experimental zirconia coating to improve the bond strength was also evaluated. Zirconia strips were fabricated and were divided into four groups as per their surface treatment: polished (control), airborne-particle abrasion, laser irradiation, and application of the experimental coating. The surface roughness and the residual monoclinic content were evaluated before and after the respective surface treatments. A scanning electron microscope (SEM) analysis of the experimental surfaces was performed. All specimens were subjected to shear force in a universal testing machine. The SBS values were analyzed with one-way ANOVA followed by Bonferroni post hoc for groupwise comparisons. The fractured specimens were examined to observe the failure mode. The SBS (29.17 MPa) and roughness values (0.80) of the experimental coating group were the highest among the groups. The residual monoclinic content was minimal (0.32) when compared to the remaining test groups. SEM analysis revealed a homogenous surface well adhered to an undamaged zirconia base. The other test groups showed destruction of the zirconia surface. The analysis of failure following bond strength testing showed entirely cohesive failures in the veneering ceramic in all study groups. The experimental zirconia surface coating is a simple technique to increase the microroughness of the zirconia surface, and thereby improve the SBS to the veneering ceramic. It results in the least monoclinic content and produces no structural damage to the zirconia substructure. © 2014 by the American College of Prosthodontists.
Shear Bond Strength of Orthodontic Brackets Bonded to Zirconium Crowns
Mehmeti, Blerim; Azizi, Bleron; Kelmendi, Jeta; Iljazi-Shahiqi, Donika; Alar, Željko
2017-01-01
Background An increasing demand for esthetic restorations has resulted in an increased use of all-ceramic restorations, such as zirconium. However, one of the challenges the orthodontist must be willing to face is how to increase bond strength between the brackets and various ceramic restorations.Bond strength can beaffected bybracket type, by the material that bracketsaremade of, and their base surface design or retention mode. Aim: of this study was to perform a comparative analysis of the shear bond strength (SBS) of metallic and ceramic orthodontic brackets bonded to all-zirconium ceramic surfaces used for prosthetic restorations, and also to evaluate the fracture mode of these two types of orthodontic brackets. Material and methods Twenty samples/semi-crowns of all-zirconium ceramic, on which orthodontic brackets were bonded, 10 metallic and 10 ceramic polycrystalline brackets, were prepared for this research. SBS has been testedby Universal Testing Machine, with a load applied using a knife edged rod moving at a fixed rate of 1 mm/min, until failure occurred. The force required to debond the brackets was recorded in Newton, then SBS was calculated to MPa. In addition, the samples were analyzed using a digital camera magnifier to determine Adhesive Remnant Index (ARI). Statistical data were processed using t-test, and the level of significance was set at α = 0.05. Results Higher shear bond strength values were observed in metallic brackets bonded to zirconium crowns compared tothoseof ceramic brackets, with a significant difference. During the test, two of the ceramic brackets were partially or totally damaged. Conclusion Metallic brackets, compared to ceramic polycrystalline brackets, seemed tocreate stronger adhesion with all-zirconium surfaces due to their better retention mode. Also, ceramic brackets showed higher fragility during debonding. PMID:28827846
Shear Bond Strength of Orthodontic Brackets Bonded to Zirconium Crowns.
Mehmeti, Blerim; Azizi, Bleron; Kelmendi, Jeta; Iljazi-Shahiqi, Donika; Alar, Željko; Anić-Milošević, Sandra
2017-06-01
An increasing demand for esthetic restorations has resulted in an increased use of all-ceramic restorations, such as zirconium. However, one of the challenges the orthodontist must be willing to face is how to increase bond strength between the brackets and various ceramic restorations.Bond strength can beaffected bybracket type, by the material that bracketsaremade of, and their base surface design or retention mode. : A im: of this study was to perform a comparative analysis of the shear bond strength (SBS) of metallic and ceramic orthodontic brackets bonded to all-zirconium ceramic surfaces used for prosthetic restorations, and also to evaluate the fracture mode of these two types of orthodontic brackets. Twenty samples/semi-crowns of all-zirconium ceramic, on which orthodontic brackets were bonded, 10 metallic and 10 ceramic polycrystalline brackets, were prepared for this research. SBS has been testedby Universal Testing Machine, with a load applied using a knife edged rod moving at a fixed rate of 1 mm/min, until failure occurred. The force required to debond the brackets was recorded in Newton, then SBS was calculated to MPa. In addition, the samples were analyzed using a digital camera magnifier to determine Adhesive Remnant Index (ARI). Statistical data were processed using t-test, and the level of significance was set at α = 0.05. Higher shear bond strength values were observed in metallic brackets bonded to zirconium crowns compared tothoseof ceramic brackets, with a significant difference. During the test, two of the ceramic brackets were partially or totally damaged. Metallic brackets, compared to ceramic polycrystalline brackets, seemed tocreate stronger adhesion with all-zirconium surfaces due to their better retention mode. Also, ceramic brackets showed higher fragility during debonding.
[Bonding of visible light cured composite resins to glass ionomer and Cermet cements].
Kakaboura, A; Vougiouklakis, G
1990-04-01
The "sandwich" technique involves combination of composite resins to etched glassionomer cements, is used today in restorative dentistry. The purpose of this study is to evaluate the bond strength between several composite resins and glass ionomer or cerment cements. Cylindrical specimens of the cements Ketac-Silver, Ionobond and GC-Lining Ce-ment were inserted in a mold and their flat free surfaces were etched for 30". Cylindrical plastic tubes were set upon each one of these surfaces and filled with the Composite resins Durafill, Brilliant Lux, Estilux posterior, Estilux posterior CVS and Herculite XR. Half of the specimens transferred in tap water for 24 hours and the others after thermocycling in the first month, kept for 4 months. Shear bond strengths were determined in Monsanto Testing Machine and some fractured surfaces were examined under SEM. The results of this investigation indicate that this technique produces bond strengths between composite resins and glassioners and the combination type of resin and type of cement, affects the values of the strength. Glass cermeet--small particle resin provides the most effective strength and glass ionomer--microfill resins the least. Storage time and thermocycling don't significantly effect the bond strength. SEM examination showed that all fracture failures were obtained in the cement while the opposite resin surfaces were covered with particles of the cements.
Evaluation of EA-934NA with 2.5 percent Cab-O-Sil
NASA Technical Reports Server (NTRS)
Caldwell, Gordon A.
1990-01-01
Currently, Hysol adhesive EA-934NA is used to bond the Field Joint Protection System on the Shuttle rocket motors at Kennedy Space Center. However, due to processing problems, an adhesive with a higher viscosity is needed to alleviate these difficulties. One possible solution is to add Cab-O-Sil to the current adhesive. The adhesive strength and bond strengths that can be obtained when 2.5 percent Cab-O-Sil is added to adhesive EA-934NA are examined and tested over a range of test temperatures from -20 to 300 F. Tensile adhesion button and lap shear specimens were bonded to D6AC steel and uniaxial tensile specimens (testing for strength, initial tangent modulus, elongation and Poisson's ratio) were prepared using Hysol adhesive EA-934NA with 2.5 percent Cab-O-Sil added. These specimens were tested at -20, 20, 75, 100, 125, 150, 200, 250, and 300 F, respectively. Additional tensile adhesion button specimens bonding Rust-Oleum primed and painted D6AC steel to itself and to cork using adhesive EA-934NA with 2.5 percent Cab-O-Sil added were tested at 20, 75, 125, 200, and 300 F, respectively. Results generally show decreasing strength values with increasing test temperatures. The bond strengths obtained using cork as a substrate were totally dependent on the cohesive strength of the cork.
Effect of evaporation of solvents from one-step, self-etching adhesives.
Furuse, Adilson Yoshio; Peutzfeldt, Anne; Asmussen, Erik
2008-02-01
To investigate whether and to what extent the bonding capacity of one-step, self-etching adhesives is influenced by the degree to which solvent is evaporated. Seven one-step, self-etching adhesives were tested (Adper Prompt L-Pop, Clearfil S3 Bond, Futurabond NR, G-Bond, Hybrid Bond, iBond, Xeno III). The variation in degree of evaporation was obtained by varying the duration of the air-blowing step. The duration required to immobilize the adhesive layer, as established in a pilot study, was used as control. Two experimental air-blowing durations, shorter (half the control duration) and longer (double the control duration) than the control duration, were chosen. The resin composite Herculite XRV was bonded to flat human dentin surfaces treated with one of the adhesives following manufacturer's instructions, except for the air-blowing duration after application. After being stored in water at 37 degrees C for 1 week, the bonded specimens were broken in shear. Failure modes were evaluated under stereomicroscope. Air-blowing duration and brand of adhesive both had an effect on shear bond strength. An interaction was found between adhesive and air-blowing duration. Some adhesives were insensitive to variations in air-drying duration, but in general, air-blowing durations shorter than the control duration produced lower shear bond strengths. Significant effects of adhesive and air-blowing duration were also detected in relation to failure mode. More adhesive failures were observed with shorter air-blowing durations. A significant negative correlation between number of adhesive failures and bond strength was found. On the basis of this in vitro study, it may be concluded that the one-step, self-etching adhesives evaluated were sensitive to degree of evaporation of the solvents.
Dentin bond optimization using the dimethyl sulfoxide-wet bonding strategy: A 2-year in vitro study.
Stape, Thiago Henrique Scarabello; Tjäderhane, Leo; Tezvergil-Mutluay, Arzu; Yanikian, Cristiane Rumi Fujiwara; Szesz, Anna Luiza; Loguercio, Alessandro Dourado; Martins, Luís Roberto Marcondes
2016-12-01
This study evaluated a new approach, named dimethyl sulfoxide (DMSO)-wet bonding, to produce more desirable long-term prospects for the ultrafine interactions between synthetic polymeric biomaterials and the inherently hydrated dentin substrate. Sound third molars were randomly restored with/without DMSO pretreatment using a total-etch (Scocthbond Multipurpose: SBMP) and a self-etch (Clearfil SE Bond: CF) adhesive systems. Restored teeth (n=10)/group were sectioned into sticks and submitted to different analyses: micro-Raman determined the degree of conversion inside the hybrid layer (DC); resin-dentin microtensile bond strength and fracture pattern analysis at 24h, 1year and 2 years of aging; and nanoleakage evaluation at 24h and 2 years. DMSO-wet bonding produced significantly higher 24h bond strengths for SBMP that were sustained over the two-year period, with significantly less adhesive failures. Similarly, DMSO-treated CF samples presented significantly higher bond strength than untreated samples at two years. Both adhesives had significant less adhesive failures at 2 years with DMSO. DMSO had no effect on DC of SBMP, but significantly increased the DC of CF. DMSO-treated SBMP samples presented reduced silver uptake compared to untreated samples after aging. Biomodification of the dentin substrate by the proposed strategy using DMSO is a suitable approach to produce more durable hybrid layers with superior ability to withstand hydrolytic degradation over time. Although the active role of DMSO on dentin bond improvement may vary according to monomer composition, its use seems to be effective on both self-etch and etch-and-rinse bonding mechanisms. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Toba, Shigemitsu; Veerapravati, Weeraporn; Shimada, Yasushi; Nikaido, Toru; Tagami, Junji
2003-09-01
To evaluate the micro-shear bond strengths to superficial coronal dentin and the floor of the pulp chamber using two dentin bonding systems and to compare the ultrastructure of the resin-dentin interface of the two regions. 30 non-carious molars were used to obtain 2 mm thick slabs of coronal dentin and dentin at the pulp chamber. The specimens in each region were divided into three sub-groups to be bonded as follows; Clearfil SE Bond was used according to the manufacturer's instructions, Single Bond was applied to either wet dentin (Blot dry Group) or air-dried dentin (Dry Group) after phosphoric acid etching. A resin composite cylinder 0.5 mm high and 0.75 mm in diameter formed using a vinyl tube was bonded to the dentin. Specimens were stored at 37 degrees C for 24 hours in water and then stressed in shear at a crosshead speed of 1 mm/minute. The data were analyzed with one-way ANOVA and Fisher's PLSD test at the 5% level of significance. In addition, the ultrastructure of cross-sectioned dentin surfaces, the conditioned dentin surface and the resin dentin interfaces were observed by SEM. The bond strengths of Clearfil SE Bond and the Single Bond Blot dry group were approximately 40 MPa in coronal dentin and 30 MPa in the dentin at the floor of the pulp chamber respectively. However, the bond strengths of Single Bond were significantly lower in the Dry condition (MPa) (P < 0.05). SEM observations revealed the thickness of the hybrid layer created by Clearfil SE Bond in coronal dentin and at the floor of the pulp chamber were less than 1.0 microm thick. For Single Bond, a 3-4 microm hybrid layer was created in coronal dentin, while a thinner hybrid layer was observed in the floor of the pulp chamber. Morphological and structural variations in dentin may have influenced the bond strengths of the bonding systems to the floor of the pulp chamber.
Yang, C Y; Lin, R M; Wang, B C; Lee, T M; Chang, E; Hang, Y S; Chen, P Q
1997-12-05
This study was undertaken to evaluate the effect of coating characteristics on the mechanical strengths of the plasma-sprayed HA-coated Ti-6Al-4V implant system both in vitro and in vivo. Two types of HA coatings (HACs) with quite different microstructures, concentrations of impurity-phases, and indices-of-crystallinity were used. In vitro testings were done by measuring the bonding-strength at the Ti-6Al-4V-HAC interface, with HACs that had and had not been immersed in a pH-buffered, serum-added simulated body fluid (SBF). The shear-strength at the HAC-bone interface was investigated in a canine transcortical femoral model after 12 and 24 weeks of implantation. The results showed a bonding degradation of approximately 32% or higher of the original strength after 4 weeks of immersion in SBF, and this predominantly depended on the constructed microstructure of the HACs. After the push-out measurements, it was demonstrated that the HACs with higher bonding-strength in vitro would correspondingly result in significantly higher shear-strength at each implant period in vivo. Nevertheless, there were no substantial histological variations between the two types of HACs evaluated. The most important point elucidated in this study was that, among coating characteristics, the microstructure was the key factor in influencing the mechanical stability of the HACs both in vitro and in vivo. As a consequence, a denser HAC was needed to ensure mechanical stability at both interfaces.
Cigarette smoke affects bonding to dentin.
Almeida e Silva, Junio S; de Araujo, Edson Medeiro; Araujo, Elito
2010-01-01
This in vitro study evaluated the microtensile bond strength (muTBS) of composite resin bonded to dentin that had been contaminated by cigarette smoke. Ten extracted unerupted human third molars were used: Six molars were prepared for muTBS testing, while the other four molars were assigned to pre- and post-etching scanning electronic microscopy (SEM) analysis. The 20 specimens obtained from the 10 coronal portions were distributed into two experimental groups so that each tooth served as its own control. Group 1 underwent a daily toothbrushing simulation and exposure to a smoking simulation chamber, while Group 2 received only a daily simulated toothbrushing. Student's t-test demonstrated that Group 1 samples demonstrated significantly lower bond strength (49.58 MPa) than Group 2 samples (58.48 MPa). Pre and postetching SEM analysis revealed the presence of contaminants on the dentinal surfaces of the Group 1 specimens. It was concluded that contamination by cigarette smoke decreases the bond strength between dentin and composite resin.
Bitter, Kerstin; Gläser, Christin; Neumann, Konrad; Blunck, Uwe; Frankenberger, Roland
2014-01-01
Purpose Restoration of endodontically treated teeth using fiber posts in a one-stage procedure gains more popularity and aims to create a secondary monoblock. Data of detailed analyses of so called “post-and-core-systems” with respect to morphological characteristics of the resin-dentin interface in combination with bond strength measurements of fiber posts luted with these materials are scarce. The present study aimed to analyze four different post-and-core-systems with two different adhesive approaches (self-etch and etch-and-rinse). Materials and Methods Human anterior teeth (n = 80) were endodontically treated and post space preparations and post placement were performed using the following systems: Rebilda Post/Rebilda DC/Futurabond DC (Voco) (RB), Luxapost/Luxacore Z/Luxabond Prebond and Luxabond A+B (DMG) (LC), X Post/Core X Flow/XP Bond and Self Cure Activator (Dentsply DeTrey) (CX), FRC Postec/MultiCore Flow/AdheSE DC (Ivoclar Vivadent) (MC). Adhesive systems and core materials of 10 specimens per group were labeled using fluorescent dyes and resin-dentin interfaces were analyzed using Confocal Laser Scanning Microscopy (CLSM). Bond strengths were evaluated using a push-out test. Data were analyzed using repeated measurement ANOVA and following post-hoc test. Results CLSM analyses revealed significant differences between groups with respect to the factors hybrid layer thickness (p<0.0005) and number of resin tags (p = 0.02; ANOVA). Bond strength was significantly affected by core material (p = 0.001), location inside the root canal (p<0.0005) and incorporation of fluorescent dyes (p = 0.036; ANOVA). CX [7.7 (4.4) MPa] demonstrated significantly lower bond strength compared to LC [14.2 (8.7) MPa] and RB [13.3 (3.7) MPa] (p<0.05; Tukey HSD) but did not differ significantly from MC [11.5 (3.5) MPa]. Conclusion It can be concluded that bond strengths inside the root canal were not affected by the adhesive approach of the post-and-core-system. All systems demonstrated homogenous hybrid layer formation and penetration into the dentinal tubules in spite of the complicating conditions for adhesion inside the root canal. PMID:24586248
Pullout bond strength of fiber posts luted to different depths and submitted to artificial aging.
Macedo, V C; Souza, N A Y; Faria e Silva, A L; Cotes, C; da Silva, C; Martinelli, M; Kimpara, E T
2013-01-01
The extension of fiber post cementation often does not seem to influence the fracture resistance of restorations. This study evaluated the effects of cementation depths on the retention of fiber posts submitted to artificial aging. One hundred and sixty bovine incisors were selected to assess post retention. Following endodontic treatment, the canals were flared with diamonds burs. Postholes were prepared in lengths of 5 or 10 mm, after which fiber posts were relined with composite resin and luted with RelyX ARC or RelyX Unicem. The samples were then submitted to thermal and/or mechanical cycling before testing their pullout bond strengths. Absence of cycling was used as a control. The results of each cement were submitted to two-way and post hoc Tukey tests (α=0.05). Independent of the aging protocol, a depth of 10 mm showed higher pullout bond strength than did 5 mm, except for RelyX Unicem without cycling. For RelyX ARC, thermomechanical cycling resulted in lower values than in the absence of cycling. Mechanical cycling alone promoted the highest bond strength when the posts were luted with RelyX Unicem. The effect of artificial aging on the pullout bond strength is dependent on the type of material and the depth.
The influence of salivary contamination on shear bond strength of dentin adhesive systems.
Park, Jeong-won; Lee, Kyung Chae
2004-01-01
This study evaluated the influence of salivary contamination during dentin bonding procedures on shear bond strength and investigated the effect of contaminant-removing treatments on the recovery of bond strength for two dentin bonding agents. One hundred and ten human molars were embedded in cylindrical molds with self-curing acrylic resin. The occlusal dentin surface was exposed by wet grinding with #800 silicon carbide abrasive paper. The teeth were divided into five groups for One-step (OS) (BISCO, Inc) and six groups for Clearfil SE Bond (SE) (Kuraray Co, Ltd, Osaka, Japan). For One-step, the grinding surface was treated with 32% phosphoric acid; BAC (BISCO Inc) and divided into five groups: OS control group (uncontaminated), OS I (salivary contamination, blot dried), OS II (salivary contamination, completely dried), OS III (salivary contamination, wash and blot dried) and OS IV (salivary contamination, re-etching for 10 seconds, wash and blot dried). For SE bond, the following surface treatments were done: SE control group (primer applied to the fresh dentin surface), SE I (after salivary contamination, primer applied), SE II (primer, salivary contamination, dried), SE III (primer, salivary contamination, wash and dried), SE IV (after procedure of SE II, re-application of primer) and SE V (after procedure of SE III, re-application of primer). Each bonding agent was applied and light cured for 10 seconds. Clearfil AP-X (Kuraray Co, Ltd) composite was packed into the Ultradent mount jig mold and light cured for 40 seconds. The bonded specimens were stored for 24 hours in a 37 degrees C waterbath. The shear bond strengths were measured using an Instron testing machine (Model 4202, Instron Corp). The data for each group were subjected to one-way ANOVA followed by the Newman-Keuls test to make comparisons among the groups. The results were as follows: In the One-step groups, the OS II group showed statistically significant lower shear bond strength than the OS control, I, III and IV (p<0.05). In the Clearfil SE Bond groups, the SE II and SE III groups had decreased shear bond strength compared with the control and SE I, SE IV and SE V groups (p<0.05). In conclusion, when using One-step total etch adhesive and when the etched surface is contaminated by saliva, blotting the surface and applying the primer can recover the bond strength. Complete drying of the salivary contaminated surface should be avoided. In the Clearfil SE Bond groups, the re-priming treatment (SE IV and SE V) resulted in the recovery of shear bond strength in the specimens contaminated after priming.
Boruziniat, Alireza; Manafi, Safa; Cehreli, Zafer C
To evaluate the effect of a new experimental solution containing sodium ascorbate (SA) and acetone on reversing compromised bonding to enamel immediately after bleaching. The buccal surface of intact, extracted human premolars (n = 60) was bleached. The teeth were then randomly assigned to 6 groups according to the type of pretreatment applied prior to adhesive procedures: 10% SA in acetone-water solution applied for 1 and 5 min (groups 1 and 2, respectively); aqueous solution of 10% SA applied for 10 min (group 3); 100% acetone applied for 10 min (group 4); no pretreatment (negative control; group 5). An additional group (positive control; group 6) comprised unbleached teeth (n = 12). Two composite microcylinders were bonded on each specimen for evaluation of microshear bond strength (MBS) and failure modes. Data were analyzed using the one-way ANOVA and Tukey's post-hoc and chi-square tests at P = 0.05. Groups 1 and 2 yielded similar MBS values to groups 4 and 6 (positive control). The mean MBS of groups 3 and 5 (negative control) were similar, and significantly lower than that of the positive control group. The application of 10% SA in an acetone-water solution prior to bonding procedures can restore compromised enamel bond strength to its unbleached state within a clinically acceptable time of 1 min.
Innovations in bonding to zirconia-based materials. Part II: Focusing on chemical interactions.
Aboushelib, Moustafa N; Mirmohamadi, Hesam; Matinlinna, Jukka P; Kukk, Edwin; Ounsi, Hani F; Salameh, Ziad
2009-08-01
The zirconia-resin bond strength was enhanced using novel engineered zirconia primers in combination with selective infiltration etching as a surface pre-treatment. The aim of this study was to evaluate the effect of artificial aging on the chemical stability of the established bond and to understand the activation mechanism of the used primers. Selective infiltration etched zirconia discs (Procera; NobelBiocare) were coated with one of four novel engineered zirconia primers containing reactive monomers and were bonded to resin-composite discs (Panavia F2.0). Fourier transform infrared spectroscopy (FT-IR) was carried out to examine the chemical activation of zirconia primers from mixing time and up to 60min. The bilayered specimens were cut into microbars (1mm(2) in cross-section area) and zirconia-resin microtensile bond strength (MTBS) was evaluated immediately and after 90 days of water storage at 37 degrees C. Scanning electron microscopy (SEM) was used to analyze the fracture surface. There was a significant drop in MTBS values after 90 days of water storage for all tested zirconia primers from ca. 28-41MPa to ca. 15-18MPa after completion of artificial aging. SEM revealed increase in percentage of interfacial failure after water storage. FTIR spectra suggested adequate activation of the experimental zirconia primers within 1h of mixing time. The novel engineered zirconia primers produced initially high bond strength values which were significantly reduced after water storage. Long-term bond stability requires developing more stable primers.
Sacramento, Patrícia A; de Castilho, Aline R; Banzi, Efani C; Puppi-Rontani, Regina Maria
2012-12-01
To evaluate the influence of a 2% chlorhexidine solution (CHX) on the bond strength and nano leakage of two self-etching adhesive systems on demineralized dentin over a 12-month period. The middle dentin from sound third molars was exposed and demineralized in vitro. Twelve groups were formed using different adhesive systems (Clearfil Protect Bond [PB], Clearfil SE Bond [SE]) dentin treatment (with or without CHX application), and water-storage times (24 h, 6 and 12 months). Composite resin cylinders were bonded to the prepared dentin, and these specimens underwent microshear bond strength (µSBS) testing and nano leakage evaluation. µSBS data were submitted to a three-way ANOVA and Tukey's test. The failure mode and nano leakage were analyzed descriptively by score. There was a statistically significant interaction only between the adhesive system and CHX, and adhesive system and water-storage times. SE showed the lowest µSBS just at 24 h water-storage time regardless of CHX. A significant decrease in µSBS values after 6 months of water storage occurred in all of the groups and was maintained until 12 months. Adhesive failure increased with storage time. All groups showed nano leakage at the resin/dentin interfaces and an increased silver deposition was noticed after 6 and 12 months of water storage. The highest percentages of nano leakage were found in CHX groups. CHX did not interfere with µSBS values for either self-etching adhesive system, but water storage did. Bond strength decreased for both adhesive systems after 6 and 12 months, regardless of CHX application. Nano leakage increased with water-storage time and with CHX application.
Imai, Hideyuki; Koizumi, Hiroyasu; Shimoe, Saiji; Hirata, Isao; Matsumura, Hideo; Nikawa, Hiroki
2014-01-01
The current study evaluated the effect of primers on the shear bond strength of an indirect composite material joined to a silverpalladium-copper-gold (Ag-Pd-Cu-Au) alloy (Castwell). Disk specimens were cast from the alloy and were air-abraded with alumina. Eight metal primers were applied to the alloy surface. A light-polymerized indirect composite material (Solidex) was bonded to the alloy. Shear bond strength was determined both before and after the application of thermocycling. Two groups primed with Metaltite (thione) and M. L. Primer (sulfide) showed the greatest post-thermocycling bond strength (8.8 and 6.5 MPa). The results of the X-ray photoelectron spectroscopic (XPS) analysis suggested that the thione monomer (MTU-6) in the Metaltite primer was strongly adsorbed onto the Ag-Pd-Cu-Au alloy surface even after repeated cleaning with acetone. The application of either the thione (MTU-6) or sulfide primer is effective for enhancing the bonding between a composite material and Ag-Pd-Cu-Au alloy.
Shimazu, Kisaki; Ogata, Kiyokazu; Karibe, Hiroyuki
2012-01-01
We aimed to evaluate the caries-preventive effect of a fissure sealant containing surface reaction-type pre-reacted glass ionomer (S-PRG) filler and bonded by self-etching primer versus those of 2 conventional resin-based sealants bonded by acid etching in terms of its impact on enamel demineralization and remineralization, enamel bond strength, and integrity of debonded enamel surfaces. Demineralization, remineralization, and bond strength on untreated enamel and enamel subsurface lesions of bovine incisors were assessed among the sealants by polarizing microscopy and microradiography; debonded enamel surfaces were examined by scanning electron microscopy. The conventional resin-based sealants bonded by acid etching caused surface defects on the enamel subsurface lesions and significantly increased the lesion depth (p = 0.014), indicative of enamel demineralization. However the S-PRG filler-containing sealant bonded by self-etching primer maintained the enamel surface integrity and inhibited enamel demineralization. No difference in bond strength on both untreated enamel and enamel subsurface lesions was noted among the sealants. An S-PRG filler-containing fissure sealant bonded by self-etching primer can prevent enamel demineralization, microleakage, and gaps without the tags created by acid etching regardless of the enamel condition. Such sealants are suitable for protecting the pits and fissures of immature permanent teeth.
Tiwari, Anil; Shyagali, Tarulatha; Kohli, Sarvraj; Joshi, Rishi; Gupta, Abhishek; Tiwari, Rana
2016-01-01
Aim: The aim of this in vitro study was to evaluate the influence of the Dental chair light on the bond strength of light cured composite resin. Materials and Methods: Sixty therapeutically extracted human premolar teeth were randomly allocated to two groups of 30 specimens each. In both groups light cured composite resin (Transbond XT) and MBT premolar metal brackets (3M Unitek) was used to bond brackets. In group I and II light curing was done using Light-emitting diode light curing units without and with the dental chair light respectively. After bonding, all samples were stored in distilled water at room temperature for 24 hours and subsequently tested for shear bond strength and Adhesive Remnant Index (ARI) scores. Data was subjected to Mann Whitney U statistical test. Results: Results indicated that there was significantly higher shear bond strength (7.71 ± 1.90) for the Group II (composite cured with LED and dental chair light) compared with Group I (composite cured with LED LCU only) (5.74 ± 1.13).the obtained difference was statistically significant. There was no statistical significant difference between ARI scores in between the groups. Conclusions: light cure bonding with dental chair light switched on will produce greater bond strength than the conventional bonding. However, the ARI score were similar to both the groups. It is advised that the inexperienced orthodontist should always switch off the dental chair light while bonding for enough working time during the bracket placement. PMID:28077886
[Influence of carbodiimide-ethanol solution surface treatment on dentin microtensile bond strength].
Zhang, Yi; Liu, Yu-hua; Zhou, Yong-sheng; Chung, Kwok-hung
2015-10-18
To evaluate the microtensile bond strength changes and patterns of fractures of the bonding interface after dentine surface treatment with carbodiimide-ethanol solution. 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) dissolved in ethanol was diluted into different concentrations of 2, 1, 0.3, 0.1 and 0.01 mol/L EDC-ethanol solutions. Twenty-eight caries-free extracted human third molars were ground metallurgically to prepare flat occlusal mid-coronal dentin surfaces and etched with 35% (mass fraction) phosphoric acid gel. Then they were treated with EDC-ethanol solution for 60 s before the bonding procedure and randomly divided into five experimental groups corresponding to the tested EDC-ethanol concentrations. The ethanol treated and no pre-treated surfaces were used as controls. Single Bond 2 adhesive was applied and resin composite disk was stacked on the treated dentine surface. The teeth with resin composite disks were stored in water at room temperature for 24 h and then sectioned longitudinally to produce stick specimens for microtensile bond strength test. Fracture patterns were observed with a stereomicroscope. The dentin surfaces pre-treated with 2 mol/L [(22.17±13.31) MPa] and 1 mol/L [(45.31±17.80) MPa] EDC-ethanol solutions resulted in statistically significant lower bond strength value (P<0.05). Increasing numbers of fracture pattern at the resin-dentin interface were also found in this two groups with percentages of 81.2% and 41.3% respectively. No significant difference was observed in the groups with 0.3, 0.1, 0.01 mol/L EDC surface treatment (P>0.05). No significant difference of immediate bond strengths was found in the 0.3, 0.1, 0.01 mol/L groups compared with the control group. EDC-ethanol solution surface treatment with concentrations of 2 mol/L and 1 mol/L resulted in decreasing of the bonding strength.
Asakawa, Yuya; Takahashi, Hidekazu; Kobayashi, Masahiro; Iwasaki, Naohiko
2013-10-01
The aim of this study was to clarify the effect of the components and surface treatments of fiber-reinforced composite (FRC) posts on the durable bonding to core build-up resin evaluated using the pull-out and microtensile tests. Four types of experimental FRC posts, combinations of two types of matrix resins (polymethyl methacrylate and urethane dimethacrylate) and two types of fiberglass (E-glass and zirconia-containing glass) were examined. The FRC posts were subjected to one of three surface treatments (cleaned with ethanol, dichloromethane, or sandblasting). The bond strength between the FRC posts and core build-up resin were measured using the pull-out and microtensile tests before and after thermal cycling. The bond strengths obtained by each test before and after thermal cycling were statistically analyzed by three-way ANOVA and Tukey's multiple comparisons test (p<0.05). The bond strengths except for UDMA by the pull-out test decreased after thermal cycling. Regardless the test method and thermal cycling, matrix resins, the surface treatment and their interaction were statistically significant, but fiberglass did not. Dichloromethane treatment was effective for the PMMA-based FRC posts by the pull-out test, but not by the microtensile test. Sandblasting was effective for both PMMA- and UDMA-based FRC posts, regardless of the test method. The bond strengths were influenced by the matrix resin of the FRC post and the surface treatment. The bond strengths of the pull-out test showed a similar tendency of those of the microtensile test, but the value obtained by these test were different. Copyright © 2013 Elsevier Ltd. All rights reserved.
Srinivasulu, S; Vidhya, S; Sujatha, M; Mahalaxmi, S
2012-01-01
This in vitro study evaluated the shear bond strength of composite resin to deep dentin using a total etch adhesive after treatment with two collagen cross-linking agents at varying time intervals. Thirty freshly extracted human maxillary central incisors were sectioned longitudinally into equal mesial and distal halves (n=60). The proximal deep dentin was exposed, maintaining a remaining dentin thickness (RDT) of approximately 1 mm. The specimens were randomly divided into three groups based on the surface treatment of dentin prior to bonding as follows: group I (n=12, control): no prior dentin surface treatment; group II (n=24): dentin surface pretreated with 10% sodium ascorbate; and group III (n=24): dentin surface pretreated with 6.5% proanthocyanidin. Groups II and III were further subdivided into two subgroups of 12 specimens each, based on the pretreatment time of five minutes (subgroup A) and 10 minutes (subgroup B). Shear bond strength of the specimens was tested with a universal testing machine, and the data were statistically analyzed. Significantly higher shear bond strength to deep dentin was observed in teeth treated with 10% sodium ascorbate (group II) and 6.5% proanthocyanidin (group III) compared to the control group (group I). Among the collagen cross-linkers used, specimens treated with proanthocyanidin showed significantly higher shear bond strength values than those treated with sodium ascorbate. No significant difference was observed between the five-minute and 10-minute pretreatment times in groups II and III. It can be concluded that dentin surface pretreatment with both 10% sodium ascorbate and 6.5% proanthocyanidin resulted in significant improvement in bond strength of resin composite to deep dentin.
Salivary contamination during bonding procedures with a one-bottle adhesive system.
Fritz, U B; Finger, W J; Stean, H
1998-09-01
The effect of salivary contamination of enamel and dentin on bonding efficacy of an experimental one-bottle resin adhesive was investigated. The adhesive was a light-curing urethane dimethacrylate/hydroxyethyl methacrylate/4-methacryloxyethyl trimellitate anhydride mixture dissolved in acetone. Evaluation parameters were shear bond strength and marginal gap width in a dental cavity. Apart from a control group without contamination (group 1), etched enamel and dentin were (2) contaminated with saliva and air dried; (3) contaminated, rinsed, and blot dried; (4) coated with adhesive, contaminated, rinsed, and blot dried; (5) coated with adhesive, light cured, contaminated, rinsed, and air dried; or (6) treated as in group 5, with additional adhesive application after air drying. There was no negative effect in groups 3 and 4, compared with control. Air drying after salivary contamination (group 2) resulted in low shear bond strengths and wide marginal gaps. Contamination of the cured adhesive layer (groups 5 and 6) had no adverse effect on enamel shear bond strengths, but resulted in 50% reduced dentin shear bond strengths and wide marginal gaps. The one-bottle adhesive system is relatively insensitive to salivary contamination, provided that the contamination occurs prior to light curing of the adhesive and is carefully rinsed and blot dried. Salivary contact after adhesive curing must be avoided.
Bonding between oxide ceramics and adhesive cement systems: a systematic review.
Papia, Evaggelia; Larsson, Christel; du Toit, Madeleine; Vult von Steyern, Per
2014-02-01
The following aims were set for this systematic literature review: (a) to make an inventory of existing methods to achieve bondable surfaces on oxide ceramics and (b) to evaluate which methods might provide sufficient bond strength. Current literature of in vitro studies regarding bond strength achieved using different surface treatments on oxide ceramics in combination with adhesive cement systems was selected from PubMed and systematically analyzed and completed with reference tracking. The total number of publications included for aim a was 127 studies, 23 of which were used for aim b. The surface treatments are divided into seven main groups: as-produced, grinding/polishing, airborne particle abrasion, surface coating, laser treatment, acid treatment, and primer treatment. There are large variations, making comparison of the studies difficult. An as-produced surface of oxide ceramic needs to be surface treated to achieve durable bond strength. Abrasive surface treatment and/or silica-coating treatment with the use of primer treatment can provide sufficient bond strength for bonding oxide ceramics. This conclusion, however, needs to be confirmed by clinical studies. There is no universal surface treatment. Consideration should be given to the specific materials to be cemented and to the adhesive cement system to be used. Copyright © 2013 Wiley Periodicals, Inc.
Gundawar, Sham M.; Radke, Usha M.
2015-01-01
Purpose: The purpose of this vitro study was to comparatively evaluate the adhesive bonding of dual cured resin luting agents with lithium disilicate ceramic material. Materials and Methods: Porcelain laminate veneers were prepared with lithium disilicate ceramic material i.e. IPS Empress II( E-Max Press). These laminates were bonded with RelyX ARC, Panavia F 2.0, Variolink II, Duolink and Nexus NX3.The porcelain laminates were etched with 9.6% hydrofluoric acid (Pulpdent Corporation) for one minute, washed for 15 sec with three way syringe and dried for 15 sec with air syringe. The silane (Ultradent) was applied with the help of applicator tip in a single coat and kept undisturbed for one minute. The prepared surfaces of the premolars were treated with 37% phosphoric acid (Prime dent) for 15 sec, thoroughly rinsed and dried as per manufactures instructions. The shear bond test was carried out on all samples with the Universal testing machine (Instron U.S.A.) The scanning electron microscopic study was performed at the fractured interface of representative samples from each group of luting agents. Result: In this study, the highest value of shear bond strength was obtained for NEXUS NX3 and the lowest for VARIOLINK II. Conclusion: The difference in bond strength can be interpreted as the difference in fracture resistance of luting agents, to which shearing load was applied during the shear bond strength test. It is inferred from this study that the composition of the luting agent determines the adhesive characteristics in addition to surface treatment and bonding surface area. PMID:25859514
Bastos, Laura Alves; Sousa, Ana Beatriz Silva; Drubi-Filho, Brahim; Panzeri Pires-de-Souza, Fernanda de Carvalho
2015-01-01
Objectives The aim of this study was to evaluate the effect of pre-etching on the bond strength of silorane-based composite specific adhesive system to dentin. Materials and Methods Thirty human molars were randomly divided into 5 groups according to the different bonding strategies. For teeth restored with silorane-based composite (Filtek Silorane, 3M ESPE), the specific self-etching adhesive system (Adhesive System P90, 3M ESPE) was used with and without pre-etching (Pre-etching/Silorane and Silorane groups). Teeth restored with methacrylate based-composite (Filtek Z250, 3M ESPE) were hybridized with the two-step self-etching system (Clearfil SE Bond, Kuraray), with and without pre-etching (Pre-etching/Methacrylate and Methacrylate groups), or three-step adhesive system (Adper Scotchbond Multi-Purpose, 3M ESPE) (Three-step/Methacrylate group) (n = 6). The restored teeth were sectioned into stick-shaped test specimens (1.0 × 1.0 mm), and coupled to a universal test machine (0.5 mm/min) to perform microtensile testing. Results Pre-etching/Methacrylate group presented the highest bond strength values, with significant difference from Silorane and Three-step/Methacrylate groups (p < 0.05). However, it was not significantly different from Preetching/Silorane and Methacrylate groups. Conclusions Pre-etching increased bond strength of silorane-based composite specific adhesive system to dentin. PMID:25671209
Assessment of the adhesive properties of the bacterial polysaccharide FucoPol.
Araújo, Diana; Alves, Vitor D; Campos, Joana; Coelhoso, Isabel; Sevrin, Chantal; Grandfils, Christian; Freitas, Filomena; Reis, Maria A M
2016-11-01
To address the industry's interest in finding novel biobased glues, the adhesive properties of the bacterial polysaccharide FucoPol were evaluated through shear bond strength tests. A FucoPol solution was used to bond different materials, namely, wood, glass, cardboard and cellulose acetate film. The shear strength was compared to that of the same adherends bonded with commercial synthetic glues. Wood-wood joints bonded with FucoPol formulation withstood 742.2±9.8kPa shear strength without detachment. FucoPol adhesive capacity for cardboard was comparable to that of the tested commercial glues (425±8.9kPa), yielding similar shear strength values (416.0±12.9kPa), while improved performance was shown for glass (115.1±26.2kPa) and cellulose acetate film (153.7±11.3kPa) comparing to the commercial glues (67.7-97.5kPa and 79.4-92.7kPa, respectively). This study demonstrates the adhesive properties of FucoPol, opening up the opportunity of using this bacterial polysaccharide for the development of new natural water-based glues, suitable to bond different materials. Copyright © 2016 Elsevier B.V. All rights reserved.
The Impact of Thermocycling Process on the Dislodgement Force of Different Endodontic Cements
Saghiri, Mohammad Ali; Asatourian, Armen; Garcia-Godoy, Franklin; Gutmann, James L.; Sheibani, Nader
2013-01-01
To evaluate the effects of thermocycling (500 cycles, 5°C/55°C) on the push-out bond strength of calcium silicate based cements including WMTA, Nano-WMTA, and Bioaggregate to root dentin. Forty-eight dentin slices were prepared and divided into 3 groups (n = 16) and filled with Angelus WMTA, Nano-WMTA, or Bioaggregate. After incubation, half of the samples were thermocycled while the other half remained untreated. Push-out bond strength was calculated, and the modes of the bond failures were determined by SEM. The highest bond strength was seen in nonthermocycled Nano-WMTA samples and the lowest in thermocycled Bioaggregate samples. The significant differences between nonthermocycled and thermocycled samples were only noticed in WMTA and Nano-WMTA groups (P < 0.001). The mode of failure for thermocycled samples of all three cements was mostly cohesive. Thermocycling process can drastically affect the push-out bond strength of calcium silicate based cements. The intrastructural damages occurred due to the thermal stresses, causing cohesive failures in set materials. Sealing property of endodontic cements which have experienced the thermal stresses can be jeopardized due to occlusal forces happening in furcation cites. PMID:24063004
Effects of silver nanoparticles on the bonding of three adhesive systems to fluorotic enamel.
Torres-Méndez, Fernando; Martinez-Castañon, Gabriel-Alejandro; Torres-Gallegos, Iranzihuatl; Zavala-Alonso, Norma-Verónica; Patiño-Marin, Nuria; Niño-Martínez, Nereyda; Ruiz, Facundo
2017-05-31
The objective was to evaluate the effect of adding silver nanoparticles into three commercial adhesive systems (Excite™, Adper Prompt L-Pop™ and AdheSE™). Nanoparticles were prepared by a chemical method then mixed with the commercial adhesive systems. This was later applied to the fluorotic enamel, and then micro-tensile bond strength, contact angle measurements and scanning electron microscopy observations were conducted. The commercial adhesive systems achieved the lowest micro-tensile bond strength (Excite™: 11.0±2.1, Adper Prompt L-Pop™: 14.0±5.4 and AdheSE™: 16.0±3.0 MPa) with the highest adhesive failure mode related with the highest contact angle (46.0±0.6º, 30.0±0.5º and 28.0±0.4º respectively). The bond strength achieved in all the experimental adhesive systems (19.0±5.4, 20.0±4.0 and 19.0±3.5 MPa respectively) was statistically higher (p<0.05) than the control and showed the highest cohesive failures related to the lowest contact angle. Adding silver nanoparticles in order to decrease the contact angle improve the adhesive system wetting and its bond strength.
Effect of surface treatments on the bond strength of CAD/CAM fiberglass posts.
Garcia, Paula-Pontes; da Costa, Rogério-Goulart; Garcia, André-Vivan; Gonzaga, Carla-Castiglia; da Cunha, Leonardo-Fernandes; Rezende, Carlos-Eduardo-Edwards; Correr, Gisele-Maria
2018-06-01
There is no ideal protocol for the surface treatment of fiber posts, especially when using a computer-aided design/computer-aided manufacturing (CAD/CAM) experimental fiberglass block. The purpose of this study was to evaluate the bond strength of a CAD/CAM customized glass fiber post and core after applying different surface treatment techniques. Forty premolars were prepared to receive a customized CAD/CAM glass-fiber post and core obtained from an experimental block of glass fiber and epoxy resin. The specimens were randomly distributed in 4 groups (n=10) according to the post and core surface treatment: ETH - 70% ethanol; HP - 24% hydrogen peroxide for 1 minute; ETH/S - 70% ethanol + silane; HP/S - 24% hydrogen peroxide + silane. The universal adhesive containing silane was applied on the posts and prepared post spaces in all groups. The posts were cemented using dual cure resin cement. The specimens were stored in distilled water at 37°C for 24 h, cut (two slices of 1 mm for each root third - coronal, middle, and apical) and subjected to push-out test (0.5 mm/min). Data was subjected to two-way ANOVA (surface treatment and root third) and Tukey's test (α=0,05). There was no significant difference of bond strength values among groups, regardless the surface treatment ( p >0.05). There was significant difference on bond strength values for the different root thirds ( p <0.05) (coronal>middle=apical). The different surface treatment and application of additional silane in the CAD/CAM customized glass-fiber post and core does not interfere on bond strength values. The root dentin third interfered on the bond strength, with higher values for the coronal third. Key words: Post and core technique, cad/cam, shear strength, hydrogen peroxide.
Comparison of the Effect of two Denture Cleansers on Tensile bond Strength of a Denture Liner.
Farzin, M; Bahrani, F; Adelpour, E
2013-09-01
One of the most clinical challenging issues in prosthodontics is debonding of soft liners from the denture base. The aim of this study was to evaluate and compare tensile bond strength between soft liner and heat-cured acrylic resin when immersed in two different types of denture cleanser and distilled water, at different period of times. In this experimental in vivo study, 238 heat-cured acrylic blocks were made. A soft liner was embedded between the acrylic blocks. Samples were divided into four groups: 17 samples were in the control group and were not soaked in any solution .The remaining samples were divided into 3 groups (Distilled water, Calgon and Fittydent). Each group was then subdivided into two subcategories, regarding the immersion time variable; 15 and 45 minutes. All samples were placed in tension force and tensile bond strength was recorded with the testing machine. One- way ANOVA and Tucky HSD post-hoc test were adopted to analyze the yielded data (α> 0.05). Specimens which were immersed in two denture cleansers (Fittydent and Calgon) and in distilled water showed significant difference (p= 0.001) in bonding strength when compared to the control group. The subjects immersed in denture cleanser solutions and distilled water did not reveal any significant difference (p= 0.90). For all groups; most of the bonding failures (72%) were cohesive type. The effect of the denture cleansers and distilled water on the bond strength was not statistically different; however, the difference was significant between the immersed groups with the non-immersed group. Moreover, type of the denture cleanser did not show any effect on the tensile strength. The tensile strength increases with time of immersion.
Bond strength of primer/cement systems to zirconia subjected to artificial aging.
Zhao, Li; Jian, Yu-Tao; Wang, Xiao-Dong; Zhao, Ke
2016-11-01
Creating reliable and durable adhesion to the nonactive zirconia surface is difficult and has limited zirconia use. The introduction of functional monomers such as 10-methacryloyloxydecyl dihydrogen phosphate (MDP) appears to have enhanced bond strength to zirconia. The purpose of this in vitro study was to evaluate the long-term bond strength of several MDP-containing primer/cement systems to zirconia. Zirconia blocks were divided into 6 groups (n=24) according to the 3 primers/cements to be bonded, as follows: Scotchbond Universal/RelyX Ultimate (SU/RU; consisting of MDP-containing primer/MDP-free cement); Clearfil ceramic primer/Panavia F (CCP/PAN; consisting ofMDP-containing/MDP-containing); and Z-Prime Plus/Duo-Link (ZP/DUO; consisting ofMDP-containing/MDP-free), which were compared with 3 nonprimed groups, RU, PAN, and DUO. After bonding, each group was further divided into 3 subgroups (n=8) according to the level of aging: 24-hour storage in water at 37°C (24H); 30-day storage at 37°C (30D); and 30-day storage at 37°C followed by 3000 thermal cycles (30D/TC). After aging, a shear bond strength test and failure mode analysis were performed. The data were analyzed using 2-way ANOVA (α=.05). After aging, nearly all primer/cement groups presented significantly higher bond strength than the related nonprimed groups for each level of aging (P<.05), except for CCP/PAN versus PAN with 24H (P=.741). SU/RU had the highest bond strength among the groups for all treatments (P<.05), except for CCP/PAN versus SU/RU with 30D/TC (P=.171). Among the nonprimed groups, only RU went through 30D/TC without premature debonding. With 24H and 30D, the failure modes in SU/RU and CCP/PAN were purely mixed, whereas those in the other groups were mainly adhesive, except for RU. The superiority of the initial bond strength in SU/RU may result from some functional components other than MDP. The presence of MDP in the cement did not appear to have a positive effect on long-term bond strength to zirconia. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Residual interface tensile strength of ceramic bonded to dentin after cyclic loading and aging.
Hernandez, Alfredo I; Roongruangphol, Thasanai; Katsube, Noriko; Seghi, Robert R
2008-03-01
To guard against the potential risk of cusp fracture, esthetic onlay restorations have been advocated for teeth with large restorations. The influence of the adhesive resin cement is believed to play a role in strengthening these restorations. The durability of this tooth/adhesive/ceramic interface is critical to ensure clinical longevity. The purpose of this study was to assess the effects of cyclic loading and environmental aging on the residual interface strength of a ceramic bonded to dentin structure. Eighteen simple trilayer specimens were fabricated, consisting of a 1.5-mm-thick ceramic plate (ProCAD) bonded to a flattened human molar tooth with exposed coronal dentin. The ceramic plates were bonded using resin cement (Nexus 2) and manufacturer-recommended bonding techniques. The specimens were divided into 3 equal groups and were stored in water at 37 degrees C for 10 weeks as a control group (CT), 9 months as an aging group (AG), or placed in water at 37 degrees C while being subjected to 10 million vertical loading cycles between 20 N to 200 N, as a fatigue group (FG). After the specimens were subjected to the experimental conditions, they were sectioned perpendicular to the flat ceramic surface into 1 x 1-mm sticks. The mean residual interface microtensile bond (MTB) strength was determined for each specimen using only those sticks which contained ceramic bonded to dentin. The MTB strength data were analyzed using Weibull analysis methods to determine differences between groups. All subsequent failed specimen surfaces were evaluated under a stereomicroscope at x10 magnification to determine the apparent failure modes. Some specimens were selected from each failure mode category for surface evaluation under a scanning electron microscope (SEM). The characteristic Weibull means for the 3 groups were CT, 19.2, FG, 14.7, and AG, 11.7. The bond strength of group CT was significantly greater than both AG (P=.007) and FG (P=.014). Light microscopic categorization of the failure modes suggests that adhesive failure at the ceramic/cement interface was the most common (65%) for all 3 groups. SEM evaluation of failed surfaces of select specimens from each group could not distinguish any interface appearance differences. For indirect adhesive-retained ceramic restorations, both cyclic masticatory loading and hydrolytic degradation may contribute to a weakening of the interface bond. The ceramic/resin interface may be more susceptible to these changes over the time frame of this investigation than the dentin/resin interface.
Song, Chan-Hong; Choi, Jae-Won; Jeon, Young-Chan; Jeong, Chang-Mo; Lee, So-Hyoun; Kang, Eun-Sook; Yun, Mi-Jung; Huh, Jung-Bo
2018-05-29
The aim of this in-vitro research was to evaluate the microtensile bond strength in the newly introduced PEKK tooth post with various surface treatments and resin cements. A fiberglass tooth post was included in order to compare it with PEKK as a possible post material. The microtensile bond strengths of the fiberglass post (FRC Postec Plus) and the PEKK post (Pekkton ® ) were tested using three kinds of self-adhesive resin cements (G-CEM LinkAce, Multilink Speed, and RelyX U200) and one self-etching resin cement (PANAVIA F2.0). The surface treatments of the fiberglass posts were processed according to the manufacturer's recommendations (F1, application of 37% phosphoric acid etching gel and silanization). For the PEKK post groups, various surface treatments were performed like no surface treatment (P1), sandblasting (P2), silica-coating and silanization (P3), and sandblasting with a composite primer (P4). In the surface treatment, PEKK posts with silica coating and silane treatment (P3) showed a significantly higher microtensile bond strength (mean MPa: 18.09, p < 0.05). The highest microtensile bond strength was shown when the PEKK posts were treated with a silica coating and silane treatment and cemented with RelyX U200 (mean MPa: 22.22). The PEKK posts with surface treatments of silica-coating and silanization or sandblasting displayed superior microtensile bond strengths (mean MPa: 18.09 and 16.25, respectively) compared to the conventional fiberglass posts (mean MPa: 14.93, p < 0.05).
Arash, Valiollah; Anoush, Keivan; Rabiee, Sayed Mahmood; Rahmatei, Manuchehr; Tavanafar, Saeid
2015-01-01
Aims of the present study was to measure frictional resistance between silver coated brackets and different types of arch wires, and shear bond strength of these brackets to the tooth. In an experimental clinical research 28 orthodontic brackets (standard, 22 slots) were coated with silver ions using electroplate method. Six brackets (coated: 3, uncoated: 3) were evaluated with Scanning Electron Microscopy and Atomic Force Microscopy. The amount of friction in 15 coated brackets was measured with three different kinds of arch wires (0.019 × 0.025-in stainless steel [SS], 0.018-in stainless steel [SS], 0.018-in Nickel-Titanium [Ni-Ti]) and compared with 15 uncoated steel brackets. In addition, shear bond strength values were compared between 10 brackets with silver coating and 10 regular brackets. Universal testing machine was used to measure shear bond strength and the amount of friction between the wires and brackets. SPSS 18 was used for data analysis with t-test. SEM and AFM results showed deposition of a uniform layer of silver, measuring 8-10 μm in thickness on bracket surfaces. Silver coating led to higher frictional forces in all the three types of arch wires, which was statistically significant in 0.019 × 0.025-in SS and 0.018-in Ni-Ti, but it did not change the shear bond strength significantly. Silver coating with electroplating method did not affect the bond strength of the bracket to enamel; in addition, it was not an effective method for decreasing friction in sliding mechanics. © Wiley Periodicals, Inc.
Morphological effects of MMPs inhibitors on the dentin bonding
Li, He; Li, Tianbo; Li, Xiuying; Zhang, Zhimin; Li, Penglian; Li, Zhenling
2015-01-01
Matrix metalloproteinases (MMPs) have been studied extensively, and MMP inhibitors have been used as dental pretreatment agents prior to dentin bonding because they reduce collagen fiber degradation and improve bonding strength. However, morphologic characteristics of the collagen network after etching and of the post-adhesive dentin hybrid layers (DHL) after MMP inhibitors pretreatment have not been evaluated. Thus, we investigated demineralized dentin pretreated with chlorhexidine (CHX) and minocycline (MI) in an etch- and -rinse adhesive system with field emission scanning electron microscopy (FESEM) and immuno-gold labeling markers to observe the collagen network and DHL. FESEM revealed after CHX and MI, a demineralized dentin surface and improved collagen network formation, reduced collagen degradation, and distinct gold-labeling signals. Applying adhesive after either MMP inhibitor created a better dentin interface as evidenced by immuno-gold staining, better adhesive penetration, and higher DHL quality. With microtensile bond strength tests (µTBS) we estimated bonding strength using µTBS data. Immediate µTBS was enhanced with MMP inhibitor application to the bonding surface, and the CHX group was significantly different than non-treated etched surfaces, but no significant change was detected in the MI group. Surface micromorphology of the fractured dentin resin restoration showed that the CHX group had a better resin and dentin tube combination. Both MMP inhibitors created uniform resin coverage. Thus, morphologic results and µTBS data suggest that CHX and MI can inhibit MMP activity, improve immediate bonding strength, and enhance dentin bonding stability with an etch- and -rinse adhesive system. PMID:26379873
Kosor, Begüm Yerci; Artunç, Celal; Şahan, Heval
2015-07-01
A key factor of an implant-retained facial prosthesis is the success of the bonding between the substructure and the silicone elastomer. Little has been reported on the bonding of fiber reinforced composite (FRC) to silicone elastomers. Experimental FRC could be a solution for facial prostheses supported by light-activated aliphatic urethane acrylate, orthodontic acrylic resin, or commercially available FRCs. The purpose of this study was to evaluate the bonding of the experimental FRC, orthodontic acrylic resin, and light-activated aliphatic urethane acrylate to a commercially available high-temperature vulcanizing silicone elastomer. Shear and 180-degree peel bond strengths of 3 different substructures (experimental FRC, orthodontic acrylic resin, light-activated aliphatic urethane acrylate) (n=15) to a high-temperature vulcanizing maxillofacial silicone elastomer (M511) with a primer (G611) were assessed after 200 hours of accelerated artificial light-aging. The specimens were tested in a universal testing machine at a cross-head speed of 10 mm/min. Data were collected and statistically analyzed by 1-way ANOVA, followed by the Bonferroni correction and the Dunnett post hoc test (α=.05). Modes of failure were visually determined and categorized as adhesive, cohesive, or mixed and were statistically analyzed with the chi-squared goodness-of-fit test (α=.05). As the mean shear bond strength values were evaluated statistically, no difference was found among the experimental FRC, aliphatic urethane acrylate, and orthodontic acrylic resin subgroups (P>.05). The mean peel bond strengths of experimental fiber reinforced composite and aliphatic urethane acrylate were not found to be statistically different (P>.05). The mean value of the orthodontic acrylic resin subgroup peel bond strength was found to be statistically lower (P<.05). Shear test failure types were found to be statistically different (P<.05), whereas 180-degree peel test failure types were not found to be statistically significant (P>.05). Shear forces predominantly exhibited cohesive failure (64.4%), whereas peel forces predominantly exhibited adhesive failure (93.3%). The mean shear bond strengths of the experimental FRC and aliphatic urethane acrylate groups were not found to be statistically different (P>.05). The mean value of the 180-degree peel strength of the orthodontic acrylic resin group was found to be lower (P<.05). Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Hammad, Shaza M.; El-Wassefy, Noha; Maher, Ahmed; Fawakerji, Shafik M.
2017-01-01
ABSTRACT Objective: To evaluate the effect of silica dioxide (SiO2) nanofillers in different bonding systems on shear bond strength (SBS) and mode of failure of orthodontic brackets at two experimental times. Methods: Ninety-six intact premolars were divided into four groups: A) Conventional acid-etch and primer Transbond XT; B) Transbond Plus self-etch primer; and two self-etch bonding systems reinforced with silica dioxide nanofiller at different concentrations: C) Futurabond DC at 1%; D) Optibond All-in-One at 7%. Each group was allocated into two subgroups (n = 12) according to experimental time (12 and 24 hours). SBS test was performed using a universal testing machine. ARI scores were determined under a stereomicroscope. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to determine the size and distribution of nanofillers. One-way ANOVA was used to compare SBS followed by the post-hoc Tukey test. The chi-square test was used to evaluate ARI scores. Results: Mean SBS of Futurabond DC and Optibond All-in-One were significantly lower than conventional system, and there were no significant differences between means SBS obtained with all self-etch bonding systems used in the study. Lower ARI scores were found for Futurabond DC and Optibond All-in-One. There was no significant difference of SBS and ARI obtained at either time points for all bonding systems. Relative homogeneous distribution of the fillers was observed with the bonding systems. Conclusion: Two nanofilled systems revealed the lowest bond strengths, but still clinically acceptable and less adhesive was left on enamel. It is advisable not to load the brackets immediately to the maximum. PMID:28444018
Silanated Surface Treatment: Effects on the Bond Strength to Lithium Disilicate Glass-Ceramic.
Baratto, Samantha Schaffer Pugsley; Spina, Denis Roberto Falcão; Gonzaga, Carla Castiglia; Cunha, Leonardo Fernandes da; Furuse, Adilson Yoshio; Baratto Filho, Flares; Correr, Gisele Maria
2015-10-01
The aim of this study was to evaluate the effect of silanization protocols on the bond strength of two resin cements to a lithium disilicate glass-ceramic. Thirty-two ceramic discs were assigned to 2 groups (n=16): G1 - dual-cured resin cement and G2 - light-cured resin cement. Four subgroups were evaluated according to the used silanization protocol. The glass-ceramic was etched with 10% hydrofluoric acid for 20 s and silane was applied for 1 min, as follows: CTL - according to the manufacturer's instructions; HA - dried with hot air; NWA - washed and dried with water and air at room temperature; HWA - washed and dried with hot water and hot air. Thereafter, adhesive was applied and light-cured for 20 s. Silicon molds were used to prepare resin cement cylinders (1x1 mm) on the ceramic surface. The specimens were stored in deionized water at 37 °C for 48 h and subjected to a micro-shear test. The data were submitted to statistical analysis (?#61537;=0.05). Group G1 showed higher bond strengths than G2, except for the CTL and NWA subgroups. Differences as function of the silanization protocol were only observed in G1: HWA (25.13±6.83)≥HA (22.95±7.78)≥CTL(17.44±7.24) ≥NWA(14.63±8.76). For G2 there was no difference among the subgroups. In conclusion, the silanization protocol affected the resin cement/ceramic bond strengths, depending on the material. Washing/drying with hot water and/or hot air increased only the bond strength of the dual-cured resin cement.
Evaluation of shear bond strength of orthodontic brackets bonded with nano-filled composites.
Chalipa, Javad; Akhondi, Mohammad Sadegh Ahmad; Arab, Sepideh; Kharrazifard, Mohammad Javad; Ahmadyar, Maryam
2013-09-01
The purpose of this study was to evaluate the shear bond strength (SBS) of orthodontic brackets bonded with two types of nano-composites in comparison to a conventional orthodontic composite. Sixty extracted human first premolars were randomly divided into 3 groups each containing 20 teeth. In group I, a conventional orthodontic composite (Transbond XT) was used to bond the brackets, while two nano-composites (Filtek TM Supreme XT and AELITE Aesthetic Enamel) were used in groups II and III respectively. The teeth were stored in distilled water at 37°C for 24 hours, thermocycled in distilled water and debonded with a universal testing machine at a crosshead speed of 1 mm/min. The adhesive remnant index (ARI) was also evaluated using a stereomicroscope. AELITE Aesthetic Enamel nano-composite revealed a SBS value of 8.44±2.09 MPa, which was higher than Transbond XT (6.91±2.13) and Filtek TM Supreme XT (6.04±2.01). Statistical analysis revealed a significant difference between groups II and III (P < 0.05). No significant difference was found between groups I and III, and between groups I and II (P > 0.05). Evaluation of ARI showed that Transbond XT left fewer adhesive remains on teeth after debonding. Results of this study indicate that the aforementioned nano-composites can be successfully used for bonding orthodontic brackets.
Guneser, Mehmet Burak; Arslan, Dilara; Dincer, Asiye Nur; Er, Gamze
2017-05-01
This study evaluated the effect of sodium hypochlorite (NaOCl) irrigation with or without surfactants on the bond strength of an epoxy-based sealer to the root canal dentin. Eighty decoronated single-rooted human mandibular premolars were instrumented using the rotary system. The roots were subsequently rinsed with 5 ml 17 % EDTA for 1 min and then randomly divided into 3 test groups (n = 20) and 1 control group (n = 20) according to the type of irrigation with experimental 5 % NaOCl (Wizard, RehberKimya, Istanbul, Turkey) solutions: Group 1: NaOCl-0.1 % benzalkonium chloride; Group 2: NaOCl-0.1 % Tween 80; Group 3: NaOCl-0.1 % Triton X-100; control group: NaOCl without any surfactants. Five samples from each group were prepared for scanning electron microscopy to examine the surface of root canal dentin. The 15 samples remaining in each group were obturated with gutta-percha and AH Plus (Dentsply DeTrey GmbH, Konstanz, Germany) using the cold lateral compaction technique. A push-out test was used to measure the bond strength between the sealer and root canal dentin. Data were analyzed using two-way analysis of variance and Tukey's post hoc tests (P = 0.05). The NaOCl-0.1 % Triton X-100 group demonstrated the highest mean bond-strength values in all root thirds among the groups (P < 0.05). However, the bond strength of the sealer in the NaOCl-0.1 % benzalkonium chloride and NaOCl-0.1 % Tween 80 groups did not differ from that in the control group (P > 0.05). Additionally, the bond-strength values decreased in the corono-apical direction for all groups (P < 0.05). NaOCl solution with Triton X-100 can provide higher bond strength of the epoxy resin-based sealer to root dentin compared to NaOCl solution wiithout any surfactant. The bond strength of sealer to dentin can be improved by the addition of the surfactants to NaOCl solution.
Naji, Ghassan Abdul-Hamid; Omar, Ros Anita; Yahya, Rosiyah
2017-03-01
In all-ceramic systems, a high incidence of veneer chip-off has been reported in clinical studies. Coefficient of thermal expansion (CTE) behaviour is one of the factors that may increase residual stress in the interface and influence the veneer/core bond strength. Therefore, this study aimed to evaluate the effect of sodalite zeolite-infiltration on the CTE behaviour and bond strength of different all-ceramic prostheses. The case-study groups were synthesized sodalite zeolite-infiltrated alumina (IA-SOD) and synthesized sodalite zeolite-infiltrated zirconia-toughened alumina (ZTA) (IZ-SOD), while the control groups were glass-infiltrated alumina (IA-glass) and glass-infiltrated ZTA (IZ-glass). Forty cylindrical-shaped samples measuring 5 mm in diameter and 10 mm in height were tested for CTE using a thermo-mechanical analyser machine, and forty disc-shaped ceramic samples measuring 12 mm in diameter and 1.2 ± 0.2 mm in thickness were prepared using specially designed stainless steel split mould and veneered by cylinder-shaped (2 mm high × 2 mm diameter) low-fusing porcelain (Vita VM7). The veneer/core samples were sintered and tested for shear bond strength using a high precision universal testing machine. Scanning electron microscope, stereo microscope, atomic force microscope, and energy-dispersive X-ray spectroscopy were used to investigate the structural characteristics of samples at the fracture surface. The collected data were analyzed with a one-way ANOVA and Tukey HSD test (α=.05). IZ-SOD revealed highest CTE and shear bond strength values, while the IA-glass revealed the lowest values than the other groups. There was no significant difference in CTE and bond strength among IZ-SOD, IA-SOD and IZ-glass samples (p>0.05). The experimental SOD zeolite-infiltrated samples revealed higher CTE mismatch and bond strength along with a more favourable mode of failure than did the commercial glass-infiltrated samples. Sandblast technique is considered as effective conditioning procedure for enhancing the surface roughness of SOD zeolite-infiltrated frameworks which subsequently improving the bond strength. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gundogdu, Mustafa; Yesil Duymus, Zeynep; Alkurt, Murat
2014-10-01
Adhesive failure between acrylic resin and resilient liner material is commonly encountered in clinical practice. The purpose of this study was to evaluate the effect of different surface treatments on the bond strength of 2 different resilient lining materials to an acrylic resin denture base. Ninety-six dumbbell-shaped specimens were fabricated from heat-polymerized acrylic resin, and 3 mm of the material was cut from the thin midsection. The specimens were divided into 6 groups according to their surface treatments: no surface treatment (control group), 36% phosphoric acid etching (acid group), erbium:yttrium-aluminum-garnet (Er:YAG) laser (laser group), airborne-particle abrasion with 50-μm Al2O3 particles (abrasion group), an acid+laser group, and an abrasion+laser group. The specimens in each group were divided into 2 subgroups according to the resilient lining material used: heat-polymerized silicone based resilient liner (Molloplast B) and autopolymerized silicone-based resilient liner (Ufi Gel P). After all of the specimens had been polymerized, they were stored in distilled water at 37°C for 1 week. A tensile bond strength test was then performed. Data were analyzed with a 2-way ANOVA, and the Sidak multiple comparison test was used to identify significant differences (α=.05). The effects of the surface treatments and resilient lining materials on the surface of the denture base resin were examined with scanning electron microscopy. The tensile bond strength was significantly different between Molloplast B and Ufi Gel P (P<.001). The specimens of the acid group had the highest tensile bond strength, whereas those of the abrasion group had the lowest tensile bond strength. The scanning electron microscopy observations showed that the application of surface treatments modified the surface of the denture base resin. Molloplast B exhibited significantly higher bond strength than Ufi Gel P. Altering the surface of the acrylic resin denture base with 36% phosphoric acid etching increased bond strength. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Kocaağaoğlu, Hasan; Manav, Taha; Albayrak, Haydar
2017-04-01
When fracture of an all-ceramic restoration occurs, it can be necessary to repair without removing the restoration. Although there are many studies about the repair of metal-ceramic restorations, there are few about all-ceramic restorations. The aim of this study was to evaluate the shear bond strength between ceramic repair systems and esthetic core materials and to evaluate the wettability of all-ceramic core materials. Disk-like specimens (N = 90) made of three dental ceramic infrastructure materials (zirconia ceramic, alumina ceramic, glass ceramic) were polished with silicon carbide paper, prepared for bonding (abrasion with 30 μm diamond rotary cutting instrument). Thirty specimens of each infrastructure were obtained. Each infrastructure group was divided into three subgroups; they were bonded using 3 repair systems: Bisco Intraoral Repair Kit, Cimara & Cimara Zircon Repair System, and Clearfil Repair System. After 1200 thermocycles, shear bond strength was measured in a universal testing machine at a 0.5 mm/min crosshead speed. In addition, the contact angle values of the infrastructures after surface treatments were examined for wettability. Data were analyzed by using ANOVA and Tukey post hoc tests. Although there were no significant differences among the repair systems (p > 0.05) in the glass ceramic and zirconia groups, a significant difference was found among the repair systems in alumina infrastructure (p < 0.001). There were no statistically significant differences among the infrastructures (p > 0.05); however, a statistically significant difference was found among the repair systems (p < 0.05). No difference was found among the infrastructures and repair systems in terms of contact angle values. Cimara & Cimara Zircon Repair System had higher bond strength values than the other repair systems. Although no difference was found among the infrastructures and repair systems, contact wettability angle was decreased by surface treatments compared with polished surfaces. © 2015 by the American College of Prosthodontists.
Bahari, Mahmoud; Savadi Oskoee, Siavash; Kimyai, Soodabeh; Pouralibaba, Firoz; Farhadi, Farrokh; Norouzi, Marouf
2014-01-01
Background and aims. The aim was to evaluate the effect of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) on microtensile bond strength (μTBS) to carious affected dentin (CAD) using etch-and-rinse and self-etch adhesive systems. Materials and methods. The occlusal surface of 32 human molars with moderate occlusal caries was removed. Infected dentin was removed until reaching CAD and the teeth were randomly divided into two groups based on the Single Bond (SB) and Clearfil SE Bond (CSE) adhesive systems. Before composite resin bonding, each group was subdivided into three subgroups of ND, CAD and CPP-ACP-treated CAD (CAD-CPP) based on the dentin substrate. After dissecting samples to l-mm-thick cross-sections (each subgroup: n = 13), μTBS was measured at a strain rate of 0.5 mm/min. Data was analyzed using two-way ANOVA, independent samples t-test and post-hoc Tukey tests (α=0.05). Results. Bond strength of both adhesive systems to ND was significantly higher than that to CAD (P <0.001) and CAD/CPP (P < 0.001). There were no significant differences between the μTBS of SB to CAD and CAD-CPP (P > 0.05).μTBS of CSE to CAD-CPP was higher than that to CAD; however, the difference was not significant (P > 0.05). Significant differences were found between SB and CSE systems only with CAD substrate (P < 0.001). Conclusion. Regardless of the adhesive system used, surface treatment of CAD with CPP-ACP did not have a significant effect on bond strength. However, bond strength to CAD was higher with SB rather than with CSE. PMID:25346832
Hosseini, M.H.; Namvar, F.; Chalipa, J.; Saber, K.; Chiniforush, N.; Sarmadi, S.; Mirhashemi, A.H.
2012-01-01
Introduction: The purpose of this study was to compare shear bond strength (SBS) of orthodontic brackets bonded to enamel prepared by Er:YAG laser with two different powers and conventional acid-etching. Materials and Methods: Forty-five human premolars extracted for orthodontic purposes were randomly assigned to three groups based on conditioning method: Group 1- conventional etching with 37% phosphoric acid; Group 2- irradiation with Er:YAG laser at 1 W; and Group 3- irradiation with Er:YAG laser at 1.5 W. Metal brackets were bonded on prepared enamel using a light-cured composite. All groups were subjected to thermocycling process. Then, the specimens mounted in auto-cure acryle and shear bond strength were measured using a universal testing machine with a crosshead speed of 0.5 mm per second. After debonding, the amount of resin remaining on the teeth was determined using the adhesive remnant index (ARI) scored 1 to 5. One-way analysis of variance was used to compare shear bond strengths and the Kruskal-Wallis test was performed to evaluate differences in the ARI for different etching types. Results: The mean and standard deviation of conventional acid-etch group, 1W laser group and 1.5W laser group was 3.82 ± 1.16, 6.97 ± 3.64 and 6.93 ± 4.87, respectively. Conclusion: The mean SBS obtained with an Er:YAG laser operated at 1W or 1.5W is approximately similar to that of conventional etching. However, the high variability of values in bond strength of irradiated enamel should be considered to find the appropriate parameters for applying Er:YAG laser as a favorable alternative for surface conditioning. PMID:22924098
Madrid Troconis, Cristhian Camilo; Santos-Silva, Alan Roger; Brandão, Thaís Bianca; Lopes, Marcio Ajudarte; de Goes, Mario Fernando
2017-11-01
To analyze the evidence regarding the impact of head and neck radiotherapy (HNRT) on the mechanical behavior of composite resins and adhesive systems. Searches were conducted on PubMed, Embase, Scopus and ISI Web of Science databases using "Radiotherapy", "Composite resins" and "Adhesive systems" as keywords. Selected studies were written in English and assessed the mechanical behavior of composite resins and/or adhesive systems when bonding procedure was conducted before and/or after a maximum radiation dose ≥50Gy, applied under in vitro or in vivo conditions. In total, 115 studies were found but only 16 were included, from which five evaluated the effect of in vitro HNRT on microhardness, wear resistance, diametral tensile and flexural strength of composite resins, showing no significant negative effect in most of reports. Regarding bond strength of adhesive systems, 11 studies were included from which five reported no meaningful negative effect when bonding procedure was conducted before simulated HNRT. Conversely, five studies showed that bond strength diminished when adhesive procedure was done after in vitro radiation therapy. Only two studies about dental adhesion were conducted after in vivo radiotherapy but the results were not conclusive. The mechanical behavior of composite resins and adhesive systems seems not to be affected when in vitro HNRT is applied after bonding procedure. However, bond strength of adhesive systems tends to decrease when simulated radiotherapy is used immediately before bonding procedure. Studies assessing dentin bond strength after in-vivo HNRT were limited and controversial. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Ying; Tay, Franklin R.; Lu, Zhicen; Chen, Chen; Qian, Mengke; Zhang, Huaiqin; Tian, Fucong; Xie, Haifeng
2016-12-01
The present work examined the effects of dipentaerythritol penta-acrylate phosphate (PENTA) as an alternative phosphate ester monomer for bonding of methacrylate-based resins to yttria-stabilized tetragonal zirconia polycrystals (Y-TZP) and further investigated the potential bonding mechanism involved. Shear bond strength testing was performed to evaluate the efficacy of experimental PENTA-containing primers (5, 10, 15, 20 or 30 wt% PENTA in acetone) in improving resin-Y-TZP bond strength. Bonding without the use of a PENTA-containing served as the negative control, and a Methacryloyloxidecyl dihydrogenphosphate(MDP)-containing primer was used as the positive control. Inductively coupled plasma-mass spectrometry (ICP-MS), X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FTIR) were used to investigate the potential existence of chemical affinity between PENTA and Y-TZP. Shear bond strengths were significant higher in the 15 and 20 wt% PENTA groups. The ICP-MS, XPS and FTIR data indicated that the P content on the Y-TZP surface increased as the concentration of PENTA increased in the experimental primers, via the formation of Zr-O-P bond. Taken together, the results attest that PENTA improves resin bonding of Y-TZP through chemical reaction with Y-TZP. Increasing the concentration of PENTA augments its binding affinity but not its bonding efficacy with zirconia.
High Temperature Adhesives for Bonding Kapton
NASA Technical Reports Server (NTRS)
Stclair, A. K.; Slemp, W. S.; Stclair, T. L.
1978-01-01
Experimental polyimide resins were developed and evaluated as potential high temperature adhesives for bonding Kapton polyimide film. Lap shear strengths of Kapton/Kapton bonds were obtained as a function of test temperature, adherend thickness, and long term aging at 575K (575 F) in vacuum. Glass transition temperatures of the polyimide/Kapton bondlines were monitored by thermomechanical analysis.
High temperature adhesives for bonding Kapton
NASA Technical Reports Server (NTRS)
Saint Clair, A. K.; Slemp, W. S.; Saint Clair, T. L.
1978-01-01
Experimental polyimide resins have been developed and evaluated as potential high temperature adhesives for bonding Kapton polyimide film. Lap shear strengths of 'Kapton'/'Kapton' bonds were obtained as a function of test temperature, adherend thickness, and long term aging at 575K (575 F) in vacuum. Glass transition temperatures of the polyimide/'Kapton' bondlines were monitored by thermomechanical analysis.
Influence of irradiation by a novel CO2 9.3-μm short-pulsed laser on sealant bond strength.
Rechmann, P; Sherathiya, K; Kinsel, R; Vaderhobli, R; Rechmann, B M T
2017-04-01
The objective of this in vitro study was to evaluate whether irradiation of enamel with a novel CO 2 9.3-μm short-pulsed laser using energies that enhance caries resistance influences the shear bond strength of composite resin sealants to the irradiated enamel. Seventy bovine and 240 human enamel samples were irradiated with a 9.3-μm carbon dioxide laser (Solea, Convergent Dental, Inc., Natick, MA) with four different laser energies known to enhance caries resistance or ablate enamel (pulse duration from 3 μs at 1.6 mJ/pulse to 43 μs at 14.9 mJ/pulse with fluences between 3.3 and 30.4 J/cm 2 , pulse repetition rate between 4.1 and 41.3 Hz, beam diameter of 0.25 mm and 1-mm spiral pattern, and focus distance of 4-15 mm). Irradiation was performed "freehand" or using a computerized, motor-driven stage. Enamel etching was achieved with 37% phosphoric acid (Scotchbond Universal etchant, 3M ESPE, St. Paul, MN). As bonding agent, Adper Single Bond Plus was used followed by placing Z250 Filtek Supreme flowable composite resin (both 3M ESPE). After 24 h water storage, a single-plane shear bond test was performed (UltraTester, Ultradent Products, Inc., South Jordan, UT). All laser-irradiated samples showed equal or higher bond strength than non-laser-treated controls. The highest shear bond strength values were observed with the 3-μs pulse duration/0.25-mm laser pattern (mean ± SD = 31.90 ± 2.50 MPa), representing a significant 27.4% bond strength increase over the controls (25.04 ± 2.80 MPa, P ≤ 0.0001). Two other caries-preventive irradiation (3 μs/1 mm and 7 μs/0.25 mm) and one ablative pattern (23 μs/0.25 mm) achieved significantly increased bond strength compared to the controls. Bovine enamel also showed in all test groups increased shear bond strength over the controls. Computerized motor-driven stage irradiation did not show superior bond strength values over the clinically more relevant freehand irradiation. Enamel that is made caries-resistant with CO 2 9.3-μm short-pulsed laser irradiation showed at least equal or significantly higher shear bond strength to pit and fissure sealants than non-laser-irradiated enamel. The risk of a sealant failure due to CO 2 9.3-μm short-pulsed laser irradiation appears reduced. If additional laser ablation is required before placing a sealant, the CO 2 9.3-μm enamel laser-cut showed equivalent or superior bond strength to a flowable sealant.
NASA Astrophysics Data System (ADS)
Okuyama, Katsushi; Komatsu, Hisanori; Yamamoto, Hiroko; Pereira, Patricia N. R.; Bedran-Russo, Ana K.; Nomachi, Masaharu; Sato, Takahiro; Sano, Hidehiko
2011-10-01
The use of fluoride for the prevention of caries is based on the transformation of hydroxylapatite to fluoroapatite in the presence of fluoride ions, thereby strengthening tooth structure. Adhesion of dentin and resin composite (tooth-colored restoration material) requires a dentin bonding system, since resin composite is not able to adhere to dentin directly. Demineralization of dentin by acid etching is an important step in the dentin bonding system, however, demineralization also introduces weaknesses in tooth structure. If the demineralized dentin could be strengthened by the application of fluoride, then the dentin-resin composite bond strength might also improve. To test this hypothesis, the present study evaluated the influence of fluoride applications on the strength of the dentin-resin composite bond by (1) tensile strength testing analyses, (2) SEM analyses of tooth structure, and (3) detection of calcium (Ca) and fluorine (F) distribution patterns by micro proton-induced X-ray emission (μ-PIXE) and micro proton-induced gamma-ray emission (μ-PIGE) analyses conducted at the Takasaki Ion Accelerators for Advanced Radiation Application (TIARA) at the Takasaki Advanced Radiation Research Institute (TARRI). In this study, the dentin in extracted human molars was exposed by grinding and the dentin was etched with 35% phosphoric acid. Fluoride was applied at two concentrations, 0.022% (100 ppm F) and 2.21% (10,000 ppm F) NaF solution, for two time periods, 30 and 60 s, prior to bonding the resin composite with the treated dentin. Controls were prepared in the same manner, but without the fluoride application. Bond strength was measured with a micro-tensile testing unit, and the fluorine and calcium distributions at the interface between dentin and resin composite were detected by μ-PIGE and μ-PIXE analysis, respectively. Results indicate that the 10,000 ppm F applications resulted in higher bond strengths than observed in either the 100 ppm F applications or the control group. In addition, PIGE analyses showed high concentrations of fluorine in the hybrid bonding layer of the 10,000 ppm F samples, suggesting that the fluorine contributes to the strength of the dentin-resin composite bond. Detection of fluoroapatite within the hybrid bonding layer suggests that bond strength involves remineralization processes.
Strength of bond with Comspan Opaque to three silicoated alloys and titanium.
Hansson, O
1990-06-01
In Sweden high-gold alloys or cobalt-chromium alloys are used for resin-bonded prostheses. The bond strength between a resin cement and different sandblasted or silicoated metals were measured before and after thermocycling; in connection with this some rapid thermocycling methods were studied. The effect of different storage times and different protection coatings on bond strength were tested. Finally, the influence of rubbing and contamination with saliva on bond strength were investigated. Silicoating increased the bond strength significantly. The highest bond strengths were these of silicoated Wirobond and titanium, unsusceptible to thermal stress; the bond strengths of the sandblasted metals were the weakest, and sensitive to thermocycling as well. The influence on bond strength for silicoated gold alloys, protected with an unpolymerized composite resin coating, stored in sealed plastic bags up to 7 days, was negligible. Rubbing and contamination with saliva did not influence bond strength. Preferably, silicoated Wirobond and titanium should be used for resin-bonded prostheses, but gold alloys may still be adequate for clinical use. The experimental method described for storing, sealing, and cleaning the silicoated metal surfaces in this article can be recommended for laboratory and clinical use.
Influence of cement thickness on resin-zirconia microtensile bond strength
Lee, Tae-Hoon; Ahn, Jin-Soo; Shim, June-Sung; Han, Chong-Hyun
2011-01-01
PURPOSE The aim of this study was to evaluate the influence of resin cement thickness on the microtensile bond strength between zirconium-oxide ceramic and resin cement. MATERIALS AND METHODS Thirty-two freshly extracted molars were transversely sectioned at the deep dentin level and bonded to air-abraded zirconium oxide ceramic disks. The specimens were divided into 8 groups based on the experimental conditions (cement type: Rely X UniCem or Panavia F 2.0, cement thickness: 40 or 160 µm, storage: thermocycled or not). They were cut into microbeams and stored in 37℃ distilled water for 24 h. Microbeams of non-thermocycled specimens were submitted to a microtensile test, whereas those of thermocycled groups were thermally cycled for 18,000 times immediately before the microtensile test. Three-way ANOVA and Sheffe's post hoc tests were used for statistical analysis (α=95%). RESULTS All failures occurred at the resin-zirconia interface. Thermocycled groups showed lower microtensile bond strength than non-thermocycled groups (P<.001). Differences in cement thickness did not influence the resin-zirconia microtensile bond strength given the same resin cement or storage conditions (P>.05). The number of adhesive failures increased after thermocycling in all experimental conditions. No cohesive failure was observed in any experimental group. CONCLUSION When resin cements of adhesive monomers are applied over air-abraded zirconia restorations, the degree of fit does not influence the resin-zirconia microtensile bond strength. PMID:22053241
Liu, Rui-Rui; Fang, Ming; Zhang, Ling; Tang, Cheng-Fang; Dou, Qi; Chen, Ji-Hua
2014-01-01
Our previous studies showed that biomodification of demineralized dentin collagen with proanthocyanidin (PA) for a clinically practical duration improves the mechanical properties of the dentin matrix and the immediate resin–dentin bond strength. The present study sought to evaluate the ability of PA biomodification to reduce collagenase-induced biodegradation of demineralized dentin matrix and dentin/adhesive interfaces in a clinically relevant manner. The effects of collagenolytic and gelatinolytic activity on PA-biomodified demineralized dentin matrix were analysed by hydroxyproline assay and gelatin zymography. Then, resin-/dentin-bonded specimens were prepared and challenged with bacterial collagenases. Dentin treated with 2% chlorhexidine and untreated dentin were used as a positive and negative control, respectively. Collagen biodegradation, the microtensile bond strengths of bonded specimens and the micromorphologies of the fractured interfaces were assessed. The results revealed that both collagenolytic and gelatinolytic activity on demineralized dentin were notably inhibited in the PA-biomodified groups, irrespective of PA concentration and biomodification duration. When challenged with exogenous collagenases, PA-biomodified bonded specimens exhibited significantly less biodegradation and maintained higher bond strengths than the untreated control. These results suggest that PA biomodification was effective at inhibiting proteolytic activity on demineralized dentin matrix and at stabilizing the adhesive/dentin interface against enzymatic degradation, is a new concept that has the potential to improve bonding durability. PMID:24810807
Yanagida, Hiroaki; Tanoue, Naomi; Ide, Takako; Matsumura, Hideo
2009-07-01
We evaluated the effects of two dual-functional primers and a tribochemical surface modification system on the bond strength between an indirect composite resin and gold alloy or titanium. Disk specimens (diameter, 10 mm; thickness, 2.5 mm) were cast from type 4 gold alloy and commercially pure titanium. The specimens were wetground to a final surface finish using 600-grit silicone carbide paper. The specimens were then air-dried and treated using the following four bonding systems: (1) air-abrasion with 50-70 mum alumina, (2) system 1 + alloy primer, (3) system 1 + metal link primer, and (4) tribochemical silica/silane coating (Rocatec). A light-polymerizing indirect composite resin (Ceramage) was applied to each metal specimen and polymerized according to the manufacturer's specifications. Shear bond strengths (MPa) were determined both before and after thermocycling (4 degrees C and 60 degrees C for 1 min each for 20 000 cycles). The values were compared using analysis of variance, post hoc Scheffe tests, and Mann-Whitney U tests (alpha = 0.05). The strengths decreased after thermocycling for all combinations. For both gold alloy and titanium, the bond strength with air-abrasion only was statistically lower than that with the other three modification methods after thermocycling. Titanium exhibited a significantly higher value (13.4 MPa) than gold alloy (10.5 MPa) with the air. abrasion and alloy primer system. Treatment with the tribochemical system or air abrasion followed by treatment with dual-functional priming agents was found to be effective for enhancement of the bonding between the indirect composite and gold alloy or titanium.
NASA Astrophysics Data System (ADS)
Marques, Barbara A.; Navarro, Ricardo S.; Silvestre, Fellipe D.; Pinheiro, Sergio L.; Freitas, Patricia M.; Imparato, Jose Carlos P.; Oda, Margareth
2005-03-01
The aim of this study was to evaluate the tensile strength of different adhesive systems to primary tooth dentin prepared by high-speed drill and Er:YAG laser (2.94μm). Buccal surfaces of 38 primary canines were ground and flattened with sand paper disks (#120-600 grit) and distributed into five groups (n=15): G1: diamond bur in high-speed drill (HD)+ 35% phosphoric acid (PA)+Single Bond (SB); G2: HD+self-etching One Up Bond F (OUB);G3: Er:YAG laser (KaVo 3- LELO-FOUSP)(4Hz, 80mJ, 25,72J/cm2) (L)+PA+SB, G4: L+SB, G5: L+OUB. The inverted truncated cone samples built with Z-100 composite resin after storage in water (37°C/24h) were submitted to tensile bond strength test on Mini Instron 4442 (0.5mm/min, 500N). The data were analyzed with ANOVA and Tukey Test (p<0.05). The mean (MPa) were: G1-3.18(+/-1.24) G2-1.79(+/-0.73) G3-3.17(+/-0.44) G4-8.29(+/-1.86) G5-7.11(+/-2.07). The data analyzed with ANOVA and Tukey Test showed that Laser associated with PA+SB, SB or OUB lead to increased bonding values when compared to HD+PA+SB and HD+OUB (p=0.000), L+SB showed higher values than L+PA+SB and L+OUB (p=0.0311). Er:YAG laser radiation promoted significant increase of bond strength of different adhesive systems evaluated in the dentin of primary teeth.
Kim, Jae-Hoon; Chae, Soyeon; Lee, Yunhee; Han, Geum-Jun; Cho, Byeong-Hoon
2014-11-01
This study compared the sensitivity of three shear test methods for measuring the shear bond strength (SBS) of resin cement to zirconia ceramic and evaluated the effects of surface treatment methods on the bonding. Polished zirconia ceramic (Cercon base, DeguDent) discs were randomly divided into four surface treatment groups: no treatment (C), airborne-particle abrasion (A), conditioning with Alloy primer (Kuraray Medical Co.) (P) and conditioning with Alloy primer after airborne-particle abrasion (AP). The bond strengths of the resin cement (Multilink N, Ivoclar Vivadent) to the zirconia specimens of each surface treatment group were determined by three SBS test methods: the conventional SBS test with direct filling of the mold (Ø 4 mm × 3 mm) with resin cement (Method 1), the conventional SBS test with cementation of composite cylinders (Ø 4 mm × 3 mm) using resin cement (Method 2) and the microshear bond strength (μSBS) test with cementation of composite cylinders (Ø 0.8 mm × 1 mm) using resin cement (Method 3). Both the test method and the surface treatment significantly influenced the SBS values. In Method 3, as the SBS values increased, the coefficients of variation decreased and the Weibull parameters increased. The AP groups showed the highest SBS in all of the test methods. Only in Method 3 did the P group show a higher SBS than the A group. The μSBS test was more sensitive to differentiating the effects of surface treatment methods than the conventional SBS tests. Primer conditioning was a stronger contributing factor for the resin bond to zirconia ceramic than was airborne-particle abrasion.
NASA Astrophysics Data System (ADS)
Luo, Xiaotao; Smith, Gregory M.; Sampath, Sanjay
2018-02-01
Adhesion of thermal spray (TS) coatings is an important system level property in coating design and application. Adhesive-based pull testing (ASTM C633) has long been used to evaluate coating/substrate bonding. However, this approach is not always suitable for high velocity spray coatings, for example, where adhesion strengths are routinely greater than the strength of the adhesive bonding agent used in the testing. In this work, a new approach has been proposed to evaluate the adhesion of TS coatings. A systematic investigation of the effects of substrate roughness on both the uniaxial tensile yield strength and traditional bond pull adhesive strength of HVOF Ni and Ni-5wt.%Al, as well as cold-sprayed Ni-coated laminates revealed a strong correlation between these two test methodologies for the respective materials and processes. This approach allows measurement of the adhesion response even where the adhesive method is not applicable, overcoming many of the issues in the traditional ASTM C633. Analysis of cracking patterns of the coatings after 10.5% strain was used to assess the adhesion and cohesion properties. The mechanisms which determine the load transfer between the substrate and the coating are also briefly discussed.
Bonding Properties of Basalt Fiber and Strength Reduction According to Fiber Orientation
Choi, Jeong-Il; Lee, Bang Yeon
2015-01-01
The basalt fiber is a promising reinforcing fiber because it has a relatively higher tensile strength and a density similar to that of a concrete matrix as well as no corrosion possibility. This study investigated experimentally the bonding properties of basalt fiber with cementitious material as well as the effect of fiber orientation on the tensile strength of basalt fiber for evaluating basalt fiber’s suitability as a reinforcing fiber. Single fiber pullout tests were performed and then the tensile strength of fiber was measured according to fiber orientation. The test results showed that basalt fiber has a strong chemical bond with the cementitious matrix, 1.88 times higher than that of polyvinyl alcohol fibers with it. However, other properties of basalt fiber such as slip-hardening coefficient and strength reduction coefficient were worse than PVA and polyethylene fibers in terms of fiber bridging capacity. Theoretical fiber-bridging curves showed that the basalt fiber reinforcing system has a higher cracking strength than the PVA fiber reinforcing system, but the reinforcing system showed softening behavior after cracking. PMID:28793595
Bonding Properties of Basalt Fiber and Strength Reduction According to Fiber Orientation.
Choi, Jeong-Il; Lee, Bang Yeon
2015-09-30
The basalt fiber is a promising reinforcing fiber because it has a relatively higher tensile strength and a density similar to that of a concrete matrix as well as no corrosion possibility. This study investigated experimentally the bonding properties of basalt fiber with cementitious material as well as the effect of fiber orientation on the tensile strength of basalt fiber for evaluating basalt fiber's suitability as a reinforcing fiber. Single fiber pullout tests were performed and then the tensile strength of fiber was measured according to fiber orientation. The test results showed that basalt fiber has a strong chemical bond with the cementitious matrix, 1.88 times higher than that of polyvinyl alcohol fibers with it. However, other properties of basalt fiber such as slip-hardening coefficient and strength reduction coefficient were worse than PVA and polyethylene fibers in terms of fiber bridging capacity. Theoretical fiber-bridging curves showed that the basalt fiber reinforcing system has a higher cracking strength than the PVA fiber reinforcing system, but the reinforcing system showed softening behavior after cracking.
Evaluation of Rhenium Joining Methods
NASA Technical Reports Server (NTRS)
Reed, Brian D.; Morren, Sybil H.
1995-01-01
Coupons of rhenium-to-Cl03 flat plate joints, formed by explosive and diffusion bonding, were evaluated in a series of shear tests. Shear testing was conducted on as-received, thermally-cycled (100 cycles, from 21 to 1100 C), and thermally-aged (3 and 6 hrs at 1100 C) joint coupons. Shear tests were also conducted on joint coupons with rhenium and/or Cl03 electron beam welded tabs to simulate the joint's incorporation into a structure. Ultimate shear strength was used as a figure of merit to assess the effects of the thermal treatment and the electron beam welding of tabs on the joint coupons. All of the coupons survived thermal testing intact and without any visible degradation. Two different lots of as-received, explosively-bonded joint coupons had ultimate shear strengths of 281 and 310 MPa and 162 and 223 MPa, respectively. As-received, diffusion-bonded coupons had ultimate shear strengths of 199 and 348 MPa. For the most part, the thermally-treated and rhenium weld tab coupons had shear strengths slightly reduced or within the range of the as-received values. Coupons with Cl03 weld tabs experienced a significant reduction in shear strength. The degradation of strength appeared to be the result of a poor heat sink provided during the electron beam welding. The Cl03 base material could not dissipate heat as effectively as rhenium, leading to the formation of a brittle rhenium-niobium intermetallic.
Low void content autoclave molded titanium alloy and polyimide graphite composite structures.
NASA Technical Reports Server (NTRS)
Vaughan, R. W.; Jones, R. J.; Creedon, J. F.
1972-01-01
This paper discusses a resin developed for use in autoclave molding of polyimide graphite composite stiffened, titanium alloy structures. Both primary and secondary bonded structures were evaluated that were produced by autoclave processing. Details of composite processing, adhesive formulary, and bonding processes are provided in this paper, together with mechanical property data for structures. These data include -65 F, room temperature, and 600 F shear strengths; strength retention after aging; and stress rupture properties at 600 F under various stress levels for up to 1000 hours duration. Typically, shear strengths in excess of 16 ksi at room temperature with over 60% strength retention at 600 F were obtained with titanium alloy substrates.
Tensile and bending fatigue of the adhesive interface to dentin.
Belli, Renan; Baratieri, Luiz Narciso; Braem, Marc; Petschelt, Anselm; Lohbauer, Ulrich
2010-12-01
The aim of this study was to evaluate the fatigue limits of the dentin-composite interfaces established either with an etch-and-rinse or an one-step self-etch adhesive systems under tensile and bending configurations. Flat specimens (1.2 mm×5 mm×35 mm) were prepared using a plexiglass mold where dentin sections from human third molars were bonded to a resin composite, exhibiting the interface centrally located. Syntac Classic and G-Bond were used as adhesives and applied according to the manufacturer's instructions. The fluorochrome Rhodamine B was added to the adhesives to allow for fractographic evaluation. Tensile strength was measured in an universal testing machine and the bending strength (n=15) in a Flex machine (Flex, University of Antwerp, Belgium), respectively. Tensile (TFL) and bending fatigue limits (BFL) (n=25) were determined under wet conditions for 10(4) cycles following a staircase approach. Interface morphology and fracture mechanisms were observed using light, confocal laser scanning and scanning electron microscopy. Statistical analysis was performed using three-way ANOVA (mod LSD test, p<0.05). Tensile and bending characteristic strengths at 63.2% failure probability for Syntac were 23.8 MPa and 71.5 MPa, and 24.7 MPa and 72.3 MPa for G-Bond, respectively. Regarding the applied methods, no significant differences were detected between adhesives. However, fatigue limits for G-Bond (TFL=5.9 MPa; BFL=36.2 MPa) were significantly reduced when compared to Syntac (TFL=12.6 MPa; BFL=49.7 MPa). Fracture modes of Syntac were generally of adhesive nature, between the adhesive resin and dentin, while G-Bond showed fracture planes involving the adhesive-dentin interface and the adhesive resin. Cyclic loading under tensile and bending configurations led to a significant strength degradation, with a more pronounced fatigue limit decrease for G-Bond. The greater decrease in fracture strength was observed in the tensile configuration. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Kaleli, Necati; Saraç, Duygu
2017-07-01
Most studies evaluating dental laser sintering systems have focused on the marginal accuracy of the restorations. However, the bond strength at the metal-ceramic interface is another important factor that affects the survival of restorations, and currently, few studies focus on this aspect. The purpose of this in vitro study was to compare the porcelain bond strength of cobalt-chromium (Co-Cr) metal frameworks prepared by using the conventional lost-wax technique, milling, direct metal laser sintering (DMLS), and laser cusing, a direct process powder-bed system. A total of 96 metal frameworks (n=24 in each group) were prepared by using conventional lost-wax (group C), milling (group M), DMLS (group LS), and direct process powder-bed (group LC) methods according to International Organization for Standardization standard ISO 9693-1. After porcelain application, a 3-point bend test was applied to each specimen by using a universal testing machine. Data were statistically analyzed using 1-way ANOVA and Tukey honest significant difference tests (α=.05). Failure types at the metal-ceramic interfaces were examined using stereomicroscopy. Additionally, 1 specimen from each group was prepared for scanning electron microscopy analysis to evaluate the surface topography of metal frameworks. The mean bond strength was 38.08 ±3.82 MPa for group C, 39.29 ±3.51 MPa for group M, 40.73 ±3.58 MPa for group LS, and 41.24 ±3.75 MPa for group LC. Statistically significant differences were observed among the 4 groups (P=.016). All groups, except for LS, exhibited adhesive and mixed type bond failure. Both of the laser sintering methods were found to be successful in terms of metal-ceramic bond strength. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Roos, Malgorzata; Stawarczyk, Bogna
2012-07-01
This study evaluated and compared Weibull parameters of resin bond strength values using six different general-purpose statistical software packages for two-parameter Weibull distribution. Two-hundred human teeth were randomly divided into 4 groups (n=50), prepared and bonded on dentin according to the manufacturers' instructions using the following resin cements: (i) Variolink (VAN, conventional resin cement), (ii) Panavia21 (PAN, conventional resin cement), (iii) RelyX Unicem (RXU, self-adhesive resin cement) and (iv) G-Cem (GCM, self-adhesive resin cement). Subsequently, all specimens were stored in water for 24h at 37°C. Shear bond strength was measured and the data were analyzed using Anderson-Darling goodness-of-fit (MINITAB 16) and two-parameter Weibull statistics with the following statistical software packages: Excel 2011, SPSS 19, MINITAB 16, R 2.12.1, SAS 9.1.3. and STATA 11.2 (p≤0.05). Additionally, the three-parameter Weibull was fitted using MNITAB 16. Two-parameter Weibull calculated with MINITAB and STATA can be compared using an omnibus test and using 95% CI. In SAS only 95% CI were directly obtained from the output. R provided no estimates of 95% CI. In both SAS and R the global comparison of the characteristic bond strength among groups is provided by means of the Weibull regression. EXCEL and SPSS provided no default information about 95% CI and no significance test for the comparison of Weibull parameters among the groups. In summary, conventional resin cement VAN showed the highest Weibull modulus and characteristic bond strength. There are discrepancies in the Weibull statistics depending on the software package and the estimation method. The information content in the default output provided by the software packages differs to very high extent. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Effect of soldering on the metal-ceramic bond strength of an Ni-Cr base alloy.
Nikellis, Ioannis; Levi, Anna; Zinelis, Spiros
2005-11-01
Although soldering is a common laboratory procedure, the use of soldering alloys may adversely affect metal-ceramic bond strength and potentially decrease the longevity of metal-ceramic restorations. The purpose of this study was to investigate the effect of soldering on metal-ceramic bond strength of a representative Ni-Cr base metal alloy. Twenty-eight rectangular (25 x 3 x 0.5 mm) Ni-based alloy (Wiron 99) specimens were equally divided into soldering (S) and reference (R) groups. Soldering group specimens were covered with a 0.1-mm layer of the appropriate solder (Wiron-Lot) and reduced by 0.1 mm on the opposite side. Five specimens of each group were used for the measurement of surface roughness parameter (R(z)) and hardness, and 3 were used for measurement of the modulus of elasticity. Six specimens of each group were covered with porcelain (Ceramco 3) and subjected to a 3-point bending test for evaluation of the metal-ceramic bond strength according to the ISO 9693 specification. The data from surface roughness, hardness, modulus of elasticity, and metal-ceramic bond strength were analyzed statistically, using independent t tests (alpha=.05). Statistical analysis of the R(z) surface roughness parameter (S: 3.4 +/- 0.3 mum; R: 3.7 +/- 0.7 microm; P=.07) and bond strength (S: 46 +/- 3 MPa; R: 40 +/- 5 MPa; P=.057) failed to reveal any significant difference between the 2 groups. The specimens of the soldering group demonstrated significantly lower values both in hardness (S: 128 +/- 11 VHN; R: 217 +/- 4 VHN; P<.001) and in modulus of elasticity (S: 135 +/- 4 GPa; R: 183 +/- 6 GPa; P=.035) than the reference group. Under the conditions of the present study, the addition of solder to the base metal alloy did not affect the metal-ceramic bond strength.
Effects of different preparation procedures during tooth whitening on enamel bonding.
Wilson, Dustin; Xu, Changqi; Hong, Liang; Wang, Yong
2009-04-01
The objective of this study was to assess effects of some clinically related preparation procedures during tooth whitening on enamel bonding properties. Sixty-two extracted human teeth were cleaned and divided into four groups. Forty-two of the teeth were left with their natural surface intact while 20 teeth were polished to form a flat surface. Half of the tooth served as the experimental side and received one of the two whitening products: Opalescence (10% carbamide peroxide) and Crest Whitestrips (6.5% hydrogen peroxide), for 2 weeks. Post-bleaching intervals included: 1 day, 1 week, and 2 weeks. On these days, tooth (10 mm x 1.5 mm x 1.5 mm) sections were evaluated using Raman spectroscopy, scanning electron microscopy and tensile bond strength tests. T-test, ANOVA test, and mixed model regression analysis were used to assess the differences. No significant difference existed between natural surface and polished surface teeth for all groups at both Day One and Week Two (P > 0.05). On Day One, both treated groups had significant lower bond strength than the control group (P = 0.002). After 2 weeks, no significant difference existed between any group (P = 0.381). SEM indicated that resin-enamel interfaces in bleached enamel exhibited more defects in granular formations when compared to the control. Raman results indicated a lower degree of polymerization (DP) of adhesive at the interface for treated teeth surfaces. In summary, pre-bleaching surface treatments such as polish or non-polish, had no effect on bond strength. Bleaching significantly decreased bond strength initially, but after 2 weeks, bleaching had no significant effect on bond strength. Storage time had significant effect on Opalescence treated enamel, but not on control and Whitestrip treated enamel. The decrease of bond strength may be related to interfacial defects and low DP due to oxygen release after bleaching.
Shear bond strength of one-step self-etch adhesives: pH influence
Poggio, Claudio; Beltrami, Riccardo; Scribante, Andrea; Colombo, Marco; Chiesa, Marco
2015-01-01
Background: The aim of this study was to compare the shear bond strength of four one-step self-etch adhesives with different pH values to enamel and dentin. Materials and Methods: In this in vitro study, 200 bovine permanent mandibular incisors were used. Four one-step self-etch adhesives with different pH values were tested both on enamel and on dentin: Adper™ Easy Bond Self-Etch Adhesive (pH = 0.8-1), Futurabond NR (pH=2), G-aenial Bond (pH = 1.5), Clearfil S3 Bond (pH = 2.7). After adhesive systems application, a nanohybrid composite resin was inserted into the bonded surface. The specimens were placed in a universal testing machine. The shear bond strength was performed at a cross-head speed of 1 mm/min until the sample rupture. The shear bond strength values (MPa) of the different groups were compared with analysis of variance after that Kolmogorov and Smirnov tests were applied to assess normality of distributions. P < 0.05 was considered as significant. Results: In enamel shear bond strength, the highest shear bond strength values were reported with Futurabond NR (P < 0.01); however, no significant differences were found with Clearfil S3 Bond. The others adhesive systems showed lower shear bond strength values with significant differences between them (P < 0.05). When comparing the dentin shear bond strength, the lowest shear bond strength values were reported with Clearfil S3 Bond (P < 0.05), while there were no significant differences among the other three products (P > 0.05). Conclusion: The pH values of adhesive systems did not influence significantly their shear bond strength to enamel or dentin. PMID:26005459
Calcium phosphate compatible bone cement: Characterization, bonding properties and tissue response
NASA Astrophysics Data System (ADS)
Roemhildt, Maria Lynn
A novel, inorganic, bone cement, containing calcium phosphate, developed for implant fixation was evaluated. Setting properties were determined over a range of temperatures. The flow of the cement was greatly increased by application of vibration. Changes in the cement during hydration and aging were evaluated. Compressive strength of the cement over time was studied under simulated physiological conditions from 1 hour to 1 year after setting. After 1 day, this cement had equivalent compressive strength to commercially used PMMA cement. The strength was found to increase over 1 month and high strength was maintained up to 1 year. The shear strength of the cement-metal interface was studied in vitro using a pull-out test. Prepared specimens were stored under physiological conditions and tested at 4 hours, 24 hours, and 60 days. Comparable interfacial shear strength values were found at 4 hours, 24 hours and 60 days for the experimental cement and were not significantly different from values obtained for PMMA cement. In vivo tissue response was evaluated after cement implantation in the femoral medullary canal in canines. Tissue response and bonding at the cement-bone interface were evaluated at 2, 6, and 12 weeks. Cortical bone was found in direct contact with the OC-cement and was healthy. The strength of the cement-bone interface, measured using a push-out test, was significantly higher for the experimental cement than for commercial PMMA bone cement.
Saikaew, Pipop; Chowdhury, A F M Almas; Fukuyama, Mai; Kakuda, Shinichi; Carvalho, Ricardo M; Sano, Hidehiko
2016-04-01
This study evaluated the effects of surface preparation and the application time of adhesives on the resin-dentine bond strengths with universal adhesives. Sixty molars were cut to exposed mid-coronal dentine and divided into 12 groups (n=5) based on three factors; (1) adhesive: G-Premio Bond (GP, GC Corp., Tokyo, Japan), Clearfil Universal Bond (CU, Kuraray Noritake Dental Inc., Okayama, Japan) and Scotchbond Universal Adhesive (SB, 3M ESPE, St. Paul, MN, USA); (2) smear layer preparation: SiC paper ground dentine or bur-cut dentine; (3) application time: shortened time or as manufacturer's instruction. Fifteen resin-dentine sticks per group were processed for microtensile bond strength test (μTBS) according to non-trimming technique (1mm(2)) after storage in distilled water (37 °C) for 24h. Data were analyzed by three-way ANOVA and Dunnett T3 tests (α=0.05). Fractured surfaces were observed under scanning electron microscope (SEM). Another 12 teeth were prepared and cut into slices for SEM examination of bonded interfaces. μTBS were higher when bonded to SiC-ground dentine according to manufacturer's instruction. Bonding to bur-cut dentine resulted in significantly lower μTBS (p<0.000). Shortening the application time resulted in significantly lower bond strength for CU on SiC and GP on bur-cut dentine. SEM of fractured surfaces revealed areas with a large amount of porosities at the adhesive resin interface. This was more pronounced when adhesives were bonded with a reduced application time and on bur cut dentine. The performance of universal adhesives can be compromised on bur cut dentine and when applied with a reduced application time. Copyright © 2016 Elsevier Ltd. All rights reserved.
Comparison of push-out bond strengths of Resilon with three different sealers.
Stiegemeier, Danielle; Baumgartner, J Craig; Ferracane, Jack
2010-02-01
The purpose of this study was to evaluate the push-out bond strengths of different obturating materials. Forty single-rooted human extracted teeth were used in this study. The teeth were instrumented and irrigated by using 5.25% NaOCl, 15% ethylenediaminetetraacetic acid, and sterile water. The teeth were then filled with Resilon/RealSeal, Resilon/RealSeal SE, Resilon/MetaSeal , or gutta-percha/Kerr EWT sealer. The roots were then sectioned into 1-mm-thick slices and subjected to vertical loading to displace the obturating material toward the coronal side of the slice. The bond strength was then calculated and subjected to statistical analysis. Slices were examined by using a stereomicroscope at 30x to determine the mode of failure. The mean push-out bond strengths were as follows: Resilon/RealSeal, 1.45 +/- 0.99 MPa; RealSeal SE, 0.88 +/- 0.49 MPa; Resilon/MetaSeal, 2.41 +/- 1.7 MPa; and gutta-percha/Kerr EWT sealer, 2.32 +/- 0.74 MPa. The push-out bond strengths of Resilon/MetaSeal and gutta-percha/Kerr EWT were significantly (P < .05) higher than either Resilon/RealSeal or Resilon/RealSeal SE. Resilon/MetaSeal and gutta-percha/Kerr EWT did not differ significantly. Copyright 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Heiss, Christian; Schettler, Nicky; Wenisch, Sabine; Cords, Sven; Schilke, Frank; Lips, Katrin Susanne; Alt, Volker; Schnettler, Reinhard
2010-01-01
The purpose of this study is to assess the mechanical efficacy of an alkylene bis(dilactoyl)-methacrylate-based degradable bone adhesive in 36 sheep. Bone segmentation with osteotomies of the metaphyseal ulna was performed and adhesive was applied into the osteotomy gaps in 18 sheep. The remaining 18 animals served as controls. The segment was subsequently stabilized without any osteosynthesis in all sheep. Six animals of the adhesive group and 6 controls were killed after 21, 42 and 84 days, respectively. Bond strength of the adhesive and quality of fracture healing was studied using biomechanical, histological and radiological methods. There were no significant differences in biomechanical analysis between both groups at any time. However, an increase of in vivo bond strength with the highest stiffness of 102.83 N/mm(2) was observed in the adhesive group after 84 days. In vitro analysis showed non-significant differences in bond strength during polymerization time. Histomorphometric investigations revealed significant differences in osteotomy cross-section area after 84 days, with higher areas of callus in the control. After 84 days the X-ray examinations showed completely bridged gaps in four of six animals in the adhesive and in five animals in the control group. This bone adhesive exhibited good in vivo and in vitro bond strength and mechanical efficiency in both the short and long term without impairment of physiological fracture healing.
Revankar, Vanita D; Prathap, M S; Shetty, K Harish Kumar; Shahul, Azmin; Sahana, K
2017-11-01
Biomineralization is a process which leads to the formation of an interfacial layer with tag-like structures at the cement-dentin interface. It is due to interaction of mineral trioxide aggregate (MTA) and Portland cement with dentin in phosphate-buffered solution (PBS). This study is aimed to evaluate the effect of influence of biomineralization process on push-out bond strength of ProRoot MTA (Dentsply Tulsa Dental, Tulsa, OK, USA), MTA Branco (Angelus Soluc¸o˜es Odontolo´gicas, Londrina, PR, Brazil) and calcium phosphate cement (BioGraft CPC). The aim of this study was to evaluate the effect of biomineralization process on the push-out strength of ProRoot MTA, MTA Branco, and CPC after mixing with 0.2% chlorhexidine gluconate solution (0.2% CHX) and 2% lidocaine solution (2% LA) on the bond strength of MTA-dentin. Dentin discs with uniform cavities were restored with ProRoot MTA, MTA Branco, and calcium phosphate cement after mixing with 0.2% CHX solution and 2% lidocaine solution. The samples were uniformly distributed into two groups. Experimental group being immersed in PBS solution and control group being immersed in saline for 2 months. Instron testing machine (Model 4444; Instron Corp., Canton, MA, USA) was used to determine the bond strength. A two-way analysis of variance and post hoc analysis by Bonferroni test. All samples immersed in experimental group displayed a significantly greater resistance to displacement than that observed for the samples in control group ( P < 0.05). MTAs displayed a significantly greater resistance to displacement than calcium phosphate cements. The main conclusion of this study was that the push-out bond strength of the cements, mainly the MTA groups, was positively influenced by the biomineralization process.
Li, Na; Nikaido, Toru; Takagaki, Tomohiro; Sadr, Alireza; Makishi, Patricia; Chen, Jihua; Tagami, Junji
2010-09-01
To investigate the effects of two functional monomers on caries-inhibition potential and bond strength of two-step self-etching adhesive systems to enamel. Clearfil SE Bond and similar experimental formulations different in the functional monomer were used. Four combinations of primer and bonding agents were evaluated: (1) Clearfil SE Bond which contains MDP in both primer and bonding (M-M); (2) Clearfil SE Bond primer and Phenyl-P in bonding (M-P); (3) Phenyl-P in primer and Clearfil SE Bond bonding (P-M); (4) Phenyl-P in primer and bonding (P-P). Ground buccal enamel surfaces of human sound premolars were treated with one of the systems and the bonded interface was exposed to an artificial demineralising solution (pH 4.5) for 4.5 h, and then 5% NaOCl with ultrasonication for 30 min. After argon-ion etching, the interfacial ultrastructure was observed using SEM. Micro-shear bond strength to enamel was measured for all groups and results were analysed using one-way ANOVA and Turkey's HSD, while failure modes were analysed by chi-square test. An acid-base resistant zone (ABRZ) was found with all adhesive systems containing MDP either in primer or bond; however, ultramorphology and crystallite arrangement in the ABRZ were different among groups. P-P was the only group devoid of this protective zone. Micro-shear bond strength in M-M was significantly higher than those in M-P, P-M and P-P, while the latter three were not different from each other. Failure modes were significantly different (p<0.05). Functional monomers in two-step self-etching systems influence both the bonding performance and the formation of ABRZ on enamel. Copyright 2010 Elsevier Ltd. All rights reserved.
Carvalho, Edilausson Moreno; Carvalho, Ceci Nunes; Loguercio, Alessandro Dourado; Lima, Darlon Martins; Bauer, José
2014-11-01
The aim of this study was to evaluate the microtensile bond strength (µTBS) of self-etching and self-adhesive resin cement systems to dentin affected by the presence of remnants of either eugenol-containing or eugenol-free temporary cements. Thirty extracted teeth were obtained and a flat dentin surface was exposed on each tooth. Acrylic blocks were fabricated and cemented either with one of two temporary cements, one zinc oxide eugenol (ZOE) and one eugenol free (ZOE-free), or without cement (control). After cementation, specimens were stored in water at 37°C for 1 week. The restorations and remnants of temporary cements were removed and dentin surfaces were cleaned with pumice. Resin composite blocks were cemented to the bonded dentin surfaces with one of two resin cements, either self-etching (Panavia F 2.0) or self-adhesive (RelyX U-100). After 24 h, the specimens were sectioned to obtain beams for submission to µTBS. The fracture mode was evaluated under a stereoscopic loupe and a scanning electron microscope (SEM). Data from µTBS were submitted to two-way repeated-measure ANOVA and the Tukey test (alpha = 0.05). The cross-product interaction was statistically significant (p < 0.0003). The presence of temporary cements reduced the bond strength to Panavia self-etching resin cements only (p < 0.05). Fracture occurred predominantly at the dentin-adhesive interface. The presence of eugenol-containing temporary cements did not interfere in the bond strength to dentin of self-adhesive resin cements.
Mahdan, Mohd Haidil Akmal; Nakajima, Masatoshi; Foxton, Richard M; Tagami, Junji
2013-10-01
This study evaluated the combined effect of smear layer characteristics with hydrostatic pulpal pressure (PP) on bond strength and nanoleakage expression of HEMA-free and -containing self-etch adhesives. Flat dentine surfaces were obtained from extracted human molars. Smear layers were created by grinding with #180- or #600-SiC paper. Three HEMA-free adhesives (Xeno V, G Bond Plus, Beautibond Multi) and two HEMA-containing adhesives (Bond Force, Tri-S Bond) were applied to the dentine surfaces under hydrostatic PP or none. Dentine bond strengths were determined using the microtensile bond test (μTBS). Data were statistically analyzed using three- and two-way ANOVA with Tukey post hoc comparison test. Nanoleakage evaluation was carried out under a scanning electron microscope (SEM). Coarse smear layer preparation and hydrostatic PP negatively affected the μTBS of HEMA-free and -containing adhesives, but there were no significant differences. The combined experimental condition significantly reduced μTBS of the HEMA-free adhesives, while the HEMA-containing adhesives exhibited no significant differences. Two-way ANOVA indicated that for HEMA-free adhesives, there were significant interactions in μTBS between smear layer characteristics and pulpal pressure, while for HEMA-containing adhesives, there were no significant interactions between them. Nanoleakage formation within the adhesive layers of both adhesive systems distinctly increased in the combined experimental group. The combined effect of coarse smear layer preparation with hydrostatic PP significantly reduced the μTBS of HEMA-free adhesives, while in HEMA-containing adhesives, these effects were not obvious. Smear layer characteristics and hydrostatic PP would additively compromise dentine bonding of self-etch adhesives, especially HEMA-free adhesives. Copyright © 2013 Elsevier Ltd. All rights reserved.
Bond efficacy of recycled orthodontic brackets: A comparative in vitro evaluation of two methods.
Shetty, Vikram; Shekatkar, Yash; Kumbhat, Neesu; Gautam, G; Karbelkar, Shalan; Vandekar, Meghna
2015-01-01
Recycling of orthodontic brackets in developing orthodontic economies is an extremely common procedure. Bonding protocols and reliability of these brackets is, however, questionable, and still the subject of research. The aim was to evaluate and compare the shear bond strength of brackets recycled with sandblasting and silicoating. Ninety extracted human premolars were bonded with 0.022" SS brackets (American Orthodontics, Sheboygan USA) and then debonded. The debonded brackets were divided into three groups of 30 each. Group I: Sandblasting with 50-μm aluminum oxide (control group) Group II: Sandblasting with 50-μm aluminum oxide followed by metal primer application Group III: Silicoating with 30-μm Cojet sand followed by silane application and rebonded with Transbond XT. The sandblasted brackets and silicoated brackets were viewed under the scanning electron microscope, immediately after surface conditioning before rebonding. The shear bond strength with each group was tested. One-way analysis of variance, post-hoc Scheffe multiple comparison tests. The results showed that sandblasting created more irregularities and deeper erosions while silica coating created superficial irregularities and shallow erosions.
Peixoto, Raniel Fernandes; De Aguiar, Caio Rocha; Jacob, Eduardo Santana; Macedo, Ana Paula; De Mattos, Maria da Gloria Chiarello; Antunes, Rossana Pereira de Almeida
2015-01-01
This research evaluated the influence of temporary cements (eugenol-containing [EC] or eugenol-free [EF]) on the tensile strength of Ni-Cr copings fixed with self-adhesive resin cement to the metal coronal substrate. Thirty-six temporary crowns were divided into 4 groups (n=9) according to the temporary cements: Provy, Dentsply (eugenol-containing), Temp Cem, Vigodent (eugenol-containing), RelyX Temp NE, 3M ESPE (eugenol-free) and Temp Bond NE, Kerr Corp (eugenol-free). After 24 h of temporary cementation, tensile strength tests were performed in a universal testing machine at a crosshead speed of 0.5 mm/min and 1 kN (100 kgf) load cell. Afterwards, the cast metal cores were cleaned by scraping with curettes and air jet. Thirty-six Ni-Cr copings were cemented to the cast metal cores with self-adhesive resin cement (RelyX U200, 3M ESPE). Tensile strength tests were performed again. In the temporary cementation, Temp Bond NE (12.91 ± 2.54) and Temp Cem (12.22 ± 2.96) presented the highest values of tensile strength and were statistically similar to each other (p>0.05). Statistically significant difference (p<0.05) was observed only between Provy (164.44 ± 31.23) and Temp Bond NE (88.48 ± 21.83) after cementation of Ni-Cr copings with self-adhesive resin cement. In addition, Temp Cem (120.68 ± 48.27) and RelyX Temp NE (103.04 ± 26.09) showed intermediate tensile strength values. In conclusion, the Provy eugenol-containing temporary cement was associated with the highest bond strength among the resin cements when Ni-Cr copings were cemented to cast metal cores. However, the eugenol cannot be considered a determining factor in increased bond strength, since the other tested cements (1 eugenol-containing and 2 eugenol-free) were similar.
Evaluation of strength-controlling defects in paper by stress concentration analyses
John M. Considine; David W. Vahey; James W. Evans; Kevin T. Turner; Robert E. Rowlands
2011-01-01
Cellulosic webs, such as paper materials, are composed of an interwoven, bonded network of cellulose fibers. Strength-controlling parameters in these webs are influenced by constituent fibers and method of processing and manufacture. Instead of estimating the effect on tensile strength of each processing/manufacturing variable, this study modifies and compares the...
Shear Bond Strength of Repair Systems to New CAD/CAM Restorative Materials.
Üstün, Özlem; Büyükhatipoğlu, Işıl Keçik; Seçilmiş, Aslı
2016-11-23
To evaluate the bond strength of repair systems (Ceramic Repair, Clearfil Repair) to computer-aided design/computer-assisted machining (CAD/CAM) restorative materials (IPS e.max CAD, Vita Suprinity, Vita Enamic, Lava Ultimate). Thermally aged CAD/CAM restorative material specimens (5000 cycles between 5°C and 55°C) were randomly divided into two groups according to the repair system: Ceramic Repair (37% phosphoric acid + Monobond-S + Heliobond + Tetric N Ceram) or Clearfil Repair (40% phosphoric acid + mixture of Clearfil Porcelain Bond Activator and Clearfil SE Bond Primer + Clearfil SE Bond + Filtek Z250). The resin composite was light-cured on conditioned specimens. All specimens were stored in distilled water at 37°C for 24 hours and then additionally aged for 5000 thermal cycles. The shear bond strength test was performed using a universal testing machine (0.5 mm/min). Two-way ANOVA was used to detect significance differences according to the CAD/CAM material and composite repair system factors. Subgroup analyses were conducted using the least significant difference post-hoc test. The results of two-way ANOVA indicated that bond strength values varied according to the restorative materials (p < 0.05). No significant differences were observed between the CAD/CAM restorative materials (p > 0.05), except in the Vita Suprinity group (p < 0.05). Moreover, no differences were observed between the repair systems. Both the Clearfil and Ceramic repair systems used in the study allow for successful repairs. © 2016 by the American College of Prosthodontists.
Bond strength to dentin with artificial carious lesions: influence of caries detecting dye.
Palma, R G; Turbino, M L; Matson, E; Powers, J M
1998-06-01
To evaluate the influence of dyes for caries detection on tensile bond strength of adhesive materials to artificial carious dentin. Buccal and lingual enamel of human molars were removed leaving intact dentin surfaces. The entire surface of each specimen was covered with nail varnish, keeping a window area of 4 x 4 mm. Artificial carious lesions were induced with acidified gel. Three dyes (0.5% basic fuchsin; Caries Finder and Cari-D-Tect) were used according to manufacturers' recommendations. Specimens were etched with 35% phosphoric acid for 20 s, washed and dried, leaving a wet dentin surface. The adhesive system (Prime & Bond 2.0) was applied in two layers and light-cured. Restorative materials (TPH Spectrum, Dyract, Advance) were bonded using a 3-mm diameter inverted-cone mold. Control groups were made without dye. Eight samples were tested for each group. After 24 hrs of storage in distilled water, the samples were debonded using a testing machine at 0.5 mm/min crosshead speed. ANOVA and Tukey-Kramer test showed that TPH Spectrum (0.73 MPa) and Dyract (0.74 MPa) had similar bond strengths, and both were higher than Advance (0.0 MPa), which was statistically different (P < 0.01). The use of the dyes did not cause any changes in tensile bond strength for any tested materials.
2018-01-01
Objectives This study evaluated the effect of ultrasonic agitation of mineral trioxide aggregate (MTA), calcium silicate-based cement (CSC), and Sealer 26 (S26) on adaptation at the cement/dentin interface and push-out bond strength. Materials and Methods Sixty maxillary canines were divided into 6 groups (n = 10): MTA, S26, and CSC, with or without ultrasonic activation (US). After obturation, the apical portions of the teeth were sectioned, and retrograde cavities were prepared and filled with cement by hand condensation. In the US groups, the cement was activated for 60 seconds: 30 seconds in the mesio-distal direction and 30 seconds in the buccal-lingual direction, using a mini Irrisonic insert coupled with the ultrasound transducer. After the materials set, 1.5-mm thick sections were obtained from the apexes. The presence of gaps and the bond between cement and dentin were analyzed using low-vacuum scanning electron microscopy. Push-out bond strength was measured using a universal testing machine. Results Ultrasonic agitation increased the interfacial adaptation of the cements. The S26 US group showed a higher adaptation value than MTA (p < 0.05). US improved the push-out bond strength for all the cements (p < 0.05). Conclusions The US of retrograde filling cements enhanced the bond to the dentin wall of the root-end filling materials tested. PMID:29765903
Alcalde, Murilo Priori; Vivan, Rodrigo Ricci; Marciano, Marina Angélica; Duque, Jussaro Alves; Fernandes, Samuel Lucas; Rosseto, Mariana Bailo; Duarte, Marco Antonio Hungaro
2018-05-01
This study evaluated the effect of ultrasonic agitation of mineral trioxide aggregate (MTA), calcium silicate-based cement (CSC), and Sealer 26 (S26) on adaptation at the cement/dentin interface and push-out bond strength. Sixty maxillary canines were divided into 6 groups ( n = 10): MTA, S26, and CSC, with or without ultrasonic activation (US). After obturation, the apical portions of the teeth were sectioned, and retrograde cavities were prepared and filled with cement by hand condensation. In the US groups, the cement was activated for 60 seconds: 30 seconds in the mesio-distal direction and 30 seconds in the buccal-lingual direction, using a mini Irrisonic insert coupled with the ultrasound transducer. After the materials set, 1.5-mm thick sections were obtained from the apexes. The presence of gaps and the bond between cement and dentin were analyzed using low-vacuum scanning electron microscopy. Push-out bond strength was measured using a universal testing machine. Ultrasonic agitation increased the interfacial adaptation of the cements. The S26 US group showed a higher adaptation value than MTA ( p < 0.05). US improved the push-out bond strength for all the cements ( p < 0.05). The US of retrograde filling cements enhanced the bond to the dentin wall of the root-end filling materials tested.
Improved stud configurations for attaching laminated wood wind turbine blades
NASA Technical Reports Server (NTRS)
Fadoul, J. R.
1985-01-01
A series of bonded stud design configurations was screened on the basis of tension-tension cyclic tests to determine the structural capability of each configuration for joining a laminated wood structure (wind turbine blade) to a steel flange (wind turbine hub). Design parameters which affected the joint strength (ultimate and fatigue) were systematically varied and evaluated through appropriate testing. Two designs showing the most promise were used to fabricate addiate testing. Two designs showing the most promise were used to fabricate additional test specimens to determine ultimate strength and fatigue curves. Test results for the bonded stud designs demonstrated that joint strengths approaching the 10,000 to 12,000 psi ultimate strength and 5000 psi high cycle fatigue strength of the wood epoxy composite could be achieved.
The effect of air-blowing duration on all-in-one systems.
Fu, Jiale; Pan, Feng; Kakuda, Shinichi; Sharanbir, K Sidhu; Ikeda, Takatsumi; Nakaoki, Yasuko; Selimovic, Denis; Sano, Hidehiko
2012-01-01
The purpose of this study was to evaluate the effect of air-blowing duration on the bonding performance of all-in-one systems using the same pressure (0.25 MPa). Three all-in-one systems were: EB (Easy Bond, 3M ESPE, USA), BB (BeautiBond, Shofu Inc., Japan) and GBp (G-Bond plus, GC Corporation, Japan). After adhesive application, the 3 systems were air-blown thereafter using 7 different durations (5 s, 10 s, 15 s, 20 s, 25 s, 30 s and 35 s). Bond strengths to dentin were determined using µTBS test after 24 h water storage. In addition, evaluation of both the resin-dentin interface and the fractured surface on the dentin side were performed by SEM. The maximum µTBS for each system, BB (40.4±14.8 MPa), EB (79.8±16.5 MPa), and GBp (47.3±17.6 MPa), were recorded with 15 s, 15 s and 25 s air-blowing duration respectively. Under the same air-pressure, the air-blowing duration could affect evaporation and the thickness of the adhesive layer, which contributed to the different bond strengths.
Demiryürek, Ebru Ozsezer; Külünk, Safak; Saraç, Duygu; Yüksel, Gözde; Bulucu, Bilinç
2009-08-01
The purpose of this study was to evaluate the effects of different surface treatments on the bond strength of a fiber post to dentin. Sixty extracted human maxillary incisor teeth were manually shaped with K-files using the step-back technique. ISO size 45 files were used as master apical files. Post spaces were prepared and then the root canals were subjected to one of the following 5 surface treatments: irrigation with 5% sodium hypochlorite (NaOCl); treatment with ethanol, ethyl acetate, and acetone-based cleansing agent (Sikko Tim); irrigation with 17% EDTA; etching with 37% orthophosphoric acid for 15 seconds; and etching with 10% citric acid for 15 seconds. Fiber posts were luted using self-etching/self-priming dual polymerized resin cement. From the coronal part of each root, 3 slides of 0.6-mm thickness were obtained. A push-out bond strength test was performed by a universal testing machine at a crosshead speed of 0.5 mm/min. Dentin surfaces were examined under scanning electron microscopy (SEM) after different surface treatments. Data were analyzed with a one-way analysis of variance (ANOVA) and Tukey HSD test. ANOVA revealed that canal surface treatment affected the bond strength (P < .001). The highest bond strength was obtained in the Sikko Tim group. The results also showed that surface treatment methods increased the bond strength to dentin when compared with the control group. Sikko Tim group was the more effective surface treatment agent compared with EDTA, orthophosphoric acid, citric acid, and control groups; however, it could not remove the smear layer and sealer remnants effectively on radicular dentin surfaces. Removal of the smear layer and opening of dentinal tubules are not recommended when a self-etching/self-priming adhesive system is used.
Abreu, Celina Wanderley; Santosb, Jarbas F; Passos, Sheila Pestana; Michida, Silvia Masae; Takahashi, Fernando Eidi; Bottino, Marco Antonio
2011-06-01
This study evaluated the effect of cutting initiation location and cutting speed on the bond strength between resin cement and feldspathic ceramic. Thirty-six blocks (6.4 x 6.4 x 4.8 mm) of ceramic (Vita VM7) were produced. The ceramic surfaces were etched with 10% hydrofluoric acid gel for 60 s and then silanized. Each ceramic block was placed in a silicon mold with the treated surface exposed. A resin cement (Variolink II) was injected into the mold over the treated surface and polymerized. The resin cement-ceramic blocks were divided into two groups according to experimental conditions: a) cutting initiation location - resin cement, ceramic and interface; and b) cutting speed - 10,000, 15,000, and 20,000 rpm. The specimens were sectioned to achieve non-trimmed bar specimens. The microtensile test was performed in a universal testing machine (1 mm/min). The failure modes were examined using an optical light microscope and SEM. Bond strength results were analyzed using one-way ANOVA and Tukey's test (α = 0.05). Significant influences of cutting speed and initiation location on bond strength (p < 0.05) were observed. The highest mean was achieved for specimens cut at 15,000 rpm at the interface (15.12 ± 5.36 MPa). The lowest means were obtained for specimens cut at the highest cutting speed in resin cement (8.50 ± 3.27 MPa), and cut at the lowest cutting speed in ceramic (8.60 ± 2.65 MPa). All groups showed mainly mixed failure (75% to 100%). The cutting speed and initiation location are important factors that should be considered during specimen preparation for microtensile bond strength testing, as both may influence the bond strength results.
Elsaka, Shaymaa E
2014-12-01
To evaluate the effect of different surface treatments on the microtensile bond strength (μTBS) of novel CAD/CAM restorative materials to self-adhesive resin cement. Two types of CAD/CAM restorative materials (Vita Enamic [VE] and Lava Ultimate [LU]) were used. The specimens were divided into five groups in each test according to the surface treatment performed; Gr 1 (control; no treatment), Gr 2 (sandblasted [SB]), Gr 3 (SB+silane [S]), Gr 4 (hydrofluoric acid [HF]), and Gr 5 (HF+S). A dual-curing self-adhesive resin cement (Bifix SE [BF]) was applied to each group for testing the adhesion after 24 h of storage in distilled water or after 30 days using the μTBS test. Following fracture testing, specimens were examined with a stereomicroscope and SEM. Surface roughness and morphology of the CAD/CAM restorative materials were characterized after treatment. Data were analyzed using ANOVA and Tukey's test. The surface treatment, type of CAD/CAM restorative material, and water storage periods showed a significant effect on the μTBS (p<0.001). For the LU/BF system, there was no significant difference in the bond strength values between different surface treatments (p>0.05). On the other hand, for the VE/BF system, surface treatment with HF+S showed higher bond strength values compared with SB and HF surface treatments (p<0.05). Surface roughness and SEM analyses showed that the surface topography of CAD/CAM restorative materials was modified after treatments. The effect of surface treatments on the bond strength of novel CAD/CAM restorative materials to resin cement is material dependent. The VE/BF CAD/CAM material provided higher bond strength values compared with the LU/BF CAD/CAM material.
Ceramic Inlays: Effect of Mechanical Cycling and Ceramic Type on Restoration-dentin Bond Strength.
Trindade, F Z; Kleverlaan, C J; da Silva, L H; Feilzer, A J; Cesar, P F; Bottino, M A; Valandro, L F
2016-01-01
This study aimed to evaluate the bond strength between dentin and five different ceramic inlays in permanent maxillary premolars, with and without mechanical cycling. One hundred permanent maxillary premolars were prepared and divided into 10 groups (n=10) according to the ceramic system (IPS e.Max Press; IPS e.Max CAD; Vita PM9; Vita Mark II; and Vita VM7) and the mechanical cycling factor (with and without [100 N, 2 Hz, 1.2×10(6) cycles]). The inlays were adhesively cemented, and all of the specimens were cut into microbars (1×1 mm, nontrimming method), which were tested under microtensile loading. The failure mode was classified and contact angle, roughness, and microtopographic analyses were performed on each ceramic surface. The mechanical cycling had a significant effect (p=0.0087) on the bond strength between dentin and IPS e.max Press. The Vita Mark II group had the highest bond strength values under both conditions, with mechanical cycling (9.7±1.8 MPa) and without (8.2±1.9 MPa), while IPS e.Max CAD had the lowest values (2.6±1.6 and 2.2±1.4, respectively). The adhesive failure mode at the ceramic/cement interface was the most frequent. Vita Mark II showed the highest value of average roughness. IPS e.max Press and Vita Mark II ceramics presented the lowest contact angles. In conclusion, the composition and manufacturing process of ceramics seem to have an influence on the ceramic surface and resin cement bond strength. Mechanical cycling did not cause significant degradation on the dentin and ceramic bond strength under the configuration used.
Effect of air-blowing variables on bond strength of all-in-one adhesives to bovine dentin.
Shinkai, Koichi; Suzuki, Shiro; Katoh, Yoshiroh
2006-12-01
This study evaluated the effect of air-blowing variables on the microtensile bond strength (microTBS) of two all-in-one adhesives. A bonding agent was applied to the flat dentin surface of extracted bovine teeth, and the surface left undisturbed for 20 seconds. Gentle or intensive air-blowing was applied for five seconds, and the adhesive photopolymerized for 10 seconds. Resin composite paste was placed and cured after each bonding treatment. Specimens were subjected to microTBS test with a crosshead speed of 1.0 mm/min. Data were statistically analyzed using ANOVA, followed by Bonferroni post hoc test. When Clearfil tri-S Bond was bonded to dentin, the microTBS value of specimens applied with intensive air-blowing was significantly higher than that applied with gentle air-blowing (p<0.01). On the other hand, with Fluoro Bond Shake One, the microTBS value of specimens applied with intensive air-blowing was significantly lower than that applied with gentle air-blowing (p<0.01).
de ANDRADE, Andrea Mello; MOURA, Sandra Kiss; REIS, Alessandra; LOGUERCIO, Alessandro Dourado; GARCIA, Eugenio Jose; GRANDE, Rosa Helena Miranda
2010-01-01
Objectives The aims of this study were to evaluate the effect of resin composite (Filtek Z250 and Filtek Flow Z350) and adhesive system [(Solobond Plus, Futurabond NR (VOCO) and Adper Single Bond (3M ESPE)] on the microtensile (µTBS) and microshear bond strength (µSBS) tests on enamel, and to correlate the bond strength means between them. Material and methods Thirty-six extracted human molars were sectioned to obtain two tooth halves: one for µTBS and the other one for µSBS. Adhesive systems and resin composites were applied to the enamel ground surfaces and light-cured. After storage (37ºC/24 h) specimens were stressed (0.5 mm/ min). Fracture modes were analyzed under scanning electron microscopy. The data were analyzed using two-way ANOVA and Tukey's test (α=0.05). Results The correlation between tests was estimated with Pearson's product-moment correlation statistics (α =0.05). For both tests only the main factor resin composite was statistically significant (p<0.05). The correlation test detected a positive (r=0.91) and significant (p=0.01) correlation between the tests. Conclusions The results were more influenced by the resin type than by the adhesives. Both microbond tests seem to be positive and linearly correlated and can therefore lead to similar conclusions. PMID:21308290
Influence of different adhesive systems on the pull-out bond strength of glass fiber posts.
da Silva, Luciana Mendonça; Andrade, Andréa Mello de; Machuca, Melissa Fernanda Garcia; da Silva, Paulo Maurício Batista; da Silva, Ricardo Virgolino C; Veronezi, Maria Cecília
2008-01-01
This in vitro study evaluated the tensile bond strength of glass fiber posts (Reforpost - Angelus-Brazil) cemented to root dentin with a resin cement (RelyX ARC - 3M/ESPE) associated with two different adhesive systems (Adper Single Bond - 3M/ESPE and Adper Scotchbond Multi Purpose (MP) Plus - 3M/ESPE), using the pull-out test. Twenty single-rooted human teeth with standardized root canals were randomly assigned to 2 groups (n=10): G1- etching with 37% phosphoric acid gel (3M/ESPE) + Adper Single Bond + #1 post (Reforpost - Angelus) + four #1 accessory posts (Reforpin - Angelus) + resin cement; G2- etching with 37% phosphoric acid gel + Adper Scotchbond MP Plus + #1 post + four #1 accessory posts + resin cement. The specimens were stored in distilled water at 37 degrees C for 7 days and submitted to the pull-out test in a universal testing machine (EMIC) at a crosshead speed of 0.5 mm/min. The mean values of bond strength (kgf) and standard deviation were: G1- 29.163 +/- 7.123; G2- 37.752 +/-13.054. Statistical analysis (Student's t-test; a=0.05 showed no statistically significant difference (p<0.05) between the groups. Adhesive bonding failures between resin cement and root canal dentin surface were observed in both groups, with non-polymerized resin cement in the apical portion of the post space when Single Bond was used (G1). The type of adhesive system employed on the fiber post cementation did not influence the pull-out bond strength.
The impact of chlorhexidine mouth rinse on the bond strength of polycarbonate orthodontic brackets.
Hussein, Farouk Ahmed; Hashem, Mohammed Ibrahim; Chalisserry, Elna P; Anil, Sukumaran
2014-11-01
The purpose of the current in-vivo study was to assess the effect of using 0.12% chlorhexidine (CHX) mouth rinse, before bonding, on shear bond strength of polycarbonate brackets bonded with composite adhesive. Eighteen orthodontic patients with a mean age 21.41 ± 1.2 years, who were scheduled to have 2 or more first premolars extracted, were included in this study. Patients were referred for an oral prophylaxis program which included, in part, the use of a mouth rinse. Patients were divided into 2 groups, a test group of 9 patients who used 0.12% CHX gluconate mouth rinse twice daily and a control group of 9 patients who used a mouth rinse without CHX, but with same color. After 1 week, polycarbonate brackets were bonded to first premolars with Transbond XT composite adhesive. Premolars were extracted after 28 days and tested for shear bond strength on a universal testing machine. Student's t-test was used to compare shear bond strengths of both groups. No statistically significant difference was found in bond strengths' values between both groups. The test group (with CHX) has mean shear bond strength of 14.21 ± 2.42 MPa whereas the control group (without CHX) revealed a mean strength of 14.52 ± 2.31 MPa. The use of 0.12% CHX mouth rinse, for one week before bonding, did not affect the shear bond strength of polycarbonate brackets bonded with Transbond composite. Furthermore, these brackets showed clinically acceptable bond strength.
Demirtas, Hatice Kubra; Akin, Mehmet; Ileri, Zehra; Basciftci, Faruk Ayhan
2015-01-01
The aim of this study was to evaluate the effects of different surface preparation methods on the shear bond strength (SBS) of orthodontic metal brackets to aged nano-hybrid resin composite surfaces in vitro. A total of 100 restorative composite resin discs, 6 mm in diameter and 3 mm thick, were obtained and treated with an ageing procedure. After ageing, the samples were randomly divided as follows according to surface preparation methods: (1)Control, (2)37% phosphoric acid gel, (3)Sandblasting, (4)Diamond bur, (5)Air-flow and 20 central incisor teeth were used for the control etched group. SBS test were applied on bonded metal brackets to all samples. SBS values and residual adhesives were evaluated. Analysis of variance showed a significant difference (p<0.001) between the groups. Sandblasted group had the highest SBS value (12.85 MPa) in experimental groups. The sandblasting surface treatment is recommended as an effective method of bonding orthodontic metal brackets to nano-hybrid composite resin surfaces.
In vivo evaluation of CaO-SiO2-P2O5-B2O3 glass-ceramics coating on Steinman pins.
Lee, Jae Hyup; Hong, Kug Sun; Baek, Hae-Ri; Seo, Jun-Hyuk; Lee, Kyung Mee; Ryu, Hyun-Seung; Lee, Hyun-Kyung
2013-07-01
Surface coating using ceramics improves the bone bonding strength of an implant. We questioned whether a new type of glass-ceramics (BGS-7) coating (CaO-SiO2 -P2 O5 -B2 O3 ) would improve the osseointegration of Steinman pins (S-pins) both biomechanically and histomorphometrically. An in vivo study was performed using rabbits by inserting three S-pins into each iliac bone. The pins were 2.2-mm S-pins with a coating of 30-μm-thick BGS-7 and 550-nm-thick hydroxyapatite (HA), as opposed to an S-pin without coating. A tensile strength test and histomorphometrical evaluation was performed. In the 2-week group, the BGS-7 implant showed a significantly higher tensile strength than the S-pin. In the 4- and 8-week groups, the BGS-7 implants had significantly higher tensile strengths than the S-pins and HA implants. The histomorphometrical study revealed that the BGS-7 implant had a significantly higher contact ratio than the S-pin and HA implants in the 4-week group. The biomechanical and histomorphometrical tests showed that the BGS-7 coating had superior bone bonding properties than the groups without the coating from the initial stage of insertion. The BGS-7 coating of an S-pin will enhance the bone bonding strength, and there might also be an advantage in human bone bonding. © 2013, Copyright the Authors. Artificial Organs © 2013, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Stella, João Paulo Fragomeni; Oliveira, Andrea Becker; Nojima, Lincoln Issamu; Marquezan, Mariana
2015-01-01
OBJECTIVE: To assess four different chemical surface conditioning methods for ceramic material before bracket bonding, and their impact on shear bond strength and surface integrity at debonding. METHODS: Four experimental groups (n = 13) were set up according to the ceramic conditioning method: G1 = 37% phosphoric acid etching followed by silane application; G2 = 37% liquid phosphoric acid etching, no rinsing, followed by silane application; G3 = 10% hydrofluoric acid etching alone; and G4 = 10% hydrofluoric acid etching followed by silane application. After surface conditioning, metal brackets were bonded to porcelain by means of the Transbond XP system (3M Unitek). Samples were submitted to shear bond strength tests in a universal testing machine and the surfaces were later assessed with a microscope under 8 X magnification. ANOVA/Tukey tests were performed to establish the difference between groups (α= 5%). RESULTS: The highest shear bond strength values were found in groups G3 and G4 (22.01 ± 2.15 MPa and 22.83 ± 3.32 Mpa, respectively), followed by G1 (16.42 ± 3.61 MPa) and G2 (9.29 ± 1.95 MPa). As regards surface evaluation after bracket debonding, the use of liquid phosphoric acid followed by silane application (G2) produced the least damage to porcelain. When hydrofluoric acid and silane were applied, the risk of ceramic fracture increased. CONCLUSIONS: Acceptable levels of bond strength for clinical use were reached by all methods tested; however, liquid phosphoric acid etching followed by silane application (G2) resulted in the least damage to the ceramic surface. PMID:26352845
Effect of Er:YAG Laser and Sandblasting in Recycling of Ceramic Brackets.
Yassaei, Soghra; Aghili, Hossein; Hosseinzadeh Firouzabadi, Azadeh; Meshkani, Hamidreza
2017-01-01
Introduction: This study was performed to determine the shear bond strength of rebonded mechanically retentive ceramic brackets after recycling with Erbium-Doped Yttrium Aluminum Garnet (Er:YAG) laser or sandblasting. Methods: Twenty-eight debonded ceramic brackets plus 14 intact new ceramic brackets were used in this study. Debonded brackets were randomly divided into 2 groups of 14. One group was treated by Er:YAG laser and the other with sandblasting. All the specimens were randomly bonded to 42 intact human upper premolars. The shear bond strength of all specimens was determined with a universal testing machine at a crosshead speed of 0.5 mm/min until bond failure occurred. The recycled bracket base surfaces were observed under a scanning electron microscope (SEM). Analysis of variance (ANOVA) and Tukey tests were used to compare the shear bond strength of the 3 groups. Fisher exact test was used to evaluate the differences in adhesive remnant index (ARI) scores. Results: The highest bond strength belonged to brackets recycled by Sandblasting (16.83 MPa). There was no significant difference between the shear bond strength of laser and control groups. SEM photographs showed differences in 2 recycling methods. The laser recycled bracket appeared to have as well-cleaned base as the new bracket. Although the sandblasted bracket photographs showed no remnant adhesives, remarkable micro-roughening of the base of the bracket was apparent. Conclusion: According to the results of this study, both Er:YAG laser and sandblasting were efficient to mechanically recondition retentive ceramic brackets. Also, Er:YAG laser did not change the design of bracket base while removing the remnant adhesives which might encourage its application in clinical practice.
Effect of Er:YAG Laser and Sandblasting in Recycling of Ceramic Brackets
Yassaei, Soghra; Aghili, Hossein; Hosseinzadeh Firouzabadi, Azadeh; Meshkani, Hamidreza
2017-01-01
Introduction: This study was performed to determine the shear bond strength of rebonded mechanically retentive ceramic brackets after recycling with Erbium-Doped Yttrium Aluminum Garnet (Er:YAG) laser or sandblasting. Methods: Twenty-eight debonded ceramic brackets plus 14 intact new ceramic brackets were used in this study. Debonded brackets were randomly divided into 2 groups of 14. One group was treated by Er:YAG laser and the other with sandblasting. All the specimens were randomly bonded to 42 intact human upper premolars. The shear bond strength of all specimens was determined with a universal testing machine at a crosshead speed of 0.5 mm/min until bond failure occurred. The recycled bracket base surfaces were observed under a scanning electron microscope (SEM). Analysis of variance (ANOVA) and Tukey tests were used to compare the shear bond strength of the 3 groups. Fisher exact test was used to evaluate the differences in adhesive remnant index (ARI) scores. Results: The highest bond strength belonged to brackets recycled by Sandblasting (16.83 MPa). There was no significant difference between the shear bond strength of laser and control groups. SEM photographs showed differences in 2 recycling methods. The laser recycled bracket appeared to have as well-cleaned base as the new bracket. Although the sandblasted bracket photographs showed no remnant adhesives, remarkable micro-roughening of the base of the bracket was apparent. Conclusion: According to the results of this study, both Er:YAG laser and sandblasting were efficient to mechanically recondition retentive ceramic brackets. Also, Er:YAG laser did not change the design of bracket base while removing the remnant adhesives which might encourage its application in clinical practice. PMID:28912939
Atsü, Saadet Sağlam; Gelgör, Ibrahim Erhan; Sahin, Volkan
2006-09-01
To evaluate the effect of tribochemical silica coating and silane surface conditioning on the bond strength of metal and ceramic brackets bonded to enamel surfaces with light-cured composite resin. Twenty metal and 20 ceramic brackets were divided into four groups (n = 10 for each group). The specimens were randomly assigned to one of the following treatment conditions of the metal and ceramic brackets' surface: (1) tribochemical silica coating combined with silane and (2) no treatment. Brackets were bonded to the enamel surface on the labial and lingual sides of human maxillary premolars (20 total) with a light-polymerized resin composite. All specimens were stored in water for 1 week at 37 degrees C and then thermocycled (5000 cycles, 5 degrees C to 55 degrees C, 30 seconds). The shear bond strength values were measured on a universal testing machine. Student's t-test was used to compare the data (alpha = 0.05). The types of failures were observed using a stereomicroscope. Metal and ceramic brackets treated with silica coating with silanization had significantly greater bond strength values (metal brackets: 14.2 +/- 1.7 MPa, P < .01; ceramic brackets: 25.9 +/- 4.4 MPa, P < .0001) than the control groups (metal brackets: 11.9 +/- 1.3 MPa; ceramic brackets: 15.6 +/- 4.2 MPa). Treated specimens of metal and ceramic exhibited cohesive failures in resin and adhesive failures at the enamel-adhesive interface, whereas control specimens showed mixed types of failures. Silica coating with aluminum trioxide particles coated with silica followed by silanization gave higher bond strengths in both metal and ceramic brackets than in the control group.
Basir, Mahshid Mohammadi; Rezvani, Mohammad Bagher; Chiniforush, Nasim; Moradi, Zohreh
2016-01-01
Tooth restoration immediately after bleaching is challenging due to the potential problems in achieving adequate bond strength. The aim of this study was to evaluate the effect of surface treatment with ER:YAG, ND:YAG, CO2 lasers and 10% sodium ascorbate solution on immediate microtensile bond strength of composite resin to recently bleached enamel. Ninety sound molar teeth were randomly divided into three main groups (n:30) : NB (without bleaching), HB (bleached with 38% carbamide peroxide) and OB (bleached with Heydent bleaching gel assisted by diode laser). Each group was divided into five subgroups (n:6) : Si (without surface treatment), Er (Er:YAG laser), CO2 (CO2 laser), Nd (Nd:YAG laser) and As (Immersion in 10% sodium ascorbate solution). The bonding system was then applied and composite build-ups were constructed. The teeth were sectioned by low speed saw to obtain enamel- resin sticks and submitted to microtensile bond testing. Statistical analyses were done using two- way ANOVA, Tukey and Tamhane tests. µTBS of bleached teeth irradiated with ND:YAG laser was not significantly different from NB-Nd group. Microtensile bond strength of OB-Er group was higher than NB-Er and HB-Er groups. The mean µTBS of HB-CO2 group was higher than NB-CO2 group; the average µTBS of HB-As and OB-As groups was also higher than NB-As group. Use of Nd:YAG, CO2 lasers and 10% sodium ascorbate solution could improve the bond strength in home-bleached specimens. Application of ND:YAG laser on nonbleached specimens and Er:YAG laser on office-bleached specimens led to the highest µTBS in comparison to other surface treatments in each main group.
Effects of Different Surface Treatments on Composite Repairs.
Batista, Graziela Ribeiro; Kamozaki, Maria Beatriz Beber; Gutierrez, Natália Cortez; Caneppele, Taciana Marco Ferraz; Rocha Gomes Torres, Carlos
2015-08-01
To evaluate the influence of different surface treatments on roughness and bond strength of composite repairs. 120 truncated conical specimens were prepared with composite Grandio SO (VOCO) and submitted to 5000 thermal cycles. Specimens were divided into 12 groups (n = 10) regarding the surface treatments: negative control (NC), without treatment; medium-grit diamond bur (MGD); coarse-grit diamond bur (CGD); conventional carbide bur (ConC); crosscut carbide bur (CutC); chemical vapor deposition diamond bur (CVD); sandblasting with aluminum oxide (AlO); Er:YAG laser 200 mJ/10 Hz (Er200); Er:YAG laser 60 mJ/10 Hz (Er50); Nd:YAG laser 120 mJ/15 Hz (Nd120); Nd:YAG laser 60 mJ/ 15Hz (Nd60); air abrasion with 110-μm silica modified aluminum oxide (Rocatec Plus-3M) (SIL). After the surface treatments, the surface roughness (Ra) was measured using a profilometer, and then the adhesive system Admira Bond (VOCO) was applied. Another truncated conical restoration was built up with the same composite over the bonded area of each specimen. In order to evaluate the cohesive strength, double-cone specimens were made and considered as a control group (CoheC). The specimens were submitted to tensile bond strength testing and the obtained data (MPa) were evaluated by one-way ANOVA, Tukey's and correlation tests. ANOVA showed significant differences among experimental groups for roughness and adhesive strength (p < 0.00). The roughness values (Ra) were: NC (0.21 ± 0.19)(c); ConC (0.30 ± 0.08)(c); CutC (0.50 ± 0.22)(cd); CVD (0.74 ± 0.14)(bd); MGD (0.89 ± 0.39)(ab); Er50 (0.89 ± 0.14)(ab); AlO (0.90 ± 0.07)(ab); Nd60 (0.94 ± 0.33ab; SIL (0.98 ± 0.07)(ab); Nd120 (1.10 ± 0.19)(a); CGD (1.10 ± 0.32)(a); Er200 (1.12 ± 0.21)(a). The results of the tensile bond strength test in MPa were: CGD (11.58 ± 3.03)(a); MGD (12.66 ± 3.82)(ab); NC (13.51 ± 3.95(ab); Nd120 (14.11 ± 5.95)(ab); ConC (14.73 ± 6.12)(ab); Er200 (15.51 ± 1.45)(abc); CVD (15.61 ± 5.00(abc); Er50 (16.44 ± 2.75) (abc); CutC (16.79 ± 2.98)(abc); Nd60 (17.72 ± 2.45)(abcd); AlO (18.33 ± 3.19)(bcd); SIL (21.13 ± 4.48(cd); CoheC (23.50 ± 5.81)(d). The groups followed by the same letters were not statistically significantly different (Tukey's test). No correlation was found between bond strength and roughness (r = 0.007). Air abrasion with silica coating (Rocatec) was the only method which resulted in significantly higher bond strength in relation to the negative control group. The increase in laser energy produced a rougher surface, but reduced the bond strength.
Splice performance evaluation of enamel-coated rebar for structural safety.
DOT National Transportation Integrated Search
2014-07-01
This report summarizes the findings and results from an experimental study of vitreous enamel coating effects on the bond : strength between deformed rebar and normal strength concrete. A total of 24 beam splice specimens were tested under four-point...
Gré, Cristina Parise; de Ré Silveira, Renan C; Shibata, Shizuma; Lago, Carlo Tr; Vieira, Luiz Cc
2016-02-01
This study evaluated the influence of a silane-coupling agent on the bond strength of a self-adhesive cement and a conventional resin cement to a lithium disilicate glass ceramic. A total of eight ceramic blocks were fabricated and divided into four groups (n = 2). In groups 1 and 3, ceramic surfaces were etched with hydrofluoric acid 10% for 20 seconds, rinsed for 30 seconds, and air-dried. One layer of a silane agent was applied onto all ceramic specimens and air-dried for 30 seconds. In groups 2 and 4, ceramic surfaces were etched with hydrofluoric acid, rinsed, and air-dried without application of the silane-coupling agent. The ceramic blocks were bonded to a block of composite with a self-adhesive resin cement or with a conventional resin cement, according to the manufacturer's instructions. After 24 hours in distilled water at 37°C, the specimens were sectioned perpendicular to the bonding interface area to obtain beams with a bonding area of 0.8 mm(2) and submitted to a microtensile bond strength test at a crosshead speed of 0.5 mm/min. Data were statistically analyzed with one-way analysis of variance and the Games-Howell post hoc test (p = 0.05). Fractured specimens were examined under optical microscopy at 40x magnification. Silanization resulted in higher microtensile bond strength compared to groups without silane. No significant differences were found between the conventional resin cement and the self-adhesive resin cement with silane agent (p = 0.983), and without silane agent (p = 0.877). Silanization appears to be crucial for resin bonding to a lithium disilicate-based ceramic, regardless of the resin cement used. The self-adhesive resin cement performed as well as the conventional resin cement. Applying one layer of a silane-coupling agent after etching the ceramic surface with hydrofluoric acid 10% enhanced the bond strength between resin cements and a glass ceramic.
Performance of universal adhesives on bonding to leucite-reinforced ceramic.
Kim, Ryan Jin-Young; Woo, Jung-Soo; Lee, In-Bog; Yi, Young-Ah; Hwang, Ji-Yun; Seo, Deog-Gyu
2015-01-01
This study aimed to investigate the microshear bond strength of universal bonding adhesives to leucite-reinforced glass-ceramic. Leucite-reinforced glass-ceramic blocks were polished and etched with 9.5% hydrofluoric acid for 1 min. The specimens were assigned to one of four groups based on their surface conditioning (n = 16): 1) NC: negative control with no further treatment; 2) SBU: Single Bond Universal (3M ESPE); 3) ABU: ALL-BOND Universal (Bisco); and 4) PC: RelyX Ceramic Primer and Adper Scotchbond Multi-Purpose Adhesive (3M ESPE) as a positive control. RelyX Ultimate resin cement (3M ESPE) was placed on the pretreated ceramic and was light cured. Eight specimens from each group were stored in water for 24 h, and the remaining eight specimens were thermocycled 10,000 times prior to microshear bond strength evaluation. The fractured surfaces were examined by stereomicroscopy and scanning electron microscopy (SEM). After water storage and thermocycling, the microshear bond strength values decreased in the order of PC > SBU and ABU > NC (P < 0.05). Thermocycling significantly reduced the microshear bond strength, regardless of the surface conditioning used (P < 0.05). Cohesive failure in the ceramic and mixed failure in the ceramic and resin cement were observed in the fractured specimens. The percentage of specimens with cohesive failure after 24 h of water storage was: NC (50%), SBU (75%), ABU (75%), and PC (87%). After thermocycling, the percentage of cohesive failure in NC decreased to 25%; however, yet the percentages of the other groups remained the same. Although the bond strength between resin and hydrofluoric acid-etched glass ceramic was improved when universal adhesives were used, conventional surface conditioning using a separate silane and adhesive is preferable to a simplified procedure that uses only a universal adhesive for cementation of leucite-reinforced glass-ceramic.
Liu, Wenjia; Fu, Jing; Liao, Shuang; Su, Naichuan; Wang, Hang; Liao, Yunmao
2014-04-01
The objective of this research is to evaluate the effects of different silane coupling agents on the bond strength between Ceramco3 opaque porcelain and indirect composite resin. Five groups of Co-Cr metal alloy substrates were fabricated according to manufacturer's instruction. The surface of metal alloy with a layer of dental opaque porcelain was heated by fire. After the surface of opaque porcelain was etched, five different surface treatments, i.e. RelyX Ceramic Primer (RCP), Porcelain Bond Activator and SE Bond Primer (mixed with a proportion of 1:1) (PBA), Shofu Porcelain Primer (SPP), SE bond primer (SEP), and no primer treatment (as a control group), were used to combine P60 and opaque porcelain along with resin cement. Shear bond strength of specimens was tested in a universal testing machine. The failure modes of specimens in all groups were observed and classified into four types. Selected specimens were subjected to scanning electron microscope and energy disperse spectroscopy to reveal the relief of the fracture surface and to confirm the failure mode of different types. The experimental results showed that the values of the tested items in all the tested groups were higher than that in the control group. Group PBA exhibited the highest value [(37.52 +/- 2.14) MPa] and this suggested a fact that all of the specimens in group PBA revealed combined failures (failure occurred in metal-porcelain combined surface and within opaque porcelain). Group SPP and RCP showed higher values than SEP (P < 0.05) and most specimens of SPP and RCP performed combined failures (failure occurred in bond surface and within opaque porcelain or composite resin) while all the specimens in group SEP and control group revealed adhesive failures. Conclusions could be drawn that silane coupling agents could reinforce the bond strength of dental composite resin to metal-opaque porcelain substrate. The bond strength between dental composite resin and dental opaque porcelain could meet the clinical requirements.
Shear bond strength to enamel after power bleaching activated by different sources.
Can-Karabulut, Deniz C; Karabulut, Baris
2010-01-01
The purpose of the present study was to evaluate enamel bond strength of a composite resin material after hydrogen peroxide bleaching, activated by a diode laser (LaserSmile), an ozone device (HealOzone), a light-emitting diode (BT Cool whitening system), and a quartz-Plus. Fifty extracted caries-free permanent incisors were used in this study. Thirty-eight percent hydrogen peroxidegel was applied to sound, flattened labial enamel surfaces and activated by different sources. Enamel surfaces that had received no treatment were used as control samples. Bonding agent was applied according to the manufacturer's instructions and the adhesion test was performed according to ISO/TS 11405. Statistical analysis showed significant influence of the different activation technique of hydrogen peroxide on shear bond strength to enamel (ANOVA, LSD, P < 0.05). The data in this vitro explorative study suggest the activation of hydrogen peroxide by different sources may further affect the shear bond strength of subsequent composite resin restoration to enamel. Within the limitations of this in vitro study, further studies examining the structural changes of activated hydrogen peroxide-treated enamel are needed. Due to the different activation methods; duration of light irradiation effects, longer time periods may be needed before application of adhesive restorations to enamel, compared with non-activated bleaching.
Correlates of genetic monogamy in socially monogamous mammals: insights from Azara's owl monkeys
Huck, Maren; Fernandez-Duque, Eduardo; Babb, Paul; Schurr, Theodore
2014-01-01
Understanding the evolution of mating systems, a central topic in evolutionary biology for more than 50 years, requires examining the genetic consequences of mating and the relationships between social systems and mating systems. Among pair-living mammals, where genetic monogamy is extremely rare, the extent of extra-group paternity rates has been associated with male participation in infant care, strength of the pair bond and length of the breeding season. This study evaluated the relationship between two of those factors and the genetic mating system of socially monogamous mammals, testing predictions that male care and strength of pair bond would be negatively correlated with rates of extra-pair paternity (EPP). Autosomal microsatellite analyses provide evidence for genetic monogamy in a pair-living primate with bi-parental care, the Azara's owl monkey (Aotus azarae). A phylogenetically corrected generalized least square analysis was used to relate male care and strength of the pair bond to their genetic mating system (i.e. proportions of EPP) in 15 socially monogamous mammalian species. The intensity of male care was correlated with EPP rates in mammals, while strength of pair bond failed to reach statistical significance. Our analyses show that, once social monogamy has evolved, paternal care, and potentially also close bonds, may facilitate the evolution of genetic monogamy. PMID:24648230
Correlates of genetic monogamy in socially monogamous mammals: insights from Azara's owl monkeys.
Huck, Maren; Fernandez-Duque, Eduardo; Babb, Paul; Schurr, Theodore
2014-05-07
Understanding the evolution of mating systems, a central topic in evolutionary biology for more than 50 years, requires examining the genetic consequences of mating and the relationships between social systems and mating systems. Among pair-living mammals, where genetic monogamy is extremely rare, the extent of extra-group paternity rates has been associated with male participation in infant care, strength of the pair bond and length of the breeding season. This study evaluated the relationship between two of those factors and the genetic mating system of socially monogamous mammals, testing predictions that male care and strength of pair bond would be negatively correlated with rates of extra-pair paternity (EPP). Autosomal microsatellite analyses provide evidence for genetic monogamy in a pair-living primate with bi-parental care, the Azara's owl monkey (Aotus azarae). A phylogenetically corrected generalized least square analysis was used to relate male care and strength of the pair bond to their genetic mating system (i.e. proportions of EPP) in 15 socially monogamous mammalian species. The intensity of male care was correlated with EPP rates in mammals, while strength of pair bond failed to reach statistical significance. Our analyses show that, once social monogamy has evolved, paternal care, and potentially also close bonds, may facilitate the evolution of genetic monogamy.
IR spectroscopy as a source of data on bond strengths
NASA Astrophysics Data System (ADS)
Finkelshtein, E. I.; Shamsiev, R. S.
2018-02-01
The aim of this work is the estimation of double bond strength, namely Cdbnd O bonds in ketones and aldehydes and Cdbnd C bonds in various compounds. By the breaking of these bonds one or both fragments formed are carbenes, for which experimental data on the enthalpies of formation (ΔHf298) are scarce. Thus for the estimation of ΔHf298 of the corresponding carbenes, the empirical equations were proposed based on different approximations. In addition, a quantum chemical calculations of the ΔHf298 values of carbenes were performed, and the data obtained were compared with experimental values and the results of earlier calculations. Equations for the calculation of Cdbnd O bond strengths of different ketones and aldehydes from the corresponding stretching frequencies ν(Cdbnd O) were derived. Using the proposed equations, the strengths of Cdbnd O bonds of 25 ketones and 12 conjugated aldehydes, as well as Cdbnd C bonds of 13 hydrocarbons and 7 conjugated aldehydes were estimated for the first time. Linear correlations of Cdbnd C and Cdbnd O bond strengths with the bond lengths were established, and the equations permitting the estimation of the double bond strengths and lengths with acceptable accuracy were obtained. Also, the strength of central Cdbnd C bond of stilbene was calculated for the first time. The uncertainty of the strengths of double bonds obtained may be regarded as accurate ±10-15 kJ/mol.
Aggressiveness of contemporary self-etching adhesives. Part II: etching effects on unground enamel.
Pashley, D H; Tay, F R
2001-09-01
The aggressiveness of three self-etching adhesives on unground enamel was investigated. Ultrastructural features and microtensile bond strength were examined, first using these adhesives as both the etching and resin-infiltration components, and then examining their etching efficacy alone through substitution of the proprietary resins with the same control resins. For SEM examination, buccal, mid-coronal, unground enamel from human extracted bicuspids were etched with either Clearfil Mega Bond (Kuraray), Non-Rinse Conditioner (NRC; Dentsply DeTrey) or Prompt L-Pop (ESPE). Those in the control group were etched with 32% phosphoric acid (Bisco) for 15s. They were all rinsed off prior to examination of the etching efficacy. For TEM examination, the self-etching adhesives were used as recommended. Unground enamel treated with NRC were further bonded using Prime&Bond NT (Dentsply), while those in the etched, control group were bonded using All-Bond 2 (Bisco). Completely demineralized, resin replicas were embedded in epoxy resin for examination of the extent of resin infiltration. For microtensile bond strength evaluation, specimens were first etched and bonded using the self-etching adhesives. A second group of specimens were etched with the self-etching adhesives, rinsed but bonded using a control adhesive. Following restoration with Z100 (3M Dental Products), they were sectioned into beams of uniform cross-sectional areas and stressed to failure. Etching patterns of aprismatic enamel, as revealed by SEM, and the subsurface hybrid layer morphology, as revealed by TEM, varied according to the aggressiveness of the self-etching adhesives. Clearfil Mega Bond exhibited the mildest etching patterns, while Prompt L-Pop produced an etching effect that approached that of the total-etch control group. Microtensile bond strength of the three experimental groups were all significantly lower than the control group, but not different from one another. When the self-etching adhesives were replaced with the control adhesive after etching, bond strengths of NRC/Prime&Bond NT and Prompt L-Pop were not significantly different from that of the control group, but were significantly higher than that of Clearfil Mega Bond. Both etching efficacy and strength of the resins are important contributing factors in bonding of self-etching adhesives to unground enamel.
Shear bond, wettability and AFM evaluations on CO2 laser-irradiated CAD/CAM ceramic surfaces.
El Gamal, Ahmed; Medioni, Etienne; Rocca, Jean Paul; Fornaini, Carlo; Muhammad, Omid H; Brulat-Bouchard, Nathalie
2017-05-01
The purpose of this study is to determine the CO 2 laser irradiation in comparison with sandblasting (Sb), hydrofluoric acid (Hf) and silane coupling agent (Si) on shear bond strength (SBS), roughness (Rg) and wettability (Wt) of resin cement to CAD/CAM ceramics. Sixty (CAD/CAM) ceramic discs were prepared and distributed into six different groups: group A, control lithium disilicate (Li); group B, control zirconia (Zr); group C, Li: CO 2 /HF/Si; group D, Li: HF/Si; group E, Zr: CO 2 /Sb/Si; group F, Zr: Sb/Si. Result showed significant difference between irradiated and non-irradiated in terms of shear bond strength for zirconia ceramics (p value = 0.014). Moreover, partial surface wettability for irradiated and non-irradiated ceramics. Irradiated surface demonstrated more rough surface in lithium disilicate than zirconia ceramics. CO 2 irradiation could increase shear bond strength, surface roughness and wettability for both CAD/CAM ceramics.
Farhadian, Nasrin; Rezaei-Soufi, Loghman; Jamalian, Seyed Farzad; Farhadian, Maryam; Tamasoki, Shahrzad; Malekshoar, Milad; Javanshir, Bahareh
2017-01-01
ABSTRACT Introduction: Many patients seeking orthodontic treatment already have incipient enamel lesions and should be placed under preventive treatments. The aim of this in vitro study was to evaluate the effect of CPP-ACP paste and CO2 laser irradiation on demineralized enamel microhardness and shear bond strength of orthodontic brackets. Methods: Eighty caries-free human premolars were subjected to a demineralization challenge using Streptococcus mutans. After demineralization, the samples were randomly divided into five equal experimental groups: Group 1 (control), the brackets were bonded without any surface treatment; Group 2, the enamel surfaces were treated with CPP-ACP paste for 4 minutes before bonding; Group 3, the teeth were irradiated with CO2 laser beams at a wavelength of 10.6 µm for 20 seconds. The samples in Groups 4 and 5 were treated with CO2 laser either before or through CPP-ACP application. SEM photomicrographs of a tooth from each group were taken to observe the enamel surface. The brackets were bonded to the buccal enamel using a conventional method. Shear bond strength of brackets and ARI scores were measured. Vickers microhardness was measured on the non-bonded enamel surface. Data were analyzed with ANOVA and Tukey test at the p< 0.05 level. Results: The mean shear bond strength and microhardness of the laser group were higher than those in the control group and this difference was statistically significant (p< 0.05). All groups showed a higher percentage of ARI score 4. Conclusion: CO2 laser at a wavelength of 10.6 µm significantly increased demineralized enamel microhardness and enhanced bonding to demineralized enamel. PMID:28902250
Field tack coat evaluator (ATACKer)
DOT National Transportation Integrated Search
2004-12-15
Asphalt tack coats are applied during pavement construction to ensure bond between pavement layers, thus providing a more durable pavement. A prototype tack coat evaluation device (TCED) was developed to evaluate the tensile and torque-shear strength...
Evaluation of Shear Bond Strength of Orthodontic Brackets Bonded with Nano-Filled Composites
Chalipa, Javad; Akhondi, Mohammad Sadegh Ahmad; Arab, Sepideh; Kharrazifard, Mohammad Javad; Ahmadyar, Maryam
2013-01-01
Objectives: The purpose of this study was to evaluate the shear bond strength (SBS) of orthodontic brackets bonded with two types of nano-composites in comparison to a conventional orthodontic composite. Materials and Methods: Sixty extracted human first premolars were randomly divided into 3 groups each containing 20 teeth. In group I, a conventional orthodontic composite (Transbond XT) was used to bond the brackets, while two nano-composites (Filtek TM Supreme XT and AELITE Aesthetic Enamel) were used in groups II and III respectively. The teeth were stored in distilled water at 37°C for 24 hours, thermocycled in distilled water and debonded with a universal testing machine at a crosshead speed of 1 mm/min. The adhesive remnant index (ARI) was also evaluated using a stereomicroscope. Results: AELITE Aesthetic Enamel nano-composite revealed a SBS value of 8.44±2.09 MPa, which was higher than Transbond XT (6.91±2.13) and Filtek TM Supreme XT (6.04±2.01). Statistical analysis revealed a significant difference between groups II and III (P < 0.05). No significant difference was found between groups I and III, and between groups I and II (P > 0.05). Evaluation of ARI showed that Transbond XT left fewer adhesive remains on teeth after debonding. Conclusion: Results of this study indicate that the aforementioned nano-composites can be successfully used for bonding orthodontic brackets. PMID:24910655
The Effect on Final Bond Strength of Bracket Manipulation Subsequent To Initial Positioning
NASA Astrophysics Data System (ADS)
Beebe, David A.
The shear bond strength of light activated orthodontic adhesives varies according to the composition of the material, placement protocol, and time prior to light curing. Manipulating brackets after their initial placement on a tooth can disrupt the adhesive's polymerization and compromise final bond strength. No previous research has investigated how a specific degree of manipulation, and the amount of time elapsed prior to curing, under specific lighting conditions, affects the orthodontic adhesives shear bond strength. Victory SeriesRTM, MBT prescription, premolar (3M Unitek, Monrovia, CA) orthodontic brackets were bonded using three different adhesives to sixty (60) bicuspids and varying the time after bracket manipulation before curing. The shear bond strength was calculated for each specimen. The brackets were debonded and the same teeth were rebonded with new, identical brackets, using the same protocol and under the same conditions. The results showed a statistically significant difference between the shear bond strength of Transbond XT and Grengloo, with Transbond XT having the highest strength. There was also a statistically significance difference in bond strength between the group cured 30 seconds after manipulation and the groups manipulated at different intervals prior to curing, with the 30 second group having the highest bond strength. This study confirms that various orthodontic adhesives have different bond strengths depending on manipulation and varying times prior to curing each adhesive.
Effect of different surface treatments on shear bond strength of zirconia to three resin cements
NASA Astrophysics Data System (ADS)
Dadjoo, Nisa
Statement of problem: There are no standard guidelines for material selection to obtain acceptable bonding to high-strength zirconium oxide ceramic. Studies suggest resin cements in combination with MDP-containing primer is a reasonable choice, however, the other cements cannot be rejected and need further investigation. Objective: The purpose of this in vitro study was the evaluation of the shear bond strength of three composite resin cements to zirconia ceramic after using different surface conditioning methods. Materials and methods: One hundred and twenty sintered Y-TZP ceramic (IPS e.max ZirCAD) squares (8 x 8 x 4 mm) were embedded in acrylic molds, then divided into three groups (n=40) based on the type of cement used. Within each group, the specimens were divided into four subgroups (n=10) and treated as follows: (1) Air abrasion with 50microm aluminum oxide (Al2O 3) particles (ALO); (2) Air abrasion + Scotchbond Universal adhesive (SBU); (3) Air abrasion + Monobond Plus (MBP); (4) Air abrasion + Z-Prime Plus (ZPP). Composite cylinders were used as carriers to bond to conditioned ceramic using (1) RelyX Ultimate adhesive resin cement (RX); (2) Panavia SA self-adhesive resin cement (PSA); (3) Calibra esthetic cement (CAL). The bonded specimens were submerged in distilled water and subjected to 24-hour incubation period at 37°C. All specimens were stressed in shear at a constant crosshead speed of 0.5 mm/min until failure. Statistical analysis was performed by ANOVA. The bond strength values (MPa), means and standard deviations were calculated and data were analyzed using analysis of variance with Fisher's PLSD multiple comparison test at the 0.05 level of significance. The nature of failure was recorded. Results: The two-way ANOVA showed Panavia SA to have the highest strength at 44.3 +/- 16.9 MPa (p<0.05). The combination of Scotchbond Universal surface treatment with Panavia SA cement showed statistically higher bond strength (p=0.0054). The highest bond strengths for all three cements were observed with Scotchbond Universal surface treatment (p=0.0041). Calibra in combination with aluminum oxide air abrasion resulted in statistically lowest bond strength at 12.0 +/- 3.9 MPa. The predominant mode of failure was cohesive with cement remaining principally on the zirconium oxide samples in 57.5% of the specimens, followed by cement found on both the zirconium oxide samples and composite rods (mixed) in 32.5% of the samples. Only 10% of the specimens were found with cement on the composite rods (adhesive failure). Conclusions: Within the limitations of this in vitro study, the MDP-containing resin cement, Panavia SA, yielded the strongest bond to Y-TZP ceramic when compared to adhesive (RelyX Ultimate) or esthetic (Calibra) resin cements. Air abrasion particle + Scotchbond Universal surface treatment demonstrated the highest bond strength regardless of the cement. Significance: The variation of surface conditioning methods yielded different results in accordance with the cement types. Overall, Scotchbond Universal adhesive + air abrasion yielded the highest bond strengths among all three surface treatments. The phosphate monomer-containing luting system, Panavia SA, is acceptable for bonding to zirconia ceramics.
Pucci, César Rogério; Araújo, Rodrigo Maximo de; Lacerda, Ana Julia Farias de; Souza, Mirella Anjos de; Huhtala, Maria Filomena Rocha Lima; Feitosa, Fernanda Alves
2016-01-01
The aim of this study was to evaluate the influence of contamination by hemostatic agents and rinsing with chlorhexidine on bond strength between dentin and resin composite. Ninety-six bovine teeth were sectioned to expose a flat dentin surface area. A standardized cavity with 2.0 mm in thickness, superficial diameter of 4.0 mm and bottom diameter of 3.0 mm was prepared with a diamond bur in each dentin specimen. The teeth were divided into four groups according to the hemostatic employed: G1: control; G2: use of ViscoStat, Ultradent; G3: Hemosthasegel, FGM; and G4: Hemostop, Dentsply. The groups were divided into two subgroups according to the cleaning protocol method (n=12): A: without any further cleaning; and B: cleaning with chlorhexidine at 0.2%. All cavities were filled using a dentin adhesive and a resin composite, following the manufacturer's instructions. After 24 h, the specimens were aged by thermal and mechanical cycling. The bond strength was determined by the push out bond test (MPa), Statistical analysis was performed using two-way ANOVA and Tukey test (p<0.05). Statistically significant differences were detected among all groups treated with hemostatic agents and the control group. The post-hoc test showed that cleaning the cavity with chlorhexidine significantly improves the bond strength between dentin and resin composite. Our results suggested that the use of chlorhexidine can reestablish the bond strength between dentin and resin composite when a hemostatic agent was applied.
Akin, Hakan; Kirmali, Omer; Tugut, Faik; Coskun, Mehmet Emre
2014-09-01
The purpose of this study was to investigate the effects of various surface pretreatments in the ridge lap area of acrylic resin denture teeth on the shear bond strength to heat-polymerized polymethylmethacrylate (PMMA) denture base resin. Tooth debonding of the denture is a major problem for patients with removable prostheses. A total of 84 central incisor denture teeth were used in this study. Seven test groups with 12 specimens for each group were prepared as follows: untreated (control, group C), ground, with a tungsten carbide bur (group H), airborne-particle abrasion (group AA), primed with methyl methacrylate (group M), treated with izobutyl methacrylate (group iBMA), Eclipse Bonding Agent applied (group E), and Er:YAG laser irradiated (group L). Test specimens were produced according to the manufacturers' instructions and mounted to a universal testing machine for shear testing with a crosshead speed of 1 mm/min. Data were evaluated by one way variance analysis (ANOVA) and Tukey's test (α=0.05). Similar bond strength values were found between groups L and M, and these were the highest shear bond strengths among the groups. The lowest one was observed in group E. All surface treatments, except group E, exhibited significant difference when compared with group C (p<0.05). Lasing of the ridge lap area to enhance the bond strength of acrylic resin denture teeth to PMMA denture base resin might be an alternative to wetting with MMA monomer. To overcome tooth debonding, surface treatment of the ridge lap area should be performed as part of denture fabrication.
NASA Astrophysics Data System (ADS)
Musaramthota, Vishal
Advanced composite materials have enabled the conventional aircraft structures to reduce weight, improve fuel efficiency and offer superior mechanical properties. In the past, materials such as aluminum, steel or titanium have been used to manufacture aircraft structures for support of heavy loads. Within the last decade or so, demand for advanced composite materials have been emerging that offer significant advantages over the traditional metallic materials. Of particular interest in the recent years, there has been an upsurge in scientific significance in the usage of adhesively bonded composite joints (ABCJ's). ABCJ's negate the introduction of stress risers that are associated with riveting or other classical techniques. In today's aircraft transportation market, there is a push to increase structural efficiency by promoting adhesive bonding to primary joining of aircraft structures. This research is focused on the issues associated with the durability and related failures in bonded composite joints that continue to be a critical hindrance to the universal acceptance of ABCJ's. Of particular interest are the short term strength, contamination and long term durability of ABCJ's. One of the factors that influence bond performance is contamination and in this study the influence of contamination on composite-adhesive bond quality was investigated through the development of a repeatable and scalable surface contamination procedure. Results showed an increase in the contaminant coverage area decreases the overall bond strength significantly. A direct correlation between the contaminant coverage area and the fracture toughness of the bonded joint was established. Another factor that influences bond performance during an aircraft's service life is its long term strength upon exposure to harsh environmental conditions or when subjected to severe mechanical loading. A test procedure was successfully developed in order to evaluate durability of ABCJ's comprising severe environmental conditioning, fatiguing in ambient air and a combination of both. The bonds produced were durable enough to sustain the tests cases mentioned above when conditioned for 8 weeks and did not experience any loss in strength. Specimens that were aged for 80 weeks showed a degradation of 10% in their fracture toughness when compared to their baseline datasets. The effect of various exposure times needs to be further evaluated to establish the relationship of durability that is associated with the fracture toughness of ABCJ's.
Effects of Mechanical and Chemical Pretreatments of Zirconia or Fiber Posts on Resin Cement Bonding
Li, Rui; Zhou, Hui; Wei, Wei; Wang, Chen; Sun, Ying Chun; Gao, Ping
2015-01-01
The bonding strength between resin cement and posts is important for post and core restorations. An important method of improving the bonding strength is the use of various surface pretreatments of the post. In this study, the surfaces of zirconia (fiber) posts were treated by mechanical and/or chemical methods such as sandblasting and silanization. The bonding strength between the zirconia (fiber) post and the resin cement was measured by a push-out method after thermocycling based on the adhesion to Panavia F 2.0 resin cement. The zirconia and fiber posts exhibited different bonding strengths after sandblasting and/or silanization because of the different strengths and chemical structures. The zirconia post showed a high bonding strength of up to 17.1 MPa after a combined treatment of sandblasting and silanization because of the rough surface and covalent bonds at the interface. This effect was also enhanced by using 1,2-bis(trimethoxysilyl)ethane for the formation of a flexible layer at the interface. In contrast, a high bonding strength of 13.9 MPa was obtained for the fiber post treated by silane agents because the sandblasting treatment resulted in damage to the fiber post, as observed by scanning electron microscopy. The results indicated that the improvement in the bonding strength between the post and the resin cement could be controlled by different chemical and/or mechanical treatments. Enhanced bonding strength depended on covalent bonding and the surface roughness. A zirconia post with high bonding strength could potentially be used for the restoration of teeth in the future. PMID:26066349
Asiry, Moshabab A; AlShahrani, Ibrahim; Alaqeel, Samer M; Durgesh, Bangalore H; Ramakrishnaiah, Ravikumar
2018-08-01
The adhesion strength of orthodontic brackets bonded to dental glass ceramics was evaluated after ceramic surface was treated with two-step and one-step surface conditioning systems, and subjecting to thermo-cycling. A total of forty specimens were fabricated from silica based glass ceramic (lithium disilicate) by duplicating the buccal surface of maxillary first premolar. The specimens were randomly assigned to two experimental groups (n = 20), group one specimens were treated with two-step surface conditioning system (IPS ceramic etching gel™ and Monobond plus™) and group two specimens were treated with one-step surface conditioning system (Monobond etch and prime™). The surface roughness of the specimens after treatment with two-step and one-step surface conditioning system was measured using non-contact surface profilometer. Ten randomly selected specimens from each group were subjected to thermo-cycling and the remaining ten served as baseline. The shear bond strength of the specimens was measured using universal material testing machine. The adhesive remnant index score was calculated, and the results of surface roughness and bond strength were tabulated and subjected to analysis of variance and post hoc tukey's test at a significance level of p < 0.05. The results of the study showed that the specimens treated with two-step conditioning system had higher surface roughness and bond strength than one-step conditioning system. The majority of the specimens treated with both two-step and one-step conditioned specimens showed adhesive failure after subjecting thermo-cycling. Traditional two-step conditioning provides better bond strength. The clinical importance of the study is that, the silane promoted adhesion significantly reduces on exposure to thermo-cycling. Copyright © 2018 Elsevier Ltd. All rights reserved.
Brum, Rafael Torres; Vieira, Sergio; Freire, Andrea; Mazur, Rui Fernando; De Souza, Evelise Machado; Rached, Rodrigo Nunes
2017-01-01
This study evaluated the effect of different surface treatments on the repair bond strength of nanohybrid (Empress Direct) and nanofilled (Filtek Z350 XT) composite resins. A total of 120 specimens of each material (7.5 x 4.5 x 3 mm) were prepared and polished with SiC paper. Half of the specimens were kept in water for seven days and the other half for six months; they were then divided into six groups according to the type of surface treatment: negative control (no treatment), Al2O3sandblasted, liquid acetone, acetone gel, liquid alcohol and alcohol gel. Following application of the silane coupling agent and the adhesive system, composite resin cylinders were fabricated on the specimens and light cured (20 seconds). The same composite resins were used for the repair. Additionally, ten intact specimens of each composite resin (without repair) were prepared (positive control). The specimens were then loaded to failure in the microshear mode. Three additional specimens were fabricated in each group, and the surface treatments were analyzed by atomic force microscopy, energy-dispersive X-ray spectroscopy (EDS) and scanning electron microscopy (SEM). The nanofilled composite resin showed higher cohesive strength and repair bond strength than the nanohybrid composite resin. The aging process affected the repair bond strength of the nanofilled composite resin. Al2O3sandblasting was more efficient for the nanofilled composite resin and promoted greater surface roughness in both materials. The solvents demonstrated higher efficacy for the nanohybrid composite resin. The strengths resulting from the solvents were material dependent, and Al2O3sandblasting resulted in superior repair bond strength in both materials.
NASA Astrophysics Data System (ADS)
Puspitarini, A.; Suprastiwi, E.; Usman, M.
2017-08-01
Ceramic optimized polymer (ceromer) bonds to the tooth substrate through resin cements. The bond strength between dentin, resin cement, and ceromer depends on the applied surface treatment. To analyze the effects of dentin and intaglio ceromer surface treatment on the shear bond strength self-adhesive resin cement. Forty-five dentin premolar and ceromer specimens were bonded with resin cement and divided into three groups as follows: in group 1, no treatment was applied; in group 2, dentin surface treatment was carried out with acid etching and a bonding agent; and in group 3, dentin surface treatment was carried out with acid etching, a bonding agent, and intaglio ceromer surface treatment with etching and silane. All specimens were incubated at 37 °C for 24 hours, and the shear bond strength was measured using a universal testing machine. Group 3 showed the highest shear bond strength, followed by group 2. The surface treatment of dentin and intaglio ceromer showed significantly improved shear bond strength in the group comparison. Dentin and intaglio ceromer surface treatment can improved the shear bond strength self-adhesive resin cement.
Yoo, H M; Oh, T S; Pereira, P N R
2006-01-01
This study evaluated the effect of saliva contamination and decontamination methods on the dentin bond strength of one-step self-etching adhesive systems. Three commercially available "all-in-one" adhesives (One Up Bond F, Xeno III and Adper Prompt) and one resin composite (Filtek Z-250) were used. Third molars stored in distilled water with 0.5% thymol at 4 degrees C were ground with #600 SiC paper under running water to produce a standardized smear layer. The specimens were randomly divided into groups according to contamination methods: no contamination, which was the control (C); contamination of the adhesive surface with fresh saliva before light curing (A) and contamination of the adhesive surface with fresh saliva after light curing (B). Each contamination group was further subdivided into three subgroups according to the decontamination method: A1-Saliva was removed by a gentle air blast and the adhesive was light-cured; A2-Saliva was rinsed for 10 seconds, gently air-dried and the was adhesive light-cured; A3-Saliva was rinsed and dried as in A2, then the adhesive was re-applied to the dentin surface and light-cured; B1-Saliva was removed with a gentle air blast; B2-Saliva was rinsed and dried; B3-Saliva was rinsed, dried and the adhesive was re-applied and light cured. Tygon tubes filled with resin composite were placed on each surface and light cured. All specimens were stored in distilled water at 37 degrees C for 24 hours. Microshear bond strength was measured using a universal testing machine (EZ test), and data were analyzed by one-way ANOVA followed by the Duncan test to make comparisons among the groups (p<0.05). After debonding, five specimens were selected and examined in a scanning electron microscope to evaluate the modes of fracture. The A2 subgroup resulted in the lowest bond strength. For One Up Bond F and Adper Prompt, there was no significant difference between subgroup A1 and the control, and subgroup A3 and the control (p>0.05). Bond strengths of all B groups were significantly lower compared to the controls (p<0.05). For Xeno III, A1 subgroup showed the greatest decrease in bond strength as compared to the control (p<0.05). On the other hand, it showed more resistance to salivary contamination after adhesive curing. There was no statistically significant difference among the control groups (p>0.05).
Fatigue of the Resin-Enamel Bonded Interface and the Mechanisms of Failure
Yahyazadehfar, Mobin; Mutluay, Mustafa Murat; Majd, Hessam; Ryou, Heonjune; Arola, Dwayne
2013-01-01
The durability of adhesive bonds to enamel and dentin and the mechanisms of degradation caused by cyclic loading are important to the survival of composite restorations. In this study a novel method of evaluation was used to determine the strength of resin-enamel bonded interfaces under both static and cyclic loading, and to identify the mechanisms of failure. Specimens with twin interfaces of enamel bonded to commercial resin composite were loaded in monotonic and cyclic 4-point flexure to failure within a hydrated environment. Results for the resin-enamel interface were compared with those for the resin composite (control) and values reported for resin-dentin adhesive bonds. Under both modes of loading the strength of the resin-enamel interface was significantly (p≤0.0001) lower than that of the resin composite and the resin-dentin bonded interface. Fatigue failure of the interface occurred predominately by fracture of enamel, adjacent to the interface, and not due to adhesive failures. In the absence of water aging or acid production of biofilms, the durability of adhesive bonds to enamel is lower than that achieved in dentin bonding. PMID:23571321
Effect of ozone application on the resin-dentin microtensile bond strength.
Rodrigues, P C F; Souza, J B; Soares, C J; Lopes, L G; Estrela, C
2011-01-01
When ozone is used during caries treatment, bond strength can be compromised by the release of oxygen. The use of antioxidant agents neutralizes the free oxygen. The aim of this study was to evaluate the effects of ozone and sodium ascorbate on resin-dentin microtensile bond strength (μTBS). Forty human third molars were divided into four groups: Group 1, not treated with ozone; Group 2, ozone application followed by acid etching; Group 3, acid etching followed by ozone application; and Group 4, ozone and application of sodium ascorbate. Bonded beams (1.0 mm(2)) were tested under tension (0.5 mm min(-1)). The μTBS values were analyzed using one-way analysis of variance (ANOVA) and the Tukey test (p=0.05). All beams that fractured were analyzed under stereomicroscopy (40×). Group 1 had significantly higher μTBS values than Group 2 or 3. The μTBS values of Groups 1 and 4 were similar and higher than those of Group 2. The use of ozone in Group 2 resulted in lower values of μTBS in all conditions evaluated. The predominant failure mode was adhesive. The application of ozone decreased the μTBS of the dentin-composite resin interface. These values were reversed when compared with Groups 1 and 2 when sodium ascorbate was used.