Sample records for bonding agent effective

  1. Evaluation to the effect of B2O3-La2O3-SrO-Na2O-Al2O3 bonding agent on Ti6Al4V-porcelain bonding.

    PubMed

    Zhao, C Q; Wu, S Q; Lu, Y J; Gan, Y L; Guo, S; Lin, J J; Huang, T T; Lin, J X

    2016-10-01

    Low-fusing bonding agents have been widely applied in Ti-ceramics restorations. As an important category, borate bonding agents have great potentials in increasing Ti-porcelain bonding. The purpose of this study is to evaluate the effect of borate bonding agent with addition of Na2O and Al2O3 on Ti6Al4V-porcelain bonding. The thermal properties of borate bonding agent, such as glass transition temperature (Tg) and crystallization peak temperature (Tp), were investigated to establish the sintering process. And the coefficient of thermal expansion (CTE) was to evaluate the matching effect of porcelain to Ti6Al4V. The bond strength was analyzed by the three point bending test. The microscopic morphology of the borate bonding agent surface after sintering, the interface of Ti-borate bonding agent-porcelain, and the fracture mode after porcelains fracture, were studied to assess the influence of borate bonding agent on Ti6Al4V-ceramics. With the addition of Na2O and Al2O3, the porcelain residues were observed increased indication on the Ti6Al4V surface after porcelain fracture and the bond strength was acquired the maximum (49.45MPa) in the bonding agent composition of 75.70B2O3-5.92La2O3-11.84SrO-4.67Na2O-1.87Al2O3. Those results suggest that borate bonding agent is an effective way to improve the Ti6Al4V-ceramics bond strength. And the addition of Na2O and Al2O3 strengthen this effect. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Assessment of antibacterial properties of newer dentin bonding agents: An in vitro study.

    PubMed

    Sampath, Pavitra B; Hegde, Mithra N; Hegde, Priyadarshini

    2011-07-01

    To evaluate and compare the antibacterial activity of newer dentin bonding agents on Streptococcus mutans using the direct contact test. Streptococcus mutans was used as test organism and a direct contact test was performed. The dentin bonding agents to be tested were grouped as Group I, Clearfil Protect Bond, Group II, Adper Easy One, and Group III, Prime and Bond NT. For the direct contact test, three microtiter plates consisting of 96 wells each were taken (288 wells). These wells were divided into three groups of 96 wells; 16 wells of a microtiter plate were utilized, of which four were designated as 'A' wells (with the dentin bonding agent and bacterial suspension), another four as 'B' wells (without the dentin bonding agent, but with the bacterial suspension), another four as the 'C' wells (with the tested material, but without bacteria, which served as the negative control), and the remaining four as the 'D' wells (without the dentin bonding agent, which served as the positive control). Each group was treated with their respective bonding agents as per the manufactures instructions. Broth of 15 μL was then transferred from the A wells into an adjacent set of B wells containing fresh medium (215 μL). This resulted in two sets of four wells for each tested material containing an equal volume of liquid medium, so that bacterial growth was monitored both in the presence and in the absence of the tested material. The plate was placed for incubation at 37°C in the microplate reader and the optical density in each well was measured at 600 nm. The readings were taken at regular intervals. (Every 30 minutes for 16 hours). The Dentin bonding agents evaluated in this study showed different inhibitory effects. Clearfil Protect Bond and Prime and Bond NT were most effective, and Adper Easy One was least effective against Streptococcus mutans. The Dentin bonding agents evaluated in this study showed different inhibitory effects. Clearfil Protect Bond and Prime and Bond NT were most effective, and Adper Easy One was the least effective against Streptococcus mutans. Hence, the incorporation of antibacterial agents into the dentin bonding agents may become an essential factor in inhibiting residual bacteria in the cavity and secondary caries.

  3. Antibacterial and remineralization effects of orthodontic bonding agents containing bioactive glass

    PubMed Central

    Kim, Dong-Hyun; Song, Chang Weon; Yoon, Seog-Young; Kim, Se-Yeon; Na, Hee Sam; Chung, Jin

    2018-01-01

    Objective The aim of this study was to evaluate the mechanical and biological properties of orthodontic bonding agents containing silver- or zinc-doped bioactive glass (BAG) and determine the antibacterial and remineralization effects of these agents. Methods BAG was synthesized using the alkali-mediated solgel method. Orthodontic bonding agents containing BAG were prepared by mixing BAG with flowable resin. Transbond™ XT (TXT) and Charmfil™ Flow (CF) were used as controls. Ion release, cytotoxicity, antibacterial properties, the shear bond strength, and the adhesive remnant index were evaluated. To assess the remineralization properties of BAG, micro-computed tomography was performed after pH cycling. Results The BAG-containing bonding agents showed no noticeable cytotoxicity and suppressed bacterial growth. When these bonding agents were used, demineralization after pH cycling began approximately 200 to 300 µm away from the bracket. On the other hand, when CF and TXT were used, all surfaces that were not covered by the adhesive were demineralized after pH cycling. Conclusions Our findings suggest that orthodontic bonding agents containing silver- or zinc-doped BAG have stronger antibacterial and remineralization effects compared with conventional orthodontic adhesives; thus, they are suitable for use in orthodontic practice. PMID:29732302

  4. Effect of universal adhesive etching modes on bond strength to dual-polymerizing composite resins.

    PubMed

    Michaud, Pierre-Luc; Brown, Matthew

    2018-04-01

    Information is lacking as to the effect on bond strength of the etching modes of universal adhesives when they are used to bond dual-polymerizing composite resins to dentin. The purpose of this in vitro study was to investigate the bonding of dual-polymerizing foundation composite resins to dentin when universal bonding agents are used in self-etch or etch-and-rinse modes. Sixty caries-free, extracted third molar teeth were sectioned transversely in the apical third of the crown and allocated to 12 groups (n=5). Three different bonding agents (Scotchbond Universal, OptiBond XTR, All-Bond Universal) were used to bond 2 different dual-polymerizing composite resins (CompCore AF or CoreFlo DC) to dentin, using 2 different etching approaches (etch-and-rinse or self-etch). The specimens were sectioned into sticks (1×1×8 mm) with a precision saw. The bond strength of the specimens was tested under microtensile force at a crosshead speed of 0.5 mm/min. The data were analyzed using a 3-way ANOVA, a Games-Howell post hoc comparisons model, and Student t tests with Bonferroni corrections (α=.05). In the overall model, the composite resin used had no effect on bond strength (P=.830). The etching protocol by itself also did not have a significant effect (P=.059), although a trend was present. The bonding agent, however, did have an effect (P<.001) on bond strength. Also, a significant interaction effect was found for the bonding agent and etching protocol on bond strength (P<.001). The etching protocol influenced the bond strength when Scotchbond Universal (P<.008) and All-Bond Universal (P<.004) were used but not when OptiBond XTR was used (P=1.00). A self-etch protocol provided significantly higher bond strength when Scotchbond Universal was used, whereas with All-Bond Universal, an etch-and-rinse protocol, provided higher bond strength. When universal bonding agents were used to secure dual-polymerizing composite resins to dentin, no single etching protocol is better than another. Depending on which bonding agent is being used, one etching mode may perform better. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  5. Effect of water-ageing on dentine bond strength and anti-biofilm activity of bonding agent containing new monomer dimethylaminododecyl methacrylate

    PubMed Central

    Zhang, Ke; Cheng, Lei; Wu, Eric J.; Weir, Michael D.; Bai, Yuxing; Xu, Hockin H. K.

    2013-01-01

    Objectives The objectives of this study were to develop bonding agent containing a new antibacterial monomer dimethylaminododecyl methacrylate (DMADDM) as well as nanoparticles of silver (NAg) and nanoparticles of amorphous calcium phosphate (NACP), and to investigate the effects of water-ageing for 6 months on dentine bond strength and anti-biofilm properties for the first time. Methods Four bonding agents were tested: Scotchbond Multi-Purpose (SBMP) Primer and Adhesive control; SBMP + 5% DMADDM; SBMP + 5% DMADDM + 0.1% NAg; and SBMP + 5% DMADDM + 0.1% NAg with 20% NACP in adhesive. Specimens were water-aged for 1 d and 6 months at 37 °C. Then the dentine shear bond strengths were measured. A dental plaque microcosm biofilm model was used to inoculate bacteria on water-aged specimens and to measure metabolic activity, colony-forming units (CFUs), and lactic acid production. Results Dentine bond strength showed a 35% loss in 6 months of water-ageing for SBMP control (mean ± sd; n = 10); in contrast, the new antibacterial bonding agents showed no strength loss. The DMADDM–NAg–NACP containing bonding agent imparted a strong antibacterial effect by greatly reducing biofilm viability, metabolic activity and acid production. The biofilm CFU was reduced by more than two orders of magnitude, compared to SBMP control. Furthermore, the DMADDM–NAg–NACP bonding agent exhibited a long-term antibacterial performance, with no significant difference between 1 d and 6 months (p > 0.1). Conclusions Incorporating DMADDM–NAg–NACP in bonding agent yielded potent and long-lasting antibacterial properties, and much stronger bond strength after 6 months of water-ageing than a commercial control. The new antibacterial bonding agent is promising to inhibit biofilms and caries at the margins. The method of DMADDM–NAg–NACP incorporation may have a wide applicability to other adhesives, cements and composites. PMID:23583528

  6. A Comparative Evaluation of the Effect of Bonding Agent on the Tensile Bond Strength of Two Pit and Fissure Sealants Using Invasive and Non-invasive Techniques: An in-vitro Study.

    PubMed

    Singh, Shamsher; Adlakha, Vivek; Babaji, Prashant; Chandna, Preetika; Thomas, Abi M; Chopra, Saroj

    2013-10-01

    Newer technologies and the development of pit and fissure sealants have shifted the treatment philosophy from 'drill and fill' to that of 'seal and heal'. The purpose of this in-vitro study was to evaluate the effects of bonding agents on the tensile bond strengths of two pit and fissure sealants by using invasive and non-invasive techniques. One hundred and twenty bicuspids were collected and teeth were divided into two groups: Group-I (Clinpro) and Group-II (Conseal f) with 60 teeth in each group. For evaluating tensile bond strengths, occlusal surfaces of all the teeth were flattened by reducing buccal and lingual cusps without disturbing fissures. Standardised polyvinyl tube was bonded to occlusal surfaces with respective materials. Sealants were applied, with or without bonding agents, in increments and they were light cured. Tensile bond strengths were determined by using Universal Testing Machine. Data were then statistically analysed by using Student t-test for comparison. A statistically significant difference was found in tensile bond strength in invasive with bonding agent group than in non-invasive with bonding agent group. This study revealed that invasive techniques increase the tensile bond strengths of sealants as compared to non- invasive techniques and that the use of a bonding agent as an intermediate layer between the tooth and fissure sealant is beneficial for increasing the bond strength.

  7. Effect of a whitening agent application on enamel bond strength of self-etching primer systems.

    PubMed

    Miyazaki, Masashi; Sato, Hikaru; Sato, Tomomi; Moore, B Keith; Platt, Jeffrey A

    2004-06-01

    Though reduction in bond strength after tooth whitening has been reported, little is known about it's effect on enamel bond strength of two-step bonding systems that exclude phosphoric acid etching prior to bonding agent application. The purpose of this study was to determine the effect of whitening procedure using an in-office whitening agent on enamel bond strength of self-etching primer systems. Three self-etching primer systems, Imperva Fluoro Bond, Mac Bond II, Clearfil SE Bond, and a one-bottle adhesive system Single Bond as a control material, were used. Bovine mandibular incisors were mounted in self-curing resin and the facial enamel or dentin surfaces were ground wet on 600-grit SiC paper. An in-office whitening agent, Hi-Lite was applied on the tooth surface according to the manufacturer's instruction. Bonding procedures were done soon after rinsing off the whitening agent or after 24 hours storage in distilled water. Specimens without whitening procedure were prepared as controls. Fifteen specimens per test group were stored in 37 degrees C distilled water for 24 hours, then shear tested at a crosshead speed of 1.0 mm/minute. One-way ANOVA followed by Duncan multiple range test were used for statistical analysis of the results. For the specimens made soon after rinsing off the whitening agent, a significant decrease in enamel bond strength was observed for all the bonding systems used. For the specimens made after 24 hours storage in water, a small decrease in enamel bond strength was observed and no significant differences were found compared to those of controls (without whitening). From the results of this study, enamel bond strengths of the self-etching primer systems might be affected to a lesser degree after rinsing with water followed by 24 hours storage in water.

  8. Effects of three silane primers and five adhesive agents on the bond strength of composite material for a computer-aided design and manufacturing system.

    PubMed

    Shinohara, Ayano; Taira, Yohsuke; Sakihara, Michino; Sawase, Takashi

    2018-01-01

    Objective The objective of this study was to evaluate the effects of combinations of silane primers and adhesive agents on the bond strength of a composite block for a computer-aided design and manufacturing system. Material and Methods Three silane primers [Clearfil Ceramic Primer (CP), Super-Bond PZ Primer (PZ), and GC Ceramic Primer II (GP)] were used in conjunction with five adhesive agents [G-Premio Bond (P-Bond), Repair Adhe Adhesive (R-Adhesive), Super-Bond D-Liner Dual (SB-Dual), Super-Bond C&B (SB-Self), and SB-Dual without tributylborane derivative (SB-Light)]. The surface of a composite block (Gradia Block) was ground with silicon carbide paper. After treatment with a silane primer, a adhesive agent was applied to each testing specimen. The specimens were then bonded with a light-curing resin composite. After 24 h, the shear bond strength values were determined and compared using a post hoc test (α=0.05, n=8/group). We also prepared control specimens without primer (No primer) and/or without adhesive agent (No adhesive). Results PZ/SB-Dual and GP/SB-Dual presented the highest bond strength, followed by GP/P-Bond, CP/SB-Dual, CP/R-Adhesive, No primer/SB-Dual, GP/R-Adhesive, CP/P-Bond, No primer/R-Adhesive, PZ/R-Adhesive, CP/SB-Self, PZ/P-Bond, PZ/SB-Self, and GP/SB-Self in descending order of bond strength. No primer/P-Bond, No primer/SB-Self, and all specimens in the SB-Light and No adhesive groups presented the lowest bond strengths. Conclusion A dual-curing adhesive agent (SB-Dual) containing a tributylborane derivative in combination with a silane primer (GP or PZ) presents a greater bond strength between the composite block and the repairing resin composite than the comparators used in the study.

  9. Effects of three silane primers and five adhesive agents on the bond strength of composite material for a computer-aided design and manufacturing system

    PubMed Central

    2018-01-01

    Abstract Objective The objective of this study was to evaluate the effects of combinations of silane primers and adhesive agents on the bond strength of a composite block for a computer-aided design and manufacturing system. Material and Methods Three silane primers [Clearfil Ceramic Primer (CP), Super-Bond PZ Primer (PZ), and GC Ceramic Primer II (GP)] were used in conjunction with five adhesive agents [G-Premio Bond (P-Bond), Repair Adhe Adhesive (R-Adhesive), Super-Bond D-Liner Dual (SB-Dual), Super-Bond C&B (SB-Self), and SB-Dual without tributylborane derivative (SB-Light)]. The surface of a composite block (Gradia Block) was ground with silicon carbide paper. After treatment with a silane primer, a adhesive agent was applied to each testing specimen. The specimens were then bonded with a light-curing resin composite. After 24 h, the shear bond strength values were determined and compared using a post hoc test (α=0.05, n=8/group). We also prepared control specimens without primer (No primer) and/or without adhesive agent (No adhesive). Results PZ/SB-Dual and GP/SB-Dual presented the highest bond strength, followed by GP/P-Bond, CP/SB-Dual, CP/R-Adhesive, No primer/SB-Dual, GP/R-Adhesive, CP/P-Bond, No primer/R-Adhesive, PZ/R-Adhesive, CP/SB-Self, PZ/P-Bond, PZ/SB-Self, and GP/SB-Self in descending order of bond strength. No primer/P-Bond, No primer/SB-Self, and all specimens in the SB-Light and No adhesive groups presented the lowest bond strengths. Conclusion A dual-curing adhesive agent (SB-Dual) containing a tributylborane derivative in combination with a silane primer (GP or PZ) presents a greater bond strength between the composite block and the repairing resin composite than the comparators used in the study. PMID:29742254

  10. Evaluation of Shear Bond Strength of Total- and Self-etching Adhesive Systems after Application of Chlorhexidine to Dentin Contaminated with a Hemostatic Agent

    PubMed Central

    Sharafeddin, Farahnaz; Farhadpour, Hajar

    2015-01-01

    Statement of the Problem Hemostatic agents may influence the bond strength of different bonding agents. Also, chlorhexidine has shown positive effects on bond strength values and their combination effect has not been reported yet. Purpose The aim of this study was to evaluate the effect of contamination with a hemostatic agent on shear bond strength (SBS) of total- and self-etching adhesive systems and the effect of chlorhexidine application after removal of the hemostatic agent. Materials and Method In this experimental study, the occlusal enamel of each sixty caries-free mandibular molars was removed and their midcoronal dentin was exposed. The specimens were then mounted in auto-polymerizing resin 1mm apical to CEJ. Then, the specimens were divided into 6 groups (n=10) based on contamination with a hemostatic agent (H), application of chlorhexidine (CHX) and the adhesive system used; and then were classified as Group 1: Adper Single Bond (ASB); Group 2: H+ASB; Group 3: H+0.2% CHX+ASB; Group 4: Clearfil SE Bond (CSB); Group 5: H+CSB; Group 6: H+0.2% CHX+CSB. Then, composite resin rods (4×2 mm) were built up on the dentin surfaces and after thermocycling, the SBS (MPa) was evaluated. Statistical analysis was performed using two-way ANOVA and post hoc Tukey tests (p< 0.05). Results There were statistically significant differences between bond strength values of group 1 (ASB) and group 2 (H+ASB) (p< 0.001) and group 1 (ASB) and group 3 (H+CHX+ASB) (p< 0.001). Similarly, significant differences were seen between group 4 (CSB) and group 5 (H+CSB) (p< 0.001) and between group 4 (CSB) and group 6 (H+CHX+CSB) (p< 0.001). Conclusion Contamination with hemostatic agent reduced the SBS of both total- and self-etching adhesive systems. In addition, application of chlorhexidine after the removal of hemostatic agent had a negative effect on SBS of total- and self-etching adhesive systems. PMID:26331146

  11. The effect of five kinds of surface treatment agents on the bond strength to various ceramics with thermocycle aging.

    PubMed

    Noda, Yukari; Nakajima, Masatoshi; Takahashi, Masahiro; Mamanee, Teerapong; Hosaka, Keiichi; Takagaki, Tomohiro; Ikeda, Masaomi; Foxton, Richard M; Tagami, Junji

    2017-11-29

    This study evaluated the effects of ceramic surface treatment agents on shear bond strengths to ceramic materials with and without thermocycling. Ceramic plates were prepared from feldspathic ceramic; AAA, lithium disilicate ceramic material; IPS e.max Press, zirconia ceramic; Lava. Ceramic surfaces were pretreated with one of five surface treatment agents (Clearfil PhotoBond mixed with Porcelainbond activator (PB), Clearfil SE One mixed with Porcelainbond activator (SO), Ceramic Primer (CP), Universal Primer (UP), Scotchbond Universal (SU)), and then a resin cement (Clapearl DC) was filled. After 0, 5,000, and 10,000 thermocycles, micro-shear bond strengths between ceramic-cement interfaces were determined. SU exhibited significantly lower initial bond strength to AAA and e.max than PB, SO, CP, and UP. For Lava, PB, SO, CP and SU exhibited higher initial bond strengths than UP. Thermocycles reduced bond strengths to all the ceramic materials with any surface treatment.

  12. Resin cementation of zirconia ceramics with different bonding agents

    PubMed Central

    Tanış, Merve Çakırbay; Akay, Canan; Karakış, Duygu

    2015-01-01

    The aim of this study was to evaluate the effects of sandblasting and different chemical bonding agents on shear bond strength of zirconia and conventional resin cement. In this study, 35 zirconia specimens were treated as follows: Group I: control; Group II: sandblasting; Group III: sandblasting + Monobond S; Group IV: sandblasting + Monobond Plus; Group V: sandblasting + Z-Prime Plus. The specimens in each group were bonded with conventional composite resin cement Variolink II. After cementation, specimens were stored in distilled water (at 37 °C) for 24 h and shear test was performed. The highest shear bond strength values were observed in Groups IV and V. The lowest shear bond strength values were observed in Group I. Using 10-methacryloyloxy-decyl dihydrogenphosphate monomer-containing priming agents, e.g. Monobond Plus and Z-PRIME Plus, combined with sandblasting can be an effective method for resin bonding of zirconia restorations. PMID:26019653

  13. Effect of Bonding Agent Application Method on Titanium-Ceramic Bond Strength.

    PubMed

    Curtis, Joseph G; Dossett, Jon; Prihoda, Thomas J; Teixeira, Erica C

    2015-07-01

    Although milled titanium may be used as a substructure in fixed and implant prosthodontics, the application of the veneering porcelain presents particular challenges compared to traditional alloys. To address these challenges, some Ti ceramic systems incorporate the application of a bonding agent prior to the opaque layer. Vita Titankeramik's bonding agent is available as a powder, paste, and spray-on formulation. We examined the effect of these three application methods on the bond strength. Four titanium bars were milled from each of 11 wafers cut from grade II Ti using the Kavo Everest milling unit and a custom-designed milling toolpath. An experienced technician prepared the 25 × 3 × 0.5 mm(3) metal bars and applied bonding agent using one of three application methods, and then applied opaque, dentin, and enamel porcelains according to manufacturer's instructions to a 8 × 3 × 1 mm(3) porcelain. A control group received no bonding agent prior to porcelain application. The four groups (n = 11) were blindly tested for differences in bond strength using a universal testing machine in a three-point bend test configuration, based on ISO 9693-1:2012. The average (SD) bond strengths for the control, powder, paste, and spray-on groups, respectively, were: 24.8 (2.6), 24.6 (2.6), 25.3 (4.0), and 24.1 (3.9) MPa. One-way ANOVA and Tukey's multiple comparison tests were performed between all groups. There were no statistically significant differences among groups (p = 0.951). Titanium-porcelain bond strength was not affected by the use of a bonding agent or its application method when tested by ISO 9693-1 standard. © 2014 by the American College of Prosthodontists.

  14. Effects of water-aging for 6 months on the durability of a novel antimicrobial and protein-repellent dental bonding agent.

    PubMed

    Zhang, Ning; Zhang, Ke; Weir, Michael D; Xu, David J; Reynolds, Mark A; Bai, Yuxing; Xu, Hockin H K

    2018-06-21

    Biofilms at the tooth-restoration bonded interface can produce acids and cause recurrent caries. Recurrent caries is a primary reason for restoration failures. The objectives of this study were to synthesize a novel bioactive dental bonding agent containing dimethylaminohexadecyl methacrylate (DMAHDM) and 2-methacryloyloxyethyl phosphorylcholine (MPC) to inhibit biofilm formation at the tooth-restoration margin and to investigate the effects of water-aging for 6 months on the dentin bond strength and protein-repellent and antibacterial durability. A protein-repellent agent (MPC) and antibacterial agent (DMAHDM) were added to a Scotchbond multi-purpose (SBMP) primer and adhesive. Specimens were stored in water at 37 °C for 1, 30, 90, or 180 days (d). At the end of each time period, the dentin bond strength and protein-repellent and antibacterial properties were evaluated. Protein attachment onto resin specimens was measured by the micro-bicinchoninic acid approach. A dental plaque microcosm biofilm model was used to test the biofilm response. The SBMP + MPC + DMAHDM group showed no decline in dentin bond strength after water-aging for 6 months, which was significantly higher than that of the control (P < 0.05). The SBMP + MPC + DMAHDM group had protein adhesion that was only 1/20 of that of the SBMP control (P < 0.05). Incorporation of MPC and DMAHDM into SBMP provided a synergistic effect on biofilm reduction. The antibacterial effect and resistance to protein adsorption exhibited no decrease from 1 to 180 d (P > 0.1). In conclusion, a bonding agent with MPC and DMAHDM achieved a durable dentin bond strength and long-term resistance to proteins and oral bacteria. The novel dental bonding agent is promising for applications in preventive and restorative dentistry to reduce biofilm formation at the tooth-restoration margin.

  15. Effect of smear layer deproteinization on bonding of self-etch adhesives to dentin: a systematic review and meta-analysis

    PubMed Central

    Alshaikh, Khaldoan H.; Mahmoud, Salah H.

    2018-01-01

    Objectives The aim of this systematic review was to critically analyze previously published studies of the effects of dentin surface pretreatment with deproteinizing agents on the bonding of self-etch (SE) adhesives to dentin. Additionally, a meta-analysis was conducted to quantify the effects of the above-mentioned surface pretreatment methods on the bonding of SE adhesives to dentin. Materials and Methods An electronic search was performed using the following databases: Scopus, PubMed and ScienceDirect. The online search was performed using the following keywords: ‘dentin’ or ‘hypochlorous acid’ or ‘sodium hypochlorite’ and ‘self-etch adhesive.’ The following categories were excluded during the assessment process: non-English articles, randomized clinical trials, case reports, animal studies, and review articles. The reviewed studies were subjected to meta-analysis to quantify the effect of the application time and concentration of sodium hypochlorite (NaOCl) and hypochlorous acid (HOCl) deproteinizing agents on bonding to dentin. Results Only 9 laboratory studies fit the inclusion criteria of this systematic review. The results of the meta-analysis revealed that the pooled average microtensile bond strength values to dentin pre-treated with deproteinizing agents (15.71 MPa) was significantly lower than those of the non-treated control group (20.94 MPa). Conclusions In light of the currently available scientific evidence, dentin surface pretreatment with deproteinizing agents does not enhance the bonding of SE adhesives to dentin. The HOCl deproteinizing agent exhibited minimal adverse effects on bonding to dentin in comparison with NaOCl solutions. PMID:29765895

  16. Assessing the effects of hydrogen peroxide bleaching agent on the shear bond strength of orthodontic brackets.

    PubMed

    Andrighetto, Augusto Ricardo; de Leão Withers, Eduardo Henrique; Grando, Karlos Giovani; Ambrosio, Aldrieli Regina; Shimizu, Roberto Hideo; Melo, Ana Cláudia

    2016-01-01

    Tooth bleaching is, today, one of the most widespread cosmetic treatments in dental practice,  so it is important to determine whether it can interfere with orthodontic bonding or not. The aim of this study was to assess the in vitro effects of 35% hydrogen peroxide bleaching agent on the shear bond strength of orthodontic brackets. Forty-five upper bicuspids were divided into three groups (n = 15). In the control Group (C), the brackets were bonded without previous bleaching treatment. Group 1 (G1) was treated with 35% hydrogen peroxide bleaching agent 24 h before bracket bonding. Group 2 was also bleached, and the brackets were bonded after 30 days. The shear bond strength of the brackets was measured using an EMIC machine, and the results were analyzed by ANOVA. There were no statistically significant differences between the three groups (P > 0.05), with Group C showing a mean bond strength of 9.72 ± 2.63 MPa, G1 of 8.09 ± 2.63 MPa, and G2 of 11.15 ± 4.42 MPa. It was possible to conclude that 35% hydrogen peroxide bleaching agent does not affect the shear strength of orthodontic brackets bonded 24 h and 30 days after bleaching.

  17. Sequentially bridged graphene sheets with high strength, toughness, and electrical conductivity

    PubMed Central

    Wan, Sijie; Li, Yuchen; Mu, Jiuke; Aliev, Ali E.; Fang, Shaoli; Kotov, Nicholas A.; Jiang, Lei; Cheng, Qunfeng; Baughman, Ray H.

    2018-01-01

    We here show that infiltrated bridging agents can convert inexpensively fabricated graphene platelet sheets into high-performance materials, thereby avoiding the need for a polymer matrix. Two types of bridging agents were investigated for interconnecting graphene sheets, which attach to sheets by either π–π bonding or covalent bonding. When applied alone, the π–π bonding agent is most effective. However, successive application of the optimized ratio of π–π bonding and covalent bonding agents provides graphene sheets with the highest strength, toughness, fatigue resistance, electrical conductivity, electromagnetic interference shielding efficiency, and resistance to ultrasonic dissolution. Raman spectroscopy measurements of stress transfer to graphene platelets allow us to decipher the mechanisms of property improvement. In addition, the degree of orientation of graphene platelets increases with increasing effectiveness of the bonding agents, and the interlayer spacing increases. Compared with other materials that are strong in all directions within a sheet, the realized tensile strength (945 MPa) of the resin-free graphene platelet sheets was higher than for carbon nanotube or graphene platelet composites, and comparable to that of commercially available carbon fiber composites. The toughness of these composites, containing the combination of π–π bonding and covalent bonding, was much higher than for these other materials having high strengths for all in-plane directions, thereby opening the path to materials design of layered nanocomposites using multiple types of quantitatively engineered chemical bonds between nanoscale building blocks. PMID:29735659

  18. Effect of a bonding agent on in vitro biochemical activities of remineralizing resin-based calcium phosphate cements.

    PubMed

    Dickens, Sabine H; Flaim, Glenn M

    2008-09-01

    To test whether fluoride in a resin-based Ca-PO4 ion releasing cement or coating with an acidic bonding agent for improved adhesion compromised the cement remineralization potential. Cements were formulated without fluoride (Cement A) or with fluoride (Cement B). The treatment groups were A=Cement A; A2=Cement A+bonding agent; B=Cement B; B2=Cement B+bonding agent. The calcium, phosphate, and fluoride ion release in saliva-like solution (SLS) was determined from hardened cement disks without or with a coating of bonding agent. For the remineralization, two cavities were prepared in dentin of extracted human molars and demineralized. One cavity received composite resin (control); the other received treatment A, A2, B or B2. After 6 week incubation in SLS, 180 microm cross-sections were cut. The percentage remineralization was determined by transverse microradiography comparing the dentin mineral density under the cement to that under the control. The percentage of remineralization (mean+/-S.D.) was A (39+/-14)=B (37+/-18), A2 (23+/-13), B2 (14+/-7). Two-way analysis of variance (ANOVA) and Holm-Sidak test showed a significant effect from the presence of bonding agent (p<0.05), but not from fluoride (p>0.05). The ion solution concentrations of all groups showed undersaturation with respect to dicalcium phosphate dihydrate and calcium fluoride and supersaturation for fluorapatite and hydroxyapatite suggesting a positive remineralization potential. Compared to the control all treatments resulted in mineral increase. The remineralization was negatively affected by the presence of the bonding agent.

  19. Comparing the shear bond strength of direct and indirect composite inlays in relation to different surface conditioning and curing techniques

    PubMed Central

    Zorba, Yahya Orcun; Ilday, Nurcan Ozakar; Bayındır, Yusuf Ziya; Demirbuga, Sezer

    2013-01-01

    Objective: The aim of this study was to test the null hypothesis that different surface conditioning (etch and rinse and self-etch) and curing techniques (light cure/dual cure) had no effect on the shear bond strength of direct and indirect composite inlays. Materials and Methods: A total of 112 extracted human molar teeth were horizontally sectioned and randomly divided into two groups according to restoration technique (direct and indirect restorations). Each group was further subdivided into seven subgroups (n = 8) according to bonding agent (etch and rinse adhesives Scotchbond multi-purpose plus, All-Bond 3, Adper Single Bond and Prime Bond NT; and self-etch adhesives Clearfil Liner Bond, Futurabond DC and G bond). Indirect composites were cemented to dentin surfaces using dual-curing luting cement. Shear bond strength of specimens was tested using a Universal Testing Machine. Two samples from each subgroup were evaluated under Scanning electron microscopy to see the failing modes. Data was analyzed using independent sample t-tests and Tukey's tests. Results: Surface conditioning and curing of bonding agents were all found to have significant effects on shear bond strength (P < 0.05) of both direct and indirect composite inlays. With direct restoration, etch and rinse systems and dual-cured bonding agents yielded higher bond strengths than indirect restoration, self-etch systems and light-cured bonding agents. Conclusions: The results of the present study indicated that direct restoration to be a more reliable method than indirect restoration. Although etch and rinse bonding systems showed higher shear bond strength to dentin than self-etch systems, both systems can be safely used for the adhesion of direct as well as indirect restorations. PMID:24932118

  20. Comparing the shear bond strength of direct and indirect composite inlays in relation to different surface conditioning and curing techniques.

    PubMed

    Zorba, Yahya Orcun; Ilday, Nurcan Ozakar; Bayındır, Yusuf Ziya; Demirbuga, Sezer

    2013-10-01

    The aim of this study was to test the null hypothesis that different surface conditioning (etch and rinse and self-etch) and curing techniques (light cure/dual cure) had no effect on the shear bond strength of direct and indirect composite inlays. A total of 112 extracted human molar teeth were horizontally sectioned and randomly divided into two groups according to restoration technique (direct and indirect restorations). Each group was further subdivided into seven subgroups (n = 8) according to bonding agent (etch and rinse adhesives Scotchbond multi-purpose plus, All-Bond 3, Adper Single Bond and Prime Bond NT; and self-etch adhesives Clearfil Liner Bond, Futurabond DC and G bond). Indirect composites were cemented to dentin surfaces using dual-curing luting cement. Shear bond strength of specimens was tested using a Universal Testing Machine. Two samples from each subgroup were evaluated under Scanning electron microscopy to see the failing modes. Data was analyzed using independent sample t-tests and Tukey's tests. Surface conditioning and curing of bonding agents were all found to have significant effects on shear bond strength (P < 0.05) of both direct and indirect composite inlays. With direct restoration, etch and rinse systems and dual-cured bonding agents yielded higher bond strengths than indirect restoration, self-etch systems and light-cured bonding agents. The results of the present study indicated that direct restoration to be a more reliable method than indirect restoration. Although etch and rinse bonding systems showed higher shear bond strength to dentin than self-etch systems, both systems can be safely used for the adhesion of direct as well as indirect restorations.

  1. Progress in using hydroxymethylated resorcinol coupling agent to improve bond durability to wood

    Treesearch

    Alfred W. Christiansen

    2001-01-01

    In the mid-1990s, researchers at the Forest Products Laboratory developed a coupling agent, hydroxymethylated resorcinol (HMR), that has the ability to enhance adhesive bonds between wood and nontraditional adhesives (Vick and others 1995, 1996). HMR is also effective in promoting durable bonding of phenol-resorcinol- formaldehyde (PRF) adhesives to CCA-treated...

  2. Effects of dual antibacterial agents MDPB and nano-silver in primer on microcosm biofilm, cytotoxicity and dentin bond properties

    PubMed Central

    Zhang, Ke; Cheng, Lei; Imazato, Satoshi; Antonucci, Joseph M.; Lin, Nancy J.; Lin-Gibson, Sheng; Bai, Yuxing; Xu, Hockin H. K.

    2013-01-01

    Objectives The objective of this study was to investigate the effects of dentin primer containing dual antibacterial agents, namely, 12-methacryloyloxydodecylpyridinium bromide (MDPB) and nanoparticles of silver (NAg), on dentin bond strength, dental plaque microcosm biofilm response, and fibroblast cytotoxicity for the first time. Methods Scotchbond Multi-Purpose (SBMP) was used as the parent bonding agent. Four primers were tested: SBMP primer control (referred to as “P”), P+5%MDPB, P+0.05%NAg, and P+5%MDPB+0.05%NAg. Dentin shear bond strengths were measured using extracted human teeth. Biofilms from the mixed saliva of 10 donors were cultured to investigate metabolic activity, colony-forming units (CFU), and lactic acid production. Human fibroblast cytotoxicity of the four primers was tested in vitro. Results Incorporating MDPB and NAg into primer did not reduce dentin bond strength compared to control (p>0.1). SEM revealed well-bonded adhesive-dentin interfaces with numerous resin tags. MDPB or NAg each greatly reduced biofilm viability and acid production, compared to control. Dual agents MDPB+NAg had a much stronger effect than either agent alone (p<0.05), increasing inhibition zone size and reducing metabolic activity, CFU and lactic acid by an order of magnitude, compared to control. There was no difference in cytotoxicity between commercial control and antibacterial primers (p>0.1). Conclusions The method of using dual agents MDPB+NAg in the primer yielded potent antibacterial properties. Hence, this method may be promising to combat residual bacteria in tooth cavity and invading bacteria at the margins. The dual agents MDPB+NAg may have wide applicability to other adhesives, composites, sealants and cements to inhibit biofilms and caries. PMID:23402889

  3. Relationship between thin-film bond strength as measured by a scratch test, and indentation hardness for bonding agents.

    PubMed

    Kusakabe, Shusuke; Rawls, H Ralph; Hotta, Masato

    2016-03-01

    To evaluate thin-film bond strength between a bonding agent and human dentin, using a scratch test, and the characteristics and accuracy of measurement. One-step bonding agents (BeautiBond; Bond Force; Adper Easy Bond; Clearfil tri-S Bond) and two-step bonding agents (Cleafil SE Bond; FL-Bond II) were investigated in this study. Flat dentin surfaces were prepared for extracted human molars. The dentin surfaces were ground and bonding agents were applied and light cured. The thin-film bond strength test of the specimens was evaluated by the critical load at which the coated bonding agent failed and dentin appeared. The scratch mark sections were then observed under a scanning electron microscope. Indentation hardness was evaluated by the variation in depth under an applied load of 10gf. Data were compared by one-way ANOVA with the Scheffé's post hoc multiple comparison test (p<0.05). In addition, thin-film bond strength and indentation hardness were analyzed using analysis of correlation and covariance. The thin-film bond strength of two-step bonding agents were found to be significantly higher than that of one-step bonding agents with small standard deviations. Scratch marks consistently showed adhesive failure in the vicinity of the bonding agent/dentin interface. The indentation hardness showed a trend that two-step bonding agents have greater hardness than one-step bonding agents. A moderately significant correlation (r(2)=0.31) was found between thin-film bond strength and indentation hardness. Thin-film bond strength test is a valid and reliable means of evaluating bond strength in the vicinity of the adhesive interface and is more accurate than other methods currently in use. Further, the thin-film bond strength is influenced by the hardness of the cued bonding agent. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. Method of bonding functional surface materials to substrates and applications in microtechnology and anti-fouling

    DOEpatents

    Feng, Xiangdong; Liu, Jun; Liang, Liang

    2001-01-01

    A simple and effective method to bond a thin coating of poly(N-isopropylacylamide) (NIPAAm) on a glass surface by UV photopolymerization, and the use of such a coated surface in nano and micro technology applications. A silane coupling agent with a dithiocarbamate group is provided as a photosensitizer preferably, (N,N'-diethylamine) dithiocarbamoylpropyl-(trimethoxy) silane (DATMS). The thiocarbamate group of the sensitizer is then bonded to the glass surface by coupling the silane agent with the hydroxyl groups on the glass surface. The modified surface is then exposed to a solution of NIPAAm and a crosslinking agent which may be any organic molecule having an acrylamide group and at least two double bonds in its structure, such as N, N'-methylenebisacrylamide, and a polar solvent which may be any polar liquid which will dissolve the monomer and the crosslinking agent such as acetone, water, ethanol, or combinations thereof. By exposing the glass surface to a UV light, free radicals are generated in the thiocarbamate group which then bonds to the crosslinking agent and the NIPAAm. Upon bonding, the crosslinking agent and the NIPAAm polymerize to form a thin coating of PNIPAAm bonded to the glass. Depending upon the particular configuration of the glass, the properties of the PNIPAAm allow applications in micro and nano technology.

  5. Method of bonding functional surface materials to substrates and applications in microtechnology and antifouling

    DOEpatents

    Feng, Xiangdong; Liu, Jun; Liang, Liang

    1999-01-01

    A simple and effective method to bond a thin coating of poly(N-isopropylacylamide) (NIPAAm) on a glass surface by UV photopolymerization, and the use of such a coated surface in nano and micro technology applications. A silane coupling agent with a dithiocarbamate group is provided as a photosensitizer, preferably, (N,N'-diethylamine)dithiocarbamoylpropyl-(trimethoxy)silane (DATMS). The thiocarbamate group of the sensitizer is then bonded to the glass surface by coupling the silane agent with the hydroxyl groups on the glass surface. The modified surface is then exposed to a solution of NIPAAm and a crosslinking agent which may be any organic molecule having an acrylamide group and at least two double bonds in its structure, such as N,N'-methylenebisacrylamide, and a polar solvent which may be any polar liquid which will dissolve the monomer and the crosslinking agent such as acetone, water, ethanol, or combinations thereof. By exposing the glass surface to a UV light, free radicals are generated in the thiocarbamate group which then bonds to the crosslinking agent and the NIPAAm. Upon bonding, the crosslinking agent and the NIPAAm polymerize to form a thin coating of PNIPAAm bonded to the glass. Depending upon the particular configuration of the glass, the properties of the PNIPAAm allow applications in micro and nano technology.

  6. Effects of etching time on enamel bond strengths.

    PubMed

    Triolo, P T; Swift, E J; Mudgil, A; Levine, A

    1993-12-01

    This study evaluated the effects of etching time on bond strengths of composite to enamel. Proximal surfaces of extracted molars were etched with either a conventional etchant (35% phosphoric acid) or one of two dentin/enamel conditioners, 10% maleic acid (Scotchbond Multi-Purpose Etchant), or a solution of oxalic acid, aluminum nitrate, and glycine (Gluma 1 & 2 Conditioner). Each agent was applied for 15, 30, or 60 seconds. Specimens etched with 35% phosphoric acid had the highest mean bond strengths at each etching time. At the manufacturer's recommended application times, the other two agents gave significantly lower shear bond strengths than phosphoric acid.

  7. In vitro Comparative Evaluation of Tensile Bond Strength of 6(th), 7(th) and 8(th) Generation Dentin Bonding Agents.

    PubMed

    Kamble, Suresh S; Kandasamy, Baburajan; Thillaigovindan, Ranjani; Goyal, Nitin Kumar; Talukdar, Pratim; Seal, Mukut

    2015-05-01

    Newer dentin bonding agents were developed to improve the quality of composite restoration and to reduce time consumption in its application. The aim of the present study was to evaluate tensile bond strength of 6(th), 7(th) and 8(th) generation bonding agents by in vitro method. Selected 60 permanent teeth were assigned into 20 in each group (Group I: 6(th) generation bonding agent-Adper SE plus 3M ESPE, Group II: 7(th) generation bonding agent-G-Bond GC Corp Japan and Group III: 8(th) generation dentin adhesives-FuturaBond, DC, Voco, Germany). With high-speed diamond disc, coronal dentin was exposed, and selected dentin bonding agents were applied, followed by composite restoration. All samples were saved in saline for 24 h and tensile bond strength testing was done using a universal testing machine. The obtained data were tabulated and statistically analyzed using ANOVA test. The tensile bond strength readings for 6(th) generation bonding agent was 32.2465, for 7(th) generation was 31.6734, and for 8(th)-generation dentine bonding agent was 34.74431. The highest tensile bond strength was seen in 8(th) generation bonding agent compared to 6(th) and 7(th) generation bonding agents. From the present study it can be conclude that 8(th) generation dentine adhesive (Futura DC, Voco, Germany) resulted in highest tensile bond strength compared to 6(th) (Adper SE plus, 3M ESPE) and 7(th) generation (G-Bond) dentin bonding agents.

  8. Efficacy of antimicrobial agents incorporated in orthodontic bonding systems: a systematic review and meta-analysis.

    PubMed

    de Almeida, C M; da Rosa, W L O; Meereis, C T W; de Almeida, S M; Ribeiro, J S; da Silva, A F; Lund, Rafael Guerra

    2018-06-01

    The purpose of this study was to evaluate the efficacy of orthodontic bonding systems containing different antimicrobial agents, as well as the influence of antimicrobial agent incorporation in the bonding properties of these materials. Eight databases were searched: PubMed (Medline), Web of Science, Scopus, Lilacs, Ibecs, BBO, Scielo and Google Scholar. Any study that evaluated antimicrobial activity in experimental or commercial orthodontic bonding systems was included. Data were tabulated independently and in duplicated by two authors on pre-designed data collection form. The global analysis was carried out using a random-effects model, and pooled-effect estimates were obtained by comparing the standardised mean difference of each antimicrobial orthodontic adhesive with the respective control group. A p-value < .05 was considered as statistically significant. Thirty-two studies were included in the qualitative analysis; of these, 22 studies were included in the meta-analysis. Antimicrobial agents such as silver nanoparticles, benzalkonium chloride, chlorhexidine, triclosan, cetylpyridinium chloride, Galla chinensis extract, acid ursolic, dimethylaminododecyl methacrylate, dimethylaminohexadecyl methacrylate, 2-methacryloyloxyethyl phosphorylcholine, 1,3,5-triacryloylhexahydro-1,3,5-triazine, zinc oxide and titanium oxide have been incorporated into orthodontic bonding systems. The antimicrobial agent incorporation in orthodontic bonding systems showed higher antimicrobial activity than the control group in agar diffusion (overall standardised mean difference: 3.71; 95% CI 2.98 to 4.43) and optical density tests (0.41; 95% CI -0.05 to 0.86) (p < .05). However, for biofilm, the materials did not present antimicrobial activity (6.78; 95% CI 4.78 to 8.77). Regarding bond strength, the global analysis showed antimicrobial orthodontic bonding systems were statistically similar to the control. Although there is evidence of antibacterial activity from in vitro studies, clinical and long-term studies are still necessary to confirm the effectiveness of antibacterial orthodontic bonding systems in preventing caries disease.

  9. Effective solidification/stabilisation of mercury-contaminated wastes using zeolites and chemically bonded phosphate ceramics.

    PubMed

    Zhang, Shaoqing; Zhang, Xinyan; Xiong, Ya; Wang, Guoping; Zheng, Na

    2015-02-01

    In this study, two kinds of zeolites materials (natural zeolite and thiol-functionalised zeolite) were added to the chemically bonded phosphate ceramic processes to treat mercury-contaminated wastes. Strong promotion effects of zeolites (natural zeolite and thiol-functionalised zeolite) on the stability of mercury in the wastes were obtained and these technologies showed promising advantages toward the traditional Portland cement process, i.e. using Portland cement as a solidification agent and natural or thiol-functionalised zeolite as a stabilisation agent. Not only is a high stabilisation efficiency (lowered the Toxicity Characteristic Leaching Procedure Hg by above 10%) obtained, but also a lower dosage of solidification (for thiol-functionalised zeolite as stabilisation agent, 0.5 g g(-1) and 0.7 g g(-1) for chemically bonded phosphate ceramic and Portland cement, respectively) and stabilisation agents (for natural zeolite as stabilisation agent, 0.35 g g(-1) and 0.4 g g(-1) for chemically bonded phosphate ceramic and Portland cement, respectively) were used compared with the Portland cement process. Treated by thiol-functionalised zeolite and chemically bonded phosphate ceramic under optimum parameters, the waste containing 1500 mg Hg kg(-1) passed the Toxicity Characteristic Leaching Procedure test. Moreover, stabilisation/solidification technology using natural zeolite and chemically bonded phosphate ceramic also passed the Toxicity Characteristic Leaching Procedure test (the mercury waste containing 625 mg Hg kg(-1)). Moreover, the presence of chloride and phosphate did not have a negative effect on the chemically bonded phosphate ceramic/thiol-functionalised zeolite treatment process; thus, showing potential for future application in treatment of 'difficult-to-manage' mercury-contaminated wastes or landfill disposal with high phosphate and chloride content. © The Author(s) 2015.

  10. Comparison of the antibacterial activity of different self-etching primers and adhesives.

    PubMed

    Korkmaz, Yonca; Ozalp, Meral; Attar, Nuray

    2008-11-01

    The aim of this study was to evaluate the antibacterial effects of different one-step and two-step self-etching primer/adhesives on Streptococcus mutans (S. mutans), Lactobacillus casei (L. casei), and Lactobacillus acidophilus (L. acidophilus). The antibacterial effects of Clearfil Protect Bond Primer and Bonding agent; AdheSE Primer and Bonding agent; Adper Prompt L-Pop; Futurabond NR; Clearfil Tri S Bond; and Cervitec (positive control, 1% chlorhexidine varnish) were tested against standard strains of S. mutans, L. Casei, and L. acidophilus using the disk diffusion method. Standard filter paper disks (n=5) impregnated with 20 microL of each material were prepared. After incubation at 37 masculineC for 48 hours in a 5-10% CO2 atmosphere, the diameter of inhibition zones were measured in millimeters. Data were analyzed using one way analysis of variance (ANOVA) and multivariate analysis of variance (MANOVA). Duncan's Multiple Range Test was used for pairwise comparison. The size of inhibition zones produced by primer/adhesives varied among the brands. AdheSE Primer: S. mutans (20.6+/-1.51); L. casei (14.8+/-1.78); L. acidophilus (11.4+/-0.54). Adper Prompt L-Pop: S. mutans (19.6+/-1.51); L. casei (13.8+/-1.64); L. acidophilus (13.8+/-1.09). Cervitec: S. mutans (23+/-0.00); L. casei (27+/-0.70); L. acidophilus (22.4+/-0.54). Clearfil Protect Bond Primer: S. mutans (17+/-0.00); L. casei (17.6+/-0.54); L. acidophilus (22.4+/-0.54). Futurabond NR was found effective only against S. mutans (14.6+/-1.67). Of all the materials tested, AdheSE Bonding agent, Clearfil Protect Bond Bonding agent, and Clearfil Tri S Bond exhibited no inhibition zone (-) for all bacteria tested. Among the adhesives tested Clearafil Protect Bond Primer based upon monomer methacryloyloxydodecylpyridiniium bromide (MDPB) was found to be the most potent material against L. acidophilus and L. casei. AdheSE Primer and Adper Prompt L-Pop are highly effective against S. mutans. Compared with other adhesive systems, Clearfil Protect Bond Primer (containing MDPB) showed a high antibacterial effect against all microorganizms tested. Two-step, self-etching primer/adhesive system Clearfil Protect Bond might be a suitable choice under minimally invasive restorations. The recently developed one-step, self-etching system Clearfil Tri S Bond showed no antibacterial effect against microorgazims tested.

  11. The effect of antimicrobial agents on bond strength of orthodontic adhesives: a meta-analysis of in vitro studies.

    PubMed

    Altmann, A S P; Collares, F M; Leitune, V C B; Samuel, S M W

    2016-02-01

    Antimicrobial orthodontic adhesives aim to reduce white spot lesions' incidence in orthodontic patients, but they should not jeopardizing its properties. Systematic review and meta-analysis were performed to answer the question whether the association of antimicrobial agents with orthodontic adhesives compromises its mechanical properties and whether there is a superior antimicrobial agent. PubMed and Scopus databases. In vitro studies comparing shear bond strength of conventional photo-activated orthodontic adhesives to antimicrobial photo-activated orthodontic adhesives were considered eligible. Search terms included the following: orthodontics, orthodontic, antimicrobial, antibacterial, bactericidal, adhesive, resin, resin composite, bonding agent, bonding system, and bond strength. The searches yielded 494 citations, which turned into 467 after duplicates were discarded. Titles and abstracts were read and 13 publications were selected for full-text reading. Twelve studies were included in the meta-analysis. The global analysis showed no statistically significant difference between control and experimental groups. In the subgroup analysis, only the chlorhexidine subgroup showed a statistically significant difference, where the control groups had higher bond strength than the experimental groups. Many studies on in vitro orthodontic bond strength fail to report test conditions that could affect their outcomes. The pooled in vitro data suggest that adding an antimicrobial agent to an orthodontic adhesive system does not influence bond strength to enamel. It is not possible to state which antimicrobial agent is better to be associated. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Effects of tributylborane-activated adhesive and two silane agents on bonding computer-aided design and manufacturing (CAD/CAM) resin composite.

    PubMed

    Shinohara, Ayano; Taira, Yohsuke; Sawase, Takashi

    2017-10-01

    The present study was conducted to evaluate the effects of an experimental adhesive agent [methyl methacrylate-tributylborane liquid (MT)] and two adhesive agents containing silane on the bonding between a resin composite block of a computer-aided design and manufacturing (CAD/CAM) system and a light-curing resin composite veneering material. The surfaces of CAD/CAM resin composite specimens were ground with silicon-carbide paper, treated with phosphoric acid, and then primed with either one of the two silane agents [Scotchbond Universal Adhesive (SC) and GC Ceramic Primer II (GC)], no adhesive control (Cont), or one of three combinations (MT/SC, MT/GC, and MT/Cont). A light-curing resin composite was veneered on the primed CAD/CAM resin composite surface. The veneered specimens were subjected to thermocycling between 4 and 60 °C for 10,000 cycles, and the shear bond strengths were determined. All data were analyzed using analysis of variance and a post hoc Tukey-Kramer HSD test (α = 0.05, n = 8). MT/SC (38.7 MPa) exhibited the highest mean bond strengths, followed by MT/GC (30.4 MPa), SC (27.9 MPa), and MT/Cont (25.7 MPa), while Cont (12.9 MPa) and GC (12.3 MPa) resulted in the lowest bond strengths. The use of MT in conjunction with a silane agent significantly improved the bond strength. Surface treatment with appropriate adhesive agents was confirmed as a prerequisite for veneering CAD/CAM resin composite restorations.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yuzhan; Zhang, Yuehong; Rios, Orlando

    In this study, a liquid crystalline epoxy network (LCEN) with exchangeable disulfide bonds is synthesized by polymerizing a biphenyl-based epoxy monomer with an aliphatic dicarboxylic acid curing agent containing a disulfide bond. The effect of disulfide bonds on curing behavior and liquid crystalline (LC) phase formation of the LCEN is investigated. The presence of the disulfide bonds results in an increase in the reaction rate, leading to a reduction in liquid crystallinity of the LCEN. In order to promote LC phase formation and stabilize the self-assembled LC domains, a similar aliphatic dicarboxylic acid without the disulfide bond is used asmore » a co-curing agent to reduce the amount of exchangeable disulfide bonds in the system. After optimizing the molar ratio of the two curing agents, the resulting LCEN exhibits improved reprocessability and recyclability because of the disulfide exchange reactions, while preserving LC properties, such as the reversible LC phase transition and macroscopic LC orientation, for shape memory applications.« less

  14. Low temperature joining of ceramic composites

    DOEpatents

    Barton, Thomas J.; Anderson, Iver E.; Ijadi-Maghsoodi, Sina; Nosrati, Mohammad; Unal, Ozer

    1999-01-12

    A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 degrees C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or cermaic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 degrees C. to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix.

  15. Low temperature joining of ceramic composites

    DOEpatents

    Barton, Thomas J.; Anderson, Iver E.; Ijadi-Maghsoodi, Sina; Nosrati, Mohammad; Unal, Ozer

    1999-07-13

    A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 degrees C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or ceramic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 degrees C. to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix.

  16. Low temperature joining of ceramic composites

    DOEpatents

    Barton, Thomas J.; Anderson, Iver E.; Ijadi-Maghsoodi, Sina; Nosrati, Mohammad; Unal, Ozer

    2001-04-10

    A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 degrees C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or cermaic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 degrees C. to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix.

  17. Low temperature joining of ceramic composites

    DOEpatents

    Barton, T.J.; Anderson, I.E.; Ijadi-Maghsoodi, S.; Nosrati, M.; Unal, O.

    1999-07-13

    A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or ceramic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 C to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix. 3 figs.

  18. Low temperature joining of ceramic composites

    DOEpatents

    Barton, T.J.; Anderson, I.E.; Ijadi-Maghsoodi, S.; Nosrati, M.; Unal, O.

    1999-01-12

    A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 degrees C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or ceramic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 degrees C. to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix. 3 figs.

  19. Novel dental adhesives containing nanoparticles of silver and amorphous calcium phosphate

    PubMed Central

    Melo, Mary Anne S.; Cheng, Lei; Zhang, Ke; Weir, Michael D.; Rodrigues, Lidiany K. A.; Xu, Hockin H. K.

    2012-01-01

    Objectives Secondary caries is the main reason for restoration failure, and replacement of the failed restorations accounts for 50–70% of all restorations. Antibacterial adhesives could inhibit residual bacteria in tooth cavity and invading bacteria along the margins. Calcium (Ca) and phosphate (P) ion release could remineralize the lesions. The objectives of this study were to incorporate nanoparticles of silver (NAg) and nanoparticles of amorphous calcium phosphate (NACP) into adhesive for the first time, and to investigate the effects on dentin bond strength and plaque microcosm biofilms. Methods Scotchbond Multi-Purpose adhesive was used as control. NAg were added into primer and adhesive at 0.1% by mass. NACP were mixed into adhesive at 10%, 20%, 30% and 40%. Microcosm biofilms were grown on disks with primer covering the adhesive on a composite. Biofilm metabolic activity, colony-forming units (CFU) and lactic acid were measured. Results Human dentin shear bond strengths (n=10) ranged from 26 to 34 MPa; adding NAg and NACP into adhesive did not decrease the bond strength (p > 0.1). SEM examination revealed resin tags from well-filled dentinal tubules. Numerous NACP infiltrated into the dentinal tubules. While NACP had little antibacterial effect, NAg in bonding agents greatly reduced the biofilm viability and metabolic activity, compared to the control (p < 0.05). CFU for total microorganisms, total streptococci, and mutans streptococci on bonding agents with NAg were an order of magnitude less than those of the control. Lactic acid production by biofilms for groups containing NAg was 1/4 of that of the control. Significance Dental plaque microcosm biofilm viability and acid production were greatly reduced on bonding agents containing NAg and NACP, without compromising dentin bond strength. The novel method of incorporating dual agents (remineralizing agent NACP and antibacterial agent NAg) may have wide applicability to other dental bonding systems. PMID:23138046

  20. Effects of drying agents on bond strength of etch-and-rinse adhesive systems to enamel immediately after bleaching.

    PubMed

    Niat, Alireza Boruzi; Yazdi, Fatmeh Maleknejad; Koohestanian, Niloufar

    2012-12-01

    To determine the effect of drying agents and adhesive solvents on the bond strength of resin composite to enamel immediately after bleaching. Sixty healthy human premolars were bleached using 15% carbamide peroxide gel and randomly divided into three groups according to the immersing solutions applied immediately after bleaching: 70% alcohol, acetone, and distilled water. Each group was randomly divided into two subgroups according to the adhesives that were applied: an alcohol-based adhesive (Single Bond) and an acetone-based adhesive (One Step). By using rubber washers, composite Z100 was placed onto the enamel and shear bond strength was evaluated in a universal testing machine at a crosshead speed of 1 mm/min. The type of failure was also assessed using a stereomicroscope. The data were statistically analyzed by two-way ANOVA and Tukey's post-hoc test (α = 0.05). Fisher's Exact test was used to evaluate differences in the failure modes. Statistical analysis showed that the bond strength of the distilled water groups was significantly lower than that of the other groups, but the bond strengths of the two groups where a drying agent was applied were similar to that of the unbleached group. The acetone-based adhesive (One Step) provided higher bond strength than did the alcohol-based adhesive (Single Bond) (p < 0.05). There was no interaction between the two variables (p > 0.05). Fisher's Exact test showed there was no significant difference in the failure mode of all the experimental groups (p > 0.05). The application of drying agents improves the bond strength of resin composite to bleached enamel. Furthermore, the acetone-based adhesive used in the study had a higher bond strength to bleached enamel than did the alcohol-based adhesive used.

  1. Liquid crystalline epoxy networks with exchangeable disulfide bonds

    DOE PAGES

    Li, Yuzhan; Zhang, Yuehong; Rios, Orlando; ...

    2017-06-09

    In this study, a liquid crystalline epoxy network (LCEN) with exchangeable disulfide bonds is synthesized by polymerizing a biphenyl-based epoxy monomer with an aliphatic dicarboxylic acid curing agent containing a disulfide bond. The effect of disulfide bonds on curing behavior and liquid crystalline (LC) phase formation of the LCEN is investigated. The presence of the disulfide bonds results in an increase in the reaction rate, leading to a reduction in liquid crystallinity of the LCEN. In order to promote LC phase formation and stabilize the self-assembled LC domains, a similar aliphatic dicarboxylic acid without the disulfide bond is used asmore » a co-curing agent to reduce the amount of exchangeable disulfide bonds in the system. After optimizing the molar ratio of the two curing agents, the resulting LCEN exhibits improved reprocessability and recyclability because of the disulfide exchange reactions, while preserving LC properties, such as the reversible LC phase transition and macroscopic LC orientation, for shape memory applications.« less

  2. Dental plaque microcosm response to bonding agents containing quaternary ammonium methacrylates with different chain lengths and charge densities

    PubMed Central

    Zhou, Han; Li, Fang; Weir, Michael D.; Xu, Hockin H.K.

    2013-01-01

    Objectives Antibacterial bonding agents are promising to combat bacteria and caries at tooth-restoration margins. The objectives of this study were to incorporate new quaternary ammonium methacrylates (QAMs) to bonding agent and determine the effects of alkyl chain length (CL) and quaternary amine charge density on dental plaque microcosm bacteria response for the first time. Methods Six QAMs were synthesized with CL = 3, 6, 9, 12, 16, 18. Each QAM was incorporated into Scotchbond Multi-purpose (SBMP). To determine the charge density effect, dimethylaminododecyl methacrylate (DMAHDM, CL = 16) was mixed into SBMP at mass fraction = 0%, 2.5%, 5%, 7.5%, 10%. Charge density was measured using a fluorescein dye method. Dental plaque microcosm using saliva from ten donors was tested. Bacteria were inoculated on resins. Early-attachment was tested at 4 hours. Biofilm colony-forming units (CFU) were measured at 2 days. Results Incorporating QAMs into SBMP reduced bacteria early-attachment. Microcosm biofilm CFU for CL = 16 was 4 log lower than SBMP control. Charge density of bonding agent increased with DMAHDM content. Bacteria early-attachment decreased with increasing charge density. Biofilm CFU at 10% DMAHDM was reduced by 4 log. The killing effect was similarly-strong against total microorganisms, total streptococci, and mutans streptococci. Conclusions Increasing alkyl chain length and charge density of bonding agent was shown for the first time to decrease microcosm bacteria attachment and reduce biofilm CFU by 4 orders of magnitude. Novel antibacterial resins with tailored chain length and charge density are promising for wide applications in bonding, cements, sealants and composites to inhibit biofilms and caries. PMID:23948394

  3. Dental plaque microcosm response to bonding agents containing quaternary ammonium methacrylates with different chain lengths and charge densities.

    PubMed

    Zhou, Han; Li, Fang; Weir, Michael D; Xu, Hockin H K

    2013-11-01

    Antibacterial bonding agents are promising to combat bacteria and caries at tooth-restoration margins. The objectives of this study were to incorporate new quaternary ammonium methacrylates (QAMs) to bonding agent and determine the effects of alkyl chain length (CL) and quaternary amine charge density on dental plaque microcosm bacteria response for the first time. Six QAMs were synthesized with CL=3, 6, 9, 12, 16, 18. Each QAM was incorporated into Scotchbond multi-purpose (SBMP). To determine the charge density effect, dimethylaminododecyl methacrylate (DMAHDM, CL=16) was mixed into SBMP at mass fraction=0%, 2.5%, 5%, 7.5%, 10%. Charge density was measured using a fluorescein dye method. Dental plaque microcosm using saliva from ten donors was tested. Bacteria were inoculated on resins. Early-attachment was tested at 4h. Biofilm colony-forming units (CFU) were measured at 2 days. Incorporating QAMs into SBMP reduced bacteria early-attachment. Microcosm biofilm CFU for CL=16 was 4 log lower than SBMP control. Charge density of bonding agent increased with DMAHDM content. Bacteria early-attachment decreased with increasing charge density. Biofilm CFU at 10% DMAHDM was reduced by 4 log. The killing effect was similarly-strong against total microorganisms, total streptococci, and mutans streptococci. Increasing alkyl chain length and charge density of bonding agent was shown for the first time to decrease microcosm bacteria attachment and reduce biofilm CFU by 4 orders of magnitude. Novel antibacterial resins with tailored chain length and charge density are promising for wide applications in bonding, cements, sealants and composites to inhibit biofilms and caries. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Do matrix metalloproteinase inhibitors improve the bond durability of universal dental adhesives?

    PubMed

    Tekçe, Neslihan; Tuncer, Safa; Demirci, Mustafa; Balci, Sibel

    2016-11-01

    The aim of this study was to evaluate the effects of matrix metalloproteinases (MMPs) inhibitors on the microtensile bond strength (μTBS) and the adhesive-dentin interface of two universal dentin bonding agents, Single Bond Universal and All Bond Universal, after 12 months of water storage. Seventy extracted, caries-free, human third molars were used in this study. Of these, 50 were used for μTBS testing and 20 were used for scanning electron microscopy. The two bonding agents were applied to flat dentin surfaces in five different ways: self-etch mode, etch-and-rinse mode with 37% phosphoric acid, etch-and-rinse mode with phosphoric acid containing 1% benzalkonium chloride, etch-and-rinse mode with phosphoric acid and 2% chlorhexidine, and etch-and-rinse mode with 0.5 M ethylenediaminetetraacetic acid (EDTA) (n = 5 for each bonding agent in each group; N = 50). Half the specimens were subjected to μTBS tests at 24 h, while half were subjected to the tests after 12 months of water storage. For each bonding agent, inhibition, storage, and their interaction effects were tested by two-way analysis of variance and Bonferroni tests. For Single Bond Universal, the benzalkonium chloride (p = 0.024) and chlorhexidine groups (p = 0.033) exhibited significantly higher μTBS values at 24 h compared with the self-etch group. For All Bond Universal, all groups displayed similar bond strengths at 24 h (p > 0.05). After 12 months of water storage, the μTBS values decreased significantly in the benzalkonium chloride group for Single Bond Universal (p = 0.001) and the self-etch (p = 0.029), chlorhexidine (p = 0.046), and EDTA (p = 0.032) groups for All Bond Universal. These results suggest that the immediate dentin bond strength increases when universal bonding systems are applied in the etch-and-rinse mode, although the durability decreases. The use of chlorhexidine and EDTA can increase the bond durability of mild adhesives such as Single Bond Universal. SCANNING 38:535-544, 2016. © 2016 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  5. Bond strength of repaired amalgam restorations.

    PubMed

    Rey, Rosalia; Mondragon, Eduardo; Shen, Chiayi

    2015-01-01

    This in vitro study investigated the interfacial flexural strength (FS) of amalgam repairs and the optimal combination of repair materials and mechanical retention required for a consistent and durable repair bond. Amalgam bricks were created, each with 1 end roughened to expose a fresh surface before repair. Four groups followed separate repair protocols: group 1, bonding agent with amalgam; group 2, bonding agent with composite resin; group 3, mechanical retention (slot) with amalgam; and group 4, slot with bonding agent and amalgam. Repaired specimens were stored in artificial saliva for 1, 10, 30, 120, or 360 days before being loaded to failure in a 3-point bending test. Statistical analysis showed significant changes in median FS over time in groups 2 and 4. The effect of the repair method on the FS values after each storage period was significant for most groups except the 30-day storage groups. Amalgam-amalgam repair with adequate condensation yielded the most consistent and durable bond. An amalgam bonding agent could be beneficial when firm condensation on the repair surface cannot be achieved or when tooth structure is involved. Composite resin can be a viable option for amalgam repair in an esthetically demanding region, but proper mechanical modification of the amalgam surface and selection of the proper bonding system are essential.

  6. Antibacterial activity and ion release of bonding agent containing amorphous calcium phosphate nanoparticles

    PubMed Central

    Chen, Chen; Weir, Michael D.; Cheng, Lei; Lin, Nancy; Lin-Gibson, Sheng; Chow, Laurence C.; Zhou, Xuedong; Xu, Hockin H. K.

    2015-01-01

    Objectives Recurrent caries at the margins is a primary reason for restoration failure. The objectives of this study were to develop bonding agent with the double benefits of antibacterial and remineralizing capabilities, to investigate the effects of NACP filler level and solution pH on Ca and P ion release from adhesive, and to examine the antibacterial and dentin bond properties. Methods Nanoparticles of amorphous calcium phosphate (NACP) and a quaternary ammonium monomer (dimethylaminododecyl methacrylate, DMADDM) were synthesized. Scotchbond Multi-Purpose (SBMP) primer and adhesive served as control. DMADDM was incorporated into primer and adhesive at 5% by mass. NACP was incorporated into adhesive at filler mass fractions of 10%, 20%, 30% and 40%. A dental plaque microcosm biofilm model was used to test the antibacterial bonding agents. Calcium (Ca) and phosphate (P) ion releases from the cured adhesive samples were measured vs. filler level and solution pH of 7, 5.5 and 4. Results Adding 5% DMADDM and 10–40% NACP into bonding agent, and water-aging for 28 days, did not affect dentin bond strength, compared to SBMP control at 1 day (p > 0.1). Adding DMADDM into bonding agent substantially decreased the biofilm metabolic activity and lactic acid production. Total microorganisms, total streptococci, and mutans streptococci were greatly reduced for bonding agents containing DMADDM. Increasing NACP filler level from 10% to 40% in adhesive increased the Ca and P ion release by an order of magnitude. Decreasing solution pH from 7 to 4 increased the ion release from adhesive by 6–10 folds. Significance Bonding agents containing antibacterial DMADDM and remineralizer NACP were formulated to have Ca and P ion release, which increased with NACP filler level from 10% to 40% in adhesive. NACP adhesive was “smart” and dramatically increased the ion release at cariogenic pH 4, when these ions would be most-needed to inhibit caries. Therefore, bonding agent containing DMADDM and NACP may be promising to inhibit biofilms and remineralize tooth lesions thereby increasing the restoration longevity. PMID:24954647

  7. Antibacterial activity and ion release of bonding agent containing amorphous calcium phosphate nanoparticles.

    PubMed

    Chen, Chen; Weir, Michael D; Cheng, Lei; Lin, Nancy J; Lin-Gibson, Sheng; Chow, Laurence C; Zhou, Xuedong; Xu, Hockin H K

    2014-08-01

    Recurrent caries at the margins is a primary reason for restoration failure. The objectives of this study were to develop bonding agent with the double benefits of antibacterial and remineralizing capabilities, to investigate the effects of NACP filler level and solution pH on Ca and P ion release from adhesive, and to examine the antibacterial and dentin bond properties. Nanoparticles of amorphous calcium phosphate (NACP) and a quaternary ammonium monomer (dimethylaminododecyl methacrylate, DMADDM) were synthesized. Scotchbond Multi-Purpose (SBMP) primer and adhesive served as control. DMADDM was incorporated into primer and adhesive at 5% by mass. NACP was incorporated into adhesive at filler mass fractions of 10%, 20%, 30% and 40%. A dental plaque microcosm biofilm model was used to test the antibacterial bonding agents. Calcium (Ca) and phosphate (P) ion releases from the cured adhesive samples were measured vs. filler level and solution pH of 7, 5.5 and 4. Adding 5% DMADDM and 10-40% NACP into bonding agent, and water-aging for 28 days, did not affect dentin bond strength, compared to SBMP control at 1 day (p>0.1). Adding DMADDM into bonding agent substantially decreased the biofilm metabolic activity and lactic acid production. Total microorganisms, total streptococci, and mutans streptococci were greatly reduced for bonding agents containing DMADDM. Increasing NACP filler level from 10% to 40% in adhesive increased the Ca and P ion release by an order of magnitude. Decreasing solution pH from 7 to 4 increased the ion release from adhesive by 6-10 folds. Bonding agents containing antibacterial DMADDM and remineralizer NACP were formulated to have Ca and P ion release, which increased with NACP filler level from 10% to 40% in adhesive. NACP adhesive was "smart" and dramatically increased the ion release at cariogenic pH 4, when these ions would be most-needed to inhibit caries. Therefore, bonding agent containing DMADDM and NACP may be promising to inhibit biofilms and remineralize tooth lesions thereby increasing the restoration longevity. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  8. Effect of handpiece maintenance method on bond strength.

    PubMed

    Roberts, Howard W; Vandewalle, Kraig S; Charlton, David G; Leonard, Daniel L

    2005-01-01

    This study evaluated the effect of dental handpiece lubricant on the shear bond strength of three bonding agents to dentin. A lubrication-free handpiece (one that does not require the user to lubricate it) and a handpiece requiring routine lubrication were used in the study. In addition, two different handpiece lubrication methods (automated versus manual application) were also investigated. One hundred and eighty extracted human teeth were ground to expose flat dentin surfaces that were then finished with wet silicon carbide paper. The teeth were randomly divided into 18 groups (n=10). The dentin surface of each specimen was exposed for 30 seconds to water spray from either a lubrication-free handpiece or a lubricated handpiece. Prior to exposure, various lubrication regimens were used on the handpieces that required lubrication. The dentin surfaces were then treated with total-etch, two-step; a self-etch, two-step or a self-etch, one-step bonding agent. Resin composite cylinders were bonded to dentin, the specimens were then thermocycled and tested to failure in shear at seven days. Mean bond strength data were analyzed using Dunnett's multiple comparison test at an 0.05 level of significance. Results indicated that within each of the bonding agents, there were no significant differences in bond strength between the control group and the treatment groups regardless of the type of handpiece or use of routine lubrication.

  9. The effects of dentin and intaglio indirect ceramic optimized polymer restoration surface treatment on the shear bond strength of resin cement

    NASA Astrophysics Data System (ADS)

    Puspitarini, A.; Suprastiwi, E.; Usman, M.

    2017-08-01

    Ceramic optimized polymer (ceromer) bonds to the tooth substrate through resin cements. The bond strength between dentin, resin cement, and ceromer depends on the applied surface treatment. To analyze the effects of dentin and intaglio ceromer surface treatment on the shear bond strength self-adhesive resin cement. Forty-five dentin premolar and ceromer specimens were bonded with resin cement and divided into three groups as follows: in group 1, no treatment was applied; in group 2, dentin surface treatment was carried out with acid etching and a bonding agent; and in group 3, dentin surface treatment was carried out with acid etching, a bonding agent, and intaglio ceromer surface treatment with etching and silane. All specimens were incubated at 37 °C for 24 hours, and the shear bond strength was measured using a universal testing machine. Group 3 showed the highest shear bond strength, followed by group 2. The surface treatment of dentin and intaglio ceromer showed significantly improved shear bond strength in the group comparison. Dentin and intaglio ceromer surface treatment can improved the shear bond strength self-adhesive resin cement.

  10. Method of joining ceramics

    DOEpatents

    Henager, Jr., Charles H.; Brimhall, John L.

    2000-01-01

    According to the method of the present invention, joining a first bi-element carbide to a second bi-element carbide, has the steps of: (a) forming a bond agent containing a metal carbide and silicon; (b) placing the bond agent between the first and second bi-element carbides to form a pre-assembly; and (c) pressing and heating the pre-assembly in a non-oxidizing atmosphere to a temperature effective to induce a displacement reaction creating a metal silicon phase bonding the first and second bi-element carbides.

  11. Cusp Fracture Resistance of Maxillary Premolars Restored with the Bonded Amalgam Technique Using Various Luting Agents

    PubMed Central

    Marchan, Shivaughn M.; Coldero, Larry; White, Daniel; Smith, William A. J.; Rafeek, Reisha N.

    2009-01-01

    Objective. This in vitro study uses measurements of fracture resistance to compare maxillary premolars restored with the bonded amalgam technique using a new resin luting cement, glass ionomer, and resin-modified glass ionomer as the bonding agents. Materials. Eighty-five sound maxillary premolars were selected and randomly assigned to one of five test groups of 17 teeth each. One group of intact teeth served as the control. The remaining groups were prepared to a standard cavity form relative to the dimensions of the overall tooth and restored with amalgam alone or a bonded amalgam using one of three luting agents: RelyX Arc (a new resin luting cement), RelyX luting (a resin-modified glass ionomer), or Ketac-Cem μ (a glass ionomer) as the bonding agents. Each tooth was then subjected to compressive testing until catastrophic failure occurred. The mean loads at failure of each group were statistically compared using ANOVA with a post hoc Bonferroni test. Results. It was found that regardless of the luting cement used for the amalgam bonding technique, there was little effect on the fracture resistance of teeth. Conclusion. Cusp fracture resistance of premolars prepared with conservative MOD cavity preparations is not improved by using an amalgam-bonding technique compared to similar cavities restored with amalgam alone. PMID:20339450

  12. Comparison of quaternary ammonium-containing with nano-silver-containing adhesive in antibacterial properties and cytotoxicity

    PubMed Central

    Li, Fang; Weir, Michael D.; Chen, Jihua; Xu, Hockin H. K.

    2013-01-01

    Objective Antibacterial primer and adhesive are promising to help combat biofilms and recurrent caries. The objectives of this study were to compare novel bonding agent containing quaternary ammonium dimethacrylate (QADM) with bonding agent containing nanoparticles of silver (NAg) in antibacterial activity, contact-inhibition vs. long-distance inhibition, glucosyltransferases (gtf) gene expressions, and cytotoxicity for the first time. Methods QADM and NAg were incorporated into Scotchbond Multi-Purpose adhesive and primer. Microtensile dentin bond strength was measured. Streptococcus mutans (S. mutans) biofilm on resin surface (contact-inhibition) as well as S. mutans in culture medium away from the resin surface (long-distance inhibition) were tested for metabolic activity, colony-forming units (CFU), lactic acid production, and gtf gene expressions. Eluents from cured primer/adhesive samples were used to examine cytotoxicity against human gingival fibroblasts. Results Bonding agent with QADM greatly reduced CFU and lactic acid of biofilms on the resin surface (p < 0.05), while having no effect on S. mutans in culture medium away from the resin surface. In contrast, bonding agent with NAg inhibited not only S. mutans on the resin surface, but also S. mutans in culture medium away from the resin surface. Bonding agent with QADM suppressed gtfB, gtfC and gtfD gene expressions of S. mutans on its surface, but not away from its surface. Bonding agent with NAg suppressed S. mutans gene expressions both on its surface and away from its surface. Bonding agents with QADM and NAg did not adversely affect microtensile bond strength or fibroblast cytotoxicity, compared to control (p > 0.1). Significance QADM-containing adhesive had contact-inhibition and inhibited bacteria on its surface, but not away from its surface. NAg-containing adhesive had long-distance killing capability and inhibited bacteria on its surface and away from its surface. The novel antibacterial adhesives are promising for caries-inhibition restorations, and QADM and NAg could be complimentary agents in inhibiting bacteria on resin surface as well as away from resin surface. PMID:23428077

  13. Adhesive bonding to polymer infiltrated ceramic.

    PubMed

    Schwenter, Judith; Schmidli, Fredy; Weiger, Roland; Fischer, Jens

    2016-01-01

    Aim of this study was to investigate the mechanism of adhesive bonding to the polymer-infiltrated ceramic VITA Enamic [VE]. Shear bond strength was measured with three resin composite cements: RelyX Unicem 2 Automix, Clearfil SA and Variolink II on polished surfaces of VE and its components silicate ceramic [SC] and polymer [PM] (n=12). Further, the effect of etching VE with 5% HF for 15-240 s and the application of silane coupling agents was analyzed in a screening test (n=6). Shear bond strength measurements were performed after 24 h of water storage at 37°C. Significant bonding to polished substrates could only be achieved on VE and SC when silane coupling agents were used. Etching of VE with 5% HF increased shear bond strength. Following silanization of etched VE, a further increase in shear bond strength could be established. Etching for more than 30 s did not improve shear bond strength.

  14. Three-dimensional finite element analysis of the shear bond test.

    PubMed

    DeHoff, P H; Anusavice, K J; Wang, Z

    1995-03-01

    The purpose of this study was to use finite element analyses to model the planar shear bond test and to evaluate the effects of modulus values, bonding agent thickness, and loading conditions on the stress distribution in the dentin adjacent to the bonding agent-dentin interface. All calculations were performed with the ANSYS finite element program. The planar shear bond test was modeled as a cylinder of resin-based composite bonded to a cylindrical dentin substrate. The effects of material, geometry and loading variables were determined primarily by use of a three-dimensional structural element. Several runs were also made using an axisymmetric element with harmonic loading and a plane strain element to determine whether two-dimensional analyses yield valid results. Stress calculations using three-dimensional finite element analyses confirmed the presence of large stress concentration effects for all stress components at the bonding agent-dentin interface near the application of the load. The maximum vertical shear stress generally occurs approximately 0.3 mm below the loading site and then decreases sharply in all directions. The stresses reach relatively uniform conditions within about 0.5 mm of the loading site and then increase again as the lower region of the interface is approached. Calculations using various loading conditions indicated that a wire-loop method of loading leads to smaller stress concentration effects, but a shear bond strength determined by dividing a failure load by the cross-sectional area grossly underestimates the true interfacial bond strength. Most dental researchers are using tensile and shear bond tests to predict the effects of process and material variables on the clinical performance of bonding systems but no evidence has yet shown that bond strength is relevant to clinical performance. A critical factor in assessing the usefulness of bond tests is a thorough understanding of the stress states that cause failure in the bond test and then to assess whether these stress states also exist in the clinical situation. Finite element analyses can help to answer this question but much additional work is needed to identify the failure modes in service and to relate these failures to particular loading conditions. The present study represents only a first step in understanding the stress states in the planar shear bond test.

  15. Effect of Silanization on Microtensile Bond Strength of Different Resin Cements to a Lithium Disilicate Glass Ceramic.

    PubMed

    Gré, Cristina Parise; de Ré Silveira, Renan C; Shibata, Shizuma; Lago, Carlo Tr; Vieira, Luiz Cc

    2016-02-01

    This study evaluated the influence of a silane-coupling agent on the bond strength of a self-adhesive cement and a conventional resin cement to a lithium disilicate glass ceramic. A total of eight ceramic blocks were fabricated and divided into four groups (n = 2). In groups 1 and 3, ceramic surfaces were etched with hydrofluoric acid 10% for 20 seconds, rinsed for 30 seconds, and air-dried. One layer of a silane agent was applied onto all ceramic specimens and air-dried for 30 seconds. In groups 2 and 4, ceramic surfaces were etched with hydrofluoric acid, rinsed, and air-dried without application of the silane-coupling agent. The ceramic blocks were bonded to a block of composite with a self-adhesive resin cement or with a conventional resin cement, according to the manufacturer's instructions. After 24 hours in distilled water at 37°C, the specimens were sectioned perpendicular to the bonding interface area to obtain beams with a bonding area of 0.8 mm(2) and submitted to a microtensile bond strength test at a crosshead speed of 0.5 mm/min. Data were statistically analyzed with one-way analysis of variance and the Games-Howell post hoc test (p = 0.05). Fractured specimens were examined under optical microscopy at 40x magnification. Silanization resulted in higher microtensile bond strength compared to groups without silane. No significant differences were found between the conventional resin cement and the self-adhesive resin cement with silane agent (p = 0.983), and without silane agent (p = 0.877). Silanization appears to be crucial for resin bonding to a lithium disilicate-based ceramic, regardless of the resin cement used. The self-adhesive resin cement performed as well as the conventional resin cement. Applying one layer of a silane-coupling agent after etching the ceramic surface with hydrofluoric acid 10% enhanced the bond strength between resin cements and a glass ceramic.

  16. 31 CFR 224.3 - When may a surety corporation provide a bond without appointing a process agent?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... MANAGEMENT SERVICE FEDERAL PROCESS AGENTS OF SURETY CORPORATIONS § 224.3 When may a surety corporation provide a bond without appointing a process agent? A surety corporation may provide a bond without... a bond without appointing a process agent? 224.3 Section 224.3 Money and Finance: Treasury...

  17. Comparative evaluation of shear bond strength of metallic brackets bonded with two different bonding agents under dry conditions and with saliva contamination.

    PubMed

    Khanehmasjedi, Mashallah; Naseri, Mohammad Ali; Khanehmasjedi, Samaneh; Basir, Leila

    2017-02-01

    This study compared the shear bond strength of metallic brackets bonded with Single Bond and Assure bonding agents under dry and saliva-contamination conditions. Sixty sound premolar teeth were selected, and stainless-steel brackets were bonded on enamel surfaces with Single Bond and Assure bonding agents under dry condition or with saliva contamination. Shear bond strength values of brackets were measured in a universal testing machine. The adhesive remnant index scores were determined after debonding of the brackets under a stereomicroscope. One-way analysis of variance (ANOVA) was used to analyze bond strength. Two-by-two comparisons were made with post hoc Tukey tests (p<0.001). Frequencies of adhesive remnant index scores were analyzed by Kruskal-Wallis test. Bond strength values of brackets to tooth structure were 9.29±8.56 MPa and 21.25±8.93 MPa with the use of Assure resin bonding agent under saliva-contamination and dry conditions, respectively. These values were 10.13±6.69 MPa and 14.09±6.6 MPa, respectively, under the same conditions with the use of Single Bond adhesive. Contamination with saliva resulted in a significant decrease in the bond strength of brackets to tooth structure with the application of Assure adhesive resin (p<0.001). There were no significant differences in the adhesive remnant index scores between the study groups. Application of Single Bond and Assure bonding agents resulted in adequate bond strength of brackets to tooth structures. Contamination with saliva significantly decreased the bond strength of Assure bonding agent compared with dry conditions. Copyright © 2016. Published by Elsevier Taiwan LLC.

  18. In Vitro Evaluation of Shear Bond Strength of Nanocomposites to Dentin

    PubMed Central

    Vellanki, Vinay Kumar; Shetty, Vikram K; Kushwah, Sudhanshu; Goyal, Geeta; Chandra, S.M. Sharath

    2015-01-01

    Aims: To compare the shear bond strength of nanocomposites to dentin using three different types of adhesive systems; and to test few specimens under Scanning Electron Microscope (SEM) for analysing whether the bond failure is adhesive or cohesive. Materials and Methods: Sixty human premolar teeth were selected and were randomly grouped, with 20 specimens in each group: group 1 - fluoride releasing dentin bonding agent; group 2 - antibacterial containing dentin bonding agent; and group 3 - one step conventional self etch adhesive. Each group was treated with its respective bonding agents, composite resin build up was done, and shear bond strengths were tested using Instron Universal testing machine. Few of the specimens were tested under SEM. Results: The results were statistically analysed using One-way ANOVA and paired t-test. It was observed that group 3 has the highest shear bond strength followed by group 2, and then group 1. Adhesive failures and mixed failures were most frequent types of failures as seen under SEM. Conclusion: Addition of antimicrobial agent decreases the bond strength of dentin bonding agent and addition of fluoride further decreases the bond strength. From SEM results it can be concluded that the zone of failure could not be defined and also that the failure mode was independent of the dentin bonding agent used. PMID:25738077

  19. Effects of contamination by either blood or a hemostatic agent on the shear bond strength of orthodontic buttons

    PubMed Central

    Alkis, Huseyin; Turkkahraman, Hakan

    2013-01-01

    Objective To evaluate the effects of contamination by either blood or a hemostatic agent on the shear bond strength (SBS) of orthodontic buttons. Methods We used 45 freshly extracted, non-carious, impacted third molars that were divided into 3 groups of 15. Each tooth was etched with 37% phosphoric acid gel for 30 s. Human blood or the blood stopper agent was applied to the tooth surface in groups I and II, respectively. Group III teeth were untreated (controls). Orthodontic buttons were bonded to the teeth using light-curing composite resin. After bonding, the SBS of the button was determined using a Universal testing machine. Any adhesive remaining after debonding was assessed and scored according to the modified adhesive remnant index (ARI). ANOVA with post-hoc Tukey's test was used to determine significant differences in SBS and Fisher's exact test, to determine significant differences in ARI scores among groups. Results ANOVA indicated a significant difference between groups (p < 0.001). The highest SBS values were measured in group III (10.73 ± 0.96 MPa). The SBS values for teeth in groups I and II were significantly lower than that of group III (p < 0.001). The lowest SBS values were observed in group I teeth (4.17 ± 1.11 MPa) (p < 0.001). Conclusions Contamination of tooth surfaces with either blood or hemostatic agent significantly decreased the SBS of orthodontic buttons. When the contamination risk is high, it is recommended to use the blood stopper agent when bonding orthodontic buttons on impacted teeth. PMID:23671834

  20. Shear bond strength between an indirect composite layering material and feldspathic porcelain-coated zirconia ceramics.

    PubMed

    Fushiki, Ryosuke; Komine, Futoshi; Blatz, Markus B; Koizuka, Mai; Taguchi, Kohei; Matsumura, Hideo

    2012-10-01

    This study aims to evaluate the effect of both feldspathic porcelain coating of zirconia frameworks and priming agents on shear bond strength between an indirect composite material and zirconia frameworks. A total of 462 airborne-particle-abraded zirconia disks were divided into three groups: untreated disks (ZR-AB), airborne-particle-abraded zirconia disks coated with feldspathic porcelain, (ZR-PO-AB), and hydrofluoric acid-etched zirconia disks coated with feldspathic porcelain (ZR-PO-HF). Indirect composite (Estenia C&B) was bonded to zirconia specimens with no (CON) or one of four priming agents--Clearfil Photo Bond (CPB), Clearfil Photo Bond with Clearfil Porcelain Bond Activator (CPB + activator), Estenia Opaque primer, or Porcelain Liner M Liquid B (PLB)--with or without an opaque material (Estenia C&B Opaque). All specimens were tested for shear bond strength before and after 20,000 thermocycles. The Steel-Dwass test and Mann-Whitney U test were used to compare shear bond strength. In ZR-AB specimens, the initial bond strength of the CPB and CPB + Activator groups was significantly higher as compared with the other three groups (P < 0.05), whereas the PLB and CPB + Activator groups had the highest pre- and post-thermocycling bond strengths in ZR-PO-AB and ZR-PO-HF specimens. Among CON disks without opaque material, bond strength was significantly lower in ZR-AB specimens than in ZR-PO-AB and ZR-PO-HF specimens (P < 0.05). Feldspathic porcelain coating of a Katana zirconia framework enhanced the bond strength of Estenia C&B indirect composite to zirconia independent of surface treatment. The use of a silane coupling agent and opaque material yields durable bond strength between the indirect composite and feldspathic-porcelain-coated zirconia. The results of the present study suggest that feldspathic porcelain coating of zirconia frameworks is an effective method to obtain clinically acceptable bond strengths of a layering indirect composite material to a zirconia framework.

  1. The Effect of Simplified Bonding Agents on the Bond Strength to Dentin of Self-Activated Dual-Cure Resin Cements

    DTIC Science & Technology

    2013-04-26

    versions of the self-etch adhesives on the market are one-step systems where the acidified primer and adhesive monomer are mixed together and placed in a...Figure 3 - Adhesive Classification B. Effects of Simplification at the Microscopic level Using restorative systems with simplified...bonding failures when self-cured “build-up” composites were bonded with simplified adhesive systems (Swift, 1999). They were alerted to potential

  2. Effect of an Extra Hydrophobic Resin Layer on Repair Shear Bond Strength of a Silorane-Based Composite Resin

    PubMed Central

    Mohammadi, Narmin; Bahari, Mahmoud; Kimyai, Soodabeh; Rahbani Nobar, Behnam

    2015-01-01

    Objectives: Composite repair is a minimally invasive and conservative approach. This study aimed to evaluate the effect of an additional hydrophobic resin layer on the repair shear bond strength of a silorane-based composite repaired with silorane or methacrylate-based composite. Materials and Methods: Sixty bar-shaped composite blocks were fabricated and stored in saline for 72 hours. The surface of the samples were roughened by diamond burs and etched with phosphoric acid; then, they were randomly divided into three groups according to the repairing process: Group 1: Silorane composite-silorane bonding agent-silorane composite; group 2: Silorane composite-silorane bonding agent-hydrophobic resin-silorane composite, and group 3: Silorane composite-silorane bonding agent-hydrophobic resin methacrylate-based composite. Repairing composite blocks measured 2.5×2.5×5mm. After repairing, the samples were stored in saline for 24 hours and thermocycled for 1500 cycles. The repair bond strength was measured at a strain rate of 1mm/min. Twenty additional cylindrical composite blocks (diameter: 2.5mm, height: 6mm) were also fabricated for measuring the cohesive strength of silorane-based composite. The data were analyzed using One-way ANOVA and the post hoc Tukey’s test (α=0.05). Results: Cohesive bond strength of silorane composite was significantly higher than the repair bond strengths in other groups (P<0.001). The repair bond strength of group 3 was significantly higher than that of group 1 (P=0.001). Conclusion: Application of an additional hydrophobic resin layer for repair of silorane-based composite with a methacrylate-based composite enhanced the repair shear bond strength. PMID:27559348

  3. Influence of different repair procedures on bond strength of adhesive filling materials to etched enamel in vitro.

    PubMed

    Hannig, Christian; Hahn, Petra; Thiele, Patrick-Philipp; Attin, Thomas

    2003-01-01

    Contamination of etched enamel with repair bond agents during repair of dental restorations may interfere with the bonding of composite to enamel. This study examined the bond strength of adhesive filling materials to etched bovine enamel after pre-treatment with the repair systems Monobond S, Silibond and Co-Jet. The materials Tetric Ceram, Dyract and Definite and their corresponding bonding agents (Syntac Single Comp, Prime & Bond NT, Etch and Prime) were tested in combination with the repair systems. One hundred and thirty-five enamel specimens were etched (37% phosphoric acid, 60 seconds) and equally distributed among three groups (A-C). In Group A, the repair materials were applied on etched enamel followed by applying the composite materials without using their respective bonding material. In Group B, the composite materials were placed on etched enamel after applying the repair materials and bonding agents. In control Group C, the composite materials and bonding agents were applied on etched enamel without using the repair systems. In each sub-group, every composite material was applied on 15 specimens. Samples were stored in artificial saliva for 14 days and thermocycled 1,000 times (5 degrees C/55 degrees C). The shear bond strength of the samples were then determined in a universal testing machine (ISO 10477). Applying Monobond or Silibond followed by the use of its respective bonding agents resulted in a bond strength that was not statistically different from the controls for all filling materials (Group C). The three composites that used Monobond and Silibond without applying the corresponding bonding agent resulted in bond strengths that were significantly lower than the controls. Utilizing the Co-Jet-System drastically reduced the bond strength of composites on etched enamel. Contamination of etched enamel with the repairing bonding agents Monobond and Silibond does not interfere with bond strength if the application of Monobond and Silibond is followed by using its corresponding bonding system of the composites tested.

  4. Effectiveness and stability of silane coupling agent incorporated in 'universal' adhesives.

    PubMed

    Yoshihara, Kumiko; Nagaoka, Noriyuki; Sonoda, Akinari; Maruo, Yukinori; Makita, Yoji; Okihara, Takumi; Irie, Masao; Yoshida, Yasuhiro; Van Meerbeek, Bart

    2016-10-01

    For bonding indirect restorations, some 'universal' adhesives incorporate a silane coupling agent to chemically bond to glass-rich ceramics so that a separate ceramic primer is claimed to be no longer needed. With this work, we investigated the effectiveness/stability of the silane coupling function of the silanecontaining experimentally prepared adhesives and Scotchbond Universal (3MESPE). Experimental adhesives consisted of Scotchbond Universal and the silane-free Clearfil S3 ND Quick (Kuraray Noritake) mixed with Clearfil Porcelain Bond Activator (Kuraray Noritake) and the two adhesives to which γ-methacryloxypropyltrimethoxysilane (γ-MPTS) was added. Shear bond strength was measured onto silica-glass plates; the adhesive formulations were analyzed using fourier transform infrared spectroscopy (FTIR) and 13C nuclear magnetic resonance (NMR). In addition, shear bond strength onto CAD-CAM composite blocks was measured without and after thermo-cycling ageing. A significantly higher bond strength was recorded when Clearfil Porcelain Bond Activator was freshly mixed with the adhesive. Likewise, the experimental adhesives, to which γ-MPTS was added, revealed a significantly higher bond strength, but only when the adhesive was applied immediately after mixing; delayed application resulted in a significantly lower bond strength. FTIR and (13)C NMR revealed hydrolysis and dehydration condensation to progress with the time after γ-MPTS was mixed with the two adhesives. After thermo-cycling, the bond strength onto CAD-CAM composite blocks remained stable only for the two adhesives with which Clearfil Porcelain Bond Activator was mixed. Only the silane coupling effect of freshly prepared silanecontaining adhesives was effective. Clinically, the use of a separate silane primer or silane freshly mixed with the adhesive remains recommended to bond glass-rich ceramics. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  5. Enamel Wetness Effects on Microshear Bond Strength of Different Bonding Agents (Adhesive Systems): An in vitro Comparative Evaluation Study.

    PubMed

    Kulkarni, Girish; Mishra, Vinay K

    2016-05-01

    The purpose of this study was to compare the effect of enamel wetness on microshear bond strength using different adhesive systems. To evaluate microshear bond strength of three bonding agents on dry enamel; to evaluate microshear bond strength of three bonding agents on wet enamel; and to compare microshear bond strength of three different bonding agents on dry and wet enamel. Sixty extracted noncarious human premolars were selected for this study. Flat enamel surfaces of approximately 3 mm were obtained by grinding the buccal surfaces of premolars with water-cooled diamond disks. This study evaluated one etch-and-rinse adhesive system (Single Bond 2) and two self-etching adhesive systems (Clearfil SE Bond and Xeno-V). The specimens were divided into two groups (n = 30). Group I (dry) was air-dried for 30 seconds and in group II (wet) surfaces were blotted with absorbent paper to remove excess water. These groups were further divided into six subgroups (n = 10) according to the adhesives used. The resin composite, Filtek Z 250, was bonded to flat enamel surfaces that had been treated with one of the adhesives, following the manufacturer's instructions. After being stored in water at 37°C for 24 hours, bonded specimens were stressed in universal testing machine (Fig. 3) at a crosshead speed of 1 mm/min. The data were evaluated with one-way and two-way analysis of variance (ANOVA), t-test, and Tukey's Multiple Post hoc tests (a = 0.05). The two-way ANOVA and Tukey's Multiple Post hoc tests showed significant differences among adhesive systems, but wetness did not influence microshear bond strength (p = 0.1762). The one-way ANOVA and t-test showed that the all-in-one adhesive (Xeno-V) was the only material influenced by the presence of water on the enamel surface. Xeno-V showed significantly higher microshear bond strength when the enamel was kept wet. Single Bond 2 adhesive showed significantly higher microshear bond strength as compared with Xeno-V adhesive but no significant difference when compared with Clearfil SE Bond adhesive in dry enamel. Single Bond 2 adhesive showed no significant difference in microshear bond strength as compared with self-etching adhesive systems (Clearfil SE Bond and Xeno-V), when the enamel was kept wet. From the findings of the results, it was concluded that self-etching adhesives were not negatively affected by the presence of water on the enamel surface. The all-in-one adhesive showed different behavior depending on whether the enamel surface was dry or wet. So the enamel surface should not be desiccated, when self-etching adhesives are used.

  6. Improved bonding of adhesive resin to sintered porcelain with the combination of acid etching and a two-liquid silane conditioner.

    PubMed

    Kato, H; Matsumura, H; Ide, T; Atsuta, M

    2001-01-01

    This study determined the bond strengths of adhesive resins joined to a feldspathic porcelain (VMK 68) for the purpose of developing the most durable surface preparation for the porcelain. Three porcelain surfaces-ground, air-abraded with alumina, and etched with hydrofluoric acid-were prepared. A two-liquid porcelain conditioner that contained both 4-methacryloyloxyethyl trimellitate anhydride (4-META) and a silane coupler (Porcelain Liner M) was used as the priming agent. Each of the two liquid components of the conditioner was also used individually in order to examine the effects of the respective chemical ingredients on adhesive bonding. Two methyl methacrylate (MMA)-based resins initiated with tri-n-butylborane (TBB) either with or without 4-META (MMA-TBB and 4-META/MMA-TBB resins) were used as the luting agents. Shear bond strengths were determined both before and after thermocycling. Shear testing results indicated that thermocycling was effective for disclosing poor bonding systems, and that both mechanical and chemical retention were indispensable for bonding the porcelain. Of the combinations assessed, etching with hydrofluoric acid followed by two-liquid priming with the Porcelain Liner M material generated the most durable bond strength (33.3 MPa) for the porcelain bonded with the 4-META/MMA-TBB resin (Super-Bond C&B).

  7. Effect of denture cleansing agents on tensile and shear bond strengths of soft liners to acrylic denture base.

    PubMed

    Mahboub, Farhang; Salehsaber, Fariba; Parnia, Fereydoon; Gharekhani, Vahedeh; Kananizadeh, Yousef; Taghizadeh, Mahsa

    2017-01-01

    Background. The aim of the present study was to evaluate the effect of Corega and 2.5% sodium hypochlorite cleansing agents on the shear and tensile bond strengths of GC soft liner to denture base. Methods. A total of 144 samples (72 samples for tensile and 72 for shear bond strength evaluations) were prepared. The samples in each group were subdivided into three subgroups in terms of the cleansing agent used (2.5% sodium hypochlorite, Corega and distilled water [control group]). All the samples were stored in distilled water, during which each sample was immersed for 15 minutes daily in sodium hypochlorite or Corega solutions. After 20 days the tensile and shear bond strengths were determined using a universal testing machine. In addition, a stereomicroscope was used to evaluate fracture modes. Data were analyzed with one-way ANOVA, using SPSS 16. Results. The results of post hoc Tukey tests showed significant differences in the mean tensile and shear bond strength values between the sodium hypochlorite group with Corega and control groups (P=0.001 for comparison of tensile bond strengths between the sodium hypochlorite and control groups, and P<0.001 for the comparison of tensile bond strengths between the sodium hypochlorite and Corega groups and the shear bond strengths between the sodium hypochlorite and Corega groups, and sodium hypochlorite and control groups).The majority of failures were cohesive in the control and Corega groups and cohesive/adhesive in the sodium hypochlorite group. Conclusion. Immersion of soft liners in Corega will result in longevity of soft liners compared to immersion in sodium hypochlorite solution and sodium hypochlorite solution significantly decreased the tensile and shear bond strengths compared to the control and Corega groups.

  8. Effect of denture cleansing agents on tensile and shear bond strengths of soft liners to acrylic denture base

    PubMed Central

    Mahboub, Farhang; Salehsaber, Fariba; Parnia, Fereydoon; Gharekhani, Vahedeh; Kananizadeh, Yousef; Taghizadeh, Mahsa

    2017-01-01

    Background. The aim of the present study was to evaluate the effect of Corega and 2.5% sodium hypochlorite cleansing agents on the shear and tensile bond strengths of GC soft liner to denture base. Methods. A total of 144 samples (72 samples for tensile and 72 for shear bond strength evaluations) were prepared. The samples in each group were subdivided into three subgroups in terms of the cleansing agent used (2.5% sodium hypochlorite, Corega and distilled water [control group]). All the samples were stored in distilled water, during which each sample was immersed for 15 minutes daily in sodium hypochlorite or Corega solutions. After 20 days the tensile and shear bond strengths were determined using a universal testing machine. In addition, a stereomicroscope was used to evaluate fracture modes. Data were analyzed with one-way ANOVA, using SPSS 16. Results. The results of post hoc Tukey tests showed significant differences in the mean tensile and shear bond strength values between the sodium hypochlorite group with Corega and control groups (P=0.001 for comparison of tensile bond strengths between the sodium hypochlorite and control groups, and P<0.001 for the comparison of tensile bond strengths between the sodium hypochlorite and Corega groups and the shear bond strengths between the sodium hypochlorite and Corega groups, and sodium hypochlorite and control groups).The majority of failures were cohesive in the control and Corega groups and cohesive/adhesive in the sodium hypochlorite group. Conclusion. Immersion of soft liners in Corega will result in longevity of soft liners compared to immersion in sodium hypochlorite solution and sodium hypochlorite solution significantly decreased the tensile and shear bond strengths compared to the control and Corega groups. PMID:29184635

  9. The effect of different surface treatments on the bond strength of a gingiva-colored indirect composite veneering material to three implant framework materials.

    PubMed

    Koizuka, Mai; Komine, Futoshi; Blatz, Markus B; Fushiki, Ryosuke; Taguchi, Kohei; Matsumura, Hideo

    2013-09-01

    To evaluate and compare the shear-bond strength of a gingiva-colored indirect composite material to three different implant framework materials (zirconia ceramics, gold alloy, and titanium), and to investigate the effect of surface pretreatment by air-particle abrasion and four priming agents. A gingiva-colored indirect composite (Ceramage) was bonded to three framework materials (n = 80): commercially pure titanium (CP- Ti ), ADA (American Dental Association)-type 4 casting gold alloy (Type IV), and zirconia ceramics (Zirconia) with or without airborne-particle abrasion. Before bonding, the surface of the specimens was treated using no (control) or one of four priming agents: Alloy Primer (ALP), Estenia Opaque Primer (EOP), Metal Link Primer (MLP), and V-Primer (VPR). Shear-bond strength was determined after 24-h wet storage. Data were analyzed using Steel-Dwass for multiple comparisons, and Mann-Whitney U-test (P = 0.05). For both CP- Ti and Zirconia substrates, three groups, ALP, EOP, and MLP, showed significantly higher bond strengths (P < 0.05) than the other groups with or without airborne-particle abrasion. For Type IV substrates, significantly higher bond strengths were obtained in ALP and MLP groups (P < 0.01) compared with the other groups with airborne-particle abrasion. Application of priming agents containing specific phosphoric ester groups significantly enhances the bond strength of a gingiva-colored composite material to commercially pure titanium and zirconia frameworks. Combined use of a thione monomer with a phosphoric monomer enhances the bond strengths to airborne-particle abraded type IV gold alloy. © 2012 John Wiley & Sons A/S.

  10. Effect of quaternary ammonium and silver nanoparticle-containing adhesives on dentin bond strength and dental plaque microcosm biofilms

    PubMed Central

    Zhang, Ke; Melo, Mary Anne S.; Cheng, Lei; Weir, Michael D.; Bai, Yuxing; Xu, Hockin H. K.

    2012-01-01

    Objectives Antibacterial bonding agents are promising to hinder the residual and invading bacteria at the tooth-restoration interfaces. The objectives of this study were to develop an antibacterial bonding agent by incorporation of quaternary ammonium dimethacrylate (QADM) and nanoparticles of silver (NAg), and to investigate the effect of QADM-NAg adhesive and primer on dentin bond strength and plaque microcosm biofilm response for the first time. Methods Scotchbond Multi-Purpose adhesive and primer were used as control. Experimental adhesive and primer were made by adding QADM and NAg into control adhesive and primer. Human dentin shear bond strengths were measured (n = 10). A dental plaque microcosm biofilm model with human saliva as inoculum was used to investigate biofilm metabolic activity, colony-forming unit (CFU) counts, lactic acid production, and live/dead staining assay (n = 6). Results Adding QADM and NAg into adhesive and primer did not compromise the dentin shear bond strength which ranged from 30 to 35 MPa (p > 0.1). Scanning electron microscopy (SEM) examinations revealed numerous resin tags, which were similar for the control and the QADM and NAg groups. Adding QADM or NAg markedly reduced the biofilm viability, compared to adhesive control. QADM and NAg together in the adhesive had a much stronger antibacterial effect than using each agent alone (p < 0.05). Adding QADM and NAg in both adhesive and primer had the strongest antibacterial activity, reducing metabolic activity, CFU, and lactic acid by an order of magnitude, compared to control. Significance Without compromising dentin bond strength and resin tag formation, the QADM and NAg containing adhesive and primer achieved strong antibacterial effects against microcosm biofilms for the first time. QADM-NAg adhesive and primer are promising to combat residual bacteria in tooth cavity and invading bacteria at the margins, thereby to inhibit secondary caries. QADM and NAg incorporation may have a wide applicability to other dental bonding systems. PMID:22592165

  11. Effect of quaternary ammonium and silver nanoparticle-containing adhesives on dentin bond strength and dental plaque microcosm biofilms.

    PubMed

    Zhang, Ke; Melo, Mary Anne S; Cheng, Lei; Weir, Michael D; Bai, Yuxing; Xu, Hockin H K

    2012-08-01

    Antibacterial bonding agents are promising to hinder the residual and invading bacteria at the tooth-restoration interfaces. The objectives of this study were to develop an antibacterial bonding agent by incorporation of quaternary ammonium dimethacrylate (QADM) and nanoparticles of silver (NAg), and to investigate the effect of QADM-NAg adhesive and primer on dentin bond strength and plaque microcosm biofilm response for the first time. Scotchbond Multi-Purpose adhesive and primer were used as control. Experimental adhesive and primer were made by adding QADM and NAg into control adhesive and primer. Human dentin shear bond strengths were measured (n = 10). A dental plaque microcosm biofilm model with human saliva as inoculum was used to investigate biofilm metabolic activity, colony-forming unit (CFU) counts, lactic acid production, and live/dead staining assay (n = 6). Adding QADM and NAg into adhesive and primer did not compromise the dentin shear bond strength which ranged from 30 to 35MPa (p>0.1). Scanning electron microscopy (SEM) examinations revealed numerous resin tags, which were similar for the control and the QADM and NAg groups. Adding QADM or NAg markedly reduced the biofilm viability, compared to adhesive control. QADM and NAg together in the adhesive had a much stronger antibacterial effect than using each agent alone (p<0.05). Adding QADM and NAg in both adhesive and primer had the strongest antibacterial activity, reducing metabolic activity, CFU, and lactic acid by an order of magnitude, compared to control. Without compromising dentin bond strength and resin tag formation, the QADM and NAg containing adhesive and primer achieved strong antibacterial effects against microcosm biofilms for the first time. QADM-NAg adhesive and primer are promising to combat residual bacteria in tooth cavity and invading bacteria at the margins, thereby to inhibit secondary caries. QADM and NAg incorporation may have a wide applicability to other dental bonding systems. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  12. Method for vacuum pressing electrochemical cell components

    NASA Technical Reports Server (NTRS)

    Andrews, Craig C. (Inventor); Murphy, Oliver J. (Inventor)

    2004-01-01

    Assembling electrochemical cell components using a bonding agent comprising aligning components of the electrochemical cell, applying a bonding agent between the components to bond the components together, placing the components within a container that is essentially a pliable bag, and drawing a vacuum within the bag, wherein the bag conforms to the shape of the components from the pressure outside the bag, thereby holding the components securely in place. The vacuum is passively maintained until the adhesive has cured and the components are securely bonded. The bonding agent used to bond the components of the electrochemical cell may be distributed to the bonding surface from distribution channels in the components. To prevent contamination with bonding agent, some areas may be treated to produce regions of preferred adhesive distribution and protected regions. Treatments may include polishing, etching, coating and providing protective grooves between the bonding surfaces and the protected regions.

  13. Does 8-methacryloxyoctyl trimethoxy silane (8-MOTS) improve initial bond strength on lithium disilicate glass ceramic?

    PubMed

    Maruo, Yukinori; Nishigawa, Goro; Yoshihara, Kumiko; Minagi, Shogo; Matsumoto, Takuya; Irie, Masao

    2017-03-01

    Dental ceramic surfaces are modified with silane coupling agents, such as γ-methacryloxypropyl trimethoxy silane (γ-MPTS), to improve bond strength. For bonding between lithium disilicate glass ceramic and resin cement, the objective was to investigate if 8-methacryloxyoctyl trimethoxy silane (8-MOTS) could yield a similar performance as the widely used γ-MPTS. One hundred and ten lithium disilicate glass ceramic specimens were randomly divided into 11 groups (n=10) according to pretreatment regime. All specimens were pretreated with a different solution composed of one or a combination of these agents: 10 or 20wt% silane coupling agent of γ-MPTS or 8-MOTS, followed by a hydrolysis solution of acetic acid or 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP). Each pretreated surface was luted to a stainless steel rod of 3.6mm diameter and 2.0mm height with resin cement. Shear bond strength between ceramic and cement was measured after 24-h storage in 37°C distilled water. 8-MOTS produced the same bonding performance as γ-MPTS. Both silane coupling agents significantly increased the bond strength of resin cement, depending on their concentration. When activated by 10-MDP hydrolysis solution, 20wt% concentration produced the highest values (γ-MPTS: 24.9±5.1MPa; 8-MOTS: 24.6±7.4MPa). Hydrolysis with acetic acid produced lower bond strengths than with 10-MDP. Silane coupling pretreatment with 8-MOTS increased the initial bond strength between lithium disilicate glass ceramic and resin cement, rendering the same bonding effect as the conventional γ-MPTS. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. The Effect of Food-Simulating Agents on the Bond Strength of Hard Chairside Reline Materials to Denture Base Resin.

    PubMed

    Fatemi, Farzaneh Sadat; Vojdani, Mahroo; Khaledi, Amir Ali Reza

    2018-06-08

    To investigate the influence of food-simulating agents on the shear bond strength between direct hard liners and denture base acrylic resin. In addition, mode of failure was evaluated. One hundred fifty cylindrical columns of denture base resin were fabricated and bonded to three types of hard reline materials (Hard GC Reline, Tokuyama Rebase II Fast, TDV Cold Liner Rebase). Specimens of each reline material were divided into five groups (n = 10) to undergo 12-day immersion in distilled water, 0.02 N citric acid aqueous solution, heptane, and 40% ethanol/water solution at 37°C. The control group was not immersed in any solution. The shear bond strength test was performed, and the failure mode was determined. Statistics were analyzed with two-way ANOVA and chi-square test (α = 0.05). Significant interaction was found between the hard liners and food simulating agents (p < 0.001). The shear bond strength of Tokuyama in 40% ethanol and TDV in heptane decreased significantly (p = 0.001, p < 0.001 respectively); however, none of the solutions could significantly affect the shear bond strength of Hard GC Reline (p = 0.208). The mixed failure mode occurred more frequently in Hard GC Reline compared with the other liners (p < 0.001) and was predominant in specimens with higher bond strength values (p = 0.012). Food simulating agents did not adversely affect the shear bond strength of Hard GC Reline; however, ethanol and heptane decreased the bond strength of Tokuyama and TDV, respectively. These findings may provide support to dentists to recommend restricted consumption of some foods and beverages for patients who have to use dentures relined with certain hard liners. © 2018 by the American College of Prosthodontists.

  15. Effects of Contamination by Hemostatic Agents and Use of Cleaning Agent on Etch-and-Rinse Dentin Bond Strength.

    PubMed

    Pucci, César Rogério; Araújo, Rodrigo Maximo de; Lacerda, Ana Julia Farias de; Souza, Mirella Anjos de; Huhtala, Maria Filomena Rocha Lima; Feitosa, Fernanda Alves

    2016-01-01

    The aim of this study was to evaluate the influence of contamination by hemostatic agents and rinsing with chlorhexidine on bond strength between dentin and resin composite. Ninety-six bovine teeth were sectioned to expose a flat dentin surface area. A standardized cavity with 2.0 mm in thickness, superficial diameter of 4.0 mm and bottom diameter of 3.0 mm was prepared with a diamond bur in each dentin specimen. The teeth were divided into four groups according to the hemostatic employed: G1: control; G2: use of ViscoStat, Ultradent; G3: Hemosthasegel, FGM; and G4: Hemostop, Dentsply. The groups were divided into two subgroups according to the cleaning protocol method (n=12): A: without any further cleaning; and B: cleaning with chlorhexidine at 0.2%. All cavities were filled using a dentin adhesive and a resin composite, following the manufacturer's instructions. After 24 h, the specimens were aged by thermal and mechanical cycling. The bond strength was determined by the push out bond test (MPa), Statistical analysis was performed using two-way ANOVA and Tukey test (p<0.05). Statistically significant differences were detected among all groups treated with hemostatic agents and the control group. The post-hoc test showed that cleaning the cavity with chlorhexidine significantly improves the bond strength between dentin and resin composite. Our results suggested that the use of chlorhexidine can reestablish the bond strength between dentin and resin composite when a hemostatic agent was applied.

  16. Influence of Immediate Dentin Sealing on the Shear Bond Strength of Pressed Ceramic Luted to Dentin with Self-Etch Resin Cement

    PubMed Central

    Dalby, Robert; Ellakwa, Ayman; Millar, Brian; Martin, F. Elizabeth

    2012-01-01

    Objectives. To examine the effect of immediate dentin sealing (IDS), with dentin bonding agents (DBAs) applied to freshly cut dentin, on the shear bond strength of etched pressed ceramic luted to dentin with RelyX Unicem (RXU) cement. Method. Eighty extracted noncarious third molars were ground flat to expose the occlusal dentin surfaces. The teeth were randomly allocated to five groups (A to E) of sixteen teeth each. Groups A to D were allocated a dentin bonding agent (Optibond FL, One Coat Bond, Single Bond, or Go!) that was applied to the dentin surface to mimic the clinical procedure of IDS. These specimen groups then had etched glass ceramic discs (Authentic) luted to the sealed dentin surface using RXU. Group E (control) had etched glass ceramic discs luted to the dentin surface (without a dentin bonding agent) using RXU following the manufacturer's instructions. All specimens were stored for one week in distilled water at room temperature and then shear stressed at a constant cross-head speed of 1 mm per minute until failure. Statistical analysis was performed by ANOVA followed by post hoc Tukey HSD method (P < 0.05) applied for multiple paired comparisons. Results. The shear bond strength results for group A to E ranged from 6.94 ± 1.53 to 10.03 ± 3.50 MPa. One-way ANOVA demonstrated a difference (P < 0.05) between the groups tested and the Tukey HSD demonstrated a significant (P < 0.05) difference between the shear bond strength (SBS) of Optibond FL (Group A) and Go! (Group D). There was no statistical difference (P > 0.05) in the SBS between the test groups (A–D) or the control (group E). Conclusion. IDS using the dentin bonding agents tested does not statistically (P > 0.05) affect the shear bond strength of etched pressed ceramic luted to dentin with RXU when compared to the control. PMID:22287963

  17. Molecular effective coverage surface area of optical clearing agents for predicting optical clearing potential

    NASA Astrophysics Data System (ADS)

    Feng, Wei; Ma, Ning; Zhu, Dan

    2015-03-01

    The improvement of methods for optical clearing agent prediction exerts an important impact on tissue optical clearing technique. The molecular dynamic simulation is one of the most convincing and simplest approaches to predict the optical clearing potential of agents by analyzing the hydrogen bonds, hydrogen bridges and hydrogen bridges type forming between agents and collagen. However, the above analysis methods still suffer from some problem such as analysis of cyclic molecule by reason of molecular conformation. In this study, a molecular effective coverage surface area based on the molecular dynamic simulation was proposed to predict the potential of optical clearing agents. Several typical cyclic molecules, fructose, glucose and chain molecules, sorbitol, xylitol were analyzed by calculating their molecular effective coverage surface area, hydrogen bonds, hydrogen bridges and hydrogen bridges type, respectively. In order to verify this analysis methods, in vitro skin samples optical clearing efficacy were measured after 25 min immersing in the solutions, fructose, glucose, sorbitol and xylitol at concentration of 3.5 M using 1951 USAF resolution test target. The experimental results show accordance with prediction of molecular effective coverage surface area. Further to compare molecular effective coverage surface area with other parameters, it can show that molecular effective coverage surface area has a better performance in predicting OCP of agents.

  18. Medical implants and methods of making medical implants

    DOEpatents

    Shaw, Wendy J; Yonker, Clement R; Fulton, John L; Tarasevich, Barbara J; McClain, James B; Taylor, Doug

    2014-09-16

    A medical implant device having a substrate with an oxidized surface and a silane derivative coating covalently bonded to the oxidized surface. A bioactive agent is covalently bonded to the silane derivative coating. An implantable stent device including a stent core having an oxidized surface with a layer of silane derivative covalently bonded thereto. A spacer layer comprising polyethylene glycol (PEG) is covalently bonded to the layer of silane derivative and a protein is covalently bonded to the PEG. A method of making a medical implant device including providing a substrate having a surface, oxidizing the surface and reacting with derivitized silane to form a silane coating covalently bonded to the surface. A bioactive agent is then covalently bonded to the silane coating. In particular instances, an additional coating of bio-absorbable polymer and/or pharmaceutical agent is deposited over the bioactive agent.

  19. Randomized controlled open-label trial of vitamin E-bonded polysulfone dialyzer and erythropoiesis-stimulating agent response.

    PubMed

    Sanaka, Tsutomu; Mochizuki, Takahiro; Kinugasa, Eriko; Kusano, Eiji; Ohwada, Shigeru; Kuno, Tsutomu; Kojima, Kenichiro; Kobayashi, Shuzo; Satoh, Minoru; Shimada, Noriaki; Nakao, Kazushi; Nakazawa, Ryoichi; Nishimura, Hideki; Noiri, Eisei; Shigematsu, Takashi; Tomo, Tadashi; Maeda, Teiryo

    2013-06-01

    A 1-year multicenter prospective randomized controlled study was conducted on the effects of vitamin E-bonded polysulfone dialyzers on erythropoiesis-stimulating agent response in hemodialysis patients. Major inclusion criteria were use of high-flux polysulfone dialyzers with 50-70 ml/min β2-microglobulin clearance over 3 months, transferrin saturation over 20%, same erythropoiesis-stimulating agent for over 3 months, and hemoglobin at 10-12 g/dl. Hemodialysis patients were placed in four interventional groups: two hemoglobin ranges (10.0-10.9 or 11.0-11.9 g/dl) and two dialyzers. Patients were randomly assigned by central registration to a vitamin E-bonded polysulfone dialyzers or polysulfone control group. Primary end point was relative erythropoiesis resistance index at baseline between groups at 12 months. Erythropoiesis resistance index was defined as total weekly erythropoiesis-stimulating agent dose divided by hemoglobin. There were no statistically significant differences in age or sex. There was no significant difference in relative erythropoiesis resistance index between vitamin E-bonded polysulfone dialyzers and control groups at 12 months (vitamin E-bonded polysulfone dialyzers: 1.1, control: 1.3). The vitamin E-bonded polysulfone dialyzers group showed better relative erythropoiesis resistance index than the control group at 11.0-11.9 g/dl hemoglobin (vitamin E-bonded polysulfone dialyzers: 1.0, control: 1.4 at 12 months, significant difference) but no difference at 10.0-10.9 g/dl hemoglobin. The overall relative erythropoiesis resistance index showed no difference between the vitamin E-bonded polysulfone dialyzers and control groups, although the change in relative erythropoiesis resistance index differed according to hemoglobin level.

  20. Randomized Controlled Open-Label Trial of Vitamin E-Bonded Polysulfone Dialyzer and Erythropoiesis-Stimulating Agent Response

    PubMed Central

    Mochizuki, Takahiro; Kinugasa, Eriko; Kusano, Eiji; Ohwada, Shigeru; Kuno, Tsutomu; Kojima, Kenichiro; Kobayashi, Shuzo; Satoh, Minoru; Shimada, Noriaki; Nakao, Kazushi; Nakazawa, Ryoichi; Nishimura, Hideki; Noiri, Eisei; Shigematsu, Takashi; Tomo, Tadashi; Maeda, Teiryo

    2013-01-01

    Summary Background and objectives A 1-year multicenter prospective randomized controlled study was conducted on the effects of vitamin E-bonded polysulfone dialyzers on erythropoiesis-stimulating agent response in hemodialysis patients. Design, setting, participants, & measurements Major inclusion criteria were use of high-flux polysulfone dialyzers with 50–70 ml/min β2-microglobulin clearance over 3 months, transferrin saturation over 20%, same erythropoiesis-stimulating agent for over 3 months, and hemoglobin at 10–12 g/dl. Hemodialysis patients were placed in four interventional groups: two hemoglobin ranges (10.0–10.9 or 11.0–11.9 g/dl) and two dialyzers. Patients were randomly assigned by central registration to a vitamin E-bonded polysulfone dialyzers or polysulfone control group. Primary end point was relative erythropoiesis resistance index at baseline between groups at 12 months. Erythropoiesis resistance index was defined as total weekly erythropoiesis-stimulating agent dose divided by hemoglobin. Results There were no statistically significant differences in age or sex. There was no significant difference in relative erythropoiesis resistance index between vitamin E-bonded polysulfone dialyzers and control groups at 12 months (vitamin E-bonded polysulfone dialyzers: 1.1, control: 1.3). The vitamin E-bonded polysulfone dialyzers group showed better relative erythropoiesis resistance index than the control group at 11.0–11.9 g/dl hemoglobin (vitamin E-bonded polysulfone dialyzers: 1.0, control: 1.4 at 12 months, significant difference) but no difference at 10.0–10.9 g/dl hemoglobin. Conclusions The overall relative erythropoiesis resistance index showed no difference between the vitamin E-bonded polysulfone dialyzers and control groups, although the change in relative erythropoiesis resistance index differed according to hemoglobin level. PMID:23599410

  1. Effect of salivary pellicle on antibacterial activity of novel antibacterial dental adhesives using a dental plaque microcosm biofilm model

    PubMed Central

    Li, Fang; Weir, Michael D.; Fouad, Ashraf F.; Xu, Hockin H.K.

    2014-01-01

    Objectives Antibacterial primer and adhesive are promising to inhibit biofilms and caries. Since restorations in vivo are exposed to saliva, one concern is the attenuation of antibacterial activity due to salivary pellicles. The objective of this study was to investigate the effects of salivary pellicles on bonding agents containing a new monomer dimethylaminododecyl methacrylate (DMADDM) or nanoparticles of silver (NAg) against biofilms for the first time. Methods DMADDM and NAg were synthesized and incorporated into Scotchbond Multi-Purpose adhesive and primer. Specimens were either coated or not coated with salivary pellicles. A microcosm biofilm model was used with mixed saliva from ten donors. Two types of culture medium were used: an artificial saliva medium (McBain), and Brain Heart Infusion (BHI) medium without salivary proteins. Metabolic activity, colony-forming units (CFU), and lactic acid production of plaque microcosm biofilms were measured (n = 6). Results Bonding agents containing DMADDM and NAg greatly inhibited biofilm activities, even with salivary pellicles. When using BHI, the pre-coating of salivary pellicles on resin surfaces significantly decreased the antibacterial effect (p < 0.05). When using artificial saliva medium, pre-coating of salivary pellicles on resin did not decrease the antibacterial effect. These results suggest that artificial saliva yielded medium-derived pellicles on resin surfaces, which provided attenuating effects on biofilms similar to salivary pellicles. Compared with the commercial control, the DMADDM-containing bonding agent reduced biofilm CFU by about two orders of magnitude. Significance Novel DMADDM- and NAg-containing bonding agents substantially reduced biofilm growth even with salivary pellicle coating on surfaces, indicating a promising usage in saliva-rich environment. DMADDM and NAg may be useful in a wide range of primers, adhesives and other restoratives to achieve antibacterial and anti-caries capabilities. PMID:24332270

  2. Effect of salivary pellicle on antibacterial activity of novel antibacterial dental adhesives using a dental plaque microcosm biofilm model.

    PubMed

    Li, Fang; Weir, Michael D; Fouad, Ashraf F; Xu, Hockin H K

    2014-02-01

    Antibacterial primer and adhesive are promising to inhibit biofilms and caries. Since restorations in vivo are exposed to saliva, one concern is the attenuation of antibacterial activity due to salivary pellicles. The objective of this study was to investigate the effects of salivary pellicles on bonding agents containing a new monomer dimethylaminododecyl methacrylate (DMADDM) or nanoparticles of silver (NAg) against biofilms for the first time. DMADDM and NAg were synthesized and incorporated into Scotchbond Multi-Purpose adhesive and primer. Specimens were either coated or not coated with salivary pellicles. A microcosm biofilm model was used with mixed saliva from ten donors. Two types of culture medium were used: an artificial saliva medium (McBain), and Brain Heart Infusion (BHI) medium without salivary proteins. Metabolic activity, colony-forming units (CFU), and lactic acid production of plaque microcosm biofilms were measured (n=6). Bonding agents containing DMADDM and NAg greatly inhibited biofilm activities, even with salivary pellicles. When using BHI, the pre-coating of salivary pellicles on resin surfaces significantly decreased the antibacterial effect (p<0.05). When using artificial saliva medium, pre-coating of salivary pellicles on resin did not decrease the antibacterial effect. These results suggest that artificial saliva yielded medium-derived pellicles on resin surfaces, which provided attenuating effects on biofilms similar to salivary pellicles. Compared with the commercial control, the DMADDM-containing bonding agent reduced biofilm CFU by about two orders of magnitude. Novel DMADDM- and NAg-containing bonding agents substantially reduced biofilm growth even with salivary pellicle coating on surfaces, indicating a promising usage in saliva-rich environment. DMADDM and NAg may be useful in a wide range of primers, adhesives and other restoratives to achieve antibacterial and anti-caries capabilities. Published by Elsevier Ltd.

  3. Short communication: pre- and co-curing effect of adhesives on shear bond strengths of composite resins to primary enamel and dentine: an in vitro study.

    PubMed

    Viswanathan, R; Shashibhushan, K K; Subba Reddy, V V

    2011-12-01

    To evaluate and compare shear bond strengths of composite resins to primary enamel and dentine when the adhesives are pre-cured (light cured before the application of the resin) or co-cured (adhesive and the resin light cured together). Buccal surfaces of 80 caries-free primary molars were wet ground to create bonding surfaces on enamel and dentine and specimens mounted on acrylic blocks. Two bonding agents (Prime and Bond NT® and Xeno III®) were applied to either enamel or dentine as per manufacturer's instructions. In 40 specimens, the bonding agent was light cured immediately after the application (pre-cured). The other 40 specimens were not light cured until the composite resin application (co-cured). Resin composite cylinders were made incrementally using acrylic moulds over the adhesives and light cured. Specimens were stored in deionised water for 24 hours at room temperature. Shear bond strength was measured using an Instron universal testing machine (in MPa) and was analysed with Student's unpaired t test. Light curing the adhesive separately produced significantly higher bond strengths to primary dentine than co-curing (p<0.001). At the same time light curing the adhesive separately did not produce significantly different bond strengths to primary enamel (p>0.05). Curing sequence had no significant effect on shear bond strength of adhesives on the primary enamel. Pre-curing adhesives before curing composite resins produced greater shear bond strength to primary dentine.

  4. 21 CFR 872.3200 - Resin tooth bonding agent.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Resin tooth bonding agent. 872.3200 Section 872.3200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3200 Resin tooth bonding agent. (a) Identification...

  5. Evaluation of bonding agent application on concrete patch performance.

    DOT National Transportation Integrated Search

    2014-08-01

    The durability of partial depth repair is directly related to the bond strength between the repair material and existing : concrete. Bond strength development sensitivity to wait time with the use of bonding agents in partial depth repair was : inves...

  6. Combination Effect of Hemostatic and Disinfecting Agents on Micro-leakage of Restorations Bonded with Different Bonding Systems

    PubMed Central

    H, Farhadpour; F, Sharafeddin; Sc, Akbarian; B, Azarian

    2016-01-01

    Statement of Problem: Hemostatic agents may affect the micro-leakage of different adhesive systems. Also, chlorhexidine has shown positive effects on micro-leakage. However, their interaction effect has not been reported yet. Objectives: To evaluate the effect of contamination with a hemostatic agent on micro-leakage of total- and self-etching adhesive systems and the effect of chlorhexidine application after the removal of the hemostatic agent. Materials and Methods: Standardized Class V cavity was prepared on each of the sixty caries free premolars at the cemento-enamel junction, with the occlusal margin located in enamel and the gingival margin in dentin. Then, the specimens were randomly divided into 6 groups (n = 10) according to hemostatic agent (H) contamination, chlorhexidine (CHX) application, and the type of adhesive systems (Adper Single Bond and Clearfil SE Bond) used. After filling the cavities with resin composite, the root apices were sealed with utility wax. Furthermore, all the surfaces, except for the restorations and 1mm from the margins, were covered with two layers of nail varnish. The teeth were immersed in a 0.5% basic fuschin dye for 24 hours, rinsed, blot-dried and sectioned longitudinally through the center of the restorations bucco- lingualy. The sections were examined using a stereomicroscope and the extension of dye penetration was analyzed according to a non-parametric scale from 0 to 3. Statistical analysis was performed using Kruskal-Wallis test and Mann-Whitney U-test. Results: While ASB group showed no micro-leakage in enamel, none of the groups showed complete elimination of micro-leakage from the dentin. Regarding micro-leakage at enamel, and dentin margins, there was no significant difference between groups 1 and 2, 1 and 3, and 2 and 3 (p > 0.05). A significantly lower micro-leakage at the enamel and dentin margins was observed in group 3, compared to group 6. No significant difference was observed between groups 4 and 5 in enamel (p = 0.35) and dentin (p = 0.34). Group 6 showed significantly higher micro-leakage, compared to group 4 and 5 (p < 0.05). Conclusions: Hemostatic agent contamination had no significant effect on micro-leakage of total- and self-etching adhesive systems. Application of chlorhexidine after the removal of hemostatic agent increased micro-leakage in self-etching adhesives but did not affect when total-etching was used. PMID:28959756

  7. Push-out bond strengths of two fiber post types bonded with different dentin bonding agents.

    PubMed

    Topcu, Fulya Toksoy; Erdemir, Ugur; Sahinkesen, Gunes; Mumcu, Emre; Yildiz, Esra; Uslan, Ibrahim

    2010-05-01

    The aim of this study was to evaluate the regional push-out bond strengths for two fiber-reinforced post types using three different dentin bonding agents. Sixty single-rooted extracted human first premolar teeth were sectioned below the cemento-enamel junction, and the roots were endodontically treated. Following standardized post space preparations, the roots were divided into two fiber-post groups (Glassix and Carbopost), and further divided into three subgroups of 10 specimens each for the bonding systems self-etching dentin bonding agents (Clearfil SE Bond and Optibond all-in-one), and total-etching dentin bonding agent (XP Bond). A dual-cure resin luting cement (Maxcem) was then placed in the post spaces and posts were then seated into the root canals polymerized through the cervical portion. The roots were then cut into 3-mm thick sections. Push-out tests were performed at a crosshead speed of 0.5 mm/min. The data were analyzed with multivariate ANOVA (alpha = 0.05). The morphology of interface between different dentin bonding agents from the cervical sections were analyzed with SEM. Glass fiber-reinforced posts demonstrated significantly higher push-out bond strengths than carbon fiber-reinforced posts (p < 0.001). Bond strength values decreased significantly from the cervical to the apical root canal regions (p < 0.001). Self-etching dentin adhesive Clearfil SE Bond and total-etching dentin adhesive XP Bond demonstrated similar bond strengths values and this was significantly higher compared with the Optibond all-in-one in cervical root canal region. In conclusion, in all root segments, the glass fiber-reinforced posts provided significantly increased post retention than the carbon fiber-reinforced posts, regardless of the adhesive used. (c) 2010 Wiley Periodicals, Inc.

  8. Effect of Addition of Antifungal Agents on Physical and Biological Properties of a Tissue Conditioner: An In-Vitro Study.

    PubMed

    Rawat, Pragati; Agarwal, Swatantra; Tripathi, Siddhi

    2017-09-01

    Purpose: Tissue conditioners are used for healing of abused oral tissues. They may harbour microorganisms causing oral diseases such as candidiasis compromising the health of the patient. Also, addition of antifungal agents into tissue conditioner may alter its properties. This study compares the anti-fungal property and mechanical properties of tissue conditioner containing different antifungal agents. Methods: Three antifungal agents, one synthetic - fluconazole, and two natural - oregano oil and virgin coconut oil were added into the tissue conditioner (Viscogel) in different concentrations. The antifungal property, tensile bond strength and viscoelasticity of Viscogel containing these antifungal agents were assessed after 24 hours, three days and seven days. Results: While, the highest antifungal activity was shown by Viscogel containing fluconazole, the maximum tensile bond strength was found to be of Viscogel alone (control). Although Viscogel alone and in combination of fluconazole showed deterioration in viscoelasticity, Viscogel in combination of natural agents showed no significant changes over the period of seven days. Conclusion: Incorporation of the natural agents in the tissue conditioner can be used as an effective alternative to systemic or topical synthetic antifungal agents.

  9. Sealant Microleakage After Using Nano-Filled Bonding Agents on Saliva-Contaminated Enamel

    PubMed Central

    Paryab, Mehrsa

    2013-01-01

    Objective: The efficacy of correctly applied fissure sealants has been revealed in the prevention of caries. Saliva and moisture contamination of the etched enamel surface before sealant placement can decrease the bonding strength of the sealant to the enamel. The aim of this study was to test the new bonding agents containing nano-fillers in order to reduce the negative effect of saliva contamination on the sealant micro leakage. Materials and Methods: Seventy five sound human premolars were randomly assigned to five equal groups as follows: Group A: etching, sealant; Group B: etching, saliva contamination, sealant; Group C: etching, saliva contamination, Single bond, sealant; Group D: etching, saliva contamination, Adper Single bond 2, sealant; Group E: etching, saliva contamination, N Bond, sealant. The samples were thermo-cycled and immersed in basic fuchsine 0.5% by weight. Then, the teeth were sectioned bucco-lingually and parallel to the long axis into two segments. Finally, the length of dye penetration at the sealant-tooth interface was scored according to a four-point scale. Results: Micro-leakage was higher in group B compared to the other groups, while there were no differences among the evaluated dentin adhesives. Conclusion: The use of nano-filled bonding agents as an intermediate layer between the etched enamel and the sealant can reduce sealant micro-leakage after saliva contamination at the level of the uncontaminated enamel. PMID:25512749

  10. Novel dental adhesive containing antibacterial agents and calcium phosphate nanoparticles

    PubMed Central

    Melo, Mary Anne S.; Cheng, Lei; Weir, Michael D.; Hsia, Ru-ching; Rodrigues, Lidiany K. A.; Xu, Hockin H. K.

    2013-01-01

    Secondary caries remains the main reason for dental restoration failure. Replacement of failed restorations accounts for 50-70% of all restorations performed. Antibacterial adhesives could inhibit biofilm acids at tooth-restoration margins, and calcium phosphate (CaP) ions could remineralize tooth lesions. The objectives of this study were to: (1) incorporate nanoparticles of silver (NAg), quaternary ammonium dimethacrylate (QADM), and nanoparticles of amorphous calcium phosphate (NACP) into bonding agent; and (2) investigate their effects on dentin bonding and microcosm biofilms. An experimental primer was made with pyromellitic glycerol dimethacrylate (PMGDM) and 2-hydroxyethyl methacrylate (HEMA). An adhesive was made with bisphenol-A-glycerolate dimethacrylate (BisGMA) and triethylene glycol dimethacrylate (TEGDMA). NAg was incorporated into primer at 0.1wt%. The adhesive contained 0.1% NAg and 10% QADM, and 0-40% NACP. Incorporating NAg into primer and NAg-QADM-NACP into adhesive did not adversely affect dentin bond strength (p>0.1). SEM showed numerous resin tags, and TEM revealed NAg and NACP in dentinal tubules. Viability of human saliva microcosm biofilms on primer/adhesive/composite disks was substantially reduced via NAg and QADM. Metabolic activity, lactic acid, and colony-forming units of biofilms were much lower on the new bonding agents than control (p<0.05). In conclusion, novel dental bonding agents containing NAg, QADM and NACP were developed with the potential to kill residual bacteria in the tooth cavity and inhibit the invading bacteria along tooth-restoration margins, with NACP to remineralize tooth lesions. The novel method of combining antibacterial agents (NAg and QADM) with remineralizing agent (NACP) may have wide applicability to other adhesives for caries inhibition. PMID:23281264

  11. [The influence of surface conditioning on the shear bond strength of La-Porcelain and titanium].

    PubMed

    Mo, Anchun; Cen, Yuankun; Liao, Yunmao

    2003-04-20

    To determine the influence of different surface conditioning methods on bonding strength of low fusing porcelain (La-Porcelain) and titanium. The surface of the samples were sandblasted for 2 min with 80-250 microns Al2O3 or coated for two times with Si-couple agent or conditioned by pre-oxidation. The shear bond strength was examined by push-type shear test with a speed of 0.5 mm/min in a universal testing machine. Scanning electron microscopy (SEM) and electron probe micro-analyzer (EPMA) were employed to explore the relationship between bonding strength and microstructures, as well as the element diffusion at the interface between porcelain coating and titanium when heated at 800 degrees C. Bonding strength was not statistically different (P > 0.05) after sandblasting with Al2O3 in particle size ranged from 80 microns to 250 microns. When a Si-couple agent was used, bond of porcelain to titanium was significantly lower (P < 0.05). The shear bond strength of the porcelain to the pre-oxidized titanium surface remained unchanged after heating (P > 0.05). The SEM results revealed integrity of porcelain and titanium. La-Porcelain showed a small effect of surface coarseness. Sandblasting the titanium surface with 150-180 microns Al2O3 can be recommended as a method for better bonding between La-Porcelain and titanium. The Si-couple agent coating and pre-oxidation of titanium surface is unnecessary.

  12. The effect of air thinning on dentin adhesive bond strength.

    PubMed

    Hilton, T J; Schwartz, R S

    1995-01-01

    The purpose of this study was to determine if air thinning three dentin adhesives would affect bond strength to dentin. Ninety human molars were mounted in acrylic and the occlusal surfaces ground to expose a flat dentin surface. Thirty teeth were randomly assigned to one of the following dentin bonding agent/composite combinations: A) Universal Bond 3/TPH (Caulk), B) All-Bond 2/Bis-Fil-P (Bisco), and C) Scotchbond Multi-Purpose/Z-100 (3m). The primers were applied following the manufacturers' instructions. The adhesives were applied by two methods. A thin layer of adhesive was applied with a brush to 15 specimens in each group and light cured. Adhesive was brushed on to the remaining 15 teeth in the group, air thinned for 3 seconds, and then polymerized. The appropriate composite was applied in 2 mm increments and light cured utilizing a 5 mm-in-diameter split Teflon mold. Following 3 months of water storage, all groups were shear tested to failure on an Instron Universal Testing Machine. Bond strength was significantly higher in all groups when the dentin bonding agent was painted on without being air thinned. Scotchbond Multi-Purpose had significantly higher bond strength than All-Bond 2, which had significantly higher bond strength than Universal Bond 3.

  13. Gingival microleakage of class V composite restorations with fiber inserts.

    PubMed

    Ahmed, Walaa; El-Badrawy, Wafa; Kulkarni, Gajanan; Prakki, Anuradha; El-Mowafy, Omar

    2013-07-01

    This study investigated the effect of different fiber inserts (glass and polyethylene), bonding agents, and resin composites on the gingival margin microleakage of class V composite restorations. Sixty premolars were sterilized and mounted in acrylic resin bases. Class V cavities were prepared buccally and lingually, 1 mm below the cementoenamel junction, comprising 12 groups (n = 10). In the experimental groups fiber inserts were cut and placed at the gingival seat, while the control groups had no inserts. Combinations of two composite materials, Filtek-Z250 and Filtek-LS (3M-ESPE), and four bonding agents, Clearfil SE bond (Kuraray) (C), Scotch Bond Multipurpose (3M-ESPE) (SB), Prime and Bond NT (Dentsply) (PB), and Filtek-LS (3M-ESPE) (LS) were used. Restorations were incrementally inserted and polymerized for 40s. Specimens were then stored in distilled water for 7 days and thermocycled for 500 cycles. Teeth surfaces were sealed with nail polish except for 1 mm around restoration margins and immersed in 2% red procion dye. Teeth were then sectioned buccolingually and dye penetration was assessed with five-point scale. Data were statistically-analyzed by Kruskal-Wallis, ANOVA and Tukey's tests (α = 5%). Mean microleakage scores varied from 0.40 (Groups C, C with polyethylene, LS, LS with polyethylene) to 1.50 (SB). Different bonding agents led to differences in microleakage scores where C and LS showed significantly lower microleakage than PB. SB had highest mean microleakage score, however, incorporation of fibers resulted in significant reduction in microleakage. Class V resin composite restorations bonded with a total-etch adhesive had a significant reduction in mean microleakage scores when glass or polyethylene fibers were placed at the gingival cavo-surface margin. In contrast, for two self-etch adhesive systems, the incorporation of fibers had no significant effect on mean microleakage scores.

  14. Peptide-Like Molecules (PLMs): A Journey from Peptide Bond Isosteres to Gramicidin S Mimetics and Mitochondrial Targeting Agents

    PubMed Central

    Wipf, Peter; Xiao, Jingbo; Stephenson, Corey R. J.

    2010-01-01

    Peptides are natural ligands and substrates for receptors and enzymes and exhibit broad physiological effects. However, their use as therapeutic agents often suffers from poor bioavailability and insufficient membrane permeability. The success of peptide mimicry hinges on the ability of bioisosteres, in particular peptide bond replacements, to adopt suitable secondary structures relevant to peptide strands and position functional groups in equivalent space. This perspective highlights past and ongoing studies in our group that involve new methods development as well as specific synthetic library preparations and applications in chemical biology, with the goal to enhance the use of alkene and cyclopropane peptide bond isosteres. PMID:20725595

  15. Experimental etch-and-rinse adhesives doped with bioactive calcium silicate-based micro-fillers to generate therapeutic resin-dentin interfaces.

    PubMed

    Profeta, A C; Mannocci, F; Foxton, R; Watson, T F; Feitosa, V P; De Carlo, B; Mongiorgi, R; Valdré, G; Sauro, S

    2013-07-01

    This study aimed at evaluating the therapeutic bioactive effects on the bond strength of three experimental bonding agents containing modified Portland cement-based micro-fillers applied to acid-etched dentin and submitted to aging in simulated body fluid solution (SBS). Confocal laser (CLSM) and scanning electron microscopy (SEM) were also performed. A type-I ordinary Portland cement was tailored using different compounds such as sodium-calcium-aluminum-magnesium silicate hydroxide (HOPC), aluminum-magnesium-carbonate hydroxide hydrates (HCPMM) and titanium oxide (HPCTO) to create three bioactive micro-fillers. A resin blend mainly constituted by Bis-GMA, PMDM and HEMA was used as control (RES-Ctr) or mixed with each micro-filler to create three experimental bonding agents: (i) Res-HOPC, (ii) Res-HCPMM and (iii) Res-HPCTO. The bonding agents were applied onto 37% H3PO4-etched dentin and light-cured for 30s. After build-ups, they were prepared for micro-tensile bond strength (μTBS) and tested after 24h or 6 months of SBS storage. SEM analysis was performed after de-bonding, while CLSM was used to evaluate the ultra-morphology/nanoleakage and the mineral deposition at the resin-dentin interface. High μTBS values were achieved in all groups after 24h. Only Res-HOPC and Res-HCPMM showed stable μTBS after SBS storage (6 months). All the resin-dentin interfaces created using the bonding agents containing the bioactive micro-fillers tested in this study showed an evident reduction of nanoleakage and mineral deposition after SBS storage. Resin bonding systems containing specifically tailored Portland cement micro-fillers may promote a therapeutic mineral deposition within the hybrid layer and increase the durability of the resin-dentin bond. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. [Effects of different surface conditioning agents on the bond strength of resin-opaque porcelain composite].

    PubMed

    Liu, Wenjia; Fu, Jing; Liao, Shuang; Su, Naichuan; Wang, Hang; Liao, Yunmao

    2014-04-01

    The objective of this research is to evaluate the effects of different silane coupling agents on the bond strength between Ceramco3 opaque porcelain and indirect composite resin. Five groups of Co-Cr metal alloy substrates were fabricated according to manufacturer's instruction. The surface of metal alloy with a layer of dental opaque porcelain was heated by fire. After the surface of opaque porcelain was etched, five different surface treatments, i.e. RelyX Ceramic Primer (RCP), Porcelain Bond Activator and SE Bond Primer (mixed with a proportion of 1:1) (PBA), Shofu Porcelain Primer (SPP), SE bond primer (SEP), and no primer treatment (as a control group), were used to combine P60 and opaque porcelain along with resin cement. Shear bond strength of specimens was tested in a universal testing machine. The failure modes of specimens in all groups were observed and classified into four types. Selected specimens were subjected to scanning electron microscope and energy disperse spectroscopy to reveal the relief of the fracture surface and to confirm the failure mode of different types. The experimental results showed that the values of the tested items in all the tested groups were higher than that in the control group. Group PBA exhibited the highest value [(37.52 +/- 2.14) MPa] and this suggested a fact that all of the specimens in group PBA revealed combined failures (failure occurred in metal-porcelain combined surface and within opaque porcelain). Group SPP and RCP showed higher values than SEP (P < 0.05) and most specimens of SPP and RCP performed combined failures (failure occurred in bond surface and within opaque porcelain or composite resin) while all the specimens in group SEP and control group revealed adhesive failures. Conclusions could be drawn that silane coupling agents could reinforce the bond strength of dental composite resin to metal-opaque porcelain substrate. The bond strength between dental composite resin and dental opaque porcelain could meet the clinical requirements.

  17. Internal coating of zirconia restoration with silica-based ceramic improves bonding of resin cement to dental zirconia ceramic.

    PubMed

    Kitayama, Shuzo; Nikaido, Toru; Ikeda, Masaomi; Alireza, Sadr; Miura, Hiroyuki; Tagami, Junji

    2010-01-01

    Resin bonding to zirconia ceramic cannot be established by standard methods that are utilized for conventional silica-based dental ceramics. This study was aimed to examine the tensile bond strength of resin cement to zirconia ceramic using a new laboratory technique. Sixty-four zirconia ceramic specimens were air-abraded using Al2O3 particles and divided into two groups; the control group with no pretreatment (Control), and the group pretreated using the internal coating technique (INT), in which the surface of the zirconia specimens were thinly coated by fusing silica-based ceramic and air-abraded in the same manner. The specimens in each group were further divided into two subgroups according to the silane coupling agents applied; a mixture of dentin primer/silane coupling agent (Clearfil SE Bond Primer/Porcelain Bond Activator) or a newly developed single-component silane coupling agent (Clearfil Ceramic Primer). After bonding with dual-cured resin cement (Panavia F 2.0), they were stored in water for 24 h and half of them were additionally subjected to thermal cycling. The tensile bond strengths were tested using a universal testing machine. ANOVAs revealed significant influence of ceramic surface pretreatment (p<0.001), silane coupling agent (p<0.001) and thermal cycling (p<0.001); the INT coating technique significantly increased the bond strengths of resin cement to zirconia ceramic, whereas thermal cycling significantly decreased the bond strengths. The use of a single-component silane coupling agent demonstrated significantly higher bond strengths than that of a mixture of dentin primer/silane coupling agent. The internal coating of zirconia dental restorations with silica-based ceramic followed by silanization may be indicated in order to achieve better bonding for the clinical success.

  18. 31 CFR 332.6 - Purchase of bonds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false Purchase of bonds. 332.6 Section 332....6 Purchase of bonds. (a) Issuing agents. Only Federal Reserve Banks and Branches, as fiscal agents.... However, financial institutions were permitted to forward applications for purchase of the bonds to the...

  19. Influence of surface conditions and silane agent on the bond of resin to IPS Empress 2 ceramic.

    PubMed

    Spohr, Ana Maria; Sobrinho, Lourenço Correr; Consani, Simonides; Sinhoreti, Mario Alexandre Coelho; Knowles, Jonathan C

    2003-01-01

    The aim of this study was to evaluate the effect of different ceramic surface treatments on the tensile bond strength between IPS Empress 2 ceramic framework and Rely X adhesive resin cement, with or without the application of a silane coupling agent. One hundred twenty disks were made, embedded in resin, and randomly divided into six groups: group 1 = sandblasting (100 microm), no silanation; group 2 = sandblasting (100 microm), silane treatment; group 3 = sandblasting (50 microm), no silanation; group 4 = sandblasting (50 microm), silane treatment; group 5 = hydrofluoric acid etching, no silanation; and group 6 = hydrofluoric acid etching, silane treatment. The disks were bonded into pairs with adhesive resin cement. All samples were stored in distilled water at 37 degrees C for 24 hours and then thermocycled. The samples were submitted to tensile testing. The use of silane improved the bond strength in relation to the groups in which silane was not applied (P < .05). The most effective surface treatment was etching with 10% hydrofluoric acid, both with (25.6 MPa) and without silane application (16.4 MPa); these values showed a statistically significant difference compared to sandblasting with 50- and 100-microm Al2O3. Sandblasting with 50-microm Al2O3, with (11.8 MPa) and without silane (5.4 MPa), demonstrated significantly higher tensile bond strength than sandblasting with 100-microm Al2O3, with (8.3 MPa) and without silane (3.8 MPa). Combined application of 10% hydrofluoric acid and silane enhanced the bond strength between the IPS Empress 2 ceramic framework and resin agent.

  20. Effect of various surface treatment methods on the bond strength of the heat-pressed ceramic samples.

    PubMed

    Saraçoğlu, A; Cura, C; Cötert, H S

    2004-08-01

    This in vitro study was conducted to evaluate the interaction between the shear bond strength and the surface treatment method for a commercial dental ceramic. Ninety bonded ceramic units were manufactured for this study. Each unit was made by luting two cylinder-shaped ceramic samples to each other with a resin-composite luting agent. The units were then divided into nine groups, containing 10 units in each group. Samples from each group were treated with one of the following: etching with 4.9% hydrofluoric acid for 10, 20 and 40 s, 9.5% hydrofluoric acid for 10, 20 and 40 s, 40% orthophosphoric acid for 40 s, air abrasion with alumina in 50-microm particles, and grinding with a high-speed diamond bur. The treated samples were then silanated and luted with a resin-composite luting agent. The luted units were then loaded to failure. Two samples from each group were neither silanated nor luted after the surface treatment procedure, and morphological changes obtained by various surface treatment regimens were investigated by scanning electron microscopy. A statistically significant difference was observed among the mean shear bond strengths of the groups prepared with different surface treatment techniques (P = 0.00). Hydrofluoric acid appeared to be the most suitable chemical medium to produce a reliable ceramic bond. Etching time and concentration of the acidic medium were also observed as important prognostic variates. Orthophosphoric acid treatment was observed to be the least effective surface treatment method on the heat-pressed ceramic samples. Physical applications such as bur grinding and air blasting maintained stronger bonds than the orthophosphoric acid, while producing weaker bonds than surfaces treated with hydrofluoric acid in all concentrations and etching periods. The effect of the silane priming agent was not considered in this study. Copyright 2004 Blackwell Publishing Ltd.

  1. Characterisation of CFRP adhesive bonds by electromechanical impedance

    NASA Astrophysics Data System (ADS)

    Malinowski, Pawel H.; Wandowski, Tomasz; Ostachowicz, Wieslaw M.

    2014-03-01

    In aircraft industry the Carbon Fiber Reinforced Polymer (CFRP) elements are joint using rivets and adhesive bonding. The reliability of the bonding limits the use of adhesive bonding for primary aircraft structures, therefore it is important to assess the bond quality. The performance of adhesive bonds depends on the physico-chemical properties of the adhered surfaces. The contamination leading to weak bonds may have various origin and be caused by moisture, release agent, hydraulic fluid, fuel, poor curing of adhesive and so on. In this research three different causes of possible weak bonds were selected for the investigation: 1. Weak bond due to release agent contamination, 2. Weak bond due to moisture contamination, 3. Weak bond due to poor curing of the adhesive. In order to assess the bond quality electromechanical impedance (EMI) technique was selected and investigation was focused on the influence of bond quality on electrical impedance of piezoelectric transducer. The piezoelectric transducer was mounted at the middle of each sample surface. Measurements were conducted using HIOKI Impedance Analyzer IM3570. Using the impedance analyzer the electrical parameters were measured for wide frequency band. Due to piezoelectric effect the electrical response of a piezoelectric transducer is related to mechanical response of the sample to which the transducers is attached. The impedance spectra were investigated in order to find indication of the weak bonds. These spectra were compared with measurements for reference sample using indexes proposed in order to assess the bond quality.

  2. Comparison of the Effect of Dentin Bonding, Dentin Sealing Agents on the Microleakage of Provisional Crowns Fabricated with Direct and Indirect Technique-An Invitro Study

    PubMed Central

    Muthukumar, B; Kumar, M Vasantha

    2015-01-01

    Background Postoperative sensitivity after temporization is a common complaint in Fixed Partial Denture patients. It is caused by weak and ill fitting temporary restorations which results in microleakage. This can be controlled by providing good temporary restorations and by coating the exposed dentinal tubules of the prepared tooth with dentin bonding agent or dental varnish. Aim The purpose of the study was to determine the effect of dentin-bonding, dentin sealing agents on the microleakage of temporary crowns made by tooth colored auto polymerizing resin fabricated with direct and indirect technique. Materials and Methods Thirty premolar and molar human teeth were collected which were extracted recently was used for the study. The teeth were marked and divided into 3 groups each containing 10 nos. They were individually mounted with self-cure acrylic resin. It was then mounted on a milling machine and crown preparations done. Temporary crowns were fabricated by direct and indirect method with two types of materials. In group A (Control group), the temporary crowns fabricated with both direct and indirect method were cemented directly with temporary luting cement. In group B dentine-bonding agent (solobond M) was applied once to the prepared surface of each tooth specimen before the cementation of temporary crowns where as in case of group C a single layer of dental varnish is applied prior to crown cementation. The entire specimens were immersed in 1% methylene blue and allowed to undergo thermal treatment. It was then sectioned in a hard tissue microtome. Each section was evaluated for dye penetration into the dentin tubules by comparing it with a visual scale. Statistical Analysis SPSS Version 13 software was used for non-parametric data analysis by a qualified statistician. P-values less than 0.05 (p-value<0.05) were considered to be statistically significant. Results Group B (Dentin Bonding Agent) specimens cemented with crowns fabricated in direct technique showed the least amount of microleakage when compared with group A and group C. Group C (Dental Varnish) specimen showed comparatively more amount of microleakage than that of group B. Group A (control group) specimens showed the maximum amount of microleakage. Conclusion The application of a single layer of Dental varnish appears to be of no significant benefit when compared to crowns cemented with the application of Dentin bonding agent on the tooth surface. The application of a single layer of Dentin bonding agent (Solobond M) and temporary crowns fabricated with direct technique may be of some benefit for crown preparations as an interim measure prior to the luting of final crown. PMID:26266219

  3. The effect of enamel bleaching on the shear bond strengths of metal and ceramic brackets.

    PubMed

    Oztaş, E; Bağdelen, G; Kiliçoğlu, H; Ulukapi, H; Aydin, I

    2012-04-01

    The aim of this study was to evaluate the effects of bleaching and delayed bonding on the shear bond strengths of metal and ceramic brackets bonded with light and chemically cure composite resin to human enamel. One hundred and twenty extracted human premolar teeth were randomly divided into three groups of 40 each. The first two groups were bleached with 20 per cent carbamide peroxide (CP) at-home bleaching agent. No bleaching procedures were applied to the third group and served as control. The first two and control groups were divided into equal subgroups according to different adhesive-bracket combinations. Specimens in group 1 (n = 40) were bonded 24 hours after bleaching process was completed while the specimens in group 2 (n = 40) were bonded 14 days after. The specimens in all groups were debonded with a Universal testing machine while the modified adhesive remnant index was used to evaluate fracture properties. No statistically significant differences were found between the shear bond strengths of metal and ceramic brackets bonded to bleached enamel after 24 hours, 14 days, and unbleached enamel with light or chemical cure adhesives (P > 0.05). The mode of failure was mostly at the bracket/adhesive interface and cohesive failures within the resin were also observed. Our findings indicated that at-home bleaching agents that contain 20 per cent CP did not significantly affect the shear bond strength of metal and ceramic orthodontic brackets to enamel when bonding is performed 24 hours or 14 days after bleaching.

  4. Effects of Chemical Cross-linkers on Caries-affected Dentin Bonding

    PubMed Central

    Macedo, G.V.; Yamauchi, M.; Bedran-Russo, A.K.

    2009-01-01

    The achievement of a strong and stable bond between composite resin and dentin remains a challenge in restorative dentistry. Over the past two decades, dental materials have been substantially improved, with better handling and bonding characteristics. However, little attention has been paid to the contribution of collagen structure/stability to bond strength. We hypothesized that the induction of cross-linking in dentin collagen improves dentin collagen stability and bond strength. This study investigated the effects of glutaraldehyde- and grape seed extract-induced cross-linking on the dentin bond strengths of sound and caries-affected dentin, and on the stability of dentin collagen. Our results demonstrated that the application of chemical cross-linking agents to etched dentin prior to bonding procedures significantly enhanced the dentin bond strengths of caries-affected and sound dentin. Glutaraldehyde and grape seed extract significantly increased dentin collagen stability in sound and caries-affected dentin, likely via distinct mechanisms. PMID:19892915

  5. Microshear Bond Strength of OptiBond All-in-One Self-adhesive Agent to Er:YAG Laser Treated Enamel After Thermocycling and Water Storage.

    PubMed

    Kasraei, Shahin; Yarmohammadi, Ebrahim; Ghazizadeh, Mohammad Vahid

    2016-01-01

    Introduction: This study aimed to compare the microshear bond strength of composite to enamel treated with Erbium-Doped Yttrium Aluminum Garnet (Er:YAG) laser using a self-etch one step bonding agent. Methods: Seventy-six enamel surfaces were prepared from 38 sound human third molar teeth. Specimens were randomly divided into four groups of 18. The enamel surface in half the specimens was irradiated with Er:YAG laser. One extra specimen from each group was evaluated under a scanning electron microscope (SEM). Composite micro-cylinders were bonded to the specimen surfaces using OptiBond All-In-One (OB) adhesive agent and stored in distilled water for 24 hours. Half the specimens were thermocycled (2000 cycles) and stored in distilled water at 37°C for three months (TW). The microshear bond strength of composite to enamel was measured using a universal testing machine at a crosshead speed of 1 mm/min. The fractured surfaces were evaluated under a stereomicroscope at ×40 magnification to determine the mode of failure. Data were analyzed using repeated measures analysis of variance (ANOVA) and t test. Results: The mean values (±standard deviation) were 17.96 ± 2.92 MPa in OB group, 22.29 ± 4.25 MPa in laser + OB group, 18.11 ± 3.52 MPa in laser + OB + TW group and 9.42 ± 2.47 MPa in OB + TW group. Repeated measures ANOVA showed that laser irradiation increased the microshear bond strength ( P < 0.001). Bond strength decreased when the samples were thermocycled and stored for three months ( P < 0.001). The interaction effect of water storage and laser treatment on bond strength was significant ( P < 0.05). Conclusion: Enamel surface preparation with Er:YAG laser is recommended to enhance the durability of the bond of self-etch bonding systems to enamel.

  6. Microshear Bond Strength of OptiBond All-in-One Self-adhesive Agent to Er:YAG Laser Treated Enamel After Thermocycling and Water Storage

    PubMed Central

    Kasraei, Shahin; Yarmohammadi, Ebrahim; Ghazizadeh, Mohammad Vahid

    2016-01-01

    Introduction: This study aimed to compare the microshear bond strength of composite to enamel treated with Erbium-Doped Yttrium Aluminum Garnet (Er:YAG) laser using a self-etch one step bonding agent. Methods: Seventy-six enamel surfaces were prepared from 38 sound human third molar teeth. Specimens were randomly divided into four groups of 18. The enamel surface in half the specimens was irradiated with Er:YAG laser. One extra specimen from each group was evaluated under a scanning electron microscope (SEM). Composite micro-cylinders were bonded to the specimen surfaces using OptiBond All-In-One (OB) adhesive agent and stored in distilled water for 24 hours. Half the specimens were thermocycled (2000 cycles) and stored in distilled water at 37°C for three months (TW). The microshear bond strength of composite to enamel was measured using a universal testing machine at a crosshead speed of 1 mm/min. The fractured surfaces were evaluated under a stereomicroscope at ×40 magnification to determine the mode of failure. Data were analyzed using repeated measures analysis of variance (ANOVA) and t test. Results: The mean values (±standard deviation) were 17.96 ± 2.92 MPa in OB group, 22.29 ± 4.25 MPa in laser + OB group, 18.11 ± 3.52 MPa in laser + OB + TW group and 9.42 ± 2.47 MPa in OB + TW group. Repeated measures ANOVA showed that laser irradiation increased the microshear bond strength (P < 0.001). Bond strength decreased when the samples were thermocycled and stored for three months (P < 0.001). The interaction effect of water storage and laser treatment on bond strength was significant (P < 0.05). Conclusion: Enamel surface preparation with Er:YAG laser is recommended to enhance the durability of the bond of self-etch bonding systems to enamel. PMID:28144434

  7. Effect of flowable composite liner and glass ionomer liner on class II gingival marginal adaptation of direct composite restorations with different bonding strategies.

    PubMed

    Aggarwal, Vivek; Singla, Mamta; Yadav, Suman; Yadav, Harish

    2014-05-01

    The purpose of the present study was to comparatively evaluate the effect of flowable composite resin liner and resin modified glass ionomer liner on gingival marginal adaptation of class II cavities restored using three bonding agents (Single Bond 3M ESPE, One Coat Self Etching Bond Coltene Whaledent; Adper Easy Bond Self-Etch Adhesive 3M ESPE) and respective composite resins, under cyclic loading. The marginal adaptation was evaluated in terms of 'continuous margin' (CM) at the gingival margin. Ninety class II cavities with margins extending 1mm below the cement-enamel junction were prepared in extracted mandibular third molars. The samples were divided into three groups: no liner placement; 0.5-1mm thick flowable resin liner placement (Filtek Z350 XT flowable resin) on gingival floor and; light cure glass ionomer (Ketac N100) liner. The groups were further subdivided into three sub-groups on the basis of the bonding agents used. Cavities were restored with composite resins (Z350 for Single Bond and Adper Easy Bond; and Synergy D6 Universal, for One Coat Self Etching Bond) in 2mm increments and the samples were mechanically loaded (60N, 1,50,000 cycles). Marginal adaptation was evaluated using a low vacuum scanning electron microscope. Statistical analysis was done with two way ANOVA with Holm-Sidak's correction for multiple comparisons. Placement of flowable composite liner significantly improved the CM values of Single Bond (78±11%) and One Coat Self Etching Bond (77±9%) compared with no liner group, but the values of CM of Adper Easy Bond were not improved (61±12%). Placement of glass ionomer liner significantly improved the values of CM in all the sub-groups (78±9%, 72±10% and 77±10% for Single Bond, One Coat Self Etching Bond & Adper Easy Bond respectively) compared with no liner group. Placement of liners improved the values of 'continuous margin' in the gingival floor of the proximal cavities restored with composite resins using different bonding agent. Placement of flowable composite liner or glass ionomer liner will improve the marginal integrity of composite restorations using etch-and-rinse and two bottle-two step self etch adhesives. To improve the marginal integrity of a single bottle adhesive, glass ionomer liner should be applied. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Effect of aluminum chloride hemostatic agent on microleakage of class V composite resin restorations bonded with all-in-one adhesive

    PubMed Central

    Mohammadi, Narmin; Bahari, Mahmood; Pournaghi-Azar, Fatemeh; Mozafari, Aysan

    2012-01-01

    Objectives: Since hemostatic agents can induce changes on enamel and dentin surfaces and influence composite resin adhesion, the aim of the present study was to evaluate the effect of the aluminum chloride hemostatic agent on the gingival margin microleakage of class V (Cl V) composite resin restorations bonded with all-in-one adhesive. Study design: Cl V cavities were prepared on the buccal surfaces of 60 sound bovine permanent incisors. Gingival margins of the cavities were placed 1.5 mm apical to the cemento-enamel junction (CEJ). The teeth were randomly divided into two groups of 30. In group 1, the cavities were restored without the application of a hemostatic agent; in group 2, the cavities were restored after the application of the hemostatic agent. In both groups all-in-one adhesive and Z250 composite resin were used to restore the cavities with the incremental technique. After finishing and polishing, the samples underwent a thermocycling procedure, followed by immersion in 2% basic fuschin solution for 24 hours. The samples were sectioned and gingival microleakage was evaluated under a stereomicroscope. The non-parametric Mann-Whitney U test was used to compare microleakage between the two groups. Statistical significance was defined at P<0.05. Results: A statistically significant difference was observed in microleakage between the two groups (P<0.001). Conclusions: Contamination of Cl V composite resin restorations bonded with all-in-one adhesive with aluminum chloride hemostatic agent significantly increases restoration gingival margin microleakage. Key words:All-in-one adhesive resin, composite resin restoration, hemostatic agent, microleakage. PMID:22322497

  9. 12 CFR 563.190 - Bonds for directors, officers, employees, and agents; form of and amount of bonds.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Bonds for directors, officers, employees, and agents; form of and amount of bonds. 563.190 Section 563.190 Banks and Banking OFFICE OF THRIFT... association's potential exposure to risk; provided, such determination shall be subject to approval by the...

  10. Initial and long-term bond strengths of one-step self-etch adhesives with silane coupling agent to enamel-dentin-composite in combined situation.

    PubMed

    Mamanee, Teerapong; Takahashi, Masahiro; Nakajima, Masatoshi; Foxton, Richard M; Tagami, Junji

    2015-01-01

    This study evaluated the effect of adding silane coupling agent on initial and long-term bond strengths of one-step self-etch adhesives to enamel-dentin-composite in combined situation. Cervical cavities were prepared on extracted molars and filled with Clearfil AP-X. After water-storage for one-week, the filled teeth were sectioned in halves to expose enamel, dentin and composite surfaces and then enamel-dentin-composite surface was totally applied with one of adhesive treatments (Clearfil SE One, Clearfil SE One with Clearfil Porcelain Bond Activator, Beautibond Multi, Beautibond Multi with Beautibond Multi PR Plus and Scotchbond Universal). After designed period, micro-shear bond strengths (µSBSs) to each substrate were determined. For each period of water-storage, additive silane treatments significantly increased µSBS to composite (p<0.001). On the other hand, they significantly decreased µSBS to dentin (p<0.001), although did not have adverse effect on µSBS to enamel (p>0.05). Moreover, the stability of µSBS was depended on materials and substrates used.

  11. Effect of Er,Cr:YSGG laser, air abrasion, and silane application on repaired shear bond strength of composites.

    PubMed

    Cho, S D; Rajitrangson, P; Matis, B A; Platt, J A

    2013-01-01

    Aged resin composites have a limited number of carbon-carbon double bonds to adhere to a new layer of resin. Study objectives were to 1) evaluate various surface treatments on repaired shear bond strength between aged and new resin composites and 2) to assess the influence of a silane coupling agent after surface treatments. Eighty disk-shape resin composite specimens were fabricated and thermocycled 5000 times prior to surface treatment. Specimens were randomly assigned to one of the three surface treatment groups (n=20): 1) air abrasion with 50-μm aluminum oxide, 2) tribochemical silica coating (CoJet), or 3) Er,Cr:YSGG (erbium, chromium: yttrium-scandium-gallium-garnet) laser or to a no-treatment control group (n=20). Specimens were etched with 35% phosphoric acid, rinsed, and dried. Each group was divided into two subgroups (n=10): A) no silanization and B) with silanization. The adhesive agent was applied and new resin composite was bonded to each conditioned surface. Shear bond strength was evaluated and data analyzed using two-way analysis of variance (ANOVA). Air abrasion with 50-μm aluminum oxide showed significantly higher repair bond strength than the Er,Cr:YSGG laser and control groups. Air abrasion with 50-μm aluminum oxide was not significantly different from tribochemical silica coating. Tribochemical silica coating had significantly higher repair bond strength than Er,Cr:YSGG laser and the control. Er,Cr:YSGG laser and the control did not have significantly different repair bond strengths. Silanization had no influence on repair bond strength for any of the surface treatment methods. Air abrasion with 50-μm aluminum oxide and tribochemical silica followed by the application of bonding agent provided the highest repair shear bond strength values, suggesting that they might be adequate methods to improve the quality of repairs of resin composites.

  12. Effects of green tea on the shear bond strength of orthodontic brackets after in-office vital bleaching.

    PubMed

    Berger, Sandrine Bittencourt; Guiraldo, Ricardo Danil; Lopes, Murilo Baena; Oltramari-Navarro, Paula Vanessa; Fernandes, Thais Maria; Schwertner, Renata de Castro Alves; Ursi, Wagner José Silva

    2016-01-01

    The application of bleaching agents before placement of resin-bonded fixed appliances significantly, but temporarily, reduces bond strength to tooth structure. Antioxidants have been studied as a means to remove residual oxygen that compromises bonding to bleached enamel. This in vitro study evaluated whether green tea (GT) could restore the shear bond strength between bonded orthodontic brackets and bleached enamel. Six experimental groups were compared: group 1, no bleaching plus bracket bonding (positive control); group 2, bleaching with 35% hydrogen peroxide (HP) plus bracket bonding (negative control); group 3, 35% HP plus 10% sodium ascorbate (SA) plus bracket bonding; group 4, 35% HP plus 10% GT plus bracket bonding; group 5, no bleaching plus 10% SA plus bracket bonding; group 6, no bleaching plus 10% GT plus bracket bonding. Results suggested that GT, like SA, may be beneficial for bracket bonding immediately after bleaching.

  13. Effect of laser and air abrasion pretreatment on the microleakage of a fissure sealant applied with conventional and self etch adhesives.

    PubMed

    Tirali, R E; Celik, C; Arhun, N; Berk, G; Cehreli, S B

    2013-01-01

    The purpose of this study was to investigate the effects of different pretreatment protocols along with different bonding agents on the microleakage of a fissure sealant material. A total of 144 freshly extracted noncarious human third molars were used The teeth were randomly assigned into three groups with respect to the pretreatment protocol employed: A. Air Abrasion B. Er,Cr:YSGG laser C. No pretreatment (Control). In each group specimens were further subjected to one of the following procedures before application of the sealant: 1. %36 Phosphoric acid-etch (AE) (DeTrey Conditioner 36/Denstply, UK) 2.AE+Prime&Bond NT (Dentsply, UK) 3. Clearfil S3 Bond (Kuraray, Japan) 4. Clearfil SE Bond (Kuraray, Japan). All teeth were sealed with the same fissure sealant material (Conseal F/SDI, Australia). Sealed teeth were further subjected to thermocycling, dye penetration test, sectioning and quantitative image analysis. Statistical evaluation of the microleakage data was performed with two way independent ANOVA and multiple comparisons test at p = 0.05. For qualitative evaluation 2 samples from each group were examined under Scanning Electron Microscopy. Microleakage was affected by both the type of pretreatment and the subsequent bonding protocols employed (p < 0.05). Overall, the highest (Mean = 0.36 mm) and lowest (Mean = 0.06 mm) microleakage values were observed in samples with unpretreated enamel sealed by S3+Conseal F and samples with laser pretreated enamel sealed by Acid Etch+Prime&-Bond+Conseal F protocols, respectively (p < 0.05). In the acid-etch group samples pretreated with laser yielded in slightly lower microleakage scores when compared with unpretreated samples and samples pretreated with air abrasion but the statistical significance was not important (p = 0,179). Similarly, when bonding agent is applied following acid-etching procedure, microleakage scores were not affected from pretreatment protocol (p = 0,615) (intact enamel/laser or air-abrasion). For both all-in one and two step self etch adhesive systems, unpretreated samples demonstrated the highest microleakage scores. For the groups in which bonding agent was utilized, pretreatments did not effected microleakage. Both the tested pretreatment protocols and adhesive procedures had different effects on the sealing properties of Conseal F in permanent tooth enamel.

  14. Effects of endodontic post surface treatment, dentin conditioning, and artificial aging on the retention of glass fiber-reinforced composite resin posts.

    PubMed

    Albashaireh, Zakereyya S; Ghazal, Muhamad; Kern, Matthias

    2010-01-01

    Several post surface treatments with or without the application of a bonding agent have been recommended to improve the bond strength of resin cements to posts. A regimen that produces the maximum bond strength of glass fiber-reinforced composite resin posts has not been verified. The purpose of this study was to evaluate the influence of post surface conditioning methods and artificial aging on the retention and microleakage of adhesively luted glass fiber-reinforced composite resin posts. Seventy-two endodontically treated single-rooted teeth were prepared for glass fiber-reinforced composite resin posts. The posts were submitted to 3 different surface treatments (n=24), including no treatment, etching with phosphoric acid, and airborne-particle abrasion. Subgroups of the posts (n=8) were then allocated for 3 different experimental conditions: no artificial aging, no bonding agent; no artificial aging, bonding agent; or artificial aging, bonding agent. The posts were luted with resin cement (Calibra). Post retention was measured in tension at a crosshead speed of 2 mm/min. The posts assigned for microleakage investigation were placed in fuchsin dye for 72 hours. The dislodged posts and the post spaces were examined microscopically to evaluate the mode of failure and explore the microleakage. Data were analyzed by 2-way ANOVA followed by Tukey HSD test (alpha=.05). The mean (SD) retention values for test groups ranged from 269 (63.8) to 349 (52.2) N. The retention values of the airborne-particle-abrasion group were significantly higher than those of the acidic-treatment and no-treatment groups. The application of bonding agent on the post surface produced no significant influence on retention. The mean retention values after artificial aging were significantly higher than without artificial aging. Microscopic evaluation demonstrated that the failure mode was primarily mixed. Treating the surface of the posts with phosphoric acid for 15 seconds before cementation produced no significant improvement in post retention. Airborne-particle abrasion of the surface of the post significantly improved post retention. Copyright 2010 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  15. [The effects of the processing technic on dentinal adhesion].

    PubMed

    Krejci, I; Lutz, F; Perisic, U

    1992-01-01

    In this in vitro study, the effect of application techniques on marginal adaptation of thermal cycled class V restorations restored with an actual dentinal adhesive were quantitated using SEM and dye penetration. Under optimal application conditions, excellent results were generated: though a simple bulk insertion technique was used, no difference was found between enamel and dentin margins before and after thermal loading. On the other hand, contamination of the bonding agent with saliva before composite resin insertion dramatically decreased the percentage of "excellent margin" in dentin and in enamel. Similar effects were found after protecting the bonding agent with an insulating gel. No improvement in marginal adaptation was found after reapplication of the bonding agent. The class V inlay did not show better results than the direct filling technique. However, postcured inlays performed better than their non-postcured counterparts. Without etching enamel with a phosphoric acid gel, but by priming its surface, approximately 80% of "excellent margin" were found in enamel before thermal cycling. This percentage decreased significantly after thermal loading. Restorations totally confined to dentin had slightly lower percentages of "excellent margin" than the mixed class V fillings. The results of this study indicated, that by using dentinal adhesives, little changes and deviations from the correct procedure result in significant alterations in marginal adaptation.

  16. Effect of ceramic thickness and cement shade on the final shade after bonding using the 3D master system: a laboratory study.

    PubMed

    Montero, Javier; Gómez-Polo, Cristina

    2016-06-01

    The final color of a ceramic restoration is influenced by both the ceramic thickness and the cement shade. This study aims to evaluate the color stability according to the 3D Master System of e.max ceramic discs after bonding with different shades of luting agents. A total of 120 e.max.Press 2M1 HT ceramic discs (60 discs of 1-mm thick and 60 discs of 0.5 mm thick) and three different values of Variolink Veneer cement were used (-3, 0, +3) for the cementation process. An Easyshade compact device was used to measure color shade tabs, according to the 3D Master System, on the discs both before and after the cementation protocols. Bivariate and multivariate analyses were carried out with the spss v.21. After bonding with the different luting agents, only 30% remained as 2M1: specifically, 22% of the thinner discs and 37.3% of the thicker discs. In general, the effect of bonding increased the value and the chroma of the shade to a significant extent. Regression analyses revealed that the most significant predictor for all color parameters was cement shade, the thinner disc group bonded with -3 cement being the most unstable subgroup. According to the 3D Master System, the shade of the luting agent was the main predictor of the final color. However, the final color seems to be somewhat unpredictable, at least according to the modulating factors evaluated in the present study.

  17. A new adhesive technique for internal fixation in midfacial surgery

    PubMed Central

    Endres, Kira; Marx, Rudolf; Tinschert, Joachim; Wirtz, Dieter Christian; Stoll, Christian; Riediger, Dieter; Smeets, Ralf

    2008-01-01

    Background The current surgical therapy of midfacial fractures involves internal fixation in which bone fragments are fixed in their anatomical positions with osteosynthesis plates and corresponding screws until bone healing is complete. This often causes new fractures to fragile bones while drilling pilot holes or trying to insert screws. The adhesive fixation of osteosynthesis plates using PMMA bone cement could offer a viable alternative for fixing the plates without screws. In order to achieve the adhesive bonding of bone cement to cortical bone in the viscerocranium, an amphiphilic bone bonding agent was created, analogous to the dentin bonding agents currently on the market. Methods The adhesive bonding strengths were measured using tension tests. For this, metal plates with 2.0 mm diameter screw holes were cemented with PMMA bone cement to cortical bovine bone samples from the femur diaphysis. The bone was conditioned with an amphiphilic bone bonding agent prior to cementing. The samples were stored for 1 to 42 days at 37 degrees C, either moist or completely submerged in an isotonic NaCl-solution, and then subjected to the tension tests. Results Without the bone bonding agent, the bonding strength was close to zero (0.2 MPa). Primary stability with bone bonding agent is considered to be at ca. 8 MPa. Moist storage over 42 days resulted in decreased adhesion forces of ca. 6 MPa. Wet storage resulted in relatively constant bonding strengths of ca. 8 MPa. Conclusion A new amphiphilic bone bonding agent was developed, which builds an optimizied interlayer between the hydrophilic bone surface and the hydrophobic PMMA bone cement and thus leads to adhesive bonding between them. Our in vitro investigations demonstrated the adhesive bonding of PMMA bone cement to cortical bone, which was also stable against hydrolysis. The newly developed adhesive fixing technique could be applied clinically when the fixation of osteosynthesis plates with screws is impossible. With the detected adhesion forces of ca. 6 to 8 MPa, it is assumed that the adhesive fixation system is able to secure bone fragments from the non-load bearing midfacial regions in their orthotopic positions until fracture consolidation is complete. PMID:18489785

  18. 31 CFR 224.3 - When may a surety corporation provide a bond without appointing a process agent?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MANAGEMENT SERVICE FEDERAL PROCESS AGENTS OF SURETY CORPORATIONS § 224.3 When may a surety corporation... appointing a process agent when the State where the bond is filed, the State where the principal resides, and...

  19. Longitudinal evaluation of the microleakage of dentin bonding agents used to seal resected root apices.

    PubMed

    Vignaroli, P A; Anderson, R W; Pashley, D H

    1995-10-01

    A material that bonds to dentin and seals both the root canal and exposed dentinal tubules would be desirable following root resection. The purpose of this study was to measure the sealing ability of four dentin bonding agents on the resected root end. The bonding systems evaluated were Amalgambond (AMB), Scotchbond Multi-Purpose (SMP), Prisma Universal Bond 3 (PUB 3), and All-Bond 2 (AB2). All materials were applied directly to the resected root end without a class I preparation. One-half of the roots in each group were contaminated with human blood before bonding. Microleakage was measured using fluid filtration at various time intervals from 1 to 24 wk. Results indicated that all dentin bonding agents significantly reduced apical microleakage compared with prebonded controls at all time intervals. Blood contamination did not adversely affect the sealing ability of AMB, PUB 3, or SMP. The blood-contaminated AB2 group displayed significantly greater microleakage after 12 and 24 wk than the uncontaminated roots.

  20. Effects of different etching methods and bonding procedures on shear bond strength of orthodontic metal brackets applied to different CAD/CAM ceramic materials.

    PubMed

    Buyuk, S Kutalmış; Kucukekenci, Ahmet Serkan

    2018-03-01

    To investigate the shear bond strength (SBS) of orthodontic metal brackets applied to different types of ceramic surfaces treated with different etching procedures and bonding agents. Monolithic CAD/CAM ceramic specimens (N = 120; n = 40 each group) of feldspathic ceramic Vita Mark II, resin nanoceramic Lava Ultimate, and hybrid ceramic Vita Enamic were fabricated (14 × 12 × 3 mm). Ceramic specimens were separated into four subgroups (n = 10) according to type of surface treatment and bonding onto the ceramic surface. Within each group, four subgroups were prepared by phosphoric acid, hydrofluoric acid, Transbond XT primer, and Clearfill Ceramic primer. Mandibular central incisor metal brackets were bonded with light-cure composite. The SBS data were analyzed using three-way analysis of variance (ANOVA) and Tukey HSD tests. The highest SBS was found in the Vita Enamic group, which is a hybrid ceramic, etched with hydrofluoric acid and applied Transbond XT Adhesive primer (7.28 ± 2.49 MPa). The lowest SBS was found in the Lava Ultimate group, which is a resin nano-ceramic etched with hydrofluoric acid and applied Clearfill ceramic primer (2.20 ± 1.21 MPa). CAD/CAM material types and bonding procedures affected bond strength ( P < .05), but the etching procedure did not ( P > .05). The use of Transbond XT as a primer bonding agent resulted in higher SBS.

  1. Bond Strength of Composite to Dentin using Resin-Modified Glass Ionomers as Bonding Agents

    DTIC Science & Technology

    2016-03-02

    59 MDW/SGVU SUBJECT: Professional Presentation Approval 2 MAR 20 16 l. Your paper, entitl ed Bond Strength of Composite to Dentin using Resin...Modified G lass Ionomers as Bonding Agents presented at Journal of Dental Research with MDWI 41- 108, and has been assigned local fi le #16086. 2...Vandewalle /Civ/SGDTG (59th CSPG/SGVU) DECS I 5-009 PROTOCOL TITLE Bond Strength of Composite to Dentin using Resin-modified Glass lonomers as

  2. Assessment of increased wet wood bonding for epoxy-bonded samples using a melamine-urea-formaldehyde priming agent

    Treesearch

    Jermal G. Chandler; Charles R. Frihart

    2005-01-01

    Is the hydroxymethylated resorcinol (HMR) primer unique or can a melamine- based primer also increase the wet wood strength of epoxy bonds? Although the exact reason for poor durability with some wood adhesives is not known, the HMR priming agent was found to facilitate durable bonds in most cases tested. A model of cell wall stabilization that is believed to be the...

  3. Shear bond strength of a denture base acrylic resin and gingiva-colored indirect composite material to zirconia ceramics.

    PubMed

    Kubochi, Kei; Komine, Futoshi; Fushiki, Ryosuke; Yagawa, Shogo; Mori, Serina; Matsumura, Hideo

    2017-04-01

    To evaluate the shear bond strengths of two gingiva-colored materials (an indirect composite material and a denture base acrylic resin) to zirconia ceramics and determine the effects of surface treatment with various priming agents. A gingiva-colored indirect composite material (CER) or denture base acrylic resin (PAL) was bonded to zirconia disks with unpriming (UP) or one of seven priming agents (n=11 each), namely, Alloy Primer (ALP), Clearfil Photo Bond (CPB), Clearfil Photo Bond with Clearfil Porcelain Bond Activator (CPB+Act), Metal Link (MEL), Meta Fast Bonding Liner (MFB), MR. bond (MRB), and V-Primer (VPR). Shear bond strength was determined before and after 5000 thermocycles. The data were analyzed with the Kruskal-Wallis test and Steel-Dwass test. The mean pre-/post-thermalcycling bond strengths were 1.0-14.1MPa/0.1-12.1MPa for the CER specimen and 0.9-30.2MPa/0.1-11.1MPa for the PAL specimen. For the CER specimen, the ALP, CPB, and CPB+Act groups had significantly higher bond strengths among the eight groups, at both 0 and 5000 thermocycles. For the PAL specimen, shear bond strength was significantly lower after thermalcycling in all groups tested. After 5000 thermocycles, bond strengths were significantly higher in the CPB and CPB+Act groups than in the other groups. For the PAL specimens, bond strengths were significantly lower after thermalcycling in all groups tested. The MDP functional monomer improved bonding of a gingiva-colored indirect composite material and denture base acrylic resin to zirconia ceramics. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  4. TiF4 varnish protects the retention of brackets to enamel after in vitro mild erosive challenge.

    PubMed

    Medeiros, Maria Isabel Dantas de; Carlo, Hugo Lemes; Santos, Rogério Lacerda Dos; Sousa, Frederico Barbosa; Castro, Ricardo Dias de; França, Renata Cristina Sobreira; Carvalho, Fabíola Galbiatti de

    2018-05-14

    The effect of fluoride agents on the retention of orthodontic brackets to enamel under erosive challenge is little investigated. The aim of this study was to evaluate the effect of titanium tetrafluoride (TiF4) and sodium fluoride (NaF) agents on the shear bond strength of brackets to enamel and on the enamel microhardness around brackets under erosive challenge. Brackets were bonded to bovine incisors. Five groups were formed according to fluoride application (n=10): TiF4 varnish, TiF4 solution, NaF varnish, NaF solution and control (without application). The specimens were submitted to erosive challenge (90 s cola drink/2h artificial saliva, 4x per day for 7 days). Solutions were applied before each erosive cycle and varnishes were applied once. Vickers Microhardness (VHN) was obtained before and after all cycles of erosion and the percentage of microhardness loss was calculated. Shear bond strength, adhesive remnant index and polarized light microscopy were conducted after erosion. The data were analyzed by ANOVA, Tukey, Kruskal-Wallis and Mann-Whitney U tests (α=0.05). The %VHN had no statistically significant differences among the experimental groups. However, considering the comparisons of all groups with the control group, TiF4 varnish showed the highest protection from enamel demineralization (effect size of 2.94, while the effect size for the other groups was >2.4). The TiF4 varnish group had significantly higher shear bond strength compared to other groups. There was no difference among groups for adhesive remnant index. Polarized light microscopy showed higher demineralization depth for the control group. Application of NaF and TiF4 agents during mild erosive challenge minimized the enamel mineral loss around brackets, however only the experimental TiF4 varnish was able to prevent the reduction of shear bond strength of brackets to enamel.

  5. How Is the Enamel Affected by Different Orthodontic Bonding Agents and Polishing Techniques?

    PubMed

    Heravi, Farzin; Shafaee, Hooman; Abdollahi, Mojtaba; Rashed, Roozbeh

    2015-03-01

    The objective of this study was to assess the effect of new bonding techniques on enamel surface. Sixty upper central incisors were randomly divided into two equal groups. In the first group, metal brackets were bonded using TransbondXT and, in the second group, the same brackets were bonded with Maxcem Elite. The shear bond strength (SBS) of both agents to enamel was measured and the number and length of enamel cracks before bonding, after debonding and after polishing were compared. The number of visible cracks and the adhesive remnant index (ARI) scores in each group were also measured. There were significantly more enamel cracks in the Transbond XT group after debonding and polishing compared to the Maxcem Elite group. There was no significant difference in the length of enamel cracks between the two groups; but, in each group, a significant increase in the length of enamel cracks was noticeable after debonding. Polishing did not cause any statistically significant change in crack length. The SBS of Maxcem Elite was significantly lower than that of Transbond XT (95% confidence interval). Maxcem Elite offers clinically acceptable bond strength and can thus be used as a routine adhesive for orthodontic purposes since it is less likely to damage the enamel.

  6. The Effect of Primer Application Modifications on the Bond Strength of 4th Generation Adhesive Bonding Agents

    DTIC Science & Technology

    2012-03-30

    dentin. Methods: The coronal enamel of 120 extracted human third molars was removed with a low-speed saw. The teeth were mounted in PVC pipe with dental...LITERATURE REVIEW A. Background 1. Acid Etching in Dentistry. Buonocore demonstrated in 1955 that the preparation of dental enamel with an...The influence of deviations from the manufacturer’s instructions for the use of six adhesive systems on the bond strengths to enamel and dentin

  7. Influence of preheating the bonding agent of a conventional three-step adhesive system and the light activated resin cement on dentin bond strength

    PubMed Central

    Holanda, Daniel Brandão Vilela; França, Fabiana Mantovani Gomes; do Amaral, Flávia Lucisano Botelho; Flório, Flávia Martão; Basting, Roberta Tarkany

    2013-01-01

    Aims: to evaluate the influence of preheating the bonding agent (Scotchbond Multipurpose Adhesive/3M ESPE) and the light-activated resin cement (RelyX Venner/3M ESPE) on dentin microtensile bond strength. Materials and Methods: The exposed flat dentin surface of 40 human third molars were randomly distributed into four groups for cementation (SR Adoro/Ivoclar Vivadent) (n = 10): G1-bond and resin cement, both at room temperature (22°C), G2-bond preheated to 58°C and cement at room temperature (22°C), G3-bond at room temperature (22°C) and the cement preheated to 58°C, G4-bond preheated to 58°C and cement preheated to 58°C. Sticks of dentin/block set measuring approximately 1 mm2 were obtained and used for the microtensile bond strength test. All sticks had their failure mode classified. Statistical analysis used: Factorial analysis of variance was applied, 2 × 2 (bond × cement) (P < 0.05). Results: Preheating the bonding agent (P = 0.8411) or the cement (P = 0.7155), yielded no significant difference. The interaction bond × cement was not significant (P = 0.9389). Conclusions: Preheating the bond and/or the light-activated resin cement did not influence dentin bond strength or fracture failure mode. PMID:24347889

  8. Evaluation of Adhesive Bonding of Lithium Disilicate Ceramic Material with Duel Cured Resin Luting Agents

    PubMed Central

    Gundawar, Sham M.; Radke, Usha M.

    2015-01-01

    Purpose: The purpose of this vitro study was to comparatively evaluate the adhesive bonding of dual cured resin luting agents with lithium disilicate ceramic material. Materials and Methods: Porcelain laminate veneers were prepared with lithium disilicate ceramic material i.e. IPS Empress II( E-Max Press). These laminates were bonded with RelyX ARC, Panavia F 2.0, Variolink II, Duolink and Nexus NX3.The porcelain laminates were etched with 9.6% hydrofluoric acid (Pulpdent Corporation) for one minute, washed for 15 sec with three way syringe and dried for 15 sec with air syringe. The silane (Ultradent) was applied with the help of applicator tip in a single coat and kept undisturbed for one minute. The prepared surfaces of the premolars were treated with 37% phosphoric acid (Prime dent) for 15 sec, thoroughly rinsed and dried as per manufactures instructions. The shear bond test was carried out on all samples with the Universal testing machine (Instron U.S.A.) The scanning electron microscopic study was performed at the fractured interface of representative samples from each group of luting agents. Result: In this study, the highest value of shear bond strength was obtained for NEXUS NX3 and the lowest for VARIOLINK II. Conclusion: The difference in bond strength can be interpreted as the difference in fracture resistance of luting agents, to which shearing load was applied during the shear bond strength test. It is inferred from this study that the composition of the luting agent determines the adhesive characteristics in addition to surface treatment and bonding surface area. PMID:25859514

  9. Effects of recycling and bonding agent application on bond strength of stainless steel orthodontic brackets.

    PubMed

    Bahnasi, Faisal I; Abd-Rahman, Aida Na; Abu-Hassan, Mohame I

    2013-10-01

    1) to assess different methods of recycling orthodontic brackets, 2) to evaluate Shear Bond Strength (SBS) of (a) new, (b) recycled and (c) repeated recycled stainless steel brackets (i) with and (ii) without bracket base primer. A total of 180 extracted human premolar teeth and 180 premolar stainless steel brackets were used. One hundred teeth and 100 brackets were divided into five groups of 20-teeth each. Four methods of recycling orthodontic brackets were used in each of the first four groups while the last one (group V) was used as the control. Groups (I-V) were subjected to shear force within half an hour until the brackets debond. SBS was measured and the method showing the highest SBS was selected. A New group (VI) was recycled twice with the selected method. Six subgroups (1-6) were established; the primer was applied for three sub-groups, and the composite was applied for all brackets. Brackets were subjected to the same shear force, and SBS was measured for all sub-groups. There was a significant difference between the mean SBS of the sandblasting method and the means of SBS of each of the other three methods. There was however, no significant difference between the mean SBS of the new bracket and the mean SBS of recycled bracket using sandblasting. The mean SBS of all sub-groups were more than that recommended by Reynolds (17) in 1975. Brackets with primer showed slightly higher SBS compared to those of brackets without bonding agent. To decrease cost, sandblasted recycled orthodontic brackets can be used as an alternative to new brackets. It is recommended to apply a bonding agent on the bracket base to provide greater bond strength. Key words:Recycled bracket, shear bond strength, sandblasting, stainless steel orthodontic bracket.

  10. Effect of different surface treatments on the push-out bond strength of fiber post to root canal dentin.

    PubMed

    Demiryürek, Ebru Ozsezer; Külünk, Safak; Saraç, Duygu; Yüksel, Gözde; Bulucu, Bilinç

    2009-08-01

    The purpose of this study was to evaluate the effects of different surface treatments on the bond strength of a fiber post to dentin. Sixty extracted human maxillary incisor teeth were manually shaped with K-files using the step-back technique. ISO size 45 files were used as master apical files. Post spaces were prepared and then the root canals were subjected to one of the following 5 surface treatments: irrigation with 5% sodium hypochlorite (NaOCl); treatment with ethanol, ethyl acetate, and acetone-based cleansing agent (Sikko Tim); irrigation with 17% EDTA; etching with 37% orthophosphoric acid for 15 seconds; and etching with 10% citric acid for 15 seconds. Fiber posts were luted using self-etching/self-priming dual polymerized resin cement. From the coronal part of each root, 3 slides of 0.6-mm thickness were obtained. A push-out bond strength test was performed by a universal testing machine at a crosshead speed of 0.5 mm/min. Dentin surfaces were examined under scanning electron microscopy (SEM) after different surface treatments. Data were analyzed with a one-way analysis of variance (ANOVA) and Tukey HSD test. ANOVA revealed that canal surface treatment affected the bond strength (P < .001). The highest bond strength was obtained in the Sikko Tim group. The results also showed that surface treatment methods increased the bond strength to dentin when compared with the control group. Sikko Tim group was the more effective surface treatment agent compared with EDTA, orthophosphoric acid, citric acid, and control groups; however, it could not remove the smear layer and sealer remnants effectively on radicular dentin surfaces. Removal of the smear layer and opening of dentinal tubules are not recommended when a self-etching/self-priming adhesive system is used.

  11. Improvements to hydroxymethylated resorcinol coupling agent for durable bonding to wood

    Treesearch

    Alfred W. Christiansen; E. Arnold Okkonen

    2003-01-01

    Improving the exterior quality bonding of wood to epoxy adhesive resins is important for bonding glass-fiber-reinforced vinyl ester resin laminae to glulam structural members, as well as for repairing glulam members in exterior applications on site. The coupling agent for these applications, hydroxymethylated resorcinol (HMR), was recently improved by using a novolak...

  12. 31 CFR 224.3 - When may a surety corporation provide a bond without appointing a process agent?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... a bond without appointing a process agent? 224.3 Section 224.3 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) FISCAL SERVICE, DEPARTMENT OF THE TREASURY FINANCIAL MANAGEMENT SERVICE FEDERAL PROCESS AGENTS OF SURETY CORPORATIONS § 224.3 When may a surety corporation...

  13. 31 CFR 224.3 - When may a surety corporation provide a bond without appointing a process agent?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... a bond without appointing a process agent? 224.3 Section 224.3 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) FISCAL SERVICE, DEPARTMENT OF THE TREASURY FINANCIAL MANAGEMENT SERVICE FEDERAL PROCESS AGENTS OF SURETY CORPORATIONS § 224.3 When may a surety corporation...

  14. Marginal integrity of low-shrinkage and methacrylate-based composite resins: Effect of three different hemostatic agents

    PubMed Central

    Khoroushi, Maryam; Sahraneshin-Samani, Mahsa

    2016-01-01

    Background Moisture control is very important in restorative procedures in dentistry. Use of hemostatic agents helps control moisture; however, they might result in changes on enamel and dentin surfaces, affecting composite resin bond quality. The aim of this in vitro study was to evaluate the marginal microleakage of two different composite resins with the use of three different hemostatic agents. Material and Methods Standardized Class V cavities were prepared on the buccal and lingual surfaces of 48 premolars with cervical margins 1 mm apical to the cementoenamel junction (CEJ). The samples were randomly divided into 8 groups. In groups 1 to 4, an etch-and-rinse adhesive (Adper Single Bond) was applied as the bonding system, followed by exposure to different hemostatic agent: group 1: no hemostatic agent (control); group 2: ViscoStat; group 3: ViscoStat Clear; and group 4: trichloracetic acid, as hemostatic agents. The cavities were restored with Z-250 composite resin. In group 5 to 8 Silorane System Adhesive (Filtek P90 Adhesive) was applied as a bonding agent, followed by exposure to different hemostatic agents in a manner similar to that in groups 1to 4. The cavities were restored with Filtek P90, a low-shrinkage composite resin. The samples in each group were evaluated for dye penetration under a stereomicroscope at ×36 after 24 hours and a 500-round thermocycling procedure at enamel and dentin margins. Statistical analysis was carried out using Kruskal-Wallis and Mann-Whitney tests (α=0.05). Results Z-250 composite resin exhibited significantly higher dentin microleakage scores compared to Filtek P90 (P = 0.004). Trichloracetic acid increased dentin microleakage with Filtek P90 (P=0.033). Conclusions Under the limitations of this in vitro study, application of hemostatic agents did not affect microleakage of the two tested composite resins except for trichloracetic acid that increased marginal microleakage when used with Filtek P90. Key words:Composite resin, dental leakage, hemostatics, silorane system adhesive. PMID:27034759

  15. Effect of luting agents on the tensile bond strength of glass fiber posts: An in vitro study.

    PubMed

    Aleisa, Khalil; Al-Dwairi, Ziad N; Alghabban, Rawda; Goodacre, Charles J

    2013-09-01

    Fiber posts can fail because of loss of retention; and it is unknown which luting agent provides the highest bond strength. The purpose of this study was to investigate the tensile bond strength of glass fiber posts luted to premolar teeth with 6 resin composite luting agents. Ninety-six single-rooted extracted human mandibular premolars were sectioned 2 mm coronal to the most incisal point of the cementoenamel junction. Root canals were instrumented and obturated with laterally condensed gutta percha and root canal sealer (AH26). Gutta percha was removed from the canals to a depth of 8 mm and diameter post spaces with a 1.5 mm were prepared. The specimens were divided into the following 6 groups according to the luting agent used (n=16): Group V, Variolink II; Group A, RelyX ARC; Group N, Multilink N; Group U, RelyX Unicem; Group P, ParaCore; Group F, MultiCore Flow. Each specimen was secured in a universal testing machine and a separating load was applied at a rate of 0.5 mm/min. The forces required to dislodge the posts were recorded. A 1-way analysis of variance (ANOVA) was applied to the mean retentive strengths of various cement materials (α=.05). Significant differences were recorded among the 6 cement types (P<.001). Three materials provided statistically equivalent mean bond strengths (RelyX Unicem, Paracore, and MultiCore Flow) that were significantly greater than for the other 3 materials. Fiber posts luted with RelyX Unicem, Paracore, and MultiCore Flow demonstrated significantly higher bond strengths. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  16. Evaluation of the Shear Bond Strength of Composite Resin to Wet and Dry Enamel Using Dentin Bonding Agents Containing Various Solvents.

    PubMed

    Usha, Carounanidy; Ramarao, Sathyanarayanan; John, Bindu Meera; Rajesh, Praveen; Swatha, S

    2017-01-01

    Bonding of composite resin to dentin mandates a wet substrate whereas, enamel should be dry. This may not be easily achievable in intracoronal preparations where enamel and dentin are closely placed to each other. Therefore, Dentin Bonding Agents (DBA) are recommended for enamel and dentinal bonding, where enamel is also left moist. A research question was raised if the "enamel-only" preparations will also benefit from wet enamel bonding and contemporary DBA. The aim of this study was to compare the shear bond strengths of composite resin, bonded to dry and wet enamel using fifth generation DBA (etch and rinse system) containing various solvents such as ethanol/water, acetone and ethanol. The crowns of 120 maxillary premolars were split into buccal and lingual halves. They were randomly allocated into four groups of DBA: Group 1-water/ethanol based, Group 2-acetone based, Group 3-ethanol based, Group 4-universal bonding agent (control group). The buccal halves and lingual halves were bonded using the wet bonding and dry bonding technique respectively. After application of the DBAs and composite resin build up, shear bond strength testing was done. Group 1 (ethanol/water based ESPE 3M, Adper Single Bond) showed highest bond strength of (23.15 MPa) in dry enamel. Group 2 (acetone based Denstply, Prime and Bond NT, showed equal bond strength in wet and dry enamel condition (18.87 MPa and 18.02 MPa respectively). Dry enamel bonding and ethanol/water based etch and rinse DBA can be recommended for "enamel-only" tooth preparations.

  17. Effect of contamination and etching on enamel bond strength of new light-cured glass ionomer cements.

    PubMed

    Itoh, T; Matsuo, N; Fukushima, T; Inoue, Y; Oniki, Y; Matsumoto, M; Caputo, A A

    1999-10-01

    The effect of water and saliva contamination on the bond strength of metal orthodontic brackets cemented to etched (10% polyacrylic acid) and unetched human premolar enamel was investigated. Two bonding agents were used: one commercially available product (LC) and one experimental (EX) light-cured glass ionomer. Shear bond strength was measured after aging for 5 minutes, 15 minutes, and 24 hours. The results were compared by ANOVA and Scheffe's tests at p = 0.05. For LC, the bond strength of brackets bonded to etched enamel, with and without contamination, was statistically higher than that of brackets bonded to unetched enamel for all aging times. An exception was the bond strength to unetched enamel with saliva contamination after 24 hours; for EX, this value was statistically higher than that measured on unetched enamel with water contamination. Contamination by saliva did not reduce bond strength to unetched enamel. For both etched and unetched enamel, there was no significant difference between LC and EX after 24 hours for all contamination conditions.

  18. Effect of air-blowing variables on bond strength of all-in-one adhesives to bovine dentin.

    PubMed

    Shinkai, Koichi; Suzuki, Shiro; Katoh, Yoshiroh

    2006-12-01

    This study evaluated the effect of air-blowing variables on the microtensile bond strength (microTBS) of two all-in-one adhesives. A bonding agent was applied to the flat dentin surface of extracted bovine teeth, and the surface left undisturbed for 20 seconds. Gentle or intensive air-blowing was applied for five seconds, and the adhesive photopolymerized for 10 seconds. Resin composite paste was placed and cured after each bonding treatment. Specimens were subjected to microTBS test with a crosshead speed of 1.0 mm/min. Data were statistically analyzed using ANOVA, followed by Bonferroni post hoc test. When Clearfil tri-S Bond was bonded to dentin, the microTBS value of specimens applied with intensive air-blowing was significantly higher than that applied with gentle air-blowing (p<0.01). On the other hand, with Fluoro Bond Shake One, the microTBS value of specimens applied with intensive air-blowing was significantly lower than that applied with gentle air-blowing (p<0.01).

  19. A novel biomimetic orthodontic bonding agent helps prevent white spot lesions adjacent to brackets.

    PubMed

    Manfred, Lauren; Covell, David A; Crowe, Jennifer J; Tufekci, Eser; Mitchell, John C

    2013-01-01

    To compare changes in enamel microhardness adjacent to orthodontic brackets after using bonding agents containing various compositions of bioactive glass compared to a traditional resin adhesive following a simulated caries challenge. Extracted human third molars (n  =  10 per group) had orthodontic brackets bonded using one of four novel bioactive glass (BAG)-containing orthodontic bonding agents (BAG-Bonds) or commercially available Transbond-XT. The four new adhesives contained BAG in varying percentages incorporated into a traditional resin monomer mixture. Teeth were cycled through low-pH demineralizing and physiologic-pH remineralizing solutions once each day over 14 days. Microhardness was measured on longitudinal sections of the teeth 100, 200, and 300 µm from the bracket edge and beneath the brackets, at depths of 25 to 200 µm from the enamel surface. Normalized hardness values were compared using three-way analysis of variance. Significantly less reduction in enamel microhardness was found with the experimental adhesives at depths of 25 and 50 µm at all distances from the bracket edge. In all groups, there were no significant changes in enamel microhardness past 125-µm depth. Results varied with the different BAG-Bonds, with 81BAG-Bond showing the smallest decrease in enamel microhardness. The BAG-Bonds tested in this study showed a reduction in the amount of superficial enamel softening surrounding orthodontic brackets compared to a traditional bonding agent. The results indicate that clinically, BAG-Bonds may aid in maintaining enamel surface hardness, therefore helping prevent white spot lesions adjacent to orthodontic brackets.

  20. Antibacterial effect of dental adhesive containing dimethylaminododecyl methacrylate on the development of Streptococcus mutans biofilm.

    PubMed

    Wang, Suping; Zhang, Keke; Zhou, Xuedong; Xu, Ning; Xu, Hockin H K; Weir, Michael D; Ge, Yang; Wang, Shida; Li, Mingyun; Li, Yuqing; Xu, Xin; Cheng, Lei

    2014-07-18

    Antibacterial bonding agents and composites containing dimethylaminododecyl methacrylate (DMADDM) have been recently developed. The objectives of this study were to investigate the antibacterial effect of novel adhesives containing different mass fractions of DMADDM on Streptococcus mutans (S. mutans) biofilm at different developmental stages. Different mass fractions of DMADDM were incorporated into adhesives and S. mutans biofilm at different developmetal stages were analyzed by MTT assays, lactic acid measurement, confocal laser scanning microscopy and scanning electron microscopy observations. Exopolysaccharides (EPS) staining was used to analyze the inhibitory effect of DMADDM on the biofilm extracellular matrix. Dentin microtensile strengths were also measured. Cured adhesives containing DMADDM could greatly reduce metabolic activity and lactic acid production during the development of S. mutans biofilms (p < 0.05). In earlier stages of biofilm development, there were no significant differences of inhibitory effects between the 2.5% DMADDM and 5% DMADDM group. However, after 72 h, the anti-biofilm effects of adhesives containing 5% DMADDM were significantly stronger than any other group. Incorporation of DMADDM into adhesive did not adversely affect dentin bond strength. In conclusion, adhesives containing DMADDM inhibited the growth, lactic acid production and EPS metabolism of S. mutans biofilm at different stages, with no adverse effect on its dentin adhesive bond strength. The bonding agents have the potential to control dental biofilms and combat tooth decay, and DMADDM is promising for use in a wide range of dental adhesive systems and restoratives.

  1. Bond Strength of Resin Cements to Dentin Using New Universal Bonding Agents

    DTIC Science & Technology

    2015-06-30

    34Bond Strength of Resin Cements to Dentin Using New Universal Bonding Agents" Materials Repaired with Composite Resin" 7. Intended publication...DoD- or US Gov’t-level policy, communications systems or weapons issues review"). *Note: It is DoD policy that clearance of information or material...University-, DoD- or US Gov’t-level policy, communications systems or weapons issues review"). *Note: It is DoD po/icy that clearance of

  2. Effect of an adhesive resin luting agent on the dowel-head retention of three different core materials.

    PubMed

    Aksoy, Gokhan; Cotert, H Serdar; Korkut, Levent

    2005-05-01

    A dowel-and-core restoration may fail due to failure at either the dowel-tooth or dowel head-core material interface. Long-term clinical success of a dowel-and-core restoration depends on retention of both the dowel to the tooth and the dowel head to the core material. Thus, strengthening of the dowel head-core interface is important. This study evaluated the retention between a prefabricated dowel and 3 different core materials with or without a dual-polymerized adhesive resin luting agent. Sixty prefabricated dowels (Gold Plated Anchorage Post) were divided into 3 groups (n=20) consisting of 1 of 3 core materials, amalgam (Standalloy F), light-polymerized resin composite (Clearfil Ray), or glass ionomer (Chelon-Silver). Each core group was divided into 2 subgroups (n=10), and a dual-polymerized adhesive resin luting agent (Panavia F) was applied to the dowel heads of 1 of these subgroups before application of the core material. The manufacturing procedure was standardized by using a plastic index (4.5-mm internal diameter and 5-mm height) and a custom-made dowel holder, which held the dowel head. Prepared specimens were stored in water at room temperature for 3 months and then loaded to fracture in a universal testing machine with a crosshead speed of 0.05 mm/min until failure. Bond strengths were recorded (MPa). Data were analyzed with 2-way analysis of variance (ANOVA) in a 2 x 3 factorial randomized design (alpha=.05). Afterward, core material differences were computed with 1-way ANOVA for both of the bonded and nonbonded groups. Post hoc multiple comparisons were made with the Dunnett C multiple range test. Dowel-head retention values (MPa) of the tested core materials (mean +/- SD) from the highest to the lowest were as follows: bonded amalgam core, 296.1 +/- 108; bonded composite core, 284.3 +/- 38.3; nonbonded composite core, 177.0 +/- 53.7; nonbonded amalgam core, 128.5 +/- 35.0; bonded glass-ionomer core (GIC), 128.0 +/- 24.5; nonbonded GIC, 61.8 +/- 13.3. Two-way ANOVA revealed significant differences between the core material groups and between the bonded and nonbonded groups (P <.001). The interaction between the core material and bond variables was also significant (P =.018). One-way ANOVA revealed statistically significant differences between the bonded (P <.001) and also between the nonbonded core material groups (P <.001). Post hoc multiple comparisons showed that the dowel-head retention of the GIC was significantly weaker than the post-head retention for amalgam and resin composite, whether bonded or not. Within the limitations of this study, the adhesive resin luting agent tested appeared to have a significant strengthening effect on the dowel-head retention of the core materials.

  3. Evaluation of the Shear Bond Strength of Composite Resin to Wet and Dry Enamel Using Dentin Bonding Agents Containing Various Solvents

    PubMed Central

    Ramarao, Sathyanarayanan; John, Bindu Meera; Rajesh, Praveen; Swatha, S

    2017-01-01

    Introduction Bonding of composite resin to dentin mandates a wet substrate whereas, enamel should be dry. This may not be easily achievable in intracoronal preparations where enamel and dentin are closely placed to each other. Therefore, Dentin Bonding Agents (DBA) are recommended for enamel and dentinal bonding, where enamel is also left moist. A research question was raised if the “enamel-only” preparations will also benefit from wet enamel bonding and contemporary DBA. Aim The aim of this study was to compare the shear bond strengths of composite resin, bonded to dry and wet enamel using fifth generation DBA (etch and rinse system) containing various solvents such as ethanol/water, acetone and ethanol. Materials and Methods The crowns of 120 maxillary premolars were split into buccal and lingual halves. They were randomly allocated into four groups of DBA: Group 1-water/ethanol based, Group 2-acetone based, Group 3-ethanol based, Group 4-universal bonding agent (control group). The buccal halves and lingual halves were bonded using the wet bonding and dry bonding technique respectively. After application of the DBAs and composite resin build up, shear bond strength testing was done. Results Group 1 (ethanol/water based ESPE 3M, Adper Single Bond) showed highest bond strength of (23.15 MPa) in dry enamel. Group 2 (acetone based Denstply, Prime and Bond NT, showed equal bond strength in wet and dry enamel condition (18.87 MPa and 18.02 MPa respectively). Conclusion Dry enamel bonding and ethanol/water based etch and rinse DBA can be recommended for “enamel-only” tooth preparations. PMID:28274042

  4. Effect of Two-minute Application of 35% Sodium Ascorbate on Composite Bond Strength following Bleaching.

    PubMed

    Ismail, Eman H; Kilinc, Evren; Hardigan, Patrick C; Rothrock, James K; Thompson, Jeffrey Y; Garcia-Godoy, Cristina

    2017-10-01

    The aim of this study is to assess the effect of 35% sodium ascorbate on microtensile bond strength of dentin immediately after bleaching with 35% hydrogen peroxide. A total of 25 sound human 3 rd molars were collected. Teeth were randomly divided into five groups for different treatments: Group I [bleaching + immediate bonding (i.e., restoration)], group II (bleaching + delayed bonding), group III (bleaching + sodium ascorbate + immediate bonding), group IV (bleaching + sodium ascorbate + delayed bonding), and group V (bonding only). After bleaching, but before bonding, groups II and IV were stored for 1 week in deionized water at 37°C. All samples were bonded using OptiBoned FL (Kerr) and Filtek Supreme (3M/ESPE). Teeth were sectioned into 1 × 1 mm 2 bars, and microtensile bond strength was tested with a universal testing machine (Instron 8841) at a cross-head speed of 0.5 mm/minute. Microtensile bond strength differed significantly across the five groups, with a significant reduction in microtensile bond strength observed for samples in group I relative to samples in any of the other treatment groups (p < 0.05). The application of a high concentration of sodium ascorbate for a shorter time reversed the negative effect of 35% hydrogen peroxide bleaching on composite bonding strength to dentin. The negative effects of bleaching on composite bonding can be neutralized by the application of the reversing agent sodium ascorbate thus, increasing the efficiency of clinic chair time. This is clinically relevant for those patients requiring restorative treatment immediately after in-office bleaching.

  5. Effect of polynucleotides on the dimerization of glycine. [abiological protein synthesis in primitive earth conditions

    NASA Technical Reports Server (NTRS)

    Mizutani, H.; Ponnamperuma, C.

    1981-01-01

    Results from experiments to determine the effect of polynucleotides on abiological formation of peptide bonds are reported. The reaction between glycine molecules in an aqueous phase in the presence of a condensing agent was chosen as a model, with polyphosphates being selected as the condensing agent for biologically relevant peptide formation. Four types of polynucleotides were used: polygluanic acid (G), polyuridic acid (U), polyadenylic acid (A), and polycytidylic acid (C); the effects of small anions, acetate, chloride, and phosphate, were also studied. Procedures are given, including concentrations, pH, and incubation time, and the type of amino acid analyzer. The diglycine yields were, in order of most to least: G, C, A, U, and are diagrammed as a function of time; rate of formation followed the same order of magnitude as the final yields. Anion presence displayed no discernible effect. The results are taken to indicate that polynucleotides do have an effect on the formation of peptide bonds, an effect significant in the understanding of chemical evolution.

  6. Effects of antibacterial primers with quaternary ammonium and nano-silver on S. mutans impregnated in human dentin blocks

    PubMed Central

    Cheng, Lei; Zhang, Ke; Weir, Michael D.; Liu, Huaibing; Zhou, Xuedong; Xu, Hockin H. K.

    2013-01-01

    Objectives Recent studies developed antibacterial bonding agents and composites containing a quaternary ammonium dimethacrylate (QADM) and nanoparticles of silver (NAg). The objectives of this study were to investigate: (1) the effect of antibacterial primers containing QADM and NAg on the inhibition of Streptococcus mutans (S. mutans) impregnated into dentin blocks for the first time, and (2) the effect of QADM or NAg alone or in combination, and the effect of NAg mass fraction, on S. mutans viability in dentin. Methods Scotchbond Multi-Purpose (SBMP) bonding agent was used. QADM and NAg were incorporated into SBMP primer. Six primers were tested: SBMP primer control, control + 10% QADM (mass %), control + 0.05% NAg, control + 10% QADM + 0.05% NAg, control + 0.1% NAg, and control + 10% QADM + 0.1% NAg. S. mutans were impregnated into dentin blocks, then a primer was applied. The viable colony-forming units (CFU) were then measured by harvesting the bacteria in dentin using a sonication method. Results Control + 10% QADM + 0.1% NAg had bacteria inhibition zone 8-fold that of control (p < 0.05). The sonication method successfully harvested bacteria from dentin blocks. Control + 10% QADM + 0.1% NAg inhibited S. mutans in dentin blocks, reducing the viable CFU in dentin by three orders of magnitude, compared to control dentin without primer. Using QADM+NAg was more effective than QADM alone. Higher NAg content increased the potency. Dentin shear bond strength was similar for all groups (p > 0.1). Significance Antibacterial primer with QADM and NAg were shown to inhibit the S. mutans impregnated into dentin blocks for the first time. Bonding agent containing QADM and NAg is promising to eradicate bacteria in tooth cavity and inhibit caries. The QADM and NAg may have applicability to other adhesives, cements, sealants and composites. PMID:23422420

  7. Production of an ion-exchange membrane-catalytic electrode bonded material for electrolytic cells

    NASA Technical Reports Server (NTRS)

    Takenaka, H.; Torikai, E.

    1986-01-01

    A good bond is achieved by placing a metal salt in solution on one side of a membrane and a reducing agent on the other side so that the reducing agent penetrates the membrane and reduces the metal. Thus, a solution containing Pt, Rh, etc., is placed on one side of the membrane and a reducing agent such as NaBH, is placed on the other side. The bonded metal layer obtained is superior in catalytic activity and is suitable as an electrode in a cell such as for solid polymer electrolyte water electrolysis.

  8. Surface modification of self-healing poly(urea-formaldehyde) microcapsules using silane-coupling agent

    NASA Astrophysics Data System (ADS)

    Li, Haiyan; Wang, Rongguo; Hu, Honglin; Liu, Wenbo

    2008-12-01

    Poly(urea-formaldehyde) (PUF) microcapsules, which are used as self-healing component of fibre reinforced resin matrix composites, were prepared by in situ polymerization method. The surface of PUF microcapsules was modified by using 3-aminopropyltriethoxy silane-coupling agent (KH550), and the interfacial interactions between PUF microcapsules and KH550 was also studied. Fourier transform infrared spectra (FT-IR) and X-ray photoelectron spectra (XPS) analyses showed that the silane-coupling agent molecular binds strongly to PUF microcapsules surface. Chemical bond (Si-O-C) was formed by the reaction between Si-OH and the hydroxyl group of PUF microcapsules, also there have chemical adsorption effect in the interface simultaneously because of the existence of hydrogen bond between Si-OH and the hydroxyl group of PUF microcapsules. Scanning electronic microscopy (SEM) observation showed that a thin layer was formed on the surface of modified PUF microcapsules. Additionally, fractured surface were observed under SEM to investigate the interfacial adhesion effect between PUF microcapsules and epoxy matrix. The result indicted that the silane-coupling agent play an important role in improving the interfacial performance between microcapsules and resin matrix.

  9. Dual antibacterial agents of nano-silver and 12-methacryloyloxydodecylpyridinium bromide in dental adhesive to inhibit caries

    PubMed Central

    Zhang, Ke; Li, Fang; Imazato, Satoshi; Cheng, Lei; Liu, Huaibing; Arola, Dwayne D.; Bai, Yuxing; Xu, Hockin H. K.

    2013-01-01

    Dental resins containing 12-methacryloyloxydodecylpyridinium bromide (MDPB) showed potent antibacterial functions. Recent studies developed antibacterial resins containing nanoparticles of silver (NAg). The objectives of this study were to develop an adhesive containing dual agents of MDPB and NAg for the first time, and to investigate the combined effects of antibacterial adhesive and primer on biofilm viability, metabolic activity, lactic acid, dentin bond strength, and fibroblast cytotoxicity. MDPB and NAg were incorporated into Scotchbond Multi-Purpose (SBMP) adhesive “A” and primer “P”. Five systems were tested: SBMP adhesive A; A+MDPB; A+NAg; A+MDPB+NAg; P+MDPB+NAg together with A+MDPB+NAg. Dental plaque microcosm biofilms were cultured using mixed saliva from ten donors. Metabolic activity, colony-forming units, and lactic acid production of biofilms were investigated. Human fibroblast cytotoxicity of bonding agents was determined. MDPB+NAg in adhesive/primer did not compromise dentin bond strength (p>0.1). MDPB or NAg alone in adhesive substantially reduced the biofilm activities. Dual agents MDPB+NAg in adhesive greatly reduced the biofilm viability compared to each agent alone (p<0.05). The greatest inhibition of biofilms was achieved when both adhesive and primer contained MDPB+NAg. Fibroblast viability of groups with dual antibacterial agents was similar to control using culture medium without resin eluents (p>0.1). In conclusion, this study showed for the first time that the antibacterial potency of MDPB adhesive could be substantially enhanced via NAg. Adding MDPB+NAg into both primer and adhesive achieved the strongest anti-biofilm efficacy. The dual agent (MDPB+NAg) method could have wide applicability to other adhesives, sealants, cements and composites to inhibit biofilms and caries. PMID:23529901

  10. Technique sensitivity in bonding to enamel and dentin.

    PubMed

    Powers, John M; Farah, John W

    2010-09-01

    Bonding to enamel and dentin has been among the most significant advancements in dentistry in the last five decades; extensive research and product development have resulted in more adhesive options. However, bonding to enamel and dentin still proves to be challenging, and selecting the correct product for a clinical application can be confusing. An incorrect choice can lead to insufficient bond strength. Day-to-day clinical factors, such as the presence of enamel, superficial dentin, or carious dentin, as well as contamination by saliva, blood, or bleaching agents, can cause bonding agents to be technique sensitive-they may fail prematurely if steps are not followed meticulously. This article attempts to simplify the selection process for enamel and dentinal bonding and summarize clinically relevant bonding information that will help produce consistently successful results.

  11. In vitro shear bond strength of cementing agents to fixed prosthodontic restorative materials.

    PubMed

    Piwowarczyk, Andree; Lauer, Hans-Christoph; Sorensen, John A

    2004-09-01

    Durable bonding to fixed prosthodontic restorations is desirable; however, little information is available on the strength of the bond between different cements and fixed prosthodontic restorative materials. This study determined the shear-bond strength of cementing agents to high-gold-content alloy castings and different dental ceramics: high-strength aluminum oxide (Procera AllCeram), leucite-reinforced (IPS Empress), and lithium disilicate glass-ceramic (IPS Empress 2). Prepolymerized resin composite cylinders (5.5 mm internal diameter, n=20) were bonded to the pretreated surfaces of prosthodontic materials. High-gold-content alloy and high-strength aluminum oxide surfaces were airborne-particle-abraded, and pressable ceramics were hydrofluoric acid-etched and silanized prior to cementing. The cementing agents tested were a zinc-phosphate cement (Fleck's zinc cement), glass ionomer cements (Fuji I, Ketac-Cem), resin-modified glass ionomer cements (Fuji Plus, Fuji Cem, RelyX Luting), resin cements (RelyX ARC, Panavia F, Variolink II, Compolute), and a self-adhesive universal resin cement (RelyX Unicem). Half the specimens (n=10) were tested after 30 minutes; the other half (n=10) were stored in distilled water at 37 degrees C for 14 days and then thermal cycled 1000 times between 5 degrees C and 55 degrees C prior to testing. Shear-bond strength tests were performed using a universal testing machine at a constant crosshead speed of 0.5 mm/min. Statistical analysis was performed by multifactorial analysis of variance taking interactions between effects into account. For multiple paired comparisons, the Tukey method was used (alpha=.05). In a 3-way ANOVA model, the main factors substrate, cement, time, and all corresponding interactions were statistically significant (all P <.0001). In subsequent separate 1-way or 2-way ANOVA models for each substrate type, significant differences between cement types and polymerizing modes were found (all P <.001). None of the cement types provided the highest bonding values with all substrate types. After 14 days of water storage followed by thermal cycling, only the self-adhesive universal resin cement (RelyX Unicem) and 2 of the resin cements (Panavia F and Compolute) exhibited strong bond strengths to specific prosthodontic materials. In contrast, zinc-phosphate, glass ionomer, and resin-modified glass ionomer cements showed the lowest values of all tested cementing agents after 14 days of water storage followed by thermal cycling.

  12. DISSOLUTION METHOD OF REMOVING BONDING AGENTS

    DOEpatents

    Hyman, H.H.

    1960-04-19

    A method is given for removing residual aluminumsilicon bonding agents from uranium slugs after the removal of aluminum coatings. To accomplish this the slug is immersed in an aqueous solution about 0.75 N in hydrofluoric acid and about 7 N in nitric acid.

  13. Bonding agents for portland cement concrete and mortar.

    DOT National Transportation Integrated Search

    1983-01-01

    Structural repairs of bridge piers and abutements require patching concrete : used depends upon the depth of the patch to be made. In some instances, the : use of a liquid bonding agent has been specified in the mixes as well as in a : grout scrubbed...

  14. Novel agents that downregulate EGFR, HER2, and HER3 in parallel

    PubMed Central

    Ferreira, Renan Barroso; Law, Mary Elizabeth; Jahn, Stephan Christopher; Davis, Bradley John; Heldermon, Coy Don; Reinhard, Mary; Castellano, Ronald Keith; Law, Brian Keith

    2015-01-01

    EGFR, HER2, and HER3 contribute to the initiation and progression of human cancers, and are therapeutic targets for monoclonal antibodies and tyrosine kinase inhibitors. An important source of resistance to these agents arises from functional redundancy among EGFR, HER2, and HER3. EGFR family members contain conserved extracellular structures that are stabilized by disulfide bonds. Compounds that disrupt extracellular disulfide bonds could inactivate EGFR, HER2, and HER3 in unison. Here we describe the identification of compounds that kill breast cancer cells that overexpress EGFR or HER2. Cell death parallels downregulation of EGFR, HER2, and HER3. These compounds disrupt disulfide bonds and are termed Disulfide Bond Disrupting Agents (DDAs). DDA RBF3 exhibits anticancer efficacy in vivo at 40 mg/kg without evidence of toxicity. DDAs may complement existing EGFR-, HER2-, and HER3-targeted agents that function through alternate mechanisms of action, and combination regimens with these existing drugs may overcome therapeutic resistance. PMID:25865227

  15. Evaluating the effect of antioxidant agents on shear bond strength of tooth-colored restorative materials after bleaching: A systematic review.

    PubMed

    Feiz, Atiyeh; Mosleh, Hamid; Nazeri, Rahman

    2017-07-01

    The main objective of the present study was to make a systematic review of how antioxidant agents affect shear bond strength of tooth-colored restorative materials after bleaching. Electronic search was used to extract the related articles on the targeted key words such as "antioxidant", "dental bleaching" and "shear bond strength" (SBS) from MeSH, PubMed, Medline, and Cochrane electronic data bases. These articles were all published before 2016. Inclusion criteria were restricted to English journal articles concerning humans, clinical trials, cohorts and case-control studies. Therefore, systematic reviews, case reports, letters to editors, editorials and congress abstracts were excluded from the analysis. Most studies conducted on the issue have produced experimental data which are rather controversial, and there is no general agreement about the reported outcomes. As an illustration, most studies have not considered the relationship between the type of antioxidant materials and the shear bond strength. In point of fact, some researchers (e.g Kimyai et al.) have concluded that antioxidants like gel and solution leave similar effects on SBS. Alternatively, certain studies (e.g., Kunt et al.) have produced inconclusive data regarding the impact of one week postponement of the restorative process on SBS after the bleaching process. The results of the studies evaluating the role of various adhesive systems used after bleaching have demonstrated that regardless of the type of adhesive system used, applying antioxidants before restorative procedures can adversely affect the bleaching agents utilized for SBS. It has also been suggested that the type of the adhesive system used might be correlated with the magnitude of SBS. The results obtained from the systematic review of the articles under investigation reflected that the use of antioxidant agents, regardless of their type, form, concentration and duration of application, can improve SBS after bleaching. Copyright © 2017. Published by Elsevier Ltd.

  16. Differences in Organizational Structure of Insulin Receptor on Rat Adipocyte and Liver Plasma Membranes: Role of Disulfide Bonds

    NASA Astrophysics Data System (ADS)

    Schweitzer, John B.; Smith, Robert M.; Jarett, Leonard

    1980-08-01

    Binding of 125I-labeled insulin to rat liver and adipocyte plasma membranes has been investigated after treatment of the membranes with agents that modify disulfide bonds or sulfhydryl groups. Dithiothreitol, a disulfide-reducing agent, produced a bimodal response in adipocyte plasma membranes with dose-dependent increases in binding occurring over the range of 0-1 mM dithiothreitol; 5 mM dithiothreitol produced decreased binding. Insulin binding reached its maximal increase at 1 mM and was 3 times control values. Scatchard analysis of the 1 mM dithiothreitol effect revealed a straight line plot indicative of one class of sites with a Ka of 1.0× 108 M-1 which is intermediate between the two Kas obtained from the curvilinear Scatchard plot of control membranes. There was a 20-fold increase in the number of intermediate-affinity receptors compared to high-affinity receptors. The increased 125I-labeled insulin binding after dithiothreitol treatment was reversed by oxidized glutathione in a dose-dependent manner. Interposition of treatment with N-ethylmaleimide, an alkylating agent, prevented oxidized glutathione from reversing the dithiothreitol effect. Reduced glutathione produced the same effect as dithiothreitol. Liver plasma membranes treated with up to 1 mM dithiothreitol exhibited a maximum increase in insulin binding of 20% compared to control. Dithiothreitol at 5 mM decreased insulin binding below that of control membranes. The results indicate that the dithiothreitol effect on insulin binding to adipocyte plasma membranes is due to disruption of disulfide bonds, and that the structural organization of the insulin receptor on the plasma membranes is different for liver and for adipose tissue. The data imply that the insulin receptors on the plasma membrane of adipocytes possess at least two functionally distinct subclasses of disulfide bond but liver insulin receptors do not.

  17. Effects of recycling and bonding agent application on bond strength of stainless steel orthodontic brackets

    PubMed Central

    Bahnasi, Faisal I.; Abu-Hassan, Mohame I.

    2013-01-01

    Objectives: 1) to assess different methods of recycling orthodontic brackets, 2) to evaluate Shear Bond Strength (SBS) of (a) new, (b) recycled and (c) repeated recycled stainless steel brackets (i) with and (ii) without bracket base primer. Study Design: A total of 180 extracted human premolar teeth and 180 premolar stainless steel brackets were used. One hundred teeth and 100 brackets were divided into five groups of 20-teeth each. Four methods of recycling orthodontic brackets were used in each of the first four groups while the last one (group V) was used as the control. Groups (I-V) were subjected to shear force within half an hour until the brackets debond. SBS was measured and the method showing the highest SBS was selected. A New group (VI) was recycled twice with the selected method. Six subgroups (1-6) were established; the primer was applied for three sub-groups, and the composite was applied for all brackets. Brackets were subjected to the same shear force, and SBS was measured for all sub-groups. Results: There was a significant difference between the mean SBS of the sandblasting method and the means of SBS of each of the other three methods. There was however, no significant difference between the mean SBS of the new bracket and the mean SBS of recycled bracket using sandblasting. The mean SBS of all sub-groups were more than that recommended by Reynolds (17) in 1975. Brackets with primer showed slightly higher SBS compared to those of brackets without bonding agent. Conclusion: To decrease cost, sandblasted recycled orthodontic brackets can be used as an alternative to new brackets. It is recommended to apply a bonding agent on the bracket base to provide greater bond strength. Key words:Recycled bracket, shear bond strength, sandblasting, stainless steel orthodontic bracket. PMID:24455081

  18. Detection of Alkylating Agents using Electrical and Mechanical Means

    NASA Astrophysics Data System (ADS)

    Gerchikov, Yulia; Borzin, Elena; Gannot, Yair; Shemesh, Ariel; Meltzman, Shai; Hertzog-Ronen, Carmit; Tal, Shay; Stolyarova, Sara; Nemirovsky, Yael; Tessler, Nir; Eichen, Yoav

    2011-08-01

    Alkylating agents are reactive molecules having at least one polar bond between a carbon atom and a good leaving group. These often simple molecules are frequently used in organic synthesis, as sterilizing agents in agriculture and even as anticancer agents in medicine. Unfortunately, for over a century, some of the highly reactive alkylating agents are also being used as blister chemical warfare agents. Being relatively simple to make, the risk is that these will be applied by terrorists as poor people warfare agents. The detection and identification of such alkylating agents is not a simple task because of their high reactivity and simple structure of the reactive site. Here we report on new approaches to the detection and identification of such alkylating agents using electrical (organic field effect transistors) and mechanical (microcantilevers) means.

  19. Tensile Bond Strength of Self Adhesive Resin Cement After Various Surface Treatment of Enamel.

    PubMed

    Sekhri, Sahil; Mittal, Sanjeev; Garg, Sandeep

    2016-01-01

    In self adhesive resin cements adhesion is achieved to dental surface without surface pre-treatment, and requires only single step application. This makes the luting procedure less technique-sensitive and decreases postoperative sensitivity. The purpose of this study was to evaluate bond strength of self adhesive resin after surface treatment of enamel for bonding base metal alloy. On the labial surface of 64 central incisor rectangular base metal block of dimension 6 mm length, 5mm width and 1 mm height was cemented with RelyX U200 and Maxcem Elite self adhesive cements with and without surface treatment of enamel. Surface treatment of enamel was application of etchant, one step bonding agent and both. Tensile bond strength of specimen was measured with universal testing machine at a cross head speed of 1mm/min. Least tensile bond strength (MPa) was in control group i.e. 1.33 (0.32) & 1.59 (0.299), Highest bond strength observed when enamel treated with both etchant and bonding agent i.e. 2.72 (0.43) & 2.97 (0.19) for Relyx U200 and Elite cement. When alone etchant and bonding agent were applied alone bond strength is 2.19 (0.18) & 2.24 (0.47) for Relyx U200, and 2.38 (0.27) 2.49 (0.16) for Max-cem elite. Mean bond strength was higher in case of Max-cem Elite as compared to RelyX U200 resin cement, although differences were non-significant (p > 0.05). Surface treatment of enamel increases the bond strength of self adhesive resin cement.

  20. EFFECT OF AN ADDITIONAL HYDROPHILIC VERSUS HYDROPHOBIC COAT ON THE QUALITY OF DENTINAL SEALING PROVIDED BY TWO-STEP ETCH-AND-RINSE ADHESIVES

    PubMed Central

    Silva, Safira Marques de Andrade; Carrilho, Marcela Rocha de Oliveira; Marquezini, Luiz; Garcia, Fernanda Cristina Pimentel; Manso, Adriana Pigozzo; Alves, Marcelo Corrêa; de Carvalho, Ricardo Marins

    2009-01-01

    Objective: To test the hypothesis that the quality of the dentinal sealing provided by two-step etch-and-rinse adhesives cannot be altered by the addition of an extra layer of the respective adhesive or the application of a more hydrophobic, non-solvated resin. Material and Methods: full-crown preparations were acid-etched with phosphoric acid for 15 s and bonded with Adper Single Bond (3M ESPE), Excite DSC (Ivoclar/Vivadent) or Prime & Bond NT (Dentsply). The adhesives were used according to the manufacturers' instructions (control groups) or after application to dentin they were a) covered with an extra coat of each respective system or b) coated with a non-solvated bonding agent (Adper Scotchbond Multi-Purpose Adhesive, 3M ESPE). Fluid flow rate was measured before and after dentin surfaces were acid-etched and bonded with adhesives. Results: None of the adhesives or experimental treatments was capable to block completely the fluid transudation across the treated dentin. Application of an extra coat of the adhesive did not reduce the fluid flow rate of adhesive-bonded dentin (p>0.05). Conversely, the application of a more hydrophobic non-solvated resin resulted in significant reductions in the fluid flow rate (p<0.05) for all tested adhesives. Conclusions: The quality of the dentinal sealing provided by etch-and-rinse adhesives can be significantly improved by the application of a more hydrophobic, non-solvated bonding agent. PMID:19466248

  1. 3-hydroxy-2(1H)-pyridinone chelating agents

    DOEpatents

    Raymond, K.; Xu, J.

    1999-04-06

    Disclosed is a series of improved chelating agents and the chelates formed from these agents, which are highly effective upon both injection and oral administration. Several of the most effective are of low toxicity. These chelating agents incorporate within their structure 3-hydroxy-2-pyridinone (3,2-HOPO) moieties with a substituted carbamoyl group ortho to the hydroxy group of the hydroxypyridinone ring. The electron-withdrawing carbamoyl group increases the acidity, as well as the chemical stability towards oxidation and reduction, of the hydroxypyridinones. In the metal complexes of the chelating agents, the amide protons form very strong hydrogen bonds with the adjacent HOPO oxygen donor, making these complexes very stable at physiological conditions. The terminal N-substituents provide a certain degree of lipophilicity to the 3,2-HOPO, increasing oral activity. 2 figs.

  2. 3-hydroxy-2(1H)-pyridinone chelating agents

    DOEpatents

    Raymond, Kenneth; Xu, Jide

    1999-01-01

    Disclosed is a series of improved chelating agents and the chelates formed from these agents, which are highly effective upon both injection and oral administration. Several of the most effective are of low toxicity. These chelating agents incorporate within their structure 3-hydroxy-2-pyridinone (3,2-HOPO) moieties with a substituted carbamoyl group ortho to the hydroxy group of the hydroxypyridinone ring. The electron-withdrawing carbamoyl group increases the acidity, as well as the chemical stability towards oxidation and reduction, of the hydroxypyridinones. In the metal complexes of the chelating agents, the amide protons form very strong hydrogen bonds with the adjacent HOPO oxygen donor, making these complexes very stable at physiological conditions. The terminal N-substituents provide a certain degree of lipophilicity to the 3,2-HOPO, increasing oral activity.

  3. The effect of deuteration and doping on the phase transition temperature of grown glycine phosphite single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perumal, R., E-mail: perumal-cgc@yahoo.co.uk; Chandru, A. Lakshmi; Babu, S. Moorthy

    The Glycinium Phosphite (GPI) compound is a representative of hydrogen-bonded ferroelectric crystals. The ordering of protons could be expected below the room temperature (225 K). Crystals grown from the milipore water as well as deuterated solvents respectively. The corresponding hydrogen bond distance was stretched out due to the effect of isotopic substitution that increase the phase transition temperature. Further to improve the phase transition temperature, GPI crystal was doped with organic complexing agent and various metals and the obtained results are presented.

  4. The use of fluoroepoxy compounds as adhesives to bond fluoroplastics without any surface treatment

    NASA Technical Reports Server (NTRS)

    Lee, Sheng Yen

    1988-01-01

    The use of fluoroepoxy compounds as adhesives to bond fluoroplastics was investigated. Fluoroepoxy compounds with a F-content higher than 46 percent were able to bond a highly fluorinated plastic such as Teflon PTFE (76 percent F) to give a respectable bond strength without any surface treatment. The advantage of the fluoroepoxy adhesive vanished when applied to a less fluorinated plastic such as Tefzel which contains 55 percent fluorine. Among the curing agents explored, octafluorooctamethylenediamine showed its potential as a cocuring agent for improving both the viscosity of the compound and the flexibility of the cured product.

  5. Problems encountered with conventional fiber-reinforced composites

    NASA Technical Reports Server (NTRS)

    Landel, R. F.

    1981-01-01

    Preparational, computational, and operational problems associated with fiber-reinforced composites (FRC) are reviewed. Initial preparation of FRCs is shown to involve consideration of the type of prepreg, the setting time, cure conditions and cycles, and cure temperatures. The effects of the choice of bonding agents, the fiber transfer length, and individual fiber responses to bonding agents are noted to have an impact on fiber strength, moisture uptake, and fatigue resistance. The deformation prior to failure and the failure region are modeled through models of mini-, micro- and macro mechanics formulations employing a stiffness matrix, failure criterion, or fracture mechanics. The detection, evaluation, and repair of defects comprises the operational domain, and it is stressed that no good repair techniques exist for FRCs.

  6. Atypical pattern of (meth)acrylate allergic contact dermatitis in dental professionals.

    PubMed

    Prasad Hunasehally, R Y; Hughes, T M; Stone, N M

    2012-09-01

    (Meth)acrylates in dental bonding agents are a common source of allergic contact dermatitis in dental professionals. The distribution of the contact dermatitis is commonly on finger tips, but is determined by individual habits as demonstrated by the two case reports in this article. Despite the site of contact dermatitis, the bonding agents are often not suspected as a source of contact allergy due to misconception regarding the protective effect of natural rubber latex gloves. With these case reports, we endeavour to emphasize the inadequacy of the latex gloves in protecting against the (meth)acrylate induced contact allergy and also list the measures a dental professional needs to incorporate in order to minimise the risks of sensitisation to (meth)acrylates.

  7. Photo-assisted cyanation of transition metal nitrates coupled with room temperature C-C bond cleavage of acetonitrile.

    PubMed

    Zou, Shihui; Li, Renhong; Kobayashi, Hisayoshi; Liu, Juanjuan; Fan, Jie

    2013-03-07

    It is a challenge to use acetonitrile as a cyanating agent because of the difficulty in cleaving its C-CN bond. Herein, we report a mild photo-assisted route to conduct the cyanation of transition metal nitrates using acetonitrile as the cyanating agent coupled with room-temperature C-C bond cleavage. DFT calculations and experimental observations suggest a radical-involved reaction mechanism, which excludes toxicity from free cyanide ions.

  8. Adhesion strength of norbornene-based self-healing agents to an amine-cured epoxy

    NASA Astrophysics Data System (ADS)

    Huang, Guang Chun; Lee, Jong Keun; Kessler, Michael R.; Yoon, Sungho

    2009-07-01

    Self-healing is triggered by crack propagation through embedded microcapsules in an epoxy matrix, which then release the liquid healing agent into the crack plane. Subsequent exposure of the healing agent to the chemical catalyst initiates ring-opening metathesis polymerization (ROMP) and bonding of the crack faces. In order to improve self-healing functionality, it is necessary to enhance adhesion of polymerized healing agent within the crack to the matrix resin. In this study, shear bond strength between different norbornene-based healing agents and an amine-cured epoxy resin was evaluated using the single lap shear test method (ASTM D3163, modified). The healing agents tested include endodicyclopentadiene (endo-DCPD), 5-ethylidene-2-norbornene (ENB) and DCPD/ENB blends. 5-Norbornene-2-methanol (NBM) was used as an adhesion promoter, containing hydroxyl groups to form hydrogen bonds with the amine-cured epoxy. A custom synthesized norbornene-based crosslinking agent was also added to improve adhesion for ENB by increasing the crosslinking density of the adhesive after ROMP. The healing agents were polymerized with varying loadings of the 1st generation Grubbs' catalyst at different reaction times and temperatures.

  9. Influence of ceramic thickness and type on micromechanical properties of light-cured adhesive bonding agents.

    PubMed

    Öztürk, Elif; Bolay, Sükran; Hickel, Reinhard; Ilie, Nicoleta

    2014-10-01

    The aim of this study was to evaluate the micromechanical properties of different adhesive bonding agents when polymerized through ceramics. Sixty sound extracted human third molars were selected and the crowns were sectioned perpendicular to the long axis in order to obtain dentin slices to be bonded with one of the following adhesives: Syntac/Heliobond (Ivoclar-Vivadent) or Adper-Scotchbond-1XT (3M-ESPE). The adhesives were cured by using a LED-unit (Bluephase®, Ivoclar Vivadent) with three different curing times (10 s, 20 s and 30 s) under two ceramics (IPS-e.max-Press, Ivoclar-Vivadent; IPS-Empress®CAD, Ivoclar-Vivadent) of different thicknesses (0 mm, 0.75 mm, 2 mm). Thirty groups were included, each containing 60 measurements. Micromechanical properties (Hardness, HV; indentation modulus, E; and creep, Cr) of the adhesives were measured with an automatic microhardness indenter (Fisherscope H100C, Germany). Data were statistically analyzed by using one-way ANOVA and Tukey's post-hoc test, as well as a multivariate analysis to test the influence of the study parameters (SPSS 18.0). Significant differences were observed between the micromechanical properties of the adhesives (p < 0.05). The ceramic type showed the highest effect on HV (Partial-eta squared (η(2)) = 0.109) of the tested adhesives, while E (η(2) = 0.275) and Cr (η(2) = 0.194) were stronger influenced by the adhesive type. Ceramic thickness showed no effect on the E and Cr of the adhesives. The adhesive bonding agents used in this study performed well by curing through different thicknesses of ceramics. The micromechanical properties of the adhesives were determined by the adhesive type and were less influenced by ceramic type and curing time.

  10. Antibacterial activity in adhesive dentistry: a literature review.

    PubMed

    Shafiei, Fereshteh; Memarpour, Mahtab

    2012-01-01

    This literature review summarizes the published research regarding the antibacterial agents used in adhesive dentistry. This article provides information about the clinical applications, beneficial effects, and possible disadvantages of antibacterials when used in various bonding situations.

  11. [The bonding mechanisms of base metals for metal-ceramic crown microstructure analysis of bonding agent and gold bond between porcelain and base metals].

    PubMed

    Wang, C C; Hsu, C S

    1996-06-01

    The use of base metal alloys for porcelain fused to a metal crown and bridges has increased recently because of lower price, high hardness, high tensile strength and high elastic modulus. The addition of beryllium to base metal alloys increased fluidity and improved casting fitness. Beryllium also controlled surface oxidation and bonding strength. The bonding agent and gold bonding agent also affected the bonding strength between porcelain and metal alloys. Four commercially available ceramic base alloys were studied (two alloys contained beryllium element, another two did not). The purpose of this investigation was to study the microstructure between porcelain matrix, bonding agent and alloy matrix interfaces. A scanning electron micro-probe analyzer and energy dispersive X-ray spectroscopy (EDXS) were used to study the distribution of elements (Ni, Cr, Mo, Cu, O, Si, Sn, Al) in four base alloys. The following results were obtained: 1. The thickness of the oxidized layer of Rexillium III alloy and Unitbond alloy (contained beryllium) was thinner than Unibond alloy and Wiron 88 alloy (no beryllium). 2. The thickness of the oxidized layer of alloys in air (10 minutes and 30 minutes) was thinner in Unitbond (2.45 microns and 3.80 microns) and thicker in Wiron 88 (4.39 microns and 5.96 microns). 3. The thickness of the oxidized layer occurring for a duration of ten minutes (in vaccum) showed that the Rexillium III alloy was the thinnest (1.93 microns), and Wiron 88 alloy was the thickest (2.30 microns). But in thirty minutes (vacuum), Unitbond alloy was the thinnest (3.37 microns), and Wiron 88 alloy was the thickest (5.51 microns). 4. The intensity of Cr elements was increased obviously near the interface between Unitbond alloy, Wiron 88 alloy (no beryllium) and oxidized layer, but the intensity of Ni and Mo elements was slightly increased. The intensity of Cr element was not increased markedly between Rexillium III alloy, Unitbond alloy (beryllium) and oxidized layer. 5. A white-grayish oxidized layer appeared at the metal-ceramic interfaces but the thickness of oxidized layer was not obviously different. 6. The use of bonding agent at metal-ceramic interface leads to the deposition of many Sn elements at about 40 microns range within the porcelain surface. 7. Second interaction phases at the porcelain layer appeared when gold bonding agent was used, and a 50-100 microns microleakage occurred at the metal-ceramic interface.

  12. Characterization of the hydrogen-bond network of water around sucrose and trehalose: Microwave and terahertz spectroscopic study

    NASA Astrophysics Data System (ADS)

    Shiraga, Keiichiro; Adachi, Aya; Nakamura, Masahito; Tajima, Takuro; Ajito, Katsuhiro; Ogawa, Yuichi

    2017-03-01

    Modification of the water hydrogen bond network imposed by disaccharides is known to serve as a bioprotective agent in living organisms, though its comprehensive understanding is still yet to be reached. In this study, aiming to characterize the dynamical slowing down and destructuring effect of disaccharides, we performed broadband dielectric spectroscopy, ranging from 0.5 GHz to 12 THz, of sucrose and trehalose aqueous solutions. The destructuring effect was examined in two ways (the hydrogen bond fragmentation and disordering) and our result showed that both sucrose and trehalose exhibit an obvious destructuring effect with a similar strength, by fragmenting hydrogen bonds and distorting the tetrahedral-like structure of water. This observation strongly supports a chaotropic (structure-breaking) aspect of disaccharides on the water structure. At the same time, hydration water was found to exhibit slower dynamics and a greater reorientational cooperativity than bulk water because of the strengthened hydrogen bonds. These results lead to the conclusion that strong disaccharide-water hydrogen bonds structurally incompatible with native water-water bonds lead to the rigid but destructured hydrogen bond network around disaccharides. Another important finding in this study is that the greater dynamical slowing down of trehalose was found compared with that of sucrose, at variance with the destructuring effect where no solute dependent difference was observed. This discovery suggests that the exceptionally greater bioprotective impact especially of trehalose among disaccharides is mainly associated with the dynamical slowing down (rather than the destructuring effect).

  13. Mechanical characterization of proanthocyanidin-dentin matrix interaction

    PubMed Central

    Castellan, Carina Strano; Pereira, Patricia Nobrega; Grande, Rosa Helena Miranda; Bedran-Russo, Ana Karina

    2010-01-01

    Objectives To characterize the properties of dentin matrix treated with two proanthocyanidin rich cross-linking agents and their effect on dentin bonded interfaces. Methods Sound human molars were cut into 0.5 mm thick dentin slabs, demineralized and either treated with one of two cross-linking agents (grape seed - GSE and cocoa seed - COE extracts) or left untreated. The modulus of elasticity of demineralized dentin was assessed after 10 or 60 min and the swelling ratio after 60 min treatment. Bacterial collagenase was also used to assess resistance to enzymatic degradation of samples subjected to ultimate tensile strength. The effect of GSE or COE on the resin-dentin bond strength was evaluated after 10 or 60 min of exposure time. Data were statistically analyzed at a 95% confidence interval. Results Both cross-linkers increased the elastic modulus of demineralized dentin as exposure time increased. Swelling ratio was lower for treated samples when compared to control groups. No statistically significant changes to the UTS indicate that collagenase had no effect on dentin matrix treated with either GSE or COE. Dentin-resin bonds significantly increased following treatment with GSE regardless of the application time or adhesive system used. Significance Increased mechanical properties and stability of dentin matrix can be achieved by the use of PA-rich collagen cross-linkers most likely due to the formation of a PA-collagen complex. The short term dentin-resin bonds can be improved after 10 minutes dentin treatment. PMID:20650510

  14. Effects of tacky mat contamination on bond degradation for Chemlok/liner and NBR/liner bonds

    NASA Technical Reports Server (NTRS)

    Padilla, A. M.

    1989-01-01

    Tacky mats are placed by the rubber lay-up areas for the solid rocket motor segments. These mats dust off the shoes prior to entering the platform where the lay-up work is performed. The possibility exists that a tacky mat could be touched with gloved hands prior to handling the uncured nitride butadiene rubber (NBR). Tests were run to determine if NBR were accidentally touched would there be any degradation of the liner/NBR bond. The tacky mats were judged solely on the basis of bond degradation caused by either direct or indirect contamination. Test results all indicate that there was no notable NBR/Chemlok or liner/NBR bond degradation on samples that came into contact with the tacky mat material. Testing procedures are described. The tacky mat adhesive composition does not contain fluorocarbons or release agents that would affect bonding.

  15. Efficacy of Sealing Agents on Preload Maintenance of Screw-Retained Implant-Supported Prostheses.

    PubMed

    Seloto, Camila Berbel; Strazzi Sahyon, Henrico Badaoui; Dos Santos, Paulo Henrique; Delben, Juliana Aparecida; Assunção, Wirley Gonçalves

    The aim of this study was to evaluate the effect of sealing agents on preload maintenance of screw joints. A total of four groups (n = 10 in each group) of abutment/implant systems, including external hexagon implants and antirotational UCLA abutments with a metallic collar in cobalt-chromium alloy, were assessed. In the control group (CG), no sealing agent was used at the abutment screw/implant interface. In the other groups, three different sealing agents were used at the abutment screw/implant interface: anaerobic sealing agent for medium torque (ASMT), anaerobic sealing agent for high torque (ASHT), and cyanoacrylate-based bonding agent (CYAB). All abutments were attached to the implants at 32 ± 1 N.cm. After 48 ± 2 hours of initial tightening, loosing torque (detorque) was measured using a digital torque wrench. Data were analyzed using Shapiro-Wilk, Wilcoxon, and Kruskal-Wallis tests, at 5% level of significance. In the CG and ASMT groups, detorque was lower than the insertion torque (24.6 ± 1.5 N.cm and 24.3 ± 1.1 N.cm, respectively). In the ASHT and CYAB groups, mean detorque increased in comparison to the insertion torque (51.0 ± 7.4 N.cm and 47.7 ± 15.1 N.cm, respectively). The ASHT was more efficient than the other sealing agents, increasing the remaining preload (detorque value) 58.88%. Although the cyanoacrylate-based bonding agent also generated high detorque values, the high standard deviation suggested its lower reliability.

  16. Thin Bonded Concrete Overlay and Bonding Agents

    DOT National Transportation Integrated Search

    1996-06-01

    This report presents the construction procedures and initial performance evaluation of a four-inch Bonded Concrete Overlay placed on Interstate 80 near Moline, Illinois. Preconstruction testing consisted of Falling Weight Deflectometer, permeability ...

  17. Repair Bond Strength of Aged Resin Composite after Different Surface and Bonding Treatments

    PubMed Central

    Wendler, Michael; Belli, Renan; Panzer, Reinhard; Skibbe, Daniel; Petschelt, Anselm; Lohbauer, Ulrich

    2016-01-01

    The aim of this study was to compare the effect of different mechanical surface treatments and chemical bonding protocols on the tensile bond strength (TBS) of aged composite. Bar specimens were produced using a nanohybrid resin composite and aged in distilled water for 30 days. Different surface treatments (diamond bur, phosphoric acid, silane, and sandblasting with Al2O3 or CoJet Sand), as well as bonding protocols (Primer/Adhesive) were used prior to application of the repair composite. TBS of the specimens was measured and the results were analyzed using analysis of variance (ANOVA) and the Student–Newman–Keuls test (α = 0.05). Mechanically treated surfaces were characterized under SEM and by profilometry. The effect of water aging on the degree of conversion was measured by means of FTIR-ATR spectroscopy. An important increase in the degree of conversion was observed after aging. No significant differences in TBS were observed among the mechanical surface treatments, despite variations in surface roughness profiles. Phosphoric acid etching significantly improved repair bond strength values. The cohesive TBS of the material was only reached using resin bonding agents. Application of an intermediate bonding system plays a key role in achieving reliable repair bond strengths, whereas the kind of mechanical surface treatment appears to play a secondary role. PMID:28773669

  18. Tensile Bond Strength of Self Adhesive Resin Cement After Various Surface Treatment of Enamel

    PubMed Central

    Sekhri, Sahil; Garg, Sandeep

    2016-01-01

    Introduction In self adhesive resin cements adhesion is achieved to dental surface without surface pre-treatment, and requires only single step application. This makes the luting procedure less technique-sensitive and decreases postoperative sensitivity. Aim The purpose of this study was to evaluate bond strength of self adhesive resin after surface treatment of enamel for bonding base metal alloy. Materials and Methods On the labial surface of 64 central incisor rectangular base metal block of dimension 6 mm length, 5mm width and 1 mm height was cemented with RelyX U200 and Maxcem Elite self adhesive cements with and without surface treatment of enamel. Surface treatment of enamel was application of etchant, one step bonding agent and both. Tensile bond strength of specimen was measured with universal testing machine at a cross head speed of 1mm/min. Results Least tensile bond strength (MPa) was in control group i.e. 1.33 (0.32) & 1.59 (0.299), Highest bond strength observed when enamel treated with both etchant and bonding agent i.e. 2.72 (0.43) & 2.97 (0.19) for Relyx U200 and Elite cement. When alone etchant and bonding agent were applied alone bond strength is 2.19 (0.18) & 2.24 (0.47) for Relyx U200, and 2.38 (0.27) 2.49 (0.16) for Max-cem elite. Mean bond strength was higher in case of Max-cem Elite as compared to RelyX U200 resin cement, although differences were non–significant (p > 0.05). Conclusion Surface treatment of enamel increases the bond strength of self adhesive resin cement. PMID:26894165

  19. Adolescent vulnerability to cardiovascular consequences of chronic social stress: Immediate and long-term effects of social isolation during adolescence.

    PubMed

    Cruz, Fábio C; Duarte, Josiane O; Leão, Rodrigo M; Hummel, Luiz F V; Planeta, Cleopatra S; Crestani, Carlos C

    2016-01-01

    It has been demonstrated that disruption of social bonds and perceived isolation (loneliness) are associated with an increased risk of cardiovascular morbidity and mortality. Adolescence is proposed as a period of vulnerability to stress. Nevertheless, the impact of chronic social stress during this ontogenic period in cardiovascular function is poorly understood. Therefore, the purpose of this study was to compare the impact in cardiovascular function of social isolation for 3 weeks in adolescent and adult male rats. Also, the long-term effects of social isolation during adolescence were investigated longitudinally. Social isolation reduced body weight in adolescent, but not in adult animals. Disruption of social bonds during adolescence increased arterial pressure without affecting heart rate and pulse pressure (PP). Nevertheless, social isolation in adulthood reduced systolic arterial pressure and increased diastolic arterial pressure, which in turn decreased PP without affecting mean arterial pressure. Cardiovascular changes in adolescents, but not adults, were followed by facilitation of both baroreflex sensitivity and vascular reactivity to the vasodilator agent acetylcholine. Vascular responsiveness to either the vasodilator agent sodium nitroprusside or the vasoconstrictor agent phenylephrine was not affected by social isolation. Except for the changes in body weight and baroreflex sensitivity, all alterations evoked by social isolation during adolescence were reversed in adulthood after moving animals from isolated to collective housing. These findings suggest a vulnerability of adolescents to the effects of chronic social isolation in cardiovascular function. However, results indicate minimal cardiovascular consequences in adulthood of disruption of social bonds during adolescence. © 2015 Wiley Periodicals, Inc.

  20. 77 FR 20123 - Fee Change for Paying Agents Redeeming Definitive Savings Bonds and Savings Notes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-03

    ... notes from the EZ CLEAR process to an existing image-based process through the Federal Reserve. This simple and modern process allows paying agents to electronically transmit images of redeemed definitive savings bonds and savings notes to a Federal Reserve Processing Site for payment. Because the new process...

  1. Release Of Gaseous NH(3) From NH(4)CIO(4) By HTPB-Bonding Agents

    NASA Technical Reports Server (NTRS)

    Mccomb, James C.

    1993-01-01

    Report describes experimental study of rate of generation of ammonia and total amount of ammonia generated by chemical reactions between bonding agents and grains of ammonium perchlorate in solid rocket propellants. Also provides insight into mechanisms of chemical reactions between several types of organic amines with solid ammonium perchlorate.

  2. The Basics of Long-Term Debt Issuance and Management

    ERIC Educational Resources Information Center

    Van Meter, Christine M.

    2011-01-01

    Issuing long-term debt can be a complex, multifaceted process. Although the process varies by stare, typically the school business official and the district solicitor work with the financing ream, which includes a financial adviser, bond counsel, underwriter, raring agency, and possibly a bond insurance agent, paying agent, and architect.…

  3. Composite bonding to stainless steel crowns using a new universal bonding and single-bottle systems.

    PubMed

    Hattan, Mohammad Ali; Pani, Sharat Chandra; Alomari, Mohammad

    2013-01-01

    Aim. The aim of this study is to evaluate the shear bond strength of nanocomposite to stainless steel crowns using a new universal bonding system. Material and Methods. Eighty (80) stainless steel crowns (SSCs) were divided into four groups (20 each). Packable nanocomposite was bonded to the lingual surface of the crowns in the following methods: Group A without adhesive (control group), Group B using a new universal adhesive system (Scotchbond Universal Adhesive, 3M ESPE, Seefeld, Germany), and Group C and Group D using two different brands of single-bottle adhesive systems. Shear bond strengths were calculated and the types of failure also were recorded. Results. The shear strength of Group B was significantly greater than that of other groups. No significant differences were found between the shear bond strengths of Groups C and D. The control group had significantly lower shear bond strength (P < 0.05) to composite than the groups that utilized bonding agents. Conclusion. Composites bonding to stainless steel crowns using the new universal bonding agent (Scotchbond Universal Adhesive, 3M ESPE, Seefeld, Germany) show significantly greater shear bond strengths and fewer adhesive failures when compared to traditional single-bottle systems.

  4. The effects of light curing units and environmental temperatures on C 000000000000 000000000000 000000000000 111111111111 000000000000 111111111111 000000000000 000000000000 000000000000 C conversion of commercial and experimental bonding agents.

    PubMed

    Jafarzadeh-Kashi, Tahereh Sadat; Erfan, Mohmmad; Kalbasi, Salmeh; Ghadiri, Malihe; Rakhshan, Vahid

    2014-10-01

    Polymerization of bonding agents (BA) is a critical factor in determining the success of bonded restorations. We aimed to assess the effects of two light curing units and two temperatures on the extent of polymerization (EP) of a commercial BA and an experimental BA. Forty BA specimens were randomly divided into 8 subgroups of n = 5 to compare the polymerization of two BAs (experimental/Scotchbond) based on the variables: temperature (23/37 °C) and light-curing unit (quartz-tungsten-halogen/light-emitting diode). The EP (%) was measured using differential scanning calorimetry, and analyzed using the t-test, two- and three-way analyses of variance (ANOVA), and the Bonferroni test (α = 0.05). There were significant differences between the EP results between the two BAs (P = 0.012) and due to the different temperatures (P = 0.001), but not between the different light-curing units (P = 0.548). The interaction between BA and temperature was significant (P < 0.001). The other interactions were nonsignificant. The two light-curing units had similar effects on the EP. The EP values were better when curing was performed at human body temperature.

  5. Bond strength and interactions of machined titanium-based alloy with dental cements.

    PubMed

    Wadhwani, Chandur; Chung, Kwok-Hung

    2015-11-01

    The most appropriate luting agent for restoring cement-retained implant restorations has yet to be determined. Leachable chemicals from some types of cement designed for teeth may affect metal surfaces. The purpose of this in vitro study was to evaluate the shear bond strength and interactions of machined titanium-based alloy with dental luting agents. Eight dental luting agents representative of 4 different compositional classes (resin, polycarboxylate, glass ionomer, and zinc oxide-based cements) were used to evaluate their effect on machined titanium-6 aluminum-4 vanadium (Ti-6Al-4V) alloy surfaces. Ninety-six paired disks were cemented together (n=12). After incubation in a 37°C water bath for 7 days, the shear bond strength was measured with a universal testing machine (Instron) and a custom fixture with a crosshead speed of 5 mm/min. Differences were analyzed statistically with 1-way ANOVA and Tukey HSD tests (α=.05). The debonded surfaces of the Ti alloy disks were examined under a light microscope at ×10 magnification to record the failure pattern, and the representative specimens were observed under a scanning electron microscope. The mean ±SD of shear failure loads ranged from 3.4 ±0.5 to 15.2 ±2.6 MPa. The retention provided by both polycarboxylate cements was significantly greater than that of all other groups (P<.05). The scanning electron microscope examination revealed surface pits only on the bonded surface cemented with the polycarboxylate cements. Cementation with polycarboxylate cement obtained higher shear bond strength. Some chemical interactions occurred between the machined Ti-6Al-4V alloy surface and polycarboxylate cements during cementation. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  6. Decalcification prevention around orthodontic brackets bonded to bleached enamel using different topical agents.

    PubMed

    Msallam, Ferial Ahmed; Grawish, Mohammed El-Awady; Hafez, Ahmad Mohammed; Abdelnaby, Yasser Lotfy

    2017-12-01

    The present study was conducted to evaluate the effect of different topical agents utilized for prevention of enamel decalcification around orthodontic brackets bonded to bleached and non-bleached enamel. Human maxillary premolars (n = 120) were divided into two equal groups. Teeth in group I were left without bleaching while those in group II were bleached with Vivastyle gel. Metal brackets were bonded to all the teeth using light-cured adhesive. Each group was divided into six equal subgroups (A, B, C, D, E, and F). In subgroup A, no material was applied (control). In subgroups B, C, D, E, and F, the following materials were applied respectively: Profluorid varnish, Enamel Pro Varnish, Ortho-Choice Ortho-Coat, GC Tooth Mousse, and GC MI Paste Plus. All teeth were cycled in a demineralization solution/artificial saliva for 15 days. Laser fluorescence was used to measure the level of enamel mineralization. The data were statistically analyzed. Regarding the non-bleaching subgroups, all studied material revealed significant demineralization reduction in comparison to the control subgroup (P < 0.05). Ortho-Choice Ortho-Coat revealed the highest significant effect while GC Tooth Mousse showed the least effect. In bleached subgroups, Profluorid varnish, Enamel Pro Varnish, and Ortho-Choice Ortho-Coat significantly reduced demineralization (P < 0.05) while either GC MI Paste Plus or GC Tooth Mousse had no significant effects (P > 0.05). Ortho-Choice Ortho-Coat, and Profluorid and Enamel Pro varnishes could be utilized successfully to reduce enamel demineralization around brackets bonded to either bleached or non-bleached enamel. GC MI Paste Plus and GC Tooth Mousse were effective only in non-bleached enamel.

  7. Solid-phase materials for chelating metal ions and methods of making and using same

    DOEpatents

    Harrup, Mason K.; Wey, John E.; Peterson, Eric S.

    2003-06-10

    A solid material for recovering metal ions from aqueous streams, and methods of making and using the solid material, are disclosed. The solid material is made by covalently bonding a chelating agent to a silica-based solid, or in-situ condensing ceramic precursors along with the chelating agent to accomplish the covalent bonding. The chelating agent preferably comprises a oxime type chelating head, preferably a salicylaldoxime-type molecule, with an organic tail covalently bonded to the head. The hydrocarbon tail includes a carbon-carbon double bond, which is instrumental in the step of covalently bonding the tail to the silica-based solid or the in-situ condensation. The invented solid material may be contacted directly with aqueous streams containing metal ions, and is selective to ions such as copper (II) even in the presence of such ions as iron (III) and other materials that are present in earthen materials. The solid material with high selectivity to copper may be used to recover copper from mining and plating industry streams, to replace the costly and toxic solvent extraction steps of conventional copper processing.

  8. 31 CFR 317.6 - Issuance of bonds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false Issuance of bonds. 317.6 Section 317.6 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) FISCAL SERVICE... STATES SAVINGS BONDS § 317.6 Issuance of bonds. (a) General. Each issuing agent shall comply with all...

  9. Two-year interfacial bond durability and nanoleakage of repaired silorane-based resin composite.

    PubMed

    Mobarak, E; El-Deeb, H

    2013-01-01

    To investigate the effect of silane primer application, intermediate adhesive agent/repair composite, and storage period on the interfacial microtensile bond strength (μTBS) of repaired silorane-based resin composite compared with unrepaired composites and on the nanoleakage. Forty-eight 1-month-old substrate specimens from Filtek P90 were roughened, etched, and distributed over two groups (n=24) based on receiving silane (Clearfil Ceramic Primer) or not. Then, half of the specimens (n=12) were repaired with P90 System Adhesive/Filtek P90 and the other half with Adper Scotchbond Multipurpose adhesive/Filtek Z250 resin composite. Within each repair category, repaired specimens were stored in artificial saliva at 37°C for either 24 hours (n=6) or two years before being serially sectioned into sticks (0.6 ± 0.01 mm(2)). From each specimen, two sticks were prepared for nanoleakage determination and four sticks were used for μTBS testing. Additional unrepaired specimens from each composite (n=12) were made to determine the cohesive strength at 24 hours and two years. Mean μTBS were calculated and statistically analyzed. Modes of failure were also determined. General linear model analysis revealed no significant effect for the silane priming, intermediate adhesive agent/repair composite, and storage period or for their interactions on the μTBS values of the repaired specimens. There was no significant difference between the cohesive strength of Filtek P90 and Filtek Z250; both were significantly higher than all repaired categories. At 24 hours, nanoleakage was not detected when silorane-based composite was repaired with the same material. However, after two years, all repair categories showed nanoleakage. Silane application has no effect on μTBS and nanoleakage. Durability of the interfacial bond of repaired silorane-based resin composite appeared successful regardless of the chemistry of the intermediate adhesive agent/composite used for repair. However, nanoleakage was detected early when a different repair intermediate adhesive agent/composite was used.

  10. Design, Synthesis, and Validation of an Effective, Reusable Silicon-Based Transfer Agent for Room-Temperature Pd-Catalyzed Cross-Coupling Reactions of Aryl and Heteroaryl Chlorides with Readily Available Aryl Lithium Reagents

    PubMed Central

    Martinez-Solorio, Dionicio; Melillo, Bruno; Sanchez, Luis; Liang, Yong; Lam, Erwin; Houk, K. N.; Smith, Amos B.

    2016-01-01

    A reusable silicon-based transfer agent (1) has been designed, synthesized, and validated for effective room-temperature palladium-catalyzed cross-coupling reactions (CCRs) of aryl and heteroaryl chlorides with readily accessible aryl lithium reagents. The crystalline, bench-stable siloxane transfer agent (1) is easily prepared via a one-step protocol. Importantly, this “green” CCR protocol circumvents prefunctionalization, isolation of organometallic cross-coupling partners, and/or stoichiometric waste aside from LiCl. DFT calculations support a σ-bond metathesis mechanism during transmetalation and lead to insights on the importance of the CF3 groups. PMID:26835838

  11. Bacterial endotoxin adhesion to different types of orthodontic adhesives

    PubMed Central

    ROMUALDO, Priscilla Coutinho; GUERRA, Thaís Rodrigues; ROMANO, Fábio Lourenço; da SILVA, Raquel Assed Bezerra; BRANDÃO, Izaíra Tincani; SILVA, Célio Lopes; da SILVA, Lea Assed Bezerra; NELSON-FILHO, Paulo

    2017-01-01

    Abstract Bacterial endotoxin (LPS) adhesion to orthodontic brackets is a known contributing factor to inflammation of the adjacent gingival tissues. Objective The aim of this study was to assess whether LPS adheres to orthodontic adhesive systems, comparing two commercial brands. Material and Methods Forty specimens were fabricated from Transbond XT and Light Bond composite and bonding agent components (n=10/component), then contaminated by immersion in a bacterial endotoxin solution. Contaminated and non-contaminated acrylic resin samples were used as positive and negative control groups, respectively. LPS quantification was performed by the Limulus Amebocyte Lysate QCL-1000™ test. Data obtained were scored and subjected to the Chi-square test using a significance level of 5%. Results There was endotoxin adhesion to all materials (p<0.05). No statistically significant difference was found between composites/bonding agents and acrylic resin (p>0.05). There was no significant difference (p>0.05) among commercial brands. Affinity of endotoxin was significantly greater for the bonding agents (p=0.0025). Conclusions LPS adhered to both orthodontic adhesive systems. Regardless of the brand, the endotoxin had higher affinity for the bonding agents than for the composites. There is no previous study assessing the affinity of LPS for orthodontic adhesive systems. This study revealed that LPS adheres to orthodontic adhesive systems. Therefore, additional care is recommended to orthodontic applications of these materials. PMID:28877283

  12. Transition Metal Free C-N Bond Forming Dearomatizations and Aryl C-H Aminations by in Situ Release of a Hydroxylamine-Based Aminating Agent.

    PubMed

    Farndon, Joshua J; Ma, Xiaofeng; Bower, John F

    2017-10-11

    We outline a simple protocol that accesses directly unprotected secondary amines by intramolecular C-N bond forming dearomatization or aryl C-H amination. The method is dependent on the generation of a potent electrophilic aminating agent released by in situ deprotection of O-Ts activated N-Boc hydroxylamines.

  13. A comparison of 2-octyl cyanoacrylate with nylon for wound closure of knee arthroscopy portals.

    PubMed

    Imbuldeniya, A M; Rashid, A; Murphy, J P

    2014-09-01

    To compare the cosmetic results, complications and patient satisfaction of 2-octyl cyanoacrylate (Dermabond, Ethicon Inc. Somerville, NJ, USA), a liquid bonding agent, with 3-0 nylon sutures (Ethilon, Ethicon Inc) skin closure in two groups of patients undergoing elective knee arthroscopy at 6 weeks. The retrospective clinical audit recruited patients undergoing knee surgery for the first time between October 2010 and August 2011. The patients were either treated with the liquid bonding agent or nylon sutures. The patients in the bonding agent group were allowed to shower as normal on postoperative day one, while patients in the suture group kept their wounds dry for 2 weeks. Between the two groups (40 patients per group) there was no difference in the cosmetic outcome (p=0.285), patient satisfaction (p=0.29), pain scores (p=0.44) or wound complication rate (p<0.05). Patient satisfaction was high in both groups. Furthermore, 83.75% of all patients indicated they would prefer the liquid bonding closure over nylon sutures if undergoing the same procedure in the future as they could shower the next day and avoid suture removal. 2-octyl cyanoacrylate is safe to use in the short term in knee arthroscopy providing comparable results to nylon suture closure. Allowing patients to shower the next day appears to cause no adverse effects. The authors would like to state that they do not have any economic or social interest in any of the products used or mentioned. No grant or finance was received for this study, nor any input from other sources.

  14. Bond strength of self-etch adhesives after saliva contamination at different application steps.

    PubMed

    Cobanoglu, N; Unlu, N; Ozer, F F; Blatz, M B

    2013-01-01

    This study evaluated and compared the effect of saliva contamination and possible decontamination methods on bond strengths of two self-etching adhesive systems (Clearfil SE Bond [CSE], Optibond Solo Plus SE [OSE]). Flat occlusal dentin surfaces were created on 180 extracted human molar teeth. The two bonding systems and corresponding composite resins (Clearfil AP-X, Kerr Point 4) were bonded to the dentin under six surface conditions (n=15/group): group 1 (control): primer/bonding/composite; group 2: saliva/drying/primer/bonding/composite; group 3: primer/saliva/rinsing/drying/primer/bonding/composite; group 4: primer/saliva/rinsing/drying/bonding/composite; group 5: primer/bonding (cured)/saliva/rinsing/drying/primer/bonding/composite; group 6: primer/bonding (cured)/saliva/removing contaminated layer with a bur/rinsing/drying/primer/bonding/composite. Shear bond strength was tested after specimens were stored in distilled water at 37°C for 24 hours. One-way analysis of variance and Tukey post hoc tests were used for statistical analyses. For CSE, groups 2, 3, and 4 and for OSE, groups 6, 2, and 4 showed significantly lower bond strengths than the control group (p<0.05). CSE groups 5 and 6 and OSE groups 3 and 5 revealed bond strengths similar to the control. When saliva contamination occurred after light polymerization of the bonding agent, repeating the bonding procedure recovered the bonding capacity of both self-etch adhesives. However, saliva contamination before or after primer application negatively affected their bond strength.

  15. 31 CFR 224.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... OF THE TREASURY FINANCIAL MANAGEMENT SERVICE FEDERAL PROCESS AGENTS OF SURETY CORPORATIONS § 224.2... surety bond. (b) Process agent means a resident agent for service of process. (c) State means a State...

  16. 31 CFR 224.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... OF THE TREASURY FINANCIAL MANAGEMENT SERVICE FEDERAL PROCESS AGENTS OF SURETY CORPORATIONS § 224.2... surety bond. (b) Process agent means a resident agent for service of process. (c) State means a State...

  17. 31 CFR 224.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... OF THE TREASURY FINANCIAL MANAGEMENT SERVICE FEDERAL PROCESS AGENTS OF SURETY CORPORATIONS § 224.2... surety bond. (b) Process agent means a resident agent for service of process. (c) State means a State...

  18. Effect of an internal coating technique on tensile bond strengths of resin cements to zirconia ceramics.

    PubMed

    Kitayama, Shuzo; Nikaido, Toru; Maruoka, Rena; Zhu, Lei; Ikeda, Masaomi; Watanabe, Akihiko; Foxton, Richard M; Miura, Hiroyuki; Tagami, Junji

    2009-07-01

    This study was conducted to enhance the tensile bond strengths of resin cements to zirconia ceramics. Fifty-six zirconia ceramic specimens (Cercon Base) and twenty-eight silica-based ceramic specimens (GN-1, GN-1 Ceramic Block) were air-abraded using alumina. Thereafter, the zirconia ceramic specimens were divided into two subgroups of 28 each according to the surface pretreatment; no pretreatment (Zr); and the internal coating technique (INT). For INT, the surface of zirconia was coated by fusing silica-based ceramics (Cercon Ceram Kiss). Ceramic surfaces were conditioned with/without a silane coupling agent followed by bonding with one of two resin cements; Panavia F 2.0 (PF) and Superbond C&B (SB). After 24 hours storage in water, the tensile bond strengths were tested (n=7). For both PF and SB, silanization significantly improved the bond strength to GN-1 and INT (p<0.05). The INT coating followed by silanizaton demonstrated enhancement of bonding to zirconia ceramics.

  19. Phosphoric and carboxylic methacrylate esters as bonding agents in self-adhesive resin cements

    PubMed Central

    Liu, Wenshu; Meng, Hongmei; Sun, Zhiguang; Jiang, Riwen; Dong, Chang-An; Zhang, Congxiao

    2018-01-01

    The aim of the present study was to investigate the effect of pH and phosphoric ester structure (phosphonate or phosphate) on the bond strength of different dental restorative materials. The following three self-adhesive resin cements were used in the present study: RelyX™ Unicem, Maxcem and Multilink Sprint The pH of each cement was measured using a pH meter. The cements were used to attach a variety of restorative materials to human dentin and the bond strength was measured by assessing shear strength using a universal testing machine. The pH values of RelyX Unicem, Maxcem and Multilink Sprint were 3.78, 1.78 and 3.42, respectively. Maxcem, a phosphate-based self-adhesive cement, was demonstrated to form the weakest bonds. No significant difference in bond strength was observed between RelyX Unicem and Multilink Sprint, which are phosphonate-based cements. The results of the present study suggest that the chemical structure of the functional monomer influences the performance of an adhesive material. Furthermore, the pH of acidic functional monomers containing phosphonate or phosphate groups has an effect on the strength of bonds formed between dentin and restorative materials. PMID:29731837

  20. Aircraft components structural health monitoring using flexible ultrasonic transducer arrays

    NASA Astrophysics Data System (ADS)

    Liu, W.-L.; Jen, C.-K.; Kobayashi, M.; Mrad, N.

    2011-04-01

    A damage detection capability based on a flexible ultrasonic transducer (FUT) array bonded onto a planar and a curved surface is presented. The FUT array was fabricated on a 75 μm titanium substrate using sol-gel spray technique. Room temperature curable adhesive is used as the bonding agent and ultrasonic couplant between the transducer and the test article. The bonding agent was successfully tested for aircraft environmental temperatures between -80 °C and 100 °C. For a planar test article, selected FUT arrays were able to detect fasteners damage within a planar distance of 176 mm, when used in the pulse-echo mode. Such results illustrate the effectiveness of the developed FUT transducer as compared to commercial 10MHz ultrasonic transducer (UT). These FUT arrays were further demonstrated on a curved test article. Pulse-echo measurements confirmed the reflected echoes from the specimen. Such measurement was not possible with commercial UTs due to the curved nature of the test article and its accessibility, thus demonstrating the suitability and superiority of the developed flexible ultrasonic transducer capability.

  1. A targeted nanoglobular contrast agent from host-guest self-assembly for MR cancer molecular imaging

    PubMed Central

    Zhou, Zhuxian; Han, Zhen; Lu, Zheng-Rong

    2016-01-01

    The clinical application of nanoparticular Gd(III) based contrast agents for tumor molecular MRI has been hindered by safety concerns associated with prolonged tissue retention, although they can produce strong tumor enhancement. In this study, a targeted well-defined cyclodextrin-based nanoglobular contrast agent was developed through self-assembly driven by host-guest interactions for safe and effective cancer molecular MRI. Multiple β-cyclodextrins attached POSS (polyhedral oligomeric silsesquioxane) nanoglobule was used as host molecule. Adamantane–modified macrocyclic Gd(III) contrast agent, cRGD (cyclic RGDfK peptide) targeting ligand and fluorescent probe was used as guest molecules. The targeted host-guest nanoglobular contrast agent cRGD-POSS-βCD-(DOTA-Gd) specifically bond to αvβ3 integrin in malignant 4T1 breast tumor and provided greater contrast enhancement than the corresponding non-targeted agent. The agent also provided significant fluorescence signal in tumor tissue. The histological analysis of the tumor tissue confirmed its specific and effective targeting to αvβ3 integrin. The targeted imaging agent has a potential for specific cancer molecular MR and fluorescent imaging. PMID:26874280

  2. Persistent agents in Axelrod's social dynamics model

    NASA Astrophysics Data System (ADS)

    Reia, Sandro M.; Neves, Ubiraci P. C.

    2016-01-01

    Axelrod's model of social dynamics has been studied under the effect of external media. Here we study the formation of cultural domains in the model by introducing persistent agents. These are agents whose cultural traits are not allowed to change but may be spread through local neighborhood. In the absence of persistent agents, the system is known to present a transition from a monocultural to a multicultural regime at some critical Q (number of traits). Our results reveal a dependence of critical Q on the occupation probability p of persistent agents and we obtain the phase diagram of the model in the (p,Q) -plane. The critical locus is explained by the competition of two opposite forces named here barrier and bonding effects. Such forces are verified to be caused by non-persistent agents which adhere (adherent agents) to the set of traits of persistent ones. The adherence (concentration of adherent agents) as a function of p is found to decay for constant Q. Furthermore, adherence as a function of Q is found to decay as a power law with constant p.

  3. 3-hydroxy-2(1H)-pyridinone chelating agents

    DOEpatents

    Raymond, K.N.; Xu, J.

    1997-04-29

    Disclosed is a series of improved metal chelating agents, which are highly effective upon both injection and oral administration; several of the most effective are of low toxicity. These chelating agents incorporate within their structure 1-hydroxy-2-pyridinone (1,2-HOPO) and 3-hydroxy-2-pyridinone (3,2-HOPO) moieties with a substituted carbamoyl group ortho to the hydroxy or oxo groups of the hydroxypyridinone ring. The electron-withdrawing carbamoyl group increases the acidity of the hydroxypyridinones. In the metal complexes of the chelating agents, the amide protons form very strong hydrogen bonds with its adjacent HOPO oxygen donor, making these complexes very stable at physiological conditions. The terminal N-substituents provides a certain degree of lipophilicity to the 3,2-HOPO, increasing oral activity. Also disclosed is a method of making the chelating agents and a method of producing a known compound, 3-hydroxy-1-alkyl-2(1H)pyridinone, used as a precursor to the chelating agent, safely and in large quantities. 2 figs.

  4. 3-hydroxy-2(1H)-pyridinone chelating agents

    DOEpatents

    Raymond, Kenneth N.; Xu, Jide

    1997-01-01

    Disclosed is a series of improved metal chelating agents, which are highly effective upon both injection and oral administration; several of the most effective are of low toxicity. These chelating agents incorporate within their structure 1-hydroxy-2-pyridinone (1,2-HOPO) and 3-hydroxy-2-pyridinone (3,2-HOPO) moieties with a substituted carbamoyl group ortho to the hydroxy or oxo groups of the hydroxypyridinone ring. The electron-withdrawing carbamoyl group increases the acidity of the hydroxypyridinones. In the metal complexes of said chelating agents, the amide protons form very strong hydrogen bonds with its adjacent HOPO oxygen donor, making these complexes very stable at physiological conditions. The terminal N-substituents provides a certain degree of lipophilicity to said 3,2-HOPO, increasing oral activity. Also disclosed is a method of making the chelating agents and a method of producing a known compound, 3-hydroxy-1-alkyl-2(1H)pyridinone, used as a precursor to the chelating agent, safely and in large quantities.

  5. Effects of Mechanical and Chemical Pretreatments of Zirconia or Fiber Posts on Resin Cement Bonding

    PubMed Central

    Li, Rui; Zhou, Hui; Wei, Wei; Wang, Chen; Sun, Ying Chun; Gao, Ping

    2015-01-01

    The bonding strength between resin cement and posts is important for post and core restorations. An important method of improving the bonding strength is the use of various surface pretreatments of the post. In this study, the surfaces of zirconia (fiber) posts were treated by mechanical and/or chemical methods such as sandblasting and silanization. The bonding strength between the zirconia (fiber) post and the resin cement was measured by a push-out method after thermocycling based on the adhesion to Panavia F 2.0 resin cement. The zirconia and fiber posts exhibited different bonding strengths after sandblasting and/or silanization because of the different strengths and chemical structures. The zirconia post showed a high bonding strength of up to 17.1 MPa after a combined treatment of sandblasting and silanization because of the rough surface and covalent bonds at the interface. This effect was also enhanced by using 1,2-bis(trimethoxysilyl)ethane for the formation of a flexible layer at the interface. In contrast, a high bonding strength of 13.9 MPa was obtained for the fiber post treated by silane agents because the sandblasting treatment resulted in damage to the fiber post, as observed by scanning electron microscopy. The results indicated that the improvement in the bonding strength between the post and the resin cement could be controlled by different chemical and/or mechanical treatments. Enhanced bonding strength depended on covalent bonding and the surface roughness. A zirconia post with high bonding strength could potentially be used for the restoration of teeth in the future. PMID:26066349

  6. Effect of different intracoronal bleaching methods on shear bond strength of ceramic brackets bonded to bleached enamel: An in-vitro study.

    PubMed

    Chauhan, Vikas; Kumar, Piush; Sharma, Payal; Shetty, Divya

    2017-01-01

    To investigate the effect of different intracoronal bleaching methods on the shear bond strength and site of failure of ceramic brackets. Sixty freshly extracted human maxillary incisors were randomly divided into four groups ( n = 15). Endodontic access cavity was prepared and root canals were filled, root fillings were removed 2mm apical to the cementoenamel junction, and a 2-mmthick layer of glass ionomer cement base was applied. Group 1 served as the control. Intracoronal bleaching was performed with 35% carbamide peroxide in group 2, sodium perborate in group 3, and 37.5% hydrogen peroxide in group 4. The teeth were immersed in artificial saliva for 4 weeks before bracket bonding. Ceramic brackets were bonded with composite resin and cured with LED light. After bonding, the shear bond strength of the brackets was tested with a universal testing machine. The site of bond failure was determined by modified ARI (Adhesive Remnant Index). The highest value of shear bond strength was measured in control group (18.67 ± 1.59 MPa), which was statistically significant from groups 2,3, and 4. There was no significant difference between groups 2 and 4. The lowest shear bond strength was measured in group 3. ARI scores were not significant from each other. Intracoronal bleaching significantly affected the shear bond strength of ceramic brackets even after 4 weeks of bleaching. Bleaching with sodium perborate affects shear bond strength more adversely than does bleaching with other agents like hydrogen peroxide and carbamide peroxide.

  7. A combined variable temperature 600 MHz NMR/MD study of the calcium release agent cyclic adenosine diphosphate ribose (cADPR): Structure, conformational analysis, and thermodynamics of the conformational equilibria.

    PubMed

    Javornik, Uroš; Plavec, Janez; Wang, Baifan; Graham, Steven M

    2018-01-02

    A combined variable temperature 600 MHz NMR/molecular dynamics study of the Ca 2+ -release agent cyclic adenosine 5'-diphosphate ribose (cADPR) was conducted. In addition to elucidating the major and minor orientations of the conformationally flexible furanose rings, γ- (C4'-C5'), and β- (C5'-O5') bonds, the thermodynamics (ΔH o , ΔS o ) associated with each of these conformational equilibria were determined. Both furanose rings were biased towards a south conformation (64-74%) and both β-bonds heavily favored trans conformations. The R-ring γ-bond was found to exist almost exclusively as the γ + conformer, whereas the A-ring γ-bond was a mixture of the γ + and γ t conformers, with the trans conformer being slightly favored. Enthalpic factors accounted for most of the observed conformational preferences, although the R-ring furanose exists as its major conformation based solely on entropic factors. There was excellent agreement between the NMR and MD results, particularly with regard to the conformer identities, but the MD showed a bias towards γ + conformers. The MD results showed that both N-glycosidic χ-bonds are exclusively syn. Collectively the data allowed for the construction of a model for cADPR in which many of the conformationally flexible units in fact effectively adopt single orientations and where most of the conformational diversity resides in its A-ring furanose and γ-bond. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Effect of incorporation of silane in the bonding agent on the repair potential of machinable esthetic blocks

    PubMed Central

    Zaghloul, Hanaa; Elkassas, Dina Wafik; Haridy, Mohamed Fouad

    2014-01-01

    Objective: To investigate the repair potential of CAD/CAM (computer-aided design/computer-aided manufacturing) ceramic and composite blocks using a silane-containing bonding agent with different repair protocols. Materials and Methods: Twenty-four discs were constructed from CAD/CAM ceramic and composite blocks. The discs were divided into six groups according to surface pre-treatment employed; GI: Diamond stone roughening (SR), GII: SR+ silanization (SR+S), GIII: Hydrofluoric acid etching (HF), GIV: HF+ silanization (HF+S), GV: Silica coating (SC), GVI: SC+ silanization (SC+S). Silane-containing bonding agent (Single Bond Universal adhesive, 3M ESPE) was applied to the pre-treated discs. Prior to light curing, irises were cut from tygon tubes (internal diameter = 0.8 mm and height = 0.5 mm) and mounted on each treated surface. Nanofilled resin composite (Filtek Z350XT, 3M ESPE) was packed into the cylinder lumen and light-cured (n = 10). The specimens were subjected to microshear bond strength testing (μ-SBS) using universal testing machine. Failure modes of the fractured specimens were analyzed using field emission scanning electron microscope (FESEM). Eight representative discs were prepared to analyze the effect of surface treatments on surface topography using FESEM. μ-SBS results were analyzed using ANOVA and Tukeys post-hoc test. Results: Three-way ANOVA results showed that the materials, surface pre-treatment protocols, and silanization step had a statistically significant effect on the mean μ-SBS values at P ≤ 0.001. For ceramic discs, the groups were ranked; GIV (24.45 ± 7.35)> GVI ((20.18 ± 2.84)> GV (7.14 ± 14)= GII (6.72 ± 1.91)=GI (6.34 ± 2.21)=GIII (5.72 ± 2.18). For composite discs, groups were ranked; GI (24.98 ± 7.69)=GVI (24.84 ± 7.00) >GII (15.85 ± 5.29) =GV (14.65 ± 4.5)= GIV (14.24 ± 2.95)≥ GIII ((9.37 ± 2.78). Conclusion: The additional silanization step cannot be omitted if the repair protocol comprises of either hydrofluoric acid etching or silica coating for both CAD/CAM esthetic restorative materials. However, this step can be suppressed by using silane-containing adhesive with diamond stone roughened repair protocol. PMID:24966745

  9. Enamel Bond Strength of New Universal Adhesive Bonding Agents.

    PubMed

    McLean, D E; Meyers, E J; Guillory, V L; Vandewalle, K S

    2015-01-01

    Universal bonding agents have been introduced for use as self-etch or etch-and-rinse adhesives depending on the dental substrate and clinician's preference. The purpose of this study was to evaluate the shear bond strength (SBS) of composite to enamel using universal adhesives compared to a self-etch adhesive when applied in self-etch and etch-and-rinse modes over time. Extracted human third molars were used to create 120 enamel specimens. The specimens were ground flat and randomly divided into three groups: two universal adhesives and one self-etch adhesive. Each group was then subdivided, with half the specimens bonded in self-etch mode and half in etch-and-rinse mode. The adhesives were applied as per manufacturers' instructions, and composite was bonded using a standardized mold and cured incrementally. The groups were further divided into two subgroups with 10 specimens each. One subgroup was stored for 24 hours and the second for six months in 37°C distilled water and tested in shear. Failure mode was also determined for each specimen. A three-way analysis of variance (ANOVA) found a significant difference between groups based on bonding agent (p<0.001) and surface treatment (p<0.001) but not on time (p=0.943), with no significant interaction (p>0.05). Clearfil SE in etch-and-rinse and self-etch modes had more mixed fractures than either universal adhesive in either mode. Etching enamel significantly increased the SBS of composite to enamel. Clearfil SE had significantly greater bond strength to enamel than either universal adhesive, which were not significantly different from each other.

  10. A Comparative Evaluation of Effect of Different Chemical Solvents on the Shear Bond Strength of Glass Fiber reinforced Post to Core Material

    PubMed Central

    Samadi, Firoza; Jaiswal, JN; Saha, Sonali

    2014-01-01

    ABSTRACT% Aim: To compare the effect of different chemical solvents on glass fiber reinforced posts and to study the effect of these solvents on the shear bond strength of glass fiber reinforced post to core material. Materials and methods: This study was conducted to evaluate the effect of three chemical solvents, i.e. silane coupling agent, 6% H2O2 and 37% phosphoric acid on the shear bond strength of glass fiber post to a composite resin restorative material. The changes in post surface characteristics after different treatments were also observed, using scanning electron microscopy (SEM) and shear bond strength was analyzed using universal testing machine (UTM). Results: Surface treatment with hydrogen peroxide had greatest impact on the post surface followed by 37% phosphoric acid and silane. On evaluation of the shear bond strength, 6% H2O2 exhibited the maximum shear bond strength followed in descending order by 37% phosphoric acid and silane respectively. Conclusion: The surface treatment of glass fiber post enhances the adhesion between the post and composite resin which is used as core material. Failure of a fiber post and composite resin core often occurs at the junction between the two materials. This failure process requires better characterization. How to cite this article: Sharma A, Samadi F, Jaiswal JN, Saha S. A Comparative Evaluation of Effect of Different Chemical Solvents on the Shear Bond Strength of Glass Fiber Reinforced Post to Core Material. Int J Clin Pediatr Dent 2014;7(3):192-196. PMID:25709300

  11. Effect of different adhesion strategies on bond strength of resin composite to composite-dentin complex.

    PubMed

    Özcan, M; Pekkan, G

    2013-01-01

    Service life of discolored and abraded resin composite restorations could be prolonged by repair or relayering actions. Composite-composite adhesion can be achieved successfully using some surface conditioning methods, but the most effective adhesion protocol for relayering is not known when the composite restorations are surrounded with dentin. This study evaluated the effect of three adhesion strategies on the bond strength of resin composite to the composite-dentin complex. Intact maxillary central incisors (N=72, n=8 per subgroup) were collected and the coronal parts of the teeth were embedded in autopolymerized poly(methyl tfr54methacrylate) surrounded by a polyvinyl chloride cylinder. Cylindrical cavities (diameter: 2.6 mm; depth: 2 mm) were opened in the middle of the labial surfaces of the teeth using a standard diamond bur, and the specimens were randomly divided into three groups. Two types of resin composite, namely microhybrid (Quadrant Anterior Shine; AS) and nanohybrid (Grandio; G), were photo-polymerized incrementally in the cavities according to each manufacturer's recommendations. The composite-enamel surfaces were ground finished to 1200-grit silicone carbide paper until the dentin was exposed. The surfaces of the substrate composites and the surrounding dentin were conditioned according to one of the following adhesion protocols: protocol 1: acid-etching (dentin) + silica coating (composite) + silanization (composite) + primer (dentin) + bonding agent (dentin + composite); protocol 2: silica coating (composite) + acid-etching (dentin) + silanization (composite) + primer (dentin) + bonding agent (dentin + composite); and protocol 3: acid-etching (dentin) + primer (dentin) + silanization (composite) + bonding agent (dentin + composite). Applied primer and bonding agents were the corresponding materials of the composite manufacturer. Silica coating (CoJet sand, 30 μm) was achieved using a chairside air-abrasion device (distance: 10 mm; duration: four seconds in circular motion). After conditioning protocols, the repair resin was adhered to the substrate surfaces using transparent polyethylene molds (diameter: 3.6 mm) incrementally and photo-polymerized. The substrate-adherend combinations were as follows: AS-AS, G-G, AS-G. Shear force was applied to the adhesive interface in a Universal Testing Machine (crosshead speed: 1 mm/min). The types of failures were further evaluated and categorized as follows: 1) cohesive in the composite substrate and 2) adhesive at the interface. Bond strength values (MPa) were statistically analyzed using two-way analysis of variance and least significant difference post hoc tests (α=0.05). Significant effects of the adhesion strategy (p=0.006) and the composite type (p=0.000) were found. Interaction terms were not significant (p=0.292). Regardless of the substrate-adherend combination, protocol 1 (17-22 MPa) showed significantly higher results than did protocols 2 (15-17 MPa) and 3 (11-17 MPa) (p=0.028, p=0.002, respectively). The highest results were obtained from the G-G combination after all three protocols (17-22 MPa). The incidence of cohesive failures was more common when the substrate and the adherend were the same composite type (AS-AS: 87.5%, 87.5%, 75%; G-G: 100%, 75%, 50% for protocols 1, 2, and 3, respectively). When substrate and adherend were used interchangeably, adhesive failures were more frequent (25%, 50%, and 100% for protocol 1, 2, and 3, respectively). When the substrate and the adherend are of the same type, greater repair strength could be expected. In the repair of composites next to the dentin, depending on the composite type, conditioning the composite with silica coating and silanization after etching the dentin adds to the repair strength compared to the results obtained with silane application only.

  12. [Effect of penicillin and the habitat medium in the body of bacterial carriers on the intercellular bonds in populations of the meningococcus and pertussis microbe].

    PubMed

    Vysotskiĭ, V V; Smirnova-Mutusheva, M A; Efimova, O G; Bakulina, N A

    1983-04-01

    The relationship of the bacterial cells in populations and their adhesion activity is at present one of the research priorities in microbiological studies. The stimulating effect of penicillin on the development of morphologically different intercellular bonds (IB) in populations of the pertussis causative agent and first of all derivatives or evaginates of the cell wall membranes was observed. Morphologically similar systems and polytubular IB were detected in populations of meningococcal strains isolated from carriers having no signs of the disease. Correlation between the after-effect of penicillin and the presence of the causative agent in bacterial carriers was shown. Unknown systems of interlacing tubular structures not directly bound with the cells, the walls of which were single contour membranes were determined in the meningococcal populations treated with penicillin. IB were observed in the population in the form of transpopulation cords. Morphologically different IB playing the role of specialized organelles might be considered as factors of the functional unity of the bacterial population as a multicellular system.

  13. Development of novel dental adhesive with double benefits of protein-repellent and antibacterial capabilities.

    PubMed

    Zhang, Ning; Weir, Michael D; Romberg, Elaine; Bai, Yuxing; Xu, Hockin H K

    2015-07-01

    Secondary caries at the tooth-restoration margins remains a main reason for restoration failure. The objectives of this study were to: (1) combine protein-repellent 2-methacryloyloxyethyl phosphorylcholine (MPC) with quaternary ammonium dimethylaminohexadecyl methacrylate (DMAHDM) to develop a new dental adhesive with double benefits of protein-repellent and antibacterial capabilities for the first time; and (2) investigate the effects on protein adsorption, anti-biofilm activity, and dentin bond strength. MPC and DMAHDM were incorporated into Scotchbond Multi-Purpose (SBMP) primer and adhesive. Dentin shear bond strengths were measured using extracted human molars. Protein adsorption onto the adhesive resin surfaces was determined by the micro bicinchoninic acid (BCA) method. A dental plaque microcosm biofilm model with human saliva as inoculum was used to investigate biofilm metabolic activity, colony-forming unit (CFU) counts, lactic acid production and live/dead staining of biofilms on resins. Incorporation of 7.5% MPC and 5% DMAHDM into primer and adhesive did not adversely affect the dentin shear bond strength (p>0.1). The resin with 7.5% MPC+5% DMAHDM had protein adsorption that was nearly 20-fold less than SBMP control (p<0.05). The resin with 7.5% MPC+5% DMAHDM had much stronger antibacterial effects than using MPC or DMAHDM alone (p<0.05). Biofilm CFU counts on the resin with 7.5% MPC+5% DMAHDM were reduced by more than 4 orders of magnitude, compared to SBMP control. The use of double agents (protein-repellent MPC+antibacterial DMAHDM) in dental adhesive achieved much stronger inhibition of biofilms than using each agent alone. The novel protein-repellent and antibacterial bonding agent is promising to reduce biofilm/plaque buildup and reduce recurrent caries at the tooth-restoration margins. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Toward the Prediction of Water Exchange Rates in Magnetic Resonance Imaging Contrast Agents: A Density Functional Theory Study.

    PubMed

    Regueiro-Figueroa, Martín; Platas-Iglesias, Carlos

    2015-06-18

    We present a theoretical investigation of Gd-Owater bonds in different complexes relevant as contrast agents in magnetic resonance imaging (MRI). The analysis of the Ln-Owater distances, electron density (ρBCP), and electron localization function (ELF) at the bond critical points of [Ln(DOTA)(H2O)](-) and [Ln(DTPA-BMA)(H2O)] indicates that the strength of the Ln-Owater bonds follows the order DTPA-BMA > DOTA (M isomer) > DOTA (m isomer). The ELF values decrease along the 4f period as the Ln-Owater bonds get shorter, in line with the labile capping bond phenomenon. Extension of these calculations to other Gd(3+) complexes allowed us to correlate the experimentally observed water exchange rates and the calculated ρBCP and ELF values. The water exchange reaction becomes faster as the Gd-Owater bonds are weakened, which is reflected in longer bond distances and lower values of ρBCP and ELF. DKH2 calculations show that the two coordinated water molecules may also have significantly different (17)O hyperfine coupling constants (HFCCs).

  15. [Bonding agent influence on shear bond strength of titanium/polyglass interface].

    PubMed

    Oyafuso, Denise Kanashiro; Bottino, Marco Antonio; Itinoche, Marcos Koiti; Nasraui, Anna Paula; Costa, Elza Maria Valadares da

    2003-09-01

    There is little information regarding bond strengths of polyglass to metal alloys. This study evaluated the influence of bonding system on shear bond strength of a composite resin (Artglass/Heraeus Kulzer) to cast titanium (Ti). Twenty metallic structures (4mm in diameter, 5mm thick) of titanium grade I were cast shaped and abraded with 250mm aluminum oxide and separated into two groups. For each group was applied one bonding system (Siloc or Retention Flow) before opaque and dentin polymer superposition. This procedure was managed using teflon matrices. They were manipulated and polymerized according to the manufacturer's recommendations. The samples were stored in distilled water for 24 hours at 37º and thermocycled (5º and 55ºC/500 cycles). Shear bond strength tests were performed by using an Instron Universal testing machine at a crosshead speed of 5mm/min. Results were analyzed statistically with one-way ANOVA (a=0,5) and they indicated that the Retention Flow system was statistically better than Siloc (20.74 MPa and 11.65 MPa , respectively). It was possible to conclude that the bonding agent influenced the adhesion between polymer and cast titanium.

  16. Influence of light-curing sources on polymerization reaction kinetics of a restorative system.

    PubMed

    D'Alpino, Paulo H P; Svizero, Nádia R; Pereira, José C; Rueggeberg, Frederick A; Carvalho, Ricardo M; Pashley, David H

    2007-02-01

    To determine the effect of using a variety of commercial light-curing units on polymerization of a dentin-bonding agent (Adper Single Bond) and of a resin composite (Filtek Z250). Infrared (IR) spectra were obtained kinetically at one scan/second at 2 cm(-1) resolution for a period of 5 minutes and were analyzed for: maximum conversion rate (%/s), time into exposure when maximum rate occurred (seconds), conversion at maximum rate (%), and total conversion (%) at 300 seconds by comparison of aliphatic-to-aromatic absorption IR peak ratios, before and after polymerization. Light units used were: QTH 540 mW/cm2 (XL3000); LED 750 mW/cm2 (Elipar FreeLight 2); PAC 2,130 mW/cm2 (ARC II). Exposure followed manufacturers' recommendations: dentin bonding agent for 10 seconds, RC for 20 seconds (QTH), and 10 seconds (LED and PAC). Polymerization kinetics was evaluated at the bottom surface (2.5 mm thick) for the resin composite and as a thin film for the dentin bonding agent on the diamond surface of an attenuated total reflectance accessory in the IR spectrometer. Values (n = 5) were compared using ANOVA and Tukey's pairwise post-hoc test: pre-set alpha 0.05. PAC produced the highest total conversion and conversion rate for the resin composite (P < 0.05). Total conversion was lower for dentin bonding adhesive using PAC than with LED or QTH (P < 0.05). LED provided the highest proportion of conversion at the maximum rate with respect to conversion at 300 seconds for both materials. QTH demonstrated the lowest maximum rate value that occurred at a longer time into exposure (P < 0.05). Polymerization kinetic parameters varied greatly between the restorative materials as well as among light-curing unit types when compared to values observed when using a QTH light as control.

  17. Effect of Abutment Modification and Cement Type on Retention of Cement-Retained Implant Supported Crowns

    PubMed Central

    Farzin, Mitra; Torabi, Kianoosh; Ahangari, Ahmad Hasan; Derafshi, Reza

    2014-01-01

    Objective: Provisional cements are commonly used to facilitate retrievability of cement-retained fixed implant restorations; but compromised abutment preparation may affect the retention of implant-retained crowns.The purpose of this study was to investigate the effect of abutment design and type of luting agent on the retentive strength of cement-retained implant restorations. Materials and Method: Two prefabricated abutments were attached to their corresponding analogs and embedded in an acrylic resin block. The first abutment (control group) was left intact without any modifications. The screw access channel for the first abutment was completely filled with composite resin. In the second abutment, (test group) the axial wall was partially removed to form an abutment with 3 walls. Wax models were made by CAD/CAM. Ten cast copings were fabricated for each abutment. The prepared copings were cemented on the abutments by Temp Bond luting agent under standardized conditions (n=20). The assemblies were stored in 100% humidity for one day at 37°C prior to testing. The cast crown was removed from the abutment using an Instron machine, and the peak removal force was recorded. Coping/abutment specimens were cleaned after testing, and the testing procedure was repeated for Dycal luting agent (n=20). Data were analyzed with two- way ANOVA (α=0.05). Results: There was no significant difference in the mean transformed retention (Ln-R) between intact abutments (4.90±0.37) and the abutments with 3 walls (4.83±0.25) using Dycal luting agent. However, in TempBond group, the mean transformed retention (Ln-R) was significantly lower in the intact abutment (3.9±0.23) compared to the abutment with 3 walls (4.13±0.33, P=0.027). Conclusion: The retention of cement-retained implant restoration can be improved by the type of temporary cement used. The retention of cast crowns cemented to implant abutments with TempBond is influenced by the wall removal. PMID:25628660

  18. 29 CFR 453.21 - Interests held in agents, brokers, and surety companies.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... with it, the disqualification would be effective if a labor organization or any of the specified.... 453.21 Section 453.21 Labor Regulations Relating to Labor OFFICE OF LABOR-MANAGEMENT STANDARDS, DEPARTMENT OF LABOR LABOR-MANAGEMENT STANDARDS GENERAL STATEMENT CONCERNING THE BONDING REQUIREMENTS OF THE...

  19. 29 CFR 453.21 - Interests held in agents, brokers, and surety companies.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... with it, the disqualification would be effective if a labor organization or any of the specified.... 453.21 Section 453.21 Labor Regulations Relating to Labor OFFICE OF LABOR-MANAGEMENT STANDARDS, DEPARTMENT OF LABOR LABOR-MANAGEMENT STANDARDS GENERAL STATEMENT CONCERNING THE BONDING REQUIREMENTS OF THE...

  20. Resorcinol-formaldehyde reactions in dilute solution observed by carbon-13 NMR spectroscopy

    Treesearch

    Alfred W. Christiansen

    2000-01-01

    A recently discovered coupling agent, hydroxymethylated resorcinol (HMR), based on resorcinol-formaldehyde, can greatly enhance wood-to-epoxy resin bond durability in exterior applications. However, for HMR to be most effective, it needs to be prepared a few hours before it is applied to the...

  1. Hybrid flotation--membrane filtration process for the removal of heavy metal ions from wastewater.

    PubMed

    Blöcher, C; Dorda, J; Mavrov, V; Chmiel, H; Lazaridis, N K; Matis, K A

    2003-09-01

    A promising process for the removal of heavy metal ions from aqueous solutions involves bonding the metals firstly to a special bonding agent and then separating the loaded bonding agents from the wastewater stream by separation processes. For the separation stage, a new hybrid process of flotation and membrane separation has been developed in this work by integrating specially designed submerged microfiltration modules directly into a flotation reactor. This made it possible to combine the advantages of both flotation and membrane separation while overcoming the limitations. The feasibility of this hybrid process was proven using powdered synthetic zeolites as bonding agents. Stable fluxes of up to 80l m(-2)h(-1) were achieved with the ceramic flat-sheet multi-channel membranes applied at low transmembrane pressure (<100 mbar). The process was applied in lab-scale to treat wastewater from the electronics industry. All toxic metals in question, namely copper, nickel and zinc, were reduced from initial concentrations of 474, 3.3 and 167mg x l(-1), respectively, to below 0.05 mg x l(-1), consistently meeting the discharge limits.

  2. A reduction of diffusion in PVA Fricke hydrogels

    NASA Astrophysics Data System (ADS)

    Smith, S. T.; Masters, K. S.; Hosokawa, K.; Blinco, J.; Crowe, S. B.; Kairn, T.; Trapp, J. V.

    2015-01-01

    A modification to the PVA-FX hydrogel whereby the chelating agent, xylenol orange, was partially bonded to the gelling agent, poly-vinyl alcohol, resulted in an 8% reduction in the post irradiation Fe3+ diffusion, adding approximately 1 hour to the useful timespan between irradiation and readout. This xylenol orange functionalised poly-vinyl alcohol hydrogel had an OD dose sensitivity of 0.014 Gy-1 and a diffusion rate of 0.133 mm2 h-1. As this partial bond yields only incremental improvement, it is proposed that more efficient methods of bonding xylenol orange to poly-vinyl alcohol be investigated to further reduce the diffusion in Fricke gels.

  3. Chitosan-Copper (II) complex as antibacterial agent: synthesis, characterization and coordinating bond- activity correlation study

    NASA Astrophysics Data System (ADS)

    Mekahlia, S.; Bouzid, B.

    2009-11-01

    The antimicrobial activity of chitosan is unstable and sensitive to many factors such as molecular weight. Recent investigations showed that low molecular weight chitosan exhibited strong bactericidal activities compared to chitosan with high molecular weight. Since chitosan degradation can be caused by the coordinating bond, we attempt to synthesize and characterize the chitosan-Cu (II) complex, and thereafter study the coordinating bond effect on its antibacterial activity against Salmonella enteritidis. Seven chitosan-copper complexes with different copper contents were prepared and characterized by FT-IR, UV-vis, XRD and atomic absorption spectrophotometry (AAS). Results indicated that for chitosan-Cu (II) complexes with molar ratio close to 1:1, the inhibition rate reached 100%.

  4. Effects of at-home and in-office bleaching agents on the shear bond strength of metal, ceramic, and composite brackets to enamel.

    PubMed

    Rahul, M; Kumar, P Anil; Nair, Amal S; Mathew, Shino; Amaladas, Antony Shijoy; Ommen, Anna

    2017-01-01

    This study aimed to evaluate the effects of at-home and in-office bleaching on the shear bond strength (SBS) of metal, ceramic, and composite orthodontic brackets and to compare their SBSs. A total of 96 human lower premolar teeth were used for this study. Six teeth were used for scanning electron microscopic study while the remaining ninety were divided into three equal groups. Each group was further subdivided into three subgroups with ten samples each. Three protocols were used. In the at-home bleaching group (n = 30), opalescence non-PF (potassium nitrate and fluoride) bleaching agent (10% carbamide peroxide) was applied onto the teeth daily for 14 days and left for 8 h each day. Teeth in the in-office group (n = 30) were treated twice in consecutive days with Opalescence boost PF (40% hydrogen peroxide). After bleaching, the specimens were stored in distilled water for 1 day before bonding. SBS testing was performed on all teeth using Instron universal testing machine. Analysis of variance indicated a significant difference (P < 0.005) among the groups. Maximum SBS was shown by ceramic brackets in control group (Ib) and minimum was shown by composite brackets of in-office bleached group (IIIc). The results showed that at-home bleaching did not affect the SBS significantly whereas in-office bleaching reduced SBS of metal, ceramic, and composite brackets significantly. It is preferable to use metal or ceramic brackets than composite brackets for bonding 24 h after bleaching.

  5. Dental Items of Significance, Number 43

    DTIC Science & Technology

    1994-08-15

    The dental ofice versions, on the other hand, commonly include a resin cement and dentin bonding agent to faciitate the clinical aspect of...resin bonding procedures. The recall was ordered because of incidents In which the atchant gel was inadvertently expressed out of the barrel of the...iterally "gum up the wash water recirculating pump and cause the unit to drain slowly. Wash agent pumps are a convenience feature but also serve the

  6. Effect of fat content and homogenization under conventional or ultra-high-pressure conditions on interactions between proteins in rennet curds.

    PubMed

    Zamora, A; Trujillo, A J; Armaforte, E; Waldron, D S; Kelly, A L

    2012-09-01

    The objective of this study was to investigate the influence of conventional and ultra-high-pressure homogenization on interactions between proteins within drained rennet curds. The effect of fat content of milk (0.0, 1.8, or 3.6%) and homogenization treatment on dissociation of proteins by different chemical agents was thus studied. Increasing the fat content of raw milk increased levels of unbound whey proteins and calcium-bonded caseins in curds; in contrast, hydrophobic interactions and hydrogen bonds were inhibited. Both homogenization treatments triggered the incorporation of unbound whey proteins in the curd, and of caseins through ionic bonds involving calcium salts. Conventional homogenization-pasteurization enhanced interactions between caseins through hydrogen bonds and hydrophobic interactions. In contrast, ultra-high-pressure homogenization impaired hydrogen bonding, led to the incorporation of both whey proteins and caseins through hydrophobic interactions and increased the amount of unbound caseins. Thus, both homogenization treatments provoked changes in the protein interactions within rennet curds; however, the nature of the changes depended on the homogenization conditions. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. Comparison of the tensile bond strength of high-noble, noble, and base metal alloys bonded to enamel.

    PubMed

    Sen, D; Nayir, E; Pamuk, S

    2000-11-01

    Although the bond strengths of various resin composite luting materials have been reported in the literature, the evaluation of these systems with various cast alloys of different compositions has not been completely clarified. To evaluate the tensile bond strength of sandblasted high-noble, noble, and base metal alloys bonded to etched enamel by 2 different bonding agents of different chemical composition: Panavia-Ex (BIS-GMA) and Super-Bond (4-META acrylic). Flat enamel surfaces were prepared on buccal surfaces of 60 extracted noncarious human incisors. Teeth were divided into 3 groups of 20 each. Twenty circular disks of 5 mm diameter were prepared for casting for each group. Group I was cast with a high-noble, group II with a noble, and group III with a base metal alloy. The surfaces of the disks were sandblasted with 250 microm Al(2)O(3). Ten disks of each group were bonded to exposed enamel surfaces with Super-Bond and 10 disks with Panavia-Ex as recommended by the manufacturer. The tensile bond strength was measured with an Instron universal testing machine with a crosshead speed of 0.5 mm/min until failure occurred. Two-way ANOVA was used to evaluate the results. The differences in bond strengths of Super-Bond and Panavia-Ex with different alloys were not significant. The highest bond strengths were obtained in base metal alloys, followed by noble and high-noble alloys. These results were significant. Panavia-Ex and Super-Bond exhibited comparable tensile bond strengths. For both luting agents, the highest bond strengths were achieved with base metal alloys and the lowest with high-noble alloys.

  8. A targeted nanoglobular contrast agent from host-guest self-assembly for MR cancer molecular imaging.

    PubMed

    Zhou, Zhuxian; Han, Zhen; Lu, Zheng-Rong

    2016-04-01

    The clinical application of nanoparticular Gd(III) based contrast agents for tumor molecular MRI has been hindered by safety concerns associated with prolonged tissue retention, although they can produce strong tumor enhancement. In this study, a targeted well-defined cyclodextrin-based nanoglobular contrast agent was developed through self-assembly driven by host-guest interactions for safe and effective cancer molecular MRI. Multiple β-cyclodextrins attached POSS (polyhedral oligomeric silsesquioxane) nanoglobule was used as host molecule. Adamantane-modified macrocyclic Gd(III) contrast agent, cRGD (cyclic RGDfK peptide) targeting ligand and fluorescent probe was used as guest molecules. The targeted host-guest nanoglobular contrast agent cRGD-POSS-βCD-(DOTA-Gd) specifically bond to αvβ3 integrin in malignant 4T1 breast tumor and provided greater contrast enhancement than the corresponding non-targeted agent. The agent also provided significant fluorescence signal in tumor tissue. The histological analysis of the tumor tissue confirmed its specific and effective targeting to αvβ3 integrin. The targeted imaging agent has a potential for specific cancer molecular MR and fluorescent imaging. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Antimicrobial and physical characteristics of orthodontic primers containing antimicrobial agents.

    PubMed

    Chung, Shin-Hye; Cho, Soha; Kim, Kyungsun; Lim, Bum-Soon; Ahn, Sug-Joon

    2017-03-01

    To compare the antimicrobial and physical properties of experimental primers containing chlorhexidine (CHX) or ursolic acid (UA) with a commercial primer. Two antibacterial agents, 3 mg each of CHX and UA were incorporated respectively into 1 ml of Transbond XT primer (TX) to form antibacterial primers, TX-CHX and TX-UA. The antimicrobial activity of the three primers (TX, TX-CHX, and TX-UA) against Streptococcus mutans in both planktonic and biofilm phases was analyzed by determining minimum inhibitory and bactericidal concentrations and by performing growth and biofilm assays. Growth and biofilm assays were performed in both the absence and presence of thermocycling in a water tank to analyze the effects of water aging on the antimicrobial activities of primers. After bonding brackets onto bovine incisors using the primers, shear bond strength and mode of fracture were analyzed to compare physical properties. TX-CHX had stronger antimicrobial activity against S. mutans in the planktonic and biofilm phases than did TX or TX-UA. When applied, TX-CHX completely inhibited the growth and biofilm formation of S. mutans . In addition, the antimicrobial activity of TX-CHX was maintained after thermocycling. However, TX-UA did not show significant antimicrobial activity compared with TX. There was no significant difference in either shear bond strength or bond failure interface among the primers. Incorporation of CHX into an orthodontic primer may help prevent enamel demineralization around surfaces without compromising its physical properties.

  10. Neither bridging nor bonding: A test of socialization effects by ethnically diverse voluntary associations on participants' inter-ethnic tolerance, inter-ethnic trust and intra-ethnic belonging.

    PubMed

    van der Meer, Tom

    2016-01-01

    The distinction between bridging and bonding associations is a cornerstone of social capital research. Nevertheless, this study is the first to provide a direct test of the socialization mechanism that supposedly causes ethnically mixed (bridging) associations to generate interethnic tolerance and trust, and homogenous (bonding) associations to cement self-affirming identities. This multilevel analysis of the Citizenship, Involvement & Democracy (CID) 1999/2000 survey data on Mannheim (Germany), Enschede (the Netherlands), and Aberdeen (Scotland) covers 3166 active participants in 645 associations. The CID includes objective, exogenous measures of each association's composition and aim. Socialization and self-selection effects are pulled apart through interactions with detailed measures of associational involvement. The results display no evidence for (diverse and homogenous) associations as socializing agents. Although inter-ethnic tolerance is higher in ethnically diverse associations, this should be attributed to self-selection effects. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Destruction of chemical warfare agents using metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    Mondloch, Joseph E.; Katz, Michael J.; Isley, William C., III; Ghosh, Pritha; Liao, Peilin; Bury, Wojciech; Wagner, George W.; Hall, Morgan G.; Decoste, Jared B.; Peterson, Gregory W.; Snurr, Randall Q.; Cramer, Christopher J.; Hupp, Joseph T.; Farha, Omar K.

    2015-05-01

    Chemical warfare agents containing phosphonate ester bonds are among the most toxic chemicals known to mankind. Recent global military events, such as the conflict and disarmament in Syria, have brought into focus the need to find effective strategies for the rapid destruction of these banned chemicals. Solutions are needed for immediate personal protection (for example, the filtration and catalytic destruction of airborne versions of agents), bulk destruction of chemical weapon stockpiles, protection (via coating) of clothing, equipment and buildings, and containment of agent spills. Solid heterogeneous materials such as modified activated carbon or metal oxides exhibit many desirable characteristics for the destruction of chemical warfare agents. However, low sorptive capacities, low effective active site loadings, deactivation of the active site, slow degradation kinetics, and/or a lack of tailorability offer significant room for improvement in these materials. Here, we report a carefully chosen metal-organic framework (MOF) material featuring high porosity and exceptional chemical stability that is extraordinarily effective for the degradation of nerve agents and their simulants. Experimental and computational evidence points to Lewis-acidic ZrIV ions as the active sites and to their superb accessibility as a defining element of their efficacy.

  12. Destruction of chemical warfare agents using metal-organic frameworks.

    PubMed

    Mondloch, Joseph E; Katz, Michael J; Isley, William C; Ghosh, Pritha; Liao, Peilin; Bury, Wojciech; Wagner, George W; Hall, Morgan G; DeCoste, Jared B; Peterson, Gregory W; Snurr, Randall Q; Cramer, Christopher J; Hupp, Joseph T; Farha, Omar K

    2015-05-01

    Chemical warfare agents containing phosphonate ester bonds are among the most toxic chemicals known to mankind. Recent global military events, such as the conflict and disarmament in Syria, have brought into focus the need to find effective strategies for the rapid destruction of these banned chemicals. Solutions are needed for immediate personal protection (for example, the filtration and catalytic destruction of airborne versions of agents), bulk destruction of chemical weapon stockpiles, protection (via coating) of clothing, equipment and buildings, and containment of agent spills. Solid heterogeneous materials such as modified activated carbon or metal oxides exhibit many desirable characteristics for the destruction of chemical warfare agents. However, low sorptive capacities, low effective active site loadings, deactivation of the active site, slow degradation kinetics, and/or a lack of tailorability offer significant room for improvement in these materials. Here, we report a carefully chosen metal-organic framework (MOF) material featuring high porosity and exceptional chemical stability that is extraordinarily effective for the degradation of nerve agents and their simulants. Experimental and computational evidence points to Lewis-acidic Zr(IV) ions as the active sites and to their superb accessibility as a defining element of their efficacy.

  13. 7 CFR 356.5 - Bonded release.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., in place of any property specified in § 356.1 and release the property to the owner or agent of the... 7 Agriculture 5 2010-01-01 2010-01-01 false Bonded release. 356.5 Section 356.5 Agriculture..., DEPARTMENT OF AGRICULTURE FORFEITURE PROCEDURES § 356.5 Bonded release. (a) The Deputy Administrator may...

  14. 19 CFR 113.23 - Changes made on the bond.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... changes—(1) Modification or interlineation. Modifications or interlineations are changes which go to the..., which do not go to the substance, or result in basic revision of the bond. (b) Prior to signing. When... parties to the bond, a statement by an agent of the surety company or by the personal sureties to that...

  15. The Trench Throws a Dirt Clod at Scientists

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This picture, obtained by the microscopic imager on NASA's Opportunity rover during sol 24, February 17 PST, shows soil clods exposed in the upper wall of the trench dug by Opportunity's right front wheel on sol 23. The clods were not exposed until the trench was made. The presence of soil clods implies weak bonding between individual soil grains. The chemical agent or mineral that causes the dirt to bind together into a clod, which scientists call the 'bonding agent,' is currently unknown. Moessbauer and alpha particle X-ray spectrometer measurements of this spot, planned for sol 25, might help explain the bonding, which would ultimately help the rover team understand how geological processes vary across the red planet. In any case, the bonds between soil grains here cannot be very strong because the wheel dug down through this layer with little trouble.

  16. The possible role of maternal bonding style and CHRNB2 gene polymorphisms in nicotine dependence and related depressive phenotype.

    PubMed

    Csala, Iren; Egervari, Luca; Dome, Peter; Faludi, Gabor; Dome, Balazs; Lazary, Judit

    2015-06-03

    Neuronal nicotinic acetylcholinergic receptors (nAChR) and especially α4β2 nAChRs are the major targets for cessation medications and also for some promising antidepressant agents. Furthermore, depressive symptoms pose multifacet difficulties during cessation therapy. However, gene encoding for the β2 subunit of nAChRs has been poorly investigated in association with depression. Since both nicotine dependence (ND) and depressive phenotype are complex disorders, we investigated the effects of a significant early life experience, maternal bonding style (MB) and CHRNB2 gene SNPs on smoking-related depression. We recruited two hundred and thirty-two treatment-seeking smokers in our study. Phenotypic variants were evaluated using the Fagerstrom Test for Nicotine Dependence (FTND), the Zung Self-Rating Depression Scale (ZSDS) and the Parental Bonding Instrument (PBI). Besides the total score (TS) of ZSDS, impulsivity (ZSDS-I) and suicidal ideation (ZSDS-S) were distinguished as phenotypic variable. DNAs were extracted from buccal mucosa samples and one SNP in promoter and two SNPs in 3' UTR of CHRNB2 gene were genotyped. GLM and ANOVA tests were performed for genotype associations and interaction analyses. Maternal bonding had a significant impact on depressive phenotypes. Low care, high protection and affectionless control (ALC) were associated with ZSDS-TS and all subphenotypes of ZSDS. One SNP, the rs2072660 in 3' UTR, had a significant effect on the FTND score (p=0.010). Direct association of CHRNB2 variants and depressive phenotypes were not significant. However, in interaction with ALC, rs2072660 was significantly associated with ZSDS-S (p=0.005). MB had no significant effect on smoking-related phenotype. Our results highlight the important role of 3' UTR in the CHRNB2 gene in the shared molecular background of ND and depressive phenotype. Parental bonding style can be suggested as a significant environmental factor in further GxE studies of depression. The presented significant GxE interaction on smoking-related suicidal subphenotype may help establish further investigations on development of more effective and safer smoking cessation and antidepressant agents. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Interfacial properties of aluminum/glass-fiberreinforced polypropylene sandwich composites

    NASA Astrophysics Data System (ADS)

    Baştürk, S. B.; Guruşçu, A.; Tanoğlu, M.

    2013-07-01

    Aluminum/glass-fiber-reinforced polypropylene (Al/GFPP) laminates were manufactured by using various surface pretreatment techniques. Adhesion at the composite/metal interface was achieved by a surface pretreatment of Al sheets with amino-based silane coupling agents, incorporation of a polyolefin-based adhesive film and modification with a PP-based film containing 20 wt.% of maleic-anhydride-modified polypropylene (PP-g-MA). In order to increase the effect of bonding between components of the laminates, the combination of silane treatment and the addition of the PP-based film was also investigated. The mechanical properties (shear, peel, and bending strengths) of adhesively bonded Al/GFPP laminates were examined to evaluate the effects of the surface treatments mentioned. It was revealed that the adhesion in the laminated Al/GFPP systems could be improved by the treatment of aluminum surface with an amino-based silane coupling agent. Judging from the results of peel and bending strength, with incorporation of polyolefin-based films, adhesion in the Al/GFPP laminates increased significantly. The modification of Al/GFPP interfaces with a PP-g-MA/PP layer led to the highest improvement in their adhesion properties. The combination of surface modification with silane and addition of PP-based films did not yield the high bending strength desired. This may be due to the insufficient bonding between silane groups and PP-based films.

  18. Adhesion of maxillofacial silicone elastomer to a fiber-reinforced composite resin framework.

    PubMed

    Kantola, Rosita; Lassila, Lippo; Vallittu, Pekka

    2011-01-01

    Recently, fiber-reinforced composite resin (FRC) has been introduced as a framework material for maxillofacial silicone prostheses. The purpose of this research was to study the tensile bond strength between a room temperature-polymerized maxillofacial silicone elastomer and a unidirectional FRC. Three different bonding agents were compared. Specimens were loaded in tension mode according to ISO 22401 in a universal testing device with a crosshead speed of 10 mm/min until bonding failure occurred. The influence of the surface characteristics (ground vs intact) was also studied. The highest tensile bond strength was seen with Gold Platinum Primer A-330-G, followed by Sofreliner primer. One-way analysis of variance revealed that the surface treatment of the FRC and the adhesive used had a significant effect on tensile bond strength between silicone and FRC (P < .05). Grinding enhanced adhesion, especially with Gold Platinum Primer A-330-G and Sofreliner primer. The fracture type also changed to more cohesive in nature. The FRC substructure can successfully be bonded to maxillofacial silicone elastomer by using primer containing methyl ethyl ketone and dichloromethane solvent. Bonding can be improved by roughening the FRC substrate via grinding.

  19. 31 CFR 351.82 - Does Public Debt prohibit the issuance of Series EE savings bonds in a chain letter scheme?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of Series EE savings bonds in a chain letter scheme? 351.82 Section 351.82 Money and Finance... § 351.82 Does Public Debt prohibit the issuance of Series EE savings bonds in a chain letter scheme? We do not permit bonds to be issued in a chain letter or pyramid scheme. We authorize an issuing agent...

  20. 31 CFR 351.82 - Does Public Debt prohibit the issuance of Series EE savings bonds in a chain letter scheme?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of Series EE savings bonds in a chain letter scheme? 351.82 Section 351.82 Money and Finance... § 351.82 Does Public Debt prohibit the issuance of Series EE savings bonds in a chain letter scheme? We do not permit bonds to be issued in a chain letter or pyramid scheme. We authorize an issuing agent...

  1. 31 CFR 359.67 - Does Public Debt prohibit the issuance of Series I savings bonds in a chain letter scheme?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of Series I savings bonds in a chain letter scheme? 359.67 Section 359.67 Money and Finance: Treasury... Public Debt prohibit the issuance of Series I savings bonds in a chain letter scheme? We do not permit bonds to be issued in a chain letter or pyramid scheme. We authorize an issuing agent to refuse to issue...

  2. 31 CFR 351.82 - Does Public Debt prohibit the issuance of Series EE savings bonds in a chain letter scheme?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of Series EE savings bonds in a chain letter scheme? 351.82 Section 351.82 Money and Finance... § 351.82 Does Public Debt prohibit the issuance of Series EE savings bonds in a chain letter scheme? We do not permit bonds to be issued in a chain letter or pyramid scheme. We authorize an issuing agent...

  3. 31 CFR 359.67 - Does Public Debt prohibit the issuance of Series I savings bonds in a chain letter scheme?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of Series I savings bonds in a chain letter scheme? 359.67 Section 359.67 Money and Finance: Treasury... Public Debt prohibit the issuance of Series I savings bonds in a chain letter scheme? We do not permit bonds to be issued in a chain letter or pyramid scheme. We authorize an issuing agent to refuse to issue...

  4. 31 CFR 351.82 - Does Public Debt prohibit the issuance of Series EE savings bonds in a chain letter scheme?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... issuance of Series EE savings bonds in a chain letter scheme? 351.82 Section 351.82 Money and Finance... § 351.82 Does Public Debt prohibit the issuance of Series EE savings bonds in a chain letter scheme? We do not permit bonds to be issued in a chain letter or pyramid scheme. We authorize an issuing agent...

  5. 31 CFR 359.67 - Does Public Debt prohibit the issuance of Series I savings bonds in a chain letter scheme?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... issuance of Series I savings bonds in a chain letter scheme? 359.67 Section 359.67 Money and Finance... § 359.67 Does Public Debt prohibit the issuance of Series I savings bonds in a chain letter scheme? We do not permit bonds to be issued in a chain letter or pyramid scheme. We authorize an issuing agent...

  6. 31 CFR 359.67 - Does Public Debt prohibit the issuance of Series I savings bonds in a chain letter scheme?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of Series I savings bonds in a chain letter scheme? 359.67 Section 359.67 Money and Finance: Treasury... Public Debt prohibit the issuance of Series I savings bonds in a chain letter scheme? We do not permit bonds to be issued in a chain letter or pyramid scheme. We authorize an issuing agent to refuse to issue...

  7. Correlation of bond strength with surface roughness using a new roughness measurement technique.

    PubMed

    Winkler, M M; Moore, B K

    1994-07-01

    The correlation between shear bond strength and surface roughness was investigated using new surface measurement methods. Bonding agents and associated resin composites were applied to set amalgam after mechanically roughening its surface. Surface treatments were noe (as set against glass), 80 grit, and 600 grit abrasive paper. Surface roughness (R(a) as measured parallel and perpendicular (+) to the direction of the polishing scratches and true profile length were measured. A knife-edge was applied (rate = 2.54 mm/min) at the bonding agent/amalgam interface of each sample until failure. Coefficients of determination for mean bond strength vs either roughness (R(a), of profile length were significantly higher for measurements in parallel directions than for those measurements in (+) directions. The shear bond strength to set amalgam for a PENTA-containing adhesives system (L.D. Caulk Division) was not significantly different from that of a PENTA-free adhesive (3M Dental Products Division), even though PENTA has been reported to increase bond strength to nonprecious metals. The shear bond strength of resin composite to amalgam is correlated to surface roughness when it is measured parallel to the polishing scratches. This correlation is significantly lower when surface roughness is measured in the typical manner, perpendicular to the polishing scratches.

  8. The Structure and Properties of Diffusion Assisted Bonded Joints in 17-4 PH, Type 347, 15-5 PH and Nitronic 40 Stainless Steels

    NASA Technical Reports Server (NTRS)

    Wigley, D. A.

    1981-01-01

    Diffusion assisted bonds are formed in 17-4 PH, 15-5 PH, type 347 and Nitronic 40 stainless steels using electrodeposited copper as the bonding agent. The bonds are analyzed by conventional metallographic, electron microprobe analysis, and scanning electron microscopic techniques as well as Charpy V-notch impact tests at temperatures of 77 and 300 K. Results are discussed in terms of a postulated model for the bonding process.

  9. Microleakage of light-cured resin and resin-modified glass-ionomer dentin bonding agents applied with co-cure vs pre-cure technique.

    PubMed

    Tulunoglu, O; Uçtaşh, M; Alaçam, A; Omürlü, H

    2000-01-01

    This in vitro study evaluated the effect of dentin bonding agents in reducing microleakage after three months in Class V restorations restored with Z100 resin composite. Materials tested were three types of resin-based dentin bonding agents: a multi-step (Scotchbond Multi-Purpose); a one-step (Scotchbond One-Step); a self-etching, self-priming (Clearfil Liner Bond) and a resin-modified glass ionomer (GC Fuji Bond LC). Class V cavity preparations with occlusal margins in enamel and gingival margins in cementum were prepared both on labial and lingual surfaces of extracted premolar teeth. Restorations (two per tooth) were distributed randomly into nine test groups (n = 10) consisting of the various DBAs applied with co-cure and pre-cure techniques, and no dentin bonding as a negative control group. Samples were stored in saline for three months, thermocycled, stained with silver nitrate, then sectioned through the middle of the preparation to facilitate the removal of the composite resin restoration. For groups treated with the pre-cure technique, the differences between the enamel leakage values of SBMP-control, CFLB-control and SB1S-control subgroups were significant (p < 0.05). For enamel leakage values of groups treated with the co-cure technique, the differences between the SBMP-control, SB1S-control, CFLB-control and Fuji LC-control subgroups were significant (p < 0.05). For cementum leakage values of groups treated with pre-cure technique, the difference between the CFLB-control and the Fuji, SBMP and SB1S groups was significant (p < 0.05). No significant differences could be detected between the cementum leakage values of groups treated with the co-cure technique (p > 0.05). The differences between the values obtained with application of CFLB with the pre-cure and co-cure techniques at the cementum margins were found to be statistically significant (p = 0.02). No statistically significant differences could be detected between the pre-cure and co-cure values of the other test materials. Generally for every group, cementum microleakage values were greater than enamel microleakage values (p < 0.05). The use of Scotchbond Multi-Purpose, Scotchbond One-Step and Fuji Bond LC with the co-cure technique to decrease the application time did not cause any significant increase in microleakage. Only pre-curing using Clearfil Liner Bond provided better microleakage properties than the other pre-cured adhesives.

  10. Effect of surface treatments on the flexural properties and adhesion of glass fiber-reinforced composite post to self-adhesive luting agent and radicular dentin.

    PubMed

    Elnaghy, Amr M; Elsaka, Shaymaa E

    2016-01-01

    This study evaluated the effect of different surface treatments on the flexural properties and adhesion of glass fiber post to self-adhesive luting agent and radicular dentin. Seventy-five single-rooted human teeth were prepared to receive a glass fiber post (Reblida). The posts were divided into five groups according to the surface treatment: Gr C (control; no treatment), Gr S (silanization for 60 s), Gr AP (airborne-particle abrasion), Gr HF (etching with 9 % hydrofluoric acid for 1 min), and Gr M10 (etching with CH2Cl2 for 10 min). Dual-cure self-adhesive luting agent (Rely X Unicem) was applied to each group for testing the adhesion using micropush-out test. Failure types were examined with stereomicroscope and surface morphology of the posts was characterized using a scanning electron microscopy (SEM). Flexural properties of posts were assessed using a three-point bending test. Data were analyzed using ANOVA and Tukey's HSD test. Statistical significance was set at the 0.05 probability level. Groups treated with M10 showed significantly higher bond strength than those obtained with other surface treatments (P < 0.05). In general, improvements in bond strength (MPa) were found in the following order: M10 > C > S > AP > HF. Most failure modes were adhesive type of failures between dentin and luting agent (48.2%). SEM analysis revealed that the fiber post surfaces were modified after surface treatments. The surface treatments did not compromise the flexural properties of fiber posts. Application of M10 to the fiber post surfaces enhanced the adhesion to self-adhesive luting agent and radicular dentin.

  11. Maleated polypropylene film and wood fiber handsheet laminates

    Treesearch

    Sangyeob Lee; Todd F. Shupe; Leslie H. Groom; Chung Y. Hse

    2008-01-01

    The grafting effect of maleic anhydride (MA) as an interfacial bonding agent and its influence on the tensile strength properties of thermomechanical pulp handsheet-isotactic polypropylene (iPP) film laminates was studied. For the MA treated with benzoyl peroxide (BPO) as an initiator, tensile strength properties increased 76% with PP film over untreated laminates. The...

  12. Polyimide Precursor Solid Residuum

    NASA Technical Reports Server (NTRS)

    Weiser, Erik S. (Inventor); St.Clair, Terry L. (Inventor); Echigo, Yoshiaki (Inventor); Kaneshiro, Hisayasu (Inventor)

    2001-01-01

    A polyimide precursor solid residuum is an admixture of an aromatic dianhydride or derivative thereof and an aromatic diamine or derivative thereof plus a complexing agent, which is complexed with the admixture by hydrogen bonding. The polyimide precursor solid residuum is effectively employed in the preparation of polyimide foam and the fabrication of polyimide foam structures.

  13. Assessment of current adhesives in class I cavity: Nondestructive imaging using optical coherence tomography and microtensile bond strength.

    PubMed

    Makishi, Patricia; Thitthaweerat, Suppason; Sadr, Alireza; Shimada, Yasushi; Martins, Adriano Luis; Tagami, Junji; Giannini, Marcelo

    2015-09-01

    To evaluate the sealing ability and the microtensile bond strength (MTBS) of different adhesive systems bonded to dentin in class I cavities. Round tapered dentin cavities (3-mm diameter, 1.5-mm height) prepared in extracted human molars were restored using composite resin (Clearfil Majesty Posterior) with two-step etch-and-rinse adhesive system (Adper Single Bond 2: ASB2), two-step self-etch adhesive (Clearfil SE Bond: CSEB), all-in-one adhesives (G-Bond Plus: GBP; Tri-S Bond Plus: TSBP), or no adhesive (Control), or bonded using low-shrinkage composite with its proper adhesive (Filtek Silorane, Silorane Adhesive System: FSS). After 24-h water storage or 10,000 cycles of thermal stress, the specimens were immersed into a contrast agent. Two and three-dimensional images were obtained using optical coherence tomography (OCT). The mean percentage of high brightness (HB%) at the interfacial zone in cross-sectional images was calculated as an indicator of contrast agent or gap at the interface. The specimens were then sectioned into beams and the MTBS measured. The HB% (ASB2=TSBP=CSEBTSBP=GBP=FSS, ASB2>FSS) differed significantly among the adhesives. After aging, HB% increased for GBP and FSS specimens, and the MTBS decreased for FSS specimens (ANOVA, Tukey's post hoc, p<0.05). The HB% and MTBS were significantly and negatively correlated (p=0.002). Confocal laser scanning and scanning electron micrographs confirmed contrast agent infiltration within the gap. There was a significant correlation between sealing performance and bond strength of the adhesives in the whole cavity. After aging, the two-step systems showed equal or superior performance to the all-in-one and Silorane systems. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Compatibility between dental adhesive systems and dual-polymerizing composite resins.

    PubMed

    Michaud, Pierre-Luc; MacKenzie, Alexandra

    2016-10-01

    Information is lacking about incompatibilities between certain types of adhesive systems and dual-polymerizing composite resins, and universal adhesives have yet to be tested with these resins. The purpose of this in vitro study was to investigate the bonding outcome of dual-polymerizing foundation composite resins by using different categories of adhesive solutions and to determine whether incompatibilities were present. One hundred and eighty caries-free, extracted third molar teeth were allocated to 9 groups (n=20), in which 3 different bonding agents (Single Bond Plus [SB]), Scotchbond Multi-purpose [MP], and Scotchbond Universal [SU]) were used to bond 3 different composite resins (CompCore AF [CC], Core Paste XP [CP], and Filtek Supreme Ultra [FS]). After restorations had been fabricated using an Ultradent device, the specimens were stored in water at 37°C for 24 hours. The specimens were tested under shear force at a rate of 0.5 mm/min. The data were analyzed with Kruskal-Wallis tests and post hoc pairwise comparisons (α=.05). All 3 composite resins produced comparable shear bond strengths when used with MP (P=.076). However, when either SB or SU was used, the light-polymerized composite resin (FS) and 1 dual-polymerized foundation composite resin (CC) bonded significantly better than the other dual-polymerized foundation composite resin (CP) (P<.005). Both FS and CC performed best with SU but had acceptable results with all of the bonding agents. CP only performed acceptably with MP (P=.023) and had poor results with both other agents. Dual-polymerizing composite resins can obtain equally good bond strengths as light-polymerizing alternatives. However, not all dual-polymerizing composite resins perform well with all bonding systems; some incompatibilities exist between different products. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  15. Scanning electron microscopy evaluation of the effect of etching agents on human enamel surface.

    PubMed

    Zanet, Caio G; Arana-Chavez, Victor E; Fava, Marcelo

    2006-01-01

    Acid etching promotes microporosities on enamel surface, which provide a better bonding surface to adhesive materials. The purpose of this study was to comparatively analyze the microstructure of enamel surface after etching with 37% phosphoric acid or with two self-etching primers, Non-rinse conditioner (NRC) and Clearfil SE Bond (CSEB) using scanning electron microscopy. Thirty sound premolars were divided into 3 groups with ten teeth each: Group 1: the buccal surface was etched with 37% phosphoric acid for 15 seconds; Group 2: the buccal surface was etched with NRC for 20 seconds; Group 3: the buccal surface was etched with CSEB for 20 seconds. Teeth from Group 1 were rinsed with water; teeth from all groups were air-dried for 15 seconds. After that, all specimens were processed for scanning electron microscopy and analyzed in a Jeol 6100 SEM. The results showed deeper etching when the enamel surface was etched with 37% phosphoric acid, followed by NRC and CSEB. It is concluded that 37% phosphoric acid is still the best agent for a most effective enamel etching.

  16. Solute's perspective on how trimethylamine oxide, urea, and guanidine hydrochloride affect water's hydrogen bonding ability.

    PubMed

    Pazos, Ileana M; Gai, Feng

    2012-10-18

    While the thermodynamic effects of trimethylamine oxide (TMAO), urea, and guanidine hydrochloride (GdnHCl) on protein stability are well understood, the underlying mechanisms of action are less well characterized and, in some cases, even under debate. Herein, we employ the stretching vibration of two infrared (IR) reporters, i.e., nitrile (C≡N) and carbonyl (C═O), to directly probe how these cosolvents mediate the ability of water to form hydrogen bonds with the solute of interest, e.g., a peptide. Our results show that these three agents, despite having different effects on protein stability, all act to decrease the strength of the hydrogen bonds formed between water and the infrared probe. While the behavior of TMAO appears to be consistent with its protein-protecting ability, those of urea and GdnHCl are inconsistent with their role as protein denaturants. The latter is of particular interest as it provides strong evidence indicating that although urea and GdnHCl can perturb the hydrogen-bonding property of water their protein-denaturing ability does not arise from a simple indirect mechanism.

  17. Site-specific Isopeptide Bridge Tethering of Chimeric gp41 N-terminal Heptad Repeat Helical Trimers for the Treatment of HIV-1 Infection.

    PubMed

    Wang, Chao; Li, Xue; Yu, Fei; Lu, Lu; Jiang, Xifeng; Xu, Xiaoyu; Wang, Huixin; Lai, Wenqing; Zhang, Tianhong; Zhang, Zhenqing; Ye, Ling; Jiang, Shibo; Liu, Keliang

    2016-08-26

    Peptides derived from the N-terminal heptad repeat (NHR) of HIV-1 gp41 can be potent inhibitors against viral entry when presented in a nonaggregating trimeric coiled-coil conformation via the introduction of exogenous trimerization motifs and intermolecular disulfide bonds. We recently discovered that crosslinking isopeptide bridges within the de novo helical trimers added exceptional resistance to unfolding. Herein, we attempted to optimize (CCIZN17)3, a representative disulfide bond-stabilized chimeric NHR-trimer, by incorporating site-specific interhelical isopeptide bonds as the redox-sensitive disulfide surrogate. In this process, we systematically examined the effect of isopeptide bond position and molecular sizes of auxiliary trimeric coiled-coil motif and NHR fragments on the antiviral potency of these NHR-trimers. Pleasingly, (IZ14N24N)3 possessed promising inhibitory activity against HIV-1 infection and markedly increased proteolytic stability relative to its disulfide-tethered counterpart, suggesting good potential for further development as an effective antiviral agent for treatment of HIV-1 infection.

  18. Site-specific Isopeptide Bridge Tethering of Chimeric gp41 N-terminal Heptad Repeat Helical Trimers for the Treatment of HIV-1 Infection

    PubMed Central

    Wang, Chao; Li, Xue; Yu, Fei; Lu, Lu; Jiang, Xifeng; Xu, Xiaoyu; Wang, Huixin; Lai, Wenqing; Zhang, Tianhong; Zhang, Zhenqing; Ye, Ling; Jiang, Shibo; Liu, Keliang

    2016-01-01

    Peptides derived from the N-terminal heptad repeat (NHR) of HIV-1 gp41 can be potent inhibitors against viral entry when presented in a nonaggregating trimeric coiled-coil conformation via the introduction of exogenous trimerization motifs and intermolecular disulfide bonds. We recently discovered that crosslinking isopeptide bridges within the de novo helical trimers added exceptional resistance to unfolding. Herein, we attempted to optimize (CCIZN17)3, a representative disulfide bond-stabilized chimeric NHR-trimer, by incorporating site-specific interhelical isopeptide bonds as the redox-sensitive disulfide surrogate. In this process, we systematically examined the effect of isopeptide bond position and molecular sizes of auxiliary trimeric coiled-coil motif and NHR fragments on the antiviral potency of these NHR-trimers. Pleasingly, (IZ14N24N)3 possessed promising inhibitory activity against HIV-1 infection and markedly increased proteolytic stability relative to its disulfide-tethered counterpart, suggesting good potential for further development as an effective antiviral agent for treatment of HIV-1 infection. PMID:27562370

  19. Shear bond strength of resin composite bonded with two adhesives: Influence of Er: YAG laser irradiation distance

    PubMed Central

    Shirani, Farzaneh; Birang, Reza; Malekipour, Mohammad Reza; Hourmehr, Zahra; Kazemi, Shantia

    2014-01-01

    Background: Dental surfaces prepared with different Er:YAG laser distance may have different characteristics compared with those prepared with conventional instruments. The aim of this study was to investigate the effect of Er:YAG laser irradiation distance from enamel and dentin surfaces on the shear bond strength of composite with self-etch and etch and rinse bonding systems compared with conventional preparation method. Materials and Methods: Two hundred caries-free human third molars were randomly divided into twenty groups (n = 10). Ten groups were designated for enamel surface (E1-E10) and ten for dentin surface (D1-D10). Er: YAG laser (2940 nm) was used on the E1-E8 (240 mJ, 25 Hz) and D1-D8 (140 mJ, 30 Hz) groups at four different distances of 0.5 (standard), 2, 4 and 11 mm. Control groups (E9, E10, D9 and D10) were ground with medium grit diamond bur. The enamel and dentin specimens were divided into two subgroups that were bonded with either Single Bond or Clearfil SE Bond. Resin composite (Z100) was dispensed on prepared dentin and enamel. The shear bond strengths were tested using a universal testing machine. Data were analyzed by SPSS12 statistical software using three way analysis of variance, Tukey and independent t-test. P < 0.05 was considered as significant. Results: There was a significant difference between enamel and dentin substrates (P < 0.001) and between lased and un-lased groups; the un-lased group had significantly higher bond strength (P < 0.001). Shear bond strength increased significantly with an increase in the laser irradiation distance (P < 0.05) on enamel surfaces (in both bonding agent subgroups) and on dentin surfaces (in the Single Bond subgroup). Conclusion: Laser irradiation decreases shear bond strength. Irradiation distance affects shear bond strength and increasing the distance would decrease the negative effects of laser irradiation. PMID:25540665

  20. Effect of 830 nm Diode Laser Irradiation of Root Canal on Bond Strength of Metal and Fiber Post.

    PubMed

    Strefezza, Claudia; Amaral, Marcello Magri; Quinto, José; Gouw-Soares, Sheila Cynthia; Zamataro, Claudia Bianchi; Zezell, Denise Maria

    2018-05-16

    The correct selections of the cementing agent, the endodontic post material and placement protocol are critical to provide an increased longevity of the teeth that went through endodontic treatment. The irradiation with diode laser before post cementation, can promote an antimicrobial effect. However, there is a lack of information about the effect of 830 nm diode laser on the post bond strength. This study analyzed the effect of dentin root canal irradiation with high-intensity diode laser, at 830 nm, operating in continuous or pulsed mode, on the retention of metal or fiber posts, cemented with self-etching resinous composite (Panavia F) and zinc phosphate cement (ZnPO 4 ). Human roots were irradiated with diode laser (continuous and pulsed mode). The fiber posts were luted with Panavia F and the metal posts with Panavia F or ZnPO 4 cement. Specimens were sectioned into three sections (cervical, middle, and apical). The bond strength was measured by a push-out mechanical analysis. For the statistical analysis, a three-way ANOVA test was applied following a Tukey's pairwise comparison with a significance level of p = 0.05. The irradiated groups presented higher bond strength compared with nonirradiated group (p < 0.05), and the cervical and middle thirds presented higher on bond strength than the apical. The association of metal post and Panavia F presented higher bond strength when irradiated on continuous mode (p < 0.05). Fiber post and Panavia F presented higher bond strength associated to pulsed mode. The mode seems not to make a significant difference. These results corroborate the importance of the post bond to dentin and root canal debris removal to increase the tooth longevity. It was shown that the dentin to post bond strength were enhanced by the diode laser irradiation either on continuous or pulsed modes.

  1. Method of treating tumors

    DOEpatents

    DeNardo, Sally J.; Burke, Patricia A.; DeNardo, Gerald L.; Goodman, Simon; Matzku, legal representative, Kerstin; Matzku, Siegfried

    2006-04-18

    A method of treating tumors, such as prostate tumors, breast tumors, non-Hodgkin's lymphoma, and the like, includes the sequential steps of administering to the patient at least one dose of an antiangiogenic cyclo-arginine-glycine-aspartic acid-containing pentapeptide (cRGD pentapeptide); administering to the patient an anti-tumor effective amount of a radioimmunotherapeutic agent (RIT); and then administering to the patient at least one additional dose of cRGD pentapeptide. The cRGD pentapeptide is preferably cyclo-(Arg-Gly-Asp-D-Phe-[N-Me]-Val), and the RIT is preferably a radionuclide-labeled chelating agent-ligand complex in which chelating agent is chemically bonded to a tumor-targeting molecule, such as a monoclonal antibody.

  2. The Effect of Titanium Tetrafluoride and Sodium Hypochlorite on the Shear Bond Strength of Methacrylate and Silorane Based Composite Resins: an In-Vitro Study.

    PubMed

    Sharafeddin, Farahnaz; Koohpeima, Fatemeh; Razazan, Nader

    2017-06-01

    The bond strength of composites with different adhesive systems with dentin is an important factor in long term durability of composite restorations. The effect of titanium tetrafluoride (TiF 4 ) as anti caries agent and sodium hypochlorite (NaOCl) as disinfectant on the shear bond of nanofilled and silorane based composite resins have not been investigated in previous studies. This study was conducted to determine bond strength between dentin and two composite systems, by means of shear bond test using TiF 4 and NaOCl. Middle dentin of 60 intact extracted maxillary premolar teeth were exposed by sectioning the crowns at a depth of 2mm from central groove and parallel to the occlusal surface. Standardized smear layer was created using a 600-grit silicon carbide paper and then samples were embedded in acrylic resin blocks. Then the samples were randomly divided into 6 \\groups summarized as Group I: Z350, Group II: Z350+ NaOCl, Group III: Z350+ TiF 4 , Group IV: P90, Group V: P90+ NaOCl, Group VI: P90+ TiF 4 according to manufacturer's instruction. Then samples were subjected to shear bond strength (SBS) test using universal testing machine and data were analyzed using ANOVA and Tukey tests ( p < 0.05). Application of 5% NaOCl caused a significant decrease in SBS of nanofilled composite resin ( p = 0.004), and also silorane based composite resin ( p = 0.006). Application of 4% TiF 4 caused a significant increase in SBS of silorane based composite resin ( p = 0.001). The effect of TiF 4 on nanofilled composite was not statistically significant. Using TiF 4 has a positive effect on increasing the shear bond while NaOCl has negative effect on bond strength.

  3. Shear Bond Strength of Self-etching Adhesives to Cavities Prepared by Diamond Bur or Er,Cr:YSGG Laser and Effect of Prior Acid Etching.

    PubMed

    Jhingan, Pulkit; Sachdev, Vinod; Sandhu, Meera; Sharma, Karan

    2015-12-01

    To compare and evaluate shear bond strength of self-etching adhesives bonded to cavities prepared by diamond bur or Er,Cr:YSGG laser and the effect of prior acid etching on shear bond strength. Ninety-six caries-free human premolars were selected and divided into 2 groups depending on mode of cavity preparation (48 teeth each). Cavities were prepared with Er,Cr:YSGG laser in group 1 and diamond burs in an air-turbine handpiece in group 2. Groups 1 and 2 were further subdivided into three subgroups of 8 teeth each, which were bonded with sixth- or seventh-generation adhesives with or without prior acid etching, followed by restoration of all samples with APX Flow. These samples were subjected to shear bond strength testing. In addition, the surface morphology of 24 samples each from groups 1 and 2 was evaluated using SEM. Data were analyzed using the Shapiro-Wilk test, one- and two-way ANOVA, the t-test, and the least significant difference test, which showed that the data were normally distributed (p > 0.05). The shear bond strength of adhesives in cavities prepared by Er,Cr:YSGG laser was significantly higher than in diamond bur-prepared cavities (p < 0.05). SEM analysis showed a smear-layer-free anfractuous surface on laser-ablated teeth, in contrast to conventional bur-prepared teeth. The Er,Cr:YSGG laser-ablated surface proved to be more receptive for adhesion than those prepared by diamond bur irrespective of the bonding agent used. Seventh-generation adhesives yielded higher shear bond strength than did sixth-generation adhesives. Prior acid etching decreased the shear bond strength of self-etching adhesives.

  4. Effect of Mucoprotein on the Bond Strength of Resin Composite to Human Dentin

    PubMed Central

    Pinzon, Lilliam M; Powers, John M; O'Keefe, Kathy; Dusevish, Vladimir; Spencer, Paulette; Marshall, Grayson W

    2010-01-01

    The purpose of this study was to test the bond strength and analyze the morphology of the dentin-adhesive interface of two etch and rinse and two self-etch adhesive systems with two kinds of artificial saliva (with and without 450 mg/L mucin) contamination under different conditions of decontaminating the interface. Bonded specimens were sectioned perpendicularly to the bonded surface in 1-mm thick slabs. These 1-mm thick slabs were remounted in acrylic blocks and sectioned in sticks perpendicular to the bonding interfaces with a 1-mm2 area. Nine specimens from each condition were tested after 24 hours on a testing machine (Instron) at a speed of 0.5 mm/min for a total of 360 specimens. Means and standard deviations of bond strength (MPa) were calculated. ANOVA showed significant differences as well as Fisher's PLSD intervals (p<0.05). Different groups results ranges: Control group 34-60 MPa, saliva without mucin 0-52 MPa, and saliva with mucin 0-57 MPa. Failure sites were mixed, adhesive failure was common for the low bond strength results. P&BNT with ideal conditions and following the manufacturer's instructions (control) had the highest bond strengths and the dentin-adhesive interface exhibited an ideal morphology of a etch and rinse system. SEM gave complementary visual evidence of the effect in the dentin/adhesive interface structure with some contaminated conditions compared to their respective control groups. This in-vitro artificial saliva model with and without mucin showed that an organic component of saliva could increase or decrease the bond strength depending on the specific bonding agent and decontamination procedure. PMID:14505182

  5. Effect of Saliva on the Tensile Bond Strength of Different Generation Adhesive Systems: An In-Vitro Study.

    PubMed

    Gupta, Nimisha; Tripathi, Abhay Mani; Saha, Sonali; Dhinsa, Kavita; Garg, Aarti

    2015-07-01

    Newer development of bonding agents have gained a better understanding of factors affecting adhesion of interface between composite and dentin surface to improve longevity of restorations. The present study evaluated the influence of salivary contamination on the tensile bond strength of different generation adhesive systems (two-step etch-and-rinse, two-step self-etch and one-step self-etch) during different bonding stages to dentin where isolation is not maintained. Superficial dentin surfaces of 90 extracted human molars were randomly divided into three study Groups (Group A: Two-step etch-and-rinse adhesive system; Group B: Two-step self-etch adhesive system and Group C: One-step self-etch adhesive system) according to the different generation of adhesives used. According to treatment conditions in different bonding steps, each Group was further divided into three Subgroups containing ten teeth in each. After adhesive application, resin composite blocks were built on dentin and light cured subsequently. The teeth were then stored in water for 24 hours before sending for testing of tensile bond strength by Universal Testing Machine. The collected data were then statistically analysed using one-way ANOVA and Tukey HSD test. One-step self-etch adhesive system revealed maximum mean tensile bond strength followed in descending order by Two-step self-etch adhesive system and Two-step etch-and-rinse adhesive system both in uncontaminated and saliva contaminated conditions respectively. Unlike One-step self-etch adhesive system, saliva contamination could reduce tensile bond strength of the two-step self-etch and two-step etch-and-rinse adhesive system. Furthermore, the step of bonding procedures and the type of adhesive seems to be effective on the bond strength of adhesives contaminated with saliva.

  6. 31 CFR 341.4 - Proof of purchase.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false Proof of purchase. 341.4 Section 341... BONDS § 341.4 Proof of purchase. At the time a Retirement Plan Bond is issued, the issuing agent will... name the bond is inscribed, to the registered owner as well, proof of the purchase on Form PD 3550. The...

  7. Comparative Evaluation of Impact Strength of Fragment Bonded Teeth and Intact Teeth: An In Vitro Study

    PubMed Central

    Venugopal, L; Lakshmi, M Narasimha; Babu, Devatha Ashok; Kiran, V Ravi

    2014-01-01

    Background: To test and compare the impact strength of fragment bonded teeth with that of intact teeth by using impact testing machine (pendulum type) as a mode of load. Materials and Methods: Forty extracted, maxillary, central incisors selected for this study (20 control group and 20 experimental group). In experimental group, teeth crowns were fractured with a microtome at 2.5 mm from mesioincisal angle cervically, fractured portion is attached to original crown portion with 3 M single bond dentin bonding agent and 3 M Z ‘100’, composite resin. Impact strength of fragment bonded teeth and intact teeth tested with impact testing machine and compared. Results: Mean impact strength of fragment bonded teeth (30.76 KJ/M2 ) is not statistically significant deferent from mean impact strength of intact teeth (31.11 KJ/M2 ). Conclusion: Mean impact strength of fragment bonded teeth is not statistically different with that of intact teeth. Hence, after fracture of teeth if it is restored with fragment reattachment by using 3 M single bond dentin bonding agent and 3 M Z ‘100’ composite resin is having impact strength like that of intact teeth. How to cite the article: Venugopal L, Lakshmi MN, Babu DA, Kiran VR. Comparative evaluation of impact strength of fragment bonded teeth and intact teeth: An in vitro study. J Int Oral Health 2014;6(3):73-6. PMID:25083037

  8. Controlled Interphases in Glass Fiber and Particulate Reinforced Polymers: Structure of Silane Coupling Agents in Solutions and On Substrates

    DTIC Science & Technology

    1993-01-01

    to dissolve into water. Table 3. Typical industrially used silane coupling agents Organofunctional Chemical Formula Group Cationic styryl CH2...can also react with the surface as some unreacted silanol groups remain in the oligomers. The notion of physisorbed and chemisorbed silanes is used ...silanes use many silanol groups for covalent bonding with the substrate surface whereas the loosely chemisorbed silanes use only a few silanols to bond to

  9. Antibacterial effect and shear bond strength of an orthodontic adhesive cement containing Galla chinensis extract

    PubMed Central

    WANG, LU-FEI; LUO, FENG; XUE, CHAO-RAN; DENG, MENG; CHEN, CHEN; WU, HAO

    2016-01-01

    Galla chinensis extract (GCE), a naturally-derived agent, has a significant inhibitory effect on cariogenic bacteria. The present study aims to evaluate the antibacterial effect and shear bond strength of an orthodontic adhesive cement containing GCE. A resin-modified glass ionomer cement incorporated GCE at five mass fractions (0, 0.1, 0.2, 0.4, and 0.8%) to prepare GCE-containing cement for analysis. For the agar diffusion test, cement specimens were placed on agar disk inoculated with Streptococcus mutans (strain ATCC 25175). Following 48 h incubation, the inhibition halo diameter was measured. To assess bacteria colonization susceptibility, S. mutans adhesion to cement specimens was detected by scanning electron microscopy (SEM) following 48 h incubation. To evaluate bond strength, a total of 50 metal brackets were bonded on premolar surfaces by using cement (10 teeth/group). Following immersion in an artificial saliva for 3 days, shear bond strength (SBS) was measured. The results demonstrated that GCE-containing samples exhibited a larger bacterial inhibition halo than control, and the inhibition zone increased as the GCE mass fraction increased. SEM analysis demonstrated that S. mutans presented a weaker adherent capacity to all GCE-containing cements compared with control, but the difference between each GCE-containing group was not significant. SBS values of each GCE-containing group exhibited no difference compared with the control. In conclusion, GCE-containing adhesive cement exhibits a promising inhibitory effect on S. mutans growth and adhesion. Without compromising bond strength, adding GCE in adhesive cement may be an attractive option for preventing white spot lesions during orthodontic treatment. PMID:27073642

  10. Comparative study of enamel adhesion between RelyX™ Unicem® (3M), a self-adhesive bonding agent, and the combination of MIP® (3M), a hydrophilic adhesive, and Transbond Supreme Low Viscosity® (3M), a traditional hydrophobic adhesive.

    PubMed

    Dubernard, Charles; Raynal, Perrine; Tramini, Paul

    2013-09-01

    Although the bond strength of self-adhesive bonding agents is inferior to that of other families of adhesives, it is still adequate for orthodontic purposes provided prior enamel etching is performed. To determine the efficacy of RelyX™ Unicem(®) (3M) self-adhesive cement both in vitro and in vivo and to compare it with the combination of MIP(®) (3M), a moisture-insensitive primer, with a traditional hydrophobic adhesive, Transbond Supreme Low Viscosity(®) (3M). Comparison of bonding results on 23 trial dentures using RelyX™ Unicem(®) (3M) with bonding results on 29 trial dentures using a combination of MIP(®) and Transbond Supreme Low Viscosity(®) (3M), by means of a multipurpose Instron(®) 4444 testing machine. the breaking force of MIP(®)/Transbond Supreme Low Viscosity(®) (3M) (mean: 144±37.5 Newtons) was significantly higher than that of RelyX™ Unicem(®) (3M) (mean=110±26 Newtons) (P=0.001). A 12-month prospective, randomized, monocentric, single-blind clinical study in order to investigate the failure rate of orthodontic attachments according to the type of adhesive used, and the precise site of the debonding. Bracket bonding was performed on 16 patients with randomized allocation of the two adhesives to each of the semi-arches. The failure rates were: 15.3% for the MIP(®)/Transbond Supreme Low Viscosity(®) (3M) combination and 8.2% for the RelyX™ Unicem(®) (3M), with a significant difference (P=0.039). The more posterior the bonded teeth, the greater the superiority of RelyX™ Unicem(®) (3M). The in vivo results did not concord with those obtained in vitro. RelyX™ Unicem(®) (3M) exhibited lower adhesion values in vitro and yet it presented a debonding rate almost half that of the MIP(®)/Transbond Supreme Low Viscosity(®) (3M). The viscosity of RelyX™ Unicem(®) (3M) and its moisture tolerance would appear to account for these results. With prior etching, RelyX™ Unicem(®) (3M), a self-adhesive, self-etching bonding agent is compatible with use in the orthodontic indirect bonding technique. The MIP(®)/Transbond Supreme Low Viscosity(®) (3M) combination, though very effective, still remains sensitive and requires special care during usage. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  11. The role of functional monomers in bonding to enamel: acid-base resistant zone and bonding performance.

    PubMed

    Li, Na; Nikaido, Toru; Takagaki, Tomohiro; Sadr, Alireza; Makishi, Patricia; Chen, Jihua; Tagami, Junji

    2010-09-01

    To investigate the effects of two functional monomers on caries-inhibition potential and bond strength of two-step self-etching adhesive systems to enamel. Clearfil SE Bond and similar experimental formulations different in the functional monomer were used. Four combinations of primer and bonding agents were evaluated: (1) Clearfil SE Bond which contains MDP in both primer and bonding (M-M); (2) Clearfil SE Bond primer and Phenyl-P in bonding (M-P); (3) Phenyl-P in primer and Clearfil SE Bond bonding (P-M); (4) Phenyl-P in primer and bonding (P-P). Ground buccal enamel surfaces of human sound premolars were treated with one of the systems and the bonded interface was exposed to an artificial demineralising solution (pH 4.5) for 4.5 h, and then 5% NaOCl with ultrasonication for 30 min. After argon-ion etching, the interfacial ultrastructure was observed using SEM. Micro-shear bond strength to enamel was measured for all groups and results were analysed using one-way ANOVA and Turkey's HSD, while failure modes were analysed by chi-square test. An acid-base resistant zone (ABRZ) was found with all adhesive systems containing MDP either in primer or bond; however, ultramorphology and crystallite arrangement in the ABRZ were different among groups. P-P was the only group devoid of this protective zone. Micro-shear bond strength in M-M was significantly higher than those in M-P, P-M and P-P, while the latter three were not different from each other. Failure modes were significantly different (p<0.05). Functional monomers in two-step self-etching systems influence both the bonding performance and the formation of ABRZ on enamel. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. 29 CFR 453.5 - Officers, agents, shop stewards, or other representatives or employees of a labor organization.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 2 2010-07-01 2010-07-01 false Officers, agents, shop stewards, or other representatives... Determining Who Must Be Bonded § 453.5 Officers, agents, shop stewards, or other representatives or employees of a labor organization. With respect to labor organizations, the term “officer, agent, shop steward...

  13. 29 CFR 453.5 - Officers, agents, shop stewards, or other representatives or employees of a labor organization.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 2 2014-07-01 2014-07-01 false Officers, agents, shop stewards, or other representatives... Determining Who Must Be Bonded § 453.5 Officers, agents, shop stewards, or other representatives or employees of a labor organization. With respect to labor organizations, the term “officer, agent, shop steward...

  14. 29 CFR 453.5 - Officers, agents, shop stewards, or other representatives or employees of a labor organization.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 2 2011-07-01 2011-07-01 false Officers, agents, shop stewards, or other representatives... Determining Who Must Be Bonded § 453.5 Officers, agents, shop stewards, or other representatives or employees of a labor organization. With respect to labor organizations, the term “officer, agent, shop steward...

  15. 29 CFR 453.5 - Officers, agents, shop stewards, or other representatives or employees of a labor organization.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 2 2013-07-01 2013-07-01 false Officers, agents, shop stewards, or other representatives... Determining Who Must Be Bonded § 453.5 Officers, agents, shop stewards, or other representatives or employees of a labor organization. With respect to labor organizations, the term “officer, agent, shop steward...

  16. 29 CFR 453.5 - Officers, agents, shop stewards, or other representatives or employees of a labor organization.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 2 2012-07-01 2012-07-01 false Officers, agents, shop stewards, or other representatives... Determining Who Must Be Bonded § 453.5 Officers, agents, shop stewards, or other representatives or employees of a labor organization. With respect to labor organizations, the term “officer, agent, shop steward...

  17. Characterization of single-domain antibodies with an engineered disulfide bond.

    PubMed

    Hussack, Greg; Mackenzie, C Roger; Tanha, Jamshid

    2012-01-01

    Camelidae single-domain antibodies (VHHs) represent a unique class of emerging therapeutics. Similar to other recombinant antibody fragments (e.g., Fabs, scFvs), VHHs are amenable to library screening and selection, but benefit from superior intrinsic biophysical properties such as high refolding efficiency, high solubility, no tendency for aggregation, resistance to proteases and chemical denaturants, and high expression, making them ideal agents for antibody-based drug design. Despite these favorable biophysical characteristics, further improvements to VHH stability are desirable when considering applications in adverse environments like high heat, low humidity, pH extremes, and the acidic, protease-rich gastrointestinal tract. Recently, the introduction of a disulfide bond into the hydrophobic core of camelid VHHs increased antibody thermal and conformational stability. Here, we present additional protocols for characterizing the effects of the introduced disulfide bond on a panel of llama VHHs. Specifically, we employ mass spectrometry fingerprinting analysis of VHH peptides to confirm the presence of the introduced disulfide bond, size exclusion chromatography, and surface plasmon resonance to examine the effects on aggregation state and target affinity, and circular dichroism spectroscopy and protease digestion assays to assess the effects on thermal and proteolytic stability. The disulfide bond stabilization strategy can be incorporated into antibody library design and should lead to hyperstabilized single-domain antibodies (VHHs, VHs), and possibly Fabs and scFvs, if selection pressures such as denaturants or proteases are introduced during antibody selection.

  18. The influence of salivary contamination on shear bond strength of dentin adhesive systems.

    PubMed

    Park, Jeong-won; Lee, Kyung Chae

    2004-01-01

    This study evaluated the influence of salivary contamination during dentin bonding procedures on shear bond strength and investigated the effect of contaminant-removing treatments on the recovery of bond strength for two dentin bonding agents. One hundred and ten human molars were embedded in cylindrical molds with self-curing acrylic resin. The occlusal dentin surface was exposed by wet grinding with #800 silicon carbide abrasive paper. The teeth were divided into five groups for One-step (OS) (BISCO, Inc) and six groups for Clearfil SE Bond (SE) (Kuraray Co, Ltd, Osaka, Japan). For One-step, the grinding surface was treated with 32% phosphoric acid; BAC (BISCO Inc) and divided into five groups: OS control group (uncontaminated), OS I (salivary contamination, blot dried), OS II (salivary contamination, completely dried), OS III (salivary contamination, wash and blot dried) and OS IV (salivary contamination, re-etching for 10 seconds, wash and blot dried). For SE bond, the following surface treatments were done: SE control group (primer applied to the fresh dentin surface), SE I (after salivary contamination, primer applied), SE II (primer, salivary contamination, dried), SE III (primer, salivary contamination, wash and dried), SE IV (after procedure of SE II, re-application of primer) and SE V (after procedure of SE III, re-application of primer). Each bonding agent was applied and light cured for 10 seconds. Clearfil AP-X (Kuraray Co, Ltd) composite was packed into the Ultradent mount jig mold and light cured for 40 seconds. The bonded specimens were stored for 24 hours in a 37 degrees C waterbath. The shear bond strengths were measured using an Instron testing machine (Model 4202, Instron Corp). The data for each group were subjected to one-way ANOVA followed by the Newman-Keuls test to make comparisons among the groups. The results were as follows: In the One-step groups, the OS II group showed statistically significant lower shear bond strength than the OS control, I, III and IV (p<0.05). In the Clearfil SE Bond groups, the SE II and SE III groups had decreased shear bond strength compared with the control and SE I, SE IV and SE V groups (p<0.05). In conclusion, when using One-step total etch adhesive and when the etched surface is contaminated by saliva, blotting the surface and applying the primer can recover the bond strength. Complete drying of the salivary contaminated surface should be avoided. In the Clearfil SE Bond groups, the re-priming treatment (SE IV and SE V) resulted in the recovery of shear bond strength in the specimens contaminated after priming.

  19. Non-bonded ultrasonic transducer

    DOEpatents

    Eoff, J.M.

    1984-07-06

    A mechanically assembled non-bonded ultrasonic transducer includes a substrate, a piezoelectric film, a wetting agent, a thin metal electrode, and a lens held in intimate contact by a mechanical clamp. No epoxy or glue is used in the assembly of this device.

  20. The effect of storage conditions, contamination modes and cleaning procedures on the resin bond strength to lithium disilicate ceramic.

    PubMed

    Klosa, Karsten; Wolfart, Stefan; Lehmann, Frank; Wenz, Hans-Jürgen; Kern, Matthias

    2009-04-01

    The purpose of this in-vitro study was to evaluate the resin bond strength to pre-etched lithium disilicate ceramic using different cleaning methods after two contamination modes (saliva or saliva and silicone). Plexiglas tubes filled with composite resin (MultiCore Flow) were bonded to etched and silanized ceramic disks made of lithium disilicate ceramic (IPS e.max Press) using a luting resin (Multilink Automix). Either etched or unetched ceramic surfaces were contaminated with saliva or with saliva followed by a disclosing silicone. Groups of 16 specimens each were bonded after pretreatment using 4 surface cleaning agents (37% phosphoric acid, 5% hydrofluoric acid, 96% isopropanol, air polishing device with sodium bicarbonate) in different combinations. Before measuring tensile bond strength, specimens were stored for 3 or 150 days with thermocycling. After 150 days of storage, etching of saliva-contaminated surfaces with 5% hydrofluoric acid and/or 37% phosphoric acid provided statistically significantly higher bond strengths (37.9 to 49.5 MPa) than the other cleaning methods (1.7 to 15.5 MPa). After saliva and silicone contamination, etching with 5% hydrofluoric acid provided statistically significantly higher bond strengths (44.5 to 50.3 MPa) than all other cleaning methods (0.3 to 13.5 MPa). Ceramic cleaning methods after try-in procedures have a significant influence on the resin bond strength and are dependent on the type of contamination. Re-etching lithium disilicate ceramic with 5% hydrofluoric acid is most effective in removing contamination with saliva and/or a silicone disclosing medium.

  1. The effect of IDS (immediate dentin sealing) on dentin bond strength under various thermocycling periods

    PubMed Central

    Leesungbok, Richard; Lee, Sang-Min; Park, Su-Jung; Lee, Suk-Won; Lee, Do Yun; Im, Byung-Jin

    2015-01-01

    PURPOSE The purpose of this study was to find out the effect of immediate dentin sealing (IDS) on bond strength of ceramic restoration under various thermocycling periods with DBA (dentin bonding agent system). MATERIALS AND METHODS Fifty freshly extracted human mandibular third molars were divided into 5 groups (1 control and 4 experimental groups) of 10 teeth. We removed enamel layer of sound teeth and embedded them which will proceed to be IDS, using All Bond II. A thermocycling was applied to experimental groups for 1, 2, 7, 14 days respectively and was not applied to control group. IPS Empress II for ceramic was acid-etched with ceramic etchant (9.5% HF) and silane was applied. Each ceramic disc was bonded to specimens with Duo-link, dual curable resin cement by means of light curing for 100 seconds. After the cementation procedures, shear bond strength measurement and SEM analysis of the fractured surface were done. The data were analyzed with a one-way ANOVA and Tukey multiple comparison test (α=.05). RESULTS There were no statistically significant differences between 4 experimental groups and control group, however the mean value started to decrease in group 7d, and group 14d showed the lowest mean bond strength in all groups. Also, group 7d and 14d showed distinct exposed dentin and collapsed hybrid layer was observed in SEM analysis. CONCLUSION In the present study, it can be concluded that ceramic restorations like a laminate veneer restoration should be bonded using resin cement within one week after IDS procedure. PMID:26140174

  2. 31 CFR 317.4 - Issuing agents currently qualified.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false Issuing agents currently qualified. 317.4 Section 317.4 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued... ISSUE OF UNITED STATES SAVINGS BONDS § 317.4 Issuing agents currently qualified. Each organization...

  3. Tensile bond strength of silicone-based soft denture liner to two chemically different denture base resins after various surface treatments.

    PubMed

    Akin, Hakan; Tugut, Faik; Guney, Umit; Kirmali, Omer; Akar, Turker

    2013-01-01

    This study evaluated the effect of various surface treatments on the tensile bond strength of a silicone-based soft denture liner to two chemically different denture base resins, heat-cured polymethyl methacrylate (PMMA), and light-activated urethane dimethacrylate or Eclipse denture base resin. PMMA test specimens were fabricated and relined with a silicone-based soft denture liner (group AC). Eclipse test specimens were prepared according to the manufacturer's recommendation. Before they were relined with a silicone-based soft denture liner, each received one of three surface treatments: untreated (control, group EC), Eclipse bonding agent applied (group EB), and laser-irradiated (group EL). Tensile bond strength tests (crosshead speed = 5 mm/min) were performed for all specimens, and the results were analyzed using the analysis of variance followed by Tukey's test (p = 0.05). Eclipse denture base and PMMA resins presented similar bond strengths to the silicone-based soft denture liner. The highest mean force was observed in group EL specimens, and the tensile bond strengths in group EL were significantly different (p < 0.05) from those in the other groups.

  4. The impact of disulfide bond dynamics in wheat gluten protein on the development of fermented pastry crumb.

    PubMed

    Ooms, Nand; Jansens, Koen J A; Pareyt, Bram; Reyniers, Stijn; Brijs, Kristof; Delcour, Jan A

    2018-03-01

    Gluten proteins functionality during pastry production was examined by including redox agents in the ingredient bill. Addition of reducing and oxidizing agents respectively increased and decreased dough height during fermentation. The presence of large gas bubbles in the samples with oxidizing agents may have caused a 'stacking'-effect and a more effective dough lift. During baking, the level of extractable proteins decreased to comparable values for all samples, except when potassium iodate (KIO 3 ) was used in the recipe. As a result of its use, a lower level of gliadin was incorporated into the gluten polymer and dough layers tended to 'slide' apart during baking, thereby causing collapse. Most likely, KIO 3 caused glutenin oxidation within each individual dough layer to such extent during the dough stage that insufficient thiol groups were available for forming dough layer interconnections during baking, after margarine melting. Furthermore, addition of redox agents impacted the product's crumb structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Effect of acid and laser etching on shear bond strength of conventional and resin-modified glass-ionomer cements to composite resin.

    PubMed

    Navimipour, Elmira Jafari; Oskoee, Siavash Savadi; Oskoee, Parnian Alizadeh; Bahari, Mahmoud; Rikhtegaran, Sahand; Ghojazadeh, Morteza

    2012-03-01

    Success in sandwich technique procedures can be achieved through an acceptable bond between the materials. The aim of this study was to compare the effect of 35% phosphoric acid and Er,Cr:YSGG laser on shear bond strength of conventional glass-ionomer cement (GIC) and resin-modified glass-ionomer cement (RMGIC) to composite resin in sandwich technique. Sixty-six specimens were prepared from each type of glass-ionomer cements and divided into three treatment groups as follows: without pretreatment, acid etching by 35% phosphoric acid for 15 s, and 1-W Er,Cr:YSGG laser treatment for 15 s with a 600-μm-diameter tip aligned perpendicular to the target area at a distance of 1 mm from the surface. Energy density of laser irradiation was 17.7 J/cm(2). Two specimens in each group were prepared for evaluation under a scanning electron microscope (SEM) after surface treatment and the remainder underwent bonding procedure with a bonding agent and composite resin. Then the shear bond strength was measured at a crosshead speed of 0.5 mm/min. Two-factor analysis of variance and post-hoc Tukey test showed that the cement type, surface treatment method, and the interaction of these two factors significantly affect the shear bond strength between glass-ionomer cements and composite resin (p < 0.05). Surface treatment with phosphoric acid or Er,Cr:YSGG laser increased the shear bond strength of GIC to composite resin; however, in RMGIC only laser etching resulted in significantly higher bond strength. These findings were supported by SEM results. The fracture mode was evaluated under a stereomicroscope at ×20.

  6. Non-bonded piezoelectric ultrasonic transducer

    DOEpatents

    Eoff, James M.

    1985-01-01

    A mechanically assembled non-bonded ultrasonic transducer includes a substrate, a piezoelectric film, a wetting agent, a thin metal electrode, and a lens held in intimate contact by a mechanical clamp. No epoxy or glue is used in the assembly of this device.

  7. A randomized controlled trial evaluating the erythropoiesis stimulating agent sparing potential of a vitamin E-bonded polysulfone dialysis membrane

    PubMed Central

    Lines, Simon W.; Carter, Angela M.; Dunn, Emma J.; Lindley, Elizabeth J.; Tattersall, James E.; Wright, Mark J.

    2014-01-01

    Background Vitamin E (VE) bonded polysulfone dialysis membranes have putative erythropoiesis stimulating agent (ESA)-sparing and anti-inflammatory properties based on data from a small number of studies. We sought to investigate this in a large, prospective 12-month randomized controlled trial. Methods Two-hundred and sixty prevalent haemodialysis (HD) patients were randomized to dialysis with VE-bonded polysulfone membranes or non-VE-bonded equivalents. All ESA-dosing was performed by means of a computer-based anaemia management decision support system. Monthly data were used to calculate the ESA resistance index (ERI) and blood tests were performed at baseline, 6 and 12 months for measurement of C-reactive protein (CRP) levels. Results Of the 260 patients, 123 were randomized to dialysis with the VE-membrane and 12-month data was available for 220 patients. At the study population level, no beneficial effect of the VE membranes on the ERI or CRP levels was observed. Post hoc analyses indicated that there was a significant fall in ERI for patients with the highest baseline ESA resistance dialysed with the VE (9.28 [7.70–12.5] versus 7.70 [5.34–12.7] IU/week/kg/g/dL Hb, P = 0.01) but not the control membranes (9.45 [7.62–12.3] versus 8.14 [4.44–15.6] IU/week/kg/g/dL Hb, P = 0.41); this was not attributable to changes in CRP levels. Conclusions Wholesale switching of all chronic HD patients to dialysis with VE-bonded polysulfone membranes appears not to be associated with improvements in ESA-responsiveness or CRP. These membranes may have utility in patients with heightened ESA resistance. PMID:24293660

  8. Effects of solvent drying time on micro-shear bond strength and mechanical properties of two self-etching adhesive systems.

    PubMed

    Sadr, Alireza; Shimada, Yasushi; Tagami, Junji

    2007-09-01

    The all-in-one adhesives are simplified forms of two-step self-etching adhesive systems that must be air dried to remove solvent and water before curing. It was investigated whether those two systems perform equally well and if their performance is affected by air-drying of the solvent containing agent. Two adhesive systems (both by Kuraray Medical) were evaluated; Clearfil Tri-S bond (TS) and Clearfil SE bond (SE). Micro-shear bond strengths to human dentin after solvent air-drying times of 2, 5 or 10 s for each group were measured (n=10). The indentation creep and hardness of the bonding layer were also determined for each group. The lowest micro-shear bond strength, nano-indentation hardness and creep stress exponents were obtained for 2 s air dried specimens of each material. After 10 s air blowing, SE showed superior properties compared to TS groups (p<0.05). When properly handled, two step self-etching material performs better than the all-in-one adhesive. Air-drying is a crucial step in the application of solvent containing adhesives and may affect the overall clinical performance of them, through changes in the bond strength and altering nano-scale mechanical properties.

  9. Long-term Bond Strength between Layering Indirect Composite Material and Zirconia Coated with Silicabased Ceramics.

    PubMed

    Fushiki, Ryosuke; Komine, Futoshi; Honda, Junichi; Kamio, Shingo; Blatz, Markus B; Matsumura, Hideo

    2015-06-01

    This study evaluated the long-term shear bond strength between an indirect composite material and a zirconia framework coated with silica-based ceramics, taking the effect of different primers into account. A total of 165 airborne-particle abraded zirconia disks were subjected to one of three pretreatments: no pretreatment (ZR-AB), airborne-particle abrasion of zirconia coated with feldspathic porcelain (ZR-PO-AB), and 9.5% hydrofluoric acid etching of zirconia coated with feldspathic porcelain (ZR-PO-HF). An indirect composite material (Estenia C&B) was then bonded to the zirconia disks after they were treated with one of the following primers: Clearfil Photo Bond (CPB), Clearfil Photo Bond with Clearfil Porcelain Bond Activator (CPB + Activator), Estenia Opaque Primer (EOP), Porcelain Liner M Liquid B (PLB), or no priming (CON, control group). Shear bond strength was tested after 100,000 thermocycles, and the data were analyzed using the Steel-Dwass U-test (α = 0.05). For ZR-PO-AB and ZR-PO-HF specimens, bond strength was highest in the CPB+Activator group (25.8 MPa and 22.4 MPa, respectively). Bond strengths were significantly lower for ZR-AB specimens in the CON and PLB groups and for ZR-PO-AB specimens in the CON, CPB, and EOP groups. Combined application of a hydrophobic phosphate monomer (MDP) and silane coupling agent enhanced the long-term bond strength of indirect composite material to a zirconia coated with silica-based ceramics.

  10. ECCENTRIC ROLLING OF POWDER AND BONDING AGENT INTO SPHERICAL PELLETS

    DOEpatents

    Patton, G. Jr.; Zirinsky, S.

    1961-06-01

    A machine is described for pelletizing powder and bonding agent into spherical pellets of high density and uniform size. In this device, the material to be compacted is added to a flat circular pan which is moved in a circular orbit in a horizontal plane about an axis displaced from that of the pan's central axis without rotating the pan about its central axis. This movement causes the material contained therein to roll around the outside wall of the container and build up pellets of uniform shape, size, and density.

  11. Influence of different transitional restorations on the fracture resistance of premolar teeth.

    PubMed

    Qualtrough, A J; Cawte, S G; Wilson, N H

    2001-01-01

    Controversy exists over the most favorable material and type of restoration to be used to transitionally restore teeth destined to be crowned. This in vitro study uses fracture resistance testing to compare eight different transitional restorations in maxillary premolars. Ninety sound maxillary premolars were randomly selected and allocated to nine groups, each comprising 10 teeth. One group remained unrestored and was used as the control. Teeth in the remaining groups were prepared to a standard cavity form using: a copy milling process removing the palatal cusp. Restorations were placed using amalgam with dentin pins and cavity varnish; amalgam with an amalgam bonding agent; resin composite with dentin pins and a dentin bonding agent; resin composite with a dentin bonding agent only; resin-modified glass ionomer with dentin pins; resin-modified glass ionomer cement alone and cermet with dentin pins and cermet alone. Each restored tooth was then subjected to axial loading via a bar contacting the buccal and restored palatal cusps until failure of the restored tooth occurred. The mean load-to-fracture values were statistically compared and the modes of failure recorded. It was found that the choice of restorative material and type of restoration had little effect on the fracture resistance of the restored tooth with the exception of those teeth restored with reinforced glass ionomer cement alone, which exhibited a significantly lower resistance to fracture than the other restored teeth. However, the choice of restorative material/technique did influence the mode of failure. Failure in teeth restored with resin-modified glass ionomer cement alone produced the least damage to the remaining tooth tissue when failure occurred. Consequently, this material may offer the most favorable range of properties for the transitional restoration of extensively broken-down maxillary premolar teeth destined to be crowned. Furthermore, the findings of this study fail to support the use of dentin pins in the placement of bonded build-up restorations.

  12. Structual Effects of Cytidine 2^' Ribose Modifications as Determined by Irmpd Action Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hamlow, Lucas; He, Chenchen; Fan, Lin; Wu, Ranran; Yang, Bo; Rodgers, M. T.; Berden, Giel; Oomens, J.

    2015-06-01

    Modified nucleosides, both naturally occurring and synthetic play an important role in understanding and manipulating RNA and DNA. Naturally occurring modified nucleosides are commonly found in functionally important regions of RNA and also affect antibiotic resistance or sensitivity. Synthetic modifications of nucleosides such as fluorinated and arabinosyl nucleosides have found uses as anti-virals and chemotherapy agents. Understanding the effect that modifications have on structure and glycosidic bond stability may lend insight into the functions of these modified nucleosides. Modifications such as the naturally occurring 2^'-O-methylation and the synthetic 2^'-fluorination are believed to help stabilize the nucleoside through the glycosidic bond stability and intramolecular hydrogen bonding. Changing the sugar from ribose to arabinose alters the stereochemistry at the 2^' position and thus shifts the 3D orientation of the 2^'-hydroxyl group, which also affects intramolecular hydrogen bonding and glycosidic bond stability. The structures of 2^'-deoxy-2^'-fluorocytidine, 2^'-O-methylcytidine and cytosine arabinoside are examined in the current work by measuring the infrared spectra in the IR fingerprint region using infrared multiple photon dissociation (IRMPD) action spectroscopy. The structures accessed in the experiments were determined via comparison of the measured IRMPD action spectra to the theoretical linear IR spectra determined by density functional theory and molecular modeling for the stable low-energy structures. Although glycosidic bond stability cannot be quantitatively determined from this data, complementary TCID studies will establish the effect of these modifications. Comparison of these modified nucleosides with their RNA and DNA analogues will help elucidate differences in their intrinsic chemistry.

  13. Redox modulation of A-type K+ currents in pain-sensing dorsal root ganglion neurons.

    PubMed

    Hsieh, Chi-Pan

    2008-06-06

    Redox modulation of fast inactivation has been described in certain cloned A-type voltage-gated K(+) (Kv) channels in expressing systems, but the effects remain to be demonstrated in native neurons. In this study, we examined the effects of cysteine-specific redox agents on the A-type K(+) currents in acutely dissociated small diameter dorsal root ganglion (DRG) neurons from rats. The fast inactivation of most A-type currents was markedly removed or slowed by the oxidizing agents 2,2'-dithio-bis(5-nitropyridine) (DTBNP) and chloramine-T. Dithiothreitol, a reducing agent for the disulfide bond, restored the inactivation. These results demonstrated that native A-type K(+) channels, probably Kv1.4, could switch the roles between inactivating and non-inactivating K(+) channels via redox regulation in pain-sensing DRG neurons. The A-type channels may play a role in adjusting pain sensitivity in response to peripheral redox conditions.

  14. Effects of surface preparation on the long-term durability of adhesively bonded composite joints

    NASA Astrophysics Data System (ADS)

    Bardis, Jason Dante

    The long-term durability of adhesively bonded composite joints is critical to modern aircraft structures, which are increasingly adopting bonding as an alternative option to mechanical fastening. The effects of the surface preparation of the adherends are critical, affecting initial strength, long-term durability, fracture toughness, and failure modes of bonded joints. In this study, several potential factors are evaluated, with focus on the following: (1) Effects of possible chemical contamination from release fabrics, release films, and peel plies during adherend cure. (2) Chemical and mechanical effects of abrasion on the fracture toughness and failure mode. (3) Characterization of paste and film adhesives. There are several standard test methods used to evaluate specimen fracture, but the majority concentrate on bonded metals and interlaminar composite fracture. Testing concentrated on mode I tests; a custom double cantilever beam specimen was devised and utilized, and two forms of a wedge crack test (traveling and static) were also used. Additionally, single lap shear tests were run to contrast the mode I tests. Non-destructive testing included X-ray photography of crack fronts, energy dispersive spectroscopy and X-ray photoelectron spectroscopy surface chemistry analyses, and scanning electron microscope imaging of prepared surfaces. All mode I test methods tended to be in agreement in the ranking of different surface preparation methods. Test results revealed that release agents deposited on adherend surfaces during their cure cycle prevented proper adhesion. While mechanical abrasion did improve their fracture toughness and lower their contamination greatly, the test values did not reach the levels of samples that were not contaminated before bonding, and the interfacial modes of failure did not always change to desirable modes.

  15. 29 CFR 453.6 - Officers, agents, shop stewards or other representatives or employees of a trust in which a labor...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 2 2013-07-01 2013-07-01 false Officers, agents, shop stewards or other representatives or... OF 1959 Criteria for Determining Who Must Be Bonded § 453.6 Officers, agents, shop stewards or other representatives or employees of a trust in which a labor organization is interested. (a) Officers, agents, shop...

  16. 29 CFR 453.6 - Officers, agents, shop stewards or other representatives or employees of a trust in which a labor...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 2 2014-07-01 2014-07-01 false Officers, agents, shop stewards or other representatives or... OF 1959 Criteria for Determining Who Must Be Bonded § 453.6 Officers, agents, shop stewards or other representatives or employees of a trust in which a labor organization is interested. (a) Officers, agents, shop...

  17. 29 CFR 453.6 - Officers, agents, shop stewards or other representatives or employees of a trust in which a labor...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 2 2012-07-01 2012-07-01 false Officers, agents, shop stewards or other representatives or... OF 1959 Criteria for Determining Who Must Be Bonded § 453.6 Officers, agents, shop stewards or other representatives or employees of a trust in which a labor organization is interested. (a) Officers, agents, shop...

  18. 29 CFR 453.6 - Officers, agents, shop stewards or other representatives or employees of a trust in which a labor...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 2 2011-07-01 2011-07-01 false Officers, agents, shop stewards or other representatives or... OF 1959 Criteria for Determining Who Must Be Bonded § 453.6 Officers, agents, shop stewards or other representatives or employees of a trust in which a labor organization is interested. (a) Officers, agents, shop...

  19. 29 CFR 453.6 - Officers, agents, shop stewards or other representatives or employees of a trust in which a labor...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 2 2010-07-01 2010-07-01 false Officers, agents, shop stewards or other representatives or... OF 1959 Criteria for Determining Who Must Be Bonded § 453.6 Officers, agents, shop stewards or other representatives or employees of a trust in which a labor organization is interested. (a) Officers, agents, shop...

  20. Application of flotation for the separation of metal-loaded zeolites.

    PubMed

    Matis, Kostas A; Zouboulis, Anastasios I; Gallios, George P; Erwe, Torsten; Blöcher, Christoph

    2004-04-01

    Several industrial wastewater streams may contain heavy metal ions, which must be effectively removed, before the discharge or reuse of treated waters could take place. Different bonding materials, presenting selectivity and fast reaction kinetics for the removal of metals, have been examined for this purpose. The objective of the present paper was to investigate the application of dispersed-air flotation for the separation of metal-loaded sorbents. Two similar zeolite samples were applied as effective bonding agents for the removal of zinc, a toxic metal commonly found in many industrial wastewaters. This combined process, termed sorptive flotation, involves the preliminary scavenging of metal ions, by using the appropriate sorbent particles (usually present as ultrafine particulates), followed by flotation for the effective separation of them. The obtained results were very promising, as both metal and sorbent were effectively removed/separated from the dispersion.

  1. Shear bond strength of one-step self-etch adhesives to enamel: effect of acid pretreatment.

    PubMed

    Poggio, Claudio; Scribante, Andrea; Della Zoppa, Federica; Colombo, Marco; Beltrami, Riccardo; Chiesa, Marco

    2014-02-01

    The purposes of this study were to evaluate the effect of surface pretreatment with phosphoric acid on the enamel bond strength of four-one-step self-etch adhesives with different pH values. One hundred bovine permanent mandibular incisors were used. The materials used in this study included four-one-step self-etch adhesives with different pH values: Adper(™) Easy Bond Self-Etch Adhesive (ph = 0,8-1), Futurabond NR (ph = 1,4), G-aenial Bond (ph = 1,5), Clearfil(3) S Bond (ph = 2,7). One two-step self-etch adhesive (Clearfil SE Bond/ph = 0,8-1) was used as control. The teeth were assigned into two subgroups according to bonding procedure. In the first subgroup (n = 50), no pretreatment agent was applied. In the second subgroup (n = 50), etching was performed using 37% phosphoric acid for 30 s. After adhesive systems application, a nanohybrid composite resin was inserted into the enamel surface. The specimens were placed in a universal testing machine (Model 3343, Instron Corp., Canton, Mass., USA). After the testing procedure, the fractured surfaces were examined with an optical microscope at a magnification of 10× to determine failure modes. The adhesive remnant index (ARI) was used to assess the amount of adhesive left on the enamel surface. Descriptive statistics of the shear bond strength and frequency distribution of ARI scores were calculated. Enamel pretreatment with phosphoric acid significantly increased bond strength values of all the adhesives tested. No significant differences in bond strength were detected among the four different one-step self-etch adhesives with different pH. Two-step self-etch adhesive showed the highest bond strength. © 2013 John Wiley & Sons A/S.

  2. Redox and Lewis acid-base activities through an electronegativity-hardness landscape diagram.

    PubMed

    Das, Ranjita; Vigneresse, Jean-Louis; Chattaraj, Pratim Kumar

    2013-11-01

    Chemistry is the science of bond making and bond breaking which requires redistribution of electron density among the reactant partners. Accordingly acid-base and redox reactions form cardinal components in all branches of chemistry, e.g., inorganic, organic, physical or biochemistry. That is the reason it forms an integral part of the undergraduate curriculum all throughout the globe. In an electronegativity (χ)- hardness (η) landscape diagram the diagonal χ = η line separates reducing agents from oxidizing agents as well as Lewis acids from Lewis bases. While electronegativity is related to the degree of electron transfer between two reactants, hardness is related to the resistance to that process. Accordingly the electronegativities of oxidizing agents/Lewis acids are generally greater than the corresponding hardness values and the reverse is true for reducing agents/Lewis bases. Electrophiles and nucleophiles are also expected to follow similar trends.

  3. Evaluation of degree of conversion and the effect of thermal aging on the color stability of resin cements and flowable composite.

    PubMed

    Prieto, Lúcia Trazzi; Pimenta de Araújo, Cíntia Tereza; Araujo Pierote, Josué Junior; Salles de Oliveira, Dayane Carvalho Ramos; Coppini, Erick Kamiya; Sartini Paulillo, Luís Alexandre Maffei

    2018-01-01

    The aim of this in vitro study was to evaluate the color stability and degree of conversion (DC) of dual-cure and light-cure cements and flowable composites after thermal aging. A total of 50 human incisors were prepared and divided into six groups ( n = 10). Veneers were fabricated using IPS Empress Direct composite resin were bonded with three types of luting agents: Light-cured, conventional dual, and flowable composite according to the manufacturer's instructions. The groups were as follows: Filtek Z350XT Flow/Single Bond 2, RelyX ARC/Single Bond 2, RelyX Veneer/Single Bond 2, Tetric N-Flow/Tetric N-Bond, and Variolink II/Tetric N-Bond. Commission Internationale de l'Éclairage L*, a* and b* color coordinates were measured 24 h after cementation procedure with a color spectrophotometer and reevaluated after 10,000 thermal cycles. To evaluate the DC 50 specimens ( n = 10) of each resin material were obtained and Fourier transform infrared spectroscopy was used to evaluate the absorption spectra. Statistical analysis was performed with one-way ANOVA and Tukey's test (α = 0.05). No statistically significant differences in ΔE* occurred after aging. The greatest change in lightness occurred in the Variolink II resin cement. Changes in red-green hue were very small for the same cement and largest in the Tetric N-Flow flowable resin composite, while the greatest change in blue-yellow hue was a yellowing of the RelyX ARC luting cement. RelyX ARC exhibited the highest DC, and there were no statistically significant differences in DC among the other cements. Resin-based luting agent might affect the final of ceramic veneer restorations. The thermal aging affected the final color of the evaluated materials, and these were regarded as clinically unacceptable (ΔE >3.3).

  4. Synthesis and characterization of hydrogen-bond acidic functionalized graphene

    NASA Astrophysics Data System (ADS)

    Yang, Liu; Han, Qiang; Pan, Yong; Cao, Shuya; Ding, Mingyu

    2014-05-01

    Hexafluoroisopropanol phenyl group functionalized materials have great potential in the application of gas-sensitive materials for nerve agent detection, due to the formation of strong hydrogen-bonding interactions between the group and the analytes. In this paper, take full advantage of ultra-large specific surface area and plenty of carbon-carbon double bonds and hexafluoroisopropanol phenyl functionalized graphene was synthesized through in situ diazonium reaction between -C=C- and p-hexafluoroisopropanol aniline. The identity of the as-synthesis material was confirmed by transmission electron microscopy, Raman spectroscopy, ultraviolet visible spectroscopy, X-ray photoelectron spectroscopy and thermo gravimetric analysis. The synthesis method is simply which retained the excellent physical properties of original graphene. In addition, the novel material can be assigned as an potential candidate for gas sensitive materials towards organophosphorus nerve agent detection.

  5. In vitro microleakage of luting cements and crown foundation material.

    PubMed

    Lindquist, T J; Connolly, J

    2001-03-01

    Microleakage is a concern for the long-term prognosis of a cemented crown and foundation. The aims of this investigation were, first, to evaluate microleakage of zinc phosphate cement and resin-reinforced glass ionomer cement under ideal (dry) versus contaminated (wet) conditions, and second, to compare 3 foundations under both ideal and contaminated conditions. One hundred forty extracted molar teeth were cleaned and mounted. Tooth preparations for complete veneer cast crowns were completed with a chamfer finish line. A mesial surface class II cavity preparation 4 mm wide buccolingually and 2 mm deep was made in each tooth. Seven restorative groups were formed: amalgam/cavity varnish, amalgam/dentinal bonding agent, and composite/dentinal bonding agent, each with dry and contaminated groups, and a seventh group of class II cavity preparations without foundations. Finish lines for crown margins were refined 1.5 mm gingival to the restoration. Artificial crowns were cast in type III gold. Treatment groups were divided into 4 cement groups: dry and contaminated zinc phosphate cement and dry and contaminated resin-reinforced glass ionomer cement. The specimens were thermocycled and immersed in erythrosine B solution for 24 hours. Subsequently, they were rinsed, and their coronal portions were embedded in clear resin. Teeth were sectioned mesiodistally, and standard photomicrographs were made. The microleakage of each restoration and crown was measured. The least foundation microleakage was recorded for amalgam/dentinal bonding agents (ideal group) and composite/dentinal bonding agents (ideal group). The most microleakage was observed within the group without a foundation. In cement groups, the control and experiment sides were evaluated separately but displayed the same order of finding. The least leakage was recorded with resin-reinforced glass ionomer cement (ideal group); the most microleakage was noted with zinc phosphate cement (ideal group). An interaction was demonstrated on the experimental side between cements and the foundations (P=.0001). Within the experimental conditions of this study, less microleakage was recorded with resin-reinforced glass ionomer cement (ideal or contaminated) than with zinc phosphate cement (ideal or contaminated). There also was less microleakage evident with a foundation of silver amalgam or composite when a dentinal bonding agent was used under ideal conditions.

  6. Role of enamel deminerlization and remineralization on microtensile bond strength of resin composite.

    PubMed

    Rizvi, Abbas; Zafar, Muhammad S; Al-Wasifi, Yasser; Fareed, Wamiq; Khurshid, Zohaib

    2016-01-01

    This study is aimed to establish the microtensile bond strength of enamel following exposure to an aerated drink at various time intervals with/without application of remineralization agent. In addition, degree of remineralization and demineralization of tooth enamel has been assessed using polarized light microscopy. Seventy extracted human incisors split into two halves were immersed in aerated beverage (cola drink) for 5 min and stored in saliva until the time of microtensile bond testing. Prepared specimens were divided randomly into two study groups; remineralizing group (n = 70): specimens were treated for remineralization using casein phosphopeptides and amorphous calcium phosphate (CPP-ACP) remineralization agent (Recaldent™; GC Europe) and control group (n = 70): no remineralization treatment; specimens were kept in artificial saliva. All specimens were tested for microtensile bond strength at regular intervals (1 h, 1 days, 2 days, 1 week, and 2 weeks) using a universal testing machine. The results statistically analyzed (P = 0.05) using two-way ANOVA test. Results showed statistically significant increase in bond strength in CPP-ACP tested group (P < 0.05) at all-time intervals. The bond strength of remineralizing group samples at 2 days (~13.64 megapascals [MPa]) is comparable to that of control group after 1 week (~12.44 MPa). CPP-ACP treatment of teeth exposed to an aerated drink provided significant increase in bond strength at a shorter interval compared to teeth exposed to saliva alone.

  7. Comparison of microleakage on one composite etched with phosphoric acid or a combination of phosphoric and hydrofluoric acids and bonded with several different systems.

    PubMed

    Szep, Susanne; Langner, Nicole; Bayer, Silja; Börnichen, Diana; Schulz, Christoph; Gerhardt, Thomas; Schriever, Anette; Becker, Joachim; Heidemann, Detlef

    2003-02-01

    There are no data available on whether or to what extent hydrofluoric acid affects the marginal integrity of dentin-bonded composite restorations when it is used instead of phosphoric acid in the total-etch technique. This in vitro study examined the etching effects of phosphoric acid versus a combination of phosphoric and hydrofluoric acid by evaluation of microleakage in a composite restoration bonded with different dentin adhesive systems. Extracted teeth (n = 90) containing 2 class II preparations, mesial occlusal (MO) and distal occlusal (DO) standarized (cervical margins in dentin) were perfused with Ringer solution and etched in 1 of 2 ways: with phosphoric acid only or with phosphoric combined with hydrofluoric acid. Different dentin bonding agents were then applied (Etch & Prime 3.0, Optibond Solo, Prime & Bond NT, Scotchbond 1, Syntac Single Component, or Syntac Sprint; (n = 15 for each etching material)). The preparations were restored with a hybrid composite (Herculite XRV) and submitted to 5000 thermocycles (5 degrees C to 55 degrees C) to simulate the in vivo situation. Microleakage was assessed with 2% methylene blue diffusion for 24 hours. Dye penetration was calculated as a percentage of the total length of the gingival margins of the preparation with light microscopy at original magnification x 32. The results were analyzed with the Kruskal-Wallis multiple comparison z-value assay (alpha = .05). Differences in dye penetration were significant, both as a function of the dentin adhesive and the conditioning mode applied. In the specimen groups conditioned with phosphoric acid, Optibond Solo (54% +/- 44%) and Syntac Sprint (74% +/- 39%) demonstrated the lowest penetration values. Higher values were obtained for Prime & Bond NT (81% +/- 34%), Scotchbond 1 (83% +/- 31%), Etch & Prime 3.0 (85% +/- 33%), and Syntac Single Component (95% +/- 16%), with no significant differences (alpha=.05) between specimen groups. The best results were obtained for Syntac Sprint (24% +/- 26% dye penetration) after conditioning with a mixture of phosphoric and hydrofluoric acid. The least favorable result was obtained for Optibond Solo (65% +/- 31%). It was significantly different from Prime & Bond NT (76% +/- 37%), Scotchbond 1 (85% +/- 29%), and Etch & Prime 3.0 (88% +/- 24%). Syntac Single Component (75% +/- 32%) was significantly different from Syntac Sprint. Syntac Single Component and Syntac Sprint exhibited significantly better results when conditioned with a combination of phosphoric acid and hydrofluoric acid than with phosphoric acid only. Within the limitations of this in vitro study, total-etching water-based (Syntac Single Component) and acetone-based (Syntac Sprint) bonding agents with a combination of phosphoric acid and hydrofluoric acid led to significant reductions (alpha=.05) in dye penetration compared to phosphoric acid conditioning only. Ethanol-based dentin bonding agents (Etch & Prime 3.0, Optibond Solo, and Scotchbond 1) were not significantly influenced by the type of conditioner used.

  8. Structural properties and FTIR-Raman spectra of the anti-hypertensive clonidine hydrochloride agent and their dimeric species

    NASA Astrophysics Data System (ADS)

    Romano, Elida; Davies, Lilian; Brandán, Silvia Antonia

    2017-04-01

    The structural and vibrational properties of the α-adrenergic agonist clonidine hydrochloride agent and their anionic and dimeric species were studied combining the experimental FT-IR and Raman spectra in solid phase with ab-initio calculations based on the density functional theory (DFT). All the calculations were performed by using the hybrid B3LYP with the 6-31G* and 6-311++G** basis sets. The structural properties for those species were studied employing the Natural Bond Orbital (NBO), Atoms in Molecules theory (AIM) and frontier orbitals calculations. The complete assignments of the FTIR and Raman spectra were performed combining the DFT calculations with the Pulay's Scaled Quantum Mechanics Force Field (SQMFF) methodology. Very good concordances between the theoretical and experimental spectra were found. In addition, the force constants for those three species were computed and compared with the values reported for similar antihypertensive agents. The ionic nature of the H→Cl bond and the high value of the LP(1)N4 → LP*(1)H18 charge transfer could explain the high reactivity of clonidine hydrochloride in relation to other antihypertensive agent and the strong shifthing of the band assigned to the Nsbnd H stretching mode linked to the Hsbnd Cl bond toward lower wavenumbers.

  9. Evaluation of removal forces of implant-supported zirconia copings depending on abutment geometry, luting agent and cleaning method during re-cementation

    PubMed Central

    Rödiger, Matthias; Rinke, Sven; Ehret-Kleinau, Fenja; Pohlmeyer, Franziska; Lange, Katharina; Bürgers, Ralf

    2014-01-01

    PURPOSE To evaluate the effects of different abutment geometries in combination with varying luting agents and the effectiveness of different cleaning methods (prior to re-cementation) regarding the retentiveness of zirconia copings on implants. MATERIALS AND METHODS Implants were embedded in resin blocks. Three groups of titanium abutments (pre-fabricated, height: 7.5 mm, taper: 5.7°; customized-long, height: 6.79 mm, taper: 4.8°; customized-short, height: 4.31 mm, taper: 4.8°) were used for luting of CAD/CAM-fabricated zirconia copings with a semi-permanent (Telio CS) and a provisional cement (TempBond NE). Retention forces were evaluated using a universal testing machine. Furthermore, the influence of cleaning methods (manually, manually in combination with ultrasonic bath or sandblasting) prior to re-cementation with a provisional cement (TempBond NE) was investigated with the pre-fabricated titanium abutments (height: 7.5 mm, taper: 5.7°) and SEM-analysis of inner surfaces of the copings was performed. Significant differences were determined via two-way ANOVA. RESULTS Significant interactions between abutment geometry and luting agent were observed. TempBond NE showed the highest level of retentiveness on customized-long abutments, but was negatively affected by other abutment geometries. In contrast, luting with Telio CS demonstrated consistent results irrespective of the varying abutment geometries. Manual cleaning in combination with an ultrasonic bath was the only cleaning method tested prior to re-cementation that revealed retentiveness levels not inferior to primary cementation. CONCLUSION No superiority for one of the two cements could be demonstrated because their influences on retentive strength are also depending on abutment geometry. Only manual cleaning in combination with an ultrasonic bath offers retentiveness levels after re-cementation comparable to those of primary luting. PMID:25006388

  10. Surface topography and bond strengths of feldspathic porcelain prepared using various sandblasting pressures.

    PubMed

    Moravej-Salehi, Elham; Moravej-Salehi, Elahe; Valian, Azam

    2016-11-01

    The purpose of this study was to determine the bond strength of composite resin to feldspathic porcelain and its surface topography after sandblasting at different pressures. In this in vitro study, 68 porcelain disks were fabricated and randomly divided into four groups of 17. The porcelain surface in group 1 was etched with hydrofluoric acid. Groups 2, 3, and 4 were sandblasted at 2, 3 and 4 bars pressure, respectively. Surface topography of seven samples in each of the four groups was examined by a scanning electron microscope (SEM). The remaining 40 samples received the same silane agent, bonding agent, and composite resin and they were then subjected to 5000 thermal cycles and evaluated for shear bond strength. Data were analyzed using one-way anova. The mode of failure was determined using stereomicroscope and SEM. The highest shear bond strength was seen in group 4. however, statistically significant differences were not seen between the groups (P = 0.780). The most common mode of failure was cohesive in porcelain. The SEM showed different patterns of hydrofluoric acid etching and sandblasting. Increasing the sandblasting pressure increased the surface roughness of feldspathic porcelain but no difference in bond strength occurred. © 2015 Wiley Publishing Asia Pty Ltd.

  11. Effect of O-methyl-β-cyclodextrin-modified magnetic nanoparticles on the uptake and extracellular level of l-glutamate in brain nerve terminals.

    PubMed

    Horák, Daniel; Beneš, Milan; Procházková, Zuzana; Trchová, Miroslava; Borysov, Arsenii; Pastukhov, Artem; Paliienko, Konstantin; Borisova, Tatiana

    2017-01-01

    Changes in cholesterol concentration in the plasma membrane of presynaptic nerve terminals nonspecifically modulate glutamate transport and homeostasis in the central nervous system. Reduction of the cholesterol content in isolated rat brain nerve terminals (synaptosomes) using cholesterol-depleting agents decreases the glutamate uptake and increases the extracellular level of glutamate in nerve terminals. Extraction of cholesterol from the plasma membrane and its further removal from the synaptosomes by external magnetic field can be achieved by means of magnetic nanoparticles with immobilized cholesterol-depleting agent such as O-methyl-β-cyclodextrin (MCD). A simple approach is developed for preparation of maghemite (γ-Fe 2 O 3 ) nanoparticles containing chemically bonded MCD. The method is based on preparation of a silanization agent containing MCD. It is synthesized by the reaction of triethoxy(3-isocyanatopropyl)silane with MCD. Base-catalyzed silanization of superparamagnetic γ-Fe 2 O 3 provides a relatively stable colloid product containing 48μmol of MCDg -1 . MCD-modified γ-Fe 2 O 3 nanoparticles decrease the initial rate of the uptake and accumulation of l-[ 14 C]glutamate and increase the extracellular l-[ 14 C]glutamate level in the preparation of nerve terminals. The effect of MCD-immobilized nanoparticles is the same as that of MCD solution; moreover, magnetic manipulation of the nanoparticles enables removal of bonded cholesterol. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. 26 CFR 1.1441-10 - Withholding agents with respect to fast-pay arrangements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 12 2014-04-01 2014-04-01 false Withholding agents with respect to fast-pay... Foreign Corporations and Tax-Free Covenant Bonds § 1.1441-10 Withholding agents with respect to fast-pay arrangements. (a) In general. A corporation that issues fast-pay stock in a fast-pay arrangement described in...

  13. 26 CFR 1.1441-10 - Withholding agents with respect to fast-pay arrangements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 12 2011-04-01 2011-04-01 false Withholding agents with respect to fast-pay... Foreign Corporations and Tax-Free Covenant Bonds § 1.1441-10 Withholding agents with respect to fast-pay arrangements. (a) In general. A corporation that issues fast-pay stock in a fast-pay arrangement described in...

  14. 26 CFR 1.1441-10 - Withholding agents with respect to fast-pay arrangements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 12 2012-04-01 2012-04-01 false Withholding agents with respect to fast-pay... Foreign Corporations and Tax-Free Covenant Bonds § 1.1441-10 Withholding agents with respect to fast-pay arrangements. (a) In general. A corporation that issues fast-pay stock in a fast-pay arrangement described in...

  15. 26 CFR 1.1441-10 - Withholding agents with respect to fast-pay arrangements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 12 2013-04-01 2013-04-01 false Withholding agents with respect to fast-pay... Foreign Corporations and Tax-Free Covenant Bonds § 1.1441-10 Withholding agents with respect to fast-pay arrangements. (a) In general. A corporation that issues fast-pay stock in a fast-pay arrangement described in...

  16. Resin-dentin bonds to EDTA-treated vs. acid-etched dentin using ethanol wet-bonding. Part II: Effects of mechanical cycling load on microtensile bond strengths.

    PubMed

    Sauro, Salvatore; Toledano, Manuel; Aguilera, Fatima Sánchez; Mannocci, Francesco; Pashley, David H; Tay, Franklin R; Watson, Timothy F; Osorio, Raquel

    2011-06-01

    To compare microtensile bond strengths (MTBS) subsequent to load cycling of resin bonded acid-etched or EDTA-treated dentin using a modified ethanol wet-bonding technique. Flat dentin surfaces were obtained from extracted human molars and conditioned using 37% H(3)PO(4) (PA) (15s) or 0.1M EDTA (60s). Five experimental adhesives and one commercial bonding agent were applied to the dentin and light-cured. Solvated experimental resins (50% ethanol/50% comonomers) were used as primers and their respective neat resins were used as the adhesives. The resin-bonded teeth were stored in distilled water (24h) or submitted to 5000 loading cycles of 90N. The bonded teeth were then sectioned in beams for MTBS. Modes of failure were examined by scanning electron microscopy. The most hydrophobic resin 1 gave the lowest bond strength values to both acid and EDTA-treated dentin. The hydrophobic resin 2 applied to EDTA-treated dentin showed lower bond strengths after cycling load but this did not occur when it was bonded to PA-etched dentin. Resins 3 and 4, which contained hydrophilic monomers, gave higher bond strengths to both EDTA-treated or acid-etched dentin and showed no significant difference after load cycling. The most hydrophilic resin 5 showed no significant difference in bond strengths after cycling loading when bonded to EDTA or phosphoric acid treated dentin but exhibited low bond strengths. The presence of different functional monomers influences the MTBS of the adhesive systems when submitted to cyclic loads. Adhesives containing hydrophilic comonomers are not affected by cycling load challenge especially when applied on EDTA-treated dentin followed by ethanol wet bonding. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  17. 19 CFR 113.22 - Witnesses required.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY... stating on the bond “as to both”. (c) Corporate principal or surety. No witnesses are required where bonds are executed by properly authorized officers or agents of a corporate principal or corporate surety...

  18. 19 CFR 113.22 - Witnesses required.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY... stating on the bond “as to both”. (c) Corporate principal or surety. No witnesses are required where bonds are executed by properly authorized officers or agents of a corporate principal or corporate surety...

  19. 19 CFR 113.22 - Witnesses required.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY... stating on the bond “as to both”. (c) Corporate principal or surety. No witnesses are required where bonds are executed by properly authorized officers or agents of a corporate principal or corporate surety...

  20. 19 CFR 113.22 - Witnesses required.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY... stating on the bond “as to both”. (c) Corporate principal or surety. No witnesses are required where bonds are executed by properly authorized officers or agents of a corporate principal or corporate surety...

  1. 19 CFR 113.22 - Witnesses required.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY... stating on the bond “as to both”. (c) Corporate principal or surety. No witnesses are required where bonds are executed by properly authorized officers or agents of a corporate principal or corporate surety...

  2. Effect of composite surface treatment and aging on the bond strength between a core build-up composite and a luting agent

    PubMed Central

    COTES, Caroline; CARDOSO, Mayra; de MELO, Renata Marques; VALANDRO, Luiz Felipe; BOTTINO, Marco Antonio

    2015-01-01

    Objective The purpose of this study was to assess the influence of conditioning methods and thermocycling on the bond strength between composite core and resin cement. Material and Methods Eighty blocks (8×8×4 mm) were prepared with core build-up composite. The cementation surface was roughened with 120-grit carbide paper and the blocks were thermocycled (5,000 cycles, between 5°C and 55°C, with a 30 s dwell time in each bath). A layer of temporary luting agent was applied. After 24 h, the layer was removed, and the blocks were divided into five groups, according to surface treatment: (NT) No treatment (control); (SP) Grinding with 120-grit carbide paper; (AC) Etching with 37% phosphoric acid; (SC) Sandblasting with 30 mm SiO2 particles, silane application; (AO) Sandblasting with 50 mm Al2O3 particles, silane application. Two composite blocks were cemented to each other (n=8) and sectioned into sticks. Half of the specimens from each block were immediately tested for microtensile bond strength (µTBS), while the other half was subjected to storage for 6 months, thermocycling (12,000 cycles, between 5°C and 55°C, with a dwell time of 30 s in each bath) and µTBS test in a mechanical testing machine. Bond strength data were analyzed by repeated measures two-way ANOVA and Tukey test (α=0.05). Results The µTBS was significantly affected by surface treatment (p=0.007) and thermocycling (p=0.000). Before aging, the SP group presented higher bond strength when compared to NT and AC groups, whereas all the other groups were statistically similar. After aging, all the groups were statistically similar. SP submitted to thermocycling showed lower bond strength than SP without thermocycling. Conclusion Core composites should be roughened with a diamond bur before the luting process. Thermocycling tends to reduce the bond strength between composite and resin cement. PMID:25760269

  3. Xenon fluorides show potential as fluorinating agents

    NASA Technical Reports Server (NTRS)

    Chernick, C. L.; Shieh, T. C.; Yang, N. C.

    1967-01-01

    Xenon fluorides permit the controlled addition of fluorine across an olefinic double bond. They provide a series of fluorinating agents that permit ready separation from the product at a high purity. The reactions may be carried out in the vapor phase.

  4. Preparation of mesoporous alumina particles by spray pyrolysis and application to double bond migration of 2-butene.

    PubMed

    Song, Ki Chang; Kim, Joo Hyun; Kim, Jin Han; Jung, Kyeong Youl; Park, Young-Kwon; Jeon, Jong-Ki

    2011-07-01

    The objective of the present study is to investigate the catalytic performance of mesoporous alumina that were prepared via spray pyrolysis for double bond migration from 2-butene to 1-butene. The mesoporous alumina particles were prepared via spray pyrolysis by changing the types of organic surfactants and Al precursors. The texture and acidic properties of mesoporous alumina were analyzed through N2 adsorption, SEM, ammonia-temperature programmed desorption, and FT-IR of adsorbed pyridine. The morphologies and texture properties of the mesoporous alumina were found to have been strongly influenced by the combination of the Al precursor and the structure-directing agents. The mesoporous alumina samples had two kinds of acidic sites: a Lewis acid site and a H-bonded weak acid site. 1-Butene was produced selectively through double bond migration of 2-butene over all of the mesoporous alumina catalysts. The catalyst prepared by using a chloride compound as an aluminium precursor and CTAC as a structure-directing agent showed the highest activity in the double bond migration of 2-butene, which was attributed to its large surface area and an overall high amount of acid sites.

  5. Evaluation of DSS-14 pedestal-review of top surface repair procedures

    NASA Technical Reports Server (NTRS)

    Oesterle, R. G.; Musser, D. W.; Salse, E. A. B.

    1983-01-01

    Proposed repair procedures for the top surface of the pedestal supporting the hydrostatic bearing runner for the 64m Antenna are presented. These procedures included: (1) removal of existing grout and concrete to approximately 8 in. below original concrete surface using a presplitting technique with expansive cement followed by secondary breaking; (2) preparation of exposed concrete surface including an epoxy bonding agent; and (3) replacement of material removed with 8 in. of new concrete surface including an epoxy bonding agent; and (4) replacement of material removed with 8 in. of new concrete and 4 in. of new grout.

  6. Using Diffusion Bonding in Making Piezoelectric Actuators

    NASA Technical Reports Server (NTRS)

    Sager, Frank E.

    2003-01-01

    A technique for the fabrication of piezoelectric actuators that generate acceptably large forces and deflections at relatively low applied voltages involves the stacking and diffusion bonding of multiple thin piezoelectric layers coated with film electrodes. The present technique stands in contrast to an older technique in which the layers are bonded chemically, by use of urethane or epoxy agents. The older chemical-bonding technique entails several disadvantages, including the following: It is difficult to apply the bonding agents to the piezoelectric layers. It is difficult to position the layers accurately and without making mistakes. There is a problem of disposal of hazardous urethane and epoxy wastes. The urethane and epoxy agents are nonpiezoelectric materials. As such, they contribute to the thickness of a piezoelectric laminate without contributing to its performance; conversely, for a given total thickness, the performance of the laminate is below that of a unitary piezoelectric plate of the same thickness. The figure depicts some aspects of the fabrication of a laminated piezoelectric actuator by the present diffusion- bonding technique. First, stock sheets of the piezoelectric material are inspected and tested. Next, the hole pattern shown in the figure is punched into the sheets. Alternatively, if the piezoelectric material is not a polymer, then the holes are punched in thermoplastic films. Then both faces of each punched piezoelectric sheet or thermoplastic film are coated with a silver-ink electrode material by use of a silkscreen printer. The electrode and hole patterns are designed for minimal complexity and minimal waste of material. After a final electrical test, all the coated piezoelectric layers (or piezoelectric layers and coated thermoplastic films) are stacked in an alignment jig, which, in turn, is placed in a curved press for the diffusion-bonding process. In this process, the stack is pressed and heated at a specified curing temperature and pressure for a specified curing time. The pressure, temperature, and time depend on the piezoelectric material selected. At the end of the diffusion-bonding process, the resulting laminated piezoelectric actuator is tested to verify the adequacy of the mechanical output as a function of an applied DC voltage.

  7. Biasing hydrogen bond donating host systems towards chemical warfare agent recognition.

    PubMed

    Hiscock, Jennifer R; Wells, Neil J; Ede, Jayne A; Gale, Philip A; Sambrook, Mark R

    2016-10-12

    A series of neutral ditopic and negatively charged, monotopic host molecules have been evaluated for their ability to bind chloride and dihydrogen phosphate anions, and neutral organophosphorus species dimethyl methylphosphonate (DMMP), pinacolyl methylphosphonate (PMP) and the chemical warfare agent (CWA) pinacolyl methylphosphonofluoridate (GD, soman) in organic solvent via hydrogen bonding. Urea, thiourea and boronic acid groups are shown to bind anions and neutral guests through the formation of hydrogen bonds, with the urea and thiourea groups typically exhibiting higher affinity interactions. The introduction of a negative charge on the host structure is shown to decrease anion affinity, whilst still allowing for high stability host-GD complex formation. Importantly, the affinity of the host for the neutral CWA GD is greater than for anionic guests, thus demonstrating the potential for selectivity reversal based on charge repulsion.

  8. Time of Application of Sodium Ascorbate on Bonding to Bleached Dentin.

    PubMed

    Jung, Kyoung-Hwa; Seon, Eun-Mi; Choi, An-Na; Kwon, Yong-Hoon; Son, Sung-Ae; Park, Jeong-Kil

    2017-01-01

    This study examined the effects of different application times of sodium ascorbate (SA) on the bond strength of composite resin to bleached dentin. Specimens with an exposed dentin surface were divided into 3 groups according to the type of bleaching agent used: Group A, mixture of sodium perborate (SP) and distilled water (DW); Group B, mixture of SP and hydrogen peroxide (HP); control group, no bleaching. Each group was classified into 10 subgroups. Subgroups IB and DB underwent immediate bonding and delayed bonding, respectively. 10% SA was applied to 3, 5, 10, and 30 minutes and 1, 24, 48, and 72 hours, respectively. Microtensile bond strength ( μ TBS) was measured after restoration, and the data was analyzed by one-way ANOVA and Scheffé's test. Before restoration, the dentin surfaces were examined by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). SEM showed that most dentin surfaces were filled with crystals when SA was applied to more than 24 hours. EDS revealed peaks of calcium, carbon, oxygen, and sodium. The application of SA for 5 minutes to 48 hours or for 30 minutes to 24 hours is suggested when a mixture of SP and DW or HP is used, respectively.

  9. The structural basis of urea-induced protein unfolding in β-catenin

    PubMed Central

    Wang, Chao; Chen, Zhongzhou; Hong, Xia; Ning, Fangkun; Liu, Haolin; Zang, Jianye; Yan, Xiaoxue; Kemp, Jennifer; Musselman, Catherine A.; Kutateladze, Tatinna G.; Zhao, Rui; Jiang, Chengyu; Zhang, Gongyi

    2014-01-01

    Although urea and guanidine hydrochloride are commonly used to denature proteins, the molecular underpinnings of this process have remained unclear for a century. To address this question, crystal structures of β-catenin were determined at various urea concentrations. These structures contained at least 105 unique positions that were occupied by urea molecules, each of which interacted with the protein primarily via hydrogen bonds. Hydrogen-bond competition experiments showed that the denaturing effects of urea were neutralized when polyethylene glycol was added to the solution. These data suggest that urea primarily causes proteins to unfold by competing and disrupting hydrogen bonds in proteins. Moreover, circular-dichroism spectra and nuclear magnetic resonance (NMR) analysis revealed that a similar mechanism caused protein denaturation in the absence of urea at pH levels greater than 12. Taken together, the results led to the conclusion that the disruption of hydrogen bonds is a general mechanism of unfolding induced by urea, high pH and potentially other denaturing agents such as guanidine hydrochloride. Traditionally, the disruption of hydrophobic inter­actions instead of hydrogen bonds has been thought to be the most important cause of protein denaturation. PMID:25372676

  10. The structural basis of urea-induced protein unfolding in β-catenin.

    PubMed

    Wang, Chao; Chen, Zhongzhou; Hong, Xia; Ning, Fangkun; Liu, Haolin; Zang, Jianye; Yan, Xiaoxue; Kemp, Jennifer; Musselman, Catherine A; Kutateladze, Tatinna G; Zhao, Rui; Jiang, Chengyu; Zhang, Gongyi

    2014-11-01

    Although urea and guanidine hydrochloride are commonly used to denature proteins, the molecular underpinnings of this process have remained unclear for a century. To address this question, crystal structures of β-catenin were determined at various urea concentrations. These structures contained at least 105 unique positions that were occupied by urea molecules, each of which interacted with the protein primarily via hydrogen bonds. Hydrogen-bond competition experiments showed that the denaturing effects of urea were neutralized when polyethylene glycol was added to the solution. These data suggest that urea primarily causes proteins to unfold by competing and disrupting hydrogen bonds in proteins. Moreover, circular-dichroism spectra and nuclear magnetic resonance (NMR) analysis revealed that a similar mechanism caused protein denaturation in the absence of urea at pH levels greater than 12. Taken together, the results led to the conclusion that the disruption of hydrogen bonds is a general mechanism of unfolding induced by urea, high pH and potentially other denaturing agents such as guanidine hydrochloride. Traditionally, the disruption of hydrophobic interactions instead of hydrogen bonds has been thought to be the most important cause of protein denaturation.

  11. 19 CFR 113.37 - Corporate sureties.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY... on the bond. (d) Social security number of agent or attorney on the bond. In the appropriate place on... place his/her social security number, as it appears on the corporate surety power of attorney. (e...

  12. 19 CFR 113.37 - Corporate sureties.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY... on the bond. (d) Social security number of agent or attorney on the bond. In the appropriate place on... place his/her social security number, as it appears on the corporate surety power of attorney. (e...

  13. 19 CFR 113.37 - Corporate sureties.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY... on the bond. (d) Social security number of agent or attorney on the bond. In the appropriate place on... place his/her social security number, as it appears on the corporate surety power of attorney. (e...

  14. 19 CFR 113.37 - Corporate sureties.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY... on the bond. (d) Social security number of agent or attorney on the bond. In the appropriate place on... place his/her social security number, as it appears on the corporate surety power of attorney. (e...

  15. 19 CFR 113.37 - Corporate sureties.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY... on the bond. (d) Social security number of agent or attorney on the bond. In the appropriate place on... place his/her social security number, as it appears on the corporate surety power of attorney. (e...

  16. 31 CFR 321.0 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... UNITED STATES SAVINGS BONDS AND UNITED STATES SAVINGS NOTES (FREEDOM SHARES) General Information § 321.0... agents for the redemption of: (a) United States Savings Bonds of Series A, B, C, D, E, EE, and I, and United States Savings Notes (Freedom Shares), presented for cash payment; and (b) Eligible Series E and...

  17. Incorporation of TiO2 nanotubes in a polycrystalline zirconia: Synthesis of nanotubes, surface characterization, and bond strength.

    PubMed

    Dos Santos, Angélica Feltrin; Sandes de Lucena, Fernanda; Sanches Borges, Ana Flávia; Lisboa-Filho, Paulo Noronha; Furuse, Adilson Yoshio

    2018-04-05

    Despite numerous advantages such as high strength, the bond of yttria-stabilized zirconia polycrystal (Y-TZP) to tooth structure requires improvement. The purpose of this in vitro study was to evaluate the incorporation of TiO 2 nanotubes into zirconia surfaces and the bond strength of resin cement to the modified ceramic. TiO 2 nanotubes were produced by alkaline synthesis, mixed with isopropyl alcohol (50 wt%) and applied on presintered zirconia disks. The ceramics were sintered, and the surfaces were characterized by confocal laser microscopy, scanning electron microscopy (SEM), and energy-dispersive x-ray spectroscopy (EDS) analysis. For bond strength, the following 6 groups (n=16) were evaluated: without TiO 2 and Single Bond Universal; with TiO 2 nanotubes and Single Bond Universal; without TiO 2 nanotubes and Z-prime; with TiO 2 nanotubes and Z-prime; without TiO 2 and Signum Zirconia Bond; with TiO 2 and Signum Zirconia Bond. After sintering, resin cement cylinders, diameter of 1.40 mm and 1 mm in height, were prepared and polymerized for 20 seconds. Specimens were stored in water at 37°C for 30 days and submitted to a shear test. Data were analyzed by 2-way ANOVA and Tukey honest significant difference (α=.05) tests. EDS analysis confirmed that nanoagglomerates were composed of TiO 2 . The shear bond strength showed statistically significant differences among bonding agents (P<.001). No significant differences were found with the application of nanotubes, regardless of the group analyzed (P=.682). The interaction among the bonding agent factors and addition of nanotubes was significant (P=.025). Nanotubes can be incorporated into zirconia surfaces. However, this incorporation did not improve bond strength. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  18. Shear Bond Strength of Metal Brackets to Zirconia Conditioned with Various Primer-Adhesive Systems

    DTIC Science & Technology

    2016-07-01

    Reynolds, 1979 ). Bonding orthodontic brackets to ceramic restorative materials poses a unique challenge. Abu et al. measured the strength between...forth by Reynolds and 34 others (Reynolds, 1979 ). The pertinent question is the following: should brackets be chemically bonded to zirconia...conditioned with a new silane coupling agent. Eur J Orthod. 2013 Feb;35(1):103-9. 40 Giannini M, Soares CJ, de Carvalho RM. Ultimate tensile

  19. Microshear bond strength of composite resins to enamel and porcelain substrates utilizing unfilled versus filled resins.

    PubMed

    Najafi-Abrandabadi, Ahmad; Najafi-Abrandabadi, Siamak; Ghasemi, Amir; Kotick, Philip G

    2014-11-01

    Failures such as marginal discoloration and composite chipping are still the problems of tooth-colored restorations on the substrate of enamel and porcelain, which some of these problems are consequently as a result of failures in the bonding layer. Using filled resin has been recently introduced to increase the bond strength of this layer. The aim of this study was to compare the microshear bond strength (μ-SBS) of composite resins to enamel incubated in periods of 24 h and 9 months and porcelain with unfilled resin and flowable composites (filled resin). In this in vitro study, two groups of 75 enamel samples with different storage times (24 h and 9 months) and a group of 75 porcelain samples were used. They were divided into 5 experimental groups of 15 samples in each. Composite cylinders in tygon tubes were bonded on the surface of acid-etched enamel and pretreated porcelain. Wave, Wave MV, Wave HV, Grandioflow and Margin Bond were used as bonding agents. The μ-SBS was measured at the speed of 1.0 mm/min. The bond strengths were analyzed with one-way analysis of variance (ANOVA) test followed by Tukey test. P < 0.05 was selected as the level of statistical significance in this study. The results showed that for enamel (24 h), the μ-SBS of the Wave MV and Wave HV groups were significantly lower than the Margin Bond group. Tukey test indicated the absence of a significant difference between the μ-SBS of the Wave group and the Margin Bond group. However, the μ-SBS of the Grandioflow group was significantly higher than the one for the Margin Bond as a bonding agent. In enamel (9 months), there was a significant difference between the Grandioflow and Margin Bond groups. Regarding bonding to the porcelain the one-way ANOVA test did not show a significant difference among the groups. This study revealed that flowable composites (filled resins) can be used instead of unfilled resins in bonding composite resins to enamel and porcelain substrates.

  20. Effect of silica coating on fracture strength of glass-infiltrated alumina ceramic cemented to dentin.

    PubMed

    Xie, Haifeng; Zhu, Ye; Chen, Chen; Gu, Ning; Zhang, Feimin

    2011-10-01

    To examine the availability of sol-gel processed silica coating for alumina-based ceramic bonding, and determine which silica sol concentration was appropriate for silica coating. Sixty disks of In-Ceram alumina ceramic were fabricated and randomly divided into 5 main groups. The disks received 5 different surface conditioning treatments: Group Al, sandblasted; Group AlC, sandblasted + silane coupling agent applied; Groups Al20C, Al30C, and Al40C, sandblasted, silica coating via sol-gel process prepared using 20 wt%, 30 wt%, and 40 wt% silica sols, and then silane coupling agent applied. Before bonding, one-step adhesives were applied on pre-prepared ceramic surfaces of all groups. Then, 60 dentin specimens were prepared and conditioned with phosphoric acid and one-step adhesive. Ceramic disks of all groups were cemented to dentin specimens with dual-curing resin cements. Fracture strength was determined at 24 h and after 20 days of storage in water. Groups Al20C, Al30C, and Al40C revealed significantly higher fracture strength than groups Al and AlC. No statistically significant difference in fracture strength was found between groups Al and AlC, or among groups Al20C, Al30C, and Al40C. Fracture strength values of all the groups did not change after 20 days of water storage. Sol-gel processed silica coating can enhance fracture strength of In-Ceram alumina ceramic after bonding to dentin, and different silica sol concentrations produced the same effects. Twenty days of water storage did not decrease the fracture strength.

  1. Morphological effects of MMPs inhibitors on the dentin bonding

    PubMed Central

    Li, He; Li, Tianbo; Li, Xiuying; Zhang, Zhimin; Li, Penglian; Li, Zhenling

    2015-01-01

    Matrix metalloproteinases (MMPs) have been studied extensively, and MMP inhibitors have been used as dental pretreatment agents prior to dentin bonding because they reduce collagen fiber degradation and improve bonding strength. However, morphologic characteristics of the collagen network after etching and of the post-adhesive dentin hybrid layers (DHL) after MMP inhibitors pretreatment have not been evaluated. Thus, we investigated demineralized dentin pretreated with chlorhexidine (CHX) and minocycline (MI) in an etch- and -rinse adhesive system with field emission scanning electron microscopy (FESEM) and immuno-gold labeling markers to observe the collagen network and DHL. FESEM revealed after CHX and MI, a demineralized dentin surface and improved collagen network formation, reduced collagen degradation, and distinct gold-labeling signals. Applying adhesive after either MMP inhibitor created a better dentin interface as evidenced by immuno-gold staining, better adhesive penetration, and higher DHL quality. With microtensile bond strength tests (µTBS) we estimated bonding strength using µTBS data. Immediate µTBS was enhanced with MMP inhibitor application to the bonding surface, and the CHX group was significantly different than non-treated etched surfaces, but no significant change was detected in the MI group. Surface micromorphology of the fractured dentin resin restoration showed that the CHX group had a better resin and dentin tube combination. Both MMP inhibitors created uniform resin coverage. Thus, morphologic results and µTBS data suggest that CHX and MI can inhibit MMP activity, improve immediate bonding strength, and enhance dentin bonding stability with an etch- and -rinse adhesive system. PMID:26379873

  2. Investigation of bracket bonding for orthodontic treatments using en-face optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Sinescu, Cosmin; Negrutiu, Meda L.; Hughes, Michael; Bradu, Adrian; Todea, Carmen; Rominu, Roxana; Dodenciu, Dorin; Laissue, Philippe L.; Podoleanu, Adrian G.

    2008-04-01

    Despite good diagnosis and treatment planning, orthodontic treatment can fail if bonding fails. It is now common practice to address the aesthetic appearance of patients using aesthetic brackets instead of metal ones. Therefore, bonding aesthetic brackets has become an issue for orthodontists today. Orthodontic bonding is mainly achieved using composite resin but can also be performed with glass ionomer or resin cements. For improving the quality of bonding, the enamel is acid etched for 30 seconds with 38% phosphoric acid and then a bonding agent is applied. In our study we investigated and compared the quality of bonding between ceramic brackets, polymeric brackets and enamel, respectively using a new investigation method-OCT. The aim of our study was to evaluate the resin layer at the bracket base-tooth interface.

  3. 26 CFR 1.1441-10 - Withholding agents with respect to fast-pay arrangements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 12 2010-04-01 2010-04-01 false Withholding agents with respect to fast-pay... Corporations and Tax-Free Covenant Bonds § 1.1441-10 Withholding agents with respect to fast-pay arrangements. (a) In general. A corporation that issues fast-pay stock in a fast-pay arrangement described in § 1...

  4. Triclosan antimicrobial polymers

    PubMed Central

    Petersen, Richard C.

    2016-01-01

    Triclosan antimicrobial molecular fluctuating energies of nonbonding electron pairs for the oxygen atom by ether bond rotations are reviewed with conformational computational chemistry analyses. Subsequent understanding of triclosan alternating ether bond rotations is able to help explain several material properties in Polymer Science. Unique bond rotation entanglements between triclosan and the polymer chains increase both the mechanical properties of polymer toughness and strength that are enhanced even better through secondary bonding relationships. Further, polymer blend compatibilization is considered due to similar molecular relationships and polarities. With compatibilization of triclosan in polymers a more uniform stability for nonpolar triclosan in the polymer solid state is retained by the antimicrobial for extremely low release with minimum solubility into aqueous solution. As a result, triclosan is projected for long extended lifetimes as an antimicrobial polymer additive. Further, triclosan rapid alternating ether bond rotations disrupt secondary bonding between chain monomers in the resin state to reduce viscosity and enhance polymer blending. Thus, triclosan is considered for a polymer additive with multiple properties to be an antimicrobial with additional benefits as a nonpolar toughening agent and a hydrophobic wetting agent. The triclosan material relationships with alternating ether bond rotations are described through a complete different form of medium by comparisons with known antimicrobial properties that upset bacterial cell membranes through rapid fluctuating mechanomolecular energies. Also, triclosan bond entanglements with secondary bonding can produce structural defects in weak bacterial lipid membranes requiring pliability that can then interfere with cell division. Regarding applications with polymers, triclosan can be incorporated by mixing into a resin system before cure, melt mixed with thermoplastic polymers that set on cooling into a solid or alternatively applied as a coating through several different methods with dissolving into an organic solvent and dried on by evaporation as a common means. PMID:27280150

  5. Role of enamel deminerlization and remineralization on microtensile bond strength of resin composite

    PubMed Central

    Rizvi, Abbas; Zafar, Muhammad S.; Al-Wasifi, Yasser; Fareed, Wamiq; Khurshid, Zohaib

    2016-01-01

    Objective: This study is aimed to establish the microtensile bond strength of enamel following exposure to an aerated drink at various time intervals with/without application of remineralization agent. In addition, degree of remineralization and demineralization of tooth enamel has been assessed using polarized light microscopy. Materials and Methods: Seventy extracted human incisors split into two halves were immersed in aerated beverage (cola drink) for 5 min and stored in saliva until the time of microtensile bond testing. Prepared specimens were divided randomly into two study groups; remineralizing group (n = 70): specimens were treated for remineralization using casein phosphopeptides and amorphous calcium phosphate (CPP-ACP) remineralization agent (Recaldent™; GC Europe) and control group (n = 70): no remineralization treatment; specimens were kept in artificial saliva. All specimens were tested for microtensile bond strength at regular intervals (1 h, 1 days, 2 days, 1 week, and 2 weeks) using a universal testing machine. The results statistically analyzed (P = 0.05) using two-way ANOVA test. Results: Results showed statistically significant increase in bond strength in CPP-ACP tested group (P < 0.05) at all-time intervals. The bond strength of remineralizing group samples at 2 days (~13.64 megapascals [MPa]) is comparable to that of control group after 1 week (~12.44 MPa). Conclusions: CPP-ACP treatment of teeth exposed to an aerated drink provided significant increase in bond strength at a shorter interval compared to teeth exposed to saliva alone. PMID:27403057

  6. Characterisation of CFRP surface contamination by laser induced fluorescence

    NASA Astrophysics Data System (ADS)

    Malinowski, Pawel H.; Sawczak, Miroslaw; Wandowski, Tomasz; Ostachowicz, Wieslaw M.; Cenian, Adam

    2014-03-01

    The application of Carbon Fibre Reinforced Polymers (CFRP) in aeronautics has been increasing. The CFRP elements are joint using rivets and adhesive bonding. The reliability of the bonding limits the use of adhesive bonding for primary aircraft structures, therefore it is important to assess the bond quality. The performance of adhesive bonds depends on the physico-chemical properties of the adhered surfaces. This research is focused on characterization of surfaces before bonding. In-situ examination of large surface materials, determine the group of methods that are preferred. The analytical methods should be non-destructive, enabling large surface analysis in relatively short time. In this work a spectroscopic method was tested that can be potentially applied for surface analysis. Four cases of surface condition were investigated that can be encountered either in the manufacturing process or during aircraft service. The first case is related to contamination of CFRP surface with hydraulic fluid. This fluid reacts with water forming a phosphoric acid that can etch the CFRP. Second considered case was related to silicone-based release agent contamination. These agents are used during the moulding process of composite panels. Third case involved moisture content in CFRP. Moisture content lowers the adhesion quality and leads to reduced performance of CFRP resulting in reduced performance of the adhesive bond. The last case concentrated on heat damage of CFRP. It was shown that laser induced fluorescence method can be useful for non-destructive evaluation of CFRP surface and some of the investigated contaminants can be easily detected.

  7. Novel priming and crosslinking systems for use with isocyanatomethacrylate dental adhesives.

    PubMed

    Chappelow, C C; Power, M D; Bowles, C Q; Miller, R G; Pinzino, C S; Eick, J D

    2000-11-01

    (a) to design, formulate and evaluate prototype primers and a crosslinking agent for use with isocyanatomethacrylate-based comonomer adhesives and (b) to establish correlations between bond strength and solubility parameter differences between the adhesives and etched dentin, and the permeability coefficients of the adhesives. Equimolar mixtures of 2-isocyanatoethyl methacrylate (IEM) and a methacrylate comonomer were formulated with tri-n-butyl borane oxide (TBBO) as the free radical initiator to have cure times of 6-10 min. Shear bond strengths to dentin were determined for each adhesive mixture (n = 7) using standard testing protocols. Shear bond strengths for the three systems were also determined after application of "reactive primers" to the dentin surface. The "reactive primers" contained 10-20 parts by weight of the respective comonomer mixture and 3.5 parts by weight TBBO in acetone. Solubility parameters difference values (delta delta) and permeability coefficients (P) were approximated for each adhesive system and correlated with shear bond strength values. Additionally, a crosslinking agent was prepared by bulk reaction of an equimolar mixture containing IEM and a methacrylate comonomer. The effects of crosslinker addition on: (a) the setting time of IEM; and (b) the setting times and initiator requirements of selected IEM/comonomer mixtures were determined. Shear bond strength values (MPa): IEM/HEMA 13.6 +/- 2.0 (no primer), 20.1 +/- 2.0 (with primer); IEM/HETMA 9.3 +/- 3.3 (no primer), 20.8 +/- 8.1 (with primer); IEM/AAEMA 13.6 +/- 1.9 (no primer), 17.3 +/- 3.2 (with primer). Also, approximated permeability coefficients showed a significant correlation (r = +0.867, p < 0.001) with shear bond strength values. Crosslinker addition studies with IEM/4-META: (a) at 5-9 mol% reduced the setting time of IEM polymerization by 79%; and (b) at 6 mol% reduced initiator level requirements 60-70% to achieve a comparable setting time, and decreased setting times by ca. 75% for a given initiator level with selected IEM/methacrylate adhesive systems. The shear bond strengths of isocyanatomethacrylate-based dental adhesives can be enhanced by using reactive primers; their setting times and initiator requirements can be improved using a dimethacrylate crosslinker. Approximated permeability coefficients may be useful as indicators of bonding performance for dentin adhesive systems.

  8. Effect of metal primers on bond strength of resin cements to base metals.

    PubMed

    Fonseca, Renata Garcia; de Almeida, Juliana Gomes dos Santos Paes; Haneda, Isabella Gagliardi; Adabo, Gelson Luis

    2009-04-01

    A strong and durable bond between a metal framework and a resin-based luting agent is desired. Metal primers have been shown to be very effective on noble alloys. However, there is insufficient information about their effect on base metals. The purpose of this study was to evaluate the effect of metal primers on the shear bond strength of resin cements to base metals. A total of 160 cast commercially pure titanium (CP Ti) and NiCr alloy (VeraBond II) disks were embedded in a polyvinyl chloride ring, and their surfaces were smoothed with silicon carbide papers (320, 400, and 600 grit) and airborne-particle abraded with 50-mum aluminum oxide. Specimens of each metal were divided into 4 groups (n=20), which received one of the following luting techniques: (1) Panavia F, (2) Alloy Primer plus Panavia F, (3) Bistite II DC, or (4) Metaltite plus Bistite II DC. Forty minutes after preparation, all specimens were stored in distilled water at 37 degrees C for 24 hours and then thermal cycled (1000 cycles, 5-55 degrees C). After thermal cycling, the specimens were stored in 37 degrees C distilled water for an additional 24 hours or 6 months before being tested in shear mode. Data (MPa) were analyzed using 3-way ANOVA and the post hoc Tukey test (alpha=.05). Each specimen was examined under an optical microscope (x30), and the failure mode was classified as adhesive, cohesive, or a combination of these. The only significant difference between the Panavia F and Alloy Primer plus Panavia F groups occurred in the NiCr alloy at 24 hours, at which point Panavia F demonstrated superior bond strength compared to Alloy Primer plus Panavia F (P<.001). The Bistite II DC and Metaltite plus Bistite II DC groups were not significantly different. The Bistite II DC and Metaltite plus Bistite II DC groups demonstrated significantly lower bond strength to CP Ti (P<.001) than the Panavia F and Alloy Primer plus Panavia F groups, and significantly lower bond strength to NiCr alloy (P<.001) than Panavia F. The Panavia F (P<.01) and Alloy Primer plus Panavia F groups' bond strength to titanium presented a significant increase (P<.001) in shear bond strength at 6 months. In general, the groups exhibited higher shear bond strength to CP Ti than to NiCr alloy (P<.01). The failure mode was 100% adhesive for all groups. The metal primers did not promote an increase in adhesive bonding of resin cements to NiCr alloy and to CP Ti. Water storage had no adverse effect on the shear bond strength of the groups. The shear bond strengths to titanium were significantly higher than those to the NiCr alloy.

  9. Mobile phase additives for enhancing the chromatographic performance of astaxanthin on nonendcapped polymeric C30-bonded stationary phases.

    PubMed

    Kaiser, Philipp; Surmann, Peter; Fuhrmann, Herbert

    2009-01-01

    Astaxanthin shows peak deformation and reduced peak area response when eluted with methanol and methyl tert-butyl ether on nonendcapped polymeric C30-bonded HPLC phases. The present study tested different column manufacturers, column batches, and ten mobile phase additives including acids, bases, buffers, complexing and antioxidant agents for improvement of peak shape and peak area response. Concerning chromatographic benefits and feasibility, ammonium acetate was found to be the best additive followed by triethylamine for all columns tested. Variation of the mobile phase pH equivalent and the column temperature showed no synergistic effects on peak shape and peak area response. Results indicate that peak tailing and variation of peak area response are due to different on-column effects. Possible mechanisms of the observed phenomenon will be discussed.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boros, Eszter; Srinivas, Raja; Kim, Hee -Kyung

    Aqua ligands can undergo rapid internal rotation about the M-O bond. For magnetic resonance contrast agents, this rotation results in diminished relaxivity. Herein, we show that an intramolecular hydrogen bond to the aqua ligand can reduce this internal rotation and increase relaxivity. Molecular modeling was used to design a series of four Gd complexes capable of forming an intramolecular H-bond to the coordinated water ligand, and these complexes had anomalously high relaxivities compared to similar complexes lacking a H-bond acceptor. Molecular dynamics simulations supported the formation of a stable intramolecular H-bond, while alternative hypotheses that could explain the higher relaxivitymore » were systematically ruled out. Finally, intramolecular H-bonding represents a useful strategy to limit internal water rotational motion and increase relaxivity of Gd complexes.« less

  11. Method of making reflecting film reflector

    DOEpatents

    Cottingham, James G.

    1980-01-01

    A reflector of the reflecting film type is disclosed and which may be used in a heliostatic system for concentrating solar energy and comprising a reflecting film bonded to an appropriate rigid substrate in such a way that specularity of a very high order is achieved. A method of bonding the reflecting film to the substrate is also disclosed and comprises the steps of initially adhering the film to a smooth, clean flat rigid surface with a non-bonding liquid between the rigid surface and film, and then bonding the substrate and film. The non-bonding liquid has a molecular adhesion greater than any stresses due to handling or curing of the bonding agent which is applied between the film and the opposing surface of the rigid substrate.

  12. Improving Properties of Arrowroot Starch (Maranta arundinacea)/PVA Blend Films by Using Citric Acid as Cross-linking Agent

    NASA Astrophysics Data System (ADS)

    Sholichah, Enny; Purwono, Bambang; Nugroho, Pramono

    2017-12-01

    This research studied the effect of PVA as organic polymer and citric acid as crosslinker agent in the arrowroot starch/PVA blend films. The properties of films were investigated by water uptake, water vapor permeability, mechanical properties, thermal stability, spectra of FTIR and XRD patterns. PVA used in this research influenced the film properties at the highest concentration. The cross-linkingsinter or intra molecules of arrowroot and PVA were developed as ester bonds which are formed from the reaction of hydroxyl groups consisting of starch and PVA with citric acid. The ester bond was confirmed by FTIR spectra. The increase of the amount of citric acid affected significantly on physical, chemical and mechanical properties, water uptake, WVP and crystallinity. Water barrier level was reduced by decreasing of water uptake and WVP succeeded significantly with increased crosslinking. Cross-linking impact the thermal stability of the films. The elasticity of the films also increases the production of citric acid as a plasticizer in the making of the films as a food packaging material.

  13. Regioselective Acylation of Diols and Triols: The Cyanide Effect.

    PubMed

    Peng, Peng; Linseis, Michael; Winter, Rainer F; Schmidt, Richard R

    2016-05-11

    Central topics of carbohydrate chemistry embrace structural modifications of carbohydrates and oligosaccharide synthesis. Both require regioselectively protected building blocks that are mainly available via indirect multistep procedures. Hence, direct protection methods targeting a specific hydroxy group are demanded. Dual hydrogen bonding will eventually differentiate between differently positioned hydroxy groups. As cyanide is capable of various kinds of hydrogen bonding and as it is a quite strong sterically nondemanding base, regioselective O-acylations should be possible at low temperatures even at sterically congested positions, thus permitting formation and also isolation of the kinetic product. Indeed, 1,2-cis-diols, having an equatorial and an axial hydroxy group, benzoyl cyanide or acetyl cyanide as an acylating agent, and DMAP as a catalyst yield at -78 °C the thermodynamically unfavorable axial O-acylation product; acyl migration is not observed under these conditions. This phenomenon was substantiated with 3,4-O-unproteced galacto- and fucopyranosides and 2,3-O-unprotected mannopyranosides. Even for 3,4,6-O-unprotected galactopyranosides as triols, axial 4-O-acylation is appreciably faster than O-acylation of the primary 6-hydroxy group. The importance of hydrogen bonding for this unusual regioselectivity could be confirmed by NMR studies and DFT calculations, which indicate favorable hydrogen bonding of cyanide to the most acidic axial hydroxy group supported by hydrogen bonding of the equatorial hydroxy group to the axial oxygen. Thus, the "cyanide effect" is due to dual hydrogen bonding of the axial hydroxy group which enhances the nucleophilicity of the respective oxygen atom, permitting an even faster reaction for diols than for mono-ols. In contrast, fluoride as a counterion favors dual hydrogen bonding to both hydroxy groups leading to equatorial O-acylation.

  14. Bonding of Resin Cement to Zirconia with High Pressure Primer Coating

    PubMed Central

    Wang, Ying-jie; Jiao, Kai; Liu, Yan; Zhou, Wei; Shen, Li-juan; Fang, Ming; Li, Meng; Zhang, Xiang; Tay, Franklin R.; Chen, Ji-hua

    2014-01-01

    Objectives To investigate the effect of air-drying pressure during ceramic primer coating on zirconia/resin bonding and the surface characteristics of the primed zirconia. Methods Two ceramic primers (Clearfil Ceramic Primer, CCP, Kuraray Medical Inc. and Z-Prime Plus, ZPP, Bisco Inc.) were applied on the surface of air-abraded zirconia (Katana zirconia, Noritake) and dried at 4 different air pressures (0.1–0.4 MPa). The primed zirconia ceramic specimens were bonded with a resin-based luting agent (SA Luting Cement, Kuraray). Micro-shear bond strengths of the bonded specimens were tested after 3 days of water storage or 5,000× thermocycling (n = 12). Failure modes of the fractured specimens were examined with scanning electron miscopy. The effects of air pressure on the thickness of the primer layers and the surface roughness (Sa) of primed zirconia were evaluated using spectroscopic ellipsometry (n = 6), optical profilometry and environmental scanning electron microscopy (ESEM) (n = 6), respectively. Results Clearfil Ceramic Primer air-dried at 0.3 and 0.4 MPa, yielding significantly higher µSBS than gentle air-drying subgroups (p<0.05). Compared to vigorous drying conditions, Z-Prime Plus air-dried at 0.2 MPa exhibited significantly higher µSBS (p<0.05). Increasing air-drying pressure reduced the film thickness for both primers. Profilometry measurements and ESEM showed rougher surfaces in the high pressure subgroups of CCP and intermediate pressure subgroup of ZPP. Conclusion Air-drying pressure influences resin/zirconia bond strength and durability significantly. Higher air-drying pressure (0.3-0.4 MPa) for CCP and intermediate pressure (0.2 MPa) for ZPP are recommended to produce strong, durable bonds between resin cement and zirconia ceramics. PMID:24992678

  15. Effect of hydrofluoric acid surface treatments on micro-shear bond strength of CAD/CAM ceramics

    PubMed Central

    Mokhtarpour, Faraneh; Alaghehmand, Homayoon; Khafri, Soraya

    2017-01-01

    Introduction Dental ceramics are appreciated as highly esthetic restorative materials that can simulate the appearance of natural dentition better than other materials. The aim of this study was to evaluate the effect of hydrofluoric acid concentration and etching time on micro-shear bond strength (μSBS) to IPS e.max CAD and Vita Mark II of a dual cured resin cement (Panavia F2.0). Methods This study was an experimental in vitro study, performed in the dental material research center of Babol University of Medical Sciences in 2016. Two hydrofluoric acid concentrations (5% and 10%) and three different etching times (20, 60 and 120 seconds) were used to etch the specimens respectively. A silane coupling agent (Clearfil porcelain activator) and priming and bonding agent (Clearfil SE bond) were used on the etched surfaces in accordance to the manufacturer’s instructions of use. Then resin cement was applied on the prepared ceramic surfaces and light cured. μSBS between resin cement and the porcelains were measured with a universal testing machine. Mode of failure was observed with 40× magnification by means of a Stereo microscope. Data were analyzed with ANOVA and independent-samples t-test and Chi-square tests. Results In both e.max and Vita Mark II groups, μSBS were not significantly different when different etching times (one-way ANOVA) and HF acid concentrations (Independent-samples t-test) were used (p>0.05), but the highest μSBS was shown in e.max specimens etched 60 s with 5% HF and Vita Mark II specimens etched 20 s with 10% HF. μSBS of e.max was significantly higher than Vita Mark II (p=0.00). Conclusion Best surface treatment for e.max and Vita Mark II ceramics is 20 s etch using 5 % hydrofluoric acid. PMID:29238488

  16. N-cyanoimidazole and diimidazole imine: water-soluble condensing agents for the formation of the phosphodiester bond

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Huang, C. H.; Hagan, W. J. Jr

    1989-01-01

    The reaction of BrCN with imidazole results in the formation of N-cyanoimidazole and diimidazole imine. These compounds were shown to be useful condensing agents for the formation of the phosphodiester bound in aqueous solution.

  17. Effects of climate and corrosion on concrete behaviour

    NASA Astrophysics Data System (ADS)

    Ismail, Mohammad; Egba, Ernest Ituma

    2017-11-01

    Corrosion of steel is a damaging agent that reduces the functional and structural responsibilities of reinforced concrete structures. Accordingly, reinforced concrete members in the environments that are prone to concrete carbonation or chloride attack coupled with high temperature and relative humidity suffer from accelerated corrosion of reinforcing material. Also, literature proves that climate influences corrosion of concrete, and suggests investigation of impact of corrosion on concrete based on climate zone. Therefore, this paper presents the effects of climate and corrosion on concrete behavior, using bond strength of concrete as a case study. Concrete specimens were prepared form concrete mix that was infested with 3.5 kgm-3 of sodium chloride to accelerate corrosion. The specimens were cured sodium chloride solution 3.5% by weight of water for 28 days before placing them in the exposure conditions. Pull-out tests were conducted at time intervals for one year to measure the impact of exposure condition and corrosion on bond strength of concrete. The results show reduction of bond strength of concrete by 32%, 28% and 8% after one year of subjection of the specimens to the unsheltered natural climate, sheltered natural climate, and laboratory ambient environment respectively. The findings indicate that the climate influences corrosion, which reduces the interlocking bond between the reinforcing bar and the adjacent concrete.

  18. Effect of ozone application on the resin-dentin microtensile bond strength.

    PubMed

    Rodrigues, P C F; Souza, J B; Soares, C J; Lopes, L G; Estrela, C

    2011-01-01

    When ozone is used during caries treatment, bond strength can be compromised by the release of oxygen. The use of antioxidant agents neutralizes the free oxygen. The aim of this study was to evaluate the effects of ozone and sodium ascorbate on resin-dentin microtensile bond strength (μTBS). Forty human third molars were divided into four groups: Group 1, not treated with ozone; Group 2, ozone application followed by acid etching; Group 3, acid etching followed by ozone application; and Group 4, ozone and application of sodium ascorbate. Bonded beams (1.0 mm(2)) were tested under tension (0.5 mm min(-1)). The μTBS values were analyzed using one-way analysis of variance (ANOVA) and the Tukey test (p=0.05). All beams that fractured were analyzed under stereomicroscopy (40×). Group 1 had significantly higher μTBS values than Group 2 or 3. The μTBS values of Groups 1 and 4 were similar and higher than those of Group 2. The use of ozone in Group 2 resulted in lower values of μTBS in all conditions evaluated. The predominant failure mode was adhesive. The application of ozone decreased the μTBS of the dentin-composite resin interface. These values were reversed when compared with Groups 1 and 2 when sodium ascorbate was used.

  19. Understanding the interplay of weak forces in [3,3]-sigmatropic rearrangement for stereospecific synthesis of diamines.

    PubMed

    So, Soon Mog; Mui, Leo; Kim, Hyunwoo; Chin, Jik

    2012-08-21

    Chiral diamines are important building blocks for constructing stereoselective catalysts, including transition metal based catalysts and organocatalysts that facilitate oxidation, reduction, hydrolysis, and C-C bond forming reactions. These molecules are also critical components in the synthesis of drugs, including antiviral agents such as Tamiflu and Relenza and anticancer agents such as oxaliplatin and nutlin-3. The diaza-Cope rearrangement reaction provides one of the most versatile methods for rapidly generating a wide variety of chiral diamines stereospecifically and under mild conditions. Weak forces such as hydrogen bonding, electronic, steric, oxyanionic, and conjugation effects can drive this equilibrium process to completion. In this Account, we examine the effect of these individual weak forces on the value of the equilibrium constant for the diaza-Cope rearrangement reaction using both computational and experimental methods. The availability of a wide variety of aldehydes and diamines allows for the facile synthesis of the diimines needed to study the weak forces. Furthermore, because the reaction generally takes place cleanly at ambient temperature, we can easily measure equilibrium constants for rearrangement of the diimines. We use the Hammett equation to further examine the electronic and oxyanionic effects. In addition, computations and experiments provide us with new insights into the origin and extent of stereospecificity for this rearrangement reaction. The diaza-Cope rearrangement, with its unusual interplay between weak forces and the equilibrium constant of the reaction, provides a rare opportunity to study the effects of the fundamental weak forces on a chemical reaction. Among these many weak forces that affect the diaza-Cope rearrangement, the anion effect is the strongest (10.9 kcal/mol) followed by the resonance-assisted hydrogen-bond effect (7.1 kcal/mol), the steric effect (5.7 kcal/mol), the conjugation effect (5.5 kcal/mol), and the electronic effect (3.2 kcal/mol). Based on both computation and experimental data, the effects of these weak forces are additive. Understanding the interplay of the weak forces in the [3,3]-sigmatropic reaction is interesting in its own right and also provides valuable insights for the synthesis of chiral diamine based drugs and catalysts in excellent yield and enantiopurity.

  20. Effects of different surface treatments on the bond strength of acrylic denture teeth to polymethylmethacrylate denture base material.

    PubMed

    Akin, Hakan; Kirmali, Omer; Tugut, Faik; Coskun, Mehmet Emre

    2014-09-01

    The purpose of this study was to investigate the effects of various surface pretreatments in the ridge lap area of acrylic resin denture teeth on the shear bond strength to heat-polymerized polymethylmethacrylate (PMMA) denture base resin. Tooth debonding of the denture is a major problem for patients with removable prostheses. A total of 84 central incisor denture teeth were used in this study. Seven test groups with 12 specimens for each group were prepared as follows: untreated (control, group C), ground, with a tungsten carbide bur (group H), airborne-particle abrasion (group AA), primed with methyl methacrylate (group M), treated with izobutyl methacrylate (group iBMA), Eclipse Bonding Agent applied (group E), and Er:YAG laser irradiated (group L). Test specimens were produced according to the manufacturers' instructions and mounted to a universal testing machine for shear testing with a crosshead speed of 1 mm/min. Data were evaluated by one way variance analysis (ANOVA) and Tukey's test (α=0.05). Similar bond strength values were found between groups L and M, and these were the highest shear bond strengths among the groups. The lowest one was observed in group E. All surface treatments, except group E, exhibited significant difference when compared with group C (p<0.05). Lasing of the ridge lap area to enhance the bond strength of acrylic resin denture teeth to PMMA denture base resin might be an alternative to wetting with MMA monomer. To overcome tooth debonding, surface treatment of the ridge lap area should be performed as part of denture fabrication.

  1. Multifunctional curing agents and their use in improving strength of composites containing carbon fibers embedded in a polymeric matrix

    DOEpatents

    Vautard, Frederic; Ozcan, Soydan

    2017-04-11

    A functionalized carbon fiber having covalently bound on its surface a sizing agent containing epoxy groups, at least some of which are engaged in covalent bonds with crosslinking molecules, wherein each of said crosslinking molecules possesses at least two epoxy-reactive groups and at least one free functional group reactive with functional groups of a polymer matrix in which the carbon fiber is to be incorporated, wherein at least a portion of said crosslinking molecules are engaged, via at least two of their epoxy-reactive groups, in crosslinking bonds between at least two epoxy groups of the sizing agent. Composites comprised of these functionalized carbon fibers embedded in a polymeric matrix are also described. Methods for producing the functionalized carbon fibers and composites thereof are also described.

  2. 29 CFR 2580.412-21 - Corporate sureties holding grants of authority from the Secretary of the Treasury.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 9 2014-07-01 2014-07-01 false Corporate sureties holding grants of authority from the...) EMPLOYEE BENEFITS SECURITY ADMINISTRATION, DEPARTMENT OF LABOR TEMPORARY BONDING RULES UNDER THE EMPLOYEE RETIREMENT INCOME SECURITY ACT OF 1974 TEMPORARY BONDING RULES Qualified Agents, Brokers and Surety Companies...

  3. 29 CFR 2580.412-21 - Corporate sureties holding grants of authority from the Secretary of the Treasury.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 9 2010-07-01 2010-07-01 false Corporate sureties holding grants of authority from the...) EMPLOYEE BENEFITS SECURITY ADMINISTRATION, DEPARTMENT OF LABOR TEMPORARY BONDING RULES UNDER THE EMPLOYEE RETIREMENT INCOME SECURITY ACT OF 1974 TEMPORARY BONDING RULES Qualified Agents, Brokers and Surety Companies...

  4. 29 CFR 2580.412-21 - Corporate sureties holding grants of authority from the Secretary of the Treasury.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 9 2011-07-01 2011-07-01 false Corporate sureties holding grants of authority from the...) EMPLOYEE BENEFITS SECURITY ADMINISTRATION, DEPARTMENT OF LABOR TEMPORARY BONDING RULES UNDER THE EMPLOYEE RETIREMENT INCOME SECURITY ACT OF 1974 TEMPORARY BONDING RULES Qualified Agents, Brokers and Surety Companies...

  5. 29 CFR 2580.412-33 - Introductory statement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... company or through any agent or broker in whose business operations such plan or any party in interest in... BONDING RULES Prohibition Against Bonding by Parties Interested in the Plan § 2580.412-33 Introductory statement. (a) This part discusses the meaning and scope of section 13(c) of the Welfare and Pension Plans...

  6. 46 CFR 308.530 - Letter requesting increase or decrease in amount of surety bond, Form MA-310.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... surety bond, Form MA-310. 308.530 Section 308.530 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Ii-Open Policy War Risk Cargo... underwriting agent and may be obtained from the American War Risk Agency or MARAD. ...

  7. 46 CFR 308.530 - Letter requesting increase or decrease in amount of surety bond, Form MA-310.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... surety bond, Form MA-310. 308.530 Section 308.530 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Ii-Open Policy War Risk Cargo... underwriting agent and may be obtained from the American War Risk Agency or MARAD. ...

  8. 46 CFR 308.530 - Letter requesting increase or decrease in amount of surety bond, Form MA-310.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... surety bond, Form MA-310. 308.530 Section 308.530 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Ii-Open Policy War Risk Cargo... underwriting agent and may be obtained from the American War Risk Agency or MARAD. ...

  9. 46 CFR 308.530 - Letter requesting increase or decrease in amount of surety bond, Form MA-310.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... surety bond, Form MA-310. 308.530 Section 308.530 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Ii-Open Policy War Risk Cargo... underwriting agent and may be obtained from the American War Risk Agency or MARAD. ...

  10. 31 CFR 317.8 - Remittance of sales proceeds and registration records.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false Remittance of sales proceeds and... AGENCIES FOR ISSUE OF UNITED STATES SAVINGS BONDS § 317.8 Remittance of sales proceeds and registration records. An issuing agent shall account for and remit bond sales proceeds and registration records...

  11. 31 CFR 342.4 - Purchase-registration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...—registration. (a) Purchase. Savings notes, in combination with Series E bonds, could be purchased from any... notes could be made in the same manner as payment for Series E savings bonds. Issuing agents delivered the notes at the time of purchase, or by mail at the risk and expense of the United States, but only...

  12. 31 CFR 342.4 - Purchase-registration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...—registration. (a) Purchase. Savings notes, in combination with Series E bonds, could be purchased from any... notes could be made in the same manner as payment for Series E savings bonds. Issuing agents delivered the notes at the time of purchase, or by mail at the risk and expense of the United States, but only...

  13. 31 CFR 342.4 - Purchase-registration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Purchase—registration. (a) Purchase. Savings notes, in combination with Series E bonds, could be purchased... Service. Payment for the notes could be made in the same manner as payment for Series E savings bonds. Issuing agents delivered the notes at the time of purchase, or by mail at the risk and expense of the...

  14. 31 CFR 342.4 - Purchase-registration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...—registration. (a) Purchase. Savings notes, in combination with Series E bonds, could be purchased from any... notes could be made in the same manner as payment for Series E savings bonds. Issuing agents delivered the notes at the time of purchase, or by mail at the risk and expense of the United States, but only...

  15. 31 CFR 342.4 - Purchase-registration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...—registration. (a) Purchase. Savings notes, in combination with Series E bonds, could be purchased from any... notes could be made in the same manner as payment for Series E savings bonds. Issuing agents delivered the notes at the time of purchase, or by mail at the risk and expense of the United States, but only...

  16. 31 CFR 312.4 - Bond of indemnity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., DEPARTMENT OF THE TREASURY BUREAU OF THE PUBLIC DEBT FEDERAL SAVINGS AND LOAN ASSOCIATIONS AND FEDERAL CREDIT UNIONS AS FISCAL AGENTS OF THE UNITED STATES § 312.4 Bond of indemnity. No Federal savings and loan... of $1,000 and until the Federal Home Loan Bank Board or the Bureau of Federal Credit Unions...

  17. Bond strength of etch-and-rinse and self-etch adhesive systems to enamel and dentin irradiated with a novel CO2 9.3 μm short-pulsed laser for dental restorative procedures.

    PubMed

    Rechmann, Peter; Bartolome, N; Kinsel, R; Vaderhobli, R; Rechmann, B M T

    2017-12-01

    The objective of this study was to evaluate the influence of CO 2 9.3 μm short-pulsed laser irradiation on the shear bond strength of composite resin to enamel and dentin. Two hundred enamel and 210 dentin samples were irradiated with a 9.3 µm carbon dioxide laser (Solea, Convergent Dental, Inc., Natick, MA) with energies which either enhanced caries resistance or were effective for ablation. OptiBond Solo Plus [OptiBondTE] (Kerr Corporation, Orange, CA) and Peak Universal Bond light-cured adhesive [PeakTE] (Ultradent Products, South Jordan, UT) were used. In addition, Scotchbond Universal [ScotchbondSE] (3M ESPE, St. Paul, MN) and Peak SE self-etching primer with Peak Universal Bond light-cured adhesive [PeakSE] (Ultradent Products) were tested. Clearfil APX (Kuraray, New York, NY) was bonded to the samples. After 24 h, a single plane shear bond test was performed. Using the caries preventive setting on enamel resulted in increased shear bond strength for all bonding agents except for self-etch PeakSE. The highest overall bond strength was seen with PeakTE (41.29 ± 6.04 MPa). Etch-and-rinse systems achieved higher bond strength values to ablated enamel than the self-etch systems did. PeakTE showed the highest shear bond strength with 35.22 ± 4.40 MPa. OptiBondTE reached 93.8% of its control value. The self-etch system PeakSE presented significantly lower bond strength. The shear bond strength to dentin ranged between 19.15 ± 3.49 MPa for OptiBondTE and 43.94 ± 6.47 MPa for PeakSE. Etch-and-rinse systems had consistently higher bond strength to CO 2 9.3 µm laser-ablated enamel. Using the maximum recommended energy for dentin ablation, the self-etch system PeakSE reached the highest bond strength (43.9 ± 6.5 MPa).

  18. Hybrid Integrated Platforms for Silicon Photonics

    PubMed Central

    Liang, Di; Roelkens, Gunther; Baets, Roel; Bowers, John E.

    2010-01-01

    A review of recent progress in hybrid integrated platforms for silicon photonics is presented. Integration of III-V semiconductors onto silicon-on-insulator substrates based on two different bonding techniques is compared, one comprising only inorganic materials, the other technique using an organic bonding agent. Issues such as bonding process and mechanism, bonding strength, uniformity, wafer surface requirement, and stress distribution are studied in detail. The application in silicon photonics to realize high-performance active and passive photonic devices on low-cost silicon wafers is discussed. Hybrid integration is believed to be a promising technology in a variety of applications of silicon photonics.

  19. Evaluation of sub-surface penetration and bonding durability of self-etching primer systems to Er:YAG laser treated cervical dentin.

    PubMed

    He, Zhengdi; Chen, Lingling; Shimada, Yasushi; Tagami, Junji; Ruan, Shuangchen

    2017-03-31

    This study aimed to investigate self-etching bonding systems penetrating in sub-surface dentin layer after Er:YAG laser irradiation and micro-shear bonding durability over a period of 1 year. Dentin slices obtained from extracted human third molars were prepared. Two self-etching adhesive systems were evaluated: Clearfil SE Bond and Clearfil Tri-S Bond. Specimens were tested for micro-shear bond strength with one of the following treatments: Er:YAG laser irradiation and 600-grit silicon paper polishing at 24 h, 7 days, 6 months and 1 year. The adhesive interfaces between bonding agents and lased cervical dentin were studied. No hybrid layer could be observed for lased dentin. The slim resin tags could be seen penetrating through the lased subsurface layer. Bond strength to lased dentin after 6 months and 1 year were significantly decreased (p<0.05).

  20. Intramolecular Hydrogen Bonding Restricts Gd-Aqua-Ligand Dynamics [The Day the Water Stood Still: Intramolecular Hydrogen Bonding to Restrict Gd-Aqua Ligand Dynamics

    DOE PAGES

    Boros, Eszter; Srinivas, Raja; Kim, Hee -Kyung; ...

    2017-04-11

    Aqua ligands can undergo rapid internal rotation about the M-O bond. For magnetic resonance contrast agents, this rotation results in diminished relaxivity. Herein, we show that an intramolecular hydrogen bond to the aqua ligand can reduce this internal rotation and increase relaxivity. Molecular modeling was used to design a series of four Gd complexes capable of forming an intramolecular H-bond to the coordinated water ligand, and these complexes had anomalously high relaxivities compared to similar complexes lacking a H-bond acceptor. Molecular dynamics simulations supported the formation of a stable intramolecular H-bond, while alternative hypotheses that could explain the higher relaxivitymore » were systematically ruled out. Finally, intramolecular H-bonding represents a useful strategy to limit internal water rotational motion and increase relaxivity of Gd complexes.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Myeongsang; Baek, Inchul; Choi, Hyunsung

    Pathological amyloid proteins have been implicated in neuro-degenerative diseases, specifically Alzheimer's, Parkinson's, Lewy-body diseases and prion related diseases. In prion related diseases, functional tau proteins can be transformed into pathological agents by environmental factors, including oxidative stress, inflammation, Aβ-mediated toxicity and covalent modification. These pathological agents are stable under physiological conditions and are not easily degraded. This un-degradable characteristic of tau proteins enables their utilization as functional materials to capturing the carbon dioxides. For the proper utilization of amyloid proteins as functional materials efficiently, a basic study regarding their structural characteristic is necessary. Here, we investigated the basic tau proteinmore » structure of wild-type (WT) and tau proteins with lysine residues mutation at glutamic residue (Q2K) on tau protein at atomistic scale. We also reported the size effect of both the WT and Q2K structures, which allowed us to identify the stability of those amyloid structures. - Highlights: • Lysine mutation effect alters the structure conformation and characteristic of tau. • Over the 15 layers both WT and Q2K models, both tau proteins undergo fractions. • Lysine mutation causes the increment of non-bonded energy and solvent accessible surface area. • Structural instability of Q2K model was proved by the number of hydrogen bonds analysis.« less

  2. Unique applications of fluoroepoxy materials

    NASA Technical Reports Server (NTRS)

    Lee, Sheng Yen

    1991-01-01

    The following subject areas are covered: (1) fluoroepoxy and curing agents; (2) an excellent moisture vapor barrier coating; (3) as adhesives to bond Teflon without any surface treatment; (4) a new method to make thermosetting fluoropolymer foam; and (5) as a new antifoaming agent for epoxy material manufacturing and processing.

  3. Bond strength of metal brackets bonded to a silica-based ceramic with light-cured adhesive : Influence of various surface treatment methods.

    PubMed

    Zhang, Zhe-Chen; Qian, Yu-Fen; Yang, Yi-Ming; Feng, Qi-Ping; Shen, Gang

    2016-09-01

    The purpose of this work was to evaluate the effects of several surface treatment methods on the shear bond strengths of metal brackets bonded to a silica-based ceramic with a light-cured adhesive. Silica-based ceramic (IPS Classic(®)) with glazed surfaces was cut into discs that were used as substrates. A total of 80 specimens were randomly divided into four groups according to the method used: 9.6 % hydrofluoric acid (group 1), 9.6 % hydrofluoric acid (HF) + silane coupling agent (group 2), sandblasting (aluminum trioxide, 50 μm) + silane (group 3), and tribochemical silica coating (CoJet™ sand, 30 μm) + silane (group 4). Brackets were bonded to the treated specimens with a light-cure adhesive (Transbond XT, 3 M Unitek). Shear bond strength was tested after bracket bonding, and the Adhesive Remnant Index (ARI) scores were quantified after debonding. Group 4 showed the highest bond strength (12.3 ± 1.0 MPa), which was not significantly different from that of group 3 (11.6 ± 1.2 MPa, P > 0.05); however, the bond strength of group 4 was substantially higher than that of group 2 (9.4 ± 1.1 MPa, P < 0.05). The shear bond strength of group 1 (3.1 ± 0.6 MPa, P< 0.05) was significantly lower than that of the other groups. Shear bond strengths exceeded the optimal range of ideal bond strength for clinical practice, except for the isolated HF group. HF acid etching followed by silane was the best suited method for bonding on IPS Classic(®). Failure modes in the sandblasting and silica-coating groups revealed signs of damaged ceramic surfaces.

  4. Degradable Networks Containing Silyl Ether Bonds

    NASA Astrophysics Data System (ADS)

    Bassampour, Zahra S.

    Degradable networks possess applications in many fields such as medical implants, electrical devices, industrial coatings, adhesives, and aerospace. Silyl ether bonds are reactive functionalities capable of degrading under physiological condition without significantly affecting the pH of the surrounding environment. This dissertation focuses on preparative methods of degradable networks utilizing silyl ether functionalities. Epoxy polymers are broadly utilized in many different applications. Despite the broad utilization of epoxy polymer thermosets in long-term applications, these thermosets are not very popular candidates in short-term applications. This unpopularity is mostly due to the fact that epoxy networks are non-degradable systems, which results in their recycling being very costly and environmentally unfriendly. In the first and second part of this dissertation, the synthesis of various amine and thiol curing agents containing hydrolyzable silyl ether bonds is described. Using these curing agents, thermosetting epoxy polymers with degradable properties were prepared. The degradation behavior and thermal properties of the cured networks were studied. Age-related macular degeneration (AMD) is a leading cause of vision loss in the industrialized world. The high prevalence of AMD and the complications and shortcomings of available treatment options give rise to a great need for the development of novel types of biodegradable implants to provide sustainable drug release. The third part of this dissertation describes the utilization of hydrolyzable silyl ether bonds in the synthesis of novel implants capable of reserving and releasing a drug in a controlled manner in order to treat AMD. Base- catalyzed thiol-Michael reactions were exploited to prepare a series of biodegradable cross- linked networks. The networks were characterized by FTIR, TGA, and DMA. The effect of monomer structure on degradation, release behavior, and thermal properties was investigated.

  5. Acylhydrazone bond dynamic covalent polymer gel monolithic column online coupling to high-performance liquid chromatography for analysis of sulfonamides and fluorescent whitening agents in food.

    PubMed

    Zhang, Chengjiang; Luo, Xialin; Wei, Tianfu; Hu, Yufei; Li, Gongke; Zhang, Zhuomin

    2017-10-13

    A new dynamic covalent polymer (DCP) gel was well designed and constructed based on imine chemistry. Polycondensation of 4,4'-biphenyldicarboxaldehyde and 1,3,5-benzenetricarbohydrazide via Schiff-base reaction resulted in an acylhydrazone bond gel (AB-gel) DCP. AB-gel DCP had three-dimensional network of interconnected nanoparticles with hierarchically porous structure. AB-gel DCP was successfully fabricated as a monolithic column by an in-situ chemical bonding method for online enrichment and separation purpose with excellent permeability. AB-gel DCP based monolithic column showed remarkable adsorption affinity towards target analytes including sulfonamides (SAs) and fluorescent whitening agents (FWAs) due to its strong π-π affinity, hydrophobic effect and hydrogen bonding interaction. Then, AB-gel DCP based monolithic column was applied for online separation and analysis of trace SAs and FWAs in food samples coupled with high-performance liquid chromatography (HPLC). Sulfathiazole (ST) and sulfadimidine (SM2) in one positive weever sample were actually found and determined with concentrations of 273.8 and 286.3μg/kg, respectively. 2,5-Bis(5-tert-butyl-2-benzoxazolyl) thiophene (FWA184) was actually quantified in one tea infusion sample with the concentration of 268.5ng/L. The spiked experiments suggested the good recoveries in range of 74.5-110% for SAs in weever and shrimp samples with relative standard deviations (RSDs) less than 9.7% and in range of 74.0-113% for FWAs in milk and tea infusion samples with RSDs less than 9.0%. AB-gel DCP monolithic column was proved to be a promising sample preparation medium for online separation and analysis of trace analytes in food samples with complex matrices. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. [White spot lesions and orthodontic treatment. Prevention and treatment].

    PubMed

    Morrier, Jean-Jacques

    2014-09-01

    Decalcification of the enamel surface adjacent to fixed orthodontic appliances, in the form of white spot lesions, is a common and frequent well-known side-effect of orthodontic treatment. Fixed appliances and the bonding materials increase the retention of biofilm and encourage the formation of white spot lesions. Management of these lesions begins with a good oral hygiene regime and needs to be associated with use of fluoride agents (fluoridated toothpaste, fluoride containing mouth rinse, gel, varnish, bonding materials, elastic ligature), CPP-ACP, antiseptics, LASER, tooth whitening, resin infiltration, micro-abrasion. The purpose of this review is to access the direct evidence regarding the prevention and management of white spot lesions during and after orthodontic treatment. © EDP Sciences, SFODF, 2014.

  7. Effect of zirconia surface treatment using nitric acid-hydrofluoric acid on the shear bond strengths of resin cements

    PubMed Central

    Kim, Sun Jai; Shim, June Sung

    2017-01-01

    PURPOSE The aim of this study was to compare the surface roughness of zirconia when using Zircos E etching system (ZSAT), applying a nitric acid-hydrofluoric acid compound as a pretreatment agent, and also to compare the shear bonding strength according to different resin cements. MATERIALS AND METHODS ZSAT, air abrasion, and tribochemical silicacoating were applied on prepared 120 zirconia specimens (10 mm in diameter, 7 mm in height) using CAD/CAM. Each 12 specimens with 4 different resin cements (Panavia F 2.0, Rely X Unicem, Superbond C&B, and Hot bond) were applied to test interfacial bond strength. The statistical analysis was performed using SAS 9.1 (SAS Institute Inc., Cary, NC, USA). The results are as follows: after application of the ZSAT on the zirconia specimens, surface roughness value after 2-hour etching was higher than those after 1- and 3-hour etching on SEM images. RESULTS For Superbond C&B and Rely X Unicem, the specimens treated with ZSAT showed higher shear bond strength values than those treated with air abrasion and tribochemical silicacoating system. Regarding the failure mode of interface over cement and zirconia surface, Rely X Unicem and Hot bond showed cohesive failures and Panavia F 2.0 and Superbond C&B showed mixed failures. CONCLUSION Zircos E etching system in zirconia restoration could increase its shear bond strength. However, its long term success rate and clinical application should be further evaluated. PMID:28435615

  8. Microtensile dentin bond strength of fifth with five seventh-generation dentin bonding agents after thermocycling: An in vitro study

    PubMed Central

    Poptani, Bruhvi; Gohil, K. S.; Ganjiwale, Jaishree; Shukla, Manisha

    2012-01-01

    Objectives: The objective of this in vitro study was to compare the microtensile dentin bond strength (μTBS) of five seventh-generation dentin bonding agents (DBA) with fifth-generation DBA before and after thermocycling. Materials and Methods: Ten extracted teeth were assigned to fifth generation control group (optibond solo) and each of the five experimental groups namely, Group I (G-Bond) ,Group II (S3 Clearfil), Group III (One Coat 7.0), Group IV (Xeno V), and Group V (Optibond all in one). The crown portions of the teeth were horizontally sectioned below the central groove to expose the dentin. The adhesive resins from all groups were bonded to the teeth with their respective composites. Specimens of sizes 1 × 1 × 6 mm3 were obtained. Fifty specimens that bonded to dentin from each group were selected. Twenty-five of the specimens were tested for debonding without thermocycling and the remaining were subjected to thermocycling followed by μTBS testing. The data were analyzed with one-way ANOVA and Dunnett's-test for comparison with the reference group(Vth Generation). Results: There was no significant difference (P > 0.05) between the fifth- and seventh-generation adhesives before and after thermocycling. The results of our study showed significantly higher value (P < 0.05) of μTBS of seventh-generation Group II (Clearfil S3) compared to the fifth-generation before and after thermocycling. Conclusion: The study demonstrated that the Clearfil S3 bond had the highest μTBS values. In addition, of the five tested seventh-generation adhesive resins were comparable to the fifth-generation DBA. PMID:23230355

  9. DESENSITIZING BIOACTIVE AGENTS IMPROVES BOND STRENGTH OF INDIRECT RESIN-CEMENTED RESTORATIONS: PRELIMINARY RESULTS

    PubMed Central

    Pires-De-Souza, Fernanda de Carvalho Panzeri; de Marco, Fabíola Fiorezi; Casemiro, Luciana Assirati; Panzeri, Heitor

    2007-01-01

    Objective: The aim of this study was to assess the bond strength of indirect composite restorations cemented with a resin-based cement associated with etch-and-rinse and self-etching primer adhesive systems to dentin treated or not with a bioactive material. Materials and Method: Twenty bovine incisor crowns had the buccal enamel removed and the dentin ground flat. The teeth were assigned to 4 groups (n=5): Group I: acid etching + Prime & Bond NT (Dentsply); Group II: application of a bioactive glass (Biosilicato®)+ acid etching + Prime & Bond NT; Group III: One-up Bond F (J Morita); Group IV: Biosilicato® + One-up Bond F. Indirect composite resin (Artglass, Kulzer) cylinders (6x10mm) were fabricated and cemented to the teeth with a dualcure resin-based cement (Enforce, Dentsply). After cementation, the specimens were stored in artificial saliva at 37oC for 30 days and thereafter tested in tensile strength in a universal testing machine (EMIC) with 50 kgf load cell at a crosshead speed of 1 mm/min. Failure modes were assessed under scanning electron microscopy. Data were analyzed statistically by ANOVA and Tukey's test (95% level of confidence). Results: Groups I, II and III had statistically similar results (p>0.05). Group IV had statistically significant higher bond strength means (p<0.05) than the other groups. The analysis of the debonded surfaces showed a predominance of adhesive failure mode for Group III and mixed failure mode for the other groups. Conclusion: The use of desensitizing agent did not affect negatively the bonding of the indirect composite restorations to dentin, independently of the tested adhesive systems. PMID:19089114

  10. 12 CFR 545.16 - Public deposits, depositaries, and fiscal agents.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... FEDERAL SAVINGS ASSOCIATIONS-OPERATIONS § 545.16 Public deposits, depositaries, and fiscal agents. (a... constitution of the state with provisions respecting deposits of public money of that body; (3) Surety means... public deposits. (1) A Federal savings association that is a deposit association may give bond or...

  11. 12 CFR 145.16 - Public deposits, depositaries, and fiscal agents.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... FEDERAL SAVINGS ASSOCIATIONS-OPERATIONS § 145.16 Public deposits, depositaries, and fiscal agents. (a... constitution of the state with provisions respecting deposits of public money of that body; (3) Surety means... public deposits. (1) A Federal savings association that is a deposit association may give bond or...

  12. 12 CFR 545.16 - Public deposits, depositaries, and fiscal agents.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... FEDERAL SAVINGS ASSOCIATIONS-OPERATIONS § 545.16 Public deposits, depositaries, and fiscal agents. (a... constitution of the state with provisions respecting deposits of public money of that body; (3) Surety means... public deposits. (1) A Federal savings association that is a deposit association may give bond or...

  13. 12 CFR 145.16 - Public deposits, depositaries, and fiscal agents.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... FEDERAL SAVINGS ASSOCIATIONS-OPERATIONS § 145.16 Public deposits, depositaries, and fiscal agents. (a... constitution of the state with provisions respecting deposits of public money of that body; (3) Surety means... public deposits. (1) A Federal savings association that is a deposit association may give bond or...

  14. 31 CFR 316.12 - Fiscal agents.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false Fiscal agents. 316.12 Section 316.12 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) FISCAL SERVICE, DEPARTMENT OF THE TREASURY BUREAU OF THE PUBLIC DEBT OFFERING OF UNITED STATES SAVINGS BONDS, SERIES E § 316...

  15. Heme-Containing Metal-Organic Frameworks for the Oxidative Degradation of Chemical Warfare Agents

    DTIC Science & Technology

    2016-04-14

    stability of the oxo without sacrificing its inherent reactivity, we have synthesized a new framework featuring fluorinated groups in the ortho...especially suitable for the degradation of electrophilic phosphorous center, leading to the cleavage of P-S or P-O bond present in VX nerve agents

  16. Influence of surface treatment on shear bond strength of orthodontic brackets.

    PubMed

    Brunharo, Ione Helena Vieira Portella; Fernandes, Daniel Jogaib; de Miranda, Mauro Sayão; Artese, Flavia

    2013-01-01

    The shear bond strength of orthodontic brackets bonded to micro-hybrid and micro-particulate resins under different surface treatment methods was assessed. Two hundred and eighty test samples were divided into 28 groups (n = 10), where 140 specimens were filled with Durafill micro-particulate resin and 140 with Charisma composite. In 140 samples, a coupling agent (silane) was applied. The surface treatment methods were: Phosphoric and hydrofluoric acid etching, sodium bicarbonate and aluminum oxide blasting, stone and burs. A Universal Instron Machine was used to apply an occlusal shear force directly to the resin composite bracket surface at a speed of 0.5 mm/min. The means were compared using analysis of variance and multivariate regression to assess the interaction between composites and surface treatment methods. Means and standard deviations for the groups were: Sodium bicarbonate jet 11.27 ± 2.78; burs 9.26 ± 3.01; stone 7.95 ± 3.67; aluminum oxide blasting 7.04 ± 3.21; phosphoric acid 5.82 ± 1.90; hydrofluoric acid 4.54 ± 2.87, and without treatment 2.75 ± 1.49. An increase of 1.94 MPa in shear bond strength was seen in Charisma groups. Silane agent application reduced the Charisma shear bond strength by 0.68 Mpa, but increased Durafill means for bicarbonate blasting (0.83), burs (0.98) and stone drilling (0.46). The sodium bicarbonate blasting, burs and stone drilling methods produced adequate shear bond strength and may be suitable for clinical use. The Charisma micro hybrid resin composite showed higher shear bond means than Durafill micro particle composite.

  17. Influence of soy type on wood bonding performance

    Treesearch

    Charles R. Frihart

    2011-01-01

    Proteins were the main wood bonding adhesives for centuries, but they were displaced by fossil fuel-based adhesives in the 20th century because synthetic adhesives offered better water resistance, ease of use, and lower cost. Recently, studies using a polyamidoamine– epichlorohydrin (PAE) curing agent have led to soybean-based adhesives that are...

  18. 31 CFR 330.7 - Payment or redemption-exchange by agent.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... cash or, if they are eligible Series E and EE savings bonds or savings notes, redeemed in exchange for Series HH bonds pursuant to the authority and subject, in all other respects, to the provisions of... from, but at the same times as, an exchange subscription and any remittance are forwarded to the Fiscal...

  19. Porosity Formation and Microleakage of Composite Resins Using the Snowplow Technique

    DTIC Science & Technology

    2012-05-04

    on a proximal surface of mounted 3rd molar tooth samples. A bonding agent (Optibond FL, Kerr) was placed and light cured (Bluephase 16i, Ivoclar...Page Figure 1 Tooth preparation........................................................................ 20 Figure 2 Skyscan...al., 2010). Combined with dental adhesives, composites provide esthetically conservative restorations due to their ability to bond to tooth structure

  20. Principles of Toxicological Interactions Associated with Multiple Chemical Exposures.

    DTIC Science & Technology

    1980-12-01

    chemicals from sites of activation or deactivation , the agent possessing the higher binding affinity would also be expected to antagonize or act...kcal/mol. Because of their high binding energy, covalent bonds are essentially irreversible at ordinary body temperature unless a catalytic agent such...determining the toxicity of chemicals is the route or routes by which such agents gain entry into the body. The inhalation and dermal routes of absorption

  1. Dental cements for definitive luting: a review and practical clinical considerations.

    PubMed

    Hill, Edward E

    2007-07-01

    Dental cement used to attach an indirect restoration to a prepared tooth is called a luting agent. A clinically relevant discussion of conventional and contemporary definitive luting agents is presented in this article. Physical properties are listed in table form to assist in comparison and decision-making. Additional subtopics include luting agent requirements, classifications, retention and bonding, cement considerations for implant-supported teeth, and fatigue failure.

  2. Method for Selective Cleaning of Mold Release from Composite Honeycomb Surfaces

    NASA Technical Reports Server (NTRS)

    Pugel, Diane

    2011-01-01

    Honeycomb structures are commonly employed as load- and force-bearing structures as they are structurally strong and lightweight. Manufacturing processes for heat-molded composite honeycomb structures commence with the placement of pre-impregnated composite layups over metal mandrels. To prevent permanent bonding between the composite layup and the metal mandrels, an agent, known as a mold release agent, is used. Mold release agents allow the molded composite material to be removed from mandrels after a heat-forming process. Without a specific removal process, mold release agents may continue to adhere to the surface of the composite material, thereby affecting the bonding of other materials that may come into contact with the composite surface in later stages of processing A constituent common to commercially available household cleaning agents is employed for the removal of mold release agents common to the manufacturing of heat-formed composite materials. The reliability of the solvent has been proven by the longevity and reliability of commercial household cleaners. At the time of this reporting, no one has attempted using constituent for this purpose. The material to be cleaned is immersed in the solution, vertically removed so that the solution is allowed to drain along cell walls and into a solvent bath, and then placed on a compressed airflow table for drying.

  3. Shear bond strength to enamel after power bleaching activated by different sources.

    PubMed

    Can-Karabulut, Deniz C; Karabulut, Baris

    2010-01-01

    The purpose of the present study was to evaluate enamel bond strength of a composite resin material after hydrogen peroxide bleaching, activated by a diode laser (LaserSmile), an ozone device (HealOzone), a light-emitting diode (BT Cool whitening system), and a quartz-Plus. Fifty extracted caries-free permanent incisors were used in this study. Thirty-eight percent hydrogen peroxidegel was applied to sound, flattened labial enamel surfaces and activated by different sources. Enamel surfaces that had received no treatment were used as control samples. Bonding agent was applied according to the manufacturer's instructions and the adhesion test was performed according to ISO/TS 11405. Statistical analysis showed significant influence of the different activation technique of hydrogen peroxide on shear bond strength to enamel (ANOVA, LSD, P < 0.05). The data in this vitro explorative study suggest the activation of hydrogen peroxide by different sources may further affect the shear bond strength of subsequent composite resin restoration to enamel. Within the limitations of this in vitro study, further studies examining the structural changes of activated hydrogen peroxide-treated enamel are needed. Due to the different activation methods; duration of light irradiation effects, longer time periods may be needed before application of adhesive restorations to enamel, compared with non-activated bleaching.

  4. Effect of enamel etching time on roughness and bond strength.

    PubMed

    Barkmeier, Wayne W; Erickson, Robert L; Kimmes, Nicole S; Latta, Mark A; Wilwerding, Terry M

    2009-01-01

    The current study examined the effect of different enamel conditioning times on surface roughness and bond strength using an etch-and-rinse system and four self-etch adhesives. Surface roughness (Ra) and composite to enamel shear bond strengths (SBS) were determined following the treatment of flat ground human enamel (4000 grit) with five adhesive systems: (1) Adper Single Bond Plus (SBP), (2) Adper Prompt L-Pop (PLP), (3) Clearfil SE Bond (CSE), (4) Clearfil S3 Bond (CS3) and (5) Xeno IV (X4), using recommended treatment times and an extended treatment time of 60 seconds (n = 10/group). Control groups were also included for Ra (4000 grit surface) and SBS (no enamel treatment and Adper Scotchbond Multi-Purpose Adhesive). For surface roughness measurements, the phosphoric acid conditioner of the SBP etch-and-rinse system was rinsed from the surface with an air-water spray, and the other four self-etch adhesive agents were removed with alternating rinses of water and acetone. A Proscan 2000 non-contact profilometer was used to determine Ra values. Composite (Z100) to enamel bond strengths (24 hours) were determined using Ultradent fixtures and they were debonded with a crosshead speed of 1 mm/minute. The data were analyzed with ANOVA and Fisher's LSD post-hoc test. The etch-and- rinse system (SBP) produced the highest Ra (microm) and SBS (MPa) using both the recommended treatment time (0.352 +/- 0.028 microm and 40.5 +/- 6.1 MPa) and the extended treatment time (0.733 +/- 0.122 microm and 44.2 +/- 8.2 MPa). The Ra and SBS of the etch-and-rinse system were significantly greater (p < 0.05) than all the self-etch systems and controls. Increasing the treatment time with phosphoric acid (SBP) and PLP produced greater surface roughness (p < 0.05) but did not result in significantly higher bond strengths (p > 0.05).

  5. Evaluation of surface roughness of enamel after various bonding and clean-up procedures on enamel bonded with three different bonding agents: An in-vitro study

    PubMed Central

    Goel, Amit; Singh, Atul; Gupta, Tarun

    2017-01-01

    Background The purpose of this study was to analyze and compare the enamel surface roughness before bonding and after debonding, to find correlation between the adhesive remnant index and its effect on enamel surface roughness and to evaluate which clean-up method is most efficient to provide a smoother enamel surface. Material and Methods 135 premolars were divided into 3 groups containing 45 premolars in each group. Group I was bonded by using moisture insensitive primer, Group II by using conventional orthodontic adhesive and Group III by using self-etching primer. Each group was divided into 3 sub-groups on the basis of type of clean-up method applied i,e scaling followed by polishing, tungsten carbide bur and Sof-Lex disc. Enamel surface roughness was measured and compared before bonding and after clean-up. Results Evaluation of pre bonding and post clean-up enamel surface roughness (Ra value) with the t test showed that Post clean-up Ra values were greater than Pre bonding Ra values in all the groups except in teeth bonded with self-etching primer cleaned with Sof-Lex disc. Reliability of ARI score taken at different time interval tested with Kruskal Wallis test suggested that all the readings were reliable. Conclusions No clean-up procedure was able to restore the enamel to its original smoothness. Self-etching primer and Sof-Lex disc clean-up method combination restored the enamel surface roughness (Ra value) closest to its pre-treatment value. Key words:Enamel surface roughness, clean-up method, adhesive remnant index. PMID:28512535

  6. A demonstration of glass bonding using patterned nanocomposite thermites deposited from fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, Juan Carlos

    2015-01-01

    Ceramics and other nonmetals are widely used in industrial and research applications. Although these materials provide many advantages, they often pose unique challenges during bonding. This work aims to expand on current processes, which have much narrower applications, to nd a more universal method for nonmetal bonding. We utilize inks comprised of aluminum-based nanoenergetics, (a heat source) and tin (a bonding agent). Requirements for successful bonding are explored and four key criteria are established. Through statistical simulation and thermochemical equilibrium calculations, we conclude that the presence of a diluent in large percentages negatively impacts reaction kinetics. Conversely, we show smallmore » percentages of added tin enhance gas generation and drive faster reaction rates. The bulk bonding material, thermite plus tin, forms a continuous structure during reaction, adhering well to the substrate surface. In some cases, these bonds failed above 1200 kPa.« less

  7. Effect of Peracetic Acid as A Final Rinse on Push Out Bond Strength of Root Canal Sealers to Root Dentin.

    PubMed

    Gaddala, Naresh; Veeramachineni, Chandrasekhar; Tummala, Muralidhar

    2015-05-01

    Smear layer which was formed during the instrumentation of root canals hinders the penetration of root canal sealers to root dentin and affect the bond strength of root canal sealers to root dentin. Final irrigant such as demineralizing agents are used to remove the inorganic portion of the smear layer. In the present study, peracetic acid used as a final rinse, to effect the bond strength of root canal sealers to root dentin. The purpose of the present study was to evaluate the efficacy of peracetic acid as a final irrigant on bond strength of root canal sealers to root dentin. Sixty six freshly extracted human single rooted mandibular premolars were used for this study. After decoronation the samples were instrumented with Protaper upto F3 and irrigated with 5.25% NaOcl. The teeth were then divided into three groups based on final irrigant used: Group-1(control group) Canals were irrigated with distilled water. Group-2: Canals were irrigated with peracetic acid. Group-3: Canals were irrigated with smear clear. Each group was further divided into three subgroups (n=30) based on the sealer used to obturate the canals. Subgroup-1: kerr, Subgroup-2: Apexit plus, Subgroup-3: AH PLUS. Each sealer was mixed and coated to master cone and placed in the canal. The bonding between sealer and dentin surface was evaluated using push out bond strength by universal testing machine. The mean bond strength values of each group were statistically evaluated using Two-way ANOVA followed by Tukey post-hoc test. Significant difference was found among the bond strength of the sealers. But, there is no statistically significant difference between the groups irrigated with peracetic acid and smear clear compared to control group. AH Plus showed highest bond strength irrespective of the final irrigant used. Peracetic acid when employed as final irrigant improved the bond strength of root canal sealers compared to control group but not statistically significant than smear clear.

  8. Effect of Peracetic Acid as A Final Rinse on Push Out Bond Strength of Root Canal Sealers to Root Dentin

    PubMed Central

    Gaddala, Naresh; Veeramachineni, Chandrasekhar

    2015-01-01

    Background Smear layer which was formed during the instrumentation of root canals hinders the penetration of root canal sealers to root dentin and affect the bond strength of root canal sealers to root dentin. Final irrigant such as demineralizing agents are used to remove the inorganic portion of the smear layer. In the present study, peracetic acid used as a final rinse, to effect the bond strength of root canal sealers to root dentin. Aim The purpose of the present study was to evaluate the efficacy of peracetic acid as a final irrigant on bond strength of root canal sealers to root dentin. Materials and Methods Sixty six freshly extracted human single rooted mandibular premolars were used for this study. After decoronation the samples were instrumented with Protaper upto F3 and irrigated with 5.25% NaOcl. The teeth were then divided into three groups based on final irrigant used: Group-1(control group) Canals were irrigated with distilled water. Group-2: Canals were irrigated with peracetic acid. Group-3: Canals were irrigated with smear clear. Each group was further divided into three subgroups (n=30) based on the sealer used to obturate the canals. Subgroup-1: kerr, Subgroup-2: Apexit plus, Subgroup-3: AH PLUS. Each sealer was mixed and coated to master cone and placed in the canal. The bonding between sealer and dentin surface was evaluated using push out bond strength by universal testing machine. The mean bond strength values of each group were statistically evaluated using Two-way ANOVA followed by Tukey post-hoc test. Results Significant difference was found among the bond strength of the sealers. But, there is no statistically significant difference between the groups irrigated with peracetic acid and smear clear compared to control group. AH Plus showed highest bond strength irrespective of the final irrigant used. Conclusion Peracetic acid when employed as final irrigant improved the bond strength of root canal sealers compared to control group but not statistically significant than smear clear. PMID:26155568

  9. Rechargeable dental adhesive with calcium phosphate nanoparticles for long-term ion release

    PubMed Central

    Zhang, Ling; Weir, Michael D.; Hack, Gary; Fouad, Ashraf F.; Xu, Hockin H. K.

    2015-01-01

    Objectives The tooth-resin bond is the weak link of restoration, with secondary caries as a main reason for failure. Calcium phosphate-containing resins are promising for remineralization; however, calcium (Ca) and phosphate (P) ion releases last only a couple of months. The objectives of this study were to develop the first rechargeable CaP bonding agent and investigate the key factors that determine CaP ion recharge and re-release. Methods Nanoparticles of amorphous calcium phosphate (NACP) were synthesized. Pyromellitic glycerol dimethacrylate (PMGDM), ethoxylated bisphenol-A dimethacrylate (EBPADMA), 2-hydroxyethyl methacrylate (HEMA), and bisphenol-A glycidyl dimethacrylate (BisGMA) were used to synthesize three adhesives (denoted PE, PEH and PEHB). NACP were mixed into adhesive at 0–30% by mass. Dentin shear bond strengths were measured. Adhesive specimens were tested for Ca and P initial ion release. Then the ion-exhausted specimens were immersed in Ca and P solution to recharge the specimens, and the recharged specimens were then used to measure ion re-release for 7 days as one cycle. Then these specimens were again recharged and the re-release was measured for 7 days as the second cycle. Three recharge/re-release cycles were tested. Results PEHB had the highest dentin bond strength (p<0.05). Increasing NACP content from 0 to 30% did not affect dentin bond strength (p>0.1), but increased CaP release and re-release (p<0.05). PEHB-NACP had the greatest recharge/re-release, and PE-NACP had the least (p<0.05). Ion release remained high and did not decrease with increasing the number of recharge/re-release cycles (p>0.1). After the third cycle, specimens without further recharge had continuous CaP ion release for 2–3 weeks. Significance Rechargeable CaP bonding agents were developed for the first time to provide long-term Ca and P ions to promote remineralization and reduce caries. Incorporation of NACP into adhesive had no negative effect on dentin bond strength. Increasing NACP filler level increased the ion recharge and re-release capability. The new CaP recharge method and PMGDM-EBPAGMA-NACP composition may have wide application in adhesives, composites and cements, to combat caries and remineralize lesions. PMID:26144190

  10. A review: Application of adhesive bonding on semiconductor interconnection joints

    NASA Astrophysics Data System (ADS)

    Suppiah, Sarveshvaran; Ong, Nestor Rubio; Sauli, Zaliman; Sarukunaselan, Karunavani; Alcain, Jesselyn Barro; Shahimin, Mukhzeer Mohamad; Retnasamy, Vithyacharan

    2017-09-01

    A comprehensive review on adhesive die bonding is presented in this paper. Adhesive bonding technique involved electrically conductive adhesives that bond by evaporation of a solvent or by curing a bonding agent with three main parameters; heat, pressure, and time. Isotropic conductive adhesive (ICA) and anisotropic conductive adhesive (ACA) are the commonly used adhesive in this technique. In order to achieve and promote a better adhesion of die on the substrate, surface cleaning steps and methods were very crucial. The major challenge faced by this technique is entrapment of the conductive particles between the die and substrate. An adequate amount of conductive particle is needed between the die and substrate in order to avoid increase in contact resistance.

  11. AlGaAs/Si dual-junction tandem solar cells by epitaxial lift-off and print-transfer-assisted direct bonding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Kanglin; Mi, Hongyi; Chang, Tzu-Hsuan

    A novel method is developed to realize a III-V/Si dual-junction photovoltaic cell by combining epitaxial lift-off (ELO) and print-transfer-assisted bonding methods. The adoption of ELO enables III-V wafers to be recycled and reused, which can further lower the cost of III-V/Si photovoltaic panels. For demonstration, high crystal quality, micrometer-thick, GaAs/AlGaAs/GaAs films are lifted off, transferred, and directly bonded onto Si wafer without the use of any adhesive or bonding agents. The bonding interface is optically transparent and conductive both thermally and electrically. Prototype AlGaAs/Si dual-junction tandem solar cells have been fabricated and exhibit decent performance.

  12. AlGaAs/Si dual-junction tandem solar cells by epitaxial lift-off and print-transfer-assisted direct bonding

    DOE PAGES

    Xiong, Kanglin; Mi, Hongyi; Chang, Tzu-Hsuan; ...

    2018-01-04

    A novel method is developed to realize a III-V/Si dual-junction photovoltaic cell by combining epitaxial lift-off (ELO) and print-transfer-assisted bonding methods. The adoption of ELO enables III-V wafers to be recycled and reused, which can further lower the cost of III-V/Si photovoltaic panels. For demonstration, high crystal quality, micrometer-thick, GaAs/AlGaAs/GaAs films are lifted off, transferred, and directly bonded onto Si wafer without the use of any adhesive or bonding agents. The bonding interface is optically transparent and conductive both thermally and electrically. Prototype AlGaAs/Si dual-junction tandem solar cells have been fabricated and exhibit decent performance.

  13. Irreversible, direct bonding of nanoporous polymer membranes to PDMS or glass microdevices.

    PubMed

    Aran, Kiana; Sasso, Lawrence A; Kamdar, Neal; Zahn, Jeffrey D

    2010-03-07

    A method for integrating porous polymer membranes such as polycarbonate, polyethersulfone and polyethylene terephthalate to microfluidic devices is described. The use of 3-aminopropyltriethoxysilane as a chemical crosslinking agent was extended to integrate membranes with PDMS and glass microfluidic channels. A strong, irreversible bond between the membranes and microfluidic structure was achieved. The bonding strength in the APTES treated devices was significantly greater than in devices fabricated using either a PDMS "glue" or two-part epoxy bonding method. Evaluation of a filtering microdevice and the pore structure via SEM indicates the APTES conjugation does not significantly alter the membrane transport function and pore morphology.

  14. In vitro evaluation of an adhesive monomer as a bonding agent for orthodontic brackets to primary teeth and nickel-chromium ion crowns.

    PubMed

    Ergas, R P; Hondrum, S O; Mathieu, G P; Koonce, J D

    1995-01-01

    The adhesive monomer, Clearfil New Bond, was used to enhance the bond strength between orthodontic brackets and primary molars, premolars, and NiCr crowns. Twenty specimens of each had this dental adhesive applied according to the manufacturer's instructions in addition to a chemically cured composite material. The remaining specimens (20 each) were bonded without the adhesive monomer. Shear bond strengths were determined using a universal testing machine. Fracture sites were examined to determine the type of bond failure. All bond strengths were significantly increased with the addition of Clearfil New Bond (P < or = 0.0001). The shear bond strength to NiCr crowns with the addition of the adhesive monomer was 7.76 kg. This is comparable to the shear bond strength observed for primary molars (8.66 kg) and premolars (8.65 kg) without adhesive monomer. The observed decrease in adhesive bond failures with the addition of Clearfil New Bond indicated a stronger shear bond strength between the tooth surface and the bracket base. Clearfil New Bond can significantly increase the shear bond strength of orthodontic brackets to both primary molars and premolars. Additionally, it was shown that orthodontic brackets can be successfully bonded to Ni-Cr crowns at strengths comparable to primary or permanent enamel.

  15. Molecular determinants for drug-receptor interactions. Part 2. An ab initio molecular orbital and dipole moment study of the novel nootropic agent piracetam (2-oxopyrrolidin-1-ylacetamide)

    NASA Astrophysics Data System (ADS)

    Lumbroso, H.; Liégeois, C.; Pappalardo, G. C.; Grassi, A.

    From the ab initio molecular energies of the possible conformers and from a classical dipole moment analysis of 2-oxopyrrolidin-l-ylacetamide (μ = 4.02 D in dioxan at 30.0°C), the preferred conformation in solution of this novel nootropic agent has been determined. The exocyclic N-CH 2 bond is rotated in one sense by 90° and the exocyclic CH 2-C bond rotated in the same sense by 120° from the "planar" ( OO)- cis conformation. The structures of the two enantiomers in solution differ from that of the crystalline molecule.

  16. Evaluation of two dual-functional primers and a tribochemical surface modification system applied to the bonding of an indirect composite resin to metals.

    PubMed

    Yanagida, Hiroaki; Tanoue, Naomi; Ide, Takako; Matsumura, Hideo

    2009-07-01

    We evaluated the effects of two dual-functional primers and a tribochemical surface modification system on the bond strength between an indirect composite resin and gold alloy or titanium. Disk specimens (diameter, 10 mm; thickness, 2.5 mm) were cast from type 4 gold alloy and commercially pure titanium. The specimens were wetground to a final surface finish using 600-grit silicone carbide paper. The specimens were then air-dried and treated using the following four bonding systems: (1) air-abrasion with 50-70 mum alumina, (2) system 1 + alloy primer, (3) system 1 + metal link primer, and (4) tribochemical silica/silane coating (Rocatec). A light-polymerizing indirect composite resin (Ceramage) was applied to each metal specimen and polymerized according to the manufacturer's specifications. Shear bond strengths (MPa) were determined both before and after thermocycling (4 degrees C and 60 degrees C for 1 min each for 20 000 cycles). The values were compared using analysis of variance, post hoc Scheffe tests, and Mann-Whitney U tests (alpha = 0.05). The strengths decreased after thermocycling for all combinations. For both gold alloy and titanium, the bond strength with air-abrasion only was statistically lower than that with the other three modification methods after thermocycling. Titanium exhibited a significantly higher value (13.4 MPa) than gold alloy (10.5 MPa) with the air. abrasion and alloy primer system. Treatment with the tribochemical system or air abrasion followed by treatment with dual-functional priming agents was found to be effective for enhancement of the bonding between the indirect composite and gold alloy or titanium.

  17. Dicalcium phosphate (CaHPO4·2H2O) precipitation through ortho- or meta-phosphoric acid-etching: effects on the durability and nanoleakage/ultra-morphology of resin-dentine interfaces.

    PubMed

    Feitosa, Victor Pinheiro; Bazzocchi, Maria Giulia; Putignano, Angelo; Orsini, Giovanna; Luzi, Arlinda Luzi; Sinhoreti, Mário Alexandre Coelho; Watson, Timothy F; Sauro, Salvatore

    2013-11-01

    To compare the effects of two etching procedures using meta-phosphoric (MPA) or ortho-phosphoric acid (OPA) on dentine demineralisation, resin-dentine bonds durability and interface nanoleakage/ultra-morphology. Middle-dentine specimens were etched using 37% OPA (15s) or 40% MPA (60s) and submitted to infrared spectroscopy (FTIR) or ultra-morphology dye-assisted (calcium-staining) confocal microscopy (Ca-CLSM). A three-step etch-and-rinse adhesive was formulated, applied onto dentine and light-cured for 30s before composite build-up. After 24h, the dentine-bonded specimens were cut into 1mm(2) beams; half were immediately submitted to microtensile bond strength (μTBS) and half stored in DW for six months. The μTBS results were analysed with repeated-measures ANOVA and Tukey's test (p<0.05). Further teeth were bonded and prepared for interface nanoleakage/ultra-morphology confocal evaluation. FTIR and Ca-CLSM analyses showed dicalcium phosphate dihydrate (Brushite) precipitation in MPA-etched dentine and on the bottom (front of demineralisation) of the OPA-etched dentine. Statistical analysis showed similar μTBS for both etching procedures after 24h. The μTBS of specimens in OPA-group dropped significantly (p<0.05) after six month; the specimens in the MPA group showed no statistically difference (p>0.05). CLSM depicted no evident sign of nanoleakage within the resin-dentine interface of the MPA-treated specimens, while the specimens in OPA-group presented intense nanoleakage and interface degradation. The use of MPA (60s) as an alternative dentine conditioning agent in etch-and-rinse bonding procedures may be a suitable strategy to create more durable resin-dentine bonds. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Biomimetic fiber mesh scaffolds based on gelatin and hydroxyapatite nano-rods: Designing intrinsic skills to attain bone reparation abilities.

    PubMed

    Sartuqui, Javier; Gravina, A Noel; Rial, Ramón; Benedini, Luciano A; Yahia, L'Hocine; Ruso, Juan M; Messina, Paula V

    2016-09-01

    Intrinsic material skills have a deep effect on the mechanical and biological performance of bone substitutes, as well as on its associated biodegradation properties. In this work we have manipulated the preparation of collagenous derived fiber mesh frameworks to display a specific composition, morphology, open macroporosity, surface roughness and permeability characteristics. Next, the effect of the induced physicochemical attributes on the scaffold's mechanical behavior, bone bonding potential and biodegradability were evaluated. It was found that the scaffold microstructure, their inherent surface roughness, and the compression strength of the gelatin scaffolds can be modulated by the effect of the cross-linking agent and, essentially, by mimicking the nano-scale size of hydroxyapatite in natural bone. A clear effect of bioactive hydroxyapatite nano-rods on the scaffolds skills can be appreciated and it is greater than the effect of the cross-linking agent, offering a huge perspective for the upcoming progress of bone implant technology. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Evaluation of the Commercial off-the-shelf (COTS) Low Temperature Powder Coating (LTPC)

    DTIC Science & Technology

    2017-11-15

    isothiazolin- 3-one (OIT) 26530-20-1 120°C 4.9x10-3 (25°C) Isothiazolinone; Mode of Action: Electrophilic active agent. Reacts with nucleophiles (e.g...Action: Electrophilic active agent with activated N-S bond and vinyl activated halogens; reacts with nucleophilic elements of cell proteins

  20. Study on Synergistic Mechanism of Inhibitor Mixture Based on Electron Transfer Behavior

    PubMed Central

    Han, Peng; He, Yang; Chen, Changfeng; Yu, Haobo; Liu, Feng; Yang, Hong; Ma, Yue; Zheng, Yanjun

    2016-01-01

    Mixing is an important method to improve the performance of surfactants due to their synergistic effect. The changes in bonding interaction and adsorption structure of IM and OP molecules before and after co-adsorbed on Fe(001) surface is calculated by DFTB+ method. It is found that mixture enable the inhibitor molecules with higher EHOMO donate more electrons while the inhibitor molecules with lower ELUMO accept more electrons, which strengthens the bonding interaction of both inhibitor agent and inhibitor additive with metal surface. Meanwhile, water molecules in the compact layer of double electric layer are repulsed and the charge transfer resistance during the corrosion process increases. Accordingly, the correlation between the frontier orbital (EHOMO and ELUMO of inhibitor molecules and the Fermi level of metal) and inhibition efficiency is determined. Finally, we propose a frontier orbital matching principle for the synergistic effect of inhibitors, which is verified by electrochemical experiments. This frontier orbital matching principle provides an effective quantum chemistry calculation method for the optimal selection of inhibitor mixture. PMID:27671332

  1. Textile/metal-organic-framework composites as self-detoxifying filters for chemical-warfare agents.

    PubMed

    López-Maya, Elena; Montoro, Carmen; Rodríguez-Albelo, L Marleny; Aznar Cervantes, Salvador D; Lozano-Pérez, A Abel; Cenís, José Luis; Barea, Elisa; Navarro, Jorge A R

    2015-06-01

    The current technology of air-filtration materials for protection against highly toxic chemicals, that is, chemical-warfare agents, is mainly based on the broad and effective adsorptive properties of hydrophobic activated carbons. However, adsorption does not prevent these materials from behaving as secondary emitters once they are contaminated. Thus, the development of efficient self-cleaning filters is of high interest. Herein, we report how we can take advantage of the improved phosphotriesterase catalytic activity of lithium alkoxide doped zirconium(IV) metal-organic framework (MOF) materials to develop advanced self-detoxifying adsorbents of chemical-warfare agents containing hydrolysable P-F, P-O, and C-Cl bonds. Moreover, we also show that it is possible to integrate these materials onto textiles, thereby combining air-permeation properties of the textiles with the self-detoxifying properties of the MOF material. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Preparation of gold nanoparticles by surfactant-promoted reductive reaction without extra reducing agent.

    PubMed

    Tang, Junqi; Huang, Jiamin; Man, Shi-Qing

    2013-02-15

    Cetyltrimethyl ammonium bromide (CTAB) has been extensively applied in the solution-phase synthesis of many types of colloidal nanoparticles. However, the uses of CTAB were mainly considered as template or capping agents to form controllable shape and protect the product from agglomeration. Here it was discovered that CATB could serve as a very mild reductant to reduce gold salt precursors preparing gold nanoparticles (GNPs) at base environment. CTAB acted as the reducing agent suffering a partial degradation and forming CTA macro radicals. FTIR proved the formation of CCl and/or CBr bond after CTAB degraded. The characterization of synthesized GNPs was examined by UV-Vis spectra, TEM and XRD. Several factors affecting the process of reaction, such as the amount of NaOH, the molar ratio of CTAB and HAuCl(4), the reaction temperature, the effect of light and oxygen, and stirring were discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Siloxane-grafted membranes

    DOEpatents

    Friesen, Dwayne T.; Obligin, Alan S.

    1989-01-01

    Composite cellulosic semipermeable membranes are disclosed which are the covalently bonded reaction product of an asymmetric cellulosic semipermeable membrane and a polysiloxane containing reactive functional groups. The two reactants chemically bond by ether, ester, amide or acrylate linkages to form a siloxane-grafted cellulosic membrane having superior selectivity and flux stability. Selectivity may be enhanced by wetting the surface with a swelling agent such as water.

  4. Siloxane-grafted membranes

    DOEpatents

    Friesen, D.T.; Obligin, A.S.

    1989-10-31

    Composite cellulosic semipermeable membranes are disclosed which are the covalently bonded reaction product of an asymmetric cellulosic semipermeable membrane and a polysiloxane containing reactive functional group. The two reactants chemically bond by ether, ester, amide or acrylate linkages to form a siloxane-grafted cellulosic membrane having superior selectivity and flux stability. Selectivity may be enhanced by wetting the surface with a swelling agent such as water.

  5. Durability of one-part polyurethane bonds to wood improved by HMR coupling agent

    Treesearch

    Charles B. Vick; E. Arnold Okkonen

    2000-01-01

    In a previous study on the strength and durability of a new class of wood adhesives called one-part polyurethanes, four commercial one-part polyurethanes, along with a resorcinol-formaldehyde adhesive representing a standard of performance, were compared in bonds to yellow birch and Douglas-fir in a series of industry-accepted tests (7). The polyurethanes all performed...

  6. 31 CFR 321.8 - Redemption-exchange of Series E and EE savings bonds and savings notes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance: Treasury 2 2014-07-01 2014-07-01 false Redemption-exchange of Series E and... UNITED STATES SAVINGS NOTES (FREEDOM SHARES) Scope of Authority § 321.8 Redemption-exchange of Series E... agent may make payment of eligible securities presented for redemption in exchange for Series HH bonds...

  7. In vitro Assessment of Influence of Various Bleaching Protocols on the Strength of Ceramic Orthodontic Brackets bonded to Bleached Tooth Surface: A Comparative Study.

    PubMed

    Iska, Divya; Devanna, Raghu; Singh, Madhvi; Chitumalla, Rajkiran; Balasubramanian, Sai C Bala; Goutam, Manish

    2017-12-01

    Esthetics is one of the common issues because of which patients consult dental orthodontic treatment. Two ways of tooth bleaching are available these days, which includes in-office bleach and home bleach. Various bleaching protocols are available these days for treating the tooth surfaces. Hence, we planned the present study for investigating the impact of various intracoronal bleaching protocols on shear bond strength of ceramic brackets bonded to tooth surface after bleaching. The present study included assessment of 100 extracted maxillary central incisors with the integrated buccal surface. A resin block was made and individual teeth were embedded in each block. Root canal therapy procedure was performed in all the teeth, after which 2 mm short of tooth apex up to the level of cementoenamel junction, removal of the root canal filling was done. All the samples were broadly divided into four study groups with 25 samples in each group. Bleaching procedure was carried in all the samples intracoronally followed by testing of shear bond strength using universal force testing machine. Following the modified adhesive remnant index (AI), assessment of remaining adhesive on the brackets was done. All the results were compiled and analyzed by Statistical Package for the Social Sciences (SPSS) software version 17.0. In the control group, mean shear bond strength was found to be 17.9 MPa. While comparing the carbamide peroxide (CP) group with sodium perborate study group, we observed a statistically significant difference. Nonsignificant results were obtained while comparing the shear bond strength in between sodium perborate group and hydrogen peroxide (HP) group. Intracoronal bleaching does affect the shear bond strength of ceramic brackets. Sodium perborate bleaching influences shear bond strength more strongly than other bleaching agents such as CP and HP. In patients undergoing orthodontic treatment, HP is a preferred agent where bleaching has to be followed by orthodontic bonding to the tooth surface.

  8. X-Ray Absorption Near-Edge Structure (XANES) Spectroscopy Study of the Interaction of Silver Ions with Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli

    PubMed Central

    Zanzen, Ulrike; Krishna, Katla Sai; Hormes, Josef

    2013-01-01

    Silver ions are widely used as antibacterial agents, but the basic molecular mechanism of this effect is still poorly understood. X-ray absorption near-edge structure (XANES) spectroscopy at the Ag LIII, S K, and P K edges reveals the chemical forms of silver in Staphylococcus aureus and Escherichia coli (Ag+ treated). The Ag LIII-edge XANES spectra of the bacteria are all slightly different and very different from the spectra of silver ions (silver nitrate and silver acetate), which confirms that a reaction occurs. Death or inactivation of bacteria was observed by plate counting and light microscopy. Silver bonding to sulfhydryl groups (Ag-S) in cysteine and Ag-N or Ag-O bonding in histidine, alanine, and dl-aspartic acid was detected by using synthesized silver-amino acids. Significantly lower silver-cysteine content, coupled with higher silver-histidine content, in Gram-positive S. aureus and Listeria monocytogenes cells indicates that the peptidoglycan multilayer could be buffering the biocidal effect of silver on Gram-positive bacteria, at least in part. Bonding of silver to phosphate groups was not detected. Interaction with DNA or proteins can occur through Ag-N bonding. The formation of silver-cysteine can be confirmed for both bacterial cell types, which supports the hypothesis that enzyme-catalyzed reactions and the electron transport chain within the cell are disrupted. PMID:23934494

  9. Sorption, Solubility, Bond Strength and Hardness of Denture Soft Lining Incorporated with Silver Nanoparticles

    PubMed Central

    Chladek, Grzegorz; Kasperski, Jacek; Barszczewska-Rybarek, Izabela; Żmudzki, Jarosław

    2013-01-01

    The colonization of denture soft lining material by oral fungi can result in infections and stomatitis of oral tissues. In this study, 0 ppm to 200 ppm of silver nanoparticles was incorporated as an antimicrobial agent into composites to reduce the microbial colonization of lining materials. The effect of silver nanoparticle incorporation into a soft lining material on the sorption, solubility, hardness (on the Shore A scale) and tensile bond strength of the composites was investigated. The data were statistically analyzed using two-way ANOVA and Newman-Keuls post hoc tests or the chi-square Pearson test at the p < 0.05 level. An increase in the nanosilver concentration resulted in a decrease in hardness, an increase in sorption and solubility, a decrease in bond strength and a change in the failure type of the samples. The best combination of bond strength, sorption, solubility and hardness with antifungal efficacy was achieved for silver nanoparticle concentrations ranging from 20 ppm to 40 ppm. These composites did not show properties worse than those of the material without silver nanoparticles and exhibited enhanced in vitro antifungal efficiency. PMID:23271371

  10. Transition-Metal-Catalyzed C-H Alkylation Using Alkenes.

    PubMed

    Dong, Zhe; Ren, Zhi; Thompson, Samuel J; Xu, Yan; Dong, Guangbin

    2017-07-12

    Alkylation reactions represent an important organic transformation to form C-C bonds. In addition to conventional approaches with alkyl halides or sulfonates as alkylating agents, the use of unactivated olefins for alkylations has become attractive from both cost and sustainability viewpoints. This Review summarizes transition-metal-catalyzed alkylations of various carbon-hydrogen bonds (addition of C-H bonds across olefins) using regular olefins or 1,3-dienes up to May 2016. According to the mode of activation, the Review is divided into two sections: alkylation via C-H activation and alkylation via olefin activation.

  11. Active mineral additives of sapropel ashes

    NASA Astrophysics Data System (ADS)

    Khomich, V. A.; Danilina, E. V.; Krivonos, O. I.; Plaksin, G. V.

    2015-01-01

    The goal of the presented research is to establish a scientific rational for the possibility of sapropel ashes usage as an active mineral additive. The research included the study of producing active mineral additives from sapropels by their thermal treatment at 850900 °C and afterpowdering, the investigation of the properties of paste matrix with an ash additive, and the study of the ash influence on the cement bonding agent. Thermogravimetric analysis and X-ray investigations allowed us to establish that while burning, organic substances are removed, clay minerals are dehydrated and their structure is broken. Sapropel ashes chemical composition was determined. An amorphous ash constituent is mainly formed from silica of the mineral sapropel part and alumosilicagels resulted from clay minerals decomposition. Properties of PC 400 and PC 500A0 sparopel ash additives were studied. Adding ashes containing Glenium plasticizer to the cement increases paste matrix strength and considerably reduces its water absorption. X-ray phase analysis data shows changes in the phase composition of the paste matrix with an ash additive. Ash additives produce a pozzolanic effect on the cement bonding agent. Besides, an ash additive due to the alumosilicagels content causes transformation from unstable calcium aluminate forms to the stable ones.

  12. Discovery of a Phosphodiesterase 9A Inhibitor as a Potential Hypoglycemic Agent

    PubMed Central

    2015-01-01

    Phosphodiesterase 9 (PDE9) inhibitors have been studied as potential therapeutics for treatment of diabetes and Alzheimer’s disease. Here we report a potent PDE9 inhibitor 3r that has an IC50 of 0.6 nM and >150-fold selectivity over other PDEs. The HepG2 cell-based assay shows that 3r inhibits the mRNA expression of phosphoenolpyruvate carboxykinase and glucose 6-phosphatase. These activities of 3r, together with the reasonable pharmacokinetic properties and no acute toxicity at 1200 mg/kg dosage, suggest its potential as a hypoglycemic agent. The crystal structure of PDE9-3r reveals significantly different conformation and hydrogen bonding pattern of 3r from those of previously published 28s. Both 3r and 28s form a hydrogen bond with Tyr424, a unique PDE9 residue (except for PDE8), but 3r shows an additional hydrogen bond with Ala452. This structure information might be useful for design of PDE9 inhibitors. PMID:25432025

  13. Shear bond strength of composite to deep dentin after treatment with two different collagen cross-linking agents at varying time intervals.

    PubMed

    Srinivasulu, S; Vidhya, S; Sujatha, M; Mahalaxmi, S

    2012-01-01

    This in vitro study evaluated the shear bond strength of composite resin to deep dentin using a total etch adhesive after treatment with two collagen cross-linking agents at varying time intervals. Thirty freshly extracted human maxillary central incisors were sectioned longitudinally into equal mesial and distal halves (n=60). The proximal deep dentin was exposed, maintaining a remaining dentin thickness (RDT) of approximately 1 mm. The specimens were randomly divided into three groups based on the surface treatment of dentin prior to bonding as follows: group I (n=12, control): no prior dentin surface treatment; group II (n=24): dentin surface pretreated with 10% sodium ascorbate; and group III (n=24): dentin surface pretreated with 6.5% proanthocyanidin. Groups II and III were further subdivided into two subgroups of 12 specimens each, based on the pretreatment time of five minutes (subgroup A) and 10 minutes (subgroup B). Shear bond strength of the specimens was tested with a universal testing machine, and the data were statistically analyzed. Significantly higher shear bond strength to deep dentin was observed in teeth treated with 10% sodium ascorbate (group II) and 6.5% proanthocyanidin (group III) compared to the control group (group I). Among the collagen cross-linkers used, specimens treated with proanthocyanidin showed significantly higher shear bond strength values than those treated with sodium ascorbate. No significant difference was observed between the five-minute and 10-minute pretreatment times in groups II and III. It can be concluded that dentin surface pretreatment with both 10% sodium ascorbate and 6.5% proanthocyanidin resulted in significant improvement in bond strength of resin composite to deep dentin.

  14. Comparison of shear bond strength relative to two testing devices.

    PubMed

    Pecora, Nikole; Yaman, Peter; Dennison, Joseph; Herrero, Alberto

    2002-11-01

    Dentin adhesives are characterized on the basis of their bond strength to dentin; however, great variation exists within the same material depending on the testing apparatus. To realistically compare bond strengths, the testing mechanisms must be the same. The purpose of this investigation was to use 2 testing devices to evaluate the shear bond strength of 3 single-bottle adhesives with their multistep counterparts. The occlusal surfaces of 120 freshly extracted third molars were ground to expose the dentin and polished with 600-grit silicon carbide paper. Three single-bottle, (Optibond Solo Plus, 3M Single Bond, and Excite) and 3 multistep adhesives (Optibond FL, 3M MultiPurpose Plus, and Syntac) were each used to bond a composite cylinder (made from a 2.379 +/-.001-mm diameter by 4-mm-high mold) of Tetric Ceram to 20 teeth. The specimens were stored in 100% humidity for 24 hours. The shear bond strength at failure was measured in kilograms and converted to megapascals for each material, using a knife (conventional method) and an Ultradent testing device on a universal testing machine (Instron) at a loading rate of 0.5 mm/min. A 2-way analysis of variance (ANOVA) test was performed comparing the 2 testing devices and the materials at P<.05. Where significant, a 1-way ANOVA test was conducted among the materials for each test group, and a Tukey multiple comparison test was used to determine significant differences among the materials tested (P<.05). An independent Student t test at P<.05 was used to determine significance between testing devices. The results showed that Optibond Solo Plus (26.85 +/- 8.76 MPa), Optibond FL (25.40 +/- 4.44 MPa), 3M Single Bond (28.12 +/- 5.01 MPa), and 3M MultiPurpose Plus (34.40 +/- 7.90 MPa) had significantly higher bond strengths when tested with the Ultradent testing device. The mean values for Excite (19.47 +/- 6.17 MPa) and Syntac (20.20 +/- 7.07 MPa) were also higher with the Ultradent testing device, but the difference was not significant. Within the limitations of this study, all bonding agents tested resulted in higher mean shear bond strengths when tested with the Ultradent testing device compared with the unrestricted knife. The single-step bonding agents exhibited mean bond strengths comparable to their multistep counterparts.

  15. Does laser diode irradiation improve the degree of conversion of simplified dentin bonding systems?

    PubMed

    Brianezzi, Leticia Ferreira de Freitas; Maenosono, Rafael Massunari; Bim, Odair; Zabeu, Giovanna Speranza; Palma-Dibb, Regina Guenka; Ishikiriama, Sérgio Kiyoshi

    2017-01-01

    This study aimed to investigate the effect of laser diode irradiation on the degree of conversion (DC), water sorption (WS), and water solubility (WSB) of these bonding systems in an attempt to improve their physico-mechanical resistance. Two bonding agents were tested: a two-step total-etch system [Adper™ Single Bond 2, 3M ESPE (SB)] and a universal system [Adper™ Single Bond Universal, 3M ESPE (SU)]. Square-shaped specimens were prepared and assigned into 4 groups (n=5): SB and SU (control groups - no laser irradiation) and SB-L and SU-L [SB and SU laser (L) - irradiated groups]. DC was assessed using Fourier transform infrared spectroscopy with attenuated total reflectance. Additional uncured resin samples (≈3.0 µL, n=5) of each adhesive were also scanned for final DC calculation. For WS/WSB tests, similar specimens (n=10) were prepared and measured by monitoring the mass changes after dehydration/water storage cycles. For both tests, adhesive fluids were dropped into standardized Teflon molds (6.0×6.0×1.0 mm), irradiated with a 970-nm laser diode, and then polymerized with an LED-curing unit (1 W/cm2). Laser irradiation immediately before photopolymerization increased the DC (%) of the tested adhesives: SB-L>SB>SU-L>SU. For WS/WSB (μg/mm3), only the dentin bonding system (DBS) was a significant factor (p<0.05): SB>SU. Irradiation with a laser diode improved the degree of conversion of all tested simplified dentin bonding systems, with no impact on water sorption and solubility.

  16. Surface Redox Chemistry of Immobilized Nanodiamond: Effects of Particle Size and Electrochemical Environment

    NASA Astrophysics Data System (ADS)

    Gupta, S.; McDonald, B.; Carrizosa, S. B.

    2017-07-01

    The size of the diamond particle is tailored to nanoscale (nanodiamond, ND), and the ND surface is engineered targeting specific (electrochemical and biological) applications. In this work, we investigated the complex surface redox chemistry of immobilized ND layer on conductive boron-doped diamond electrode with a broad experimental parameter space such as particle size (nano versus micron), scan rate, pH (cationic/acidic versus anionic/basic), electrolyte KCl concentration (four orders of magnitude), and redox agents (neutral and ionic). We reported on the significant enhancement of ionic currents while recording reversible oxidation of neutral ferrocene methanol (FcMeOH) by almost one order of magnitude than traditional potassium ferricyanide (K3Fe(CN)6) redox agent. The current enhancement is inversely related to ND particle diameter in the following order: 1 μm << 1000 nm < 100 nm < 10 nm ≤ 5 nm < 2 nm. We attribute the current enhancement to concurrent electrocatalytic processes, i.e. the electron transfer between redox probes and electroactive surface functional (e.g. hydroxyl, carboxyl, epoxy) moieties and the electron transfer mediated by adsorbed FcMeOH+ (or Fe(CN) 6 3+ ) ions onto ND surface. The first process is pH dependent since it depends upon ND surface functionalities for which the electron transfer is coupled to proton transfer. The adsorption mediated process is observed most apparently at slower scan rates owing to self-exchange between adsorbed FcMeOH+ ions and FcMeOH redox agent molecules in diffusion-limited bulk electrolyte solution. Alternatively, it is hypothesized that the surface functionality and defect sites ( sp 2-bonded C shell and unsaturated bonds) give rise to surface electronic states with energies within the band gap (midgap states) in undoped ND. These surface states serve as electron donors (and acceptors) depending upon their bonding (and antibonding) character and, therefore, they can support electrocatalytic redox processes in the presence of specific redox-active molecules via feedback mechanism. Apparently, FcMeOH+ tended to have electrostatic affinity for negatively charged ND surface functionalities, corroborated by present experiments. We also attempted to study biocatalytic process using model metalloprotein (cytochrome c; Cyt c) immobilized on ND particles for investigating interfacial electron transfer kinetics and compared with those of functionalized graphene (graphene oxide; GO and reduced GO). The findings are discussed in terms of interplay of sp 3-bonded C (ND core) and sp 2-bonded C (ND shell and graphene-based systems).

  17. Surface modification for bonding between amalgam and orthodontic brackets.

    PubMed

    Wongsamut, Wittawat; Satrawaha, Sirichom; Wayakanon, Kornchanok

    2017-01-01

    Testing of methods to enhance the shear bond strength (SBS) between orthodontic metal brackets and amalgam by sandblasting and different primers. Three hundred samples of amalgam restorations (KerrAlloy ® ) were prepared in self-cured acrylic blocks, polished, and divided into two groups: nonsandblasted and sandblasted. Each group was divided into five subgroups with different primers used in surface treatment methods, with a control group of bonded brackets on human mandibular incisors. Following the surface treatments, mandibular incisor brackets (Unitek ® ) were bonded on the amalgam with adhesive resin (Transbond XT ® ). The SBS of the samples was tested. The adhesive remnant index (ARI) and failure modes were then determined under a stereo-microscope. Two-way analysis of variance, Chi-square, and Kruskal-Wallis tests were performed to calculate the correlations between and among the SBS and ARI values, the failure modes, and surface roughness results. There were statistically significant differences of SBS among the different adhesive primers and sandblasting methods ( P < 0.05). The sandblasted amalgam with Assure Plus ® showed the highest SBS ( P < 0.001). Samples mainly showed an ARI score = 1 and mix-mode failure. There was a statistically significant difference of surface roughness between nonsandblasted amalgam and sandblasted amalgam ( P < 0.05), but no significant differences among priming agents ( P > 0.05). Using adhesive primers with sandblasting together effectively enhances the SBS between orthodontic metal brackets and amalgam. The two primers with the ingredient methacryloxydecyl dihydrogen phosphate (MDP) monomer, Alloy Primer ® and Assure Plus ® , were the most effective. Including sandblasting in the treatment is essential to achieve the bonding strength required.

  18. Influence of contamination on bonding to zirconia ceramic.

    PubMed

    Yang, Bin; Scharnberg, Michael; Wolfart, Stefan; Quaas, Anne C; Ludwig, Klaus; Adelung, Rainer; Kern, Matthias

    2007-05-01

    The purpose of this study was to investigate the influences of contaminations and cleaning methods on bonding to dental zirconia ceramic. After saliva immersion and using silicone disclosing agent, airborne-particle abraded ceramic specimens were cleaned with isopropanol (AL), acetone (AC), 37% phosphoric acid (PA), additional airborne-particle abrasion (AA), or only with water rinsing (SS). Airborne-particle abraded specimens without contaminations (CL) were used as control group. For chemical analysis specimens of all groups were examined with X-ray photoelectron spectroscopy (XPS). Plexiglas tubes filled with composite resin were bonded to ceramic specimens using a phosphate-monomer containing composite luting resin. After 3-day water storage, tensile bond strengths (TBS) were tested. XPS analysis of group SS showed the presence of saliva and silicone (Si) contamination on the surface. The ratios of carbon/zirconium and oxygen/zirconium for groups PA and AA were comparable to those ratios obtained for group CL, indicating the removal of the organic saliva contamination. Airborne-particle abrasion and acetone completely removed Si contamination from ceramic surfaces. Isopropanol had little cleaning effect on the two contaminants. TBS (median +/- standard deviation) in MPa of the groups SS (11.6 +/- 3.1), AL (10.0 +/- 2.9), and AC (13.0 +/- 2.8) were statistically lower than those of groups PA (33.6 +/- 5.5), AA (40.1 +/- 3.6), and CL (47.0 +/- 8.1) (p < 0.001), while no differences were found in TBS between groups AA and CL (p > 0.5). Contamination significantly reduced bond strengths to zirconia ceramic. Airborne-particle abrasion was the most effective cleaning method.

  19. Does laser diode irradiation improve the degree of conversion of simplified dentin bonding systems?

    PubMed Central

    BRIANEZZI, Leticia Ferreira de Freitas; MAENOSONO, Rafael Massunari; BIM, Odair; ZABEU, Giovanna Speranza; PALMA-DIBB, Regina Guenka; ISHIKIRIAMA, Sérgio Kiyoshi

    2017-01-01

    Abstract Simplified dentin-bonding systems are clinically employed for most adhesive procedures, and they are prone to hydrolytic degradation. Objective This study aimed to investigate the effect of laser diode irradiation on the degree of conversion (DC), water sorption (WS), and water solubility (WSB) of these bonding systems in an attempt to improve their physico-mechanical resistance. Material and Methods Two bonding agents were tested: a two-step total-etch system [Adper™ Single Bond 2, 3M ESPE (SB)] and a universal system [Adper™ Single Bond Universal, 3M ESPE (SU)]. Square-shaped specimens were prepared and assigned into 4 groups (n=5): SB and SU (control groups – no laser irradiation) and SB-L and SU-L [SB and SU laser (L) – irradiated groups]. DC was assessed using Fourier transform infrared spectroscopy with attenuated total reflectance. Additional uncured resin samples (≈3.0 µL, n=5) of each adhesive were also scanned for final DC calculation. For WS/WSB tests, similar specimens (n=10) were prepared and measured by monitoring the mass changes after dehydration/water storage cycles. For both tests, adhesive fluids were dropped into standardized Teflon molds (6.0×6.0×1.0 mm), irradiated with a 970-nm laser diode, and then polymerized with an LED-curing unit (1 W/cm2). Results Laser irradiation immediately before photopolymerization increased the DC (%) of the tested adhesives: SB-L>SB>SU-L>SU. For WS/WSB (μg/mm3), only the dentin bonding system (DBS) was a significant factor (p<0.05): SB>SU. Conclusion Irradiation with a laser diode improved the degree of conversion of all tested simplified dentin bonding systems, with no impact on water sorption and solubility. PMID:28877276

  20. Novel Dental Cement to Combat Biofilms and Reduce Acids for Orthodontic Applications to Avoid Enamel Demineralization

    PubMed Central

    Zhang, Ning; Melo, Mary Anne S.; Antonucci, Joseph M.; Lin, Nancy J.; Lin-Gibson, Sheng; Bai, Yuxing; Xu, Hockin H.K.

    2016-01-01

    Orthodontic treatments often lead to biofilm buildup and white spot lesions due to enamel demineralization. The objectives of this study were to develop a novel bioactive orthodontic cement to prevent white spot lesions, and to determine the effects of cement compositions on biofilm growth and acid production. 2-methacryloyloxyethyl phosphorylcholine (MPC), nanoparticles of silver (NAg), and dimethylaminohexadecyl methacrylate (DMAHDM) were incorporated into a resin-modified glass ionomer cement (RMGI). Enamel shear bond strength (SBS) was determined. Protein adsorption was determined using a micro bicinchoninic acid method. A dental plaque microcosm biofilm model with human saliva as inoculum was used to investigate metabolic activity, colony-forming units (CFU) and lactic acid production. Incorporating 3% of MPC, 1.5% of DMAHDM, and 0.1% of NAg into RMGI, and immersing in distilled water at 37 °C for 30 days, did not decrease the SBS, compared to control (p > 0.1). RMGI with 3% MPC + 1.5% DMAHDM + 0.1% NAg had protein amount that was 1/10 that of control. RMGI with triple agents (MPC + DMAHDM + NAg) had much stronger antibacterial property than using a single agent or double agents (p < 0.05). Biofilm CFU on RMGI with triple agents was reduced by more than 3 orders of magnitude, compared to commercial control. Biofilm metabolic activity and acid production were also greatly reduced. In conclusion, adding MPC + DMAHDM + NAg in RMGI substantially inhibited biofilm viability and acid production, without compromising the orthodontic bracket bond strength to enamel. The novel bioactive cement is promising for orthodontic applications to hinder biofilms and plaque buildup and enamel demineralization. PMID:28773534

  1. Bone bonding in bioactive glass ceramics combined with a new synthesized agent TAK-778.

    PubMed

    Kato, H; Neo, M; Tamura, J; Nakamura, T

    2001-11-01

    We studied the stimulatory effects of TAK-778, a new synthetic 3-benzothiepin derivative that promotes osteoblast differentiation, in the bonding of bone to bioactive glass ceramic implants in rabbit tibiae. Smooth-surfaced, rectangular plates (15 x 10 x 2 mm) made of apatite-wollastonite-containing glass ceramic were implanted bilaterally into the proximal metaphyses of rabbit tibiae. Sustained-release microcapsules containing TAK-778 were packed into the medullary cavity in one limb and untreated microcapsules were packed into the contralateral limb to serve as a paired control. At 4, 8, and 16 weeks after implantation, bonding at the bone/implant interfaces was evaluated using a detaching test and histological examination of undecalcified specimens. The tensile failure load increased during weeks 4 to 16 in both groups; the tensile failure load in the TAK-778-treated group was significantly greater than that in the control group at each interval after implantation. Histologically, the TAK-778-treated specimens showed greater active new bone formation mainly in the medullary cavity and more extensive bonding between the implant and bone than the untreated specimens. The results of this study suggest that adding the bone formation-promoting TAK-778 to bioactive glass ceramic implants may significantly accelerate bone apposition to the implants and improve the bonding process at the interface. This would help to establish earlier and stronger bonding of orthopedic ceramic implants to the surrounding bone tissue. Copyright 2001 John Wiley & Sons, Inc.

  2. Shrinkage vectors of a flowable composite in artificial cavity models with different boundary conditions: Ceramic and Teflon.

    PubMed

    Kaisarly, Dalia; El Gezawi, Moataz; Xu, Xiaohui; Rösch, Peter; Kunzelmann, Karl-Heinz

    2018-01-01

    Polymerization shrinkage of dental resin composites leads to stress build-up at the tooth-restoration interface that predisposes the restoration to debonding. In contrast to the heterogeneity of enamel and dentin, this study investigated the effect of boundary conditions in artificial cavity models such as ceramic and Teflon. Ceramic serves as a homogenous substrate that provides optimal bonding conditions, which we presented in the form of etched and silanized ceramic in addition to an etched, silanized and bonded ceramic cavity. In contrast, the Teflon cavity presented a non-adhesive boundary condition that provided an exaggerated condition of poor bonding as in the case of contamination during the application procedure or a poor bonding substrate such as sclerotic or deep dentin. The greatest 3D shrinkage vectors and movement in the axial direction were observed in the ceramic cavity with the bonding agent followed by the silanized ceramic cavity, and smallest shrinkage vectors and axial movements were observed in the Teflon cavity. The shrinkage vectors in the ceramic cavities exhibited downward movement toward the cavity bottom with great downward shrinkage of the free surface. The shrinkage vectors in the Teflon cavity pointed towards the center of the restoration with lateral movement greater at one side denoting the site of first detachment from the cavity walls. These results proved that the boundary conditions, in terms of bonding substrates, significantly influenced the shrinkage direction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Mitochondrial antibodies in primary biliary cirrhosis

    PubMed Central

    Berg, P. A.; Roitt, I. M.; Doniach, D.; Cooper, H. M.

    1969-01-01

    The effect on the mitochondrial antigen of different agents known to influence the integrity and structure of membranes has been studied using quantitative complement fixation with autoantibodies from the serum of a patient with primary biliary cirrhosis. The susceptibility to proteolytic enzymes suggests that the antigen is a protein. Activity depends upon an association with phospholipids. Addition of phospholipids prevents loss of antigen during artificial ageing of mitochondria at 37°. Activity is lost after treatment with phospholipases or solvents which extract phospholipids. Antigen is also destroyed by surface active agents which dissociate the link with phospholipid but those which weaken bonds between phospholipids and hydrophobic molecules yield fragments of antigen-containing membrane structures which, nonetheless, still react with the mitochondrial autoantibody. ImagesFIG. 2FIG. 4 PMID:5804537

  4. Impact of Heparan Sulfate Chains and Sulfur-Mediated Bonds on the Mechanical Properties of Bovine Lens Capsule

    PubMed Central

    Dyksterhuis, L.D.; White, J.F.; Hickey, M.; Kirby, N.; Mudie, S.; Hawley, A.; Vashi, A.; Nigro, J.; Werkmeister, J.A.; Ramshaw, J.A.M.

    2011-01-01

    We assessed the importance of glycosaminoglycans and sulfur-mediated bonds for the mechanical properties of lens capsules by comparing the stress-strain responses from control and treated pairs of bovine source. No significant change in mechanical properties was observed upon reduction of disulfide bonds. However, removal of glycosaminoglycan chains resulted in a significantly stiffer lens capsule, whereas high concentrations of reducing agent, which is expected to reduce the recently reported sulfilimine bond of collagen IV, resulted in a significantly less stiff lens capsule. A comparison of the diffraction patterns of the control and strongly reduced lens capsules indicated structural rearrangements on a nanometer scale. PMID:21539774

  5. Reduced glutathione and procaine hydrochloride protect the nucleoprotein structure of boar spermatozoa during freeze-thawing by stabilising disulfide bonds.

    PubMed

    Yeste, Marc; Flores, Eva; Estrada, Efrén; Bonet, Sergi; Rigau, Teresa; Rodríguez-Gil, Joan E

    2013-01-01

    One important change the head of boar spermatozoa during freeze-thawing is the destabilisation of its nucleoprotein structure due to a disruption of disulfide bonds. With the aim of better understanding these changes in frozen-thawed spermatozoa, two agents, namely reduced glutathione (GSH) and procaine hydrochloride (ProHCl), were added at different concentrations to the freezing media at different concentrations and combinations over the range 1-2mM. Then, 30 and 240 min after thawing, cysteine-free residue levels of boar sperm nucleoproteins, DNA fragmentation and other sperm functional parameters were evaluated. Both GSH and ProHCl, at final concentrations of 2mM, induced a significant (P<0.05) increase in the number of non-disrupted sperm head disulfide bonds 30 and 240 min after thawing compared with the frozen-thawed control. This effect was accompanied by a significant (P<0.05) decrease in DNA fragmentation 240 min after thawing. Concomitantly, 1 and 2mM GSH, but not ProHCl at any of the concentrations tested, partially counteracted the detrimental effects caused by freeze-thawing on sperm peroxide levels, motility patterns and plasma membrane integrity. In conclusion, the results show that both GSH and ProHCl have a stabilising effect on the nucleoprotein structure of frozen-thawed spermatozoa, although only GSH exerts an appreciable effect on sperm viability.

  6. Analysis of the strength of interfacial hydrogen bonds between tubulin dimers using quantum theory of atoms in molecules.

    PubMed

    Ayoub, Ahmed T; Craddock, Travis J A; Klobukowski, Mariusz; Tuszynski, Jack

    2014-08-05

    Microtubules are key structural elements that, among numerous biological functions, maintain the cytoskeleton of the cell and have a major role in cell division, which makes them important cancer chemotherapy targets. Understanding the energy balance that brings tubulin dimers, the building blocks of microtubules, together to form a microtubule is especially important for revealing the mechanism of their dynamic instability. Several studies have been conducted to estimate various contributions to the free energy of microtubule formation. However, the hydrogen-bond contribution was not studied before as a separate component. In this work, we use concepts such as the quantum theory of atoms in molecules to estimate the per-residue strength of hydrogen bonds contributing to the overall stability that brings subunits together in pair of tubulin heterodimers, across both the longitudinal and lateral interfaces. Our study shows that hydrogen bonding plays a major role in the stability of tubulin systems. Several residues that are crucial to the binding of vinca alkaloids are shown to be strongly involved in longitudinal microtubule stabilization. This indicates a direct relation between the binding of these agents and the effect on the interfacial hydrogen-bonding network, and explains the mechanism of their action. Lateral contacts showed much higher stability than longitudinal ones (-462 ± 70 vs. -392 ± 59 kJ/mol), which suggests a dramatic lateral stabilization effect of the GTP cap in the β-subunit. The role of the M-loop in lateral stability in absence of taxol was shown to be minor. The B-lattice lateral hydrogen bonds are shown to be comparable in strength to the A-lattice ones (-462 ± 70 vs. -472 ± 46 kJ/mol). These findings establish the importance of hydrogen bonds to the stability of tubulin systems. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. 31 CFR 317.9 - Role of Federal Reserve Banks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 2 2011-07-01 2011-07-01 false Role of Federal Reserve Banks. 317.9... UNITED STATES SAVINGS BONDS § 317.9 Role of Federal Reserve Banks. (a) Role as fiscal agents. In their capacity as fiscal agents of the United States, the Federal Reserve Banks referred to below are authorized...

  8. 31 CFR 317.3 - Procedure for qualifying and serving as issuing agent.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false Procedure for qualifying and serving as issuing agent. 317.3 Section 317.3 Money and Finance: Treasury Regulations Relating to Money and... GOVERNING AGENCIES FOR ISSUE OF UNITED STATES SAVINGS BONDS § 317.3 Procedure for qualifying and serving as...

  9. Structural Insights into the Dual Activities of the Nerve Agent Degrading Organophosphate Anhydrolase/Prolidase

    DTIC Science & Technology

    2009-12-11

    class of bimetalloenzymes that hydrolyze a variety of toxic acetylcholinesterase-inhibiting organophosphorus compounds, including fluorine ... electrophilicity of the phosphorus center. Similar interactions and functions have been proposed for the carbonyl oxygen of the scissile peptide bond...163, 261–276. 2. Mazur, A. (1946) An enzyme in animal tissues capable of hydrolyzing the phosphorus- fluorine bond of alkyl fluorophosphate. J. Biol

  10. Easy Debonding of Ceramic Brackets Bonded with a Light-Cured Orthodontic Adhesive Containing Microcapsules with a CO2 Laser.

    PubMed

    Arima, Shiori; Namura, Yasuhiro; Tamura, Takahiko; Shimizu, Noriyoshi

    2018-03-01

    An easy debonding method for ceramic brackets using a light-cured Bis-GMA resin containing heat-expandable microcapsules and CO 2 laser was investigated. Ceramic brackets are used frequently in orthodontic treatment because of their desirable esthetic properties. However, the application of heavy force to ceramic brackets in debonding can fracture the tooth enamel and ceramic brackets, causing tooth pain. In total, 60 freshly extracted bovine permanent mandibular incisors were divided randomly into 10 groups of 6 specimens each, corresponding to the number of variables tested. Ceramic brackets were bonded to bovine permanent mandibular incisors using an orthodontic bonding agent containing heat-expandable microcapsules at different levels (0-30 wt%) and resin composite paste, and cured by a curing device. The bond strengths were measured before and after CO 2 laser irradiation, and the temperature increase in the pulp chamber in fresh human first premolars was also evaluated. With CO 2 laser irradiation for 5 sec to the bracket, the bond strength in the 25% microcapsule group decreased significantly, to ∼0.17-fold, compared with that of the no-laser group (p < 0.05). The maximum temperature increase in the pulp chamber was 5.3°C with laser irradiation, which was less than the level that induces pulp damage. From these results, it seems likely that the combined use of a light-cured orthodontic bonding agent containing microcapsules and a CO 2 laser is a simple debonding system for ceramic brackets, with less debonding time and enamel damage.

  11. The selection of adhesive systems for resin-based luting agents.

    PubMed

    Carville, Rebecca; Quinn, Frank

    2008-01-01

    The use of resin-based luting agents is ever expanding with the development of adhesive dentistry. A multitude of different adhesive systems are used with resin-based luting agents, and new products are introduced to the market frequently. Traditional adhesives generally required a multiple step bonding procedure prior to cementing with active resin-based luting materials; however, combined agents offer a simple application procedure. Self-etching 'all-in-one' systems claim that there is no need for the use of a separate adhesive process. The following review addresses the advantages and disadvantages of the available adhesive systems used with resin-based luting agents.

  12. NITRILE ELASTOMER-NYLON LAMINATES INCLUDING BARRIER FILMS.

    DTIC Science & Technology

    ADHESIVES, *NYLON, *NITRILE RUBBER , LAMINATES, LAMINATES, FILMS, TEXTILES, RUBBER COATINGS, BUTADIENES, ACRYLONITRILE POLYMERS, BONDING, ADHESION... DEGRADATION , MOISTUREPROOFING, PHENOLIC PLASTICS, HALOGENATED HYDROCARBONS, ISOCYANATES, CURING AGENTS, ELASTOMERS.

  13. Total etch technique and cavity isolation.

    PubMed

    Fusayama, T

    1992-01-01

    In the total etch technique for chemically adhesive composite restorations, the phosphoric acid penetrates only 10 microns or less into the vital dentin with the dentinal tubules being filled with the odontoblast processes. The acid is completely removed by subsequent air-water jet spray washing. The tubule apertures are perfectly sealed by the protective bonding agent layer with the resin tags adhering to the tubule walls and the resin-impregnated dentin surface. Isolation of the cavity from moisture contamination is required for only less than a few seconds after drying the etched cavity until the bonding agent coating and after this coating until the composite resin placement. Such a short time for isolation is quite easy even without a rubber dam when a trained assistant is cooperating.

  14. Dentine bond strength and antimicrobial activity evaluation of adhesive systems.

    PubMed

    André, Carolina Bosso; Gomes, Brenda Paula Figueiredo Almeida; Duque, Thais Mageste; Stipp, Rafael Nobrega; Chan, Daniel Chi Ngai; Ambrosano, Glaucia Maria Bovi; Giannini, Marcelo

    2015-04-01

    This study evaluated the dentine bond strength (BS) and the antibacterial activity (AA) of six adhesives against strict anaerobic and facultative bacteria. Three adhesives containing antibacterial components (Gluma 2Bond (glutaraldehyde)/G2B, Clearfil SE Protect (MDPB)/CSP and Peak Universal Bond (PUB)/chlorhexidine) and the same adhesive versions without antibacterial agents (Gluma Comfort Bond/GCB, Clearfil SE Bond/CSB and Peak LC Bond/PLB) were tested. The AA of adhesives and control groups was evaluated by direct contact method against four strict anaerobic and four facultative bacteria. After incubation, according to the appropriate periods of time for each microorganism, the time to kill microorganisms was measured. For BS, the adhesives were applied according to manufacturers' recommendations and teeth restored with composite. Teeth (n=10) were sectioned to obtain bonded beams specimens, which were tested after artificial saliva storage for one week and one year. BS data were analyzed using two-way ANOVA and Tukey test. Saliva storage for one year reduces the BS only for GCB. In general G2B and GCB required at least 24h for killing microorganisms. PUB and PLB killed only strict anaerobic microorganisms after 24h. For CSP the average time to eliminate the Streptococcus mutans and strict anaerobic oral pathogens was 30 min. CSB showed no AA against facultative bacteria, but had AA against some strict anaerobic microorganisms. Storage time had no effect on the BS for most of the adhesives. The time required to kill bacteria depended on the type of adhesive and never was less than 10 min. Most of the adhesives showed stable bond strength after one year and the Clearfil SE Protect may be a good alternative in restorative procedures performed on dentine, considering its adequate bond strength and better antibacterial activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Preparation and properties of calcium-silicate filled resins for dental restoration. Part II: Micro-mechanical behaviour to primed mineral-depleted dentine.

    PubMed

    Profeta, Andrea Corrado

    2014-11-01

    Evaluating microtensile bond strength (μTBS) and Knoop micro-hardness (KHN) of resin bonded-dentine interfaces created with two methacrylate-based systems either incorporating Bioglass 45S5 (3-E&RA/BG) or MTA (3-E&RA/WMTA). Solvated resins (50% ethanol/50% co-monomers) were used as primers while their neat counterparts were filled with the two calcium-silicate compounds. Application of neat resin adhesive with no filler served as control (3-E&RA). μTBS, KHN analysis and confocal tandem scanning microscopy (TSM) micropermeability were carried out after 24 h and 10 months of storage in phosphate buffer solution (DPBS). Scanning electron microscopy (SEM) was also performed after debonding. High μTBS values were achieved in all groups after 24 h of DPBS storage. On the contrary, solely the specimens created using 3-E&RA/BG and 3-E&RA/WMTA agents showed no significant reduction in terms of μTBS even after 10 months in DPBS; similarly, they did not restore the average superficial micro-hardness to the level of sound dentine, but maintained unchanged KHN values, and no statistical decrease was found following 10 months of DPBS storage. The only statistically significant changes occurred in the resin-dentine interfaces bonded with 3-E&RA that were subjected to a reduction of both μTBS and KHN values with ageing. In terms of micropermeability, adverse results were obtained with 3-E&RA while 3-E&RA/BG and 3-E&RA/WMTA demonstrated a beneficial effect after prolonged DPBS storage. Calcium-silicate filled composite resins performed better than a current etch-and-rinse adhesive and had a therapeutic/protective effect on the micro-mechanical properties of mineral-depleted resin-dentine interfaces. The incorporation of calcium-silicates into dental restorative and bonding agents can create more biomimetic (life-like) restorations. This will not only enable these materials to mimic the physical characteristics of the tooth structure, but will also stabilize and protect the remaining dental hard tissues.

  16. Comparison of shear bond strength of universal adhesives on etched and nonetched enamel.

    PubMed

    Beltrami, Riccardo; Chiesa, Marco; Scribante, Andrea; Allegretti, Jessica; Poggio, Claudio

    2016-04-06

    The purpose of this study was to evaluate the effect of surface pretreatment with 37% phosphoric acid on the enamel bond strength of different universal adhesives. One hundred and sixty bovine permanent mandibular incisors freshly extracted were used as a substitute for human teeth. The materials tested in this study included 6 universal adhesives, and 2 self-etch adhesives as control. The teeth were assigned into 2 groups: In the first group, etching was performed using 37% phosphoric acid for 30 seconds. In the second group, no pretreatment agent was applied. After adhesive application, a nanohybrid composite resin was inserted into the enamel surface by packing the material into cylindrical-shaped plastic matrices. After storing, the specimens were placed in a universal testing machine. The normality of the data was calculated using the Kolmogorov-Smirnov test. Analysis of variance (ANOVA) was applied to determine whether significant differences in debond strength values existed among the various groups. Groups with phosphoric acid pretreatment showed significantly higher shear bond strength values than groups with no enamel pretreatment (p<0.001). No significant variation in shear strength values was detected when comparing the different adhesive systems applied onto enamel after orthophosphoric acid application (p>0.05). All adhesives provide similar bond strength values when enamel pretreatment is applied even if compositions are different. Bond strength values are lower than promised by manufacturers.

  17. 'Petite' mutagenesis and mitotic crossing-over in yeast by DNA-targeted alkylating agents.

    PubMed

    Ferguson, L R; Turner, P M; Gourdie, T A; Valu, K K; Denny, W A

    1989-12-01

    Although the biological properties (cytotoxicity, mutagenicity and carcinogenicity) of alkylating agents result from their bonding interactions with DNA, such compounds generally do not show any special binding affinity for DNA. A series of acridine-linked aniline mustards of widely-varying alkylator reactivity have been designed as DNA-directed alkylating agents. We have considered whether such DNA targeting has an effect on mutagenic properties by evaluating this series of drugs in comparison with their untargeted counterparts for toxic, recombinogenic and mutagenic properties in Saccharomyces cerevisiae strain D5. The simple untargeted aniline mustards are effective inducers of mitotic crossing-over in this strain, but resemble other reported alkylators in being rather inefficient inducers of the "petite" or mitochondrial mutation in yeast. However, the majority of the DNA-targeted mustards were very efficient petite mutagens, while showing little evidence of mitotic crossing-over or other nuclear events. The 100% conversion of cells into petites and the lack of a differential between growing and non-growing cells are similar to the effects of the well characterised mitochondrial mutagen ethidium bromide. These data suggest very different modes of action between the DNA-targeted alkylators and their non-targeted counterparts.

  18. Design, Synthesis, and Biological Evaluation of Novel 1,3,4-Thiadiazole Derivatives as Potential Antitumor Agents against Chronic Myelogenous Leukemia: Striking Effect of Nitrothiazole Moiety

    DOE PAGES

    Altıntop, Mehlika; Ciftci, Halil; Radwan, Mohamed; ...

    2017-12-27

    In an attempt to develop potent antitumor agents, new 1,3,4-thiadiazole derivatives were synthesized and evaluated for their cytotoxic effects on multiple human cancer cell lines, including the K562 chronic myelogenous leukemia cell line that expresses the Bcr-Abl tyrosine kinase. N-(5-Nitrothiazol-2-yl)-2-((5-((4-(trifluoromethyl)phenyl)amino)-1,3,4-thiadiazol-2-yl)thio)acetamide (2) inhibited the Abl protein kinase with an IC 50 value of 7.4 µM and showed selective activity against the Bcr-Abl positive K562 cell line. Furthermore, a Bcr-Abl-compound 2 molecular modelling simulation highlighted the anchoring role of the nitrothiazole moiety in bonding and hydrophobic interaction with the key amino acid residues. These results provide promising starting points for further developmentmore » of novel kinase inhibitors.« less

  19. Design, Synthesis, and Biological Evaluation of Novel 1,3,4-Thiadiazole Derivatives as Potential Antitumor Agents against Chronic Myelogenous Leukemia: Striking Effect of Nitrothiazole Moiety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altıntop, Mehlika; Ciftci, Halil; Radwan, Mohamed

    In an attempt to develop potent antitumor agents, new 1,3,4-thiadiazole derivatives were synthesized and evaluated for their cytotoxic effects on multiple human cancer cell lines, including the K562 chronic myelogenous leukemia cell line that expresses the Bcr-Abl tyrosine kinase. N-(5-Nitrothiazol-2-yl)-2-((5-((4-(trifluoromethyl)phenyl)amino)-1,3,4-thiadiazol-2-yl)thio)acetamide (2) inhibited the Abl protein kinase with an IC 50 value of 7.4 µM and showed selective activity against the Bcr-Abl positive K562 cell line. Furthermore, a Bcr-Abl-compound 2 molecular modelling simulation highlighted the anchoring role of the nitrothiazole moiety in bonding and hydrophobic interaction with the key amino acid residues. These results provide promising starting points for further developmentmore » of novel kinase inhibitors.« less

  20. Poly-dimethylsiloxane derivates side chains effect on syntan functionalized Polyamide fabric

    NASA Astrophysics Data System (ADS)

    Migani, V.; Weiss, H.; Massafra, M. R.; Merlo, A.; Colleoni, C.; Rosace, G.

    2011-02-01

    Poly-dimethylsiloxane (PDMS) polymers finishing of Polyamide-6,6 (PA66) fabrics involves ionic interactions between reactive groups on the PDMS polymers and the ones of the textile fabric. Such interactions could be strengthened by a pretreatment with a fixing agent to promote either ion-ion and H-bonding and ion-dipole forces. These forces could contribute towards the building of substantial PDMS-PA66 systems and the achieving of better adhesion properties to fabrics. Four different silicone polymers based on PDMS were applied on a synthetic tanning agent (syntan) finished Polyamide-6,6 fabric under acid conditions. Soxhlet extraction method and ATR FT-IR technique were used to investigate the application conditions. The finishing parameters such as pH and temperature together with fastness, mechanical and performance properties of the treated samples were studied and related to PDMS side chains effect on syntan functionalized Polyamide fabric.

  1. Detection of electrophilic and nucleophilic chemical agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McElhanon, James R.; Shepodd, Timothy J.

    2014-08-12

    A "real time" method for detecting chemical agents generally and particularly electrophilic and nucleophilic species by employing tunable, precursor sensor materials that mimic the physiological interaction of these agents to form highly florescent berberine-type alkaloids that can be easily and rapidly detected. These novel precursor sensor materials can be tuned for reaction with both electrophilic (chemical species, toxins) and nucleophilic (proteins and other biological molecules) species. By bonding or otherwise attaching these precursor molecules to a surface or substrate they can be used in numerous applications.

  2. Fragment Couplings via CO2 Extrusion-Recombination: Expansion of a Classic Bond-Forming Strategy via Metallaphotoredox.

    PubMed

    Le, Chi Chip; MacMillan, David W C

    2015-09-23

    In this study we demonstrate that molecular fragments, which can be readily coupled via a simple, in situ RO-C═OR bond-forming reaction, can subsequently undergo metal insertion-decarboxylation-recombination to generate Csp(2)-Csp(3) bonds when subjected to metallaphotoredox catalysis. In this embodiment the conversion of a wide variety of mixed anhydrides (formed in situ from carboxylic acids and acyl chlorides) to fragment-coupled ketones is accomplished in good to high yield. A three-step synthesis of the medicinal agent edivoxetine is also described using this new decarboxylation-recombination protocol.

  3. Effect of acid etching on bond strength of nanoionomer as an orthodontic bonding adhesive

    PubMed Central

    Khan, Saba; Verma, Sanjeev K.; Maheshwari, Sandhya

    2015-01-01

    Aims: A new Resin Modified Glass Ionomer Cement known as nanoionomer containing nanofillers of fluoroaluminosilicate glass and nanofiller 'clusters' has been introduced. An in-vitro study aimed at evaluating shear bond strength (SBS) and adhesive remnant index (ARI) of nanoionomer under etching/unetched condition for use as an orthodontic bonding agent. Material and Methods: A total of 75 extracted premolars were used, which were divided into three equal groups of 25 each: 1-Conventional adhesive (Enlight Light Cure, SDS, Ormco, CA, USA) was used after and etching with 37% phosphoric acid for 30 s, followed by Ortho Solo application 2-nanoionomer (Ketac™ N100, 3M, ESPE, St. Paul, MN, USA) was used after etching with 37% phosphoric acid for 30 s 3-nanoionomer was used without etching. The SBS testing was performed using a digital universal testing machine (UTM-G-410B, Shanta Engineering). Evaluation of ARI was done using scanning electron microscopy. The SBS were compared using ANOVA with post-hoc Tukey test for intergroup comparisons and ARI scores were compared with Chi-square test. Results: ANOVA (SBS, F = 104.75) and Chi-square (ARI, Chi-square = 30.71) tests revealed significant differences between groups (P < 0.01). The mean (SD) SBS achieved with conventional light cure adhesive was significantly higher (P < 0.05) (10.59 ± 2.03 Mpa, 95% CI, 9.74-11.41) than the nanoionomer groups (unetched 4.13 ± 0.88 Mpa, 95% CI, 3.79-4.47 and etched 9.32 ± 1.87 Mpa, 95% CI, 8.58-10.06). However, nanoionomer with etching, registered SBS in the clinically acceptable range of 5.9–7.8 MPa, as suggested by Reynolds (1975). The nanoionomer groups gave significantly lower ARI values than the conventional adhesive group. Conclusion: Based on this in-vitro study, nanoionomer with etching can be successfully used as an orthodontic bonding agent leaving less adhesive remnant on enamel surface, making cleaning easier. However, in-vivo studies are needed to confirm the validity of present findings. PMID:26955629

  4. Adhesive luting of indirect restorations.

    PubMed

    Krämer, N; Lohbauer, U; Frankenberger, R

    2000-11-01

    To describe the potential of adhesive luting procedures with respect to (1) material characteristics and classifications, (2) film thickness, (3) overhang control, (4) bonding to different inlay materials, (5) adhesion to tooth substrates and the problem of hypersensitivities, (6) wear of luting composites, and (7) clinical performance. A literature review of relevant studies of various in vitro and in vivo studies enables an overview of possibilities and limitations of adhesively luted indirect restorations. (1) Resin-based composites are the material of choice for adhesive luting. Both material properties and wear behavior of fine particle hybrid-type resin-based composites are superior to other materials. The use of compomers is questionable due to hygroscopic expansion and possible crack formation as proven for IPS Empress caps in vitro and in vivo. (2) Recent luting cements exhibit excellent flow characteristics with mean film thicknesses ranging between 8 microm and 21 microm. The ultrasonic insertion technique is recommended for viscous luting composites or conventional restorative composites utilizing their thixotropic properties. (3) For successful overhang control, good fit of the restoration (during luting) and high radiopacity of the cement (after luting) are indispensable. Overhang control is estimated easier when the ultrasonic insertion technique is applied. (4) The pre-treatments of ceramic inlays using hydrofluoric acid or silica coating result in effective bonding; for pre-treatment of resin-based composite inlays, silica coating is promising as well. (5) Bonding to enamel and dentin is proven clinically acceptable, but it should be performed with multi-step systems providing separate primers and bonding agents producing a perfect internal seal with almost no hypersensitivities. Dual-cured multi-step bonding agents provide the most promising potential. (6) The viscosity and filler content of the resin composite used for luting does not influence the wear characteristics within the marginal luting area in vivo. However, the ultrasonic insertion technique involving high viscosity materials provides enhanced handling characteristics for luting of tooth-colored inlays. (7) Clinical results with tooth-colored inlays and veneers are promising over periods of up to 10 yrs, including use in severely destroyed teeth.

  5. Copper(II) perrhenate Cu(C{sub 3}H{sub 7}OH){sub 2}(ReO{sub 4}){sub 2}: Synthesis from isopropanol and CuReO{sub 4}, structure and properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikhailova, D., E-mail: d.mikhailova@ifw-dresden.de; Institute for Complex Materials, IFW Dresden, Helmholtzstrasse 20, D-01069 Dresden; Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, D-01187 Dresden

    2015-12-15

    The crystal structure of Cu{sup +}Re{sup 7+}O{sub 4} is capable of a quasi-reversible incorporation of C{sub 3}H{sub 7}OH molecules. A room-temperature reaction between CuReO{sub 4} and C{sub 3}H{sub 7}OH under oxidizing conditions leads to the formation of a novel metal-organic hybrid compound Cu{sup 2+}(C{sub 3}H{sub 7}OH){sub 2}(ReO{sub 4}){sub 2}. Upon heating under reducing conditions, this compound transforms back into CuReO{sub 4}, albeit with ReO{sub 2} and metallic Cu as by-products. The crystal structure of Cu(C{sub 3}H{sub 7}OH){sub 2}(ReO{sub 4}){sub 2} solved from single-crystal X-ray diffraction (Pbca, a=10.005(3) Å, b=7.833(2) Å, and c=19.180(5) Å) reveals layers of corner-sharing CuO{sub 6}-octahedra andmore » ReO{sub 4}-tetrahedra, whereas isopropyl groups are attached to both sides of these layers, thus providing additional connections within the layers through hydrogen bonds. Cu(C{sub 3}H{sub 7}OH){sub 2}(ReO{sub 4}){sub 2} is paramagnetic down to 4 K because the spatial arrangement of the Cu{sup 2+} half-filled orbitals prevents magnetic superexchange. The paramagnetic effective moment of 2.0(1) μ{sub B} is slightly above the spin-only value and typical for Cu{sup 2+} ions. - Highlights: • Novel Cu(C{sub 3}H{sub 7}OH){sub 2}(ReO{sub 4}){sub 2} compound has a sequence of inorganic and organic layers. • Hydrogen bonds provide an additional bonding Isopropanol molecules serve as a reducing agent during decomposition. • No direct Cu-O-Re-O-Cu connections via d{sub x2-y2} orbital of Cu{sup 2+} explain paramagnetism. • Hydrogen bonds provide an additional bonding. • Isopropanol molecules serve as a reducing agent during decomposition.« less

  6. Influence of antimicrobial solutions in the decontamination and adhesion of glass-fiber posts to root canals

    PubMed Central

    HARAGUSHIKU, Gisele Aihara; BACK, Eduardo Donato Eing Engelke; TOMAZINHO, Paulo Henrique; BARATTO, Flares; FURUSE, Adilson Yoshio

    2015-01-01

    Objective This study evaluated the effect of root canal disinfectants on the elimination of bacteria from the root canals, as well as their effect on glass-fiber posts bond strength. Material and Methods Fifty-three endodontically treated root canals had post spaces of 11 mm in length prepared and contaminated with E. faecalis. For CFU/ml analysis, eight teeth were contaminated for 1 h or 30 days (n=4). Teeth were decontaminated with 5% NaOCl, 2% CHX, or distilled water. As control, no decontamination was conducted. After decontamination, sterile paper points were used to collect samples, and CFU/ml were counted. For push-out, three groups were evaluated (n=15): irrigation with 2.5% NaOCl, 2% CHX, or sterile distilled water. A bonding agent was applied to root canal dentin, and a glass-fiber post was cemented with a dual-cured cement. After 24 h, 1-mm-thick slices of the middle portion of root canals were obtained and submitted to the push-out evaluation. Three specimens of each group were evaluated in scanning electron microscopy (SEM). Data were analyzed with one-way ANOVA and Dunnett’s T3 test (α=0.05). Results The number of CFU/ml increased from 1 h to 30 days of contamination in control and sterile distilled water groups. Decontamination with NaOCl was effective only when teeth were contaminated for 1 h. CHX was effective at both contamination times. NaOCl did not influence the bond strength (p>0.05). Higher values were observed with CHX (p<0.05). SEM showed formation of resin tags in all groups. Conclusion CHX showed better results for the irrigation of contaminated root canals both in reducing the bacterial contamination and in improving the glass-fiber post bonding. PMID:26398518

  7. Dental Items of Significance, Number 42

    DTIC Science & Technology

    1994-05-01

    pretreatment with polyacrylic acid Is recommended prior to placing Photac-Fil, acid is not suppled with the product. - Blister pack method of packaging Is...the packaging form (hand- mixed versus encapsulated), method of dentin pretreatment (primer versus polyacrylic acid), need for post-placement surface...AD-A279 432 * Dental Items of Significance MAY 1994 NO. 42 STIG 1994 FEATURED IN THIS ISSUE- *ProBond bonding agent (Caulk) *Lifecycle Handpiece Air

  8. Shear Bond Strength of Superficial, Intermediate and Deep Dentin In Vitro with Recent Generation Self-etching Primers and Single Nano Composite Resin.

    PubMed

    Singh, Kulshrest; Naik, Rajaram; Hegde, Srinidhi; Damda, Aftab

    2015-01-01

    This in vitro study is intended to compare the shear bond strength of recent self-etching primers to superficial, intermediate, and deep dentin levels. All teeth were sectioned at various levels and grouped randomly into two experimental groups and two control groups having three subgroups. The experimental groups consisted of two different dentin bonding system. The positive control group consisted of All Bond 2 and the negative control group was without the bonding agent. Finally, the specimens were subjected to shear bond strength study under Instron machine. The maximum shear bond strengths were noted at the time of fracture. The results were statistically analyzed. Comparing the shear bond strength values, All Bond 2 (Group III) demonstrated fairly higher bond strength values at different levels of dentin. Generally comparing All Bond 2 with the other two experimental groups revealed highly significant statistical results. In the present investigation with the fourth generation, higher mean shear bond strength values were recorded compared with the self-etching primers. When intermediate dentin shear bond strength was compared with deep dentin shear bond strength statistically significant results were found with Clearfil Liner Bond 2V, All Bond 2 and the negative control. There was a statistically significant difference in shear bond strength values both with self-etching primers and control groups (fourth generation bonding system and without bonding system) at superficial, intermediate, and deep dentin. There was a significant fall in bond strength values as one reaches deeper levels of dentin from superficial to intermediate to deep.

  9. Permeability of Dental Adhesives – A SEM Assessment

    PubMed Central

    Malacarne-Zanon, Juliana; de Andrade e Silva, Safira M.; Wang, Linda; de Goes, Mario F.; Martins, Adriano Luis; Narvaes-Romani, Eliene O.; Anido-Anido, Andrea; Carrilho, Marcela R. O.

    2010-01-01

    Objectives: To morphologically evaluate the permeability of different commercial dental adhesives using scanning electron microscopy. Methods: Seven adhesive systems were evaluated: one three-step system (Scotchbond Multi-Purpose - MP); one two-step self-etching primer system (Clearfil SE Bond – SE); three two-step etch-and-rinse systems (Single Bond 2 – SB; Excite – EX; One-Step – OS); and two single-step self-etching adhesives (Adper Prompt – AP; One-Up Bond F – OU). The mixture of primer and bond agents of the Clearfil SE Bond system (SE-PB) was also tested. The adhesives were poured into a brass mold (5.8 mm x 0.8 mm) and light-cured for 80 s at 650 mW/cm2. After a 24 h desiccation process, the specimens were immersed in a 50% ammoniac silver nitrate solution for tracer permeation. Afterwards, they were sectioned in ultra-fine slices, carbon-coated, and analyzed under backscattered electrons in a scanning electron microscopy. Results: MP and SE showed slight and superficial tracer permeation. In EX, SB, and OS, permeation extended beyond the inner superficies of the specimens. SE-PB did not mix well, and most of the tracer was precipitated into the primer agent. In AP and OU, “water-trees” were observed all over the specimens. Conclusions: Different materials showed distinct permeability in aqueous solution. The extent of tracer permeation varied according to the composition of each material and it was more evident in the more hydrophilic and solvated ones. PMID:20922163

  10. Characterization of an antibiotic produced by Bacillus subtilis JW-1 that suppresses Ralstonia solanacearum.

    PubMed

    Kwon, Jae Won; Kim, Shin Duk

    2014-01-01

    Bacillus subtilis JW-1 was isolated from rhizosphere soil as a potential biocontrol agent of bacterial wilt caused by Ralstonia solanacearum. Seed treatment followed by a soil drench application with this strain resulted in >80% reduction in bacterial wilt disease compared with that in the untreated control under greenhouse conditions. The antibacterial compound produced by strain JW-1 was purified by bioactivity-guided fractionation. Based on mass spectroscopy and nuclear magnetic resonance spectral data ((1)H, (13)C, (1)H-(1)H correlation spectroscopies, rotating frame nuclear Overhauser effect spectroscopy, and heteronuclear multiple-bond correlation spectroscopy), the structure of this compound was elucidated as a cyclic lipopeptide composed of a heptapeptide (Gln-Leu-Leu-Val-Asp-Leu-Leu) bonded to a β-hydroxy-iso-hexadecanoic acid arranged in a lactone ring system.

  11. Advanced Signal Processing Techniques Applied to Terahertz Inspections on Aerospace Foams

    NASA Technical Reports Server (NTRS)

    Trinh, Long Buu

    2009-01-01

    The space shuttle's external fuel tank is thermally insulated by the closed cell foams. However, natural voids composed of air and trapped gas are found as by-products when the foams are cured. Detection of foam voids and foam de-bonding is a formidable task owing to the small index of refraction contrast between foam and air (1.04:1). In the presence of a denser binding matrix agent that bonds two different foam materials, time-differentiation of filtered terahertz signals can be employed to magnify information prior to the main substrate reflections. In the absence of a matrix binder, de-convolution of the filtered time differential terahertz signals is performed to reduce the masking effects of antenna ringing. The goal is simply to increase probability of void detection through image enhancement and to determine the depth of the void.

  12. Epoxy bond and stop etch fabrication method

    DOEpatents

    Simmons, Jerry A.; Weckwerth, Mark V.; Baca, Wes E.

    2000-01-01

    A class of epoxy bond and stop etch (EBASE) microelectronic fabrication techniques is disclosed. The essence of such techniques is to grow circuit components on top of a stop etch layer grown on a first substrate. The first substrate and a host substrate are then bonded together so that the circuit components are attached to the host substrate by the bonding agent. The first substrate is then removed, e.g., by a chemical or physical etching process to which the stop etch layer is resistant. EBASE fabrication methods allow access to regions of a device structure which are usually blocked by the presence of a substrate, and are of particular utility in the fabrication of ultrafast electronic and optoelectronic devices and circuits.

  13. Development of phosphorylated adhesives

    NASA Technical Reports Server (NTRS)

    Bilow, N.; Giants, T. W.; Jenkins, R. K.; Campbell, P. L.

    1983-01-01

    The synthesis of epoxy prepolymers containing phosphorus was carried out in such a manner as to provide adhesives containing at least 5 percent of this element. The purpose of this was to impart fire retardant properties to the adhesive. The two epoxy derivatives, bis(4-glycidyl-oxyphenyl)phenylphosphine oxide and bis(4-glycidyl-2-methoxyphenyl)phenylphosphonate, and a curing agent, bis(3-aminophenyl)methylphosphine oxide, were used in conjunction with one another and along with conventional epoxy resins and curing agents to bond Tedlar and Polyphenylethersulfone films to Kerimid-glass syntactic foam-filled honeycomb structures. Elevated temperatures are required to cure the epoxy resins with the phosphorus-contaning diamine; however, when Tedlar is being bonded, lower curing temperatures must be used to avoid shrinkage and the concomitant formation of surface defects. Thus, the phosphorus-containing aromatic amine curing agent cannot be used alone, although it is possible to use it in conjunction with an aliphatic amine which would allow lower cure temperatures to be used. The experimental epoxy resins have not provided adhesive bonds quite as strong as those provided by Epon 828 when compared in peel tests, but the differences are not very significant. It should be noted, if optimum properties are to be realized. In any case the fire retardant characteristics of the neat resin systems obtained are quite pronounced, since in most cases the self-extinguishing properties are evident almost instantly when specimens are removed from a flame.

  14. Development of casting investment preventing blackening of noble metal alloys part 3. Effect of reducing agent addition on the strength and expansion of the investments.

    PubMed

    Meng, Yukun; Nakai, Akira; Ogura, Hideo

    2004-06-01

    Different reducing agents (B, Al, Si and Ti) were individually added to two gypsum-bonded investments to prepare investments preventing surface blackening of some noble cast alloys. The effect of different additive contents on green-body and burnout compressive strength, setting and thermal expansion of the investments were evaluated. The strength and expansion of the investments were changed by the additives. The compressive strength of Al-, Si- and Ti-added investments decreased with the increase of additive contents. The burnout strength of B-added investments significantly increased while green-body strength remained unchanged. The setting expansion of the B-added investments increased while those of the Al-, Si- and Ti-added investments decreased with the increase of additive contents. The thermal expansion of the Si- and Ti-added investments decreased, and that of the Al- and B-added investments remained unchanged. Further study is necessary to evaluate the effects of these additives on the accuracy of dental castings.

  15. Surface Monitoring of CFRP Structures for Adhesive Bonding

    NASA Technical Reports Server (NTRS)

    Ledesma, Rodolfo; Palmieri, Frank L.; Yost, William T.; Connell, John W.; Fitz-Gerald, James M.

    2017-01-01

    Adhesive bonding of composite materials requires reliable monitoring and detection of surface contaminants to assure robust and durable bonded structures. Surface treatment and effective monitoring prior to bonding is essential in order to obtain a surface free from contaminants that may degrade structural performance. Two techniques which monitor the effectiveness of the laser surface treatment of carbon fiber reinforced polymer (CFRP) materials are being investigated: laser induced breakdown spectroscopy (LIBS) and optically stimulated electron emission (OSEE). The applicability of LIBS to detect silicone contaminants on CFRP composites is studied using 35 ns Nd:YAG laser pulses at 355 nm with a pulse energy of 45 mJ. The LIBS regime in which pulse energies are < 100 mJ is referred to as mLIBS. CFRP surfaces were contaminated with polydimethylsiloxane (PDMS), a major component of silicone based mold release agents. The presence of PDMS is found by inspecting the Si I emission line at 288.2 nm. Untreated CFRP samples and CFRP contaminated with PDMS were tested. The PDMS areal density ranged from 0.36 Â+/- 0.04 to 0.51 Â+/- 0.16 mg/cm2. The results demonstrate the successful detection of PDMS on CFRP using mLIBS. In addition, OSEE was used to measure CFRP surface cleanliness pre- and post-treatment by laser ablation on specimens contaminated with PDMS coatings from 8 nm to 1311 nm in thickness. The results showed a significant increase in the OSEE photocurrent after laser surface treatment.

  16. Intricate Estimation and Assessment of Surface Conditioning of Posts to improve Interfacial Adhesion in Post-core Restorations: An in vitro Study.

    PubMed

    Gupta, Priyanka; Sharma, Amil; Pathak, Vivek K; Mankeliya, Saurabh; Bhardwaj, Shivanshu; Dhanare, Poorvasha

    2017-12-01

    Post and core restorations are routinely used for restoring grossly decayed tooth structures. Various chemical agents are known to affect the interfacial adhesions between the post and the core. Hence, we planned the present study to evaluate the effect of various post-surface treatments on the interfacial strength between the posts and composite materials that are used for building up the core portion. The present study included assessment of the effect of surface conditioning of posts on the interfacial adhesion in post-core restorations. A total of 80 clear post-tapers were included and were divided broadly into four study groups based on the type of chemical testing protocols used. Various chemical treatments included alkaline potassium permanganate, hydrogen peroxide, and phosphoric acid. The fourth group was the control group. The composite core material was used for building up the core. Testing of the tensile load was done on a universal testing machine. All the results were analyzed by the Statistical Package for the Social Sciences (SPSS) software. The highest bond strength was observed in the study group treated with alkaline potassium permanganate, while the lowest was observed in the control group followed by the hydrogen peroxide group. While comparing the mean bond strength in between various study groups, significant results were obtained. Chemical treatment protocol significantly alters the mean bond strength of the post and core restoration. Potassium permanganate significantly increases the bond strength between the fiber post and core restoration.

  17. Influence of dentin pretreatment on bond strength of universal adhesives.

    PubMed

    Poggio, Claudio; Beltrami, Riccardo; Colombo, Marco; Chiesa, Marco; Scribante, Andrea

    2017-01-01

    Objective: The purpose of the present study was to compare bond strength of different universal adhesives under three different testing conditions: when no pretreatment was applied, after 37% phosphoric acid etching and after glycine application. Materials and methods: One hundred and fifty bovine permanent mandibular incisors were used as a substitute for human teeth. Five different universal adhesives were tested: Futurabond M+, Scotchbond Universal, Clearfil Universal Bond, G-Premio BOND, Peak Universal Bond. The adhesive systems were applied following each manufacturer's instructions. The teeth were randomly assigned to three different dentin surface pretreatments: no pretreatment agent (control), 37% phosphoric acid etching, glycine pretreatment. The specimens were placed in a universal testing machine in order to measure and compare bond strength values. Results: The Kruskal-Wallis analysis of variance and the Mann-Whitney test were applied to assess significant differences among the groups. Dentin pretreatments provided different bond strength values for the adhesives tested, while similar values were registered in groups without dentin pretreatment. Conclusions: In the present report, dentin surface pretreatment did not provide significant differences in shear bond strength values of almost all groups. Acid pretreatment lowered bond strength values of Futurabond and Peak Universal Adhesives, whereas glycine pretreatment increased bond strength values of G Praemio Bond adhesive system.

  18. Influence of dentin pretreatment on bond strength of universal adhesives

    PubMed Central

    Poggio, Claudio; Beltrami, Riccardo; Colombo, Marco; Chiesa, Marco; Scribante, Andrea

    2017-01-01

    Abstract Objective: The purpose of the present study was to compare bond strength of different universal adhesives under three different testing conditions: when no pretreatment was applied, after 37% phosphoric acid etching and after glycine application. Materials and methods: One hundred and fifty bovine permanent mandibular incisors were used as a substitute for human teeth. Five different universal adhesives were tested: Futurabond M+, Scotchbond Universal, Clearfil Universal Bond, G-Premio BOND, Peak Universal Bond. The adhesive systems were applied following each manufacturer’s instructions. The teeth were randomly assigned to three different dentin surface pretreatments: no pretreatment agent (control), 37% phosphoric acid etching, glycine pretreatment. The specimens were placed in a universal testing machine in order to measure and compare bond strength values. Results: The Kruskal–Wallis analysis of variance and the Mann–Whitney test were applied to assess significant differences among the groups. Dentin pretreatments provided different bond strength values for the adhesives tested, while similar values were registered in groups without dentin pretreatment. Conclusions: In the present report, dentin surface pretreatment did not provide significant differences in shear bond strength values of almost all groups. Acid pretreatment lowered bond strength values of Futurabond and Peak Universal Adhesives, whereas glycine pretreatment increased bond strength values of G Praemio Bond adhesive system. PMID:28642929

  19. The Effect of Bond Albedo on Venus' Atmospheric and Surface Temperatures

    NASA Astrophysics Data System (ADS)

    Bullock, M. A.; Limaye, S. S.; Grinspoon, D. H.; Way, M.

    2017-12-01

    In spite of Venus' high planetary albedo, sufficient solar energy reaches the surface to drive a powerful greenhouse effect. The surface temperature is three times higher than it would be without an atmosphere. However, the details of the energy balance within Venus' atmosphere are poorly understood. Half of the solar energy absorbed within the clouds, where most of the solar energy is absorbed, is due to an unknown agent. One of the challenges of modeling Venus' atmosphere has been to account for all the sources of opacity sufficient to generate a globally averaged surface temperature of 735 K, when only 2% of the incoming solar energy is deposited at the surface. The wavelength and spherically integrated albedo, or Bond albedo, has typically been cited as between 0.7 and 0.82 (Colin 1983). Yet, recent photometry of Venus at extended phase angles between 2 and 179° indicate a Bond albedo of 0.90 (Mallama et al., 2006). The authors note an increase in cloud top brightness at phase angles < 2°, which effectively increases the spherically integrated albedo. They suggest that forward scattering by the H2SO4/H2O aerosols of the upper cloud is responsible for Venus' high albedo at very low phase angles. The present work investigates the implications of such a high albedo for understanding and modeling the energy balance of Venus' atmosphere. Using the successful 1D radiative transfer model SimVenus that incorporates the opacity due to 9 major gases in Venus' atmosphere, as well as multiple scattering calculations of radiation within the clouds, the sensitivity of surface temperature was studied as a function of Bond albedo. Results of these model calculations are shown in Fig. 1. Figure 1a (left). Venus' atmospheric temperature profile for different values of Bond albedo. The structure and radiative effects of the clouds are fixed. Figure 1b (right). Venus surface temperature as Bond Albedo changes. Radiative-convective equilibrium models predict the correct globally averaged surface temperature at a=0.81. Calculations here show that a Bond albedo of a=0.9 would yield a surface temperature of 666.4 K, about 70 K too low, unless there is additional thermal absorption within the atmosphere that is not understood. Colin, L.,, Venus, University of Arizona Press, Tucson, 1983, pp 10-26. Mallama, A., et al., 2006. Icarus. 182, 10-22.

  20. Computations of the chirality-sensitive effect induced by an antisymmetric indirect spin–spin coupling

    NASA Astrophysics Data System (ADS)

    Garbacz, Piotr

    2018-05-01

    Results of quantum mechanical computations of the antisymmetric part of the indirect spin-spin coupling tensor, ?, performed using the coupled-cluster method, the second-order polarisation propagator approximation, and the density functional theory for 25 molecules and nearly 100 spin-spin couplings are reported. These results are used for an estimation of the magnitude of the recently proposed liquid-state nuclear magnetic resonance chirality-sensitive effect, which allows to determine the molecular chirality directly, i.e. without the need for the application of any chiral agent. The following were found: (i) the antisymmetry J⋆ is usually larger for the coupling between spins separated by two chemical bonds in comparison with the coupling through one bond, (ii) promising samples are those which contain fluorine, and (iii) the antisymmetry of the spin-spin coupling tensor is of the order of a few hertz for commercially available chemical compounds. Therefore, the relevant property of the experiment, the pseudoscalar Jc, for them is of the order of 1 nHz m/V.

  1. Development of high-performance biodegradable rigid polyurethane foams using all bioresource-based polyols: Lignin and soy oil-derived polyols.

    PubMed

    Luo, Xiaogang; Xiao, Yuqin; Wu, Qiangxian; Zeng, Jian

    2018-04-25

    Development of biodegradable polyurethane materials is the most promising in the wider context of the "greening" of industrial chemistry. To tackle this challenge, a novel biodegradable polyurethane foam from all bioresource-based polyols (lignin and soy oil-derived polyols) and polymeric methyldiphenyl diisocyanate (pMDI) have been synthesized via a one-pot and self-rising process. All these foam samples have the internal cellular morphology and microstructure. FTIR result exhibits characteristic peaks of polyurethane, and indicates covalent bonds between soy-based polyurethane and lignin, and the lignin powders can react with pMDI via active -H and -CNO. In addition, hydrogen bonding also plays an important role in forming the 3D structures. These interactions and chemical bonds made the prepared foam samples form the 3D macromolecular structure with improved mechanical, thermal, and biodegradable properties. The reaction process is time-saving and cost-effective as it requires no blowing agent and minimum processing steps, while exploring the potential of using the higher content of nature bioresource constituents. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Shear bond strengths of composite to dentin using six dental adhesive systems.

    PubMed

    Triolo, P T; Swift, E J; Barkmeier, W W

    1995-01-01

    The development of adhesive agents for bonding composite to dentin has rapidly evolved in recent years. It is postulated that dentin bond strengths in the range of 17 MPa are sufficient to resist the polymerization shrinkage of composite resins. The purpose of this study was to evaluate the shear bond strengths of the following dentin adhesive systems: All-Bond 2 (Bisco), Imperva Bond (Shofu), Optibond (Kerr), Permagen (Ultradent), ProBond (Caulk/Dentsply), and Scotchbond Multi-Purpose (3M). Sixty human molars (10 per group) were mounted in phenolic rings, and the occlusal surfaces were flat ground in dentin to 600 grit. The prepared dentin bonding sites were treated according to the directions for each of the systems evaluated. A gelatin capsule technique was used to bond Bis-Fil composite cylinders to the teeth. The specimens were stored in water at 37 degrees C for 24 hours. Mean shear bond strengths were as follows: Scotchbond Multi-Purpose: 23.1 +/- 2.6 MPa, All-Bond 2: 21.4 +/- 7.8 MPa, Imperva Bond: 19.8 +/- 6.1 MPa, Optibond: 19.7 +/- 3.6 MPa, ProBond: 16.3 +/- 4.5 MPa, and Permagen: 16.2 +/- 3.0 MPa. There was not a significant difference (P<0.05) in the bond strengths of Scotchbond Multi-Purpose, All-Bond 2, Imperva Bond, and Optibond. The bond strengths of Scotchbond Multi-Purpose and All-Bond 2 were significantly greater (P<0.05) than ProBond and Permagen. Current-generation dentin adhesive systems have approached or exceeded the theoretical threshold value to resist contraction stresses during polymerization of resin materials.

  3. Histological evaluation of direct pulp capping of rat pulp with experimentally developed low-viscosity adhesives containing reparative dentin-promoting agents.

    PubMed

    Suzuki, Masaya; Taira, Yoshihisa; Kato, Chikage; Shinkai, Koichi; Katoh, Yoshiroh

    2016-01-01

    This study examines the wound healing process in exposed rat pulp when capped with experimental adhesive resin systems. Experimental adhesive resin system for direct pulp capping was composed of primer-I (PI), -II (PII), and -III (PIII) and an experimental bonding agent (EBA). PI was Clearfil(®) SE Bond(®)/Primer (CSP) containing 5.0 wt% CaCl2, PII was PI containing 10 wt% nanofiller (Aerosil(®) 380), and PIII was CSP containing 5.0 wt% of compounds of equal moles of synthetic peptides (pA and pB) derived from dentin matrix protein 1. EBA was Clearfil(®) SE Bond(®)/Bond (CSB) containing 10 wt% hydroxyapatite powders. Three experimental groups were designed. PI was assigned to experimental Groups 1 and 3. PII was assigned to experimental Groups 2 and 3. PIII and EBA were assigned to all experimental adhesive groups. Control teeth were capped with calcium hydroxide preparation (Dycal(®)), and CSP and CSB were applied to the cavity. The rats were sacrificed after each observation period (14, 28, 56, and 112 days). The following parameters were evaluated: pulp tissue disorganization, inflammatory cell infiltration, reparative dentin formation (RDF), and bacterial penetration. There were no significant differences among all the groups for all parameters and all observation periods (p>0.05, Kruskal-Wallis test). All groups showed initial RDF at 14 days postoperatively and extensive RDF until 112 days postoperatively. Groups 2 and 3 demonstrated higher quantity of mineralized dentin bridge formation compared with Group 1. Addition of nanofillers to the primer was effective in promoting high-density RDF. Experimentally developed adhesive resin systems induce the exposed pulp to produce almost the same quantity of reparative dentin as calcium hydroxide. However, we need further studies to elucidate whether the same results could be obtained in humans. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Effect of Instrument Lubricants on the Surface Degree of Conversion and Crosslinking Density of Nanocomposites.

    PubMed

    de Paula, Felipe Costa; Valentin, Regis de Souza; Borges, Boniek Castillo Dutra; Medeiros, Maria Cristina Dos Santos; de Oliveira, Raiza Freitas; da Silva, Ademir Oliveira

    2016-01-01

    The surface degree of conversion and crosslink density of composites should not be affected by the use of instrument lubricants in order to provide long-lasting tooth restorations. This study aimed to analyze the effect of instrument lubricants on the degree of conversion and crosslink density of nanocomposites. Samples (N = 10) were fabricated according to the composites (Filtek Z350 XT, 3M ESPE, St. Paul, MN, USA; and IPS Empress Direct, Ivoclar Vivadent AG, Schaan, Liechtenstein and lubricants used (Adper Single Bond 2 and Scotchbond Multi-Purpose bonding agent adhesive systems, 3M ESPE; 70% ethanol, absolute ethanol, and no lubricant). Single composite increments were inserted into a Teflon mold using the same dental instrument. The composite surface was then modeled using a brush wiped with each adhesive system and a spatula wiped with each ethanol. The control group was fabricated with no additional modeling. The surface degree of conversion and crosslink density were measured by Fourier transform infrared spectroscopy and the hardness decrease test, respectively. Data were analyzed using two-way analysis of variance and the Tukey's test (p < 0.05). Filtek Z350 XT showed statistically similar degree of conversion regardless of the lubricant used, whereas the use of adhesive systems and 70% ethanol decreased the degree of conversion for IPS Empress Direct. Only Scotchbond Multi-Purpose bonding agent decreased crosslink density for Filtek Z350 XT, whereas both adhesive systems decreased crosslink density for IPS Empress Direct. Filtek Z350 XT appeared to be less sensitive to the effects of lubricants, and absolute ethanol did not affect the degree of conversion and crosslink density of the nanocomposites tested. Although the use of lubricants may be recommended to minimize the stickiness of dental instruments and composite resin, dentists should choose materials that do not have a negative effect on the surface properties of composites. Only the use of absolute ethanol safely maintains the surface integrity of nanocomposites in comparison with adhesive system and 70% ethanol. © 2015 Wiley Periodicals, Inc.

  5. The Copper Sulfide Coating on Polyacrylonitrile with Chelating Agents by an Electroless Deposition Method and its EMI Shielding Effectiveness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roan, M.-L.; Chen, Y.-H.; Huang, C.-Y.

    2008-08-28

    In this study, a variety of concentrations of chelating agents were added to obtain the anchoring effect and chelating effect in the electroless plating bath. The mechanism of the Cu{sub x(x=1,2)}S growth and the electromagnetic interference shielding effectiveness (EMI SE) of the composite were studied. It was found that the vinyl acetate residued in PAN substrate would be purged due to the swelling effect by chelating agents solution. And then, the anchoring effect occurred due to the hydrogen bonding between the pits of PAN substrate and the chelating agent. Consequently, the copper sulfide layer deposited by the electroless plating reactionmore » with EDTA and TEA. The swelling degree (S{sub d}) was proposed and evaluated from the FT-IR spectra. The relationship between swelling degree of the PAN films and EDTA (C) is expressed as: S{sub d} = 0.13+0.90xe and (-15.15C). And TEA series is expressed as: S{sub d} = 0.07+1.00xe and (-15.15C). On the other hand, the FESEM micrograph showed that the average thickness of copper sulfide increased from 76 nm to 383 nm when the concentration of EDTA increased from 0.00M to 0.20M. Consequently, the EMI SE of the composites increased from 10{approx}12 dB to 25{approx}27 dB. The GIA-XRD analyze indicated that the deposited layer consisted of CuS and Cu{sub 2}S.« less

  6. Influence of enamel surface preparation on composite bond strength.

    PubMed

    Matos, Adriana Bona; Tate, William H; Powers, John M

    2003-09-01

    To evaluate the influence of air-particle abrasion and treatments on in vitro tensile bond strength of resin composite bonded to human enamel was evaluated using a single-bottle adhesive. Human teeth were divided into 12 groups of three treatments (none, 27-microm Al2O3 air-particle abrasion, 50-microm Al2O3 air-particle abrasion) and four conditioners [none, phosphoric acid (PA), NRC (no-rinse conditioner), and PA/NRC]. Bonding agent (Prime & Bond NT) and a resin composite (TPH Spectrum) were applied as inverted cones. Specimens were stored for 24 hours at 37 degrees C and debonded in tension using a testing machine at 0.5 mm/minute. Phosphoric acid treatment used with Prime & Bond NT produced the best bond strengths (24 MPa) to enamel for surfaces treated with 27-microm air-particle abrasion and for surfaces not treated with air-particle abrasion (control). With one exception, air-particle abraded surfaces resulted in bond strengths between 9 to 16 MPa. NRC with or without the use of phosphoric acid in general did not improve tensile bond strength to enamel when compared to surfaces not treated with NRC.

  7. Effects of six different preventive treatments on the shear bond strength of orthodontic brackets: in vitro study.

    PubMed

    Cossellu, Gianguido; Lanteri, Valentina; Butera, Andrea; Sarcina, Michele; Farronato, Giampietro

    2015-01-01

    Objective : The aim of this study is to evaluate the effect of six different prophylactic agents on shear bond strength (SBS) of orthodontic brackets. Materials and methods : One hundred twenty-six freshly extracted mandibular bovine incisors were used. Teeth were randomly divided into 7 equal groups (18 per group) as follows: group-1 served as control with no pre-treatment; group-2 enamel treated with fluoride varnish (Fluor Protector, Ivoclar Vivadent); group-3 containing casein-phosphopeptide-amorphous calcium-phosphate (CPP-ACP) paste (GC Tooth Mousse, RECALDENT™); group-4 with ozone (HealOzone, Kavo ) ; group-5 with glycine powder (Perio Flow, EMS); group-6 with hydroxyapatite powder 99.5% (Coswell S.p.A.); group-7 with a toothpaste made of hydroxyapatite nanocrystals (BioRepair® Plus, Coswell S.p.A). Brackets were all bonded using the same technique with transbond XT (3 M Unitek, Monrovia, CA). All the bonded specimens were stored for 24 h in deionized water (37 °C) and subjected to thermal cycling for 1000 cycles. The SBS was measured with an Instron Universal Testing machine and the adhesive remnant was assessed with the adhesive remnant index (ARI) using a stereomicroscope at 10× magnification. Results : Statistical differences (ANOVA) were found among the seven investigated groups ( F = 12.226, p < 0.001). SBS of groups 2, 5 and 6 were significantly lower than the control group ( p < 0.05). ARI scores (chi-square test) were correlated with the differences of SBS values. Conclusion: CPP-ACP paste, ozone or BioRepair® did not compromise on bracket bond strength. Fluoride, glycine or hydroxyapatite significantly decreased the SBS; only the fluoride group showed significant clinically low (<6 MPa) SBS values.

  8. Effect of organic solvents compared to sandblasting on the repair bond strength of nanohybrid and nanofilled composite resins.

    PubMed

    Brum, Rafael Torres; Vieira, Sergio; Freire, Andrea; Mazur, Rui Fernando; De Souza, Evelise Machado; Rached, Rodrigo Nunes

    2017-01-01

    This study evaluated the effect of different surface treatments on the repair bond strength of nanohybrid (Empress Direct) and nanofilled (Filtek Z350 XT) composite resins. A total of 120 specimens of each material (7.5 x 4.5 x 3 mm) were prepared and polished with SiC paper. Half of the specimens were kept in water for seven days and the other half for six months; they were then divided into six groups according to the type of surface treatment: negative control (no treatment), Al2O3sandblasted, liquid acetone, acetone gel, liquid alcohol and alcohol gel. Following application of the silane coupling agent and the adhesive system, composite resin cylinders were fabricated on the specimens and light cured (20 seconds). The same composite resins were used for the repair. Additionally, ten intact specimens of each composite resin (without repair) were prepared (positive control). The specimens were then loaded to failure in the microshear mode. Three additional specimens were fabricated in each group, and the surface treatments were analyzed by atomic force microscopy, energy-dispersive X-ray spectroscopy (EDS) and scanning electron microscopy (SEM). The nanofilled composite resin showed higher cohesive strength and repair bond strength than the nanohybrid composite resin. The aging process affected the repair bond strength of the nanofilled composite resin. Al2O3sandblasting was more efficient for the nanofilled composite resin and promoted greater surface roughness in both materials. The solvents demonstrated higher efficacy for the nanohybrid composite resin. The strengths resulting from the solvents were material dependent, and Al2O3sandblasting resulted in superior repair bond strength in both materials.

  9. Effect of etch-and-rinse and self-etching adhesive systems on hardness uniformity of resin cements after glass fiber post cementation

    PubMed Central

    Grande da Cruz, Fernanda Zander; Grande, Christiana Zander; Roderjan, Douglas Augusto; Galvão Arrais, César Augusto; Bührer Samra, Adriana Postiglione; Calixto, Abraham Lincoln

    2012-01-01

    Objective To evaluate the effects of etch-and-rinse and self-etching adhesive systems on Vickers hardness (VHN) uniformity of dual-cured resin cements after fiber post cementation. Methods: Fifty glass fiber posts were cemented into bovine roots using the following cementing systems: Prime&Bond 2.1 Dual Cure and Enforce with light-activation (PBDC-LCEN); Prime&Bond 2.1 and Enforce with light-activation (PB-CLEN); Prime&Bond 2.1 Dual Cure and Enforce without light exposure (PBDC-SCEN); ED Primer and Panavia 21 (ED-SCPN); and Clearfil SE Bond and Panavia 21 (CF-SCPN). The roots were stored in distilled water for 72 h and transversely sectioned into thirds (coronal, medium, and apical). The VHN values of the resin cement layers were measured close to the post and to the dentin wall on the transversely sectioned flat surfaces. The results were analyzed by three-way repeated measures analysis of variance (ANOVA) and Tukey’s post-hoc test (pre-set alpha of 5%). Results: Most resin cements presented higher VHN values near the post than near the dentin wall. The ED-SCPN group showed the highest VHN values regardless of the root third, while the self-cured group PBDC-SCEN exhibited the lowest values. The resin cements from the light-activated groups PBDC-LCEN and PB-LCEN showed lower VHN values at the apical third than at the coronal third. The VHN values were not influenced by the root third in self-cured groups PBDC-SCEN, ED-SCPN, and ED-SCPN. Conclusion: Depending on the product, bonding agents might promote changes in hardness uniformity of resin cements after post cementation. PMID:22904652

  10. Carbodiimide Inactivation of MMPs and Effect on Dentin Bonding

    PubMed Central

    Mazzoni, A.; Apolonio, F.M.; Saboia, V.P.A.; Santi, S.; Angeloni, V.; Checchi, V.; Curci, R.; Di Lenarda, R.; Tay, F.R.; Pashley, D.H.; Breschi, L.

    2014-01-01

    The use of protein cross-linking agents during bonding procedures has been recently proposed to improve bond durability. This study aimed to use zymography and in situ zymography techniques to evaluate the ability of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) cross-linker to inhibit matrix metalloproteinase (MMP) activity. The hypotheses tested were that: (1) bonding procedures increase dentin gelatinolytic activity and (2) EDC pre-treatment prevents this enzymatic activity. The zymographic assay was performed on protein extracts obtained from dentin powder treated with Optibond FL or Scotchbond 1XT with or without 0.3M EDC pre-treatment. For in situ zymography, adhesive/dentin interfaces were created with the same adhesives applied to acid-etched dentin slabs pre-treated or not with EDC conditioner. Zymograms revealed increased expression of dentin endogenous MMP-2 and -9 after adhesive application, while the use of EDC as a primer inactivated dentin gelatinases. Results of in situ zymograpy showed that hybrid layers of tested adhesives exhibited intense collagenolytic activity, while almost no fluorescence signal was detected when specimens were pre-treated with EDC. The correlative analysis used in this study demonstrated that EDC could contribute to inactivate endogenous dentin MMPs within the hybrid layer created by etch-and-rinse adhesives. PMID:24334409

  11. Polymer blend compositions and methods of preparation

    DOEpatents

    Naskar, Amit K.

    2016-09-27

    A polymer blend material comprising: (i) a first polymer containing hydrogen bond donating groups having at least one hydrogen atom bound to a heteroatom selected from oxygen, nitrogen, and sulfur, or an anionic version of said first polymer wherein at least a portion of hydrogen atoms bound to a heteroatom is absent and replaced with at least one electron pair; (ii) a second polymer containing hydrogen bond accepting groups selected from nitrile, halogen, and ether functional groups; and (iii) at least one modifying agent selected from carbon particles, ether-containing polymers, and Lewis acid compounds; wherein, if said second polymer contains ether functional groups, then said at least one modifying agent is selected from carbon particles and Lewis acid compounds. Methods for producing the polymer blend, molded forms thereof, and articles thereof, are also described.

  12. Evaluation Of The Shear Bond Strength Between Dentin And Dental Luting Cement Following Dentin Surface Treatment By 980 Nm Diode Laser And Desensitizing Agent

    NASA Astrophysics Data System (ADS)

    Ibrahim, T.; Gheith, M.

    2011-09-01

    Dentin hypersensitivity is described clinically as an exaggerated response to non-noxious sensory stimuli. Current treatment is concentrating on two approaches; to occlude the dentinal tubules or to block neural transmission. This is achieved through using dentin desensitizers and low power lasers. Forty eight freshly extracted human molar teeth were used in this study and divided equally into three groups. Group 1) control group, group 2) laser treated dentin surface group, and group 3) desensitizing agent dentin surface group. Scanning electron microscopic analysis of laser treated group showed melted globules, no carbonization, recrystalization and crystal growth of the apatite in some areas. In diode laser dentin surface treated group showed the highest shear bond strength mean value.

  13. Method for producing chemically bonded phosphate ceramics and for stabilizing contaminants encapsulated therein utilizing reducing agents

    DOEpatents

    Singh, Dileep; Wagh, Arun S.; Jeong, Seung-Young

    2000-01-01

    Known phosphate ceramic formulations are improved and the ability to produce iron-based phosphate ceramic systems is enabled by the addition of an oxidizing or reducing step during the acid-base reactions that form the phosphate ceramic products. The additives allow control of the rate of the acid-base reactions and concomitant heat generation. In an alternate embodiment, waste containing metal anions are stabilized in phosphate ceramic products by the addition of a reducing agent to the phosphate ceramic mixture. The reduced metal ions are more stable and/or reactive with the phosphate ions, resulting in the formation of insoluble metal species within the phosphate ceramic matrix, such that the resulting chemically bonded phosphate ceramic product has greater leach resistance.

  14. Preclinical Efficacy and Safety Assessment of Artemisinin-Chemotherapeutic Agent Conjugates for Ovarian Cancer.

    PubMed

    Li, Xiaoguang; Zhou, Yu; Liu, Yanling; Zhang, Xu; Chen, Tao; Chen, Kerong; Ba, Qian; Li, Jingquan; Liu, Hong; Wang, Hui

    2016-12-01

    Artemisinin (ARS) and its derivatives, which are clinically used antimalarial agents, have shown antitumor activities. Their therapeutic potencies, however, are limited by their low solubility and poor bioavailability. Here, through a pharmacophore hybridization strategy, we synthesized ARS-drug conjugates, in which the marketed chemotherapeutic agents chlorambucil, melphalan, flutamide, aminoglutethimide, and doxifluridine, were separately bonded to Dihydroartemisinin (DHA) through various linkages. Of these, the artemisinin-melphalan conjugate, ARS4, exhibited most toxicity to human ovarian cancer cells but had low cytotoxicity to normal cells. ARS4 inhibited the growth and proliferation of ovarian cancer cells and resulted in S-phase arrest, apoptosis, and inhibition of migration; these effects were stronger than those of its parent drugs, DHA and melphalan. Furthermore, ARS4 modulated the expression of proteins involved in cell cycle progression, apoptosis, and the epithelial-mesenchymal transition (EMT). Moreover, in mice, ARS4 inhibited growth and intraperitoneal dissemination and metastasis of ovarian cancer cells without observable toxic effects. Our results provide a basis for development of the compound as a chemotherapeutic agent. Artemisinin compounds have recently received attention as anticancer agents because of their clinical safety profiles and broad efficacy. However, their therapeutic potencies are limited by low solubility and poor bioavailability. Here, we report that ARS4, an artemisinin-melphalan conjugate, possesses marked in-vitro and in-vivo antitumor activity against ovarian cancer, the effects of which are stronger than those for its parent drugs, Dihydroartemisinin and melphalan. In mice, ARS4 inhibits localized growth of ovarian cancer cells and intraperitoneal dissemination and metastasis without appreciable host toxicity. Thus, for patients with ovarian cancer, ARS4 is a promising chemotherapeutic agent. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  15. A Model of Thermal Conductivity for Planetary Soils. 2; Theory for Cemented Soils

    NASA Technical Reports Server (NTRS)

    Piqueux, S.; Christensen, P. R.

    2009-01-01

    A numerical model of heat conduction through particulate media made of spherical grains cemented by various bonding agents is presented. The pore-filling gas conductivity, volume fraction, and thermal conductivity of the cementing phase are tunable parameters. Cement fractions <0.001-0.01% in volume have small effects on the soil bulk thermal conductivity. A significant conductivity increase (factor 3-8) is observed for bond fractions of 0.01 to 1% in volume. In the 1 to 15% bond fraction domain, the conductivity increases continuously but less intensely (25-100% conductivity increase compared to a 1% bond system). Beyond 15% of cements, the conductivity increases vigorously and the bulk conductivity rapidly approaches that of bedrock. The composition of the cements (i.e. conductivity) has little influence on the bulk thermal inertia of the soil, especially if the volume of bond <10%. These results indicate that temperature measurements are sufficient to detect cemented soils and quantify the amount of cementing phase, but the mineralogical nature of the bonds and the typical grain size are unlikely to be determined from orbit. On Mars, a widespread surface unit characterized by a medium albedo (0.19-0.26) and medium/high thermal inertia (200-600 J s(0.5)/sq m/K) has long been hypothesized to be associated with a duricrust. The fraction of cement required to fit the thermal data is less than approx.1-5% by volume. This small amount of material is consistent with orbital observations, confirming that soil cementation is an important factor controlling the thermal inertia of the Martian surface

  16. A model of thermal conductivity for planetary soils: 2. Theory for cemented soils

    NASA Astrophysics Data System (ADS)

    Piqueux, S.; Christensen, P. R.

    2009-09-01

    A numerical model of heat conduction through particulate media made of spherical grains cemented by various bonding agents is presented. The pore-filling gas conductivity, volume fraction, and thermal conductivity of the cementing phase are tunable parameters. Cement fractions <0.001-0.01% in volume have small effects on the soil bulk thermal conductivity. A significant conductivity increase (factor 3-8) is observed for bond fractions of 0.01 to 1% in volume. In the 1 to 15% bond fraction domain, the conductivity increases continuously but less intensely (25-100% conductivity increase compared to a 1% bond system). Beyond 15% of cements, the conductivity increases vigorously and the bulk conductivity rapidly approaches that of bedrock. The composition of the cements (i.e. conductivity) has little influence on the bulk thermal inertia of the soil, especially if the volume of bond <10%. These results indicate that temperature measurements are sufficient to detect cemented soils and quantify the amount of cementing phase, but the mineralogical nature of the bonds and the typical grain size are unlikely to be determined from orbit. On Mars, a widespread surface unit characterized by a medium albedo (0.19-0.26) and medium/high thermal inertia (200-600 J s-0.5 m-2 K-1) has long been hypothesized to be associated with a duricrust. The fraction of cement required to fit the thermal data is less than ˜1-5% by volume. This small amount of material is consistent with orbital observations, confirming that soil cementation is an important factor controlling the thermal inertia of the Martian surface.

  17. A comparative study of the hydrogen-bonding patterns and prototropism in solid 2-thiocytosine (potential antileukemic agent) and cytosine, as studied by 1H-14N NQDR and QTAIM/ DFT.

    PubMed

    Latosińska, Jolanta N; Seliger, Janez; Zagar, Veselko; Burchardt, Dorota V

    2012-01-01

    A potential antileukemic and anticancer agent, 2-thiocytosine (2-TC), has been studied experimentally in the solid state by (1)H-(14)N NMR-NQR double resonance (NQDR) and theoretically by the quantum theory of atoms in molecules (QTAIM)/density functional theory (DFT). Eighteen resonance frequencies on (14)N were detected at 180 K and assigned to particular nitrogen sites (-NH(2), -N=, and -NH-) in 2-thiocytosine. Factors such as the nonequivalence of molecules (connected to the duplication of sites) and possible prototropic tautomerism (capable of modifying the type of site due to proton transfer) were taken into account during frequency assignment. The result of replacing oxygen with sulfur, which leads to changes in the intermolecular interaction pattern and molecular aggregation, is discussed. This study demonstrates the advantages of combining NQDR and DFT to extract detailed information on the H-bonding properties of crystals with complex H-bonding networks. Solid-state properties were found to have a profound impact on the stabilities and reactivities of both compounds.

  18. Structuring of composite hydrogel bioadhesives and its effect on properties and bonding mechanism.

    PubMed

    Pinkas, Oded; Goder, Daniella; Noyvirt, Roni; Peleg, Sivan; Kahlon, Maayan; Zilberman, Meital

    2017-03-15

    Bioadhesives are polymeric hydrogels that can adhere to a tissue after crosslinking and are an essential element in nearly all surgeries worldwide. Several bioadhesives are commercially available. However, none of them are ideal. The main limitation of current tissue adhesives is the tradeoff between biocompatibility and mechanical strength, especially in wet hemorrhagic environments. Our novel bioadhesives are based on the natural polymers gelatin (coldwater fish) and alginate, crosslinked by carbodiimide (EDC). Two types of hemostatic agents with a layered silicate structure, montmorillonite (MMT) and kaolin, were loaded in order to improve the sealing ability in a hemorrhagic environment. The effect of the adhesive's components on its mechanical strength was studied by three different methods - burst strength, lap shear and compression. The viscosity, gelation time and structural features of the adhesive were also studied. A qualitative model that describes the effect of the bioadhesive's parameters on the cohesive and adhesive strength was developed. A formulation based on 400mg/mL gelatin, 10mg/mL alginate and 20mg/mL EDC was found as optimal, enabling a burst strength of 387mmHg. Incorporation of kaolin increased the burst strength by 25% due to microcomposite structuring, whereas MMT increased the burst strength by 50% although loaded in a smaller concentration, due to nano-structuring effects. This research clearly shows that the incorporation of kaolin and MMT in gelatin-alginate surgical sealants is a very promising novel approach for improving the bonding strength and physical properties of surgical sealants for use in hemorrhagic environments. The current manuscript focuses on novel bioadhesives, based on natural polymers and loaded with hemostatic agents with a layered silicate structure, in order to improve the sealing ability in hemorrhagic environment. Such composite bioadhesives have not been developed and studied before. The effect of the adhesive's components on its mechanical strength was studied by three different methods, as well as the physical properties and structural features. Thorough understanding of these unique biomaterials resulted in a qualitative model which describes the effect of the bioadhesive's parameters on the cohesive and adhesive strength. Thus, structure-property-function relationships are presented. Structuring of the composite bioadhesives and its effect of the properties and bonding mechanism, are expected to be of high interest to Acta readership. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Docetaxel-loaded single-wall carbon nanohorns using anti-VEGF antibody as a targeting agent: characterization, in vitro and in vivo antitumor activity

    NASA Astrophysics Data System (ADS)

    Zhao, Qian; Li, Nannan; Shu, Chang; Li, Ruixin; Ma, Xiaona; Li, Xuequan; Wang, Ran; Zhong, Wenying

    2015-05-01

    A novel antitumor drug delivery system, docetaxel (DTX)-loaded oxidized single-wall carbon nanohorns (oxSWNHs) with anti-VEGF monoclonal antibody (mAb) as a target agent was constructed. DTX was absorbed onto the oxSWNHs via the physical adsorption or π-π interaction. DSPE-PEG-COOH was non-covalently wrapped to the hydrophobic surface of oxSWNHs to improve its water solubility and biocompatibility. The mAb was bonded to the PEG through amide bond. The DTX@oxSWNHs-PEG-mAb (DDS) exhibited suitable particle size (191.2 ± 2.1 nm), good particle size distribution (PDI: 0.196), and negative zeta potential (-24.3 ± 0.85 mV). These features enhanced permeability and retention (EPR) effect and reduced the drug molecule uptake by the reticuloendothelial system. The in vitro drug release followed non-Fickian diffusion ( n = 0.6857, R = 0.9924) with the cumulative release of DTX 59 ± 1.35 % at 72 h. Compared with free DTX, the DDS enhanced the cytotoxicity in MCF-7 cell lines in vitro efficiently (IC50: 2.96 ± 0.6 μg/ml), and provided higher antitumor efficacy (TGI: 69.88 %) in vivo. The histological analysis indicated that the DDS had no significant side effect. Therefore, the new DDS is promising to attain higher pharmaceutical efficacy and lower side effects than free DTX for cancer therapy. The research demonstrated that DTX@oxSWNHs-PEG-mAb might have promising biomedical applications for future cancer therapy.

  20. A hyaluronic acid nanogel for photo-chemo theranostics of lung cancer with simultaneous light-responsive controlled release of doxorubicin

    NASA Astrophysics Data System (ADS)

    Khatun, Zehedina; Nurunnabi, Md; Nafiujjaman, Md; Reeck, Gerald R.; Khan, Haseeb A.; Cho, Kwang Jae; Lee, Yong-Kyu

    2015-06-01

    The combined delivery of photo- and chemo-therapeutic agents is an emerging strategy to overcome drug resistance in treating cancer, and controlled light-responsive drug release is a proven tactic to produce a continuous therapeutic effect for a prolonged duration. Here, a combination of light-responsive graphene, chemo-agent doxorubicin and pH-sensitive disulfide-bond linked hyaluronic acid form a nanogel (called a graphene-doxorubicin conjugate in a hyaluronic acid nanogel) that exerts an activity with multiple effects: thermo and chemotherapeutic, real-time noninvasive imaging, and light-glutathione-responsive controlled drug release. The nanogel is mono-dispersed with an average diameter of 120 nm as observed by using TEM and a hydrodynamic size analyzer. It has excellent photo-luminescence properties and good stability in buffer and serum solutions. Graphene itself, being photoluminescent, can be considered an optical imaging contrast agent as well as a heat source when excited by laser irradiation. Thus the nanogel shows simultaneous thermo-chemotherapeutic effects on noninvasive optical imaging. We have also found that irradiation enhances the release of doxorubicin in a controlled manner. This release synergizes therapeutic activity of the nanogel in killing tumor cells. Our findings demonstrate that the graphene-doxorubicin conjugate in the hyaluronic acid nanogel is very effective in killing the human lung cancer cell line (A549) with limited toxicity in the non-cancerous cell line (MDCK).The combined delivery of photo- and chemo-therapeutic agents is an emerging strategy to overcome drug resistance in treating cancer, and controlled light-responsive drug release is a proven tactic to produce a continuous therapeutic effect for a prolonged duration. Here, a combination of light-responsive graphene, chemo-agent doxorubicin and pH-sensitive disulfide-bond linked hyaluronic acid form a nanogel (called a graphene-doxorubicin conjugate in a hyaluronic acid nanogel) that exerts an activity with multiple effects: thermo and chemotherapeutic, real-time noninvasive imaging, and light-glutathione-responsive controlled drug release. The nanogel is mono-dispersed with an average diameter of 120 nm as observed by using TEM and a hydrodynamic size analyzer. It has excellent photo-luminescence properties and good stability in buffer and serum solutions. Graphene itself, being photoluminescent, can be considered an optical imaging contrast agent as well as a heat source when excited by laser irradiation. Thus the nanogel shows simultaneous thermo-chemotherapeutic effects on noninvasive optical imaging. We have also found that irradiation enhances the release of doxorubicin in a controlled manner. This release synergizes therapeutic activity of the nanogel in killing tumor cells. Our findings demonstrate that the graphene-doxorubicin conjugate in the hyaluronic acid nanogel is very effective in killing the human lung cancer cell line (A549) with limited toxicity in the non-cancerous cell line (MDCK). Electronic supplementary information (ESI) available: In vitro stability study method and results, FT-IR data, optical properties and thermal stability (TGA and DTA), cell image and in vivo optical image and histological images. See DOI: 10.1039/c5nr01075f

Top