Science.gov

Sample records for bone aspects tomodensitometriques

  1. Roentgenologic aspects of bone islands.

    PubMed

    Onitsuka, H

    1977-06-01

    A review of radiographs of 143 Adult Health Study and 46 non-sample subjects made over a period of 23 years established sites, sizes, ages at detection, and prevalence of 209 bone islands in 189 subjects. Except for 18 new bone islands, all appeared during the period of observation. Twenty-six of them changed: of these, 21 enlarged, 4 became smaller, and 1 disappeared. There was no association with atomic bomb radiation dose. Bone islands were more frequent in the pelvis and femora but often occurred in the ribs. Five bone islands in adolescents enlarged proportionally to bone growth, suggesting that they often participate metabolically in the normal osseous system. Bone islands must be differentiated from osteoblastic metastases.

  2. Kinetic aspects of bone mineral metabolism

    NASA Technical Reports Server (NTRS)

    Palmer, H. E.

    1973-01-01

    Two techniques were studied for measuring changes in bone mass in rats. One technique measures the Ar-37 produced from calcium during neutron irradiation and the other measures the changes in the Na-22 content which has been incorporated within the rat bone. Both methods are performed in VIVO and cause no significant physiological damage. The Ar-37 leaves the body of a rat within an hour after being produced, and it can be quantitatively collected and measured with a precision of - or + 2% on the same rat. With appropriate irradiation conditions it appears that the absolute quantity of calcuim in any rat can be determined within - or + 3% regardless of animal size. The Na-22 when uniformly distributed in bone, can be used to monitor bone mineral turnover and this has been demonstrated in conditions of calcium deficiency during growth and also pregnancy coupled with calcium deficiency.

  3. Nano-material aspects of shock absorption in bone joints.

    PubMed

    Tributsch, H; Copf, F; Copf, P; Hindenlang, U; Niethard, F U; Schneider, R

    2010-01-01

    This theoretical study is based on a nano-technological evaluation of the effect of pressure on the composite bone fine structure. It turned out, that the well known macroscopic mechano-elastic performance of bones in combination with muscles and tendons is just one functional aspect which is critically supported by additional micro- and nano- shock damping technology aimed at minimising local bone material damage within the joints and supporting spongy bone material. The identified mechanisms comprise essentially three phenomena localised within the three-dimensional spongy structure with channels and so called perforated flexible tensulae membranes of different dimensions intersecting and linking them. Kinetic energy of a mechanical shock may be dissipated within the solid-liquid composite bone structure into heat via the generation of quasi-chaotic hydromechanic micro-turbulence. It may generate electro-kinetic energy in terms of electric currents and potentials. And the resulting specific structural and surface electrochemical changes may induce the compressible intra-osseal liquid to build up pressure dependent free chemical energy. Innovative bone joint prostheses will have to consider and to be adapted to the nano-material aspects of shock absorption in the operated bones.

  4. Molecular Aspects of Bone Resorption in β-Thalassemia Major

    PubMed Central

    Saki, Najmaldin; Abroun, Saeid; Salari, Fatemeh; Rahim, Fakher; Shahjahani, Mohammad; Javad, Mohammadi-Asl

    2015-01-01

    β-thalassemia is the most common single gene disorder worldwide, in which hemoglobin β-chain production is decreased. Today, the life expectancy of thalassemic patients is increased because of a variety of treatment methods; however treatment related complications have also increased. The most common side effect is osteoporosis, which usually occurs in early adulthood as a consequence of increased bone resorption. Increased bone resorption mainly results from factors such as delayed puberty, diabetes mellitus, hypothyroidism, ineffective hematopoiesis as well as hyperplasia of the bone marrow, parathyroid gland dysfunction, toxic effect of iron on osteoblasts, growth hormone (GH) and insulin-like growth factor-1 (IGF-1) deficiency. These factors disrupt the balance between osteoblasts and osteoclasts by interfering with various molecular mechanisms and result in decreased bone density. Given the high prevalence of osteopenia and osteoporosis in thalassemic patients and complexity of their development process, the goal of this review is to evaluate the molecular aspects involved in osteopenia and osteoporosis in thalassemic patients, which may be useful for therapeutic purposes. PMID:26199898

  5. Biomechanical Aspects of the Muscle-Bone Interaction

    PubMed Central

    Avin, Keith G.; Bloomfield, Susan A.; Gross, Ted S.; Warden, Stuart J.

    2014-01-01

    There is growing interest in the interaction between skeletal muscle and bone, particularly at the genetic and molecular levels. However, the genetic and molecular linkages between muscle and bone are achieved only within the context of the essential mechanical coupling of the tissues. This biomechanical and physiological linkage is readily evident as muscles attach to bone and induce exposure to varied mechanical stimuli via functional activity. The responsiveness of bone cells to mechanical stimuli, or their absence, is well established. However, questions remain regarding how muscle forces applied to bone serve to modulate bone homeostasis and adaptation. Similarly, the contributions of varied, but unique, stimuli generated by muscle to bone (such as low-magnitude, high-frequency stimuli) remains to be established. The current article focuses upon the mechanical relationship between muscle and bone. In doing so, we explore the stimuli that muscle imparts upon bone, models that enable investigation of this relationship, and recent data generated by these models. PMID:25515697

  6. Factors influencing bone mass accrual: focus on nutritional aspects.

    PubMed

    Viljakainen, H T

    2016-08-01

    Until recently, much of the research exploring the role of nutrition on bone mass accrual has focused on single nutrients. Although randomised controlled trials have provided key information about the effects of calcium and vitamin D on bone, they also have limitations, e.g. generalisation, implementation of the results and long-term consequences. Human subjects do not eat single nutrients, but foods, and describing healthy food patterns for optimising bone mineral accrual is warranted. Recent advances in research suggest that the effects of whole diet are larger than those of single nutrients on bone health. Research should focus on younger age groups to identify the life-course determinants of osteoporosis during prenatal, infancy, childhood and adolescence that would help to maximise peak bone mass. Food patterns that describe the variability, quality and choices of individuals give broader insight and may provide new strategies for preventing osteoporosis. PMID:27169333

  7. [Bone metastases : New aspects of pathogenesis and systemic therapy].

    PubMed

    Rachner, T D; Jakob, F; Hofbauer, L C

    2016-07-01

    The occurrence of bone metastases, in particular secondary to breast and prostate cancer, represents a complex medical condition that is debilitating for affected patients. In order to provide an efficient and personalized therapy, an interdisciplinary treatment approach is mandatory; therefore, systemic pharmacological therapy represents a core element of the overall treatment concept. In terms of pathophysiology, the cancer cells cause a massive disturbance of the local bone microenvironment, which as a rule leads to activation of bone resorbing osteoclasts. In addition to bisphosphonates, which can be considered classical antiresorptive agents, the monoclonal receptor activator of nuclear factor-kappa B ligand (RANKL) antibody denosumab has been in use in clinical practice since 2011. The alpha-emitting radioisotope Alpharadin was also recently approved for the treatment of metastatic prostate cancer. This article provides a summary of the most recent knowledge on the pathogenesis of how cancer cells alter the bone microenvironment as well as a review of established and future systemic treatment options. PMID:27270907

  8. Monitoring molecular, functional and morphologic aspects of bone metastases using non-invasive imaging.

    PubMed

    Bauerle, Tobias; Komljenovic, Dorde; Semmler, Wolfhard

    2012-03-01

    Bone is among the most common locations of metastasis and therefore represents an important clinical target for diagnostic follow-up in cancer patients. In the pathogenesis of bone metastases, disseminated tumor cells proliferating in bone interact with the local microenvironment stimulating or inhibiting osteoclast and osteoblast activity. Non-invasive imaging methods monitor molecular, functional and morphologic changes in both compartments of these skeletal lesions - the bone and the soft tissue tumor compartment. In the bone compartment, morphologic information on skeletal destruction is assessed by computed tomography (CT) and radiography. Pathogenic processes of osteoclast and osteoblast activity, however, can be imaged using optical imaging, positron emission tomography (PET), single photon emission CT (SPECT) and skeletal scintigraphy. Accordingly, conventional magnetic resonance imaging (MRI) and CT as well as diffusion- weighted MRI and optical imaging are used to assess morphologic aspects on the macroscopic and cellular level of the soft tissue tumor compartment. Imaging methods such as PET, MR spectroscopy, dynamic contrast-enhanced techniques and vessel size imaging further elucidate on pathogenic processes in this compartment including information on metabolism and vascularization. By monitoring these aspects in bone lesions, new insights in the pathogenesis of skeletal metastases can be gained. In translation to the clinical situation, these novel methods for the monitoring of bone metastases might be applied in patients to improve follow-up of these lesions, in particular after therapeutic intervention. This review summarizes established and experimental imaging techniques for the monitoring of tumor and bone cell activity including molecular, functional and morphological aspects in bone metastases. PMID:22214500

  9. Biomechanical aspects of bone microstructure in vertebrates: potential approach to palaeontological investigations.

    PubMed

    Mishra, S

    2009-11-01

    Biomechanical or biophysical principles can be applied to study biological structures in their modern or fossil form. Bone is an important tissue in paleontological studies as it is a commonly preserved element in most fossil vertebrates, and can often allow its microstructures such as lacuna and canaliculi to be studied in detail. In this context, the principles of Fluid Mechanics and Scaling Laws have been previously applied to enhance the understanding of bone microarchitecture and their implications for the evolution of hydraulic structures to transport fluid. It has been shown that the microstructure of bone has evolved to maintain efficient transport between the nutrient supply and cells, the living components of the tissue. Application of the principle of minimal expenditure of energy to this analysis shows that the path distance comprising five or six lamellar regions represents an effective limit for fluid and solute transport between the nutrient supply and cells; beyond this threshold, hydraulic resistance in the network increases and additional energy expenditure is necessary for further transportation. This suggests an optimization of the size of the bone's building blocks (such as osteon or trabecular thickness) to meet the metabolic demand concomitant to minimal expenditure of energy. This biomechanical aspect of bone microstructure is corroborated from the ratio of osteon to Haversian canal diameters and scaling constants of several mammals considered in this study. This aspect of vertebrate bone microstructure and physiology may provide a basis of understanding of the form and function relationship in both extinct and extant taxa. PMID:20009272

  10. Linking bone development on the caudal aspect of the distal phalanx with lameness during life.

    PubMed

    Newsome, R; Green, M J; Bell, N J; Chagunda, M G G; Mason, C S; Rutland, C S; Sturrock, C J; Whay, H R; Huxley, J N

    2016-06-01

    Claw horn disruption lesions (CHDL; sole hemorrhage, sole ulcer, and white line disease) cause a large proportion of lameness in dairy cattle, yet their etiopathogenesis remains poorly understood. Untreated CHDL may be associated with damage to the internal anatomy of the foot, including to the caudal aspect of the distal phalanx upon which bone developments have been reported with age and with sole ulcers at slaughter. The primary aim of this study was to assess whether bone development was associated with poor locomotion and occurrence of CHDL during a cow's life. A retrospective cohort study imaged 282 hind claws from 72 Holstein-Friesian dairy cows culled from a research herd using X-ray micro-computed tomography (μ-CT; resolution: 0.11mm). Four measures of bone development were taken from the caudal aspect of each distal phalanx, in caudal, ventral, and dorsal directions, and combined within each claw. Cow-level variables were constructed to quantify the average bone development on all hind feet (BD-Ave) and bone development on the most severely affected claw (BD-Max). Weekly locomotion scores (1-5 scale) were available from first calving. The variables BD-Ave and BD-Max were used as outcomes in linear regression models; the explanatory variables included locomotion score during life, age, binary variables denoting lifetime occurrence of CHDL and of infectious causes of lameness, and other cow variables. Both BD-Max and BD-Ave increased with age, CHDL occurrence, and an increasing proportion of locomotion scores at which a cow was lame (score 4 or 5). The models estimated that BD-Max would be 9.8mm (SE 3.9) greater in cows that had been lame at >50% of scores within the 12mo before slaughter (compared with cows that had been assigned no lame scores during the same period), or 7.0mm (SE 2.2) greater if the cow had been treated for a CHDL during life (compared with cows that had not). Additionally, histology demonstrated that new bone development was osteoma

  11. Linking bone development on the caudal aspect of the distal phalanx with lameness during life.

    PubMed

    Newsome, R; Green, M J; Bell, N J; Chagunda, M G G; Mason, C S; Rutland, C S; Sturrock, C J; Whay, H R; Huxley, J N

    2016-06-01

    Claw horn disruption lesions (CHDL; sole hemorrhage, sole ulcer, and white line disease) cause a large proportion of lameness in dairy cattle, yet their etiopathogenesis remains poorly understood. Untreated CHDL may be associated with damage to the internal anatomy of the foot, including to the caudal aspect of the distal phalanx upon which bone developments have been reported with age and with sole ulcers at slaughter. The primary aim of this study was to assess whether bone development was associated with poor locomotion and occurrence of CHDL during a cow's life. A retrospective cohort study imaged 282 hind claws from 72 Holstein-Friesian dairy cows culled from a research herd using X-ray micro-computed tomography (μ-CT; resolution: 0.11mm). Four measures of bone development were taken from the caudal aspect of each distal phalanx, in caudal, ventral, and dorsal directions, and combined within each claw. Cow-level variables were constructed to quantify the average bone development on all hind feet (BD-Ave) and bone development on the most severely affected claw (BD-Max). Weekly locomotion scores (1-5 scale) were available from first calving. The variables BD-Ave and BD-Max were used as outcomes in linear regression models; the explanatory variables included locomotion score during life, age, binary variables denoting lifetime occurrence of CHDL and of infectious causes of lameness, and other cow variables. Both BD-Max and BD-Ave increased with age, CHDL occurrence, and an increasing proportion of locomotion scores at which a cow was lame (score 4 or 5). The models estimated that BD-Max would be 9.8mm (SE 3.9) greater in cows that had been lame at >50% of scores within the 12mo before slaughter (compared with cows that had been assigned no lame scores during the same period), or 7.0mm (SE 2.2) greater if the cow had been treated for a CHDL during life (compared with cows that had not). Additionally, histology demonstrated that new bone development was osteoma

  12. Cellular and morphological aspects of fibrodysplasia ossificans progressiva. Lessons of formation, repair, and bone bioengineering.

    PubMed

    Martelli, Anderson; Santos, Arnaldo Rodrigues

    2014-01-01

    Fibrodysplasia ossificans progressiva (FOP) is a rare congenital disease that causes bone formation within the muscles, tendons, ligaments and connective tissues. There is no cure for this disorder and only treatment of the symptoms is available. The purpose of this study was to review the literature and describe the clinical, cellular and molecular aspects of FOP. The material used for the study was obtained by reviewing scientific articles published in various literature-indexed databases. In view of its rarity and of the lack of insightful information and the unpredictability of its course, FOP is a challenging disorder for professionals who are confronted by it. However, this rare disease raises a great deal of interest because understanding the mechanism of mature bone formation can encourage research lines related to bone regeneration and the prevention of heterotopic ossification.

  13. Aneurysmal bone cyst primary - about eight pediatric cases: radiological aspects and review of the literature

    PubMed Central

    Boubbou, Meryem; Atarraf, Karima; Chater, Lamiae; Afifi, Abderrahmane; Tizniti, Siham

    2013-01-01

    The aneurysmal bone cyst is a pseudotumoral lesion that can take several aspects. This is a rare lesion representing 1% of bone tumors. It appears usually during the first 30 years of life. The pathogenesis is that of a process of “dysplasia/hyperplasia”, favored by a circulatory deficiency and hemorrhage within the lesion and the phenomena of osteoclasis. The objective of this work is to illustrate with analysis, the specific forms and atypical aneurysmal bone cyst which often pose a diagnostic challenge requiring radiological investigation with histological confirmation. We report eight pediatric cases of aneurysmal cysts collected over a period of 3 years, 3 boys and 5 girls. All patients had standard radiographs. MRI was performed in three patients. The diagnosis was confirmed histologically. The atypia has been in the seat: fibula (1 case), metaphyseal (2 cases), diaphyseal (4 cases) and metatarsal (1 case). Aneurysmal bone cyst is a rare benign tumor with predilection to the metaphysis of long bones. Atypical forms even fewer are dominated by the atypical seat. PMID:24244797

  14. Biological aspects of altered bone remodeling in multiple myeloma and possibilities of pharmacological intervention.

    PubMed

    Kupisiewicz, Kasia

    2011-05-01

    osteoclasts appear to resorb deeper compared to non-fluorescent osteoclasts. The preliminary data that need to be confirmed suggest that formation of hybrid cells by fusion of myeloma cells with osteoclasts may result in reprogramming of the osteoclasts and contribute to the more aggressive bone resorption by osteoclasts as it is typically seen in myeloma patients. Another aspect of multiple myeloma and associated bone disease is the unmet need for novel and more efficient therapeutic regiments. Resveratrol (trans-3, 4', 5-trihydroxystilbene; RSV) is a natural compound shown to target the key players of myeloma bone disease: bone resorbing osteoclasts, bone forming osteoblasts and myeloma cells. Our in vitro study on RSV showed that it possessed this ideal triad of properties appearing and thus might be of interest as a potential drug for the treatment of multiple myeloma. RSV suppresses the growth and survival of myeloma cells, inhibits osteoclasts and stimulates the formation of osteoblasts. However, the need for high concentrations combined with low biological availability after oral administration and risk of important side effects stimulated a search for RSV derivates with the same spectrum of actions but safer and with better bioavailability. As the other task of my PhD, I screened structurally modified RSV analogues in cultures of myeloma cells, osteoblasts and osteoclasts. Compared to resveratrol, some analogues showed an up to 5,000-times increased potency to inhibit osteoclast differentiation and could still promote osteoblast maturation but they did not antagonize myeloma cells. The potency of the best-performing candidate in vitro was tested in vivo in an ovariectomy-induced model of osteoporosis, but effect on bone loss could not be detected. During my PhD, I also participated in the studies of the effect of the proteasome inhibitor - bortezomib on osteoclasts conducted at the department. Based on its potent activity in multiple myeloma, bortezomib was accepted

  15. Cybernetic aspects of bone modeling and remodeling, with special reference to osteoporosis and whole-bone strength.

    PubMed

    Frost, H M

    2001-01-01

    Assume mythical physiologists were taught that renal physiology and its disorders depend on "kidney cells" and their regulation by nonmechanical factors, but were taught nothing about nephrons. For decades they "knew" that idea was correct, just as Ptolemy "knew" the universe centers on our planet. But then others began to describe nephrons, their roles in renal physiology and disorders, and problems they revealed in former views, so doubts and controversies began. Today real physiologists encounter a similar situation for bone health and its disorders. A 1960 paradigm attributed such things to bone's effector cells (osteoblasts and osteoclasts) and their regulation by nonmechanical factors, without "nephron-equivalent" or biomechanical input. But both mechanical and nonmechanical factors regulate bone's nephron equivalents. Adding features of those equivalents to the 1960 views led to the Utah paradigm, which suggests problems in former views and better explanations for "osteoporosis," whole-bone strength, and other bone disorders. Such things incited controversies among current skeletal physiologists. Cybernetics concerns the relationships, mechanisms, signals, and message traffic that help to control the behavior and other features of dynamic systems. A cybernetic analysis of the bone physiology in the Utah paradigm can add many features to the 1960 paradigm that help to understand osteoporoses, other bone disorders, and whole-bone strength (and bone mass). The added features also show new and pertinent targets for the related research.

  16. Cybernetic aspects of bone modeling and remodeling, with special reference to osteoporosis and whole-bone strength.

    PubMed

    Frost, H M

    2001-01-01

    Assume mythical physiologists were taught that renal physiology and its disorders depend on "kidney cells" and their regulation by nonmechanical factors, but were taught nothing about nephrons. For decades they "knew" that idea was correct, just as Ptolemy "knew" the universe centers on our planet. But then others began to describe nephrons, their roles in renal physiology and disorders, and problems they revealed in former views, so doubts and controversies began. Today real physiologists encounter a similar situation for bone health and its disorders. A 1960 paradigm attributed such things to bone's effector cells (osteoblasts and osteoclasts) and their regulation by nonmechanical factors, without "nephron-equivalent" or biomechanical input. But both mechanical and nonmechanical factors regulate bone's nephron equivalents. Adding features of those equivalents to the 1960 views led to the Utah paradigm, which suggests problems in former views and better explanations for "osteoporosis," whole-bone strength, and other bone disorders. Such things incited controversies among current skeletal physiologists. Cybernetics concerns the relationships, mechanisms, signals, and message traffic that help to control the behavior and other features of dynamic systems. A cybernetic analysis of the bone physiology in the Utah paradigm can add many features to the 1960 paradigm that help to understand osteoporoses, other bone disorders, and whole-bone strength (and bone mass). The added features also show new and pertinent targets for the related research. PMID:11460869

  17. Biologic and clinical aspects of integration of different bone substitutes in oral surgery: a literature review.

    PubMed

    Zizzari, Vincenzo Luca; Zara, Susi; Tetè, Giulia; Vinci, Raffaele; Gherlone, Enrico; Cataldi, Amelia

    2016-10-01

    Many bone substitutes have been proposed for bone regeneration, and researchers have focused on the interactions occurring between grafts and host tissue, as the biologic response of host tissue is related to the origin of the biomaterial. Bone substitutes used in oral and maxillofacial surgery could be categorized according to their biologic origin and source as autologous bone graft when obtained from the same individual receiving the graft; homologous bone graft, or allograft, when harvested from an individual other than the one receiving the graft; animal-derived heterologous bone graft, or xenograft, when derived from a species other than human; and alloplastic graft, made of bone substitute of synthetic origin. The aim of this review is to describe the most commonly used bone substitutes, according to their origin, and to focus on the biologic events that ultimately lead to the integration of a biomaterial with the host tissue.

  18. Mechanistic aspects of fracture and R-curve behavior in elk antler bone

    SciTech Connect

    Launey, Maximilien E.; Chen, Po-Yu; McKittrick, Joanna; Ritchie, Robert O.

    2009-11-23

    Bone is an adaptative material that is designed for different functional requirements; indeed, bones have a variety of properties depending on their role in the body. To understand the mechanical response of bone requires the elucidation of its structure-function relationships. Here, we examine the fracture toughness of compact bone of elk antler which is an extremely fast growing primary bone designed for a totally different function than human (secondary) bone. We find that antler in the transverse (breaking) orientation is one of the toughest biological materials known. Its resistance to fracture is achieved during crack growth (extrinsically) by a combination of gross crack deflection/twisting and crack bridging via uncracked 'ligaments' in the crack wake, both mechanisms activated by microcracking primarily at lamellar boundaries. We present an assessment of the toughening mechanisms acting in antler as compared to human cortical bone, and identify an enhanced role of inelastic deformation in antler which further contributes to its (intrinsic) toughness.

  19. Genotypes and clinical aspects associated with bone mineral density in Argentine postmenopausal women.

    PubMed

    Pérez, Adriana; Ulla, María; García, Beatriz; Lavezzo, María; Elías, Eliana; Binci, Miriam; Rivoira, María; Centeno, Viviana; Alisio, Arturo; Tolosa de Talamoni, Nori

    2008-01-01

    The aim of this study was to determine genotypes and clinical aspects associated with bone mineral density (BMD) in postmenopausal women from Córdoba, Argentina. Polymorphisms were assessed by RFLP-PCR technique using BsmI and FokI for vitamin D receptor gene (VDR) and XbaI and PvuII for estrogen receptor-alpha gene (ERalpha) as restrictases. Sixty-eight healthy, 54 osteopenic, and 64 osteoporotic postmenopausal women were recruited. Femoral neck and lumbar spine BMD were inversely correlated with age in the entire analyzed population. Height was lower in osteopenic and osteoporotic women as compared to healthy women (P < 0.05). Weight and body mass index (BMI) were the lowest in osteoporotic women (P < 0.01 versus healthy group). Serum procollagen type I Nterminal propeptide (PINP) was higher in osteoporotic women as compared to the other groups. Distribution of VDR and ERalpha genotypes was similar in the three groups. Genotype bb (VDR) was associated with low values of lumbar BMD in the healthy group (P < 0.05 versus genotype Bb), and with low values of femoral BMD (P < 0.05 versus genotype BB) in osteoporotic women. BB*Pp interaction was associated with the highest femoral neck BMD (P < 0.05), whereas the bb*xx interaction was associated with the lowest femoral neck BMD in the total population analyzed (P < 0.05). In conclusion, parameters such as age, height, weight, BMI, serum PINP, VDR genotypes, and interactions between VDR and ERalpha genotypes could be useful to predict a decrease in BMD in Argentine postmenopausal women. PMID:18600402

  20. Long-term safety of antiresorptive treatment: bone material, matrix and mineralization aspects

    PubMed Central

    Misof, Barbara M; Fratzl-Zelman, Nadja; Paschalis, Eleftherios P; Roschger, Paul; Klaushofer, Klaus

    2015-01-01

    It is well established that long-term antiresorptive use is effective in the reduction of fracture risk in high bone turnover osteoporosis. Nevertheless, during recent years, concerns emerged that longer bone turnover reduction might favor the occurrence of fatigue fractures. However, the underlying mechanisms for both beneficial and suspected adverse effects are not fully understood yet. There is some evidence that their effects on the bone material characteristics have an important role. In principle, the composition and nanostructure of bone material, for example, collagen cross-links and mineral content and crystallinity, is highly dependent on tissue age. Bone turnover determines the age distribution of the bone structural units (BSUs) present in bone, which in turn is decisive for its intrinsic material properties. It is noteworthy that the effects of bone turnover reduction on bone material were observed to be dependent on the duration of the antiresorptive therapy. During the first 2–3 years, significant decreases in the heterogeneity of material properties such as mineralization of the BSUs have been observed. In the long term (5–10 years), the mineralization pattern reverts towards normal heterogeneity and degree of mineralization, with no signs of hypermineralization in the bone matrix. Nevertheless, it has been hypothesized that the occurrence of fatigue fractures (such as atypical femoral fractures) might be linked to a reduced ability of microdamage repair under antiresorptive therapy. The present article examines results from clinical studies after antiresorptive, in particular long-term, therapy with the aforementioned potentially positive or negative effects on bone material. PMID:25709811

  1. Physical and technical aspects of ultrasonic brain imaging through thick skull bones: 2. Experimental studies

    NASA Astrophysics Data System (ADS)

    Baykov, S. V.; Babin, L. V.; Molotilov, A. M.; Neiman, S. I.; Riman, V. V.; Svet, V. D.; Selyanin, A. I.

    2003-07-01

    Experimental results of the ultrasonic imaging of brain structures through thick skull bones are presented. The model imaging system and the ultrasonic images of blood vessel models and images obtained in vivo for some brain structures are described.

  2. Morphological and ultrastructural aspects of the activation of avian medullary bone osteoclasts by parathyroid hormone.

    PubMed

    Miller, S C; Bowman, B M; Myers, R L

    1984-02-01

    The activation of physiologically inactive medullary bone osteoclasts by parathyroid hormone (PTH) was examined using light and electron microscopy and histomorphometric methods. Medullary bone osteoclasts are functionally inactive during the avian egg-laying cycle when an egg shell is not being calcified in the shell gland. Japanese quail hens were given 0.5 IU/g PTH and the medullary bone osteoclasts were examined up to 90 min later. Administration of PTH results in rapid changes in osteoclast morphology and ultrastructure. Within 10 min ectoplasmic regions containing condensed-appearing material are evident in areas of the cell adjacent to bone surfaces. In tannic acid-fixed specimens, these ectoplasmic regions contain bundles of filaments extending perpendicularly from the osteoclast plasma membrane into the cytoplasm. It is in these areas that ruffled border development is initiated. Even at 10 min after PTH administration, mineral crystals are seen between the developing cell surface invaginations and folds. By 15 min after PTH administration, ruffled borders have appeared next to bone surfaces. The rapid development of ruffled borders on medullary bone osteoclasts after PTH is confirmed by electron microscope histomorphometry. By 30 min after PTH administration, ruffled borders are well developed and large endocytic vacuoles are beginning to appear in the osteoclast cytoplasm. Light microscope histomorphometric measurements indicate that osteoclasts are also increasing in size and spreading along bone surfaces with time after PTH administration. This study provides a morphologic and ultrastructural description of osteoclast activation by PTH. The results indicate that osteoclasts may effect rapid changes in bone resorption and mineral metabolism due to exogenous PTH in hens.

  3. Bone

    NASA Astrophysics Data System (ADS)

    Helmberger, Thomas K.; Hoffmann, Ralf-Thorsten

    The typical clinical signs in bone tumours are pain, destruction and destabilization, immobilization, neurologic deficits, and finally functional impairment. Primary malignant bone tumours are a rare entity, accounting for about 0.2% of all malignancies. Also benign primary bone tumours are in total rare and mostly asymptomatic. The most common symptomatic benign bone tumour is osteoid osteoma with an incidence of 1:2000.

  4. Molecular, Phenotypic Aspects and Therapeutic Horizons of Rare Genetic Bone Disorders

    PubMed Central

    Dhawan, Naveen; Vohra, Shivani; Tu, Khin; Abdelmagid, Samir M.

    2014-01-01

    A rare disease afflicts less than 200,000 individuals, according to the National Organization for Rare Diseases (NORD) of the United States. Over 6,000 rare disorders affect approximately 1 in 10 Americans. Rare genetic bone disorders remain the major causes of disability in US patients. These rare bone disorders also represent a therapeutic challenge for clinicians, due to lack of understanding of underlying mechanisms. This systematic review explored current literature on therapeutic directions for the following rare genetic bone disorders: fibrous dysplasia, Gorham-Stout syndrome, fibrodysplasia ossificans progressiva, melorheostosis, multiple hereditary exostosis, osteogenesis imperfecta, craniometaphyseal dysplasia, achondroplasia, and hypophosphatasia. The disease mechanisms of Gorham-Stout disease, melorheostosis, and multiple hereditary exostosis are not fully elucidated. Inhibitors of the ACVR1/ALK2 pathway may serve as possible therapeutic intervention for FOP. The use of bisphosphonates and IL-6 inhibitors has been explored to be useful in the treatment of fibrous dysplasia, but more research is warranted. Cell therapy, bisphosphonate polytherapy, and human growth hormone may avert the pathology in osteogenesis imperfecta, but further studies are needed. There are still no current effective treatments for these bone disorders; however, significant promising advances in therapeutic modalities were developed that will limit patient suffering and treat their skeletal disabilities. PMID:25530967

  5. DNA extraction: an anthropologic aspect of bone remains from sixth- to seventh-century ad bone remains.

    PubMed

    Di Nunno, Nunzio; Saponetti, Sandro Sublimi; Scattarella, Vito; Emanuel, Patrizia; Baldassarra, Stefania Lonero; Volpe, Giuliano; Di Nunno, Cosimo

    2007-12-01

    In the archeological site of the early Christian Episcopal complex of Saint Peter, in Canosa di Puglia (Bari, Italy), during the operations of archaeological excavations, tombs were discovered. They were dated between the sixth and seventh centuries ad with carbon 14 methodology. Five skeletons were found in the 5 tombs: 28A: male individual, 43 years old. The height was 170 cm; the biomass was 65.7 kg. The analysis of the bones indicated several noteworthy pathologies, such as a number of hypoplasia lines of the enamel, the presence of Schmorl hernias on the first 2 lumbar vertebrae, and the outcome of subacromial impingement syndrome. 28E was a male individual, with a biologic age of death of between 44 and 60 years. The height was 177 cm. He had a posttraumatic fracture callus of the medial third of the clavicle, with an oblique fracture rima. 29B was a female individual, 44-49 years old. The height was 158.8 cm; the biomass was 64.8 kg. There was Wells bursitis on the ischial tuberosity on both sides. 29E was a male individual, 45-50 years old. The height was 169.47 cm; the biomass was 70.8 kg. The third and the fourth vertebrae showed Baastrup syndrome (compression of the vertebral spine). There were radiologic signs of deformity on the higher edge of the acetabula and results of frequent sprains of the ankles. 31A was a male individual, 47-54 years old. The height was 178.65 cm; the biomass was 81 kg. The vertebral index showed a heavy overloading in the thoracic lumbar region. There were bony formations under the periosteum on both on the higher and medium facets of the first metatarsus and on the higher and lateral facets of the fifth metatarsus on both sides. As the topography indicates, these small ossifications coincided with the contact points between the back of the foot and parts of the upper shoe. From the osseous remains, in particular from the teeth (central incisors), the DNA was extracted and typed to identify potential family ties among all the

  6. Aspects of in vitro fatigue in human cortical bone: time and cycle dependent crack growth.

    PubMed

    Nalla, R K; Kruzic, J J; Kinney, J H; Ritchie, R O

    2005-05-01

    Although fatigue damage in bone induced by cyclic loading has been recognized as a problem of clinical significance, few fracture mechanics based studies have investigated how incipient cracks grow by fatigue in this material. In the present study, in vitro cyclic fatigue experiments were performed in order to quantify fatigue-crack growth behavior in human cortical bone. Crack-growth rates spanning five orders of magnitude were obtained for the extension of macroscopic cracks in the proximal-distal direction; growth-rate data could be well characterized by the linear-elastic stress-intensity range, using a simple (Paris) power law with exponents ranging from 4.4 to 9.5. Mechanistically, to discern whether such behavior results from "true" cyclic fatigue damage or is simply associated with a succession of quasi-static fracture events, cyclic crack-growth rates were compared to those measured under sustained (non-cyclic) loading. Measured fatigue-crack growth rates were found to exceed those "predicted" from the sustained load data at low growth rates ( approximately 3 x 10(-10) to 5 x 10(-7) m/cycle), suggesting that a "true" cyclic fatigue mechanism, such as alternating blunting and re-sharpening of the crack tip, is active in bone. Conversely, at higher growth rates ( approximately 5 x 10(-7) to 3 x 10(-5) m/cycle), the crack-growth data under sustained loads integrated over the loading cycle reasonably predicts the cyclic fatigue data, indicating that quasi-static fracture mechanisms predominate. The results are discussed in light of the occurrence of fatigue-related stress fractures in cortical bone.

  7. [Mechanical aspects of bone stability by an in vivo testing method (author's transl)].

    PubMed

    Milkereit, E; Benfer, J; Struck, H

    1978-03-20

    This is a report of a new method for in vivo determination of the Young modulus of human os radii. The failure of the apparatus is +/- 1.86 per cent. The accuracy of the measuring procedure on healthy subjects bases on a variation coefficient of nearly 10 per cent. 124 forearms of healthy persons had been studied in relation to age, sex and to the right and the left os radii. There was a statistically significant higher elastic property of the bones of adolescent versus elder men (over 60 years), but no significant differences between male and female. Right and left os radii had nearly the same amounts for the Young modulus.

  8. Simulating certain aspects of hypogravity - Effects on bone maturation in the nonweight bearing skeleton

    NASA Technical Reports Server (NTRS)

    Simmons, D. J.; Grazman, B.; Russell, J. E.; Walker, W. V.; Bikle, D. D.; Morey, E. R.

    1983-01-01

    For a determination of how the nonweight-bearing skeletons, i.e., lower jaws, of 41-day and 1-year old rats would respond to 10 or 14 days of partial skeletal unloading by elevating the hindquarters (PULEH), an experimental system to simulate the fluid shifts and unloading of portions of the skeleton which occur during spaceflight was developed. In comparison with the bone matrix mineralization recorded in the mandibles of rats flown in the Soviet 18.5 day Cosmos-1129 mission, the PULEH studies failed to produce spaceflight-like maturation defects.

  9. Technical Aspects on the Use of Ultrasonic Bone Shaver in Spine Surgery: Experience in 307 Patients

    PubMed Central

    Hazer, Derya Burcu; Yaşar, Barış; Rosberg, Hans-Eric; Akbaş, Aytaç

    2016-01-01

    Aim. We discuss technical points, the safety, and efficacy of ultrasonic bone shaver in various spinal surgeries within our own series. Methods. Between June 2010 and January 2014, 307 patients with various spinal diseases were operated on with the use of an ultrasonic bone curette with microhook shaver (UBShaver). Patients' data were recorded and analyzed retrospectively. The technique for the use of the device is described for each spine surgery procedure. Results. Among the 307 patients, 33 (10.7%) cases had cervical disorder, 17 (5.5%) thoracic disorder, 3 (0.9%) foramen magnum disorder, and 254 (82.7%) lumbar disorders. Various surgical techniques were performed either assisted or alone by UBShaver. The duration of the operations and the need for blood replacement were relatively low. The one-year follow-up with Neck Disability Index (NDI) and Oswestry Disability Index (ODI) scores were improved. We had 5 cases of dural tears (1.6%) in patients with lumbar spinal disease. No neurological deficit was found in any patients. Conclusion. We recommend this device as an assistant tool in various spine surgeries and as a primary tool in foraminotomies. It is a safe device in spine surgery with very low complication rate. PMID:27195299

  10. Etiological aspects of solitary bone cysts: comments regarding the presence of the disease in two brothers. Is the genetic theory sustainable or is it pure coincidence? - Case report.

    PubMed

    Miu, A

    2015-01-01

    Beginning the study of benign tumors of the bone in children and adolescents, a group of diseases that have in common the clinical aspects, evolution, and surgical treatment, genetic theory in the etiology of the solitary bone cyst, can be sustained by some cases of siblings with the same disease. This paper presents the particular case of two brothers, treated in our clinic for the same condition: solitary bone cyst of the proximal humerus. The two brothers were admitted with the same symptoms, the localization was the same. Because of the genetic studies regarding this condition, we think that it is an interesting aspect of this pathology. This study also tried to find the most appropriate approach in the treatment of these tumors. PMID:26664480

  11. Tissue growth controlled by geometric boundary conditions: a simple model recapitulating aspects of callus formation and bone healing.

    PubMed

    Fischer, F Dieter; Zickler, Gerald A; Dunlop, John W C; Fratzl, Peter

    2015-06-01

    The shape of tissues arises from a subtle interplay between biochemical driving forces, leading to cell growth, division and extracellular matrix formation, and the physical constraints of the surrounding environment, giving rise to mechanical signals for the cells. Despite the inherent complexity of such systems, much can still be learnt by treating tissues that constantly remodel as simple fluids. In this approach, remodelling relaxes all internal stresses except for the pressure which is counterbalanced by the surface stress. Our model is used to investigate how wettable substrates influence the stability of tissue nodules. It turns out for a growing tissue nodule in free space, the model predicts only two states: either the tissue shrinks and disappears, or it keeps growing indefinitely. However, as soon as the tissue wets a substrate, stable equilibrium configurations become possible. Furthermore, by investigating more complex substrate geometries, such as tissue growing at the end of a hollow cylinder, we see features reminiscent of healing processes in long bones, such as the existence of a critical gap size above which healing does not occur. Despite its simplicity, the model may be useful in describing various aspects related to tissue growth, including biofilm formation and cancer metastases. PMID:26018964

  12. Osseointegration aspects of placed implant in bone reconstruction with newly developed block-type interconnected porous calcium hydroxyapatite

    PubMed Central

    DOI, Kazuya; KUBO, Takayasu; MAKIHARA, Yusuke; OUE, Hiroshi; MORITA, Koji; OKI, Yoshifumi; KAJIHARA, Shiho; TSUGA, Kazuhiro

    2016-01-01

    ABSTRACT Artificial bone has been employed to reconstruct bone defects. However, only few reports on implant placement after block bone grafting exist. Objectives The purpose of this study was to evaluate the osseointegration of dental implant in bone reconstructions with interconnected porous calcium hydroxyapatite (IP-CHA). Material and Methods The IP-CHA cylinders (D; 4.3 mm, H; 10.0 mm) were placed into bone sockets in each side of the femurs of four male dogs. The IP-CHA on the right side was a 24-week sample. Twelve weeks after placement, a titanium implant was placed into a socket that was prepared in half of the placed IP-CHA cylinder on the right side. On the left side, another IP-CHA cylinder was placed as a 12-week sample. After another 12 weeks, the samples were harvested, and the bone regeneration and bone-implant contact (BIC) ratios were measured. Results New bone formation area was superior in the 24-week IP-CHA compared with the 12-week IP-CHA. BIC was not significantly different between IP-CHA and the parent sites. Osseointegration was detected around the implant in IP-CHA-reconstructed bone. Conclusion Our preliminary results suggest that IP-CHA may be a suitable bone graft material for reconstructing bones that require implant placement. PMID:27556202

  13. Research trends in biomimetic medical materials for tissue engineering: 3D bioprinting, surface modification, nano/micro-technology and clinical aspects in tissue engineering of cartilage and bone.

    PubMed

    Chen, Cen; Bang, Sumi; Cho, Younghak; Lee, Sahnghoon; Lee, Inseop; Zhang, ShengMin; Noh, Insup

    2016-01-01

    This review discusses about biomimetic medical materials for tissue engineering of bone and cartilage, after previous scientific commentary of the invitation-based, Korea-China joint symposium on biomimetic medical materials, which was held in Seoul, Korea, from October 22 to 26, 2015. The contents of this review were evolved from the presentations of that symposium. Four topics of biomimetic medical materials were discussed from different research groups here: 1) 3D bioprinting medical materials, 2) nano/micro-technology, 3) surface modification of biomaterials for their interactions with cells and 4) clinical aspects of biomaterials for cartilage focusing on cells, scaffolds and cytokines. PMID:27148455

  14. Research trends in biomimetic medical materials for tissue engineering: 3D bioprinting, surface modification, nano/micro-technology and clinical aspects in tissue engineering of cartilage and bone.

    PubMed

    Chen, Cen; Bang, Sumi; Cho, Younghak; Lee, Sahnghoon; Lee, Inseop; Zhang, ShengMin; Noh, Insup

    2016-01-01

    This review discusses about biomimetic medical materials for tissue engineering of bone and cartilage, after previous scientific commentary of the invitation-based, Korea-China joint symposium on biomimetic medical materials, which was held in Seoul, Korea, from October 22 to 26, 2015. The contents of this review were evolved from the presentations of that symposium. Four topics of biomimetic medical materials were discussed from different research groups here: 1) 3D bioprinting medical materials, 2) nano/micro-technology, 3) surface modification of biomaterials for their interactions with cells and 4) clinical aspects of biomaterials for cartilage focusing on cells, scaffolds and cytokines.

  15. Blood biochemical markers of bone turnover: pre-analytical and technical aspects of sample collection and handling.

    PubMed

    Lombardi, Giovanni; Lanteri, Patrizia; Colombini, Alessandra; Banfi, Giuseppe

    2012-02-03

    Casual or systematic errors occurring in pre-analytical, analytical or post-analytical phases influence laboratory test results. The areas where pre-analytical phase errors most often arise are: timing of specimen collection; selection of specimen type; and time and temperature of storage/transport. Bone turnover markers are clinically useful in evaluating bone metabolism. Although unquestionably valuable tools, little is known about the pre-analytical precautions for their correct use and there is no consensus on kind of sample, or storage time and temperature before analysis. Moreover, biological variability, because of uncontrollable and controllable factors, will affect pre-analytical variability. Serum should be preferred to simplify blood drawing; therefore, only one tube should be used for the analysis of all bone markers. Short-term storage at 4°C may be advisable to preserve stability, immediate storage at -70°C is recommended for longer periods, while avoiding repeated freeze-thawing cycles. Sampling should be performed in the morning in fasting subjects who have abstained from physical exercise for 24 h. This review aimed to give a knowledge update on pre-analytical phase precautions in performing bone turnover marker measurement.

  16. [Bone marrow stem cell transplantation in amyotrophic lateral sclerosis: technical aspects and preliminary results from a clinical trial].

    PubMed

    Blanquer, M; Pérez Espejo, M A; Iniesta, F; Gómez Espuch, J; Meca, J; Villaverde, R; Izura, V; de Mingo, P; Martínez-Lage, J; Martínez, S; Moraleda, J M

    2010-12-01

    Patients with amyotrophic lateral sclerosis (ALS) experience progressive and irreversible paralysis as a result of the continued loss of motor neurons, which leads to death in less than five years. To date, there is no treatment that can change the progression of this disease. Bone marrow stem cells have shown neural regenerative and neural repairing properties. Specifically, our group showed in a murine model of the disease that these cells, when injected in the spinal cord, can rescue motor neurons through the secretion of GDNF. Based on these results, we designed a phase I/II clinical trial for the purpose of demonstrating the viability of the intraspinal injection of autologous bone marrow mononuclear cells in patients with bulbar onset ALS, with an evolution between 6 and 36 months, with a forced vital capacity (FVC) 50% and T90 29%. This article describes the technique for extracting 60 mL of bone marrow used for the intervention, processing it by density gradient, and the neurosurgical technique used for implanting it. After 6 months of follow-up, the few adverse events reported in the first seven patients included seem to show that the procedure is safe and viable. Most of these patients, including two with a rapid deterioration, have stabilized the progression of their FVC and the neurologic scales measured. The data obtained so for seem to justify the design of new trials more oriented toward the efficacy of the procedure.

  17. Biosilica-glass formation using enzymes from sponges [silicatein]: Basic aspects and application in biomedicine [bone reconstitution material and osteoporosis

    NASA Astrophysics Data System (ADS)

    Wang, Shun-Feng; Wang, Xiao-Hong; Gan, Lu; Wiens, Matthias; Schröder, Heinz C.; Müller, Werner E. G.

    2011-09-01

    In the last 15 years biomineralization, in particular biosilicification (i.e., the formation of biogenic silica, SiO2), has become an exciting source of inspiration for the development of novel bionic approaches, following "Nature as model". Among the silica forming organisms there are the sponges that have the unique property to catalyze their silica skeletons by a specific enzyme termed silicatein. In the present review we summarize the present state of knowledge on silicatein-mediated "biosilica" formation in marine sponges, the involvement of further molecules in silica metabolism and their potential application in biomedicine. Recent advancements in the production of bone replacement material and in the potential use as a component in the treatment of osteoporosis are highlighted.

  18. Continued investigation of kinetic aspects of bone mineral metabolism. [determining body calcium by measuring argon after neutron irradiation

    NASA Technical Reports Server (NTRS)

    Palmer, H. E.

    1974-01-01

    The total body calcium in humans was determined by measuring expired Ar-37 after neutron irradiation. The excretion of Ar-37 from humans was found to be much slower than the excretion from rats and dogs, and to be related to the age of a person. A study of the uniformity of the Ar-37 production throughout the thickness of the body was studied using phantoms. The results indicate that it should be possible to obtain a uniformity within plus or minus 3% for the production of Ar-37 per unit of calcium by using a bilateral irradiation. New low background, large volume proportional counters were developed and constructed, for more sensitive measurement of Ar-37 in the expired air from patients. A new irradiation enclosure was developed for measuring total body calcium in rats by the Ar-37 method. With this enclosure the Ar-37 production per gram of calcium is constant with a standard deviation of plus or minus 2.8% for any size rat between 100 and 500 grams. The use of Na-22 as measure of bone replacement in the fractured femur of a dog was not successful.

  19. Some aspects of arsenic toxicity and carcinogenicity in living organism with special regard to its influence on cardiovascular system, blood and bone marrow.

    PubMed

    Szymańska-Chabowska, Anna; Antonowicz-Juchniewicz, Jolanta; Andrzejak, Ryszard

    2002-01-01

    This paper gathers data on the most current aspects of arsenic action, especially its influence on the cardiovascular system, blood and bone marrow. A potential carcinogenic mechanism of arsenic is also discussed. Arsenic is a potent toxicant that may exist in several valencies and in a number of inorganic and organic forms. Most cases of arsenic-induced toxicity in humans are due to exposure to inorganic arsenic, and there is an extensive database on the human health effects of common arsenic oxides and oxyacids. Exposure of humans living near hazardous waste sites may involve inhalation of arsenic dusts in the air, ingestion of arsenic in water, food or soil, or dermal contact with contaminated soil or water. The exposure to arsenic via the inhalation route is responsible for the increased risk of lung cancer, although respiratory irritation, nausea and skin effects may also occur. The oral route of exposure to arsenic predominates in the general population. The most common effects of arsenic ingestion are gastrointestinal irritation, peripheral neuropathy, vascular lesions, anemia, skin diseases, including skin cancer and other cancers of the internal organs like bladder, kidney, liver or lung. Relatively little information is available on the effects of direct dermal contact with inorganic arsenicals, but several studies indicate local irritation and dermatitis as the major ones.

  20. Bone Grafts

    MedlinePlus

    A bone graft transplants bone tissue. Surgeons use bone grafts to repair and rebuild diseased bones in your hips, knees, ... fractures or cancers. Once your body accepts the bone graft, it provides a framework for growth of new, ...

  1. Bone Diseases

    MedlinePlus

    ... avoid smoking and drinking too much alcohol. Bone diseases can make bones easy to break. Different kinds ... break Osteogenesis imperfecta makes your bones brittle Paget's disease of bone makes them weak Bones can also ...

  2. Mangiferin Reduces the Inhibition of Chondrogenic Differentiation by IL-1β in Mesenchymal Stem Cells from Subchondral Bone and Targets Multiple Aspects of the Smad and SOX9 Pathways

    PubMed Central

    Huh, Jeong-Eun; Koh, Pil-Seong; Seo, Byung-Kwan; Park, Yeon-Chul; Baek, Yong-Hyun; Lee, Jae-Dong; Park, Dong-Suk

    2014-01-01

    Mangiferin is a natural immunomodulator found in plants including mango trees. The effects of mangiferin on chondrogenesis and cartilage repair have not yet been reported. This study was designed to determine the effect of mangiferin on chondrogenic differentiation in IL-1β-stimulated mesenchymal stem cells (MSCs) from subchondral bone and to explore the mechanisms underlying these effects. MSCs were isolated from the subchondral bone of rabbit and treated with mangiferin alone and/or interleukin-1β (IL-1β). Mangiferin induced chondrogenic differentiation in MSCs by upregulating transforming growth factor (TGF)-β, bone morphogenetic protein (BMP)-2, and BMP-4 and several key markers of chondrogenesis, including sex-determining region Y–box (SRY-box) containing gene 9 (SOX9), type 2α1 collagen (Col2α1), cartilage link protein, and aggrecan. In IL-1β-stimulated MSCs, mangiferin significantly reversed the production of TGF-β, BMP-2, BMP-4, SOX9, Col2α1, cartilage link protein, and aggrecan, as well as matrix metalloproteinase (MMP)-1, MMP-13, and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS5). Mangiferin upregulated the phosphorylation of Smad 2, Smad 3, Smad 1/5/8, and SOX9 in IL-1β-stimulated MSCs. In the presence of mangiferin, SOX9 siRNA suppressed the activation of Smad 2, Smad 3, Smad 1/5/8, aggrecan, and Col2α1 expression. In conclusion, mangiferin exhibits both chondrogenic and chondroprotective effects on damaged MSCs and mediates these effects by targeting multiple aspects of the Smad and SOX9 signaling pathways. PMID:25216336

  3. Comparison of genetic and clinical aspects in patients with acute myeloid leukemia and myelodysplastic syndromes all with more than 50% of bone marrow erythropoietic cells

    PubMed Central

    Bacher, Ulrike; Haferlach, Claudia; Alpermann, Tamara; Kern, Wolfgang; Schnittger, Susanne; Haferlach, Torsten

    2011-01-01

    Background The World Health Organization separates acute erythroid leukemia (erythropoiesis in ≥50% of nucleated bone marrow cells; ≥20% myeloblasts of non-erythroid cells) from other entities with increased erythropoiesis – acute myeloid leukemia with myelodysplasia-related changes (≥20% myeloblasts of all nucleated cells) or myelodysplastic syndromes – and subdivides acute erythroid leukemia into erythroleukemia and pure erythroid leukemia subtypes. We aimed to investigate the biological/genetic justification for the different categories of myeloid malignancies with increased erythropoiesis (≥50% of bone marrow cells). Design and Methods We investigated 212 patients (aged 18.5–88.4 years) with acute myeloid leukemia or myelodysplastic syndromes characterized by 50% or more erythropoiesis: 108 had acute myeloid leukemia (77 with acute erythroid leukemia, corresponding to erythroid/myeloid erythroleukemia, 7 with pure erythroid leukemia, 24 with acute myeloid leukemia with myelodysplasia-related changes) and 104 had myelodysplastic syndromes. Morphological and chromosome banding analyses were performed in all cases; subsets of cases were analyzed by polymerase chain reaction and immunophenotyping. Results Unfavorable karyotypes were more frequent in patients with acute myeloid leukemia than in those with myelodysplastic syndromes (42.6% versus 13.5%; P<0.0001), but their frequency did not differ significantly between patients with acute erythroid leukemia (39.0%), pure erythroid leukemia (57.1%), and acute myeloid leukemia with myelodysplasia-related changes (50.0%). The incidence of molecular mutations did not differ significantly between the different categories. The 2-year overall survival rate was better for patients with myelodysplastic syndromes than for those with acute myeloid leukemia (P<0.0001), without significant differences across the different acute leukemia subtypes. The 2-year overall survival rate was worse in patients with

  4. Ceramics with decorative aspect

    NASA Astrophysics Data System (ADS)

    Voica, Cezara

    2009-08-01

    The last decades brought the development of bone china techniques used for producing the decorative articles. These products can be glazed with a transparent and thin glaze layer, even with more special (decorative) ones which gives new aesthetic aspect. The present article presents the results obtained after the studies performed for matte glazes for decorative bone china. As microcrystalization agent were used zinc oxide; the content of this oxide bring some changes of the basic glaze thus the chemical composition must be adjusted as the fluxes would present the desired properties after the heating process.

  5. Genetics of aging bone.

    PubMed

    Adams, Douglas J; Rowe, David W; Ackert-Bicknell, Cheryl L

    2016-08-01

    With aging, the skeleton experiences a number of changes, which include reductions in mass and changes in matrix composition, leading to fragility and ultimately an increase of fracture risk. A number of aspects of bone physiology are controlled by genetic factors, including peak bone mass, bone shape, and composition; however, forward genetic studies in humans have largely concentrated on clinically available measures such as bone mineral density (BMD). Forward genetic studies in rodents have also heavily focused on BMD; however, investigations of direct measures of bone strength, size, and shape have also been conducted. Overwhelmingly, these studies of the genetics of bone strength have identified loci that modulate strength via influencing bone size, and may not impact the matrix material properties of bone. Many of the rodent forward genetic studies lacked sufficient mapping resolution for candidate gene identification; however, newer studies using genetic mapping populations such as Advanced Intercrosses and the Collaborative Cross appear to have overcome this issue and show promise for future studies. The majority of the genetic mapping studies conducted to date have focused on younger animals and thus an understanding of the genetic control of age-related bone loss represents a key gap in knowledge.

  6. Mineralized three-dimensional bone constructs

    NASA Technical Reports Server (NTRS)

    Clarke, Mark S. F. (Inventor); Sundaresan, Alamelu (Inventor); Pellis, Neal R. (Inventor)

    2011-01-01

    The present disclosure provides ex vivo-derived mineralized three-dimensional bone constructs. The bone constructs are obtained by culturing osteoblasts and osteoclast precursors under randomized gravity vector conditions. Preferably, the randomized gravity vector conditions are obtained using a low shear stress rotating bioreactor, such as a High Aspect Ratio Vessel (HARV) culture system. The bone constructs of the disclosure have utility in physiological studies of bone formation and bone function, in drug discovery, and in orthopedics.

  7. Mineralized Three-Dimensional Bone Constructs

    NASA Technical Reports Server (NTRS)

    Clarke, Mark S. F. (Inventor); Sundaresan, Alamelu (Inventor); Pellis, Neal R. (Inventor)

    2013-01-01

    The present disclosure provides ex vivo-derived mineralized three-dimensional bone constructs. The bone constructs are obtained by culturing osteoblasts and osteoclast precursors under randomized gravity vector conditions. Preferably, the randomized gravity vector conditions are obtained using a low shear stress rotating bioreactor, such as a High Aspect Ratio Vessel (HARV) culture system. The bone constructs of the disclosure have utility in physiological studies of bone formation and bone function, in drug discovery, and in orthopedics.

  8. Living Bones, Strong Bones

    NASA Video Gallery

    In this classroom activity, engineering, nutrition, and physical activity collide when students design and build a healthy bone model of a space explorer which is strong enough to withstand increas...

  9. Bone Tumor

    MedlinePlus

    ... most common types of primary bone cancer are: • Multiple myeloma. Multiple myeloma is the most common primary bone cancer. It ... Any bone can be affected by this cancer. Multiple myeloma affects approximately six people per 100,000 each ...

  10. Bone Cancer

    MedlinePlus

    Cancer that starts in a bone is uncommon. Cancer that has spread to the bone from another ... more common. There are three types of bone cancer: Osteosarcoma - occurs most often between ages 10 and ...

  11. Bone and bone turnover.

    PubMed

    Crofton, Patricia M

    2009-01-01

    Children with cancer are exposed to multiple influences that may adversely affect bone health. Some treatments have direct deleterious effects on bone whilst others may have indirect effects mediated through various endocrine abnormalities. Most clinical outcome studies have concentrated on survivors of acute lymphoblastic leukaemia (ALL). There is now good evidence that earlier treatment protocols that included cranial irradiation with doses of 24 Gy or greater may result in growth hormone deficiency and low bone mineral density (BMD) in the lumbar spine and femoral neck. Under current protocols, BMD decreases during intensive chemotherapy and fracture risk increases. Although total body BMD may eventually return to normal after completion of chemotherapy, lumbar spine trabecular BMD may remain low for many years. The implications for long-term fracture risk are unknown. Risk factors for low BMD include high dose methotrexate, higher cumulative doses of glucocorticoids, male gender and low physical activity. BMD outcome in non-ALL childhood cancers has been less well studied but there is evidence that survivors of childhood brain or bone tumours, and survivors of bone marrow transplants for childhood malignancy, all have a high risk of long-term osteopenia. Long-term follow-up is required, with appropriate treatment of any endocrine abnormalities identified.

  12. Bone scanning.

    PubMed

    Greenfield, L D; Bennett, L R

    1975-03-01

    Scanning is based on the uptake of a nuclide by the crystal lattice of bone and is related to bone blood flow. Cancer cells do not take up the tracer. Normally, the scan visualizes the highly vascular bones. Scans are useful and are indicated in metastatic bone disease, primary bone tumors, hematologic malignancies and some non-neoplastic diseases. The scan is more sensitive than x-ray in the detection of malignant diseases of the skeleton. PMID:1054210

  13. Low Bone Density

    MedlinePlus

    ... Density Exam/Testing › Low Bone Density Low Bone Density Low bone density is when your bone density ... people with normal bone density. Detecting Low Bone Density A bone density test will determine whether you ...

  14. Radiology of bone diseases. 5th edition

    SciTech Connect

    Greenfield, G.

    1990-01-01

    This book reports on anatomy, physiology, and biochemistry of bone. This book presents alterations in overall characteristics such as density and bone texture. It describes Salterations in specific anatomic regions of bone, as well ad discuss solitary bone lesions. The style in which the diseases are grouped according to specific regions and morphologic alterations rather than by individual pathologic condition is the most powerful aspect of this format.

  15. Recent advances in bone tissue engineering scaffolds

    PubMed Central

    Bose, Susmita; Roy, Mangal; Bandyopadhyay, Amit

    2012-01-01

    Bone disorders are of significant concern due to increase in the median age of our population. Traditionally, bone grafts have been used to restore damaged bone. Synthetic biomaterials are now being used as bone graft substitutes. These biomaterials were initially selected for structural restoration based on their biomechanical properties. Later scaffolds were engineered to be bioactive or bioresorbable to enhance tissue growth. Now scaffolds are designed to induce bone formation and vascularization. These scaffolds are often porous, biodegradable materials that harbor different growth factors, drugs, genes or stem cells. In this review, we highlight recent advances in bone scaffolds and discuss aspects that still need to be improved. PMID:22939815

  16. Bone tumor

    MedlinePlus

    ... physical exam. Tests that may be done include: Alkaline phosphatase blood level Bone biopsy Bone scan Chest x- ... may also be ordered to monitor the disease: Alkaline phosphatase isoenzyme Blood calcium level Parathyroid hormone Blood phosphorus ...

  17. Bone Markers

    MedlinePlus

    ... Alkaline Phosphatase; Osteocalcin; P1NP; Procollagen Type 1 N-Terminal Propeptide Formal name: Biochemical Markers of Bone Remodeling ... tests for evaluating bone turnover: C-telopeptide (C-terminal telopeptide of type 1 collagen (CTx)) – a marker ...

  18. Bone Infections

    MedlinePlus

    ... of the body, bones can get infected. The infections are usually bacterial, but can also be fungal. ... bloodstream. People who are at risk for bone infections include those with diabetes, poor circulation, or recent ...

  19. Trabecular eccentricity and bone adaptation.

    PubMed

    Fox, J C; Keaveny, T M

    2001-09-21

    It is well established that bones functionally adapt by mechanisms that control tissue density, whole bone geometry, and trabecular orientation. In this study, we propose the existence of another such powerful mechanism, namely, trabecular eccentricity, i.e. non-central placement of trabecular bone within a cortical envelope. In the human femoral neck, trabecular eccentricity results in a thicker cortical shell on the inferior than superior aspect. In an overall context of expanding understanding of bone adaptation, the goal of this study was to demonstrate the biomechanical significance of, and provide a mechanistic explanation for, the relationship between trabecular eccentricity and stresses in the human femoral neck. Using composite beam theory, we showed that the biomechanical effects of eccentricity during a habitual loading situation were to increase the stress at the superior aspect of the neck and decrease the stress at the inferior aspect, resulting in an overall protective effect. Further, increasing eccentricity had a stress-reducing effect equivalent to that of increasing cortical thickness or increasing trabecular modulus. We conclude that an asymmetric placement of trabecular bone within a cortical bone envelope represents yet another mechanism by which whole bones can adapt to mechanical demands.

  20. Bone disease in primary hypercalciuria

    PubMed Central

    Sella, Stefania; Cattelan, Catia; Realdi, Giuseppe; Giannini, Sandro

    2008-01-01

    Primary Hypercalciuria (PH) is very often accompanied with some degrees of bone demineralization. The most frequent clinical condition in which this association has been observed is calcium nephrolithiasis. In patients affected by this disorder bone density is very frequently low and increased susceptibility to fragility fractures is reported. The very poor definition of this bone disease from a histomorphometric point of view is a crucial aspect. At present, the most common finding seems to be a low bone turnover condition. Many factors are involved in the complex relationships between bone loss and PH. Since bone loss was mainly reported in patients with fasting hypercalciuria, a primary alteration in bone metabolism was proposed as a cause of both hypercalciuria and bone demineralization. This hypothesis was strengthened by the observation that some bone resorbing-cytokines, such as IL-1, IL-6, and TNF-α are high in hypercalciuric patients. The effect of an excessive response to the acid load induced by dietary protein intake seems an additional factor explaining a primitive alteration of bone. The intestine plays a major role in the clinical course of bone disease in PH. Patients with absorptive hypercalciuria less frequently show bone disease and a reduction in dietary calcium greatly increases the probability of bone loss in PH subjects. It has recently been reported that greater bone loss is associated with a larger increase in intestinal calcium absorption in PH patients. Considering the absence of PTH alterations, it was proposed that this is not a compensatory phenomenon, but probably the marker of disturbed cell calcium transport, involving both intestinal and bone tissues. While renal hypercalciuria is rather uncommon, the kidney still seems to play a role in the pathogenesis of bone loss of PH patients, possibly via the effect of mild to moderate urinary phosphate loss with secondary hypophosphatemia. In conclusion, bone loss is very common in PH

  1. [Bone diseases].

    PubMed

    Uebelhart, Brigitte; Rizzoli, René

    2016-01-13

    Calcium intake shows a small impact on bone mineral density and fracture risk. Denosumab is a more potent inhibitor of bone resorption than zoledronate. Abaloparatide, PTHrP analog, increases bone mineral density and decreases fracture incidence. Teriparatide could be delivered via a transdermic device. Romosozumab and odanacatib improve calculated bone strength. Sequential or combined treatments with denosumab and teriparatide could be of interest, but not denosumab followed by teriparatide. Fibrous dysplasia, Paget disease and hypophosphatasia are updated, as well as atypical femoral fracture and osteonecrosis of the jaw.

  2. Talking Bones.

    ERIC Educational Resources Information Center

    Johnson, Jaclyn; Kassing, Sharon

    2002-01-01

    Describes cooperation with the Saint Louis Zoo to provide opportunities for elementary school students to learn about bones, how animals move, what they eat, and how much they grow. Uses biofacts which include bones, skulls, and other parts to make the laboratory a hands-on experience for students. (YDS)

  3. Diphosphonates in the evaluation of metabolic bone disease.

    PubMed

    Fogelman, I; Smith, M L

    1982-03-01

    The bone scan may be of value in the assessment of patients with metabolic bone disease. However the superiority of the bone scan when compared to radiology in conditions such as renal osteodystrophy, osteomalacia, primary hyperparathyroidism, and osteoporosis requires substantiation with the newer radiopharmaceuticals which have a higher affinity for bone. Two methods of quantitating skeletal uptake of tracer have been assessed to try to remove the subjective aspect of bone scan evaluation. Measurements of bone to soft tissue ratios have proved clinically disappointing, but 24 hour whole body retention of diphosphonate appears to provide a sensitive index of increased bone turnover.

  4. Glucocorticoids, Osteocytes, and Skeletal Fragility: The Role of Bone Vascularity

    PubMed Central

    Weinstein, Robert S.

    2009-01-01

    Glucocorticoid administration is required for many inflammatory and autoimmune diseases, but use of these drugs is associated with skeletal side effects including bone loss, fractures, and osteonecrosis. Fractures often occur without a reduction in bone mineral density, strongly suggesting that glucocorticoid excess adversely affects other aspects of bone strength. Although the primary effects of glucocorticoid excess on the skeleton are directly on bone cells, a vascular connection between these cells and the loss of bone strength appears likely. This review examines this connection and how it may explain the greater decline in bone strength than loss of bone mass that occurs with glucocorticoid excess. PMID:19591965

  5. Metastatic Bone Disease

    MedlinePlus

    ... Bone Disease cont. Page ( 4 ) MBD vs. Primary Bone Cancer The diagnosis of metastatic bone disease should not ... from an unknown primary carcinoma or a primary bone cancer (sarcoma). For example, if an area of bone ...

  6. Regulatory aspects

    NASA Astrophysics Data System (ADS)

    Stern, Arthur M.

    1986-07-01

    At this time, there is no US legislation that is specifically aimed at regulating the environmental release of genetically engineered organisms or their modified components, either during the research and development stage or during application. There are some statutes, administered by several federal agencies, whose language is broad enough to allow the extension of intended coverage to include certain aspects of biotechnology. The one possible exception is FIFRA, which has already brought about the registration of several natural microbial pesticides but which also has provision for requiring the registration of “strain improved” microbial pesticides. Nevertheless, there may be gaps in coverage even if all pertinent statutes were to be actively applied to the control of environmental release of genetically modified substances. The decision to regulate biotechnology under TSCA was justified, in part, on the basis of its intended role as a gap-filling piece of environmental legislation. The advantage of regulating biotechnology under TSCA is that this statute, unlike others, is concerned with all media of exposure (air, water, soil, sediment, biota) that may pose health and environmental hazards. Experience may show that extending existing legislation to regulate biotechnology is a poor compromise compared to the promulgation of new legislation specifically designed for this purpose. It appears that many other countries are ultimately going to take the latter course to regulate biotechnology.

  7. Physical activity increases bone mass during growth

    PubMed Central

    Karlsson, Magnus K.; Nordqvist, Anders; Karlsson, Caroline

    2008-01-01

    Background The incidence of fragility fractures has increased during the last half of the 1990′s. One important determinant of fractures is the bone mineral content (BMC) or bone mineral density (BMD), the amount of mineralised bone. If we could increase peak bone mass (the highest value of BMC reached during life) and/or decrease the age-related bone loss, we could possibly improve the skeletal resistance to fracture. Objective This review evaluates the importance of exercise as a strategy to improve peak bone mass, including some aspects of nutrition. Design Publications within the field were searched through Medline (PubMed) using the search words: exercise, physical activity, bone mass, bone mineral content, bone mineral density, BMC, BMD, skeletal structure and nutrition. We included studies dealing with exercise during growth and young adolescence. We preferably based our inferences on randomised controlled trials (RCT), which provide the highest level of evidence. Results Exercise during growth increases peak bone mass. Moderate intensity exercise intervention programs are beneficial for the skeletal development during growth. Adequate nutrition must accompany the exercise to achieve the most beneficial skeletal effects by exercise. Conclusion Exercise during growth seems to enhance the building of a stronger skeleton through a higher peak bone mass and a larger bone size. PMID:19109652

  8. Skeletal Blood Flow in Bone Repair and Maintenance

    PubMed Central

    Tomlinson, Ryan E.; Silva, Matthew J.

    2013-01-01

    Bone is a highly vascularized tissue, although this aspect of bone is often overlooked. In this article, the importance of blood flow in bone repair and regeneration will be reviewed. First, the skeletal vascular anatomy, with an emphasis on long bones, the distinct mechanisms for vascularizing bone tissue, and methods for remodeling existing vasculature are discussed. Next, techniques for quantifying bone blood flow are briefly summarized. Finally, the body of experimental work that demonstrates the role of bone blood flow in fracture healing, distraction osteogenesis, osteoporosis, disuse osteopenia, and bone grafting is examined. These results illustrate that adequate bone blood flow is an important clinical consideration, particularly during bone regeneration and in at-risk patient groups. PMID:26273509

  9. Parallel mechanisms suppress cochlear bone remodeling to protect hearing.

    PubMed

    Jáuregui, Emmanuel J; Akil, Omar; Acevedo, Claire; Hall-Glenn, Faith; Tsai, Betty S; Bale, Hrishikesh A; Liebenberg, Ellen; Humphrey, Mary Beth; Ritchie, Robert O; Lustig, Lawrence R; Alliston, Tamara

    2016-08-01

    Bone remodeling, a combination of bone resorption and formation, requires precise regulation of cellular and molecular signaling to maintain proper bone quality. Whereas osteoblasts deposit and osteoclasts resorb bone matrix, osteocytes both dynamically resorb and replace perilacunar bone matrix. Osteocytes secrete proteases like matrix metalloproteinase-13 (MMP13) to maintain the material quality of bone matrix through perilacunar remodeling (PLR). Deregulated bone remodeling impairs bone quality and can compromise hearing since the auditory transduction mechanism is within bone. Understanding the mechanisms regulating cochlear bone provides unique ways to assess bone quality independent of other aspects that contribute to bone mechanical behavior. Cochlear bone is singular in its regulation of remodeling by expressing high levels of osteoprotegerin. Since cochlear bone expresses a key PLR enzyme, MMP13, we examined whether cochlear bone relies on, or is protected from, osteocyte-mediated PLR to maintain hearing and bone quality using a mouse model lacking MMP13 (MMP13(-/-)). We investigated the canalicular network, collagen organization, lacunar volume via micro-computed tomography, and dynamic histomorphometry. Despite finding defects in these hallmarks of PLR in MMP13(-/-) long bones, cochlear bone revealed no differences in these markers, nor hearing loss as measured by auditory brainstem response (ABR) or distortion product oto-acoustic emissions (DPOAEs), between wild type and MMP13(-/-) mice. Dynamic histomorphometry revealed abundant PLR by tibial osteocytes, but near absence in cochlear bone. Cochlear suppression of PLR corresponds to repression of several key PLR genes in the cochlea relative to long bones. These data suggest that cochlear bone uniquely maintains bone quality and hearing independent of MMP13-mediated osteocytic PLR. Furthermore, the cochlea employs parallel mechanisms to inhibit remodeling by osteoclasts and osteoblasts, and by

  10. Effects of Dairy Products Consumption on Health: Benefits and Beliefs--A Commentary from the Belgian Bone Club and the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases.

    PubMed

    Rozenberg, Serge; Body, Jean-Jacques; Bruyère, Olivier; Bergmann, Pierre; Brandi, Maria Luisa; Cooper, Cyrus; Devogelaer, Jean-Pierre; Gielen, Evelien; Goemaere, Stefan; Kaufman, Jean-Marc; Rizzoli, René; Reginster, Jean-Yves

    2016-01-01

    Dairy products provide a package of essential nutrients that is difficult to obtain in low-dairy or dairy-free diets, and for many people it is not possible to achieve recommended daily calcium intakes with a dairy-free diet. Despite the established benefits for bone health, some people avoid dairy in their diet due to beliefs that dairy may be detrimental to health, especially in those with weight management issues, lactose intolerance, osteoarthritis, rheumatoid arthritis, or trying to avoid cardiovascular disease. This review provides information for health professionals to enable them to help their patients make informed decisions about consuming dairy products as part of a balanced diet. There may be a weak association between dairy consumption and a possible small weight reduction, with decreases in fat mass and waist circumference and increases in lean body mass. Lactose intolerant individuals may not need to completely eliminate dairy products from their diet, as both yogurt and hard cheese are well tolerated. Among people with arthritis, there is no evidence for a benefit to avoid dairy consumption. Dairy products do not increase the risk of cardiovascular disease, particularly if low fat. Intake of up to three servings of dairy products per day appears to be safe and may confer a favourable benefit with regard to bone health.

  11. Effects of Dairy Products Consumption on Health: Benefits and Beliefs--A Commentary from the Belgian Bone Club and the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases.

    PubMed

    Rozenberg, Serge; Body, Jean-Jacques; Bruyère, Olivier; Bergmann, Pierre; Brandi, Maria Luisa; Cooper, Cyrus; Devogelaer, Jean-Pierre; Gielen, Evelien; Goemaere, Stefan; Kaufman, Jean-Marc; Rizzoli, René; Reginster, Jean-Yves

    2016-01-01

    Dairy products provide a package of essential nutrients that is difficult to obtain in low-dairy or dairy-free diets, and for many people it is not possible to achieve recommended daily calcium intakes with a dairy-free diet. Despite the established benefits for bone health, some people avoid dairy in their diet due to beliefs that dairy may be detrimental to health, especially in those with weight management issues, lactose intolerance, osteoarthritis, rheumatoid arthritis, or trying to avoid cardiovascular disease. This review provides information for health professionals to enable them to help their patients make informed decisions about consuming dairy products as part of a balanced diet. There may be a weak association between dairy consumption and a possible small weight reduction, with decreases in fat mass and waist circumference and increases in lean body mass. Lactose intolerant individuals may not need to completely eliminate dairy products from their diet, as both yogurt and hard cheese are well tolerated. Among people with arthritis, there is no evidence for a benefit to avoid dairy consumption. Dairy products do not increase the risk of cardiovascular disease, particularly if low fat. Intake of up to three servings of dairy products per day appears to be safe and may confer a favourable benefit with regard to bone health. PMID:26445771

  12. Microtomographic imaging in the process of bone modeling and simulation

    NASA Astrophysics Data System (ADS)

    Mueller, Ralph

    1999-09-01

    Micro-computed tomography ((mu) CT) is an emerging technique to nondestructively image and quantify trabecular bone in three dimensions. Where the early implementations of (mu) CT focused more on technical aspects of the systems and required equipment not normally available to the general public, a more recent development emphasized practical aspects of micro- tomographic imaging. That system is based on a compact fan- beam type of tomograph, also referred to as desktop (mu) CT. Desk-top (mu) CT has been used extensively for the investigation of osteoporosis related health problems gaining new insight into the organization of trabecular bone and the influence of osteoporotic bone loss on bone architecture and the competence of bone. Osteoporosis is a condition characterized by excessive bone loss and deterioration in bone architecture. The reduced quality of bone increases the risk of fracture. Current imaging technologies do not allow accurate in vivo measurements of bone structure over several decades or the investigation of the local remodeling stimuli at the tissue level. Therefore, computer simulations and new experimental modeling procedures are necessary for determining the long-term effects of age, menopause, and osteoporosis on bone. Microstructural bone models allow us to study not only the effects of osteoporosis on the skeleton but also to assess and monitor the effectiveness of new treatment regimens. The basis for such approaches are realistic models of bone and a sound understanding of the underlying biological and mechanical processes in bone physiology. In this article, strategies for new approaches to bone modeling and simulation in the study and treatment of osteoporosis and age-related bone loss are presented. The focus is on the bioengineering and imaging aspects of osteoporosis research. With the introduction of desk-top (mu) CT, a new generation of imaging instruments has entered the arena allowing easy and relatively inexpensive access to

  13. Bone marrow transplant

    MedlinePlus

    Transplant - bone marrow; Stem cell transplant; Hematopoietic stem cell transplant; Reduced intensity nonmyeloablative transplant; Mini transplant; Allogenic bone marrow transplant; Autologous bone marrow transplant; Umbilical ...

  14. The molecular aspects of chordoma.

    PubMed

    Gulluoglu, Sukru; Turksoy, Ozlem; Kuskucu, Aysegul; Ture, Ugur; Bayrak, Omer Faruk

    2016-04-01

    Chordomas are one of the rarest bone tumors, and they originate from remnants of embryonic notochord along the spine, more frequently at the skull base and sacrum. Although they are relatively slow growing and low grade, chordomas are highly recurrent, aggressive, locally invasive, and prone to metastasize to the lungs, bone, and the liver. Chordomas highly and generally show a dual epithelial-mesenchymal differentiation. These tumors resist chemotherapy and radiotherapy; therefore, radical surgery and high-dose radiation are the most used treatments, although there is no standard way to treat the disease. The molecular biology process behind the initiation and progression of a chordoma needs to be revealed for a better understanding of the disease and to develop more effective therapies. Efforts to discover the mysteries of these molecular aspects have delineated several molecular and genetic alterations in this tumor. Here, we review and describe the emerging insights into the molecular landscape of chordomas.

  15. Bone metastasis and the metastatic niche.

    PubMed

    Ren, Guangwen; Esposito, Mark; Kang, Yibin

    2015-11-01

    The bone marrow has been long known to host a unique environment amenable to colonization by metastasizing tumor cells. Yet, the underlying molecular interactions within this specialized microenvironment which give rise to the high incidence of bone metastasis in breast and prostate cancer patients have long remained uncharacterized. With the recent description of the bone metastatic "niche," considerable focus has been placed on understanding how the bone stroma contributes to each step of metastasis. Discoveries within this field have demonstrated that when cancer cells home to the niche in which hematopoietic and mesenchymal stem/progenitor cells normally reside, a bidirectional crosstalk emerges between the tumor cells and the bone metastatic stroma. This communication modulates every step of cancer cell metastasis to the bone, including the initial homing and seeding, formation of micrometastases, outgrowth of macrometastases, and the maintenance of long-term dormancy of disseminated tumor cells in the bone. In clinical practice, targeting the bone metastatic niche is evolving into a promising avenue for the prevention of bone metastatic relapse, therapeutic resistance, and other aspects of cancer progression. Here, we review the current knowledge concerning the role of the bone metastatic niche in bone metastasis.

  16. [Aneurysmal bone cyst of the temporal and zygomatic region].

    PubMed

    Njock, L R; Cartry, F; Faucon, B

    2006-01-01

    Aneurysmal bone cyst are commonly seen in long bone and vertebrae. There are rare in skull bones especially in the temporal bone and zygomatic arch. We report one case in a young male of 15 years old. The main symptom was swelling of the temporo mandibular region. Clinical, radiological and therapeutic aspects of the disease are discussed with regards to the literature. The diagnosis is based on good imaging and histopathological analysis. Surgical removal is the main treatment.

  17. Design, Materials, and Mechanobiology of Biodegradable Scaffolds for Bone Tissue Engineering

    PubMed Central

    Velasco, Marco A.; Narváez-Tovar, Carlos A.; Garzón-Alvarado, Diego A.

    2015-01-01

    A review about design, manufacture, and mechanobiology of biodegradable scaffolds for bone tissue engineering is given. First, fundamental aspects about bone tissue engineering and considerations related to scaffold design are established. Second, issues related to scaffold biomaterials and manufacturing processes are discussed. Finally, mechanobiology of bone tissue and computational models developed for simulating how bone healing occurs inside a scaffold are described. PMID:25883972

  18. Design, materials, and mechanobiology of biodegradable scaffolds for bone tissue engineering.

    PubMed

    Velasco, Marco A; Narváez-Tovar, Carlos A; Garzón-Alvarado, Diego A

    2015-01-01

    A review about design, manufacture, and mechanobiology of biodegradable scaffolds for bone tissue engineering is given. First, fundamental aspects about bone tissue engineering and considerations related to scaffold design are established. Second, issues related to scaffold biomaterials and manufacturing processes are discussed. Finally, mechanobiology of bone tissue and computational models developed for simulating how bone healing occurs inside a scaffold are described.

  19. [Bone transplant].

    PubMed

    San Julián, M; Valentí, A

    2006-01-01

    We describe the methodology of the Bone and Soft Tissue Bank, from extraction and storage until use. Since the year 1986, with the creation of the Bone Bank in the University Clinic of Navarra, more than 3,000 grafts have been used for very different types of surgery. Bone grafts can be classified into cortical and spongy; the former are principally used in surgery to save tumour patients, in large post-traumatic reconstructions and in replacement surgery where there are massive bone defects and a structural support is required. The spongy grafts are the most used due to their numerous indications; they are especially useful in filling cavities that require a significant quantity of graft when the autograft is insufficient, or as a complement. They are also of special help in treating fractures when there is bone loss and in the treatment of delays in consolidation and pseudoarthrosis in little vascularized and atrophic zones. They are also used in prosthetic surgery against the presence of cavity type defects. Allografts of soft tissues are specially recognised in multiple ligament injuries that require reconstructions. Nowadays, the most utilised are those employed in surgery of the anterior cruciate ligament although they can be used for filling any ligament or tendon defect. The principal difficulties of the cortical allografts are in the consolidation of the ends with the bone itself and in tumour surgery, given that these are patients immunodepressed by the treatment, the incidence of infection is increased with respect to spongy grafts and soft tissues, which is irrelevant. In short, the increasingly widespread use of allografts is an essential therapeutic weapon in orthopaedic surgery and traumatology. It must be used by expert hands.

  20. [Bone transplant].

    PubMed

    San Julián, M; Valentí, A

    2006-01-01

    We describe the methodology of the Bone and Soft Tissue Bank, from extraction and storage until use. Since the year 1986, with the creation of the Bone Bank in the University Clinic of Navarra, more than 3,000 grafts have been used for very different types of surgery. Bone grafts can be classified into cortical and spongy; the former are principally used in surgery to save tumour patients, in large post-traumatic reconstructions and in replacement surgery where there are massive bone defects and a structural support is required. The spongy grafts are the most used due to their numerous indications; they are especially useful in filling cavities that require a significant quantity of graft when the autograft is insufficient, or as a complement. They are also of special help in treating fractures when there is bone loss and in the treatment of delays in consolidation and pseudoarthrosis in little vascularized and atrophic zones. They are also used in prosthetic surgery against the presence of cavity type defects. Allografts of soft tissues are specially recognised in multiple ligament injuries that require reconstructions. Nowadays, the most utilised are those employed in surgery of the anterior cruciate ligament although they can be used for filling any ligament or tendon defect. The principal difficulties of the cortical allografts are in the consolidation of the ends with the bone itself and in tumour surgery, given that these are patients immunodepressed by the treatment, the incidence of infection is increased with respect to spongy grafts and soft tissues, which is irrelevant. In short, the increasingly widespread use of allografts is an essential therapeutic weapon in orthopaedic surgery and traumatology. It must be used by expert hands. PMID:16998521

  1. Chronic kidney disease and bone metabolism.

    PubMed

    Kazama, Junichiro James; Matsuo, Koji; Iwasaki, Yoshiko; Fukagawa, Masafumi

    2015-05-01

    Chronic kidney disease-related mineral and bone disease (CKD-MBD) is a syndrome defined as a systemic mineral metabolic disorder associated with CKD, and the term renal osteodystrophy indicates a pathomorphological concept of bone lesions associated with CKD-MBD. Cortical bone thinning, abnormalities in bone turnover and primary/secondary mineralization, elevated levels of circulating sclerostin, increased apoptosis in osteoblasts and osteocytes, disturbance of the coupling phenomenon, iatrogenic factors, accumulated micro-crackles, crystal/collagen disorientation, and chemical modification of collagen crosslinks are all possible candidates found in CKD that could promote osteopenia and/or bone fragility. Some of above factors are the consequences of abnormal systemic mineral metabolism but for others it seem unlikely. We have used the term uremic osteoporosis to describe the uremia-induced bone fragility which is not derived from abnormal systemic mineral metabolism. Interestingly, the disease aspect of uremic osteoporosis appears to be similar to that of senile osteoporosis. PMID:25653092

  2. Bone Marrow Transplantation

    MedlinePlus

    Bone marrow is the spongy tissue inside some of your bones, such as your hip and thigh bones. ... platelets, which help the blood to clot. A bone marrow transplant is a procedure that replaces a person's ...

  3. Genetics of Bone Density

    MedlinePlus

    ... study linked 32 novel genetic regions to bone mineral density. The findings may help researchers understand why ... or treating osteoporosis. Bones are made of a mineral and protein scaffold filled with bone cells. Bone ...

  4. Bone biopsy (image)

    MedlinePlus

    A bone biopsy is performed by making a small incision into the skin. A biopsy needle retrieves a sample of bone and it ... examination. The most common reasons for bone lesion biopsy are to distinguish between benign and malignant bone ...

  5. BONE BANKS

    PubMed Central

    de Alencar, Paulo Gilberto Cimbalista; Vieira, Inácio Facó Ventura

    2015-01-01

    Bone banks are necessary for providing biological material for a series of orthopedic procedures. The growing need for musculoskeletal tissues for transplantation has been due to the development of new surgical techniques, and this has led to a situation in which a variety of hospital services have been willing to have their own source of tissue for transplantation. To increase the safety of transplanted tissues, standards for bone bank operation have been imposed by the government, which has limited the number of authorized institutions. The good performance in a bone bank depends on strict control over all stages, including: formation of well-trained harvesting teams; donor selection; conducting various tests on the tissues obtained; and strict control over the processing techniques used. Combination of these factors enables greater scope of use and numbers of recipient patients, while the incidence of tissue contamination becomes statistically insignificant, and there is traceability between donors and recipients. This paper describes technical considerations relating to how a bone bank functions, the use of grafts and orthopedic applications, the ethical issues and the main obstacles encountered. PMID:27026958

  6. What Is Breast in the Bone?

    PubMed Central

    Shemanko, Carrie S.; Cong, Yingying; Forsyth, Amanda

    2016-01-01

    The normal developmental program that prolactin generates in the mammary gland is usurped in the cancerous process and can be used out of its normal cellular context at a site of secondary metastasis. Prolactin is a pleiotropic peptide hormone and cytokine that is secreted from the pituitary gland, as well as from normal and cancerous breast cells. Experimental and epidemiologic data suggest that prolactin is associated with mammary gland development, and also the increased risk of breast tumors and metastatic disease in postmenopausal women. Breast cancer spreads to the bone in approximately 70% of cases with advanced breast cancer. Despite treatment, new bone metastases will still occur in 30%–50% of patients. Only 20% of patients with bone metastases survive five years after the diagnosis of bone metastasis. The breast cancer cells in the bone microenvironment release soluble factors that engage osteoclasts and/or osteoblasts and result in bone breakdown. The breakdown of the bone matrix, in turn, enhances the proliferation of the cancer cells, creating a vicious cycle. Recently, it was shown that prolactin accelerated the breast cancer cell-mediated osteoclast differentiation and bone breakdown by the regulation of breast cancer-secreted proteins. Interestingly, prolactin has the potential to affect multiple proteins that are involved in both breast development and likely bone metastasis, as well. Prolactin has normal bone homeostatic roles and, combined with the natural “recycling” of proteins in different tissues that can be used for breast development and function, or in bone function, increases the impact of prolactin signaling in breast cancer bone metastases. Thus, this review will focus on the role of prolactin in breast development, bone homeostasis and in breast cancer to bone metastases, covering the molecular aspects of the vicious cycle. PMID:27782069

  7. Green tea and bone metabolism.

    PubMed

    Shen, Chwan-Li; Yeh, James K; Cao, Jay J; Wang, Jia-Sheng

    2009-07-01

    Osteoporosis is a major health problem in both elderly women and men. Epidemiological evidence has shown an association between tea consumption and the prevention of age-related bone loss in elderly women and men. Ingestion of green tea and green tea bioactive compounds may be beneficial in mitigating bone loss of this population and decreasing their risk of osteoporotic fractures. This review describes the effect of green tea or its bioactive components on bone health, with an emphasis on (i) the prevalence and etiology of osteoporosis; (ii) the role of oxidative stress and antioxidants in osteoporosis; (iii) green tea composition and bioavailability; (iv) the effects of green tea and its active components on osteogenesis, osteoblastogenesis, and osteoclastogenesis from human epidemiological, animal, as well as cell culture studies; (v) possible mechanisms explaining the osteoprotective effects of green tea bioactive compounds; (vi) other bioactive components in tea that benefit bone health; and (vii) a summary and future direction of green tea and bone health research and the translational aspects. In general, tea and its bioactive components might decrease the risk of fracture by improving bone mineral density and supporting osteoblastic activities while suppressing osteoclastic activities.

  8. Bone image segmentation.

    PubMed

    Liu, Z Q; Liew, H L; Clement, J G; Thomas, C D

    1999-05-01

    Characteristics of microscopic structures in bone cross sections carry essential clues in age determination in forensic science and in the study of age-related bone developments and bone diseases. Analysis of bone cross sections represents a major area of research in bone biology. However, traditional approaches in bone biology have relied primarily on manual processes with very limited number of bone samples. As a consequence, it is difficult to reach reliable and consistent conclusions. In this paper we present an image processing system that uses microstructural and relational knowledge present in the bone cross section for bone image segmentation. This system automates the bone image analysis process and is able to produce reliable results based on quantitative measurements from a large number of bone images. As a result, using large databases of bone images to study the correlation between bone structural features and age-related bone developments becomes feasible.

  9. The complexity of bone architecture: A tool to differentiate bone diseases

    NASA Astrophysics Data System (ADS)

    Saparin, Peter I.; Gowin, Wolfgang; Kurths, Jürgen; Felsenberg, Dieter

    2000-02-01

    We introduce a generalization of symbolic dynamics to analyze two-dimensional objects and propose measures of complexity to quantify the structure of symbol encoded images. This technique is applied to evaluate the architecture of human cancellous bone by analyzing computed tomography images of vertebrae acquired from specimens and in vivo. The pixels of the preprocessed images are encoded using a mixture of static and dynamic encoding. The architecture of encoded cancellous bone is evaluated as a whole using measures of complexity. A set of new parameters are introduced to quantify the different aspects of structure: complexity and degree of disorder of the architecture as a whole, or spatial arrangements of hard or soft elements of the bone separately. It is found that the complexity of the bone structure relates to its density exponentially. Normal bone has a complex ordered structure, while the architecture during the initial stage of bone loss is characterized by lower complexity and a maximal level of disorder. Increased bone loss leads again to ordered structure, however, its complexity is minimal. This phenomenon was observed in a series of osteoporotic specimens as well as in vivo in patients treated with fluor, and hormone replacement therapy. We found that different bone diseases demonstrate distinctive features captured by the measurements of complexity of the bone's structural composition. It is shown that the application of the proposed technique leads to new insights for understanding of the bone's response on medical treatment and provide important additional information for the diagnostics of bone diseases.

  10. Bone morphogenetic protein type IA receptor signaling regulates postnatal osteoblast function and bone remodeling.

    PubMed

    Mishina, Yuji; Starbuck, Michael W; Gentile, Michael A; Fukuda, Tomokazu; Kasparcova, Viera; Seedor, J Gregory; Hanks, Mark C; Amling, Michael; Pinero, Gerald J; Harada, Shun-ichi; Behringer, Richard R

    2004-06-25

    Bone morphogenetic proteins (BMPs) function during various aspects of embryonic development including skeletogenesis. However, their biological functions after birth are less understood. To investigate the role of BMPs during bone remodeling, we generated a postnatal osteoblast-specific disruption of Bmpr1a that encodes the type IA receptor for BMPs in mice. Mutant mice were smaller than controls up to 6 months after birth. Irregular calcification and low bone mass were observed, but there were normal numbers of osteoblasts. The ability of the mutant osteoblasts to form mineralized nodules in culture was severely reduced. Interestingly, bone mass was increased in aged mutant mice due to reduced bone resorption evidenced by reduced bone turnover. The mutant mice lost more bone after ovariectomy likely resulting from decreased osteoblast function which could not overcome ovariectomy-induced bone resorption. In organ culture of bones from aged mice, ablation of the Bmpr1a gene by adenoviral Cre recombinase abolished the stimulatory effects of BMP4 on the expression of lysosomal enzymes essential for osteoclastic bone resorption. These results demonstrate essential and age-dependent roles for BMP signaling mediated by BMPRIA (a type IA receptor for BMP) in osteoblasts for bone remodeling. PMID:15090551

  11. HIV infection, bone metabolism, and fractures.

    PubMed

    Güerri-Fernández, Robert; Villar-García, Judit; Díez-Pérez, Adolfo; Prieto-Alhambra, Daniel

    2014-07-01

    With the advent of high active antiretroviral therapy there was a significant improvement on HIV subjects survival. Thus, bone changes related to HIV became an important aspect of these individuals. HIV affects bone remodeling causing bone fragility. In addition, antiretroviral therapy may also negatively affect bone metabolism. Several studies describe an increased incidence of fractures in these patients when compared with controls without the disease. The European Society of AIDS (EACS), and other societies, have included guidance on management of osteoporosis in HIV-infected patients emphasizing the identification of patients with low bone mass. Supplementation of calcium and vitamin D and the use of alendronate in these individuals should be recommended on a case base. PMID:25166038

  12. Graded Porous β-Tricalcium Phosphate Scaffolds Enhance Bone Regeneration in Mandible Augmentation

    PubMed Central

    Yang, Jingwen; Kang, Yunqing; Browne, Christopher; Jiang, Ting; Yang, Yunzhi

    2015-01-01

    Abstract Bone augmentation requires scaffold to promote forming of natural bone structure. Currently, most of the reported bone scaffolds are porous solids with uniform pores. The aim of the currentstudy is to evaluate the effect of a graded porous β-tricalcium phosphate scaffolds on alveolar bone augmentation. Three groups of scaffolds were fabricated by a template-casting method: (1) graded porous scaffolds with large pores in the center and small pores at theperiphery, (2) scaffolds with large uniform pores, and (3) scaffolds with small uniform pores. Bone augmentation on rabbit mandible wasinvestigated by microcomputed tomography, sequential fluorescentlabeling, and histologic examination 3 months after implantation.The result presents that all the scaffold groups maintain their augmented bone height after 3-month observation, whereas the autograftinggroup presents an obvious bone resorption. Microcomputed tomography reveals that the graded porous group has significantly greater volume of new bone (P < 0.05) and similar bone density compared with the uniform pores groups. Bone substance distributes unevenly in all the 3 experimental groups. Greater bone volume can be observed in the area closer to the bone bed. The sequential fluorescentlabeling observation reveals robust bone regeneration in the first month and faster bone growth in the graded porous scaffold group than that in the large porous scaffold group. Histologic examinationsconfirm bone structure in the aspect of distribution, activity, and maturity. We conclude that graded porous designed biodegradableβ-tricalcium phosphate scaffolds are beneficial to promote bone augmentation in the aspect of bone volume. PMID:25675019

  13. Wnt signaling in bone and muscle.

    PubMed

    Rudnicki, Michael A; Williams, Bart O

    2015-11-01

    Wnt signaling plays key roles in many aspects of development. In this review, we will briefly describe the components of signaling pathways induced by Wnt ligands and then describe the current state of research as this applies to aspects of development and disease as it relates to skeletal muscle and bone. We will conclude with a discussion of the parallels and differences in Wnt signaling in these two contexts and how these pathways are being (or could potentially be) targeted for therapeutic treatment of musculoskeletal diseases. This article is part of a Special Issue entitled "Muscle Bone Interactions".

  14. Bone lesion biopsy

    MedlinePlus

    Benign (noncancerous) bone tumors include: Bone cyst Fibroma Osteoblastoma Osteoid osteoma Cancerous tumors include: Ewing sarcoma Multiple myeloma Osteosarcoma Other types of cancer that may have spread to the bone Abnormal ...

  15. Smoking and Bone Health

    MedlinePlus

    ... direct relationship between tobacco use and decreased bone density. Analyzing the impact of cigarette smoking on bone ... hard to determine whether a decrease in bone density is due to smoking itself or to other ...

  16. Menopause and Bone Loss

    MedlinePlus

    ... You reach your highest bone mass (size and density) at about age 30. Then, sometime between age ... your bones, your doctor may do a bone density test (DEXA scan). This test gives exact measurements ...

  17. Facts about Broken Bones

    MedlinePlus

    ... las fracturas de huesos Your bones are tough stuff — but even tough stuff can break. Like a wooden pencil, bones will ... that? Get a lot of physical activity, especially stuff like jumping and running. Feed your bones the ...

  18. Bone marrow aspiration

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003658.htm Bone marrow aspiration To use the sharing features on this page, please enable JavaScript. Bone marrow is the soft tissue inside bones that helps ...

  19. Bone marrow transplant - discharge

    MedlinePlus

    Transplant - bone marrow - discharge; Stem cell transplant - discharge; Hematopoietic stem cell transplant - discharge; Reduced intensity; Non-myeloablative transplant - discharge; Mini transplant - discharge; Allogenic bone marrow transplant - ...

  20. Recent progresses in gene delivery-based bone tissue engineering.

    PubMed

    Lu, Chia-Hsin; Chang, Yu-Han; Lin, Shih-Yeh; Li, Kuei-Chang; Hu, Yu-Chen

    2013-12-01

    Gene therapy has converged with bone engineering over the past decade, by which a variety of therapeutic genes have been delivered to stimulate bone repair. These genes can be administered via in vivo or ex vivo approach using either viral or nonviral vectors. This article reviews the fundamental aspects and recent progresses in the gene therapy-based bone engineering, with emphasis on the new genes, viral vectors and gene delivery approaches.

  1. Recent progresses in gene delivery-based bone tissue engineering.

    PubMed

    Lu, Chia-Hsin; Chang, Yu-Han; Lin, Shih-Yeh; Li, Kuei-Chang; Hu, Yu-Chen

    2013-12-01

    Gene therapy has converged with bone engineering over the past decade, by which a variety of therapeutic genes have been delivered to stimulate bone repair. These genes can be administered via in vivo or ex vivo approach using either viral or nonviral vectors. This article reviews the fundamental aspects and recent progresses in the gene therapy-based bone engineering, with emphasis on the new genes, viral vectors and gene delivery approaches. PMID:23994567

  2. Bone and bone marrow involvement in sarcoidosis.

    PubMed

    Yachoui, Ralph; Parker, Brian J; Nguyen, Thanhcuong T

    2015-11-01

    Bone and bone marrow involvement in sarcoidosis have been infrequently reported. We aimed to describe the clinical features, radiological descriptions, pathological examinations, and outcomes of three patients with osseous sarcoidosis and one patient with bone marrow sarcoidosis seen at our institution. Our case series included fluorodeoxyglucose positron emission tomography descriptions in assessing the whole-body extent of sarcoidosis. In the era of advanced imaging, large bone and axial skeleton sarcoidosis lesions are more common than previously reported.

  3. Comparative study between cortical bone graft versus bone dust for reconstruction of cranial burr holes

    PubMed Central

    Worm, Paulo V.; Ferreira, Nelson P.; Faria, Mario B.; Ferreira, Marcelo P.; Kraemer, Jorge L.; Collares, Marcus V. M.

    2010-01-01

    Background: As a consequence of the progressive evolution of neurosurgical techniques, there has been increasing concern with the esthetic aspects of burr holes. Therefore, the objective of this study was to compare the use of cortical bone graft and bone dust for correcting cranial deformities caused by neurosurgical trephines. Methods: Twenty-three patients were enrolled for cranial burr hole reconstruction with a 1-year follow-up. A total of 108 burr holes were treated; 36 burr holes were reconstructed with autogenous cortical bone discs (33.3%), and the remaining 72 with autogenous wet bone powder (66.6%). A trephine was specifically designed to produce this coin-shaped bone plug of 14 mm in diameter, which fit perfectly over the burr holes. The reconstructions were studied 12 months after the surgical procedure, using three-dimensional quantitative computed tomography. Additionally, general and plastic surgeons blinded for the study evaluated the cosmetic results of those areas, attributing scores from 0 to 10. Results: The mean bone densities were 987.95 ± 186.83 Hounsfield units (HU) for bone fragment and 473.55 ± 220.34 HU for bone dust (P < 0.001); the mean cosmetic scores were 9.5 for bone fragment and 5.7 for bone dust (P < 0.001). Conclusions: The use of autologous bone discs showed better results than bone dust for the reconstruction of cranial burr holes because of their lower degree of bone resorption and, consequently, better cosmetic results. The lack of donor site morbidity associated with procedural low cost qualifies the cortical autograft as the first choice for correcting cranial defects created by neurosurgical trephines. PMID:21206899

  4. Bone mineralization pathways during the rapid growth of embryonic chicken long bones.

    PubMed

    Kerschnitzki, Michael; Akiva, Anat; Ben Shoham, Adi; Asscher, Yotam; Wagermaier, Wolfgang; Fratzl, Peter; Addadi, Lia; Weiner, Steve

    2016-07-01

    The uptake and transport of ions from the environment to the site of bone formation is only partially understood and, for the most part, based on disparate observations in different animals. Here we study different aspects of the biomineralization pathways in one system, the rapidly forming long bones of the chicken embryo. We mainly used cryo-fixation and cryo-electron imaging to preserve the often unstable mineral phases in the tissues. We show the presence of surprisingly large amounts of mineral particles located inside membrane-delineated vesicles in the bone forming tissue between the blood vessels and the forming bone surface. Some of these particles are also located inside mitochondrial networks. The surfaces of the forming bones in the extracellular space contain abundant aggregates of amorphous calcium phosphate particles, but these are not enveloped by vesicle membranes. In the bone resorbing region, osteoclasts also contain many particles in both mitochondrial networks and within vesicles. Some of these particles are present also between cells. These observations, together with the previously reported observation that CaP mineral particles inside membranes are present in blood vessels, leads us to the conclusion that important components of the bone mineralization pathways in rapidly forming chicken bone are dense phase mineral particles bound within membranes. It remains to be determined whether these mineral particles are transported to the site of bone formation in the solid state, fluid state or dissolve and re-precipitate. PMID:27108185

  5. Bone mineralization pathways during the rapid growth of embryonic chicken long bones.

    PubMed

    Kerschnitzki, Michael; Akiva, Anat; Ben Shoham, Adi; Asscher, Yotam; Wagermaier, Wolfgang; Fratzl, Peter; Addadi, Lia; Weiner, Steve

    2016-07-01

    The uptake and transport of ions from the environment to the site of bone formation is only partially understood and, for the most part, based on disparate observations in different animals. Here we study different aspects of the biomineralization pathways in one system, the rapidly forming long bones of the chicken embryo. We mainly used cryo-fixation and cryo-electron imaging to preserve the often unstable mineral phases in the tissues. We show the presence of surprisingly large amounts of mineral particles located inside membrane-delineated vesicles in the bone forming tissue between the blood vessels and the forming bone surface. Some of these particles are also located inside mitochondrial networks. The surfaces of the forming bones in the extracellular space contain abundant aggregates of amorphous calcium phosphate particles, but these are not enveloped by vesicle membranes. In the bone resorbing region, osteoclasts also contain many particles in both mitochondrial networks and within vesicles. Some of these particles are present also between cells. These observations, together with the previously reported observation that CaP mineral particles inside membranes are present in blood vessels, leads us to the conclusion that important components of the bone mineralization pathways in rapidly forming chicken bone are dense phase mineral particles bound within membranes. It remains to be determined whether these mineral particles are transported to the site of bone formation in the solid state, fluid state or dissolve and re-precipitate.

  6. [The pisiform bone: sesamoid or carpal bone?].

    PubMed

    May, O

    1996-01-01

    In man, the pisiform bone occupies an unusual place among the carpal bones. It is situated in an anterior plane to the other bones, sheathed within the tendon of the flexor carpi ulnaris, and ossifying almost four years the last of the carpal bones. Many theories have tried to explain the presence of this "exceptional" bone: the first theory, proposed by Flower and Mivart, suggested the possibility that this bone could be a sesamoid. The second theory supposes a polydactyl hand, assuming that polydactyly preceded pentadactyly; the pisiform would then be a post-minimus vestigial bone according to Bardeleben. Finally, Gegenbauer and Gillies, proposed a primary pentadactyl hand in which the carpus would be composed of three proximal elements, generally two central, and five distal. The pisiform would either be a derivative of the central series, or a distinct element in the carpus. This last theory appears to be the most likely. The primary carpus would therefore have consisted of 12 bones arranged in 3 distinct rows, a proximal row of 3 bones, a central row of 4 bones, and a distal row of 5 bones. According to this theory, the most ulnar of the central would have been displaced to the medial limit of the carpus, to become the pisiform. PMID:9026058

  7. Measuring Aspects of Morality

    ERIC Educational Resources Information Center

    Ziv, Avner

    1976-01-01

    A group test measuring five aspects of morality in children is presented. The aspects are: resistance to temptation, stage of moral judgment, confession after transgression, reaction of fear or guilt, and severity of punishment for transgression. (Editor)

  8. Bone grafts in dentistry

    PubMed Central

    Kumar, Prasanna; Vinitha, Belliappa; Fathima, Ghousia

    2013-01-01

    Bone grafts are used as a filler and scaffold to facilitate bone formation and promote wound healing. These grafts are bioresorbable and have no antigen-antibody reaction. These bone grafts act as a mineral reservoir which induces new bone formation. PMID:23946565

  9. Bone and Soft Tissue Ablation

    PubMed Central

    Foster, Ryan C.B.; Stavas, Joseph M.

    2014-01-01

    Bone and soft tissue tumor ablation has reached widespread acceptance in the locoregional treatment of various benign and malignant musculoskeletal (MSK) lesions. Many principles of ablation learned elsewhere in the body are easily adapted to the MSK system, particularly the various technical aspects of probe/antenna design, tumoricidal effects, selection of image guidance, and methods to reduce complications. Despite the common use of thermal and chemical ablation procedures in bone and soft tissues, there are few large clinical series that show longitudinal benefit and cost-effectiveness compared with conventional methods, namely, surgery, external beam radiation, and chemotherapy. Percutaneous radiofrequency ablation of osteoid osteomas has been evaluated the most and is considered a first-line treatment choice for many lesions. Palliation of painful metastatic bone disease with thermal ablation is considered safe and has been shown to reduce pain and analgesic use while improving quality of life for cancer patients. Procedure-related complications are rare and are typically easily managed. Similar to all interventional procedures, bone and soft tissue lesions require an integrated approach to disease management to determine the optimum type of and timing for ablation techniques within the context of the patient care plan. PMID:25053865

  10. Bone Health and Osteoporosis.

    PubMed

    Lupsa, Beatrice C; Insogna, Karl

    2015-09-01

    Osteoporosis is characterized by low bone mass and microarchitectural deterioration of bone tissue leading to decreased bone strength and an increased risk of low-energy fractures. Central dual-energy X-ray absorptiometry measurements are the gold standard for determining bone mineral density. Bone loss is an inevitable consequence of the decrease in estrogen levels during and following menopause, but additional risk factors for bone loss can also contribute to osteoporosis in older women. A well-balanced diet, exercise, and smoking cessation are key to maintaining bone health as women age. Pharmacologic agents should be recommended in patients at high risk for fracture.

  11. Does running strengthen bone?

    PubMed

    Boudenot, Arnaud; Achiou, Zahra; Portier, Hugues

    2015-12-01

    Bone is a living tissue needing mechanical stress to maintain strength. Traditional endurance exercises offer only modest effects on bone. Walking and running produce low impact but lead to bone fatigue. This article is specifically addressed to therapists and explains the mechanisms involved for the effects of exercise on bone. Intermittent exercise limits bone fatigue, and downhill exercises increase ground impact forces and involve eccentric muscle contractions, which are particularly osteogenic. PMID:26562001

  12. Basic bone radiology

    SciTech Connect

    Griffiths, H.J.

    1987-01-01

    This clinical book surveys the skeletal system as seen through radiological imaging. It emphasizing abnormalities, disease, and trauma, and includes vital information on bones, bone growth, and the cells involved in bone pathology. It covers many bone diseases and injuries which are rarely covered in medical texts, as well as descriptions of radiologic procedures that specifically relate to the skeleton. This edition includes many illustrations, information on MR imaging and CT scanning, and discussions of osteoporosis, dysplasias, and metabolic bone disease.

  13. Rethinking the nature of fibrolamellar bone: an integrative biological revision of sauropod plexiform bone formation.

    PubMed

    Stein, Koen; Prondvai, Edina

    2014-02-01

    palaeohistological studies, we introduce new osteohistological terms as well as revise widely used but incorrect terminology. To infer the role of woven bone in the bone formation of fast-growing tetrapods, we review some aspects of the interrelationships between the vascularity of bone tissues, basal metabolic rate, body size and growth rate. By putting our findings into the context of osteogenesis, we provide a new model for the diametrical limb bone growth of sauropods and present new implications for the evolution of fast growth in vertebrates. Since biomechanical studies of bone tissues suggest that predominant collagen fibre orientation (CFO) is controlled by endogenous, functional and perhaps phylogenetic factors, the relationship between CFO and bone growth rate as defined by Amprino's rule, which has been the basis for the biological interpretation of several osteohistological features, must be revised. Our findings draw attention to the urgent need for revising widely accepted basic concepts of palaeohistological studies, and for a more integrative approach to bone formation, biomechanics and bone microstructural features of extant and extinct vertebrates to infer life history traits of long extinct, iconic animals like dinosaurs. PMID:23647662

  14. Bone cysts: unicameral and aneurysmal bone cyst.

    PubMed

    Mascard, E; Gomez-Brouchet, A; Lambot, K

    2015-02-01

    Simple and aneurysmal bone cysts are benign lytic bone lesions, usually encountered in children and adolescents. Simple bone cyst is a cystic, fluid-filled lesion, which may be unicameral (UBC) or partially separated. UBC can involve all bones, but usually the long bone metaphysis and otherwise primarily the proximal humerus and proximal femur. The classic aneurysmal bone cyst (ABC) is an expansive and hemorrhagic tumor, usually showing characteristic translocation. About 30% of ABCs are secondary, without translocation; they occur in reaction to another, usually benign, bone lesion. ABCs are metaphyseal, excentric, bulging, fluid-filled and multicameral, and may develop in all bones of the skeleton. On MRI, the fluid level is evocative. It is mandatory to distinguish ABC from UBC, as prognosis and treatment are different. UBCs resolve spontaneously between adolescence and adulthood; the main concern is the risk of pathologic fracture. Treatment in non-threatening forms consists in intracystic injection of methylprednisolone. When there is a risk of fracture, especially of the femoral neck, surgery with curettage, filling with bone substitute or graft and osteosynthesis may be required. ABCs are potentially more aggressive, with a risk of bone destruction. Diagnosis must systematically be confirmed by biopsy, identifying soft-tissue parts, as telangiectatic sarcoma can mimic ABC. Intra-lesional sclerotherapy with alcohol is an effective treatment. In spinal ABC and in aggressive lesions with a risk of fracture, surgical treatment should be preferred, possibly after preoperative embolization. The risk of malignant transformation is very low, except in case of radiation therapy.

  15. Carpal bone analysis in bone age assessment

    NASA Astrophysics Data System (ADS)

    Zhang, Aifeng; Gertych, Arkadiusz; Kurkowska-Pospiech, Sylwia; Liu, Brent J.; Huang, H. K.

    2006-03-01

    A computer-aided-diagnosis (CAD) method has been previously developed in our Laboratory based on features extracted from regions of interest (ROI) in phalanges in a digital hand atlas. Due to various factors, including, the diversity of size, shape and orientation of carpal bones, non-uniformity of soft tissue, low contrast between the bony structure and soft tissue, the automatic identification and segmentation of bone boundaries is an extremely challenging task. Past research work on carpal bone segmentation has been done utilizing dynamic thresholding. However, due to the discrepancy of carpal bones developments and the limitations of segmentation algorithms, carpal bone ROI has not been taken into consideration in the bone age assessment procedure. In this paper, we present a method for fully automatic carpal bone segmentation and feature analysis in hand X-ray radiograph. The purpose of this paper is to automatically segment the carpal bones by anisotropic diffusion and Canny edge detection techniques. By adding their respective features extracted from carpal bones ROI to the phalangeal ROI feature space, the accuracy of bone age assessment can be improved especially when the image processing in the phalangeal ROI fails in younger children.

  16. Bone resorption in chronic otitis media.

    PubMed

    Maynard, J; Bumsted, R M; Huang, C C; Abramson, M

    1979-01-01

    Bone resorption is an important aspect of chronic otitis media contributing to many complications of this disease. It is postulated that the mechanism of this localized destructive process is chemical in origin. Collagenase, lysosomal enzymes, prostaglandins, and other cell mediators are thought to induce bone resorption, but the site of action and cellular origin of these substances remains unclear. In this report, we demonstrate the location and attempt to delineate the cellular origin of two enzymes, collagenase and the lysosomal enzyme acid phosphatase in guinea pig temporal bones and human ossicles from ears containing chronic otitis media. Tissue localization of these enzymes identifies sites of active bone resorption and demonstrates the cells initiating this process. Using immunohistochemical and immunocytochemical techniques, collagenase was seen surrounding mononuclear inflammatory cells of granulation tissue at bone resorbing margins and at the periphery of osteocyte lacunae adjacent to resorbing areas. Electron microscopic data suggests that collagenase is an extracellular enzyme foun at the periphery of osteocytes. In addition, abundant acid phosphatase activity was seen in the same cells that exhibited collagenase staining, lending credence to the destructive function of these cells. The chronic inflammatory reaction found in chronic otitis media appears to activate bone destruction through the dynamic activity of mononuclear inflammatory cells and stimulates bone cells to increase their destructive biochemical functions.

  17. Powder-based 3D printing for bone tissue engineering.

    PubMed

    Brunello, G; Sivolella, S; Meneghello, R; Ferroni, L; Gardin, C; Piattelli, A; Zavan, B; Bressan, E

    2016-01-01

    Bone tissue engineered 3-D constructs customized to patient-specific needs are emerging as attractive biomimetic scaffolds to enhance bone cell and tissue growth and differentiation. The article outlines the features of the most common additive manufacturing technologies (3D printing, stereolithography, fused deposition modeling, and selective laser sintering) used to fabricate bone tissue engineering scaffolds. It concentrates, in particular, on the current state of knowledge concerning powder-based 3D printing, including a description of the properties of powders and binder solutions, the critical phases of scaffold manufacturing, and its applications in bone tissue engineering. Clinical aspects and future applications are also discussed.

  18. Powder-based 3D printing for bone tissue engineering.

    PubMed

    Brunello, G; Sivolella, S; Meneghello, R; Ferroni, L; Gardin, C; Piattelli, A; Zavan, B; Bressan, E

    2016-01-01

    Bone tissue engineered 3-D constructs customized to patient-specific needs are emerging as attractive biomimetic scaffolds to enhance bone cell and tissue growth and differentiation. The article outlines the features of the most common additive manufacturing technologies (3D printing, stereolithography, fused deposition modeling, and selective laser sintering) used to fabricate bone tissue engineering scaffolds. It concentrates, in particular, on the current state of knowledge concerning powder-based 3D printing, including a description of the properties of powders and binder solutions, the critical phases of scaffold manufacturing, and its applications in bone tissue engineering. Clinical aspects and future applications are also discussed. PMID:27086202

  19. Bone disease in hypoparathyroidism.

    PubMed

    Clarke, Bart L

    2014-07-01

    Hypoparathyroidism is a rare disorder that may be acquired or inherited. Postsurgical hypoparathyroidism is responsible for the majority of acquired hypoparathyroidism. Bone disease occurs in hypoparathyroidism due to markedly reduced bone remodeling due to the absence or low levels of parathyroid hormone. Chronically reduced bone turnover in patients with hypoparathyroidism typically leads to higher bone mass than in age- and sex-matched controls. Whether this increased bone density reduces fracture risk is less certain, because while increased bone mineralization may be associated with increased brittleness of bone, this does not appear to be the case in hypoparathyroidism. Treatment of hypoparathyroidism with recombinant parathyroid hormone may reduce bone mineral density but simultaneously strengthen the mechanical properties of bone.

  20. Bisphosphonates and bone quality

    PubMed Central

    Pazianas, Michael; van der Geest, Stefan; Miller, Paul

    2014-01-01

    Bisphosphonates (BPs) are bone-avid compounds used as first-line medications for the prevention and treatment of osteoporosis. They are also used in other skeletal pathologies such as Paget's and metastatic bone disease. They effectively reduce osteoclast viability and also activity in the resorptive phase of bone remodelling and help preserve bone micro-architecture, both major determinants of bone strength and ultimately of the susceptibility to fractures. The chemically distinctive structure of each BP used in the clinic determines their unique affinity, distribution/penetration throughout the bone and their individual effects on bone geometry, micro-architecture and composition or what we call ‘bone quality'. BPs have no clinically significant anabolic effects. This review will touch upon some of the components of bone quality that could be affected by the administration of BPs. PMID:24876930

  1. Bone-immune cell crosstalk: bone diseases.

    PubMed

    Mori, Giorgio; D'Amelio, Patrizia; Faccio, Roberta; Brunetti, Giacomina

    2015-01-01

    Bone diseases are associated with great morbidity; thus, the understanding of the mechanisms leading to their development represents a great challenge to improve bone health. Recent reports suggest that a large number of molecules produced by immune cells affect bone cell activity. However, the mechanisms are incompletely understood. This review aims to shed new lights into the mechanisms of bone diseases involving immune cells. In particular, we focused our attention on the major pathogenic mechanism underlying periodontal disease, psoriatic arthritis, postmenopausal osteoporosis, glucocorticoid-induced osteoporosis, metastatic solid tumors, and multiple myeloma. PMID:26000310

  2. Bone-immune cell crosstalk: bone diseases.

    PubMed

    Mori, Giorgio; D'Amelio, Patrizia; Faccio, Roberta; Brunetti, Giacomina

    2015-01-01

    Bone diseases are associated with great morbidity; thus, the understanding of the mechanisms leading to their development represents a great challenge to improve bone health. Recent reports suggest that a large number of molecules produced by immune cells affect bone cell activity. However, the mechanisms are incompletely understood. This review aims to shed new lights into the mechanisms of bone diseases involving immune cells. In particular, we focused our attention on the major pathogenic mechanism underlying periodontal disease, psoriatic arthritis, postmenopausal osteoporosis, glucocorticoid-induced osteoporosis, metastatic solid tumors, and multiple myeloma.

  3. Remodelling of bone and bones. Effects of altered mechanical stress on anlages.

    PubMed

    Storey, E; Feik, S A

    1982-04-01

    Tails from 4-day-old Sprague-Dawley rats were bent in situ or skinned bent tail segments were transplanted s.c. into 50 g hosts. Tissue changes were studied for up to 24 weeks by radiographic and histological techniques. The early changes in situ resulted largely from limited translation of bones within their encasing tissues with resorption on the leading (pressure) side inducing thinning, and on the trailing (tension) side thickening of bone. The changes in transplanted anlages occurred in 3 stages: initially, bending of the anlages, with tension between the stretched periosteum and the outer bone surface inducing formation, and compression of cartilage and bone on the inner aspect leading to resorption; then resumption of longitudinal growth and expansion of the bent loop leading to translation of bones within the encasing soft tissues with resorption and thinning of bone on the leading pressure side and formation, with thickening of the inner shaft, on the trailing tension side; and finally with cessation of growth and translation, a reversal to the previous phase. The results support the hypothesis that 2 processes are involved: first, internal stress, and second, translation of bones with, in all instances, pressure inducing resorption and tension inducing formation of bone.

  4. Bone resorption, metastasis, and diphosphonates

    SciTech Connect

    Garattini, S.

    1985-01-01

    This book contains 17 selections. Some of the titles are: Radiotherapy of Bone Lesions; Methodological Problems; Treatment of Bone Metastasis with Antiresorptive Drugs; Control of Bone Cancer Pain; and Chemotherapy of Bone Metastases.

  5. How Is Bone Cancer Diagnosed?

    MedlinePlus

    ... Topic How is bone cancer staged? How is bone cancer diagnosed? A patient’s symptoms, physical exam, and results ... and other imaging tests. Imaging tests to detect bone cancer X-rays Most bone cancers show up on ...

  6. Bone Loss in IBD

    MedlinePlus

    ... DENSITY? Although bone seems as hard as a rock, it’s actually living tissue. Throughout your life, old ... available Bone Loss (.pdf) File: 290 KB 733 Third Avenue, Suite 510, New York, NY 10017 | 800- ...

  7. Bone Marrow Diseases

    MedlinePlus

    ... that help with blood clotting. With bone marrow disease, there are problems with the stem cells or ... marrow makes too many white blood cells Other diseases, such as lymphoma, can spread into the bone ...

  8. What Is Bone?

    MedlinePlus

    ... a soft framework, and calcium phosphate is a mineral that adds strength and hardens the framework. This ... bone formation continues at a faster pace than removal until bone mass peaks during the third decade ...

  9. [Comparative anatomy of the mandible. Functional aspects].

    PubMed

    Denoix, J M

    1983-12-01

    The structural morphology of the mandibula is presented and correlated to various types of mastication in several Mammalian species. The latter include: Carnivores (Dog, Cat, Cheetah, Lion); Omnivores (Man, Chimpanzee, Hog); Herbivores (Horse, Ox, Goat, Camel, Rabbit). While the mandibula is studied as a composite unit, a more analytical, segmental approach has been included, and both are illustrated by X-rays. The aspects presented underline the distribution as well as the local modifications of compact bone, and in addition, the arrangement and the development of spongy bone trabeculae. A preliminary classification with respect to structural elements has been suggested from two viewpoints: that of tension, the other of compression. Are also presented those variations linked to diet and alimentary intake, as well as their functional correlates.

  10. Radionuclide bone imaging

    SciTech Connect

    Bassett, L.W.; Gold, R.H.; Webber, M.M.

    1981-12-01

    Radionuclide bone imaging of the skeleton, now well established as the most important diagnostic procedure in detecting bone metastases, is also a reliable method for the evaluation of the progression or regression of metastatic bone disease. The article concentrates on the technetium-99m agents and the value of these agents in the widespread application of low-dose radioisotope scanning in such bone diseases as metastasis, osteomyelitis, trauma, osteonecrosis, and other abnormal skeletal conditions.

  11. TOWARDS A NEW SPATIAL REPRESENTATION OF BONE REMODELING

    PubMed Central

    Graham, Jason M.; Ayati, Bruce P.; Ramakrishnan, Prem S.; Martin, James A.

    2013-01-01

    Irregular bone remodeling is associated with a number of bone diseases such as osteoporosis and multiple myeloma. Computational and mathematical modeling can aid in therapy and treatment as well as understanding fundamental biology. Different approaches to modeling give insight into different aspects of a phenomena so it is useful to have an arsenal of various computational and mathematical models. Here we develop a mathematical representation of bone remodeling that can effectively describe many aspects of the complicated geometries and spatial behavior observed. There is a sharp interface between bone and marrow regions. Also the surface of bone moves in and out, i.e. in the normal direction, due to remodeling. Based on these observations we employ the use of a level-set function to represent the spatial behavior of remodeling. We elaborate on a temporal model for osteoclast and osteoblast population dynamics to determine the change in bone mass which influences how the interface between bone and marrow changes. We exhibit simulations based on our computational model that show the motion of the interface between bone and marrow as a consequence of bone remodeling. The simulations show that it is possible to capture spatial behavior of bone remodeling in complicated geometries as they occur in vitro and in vivo. By employing the level set approach it is possible to develop computational and mathematical representations of the spatial behavior of bone remodeling. By including in this formalism further details, such as more complex cytokine interactions and accurate parameter values, it is possible to obtain simulations of phenomena related to bone remodeling with spatial behavior much as in vitro and in vivo. This makes it possible to perform in silica experiments more closely resembling experimental observations. PMID:22901065

  12. Bone cysts: unicameral and aneurysmal bone cyst.

    PubMed

    Mascard, E; Gomez-Brouchet, A; Lambot, K

    2015-02-01

    Simple and aneurysmal bone cysts are benign lytic bone lesions, usually encountered in children and adolescents. Simple bone cyst is a cystic, fluid-filled lesion, which may be unicameral (UBC) or partially separated. UBC can involve all bones, but usually the long bone metaphysis and otherwise primarily the proximal humerus and proximal femur. The classic aneurysmal bone cyst (ABC) is an expansive and hemorrhagic tumor, usually showing characteristic translocation. About 30% of ABCs are secondary, without translocation; they occur in reaction to another, usually benign, bone lesion. ABCs are metaphyseal, excentric, bulging, fluid-filled and multicameral, and may develop in all bones of the skeleton. On MRI, the fluid level is evocative. It is mandatory to distinguish ABC from UBC, as prognosis and treatment are different. UBCs resolve spontaneously between adolescence and adulthood; the main concern is the risk of pathologic fracture. Treatment in non-threatening forms consists in intracystic injection of methylprednisolone. When there is a risk of fracture, especially of the femoral neck, surgery with curettage, filling with bone substitute or graft and osteosynthesis may be required. ABCs are potentially more aggressive, with a risk of bone destruction. Diagnosis must systematically be confirmed by biopsy, identifying soft-tissue parts, as telangiectatic sarcoma can mimic ABC. Intra-lesional sclerotherapy with alcohol is an effective treatment. In spinal ABC and in aggressive lesions with a risk of fracture, surgical treatment should be preferred, possibly after preoperative embolization. The risk of malignant transformation is very low, except in case of radiation therapy. PMID:25579825

  13. Bone marrow biopsy

    MedlinePlus

    Biopsy - bone marrow ... A bone marrow biopsy may be done in the health care provider's office or in a hospital. The sample may ... This captures a tiny sample, or core, of bone marrow within the needle. The sample and needle are ...

  14. [Benign bone forming tumors].

    PubMed

    Caufourier, C; Leprovost, N; Guillou-Jamard, M-R; Compère, J-F; Bénateau, H

    2009-09-01

    Benign bone forming tumors typically produce dense bone (osteoma, enostosis) or osteoid tissue (osteoid osteoma, osteoblastoma). Even though these four lesions have distinct characteristics, it is sometimes difficult to tell them apart and to rule out malignant bone forming lesions such as osteosarcoma. The first line treatment is surgical exeresis.

  15. Pediatric aspects of skeletal dysplasia.

    PubMed

    Ozono, Keiichi; Namba, Noriyuki; Kubota, Takuo; Kitaoka, Taichi; Miura, Kohji; Ohata, Yasuhisa; Fujiwara, Makoto; Miyoshi, Yoko; Michigami, Toshimi

    2012-10-01

    Skeletal dysplasia is a disorder of skeletal development characterized by abnormality in shape, length, a number and mineral density of the bone. Skeletal dysplasia is often associated with manifestation of other organs such as lung, brain and sensory systems. Skeletal dysplasias or dysostosis are classified with more than 400 different names. Enchondral bone formation is a coordinated event of chondrocyte proliferation, differentiation and exchange of terminally maturated chondrocyte with bone. Impaired enchondral bone formation will lead to skeletal dysplasia, especially associated with short long bones. Appropriate bone volume and mineral density are achieved by balance of bone formation and bone resorption and mineralization. The gene encoding fibroblast growth factor receptor 3 is responsible for achondroplasia, representative skeletal dysplasia with short stature. The treatment with growth hormone is approved for achondroplasia in Japan. Osteogenesis imperfecta is characterized by low bone mineral density and fragile bone. Data on the beneficial effect of bisphosphonate for osteogenesis imperfecta are accumulating. Osteopetrosis has high bone mineral density, but sometimes show bone fragility. In Japan as well as other countries, pediatrician treat larger numbers of patients with skeletal dysplasia with short stature and fragile bones compared to 20 years ago.

  16. Digital electronic bone growth stimulator

    DOEpatents

    Kronberg, J.W.

    1993-01-01

    The present invention relates to the electrical treatment of biological tissue. In particular, the present invention discloses a device that produces discrete electrical pulse trains for treating osteoporosis and accelerating bone growth. According to its major aspects and broadly stated, the present invention consists of an electrical circuit configuration capable of generating Bassett-type waveforms shown with alternative signals provide for the treatment of either fractured bones or osteoporosis. The signal generator comprises a quartz clock, an oscillator circuit, a binary divider chain, and a plurality of simple, digital logic gates. Signals are delivered efficiently, with little or no distortion, and uniformly distributed throughout the area of injury. Perferably, power is furnished by widely available and inexpensive radio batteries, needing replacement only once in several days. The present invention can be affixed to a medical cast without a great increase in either weight or bulk. Also, the disclosed stimulator can be used to treat osteoporosis or to strengthen a healing bone after the cast has been removed by attaching the device to the patient`s skin or clothing.

  17. [Bone quality and strength relating with bone remodeling].

    PubMed

    Mori, Satoshi

    2016-01-01

    The bone has the functions of mineral reservoir and mechanical support as skeleton. Bone remodeling is the adult mode of bone metabolism, replacing old bone tissue to new one. Bone strength is determined by bone volume, structure and quality such as micro damage, degree of mineralization and collagen cross linkage, which are all controlled by bone remodeling. Bone strength decreases under high turn-over condition by decreasing bone volume and deterioration of bone structure, which also decreases under low turn-over condition by increased micro damage, increasing mineralization and AGE collagen cross linkage.

  18. Oxytocin and bone

    PubMed Central

    Sun, Li; Zaidi, Mone; Zallone, Alberta

    2014-01-01

    One of the most meaningful results recently achieved in bone research has been to reveal that the pituitary hormones have profound effect on bone, so that the pituitary-bone axis has become one of the major topics in skeletal physiology. Here, we discuss the relevant evidence about the posterior pituitary hormone oxytocin (OT), previously thought to exclusively regulate parturition and breastfeeding, which has recently been established to directly regulate bone mass. Both osteoblasts and osteoclasts express OT receptors (OTR), whose stimulation enhances bone mass. Consistent with this, mice deficient in OT or OTR display profoundly impaired bone formation. In contrast, bone resorption remains unaffected in OT deficiency because, even while OT stimulates the genesis of osteoclasts, it inhibits their resorptive function. Furthermore, in addition to its origin from the pituitary, OT is also produced by bone marrow osteoblasts acting as paracrine-autocrine regulator of bone formation modulated by estrogens. In turn, the power of estrogen to increase bone mass is OTR-dependent. Therefore, OTR−/− mice injected with 17β-estradiol do not show any effects on bone formation parameters, while the same treatment increases bone mass in wild-type mice. These findings together provide evidence for an anabolic action of OT in regulating bone mass and suggest that bone marrow OT may enhance the bone-forming action of estrogen through an autocrine circuit. This established new physiological role for OT in the maintenance of skeletal integrity further suggests the potential use of this hormone for the treatment of osteoporosis. PMID:25209411

  19. [Prefabrication of bone transplants].

    PubMed

    Jagodzinski, M; Kokemüller, H; Jehn, P; Vogt, P; Gellrich, N-C; Krettek, C

    2015-03-01

    Prefabrication of bone transplants is a promising option for large defects of the long bones, especially if there is compromised vascularization of the defect. This is especially true for postinfection bone defects and other types of atrophic nonunion. The generation of a foreign body membrane (Masquelet's technique) has been investigated in order to ameliorate the response of the host tissue surrounding the defect. In an experimental animal study, a blood vessel within a bone construct could be used to generate customized, vascularized osteogenic constructs that can be used to treat large bone defects in the future.

  20. Method for fusing bone

    DOEpatents

    Mourant, Judith R.; Anderson, Gerhard D.; Bigio, Irving J.; Johnson, Tamara M.

    1996-01-01

    Method for fusing bone. The present invention is a method for joining hard tissue which includes chemically removing the mineral matrix from a thin layer of the surfaces to be joined, placing the two bones together, and heating the joint using electromagnetic radiation. The goal of the method is not to produce a full-strength weld of, for example, a cortical bone of the tibia, but rather to produce a weld of sufficient strength to hold the bone halves in registration while either external fixative devices are applied to stabilize the bone segments, or normal healing processes restore full strength to the tibia.

  1. Pituitary diseases and bone.

    PubMed

    Mazziotti, Gherardo; Chiavistelli, Silvia; Giustina, Andrea

    2015-03-01

    Pituitary hormones have direct and indirect effects on bone remodeling, and skeletal fragility is a frequent complication of pituitary diseases. Fragility fractures may occur in many patients with prolactinomas, acromegaly, Cushing disease, and hypopituitarism. As in other forms of secondary osteoporosis, pituitary diseases generally affect bone quality more than bone quantity, and fractures may occur even in the presence of normal or low-normal bone mineral density, making difficult the prediction of fractures in these settings. Treatment of excess and defective pituitary hormone generally improves skeletal health, although some patients remain at high risk for fractures, necessitating treatment with bone-active drugs.

  2. Some aspects of the palaeoecology of commensals

    NASA Astrophysics Data System (ADS)

    Somerville, Elizabeth M.

    1999-10-01

    As well as the economically important mammals, many other vertebrate species live in and around human settlements. Some of these commensals (e.g. Mus domesticus, Passer domesticus) have a long history of association with people. The zooarchaeological record is sparse because systematic sieving is required to retrieve the bones of such small species. However, it is also possible to investigate this aspect of the palaeoecology of human settlement by using studies of the behavioural ecology of modern species. The relationship between people and their commensals, both indigenous and invading, is places in the overall context of landscape change in Britain.

  3. Recent highlights on bone stem cells: a report from Bone Stem Cells 2009, and not only….

    PubMed

    Cenni, Elisabetta; Perut, Francesca; Baglìo, Serena Rubina; Fiorentini, Elisa; Baldini, Nicola

    2010-11-01

    The use of stem cells has opened new prospects for the treatment of orthopaedic conditions characterized by large bone defects. However, many issues still exist to which answers are needed before routine, large-scale application becomes possible. Bone marrow stromal cells (MSC), which are clonogenic, multipotential precursors present in the bone marrow stroma, are generally employed for bone regeneration. Stem cells with multilineage differentiation similar to MSC have also been demonstrated in adipose tissue, peripheral blood, umbilical cord and amniotic fluid. Each source presents its own advantages and drawbacks. Unfortunately, no unique surface antigen is expressed by MSC, and this hampers simple MSC enrichment from heterogeneous populations. MSC are identified through a combination of physical, morphological and functional assays. Different in vitro and in vivo models have been described for the research on bone stem cells. These models should predict the in vivo bone healing capacity of MSC and if the induced osteogenesis is similar to the physiological one. Although stem cells offer an exciting possibility of a renewable source of cells and tissues for replacement, orthopaedic applications often represent case reports whereas controlled randomized trials are still lacking. Further biological aspects of bone stem cells should be elucidated and a general consensus on the best models, protocols and proper use of scaffolds and growth factors should be achieved.

  4. Bone scintiscanning updated.

    PubMed

    Lentle, B C; Russell, A S; Percy, J S; Scott, J R; Jackson, F I

    1976-03-01

    Use of modern materials and methods has given bone scintiscanning a larger role in clinical medicine, The safety and ready availability of newer agents have led to its greater use in investigating both benign and malignant disease of bone and joint. Present evidence suggests that abnormal accumulation of 99mTc-polyphosphate and its analogues results from ionic deposition at crystal surfaces in immature bone, this process being facilitated by an increase in bone vascularity. There is, also, a component of matrix localization. These factors are in keeping with the concept that abnormal scintiscan sites represent areas of increased osteoblastic activity, although this may be an oversimplification. Increasing evidence shows that the bone scintiscan is more sensitive than conventional radiography in detecting focal disease of bone, and its ability to reflect the immediate status of bone further complements radiographic findings. The main limitation of this method relates to nonspecificity of the results obtained.

  5. Nanomaterials and bone regeneration

    PubMed Central

    Gong, Tao; Xie, Jing; Liao, Jinfeng; Zhang, Tao; Lin, Shiyu; Lin, Yunfeng

    2015-01-01

    The worldwide incidence of bone disorders and conditions has been increasing. Bone is a nanomaterials composed of organic (mainly collagen) and inorganic (mainly nano-hydroxyapatite) components, with a hierarchical structure ranging from nanoscale to macroscale. In consideration of the serious limitation in traditional therapies, nanomaterials provide some new strategy in bone regeneration. Nanostructured scaffolds provide a closer structural support approximation to native bone architecture for the cells and regulate cell proliferation, differentiation, and migration, which results in the formation of functional tissues. In this article, we focused on reviewing the classification and design of nanostructured materials and nanocarrier materials for bone regeneration, their cell interaction properties, and their application in bone tissue engineering and regeneration. Furthermore, some new challenges about the future research on the application of nanomaterials for bone regeneration are described in the conclusion and perspectives part. PMID:26558141

  6. Bone kidney interactions.

    PubMed

    Nickolas, Thomas L; Jamal, Sophie A

    2015-06-01

    The fact that bone disease and kidney disease co-exist is well known. Formally, this inter-relationship is called chronic kidney disease mineral bone disorder or CKD-MBD. Traditionally, it was thought that bone played a passive role in CKD-MBD - specifically that kidney disease caused disordered mineral metabolism which resulted in bone disease and ultimately fractures. More recently however our understanding of bone function in general and the role that bone plays in CKD-MBD in particular, has changed. This chapter will briefly review epidemiology of fractures in chronic kidney disease (CKD) and the roles that imaging and measuring markers of mineral metabolism can play in assessing fracture risk. We will then review more recent data consistent with the concept MBD occurs early in the course of CKD and, via the secretion of novel molecules and/or signalling pathways, the bone can influence other organ systems. PMID:26156535

  7. Bone regeneration in dentistry

    PubMed Central

    Tonelli, Paolo; Duvina, Marco; Barbato, Luigi; Biondi, Eleonora; Nuti, Niccolò; Brancato, Leila; Rose, Giovanna Delle

    2011-01-01

    Summary The edentulism of the jaws and the periodontal disease represent conditions that frequently leads to disruption of the alveolar bone. The loss of the tooth and of its bone of support lead to the creation of crestal defects or situation of maxillary atrophy. The restoration of a functional condition involves the use of endosseous implants who require adequate bone volume, to deal with the masticatory load. In such situations the bone need to be regenerated, taking advantage of the biological principles of osteogenesis, osteoinduction and osteoconduction. Several techniques combine these principles with different results, due to the condition of the bone base on which we operate changes, the surgical technique that we use, and finally for the bone metabolic conditions of the patient who can be in a state of systemic osteopenia or osteoporosis; these can also affect the result of jaw bone reconstruction. PMID:22461825

  8. [Bone and Nutrition. Bone and phosphorus intake].

    PubMed

    Arai, Hidekazu; Sakuma, Masae

    2015-07-01

    Phosphorus is necessary for bone mineralization. Although adequate phosphorus intake is essential for skeletal mineralization, it is reported that excessive phosphorus intake can induce deleterious effect on bone. Recently, since the Japanese diet has been westernized, phosphorus intake by the meat and dairy products has increased. Furthermore, along with the development of processed foods, excessive intake of inorganic phosphorus from food additives has become a problem. An adverse effect on parathyroid hormone (PTH) secretion from high phosphorus intake was seen only when calcium intake was inadequate. Dietary calcium to phosphorus ratio can be considered as one of the indicators that can predict the health of the bone.

  9. Marble Bone Disease: A Rare Bone Disorder

    PubMed Central

    Harinathbabu, Maheswari; Thillaigovindan, Ranjani; Prabhu, Geetha

    2015-01-01

    Osteopetrosis, or marble bone disease, is a rare skeletal disorder due to a defective function of the osteoclasts. This defect renders bones more susceptible to osteomyelitis due to decreased vascularity. This disorder is inherited as autosomal dominant and autosomal recessive. Healthcare professionals should urge these patients to maintain their oral health as well as general health, as this condition makes these patients more susceptible to frequent infections and fractures. This case report emphasizes the signs and symptoms of marble bone disease and presents clinical and radiographic findings.  PMID:26594603

  10. [Bone and Nutrition. Bone and phosphorus intake].

    PubMed

    Arai, Hidekazu; Sakuma, Masae

    2015-07-01

    Phosphorus is necessary for bone mineralization. Although adequate phosphorus intake is essential for skeletal mineralization, it is reported that excessive phosphorus intake can induce deleterious effect on bone. Recently, since the Japanese diet has been westernized, phosphorus intake by the meat and dairy products has increased. Furthermore, along with the development of processed foods, excessive intake of inorganic phosphorus from food additives has become a problem. An adverse effect on parathyroid hormone (PTH) secretion from high phosphorus intake was seen only when calcium intake was inadequate. Dietary calcium to phosphorus ratio can be considered as one of the indicators that can predict the health of the bone. PMID:26119308

  11. Aspects of Language

    ERIC Educational Resources Information Center

    Ullmann, Stephen

    1974-01-01

    Several aspects of language--code, relation of structure to meaning, creativity, capacity to influence thought--are discussed, as well as reasons for including foreign language study in school and university. (RM)

  12. Gamma images in benign and metabolic bone diseases: volume 1

    SciTech Connect

    Sy, W.M.

    1981-01-01

    Volume 1 of ''Gamma images in benign and metabolic bone diseases'' comprises chapters devoted to: general remarks and considerations, radiopharmaceuticals, Paget disease, osteomyelitis, trauma, benign bone tumors, chronic renal dialysis, acute renal failure, osteomalacia and rickets, and osteoporosis. Although published in 1981, the most recent references in the book were 1978 and most are 1977 or earlier. One of the strongest aspects of the volume are tables which categorize diseases, pathophysiology of disease, and image abnormalities. (JMT)

  13. Biophotonics and Bone Biology

    NASA Technical Reports Server (NTRS)

    Zimmerli, Gregory; Fischer, David; Asipauskas, Marius; Chauhan, Chirag; Compitello, Nicole; Burke, Jamie; Tate, Melissa Knothe

    2004-01-01

    One of the more-serious side effects of extended space flight is an accelerated bone loss [Bioastronautics Critical Path Roadmap, http://research.hq.nasa.gov/code_u/bcpr/index.cfm]. Rates of bone loss are highest in the weight-bearing bones of the hip and spine regions, and the average rate of bone loss as measured by bone mineral density measurements is around 1.2% per month for persons in a microgravity environment. It shows that an extrapolation of the microgravity induced bone loss rates to longer time scales, such as a 2.5 year round-trip to Mars (6 months out at 0 g, 1.5 year stay on Mars at 0.38 g, 6 months back at 0 g), could severely compromise the skeletal system of such a person.

  14. Biomaterials and bone mechanotransduction

    NASA Technical Reports Server (NTRS)

    Sikavitsas, V. I.; Temenoff, J. S.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    2001-01-01

    Bone is an extremely complex tissue that provides many essential functions in the body. Bone tissue engineering holds great promise in providing strategies that will result in complete regeneration of bone and restoration of its function. Currently, such strategies include the transplantation of highly porous scaffolds seeded with cells. Prior to transplantation the seeded cells are cultured in vitro in order for the cells to proliferate, differentiate and generate extracellular matrix. Factors that can affect cellular function include the cell-biomaterial interaction, as well as the biochemical and the mechanical environment. To optimize culture conditions, good understanding of these parameters is necessary. The new developments in bone biology, bone cell mechanotransduction, and cell-surface interactions are reviewed here to demonstrate that bone mechanotransduction is strongly influenced by the biomaterial properties.

  15. Tensile mechanical properties of swine cortical mandibular bone.

    PubMed

    Brosh, Tamar; Rozitsky, Doron; Geron, Silvia; Pilo, Raphael

    2014-01-01

    Temporary orthodontic mini implants serve as anchorage devices in orthodontic treatments. Often, they are inserted in the jaw bones, between the roots of the teeth. The stability of the mini implants within the bone is one of the major factors affecting their success and, consequently, that of the orthodontic treatment. Bone mechanical properties are important for implant stability. The aim of this study was to determine the tensile properties of the alveolar and basal mandible bones in a swine model. The diametral compression test was employed to study the properties in two orthogonal directions: mesio-distal and occluso-gingival. Small cylindrical cortical bone specimens (2.6 mm diameter, 1.5 mm thickness) were obtained from 7 mandibles using a trephine drill. The sites included different locations (anterior and posterior) and aspects (buccal and lingual) for a total of 16 specimens from each mandible. The load-displacement curves were continuously monitored while loading half of the specimens in the oclluso-gingival direction and half in the mesio-distal direction. The stiffness was calculated from the linear portion of the curve. The mesio-distal direction was 31% stiffer than the occluso-gingival direction. The basal bone was 40% stiffer than the alveolar bone. The posterior zone was 46% stiffer than the anterior zone. The lingual aspect was stiffer than the buccal aspect. Although bone specimens do not behave as brittle materials, the diametral compression test can be adequately used for determining tensile behavior when only small bone specimens can be obtained. In conclusion, to obtain maximal orthodontic mini implant stability, the force components on the implants should be oriented mostly in the mesio-distal direction.

  16. Tensile Mechanical Properties of Swine Cortical Mandibular Bone

    PubMed Central

    Brosh, Tamar; Rozitsky, Doron; Geron, Silvia; Pilo, Raphael

    2014-01-01

    Temporary orthodontic mini implants serve as anchorage devices in orthodontic treatments. Often, they are inserted in the jaw bones, between the roots of the teeth. The stability of the mini implants within the bone is one of the major factors affecting their success and, consequently, that of the orthodontic treatment. Bone mechanical properties are important for implant stability. The aim of this study was to determine the tensile properties of the alveolar and basal mandible bones in a swine model. The diametral compression test was employed to study the properties in two orthogonal directions: mesio-distal and occluso-gingival. Small cylindrical cortical bone specimens (2.6 mm diameter, 1.5 mm thickness) were obtained from 7 mandibles using a trephine drill. The sites included different locations (anterior and posterior) and aspects (buccal and lingual) for a total of 16 specimens from each mandible. The load-displacement curves were continuously monitored while loading half of the specimens in the oclluso-gingival direction and half in the mesio-distal direction. The stiffness was calculated from the linear portion of the curve. The mesio-distal direction was 31% stiffer than the occluso-gingival direction. The basal bone was 40% stiffer than the alveolar bone. The posterior zone was 46% stiffer than the anterior zone. The lingual aspect was stiffer than the buccal aspect. Although bone specimens do not behave as brittle materials, the diametral compression test can be adequately used for determining tensile behavior when only small bone specimens can be obtained. In conclusion, to obtain maximal orthodontic mini implant stability, the force components on the implants should be oriented mostly in the mesio-distal direction. PMID:25463971

  17. Nanocomposites and bone regeneration

    NASA Astrophysics Data System (ADS)

    James, Roshan; Deng, Meng; Laurencin, Cato T.; Kumbar, Sangamesh G.

    2011-12-01

    This manuscript focuses on bone repair/regeneration using tissue engineering strategies, and highlights nanobiotechnology developments leading to novel nanocomposite systems. About 6.5 million fractures occur annually in USA, and about 550,000 of these individual cases required the application of a bone graft. Autogenous and allogenous bone have been most widely used for bone graft based therapies; however, there are significant problems such as donor shortage and risk of infection. Alternatives using synthetic and natural biomaterials have been developed, and some are commercially available for clinical applications requiring bone grafts. However, it remains a great challenge to design an ideal synthetic graft that very closely mimics the bone tissue structurally, and can modulate the desired function in osteoblast and progenitor cell populations. Nanobiomaterials, specifically nanocomposites composed of hydroxyapatite (HA) and/or collagen are extremely promising graft substitutes. The biocomposites can be fabricated to mimic the material composition of native bone tissue, and additionally, when using nano-HA (reduced grain size), one mimics the structural arrangement of native bone. A good understanding of bone biology and structure is critical to development of bone mimicking graft substitutes. HA and collagen exhibit excellent osteoconductive properties which can further modulate the regenerative/healing process following fracture injury. Combining with other polymeric biomaterials will reinforce the mechanical properties thus making the novel nano-HA based composites comparable to human bone. We report on recent studies using nanocomposites that have been fabricated as particles and nanofibers for regeneration of segmental bone defects. The research in nanocomposites, highlight a pivotal role in the future development of an ideal orthopaedic implant device, however further significant advancements are necessary to achieve clinical use.

  18. Cognitive aspects of color

    NASA Astrophysics Data System (ADS)

    Derefeldt, Gunilla A. M.; Menu, Jean-Pierre; Swartling, Tiina

    1995-04-01

    This report surveys cognitive aspects of color in terms of behavioral, neuropsychological, and neurophysiological data. Color is usually defined as psychophysical color or as perceived color. Behavioral data on categorical color perception, absolute judgement of colors, color coding, visual search, and visual awareness refer to the more cognitive aspects of color. These are of major importance in visual synthesis and spatial organization, as already shown by the Gestalt psychologists. Neuropsychological and neurophysiological findings provide evidence for an interrelation between cognitive color and spatial organization. Color also enhances planning strategies, as has been shown by studies on color and eye movements. Memory colors and the color- language connections in the brain also belong among the cognitive aspects of color.

  19. Lead in bone: Implications for toxicology during pregnancy and lactation

    SciTech Connect

    Silbergeld, E.K. Univ. of Maryland, Baltimore )

    1991-02-01

    Advances in understanding the distribution and retention of lead in mineralized tissues are important for two reasons: first, bone lead may be a more accurate dosimeter of integrated absorption associated with chronic exposures, and second, bone lead may be a source of internal exposure to the host organism. Little attention has been paid to this second aspect, the remobilization of lead from bone. Mobilization of lead from bone is likely to occur during periods of altered mineral metabolism; since calciotropic factors determine the uptake and storage of lead in this compartment, changes in calcium-related regulatory factors are likely to affect lead compartmentation. Calcium metabolism changes drastically in humans during preganacy and lactation; although relatively little is known of lead kinetics during these critical periods, it is likely that bone lead is mobilized and transferred to the more bioavailable compartment of the maternal circulation, with potential toxic effects on the fetus and the mother.

  20. Hypercalciuric Bone Disease

    NASA Astrophysics Data System (ADS)

    Favus, Murray J.

    2008-09-01

    Hypercalciuria plays an important causal role in many patients with calcium oxalate (CaOx) stones. The source of the hypercalciuria includes increased intestinal Ca absorption and decreased renal tubule Ca reabsorption. In CaOx stone formers with idiopathic hypercalciuria (IH), Ca metabolic balance studies have revealed negative Ca balance and persistent hypercalciuria in the fasting state and during low dietary Ca intake. Bone resorption may also contribute to the high urine Ca excretion and increase the risk of bone loss. Indeed, low bone mass by DEXA scanning has been discovered in many IH patients. Thiazide diuretic agents reduce urine Ca excretion and may increase bone mineral density (BMD), thereby reducing fracture risk. Dietary Ca restriction that has been used unsuccessfully in the treatment of CaOx nephrolithiasis in the past may enhance negative Ca balance and accelerate bone loss. DEXA scans may demonstrate low BMD at the spine, hip, or forearm, with no predictable pattern. The unique pattern of bone histologic changes in IH differs from other causes of low DEXA bone density including postmenopausal osteoporosis, male hypogonadal osteoporosis, and glucocorticoid-induced osteoporosis. Hypercalciuria appears to play an important pathologic role in the development of low bone mass, and therefore correction of urine Ca losses should be a primary target for treatment of the bone disease accompanying IH.

  1. Biophotonics and Bone Biology

    NASA Technical Reports Server (NTRS)

    Zimmerli, Gregory; Fischer, David; Asipauskas, Marius; Chauhan, Chirag; Compitello, Nicole; Burke, Jamie; Tate, Melissa Knothe

    2004-01-01

    One of the more serious side effects of extended space flight is an accelerated bone loss. Rates of bone loss are highest in the weight-bearing bones of the hip and spine regions, and the average rate of bone loss as measured by bone mineral density measurements is around 1.2% per month for persons in a microgravity environment. It is well known that bone remodeling responds to mechanical forces. We are developing two-photon microscopy techniques to study bone tissue and bone cell cultures to better understand the fundamental response mechanism in bone remodeling. Osteoblast and osteoclast cell cultures are being studied, and the goal is to use molecular biology techniques in conjunction with Fluorescence Lifetime Imaging Microscopy (FLIM) to study the physiology of in-vitro cell cultures in response to various stimuli, such as fluid flow induced shear stress and mechanical stress. We have constructed a two-photon fluorescence microscope for these studies, and are currently incorporating FLIM detection. Current progress will be reviewed. This work is supported by the NASA John Glenn Biomedical Engineering Consortium.

  2. Method for fusing bone

    DOEpatents

    Mourant, J.R.; Anderson, G.D.; Bigio, I.J.; Johnson, T.M.

    1996-03-12

    The present invention is a method for joining hard tissue which includes chemically removing the mineral matrix from a thin layer of the surfaces to be joined, placing the two bones together, and heating the joint using electromagnetic radiation. The goal of the method is not to produce a full-strength weld of, for example, a cortical bone of the tibia, but rather to produce a weld of sufficient strength to hold the bone halves in registration while either external fixative devices are applied to stabilize the bone segments, or normal healing processes restore full strength to the tibia.

  3. Autoinflammatory bone diseases.

    PubMed

    Stern, Sara M; Ferguson, Polly J

    2013-11-01

    Autoinflammatory bone disease is a new branch of autoinflammatory diseases caused by seemingly unprovoked activation of the innate immune system leading to an osseous inflammatory process. The inflammatory bone lesions in these disorders are characterized by chronic inflammation that is typically culture negative with no demonstrable organism on histopathology. The most common autoinflammatory bone diseases in childhood include chronic nonbacterial osteomyelitis (CNO), synovitis, acne, pustulosis, hyperostosis, osteitis syndrome, Majeed syndrome, deficiency of interleukin-1 receptor antagonist, and cherubism. In this article, the authors focus on CNO and summarize the distinct genetic autoinflammatory bone syndromes.

  4. Electromagnetic fields in bone repair and adaptation

    NASA Astrophysics Data System (ADS)

    McLeod, Kenneth J.; Rubin, Clinton T.; Donahue, Henry J.

    1995-01-01

    The treatment of delayed union of bone fractures has served for the past 20 years as the principal testing ground for determining whether nonionizing electromagnetic fields can have any substantial, long-term effects in clinical medicine. Recent double-blinded clinical trials have confirmed the significance of the reported effects on bone healing and have led to the suggestion that electromagnetic fields may also be useful in the treatment of other orthopedic problems such as fresh fractures, stabilization of prosthetic implants, or even the prevention or treatment of osteoporosis. However, the design of appropriate treatment regimens for these new applications would be greatly facilitated if it were understood how the biological cells within bone tissue sense these low-frequency, and remarkably low level, electromagnetic fields. Here we address the engineering and physical science aspects of this problem. We review the characteristics of clinically used electromagnetic fields and discuss which components of these fields may actually be responsible for altering the activity of the bone cells. We then consider several physical mechanisms which have been proposed to explain how the cells within the bone or fracture tissue detect this field component.

  5. [Pulmonary Echinococcosis: Surgical Aspects].

    PubMed

    Eichhorn, M E; Hoffmann, H; Dienemann, H

    2015-10-01

    Pulmonary cystic echinococcosis is a very rare disease in Germany. It is caused by the larvae of the dog tapeworm (echinococcus granulosus). The liver is the most affected organ, followed by the lungs. Surgery remains the main therapeutic approach for pulmonary CE. Whenever possible, parenchyma-preserving lung surgery should be preferred over anatomic lung resections. To ensure best therapeutic results, surgery needs to be performed under precise consideration of important infectiological aspects and patients should be treated in specialised centres based on interdisciplinary consensus. In addition to surgical aspects, this review summarises special infectiological features of this disease, which are crucial to the surgical approach. PMID:26351761

  6. Wrist flexion strength after excision of the pisiform bone.

    PubMed

    Arner, M; Hagberg, L

    1984-01-01

    Diseases of the pisiform triquetral (P-T) joint and the pisiform itself are often treated with excision of the pisiform bone. The flexor carpi ulnaris (FCU) tendon inserts on the volar aspect of the pisiform, suggesting a loss of strength in wrist flexion following excision of the bone. Isometric and dynamic, isokinetical measurements were made using a strain-gauge dynamometer (Cybex II). Slight postoperative reduction of wrist flexion strength, compared with the contralateral wrist, was noted but not of clinical significance. It is concluded that one should not refrain from excision of the pisiform bone for fear of considerable strength loss in wrist joint flexion.

  7. Sensitivity of bone cell populations to weightlessness and simulated weightlessness

    NASA Technical Reports Server (NTRS)

    Roberts, W. E.; Morey-Holton, E. R.; Gonsalves, M. R.

    1984-01-01

    A rat suspension model for simulating certain aspects of weightlessness is discussed. Perturbations in physiological systems induced by this head down suspension model are verified by flight data. Findings of a suppression of osteoblast differentiation help explain the inhibition of bone formation inflight and during Earth-bound simulations. Since the anatomical site for these studies was in the maxilla, which is gravity loaded but non weightbearing in ground-based simulations, the similarity of bone cell kinetic changes, both inflight and in the ground-based model, suggest that fluid shifts rather than unloading may play an important role in bone alterations, at least at this sampling site.

  8. Cellular and molecular toxicity of lead in bone

    SciTech Connect

    Pounds, J.G. ); Long, G.J.; Rosen, J.F. )

    1991-02-01

    To fully understand the significance of bone as a target tissue of lead toxicity, as well as a reservoir of systemic lead, it is necessary to define the effects of lead on the cellular components of bone. Skeletal development and the regulation of skeletal mass are ultimately determined by the four different types of cells: osteoblasts, lining cells, osteoclasts, and osteocytes. These cells, which line and penetrate the mineralized matrix, are responsible for matrix formation, mineralization, and bone resorption, under the control of both systemic and local factors. Systemic components of regulation include parathyroid hormone, 1,25-dihydroxyvitamin D{sub 3}, and calcitonin; local regulators include numerous cytokines and growth factors. Lead intoxication directly alters many aspects of bone cell function. First, lead may indirectly alter bone cell function through changes in the circulating levels of those hormones, particularly 1,25-dihydroxyvitamin D{sub 3}, which modulate bone cell function. Second, lead may directly alter bone cell function by perturbing the ability of bone cells to respond to hormonal regulation. Third, lead may impair the ability of cells to synthesize or secrete other components of the bone matrix, such as collagen or bone sialoproteins (osteopontin). Finally, lead may directly effect of substitute for calcium in the active sites of the calcium messenger system. The effects of lead on the recruitment and differentiation of bone cells remains to be established. Many of the toxic effects of lead on bone cell function may be produced by perturbation of the calcium and cAMP messenger systems in these cells.

  9. Medical Aspects of Surfing.

    ERIC Educational Resources Information Center

    Renneker, Mark

    1987-01-01

    The medical aspects of surfing include ear and eye injuries and sprains and strains of the lower back and neck, as well as skin cancer from exposure to the sun. Treatment, rehabilitation, and prevention of these problems are discussed. Surfing is recommended as part of an exercise program for reasonably healthy people. (Author/MT)

  10. Global aspects of monsoons

    NASA Technical Reports Server (NTRS)

    Murakami, T.

    1985-01-01

    Recent developments are studied in three areas of monsoon research: (1) global aspects of the monsoon onset, (2) the orographic influence of the Tibetan Plateau on the summer monsoon circulations, and (3) tropical 40 to 50 day oscillations. Reference was made only to those studies that are primarily based on FGGE Level IIIb data. A brief summary is given.

  11. Sociological Aspects of Deafness.

    ERIC Educational Resources Information Center

    World Federation of the Deaf, Rome (Italy).

    Nine conference papers treat the sociological aspects of deafness. Included are "Individuals Being Deaf and Blind and Living with a Well Hearing Society" by A. Marx (German Federal Republic), "A Deaf Man's Experiences in a Hearing World" by A. B. Simon(U.S.A.), "Problem of Text Books and School Appliances for Vocational Education of Deaf Adults"…

  12. Aspects of Marine Ecology.

    ERIC Educational Resources Information Center

    Awkerman, Gary L.

    This publication is designed for use in standard science curricula to develop oceanologic manifestations of certain science topics. Included are teacher guides, student activities, and demonstrations to impart ocean science understanding, specifically, aspects of marine ecology, to high school students. The course objectives include the ability of…

  13. PATHOLOGIC AND IMPENDING FRACTURES: BIOLOGICAL AND CLINICAL ASPECTS.

    PubMed

    Spinelli, M S; Campi, S; Sacchetti, F M; Rossi, B; Di Martino, A; Giannini, S; Piccioli, A

    2015-01-01

    Bone metastases from carcinomas are epidemiologically rising because of the increased survival rate of oncologic patients, related to several factors such as improvement of primary and secondary screening, advancement of medical research and technology and the better understanding of mechanisms underlying bone metastases origination from primary tumor. Skeletal Related Events (SREs) can seriously affect quality of life in patients with metastatic disease. These events include the necessity of radiotherapy or bone surgery, malignant hypercalcemia, pathologic fractures and spinal cord compression. Among the SREs, pathologic fractures are the most disabling events and represent an emergency in these delicate patients. A pathologic fracture is defined as a fracture that occurs at the level of a pre-existing bone lesion (that is often a tumor), spontaneously or as the result of low-energy trauma (1). The pre-existence of the metastatic lesion in the bone, its evaluation and the assessment of progression can make these complications predictable and preventable. Pathologic fractures imply several severe consequences, including patient immobilization (in the case of fractures involving the lower limbs), loss of autonomy, anaemia, need of blood transfusion, discontinuation of medical therapies or radiotherapy and protracted hospitalization. Secondary effects of prolonged immobilization and loss of autonomy further lengthen this list of complications in patients who are already significantly limited in their activities. In the present paper, the authors present a review on the main aspects involved in bone metastastic disease: biology, quality of life, economic impact and survival. PMID:26652492

  14. Aneurysmal bone cyst involving the metacarpal bone in a child.

    PubMed

    Song, Kwang Soon; Lee, Si Wook; Bae, Ki Cheor; Sohn, Eun Seok

    2015-03-01

    Aneurysmal bone cysts associated with tubular bones of the hand occur rarely and require particular diagnostic and therapeutic management techniques. While optimal treatment has not been established, accepted treatments range from aggressive radical treatment, including en bloc resection and excision diaphysectomy with strut bone grafting, to relatively simple techniques, such as thorough curettage followed by bone graft. Aggressive treatment approaches may be optimal for the cases with articular surface involvement, full-bone invasion of the phalanx or metacarpal, or more than 1 recurrence. We report a monocentric case of aneurysmal bone cysts involving metacarpal bone in a child who achieved favorable outcome with curettage and morselized cancellous bone grafts. PMID:25750953

  15. THE IMMUNE SYSTEM AND BONE

    PubMed Central

    Pacifici, Roberto

    2010-01-01

    T cells and B cells produce large amounts of cytokines which regulate bone resorption and bone formation. These factors play a critical role in the regulation of bone turnover in health and disease. In addition, immune cells of the bone marrow regulate bone homeostasis by cross-talking with bone marrow stromal cells and osteoblastic cells via cell surface molecules. These regulatory mechanisms are particularly relevant for postmenopausal osteoporosis and hyperparathyroidism, two common forms of bone loss caused primarily by an expansion of the osteoclastic pool only partially compensated by a stimulation of bone formation. This article describes the cytokines and immune factors that regulate bone cells, the immune cells relevant to bone, examines the connection between T cells and bone in health and disease, and reviews the evidence in favor of a link between T cells and the mechanism of action of estrogen and PTH in bone. PMID:20599675

  16. Oral Health and Bone Disease

    MedlinePlus

    ... Healthy Bones Resources For Your Information Skeletal Bone Density and Dental Concerns The portion of the jawbone ... who do not have the disease. Low bone density in the jaw can result in other dental ...

  17. Bone Grafting the Cleft Maxilla

    MedlinePlus

    ... amount of bone from one place (usually the hip, head, ribs, or leg) and placing it in ... adjacent teeth into the bone graft; 2) prosthetic replacement (dental bridge); or 3) dental metallic bone implants. ...

  18. Exercise for Your Bone Health

    MedlinePlus

    ... supported by your browser. Home Bone Basics Lifestyle Exercise for Your Bone Health Publication available in: PDF ( ... A Complete Osteoporosis Program For Your Information Why Exercise? Like muscle, bone is living tissue that responds ...

  19. Automated trabecular bone histomorphometry

    NASA Technical Reports Server (NTRS)

    Polig, E.; Jee, W. S. S.

    1985-01-01

    The toxicity of alpha-emitting bone-seeking radionuclides and the relationship between bone tumor incidence and the local dosimetry of radionuclides in bone are investigated. The microdistributions of alpha-emitting radionuclides in the trabecular bone from the proximal humerus, distal humerus, proximal ulna, proximal femur, and distal femur of six young adult beagles injected with Am-241 (three with 2.8 micro-Ci/kg and three with 0.9 micro-Ci/kg) are estimated using a computer-controlled microscope photometer system; the components of the University of Utah Optical Track Scanner are described. The morphometric parameters for the beagles are calculated and analyzed. It is observed that the beagles injected with 0.9 micro-Ci of Am-241/kg showed an increase in the percentage of bone and trabecular bone thickness, and a reduction in the width of the bone marrow space and surface/volume ratio. The data reveal that radiation damage causes abnormal bone structure.

  20. Surgery for Bone Cancer

    MedlinePlus

    ... heat. The heat helps kill any remaining tumor cells. This allows PMMA to be used without cryosurgery for some types of bone tumors. Surgical treatment of metastasis To be able to cure a bone cancer, it and any existing metastases must be removed ...

  1. Osteotransductive bone cements.

    PubMed

    Driessens, F C; Planell, J A; Boltong, M G; Khairoun, I; Ginebra, M P

    1998-01-01

    Calcium phosphate bone cements (CPBCs) are osteotransductive, i.e. after implantation in bone they are transformed into new bone tissue. Furthermore, due to the fact that they are mouldable, their osteointegration is immediate. Their chemistry has been established previously. Some CPBCs contain amorphous calcium phosphate (ACP) and set by a sol-gel transition. The others are crystalline and can give as the reaction product dicalcium phosphate dihydrate (DCPD), calcium-deficient hydroxyapatite (CDHA), carbonated apatite (CA) or hydroxyapatite (HA). Mixed-type gypsum-DCPD cements are also described. In vivo rates of osteotransduction vary as follows: gypsum-DCPD > DCPD > CDHA approximately CA > HA. The osteotransduction of CDHA-type cements may be increased by adding dicalcium phosphate anhydrous (DCP) and/or CaCO3 to the cement powder. CPBCs can be used for healing of bone defects, bone augmentation and bone reconstruction. Incorporation of drugs like antibiotics and bone morphogenetic protein is envisaged. Load-bearing applications are allowed for CHDA-type, CA-type and HA-type CPBCs as they have a higher compressive strength than human trabecular bone (10 MPa).

  2. Benign bone tumors.

    PubMed

    Steffner, Robert

    2014-01-01

    Benign bone lesions are a broad category that demonstrates a spectrum of activities from latent to aggressive. Differentiating the various tumors is important in order to properly determine necessary intervention. This chapter focuses on the presentation, imaging, diagnostic features, and treatment of the most common benign bone tumors in order to help guide diagnosis and management. PMID:25070230

  3. Biodegradable synthetic bone composites

    DOEpatents

    Liu, Gao; Zhao, Dacheng; Saiz, Eduardo; Tomsia, Antoni P.

    2013-01-01

    The invention provides for a biodegradable synthetic bone composition comprising a biodegradable hydrogel polymer scaffold comprising a plurality of hydrolytically unstable linkages, and an inorganic component; such as a biodegradable poly(hydroxyethylmethacrylate)/hydroxyapatite (pHEMA/HA) hydrogel composite possessing mineral content approximately that of human bone.

  4. BONES, TEACHER'S GUIDE.

    ERIC Educational Resources Information Center

    Elementary Science Study, Newton, MA.

    THIS GUIDE WAS DEVELOPED FOR USE WITH THE ELEMENTARY SCIENCE STUDY UNIT ON "BONES.""BONES" HAS BEEN TAUGHT IN THE FOURTH GRADE AND REQUIRES FROM 10 TO 25 LESSONS, DEPENDING ON THE NUMBER OF ACTIVITIES USED. THE GUIDE DOES NOT PROVIDE DETAILED INSTRUCTION FOR CONDUCTING CLASSES, BUT RATHER SOME POSSIBLE ACTIVITIES, AND LEAVES THE DAY-TO-DAY…

  5. Bone Defect Regeneration by a Combination of a β-Tricalcium Phosphate Scaffold and Bone Marrow Stromal Cells in a Non-Human Primate Model

    PubMed Central

    Masaoka, Tomokazu; Yoshii, Toshitaka; Yuasa, Masato; Yamada, Tsuyoshi; Taniyama, Takashi; Torigoe, Ichiro; Shinomiya, Kenichi; Okawa, Atsushi; Morita, Sadao; Sotome, Shinichi

    2016-01-01

    Background: Reconstruction of large bone defects is a great challenge in orthopedic research. In the present study, we prepared composites of bone marrow-derived stromal cells (BMSCs) and β-tricalcium phosphate (β-TCP) with three novel aspects: proliferation of BMSCs with continuous dexamethasone treatment, cell loading under low pressure, and use of autologous plasma as the cell loading medium. The effectiveness of the resulting composite for large bone-defect reconstruction was tested in a non-human primate model, and the bone union capability of the regenerated bones was examined. Materials and Methods: Primary surgery: Bone defects (5 cm long) were created in the left femurs of nine cynomolgus monkeys with resection of the periosteum (five cases) or without resection (four cases), and porous β-TCP blocks were transplanted into the defects. Secondary surgery: Bone marrow aspirates harvested from seven of the nine monkeys were cultured with dexamethasone, and BMSCs were obtained. BMSCs were suspended in autologous plasma and introduced into a porous β-TCP block under low-pressure conditions. The BMSC/β-TCP composites were transplanted into bone defects created at the same sites as the primary surgery. Bone union evaluation: Five regenerated femurs were shortened by osteotomy surgery 8 to 15 months after transplantation of the β-TCP/BMSC composites, and bone union was evaluated radiographically. Results: After the primary surgery and treatment with β-TCP alone, one of the five periosteum-resected monkeys and two of the four periosteum-preserved monkeys exhibited successful bone reconstruction. In contrast, five of the seven cases treated with the β-TCP/MSC composite showed successful bone regeneration. In four of the five osteotomy cases, bone union was confirmed. Conclusion: We validated the effectiveness of a novel β-TCP/BMSC composite for large bone defect regeneration and confirmed the bone union capability of the regenerated bone. PMID:27073583

  6. Bone and Celiac Disease.

    PubMed

    Zanchetta, María Belén; Longobardi, Vanesa; Bai, Julio César

    2016-04-01

    More than 50% of untreated patients with celiac disease (CD) have bone loss detected by bone densitometry (dual-energy X-ray absorptiometry:DXA). Moreover, patients with CD are more likely to have osteoporosis and fragility fractures, especially of the distal radius. Although still controversial, we recommend DXA screening in all celiac disease patients, particularly in those with symptomatic CD at diagnosis and in those who present risk factors for fracture such as older age, menopausal status, previous fracture history, and familial hip fracture history. Bone microarchitecture, especially the trabecular network, may be deteriorated, explaining the higher fracture risk in these patients. Adequate calcium and vitamin D supplementation are also recommended to optimize bone recovery, especially during the first years of gluten free diet (GFD). If higher fracture risk persists after 1 or 2 years of GFD, specific osteoactive treatment may be necessary to improve bone health.

  7. Ultrasonic bone densitometer

    NASA Technical Reports Server (NTRS)

    Hoop, J. M. (Inventor)

    1974-01-01

    A device, for measuring the density of a bone structure so as to monitor the calcium content, is described. A pair of opposed spaced ultrasonic transducers are held within a clamping apparatus closely adjacent the bone being analyzed. These ultrasonic transducers incude piezoelectric crystals shaped to direct signals through the bone encompassed in the heel and finger of the subject being tested. A pulse generator is coupled to one of the transducers and generates an electric pulse for causing the transducers to generate an ultrasonic sound wave which is directed through the bone structure to the other transducer. An electric circuit, including an amplifier and a bandpass filter couples the signals from the receiver transducer back to the pulse generator for retriggering the pulse generator at a frequency proportional to the duration that the ultrasonic wave takes to travel through the bone structure being examined.

  8. Behavioural aspects of terrorism.

    PubMed

    Leistedt, Samuel J

    2013-05-10

    Behavioural and social sciences are useful in collecting and analysing intelligence data, understanding terrorism, and developing strategies to combat terrorism. This article aims to examine the psychopathological concepts of terrorism and discusses the developing roles for behavioural scientists. A systematic review was conducted of studies investigating behavioural aspects of terrorism. These studies were identified by a systematic search of databases, textbooks, and a supplementary manual search of references. Several fundamental concepts were identified that continue to influence the motives and the majority of the behaviours of those who support or engage in this kind of specific violence. Regardless of the psychological aspects and new roles for psychiatrists, the behavioural sciences will continue to be called upon to assist in developing better methods to gather and analyse intelligence, to understand terrorism, and perhaps to stem the radicalisation process.

  9. Psychosocial Aspects of Obesity.

    PubMed

    Beck, Amy R

    2016-01-01

    This article is the sixth in a series of the comorbidities of childhood obesity and reviews psychosocial aspects with a focus on weight-based victimization and discrimination stemming from weight bias and stigma. Outcomes from these bullying and discriminatory experiences are pervasive and impact youth across all settings, including school. Lastly, this article provides recommendations on how to reduce bias and stigma to better serve these students in the school environment. PMID:26739931

  10. Aspects of B physics

    SciTech Connect

    Gaillard, M.K.

    1987-10-14

    Various aspects of weak decays are commented on. Probing of the standard model and of phenomena beyond the standard model are discussed, followed by a theoretical view of B mesons and some experimental observations on B mesons. The point is made that any data on B decay would be interesting in that it would provide powerful new constraints in analyses of the standard model and extensions thereof. (LEW)

  11. Bone Blood Flow During Simulated Microgravity: Physiological and Molecular Mechanisms

    NASA Technical Reports Server (NTRS)

    Bloomfield, Susan A.

    1999-01-01

    determined by 3-point bending (tibia, humerus) or compression (femoral neck) testing to failure. A unique aspect of these studies will be defining the time course of changes in gene expression in bone cell populations with unloading, accomplished with Northern blots, in situ hybridization, and immunohistochemistry. These studies have high relevance for concurrent protocols being proposed by investigators on NSBRI Cardiovascular and Muscle teams, with blood flow data available on a number of tissues other than bone. Further, dobutamine and other Beta-agonists have been tested as countermeasures for altered muscle and cardiovascular function. Results of the intervention tested in our studies have potential relevance for a number of systemic changes seen with prolonged spaceflight.

  12. Cellular and morphological aspects of fibrodysplasia ossificans progressiva

    PubMed Central

    Martelli, Anderson; Santos, Arnaldo Rodrigues

    2014-01-01

    Fibrodysplasia ossificans progressiva (FOP) is a rare congenital disease that causes bone formation within the muscles, tendons, ligaments and connective tissues. There is no cure for this disorder and only treatment of the symptoms is available. The purpose of this study was to review the literature and describe the clinical, cellular and molecular aspects of FOP. The material used for the study was obtained by reviewing scientific articles published in various literature-indexed databases. In view of its rarity and of the lack of insightful information and the unpredictability of its course, FOP is a challenging disorder for professionals who are confronted by it. However, this rare disease raises a great deal of interest because understanding the mechanism of mature bone formation can encourage research lines related to bone regeneration and the prevention of heterotopic ossification. PMID:25482313

  13. Stress fracture of the second metacarpal bone in a badminton player.

    PubMed

    Fukuda, Koji; Fujioka, Hiroyuki; Fujita, Ikuo; Uemoto, Harunobu; Hiranaka, Takafumi; Tsuji, Mitsuo; Kurosaka, Masahiro

    2008-01-01

    We present a rare case of stress fracture of the second metacarpal bone. A 14-year-old girl felt pain on the dorsal aspect of the right wrist without any history of major trauma, when she played a smash during a game of badminton. On the radiographs, periosteal reaction was detected on the ulnar aspect of the base of the second metacarpal bone. She was treated conservatively and she returned to the original activity level.

  14. Gallium scintigraphy in bone infarction. Correlation with bone imaging

    SciTech Connect

    Armas, R.R.; Goldsmith, S.J.

    1984-01-01

    The appearance of gallium-67 images in bone infarction was studied in nine patients with sickle cell disease and correlated with the bone scan findings. Gallium uptake in acute infarction was decreased or absent with a variable bone scan uptake, and normal in healing infarcts, which showed increased uptake on bone scan. The significance of these findings is discussed.

  15. Distinguishing between the bone fragments of medium-sized mammals and children. A histological identification method for archaeology.

    PubMed

    Cuijpers, Saddha A G F M

    2009-06-01

    In archaeology, it is not always possible to identify bone fragments. A novel approach was chosen to assess the potential of histology as an identification tool. Instead of studying a few bones of different categories from many species, this study concentrated on the diaphyses of long bones in four species of comparable size which are relevant to archaeology; young humans, pigs, sheep and goats, to broaden the insight into variations in diaphyseal bone structure within and between these species. A general difference in the primary bone structure was found between children older than one year and the three medium-sized mammals, namely lamellar vs. fibro-lamellar primary bone. Although, the diaphyseal bone structure of children below the age of one year also showed (developing) fibro-lamellar bone, its composition was distinctive from the medium-sized mammals. A difference in the secondary bone structure was also observed. Connecting (Volkmann's) canals, giving the secondary bone a reticular aspect, were seen in the medium-sized mammals but not in the young human long bones. To confirm the validity and applicability of these observed histological differences, a blind test was conducted on 14 diaphyseal fragments of identified long bones from archaeological sites. The results were very promising. All the bone fragments were correctly attributed using the difference in primary bone structure, even when the bone was severely degraded.

  16. SILICON AND BONE HEALTH

    PubMed Central

    JUGDAOHSINGH, R.

    2009-01-01

    Low bone mass (osteoporosis) is a silent epidemic of the 21st century, which presently in the UK results in over 200,000 fractures annually at a cost of over one billion pounds. Figures are set to increase worldwide. Understanding the factors which affect bone metabolism is thus of primary importance in order to establish preventative measures or treatments for this condition. Nutrition is an important determinant of bone health, but the effects of the individual nutrients and minerals, other than calcium, is little understood. Accumulating evidence over the last 30 years strongly suggest that dietary silicon is beneficial to bone and connective tissue health and we recently reported strong positive associations between dietary Si intake and bone mineral density in US and UK cohorts. The exact biological role(s) of silicon in bone health is still not clear, although a number of possible mechanisms have been suggested, including the synthesis of collagen and/or its stabilization, and matrix mineralization. This review gives an overview of this naturally occurring dietary element, its metabolism and the evidence of its potential role in bone health. PMID:17435952

  17. Microwave drilling of bones.

    PubMed

    Eshet, Yael; Mann, Ronit Rachel; Anaton, Abby; Yacoby, Tomer; Gefen, Amit; Jerby, Eli

    2006-06-01

    This paper presents a feasibility study of drilling in fresh wet bone tissue in vitro using the microwave drill method [Jerby et al, 2002], toward testing its applicability in orthopaedic surgery. The microwave drill uses a near-field focused energy (typically, power under approximately 200 W at 2.45-GHz frequency) in order to penetrate bone in a drilling speed of approximately 1 mm/s. The effect of microwave drilling on mechanical properties of whole ovine tibial and chicken femoral bones drilled in vitro was studied using three-point-bending strength and fatigue tests. Properties were compared to those of geometrically similar bones that were equivalently drilled using the currently accepted mechanical rotary drilling method. Strength of mid-shaft, elastic moduli, and cycles to failure in fatigue were statistically indistinguishable between specimen groups assigned for microwave and mechanical drilling. Carbonized margins around the microwave-drilled hole were approximately 15% the hole diameter. Optical and scanning electron microscopy studies showed that the microwave drill produces substantially smoother holes in cortical bone than those produced by a mechanical drill. The hot spot produced by the microwave drill has the potential for overcoming two major problems presently associated with mechanical drilling in cortical and trabecular bone during orthopaedic surgeries: formation of debris and rupture of bone vasculature during drilling.

  18. [Determinants of bone quality and strength independent of bone remodeling].

    PubMed

    Saito, Mitsuru; Marumo, Keishi

    2016-01-01

    Bone mineral density(BMD)and bone microstructure are regulated mainly by bone remodeling. In contrast, bone collagen enzymatic immature and mature cross-links and advanced glycation end products such as pentosidine and carboxyl methyl lysine are affected by various factors. Aging bone tissue is repaired in the process of bone remodeling. However, deterioration of bone material properties markedly advances due to increases in oxidative stress, glycation stress, reactive oxygen species, carbonyl stress associated with aging and reduced sex hormone levels, and glucocorticoid use. To improve bone material properties in osteoporosis, we should use different drug (Saito M, Calcif Tissue Int, REVIEW, 97;242-261, 2015). In this review, we summarized determinants of bone quality and strength independent of bone remodeling. PMID:26728528

  19. On the pathway of mineral deposition in larval zebrafish caudal fin bone.

    PubMed

    Akiva, Anat; Malkinson, Guy; Masic, Admir; Kerschnitzki, Michael; Bennet, Mathieu; Fratzl, Peter; Addadi, Lia; Weiner, Steve; Yaniv, Karina

    2015-06-01

    A poorly understood aspect of bone biomineralization concerns the mechanisms whereby ions are sequestered from the environment, concentrated, and deposited in the extracellular matrix. In this study, we follow mineral deposition in the caudal fin of the zebrafish larva in vivo. Using fluorescence and cryo-SEM-microscopy, in combination with Raman and XRF spectroscopy, we detect the presence of intracellular mineral particles located between bones, and in close association with blood vessels. Calcium-rich particles are also located away from the mineralized bone, and these are also in close association with blood vessels. These observations challenge the view that mineral formation is restricted to osteoblast cells juxtaposed to bone, or to the extracellular matrix. Our results, derived from observations performed in living animals, contribute a new perspective to the comprehensive mechanism of bone formation in vertebrates, from the blood to the bone. More broadly, these findings may shed light on bone mineralization processes in other vertebrates, including humans.

  20. Nutritional aspect of pediatric inflammatory bowel disease: its clinical importance.

    PubMed

    Kim, Seung; Koh, Hong

    2015-10-01

    Inflammatory bowel disease (IBD) is a chronic inflammatory disease mainly affecting the gastrointestinal tract. The incidence of the disease is rapidly increasing worldwide, and a number of patients are diagnosed during their childhood or adolescence. Aside from controlling the gastrointestinal symptoms, nutritional aspects such as growth, bone mineral density, anemia, micronutrient deficiency, hair loss, and diet should also be closely monitored and managed by the pediatric IBD team especially since the patients are in the development phase.

  1. Nutritional aspect of pediatric inflammatory bowel disease: its clinical importance

    PubMed Central

    Kim, Seung

    2015-01-01

    Inflammatory bowel disease (IBD) is a chronic inflammatory disease mainly affecting the gastrointestinal tract. The incidence of the disease is rapidly increasing worldwide, and a number of patients are diagnosed during their childhood or adolescence. Aside from controlling the gastrointestinal symptoms, nutritional aspects such as growth, bone mineral density, anemia, micronutrient deficiency, hair loss, and diet should also be closely monitored and managed by the pediatric IBD team especially since the patients are in the development phase. PMID:26576179

  2. Theoretical aspects of immunity.

    PubMed

    Deem, Michael W; Hejazi, Pooya

    2010-01-01

    The immune system recognizes a myriad of invading pathogens and their toxic products. It does so with a finite repertoire of antibodies and T cell receptors. We here describe theories that quantify the dynamics of the immune system. We describe how the immune system recognizes antigens by searching the large space of receptor molecules. We consider in some detail the theories that quantify the immune response to influenza and dengue fever. We review theoretical descriptions of the complementary evolution of pathogens that occurs in response to immune system pressure. Methods including bioinformatics, molecular simulation, random energy models, and quantum field theory contribute to a theoretical understanding of aspects of immunity.

  3. Aspiration and Biopsy: Bone Marrow

    MedlinePlus

    ... Help a Friend Who Cuts? Aspiration and Biopsy: Bone Marrow KidsHealth > For Teens > Aspiration and Biopsy: Bone Marrow Print A A A Text Size What's in ... Risks If You Have Questions What It Is Bone marrow aspirations and biopsies are performed to examine bone ...

  4. Bone Remodeling Under Pathological Conditions.

    PubMed

    Xiao, Wenmei; Li, Shuai; Pacios, Sandra; Wang, Yu; Graves, Dana T

    2016-01-01

    Bone is masterfully programmed to repair itself through the coupling of bone formation following bone resorption, a process referred to as coupling. In inflammatory or other conditions, the balance between bone resorption and bone formation shifts so that a net bone loss results. This review focuses on four pathologic conditions in which remodeling leads to net loss of bone, postmenopausal osteoporosis, arthritis, periodontal disease, and disuse bone loss, which is similar to bone loss associated with microgravity. In most of these there is an acceleration of the resorptive process due to increased formation of bone metabolic units. This initially leads to a net bone loss since the time period of resorption is much faster than the time needed for bone formation that follows. In addition, each of these processes is characterized by an uncoupling that leads to net bone loss. Mechanisms responsible for increased rates of bone resorption, i.e. the formation of more bone metabolic units, involve enhanced expression of inflammatory cytokines and increased expression of RANKL. Moreover, the reasons for uncoupling are discussed which range from a decrease in expression of growth factors and bone morphogenetic proteins to increased expression of factors that inhibit Wnt signaling. PMID:26599114

  5. Alcohol and bone.

    PubMed

    Mikosch, Peter

    2014-01-01

    Alcohol is widely consumed across the world in different cultural and social settings. Types of alcohol consumption differ between (a) light, only occasional consumption, (b) heavy chronic alcohol consumption, and (c) binge drinking as seen as a new pattern of alcohol consumption among teenagers and young adults. Heavy alcohol consumption is detrimental to many organs and tissues, including bones. Osteoporosis is regularly mentioned as a secondary consequence of alcoholism, and chronic alcohol abuse is established as an independent risk factor for osteoporosis. The review will present the different mechanisms and effects of alcohol intake on bone mass, bone metabolism, and bone strength, including alcoholism-related "life-style factors" such as malnutrition, lack of exercise, and hormonal changes as additional causative factors, which also contribute to the development of osteoporosis due to alcohol abuse. PMID:24477631

  6. Healthy Bones Matter

    MedlinePlus

    ... keep my bones more healthy? Definitions What can go wrong? Reprinted from The Surgeon General’s Report on ... women who don’t smoke, and they often go through menopause earlier. Smokers also may absorb less ...

  7. Bone mineral density test

    MedlinePlus

    ... test; Bone densitometry; DEXA scan; DXA; Dual-energy x-ray absorptiometry; p-DEXA; Osteoporosis-BMD ... common and accurate way uses a dual-energy x-ray absorptiometry (DEXA) scan. DEXA uses low-dose x- ...

  8. Calcium and bones

    MedlinePlus

    ... only gets the calcium it needs through the food you eat, or from supplements. If you do ... materials it needs to build bones. High-calcium foods include: Milk Cheese Ice cream Leafy green vegetables, ...

  9. Proximal Tibial Bone Graft

    MedlinePlus

    ... Complications Potential problems after a PTBG include infection, fracture of the proximal tibia and pain related to the procedure. Frequently Asked Questions If proximal tibial bone graft is taken from my knee, will this prevent me from being able to ...

  10. Children with Brittle Bones.

    ERIC Educational Resources Information Center

    Alston, Jean

    1982-01-01

    Special help given to children with Osteogenesis Imperfecta (brittle bone disease) is described, including adapted equipment to allow for writing and use of a classroom assistant to aid participation in a regular classroom. (CL)

  11. Diabetic patients: Psychological aspects.

    PubMed

    Adili, Fatemeh; Larijani, Bagher; Haghighatpanah, Mohammadreza

    2006-11-01

    This study was undertaken to consider the psychological aspect of diabetes with regard to improving clinical outcomes. The review was limited to literature reports on the causes, solutions, and treatments of some common psychological problems known to complicate diabetes management. A literature search was undertaken using Pub-Med, CINAHL, Proquest, Elsevier, Blackwell Synergy, Ovid, Ebsco, Rose net, and Google websites, including studies published in English journals between 1995 and 2006. Therefore about 88 articles were selected based on the inclusion criteria. In earlier studies, relatively little empirical research was found to substantiate the effect of psychological counseling in complicated diabetes. The greatest deficits were seen in areas of mental health, self-esteem parent impact, and family cohesion. There were some different factors, which influence the psychological aspect of diabetic patients, such as age, gender, place of living, familial and social support, motivation, energy, life satisfaction, and lifestyle. There are various types of solutions for coping with the psychological problems in diabetic clients. The most essential solution lies in educating the patients and healthcare providers on the subject. Before initiating each educational intervention, a thorough assessment would be crucial. Treatment plans may benefit from cognitive behavior therapy (CBT), behavior family therapy, improving family communication, problem-solving skills, and providing motivation for diabetic patients. Moreover, it seems that the close collaboration between diabetologists and psychologists would be fruitful.

  12. Regulatory aspects on nanomedicines.

    PubMed

    Sainz, Vanessa; Conniot, João; Matos, Ana I; Peres, Carina; Zupancic, Eva; Moura, Liane; Silva, Liana C; Florindo, Helena F; Gaspar, Rogério S

    2015-12-18

    Nanomedicines have been in the forefront of pharmaceutical research in the last decades, creating new challenges for research community, industry, and regulators. There is a strong demand for the fast development of scientific and technological tools to address unmet medical needs, thus improving human health care and life quality. Tremendous advances in the biomaterials and nanotechnology fields have prompted their use as promising tools to overcome important drawbacks, mostly associated to the non-specific effects of conventional therapeutic approaches. However, the wide range of application of nanomedicines demands a profound knowledge and characterization of these complex products. Their properties need to be extensively understood to avoid unpredicted effects on patients, such as potential immune reactivity. Research policy and alliances have been bringing together scientists, regulators, industry, and, more frequently in recent years, patient representatives and patient advocacy institutions. In order to successfully enhance the development of new technologies, improved strategies for research-based corporate organizations, more integrated research tools dealing with appropriate translational requirements aiming at clinical development, and proactive regulatory policies are essential in the near future. This review focuses on the most important aspects currently recognized as key factors for the regulation of nanomedicines, discussing the efforts under development by industry and regulatory agencies to promote their translation into the market. Regulatory Science aspects driving a faster and safer development of nanomedicines will be a central issue for the next years.

  13. Statins and bone formation.

    PubMed

    Garrett, I R; Gutierrez, G; Mundy, G R

    2001-05-01

    The main therapy needed most in the bone field is an anabolic agent for the treatment of osteoporosis. Current drugs on the market, which included bisphosphonates, calcitonin, estrogen and related compounds, vitamin D analogues trabecular microarchitecture. Therefore, it would be desirable to have a satisfactory and universally and iprifalvone, are essentially bone resorption inhibitors that mainly act to stabilize bone mass. Patients with established osteoporosis have lost more than 50% of their bone mass at critical sites in the skeleton, and more over have marked disruption of acceptable drug that would stimulate new bone formation and correct this disturbance of trabecular microarchitecture characteristic of established osteoporosis. Recently inhibitors of the enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase, which controls the first step in the biosynthesis of cholesterol, have been shown to stimulate bone formation in rodents both in vitro and in vivo. The effect is associated with an increased expression of the bone morphogenetic protein-2 (BMP-2) gene in bone cells. These statins drugs are widely used agents for lowering cholesterol and reducing heart attacks, however they are also known to elicit numerous pleiotropic effects including inhibition of proliferation and migration of smooth muscle cells, inhibition of tumor growth and anti-inflammatory activity. Some of these effects have been attributed to not only to the reduction of cholesterol synthesis by inhibition of the HMG-CoA reductase enzyme but also by the concurrent reduction in downstream metabolites of the mevalonate pathway such as mevalonate, farnesyl pyrophosphate and geranylgeranyl pyrophosphate. The findings that statins are capable of increasing bone formation and bone mass in rodents suggests a potential new action for the statins, which may be beneficial in patients with established osteoporosis where marked bone loss has occurred. Recent clinical data suggests that they

  14. Biomaterials and bone.

    PubMed

    Pili, Daniele; Tranquilli Leali, Paolo

    2011-04-01

    The healing process of bone is influenced by several biochemical, biomechanics, cellular, hormonal and pathological mechanisms. The ideal biomaterials should therefore guarantee the same mechanisms and be able to "heal". At present we do not have such materials at our disposal. We can anyway select among several biomaterials with different characteristics to best suit our need. In this paper we will overview some of the biomaterials used today in bone surgery with regard to their main biological properties as well as their compatibility.

  15. Bone morphogenetic protein

    SciTech Connect

    Xiao Yongtao; Xiang Lixin; Shao Jianzhong

    2007-10-26

    Bone morphogenetic proteins (BMPs) are multi-functional growth factors belonging to the transforming growth factor-beta superfamily. It has been demonstrated that BMPs had been involved in the regulation of cell proliferation, survival, differentiation and apoptosis. However, their hallmark ability is that play a pivotal role in inducing bone, cartilage, ligament, and tendon formation at both heterotopic and orthotopic sites. In this review, we mainly concentrate on BMP structure, function, molecular signaling and potential medical application.

  16. Aneurysmal bone cyst of the ethmoid bone

    PubMed Central

    Janjua, Noor; Cresswell, Manuela; Sharma, Rishi; Maheshwar, Arcot

    2014-01-01

    A 90-year-old woman presented with headache and diplopia, and a mass in the nasal cavity and paranasal sinuses was found on CT scan. The patient underwent examination under anaesthesia showing a mass arising from the ethmoid, apparently from the nasal septum. Biopsies taken showed an aneurysmal bone cyst. The patient opted against surgery and has been managed conservatively. A second CT scan 4 years later showed significant increase in size. PMID:24706701

  17. Biomechanics and strain mapping in bone as related to immediately-loaded dental implants

    PubMed Central

    Du, Jing; Lee, Jihyun; Jang, Andrew; Gu, Allen; Hossaini-Zadeh, Mehran; Prevost, Richard; Curtis, Don; Ho, Sunita

    2015-01-01

    The effects of alveolar bone socket geometry and bone-implant contact on implant biomechanics, and resulting strain distributions in bone were investigated. Following extraction of lateral incisors on a cadaver mandible, immediate implants were placed and bone-implant contact area, stability and bone strain were measured. In situ biomechanical testing coupled with micro X-ray microscope (μ-XRM) illustrated less stiff bone-implant complexes (701-822 N/mm) compared with bone-periodontal ligament (PDL)-tooth complexes (791-913 N/mm). X-ray tomograms illustrated that the cause of reduced stiffness was due to reduced and limited bone-implant contact. Heterogeneous elemental composition of bone was identified by using energy dispersive X-ray spectroscopy (EDS). The novel aspect of this study was the application of a new experimental mechanics method, that is, digital volume correlation, which allowed mapping of strains in volumes of alveolar bone in contact with a loaded implant. The identified surface and subsurface strain concentrations were a manifestation of load transferred to bone through bone-implant contact based on bone-implant geometry, quality of bone, implant placement, and implant design. 3D strain mapping indicated that strain concentrations are not exclusive to the bone-implant contact regions, but also extend into bone not directly in contact with the implant. The implications of the observed strain concentrations are discussed in the context of mechanobiology. Although a plausible explanation of surgical complications for immediate implant treatment is provided, extrapolation of results is only warranted by future systematic studies on more cadaver specimens and/or in vivo small scale animal models. PMID:26162549

  18. Genetic Regulation of Bone Metabolism in the Chicken: Similarities and Differences to Mammalian Systems

    PubMed Central

    Johnsson, Martin; Jonsson, Kenneth B.; Andersson, Leif; Jensen, Per; Wright, Dominic

    2015-01-01

    Birds have a unique bone physiology, due to the demands placed on them through egg production. In particular their medullary bone serves as a source of calcium for eggshell production during lay and undergoes continuous and rapid remodelling. We take advantage of the fact that bone traits have diverged massively during chicken domestication to map the genetic basis of bone metabolism in the chicken. We performed a quantitative trait locus (QTL) and expression QTL (eQTL) mapping study in an advanced intercross based on Red Junglefowl (the wild progenitor of the modern domestic chicken) and White Leghorn chickens. We measured femoral bone traits in 456 chickens by peripheral computerised tomography and femoral gene expression in a subset of 125 females from the cross with microarrays. This resulted in 25 loci for female bone traits, 26 loci for male bone traits and 6318 local eQTL loci. We then overlapped bone and gene expression loci, before checking for an association between gene expression and trait values to identify candidate quantitative trait genes for bone traits. A handful of our candidates have been previously associated with bone traits in mice, but our results also implicate unexpected and largely unknown genes in bone metabolism. In summary, by utilising the unique bone metabolism of an avian species, we have identified a number of candidate genes affecting bone allocation and metabolism. These findings can have ramifications not only for the understanding of bone metabolism genetics in general, but could also be used as a potential model for osteoporosis as well as revealing new aspects of vertebrate bone regulation or features that distinguish avian and mammalian bone. PMID:26023928

  19. Genetic regulation of bone metabolism in the chicken: similarities and differences to Mammalian systems.

    PubMed

    Johnsson, Martin; Jonsson, Kenneth B; Andersson, Leif; Jensen, Per; Wright, Dominic

    2015-05-01

    Birds have a unique bone physiology, due to the demands placed on them through egg production. In particular their medullary bone serves as a source of calcium for eggshell production during lay and undergoes continuous and rapid remodelling. We take advantage of the fact that bone traits have diverged massively during chicken domestication to map the genetic basis of bone metabolism in the chicken. We performed a quantitative trait locus (QTL) and expression QTL (eQTL) mapping study in an advanced intercross based on Red Junglefowl (the wild progenitor of the modern domestic chicken) and White Leghorn chickens. We measured femoral bone traits in 456 chickens by peripheral computerised tomography and femoral gene expression in a subset of 125 females from the cross with microarrays. This resulted in 25 loci for female bone traits, 26 loci for male bone traits and 6318 local eQTL loci. We then overlapped bone and gene expression loci, before checking for an association between gene expression and trait values to identify candidate quantitative trait genes for bone traits. A handful of our candidates have been previously associated with bone traits in mice, but our results also implicate unexpected and largely unknown genes in bone metabolism. In summary, by utilising the unique bone metabolism of an avian species, we have identified a number of candidate genes affecting bone allocation and metabolism. These findings can have ramifications not only for the understanding of bone metabolism genetics in general, but could also be used as a potential model for osteoporosis as well as revealing new aspects of vertebrate bone regulation or features that distinguish avian and mammalian bone. PMID:26023928

  20. Bone nutrients for vegetarians.

    PubMed

    Mangels, Ann Reed

    2014-07-01

    The process of bone mineralization and resorption is complex and is affected by numerous factors, including dietary constituents. Although some dietary factors involved in bone health, such as calcium and vitamin D, are typically associated with dairy products, plant-based sources of these nutrients also supply other key nutrients involved in bone maintenance. Some research suggests that vegetarian diets, especially vegan diets, are associated with lower bone mineral density (BMD), but this does not appear to be clinically significant. Vegan diets are not associated with an increased fracture risk if calcium intake is adequate. Dietary factors in plant-based diets that support the development and maintenance of bone mass include calcium, vitamin D, protein, potassium, and soy isoflavones. Other factors present in plant-based diets such as oxalic acid and phytic acid can potentially interfere with absorption and retention of calcium and thereby have a negative effect on BMD. Impaired vitamin B-12 status also negatively affects BMD. The role of protein in calcium balance is multifaceted. Overall, calcium and protein intakes in accord with Dietary Reference Intakes are recommended for vegetarians, including vegans. Fortified foods are often helpful in meeting recommendations for calcium and vitamin D. Plant-based diets can provide adequate amounts of key nutrients for bone health. PMID:24898231

  1. Bone nutrients for vegetarians.

    PubMed

    Mangels, Ann Reed

    2014-07-01

    The process of bone mineralization and resorption is complex and is affected by numerous factors, including dietary constituents. Although some dietary factors involved in bone health, such as calcium and vitamin D, are typically associated with dairy products, plant-based sources of these nutrients also supply other key nutrients involved in bone maintenance. Some research suggests that vegetarian diets, especially vegan diets, are associated with lower bone mineral density (BMD), but this does not appear to be clinically significant. Vegan diets are not associated with an increased fracture risk if calcium intake is adequate. Dietary factors in plant-based diets that support the development and maintenance of bone mass include calcium, vitamin D, protein, potassium, and soy isoflavones. Other factors present in plant-based diets such as oxalic acid and phytic acid can potentially interfere with absorption and retention of calcium and thereby have a negative effect on BMD. Impaired vitamin B-12 status also negatively affects BMD. The role of protein in calcium balance is multifaceted. Overall, calcium and protein intakes in accord with Dietary Reference Intakes are recommended for vegetarians, including vegans. Fortified foods are often helpful in meeting recommendations for calcium and vitamin D. Plant-based diets can provide adequate amounts of key nutrients for bone health.

  2. The obesity of bone

    PubMed Central

    Greco, Emanuela A.; Lenzi, Andrea; Migliaccio, Silvia

    2015-01-01

    During the last decades, obesity and osteoporosis have become important global health problems, and the belief that obesity is protective against osteoporosis has recently come into question. In fact, some recent epidemiologic and clinical studies have shown that a high level of fat mass might be a risk factor for osteoporosis and fragility fractures. Several potential mechanisms have been proposed to explain the complex relationship between adipose tissue and bone. Indeed, adipose tissue secretes various molecules, named adipokines, which are thought to have effects on metabolic, skeletal and cardiovascular systems. Moreover, fat tissue is one of the major sources of aromatase, an enzyme that synthesizes estrogens from androgen precursors, hormones that play a pivotal role in the maintenance of skeletal homeostasis, protecting against osteoporosis. Moreover, bone cells express several specific hormone receptors and recent observations have shown that bone-derived factors, such as osteocalcin and osteopontin, affect body weight control and glucose homeostasis. Thus, the skeleton is considered an endocrine target organ and an endocrine organ itself, likely influencing other organs as well. Finally, adipocytes and osteoblasts originate from a common progenitor, a pluripotential mesenchymal stem cell, which has an equal propensity for differentiation into adipocytes or osteoblasts (or other lines) under the influence of several cell-derived transcription factors. This review will highlight recent insights into the relationship between fat and bone, evaluating both potential positive and negative influences between adipose and bone tissue. It will also focus on the hypothesis that osteoporosis might be considered the obesity of bone. PMID:26623005

  3. Bone Remodeling Monitor

    NASA Technical Reports Server (NTRS)

    Foucar, Charlie; Goldberg, Leslie; Hon, Bodin; Moore, Shannon; Williams, Evan

    2009-01-01

    The impact of bone loss due to different mechanical loadings in microgravity is a major concern for astronauts upon reintroduction to gravitational forces in exploration missions to the Moon and Mars. it has been shown that astronauts not only lose bone at differing rates, with levels up to 2% per month, but each astronaut will respond to bone loss treatments differently. Pre- and post-flight imaging techniques and frozen urine samples for post-flight laboratory immunoassays To develop a novel, non-invasive, highly . sensitive, portable, intuitive, and low-powered device to measure bone resorption levels in 'real time' to provide rapid and Individualized feedback to maximize the efficacy of bone loss countermeasures 1. Collect urine specimen and analyze the level of bone resorption marker, DPD (deoxypridinoline) excreted. 2. Antibodies specific to DPD conjugated with nanoshells and mixed with specimen, the change in absorbance from agglutination is measured by an optical device. 3. The concentration of DPD is displayed and recorded on a PDA

  4. Mechanobiology of bone tissue.

    PubMed

    Klein-Nulend, J; Bacabac, R G; Mullender, M G

    2005-12-01

    In order to obtain bones that combine a proper resistance against mechanical failure with a minimum use of material, bone mass and its architecture are continuously being adapted to the prevailing mechanical loads. It is currently believed that mechanical adaptation is governed by the osteocytes, which respond to a loading-induced flow of interstitial fluid through the lacuno-canalicular network by producing signaling molecules. An optimal bone architecture and density may thus not only be determined by the intensity and spatial distribution of mechanical stimuli, but also by the mechanoresponsiveness of osteocytes. Bone cells are highly responsive to mechanical stimuli, but the critical components in the load profile are still unclear. Whether different components such as fluid shear, tension or compression may affect cells differently is also not known. Although both tissue strain and fluid shear stress cause cell deformation, these stimuli might excite different signaling pathways related to bone growth and remodeling. In order to define new approaches for bone tissue engineering in which bioartificial organs capable of functional load bearing are created, it is important to use cells responding to the local forces within the tissue, whereby biophysical stimuli need to be optimized to ensure rapid tissue regeneration and strong tissue repair.

  5. Bone's mechanostat: a 2003 update.

    PubMed

    Frost, Harold M

    2003-12-01

    The still-evolving mechanostat hypothesis for bones inserts tissue-level realities into the former knowledge gap between bone's organ-level and cell-level realities. It concerns load-bearing bones in postnatal free-living bony vertebrates, physiologic bone loading, and how bones adapt their strength to the mechanical loads on them. Voluntary mechanical usage determines most of the postnatal strength of healthy bones in ways that minimize nontraumatic fractures and create a bone-strength safety factor. The mechanostat hypothesis predicts 32 things that occur, including the gross anatomical bone abnormalities in osteogenesis imperfecta; it distinguishes postnatal situations from baseline conditions at birth; it distinguishes bones that carry typical voluntary loads from bones that have other chief functions; and it distinguishes traumatic from nontraumatic fractures. It provides functional definitions of mechanical bone competence, bone quality, osteopenias, and osteoporoses. It includes permissive hormonal and other effects on bones, a marrow mediator mechanism, some limitations of clinical densitometry, a cause of bone "mass" plateaus during treatment, an "adaptational lag" in some children, and some vibration effects on bones. The mechanostat hypothesis may have analogs in nonosseous skeletal organs as well. PMID:14613308

  6. Osteogenic Scaffolds for Bone Reconstruction

    PubMed Central

    Li, Ling-jiang; Liu, Ning; Liu, Qing; Jia, Lian-shun; Yuan, Wen

    2012-01-01

    Abstract A highly osteogenic hybrid bioabsorbable scaffold was developed for bone reconstruction/augmentation. Through the use of a solid free-form fabrication technology, a bioabsorbable polycaprolactone (PCL) cage scaffold with a desired size and shape was produced and then filled with osteogenic bone graft particles, that is, morselized autologous bone chips. A rabbit total lamina defect model was chosen to demonstrate its efficacy in regenerating bone with a complicated anatomic shape. Both iliac bone and morselized iliac bone grafts were used in this study for comparison purposes. Serum osteocalcin and collagen type I cross-linked C-terminal telopeptide (CTx) determination showed that active bone remodeling occurred after bone grafts were implanted. X-ray images showed that the bony defects were completely filled with bone mass in all the groups with bone grafts. However, biomechanical tests showed that only the iliac bone and hybrid scaffold groups could restore the mechanical properties to the normal level after 10 weeks of implantation. A histology study showed that both iliac and hybrid scaffold groups had extensive new bone formation, and no adhesion and fibrosis were found. These results indicated that this osteogenic hybrid scaffold can be a good alternative to autologous iliac bone, because it does not need a second iliac bone-harvesting surgery, and thus the morbidity and the possible infections that are often associated with the bone harvesting surgery can be avoided. PMID:23515416

  7. Pharmacotherapeutic Aspects of Space Medicine

    NASA Technical Reports Server (NTRS)

    Putcha, Lakshmi

    2004-01-01

    Medications are used for a wide variety of indications during space flight. For example, astronauts have taken drugs in flight to ameliorate or prevent symptoms of space motion sickness, headache, sleeplessness, backache, nasal congestion, and constipation. Russian cosmonauts reportedly take medications to prevent metabolic disturbances of the myocardium and intestinal flora, and to optimize their work capacity. Although the discomfort associated with some acute responses to microgravity (e.g., space motion sickness) is expected to diminish with length of time in flight, other responses that have delayed onset (e.g., maintaining nutritional status, bone and muscle strength, and perhaps immune response) may affect health and quality of life during longer missions. Therefore, as the duration of space flights increases, the need for treatment with medications is expected to increase accordingly. Medications carried on Space Shuttle missions have varied somewhat from flight to flight, depending on the individual needs of the crewmembers. Medications use during Shuttle flights seems to be more prevalent than during earlier programs, perhaps because drugs are provided in easy-to-use forms. In fact, nearly all medications taken to date have been ingested orally in tablet form. However, given that the oral route may not be ideal for those suffering motion-sickness symptoms, intramuscular and intranasal preparations are being tested. For example, intramuscular administration of promethazine hydrochloride (Phenergan(Registered TradeMark)) has been reported to be more effective in alleviating motion-sickness symptoms. The difficulties involved in conducting definitive studies of drug efficacy during U.S. space flights have been compounded by the absence of a systematic approach to determining which drugs were taken by whom and under what circumstances. The use of some drugs in space has been less efficacious than expected. The onset, intensity, and duration of the response

  8. Bone formation: roles of genistein and daidzein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bone remodeling consists of a balance between bone formation by osteoblasts and bone resorption by osteoclasts. Osteoporosis is the result of increased bone resorption and decreased bone formation causing a decreased bone mass density, loss of bone microarchitecture, and an increased risk of fractu...

  9. Geometrical aspects of entanglement

    SciTech Connect

    Leinaas, Jon Magne; Myrheim, Jan; Ovrum, Eirik

    2006-07-15

    We study geometrical aspects of entanglement, with the Hilbert-Schmidt norm defining the metric on the set of density matrices. We focus first on the simplest case of two two-level systems and show that a 'relativistic' formulation leads to a complete analysis of the question of separability. Our approach is based on Schmidt decomposition of density matrices for a composite system and nonunitary transformations to a standard form. The positivity of the density matrices is crucial for the method to work. A similar approach works to some extent in higher dimensions, but is a less powerful tool. We further present a numerical method for examining separability and illustrate the method by a numerical study of bound entanglement in a composite system of two three-level systems.

  10. Aspects of Plant Intelligence

    PubMed Central

    TREWAVAS, ANTHONY

    2003-01-01

    Intelligence is not a term commonly used when plants are discussed. However, I believe that this is an omission based not on a true assessment of the ability of plants to compute complex aspects of their environment, but solely a reflection of a sessile lifestyle. This article, which is admittedly controversial, attempts to raise many issues that surround this area. To commence use of the term intelligence with regard to plant behaviour will lead to a better understanding of the complexity of plant signal transduction and the discrimination and sensitivity with which plants construct images of their environment, and raises critical questions concerning how plants compute responses at the whole‐plant level. Approaches to investigating learning and memory in plants will also be considered. PMID:12740212

  11. Aspects, Wrappers and Events

    NASA Technical Reports Server (NTRS)

    Filman, Robert E.

    2003-01-01

    This viewgraph presentation provides information on Object Infrastructure Framework (OIF), an Aspect-Oriented Programming (AOP) system. The presentation begins with an introduction to the difficulties and requirements of distributed computing, including functional and non-functional requirements (ilities). The architecture of Distributed Object Technology includes stubs, proxies for implementation objects, and skeletons, proxies for client applications. The key OIF ideas (injecting behavior, annotated communications, thread contexts, and pragma) are discussed. OIF is an AOP mechanism; AOP is centered on: 1) Separate expression of crosscutting concerns; 2) Mechanisms to weave the separate expressions into a unified system. AOP is software engineering technology for separately expressing systematic properties while nevertheless producing running systems that embody these properties.

  12. The impact velocity and bone fracture pattern: Forensic perspective.

    PubMed

    Cohen, Haim; Kugel, Chen; May, Hila; Medlej, Bahaa; Stein, Dan; Slon, Viviane; Hershkovitz, Israel; Brosh, Tamar

    2016-09-01

    Studies on bone-energy interaction are meager and revealed only a general correlation between the fracture pattern and the mechanism of the insult. This study has two objectives, to establish a usable fracture analysis method and to reveal the association between the energy of the force and the fracture pattern. Dynatup Model POE 2000 (Instron Co.) low energy pendulum impact machine was utilized to apply impact loading on fresh pig femoral bones (n=30). The bone clamp shaft was adjusted to position the bone for three-point bending with additional bone compression. Three different velocities of the forced applied were carried out. On average, the number, length and the curviness of the fracture lines created under moderate and high-energy impact is significantly higher compared to a low-energy impact. Most fractures lines were located on the impacted aspect in bones subjected to moderate- and high-velocity impact. Four oblique-radial fracture lines running from the point of impact creating a double butterfly pattern were found in bones subjected to moderate and high-velocity impact. Only "false" wedge-shaped (butterfly) fragments were found in the current study. Our results suggest an association between fracture pattern and the velocity of the impact.

  13. Matricellular proteins as regulators of cancer metastasis to bone.

    PubMed

    Trotter, Timothy N; Yang, Yang

    2016-01-01

    Metastasis is the major cause of death in cancer patients, and a frequent site of metastasis for many cancers is the bone marrow. Therefore, understanding the mechanisms underlying the metastatic process is necessary for future prevention and treatment. The tumor microenvironment is now known to play a role in the metastatic cascade, both at the primary tumor and in metastatic sites, and includes both cellular and non-cellular components. The extracellular matrix (ECM) provides structural support and signaling cues to cells. One particular group of molecules associated with the ECM, known as matricellular proteins, modulate multiple aspects of tumor biology, including growth, migration, invasion, angiogenesis and metastasis. These proteins are also important for normal function in the bone by regulating bone formation and bone resorption. Recent studies have described a link between some of these proteins and metastasis of various tumors to the bone. The aim of this review is to summarize what is currently known about matricellular protein influence on bone metastasis. Particular attention to the contribution of both tumor cells and non-malignant cells in the bone has been given.

  14. Methods and theory in bone modeling drift: comparing spatial analyses of primary bone distributions in the human humerus.

    PubMed

    Maggiano, Corey M; Maggiano, Isabel S; Tiesler, Vera G; Chi-Keb, Julio R; Stout, Sam D

    2016-01-01

    This study compares two novel methods quantifying bone shaft tissue distributions, and relates observations on human humeral growth patterns for applications in anthropological and anatomical research. Microstructural variation in compact bone occurs due to developmental and mechanically adaptive circumstances that are 'recorded' by forming bone and are important for interpretations of growth, health, physical activity, adaptation, and identity in the past and present. Those interpretations hinge on a detailed understanding of the modeling process by which bones achieve their diametric shape, diaphyseal curvature, and general position relative to other elements. Bone modeling is a complex aspect of growth, potentially causing the shaft to drift transversely through formation and resorption on opposing cortices. Unfortunately, the specifics of modeling drift are largely unknown for most skeletal elements. Moreover, bone modeling has seen little quantitative methodological development compared with secondary bone processes, such as intracortical remodeling. The techniques proposed here, starburst point-count and 45° cross-polarization hand-drawn histomorphometry, permit the statistical and populational analysis of human primary tissue distributions and provide similar results despite being suitable for different applications. This analysis of a pooled archaeological and modern skeletal sample confirms the importance of extreme asymmetry in bone modeling as a major determinant of microstructural variation in diaphyses. Specifically, humeral drift is posteromedial in the human humerus, accompanied by a significant rotational trend. In general, results encourage the usage of endocortical primary bone distributions as an indicator and summary of bone modeling drift, enabling quantitative analysis by direction and proportion in other elements and populations.

  15. Thrombospondin-2 deficiency in growing mice alters bone collagen ultrastructure and leads to a brittle bone phenotype

    PubMed Central

    Manley, Eugene; Perosky, Joseph E.; Khoury, Basma M.; Reddy, Anita B.; Kozloff, Kenneth M.

    2015-01-01

    Thrombospondin-2 (TSP2) is a matricellular protein component of the bone extracellular matrix. Long bones of adult TSP2-deficient mice have increased endosteal bone thickness due to expansion of the osteoblast progenitor cell pool, and these cells display deficits in osteoblastic potential. Here, we investigated the effects of TSP2 deficiency on whole bone geometric and mechanical properties in growing 6-wk-old male and female wild-type and TSP2-knockout (KO) mice. Microcomputed tomography and mechanical testing were conducted on femora and L2 vertebrae to assess morphology and whole bone mechanical properties. In a second series of experiments, femoral diaphyses were harvested from wild-type and TSP2-KO mice. Detergent-soluble type I collagen content was determined by Western blot of right femora. Total collagen content was determined by hydroxyproline analysis of left femora. In a third series of experiments, cortical bone was dissected from the anterior and posterior aspects of the femoral middiaphysis and imaged by transmission electron microscopy to visualize collagen fibrils. Microcomputed tomography revealed minimal structural effects of TSP2 deficiency. TSP2 deficiency imparted a brittle phenotype on cortical bone. Femoral tissue mineral density was not affected by TSP2 deficiency. Instead, transmission electron microscopy revealed less intensely stained collagen fibrils with altered morphology in the extracellular matrix assembled by osteoblasts on the anterior surface of TSP2-KO femora. Femoral diaphyseal bone displayed comparable amounts of total collagen, but the TSP2-KO bones had higher levels of detergent-extractable type I collagen. Together, our data suggest that TSP2 is required for optimal collagen fibrillogenesis in bone and thereby contributes to normal skeletal tissue quality. PMID:26272319

  16. Thrombospondin-2 deficiency in growing mice alters bone collagen ultrastructure and leads to a brittle bone phenotype.

    PubMed

    Manley, Eugene; Perosky, Joseph E; Khoury, Basma M; Reddy, Anita B; Kozloff, Kenneth M; Alford, Andrea I

    2015-10-15

    Thrombospondin-2 (TSP2) is a matricellular protein component of the bone extracellular matrix. Long bones of adult TSP2-deficient mice have increased endosteal bone thickness due to expansion of the osteoblast progenitor cell pool, and these cells display deficits in osteoblastic potential. Here, we investigated the effects of TSP2 deficiency on whole bone geometric and mechanical properties in growing 6-wk-old male and female wild-type and TSP2-knockout (KO) mice. Microcomputed tomography and mechanical testing were conducted on femora and L2 vertebrae to assess morphology and whole bone mechanical properties. In a second series of experiments, femoral diaphyses were harvested from wild-type and TSP2-KO mice. Detergent-soluble type I collagen content was determined by Western blot of right femora. Total collagen content was determined by hydroxyproline analysis of left femora. In a third series of experiments, cortical bone was dissected from the anterior and posterior aspects of the femoral middiaphysis and imaged by transmission electron microscopy to visualize collagen fibrils. Microcomputed tomography revealed minimal structural effects of TSP2 deficiency. TSP2 deficiency imparted a brittle phenotype on cortical bone. Femoral tissue mineral density was not affected by TSP2 deficiency. Instead, transmission electron microscopy revealed less intensely stained collagen fibrils with altered morphology in the extracellular matrix assembled by osteoblasts on the anterior surface of TSP2-KO femora. Femoral diaphyseal bone displayed comparable amounts of total collagen, but the TSP2-KO bones had higher levels of detergent-extractable type I collagen. Together, our data suggest that TSP2 is required for optimal collagen fibrillogenesis in bone and thereby contributes to normal skeletal tissue quality.

  17. Biological approaches to bone regeneration by gene therapy.

    PubMed

    Franceschi, R T

    2005-12-01

    Safe, effective approaches for bone regeneration are needed to reverse bone loss caused by trauma, disease, and tumor resection. Unfortunately, the science of bone regeneration is still in its infancy, with all current or emerging therapies having serious limitations. Unlike current regenerative therapies that use single regenerative factors, the natural processes of bone formation and repair require the coordinated expression of many molecules, including growth factors, bone morphogenetic proteins, and specific transcription factors. As will be developed in this article, future advances in bone regeneration will likely incorporate therapies that mimic critical aspects of these natural biological processes, using the tools of gene therapy and tissue engineering. This review will summarize current knowledge related to normal bone development and fracture repair, and will describe how gene therapy, in combination with tissue engineering, may mimic critical aspects of these natural processes. Current gene therapy approaches for bone regeneration will then be summarized, including recent work where combinatorial gene therapy was used to express groups of molecules that synergistically interacted to stimulate bone regeneration. Last, proposed future directions for this field will be discussed, where regulated gene expression systems will be combined with cells seeded in precise three-dimensional configurations on synthetic scaffolds to control both temporal and spatial distribution of regenerative factors. It is the premise of this article that such approaches will eventually allow us to achieve the ultimate goal of bone tissue engineering: to reconstruct entire bones with associated joints, ligaments, or sutures. Abbreviations used: BMP, bone morphogenetic protein; FGF, fibroblast growth factor; AER, apical ectodermal ridge; ZPA, zone of polarizing activity; PZ, progress zone; SHH, sonic hedgehog; OSX, osterix transcription factor; FGFR, fibroblast growth factor

  18. Epidemiological aspects of ageing.

    PubMed

    Khaw, K T

    1997-12-29

    A major societal challenge is to improve quality of life and prevent or reduce disability and dependency in an ageing population. Increasing age is associated with increasing risk of disability and loss of independence, due to functional impairments such as loss of mobility, hearing and vision; a major issue must be how far disability can be prevented. Ageing is associated with loss of bone tissue, reduction in muscle mass, reduced respiratory function, decline in cognitive function, rise in blood pressure and macular degeneration which predispose to disabling conditions such as osteoporosis, heart disease, dementia and blindness. However, there are considerable variations in different communities in terms of the rate of age-related decline. Large geographic and secular variations in the age-adjusted incidence of major chronic diseases such as stroke, hip fracture, coronary heart disease, cancer, visual loss from cataract, glaucoma and macular degeneration suggest strong environmental determinants in diet, physical activity and smoking habit. The evidence suggests that a substantial proportion of chronic disabling conditions associated with ageing are preventable, or at least postponable and not an inevitable accompaniment of growing old. Postponement or prevention of these conditions may not only increase longevity, but, more importantly, reduce the period of illnesses such that the majority of older persons may live high-quality lives, free of disability, until very shortly before death. We need to understand better the factors influencing the onset of age-related disability in the population, so that we have appropriate strategies to maintain optimal health in an ageing population. PMID:9460067

  19. Environmental aspects of wastewater reclamation.

    PubMed

    Sharma, Sunil; Choudhary, Mahendra Pratap

    2007-07-01

    The population is increasing rapidly and the demand for water by cities, industries and agriculture has tended to grow even faster than the population. Wastewater reclamation consists of a combination of conventional and advanced treatment processes employed to return a wastewater to nearly original quality, reclaiming the water. The environmental health aspects associated with reclamation of wastewater include quality aspects and public health aspects. An attempt has been made in the present paper to describe these aspects and to suggest appropriate solutions.

  20. Treatment of Bifocal Cyst Hydatid Involvement in Right Femur with Teicoplanin Added Bone Cement and Albendazole

    PubMed Central

    Pazarci, Ozhan; Oztemur, Zekeriya; Bulut, Okay

    2015-01-01

    Although bone involvement associated with cyst hydatid is rarely seen, it can cause unintended results such as high recurrence rate, infection, sepsis, or amputation of relevant extremity. Because of this reason, its treatment is difficult and disputed. In the case of bifocal bone cyst hydatid in right femur, along with albendazole treatment, result of resecting cyst surgically and its treatment with teicoplanin with added bone cement is given. In conclusion, since the offered treatment method both supports bone in terms of mechanical aspect and also can prevent secondary infection, the method is thought to be a good and safe treatment approach. PMID:26236523

  1. The bone scan.

    PubMed

    Brenner, Arnold I; Koshy, June; Morey, Jose; Lin, Cheryl; DiPoce, Jason

    2012-01-01

    Bone imaging continues to be the second greatest-volume nuclear imaging procedure, offering the advantage of total body examination, low cost, and high sensitivity. Its power rests in the physiological uptake and pathophysiologic behavior of 99m technetium (99m-Tc) diphosphonates. The diagnostic utility, sensitivity, specificity, and predictive value of 99m-Tc bone imaging for benign conditions and tumors was established when only planar imaging was available. Currently, nearly all bone scans are performed as a planar study (whole-body, 3-phase, or regional), with the radiologist often adding single-photon emission computed tomography (SPECT) imaging. Here we review many current indications for planar bone imaging, highlighting indications in which the planar data are often diagnostically sufficient, although diagnosis may be enhanced by SPECT. (18)F sodium fluoride positron emission tomography (PET) is also re-emerging as a bone agent, and had been considered interchangeable with 99m-Tc diphosphonates in the past. In addition to SPECT, new imaging modalities, including (18)F fluorodeoxyglucose, PET/CT, CT, magnetic resonance, and SPECT/CT, have been developed and can aid in evaluating benign and malignant bone disease. Because (18)F fluorodeoxyglucose is taken up by tumor cells and Tc diphosphonates are taken up in osteoblastic activity or osteoblastic healing reaction, both modalities are complementary. CT and magnetic resonance may supplement, but do not replace, bone imaging, which often detects pathology before anatomic changes are appreciated. We also stress the importance of dose reduction by reducing the dose of 99m-Tc diphosphonates and avoiding unnecessary CT acquisitions. In addition, we describe an approach to image interpretation that emphasizes communication with referring colleagues and correlation with appropriate history to significantly improve our impact on patient care.

  2. Microarchitecture of irradiated bone: comparison with healthy bone

    NASA Astrophysics Data System (ADS)

    Bléry, Pauline; Amouriq, Yves; Guédon, Jeanpierre; Pilet, Paul; Normand, Nicolas; Durand, Nicolas; Espitalier, Florent; Arlicot, Aurore; Malard, Olivier; Weiss, Pierre

    2012-03-01

    The squamous cell carcinomas of the upper aero-digestive tract represent about ten percent of cancers. External radiation therapy leads to esthetic and functional consequences, and to a decrease of the bone mechanical abilities. For these patients, the oral prosthetic rehabilitation, including possibilities of dental implant placement, is difficult. The effects of radiotherapy on bone microarchitecture parameters are not well known. Thus, the purpose of this study is to assess the effects of external radiation on bone micro architecture in an experimental model of 25 rats using micro CT. 15 rats were irradiated on the hind limbs by a single dose of 20 Grays, and 10 rats were non irradiated. Images of irradiated and healthy bone were compared. Bone microarchitecture parameters (including trabecular thickness, trabecular number, trabecular separation, connectivity density and tissue and bone volume) between irradiated and non-irradiated bones were calculated and compared using a Mann and Whitney test. After 7 and 12 weeks, images of irradiated and healthy bone are different. Differences on the irradiated and the healthy bone populations exhibit a statistical significance. Trabecular number, connectivity density and closed porosity are less important on irradiated bone. Trabecular thickness and separation increase for irradiated bone. These parameters indicate a decrease of irradiated bone properties. Finally, the external irradiation induces changes on the bone micro architecture. This knowledge is of prime importance for better oral prosthetic rehabilitation, including implant placement.

  3. Scaling in Theropod Dinosaurs: Femoral Bone Dimensions

    NASA Astrophysics Data System (ADS)

    Lee, Scott A.

    2014-05-01

    Finding topics that inspire students is an important aspect of any physics course. Virtually everyone is fascinated by Tyrannosaurus rex, and the excitement of the class is palpable when we explore scaling effects in T. rex and other bipedal theropod dinosaurs as part of our discussion of mechanics and elasticity. In this paper, we explore the role of longitudinal stress in the femur bones due to the weight of the dinosaur in determining how the geometry of the femur changes with size of the theropod. This is one area of allometry the study of how different biological characteristics scale with size.

  4. Calcar bone graft

    SciTech Connect

    Bargar, W.L.; Paul, H.A.; Merritt, K.; Sharkey, N.

    1986-01-01

    A canine model was developed to investigate the use of an autogeneic iliac bone graft to treat the calcar deficiency commonly found at the time of revision surgery for femoral component loosening. Five large male mixed-breed dogs had bilateral total hip arthroplasty staged at three-month intervals, and were sacrificed at six months. Prior to cementing the femoral component, an experimental calcar defect was made, and a bicortical iliac bone graft was fashioned to fill the defect. Serial roentgenograms showed the grafts had united with no resorption. Technetium-99 bone scans showed more uptake at three months than at six months in the graft region. Disulfine blue injection indicated all grafts were perfused at both three and six months. Thin section histology, fluorochromes, and microradiographs confirmed graft viability in all dogs. Semiquantitative grading of the fluorochromes indicated new bone deposition in 20%-50% of each graft at three months and 50%-80% at six months. Although the calcar bone graft was uniformly successful in this canine study, the clinical application of this technique should be evaluated by long-term results in humans.

  5. Reproductive hormones and bone.

    PubMed

    Nicks, Kristy M; Fowler, Tristan W; Gaddy, Dana

    2010-06-01

    Hypothalamic gonadotropin-releasing hormone (GnRH) stimulates secretion of pituitary luteinizing hormone (LH) and follicle-stimulating hormone (FSH), which directly regulate ovarian function. Pituitary FSH can modulate osteoclast development, and thereby influence bone turnover. Pituitary oxytocin and prolactin effects on the skeleton are not merely limited to pregnancy and lactation; oxytocin stimulates osteoblastogenesis and bone formation, whereas prolactin exerts skeletal effects in an age-dependent manner. Cyclic levels of inhibins and estrogen suppress FSH and LH, respectively, and also suppress bone turnover via their suppressive effects on osteoblast and osteoclast differentiation. However, continuous exposure to inhibins or estrogen/androgens is anabolic for the skeleton in intact animals and protects against gonadectomy-induced bone loss. Alterations of one hormone in the hypothalamic-pituitary-gonadal (HPG) axis influence other bone-active hormones in the entire feedback loop in the axis. Thus, we propose that the action of the HPG axis should be extended to include its combined effects on the skeleton, thus creating the HPG skeletal (HPGS) axis.

  6. Bone and space

    NASA Astrophysics Data System (ADS)

    Berthier, Audrey; Braak, Laurent; Zallone, Alberta; Cancedda, Ranieri; Liu, Yi; Vico, Laurence; van der Saag, Paul; Heer, Martina; Pugh, Sydney; Koller, Bruno

    2005-10-01

    In space, astronauts can lose up to 1% of bone mass per month, mainly from the weight-bearing bones. A significant increase in the fracture risk could thus compromise very long-duration missions. On Earth, millions of people suffer from osteoporosis. The ERISTO MAP project aims at better control of the factors and the process of bone remodelling, with the objective of fighting against both space bone loss and osteoporosis. The space environment provides unique mechanical stress-free experimental conditions and can be considered to some extent to provide an accelerated and reversible model of osteoporosis. Research is focusing on providing in vitro and in vivo models and innovative supporting technologies. The main objective is to build 3-D multi-cell models that mimick the process of bone remodelling in order to define the best conditions for tissue engineering. For companies, the ERISTO team is providing not only knowledge and novel experimentation for developing new science but also unique insights into and understanding of complex biological problems.

  7. Applied aspects of chronoergohygiene.

    PubMed

    Gaffuri, E; Costa, G

    1986-01-01

    Chronoergohygiene defines a field of study set on optimizing the work timing compared to the desiderata of human physiology in order to improve the working conditions. Production systems follow their own laws with a timing resulting from economic, technological and natural factors; this timing could contrast with che chronological variables of the person 'involved'. Important aspects to be considered in this regard concern: a energy expense and nutrition, in relation to the mechanization and automation of the working tasks, sociocultural models, individual behaviors in eating habits; b. work performance, with particular reference to the modifications during the life-span and the rhythmic variations in the circadian period; c. toxicologic risks, considering problems of chronokinetics of the toxic agent and of 'chronoesthesia' of the body functions and apparatuses; d. work and social organization, with special reference to shift work, work pace and commuting. The research for a dynamic evaluation of the human-machine interaction in time and into forms of chronological compatibility between man and work organization should optimize industrial hygiene.

  8. Strategic Aspects of Communication

    NASA Astrophysics Data System (ADS)

    Hagen, Edward; Hammerstein, Peter; Hess, Nicole

    Rarely do human behavioral scientists and scholars study language, music, and other forms of communication as strategies—a means to some end. Some even deny that communication is the primary function of these phenomena. Here we draw upon selections of our earlier work to briefly define the strategy concept and sketch how decision theory, developed to explain the behavior of rational actors, is applied to evolved agents. Communication can then be interpreted as a strategy that advances the "fitness interests" of such agents. When this perspective is applied to agents with conflicts of interest, deception emerges as an important aspect of communication. We briefly review costly signaling, one solution to the problem of honest communication among agents with conflicts of interest. We also explore the subversion of cooperative signals by parasites and by plants defending themselves against herbivores, and we touch on biases in human gossip. Experiments with artificial embodied and communicating agents confirm that when there are conflicts of interest among agents, deception readily evolves. Finally, we consider signaling among super-organisms and the possible implications for understanding human music and language.

  9. Psychosocial aspects of abortion

    PubMed Central

    Illsley, Raymond; Hall, Marion H.

    1976-01-01

    The literature on psychosocial aspects of abortion is confusing. Individual publications must be interpreted in the context of cultural, religious, and legal constraints obtaining in a particular society at a given time, with due attention to the status and availability of alternatives to abortion that might be chosen by a woman with an “unwanted” pregnancy. A review of the literature shows that, where careful pre- and post-abortion assessments are made, the evidence is that psychological benefit commonly results, and serious adverse emotional sequelae are rare. The outcome of refused abortion seems less satisfactory, with regrets and distress frequently occurring. Research on the administration of abortion services suggests that counselling is often of value, that distress is frequently caused by delays in deciding upon and in carrying out abortions, and by unsympathetic attitudes of service providers. The phenomenon of repeated abortion seeking should be seen in the context of the availability and cost of contraception and sterilization. The place of sterilization with abortion requires careful study. A recommendation is made for observational descriptive research on populations of women with potentially unwanted pregnancies in different cultures, with comparisons of management systems and an evaluation of their impact on service users. PMID:1085671

  10. Perceptual aspects of singing.

    PubMed

    Sundberg, J

    1994-06-01

    The relations between acoustic and perceived characteristics of vowel sounds are demonstrated with respect to timbre, loudness, pitch, and expressive time patterns. The conditions for perceiving an ensemble of sine tones as one tone or several tones are reviewed. There are two aspects of timbre of voice sounds: vowel quality and voice quality. Although vowel quality depends mainly on the frequencies of the lowest two formants. In particular, the center frequency of the so-called singer's formant seems perceptually relevant. Vocal loudness, generally assumed to correspond closely to the sound pressure level, depends rather on the amplitude balance between the lower and the higher spectrum partials. The perceived pitch corresponds to the fundamental frequency, or for vibrato tones, the mean of this frequency. In rapid passages, such as coloratura singing, special patterns are used. Pitch and duration differences are categorically perceived in music. This means that small variations in tuning or duration do not affect the musical interval and the note value perceived. Categorical perception is used extensively in music performance for the purpose of musical expression because without violating the score, the singer may sharpen or flatten and lengthen or shorten the tones, thereby creating musical expression. PMID:8061767

  11. Electrical aspects of rainout

    SciTech Connect

    Rosenkilde, C.E.

    1981-11-23

    Rainout commonly denotes the aggregate of phenomena associated with precipitation scavenging of radioactivity from a cloud of nuclear debris that is within a natural rain cloud. (In contrast, the term, washout, is applicable when the nuclear cloud is below the rain cloud and the term, fallout, commonly denotes the direct gravitational settling of contaminated solid material from a nuclear cloud.) Nuclear debris aerosols may be scavenged within natural clouds by a variety of different physical processes which may involve diffusion, convection, impaction, nucleation, phoresis, turbulence, and/or electricity among others. Processes which involve electrical aspects are scrutinized for their susceptibility to the intimate presence of the radioactive-cloud environment. This particular choice of electrical processes is not accidental. Nearly all of the listed processes were examined earlier by Williams. His rough estimates suggested that electrical effects, and to a lesser extent turbulence, could enhance the scavenging of those submicron aerosols which reside in the size-range that bridges the minimum in the scavenging rate coefficient which is commonly called the Greenfield gap. This minimum in the scavenging-rate coefficient is created by the simultaneous reduction of scavenging via diffusion and the reduction of scavenging via inertial impaction. However, Williams omitted the specific influence of a radioactive environment. This report aims to remedy this omission.

  12. Cultural aspects of suicide.

    PubMed

    Maharajh, Hari D; Abdool, Petal S

    2005-09-01

    Undefined cultural factors cannot be dismissed and significantly contribute to the worldwide incidence of death by suicide. Culture is an all embracing term and defines the relationship of an individual to his environment. This study seeks to investigate the effect of culture on suicide both regionally and internationally. Culture-bound syndrome with suicidal behaviours specific to a particular culture or geographical region are discussed. Opinions are divided as to the status of religious martyrs. The law itself is silent on many aspects of suicidal behaviour and despite decriminalization of suicide as self-murder, the latter remains on the statutes of many developing countries. The Caribbean region is of concern due to its steady rise in mean suicide rate, especially in Trinidad and Tobago where socio-cultural factors are instrumental in influencing suicidal behaviour. These include transgenerational cultural conflicts, psycho-social problems, media exposure, unemployment, social distress, religion and family structure. The methods used are attributed to accessibility and lethality. Ingestion of poisonous substances is most popular followed by hanging. The gender differences seen with regard to suicidality can also be attributed to gender related psychopathology and psychosocial differences in help-seeking behaviour. These are influenced by the cultural environment to which the individual is exposed. Culture provides coping strategies to individuals; as civilization advances many of these coping mechanisms are lost unclothing the genetic predisposition of vulnerable groups. In the management of suicidal behaviour, a system of therapeutic re-culturation is needed with an emphasis on relevant culture- based therapies.

  13. Bone printing: new frontiers in the treatment of bone defects.

    PubMed

    Arealis, Georgios; Nikolaou, Vasileios S

    2015-12-01

    Bone defects can be congenital or acquired resulting from trauma, infection, neoplasm and failed arthroplasty. The osseous reconstruction of these defects is challenging. Unfortunately, none of the current techniques for the repair of bone defects has proven to be fully satisfactory. Bone tissue engineering (BTE) is the field of regenerative medicine (RM) that focuses on alternative treatment options for bone defects that will ideally address all the issues of the traditional techniques in treating large bone defects. However, current techniques of BTE is laborious and have their own shortcomings. More recently, 2D and 3D bone printing has been introduced to overcome most of the limitations of bone grafts and BTE. So far, results are extremely promising, setting new frontiers in the management of bone defects. PMID:26747913

  14. Bone printing: new frontiers in the treatment of bone defects.

    PubMed

    Arealis, Georgios; Nikolaou, Vasileios S

    2015-12-01

    Bone defects can be congenital or acquired resulting from trauma, infection, neoplasm and failed arthroplasty. The osseous reconstruction of these defects is challenging. Unfortunately, none of the current techniques for the repair of bone defects has proven to be fully satisfactory. Bone tissue engineering (BTE) is the field of regenerative medicine (RM) that focuses on alternative treatment options for bone defects that will ideally address all the issues of the traditional techniques in treating large bone defects. However, current techniques of BTE is laborious and have their own shortcomings. More recently, 2D and 3D bone printing has been introduced to overcome most of the limitations of bone grafts and BTE. So far, results are extremely promising, setting new frontiers in the management of bone defects.

  15. Bone augmentation for cancellous bone- development of a new animal model

    PubMed Central

    2013-01-01

    Background Reproducible and suitable animal models are required for in vivo experiments to investigate new biodegradable and osteoinductive biomaterials for augmentation of bones at risk for osteoporotic fractures. Sheep have especially been used as a model for the human spine due to their size and similar bone metabolism. However, although sheep and human vertebral bodies have similar biomechanical characteristics, the shape of the vertebral bodies, the size of the transverse processes, and the different orientation of the facet joints of sheep are quite different from those of humans making the surgical approach complicated and unpredictable. Therefore, an adequate and safe animal model for bone augmentation was developed using a standardized femoral and tibia augmentation site in sheep. Methods The cancellous bone of the distal femur and proximal tibia were chosen as injection sites with the surgical approach via the medial aspects of the femoral condyle and proximal tibia metaphysis (n = 4 injection sites). For reproducible drilling and injection in a given direction and length, a custom-made c-shaped aiming device was designed. Exact positioning of the aiming device and needle positioning within the intertrabecular space of the intact bone could be validated in a predictable and standardized fashion using fluoroscopy. After sacrifice, bone cylinders (∅ 32 mm) were harvested throughout the tibia and femur by means of a diamond-coated core drill, which was especially developed to harvest the injected bone area exactly. Thereafter, the extracted bone cylinders were processed as non-decalcified specimens for μCT analysis, histomorphometry, histology, and fluorescence evaluation. Results The aiming device could be easily placed in 63 sheep and assured a reproducible, standardized injection area. In four sheep, cardiovascular complications occurred during surgery and pulmonary embolism was detected by computed tomography post surgery in all of these animals

  16. Segmentation of bone CT images and assessment of bone structure using measures of complexity

    SciTech Connect

    Saparin, Peter; Thomsen, Jesper Skovhus; Kurths, Juergen; Beller, Gisela; Gowin, Wolfgang

    2006-10-15

    A nondestructive and noninvasive method for numeric characterization (quantification) of the structural composition of human bone tissue has been developed and tested. In order to quantify and to compare the structural composition of bones from 2D computed tomography (CT) images acquired at different skeletal locations, a series of robust, versatile, and adjustable image segmentation and structure assessment algorithms were developed. The segmentation technique facilitates separation of trabecular from cortical bone and standardizes the region of interest. The segmented images were symbol-encoded and different aspects of the bone structural composition were quantified using six different measures of complexity. These structural examinations were performed on CT images of bone specimens obtained at the distal radius, humeral mid-diaphysis, vertebral body, femoral head, femoral neck, proximal tibia, and calcaneus. In addition, the ability of the noninvasive and nondestructive measures of complexity to quantify trabecular bone structure was verified by comparing them to conventional static histomorphometry performed on human fourth lumbar vertebral bodies. Strong correlations were established between the measures of complexity and the histomorphometric parameters except for measures expressing trabecular thickness. Furthermore, the ability of the measures of complexity to predict vertebral bone strength was investigated by comparing the outcome of the complexity analysis of the CT images with the results of a biomechanical compression test of the third lumbar vertebral bodies from the same population as used for histomorphometry. A multiple regression analysis using the proposed measures including structure complexity index, structure disorder index, trabecular network index, index of a global ensemble, maximal L-block, and entropy of x-ray attenuation distribution revealed an excellent relationship (r=0.959, r{sup 2}=0.92) between the measures of complexity and

  17. [Bone disorder and nutrition].

    PubMed

    Ito, Mikiko; Tanaka, Sarasa

    2016-03-01

    The nutrition is important for prevention and improvement in bone disorder. Especially osteoporosis associated with nutrition. It has entered the super-aged society in 2007, a further increase in osteoporosis patients are concerned in Japan. Many studies have shown that associated with calcium, vitamin D, vitamin K intake and bone density and fracture. Relationship of osteoporosis and nutrition, despite the general awareness is high, calcium intake is not at all reached the achievement to recommend dietary allowance. In addition, vitamin D deficiency rickets in children, which has been considered in the past of the disorder, there is an increasing trend from such exposure shortage to the infancy of sunlight, vitamin D deficiency in pregnant women, the recommended breastfeeding. Improvement of lifestyle and diet from young age is important for bone disorder prevention. PMID:26923974

  18. Diabetes and bone health.

    PubMed

    Antonopoulou, Marianna; Bahtiyar, Gül; Banerji, Mary Ann; Sacerdote, Alan S

    2013-11-01

    The increasing prevalence of diabetes especially type 2 diabetes worldwide is indisputable. Diabetics suffer increased morbidity and mortality, compared to their non-diabetic counterparts, not only because of vascular complications, but also because of an increased fracture incidence. Both types 1 and 2 diabetes and some medications used to treat it are associated with osteoporotic fractures. The responsible mechanisms remain incompletely elucidated. In this review, we evaluate the role of glycemic control in bone health, and the effect of anti-diabetic medications such as thiazolidinediones, sulfonylureas, DPP-4 inhibitors, and GLP-1 agonists. In addition, we examine the possible role of insulin and metformin as anabolic agents for bone. Lastly, we identify the current and future screening tools that help evaluate bone health in diabetics and their limitations. In this way we can offer individualized treatment, to the at-risk diabetic population. PMID:23628280

  19. Bone and the immune system.

    PubMed

    Gruber, H E

    1991-07-01

    There are several lines of evidence which provide support for an important relationship between immune cells and bone. Clinical studies of immunodeficiency syndromes have shown that abnormalities in bone shape are evident on x-rays, and peculiarities in the structure of the growth plate have been identified by histopathology. Studies of bone histology, and quantitation of cellular abnormalities, are scarce. Abnormalities in bone turnover, have, however, been identified in the nude mouse model. Many lines of evidence derived from in vitro bone studies have shown that lymphokines and monokines can influence bone formation and bone resorption. Some clinical studies of postmenopausal osteoporosis have indicated the possible presence of immune cell changes in this condition. Although several hypotheses have been formed regarding the exact mechanisms of the effect of immune cytokine on bone, this is clearly a very large area of study and there is a need for additional carefully controlled experiments with special emphasis on bone cells and bone matrix, especially in the human. As knowledge progresses regarding immunology and hematology, a clearer understanding of the lineages of the osteoblast and osteoclast will emerge and we will better understand how specialized bone cells interact with and react to their immune cell neighbors in the bone marrow and to immune system signals. These findings will have especially important implications for the local bone loss seen in rheumatoid arthritis, periodontal disease, and chronic osteomyelitis. PMID:2068116

  20. [Inflammatory bowel disease and bone decreased bone mineral density].

    PubMed

    Hisamatsu, Tadakazu; Wada, Yasuyo; Kanai, Takanori

    2015-11-01

    Metabolic bone diseases such as osteopenia and osteoporosis increase the risk of bone fracture that negatively affects quality of life of individuals. Patients with inflammatory bowel disease(IBD), including ulcerative colitis(UC)and Crohn's disease(CD), have been shown to be at increased risk of decreased bone mineral density, however frequency of metabolic bone disease in IBD and identified risk factors are varied among reports. PMID:26503868

  1. Recent progress in bone imaging for osteoporosis research.

    PubMed

    Ito, Masako

    2011-03-01

    Advances in bone imaging techniques have provided tools for analyzing bone structure at the macro-, micro- and nano-level. Quantitative assessment of macrostructure can be achieved using dual X-ray absorptiometry (DXA) and quantitative computed tomography (QCT), particularly volumetric quantitative CT (vQCT). In vivo quantitative techniques for assessing the microstructure of trabecular bone non-invasively and non-destructively include high-resolution CT (HR-CT) and high-resolution magnetic resonance (HR-MR). Compared with MR imaging, CT-based techniques have the advantage of directly visualizing the bone in the axial skeleton, with high spatial resolution, but the disadvantage of delivering a considerable radiation dose. Micro-CT (μCT), which provides a higher resolution of the microstructure and is principally applicable in vitro, has undergone technological advances such that it is now able to elucidate the physiological skeletal change mechanisms associated with aging and determine the effects of therapeutic intervention on the bone microstructure. In particular, synchrotron μCT (SR-CT) provides a more detailed view of trabecular structure at the nano-level. For the assessment of hip geometry, DXA-based hip structure analysis (HSA) and CT-based HSA have been developed. DXA-based HSA is a convenient tool for analyzing biomechanical properties and for assuming cross-sectional hip geometry based on two-dimensional (2D) data, whereas CT-based HSA provides these parameters three-dimensionally in robust relationship with biomechanical properties, at the cost of greater radiation exposure and the lengthy time required for the analytical procedure. Further progress in bone imaging technology is promising to bring new aspects of bone structure in relation to bone strength to light, and to establish a means for analyzing bone structural properties in the everyday clinical setting.

  2. Joint bone radiobiology workshop

    SciTech Connect

    Tomich, P.A.

    1991-01-01

    The Joint Bone Radiobiology Workshop was held on July 12--13, 1991 in Toronto, Canada. This document contains the papers presented at the meeting. The five sections were: Dose-effects, Endogenous Cofactors, Tumorigenesis, New Methods and Medical Implications. The papers covered risk assessment, tissue distribution of radionuclides, lifetime studies, biological half-lifes, the influence of age at time of exposure, tumor induction by different radionuclides, microscopic localization of radionuclides, and nuclear medicine issues including tissue distribution in the skeleton and bone marrow transplantation. (MHB)

  3. Bone cement implantation syndrome.

    PubMed

    Razuin, R; Effat, O; Shahidan, M N; Shama, D V; Miswan, M F M

    2013-06-01

    Bone cement implantation syndrome (BCIS) is characterized by hypoxia, hypotension, cardiac arrhythmias, increased pulmonary vascular resistance and cardiac arrest. It is a known cause of morbidity and mortality in patients undergoing cemented orthopaedic surgeries. The rarity of the condition as well as absence of a proper definition has contributed to under-reporting of cases. We report a 59-year-old woman who sustained fracture of the neck of her left femur and underwent an elective hybrid total hip replacement surgery. She collapsed during surgery and was revived only to succumb to death twelve hours later. Post mortem findings showed multiorgan disseminated microembolization of bone marrow and amorphous cement material. PMID:23817399

  4. Murine Hind Limb Long Bone Dissection and Bone Marrow Isolation.

    PubMed

    Amend, Sarah R; Valkenburg, Kenneth C; Pienta, Kenneth J

    2016-01-01

    Investigation of the bone and the bone marrow is critical in many research fields including basic bone biology, immunology, hematology, cancer metastasis, biomechanics, and stem cell biology. Despite the importance of the bone in healthy and pathologic states, however, it is a largely under-researched organ due to lack of specialized knowledge of bone dissection and bone marrow isolation. Mice are a common model organism to study effects on bone and bone marrow, necessitating a standardized and efficient method for long bone dissection and bone marrow isolation for processing of large experimental cohorts. We describe a straightforward dissection procedure for the removal of the femur and tibia that is suitable for downstream applications, including but not limited to histomorphologic analysis and strength testing. In addition, we outline a rapid procedure for isolation of bone marrow from the long bones via centrifugation with limited handling time, ideal for cell sorting, primary cell culture, or DNA, RNA, and protein extraction. The protocol is streamlined for rapid processing of samples to limit experimental error, and is standardized to minimize user-to-user variability. PMID:27168390

  5. Murine Hind Limb Long Bone Dissection and Bone Marrow Isolation

    PubMed Central

    Amend, Sarah R.; Valkenburg, Kenneth C.; Pienta, Kenneth J.

    2016-01-01

    Investigation of the bone and the bone marrow is critical in many research fields including basic bone biology, immunology, hematology, cancer metastasis, biomechanics, and stem cell biology. Despite the importance of the bone in healthy and pathologic states, however, it is a largely under-researched organ due to lack of specialized knowledge of bone dissection and bone marrow isolation. Mice are a common model organism to study effects on bone and bone marrow, necessitating a standardized and efficient method for long bone dissection and bone marrow isolation for processing of large experimental cohorts. We describe a straightforward dissection procedure for the removal of the femur and tibia that is suitable for downstream applications, including but not limited to histomorphologic analysis and strength testing. In addition, we outline a rapid procedure for isolation of bone marrow from the long bones via centrifugation with limited handling time, ideal for cell sorting, primary cell culture, or DNA, RNA, and protein extraction. The protocol is streamlined for rapid processing of samples to limit experimental error, and is standardized to minimize user-to-user variability. PMID:27168390

  6. Biomaterial delivery of morphogens to mimic the natural healing cascade in bone

    PubMed Central

    Mehta, Manav; Schmidt-Bleek, Katharina; Duda, Georg N; Mooney, David J

    2012-01-01

    Complications in treatment of large bone defects using bone grafting still remain. Our understanding of the endogenous bone regeneration cascade has inspired the exploration of a wide variety of growth factors (GFs) in an effort to mimic the natural signaling that controls bone healing. Biomaterial-based delivery of single exogenous GFs has shown therapeutic efficacy, and this likely relates to its ability to recruit and promote replication of cells involved in tissue development and the healing process. However, as the natural bone healing cascade involves the action of multiple factors, each acting in a specific spatiotemporal pattern, strategies aiming to mimic the critical aspects of this process will likely benefit from the usage of multiple therapeutic agents. This article reviews the current status of approaches to deliver single GFs, as well as ongoing efforts to develop sophisticated delivery platforms to deliver multiple lineage-directing morphogens (multiple GFs) during bone healing. PMID:22626978

  7. Design and management of an orthopaedic bone bank in The Netherlands.

    PubMed

    Zwitser, Eline W; Jiya, Timothy U; George Licher, H; van Royen, Barend J

    2012-03-01

    The design and management of an orthopaedic bone bank is a complex process in which medical organisation and legislation intertwine. Neither in the Netherlands, nor in any other European country, there are official guidelines for the organisation and management of an orthopaedic bone bank. In the Netherlands, the recently modified 'law of security and quality for using human materials' (WVKL) dictates requirements for technical and organisational aspects for the use of human tissue and cells. The bone bank procedures include a thorough questionnaire for donor selection, extensive serological, bacteriological and histopathological examination, as well as standard procedures for registration, processing, preservation, storage and distribution of bone allografts. This article describes the organisation of an accredited bone bank and can be used as a proposition for an official guideline or can be useful as an example for other orthopaedic bone banks in Europe.

  8. Bone regeneration strategy inspired by the study of calcification behavior in deer antler.

    PubMed

    Shi, Haishan; Yu, Tao; Li, Zhaoyang; Lu, William; Zhang, Ming; Ye, Jiandong

    2015-12-01

    Bone regeneration has attracted much attention from various researchers and inspired numerous strategies for bone formation. In this study, rapid calcification of deer antlers was studied to unravel bone biology by investigating mineral composition, morphology and microstructure. Calcification model was hypothesized and preliminarily established by in vitro experiments. In our model, mineral deposition and phase conversions in the gel matrix were mimicked. Results revealed that mineral metabolism including deposition and phase conversion plays key roles in calcification in vivo, which inspired the bone regeneration strategy with three main components, i.e. enhanced mineral nucleation, mineral ions sources and crystals habits. Rapid mineral metabolism of implant apatite biomaterials was supposed as the critical aspect of bone regeneration. This study will provide a relatively ideal model for peer bone regeneration studies.

  9. Sociological aspects of rhinoplasty.

    PubMed

    Babuccu, Orhan; Latifoğlu, Osman; Atabay, Kenan; Oral, Nursen; Coşan, Behçet

    2003-01-01

    Although the psychological aspect of the rhinoplasty operation has been a subject of interest for a long time, with the exception of a few studies, sociological factors have been almost totally ignored. In this prospective study the personality characteristics and socioeconomic backgrounds of 216 rhinoplasty patients were evaluated. Between 1994 and 2000, a questionnaire and the Minnesota Multiphasic Personality Inventory (MMPI) were given preoperatively to 157 females and 59 males. The MMPI was also given to age-matched people as a control. Six months after surgery, patients were called on the telephone and asked to rate their satisfaction. According to questionnaire, a great majority of the rhinoplasty patients were young, unmarried women with high education levels. In the rhinoplasty group, one or more scales of the inventory were not in the normal ranges in 45% of the patients, whereas this proportion in the control group was 28% (p < 0.01). When MMPI results are considered, female patients of this study could be described as egocentric, childish, highly active, impulsive, competitive, reactive, perfectionistic about themselves, talkative, and emotionally superficial. Male patients could be described as rigid, stubborn, over-sensitive, suspicious, perfectionistic, pessimistic, over-reactive, and having somatizations. Tension and anxiety with feelings of inferiority were found to be characteristics of the male patients. The satisfaction rate after six months was reported as 72%. There was no significant correlation between MMPI results and demographic variables, nor satisfaction rate. In conclusion, the rhinoplasty patients in our study are young people at the very beginning of their careers. It could be that their personalities and socioeconomic backgrounds combine to make aesthetic surgery rewarding enough, both socially and personally, to encourage them to follow through.

  10. [Progress and perspectives in bone research].

    PubMed

    Matsumoto, Toshio

    2011-07-01

    Structural integrity and strength of bone is maintained by a balance between bone resorption and bone formation. The balance in bone remodeling process is maintained by factors including mechanical stress, calcium-regulating hormones and sex hormones. Changes in physiological regulators of bone remodeling such as reduction in mechanical stress, aging and reduction in sex hormones, or an increase in pathological factors such as glucocorticoid and inflammatory cytokines cause disturbances in bone remodeling process. Disturbances in bone remodeling not only reduce the bone volume but also deteriorate material as well as structural properties of bone, resulting in a reduction in bone strength. Mechanisms of how bone resorption is initiated at the surface of damaged or aged bone, and how bone resorption is coulpled to bone formation are under active investigation. Increasing the understanding of physiological regulation and pathological conditions of bone remodeling should be able to develop new therapeutic approaches to osteoporosis and other metabolic bone diseases. PMID:21774354

  11. Vitamin D, Calcium, and Bone Health

    MedlinePlus

    ... Balance › Vitamin D, Calcium, and Bone Health Vitamin D, Calcium, and Bone Health March 2012 Download PDFs ... helps keep your bones strong. Why are vitamin D and calcium important to bone health? Vitamin D ...

  12. Marijuana May Blunt Bone Health

    MedlinePlus

    ... page: https://medlineplus.gov/news/fullstory_161575.html Marijuana May Blunt Bone Health Study finds heavy users ... 19, 2016 WEDNESDAY, Oct. 19, 2016 (HealthDay News) -- Marijuana may be bad to the bone, a new ...

  13. Bone Marrow Aspiration and Biopsy

    MedlinePlus

    ... the bone marrow and capability for blood cell production, including red blood cells (RBCs), white blood cells ( ... can affect the bone marrow and blood cell production. A specialist who has expertise in the diagnosis ...

  14. Altered bone turnover during spaceflight

    NASA Technical Reports Server (NTRS)

    Turner, R. T.; Morey, E. R.; Liu, C.; Baylink, D. J.

    1982-01-01

    Modifications in calcium metabolism during spaceflight were studied, using parameters that reflect bone turnover. Bone formation rate, medullary area, bone length, bone density, pore size distribution, and differential bone cell number were evaluated in growing rate both immediately after and 25 days after orbital spaceflights aboard the Soviet biological satellites Cosmos 782 and 936. The primary effect of space flight on bone turnover was a reversible inhibition of bone formation at the periosteal surface. A simultaneous increase in the length of the periosteal arrest line suggests that bone formation ceased along corresponding portions of that surface. Possible reasons include increased secretion of glucocorticoids and mechanical unloading of the skeleton due to near-weightlessness, while starvation and immobilization are excluded as causes.

  15. Graphite-reinforced bone cement

    NASA Technical Reports Server (NTRS)

    Knoell, A. C.

    1976-01-01

    Chopped graphite fibers added to surgical bone cement form bonding agent with mechanical properties closely matched to those of bone. Curing reaction produces less heat, resulting in reduced traumatization of body tissues. Stiffness is increased without affecting flexural strength.

  16. Bone X-Ray (Radiography)

    MedlinePlus

    ... bone x-ray is used to: diagnose fractured bones or joint dislocation. demonstrate proper alignment and stabilization of bony fragments following treatment of a fracture. guide orthopedic surgery, ...

  17. Cutting thin sections of bone

    NASA Technical Reports Server (NTRS)

    Ashley, W. W.

    1972-01-01

    Medical equipment for obtaining repetitive planoparallel sections of bone to study healing of bone structure under high gravity stress is described. Device consists of modified saw with diamond cutting edges. Construction of device and manner of use are explained.

  18. Anorexia nervosa and bone metabolism.

    PubMed

    Fazeli, Pouneh K; Klibanski, Anne

    2014-09-01

    Anorexia nervosa (AN) is a psychiatric disorder characterized by self-induced starvation with a lifetime prevalence of 2.2% in women. The most common medical co-morbidity in women with AN is bone loss, with over 85% of women having bone mineral density values more than one standard deviation below an age comparable mean. The low bone mass in AN is due to multiple hormonal adaptations to under nutrition, including hypothalamic amenorrhea and growth hormone resistance. Importantly, this low bone mass is also associated with a seven-fold increased risk of fracture. Therefore, strategies to effectively prevent bone loss and increase bone mass are critical. We will review hormonal adaptations that contribute to bone loss in this population as well as promising new therapies that may increase bone mass and reduce fracture risk in AN.

  19. Bone and cancer: the osteoncology

    PubMed Central

    Ibrahim, Toni; Mercatali, Laura; Amadori, Dino

    2013-01-01

    Summary In recent years clinicians have witnessed a radical change in the relationship between bone and cancer, with in particular an increase in bone metastases incidence due to an improvement of patients survival. Bone metastases are responsible for the high morbidity in cancer patients with a strong clinical impact. For all these reasons, efforts have been directed to this important field with the foundation of the osteoncology, a new scientific and clinical branch involved in the management of patients with bone cancer disease, including primary bone tumors and bone metastases. Another innovative and important osteoncology topic is the Cancer Treatment Induced Bone Loss (CTIBL) that is mainly caused by antitumoral treatment with bone resorption induction. The diagnostic and therapeutic options are described briefly in order to highlight the importance of the multidisciplinary approach in this new field. PMID:24133529

  20. Pregnancy, Breastfeeding, and Bone Health

    MedlinePlus

    ... supported by your browser. Home Osteoporosis Women Pregnancy, Breastfeeding, and Bone Health Publication available in: PDF (63 ... to get enough calcium during pregnancy and breastfeeding. Breastfeeding and Bone Health Breastfeeding also affects a mother’s ...

  1. Exercise, lifestyle, and your bones

    MedlinePlus

    Osteoporosis - exercise; Low bone density - exercise; Osteopenia - exercise ... your bones strong and lower your risk of osteoporosis and fractures as you get older. Before you begin an exercise program, talk with your health care provider if: ...

  2. Bone-marrow transplant - slideshow

    MedlinePlus

    ... this page: //medlineplus.gov/ency/presentations/100112.htm Bone-marrow transplant - series—Normal anatomy To use the sharing ... Go to slide 4 out of 4 Overview Bone-marrow is a soft, fatty tissue found inside of ...

  3. [Pharmacology of bone anabolic agents].

    PubMed

    Matsumoto, Toshio

    2015-10-01

    Bone is constantly remodeled to maintain its volume, structural integrity and strength Currently available bone anabolic agent is teriparatide. Teriparatide increases bone mass and strength via both remodeling-dependent and -independent mechanisms, although remodeling-dependent mechanism overweighs the other. Canonical Wnt signal plays an important role in enhancing osteoblast differentiation and bone formation, and its osteocyte-derived inhibitor, sclerostin, regulates bone formation via the regulation of Wnt signaling. Anti-sclerostin antibody stimulates Wnt signaling and enhances bone formation. Phase II clinical trials with anti-sclerostin antibodies, romosozumab and blosozumab, demonstrated a marked increase in bone mineral density after one year of treatment. The new modality of anabolic agents via remodeling-independent stimulation of bone formation may open up a new avenue for the treatment of osteoporosis.

  4. Drugs Approved for Bone Cancer

    MedlinePlus

    ... Ask about Your Treatment Research Drugs Approved for Bone Cancer This page lists cancer drugs approved by the ... that are not listed here. Drugs Approved for Bone Cancer Abitrexate (Methotrexate) Cosmegen (Dactinomycin) Dactinomycin Denosumab Doxorubicin Hydrochloride ...

  5. Transcutaneous Raman Spectroscopy of Bone

    NASA Astrophysics Data System (ADS)

    Maher, Jason R.

    Clinical diagnoses of bone health and fracture risk typically rely upon measurements of bone density or structure, but the strength of a bone is also dependent upon its chemical composition. One technology that has been used extensively in ex vivo, exposed-bone studies to measure the chemical composition of bone is Raman spectroscopy. This spectroscopic technique provides chemical information about a sample by probing its molecular vibrations. In the case of bone tissue, Raman spectra provide chemical information about both the inorganic mineral and organic matrix components, which each contribute to bone strength. To explore the relationship between bone strength and chemical composition, our laboratory has contributed to ex vivo, exposed-bone animal studies of rheumatoid arthritis, glucocorticoid-induced osteoporosis, and prolonged lead exposure. All of these studies suggest that Raman-based predictions of biomechanical strength may be more accurate than those produced by the clinically-used parameter of bone mineral density. The utility of Raman spectroscopy in ex vivo, exposed-bone studies has inspired attempts to perform bone spectroscopy transcutaneously. Although the results are promising, further advancements are necessary to make non-invasive, in vivo measurements of bone that are of sufficient quality to generate accurate predictions of fracture risk. In order to separate the signals from bone and soft tissue that contribute to a transcutaneous measurement, we developed an overconstrained extraction algorithm that is based upon fitting with spectral libraries derived from separately-acquired measurements of the underlying tissue components. This approach allows for accurate spectral unmixing despite the fact that similar chemical components (e.g., type I collagen) are present in both soft tissue and bone and was applied to experimental data in order to transcutaneously detect, to our knowledge for the first time, age- and disease-related spectral

  6. Chemical makeup of microdamaged bone differs from undamaged bone.

    PubMed

    Ruppel, Meghan E; Burr, David B; Miller, Lisa M

    2006-08-01

    Microdamage naturally occurs in bone tissue as a result of cyclic loading placed on the body from normal daily activities. While it is usually repaired through the bone turnover process, accumulation of microdamage may result in reduced bone quality and increased fracture risk. It is unclear whether certain areas of bone are more susceptible to microdamage than others due to compositional differences. This study examines whether areas of microdamaged bone are chemically different than undamaged areas of bone. Bone samples (L3 vertebrae) were harvested from 15 dogs. Samples were stained with basic fuchsin, embedded in poly-methylmethacrylate, and cut into 5-microm-thick sections. Fuchsin staining was used to identify regions of microdamage, and synchrotron infrared microspectroscopic imaging was used to determine the local bone composition. Results showed that microdamaged areas of bone were chemically different than the surrounding undamaged areas. Specifically, the mineral stoichiometry was altered in microdamaged bone, where the carbonate/protein ratio and carbonate/phosphate ratio were significantly lower in areas of microdamage, and the acid phosphate content was higher. No differences were observed in tissue mineralization (phosphate/protein ratio) or crystallinity between the microdamaged and undamaged bone, indicating that the microdamaged regions of bone were not over-mineralized. The collagen cross-linking structure was also significantly different in microdamaged areas of bone, consistent with ruptured cross-links and reduced fracture resistance. All differences in composition had well-defined boundaries in the microcrack region, strongly suggesting that they occurred after microcrack formation. Even so, because microdamage results in an altered bone composition, an accumulation of microdamage might result in a long-term reduction in bone quality.

  7. Chemical Makeup of Microdamaged Bone Differs from Undamaged Bone

    SciTech Connect

    Ruppel,M.; Burr, D.; Miller, L.

    2006-01-01

    Microdamage naturally occurs in bone tissue as a result of cyclic loading placed on the body from normal daily activities. While it is usually repaired through the bone turnover process, accumulation of microdamage may result in reduced bone quality and increased fracture risk. It is unclear whether certain areas of bone are more susceptible to microdamage than others due to compositional differences. This study examines whether areas of microdamaged bone are chemically different than undamaged areas of bone. Bone samples (L3 vertebrae) were harvested from 15 dogs. Samples were stained with basic fuchsin, embedded in poly-methylmethacrylate, and cut into 5-{micro}m-thick sections. Fuchsin staining was used to identify regions of microdamage, and synchrotron infrared microspectroscopic imaging was used to determine the local bone composition. Results showed that microdamaged areas of bone were chemically different than the surrounding undamaged areas. Specifically, the mineral stoichiometry was altered in microdamaged bone, where the carbonate/protein ratio and carbonate/phosphate ratio were significantly lower in areas of microdamage, and the acid phosphate content was higher. No differences were observed in tissue mineralization (phosphate/protein ratio) or crystallinity between the microdamaged and undamaged bone, indicating that the microdamaged regions of bone were not over-mineralized. The collagen cross-linking structure was also significantly different in microdamaged areas of bone, consistent with ruptured cross-links and reduced fracture resistance. All differences in composition had well-defined boundaries in the microcrack region, strongly suggesting that they occurred after microcrack formation. Even so, because microdamage results in an altered bone composition, an accumulation of microdamage might result in a long-term reduction in bone quality.

  8. Unicameral Bone Cyst in the Calcaneus of Mirror Image Twins.

    PubMed

    Lenze, Ulrich; Stolberg-Stolberg, Josef; Pohlig, Florian; Lenze, Florian; von Eisenhart-Rothe, Rüdiger; Rechl, Hans; Toepfer, Andreas

    2015-01-01

    Unicameral bone cysts (UBCs) are benign tumor-like lesions that commonly occur in the diaphyseal or metaphyseal region of the long bones within the first 2 decades of life. Until today, the pathogenesis of UBC has been unclear, but mechanisms such as vascular occlusion or a response to trauma have been supposed. During the past decade, in particular, the genetic aspects of the development of this rare lesion have been discussed. We present the first case of mirror image monozygotic twins with a mirror image UBC of the calcaneus. Our findings reinforce the importance of additional studies to understand the significance of cytogenetic factors in the etiology of UBC.

  9. Imaging symptomatic bone morphogenetic protein-2-induced heterotopic bone formation within the spinal canal: case report.

    PubMed

    Chryssikos, Timothy; Crandall, Kenneth M; Sansur, Charles A

    2016-05-01

    Heterotopic bone formation within the spinal canal is a known complication of bone morphogenetic protein-2 (BMP-2) and presents a clinical and surgical challenge. Imaging modalities are routinely used for operative planning in this setting. Here, the authors present the case of a 59-year-old woman with cauda equina syndrome following intraoperative BMP-2 administration. Plain film myelographic studies showed a region of severe stenosis that was underappreciated on CT myelography due to a heterotopic bony lesion mimicking the dorsal aspect of a circumferentially patent thecal sac. When evaluating spinal stenosis under these circumstances, it is important to carefully consider plain myelographic images in addition to postmyelography CT images as the latter may underestimate the true degree of stenosis due to the potentially similar radiographic appearances of evolving BMP-2-induced heterotopic bone and intrathecal contrast. Alternatively, comparison of sequentially acquired noncontrast CT scans with CT myelographic images may also assist in distinguishing BMP-2-induced heterotopic bony lesions from the thecal sac. Further studies are needed to elucidate the roles of the available imaging techniques in this setting and to characterize the connection between the radiographic and histological appearances of BMP-2-induced heterotopic bone. PMID:26824586

  10. Aspects of flux compactification

    NASA Astrophysics Data System (ADS)

    Liu, Tao

    In this thesis, we study three main aspects of flux compactifications: (1) classify supergravity solutions from flux compactification; (2) construct flux-deformed geometry and 4D low-energy theory to describe these flux vacua; and (3) study 4D particle phenomenology and cosmology of flux vacua. In the first part, we review G-structure, the basic tool to study supersymmetric flux solutions, and some typical solutions obtained in heterotic, type IIA and type IIB string theories. Then we present a comprehensive classification of supersymmetric vacua of M-theory compactification on 7D manifolds with general four-form fluxes. We analyze the cases where the resulting four-dimensional vacua have N = 1, 2, 3, 4 supersymmetry and the internal space allows for SU(2)-, SU(3)- or G 2-structures. In particular, we find for N = 2 supersymmetry, that the external space-time is Minkowski and the base manifold of the internal space is conformally Kahler for SU(2) structures, while for SU(3) structures the internal space has to be Einstein-Sasaki and no internal fluxes are allowed. Moreover, we provide a new vacuum with N = 1 supersymmetry and SU(3) structure, where all fluxes are non-zero and the first order differential equations are solved. In the second part, we simply review the methods used to construct one subclass of fluxed-deformed geometry or the so-called "twisted manifold", and the associated 4D effective theory describing these flux vacua. Then by employing (generalized) Scherk-Schwarz reduction, we construct the geometric twisting for Calabi-Yau manifolds of Voisin-Borcea type (K 3 x T2)/ Z2 and study the superpotential in a type IIA orientifold based on this geometry. The twists modify the direct product by fibering the K 3 over T2 while preserving the Z2 involution. As an important application, the Voisin-Borcea class contains T6/( Z2 x Z2 ), the usual setting for intersecting D6 brane model building. Past work in this context considered only those twists inherited

  11. Genetic aspects of arteriosclerosis.

    PubMed

    Goldbourt, U; Neufeld, H N

    1986-01-01

    This review discusses the genetic factors in the development of arteriosclerosis and coronary heart disease (CHD). In several studies, multivariate analysis of prospective mortality/morbidity data and angiographic findings have indicated that a family history of CHD contributed to CHD risk independently of the established risk factors. In addition, ethnic groups that differ in the prevalence and incidence of CHD also markedly differ in blood groups and protein-enzymatic markers. These or other genetic differences may affect CHD rates. Data from fraternal and identical twins, the source of some early genetic CHD findings, are reviewed. Genetic disorders of lipoprotein metabolism and transport, such as familial hypercholesterolemia, as well as other monogenic disorders are discussed. The role of apoprotein E polymorphism i other monogenic disorders are discussed. The role of apoprotein E polymorphism in determining plasma LDL variability among individuals is considered. Recombinant DNA technology, molecular cloning, and the identification of restriction fragment length polymorphisms are new tools for investigators who assess DNA polymorphism. Recent advances in that domain include: DNA polymorphisms affecting blood levels of apo A-I and A-II, association of a DNA insertion on chromosome 19 with severe premature atherosclerosis, and information concerning linkage of the genes for various apolipoproteins. In addition, the evidence for a major genetic component in diabetes mellitus and research into the genetic aspects of hypertension are reviewed. The male/female ratio in pathologically and epidemiologically assessed atherosclerosis may provide clues to the role of genetics. Early structural changes in the coronary artery intima are compatible with the ethnic and gender predilection. A key question in understanding underlying mechanisms in atherosclerosis is why coronary arteries are occluded in individuals whose other arterial systems are largely unaffected. The

  12. [Medical aspects of fasting].

    PubMed

    Gavrankapetanović, F

    1997-01-01

    Fasting (arabic-savm) was proclaimed through islam, and thus it is an obligation for Holly Prophet Muhammad s.a.v.s.-Peace be to Him-in the second year after Hijra (in 624 after Milad-born of Isa a.s.). There is a month of fasting-Ramadan-each lunar (hijra) year. So, it was 1415th fasting this year. Former Prophets have brought obligative messages on fasting to their people; so there are also certain forms of fasting with other religions i.e. with Catholics, Jews, Orthodox. These kinds of fasting above differ from muslim fasting, but they also appear obligative. All revelations have brought fasting as obligative. From medical point of view, fasting has two basical components: psychical and physical. Psychical sphere correlate closely with its fundamental ideological message. Allah dz.s. says in Quran: "... Fasting is obligative for you, as it was obligative to your precedents, as to avoid sins; during very few days (II, II, 183 & 184)." Will strength, control of passions, effort and self-discipline makes a pure faithfull person, who purify its mind and body through fasting. Thinking about The Creator is more intensive, character is more solid; and spirit and will get stronger. We will mention the hadith saying: "Essaihune humus saimun!" That means: "Travellers at the Earth are fasters (of my ummet)." The commentary of this hadith, in the Collection of 1001 hadiths (Bin bir hadis), number 485, says: "There are no travelling dervishs or monks in islam; thus there is no such a kind of relligousity in islam. In stead, it is changed by fasting and constant attending of mosque. That was proclaimed as obligation, although there were few cases of travelling in the name of relligousity, like travelling dervishs and sheichs." In this paper, the author discusses medical aspects of fasting and its positive characteristics in the respect of healthy life style and prevention of many sicks. The author mentions positive influence of fasting to certain system and organs of human

  13. Multiscale imaging of bone microdamage

    PubMed Central

    Poundarik, Atharva A.; Vashishth, Deepak

    2015-01-01

    Bone is a structural and hierarchical composite that exhibits remarkable ability to sustain complex mechanical loading and resist fracture. Bone quality encompasses various attributes of bone matrix from the quality of its material components (type-I collagen, mineral and non-collagenous matrix proteins) and cancellous microarchitecture, to the nature and extent of bone microdamage. Microdamage, produced during loading, manifests in multiple forms across the scales of hierarchy in bone and functions to dissipate energy and avert fracture. Microdamage formation is a key determinant of bone quality, and through a range of biological and physical mechanisms, accumulates with age and disease. Accumulated microdamage in bone decreases bone strength and increases bone’s propensity to fracture. Thus, a thorough assessment of microdamage, across the hierarchical levels of bone, is crucial to better understand bone quality and bone fracture. This review article details multiple imaging modalities that have been used to study and characterize microdamage; from bulk staining techniques originally developed by Harold Frost to assess linear microcracks, to atomic force microscopy, a modality that revealed mechanistic insights into the formation diffuse damage at the ultrastructural level in bone. New automated techniques using imaging modalities such as microcomputed tomography are also presented for a comprehensive overview. PMID:25664772

  14. Breast Cancer and Bone Loss

    MedlinePlus

    ... Balance › Breast Cancer and Bone Loss Fact Sheet Breast Cancer and Bone Loss July, 2010 Download PDFs English ... JoAnn Pinkerton, MD What is the link between breast cancer and bone loss? Certain treatments for breast cancer ...

  15. Scaffold Design for Bone Regeneration

    PubMed Central

    Polo-Corrales, Liliana; Latorre-Esteves, Magda; Ramirez-Vick, Jaime E.

    2014-01-01

    The use of bone grafts is the standard to treat skeletal fractures, or to replace and regenerate lost bone, as demonstrated by the large number of bone graft procedures performed worldwide. The most common of these is the autograft, however, its use can lead to complications such as pain, infection, scarring, blood loss, and donor-site morbidity. The alternative is allografts, but they lack the osteoactive capacity of autografts and carry the risk of carrying infectious agents or immune rejection. Other approaches, such as the bone graft substitutes, have focused on improving the efficacy of bone grafts or other scaffolds by incorporating bone progenitor cells and growth factors to stimulate cells. An ideal bone graft or scaffold should be made of biomaterials that imitate the structure and properties of natural bone ECM, include osteoprogenitor cells and provide all the necessary environmental cues found in natural bone. However, creating living tissue constructs that are structurally, functionally and mechanically comparable to the natural bone has been a challenge so far. This focus of this review is on the evolution of these scaffolds as bone graft substitutes in the process of recreating the bone tissue microenvironment, including biochemical and biophysical cues. PMID:24730250

  16. Female Reproductive System and Bone

    PubMed Central

    Clarke, Bart L.; Khosla, Sundeep

    2010-01-01

    The female reproductive system plays a major role in regulating the acquisition and loss of bone by the skeleton from menarche through senescence. Onset of gonadal sex steroid secretion at puberty is the major factor responsible for skeletal longitudinal and radial growth, as well as significant gain in bone density, until peak bone density is achieved in third decade of life. Gonadal sex steroids then help maintain peak bone density until menopause, including during the transient changes in skeletal mineral content associated with pregnancy and lactation. At menopause, decreased gonadal sex steroid production normally leads to rapid bone loss. The most rapid bone loss associated with decreased estrogen levels occurs in the first 8–10 years after menopause, with slower age-related bone loss occurring during later life. Age-related bone loss in women after the early menopausal phase of bone loss is caused by ongoing gonadal sex steroid deficiency, vitamin D deficiency, and secondary hyperparathyroidism. Other factors also contribute to age-related bone loss, including intrinsic defects in osteoblast function, impairment of the GH/IGF axis, reduced peak bone mass, age-associated sarcopenia, and various sporadic secondary causes. Further understanding of the relative contributions of the female reproductive system and each of the other factors to development and maintenance of the female skeleton, bone loss, and fracture risk will lead to improved approaches for prevention and treatment of osteoporosis. PMID:20637179

  17. Bone vascularization: a way to study bone microarchitecture?

    NASA Astrophysics Data System (ADS)

    Blery, P.; Autrusseau, F.; Crauste, E.; Freuchet, Erwan; Weiss, Pierre; Guédon, J.-P.; Amouriq, Y.

    2014-03-01

    Trabecular bone and its microarchitecture are of prime importance for health. Studying vascularization helps to better know the relationship between bone and vascular microarchitecture. This research is an animal study (nine Lewis rats), based on the perfusion of vascularization by a contrast agent (a mixture of 50% barium sulfate with 1.5% of gelatin) before euthanasia. The samples were studied by micro CT at a resolution of 9μm. Softwares were used to show 3D volumes of bone and vessels, to calculate bone and vessels microarchitecture parameters. This study aims to understand simultaneously the bone microarchitecture and its vascular microarchitecture.

  18. Management of Bone Sarcoma.

    PubMed

    Gutowski, Christina J; Basu-Mallick, Atrayee; Abraham, John A

    2016-10-01

    Treatment of bone sarcoma requires careful planning and involvement of an experienced multidisciplinary team. Significant advancements in systemic therapy, radiation, and surgery in recent years have contributed to improved functional and survival outcomes for patients with these difficult tumors, and emerging technologies hold promise for further advancement. PMID:27542644

  19. Bones of the Earth

    ERIC Educational Resources Information Center

    Correa, Jose Miguel

    2014-01-01

    The film "Bones of the Earth" (Riglin, Cunninham & Correa, 2014) is an experience in collective inquiry and visual creation based on arts-based research. Starting from the meeting of different subjectivities and through dialogue, planning, shooting and editing, an audiovisual text that reconstructs a reflexive process of collective…

  20. Are Bones Alive?

    ERIC Educational Resources Information Center

    Caravita, Silvia; Falchetti, Elisabetta

    2005-01-01

    Many studies have investigated the classification of living things. Our study deals with a different problem: the attribution of life to one component of a living organism, specifically the bones. The task involves not only specifying what we mean by "alive", but also requires "informed thinking" leading to an understanding of the concept of life…

  1. Bone Marrow Matters

    ERIC Educational Resources Information Center

    Dunne, Mark; Maklad, Rania; Heaney, Emma

    2014-01-01

    As a final-year student teacher specialising in primary science, Emma Heaney faced the challenge of having to plan, organise, and conduct a small-scale, classroom-based research project. She had to teach about bones in the final block practice session and thought it would be a good idea to bring in some biological specimens obtained from the local…

  2. Joint and bone assessment in hand osteoarthritis.

    PubMed

    Ramonda, Roberta; Frallonardo, Paola; Musacchio, Estella; Vio, Stefania; Punzi, Leonardo

    2014-01-01

    Hand osteoarthritis (OA) is a common disease frequently affecting middle-aged women. Prevalence estimates for OA vary widely depending on the age and sex of the population studied, the assessment tools used, and the specific joint sites analyzed OA is characterized by the degradation of articular cartilage, subchondral bone changes and osteophyte formation at the joint margins leading to joint failure. The pathogenesis of the disease and its evolution are multifactorial involving biomechanical, metabolic, hormonal, and genetic factors. Moreover, the role of inflammation has recently been advanced as pivotal in OA onset and progression. In particular, an uncommon variant of hand OA, erosive hand OA, is characterized by inflammatory and degenerative interphalangeal proximal and distal joints. The diagnosis of different types of hand OA is centered on clinical and laboratory investigations which can distinguish the peculiar aspects of these forms. Joint and bone assessments in hand OA are widely studied but there is no agreement with regard to established parameters to make a definitive diagnosis. This report focuses on the laboratory and clinimetric assessments that can be used to distinguish hand OA subtypes and addresses the debatable association with low bone mineral density in osteoporosis.

  3. Human Temporal Bone Removal: The Skull Base Block Method.

    PubMed

    Dinh, Christine; Szczupak, Mikhaylo; Moon, Seo; Angeli, Simon; Eshraghi, Adrien; Telischi, Fred F

    2015-08-01

    Objectives To describe a technique for harvesting larger temporal bone specimens from human cadavers for the training of otolaryngology residents and fellows on the various approaches to the lateral and posterolateral skull base. Design Human cadaveric anatomical study. The calvarium was excised 6 cm above the superior aspect of the ear canal. The brain and cerebellum were carefully removed, and the cranial nerves were cut sharply. Two bony cuts were performed, one in the midsagittal plane and the other in the coronal plane at the level of the optic foramen. Setting Medical school anatomy laboratory. Participants Human cadavers. Main Outcome Measures Anatomical contents of specimens and technical effort required. Results Larger temporal bone specimens containing portions of the parietal, occipital, and sphenoidal bones were consistently obtained using this technique of two bone cuts. All specimens were inspected and contained pertinent surface and skull base landmarks. Conclusions The skull base block method allows for larger temporal bone specimens using a two bone cut technique that is efficient and reproducible. These specimens have the necessary anatomical bony landmarks for studying the complexity, utility, and limitations of lateral and posterolateral approaches to the skull base, important for the education of otolaryngology residents and fellows.

  4. Tooth dentin defects reflect genetic disorders affecting bone mineralization

    PubMed Central

    Vital, S. Opsahl; Gaucher, C.; Bardet, C.; Rowe, P.S.; George, A.; Linglart, A.; Chaussain, C.

    2012-01-01

    Several genetic disorders affecting bone mineralization may manifest during dentin mineralization. Dentin and bone are similar in several aspects, especially pertaining to the composition of the extracellular matrix (ECM) which is secreted by well-differentiated odontoblasts and osteoblasts, respectively. However, unlike bone, dentin is not remodelled and is not involved in the regulation of calcium and phosphate metabolism. In contrast to bone, teeth are accessible tissues with the shedding of deciduous teeth and the extractions of premolars and third molars for orthodontic treatment. The feasibility of obtaining dentin makes this a good model to study biomineralization in physiological and pathological conditions. In this review, we focus on two genetic diseases that disrupt both bone and dentin mineralization. Hypophosphatemic rickets is related to abnormal secretory proteins involved in the ECM organization of both bone and dentin, as well as in the calcium and phosphate metabolism. Osteogenesis imperfecta affects proteins involved in the local organization of the ECM. In addition, dentin examination permits evaluation of the effects of the systemic treatment prescribed to hypophosphatemic patients during growth. In conclusion, dentin constitutes a valuable tool for better understanding of the pathological processes affecting biomineralization. PMID:22296718

  5. Human Temporal Bone Removal: The Skull Base Block Method.

    PubMed

    Dinh, Christine; Szczupak, Mikhaylo; Moon, Seo; Angeli, Simon; Eshraghi, Adrien; Telischi, Fred F

    2015-08-01

    Objectives To describe a technique for harvesting larger temporal bone specimens from human cadavers for the training of otolaryngology residents and fellows on the various approaches to the lateral and posterolateral skull base. Design Human cadaveric anatomical study. The calvarium was excised 6 cm above the superior aspect of the ear canal. The brain and cerebellum were carefully removed, and the cranial nerves were cut sharply. Two bony cuts were performed, one in the midsagittal plane and the other in the coronal plane at the level of the optic foramen. Setting Medical school anatomy laboratory. Participants Human cadavers. Main Outcome Measures Anatomical contents of specimens and technical effort required. Results Larger temporal bone specimens containing portions of the parietal, occipital, and sphenoidal bones were consistently obtained using this technique of two bone cuts. All specimens were inspected and contained pertinent surface and skull base landmarks. Conclusions The skull base block method allows for larger temporal bone specimens using a two bone cut technique that is efficient and reproducible. These specimens have the necessary anatomical bony landmarks for studying the complexity, utility, and limitations of lateral and posterolateral approaches to the skull base, important for the education of otolaryngology residents and fellows. PMID:26225316

  6. Stress shielding in bone of a bone-cement interface.

    PubMed

    Zhang, Qing-Hang; Cossey, Andrew; Tong, Jie

    2016-04-01

    Cementation is one of the main fixation methods used in joint replacement surgeries such as Total Knee Replacement (TKR). This work was prompted by a recent retrieval study, which shows losses up to 75% of the bone stock at the bone-cement interface ten years post TKR. It aims to examine the effects of cementation on the stress shielding of the interfacing bone, when the influence of an implant is removed. A micromechanics finite element study of a generic bone-cement interface is presented here, where bone elements in the partially and the fully interdigitated regions were evaluated under selected load cases. The results revealed significant stress shielding effect in the bone of all bone-cement interface regions, particularly in fully interdigitated region. This finding may be useful in the studies of implant fixation and other related orthopedic treatment strategies. PMID:26904919

  7. Long-term results with different bone substitutes used for sinus floor elevation.

    PubMed

    Velich, Norbert; Németh, Zsolt; Tóth, Christian; Szabó, György

    2004-01-01

    One of the surgical procedures preceding implantation is elevation of the base of the maxillary sinus. Numerous bone substituting materials (grafts) may be used for this purpose, including autogenous bone, heterografts, xenogenous bone, and synthetic materials alone or in combination or mixed with growth factors and bone morphogenetic protein (BMP) preparations. A study of the frequencies of the failures (graft material resorption or implant loss) after sinus elevations with various graft materials or their combinations was conducted. In the 5-year period from 1996 through 2001, a follow-up investigation of 810 maxillary sinus augmentations was performed, in which the sinus elevations involved the use of autogenous bone, a calcium carbonate-coated polymer, hydroxylapatite of algal origin, calcium carbonate gel produced from coral or beta-tricalcium phosphate alone, autogenous bone mixed with these bone substitutes, or a combination of beta-tricalcium phosphate and platelet-rich plasma. The incidences of graft resorption and implant loss after the augmentations with various bone substitutes were recorded. Total resorption (disappearance) of the bone substitute material was observed in 2.7% of the cases. An essential difference was not experienced between the various bone substitutes from this aspect, with the exception of the gel-state calcium carbonate, where 40% of the grafts were resorbed. In total, 5.46% of the implants were lost; the differences between the various materials were not significant. PMID:14704560

  8. Assessment of murine bone ultrastructure using synchrotron light: towards nano-computed tomography

    NASA Astrophysics Data System (ADS)

    Schneider, Philipp; Voide, Romain; Stauber, Martin; Stampanoni, Marco; Donahue, Leah Rae; Wyss, Peter; Sennhauser, Urs; Müller, Ralph

    2006-08-01

    To describe the different aspects of bone quality, we follow a hierarchical approach and assess bone tissue properties in different regimes of spatial resolution, beginning at the organ level and going down to cellular dimensions. For these purposes we developed different synchrotron radiation (SR) based computed-tomography (CT) methods to assess murine bone ultrastructure. In a first step, a tubular system and the osteocyte lacunar system within murine cortical bone have been established as novel ultrastructural quantitative traits. Results in two mouse strains showed that morphometry of these quantitative traits was dependent on strain and partially on gender, and that their scaling behavior with bone size was fundamentally different. In a second step, we explored bone competence on an ultrastructural level and related our findings to the two ultrastructural quantitative traits introduced before. We showed that SR CT imaging is a powerful tool to investigate the initiation and propagation of microcracks, which may alter bone quality and may lead to increased fracture risk by means of microdamage accumulation. In summary, investigation of ultrastructural bone tissue properties will eventually lead to a better understanding of bone quality and its relative contribution to bone competence.

  9. Evolutionary Patterns of Bone Histology and Bone Compactness in Xenarthran Mammal Long Bones

    PubMed Central

    Straehl, Fiona R.; Scheyer, Torsten M.; Forasiepi, Analía M.; MacPhee, Ross D.; Sánchez-Villagra, Marcelo R.

    2013-01-01

    Bone microstructure reflects physiological characteristics and has been shown to contain phylogenetic and ecological signals. Although mammalian long bone histology is receiving increasing attention, systematic examination of the main clades has not yet been performed. Here we describe the long bone microstructure of Xenarthra based on thin sections representing twenty-two species. Additionally, patterns in bone compactness of humeri and femora are investigated. The primary bone tissue of xenarthran long bones is composed of a mixture of woven, parallel-fibered and lamellar bone. The vascular canals have a longitudinal, reticular or radial orientation and are mostly arranged in an irregular manner. Concentric rows of vascular canals and laminar organization of the tissue are only found in anteater bones. The long bones of adult specimens are marked by dense Haversian bone, a feature that has been noted for most groups of mammals. In the long bones of armadillos, secondary osteons have an oblique orientation within the three-dimensional bone tissue, thus resulting in their irregular shape when the bones are sectioned transversely. Secondary remodeling is generally more extensive in large taxa than in small taxa, and this could be caused by increased loading. Lines of arrested growth are assumed to be present in all specimens, but they are restricted to the outermost layer in bones of armadillos and are often masked by secondary remodeling in large taxa. Parameters of bone compactness show a pattern in the femur that separates Cingulata and Pilosa (Folivora and Vermilingua), with cingulates having a lower compactness than pilosans. In addition, cingulates show an allometric relationship between humeral and femoral bone compactness. PMID:23874932

  10. Evolutionary patterns of bone histology and bone compactness in xenarthran mammal long bones.

    PubMed

    Straehl, Fiona R; Scheyer, Torsten M; Forasiepi, Analía M; MacPhee, Ross D; Sánchez-Villagra, Marcelo R

    2013-01-01

    Bone microstructure reflects physiological characteristics and has been shown to contain phylogenetic and ecological signals. Although mammalian long bone histology is receiving increasing attention, systematic examination of the main clades has not yet been performed. Here we describe the long bone microstructure of Xenarthra based on thin sections representing twenty-two species. Additionally, patterns in bone compactness of humeri and femora are investigated. The primary bone tissue of xenarthran long bones is composed of a mixture of woven, parallel-fibered and lamellar bone. The vascular canals have a longitudinal, reticular or radial orientation and are mostly arranged in an irregular manner. Concentric rows of vascular canals and laminar organization of the tissue are only found in anteater bones. The long bones of adult specimens are marked by dense Haversian bone, a feature that has been noted for most groups of mammals. In the long bones of armadillos, secondary osteons have an oblique orientation within the three-dimensional bone tissue, thus resulting in their irregular shape when the bones are sectioned transversely. Secondary remodeling is generally more extensive in large taxa than in small taxa, and this could be caused by increased loading. Lines of arrested growth are assumed to be present in all specimens, but they are restricted to the outermost layer in bones of armadillos and are often masked by secondary remodeling in large taxa. Parameters of bone compactness show a pattern in the femur that separates Cingulata and Pilosa (Folivora and Vermilingua), with cingulates having a lower compactness than pilosans. In addition, cingulates show an allometric relationship between humeral and femoral bone compactness. PMID:23874932

  11. Evolutionary patterns of bone histology and bone compactness in xenarthran mammal long bones.

    PubMed

    Straehl, Fiona R; Scheyer, Torsten M; Forasiepi, Analía M; MacPhee, Ross D; Sánchez-Villagra, Marcelo R

    2013-01-01

    Bone microstructure reflects physiological characteristics and has been shown to contain phylogenetic and ecological signals. Although mammalian long bone histology is receiving increasing attention, systematic examination of the main clades has not yet been performed. Here we describe the long bone microstructure of Xenarthra based on thin sections representing twenty-two species. Additionally, patterns in bone compactness of humeri and femora are investigated. The primary bone tissue of xenarthran long bones is composed of a mixture of woven, parallel-fibered and lamellar bone. The vascular canals have a longitudinal, reticular or radial orientation and are mostly arranged in an irregular manner. Concentric rows of vascular canals and laminar organization of the tissue are only found in anteater bones. The long bones of adult specimens are marked by dense Haversian bone, a feature that has been noted for most groups of mammals. In the long bones of armadillos, secondary osteons have an oblique orientation within the three-dimensional bone tissue, thus resulting in their irregular shape when the bones are sectioned transversely. Secondary remodeling is generally more extensive in large taxa than in small taxa, and this could be caused by increased loading. Lines of arrested growth are assumed to be present in all specimens, but they are restricted to the outermost layer in bones of armadillos and are often masked by secondary remodeling in large taxa. Parameters of bone compactness show a pattern in the femur that separates Cingulata and Pilosa (Folivora and Vermilingua), with cingulates having a lower compactness than pilosans. In addition, cingulates show an allometric relationship between humeral and femoral bone compactness.

  12. Bone quality and bone strength: benefits of the bone-forming approach.

    PubMed

    Iolascon, Giovanni; Frizzi, Laura; Di Pietro, Gioconda; Capaldo, Annarita; Luciano, Fabrizio; Gimigliano, Francesca

    2014-01-01

    The ability of bone to resist fracture depends on the intrinsic properties of the materials that comprise the bone matrix mineralization, the amount of bone (i.e. mass), and the spatial distribution of the bone mass (i.e. microarchitecture). Antiresorptive agents may prevent the decay of cancellous bone and cortical thinning, with no improvement of bone microstructure, leading to a partial correction of the principal bone quality defect in osteoporosis, the disruption of trabecular microarchitecture. Anabolic agents promote bone formation at both trabecular and endocortical surfaces, resulting in an increase of cancellous bone volume and cortical thickness. The improvement of cortical bone strength may be limited by an increase in cortical porosity. strontium ranelate improves trabecular network and cortical thickness that will contribute to anti-fracture efficacy at both vertebral and non-vertebral sites. The results of clinical and experimental studies are consistent with the mode of action of strontium involving dissociation between bone formation and resorption leading to a stimulation both trabecular and cortical bone formation without increasing cortical porosity. PMID:25002875

  13. Digital electronic bone growth stimulator

    DOEpatents

    Kronberg, J.W.

    1995-05-09

    A device is described for stimulating bone tissue by applying a low level alternating current signal directly to the patient`s skin. A crystal oscillator, a binary divider chain and digital logic gates are used to generate the desired waveforms that reproduce the natural electrical characteristics found in bone tissue needed for stimulating bone growth and treating osteoporosis. The device, powered by a battery, contains a switch allowing selection of the correct waveform for bone growth stimulation or osteoporosis treatment so that, when attached to the skin of the patient using standard skin contact electrodes, the correct signal is communicated to the underlying bone structures. 5 figs.

  14. Digital electronic bone growth stimulator

    DOEpatents

    Kronberg, James W.

    1995-01-01

    A device for stimulating bone tissue by applying a low level alternating current signal directly to the patient's skin. A crystal oscillator, a binary divider chain and digital logic gates are used to generate the desired waveforms that reproduce the natural electrical characteristics found in bone tissue needed for stimulating bone growth and treating osteoporosis. The device, powered by a battery, contains a switch allowing selection of the correct waveform for bone growth stimulation or osteoporosis treatment so that, when attached to the skin of the patient using standard skin contact electrodes, the correct signal is communicated to the underlying bone structures.

  15. [Many issues about bone quality].

    PubMed

    Saito, Mitsuru

    2012-06-01

    According to the present definition of osteoporosis, bone mineral density, architecture, and tissue material properties are important factors in determining bone strength. Bone matrix consists of a two-phase composite material in which the mineral phase provides stiffness and collagen provide tensile strength and ductility. The proposed determinants of bone strength at the material level are the degree of mineralization of basic structure units, microdamage accumulation, and collagen cross-link formation. These are regulated by cellular activities, tissue turnover rate, and the levels of oxidative stress and glycation. In this review, I describe the concerns regarding bone qualities. PMID:22653026

  16. Permanence of diced cartilage, bone dust and diced cartilage/bone dust mixture in experimental design in twelve weeks.

    PubMed

    Islamoglu, Kemal; Dikici, Mustafa Bahadir; Ozgentas, Halil Ege

    2006-09-01

    Bone dust and diced cartilage are used for contour restoration because their minimal donor site morbidity. The purpose of this study is to investigate permanence of bone dust, diced cartilage and bone dust/diced cartilage mixture in rabbits over 12 weeks. New Zealand white rabbits were used for this study. There were three groups in the study: Group I: 1 mL bone dust. Group II: 1 mL diced cartilage. Group III: 0.5 mL bone dust + 0.5 mL diced cartilage mixture. They were placed into subcutaneous tissue of rabbits and removed 12 weeks later. The mean volumes of groups were 0.23 +/- 0.08 mL in group I, 0.60 +/- 0.12 mL in group II and 0.36 +/- 0.10 mL in group III. The differences between groups were found statistically significant. In conclusion, diced cartilage was found more reliable than bone dust aspect of preserving its volume for a long period in this study.

  17. Bone Anchored Hearing Aid

    PubMed Central

    2002-01-01

    Executive Summary Objective The objective of this health technology policy assessment was to determine the effectiveness and cost-effectiveness of bone-anchored hearing aid (BAHA) in improving the hearing of people with conduction or mixed hearing loss. The Technology The (BAHA) is a bone conduction hearing device that includes a titanium fixture permanently implanted into the mastoid bone of the skull and an external percutaneous sound processor. The sound processor is attached to the fixture by means of a skin penetrating abutment. Because the device bypasses the middle ear and directly stimulates the cochlea, it has been recommended for individuals with conduction hearing loss or discharging middle ear infection. The titanium implant is expected to last a lifetime while the external sound processor is expected to last 5 years. The total initial device cost is approximately $5,300 and the external sound processor costs approximately $3,500. Review of BAHA by the Medical Advisory Secretariat The Medical Advisory Secretariat’s review is a descriptive synthesis of findings from 36 research articles published between January 1990 and May 2002. Summary of Findings No randomized controlled studies were found. The evidence was derived from level 4 case series with relative small sample sizes (ranging from 30-188). The majority of the studies have follow-up periods of eight years or longer. All except one study were based on monaural BAHA implant on the side with the best bone conduction threshold. Safety Level 4 evidence showed that BAHA has been be implanted safely in adults and children with success rates of 90% or higher in most studies. No mortality or life threatening morbidity has been reported. Revision rates for tissue reduction or resiting were generally under 10% for adults but have been reported to be as high as 25% in pediatric studies. Adverse skin reaction around the skin penetration site was the most common complication reported. Most of these

  18. Space flight and bone formation

    NASA Technical Reports Server (NTRS)

    Doty, St B.

    2004-01-01

    Major physiological changes which occur during spaceflight include bone loss, muscle atrophy, cardiovascular and immune response alterations. When trying to determine the reason why bone loss occurs during spaceflight, one must remember that all these other changes in physiology and metabolism may also have impact on the skeletal system. For bone, however, the role of normal weight bearing is a major concern and we have found no adequate substitute for weight bearing which can prevent bone loss. During the study of this problem, we have learned a great deal about bone physiology and increased our knowledge about how normal bone is formed and maintained. Presently, we do not have adequate ground based models which can mimic the tissue loss that occurs in spaceflight but this condition closely resembles the bone loss seen with osteoporosis. Although a normal bone structure will respond to application of mechanical force and weight bearing by forming new bone, a weakened osteoporotic bone may have a tendency to fracture. The study of the skeletal system during weightless conditions will eventually produce preventative measures and form a basis for protecting the crew during long term space flight. The added benefit from these studies will be methods to treat bone loss conditions which occur here on earth.

  19. Function of osteocytes in bone.

    PubMed

    Aarden, E M; Burger, E H; Nijweide, P J

    1994-07-01

    Although the structural design of cellular bone (i.e., bone containing osteocytes that are regularly spaced throughout the bone matrix) dates back to the first occurrence of bone as a tissue in evolution, and although osteocytes represent the most abundant cell type of bone, we know as yet little about the role of the osteocyte in bone metabolism. Osteocytes descend from osteoblasts. They are formed by the incorporation of osteoblasts into the bone matrix. Osteocytes remain in contact with each other and with cells on the bone surface via gap junction-coupled cell processes passing through the matrix via small channels, the canaliculi, that connect the cell body-containing lacunae with each other and with the outside world. During differentiation from osteoblasts to mature osteocyte the cells lose a large part of their cell organelles. Their cell processes are packed with microfilaments. In this review we discuss the various theories on osteocyte function that have taken in consideration these special features of osteocytes. These are 1) osteocytes are actively involved in bone turnover; 2) the osteocyte network is through its large cell-matrix contact surface involved in ion exchange; and 3) osteocytes are the mechanosensory cells of bone and play a pivotal role in functional adaptation of bone. In our opinion, especially the last theory offers an exciting concept for which some biomechanical, biochemical, and cell biological evidence is already available and which fully warrants further investigations.

  20. Integration of a calcined bovine bone and BMSC-sheet 3D scaffold and the promotion of bone regeneration in large defects.

    PubMed

    Liu, Yihan; Ming, Leiguo; Luo, Hailang; Liu, Wenjia; Zhang, Yongjie; Liu, Hongchen; Jin, Yan

    2013-12-01

    Reconstruction of large area bone defect with mechanical integrity to the skeleton is important for patient's rehabilitation. However with the limitation of scaffold material and suitable seed cell sources, the best treating strategy remains to be identified though various tissue engineering methods were reported. In this study, we investigated the feasibility of applying calcined bovine bone (CBB) which was coated by allograft bone marrow mesenchymal stem cells (BMSC)-sheet as a 3D scaffold material in bone repairing tissue engineering. The new scaffold material was implanted into osteoporosis rat cranial bone defects and repairing critical size bone defects (8 mm diameter). Data showed that CBB-BMSC-sheet combination had a stronger potential in osteogenic differentiation and mineralized formation both in vitro and in vivo than CBB-BMSC combination. In in vitro study BMSC-sheet had a more feasible characteristic upon bone repairing including richer ECM, larger mineralized area and stronger ALP activity in addition with a significant higher mRNA expression of osteogenic maker such as BMP-2, b-FGF, Col 1a1, OSX and Runx-2 than the control group. In in vivo study 3D reconstruction of micro CT, HE staining and bone strength results showed that newly formed bone in CBB-BMSC-sheet group was significant higher than that in CBB-BMSC group at 4, 8 and 12 weeks after transplantation in the aspect of area and volume. What was more, results indicated that allograft BMSC-sheet had survivaled in the scaffold material and participated in the newly formed bone which had the same thickness with surrounding autologous bone tissues after transplantation. Results of our study demonstrated that CBB-BMSC-sheet combination was a promising strategy in healing of large area bone defect in osteoporosis.

  1. Robots in Space -Psychological Aspects

    NASA Technical Reports Server (NTRS)

    Sipes, Walter E.

    2006-01-01

    A viewgraph presentation on the psychological aspects of developing robots to perform routine operations associated with monitoring, inspection, maintenance and repair in space is shown. The topics include: 1) Purpose; 2) Vision; 3) Current Robots in Space; 4) Ground Based Robots; 5) AERCam; 6) Rotating Bladder Robot (ROBLR); 7) DART; 8) Robonaut; 9) Full Immersion Telepresence Testbed; 10) ERA; and 11) Psychological Aspects

  2. Targeting polymer therapeutics to bone.

    PubMed

    Low, Stewart A; Kopeček, Jindřich

    2012-09-01

    An aging population in the developing world has led to an increase in musculoskeletal diseases such as osteoporosis and bone metastases. Left untreated many bone diseases cause debilitating pain and in the case of cancer, death. Many potential drugs are effective in treating diseases but result in side effects preventing their efficacy in the clinic. Bone, however, provides a unique environment of inorganic solids, which can be exploited in order to effectively target drugs to diseased tissue. By integration of bone targeting moieties to drug-carrying water-soluble polymers, the payload to diseased area can be increased while side effects decreased. The realization of clinically relevant bone targeted polymer therapeutics depends on (1) understanding bone targeting moiety interactions, (2) development of controlled drug delivery systems, as well as (3) understanding drug interactions. The latter makes it possible to develop bone targeted synergistic drug delivery systems.

  3. TARGETING POLYMER THERAPEUTICS TO BONE

    PubMed Central

    Low, Stewart; Kopeček, Jindřich

    2012-01-01

    An aging population in the developing world has led to an increase in musculoskeletal diseases such as osteoporosis and bone metastases. Left untreated many bone diseases cause debilitating pain and in the case of cancer, death. Many potential drugs are effective in treating diseases but result in side effects preventing their efficacy in the clinic. Bone, however, provides an unique environment of inorganic solids, which can be exploited in order to effectively target drugs to diseased tissue. By integration of bone targeting moieties to drug-carrying water-soluble polymers, the payload to diseased area can be increased while side effects decreased. The realization of clinically relevant bone targeted polymer therapeutics depends on (1) understanding bone targeting moiety interactions, (2) development of controlled drug delivery systems, as well as (3) understanding drug interactions. The latter makes it possible to develop bone targeted synergistic drug delivery systems. PMID:22316530

  4. Molecular Mechanisms of Bone Metastasis.

    PubMed

    Weidle, Ulrich H; Birzele, Fabian; Kollmorgen, Gwendlyn; Rüger, Rüdiger

    2016-01-01

    Metastasis of breast and prostate cancer as well as multiple myeloma to the bones represents a significant medical problem. We herein discuss the molecular basis of the creation of pre-metastatic niches, the process of bone metastasis and the phenomenon of tumor dormancy in the bone marrow as well as its regulation. We describe the identification and validation of genes mediating bone metastasis by use of pre-clinical models of bone metastasis. Additionally, we discuss the role of small integrin binding N-linked glycoproteins (SIBLINGS), the chemokine/chemokine receptor CXCL12/CXCR4 pathway and the role of micro RNAs (miRNAs) as mediators of bone metastasis. Finally, we summarize clinical achievements for the treatment of bone metastases.

  5. Bone metabolism in anorexia nervosa.

    PubMed

    Fazeli, Pouneh K; Klibanski, Anne

    2014-03-01

    Anorexia nervosa (AN), a psychiatric disorder predominantly affecting young women, is characterized by self-imposed, chronic nutritional deprivation and distorted body image. AN is associated with a number of medical comorbidities including low bone mass. The low bone mass in AN is due to an uncoupling of bone formation and bone resorption, which is the result of hormonal adaptations aimed at decreasing energy expenditure during periods of low energy intake. Importantly, the low bone mass in AN is associated with a significant risk of fractures and therefore treatments to prevent bone loss are critical. In this review, we discuss the hormonal determinants of low bone mass in AN and treatments that have been investigated in this population.

  6. Probabilistic Risk Assessment for Astronaut Post Flight Bone Fracture

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth; Myers, Jerry; Licata, Angelo

    2015-01-01

    Introduction: Space flight potentially reduces the loading that bone can resist before fracture. This reduction in bone integrity may result from a combination of factors, the most common reported as reduction in astronaut BMD. Although evaluating the condition of bones continues to be a critical aspect of understanding space flight fracture risk, defining the loading regime, whether on earth, in microgravity, or in reduced gravity on a planetary surface, remains a significant component of estimating the fracture risks to astronauts. This presentation summarizes the concepts, development, and application of NASA's Bone Fracture Risk Module (BFxRM) to understanding pre-, post, and in mission astronaut bone fracture risk. The overview includes an assessment of contributing factors utilized in the BFxRM and illustrates how new information, such as biomechanics of space suit design or better understanding of post flight activities may influence astronaut fracture risk. Opportunities for the bone mineral research community to contribute to future model development are also discussed. Methods: To investigate the conditions in which spaceflight induced changes to bone plays a critical role in post-flight fracture probability, we implement a modified version of the NASA Bone Fracture Risk Model (BFxRM). Modifications included incorporation of variations in physiological characteristics, post-flight recovery rate, and variations in lateral fall conditions within the probabilistic simulation parameter space. The modeled fracture probability estimates for different loading scenarios at preflight and at 0 and 365 days post-flight time periods are compared. Results: For simple lateral side falls, mean post-flight fracture probability is elevated over mean preflight fracture probability due to spaceflight induced BMD loss and is not fully recovered at 365 days post-flight. In the case of more energetic falls, such as from elevated heights or with the addition of lateral movement

  7. Fetal Bone Formation Is Decreased from Middle Pregnancy to Birth.

    PubMed

    Nitta, Akihisa; Suzumura, Hiroshi; Arisaka, Osamu; Miura, Toshihide; Igarashi, Yoshihiko

    2016-01-01

    Fetal bone development is a complex process that is regulated and maintained by minerals, hormones, and growth factors delivered from the mother via the placenta. Various biochemical markers of fetal bone development have been identified. However, many aspects of this process remain unclear. The aim of the study was to measure the activities of serum tartrate-resistant acid phosphatase type 5b (TRACP 5b) as a bone resorption marker and bone alkaline phosphatase (BAP) as a bone formation marker in preterm and term neonates, and to investigate fetal bone development in middle and late pregnancy. The study included 111 neonates (87 preterm and 24 term) born at Dokkyo Medical University Hospital. Neonates with illnesses and maternal diseases were excluded. Serum samples were collected within 3 hours after birth and stored at -80°C. Univariate and multivariate linear regression analyses were performed. The 111 neonates (median birth weight, 1,510 g) were born at a median of 31.3 weeks of gestation, and had TRACP 5b and BAP activities of 10.9 ± 4.0 U/L and 127.5 ± 49.2 U/L, respectively. TRACP 5b activity showed a tendency to be higher in term neonates, while BAP activity tended to be lower in term neonates. Importantly, TRACP 5b activity was positively correlated with gestational age and birth weight, and BAP activity was negatively correlated with gestational age, rate of born small-for-gestational-age neonates, and birth weight. These results suggest that bone formation during fetal growth is gradually decreased from middle pregnancy to birth, whereas bone resorption is gradually increased. PMID:27265161

  8. Reversing bone loss by directing mesenchymal stem cells to bone.

    PubMed

    Yao, Wei; Guan, Min; Jia, Junjing; Dai, Weiwei; Lay, Yu-An E; Amugongo, Sarah; Liu, Ruiwu; Olivos, David; Saunders, Mary; Lam, Kit S; Nolta, Jan; Olvera, Diana; Ritchie, Robert O; Lane, Nancy E

    2013-09-01

    Bone regeneration by systemic transplantation of mesenchymal stem cells (MSCs) is problematic due to the inability to control the MSCs' commitment, growth, and differentiation into functional osteoblasts on the bone surface. Our research group has developed a method to direct the MSCs to the bone surface by conjugating a synthetic peptidomimetic ligand (LLP2A) that has high affinity for activated α4β1 integrin on the MSC surface, with a bisphosphonates (alendronate) that has high affinity for bone (LLP2A-Ale), to direct the transplanted MSCs to bone. Our in vitro experiments demonstrated that mobilization of LLP2A-Ale to hydroxyapatite accelerated MSC migration that was associated with an increase in the phosphorylation of Akt kinase and osteoblastogenesis. LLP2A-Ale increased the homing of the transplanted MSCs to bone as well as the osteoblast surface, significantly increased the rate of bone formation and restored both trabecular and cortical bone loss induced by estrogen deficiency or advanced age in mice. These results support LLP2A-Ale as a novel therapeutic option to direct the transplanted MSCs to bone for the treatment of established bone loss related to hormone deficiency and aging.

  9. Mechanotransduction of bone cells in vitro: mechanobiology of bone tissue.

    PubMed

    Mullender, M; El Haj, A J; Yang, Y; van Duin, M A; Burger, E H; Klein-Nulend, J

    2004-01-01

    Mechanical force plays an important role in the regulation of bone remodelling in intact bone and bone repair. In vitro, bone cells demonstrate a high responsiveness to mechanical stimuli. Much debate exists regarding the critical components in the load profile and whether different components, such as fluid shear, tension or compression, can influence cells in differing ways. During dynamic loading of intact bone, fluid is pressed through the osteocyte canaliculi, and it has been demonstrated that fluid shear stress stimulates osteocytes to produce signalling molecules. It is less clear how mechanical loads act on mature osteoblasts present on the surface of cancellous or trabecular bone. Although tissue strain and fluid shear stress both cause cell deformation, these stimuli could excite different signalling pathways. This is confirmed by our experimental findings, in human bone cells, that strain applied through the substrate and fluid flow stimulate the release of signalling molecules to varying extents. Nitric oxide and prostaglandin E2 values increased by between two- and nine-fold after treatment with pulsating fluid flow (0.6 +/- 0.3 Pa). Cyclic strain (1000 microstrain) stimulated the release of nitric oxide two-fold, but had no effect on prostaglandin E2. Furthermore, substrate strains enhanced the bone matrix protein collagen I two-fold, whereas fluid shear caused a 50% reduction in collagen I. The relevance of these variations is discussed in relation to bone growth and remodelling. In applications such as tissue engineering, both stimuli offer possibilities for enhancing bone cell growth in vitro.

  10. Bone Targeted Therapies for Bone Metastasis in Breast Cancer

    PubMed Central

    Razaq, Wajeeha

    2013-01-01

    Cancer metastasis to the bone develops commonly in patients with various malignancies, and is a major cause of morbidity and diminished quality of life in many affected patients. Emerging treatments for metastatic bone disease have arisen from advances in our understanding of the unique cellular and molecular mechanisms that contribute to the bone metastasis. The tendency of cancer cells to metastasize to bone is probably the end result of many factors including vascular pathways, the highly vascular nature of the bone marrow (which increases the probability that cancer cells will be deposited in bone marrow capillaries), and molecular characteristics of the cancer cells that allow them to adapt to the bone marrow microenvironment. The goals of treating osseous metastases are manifold. Proper treatment can lead to significant improvements in pain control and function, and maintain skeletal integrity. The treatment plan requires a multidisciplinary approach. Widespread metastatic disease necessitates systemic therapy, while a localized problem is best managed with surgery, external beam radiotherapy, or both. Patients with bone metastasis can have prolonged survival, and proper management can have a significant impact on their quality of life. We will review the factors in this article that are promising molecular bone-targeted therapies or will be likely targets for future therapeutic intervention to restore bone remodeling and suppress tumor growth. PMID:26237142

  11. Bone marrow macrophages support prostate cancer growth in bone

    PubMed Central

    Soki, Fabiana N.; Cho, Sun Wook; Kim, Yeo Won; Jones, Jacqueline D.; Park, Serk In; Koh, Amy J.; Entezami, Payam; Daignault-Newton, Stephanie; Pienta, Kenneth J.; Roca, Hernan; McCauley, Laurie K.

    2015-01-01

    Resident macrophages in bone play important roles in bone remodeling, repair, and hematopoietic stem cell maintenance, yet their role in skeletal metastasis remains under investigated. The purpose of this study was to determine the role of macrophages in prostate cancer skeletal metastasis, using two in vivo mouse models of conditional macrophage depletion. RM-1 syngeneic tumor growth was analyzed in an inducible macrophage (CSF-1 receptor positive cells) ablation model (MAFIA mice). There was a significant reduction in tumor growth in the tibiae of macrophage-ablated mice, compared with control non-ablated mice. Similar results were observed when macrophage ablation was performed using liposome-encapsulated clodronate and human PC-3 prostate cancer cells where tumor-bearing long bones had increased numbers of tumor associated-macrophages. Although tumors were consistently smaller in macrophage-depleted mice, paradoxical results of macrophage depletion on bone were observed. Histomorphometric and micro-CT analyses demonstrated that clodronate-treated mice had increased bone volume, while MAFIA mice had reduced bone volume. These results suggest that the effect of macrophage depletion on tumor growth was independent of its effect on bone responses and that macrophages in bone may be more important to tumor growth than the bone itself. In conclusion, resident macrophages play a pivotal role in prostate cancer growth in bone. PMID:26459393

  12. Acidic microenvironment and bone pain in cancer-colonized bone

    PubMed Central

    Yoneda, Toshiyuki; Hiasa, Masahiro; Nagata, Yuki; Okui, Tatsuo; White, Fletcher A

    2015-01-01

    Solid cancers and hematologic cancers frequently colonize bone and induce skeletal-related complications. Bone pain is one of the most common complications associated with cancer colonization in bone and a major cause of increased morbidity and diminished quality of life, leading to poor survival in cancer patients. Although the mechanisms responsible for cancer-associated bone pain (CABP) are poorly understood, it is likely that complex interactions among cancer cells, bone cells and peripheral nerve cells contribute to the pathophysiology of CABP. Clinical observations that specific inhibitors of osteoclasts reduce CABP indicate a critical role of osteoclasts. Osteoclasts are proton-secreting cells and acidify extracellular bone microenvironment. Cancer cell-colonized bone also releases proton/lactate to avoid intracellular acidification resulting from increased aerobic glycolysis known as the Warburg effect. Thus, extracellular microenvironment of cancer-colonized bone is acidic. Acidosis is algogenic for nociceptive sensory neurons. The bone is densely innervated by the sensory neurons that express acid-sensing nociceptors. Collectively, CABP is evoked by the activation of these nociceptors on the sensory neurons innervating bone by the acidic extracellular microenvironment created by bone-resorbing osteoclasts and bone-colonizing cancer cells. As current treatments do not satisfactorily control CABP and can elicit serious side effects, new therapeutic interventions are needed to manage CABP. Understanding of the cellular and molecular mechanism by which the acidic extracellular microenvironment is created in cancer-colonized bone and by which the expression and function of the acid-sensing nociceptors on the sensory neurons are regulated would facilitate to develop novel therapeutic approaches for the management of CABP. PMID:25987988

  13. BoneNET: a network model of bone microstructure and dynamics.

    PubMed

    Kim, Taehyong; Bone, Lawrence; Ramanathan, Murali; Zhang, Aidong

    2013-01-01

    We develop a network model of bone microstructure and dynamics, BoneNET, which is capable of quantitative assessment of Bone Mineral Density (BMD) and bone remodelling dynamics. First, we introduce a network model of bone microstructure by describing structural properties and process of bone network modelling. Secondly, we explain a mathematical model of bone microstructure by analysing the density for mineralised fibres of bone microstructure. Finally, we provide a bone remodelling dynamics among osteoblast and osteoclast and study bone networks by proposing several measurements to calculate bone strength and identify critical elements in bone microstructure.

  14. Temporal Bone Localized Chondroblastoma.

    PubMed

    Demirhan, Hasan; Acioğlu, Engin; Durna, Yusuf Muhammed; Yiğit, Özgür; Bozkurt, Erol Rüştü; Karagöz, Yeşim

    2015-11-01

    Chondroblastoma is a highly destructive tumor originating from immature cartilage cells. Although chondroblastoma is defined as a benign tumor, it may exhibit malign tumor behaviors such as invasion or metastasis on neighboring structures. Magnetic resonance (MR) image is a solid mass lesion, which included heterogeneous hypointense in T2A and heterogeneous minimal hyperintense in T1A with destructive expansile characteristics and millimetric calcifications. Temporal bone chondroblastomas may complicate the diagnosis because of their different histologic characteristics. Microscopically, chondroblastic cell nests and calcification of locally "chicken wire" type around the cells are observed. These tumors secrete s-100 and vimentin and are used for differential diagnosis. In this study, a temporal bone localized chondroblastoma case is presented.

  15. Temporal Bone Localized Chondroblastoma.

    PubMed

    Demirhan, Hasan; Acioğlu, Engin; Durna, Yusuf Muhammed; Yiğit, Özgür; Bozkurt, Erol Rüştü; Karagöz, Yeşim

    2015-11-01

    Chondroblastoma is a highly destructive tumor originating from immature cartilage cells. Although chondroblastoma is defined as a benign tumor, it may exhibit malign tumor behaviors such as invasion or metastasis on neighboring structures. Magnetic resonance (MR) image is a solid mass lesion, which included heterogeneous hypointense in T2A and heterogeneous minimal hyperintense in T1A with destructive expansile characteristics and millimetric calcifications. Temporal bone chondroblastomas may complicate the diagnosis because of their different histologic characteristics. Microscopically, chondroblastic cell nests and calcification of locally "chicken wire" type around the cells are observed. These tumors secrete s-100 and vimentin and are used for differential diagnosis. In this study, a temporal bone localized chondroblastoma case is presented. PMID:26517458

  16. [Fractures of carpal bones].

    PubMed

    Lögters, T; Windolf, J

    2016-10-01

    Fractures of the carpal bones are uncommon. On standard radiographs fractures are often not recognized and a computed tomography (CT) scan is the diagnostic method of choice. The aim of treatment is to restore pain-free and full functioning of the hand. A distinction is made between stable and unstable carpal fractures. Stable non-displaced fractures can be treated conservatively. Unstable and displaced fractures have an increased risk of arthritis and non-union and should be stabilized by screws or k‑wires. If treated adequately, fractures of the carpal bones have a good prognosis. Unstable and dislocated fractures have an increased risk for non-union. The subsequent development of carpal collapse with arthrosis is a severe consequence of non-union, which has a heterogeneous prognosis.

  17. Calcium Phosphate Scaffolds Combined with Bone Morphogenetic Proteins or Mesenchymal Stem Cells in Bone Tissue Engineering

    PubMed Central

    Sun, Han; Yang, Hui-Lin

    2015-01-01

    Objective: The purpose of this study was to review the current status of calcium phosphate (CaP) scaffolds combined with bone morphogenetic proteins (BMPs) or mesenchymal stem cells (MSCs) in the field of bone tissue engineering (BTE). Date Sources: Data cited in this review were obtained primarily from PubMed and Medline in publications from 1979 to 2014, with highly regarded older publications also included. The terms BTE, CaP, BMPs, and MSC were used for the literature search. Study Selection: Reviews focused on relevant aspects and original articles reporting in vitro and/or in vivo results concerning the efficiency of CaP/BMPs or CaP/MSCs composites were retrieved, reviewed, analyzed, and summarized. Results: An ideal BTE product contains three elements: Scaffold, growth factors, and stem cells. CaP-based scaffolds are popular because of their outstanding biocompatibility, bioactivity, and osteoconductivity. However, they lack stiffness and osteoinductivity. To solve this problem, composite scaffolds of CaP with BMPs have been developed. New bone formation by CaP/BMP composites can reach levels similar to those of autografts. CaP scaffolds are compatible with MSCs and CaP/MSC composites exhibit excellent osteogenesis and stiffness. In addition, a CaP/MSC/BMP scaffold can repair bone defects more effectively than an autograft. Conclusions: Novel BTE products possess remarkable osteoconduction and osteoinduction capacities, and exhibit balanced degradation with osteogenesis. Further work should yield safe, viable, and efficient materials for the repair of bone lesions. PMID:25881610

  18. Shang Oracle Bones

    NASA Astrophysics Data System (ADS)

    Pankenier, David W.

    Astronomical observations first appear in China's archaeological record on turtle plastrons and ox scapulae from the reigns of the last few kings of the Shang Dynasty (1250-1046 BCE). A variety of meteorological and astronomical phenomena were divined about and recorded by scribes in formulaic language that is recognizably archaic Chinese. The oracle bone inscriptions record sacrifices to celestial bodies and the proper ritual response to anomalous phenomena like eclipses.

  19. Treatment of Bone Tumors

    PubMed Central

    Rajani, Rajiv; Gibbs, C. Parker

    2012-01-01

    Synopsis In this article, the authors summarize the state of the art and future potential in the management of Osteosarcoma, Ewing’s sarcoma, and Chondrosarcoma. They cover systemic therapy, surgical therapy, and radiotherapy, along with targeted therapies to inhibit signal transduction pathways. They discuss staging and the role of imaging evaluation to provide an overview of bone tumor treatment. Images presenting pathologic-radiologic correlations are included. PMID:22328909

  20. Bone Metabolism on ISS Missions

    NASA Technical Reports Server (NTRS)

    Smith, S. M.; Heer, M. A.; Shackelford, L. C.; Zwart, S. R.

    2014-01-01

    Spaceflight-induced bone loss is associated with increased bone resorption (1, 2), and either unchanged or decreased rates of bone formation. Resistive exercise had been proposed as a countermeasure, and data from bed rest supported this concept (3). An interim resistive exercise device (iRED) was flown for early ISS crews. Unfortunately, the iRED provided no greater bone protection than on missions where only aerobic and muscular endurance exercises were available (4, 5). In 2008, the Advanced Resistive Exercise Device (ARED), a more robust device with much greater resistance capability, (6, 7) was launched to the ISS. Astronauts who had access to ARED, coupled with adequate energy intake and vitamin D status, returned from ISS missions with bone mineral densities virtually unchanged from preflight (7). Bone biochemical markers showed that while the resistive exercise and adequate energy consumption did not mitigate the increased bone resorption, bone formation was increased (7, 8). The typical drop in circulating parathyroid hormone did not occur in ARED crewmembers. In 2014, an updated look at the densitometry data was published. This study confirmed the initial findings with a much larger set of data. In 42 astronauts (33 male, 9 female), the bone mineral density response to flight was the same for men and women (9), and those with access to the ARED did not have the typical decrease in bone mineral density that was observed in early ISS crewmembers with access to the iRED (Figure 1) (7). Biochemical markers of bone formation and resorption responded similarly in men and women. These data are encouraging, and represent the first in-flight evidence in the history of human space flight that diet and exercise can maintain bone mineral density on long-duration missions. However, the maintenance of bone mineral density through bone remodeling, that is, increases in both resorption and formation, may yield a bone with strength characteristics different from those

  1. Battling Brittle Bones

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The accuDEXA(R) Bone Mineral Density Assessment System, manufactured by Schick Technologies, Inc., utilizes "camera on a chip" sensor technology invented and developed by NASA's Jet Propulsion Laboratory. Schick's accuDEXA system offers several advantages over traditional osteoporosis tests, which assess bone density loss in the hip and spine, and require specialized personnel to conduct. With accuDEXA, physicians can test the entire body's bone density at a peripheral site, such as the finger, without applying gels or having patients remove garments. Results are achieved in 30 seconds and printed out in less than a minute, compared to the estimated exam time of 15 minutes for hip and spine density analyses. Schick has also applied the CMOS APS technology to a new software product that performs dental radiography using up to 90 percent less radiation exposure than conventional X-rays. Called Computed Dental Radiography(R), the new digital imaging product utilizes an electronic sensor in place of X-ray film to generate sharp and clear images that appear on a computer screen within 3 seconds, and can be enlarged and enhanced to identify problems.

  2. Gentamicin in bone cement

    PubMed Central

    Chang, Y.; Tai, C-L.; Hsieh, P-H.; Ueng, S. W. N.

    2013-01-01

    Objectives The objective of this study is to determine an optimal antibiotic-loaded bone cement (ALBC) for infection prophylaxis in total joint arthroplasty (TJA). Methods We evaluated the antibacterial effects of polymethylmethacrylate (PMMA) bone cements loaded with vancomycin, teicoplanin, ceftazidime, imipenem, piperacillin, gentamicin, and tobramycin against methicillin-sensitive Staphylococcus aureus (MSSA), methicillin-resistant Staph. aureus (MRSA), coagulase-negative staphylococci (CoNS), Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Standardised cement specimens made from 40 g PMMA loaded with 1 g antibiotics were tested for elution characteristics, antibacterial activities, and compressive strength in vitro. Results The ALBC containing gentamicin provided a much longer duration of antibiotic release than those containing other antibiotic. Imipenem-loading on the cement had a significant adverse effect on the compressive strength of the ALBC, which made it insufficient for use in prosthesis fixation. All of the tested antibiotics maintained their antibacterial properties after being mixed with PMMA. The gentamicin-loaded ALBC provided a broad antibacterial spectrum against all the test organisms and had the greatest duration of antibacterial activity against MSSA, CoNS, P. aeruginosa and E. coli. Conclusion When considering the use of ALBC as infection prophylaxis in TJA, gentamicin-loaded ALBC may be a very effective choice. Cite this article: Bone Joint Res 2013;2:220–6. PMID:24128666

  3. Modular adaptive bone plate for humerus bone osteosynthesis.

    PubMed

    Tarniţă, Daniela; Tarniţă, D N; Bîzdoacă, N; Tarniţă, Corina; Berceanu, C; Boborelu, C

    2009-01-01

    The present paper describes a bionics application of shape memory alloy in construction of orthopedic implant. The main idea of this paper is related to design modular adaptive implants for fractured bones. In order to target the efficiency of medical treatment, the implant has to protect the fractured bone, for the healing period, undertaking much as is possible from the daily usual load of the healthy bones. The adaptability of this design is related to medical possibility of the doctor to made the implant to correspond to patient specifically anatomy. Using a CT-realistic numerical humerus bone model, the mechanical simulation of the osteosyntesis process for humerus bone using staples made out of Nitinol. The stress and displacements diagrams for bone, for plate modules and for staples, are presented. PMID:19690773

  4. Denosumab for bone diseases: translating bone biology into targeted therapy.

    PubMed

    Tsourdi, Elena; Rachner, Tilman D; Rauner, Martina; Hamann, Christine; Hofbauer, Lorenz C

    2011-12-01

    Signalling of receptor activator of nuclear factor-κB (RANK) ligand (RANKL) through RANK is a critical pathway to regulate the differentiation and activity of osteoclasts and, hence, a master regulator of bone resorption. Increased RANKL activity has been demonstrated in diseases characterised by excessive bone loss such as osteoporosis, rheumatoid arthritis and osteolytic bone metastases. The development and approval of denosumab, a fully MAB against RANKL, has heralded a new era in the treatment of bone diseases by providing a potent, targeted and reversible inhibitor of bone resorption. This article summarises the molecular and cellular biology of the RANKL/RANK system and critically reviews preclinical and clinical studies that have established denosumab as a promising novel therapy for metabolic and malignant bone diseases. We will discuss the potential indications for denosumab along with a critical review of safety and analyse its potential within the concert of established therapies.

  5. Bone fragility and imaging techniques

    PubMed Central

    D’Elia, Giovanni; Caracchini, Giuseppe; Cavalli, Loredana; Innocenti, Paolo

    2009-01-01

    Bone fragility is a silent condition that increases bone fracture risk, enhanced by low bone mass and microarchitecture deterioration of bone tissue that lead to osteoporosis. Fragility fractures are the major clinical manifestation of osteoporosis. A large body of epidemiological data indicates that the current standard for predicting fragility fracture risk is an areal BMD (aBMD) measurement by DXA. Although mineral density measurements assess the quantity of bone, the quality of the tissue is an important predictor of fragility. Thus, bone strength is explained not only by BMD but also by macrostructural and microstructural characteristics of bone tissue. Imaging diagnostics, through the use of X-rays, DXA, Ultrasonography, CT and MR, provides methods for diagnosis and characterization of fractures, and semi- and quantitative methods for assessment of bone consistency and strength, that become precious for bone fragility clinical management if they are integrated by clinical risk factors. The last employment of sophisticated non-invasively imaging techniques in clinical research as high-resolution CT (hrCT), microCT (μ-CT), high-resolution MR (hrMR) and, microRM (μRM), combined with finite element analysis methods, open to new challenges in a better bone strength assessment to enhance the comprehension of biomechanical parameters and the prediction of fragility fractures. PMID:22461252

  6. Effects of myokines on bone.

    PubMed

    Kaji, Hiroshi

    2016-01-01

    The links between muscle and bone have been recently examined because of the increasing number of patients with osteoporosis and sarcopenia. Myokines are skeletal muscle-derived humoral cytokines and growth factors, which exert physiological and pathological functions in various distant organs, including the regulation of glucose, energy and bone metabolism. Myostatin is a crucial myokine, the expression of which is mainly limited to muscle tissues. The inhibition of myostatin signaling increases bone remodeling, bone mass and muscle mass, and it may provide a target for the treatment of both sarcopenia and osteoporosis. As myostatin is involved in osteoclast formation and bone destruction in rheumatoid arthritis, myostatin may be a target myokine for the treatment of accelerated bone resorption and joint destruction in rheumatoid arthritis. Numerous other myokines, including transforming growth factor-β, follistatin, insulin-like growth factor-I, fibroblast growth factor-2, osteoglycin, FAM5C, irisin, interleukin (IL)-6, leukemia inhibitory factor, IL-7, IL-15, monocyte chemoattractant protein-1, ciliary neurotrophic factor, osteonectin and matrix metalloproteinase 2, also affect bone cells in various manners. However, the effects of myokines on bone metabolism are largely unknown. Further research is expected to clarify the interaction between muscle and bone, which may lead to greater diagnosis and the development of the treatment for muscle and bone disorders, such as osteoporosis and sarcopenia. PMID:27579164

  7. Aspect-Oriented Design with Reusable Aspect Models

    NASA Astrophysics Data System (ADS)

    Kienzle, Jörg; Al Abed, Wisam; Fleurey, Franck; Jézéquel, Jean-Marc; Klein, Jacques

    The idea behind Aspect-Oriented Modeling (AOM) is to apply aspect-oriented techniques to (software) models with the aim of modularizing crosscutting concerns. This can be done within different modeling notations, at different levels of abstraction, and at different moments during the software development process. This paper demonstrates the applicability of AOM during the software design phase by presenting parts of an aspect-oriented design of a crisis management system. The design solution proposed in this paper is based on the Reusable Aspect Models (RAM) approach, which allows a modeler to express the structure and behavior of a complex system using class, state and sequence diagrams encapsulated in several aspect models. The paper describes how the model of the "create mission" functionality of the server backend can be decomposed into 23 inter-dependent aspect models. The presentation of the design is followed by a discussion on the lessons learned from the case study. Next, RAM is compared to 8 other AOM approaches according to 6 criteria: language, concern composition, asymmetric and symmetric composition, maturity, and tool support. To conclude the paper, a discussion section points out the features of RAM that specifically support reuse.

  8. Cell therapy for bone repair.

    PubMed

    Rosset, P; Deschaseaux, F; Layrolle, P

    2014-02-01

    When natural bone repair mechanisms fail, autologous bone grafting is the current standard of care. The osteogenic cells and bone matrix in the graft provide the osteo-inductive and osteo-conductive properties required for successful bone repair. Bone marrow (BM) mesenchymal stem cells (MSCs) can differentiate into osteogenic cells. MSC-based cell therapy holds promise for promoting bone repair. The amount of MSCs available from iliac-crest aspirates is too small to be clinically useful, and either concentration or culture must therefore be used to expand the MSC population. MSCs can be administered alone via percutaneous injection or implanted during open surgery with a biomaterial, usually biphasic hydroxyapatite/β-calcium-triphosphate granules. Encouraging preliminary results have been obtained in patients with delayed healing of long bone fractures or avascular necrosis of the femoral head. Bone tissue engineering involves in vitro MSC culturing on biomaterials to obtain colonisation of the biomaterial and differentiation of the cells. The biomaterial-cell construct is then implanted into the zone to be treated. Few published data are available on bone tissue engineering. Much work remains to be done before determining whether this method is suitable for the routine filling of bone tissue defects. Increasing cell survival and promoting implant vascularisation are major challenges. Improved expertise with culturing techniques, together with the incorporation of regulatory requirements, will open the way to high-quality clinical trials investigating the usefulness of cell therapy as a method for achieving bone repair. Cell therapy avoids the drawbacks of autologous bone grafting, preserving the bone stock and diminishing treatment invasiveness.

  9. Engineering bone grafts with enhanced bone marrow and native scaffolds.

    PubMed

    Hung, Ben P; Salter, Erin K; Temple, Josh; Mundinger, Gerhard S; Brown, Emile N; Brazio, Philip; Rodriguez, Eduardo D; Grayson, Warren L

    2013-01-01

    The translation of tissue engineering approaches to the clinic has been hampered by the inability to find suitable multipotent cell sources requiring minimal in vitro expansion. Enhanced bone marrow (eBM), which is obtained by reaming long bone medullary canals and isolating the solid marrow putty, has large quantities of stem cells and demonstrates significant potential to regenerate bone tissues. eBM, however, cannot impart immediate load-bearing mechanical integrity or maintain the gross anatomical structure to guide bone healing. Yet, its putty-like consistency creates a challenge for obtaining the uniform seeding necessary to effectively combine it with porous scaffolds. In this study, we examined the potential for combining eBM with mechanically strong, osteoinductive trabecular bone scaffolds for bone regeneration by creating channels into scaffolds for seeding the eBM. eBM was extracted from the femurs of adult Yorkshire pigs using a Synthes reamer-irrigator-aspirator device, analyzed histologically, and digested to extract cells and characterize their differentiation potential. To evaluate bone tissue formation, eBM was seeded into the channels in collagen-coated or noncoated scaffolds, cultured in osteogenic conditions for 4 weeks, harvested and assessed for tissue distribution and bone formation. Our data demonstrates that eBM is a heterogenous tissue containing multipotent cell populations. Furthermore, coating scaffolds with a collagen hydrogel significantly enhanced cellular migration, promoted uniform tissue development and increased bone mineral deposition. These findings suggest the potential for generating customized autologous bone grafts for treating critical-sized bone defects by combining a readily available eBM cell source with decellularized trabecular bone scaffolds.

  10. Effect of cadmium on bone resorption in cultured fetal bone

    SciTech Connect

    Miyahara, T.; Miyakoshi, M.; Kozuka, H.

    1980-08-01

    Itai-itai disease which occurred in Toyama Prefecture, Japan, was thought to be due, at least partly, to chronic cadmium poisoning. Patients suffered severe pain in the waist, back and joints as well as kyphosis spinal column. In addition, x-ray film of these patients revealed abnormalities in the humerus and ribs. These bone lesions have been considered to be caused secondarily by dysfunction of other tissues, especially that of the kidneys, but there are some reports that the bone lesions appear before the occurrence of pathological changes in the kidneys of Cd-administered rat. It is currently unclear whether bone lesions by Cd are due to the direct action on the bone or indirect action which is caused by dysfunction of the kidney or intestine. To clarify the direct action of Cd on the bone, we studied the effect of Cd on the ossification of chick-embryo cultured bones biochemically and histologically. The results showed that Cd inhibited the bone matrix formation and brought about a malfunction in the ossification process. In the present work the effect of Cd on demineralization was studied using /sup 45/Ca-prelabeled bone in tissue culture and low levels of Cd were found to stimulate /sup 45/Ca from the bone.

  11. Development of Bone Remodeling Model for Spaceflight Bone Physiology Analysis

    NASA Technical Reports Server (NTRS)

    Pennline, James A.; Werner, Christopher R.; Lewandowski, Beth; Thompson, Bill; Sibonga, Jean; Mulugeta, Lealem

    2015-01-01

    Current spaceflight exercise countermeasures do not eliminate bone loss. Astronauts lose bone mass at a rate of 1-2% a month (Lang et al. 2004, Buckey 2006, LeBlanc et al. 2007). This may lead to early onset osteoporosis and place the astronauts at greater risk of fracture later in their lives. NASA seeks to improve understanding of the mechanisms of bone remodeling and demineralization in 1g in order to appropriately quantify long term risks to astronauts and improve countermeasures. NASA's Digital Astronaut Project (DAP) is working with NASA's bone discipline to develop a validated computational model to augment research efforts aimed at achieving this goal.

  12. Roles of leptin in bone metabolism and bone diseases.

    PubMed

    Chen, Xu Xu; Yang, Tianfu

    2015-09-01

    Adipose tissue has been more accepted as an active contributor to whole body homeostasis, rather than just a fat depot, since leptin, a 16 kDa protein, was discovered as the product of the obese gene in 1994. With more and more studies conducted on this hormone, it has been shown that there is a close relationship between adipose tissue and bone, which have important effects on each other. Bone is the source of many hormones, such as osteocalcin, that can affect energy metabolism and then the anabolism or catabolism of fat tissue. In contrast, the adipose tissue synthesizes and releases a series of adipokines, which are involved in bone metabolism through direct or indirect effects on bone formation and resorption. Interestingly, leptin, one of the most important cytokines derived from fat tissue, seems to account for the largest part of effects on bone, through direct or indirect involvement in bone remodeling and by playing a significant role in many bone diseases, such as osteoporosis, osteoarthritis, rheumatic arthritis, bone tumors and even fractures. In this review, we will discuss the progress in leptin research, particularly focusing on the roles of leptin in bone diseases.

  13. [Forensic medical characteristic of sawed injuries inflicted to the long tubular bones by a power jigsaw].

    PubMed

    Nazarov, Iu V; Tolmachev, I A

    2013-01-01

    The main aspects of investigations devoted to forensic medical characteristic of sawed injuries inflicted to the long tubular bones by a power jigsaw are considered. The mathematical model has been developed making it possible to determine the frequency of backward and forward movements of the jigsaw blade from the morphological features of the injuries to long tubular bones of man and to estimate the sawing rate for the further identification of the instrument of crime.

  14. Squamous cell carcinoma involving the tibia treated by reimplantation of autoclaved resected bone.

    PubMed

    Pan, K L; Mourougayah, V; Jayamalar, T

    2003-12-01

    We present an elderly patient with a squamous cell carcinoma over the subcutaneous aspect of the leg involving the tibia. En bloc resection of the tumour together with a 10 centimetre segment of the tibia was done. The resected bone was autoclaved, replaced in its original position and stabilized with bone cement and a locked nail. This allowed early ambulation with minimal cost. PMID:15190672

  15. Electromechanical Properties of Bone Tissue.

    NASA Astrophysics Data System (ADS)

    Regimbal, Raymond L.

    Discrepancies between calculated and empirical properties of bone are thought to be due to a general lack of consideration for the extent and manner(s) with which bone components interact at the molecular level. For a bone component in physiological fluid or whenever two phases are in contact, there is a region between the bulk phases called the electrical double layer which is marked by a separation of electric charges. For the purpose of studying electrical double layer interactions, the method of particle microelectrophoresis was used to characterize bone and its major constituents on the basis of the net charge they bear when suspended in ionic media of physiological relevance. With the data presented as pH versus zeta (zeta ) potential, the figures reveal an isoelectric point (IEP) for bone mineral near pH 8.6, whereas intact and EDTA demineralized bone tissue both exhibit IEPs near pH 5.1. While these data demonstrate the potential for a significant degree of coulombic interaction between the bone mineral and organic constituent double layers, it was also observed that use of inorganic phosphate buffers, as a specific marker for bone mineral, resulted in (1) an immediate reversal, from positive to negative, of the bone mineral zeta potential (2) rendered the zeta potential of intact bone more negative in a manner linearly dependent on both time and temperature and (3) had no affect on demineralized bone (P < 0.01). In agreement with that shown in model protein-hydroxyapatite systems, it is suggested here that inorganic phosphate ions in solution compete with organic acid groups (e.g. carboxyl and phosphate of collagen, sialoprotein, ...) for positively charged sites on the bone mineral surface and effectively uncouple the bone mineral and organic phase double layers. Mechanically, this uncoupling is manifested as a loss of tissue rigidity when monitoring the midspan deflection of bone beams subject to constant load for a 3 day period. While it is thus

  16. Microgravity and bone cell mechanosensitivity.

    PubMed

    Klein-Nulend, J; Bacabac, R G; Veldhuijzen, J P; Van Loon, J J W A

    2003-01-01

    The capacity of bone tissue to alter its mass and structure in response to mechanical demands has long been recognized but the cellular mechanisms involved remained poorly understood. Bone not only develops as a structure designed specifically for mechanical tasks, but it can adapt during life toward more efficient mechanical performance. Mechanical adaptation of bone is a cellular process and needs a biological system that senses the mechanical loading. The loading information must then be communicated to the effector cells that form new bone or destroy old bone. The in vivo operating cell stress derived from bone loading is likely the flow of interstitial fluid along the surface of osteocytes and lining cells. The response of bone cells in culture to fluid flow includes prostaglandin (PG) synthesis and expression of prostaglandin G/H synthase inducible cyclooxygenase (COX-2). Cultured bone cells also rapidly produce nitric oxide (NO) in response to fluid flow as a result of activation of endothelial nitric oxide synthase (ecNOS), which enzyme also mediates the adaptive response of bone tissue to mechanical loading. Earlier studies have shown that the disruption of the actin-cytoskeleton abolishes the response to stress, suggesting that the cytoskeleton is involved in cellular mechanotransduction. Microgravity, or better near weightlessness, is associated with the loss of bone in astronauts, and has catabolic effects on mineral metabolism in bone organ cultures. This might be explained as resulting from an exceptional form of disuse under near weightlessness conditions. However, under near weightlessness conditions the assembly of cytoskeletal elements may be altered since it has been shown that the direction of the gravity vector determines microtubular pattern formation in vivo. We found earlier that the transduction of mechanical signals in bone cells also involves the cytoskeleton and is related to PGE2 production. Therefore it is possible that the

  17. Microgravity and bone cell mechanosensitivity

    NASA Astrophysics Data System (ADS)

    Klein-Nulend, J.; Bacabac, R. G.; Veldhuijzen, J. P.; Van Loon, J. J. W. A.

    2003-10-01

    The capacity of bone tissue to alter its mass and structure in response to mechanical demands has long been recognized but the cellular mechanisms involved remained poorly understood. Bone not only develops as a structure designed specifically for mechanical tasks, but it can adapt during life toward more efficient mechanical performance. Mechanical adaptation of bone is a cellular process and needs a biological system that senses the mechanical loading. The loading information must then be communicated to the effector cells that form new bone or destroy old bone. The in vivo operating cell stress derived from bone loading is likely the flow of interstitial fluid along the surface of osteocytes and lining cells. The response of bone cells in culture to fluid flow includes prostaglandin (PG) synthesis and expression of prostaglandin G/H synthase inducible cyclooxygenase (COX-2). Cultured bone cells also rapidly produce nitric oxide (NO) in response to fluid flow as a result of activation of endothelial nitric oxide synthase (ecNOS), which enzyme also mediates the adaptive response of bone tissue to mechanical loading. Earlier studies have shown that the disruption of the actin-cytoskeleton abolishes the response to stress, suggesting that the cytoskeleton is involved in cellular mechanotransduction. Microgravity, or better near weightlessness, is associated with the loss of bone in astronauts, and has catabolic effects on mineral metabolism in bone organ cultures. This might be explained as resulting from an exceptional form of disuse under near weightlessness conditions. However, under near weightlessness conditions the assembly of cytoskeletal elements may be altered since it has been shown that the direction of the gravity vector determines microtubular pattern formation in vivo. We found earlier that the transduction of mechanical signals in bone cells also involves the cytoskeleton and is related to PGEZ production. Therefore it is possible that the

  18. Medieval trabecular bone architecture: the influence of age, sex, and lifestyle.

    PubMed

    Agarwal, S C; Dumitriu, M; Tomlinson, G A; Grynpas, M D

    2004-05-01

    Osteoporosis has become a growing health concern in developed countries and an extensive area of research in skeletal biology. Despite numerous paleopathological studies of bone mass, few studies have measured bone quality in past populations. In order to examine age- and sex-related changes in one aspect of bone quality in the past, a study was made of trabecular bone architecture in a British medieval skeletal sample. X-ray images of 5-mm-thick coronal lumbar vertebral bone sections were taken from a total of 54 adult individuals divided into three age categories (18-29, 30-49, and 50+ years), and examined using image analysis to evaluate parameters related to trabecular bone structure and connectivity. Significant age-related changes in trabecular bone structure (trabecular bone volume (BV/TV), trabecular number (Tb.N), trabecular separation (Tb.Sp), and anisotropic ratio (Tb.An)) were observed to occur primarily by middle age with significant differences between the youngest and two older age groups. Neither sex showed continuing change in trabecular structure between the middle and old age groups. Age-related changes in bone connectivity (number of nodes (N.Nd) and node-to-node strut length (Nd.Nd)) similarly indicated a change in bone connectivity only between the youngest and two older age groups. However, females showed no statistical differences among the age groups in bone connectivity. These patterns of trabecular bone loss and fragility contrast with those generally found in modern populations that typically report continuing loss of bone structure and connectivity between middle and old age, and suggest greater loss in females. The patterns of bone loss in the archaeological samples must be interpreted cautiously. We speculate that while nutritional factors may have initiated some bone loss in both sexes, physical activity could have conserved bone architecture in old age in both sexes, and reproductive factors such as high parity and extended periods

  19. Topological Aspects of Information Retrieval.

    ERIC Educational Resources Information Center

    Egghe, Leo; Rousseau, Ronald

    1998-01-01

    Discusses topological aspects of theoretical information retrieval, including retrieval topology; similarity topology; pseudo-metric topology; document spaces as topological spaces; Boolean information retrieval as a subsystem of any topological system; and proofs of theorems. (LRW)

  20. International Aspects of School Psychology

    ERIC Educational Resources Information Center

    Ziv, Avner

    1974-01-01

    This paper is concerned with various aspects of the philosophy and training of school psychologists in several countries around the world and offers some thoughts about the possible implications of the different approaches. (Author)

  1. Administrative Aspects of Human Experimentation.

    ERIC Educational Resources Information Center

    Irvine, George W.

    1992-01-01

    The following administrative aspects of scientific experimentation with human subjects are discussed: the definition of human experimentation; the distinction between experimentation and treatment; investigator responsibility; documentation; the elements and principles of informed consent; and the administrator's role in establishing and…

  2. Interspecific allometry of bone dimensions: A review of the theoretical models

    NASA Astrophysics Data System (ADS)

    Garcia, Guilherme J. M.; da Silva, Jafferson Kamphorst Leal

    2006-09-01

    A fascinating problem in biological scaling is the variation of long-bone length (or diameter) Y with body mass M in mammals, birds, and other vertebrates. It turns out that Y and M are related by a power law, namely Y=YM, where Y is a constant and b is the so-called allometric exponent. The origin of these power laws is still unclear because, in general, biological laws do not follow from physical ones in a simple manner. Here we make a historical review of this subject, summarizing the main experimental papers as well as discussing the main theoretical proposals. Long-bone allometry seems to be determined by the need to resist the particular loads applied to each bone in each taxon. Experimental measurements of in vivo stresses have found that mammalian long bones are subjected mainly to compression and bending, while avian wing-bones and reptilian limb-bones suffer a high degree of torsion. A recent model, based on the hypothesis that mammalian long-bone allometry is determined by compressive and bending loads, was able elucidate several aspects of mammalian limb-bone scaling. However, an explanation for avian and reptilian long-bone allometry is still missing.

  3. Macroporous scaffolds associated with cells to construct a hybrid biomaterial for bone tissue engineering.

    PubMed

    Rosa, Adalberto Luiz; de Oliveira, Paulo Tambasco; Beloti, Marcio Mateus

    2008-11-01

    Bone tissue has the ability to heal without a scar and to remodel, which promotes three basic functions: locomotion, protection of internal organs and mineral homeostasis. Although bone regeneration is highly efficient, some clinical situations - such as large bone defects - require specific treatments in order to promote bone healing. Allogenic or autologous bone grafts have been used in these procedures with limited success and, based on this, bone tissue-engineering approaches have been investigated extensively. Tissue engineering has been defined as the application of principles and techniques of the life sciences and engineering to the design, modification and growth of living tissues using biomaterials, cells and growth factors, alone or in combination. The association of cells with porous scaffolds to produce 3D hybrid osteogenic constructs is a common subject in bone tissue-engineering research and will be the focus of this review. We will present some aspects of bone biology, the cells and scaffolds used to engineer bone, and techniques to fabricate the hybrid biomaterial.

  4. Leptin regulation of bone resorption by the sympathetic nervous system and CART.

    PubMed

    Elefteriou, Florent; Ahn, Jong Deok; Takeda, Shu; Starbuck, Michael; Yang, Xiangli; Liu, Xiuyun; Kondo, Hisataka; Richards, William G; Bannon, Tony W; Noda, Masaki; Clement, Karine; Vaisse, Christian; Karsenty, Gerard

    2005-03-24

    Bone remodelling, the mechanism by which vertebrates regulate bone mass, comprises two phases, namely resorption by osteoclasts and formation by osteoblasts; osteoblasts are multifunctional cells also controlling osteoclast differentiation. Sympathetic signalling via beta2-adrenergic receptors (Adrb2) present on osteoblasts controls bone formation downstream of leptin. Here we show, by analysing Adrb2-deficient mice, that the sympathetic nervous system favours bone resorption by increasing expression in osteoblast progenitor cells of the osteoclast differentiation factor Rankl. This sympathetic function requires phosphorylation (by protein kinase A) of ATF4, a cell-specific CREB-related transcription factor essential for osteoblast differentiation and function. That bone resorption cannot increase in gonadectomized Adrb2-deficient mice highlights the biological importance of this regulation, but also contrasts sharply with the increase in bone resorption characterizing another hypogonadic mouse with low sympathetic tone, the ob/ob mouse. This discrepancy is explained, in part, by the fact that CART ('cocaine amphetamine regulated transcript'), a neuropeptide whose expression is controlled by leptin and nearly abolished in ob/ob mice, inhibits bone resorption by modulating Rankl expression. Our study establishes that leptin-regulated neural pathways control both aspects of bone remodelling, and demonstrates that integrity of sympathetic signalling is necessary for the increase in bone resorption caused by gonadal failure. PMID:15724149

  5. A New Insight to Bone Turnover: Role of ω-3 Polyunsaturated Fatty Acids

    PubMed Central

    López-Frías, Magdalena; López-Aliaga, Inmaculada; Ochoa, Julio J.

    2013-01-01

    Background. Evidence has shown that long-chain polyunsaturated fatty acids (LCPUFA), especially the ω-3 fatty acids such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are beneficial for bone health and turnover. Objectives. This review summarizes findings from both in vivo and in vitro studies and the effects of LC PUFA on bone metabolism, as well as the relationship with the oxidative stress, the inflammatory process, and obesity. Results. Some studies in humans indicate that LCPUFA can increase bone formation, affect peak bone mass in adolescents, and reduce bone loss. However, the cellular mechanisms of action of the LCPUFA are complex and involve modulation of fatty acid metabolites such as prostaglandins, resolvins and protectins, several signaling pathways, cytokines, and growth factors, although in certain aspects there is still some controversy. LCPUFA affect receptor activator of nuclear factor κβ (RANK), a receptor found on the osteoclast, causing bone resorption, which controls osteoclast formation. Conclusions. Since fatty acids are an endogenous source of reactive oxygen species, free radicals alter the process of bone turnover; however, although there are clinical evidences linking bone metabolism and dietary lipids, more clinical trials are necessary to prove whether ω-3 PUFA supplementation plays a major role in bone health. PMID:24302863

  6. Postradiation atrophy of mature bone

    SciTech Connect

    Ergun, H.; Howland, W.J.

    1980-01-01

    The primary event of radiation damage to bone is atrophy and true necrosis of bone is uncommon. The postradiation atrophic changes of bone are the result of combined cellular and vascular damage, the former being more important. The damage to the osteoblast resulting in decreased matrix production is apparently the primary histopathologic event. Radiation damaged bone is susceptible to superimposed complications of fracture, infection, necrosis, and sarcoma. The primary radiographic evidence of atrophy, localized osteopenia, is late in appearing. Contrary to former views, the mature bone is quite radiosensitive and reacts quickly to even small doses of radiation. The differentiation of postirradiation atrophy and metastasis may be difficult. Biopsy should be the last resort because of the possibility of causing true necrosis in atrophic bone by trauma and infection.

  7. Animal Models of Bone Metastasis.

    PubMed

    Simmons, J K; Hildreth, B E; Supsavhad, W; Elshafae, S M; Hassan, B B; Dirksen, W P; Toribio, R E; Rosol, T J

    2015-09-01

    Bone is one of the most common sites of cancer metastasis in humans and is a significant source of morbidity and mortality. Bone metastases are considered incurable and result in pain, pathologic fracture, and decreased quality of life. Animal models of skeletal metastases are essential to improve the understanding of the molecular pathways of cancer metastasis and growth in bone and to develop new therapies to inhibit and prevent bone metastases. The ideal animal model should be clinically relevant, reproducible, and representative of human disease. Currently, an ideal model does not exist; however, understanding the strengths and weaknesses of the available models will lead to proper study design and successful cancer research. This review provides an overview of the current in vivo animal models used in the study of skeletal metastases or local tumor invasion into bone and focuses on mammary and prostate cancer, lymphoma, multiple myeloma, head and neck squamous cell carcinoma, and miscellaneous tumors that metastasize to bone.

  8. Animal Models of Bone Metastasis

    PubMed Central

    Simmons, J. K.; Hildreth, B. E.; Supsavhad, W.; Elshafae, S. M.; Hassan, B. B.; Dirksen, W. P.; Toribio, R. E.; Rosol, T. J.

    2015-01-01

    Bone is one of the most common sites of cancer metastasis in humans and is a significant source of morbidity and mortality. Bone metastases are considered incurable and result in pain, pathologic fracture, and decreased quality of life. Animal models of skeletal metastases are essential to improve the understanding of the molecular pathways of cancer metastasis and growth in bone and to develop new therapies to inhibit and prevent bone metastases. The ideal animal model should be clinically relevant, reproducible, and representative of human disease. Currently, an ideal model does not exist; however, understanding the strengths and weaknesses of the available models will lead to proper study design and successful cancer research. This review provides an overview of the current in vivo animal models used in the study of skeletal metastases or local tumor invasion into bone and focuses on mammary and prostate cancer, lymphoma, multiple myeloma, head and neck squamous cell carcinoma, and miscellaneous tumors that metastasize to bone. PMID:26021553

  9. A Digital Solar Aspect Sensor

    NASA Technical Reports Server (NTRS)

    Albus, James S.

    1961-01-01

    The solar aspect sensor described herein performs the analog-to-digital conversion of data optically. To accomplish this, it uses a binary "Gray code" light mask to produce a digital indication, in vehicle-fixed coordinates, of the elevation and azimuth angles of incident light from the sun. This digital solar aspect sensor system, in Explorer X, provided measurements of both elevation and azimuth angles to +/- 2 degrees at a distance of over 140,000 statute miles.

  10. [Coupling and communication between bone cells].

    PubMed

    Nakashima, Tomoki

    2014-06-01

    Bone is constantly renewed by the balanced action of osteoblastic bone formation and osteoclastic bone resorption both of which mainly occur at the bone surface. This restructuring process called "bone remodeling" is important not only for normal bone mass and strength, but also for mineral homeostasis. Coupling has been understood as a balanced induction of osteoblastic bone formation in response to osteoclastic bone resorption. An imbalance of this coupling is often linked to various bone diseases. TGF-β and IGF released from bone matrix during osteoclastic bone resorption are the favored candidates as classical coupling factor. Recently, several reports suggest that osteoclast-derived molecules/cytokines (clastokine) mediate directional signaling between osteoblasts and osteoclasts into the bone microenvironment. Thus, the elucidation of the regulatory mechanisms involved in bone cell communication and coupling is critical for a deeper understanding of the skeletal system in health and disease.

  11. Bone impairment in primary hyperoxaluria: a review.

    PubMed

    Bacchetta, Justine; Boivin, Georges; Cochat, Pierre

    2016-01-01

    Deposition of calcium oxalate crystals in the kidney and bone is a hallmark of primary hyperoxaluria (PH). Since the bone compartment can store massive amounts of oxalate, patients present with recurrent low-trauma fractures, bone deformations, severe bone pains, and specific oxalate osteopathy on X-ray. Bone biopsy from the iliac crest displays specific features such as oxalate crystals surrounded by a granulomatous reaction corresponding to an invasion of bone surface by macrophages. The objective of this manuscript is therefore to provide an overview of bone impairment in PH, by reviewing the current literature on bone and dental symptoms as well as imaging techniques used for assessing bone disease.

  12. Polymorphous low grade adenocarcinoma presenting an uncommon radiographic aspect.

    PubMed

    de Magalhães, M H C G; de Magalhães, R P; de Araújo, V C; de Sousa, S O M

    2006-05-01

    The aim of this study was to present clinical, histological and immunohistochemical aspects of a polymorphous low grade adenocarcinoma occurring in the mandible. A radiolucent tumour, located in the right mandible, was removed from a 40-year-old woman. Radiographic and CT exams revealed that the lesion expanded bucco-lingual cortical plates and presented an irregular scalloping of the bone. The surrounding lining mucosa was intact. The patient underwent total surgical removal of the lesion with an intraoperative biopsy. Histological diagnosis was polymorphous low-grade adenocarcinoma confirmed by immunohistochemical study. One-year follow up was uneventful. The accurate diagnosis of lesions presenting unusual clinical aspects, as the one presented here, is critical for correctly handling treatment.

  13. Bone imaging in sports medicine.

    PubMed

    Shikare, S; Samsi, A B; Tilve, G H

    1997-01-01

    Increased participation in sports by the general public leads to increase in sports induced injuries including stress fractures, shin splints, arthritis and host of musculotendenous maladies. We have studied twenty patients referred from sports clinic for bone scanning to evaluate clinically difficult problems. It showed stress fracture in twelve patients, bilateral shin splint in five patients and normal bone scan in three patients. Present study highlights the utility of bone imaging for the diagnosis of various sports injuries in sports medicine.

  14. Diagnosis of metabolic bone disease

    SciTech Connect

    Grech, P.; Martin, T.J.; Barrington, N.A.; Ell, P.J.

    1986-01-01

    This book presents a reference on the radiologic evaluation, features, and differential diagnosis of metabolic diseases involving the whole skeleton, calcium deficiencies resulting from pharmacologic agents, and bone changes related to endocrine disturbances. It also stresses how radiology, nuclear medicine, and biochemistry - either alone or in concert - contribute to clinical diagnosis. It covers renal bone disease, Paget's disease, hyperphosphatasia, extraskeletal mineralization, metabolic bone disorders related to malnutrition, tumors, plus radionuclide studies including materials and methods.

  15. From natural bone grafts to tissue engineering therapeutics: Brainstorming on pharmaceutical formulative requirements and challenges.

    PubMed

    Baroli, Biancamaria

    2009-04-01

    Tissue engineering is an emerging multidisciplinary field of investigation focused on the regeneration of diseased or injured tissues through the delivery of appropriate molecular and mechanical signals. Therefore, bone tissue engineering covers all the attempts to reestablish a normal physiology or to speed up healing of bone in all musculoskeletal disorders and injuries that are lashing modern societies. This article attempts to give a pharmaceutical perspective on the production of engineered man-made bone grafts that are described as implantable tissue engineering therapeutics, and to highlight the importance of understanding bone composition and structure, as well as osteogenesis and bone healing processes, to improve the design and development of such implants. In addition, special emphasis is given to pharmaceutical aspects that are frequently minimized, but that, instead, may be useful for formulation developments and in vitro/in vivo correlations.

  16. 21 CFR 872.4760 - Bone plate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Bone plate. 872.4760 Section 872.4760 Food and... DENTAL DEVICES Surgical Devices § 872.4760 Bone plate. (a) Identification. A bone plate is a metal device intended to stabilize fractured bone structures in the oral cavity. The bone segments are attached to...

  17. 21 CFR 872.4760 - Bone plate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Bone plate. 872.4760 Section 872.4760 Food and... DENTAL DEVICES Surgical Devices § 872.4760 Bone plate. (a) Identification. A bone plate is a metal device intended to stabilize fractured bone structures in the oral cavity. The bone segments are attached to...

  18. 21 CFR 872.4760 - Bone plate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Bone plate. 872.4760 Section 872.4760 Food and... DENTAL DEVICES Surgical Devices § 872.4760 Bone plate. (a) Identification. A bone plate is a metal device intended to stabilize fractured bone structures in the oral cavity. The bone segments are attached to...

  19. 21 CFR 872.4760 - Bone plate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Bone plate. 872.4760 Section 872.4760 Food and... DENTAL DEVICES Surgical Devices § 872.4760 Bone plate. (a) Identification. A bone plate is a metal device intended to stabilize fractured bone structures in the oral cavity. The bone segments are attached to...

  20. 21 CFR 872.4760 - Bone plate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Bone plate. 872.4760 Section 872.4760 Food and... DENTAL DEVICES Surgical Devices § 872.4760 Bone plate. (a) Identification. A bone plate is a metal device intended to stabilize fractured bone structures in the oral cavity. The bone segments are attached to...

  1. Can cone beam CT predict the hardness of interradicular cortical bone?

    PubMed Central

    2014-01-01

    Objectives Orthodontic mini implants can be inserted at the interradicular site. The bone quality at this site may affect the stability and anchorage of the implant. Bone density is clinically evaluated by Hounsfield units (HU) obtained from cone beam CT (CBCT). The objective of this study was to determine the correlations between HU, microhardness and cortical bone thickness of interradicular site at various segments (anterior/posterior) and aspects (buccal/lingual) of both jaws in a swine model. Materials and methods Eight mandible and maxilla swine bones were scanned by CBCT. The HU and thickness of the above-mentioned sites were determined. Then, a Knoop microhardness test was applied and the Knoop Hardness Number was obtained (KHN). Results The mandible parameters spread over a wider range than the maxilla. The buccal aspect of the maxilla had higher HU and KHN values than the mandible. The lingual aspect of the mandible had higher KHN values than the maxilla. Posterior segments had higher HU and KHN values. The thickness of the alveolar cortical bone was greater in the maxilla than in the mandible. Correlations were found between HU and KHN for 3 of the 4 sites (anterior or posterior, buccal or lingual) of the mandible only. No correlations were found for the maxilla. Upon pooling the HU and KHN data for the whole jaw, correlation was found for the maxilla as well. Conclusions Relying on HU values as a predictor of cortical bone hardness should be considered with caution. PMID:24735746

  2. Bone Transport for Reconstruction in Benign Bone Tumors

    PubMed Central

    Oh, Chang Seon; Cho, Yong Jin; Ahn, Yeong Seub; Na, Bo Ram

    2015-01-01

    Background The aim of this study was to assess the results of using the Ilizarov apparatus to transport bones in the treatment of benign bone tumors. Methods Seven patients (six males and one female) with benign bone tumors were treated by bone transport with an Ilizarov apparatus at our institution. Their mean age at surgery was 14.4 years (range, 4.8 to 36.9 years). The histological diagnoses were osteofibrous dysplasia (4), giant-cell tumor (1), intraosseous cavernous hemangioma (1), and aneurysmal bone cyst (1). Three radiological indices were used for evaluating the results: an external fixation index, a distraction index, and a maturation index. The bone and functional results were evaluated according to the Association for the Study and Application of the Method of Ilizarov classification. Results Five patients had bone union at the reconstructed site, one patient had a local recurrence, and the other had a nonunion at the docking site. The mean length of distraction was 7.3 cm (range, 5.1 to 12.1 cm). The mean external fixation index was 26.0 day/cm (range, 19.8 to 32.5 day/cm), the distraction index was 9.6 day/cm (range, 6.8 to 12.0 day/cm), and the maturation index was 14.9 day/cm (range, 8.0 to 22.5 day/cm). Ultimately, the bone and the functional results were rated excellent in six cases and good in one case. Conclusions Bone transport using the Ilizarov apparatus is a good treatment option in patients with bone defects after the resection of an active or aggressive benign bone tumor. PMID:26217473

  3. How the osteoclast degrades bone.

    PubMed

    Blair, H C

    1998-10-01

    Osteoclasts are multinucleated monocyte-macrophage derivatives that degrade bone. Their specialized role is central to a process that continuously removes and replaces segments of the skeleton in the higher vertebrates. Osteoclasts allow skeletal mineral to be used to manage extracellular calcium activity, which is an important adaptation for life on land, and solid skeletal structure to be replaced by hollow architecture that has a superior strength-to-weight ratio. Degrading bone also allows periodic repair and remodeling for ordered growth and efficient response to mechanical loads. A fairly comprehensive view of osteoclastic ontogeny and function is emerging from recent studies. Osteoclasts dissolve bone mineral by massive acid secretion and secrete specialized proteinases that degrade the organic matrix, mainly type I collagen, in this acidic milieu. The site of bone dissolution is a high-calcium environment; removal of degradation products by transcytosis of membrane vesicles allows the osteoclast to maintain a normal intracellular calcium. Osteoclastic differentiation is normally balanced with bone formation, although bone formation is the function of unrelated stromal cell-derived osteoblasts. Interactions between osteoclast precursors and bone-forming cells are believed to control osteoclast differentiation under most circumstances, preserving bone architecture over many cycles of bone replacement. PMID:9819571

  4. Postradiation atrophy of mature bone

    SciTech Connect

    Erguen, H.; Howland, W.J.

    1980-01-01

    The growing number of oncological patients subjected to radiotherapy require the diagnostic radiologist to be aware of expected bone changes following irradiation and the differentiation of this entity from metastasis. The primary event of radiation damage to bone is atrophy and true necrosis of bone is uncommon. The postradiation atrophic changes of bone are the result of combined cellular and vascular damage, the former being more important. The damage to the osteoblast resulting in decreased matrix production is apparently the primary histopathologic event. Radiation damaged bone is susceptible to superimposed complications of fracture, infection, necrosis, and sarcoma. The primary radiographic evidence of atrophy, localized osteopenia, is late in appearing, mainly because of the relative insensitivity of radiographs in detecting demineralization. Contrary to former views, the mature bone is quite radiosensitive and reacts quickly to even small doses of radiation. In vivo midrodensitometric analysis and radionuclide bone and bone marrow scans can reveal early changes following irradiation. The differentiation of postirradiation atrophy and metastasis may be difficult. Biopsy should be the last resort because of the possibility of causing true necrosis in atrophic bone by trauma and infection.

  5. Postradiation atrophy of mature bone

    SciTech Connect

    Ergun, H.; Howland, W.J.

    1980-01-01

    The growing number of oncological patients subjected to radiotherapy require the diagnostic radiologist to be aware of expected bone changes following irradiation and the differentiation of this entity from metastasis. The primary event of radiation damage to bone is atrophy and true necrosis of bone is uncommon. The postradiation atrophic changes of bone are the result of combined cellular and vascular damage, the former being more important. The damage to the osteoblast resulting in decreased matrix production is apparently the primary histopathologic event. Radiation damaged bone is susceptible to superimposed complications of fracture, infection, necrosis, and sarcoma. The primary radiographic evidence of atrophy, localized osteopenia, is late in appearing, mainly because of the relative insensitivity of radiographs in detecing demineralization. Contrary to former views, the mature bone is quite radiosensitive and reacts quickly to even small doses of radiation. In vivo midrodensitometric analysis and radionuclide bone and bone marrow scans can reveal early changes following irradiation. The differentiation of postirradiation atrophy and metastasis may be difficult. Biopsy should be the last resort because of the possibility of causing true necrosis in atrophic bone by trauma and infection.

  6. Microgravity and Bone Cell Mechanosensitivity

    NASA Astrophysics Data System (ADS)

    Klein-Nulend, J.; Bacabac, R.; Veldhuijzen, J.; van Loon, J.

    The capacity of bone tissue to alter its mass and structure in response to mechanical demands has long been recognized but the cellular mechanisms involved remained poorly understood. Bone not only develops as a structure designed specifically for mechanical tasks, but it can adapt during life toward more efficient mechanical performance. Mechanical adaptation of bone is a cellular process and needs a biological system that senses the mechanical loading. The loading information must then be communicated to the effector cells that form new bone or destroy old bone.The in vivo operating cell stress derived from bone loading is likely flow of interstitial fluid along the surface of osteocytes and lining cells. The response of bone cells in culture to fluid flow includes prostaglandin (PG) synthesis and expression of prostaglandin G/H synthase inducible cyclooxygenase (COX-2). Cultured bone cells also rapidly produce nitric oxide (NO) in response to fluid flow as a result of activation of endothelial nitric oxide synthase (ecNOS), which enzyme also mediates the adaptive response of bone tissue to mechanical loading. Disruption of the actin-cytoskeleton abolishes the response to stress, suggesting that the cytoskeleton is involved in cellular mechanotransduction.Microgravity, or better near weightlessness, has catabolic effects on the skeleton of astronauts, and on mineral metabolism in bone organ cultures. This might be explained as resulting from an exceptional form of disuse under near weightlessness conditions. However, under near weightlessness conditions the assembly of cytoskeletal elements may be altered since it has been shown that the direction of the gravity vector determines microtubular pattern formation in vivo. We found that the transduction of mechanical signals in bone cells also involves the cytoskeleton and is related to PGE2 production. Therefore it is possible that the mechanosensitivity of bone cells is altered under near weightlessness conditions

  7. New trends in bone research.

    PubMed

    Hewison, M

    1995-01-01

    Recent advances in bone research have employed novel cell and molecular biology techniques to determine some of the fundamental mechanisms regulating bone function. Endocrine control of bone cell development and matrix turnover have been defined at a molecular level by studying the interaction of steroid/thyroid hormones with gene promoters. New steroid/thyroid hormone receptors have been cloned, suggesting that our current view of hormonal regulation of bone metabolism is far from complete. The function of one particular steroid hormone receptor, the vitamin D receptor, has come under close scrutiny following the observation that polymorphic variations in this receptor are linked to differences in bone mineral density. Detailed studies of bone cell differentiation have shown that cytokines may be particularly important targets for hormonal control in bone. The role of cell adhesion molecules in regulating bone resorption has also been explored; modulation of their activity may be of benefit in the treatment of diseases such as osteoporosis. Pharmacological intervention via the newly cloned calcium-sensing receptor offers another site for regulation of bone turnover. PMID:8847678

  8. Bone Disease after Kidney Transplantation.

    PubMed

    Bouquegneau, Antoine; Salam, Syrazah; Delanaye, Pierre; Eastell, Richard; Khwaja, Arif

    2016-07-01

    Bone and mineral disorders occur frequently in kidney transplant recipients and are associated with a high risk of fracture, morbidity, and mortality. There is a broad spectrum of often overlapping bone diseases seen after transplantation, including osteoporosis as well as persisting high- or low-turnover bone disease. The pathophysiology underlying bone disorders after transplantation results from a complex interplay of factors, including preexisting renal osteodystrophy and bone loss related to a variety of causes, such as immunosuppression and alterations in the parathyroid hormone-vitamin D-fibroblast growth factor 23 axis as well as changes in mineral metabolism. Management is complex, because noninvasive tools, such as imaging and bone biomarkers, do not have sufficient sensitivity and specificity to detect these abnormalities in bone structure and function, whereas bone biopsy is not a widely available diagnostic tool. In this review, we focus on recent data that highlight improvements in our understanding of the prevalence, pathophysiology, and diagnostic and therapeutic strategies of mineral and bone disorders in kidney transplant recipients. PMID:26912549

  9. Report on 2012 ISN Nexus symposium: 'Bone and the kidney'.

    PubMed

    Drüeke, Tilman B; Olgaard, Klaus

    2013-04-01

    The Copenhagen 2012 Nexus symposium on 'Bone and the Kidney' followed the 'bench to bedside' approach of the Nexus symposia organized by the International Society of Nephrology. The main goal of the present symposium was to provide a unique forum for scientists and clinicians with an interest in the fascinating world of the many hormones and factors involved in mineral homeostasis, bone disease, and vascular calcification of patients with chronic kidney disease-mineral and bone disorder (CKD-MBD). The possibility of exchanging cutting-edge insights and discussing clinically relevant information on all aspects of the bone-kidney axis was open to all participants. The numerous lectures given at the symposium addressed current knowledge and recent advances in kidney and bone physiology, as well as the pathogenesis, diagnosis, and therapy of CKD-MBD, inspired by the intention to enhance the translation of basic science into clinical medicine. The lectures were followed by lively discussions of open questions and controversial issues. Our brief summary of interesting novel findings presented at this symposium is necessarily the result of a somewhat arbitrary choice among a wealth of exciting data brought to the attention of an enthusiastic audience.

  10. [Orthognathic surgery: corrective bone operations].

    PubMed

    Reuther, J

    2000-05-01

    The article reviews the history of orthognathic surgery from the middle of the last century up to the present. Initially, mandibular osteotomies were only performed in cases of severe malformations. But during the last century a precise and standardized procedure for correction of the mandible was established. Multiple modifications allowed control of small fragments, functionally stable osteosynthesis, and finally a precise positioning of the condyle. In 1955 Obwegeser and Trauner introduced the sagittal split osteotomy by an intraoral approach. It was the final breakthrough for orthognathic surgery as a standard treatment for corrections of the mandible. Surgery of the maxilla dates back to the nineteenth century. B. von Langenbeck from Berlin is said to have performed the first Le Fort I osteotomy in 1859. After minor changes, Wassmund corrected a posttraumatic malocclusion by a Le Fort I osteotomy in 1927. But it was Axhausen who risked the total mobilization of the maxilla in 1934. By additional modifications and further refinements, Obwegeser paved the way for this approach to become a standard procedure in maxillofacial surgery. Tessier mobilized the whole midface by a Le Fort III osteotomy and showed new perspectives in the correction of severe malformations of the facial bones, creating the basis of modern craniofacial surgery. While the last 150 years were distinguished by the creation and standardization of surgical methods, the present focus lies on precise treatment planning and the consideration of functional aspects of the whole stomatognathic system. To date, 3D visualization by CT scans, stereolithographic models, and computer-aided treatment planning and simulation allow surgery of complex cases and accurate predictions of soft tissue changes.

  11. Significant forefoot varus deformity resulting in progressive stress fractures of all lesser metatarsal bones.

    PubMed

    van der Vlies, Cornelis H; Ponsen, Kees J; Besselaar, Philip P; Goslings, J Carel

    2007-01-01

    Stress fractures may occur in any bone, but appear most frequently in the metatarsal bones. Consecutive stress fractures of all lesser metatarsals in a short period are rare, and only a few cases have been described in the literature. We report an unusual case of a young man with consecutive stress fractures of four adjacent lesser metatarsal bones. The etiology was in all probability the fixed forefoot varus deformity. This foot deformity may impose increased mechanical loads across the lateral aspect of the foot that, in turn, may result in stress fractures involving the lesser metatarsals. In our patient conservative treatment finally resulted in a satisfactory outcome.

  12. A significant diagnostic method in torture investigation: bone scintigraphy.

    PubMed

    Ozkalipci, Onder; Unuvar, Umit; Sahin, Umit; Irencin, Sukran; Fincanci, Sebnem Korur

    2013-03-10

    Torture appears to be a permanent feature in countries, which have experienced military coups or ruled by oppressive governments in the past, such as Turkey. The Human Rights Foundation of Turkey (HRFT) was established in 1990 to serve torture victims, mainly those who were the victims of the 1980 military regime. Since then the HRFT has been providing rehabilitation and documentation for torture survivors. Bone scintigraphy can be one of the diagnostic methods to reveal trauma, particularly after several years when it is challenging to find any physical or radiological evidence. The HRFT's Istanbul Branch referred 97 of their applicants for bone scintigraphy between 1992 and 2010. In this retrospective survey of 97 cases, 17 of them were female and 80 of them were male. Several aspects were evaluated, including working conditions, change of torture methods practiced in certain time periods, time since torture and duration of exposure to torture in comparison with findings of bone scintigraphies. The torture methods varied from beating to falanga, electric shock, suspension and several other types of torture within the period of practice, although beating was a common denominator among all. The findings were classified according to time since torture and duration of exposure to torture. More than half of the cases (59%) had a detectable bone lesion on bone scintigraphy, and the detectable bone lesion on scintigraphy increased significantly with the duration of exposure to torture, particularly among cases who had been subjected to torture for a longer period (8 days and more). Bone scintigraphy should be considered as a valuable non-invasive diagnostic method to assess and document long term torture practices and/or cases with no detectable marks upon physical examination.

  13. Osteoporotic-like effects of cadmium on bone mineral density and content in aged ovariectomized beagles

    SciTech Connect

    Sacco-Gibson, N.; Abrams, J.; Chaudhry, S.; Hurst, D.; Peterson, D.; Bhattacharyya, M.

    1992-12-31

    Our purpose was to evaluate the effects of ovariectomy in conjunction with cadmium (Cd) exposure on bone. Aged female beagles with {sup 45}Ca-labeled skeletons ovariectomized and exposed to Cd. Successive vertebral scans by dual photon absorptiometry monitored changes in bone mineral density (BMD) in each dog with time. Results showed that ovariectomy or Cd exposure alone caused significant decreases in BMD; ovariectomy with Cd exposure caused the greatest decrease. Ovariectomy alone did not decrease BMD in the distal end or mid-shaft of the tibia while BMD of the distal tibia decreased significantly due to Cd exposure alone. Combination treatment resulted in significant decreases in BMD of both tibial regions. At necropsy, tibiae, humeri, lumbar vertebrae and ribs were obtained for biochemical analysis. No group-to-group differences in bone weights (wet, dry, ash), in ash/dry ratios, or in long bone and vertebral Ca/dry or Ca/ash ratios were observed. Significantly higher total {sup 45}Ca content and {sup 45}Ca/dry and {sup 45}Ca/ash ratios were observed in long bones and vertebrae of OV- and OV+ groups. In contrast, intact ribs showed significantly decreased Ca/dry and Ca/ash ratios compared to the SO-group. Quartered ribs demonstrated regional responses to specific treatment; decreases in total Ca content were greatest in the mid-rib region ({minus}36 to {minus}46%). Results suggest that in the aged female beagle, bone mineral loss associated with estrogen depletion is not only related to bone type (trabecular versus cortical) but also to bone Ca pools. Our results also suggest that a regional heterogeneity of bone plays a role in responsiveness to ovariectomy and Cd exposure. These aspects suggest that Cd is an exogenous factor affecting bone mineral loss independently of estrogen depletion. However, estrogen depletion primes bone for responsiveness to Cd-induced bone mineral loss.

  14. Reloading partly recovers bone mineral density and mechanical properties in hind limb unloaded rats

    NASA Astrophysics Data System (ADS)

    Zhao, Fan; Li, Dijie; Arfat, Yasir; Chen, Zhihao; Liu, Zonglin; Lin, Yu; Ding, Chong; Sun, Yulong; Hu, Lifang; Shang, Peng; Qian, Airong

    2014-12-01

    Skeletal unloading results in decreased bone formation and bone mass. During long-term space flight, the decreased bone mass is impossible to fully recover. Therefore, it is necessary to develop the effective countermeasures to prevent spaceflight-induced bone loss. Hindlimb Unloading (HLU) simulates effects of weightlessness and is utilized extensively to examine the response of musculoskeletal systems to certain aspects of space flight. The purpose of this study is to investigate the effects of a 4-week HLU in rats and subsequent reloading on the bone mineral density (BMD) and mechanical properties of load-bearing bones. After HLU for 4 weeks, the rats were then subjected to reloading for 1 week, 2 weeks and 3 weeks, and then the BMD of the femur, tibia and lumbar spine in rats were assessed by dual energy X-ray absorptiometry (DXA) every week. The mechanical properties of the femur were determined by three-point bending test. Dry bone and bone ash of femur were obtained through Oven-Drying method and were weighed respectively. Serum alkaline phosphatase (ALP) and serum calcium were examined through ELISA and Atomic Absorption Spectrometry. The results showed that 4 weeks of HLU significantly decreased body weight of rats and reloading for 1 week, 2 weeks or 3 weeks did not recover the weight loss induced by HLU. However, after 2 weeks of reloading, BMD of femur and tibia of HLU rats partly recovered (+10.4%, +2.3%). After 3 weeks of reloading, the reduction of BMD, energy absorption, bone mass and mechanical properties of bone induced by HLU recovered to some extent. The changes in serum ALP and serum calcium induced by HLU were also recovered after reloading. Our results indicate that a short period of reloading could not completely recover bone after a period of unloading, thus some interventions such as mechanical vibration or pharmaceuticals are necessary to help bone recovery.

  15. Crocodilian bone-tendon and bone-ligament interfaces.

    PubMed

    Suzuki, Daisuke; Murakami, Gen; Minoura, Nachio

    2003-10-01

    We investigated bone-tendon (27 sites) and bone-ligament (12 sites) interfaces in six pairs of crocodile limbs and girdles under light microscopy. These crocodilian interfaces often included a direct, unmediated insertion in which the tendon or ligament fibers inserted directly into the bone itself without fibrocartilaginous mediation. This was quite different from the usual direct insertion known in mammals and lizards. Fibrocartilaginous tissue at the bone-tendon interface is generally believed to protect tendon fibers against shear stress. Other types of insertions were found in the crocodilian epiphyses, namely, hyaline cartilage and pseudofibrocartilaginous insertions. Notably, a thick periosteum/perichondrium and subchondral layer was involved at both interfaces. The thick periosteum/perichondrium seemed to form along the epiphyseal hyaline cartilage and might function in replacement of fibrocartilaginous tissues. Crocodilian thick periosteum/perichondrium would be expected to reinforce the limb and girdle bones--especially their epiphyses, in which secondary centers of ossification are absent. The subchondral layer--a kind of fibrocartilaginous tissue--seemed to play the role of the growth plate in compensating for the absence of secondary centers of ossification. Therefore, we hypothesized that the crocodile-specific bone-tendon interfaces were the result of these specializations of bone development and growth. In crocodiles, the disadvantages of the single ossification center are effectively compensated for by specialized morphologies, including these interfaces. Specialized bone growth provides the crocodile with the largest body size of the recent reptiles and an extremely fast method of locomotion. PMID:14575269

  16. Vitamin D and chronic kidney disease-mineral bone disease (CKD-MBD).

    PubMed

    Nigwekar, Sagar U; Tamez, Hector; Thadhani, Ravi I

    2014-01-01

    Chronic kidney disease (CKD) is a modern day epidemic and has significant morbidity and mortality implications. Mineral and bone disorders are common in CKD and are now collectively referred to as CKD- mineral and bone disorder (MBD). These abnormalities begin to appear even in early stages of CKD and contribute to the pathogenesis of renal osteodystrophy. Alteration in vitamin D metabolism is one of the key features of CKD-MBD that has major clinical and research implications. This review focuses on biology, epidemiology and management aspects of these alterations in vitamin D metabolism as they relate to skeletal aspects of CKD-MBD in adult humans. PMID:24605215

  17. Raman spectroscopy of bone metastasis

    NASA Astrophysics Data System (ADS)

    Esmonde-White, Karen A.; Sottnik, Joseph; Morris, Michael; Keller, Evan

    2012-02-01

    Raman spectroscopy of bone has been used to characterize chemical changes occurring in diseases such as osteoporosis, osteoarthritis and osteomyelitis. Metastasis of cancer into bone causes changes to bone quality that are similar to those observed in osteoporosis, such as decreased bone strength, but with an accelerated timeframe. In particular, osteolytic (bone degrading) lesions in bone metastasis have a marked effect on patient quality of life because of increased risk of fractures, pain, and hypercalcemia. We use Raman spectroscopy to examine bone from two different mouse models of osteolytic bone metastasis. Raman spectroscopy measures physicochemical information which cannot be obtained through standard biochemical and histological measurements. This study was reviewed and approved by the University of Michigan University Committee on the Care and Use of Animals. Two mouse models of prostate cancer bone metastasis, RM1 (n=3) and PC3-luc (n=4) were examined. Tibiae were injected with RM1 or PC3-luc cancer cells, while the contralateral tibiae received a placebo injection for use as controls. After 2 weeks of incubation, the mice were sacrificed and the tibiae were examined by Raman microspectroscopy (λ=785 nm). Spectroscopic markers corresponding to mineral stoichiometry, bone mineralization, and mineral crystallinity were compared in spectra from the cancerous and control tibiae. X-ray imaging of the tibia confirmed extensive osteolysis in the RM1 mice, with tumor invasion into adjoining soft tissue and moderate osteolysis in the PC3-luc mice. Raman spectroscopic markers indicate that osteolytic lesions are less mineralized than normal bone tissue, with an altered mineral stoichiometry and crystallinity.

  18. Cancellous bone repair using bovine trabecular bone matrix particulates.

    PubMed

    Mushipe, M T; Revell, P A; Shelton, J C

    2002-01-01

    At 5 and 15 weeks post-surgery, biomechanical and histological analyses of cancellous bone defects filled with the bovine trabecular bone matrix (BBM) and hydroxyapatite (Hap) particulates of dimensions 106-150 microm were investigated. It was observed that at 5 weeks post-surgery the stiffness properties of the BBM filled defects were significantly higher than those observed in the Hap filled defects (p < 0.01) but comparable to those recorded in intact cancellous bone from the same anatomical position. Histologically, no significant differences were observed in the percentage of new bone contact with the particles. The biomechanical properties of the Hap filled defects mirrored those in intact cancellous bone only at 15 weeks post-surgery. BBM particles thus appeared to accelerate the early healing of osteotomies. It is therefore suggested that particles of this bioceramic be the subject of intense research for more usage in both periodontal osseous defects and orthopaedic fractures.

  19. [Bone and Stem Cells. Intravital imaging of bone marrow microenvironment].

    PubMed

    Mizuno, Hiroki; Kikuta, Junichi; Ishii, Masaru

    2014-04-01

    Various kinds of cell types, such as osteoclasts, osteoblasts, hematopoietic cells, and mesenchymal cells, have been reported to exist in the bone marrow and communicate with each other. Although there have been many previous studies about bone marrow microenvironment, most of them were analyzed by conventional methods such as histological analysis and flow cytometry. These methods could not observe the dynamic cell movement in living bone marrow. Recently rapid development of fluorescent imaging techniques enables us to understand the cellular dynamics in vivo . That's why we have originally established an advanced imaging system for visualizing living bone tissues with intravital two-photon microscopy. Here we show the latest data and the detailed methodology of intravital imaging of bone marrow microenvironment, and also discuss its further application.

  20. ISS Update: Bone Health in Space

    NASA Video Gallery

    NASA Public Affairs Officer Brandi Dean interviews Dr. Jean Sibonga, Bone Lead Human Research Program, about the changes in bone structure and bone loss as a result of long term missions in space a...

  1. Bone Mass Measurement: What the Numbers Mean

    MedlinePlus

    ... Friendly Page June 2015 What Is a Bone Density Test? A bone mineral density (BMD) test is ... check your progress. Who Should Get a Bone Density Test? The U.S. Preventive Services Task Force recommends ...

  2. Exercise Brings Bone Benefits that Last

    MedlinePlus

    ... External link, please review our exit disclaimer . Subscribe Exercise Brings Bone Benefits that Last Building bone as ... lose bone. Studies of animals have shown that exercise during periods of rapid growth can lead to ...

  3. Bone densitometry in infants

    SciTech Connect

    Barden, H.S.; Mazess, R.B.

    1988-07-01

    Bone mineral mass and density can be measured noninvasively by various absorptiometric procedures. Two methods, dual-photon absorptiometry (DPA) and quantitative computed tomography, have widespread application in adults but only limited use in children. One method, single-photon absorptiometry (SPA), has been used extensively in adults and children and has been modified for use in infants. The radius shaft has been used for most research on infants. However, the difficulty of using older SPA methods on this small bone (4 to 7 mm width) has led a few investigators to measure the shaft of the humerus. The typical precision of measurement in a newborn is about 5% with the use of computerized rectilinear scanners for the radius; older linear scanners have a precision error of 5% to 10% on the humerus. Linear scanners cannot measure precisely the radius in individual neonates. The SPA scans typically take about 5 minutes. The DPA technique using /sup 153/Gd has been modified for use on smaller animals (5 to 10 kg monkeys and dogs), but it has not been used on infants because DPA scans take 20 minutes. New methods using x-ray absorptiometry allow rapid (1 minute), precise (1%) measurements in the perinate. The need for a soft tissue bolus is eliminated, and both the axial and peripheral skeletons can be measured with dual-energy x-ray absorptiometry. Ultrasonic measurements do not yet offer adequate precision in the neonate, given the limited biologic range of values. 83 references.

  4. Mineral evolution of bone.

    PubMed

    Ravaglioli, A; Krajewski, A; Celotti, G C; Piancastelli, A; Bacchini, B; Montanari, L; Zama, G; Piombi, L

    1996-03-01

    A study on the evolution with age of the mineral composition of bones was performed on samples belonging to human and other common mammalian species (cattle, sheep, dog). The study was carried out on the ashes obtained by calcination of the bone samples (1 h at 900 degrees C). The calcined powders were carefully examined by X-ray diffraction, from which precise quantitative evaluation (also confirmed by chemical analysis) of the crystalline phases present was derived. These data were analysed as a function of the introduced fractional age phi, a new relative scale that allows even largely different lifespan species to be compared. An overall linear increase in (Ca + Mg)/P ratio with log phi was found and the other considerations on molecular constitution (especially as regards Mg2+ substituting for Ca2+ in very young subjects) of the various phases detected were formulated and relative implications evaluated. The results appear promising for an improvement of knowledge in the field of biomedical experimentation and clinical implantology.

  5. [Bone metastasis and RANKL].

    PubMed

    Nakashima, Tomoki

    2014-08-01

    The mice with a disruption of Rank or Rankl exhibit normal mammary development during puberty, but their mammary epithelium fails to proliferate and form lobuloalveolar structures during pregnancy, resulting in the death of newborns. Hormone replacement therapy is associated with an increased risk of breast cancer. Importantly, specific deletion of RANK in mammary epithelium cells prevents both the onset and progression of medroxyprogesterone acetate (MPA) -driven mammary cancer and impairs self-renewal of breast cancer stem cells. Furthermore, RANK is highly expressed in several cancer cells. Functionally, it has been shown that RANKL can stimulate the directed migration of mammary epithelial cells as well as prostate cancer and melanoma cells toward a source of RANKL. In an in vivo metastasis model, OPG reduced the tumor burden in bones and ameliorated clinical paralysis, but did not affect the frequency of the spread of metastases into other tissues. These findings show that the RANK/RANKL system is crucial for mammary development, breast tumorigenesis and bone metastasis.

  6. Phytoestrogens and bone.

    PubMed

    Anderson, J J; Garner, S C

    1998-12-01

    Practically all plant foods contain small amounts of the diverse phytoestrogen molecules that have the potential to improve health. Phytoestrogens, especially the soy-derived isoflavones, are receiving great scrutiny as food supplements for the purposes of both enhancing the health of tissues and preventing several common diseases, such as cardiovascular diseases, cancers of reproductive tissues and osteoporosis. Investigations of isoflavones, in particular, have recently become more prominent because of their oestrogenic activities. These actions may be as either partial oestrogen agonists or anti-oestrogens (inhibitors of natural oestrogen activity). For example, the isoflavones of soy, mainly genistein and daidzein, have been shown by at least three different laboratories to conserve bone in ovariectomized rodent models, and they probably have similar conservatory effects in higher mammalian species. Nevertheless, the only positive effects of phytoestrogens on bone observed so far in post-menopausal women have been small and limited to the lumbar vertebrae. Additional information on human studies currently in progress is needed before the efficacy of these preparations in human subjects is known.

  7. Frontal bone fractures.

    PubMed

    Marinheiro, Bruno Henrique; de Medeiros, Eduardo Henrique Pantosso; Sverzut, Cássio Edvard; Trivellato, Alexandre Elias

    2014-11-01

    The aim of this retrospective study was to evaluate the epidemiology, treatment, and complications of frontal bone fractures associated, or not, with other facial fractures. This evaluation also sought to minimize the influence of the surgeon's skills and the preference for any rigid internal fixation system. The files from 3758 patients who attended the Oral and Maxillofacial Surgery Department of the School of Dentistry of Ribeirao Preto, University of Sao Paulo, from March 2004 to November 2011 and presented with facial trauma were scanned, and 52 files were chosen for the review. Eleven (21.15%) of these patients had pure fractures of the frontal bone, and trauma incidence was more prevalent in men (92.3%), whites (61.53%), and adults (50%). Despite the use of helmets at the moment of the trauma, motorcycle crashes were the most common etiological factor (32.69%). Fracture of the anterior wall of the frontal sinus with displacement was the main injury observed (54.9%), and the most common treatment was internal fixation with a plate and screws (45.09%). Postoperative complications were observed in 35.29% of the cases. The therapy applied was effective in handling this type of fracture, and the success rate was comparable to that reported in other published studies. PMID:25377971

  8. Usefulness of a quick decalcification of bone sections embedded in methyl methacrylate[corrected]: an improved method for immunohistochemistry.

    PubMed

    Gomes, Samirah Abreu; dos Reis, Luciene Machado; de Oliveira, Ivone Braga; Noronha, Irene de Lourdes; Jorgetti, Vanda; Heilberg, Ita Pfeferman

    2008-01-01

    Immunohistochemistry of undecalcified bone sections embedded in methyl methacrylate (MMA) is not commonly employed because of potential destruction of tissue antigenicity by highly exothermic polymerization. The aim of the present study was to describe a new technique in which a quick decalcification of bone sections embedded in MMA improves the results for immunohistochemistry. The quality of interleukin 1alpha (IL-1alpha) immunostaining according to the present method was better than the conventional one. Immunostaining for osteoprotegerin (OPG) and the receptor activator of NF-kappaB ligand (RANKL) in bone sections of chronic kidney disease patients with mineral bone disorders (CKD-MBD) was stronger than in controls (postmortem healthy subjects). The present study suggested that this method is easy, fast, and effective to perform both histomorphometry and immunohistochemistry in the same bone fragment, yielding new insights into pathophysiological aspects and therapeutic approaches in bone disease.

  9. Complications of occipital bone pneumatization.

    PubMed

    Moss, Mary; Biggs, Michael; Fagan, Paul; Forer, Martin; Davis, Martin; Roche, Jim

    2004-06-01

    Four cases of occipital bone pneumatization and subsequent complications are described, which include a pathological fracture of C1 and the occipital bone, spontaneous subcutaneous emphysema and pneumatocele formation. Reviews of the published literature and possible aetiological factors have been discussed. PMID:15230770

  10. Bone and Spinal Muscular Atrophy.

    PubMed

    Vai, Silvia; Bianchi, Maria Luisa; Moroni, Isabella; Mastella, Chiara; Broggi, Francesca; Morandi, Lucia; Arnoldi, Maria Teresa; Bussolino, Chiara; Baranello, Giovanni

    2015-10-01

    Spinal Muscular Atrophy (SMA) is an autosomal recessive neuromuscular disease, leading to progressive denervation atrophy in the involved skeletal muscles. Bone status has been poorly studied. We assessed bone metabolism, bone mineral density (BMD) and fractures in 30 children (age range 15-171 months) affected by SMA types 2 and 3. Eighteen children (60%) had higher than normal levels of CTx (bone resorption marker); 25-OH vitamin D was in the lower range of normal (below 20 ng/ml in 9 children and below 12 ng/ml in 2). Lumbar spine BMAD (bone mineral apparent density) Z-score was below -1.5 in 50% of children. According to clinical records, four children had sustained four peripheral fractures; on spine X-rays, we observed 9 previously undiagnosed vertebral fractures in 7 children. There was a significant inverse regression between PTH and 25-OH D levels, and a significant regression between BMC and BMAD values and the scores of motor-functional tests. Even if this study could not establish the pathogenesis of bone derangements in SMA, its main findings - reduced bone density, low 25OH vitamin D levels, increased bone resorption markers and asymptomatic vertebral fractures also in very young patients - strongly suggest that even young subjects affected by SMA should be considered at risk of osteopenia and even osteoporosis and fractures. PMID:26055105

  11. Space Radiation and Bone Loss.

    PubMed

    Willey, Jeffrey S; Lloyd, Shane A J; Nelson, Gregory A; Bateman, Ted A

    2011-01-01

    Exposure to ionizing radiation may negatively impact skeletal integrity during extended spaceflight missions to the moon, Mars, or near-Earth asteroids. However, our understanding of the effects of radiation on bone is limited when compared to the effects of weightlessness. In addition to microgravity, astronauts will be exposed to space radiation from solar and cosmic sources. Historically, radiation exposure has been shown to damage both osteoblast precursors and local vasculature within the irradiated volume. The resulting suppression of bone formation and a general state of low bone-turnover is thought to be the primary contributor to bone loss and eventual fracture. Recent investigations using mouse models have identified a rapid, but transient, increase in osteoclast activity immediately after irradiation with both spaceflight and clinically-relevant radiation qualities and doses. Together with a chronic suppression of bone formation after radiation exposure, this acute skeletal damage may contribute to long-term deterioration of bone quality, potentially increasing fracture risk. Direct evidence for the damaging effects of radiation on human bone are primarily demonstrated by the increased incidence of fractures at sites that absorb high doses of radiation during cancer therapy: exposures are considerably higher than what could be expected during spaceflight. However, both the rapidity of bone damage and the chronic nature of the changes appear similar between exposure scenarios. This review will outline our current knowledge of space and clinical exploration exposure to ionizing radiation on skeletal health. PMID:22826632

  12. Nonallograft osteoconductive bone graft substitutes.

    PubMed

    Bucholz, Robert W

    2002-02-01

    An estimated 500,000 to 600,000 bone grafting procedures are done annually in the United States. Approximately (1/2) of these surgeries involve spinal arthrodesis whereas 35% to 40% are used for general orthopaedic applications. Synthetic bone graft substitutes currently represent only 10% of the bone graft market, but their share is increasing as experience and confidence in their use are accrued. Despite 15 to 20 years of clinical experience with various synthetic substitutes, there have been few welldesigned, controlled clinical trials of these implants. Synthetic bone graft substitutes consist of hydroxyapatite, tricalcium phosphate, calcium sulfate, or a combination of these minerals. Their fabrication technique, crystallinity, pore dimensions, mechanical properties, and resorption rate vary. All synthetic porous substitutes share numerous advantages over autografts and allografts including their unlimited supply, easy sterilization, and storage. However, the degree to which the substitute provides an osteoconductive structural framework or matrix for new bone ingrowth differs among implants. Disadvantages of ceramic implants include brittle handling properties, variable rates of resorption, poor performance in diaphyseal defects, and potentially adverse effects on normal bone remodeling. These inherent weaknesses have refocused their primary use to bone graft extenders and carriers for pharmaceuticals. The composition, histologic features, indications, and clinical experience of several of the synthetic bone graft substitutes approved for orthopaedic use in the United States are reviewed. PMID:11937865

  13. Low Bone Mass in Thalassemia

    MedlinePlus

    4 Low Bone Mass in Thalassemia • In addition to a diet rich in calcium and vitamin D, your doctor may recommend taking calcium ... What can be done to treat low bone mass? Following all of the above prevention measures is ...

  14. DXA: Technical aspects and application.

    PubMed

    Bazzocchi, Alberto; Ponti, Federico; Albisinni, Ugo; Battista, Giuseppe; Guglielmi, Giuseppe

    2016-08-01

    The key role of dual-energy X-ray absorptiometry (DXA) in the management of metabolic bone diseases is well known. The role of DXA in the study of body composition and in the clinical evaluation of disorders which directly or indirectly involve the whole metabolism as they may induce changes in body mass and fat percentage is less known or less understood. DXA has a range of clinical applications in this field, from assessing associations between adipose or lean mass and the risk of disease to understanding and measuring the effects of pathophysiological processes or therapeutic interventions, in both adult and paediatric human populations as well as in pre-clinical settings. DXA analyses body composition at the molecular level that is basically translated into a clinical model made up of fat mass, non-bone lean mass, and bone mineral content. DXA allows total and regional assessment of the three above-mentioned compartments, usually by a whole-body scan. Since body composition is a hot topic today, manufacturers have steered the development of DXA technology and methodology towards this. New DXA machines have been designed to accommodate heavier and larger patients and to scan wider areas. New strategies, such as half-body assessment, permit accurate body scan and analysis of individuals exceeding scan field limits. Although DXA is a projective imaging technique, new solutions have recently allowed the differential estimate of subcutaneous and intra-abdominal visceral fat. The transition to narrow fan-beam densitometers has led to faster scan times and better resolution; however, inter- or intra-device variation exists depending on several factors. The purposes of this review are: (1) to appreciate the role of DXA in the study of body composition; (2) to understand potential limitations and pitfalls of DXA in the analysis of body composition; (3) to learn about technical elements and methods, and to become familiar with biomarkers in DXA. PMID:27157852

  15. Molecular aspects of multiple myeloma.

    PubMed

    Kastrinakis, N G; Gorgoulis, V G; Foukas, P G; Dimopoulos, M A; Kittas, C

    2000-10-01

    Multiple myeloma (MM) is a B-cell neoplasm characterized by bone marrow infiltration with malignant plasma cells, which synthesize and secrete monoclonal immunoglobulin (Ig) fragments. Despite the considerable progress in the understanding of MM biology, the molecular basis of the disease remains elusive. The initial transformation is thought to occur in a postgerminal center B-lineage cell, carrying a somatically hypermutated Ig heavy chain (IGH) gene. This plasmablastic precursor cell colonizes the bone marrow, propagates clonally and differentiates into a slowly proliferating myeloma cell population, all under the influence of specific cell adhesion molecules and cytokines. Production of interleukin-6 by stromal cells, osteoblasts and, in some cases, neoplastic cells is an essential element of myeloma cell growth, with the cytokine stimulus being delivered intracellularly via the Jack-STAT and ras signaling pathways. While karyotypic changes have been identified in up to 50% of MM patients, recent molecular cytogenetic techniques have revealed chromosomal abnormalities in the vast majority of examined cases. Translocations mostly involve illegal switch rearrangements of the IGH locus with various partner genes (CCND1, FGFR3, c-maf). Such events have been assigned a critical role in MM development. Mutations in coding and regulatory regions, as well as aberrant expression patterns of several oncogenes (c-myc, ras) and tumor suppressor genes (p16, p15) have been reported. Key regulators of programmed cell death (BCL-2, Fas), tumor expansion (metalloproteinases) and drug responsiveness (topoisomerase II alpha) have also been implicated in the pathogenesis of this hematologic malignancy. A tumorigenic role for human herpesvirus 8 (HHV8) was postulated recently, following the detection of viral sequences in bone marrow dendritic cells of MM patients. However, since several research groups were unable to confirm this observation, the role of HHV8 remains unclear

  16. Temporal bone anatomy in Panthera tigris

    NASA Astrophysics Data System (ADS)

    Walsh, Edward J.; Ketten, Darlene R.; Arruda, Julie; Armstrong, Douglas L.; Curro, Thomas; Simmons, Lee G.; Wang, Lily M.; McGee, Joann

    2001-05-01

    Preliminary findings suggest that members of Panthera tigris subspecies may rely on low-frequency acoustic cues when communicating with conspecifics either in the field or in captivity. This view is supported by the observation that individuals are sensitive to tone bursts in the 300-500-Hz range and produce significant acoustic energy in an overlapping frequency band in the case of close encounter roars. Other utterances within the vocal repertoire of tigers also contain, and are often dominated by, low frequency acoustic energy that can extend into the infrasonic range. Efforts to determine temporal bone correlates of P. tigris bioacoustical features were recently initiated using computerized tomography to assess key aspects of middle and inner ear morphology from a small set of adult Siberian tigers (P. tigris altaica) and one neonate. Obvious peripheral auditory specializations were not observed and structures comprising the auditory periphery were consistent with the anatomical character of felids generally. Although cochlear dimensions appeared to be adultlike, or nearly so, in the case of the neonate, other temporal bone features were grossly immature. The relationship between acoustic sensitivity, the spectral character of a subset of close encounter calls and cochlear dimensions will be considered.

  17. Derangements in bone mineral parameters and bone mineral density in south Indian subjects on antiepileptic medications

    PubMed Central

    Koshy, George; Varghese, Ron Thomas; Naik, Dukhabandhu; Asha, Hesargatta Shyamsunder; Thomas, Nihal; Seshadri, Mandalam Subramaniam; Alexander, Mathew; Thomas, Maya; Aaron, Sanjith; Paul, Thomas Vizhalil

    2014-01-01

    Background: Although there are reports describing the association of alternations of bone and mineral metabolism in epileptic patients with long-term anticonvulsant therapy, there are only limited Indian studies which have looked at this aspect. Objectives: This study was done to compare the prevalence of changes in bone mineral parameters and bone mineral density (BMD) in ambulant individuals on long-term anticonvulsant therapy with age- and body mass index (BMI)-matched healthy controls. Materials and Methods: There were 55 men (on medications for more than 6 months) and age- and BMI-matched 53 controls. Drug history, dietary calcium intake (DCI), and duration of sunlight exposure were recorded. Bone mineral parameters and BMD were measured. Results: The control group had a significantly higher daily DCI with mean ± SD of 396 ± 91 mg versus 326 ± 101 mg (P = 0.007) and more sunlight exposure of 234 ± 81 vs 167 ± 69 min (P = 0.05). BMD at the femoral neck was significantly lower in cases (0.783 ± 0.105 g/cm2) when compared to controls (0.819 ± 0.114 g/cm2). Majority of the patients (61%) had low femoral neck BMD (P = 0.04). There was no significant difference in the proportion of subjects with vitamin D deficiency (<20 ng/mL) between cases (n = 32) and controls (n = 37) (P = 0.234). Conclusions: Vitamin D deficiency was seen in both the groups in equal proportions, highlighting the existence of a high prevalence of this problem in India. Low femoral neck BMD found in cases may stress the need for supplementing calcium and treating vitamin D deficiency in this specific group. However, the benefit of such intervention has to be studied in a larger proportion of epileptic patients. PMID:25221394

  18. [Bone grafts in orthopedic surgery].

    PubMed

    Zárate-Kalfópulos, Barón; Reyes-Sánchez, Alejandro

    2006-01-01

    In orthopedic surgery the demand for the use of bone grafts increases daily because of the increasing quantity and complexity of surgical procedures. At present, the gold standard is the autologous bone graft but the failure rate, morbidity of the donor site and limited availability have stimulated a proliferation for finding materials that work as bone graft substitutes. In order to have good success, we must know the different properties of these choices and the environment where the graft is going to be used. As bone graft substitutes and growth factors become clinical realities, a new gold standard will be defined. Tissue engineering and gene therapy techniques have the objective to create an optimum bone graft substitute with a combination of substances with properties of osteconduction, osteogenesis and osteoinduction. PMID:16875525

  19. Bone cells-biomaterials interactions.

    PubMed

    Marquis, Marie-Eve; Lord, Etienne; Bergeron, Eric; Drevelle, Olivier; Park, Hyunjin; Cabana, Francois; Senta, Helena; Faucheux, Nathalie

    2009-01-01

    With the aging population, the incidence of bone defects due to fractures, tumors and infection will increase. Therefore, bone replacement will become an ever bigger and more costly problem. The current standard for bone replacement is autograft, because these transplants are osteoconductive and osteoinductive. However, harvesting an autograft requires additional surgery at the donor site that is related to high level of morbidity. In addition, the quantity of bone tissue that can be harvested is limited. These limitations have necessitated the pursuit of alternatives using biomaterials. The control of bone tissue cell adhesion to biomaterials is an important requirement for the successful incorporation of implants or the colonization of scaffolds for tissue repair. Controlling cells-biomaterials interactions appears of prime importance to influence subsequent biological processes such as cell proliferation and differentiation. Therefore, interactions of cells with biomaterials have been widely studied especially on two-dimensional systems. This review focuses on these interactions.

  20. [Bone grafts in orthopedic surgery].

    PubMed

    Zárate-Kalfópulos, Barón; Reyes-Sánchez, Alejandro

    2006-01-01

    In orthopedic surgery the demand for the use of bone grafts increases daily because of the increasing quantity and complexity of surgical procedures. At present, the gold standard is the autologous bone graft but the failure rate, morbidity of the donor site and limited availability have stimulated a proliferation for finding materials that work as bone graft substitutes. In order to have good success, we must know the different properties of these choices and the environment where the graft is going to be used. As bone graft substitutes and growth factors become clinical realities, a new gold standard will be defined. Tissue engineering and gene therapy techniques have the objective to create an optimum bone graft substitute with a combination of substances with properties of osteconduction, osteogenesis and osteoinduction.

  1. Biomaterials for Bone Regenerative Engineering.

    PubMed

    Yu, Xiaohua; Tang, Xiaoyan; Gohil, Shalini V; Laurencin, Cato T

    2015-06-24

    Strategies for bone tissue regeneration have been continuously evolving for the last 25 years since the introduction of the "tissue engineering" concept. The convergence of the life, physical, and engineering sciences has brought in several advanced technologies available to tissue engineers and scientists. This resulted in the creation of a new multidisciplinary field termed as "regenerative engineering". In this article, the role of biomaterials in bone regenerative engineering is systematically reviewed to elucidate the new design criteria for the next generation of biomaterials for bone regenerative engineering. The exemplary design of biomaterials harnessing various materials characteristics towards successful bone defect repair and regeneration is highlighted. Particular attention is given to the attempts of incorporating advanced materials science, stem cell technologies, and developmental biology into biomaterials design to engineer and develop the next generation bone grafts.

  2. Bone composition: relationship to bone fragility and antiosteoporotic drug effects.

    PubMed

    Boskey, Adele L

    2013-01-01

    The composition of a bone can be described in terms of the mineral phase, hydroxyapatite, the organic phase, which consists of collagen type I, noncollagenous proteins, other components and water. The relative proportions of these various components vary with age, site, gender, disease and treatment. Any drug therapy could change the composition of a bone. This review, however, will only address those pharmaceuticals used to treat or prevent diseases of bone: fragility fractures in particular, and the way they can alter the composition. As bone is a heterogeneous tissue, its composition must be discussed in terms of the chemical makeup, properties of its chemical constituents and their distributions in the ever-changing bone matrix. Emphasis, in this review, is placed on changes in composition as a function of age and various diseases of bone, particularly osteoporosis. It is suggested that while some of the antiosteoporotic drugs can and do modify composition, their positive effects on bone strength may be balanced by negative ones. PMID:24501681

  3. Auto Bone Banking: Innovative Method for Bone Preservation

    PubMed Central

    M, Desai Mohan; R, Biraris Sandeep; M, Wade Roshan

    2014-01-01

    Introduction: Bone grafting is an integral part of orthopaedic surgery; the use of bone graft is increasing consistently in traumatology and also in complex revision surgeries of hip and knee arthroplasties. Considering this fact there is a need for some way to find solution for a bone graft which has more osteoinduction, osteoconduction as well as osteogenecity and also reduced rates of graft rejection and transmission of infections. All these qualities are found in autogenous bone graft. We hereby put forward a innovative method of bone preservation by using patients own femoral head and preserving it in patients own iliac pouch and making it available for future use. Case Report: From 2008 to 2012, total 17 numbers of operated sides were included in this method; patients had femoral neck fracture, osteoarthritis or avascular necrosis of femoral head and who underwent either hemi or total hip arthroplasty. Intraoperatively the resected femoral head was preserved in iliac pouch on ipsilateral side. This integrates with the native bone and additional bone graft would be made available for future use. We did not get opportunity to use the stored auograft. Conclusion: This is very innovative concept for preserving patient’s autogenous femoral head for future use. As conventional allograft relies upon screening procedure for infections, proper storage facilities and are expensive. PMID:27298993

  4. Bone Positron Emission Tomography with or without CT Is More Accurate than Bone Scan for Detection of Bone Metastasis

    PubMed Central

    Lee, Soo Jin; Kim, Sang Eun

    2013-01-01

    Objective Na18F bone positron emission tomography (bone PET) is a new imaging modality which is useful for the evaluation of bone diseases. Here, we compared the diagnostic accuracies between bone PET and bone scan for the detection of bone metastasis (BM). Materials and Methods Sixteen cancer patients (M:F = 10:6, mean age = 60 ± 12 years) who underwent both bone PET and bone scan were analyzed. Bone PET was conducted 30 minutes after the injection of 370 MBq Na18F, and a bone scan was performed 3 hours after the injection of 1295 MBq 99mTc-hydroxymethylene diphosphonate. Results In the patient-based analysis (8 patients with BM and 8 without BM), the sensitivities of bone PET (100% = 8/8) and bone scan (87.5% = 7/8) were not significantly different (p > 0.05), whereas the specificity of bone PET (87.5% = 7/8) was significantly greater than that of the bone scan (25% = 2/8) (p < 0.05). In the lesion-based analysis (43 lesions in 14 patients; 31 malignant and 12 benign), the sensitivity of bone PET (100% = 31/31) was significantly greater than that of bone scan (38.7% = 12/31) (p < 0.01), and the specificity of bone PET (75.0% = 9/12) was also significantly higher than that of bone scan (8.3% = 1/12) (p < 0.05). The receiver operating characteristic curve analysis showed that bone PET was significantly more accurate than the bone scan in the patient (p = 0.0306) and lesion (p = 0.0001) based analyses. Conclusion Na18F bone PET is more accurate than bone scan for BM evaluation. PMID:23690722

  5. Epigenetic Mechanisms in Bone Biology and Osteoporosis: Can They Drive Therapeutic Choices?

    PubMed

    Marini, Francesca; Cianferotti, Luisella; Brandi, Maria Luisa

    2016-01-01

    Osteoporosis is a complex multifactorial disorder of the skeleton. Genetic factors are important in determining peak bone mass and structure, as well as the predisposition to bone deterioration and fragility fractures. Nonetheless, genetic factors alone are not sufficient to explain osteoporosis development and fragility fracture occurrence. Indeed, epigenetic factors, representing a link between individual genetic aspects and environmental influences, are also strongly suspected to be involved in bone biology and osteoporosis. Recently, alterations in epigenetic mechanisms and their activity have been associated with aging. Also, bone metabolism has been demonstrated to be under the control of epigenetic mechanisms. Runt-related transcription factor 2 (RUNX2), the master transcription factor of osteoblast differentiation, has been shown to be regulated by histone deacetylases and microRNAs (miRNAs). Some miRNAs were also proven to have key roles in the regulation of Wnt signalling in osteoblastogenesis, and to be important for the positive or negative regulation of both osteoblast and osteoclast differentiation. Exogenous and environmental stimuli, influencing the functionality of epigenetic mechanisms involved in the regulation of bone metabolism, may contribute to the development of osteoporosis and other bone disorders, in synergy with genetic determinants. The progressive understanding of roles of epigenetic mechanisms in normal bone metabolism and in multifactorial bone disorders will be very helpful for a better comprehension of disease pathogenesis and translation of this information into clinical practice. A deep understanding of these mechanisms could help in the future tailoring of proper individual treatments, according to precision medicine's principles. PMID:27529237

  6. Design and validation of bending test method for characterization of miniature pediatric cortical bone specimens.

    PubMed

    Albert, Carolyne I; Jameson, John; Harris, Gerald

    2013-02-01

    Osteogenesis imperfecta is a genetic disorder of bone fragility; however, the effects of this disorder on bone material properties are not well understood. No study has yet measured bone material strength in humans with osteogenesis imperfecta. Small bone specimens are often extracted during routine fracture surgeries in children with osteogenesis imperfecta. These specimens could provide valuable insight into the effects of osteogenesis imperfecta on bone material strength; however, their small size poses a challenge to their mechanical characterization. In this study, a validated miniature three-point bending test is described that enables measurement of the flexural material properties of pediatric cortical osteotomy specimens as small as 5 mm in length. This method was validated extensively using bovine bone, and the effect of span/depth aspect ratio (5 vs 6) on the measured flexural properties was examined. The method provided reasonable results for both Young's modulus and flexural strength in bovine bone. With a span/depth ratio of 6, the median longitudinal modulus and flexural strength results were 16.1 (range: 14.4-19.3)GPa and 251 (range: 219-293)MPa, respectively. Finally, the pilot results from two osteotomy specimens from children with osteogenesis imperfecta are presented. These results provide the first measures of bone material strength in this patient population.

  7. HyBAR: hybrid bone-attached robot for joint arthroplasty

    PubMed Central

    Song, S.; Mor, A.; Jaramaz, B.

    2013-01-01

    Background A number of small bone-attached surgical robots have been introduced to overcome some disadvantages of large stand-alone surgical robots. In orthopaedics, increasing demand on minimally invasive joint replacement surgery has also been encouraging small surgical robot developments. Among various technical aspects of such an approach, optimal miniaturization that maintains structural strength for high speed bone removal was investigated. Methods By observing advantages and disadvantages from serial and parallel robot structures, a new hybrid kinematic configuration was designed for a bone-attached robot to perform precision bone removal for cutting the femoral implant cavity during patellofemoral joint arthroplasty surgery. A series of experimental tests were conducted in order to evaluate the performance of the new robot, especially with respect to accuracy of bone preparation. Results A miniaturized and rigidly-structured robot prototype was developed for minimally invasive bone-attached robotic surgery. A new minimally invasive modular clamping system was also introduced to enhance the robotic procedure. Foam and pig bone experimental results demonstrated a successful implementation of the new robot that eliminated a number of major design problems of a previous prototype. Conclusions For small bone-attached surgical robots that utilize high speed orthopaedic tools, structural rigidity and clamping mechanism are major design issues. The new kinematic configuration using hinged prismatic joints enabled an effective miniaturization with good structural rigidity. Although minor problems still exist at the prototype stage, the new development would be a significant step towards the practical use of such a robot. PMID:19347881

  8. Research Perspectives: The 2013 AAOS/ORS Research Symposium on Bone Quality and Fracture Prevention

    PubMed Central

    Donnelly, Eve; Lane, Joseph M.; Boskey, Adele L.

    2016-01-01

    Bone fracture resistance is determined by the amount of bone present (“bone quantity”) and by a number of other geometric and material factors grouped under the term “bone quality.” In May 2013, a workshop was convened among a group of clinicians and basic science investigators to review the current state of the art in Bone Quality and Fracture Prevention and to make recommendations for future directions for research. The AAOS/ORS/OREF workshop was attended by 64 participants, including two representatives of the National Institutes of Arthritis and Musculoskeletal and Skin Diseases and 13 new investigators whose posters stimulated additional interest. A key outcome of the workshop was a set of recommendations regarding clinically relevant aspects of both bone quality and quantity that clinicians can use to inform decisions about patient care and management. The common theme of these recommendations was the need for more education of clinicians in areas of bone quality and for basic science studies to address specific topics of pathophysiology, diagnosis, prevention, and treatment of altered bone quality. In this report, the organizers with the assistance of the speakers and other attendees highlight the major findings of the meeting that justify the recommendations and needs for this field. PMID:24700449

  9. Limb bone morphology, bone strength, and cursoriality in lagomorphs

    PubMed Central

    Young, Jesse W; Danczak, Robert; Russo, Gabrielle A; Fellmann, Connie D

    2014-01-01

    The primary aim of this study is to broadly evaluate the relationship between cursoriality (i.e. anatomical and physiological specialization for running) and limb bone morphology in lagomorphs. Relative to most previous studies of cursoriality, our focus on a size-restricted, taxonomically narrow group of mammals permits us to evaluate the degree to which ‘cursorial specialization’ affects locomotor anatomy independently of broader allometric and phylogenetic trends that might obscure such a relationship. We collected linear morphometrics and μCT data on 737 limb bones covering three lagomorph species that differ in degree of cursoriality: pikas (Ochotona princeps, non-cursorial), jackrabbits (Lepus californicus, highly cursorial), and rabbits (Sylvilagus bachmani, level of cursoriality intermediate between pikas and jackrabbits). We evaluated two hypotheses: cursoriality should be associated with (i) lower limb joint mechanical advantage (i.e. high ‘displacement advantage’, permitting more cursorial species to cycle their limbs more quickly) and (ii) longer, more gracile limb bones, particularly at the distal segments (as a means of decreasing rotational inertia). As predicted, highly cursorial jackrabbits are typically marked by the lowest mechanical advantage and the longest distal segments, non-cursorial pikas display the highest mechanical advantage and the shortest distal segments, and rabbits generally display intermediate values for these variables. Variation in long bone robusticity followed a proximodistal gradient. Whereas proximal limb bone robusticity declined with cursoriality, distal limb bone robusticity generally remained constant across the three species. The association between long, structurally gracile limb bones and decreased maximal bending strength suggests that the more cursorial lagomorphs compromise proximal limb bone integrity to improve locomotor economy. In contrast, the integrity of distal limb bones is maintained with

  10. Limb bone morphology, bone strength, and cursoriality in lagomorphs.

    PubMed

    Young, Jesse W; Danczak, Robert; Russo, Gabrielle A; Fellmann, Connie D

    2014-10-01

    The primary aim of this study is to broadly evaluate the relationship between cursoriality (i.e. anatomical and physiological specialization for running) and limb bone morphology in lagomorphs. Relative to most previous studies of cursoriality, our focus on a size-restricted, taxonomically narrow group of mammals permits us to evaluate the degree to which 'cursorial specialization' affects locomotor anatomy independently of broader allometric and phylogenetic trends that might obscure such a relationship. We collected linear morphometrics and μCT data on 737 limb bones covering three lagomorph species that differ in degree of cursoriality: pikas (Ochotona princeps, non-cursorial), jackrabbits (Lepus californicus, highly cursorial), and rabbits (Sylvilagus bachmani, level of cursoriality intermediate between pikas and jackrabbits). We evaluated two hypotheses: cursoriality should be associated with (i) lower limb joint mechanical advantage (i.e. high 'displacement advantage', permitting more cursorial species to cycle their limbs more quickly) and (ii) longer, more gracile limb bones, particularly at the distal segments (as a means of decreasing rotational inertia). As predicted, highly cursorial jackrabbits are typically marked by the lowest mechanical advantage and the longest distal segments, non-cursorial pikas display the highest mechanical advantage and the shortest distal segments, and rabbits generally display intermediate values for these variables. Variation in long bone robusticity followed a proximodistal gradient. Whereas proximal limb bone robusticity declined with cursoriality, distal limb bone robusticity generally remained constant across the three species. The association between long, structurally gracile limb bones and decreased maximal bending strength suggests that the more cursorial lagomorphs compromise proximal limb bone integrity to improve locomotor economy. In contrast, the integrity of distal limb bones is maintained with increasing

  11. Gender Aspects of Human Security

    ERIC Educational Resources Information Center

    Moussa, Ghada

    2008-01-01

    The chapter deals with the gender dimensions in human security through focusing on the relationship between gender and human security, first manifested in international declarations and conventions, and subsequently evolving in world women conferences. It aims at analysing the various gender aspects in its relation to different human security…

  12. Aspects of Spirituality in Adolescents

    ERIC Educational Resources Information Center

    Bussing, Arndt; Foller-Mancini, Axel; Gidley, Jennifer; Heusser, Peter

    2010-01-01

    This paper analyses which aspects of spirituality are valued by adolescents, and how they are interconnected with youths' life satisfaction and "self-centeredness". The participants were 254 adolescents (11th grade) of four different high schools from west Germany. After re-validation of the 6-factorial student's version of the ASP questionnaire…

  13. Computational aspects of multibody dynamics

    NASA Technical Reports Server (NTRS)

    Park, K. C.

    1989-01-01

    Computational aspects are addressed which impact the requirements for developing a next generation software system for flexible multibody dynamics simulation which include: criteria for selecting candidate formulation, pairing of formulations with appropriate solution procedures, need for concurrent algorithms to utilize computer hardware advances, and provisions for allowing open-ended yet modular analysis modules.

  14. Legal Aspects of Pupil Transportation.

    ERIC Educational Resources Information Center

    Mawdsley, Ralph D.

    The legal aspects of pupil transportation are examined, including the liability of various factions for transportation decisions and the duty of school districts to provide adequate transportation. Discussed are court decisions dealing with such complex topics as transportation of special education students, transportation for purpose of…

  15. Behavioral Aspects of Marijuana Use.

    ERIC Educational Resources Information Center

    Paulson, Patricia

    This paper examines the behavioral aspects of marijuana use. The focus of the study was to investigate the attitudes and practices toward drugs by users and non-users and the relationship of these attitudes and practices to selected psychosocial factors. A survey instrument in the form of an anonymous questionnaire was developed and administered…

  16. Legal Aspects of the Web.

    ERIC Educational Resources Information Center

    Borrull, Alexandre Lopez; Oppenheim, Charles

    2004-01-01

    Presents a literature review that covers the following topics related to legal aspects of the Web: copyright; domain names and trademarks; linking, framing, caching, and spamdexing; patents; pornography and censorship on the Internet; defamation; liability; conflict of laws and jurisdiction; legal deposit; and spam, i.e., unsolicited mails.…

  17. Pragmatic Aspects of Scalar Modifiers

    ERIC Educational Resources Information Center

    Sawada, Osamu

    2010-01-01

    This dissertation investigates the pragmatic aspects of scalar modifiers from the standpoint of the interface between semantics and pragmatics, focusing on (i) the (non) parallelism between the truth-conditional scalar modifiers and the non-truth-conditional scalar modifiers, (ii) the compositionality and dimensionality of non-truth-conditional…

  18. Psychological Aspects of Chronic Pain

    PubMed Central

    Jacobs, Rosevelt

    1983-01-01

    Since its inception in June 1979, over 500 patients have been treated at the King/Drew Pain Center in Los Angeles. Based upon the treatment and observations of this patient group, this paper describes the psychologic aspects in patients suffering from chronic abdominal pain, low back pain, phantom limb pain, chest pain, and arthritic pain. PMID:6864816

  19. [Bone bank management using a thermal disinfection system (Lobator SD-1). A critical analysis].

    PubMed

    Hofmann, C; von Garrel, T; Gotzen, L

    1996-07-01

    In the study presented on 380 allogenic bone donations from living and organ donors, we analyzed the safety of allograft handling bone-band documentation, logistics and costs. For transplant treatment we routinely used a thermal disinfection system (Lobator SD-1). From 380 allograft donors, 400 bone transplants were gained. The rejection rate was 12.2%. After thermal disinfection for 1 h at 80 degrees C, the grafts were cryopreserved at -80 degrees C and released from the bone bank for potential transplantation after 14-16 days. Five of 730 microbiological specimens showed bacterial contamination after thermal graft decontamination. The bacterial species found on the allografts normally have an inactivation temperature under 80 degrees C. Therefore, only secondary contamination can explain the positive bacteriological test results. With reform of the health care system the economical aspects of bone banking have triggered more interest. The cost for one bone transplant released from the bone bank was 424.75 DM: the overall cost for the bone bank in one year was 75,076 DM. Laboratory (58.2%) and material costs (22.5%) were the major factors. Personnel costs and apparatus costs were relatively low (< 20%). With introduction of the thermal disinfection system (Lobator SD-1) into the bone bank, the safety of allogenic bone transplants was greatly improved. Clinical and serological donor screening must be performed according to international bone bank directives. Considering the low rejection rate and the short turnover rate, the economical costs could be reduced. Using an appropriate disinfection system (thermal disinfection at 80 degrees C), laboratory tests covering venereal diseases, malaria and cytomegalia are no longer required. Also, secondary HIV testing of living donors can be omitted without reducing the safety of the transplant.

  20. Bone Biochemistry on the International Space Station

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Heer, Martina; Zwart, Sara R.

    2016-01-01

    Bone biochemical measures provide valuable insight into the nature and time course of microgravity effects on bone during space flight, where imaging technology cannot be employed. Increased bone resorption is a hallmark of space flight, while markers of bone formation are typically unchanged or decreased. Recent studies (after the deployment to ISS of the advanced resistive exercise device, ARED), have documented that astronauts with good nutritional intake (e.g., maintenance of body mass), good vitamin D status, and exercise maintained bone mineral density. These data are encouraging, but crewmembers exercising on the ARED do have alterations in bone biochemistry, specifically, bone resorption is still increased above preflight levels, but bone formation is also significantly increased. While this bone remodeling raises questions about the strength of the resulting bone, however documents beneficial effects of nutrition and exercise in counteracting bone loss of space flight.

  1. Improved repair of bone defects with prevascularized tissue-engineered bones constructed in a perfusion bioreactor.

    PubMed

    Li, De-Qiang; Li, Ming; Liu, Pei-Lai; Zhang, Yuan-Kai; Lu, Jian-Xi; Li, Jian-Min

    2014-10-01

    Vascularization of tissue-engineered bones is critical to achieving satisfactory repair of bone defects. The authors investigated the use of prevascularized tissue-engineered bone for repairing bone defects. The new bone was greater in the prevascularized group than in the non-vascularized group, indicating that prevascularized tissue-engineered bone improves the repair of bone defects. [Orthopedics. 2014; 37(10):685-690.].

  2. Bone as a Structural Material.

    PubMed

    Zimmermann, Elizabeth A; Ritchie, Robert O

    2015-06-24

    As one of the most important natural materials, cortical bone is a composite material comprising assemblies of tropocollagen molecules and nanoscale hydroxyapatite mineral crystals, forming an extremely tough, yet lightweight, adaptive and multi-functional material. Bone has evolved to provide structural support to organisms, and therefore its mechanical properties are vital physiologically. Like many mineralized tissues, bone can resist deformation and fracture from the nature of its hierarchical structure, which spans molecular to macroscopic length-scales. In fact, bone derives its fracture resistance with a multitude of deformation and toughening mechanisms that are active at most of these dimensions. It is shown that bone's strength and ductility originate primarily at the scale of the nano to submicrometer structure of its mineralized collagen fibrils and fibers, whereas bone toughness is additionally generated at much larger, micro- to near-millimeter, scales from crack-tip shielding associated with interactions between the crack path and the microstructure. It is further shown how the effectiveness with which bone's structural features can resist fracture at small to large length-scales can become degraded by biological factors such as aging and disease, which affect such features as the collagen cross-linking environment, the homogeneity of mineralization, and the density of the osteonal structures.

  3. Microgravity and bone cell mechanosensitivity.

    PubMed

    Burger, E H; Klein-Nulend, J

    1998-05-01

    Bone cells, in particular osteocytes, are extremely sensitive to mechanical stress, a quality that is probably linked to the process of mechanical adaptation (Wolff's law). The in vivo operating cell stress derived from bone loading is likely a flow of an interstitial fluid along the surface of the osteocytes and lining cells. The response of bone cells in culture to fluid flow includes prostaglandin synthesis and expression of inducible prostaglandin G/H synthase (PGHS-2 or inducible cyclooxygenase, COX-2), an enzyme that mediates the induction of bone formation by mechanical loading in vivo. Disruption of the actin-cytoskeleton abolishes the response to stress, suggesting that the cytoskeleton is involved in cellular mechanotransduction. Microgravity has catabolic effects on the skeleton of astronauts, as well as on mineral metabolism in bone organ cultures. This might be explained simply as resulting from an exceptional form of disuse under weightlessness conditions. However, under microgravity conditions, the assembly of cytoskeletal elements may be altered, as gravity has been shown to determine the pattern of microtubular orientation assembled in vitro. Therefore, it is possible that the mechanosensitivity of bone cells is altered under microgravity conditions, and that this abnormal mechanosensation contributes to the disturbed bone metabolism observed in astronauts. In vitro experiments on the International Space Station should test this hypothesis experimentally.

  4. Sweet Bones: The Pathogenesis of Bone Alteration in Diabetes

    PubMed Central

    2016-01-01

    Diabetic patients have increased fracture risk. The pathogenesis underlying the status of bone alterations in diabetes mellitus is not completely understood but is multifactorial. The major deficits appear to be related to a deficit in mineralized surface area, a decrement in the rate of mineral apposition, deceased osteoid surface, depressed osteoblast activity, and decreased numbers of osteoclasts due to abnormal insulin signaling pathway. Other prominent features of diabetes mellitus are an increased urinary excretion of calcium and magnesium, accumulation of advanced glycation end products, and oxidative stress leading to sweet bones (altered bone's strength, metabolism, and structure). Every diabetic patient should be assessed for risk factors for fractures and osteoporosis. The pathogenesis of the bone alterations in diabetes mellitus as well as their molecular mechanisms needs further study. PMID:27777961

  5. Bone sialoprotein and osteopontin in bone metastasis of osteotropic cancers.

    PubMed

    Kruger, Thomas E; Miller, Andrew H; Godwin, Andrew K; Wang, Jinxi

    2014-02-01

    The mechanisms underlying malignant cell metastasis to secondary sites such as bone are complex and no doubt multifactorial. Members of the small integrin-binding ligand N-linked glycoproteins (SIBLINGs) family, particularly bone sialoprotein (BSP) and osteopontin (OPN), exhibit multiple activities known to promote malignant cell proliferation, detachment, invasion, and metastasis of several osteotropic cancers. The expression level of BSP and OPN is elevated in a variety of human cancers, particularly those that metastasize preferentially to the skeleton. Recent studies suggest that the "osteomimicry" of malignant cells is not only conferred by transmembrane receptors bound by BSP and OPN, but includes the "switch" in gene expression repertoire typically expressed in cells of skeletal lineage. Understanding the role of BSP and OPN in tumor progression, altered pathophysiology of bone microenvironment, and tumor metastasis to bone will likely result in development of better diagnostic approaches and therapeutic regimens for osteotropic malignant diseases.

  6. A Boon for Bone Research

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA studies for astronaut health in long-term space missions led to the development of the Mechanical Response Tissue Analyzer (MRTA), a research tool for astronaut disuse, osteoporosis and related bone disorders among the general population. Ames Research Center and Stanford University generated a workable device and with Gait Scan, Inc., refined and commercialized it. The MRTA is a portable dsinstrument that measures the bending stiffness of bones using electrically-induced vibration and detects and analyzes the frequencies of the resonating bone. Unlike some other methods, the MRTA uses no radiation and is fast, simple and relatively inexpensive.

  7. Numerical optimization of open-porous bone scaffold structures to match the elastic properties of human cortical bone.

    PubMed

    Wieding, Jan; Wolf, Andreas; Bader, Rainer

    2014-09-01

    optimized open-porous scaffolds for bone regeneration by considering both mechanical and biological aspects. Furthermore, the results revealed the need of the investigation and comparison of different load scenarios (compression, bending and torsion) as well as complex biomechanical loading for a profound characterization of different scaffold designs. The usage of a numerical optimization process was proven to be a feasible tool to reduce the amount of the required titanium material without influencing the biomechanical performance of the scaffold negatively. By using fully parameterized models, the optimization approach is adaptable to other scaffold designs and bone defect situations.

  8. Regional bone change in intramuscular haemangioma mimicking primary bone tumour.

    PubMed

    Shikhare, Sumer; Chacko, Julio K; Chuah, Khoon L

    2015-04-01

    Intramuscular haemangiomas are benign soft-tissue tumours, commonly located in the extremities. We present a right-leg intramuscular haemangioma with florid periosteal reaction in adjacent tibia, mimicking a primary bone tumour. Plain radiograph and magnetic resonance imaging features are illustrated with the surgical and histopathological findings. Radiologists need to be familiar with reactive bone changes secondary to deep-seated intramuscular haemangiomas to avoid potential misdiagnosis.

  9. Lower Paleolithic bone tools from the 'Spear Horizon' at Schöningen (Germany).

    PubMed

    Van Kolfschoten, Thijs; Parfitt, Simon A; Serangeli, Jordi; Bello, Silvia M

    2015-12-01

    The Lower Paleolithic locality of Schöningen 13 II-4 is famous for the discovery of wooden spears found amongst the butchered remains of numerous horses and other large herbivores. Although the spears have attracted the most interest, other aspects of the associated artifact assemblage have received less attention. Here we describe an extraordinary assemblage of 88 bone tools from the 'Spear Horizon.' This sample includes numerous long-bone shaft fragments (mostly of horse), three ribs used as 'retouchers' to resharpen flint tools, and a complete horse innominate that was used as an anvil in bipolar knapping. Most of the retouchers were prepared by scraping the diaphysis of fresh and dry long-bones. Technological analysis of the associated lithic assemblage demonstrates exhaustive resharpening to maintain functional cutting edges. Whereas the flint tools were brought to the site, curated, and maintained, the retouchers had a shorter use-history and were either discarded after a limited period or broken to extract marrow. Horse and bison metapodials with flaked and rounded epiphyses are interpreted as hammers used to break marrow bones. Several of the 'metapodial hammers' were additionally used as knapping percussors. These constitute the earliest evidence of multi-purpose bone tools in the archeological record. Our results highlight the advanced knowledge in the use of bones as tools during the Lower Paleolithic, with major implications for understanding aspects of non-lithic technology and planning depth in early hominins. PMID:26653208

  10. Lower Paleolithic bone tools from the 'Spear Horizon' at Schöningen (Germany).

    PubMed

    Van Kolfschoten, Thijs; Parfitt, Simon A; Serangeli, Jordi; Bello, Silvia M

    2015-12-01

    The Lower Paleolithic locality of Schöningen 13 II-4 is famous for the discovery of wooden spears found amongst the butchered remains of numerous horses and other large herbivores. Although the spears have attracted the most interest, other aspects of the associated artifact assemblage have received less attention. Here we describe an extraordinary assemblage of 88 bone tools from the 'Spear Horizon.' This sample includes numerous long-bone shaft fragments (mostly of horse), three ribs used as 'retouchers' to resharpen flint tools, and a complete horse innominate that was used as an anvil in bipolar knapping. Most of the retouchers were prepared by scraping the diaphysis of fresh and dry long-bones. Technological analysis of the associated lithic assemblage demonstrates exhaustive resharpening to maintain functional cutting edges. Whereas the flint tools were brought to the site, curated, and maintained, the retouchers had a shorter use-history and were either discarded after a limited period or broken to extract marrow. Horse and bison metapodials with flaked and rounded epiphyses are interpreted as hammers used to break marrow bones. Several of the 'metapodial hammers' were additionally used as knapping percussors. These constitute the earliest evidence of multi-purpose bone tools in the archeological record. Our results highlight the advanced knowledge in the use of bones as tools during the Lower Paleolithic, with major implications for understanding aspects of non-lithic technology and planning depth in early hominins.

  11. TGF-β in cancer and bone: implications for treatment of bone metastases.

    PubMed

    Juárez, Patricia; Guise, Theresa A

    2011-01-01

    Bone metastases are common in patients with advanced breast, prostate and lung cancer. Tumor cells co-opt bone cells to drive a feed-forward cycle which disrupts normal bone remodeling to result in abnormal bone destruction or formation and tumor growth in bone. Transforming growth factor-beta (TGF-β) is a major bone-derived factor, which contributes to this vicious cycle of bone metastasis. TGF-β released from bone matrix during osteoclastic resorption stimulates tumor cells to produce osteolytic factors further increasing bone resorption adjacent to the tumor cells. TGF-β also regulates 1) key components of the metastatic cascade such as epithelial-mesenchymal transition, tumor cell invasion, angiogenesis and immunosuppression as well as 2) normal bone remodeling and coupling of bone resorption and formation. Preclinical models demonstrate that blockade of TGF-β signaling is effective to treat and prevent bone metastases as well as to increase bone mass.

  12. Personality aspects in multiple sclerosis.

    PubMed

    Diana, R; Grosz, A; Mancini, E

    1985-12-01

    To test the claim that peculiar personality bias is detectable in multiple sclerosis (MS) we used the Szondi test to investigate the psychodynamic aspects of 110 MS patients in comparison with 200 healthy subjects. MS patients appeared to have a greater need for love in a passive form than normal people, rigid defense mechanisms, difficulty in resolving their inner conflicts either by sublimation or by internalization of satisfactory new emotional experiences, feelings of autoaggressiveness, and many symptoms of depression. Some of these aspects correlate with the severity of the disease, others seem to date back to early childhood as peculiar personality patterns. An investigation of childhood events in 110 controls confirmed that MS patients had had many more unhappy experiences in childhood than might commonly be expected. Further, the oft-reported psychiatric troubles preceding MS clinical onset suggest that at least in some MS patients there are specific gaps in personality structure dating back to early phases of their development. PMID:4086262

  13. Liposarcome dorsal: aspect clinique rare

    PubMed Central

    Agbessi, Odry; Arrob, Adil; Fiqhi, Kamal; Khalfi, Lahcen; Nassih, Mohammed; El Khatib, Karim

    2015-01-01

    Décrit la première fois par Virchow en 1860, le liposarcome est une tumeur mésenchymateuse rare. Cette rareté est relative car les liposarcomes représentent quand même 14 à 18% de l'ensemble des tumeurs malignes des parties molles et ils constituent le plus fréquent des sarcomes des parties molles. Pour la majorité des auteurs, il ne se développerait jamais sur un lipome ou une lipomatose préexistant. Nous rapportons un cas de volumineux liposarcome de la face dorsale du tronc. L'histoire de la maladie, l'aspect clinique inhabituel « de tumeur dans tumeur », l'aspect de la pièce opératoire nous fait évoquer la possibilité de la transformation maligne d'un lipome bénin préexistant. PMID:26113914

  14. Tularaemia: clinical aspects in Europe.

    PubMed

    Maurin, Max; Gyuranecz, Miklós

    2016-01-01

    Tularaemia is a zoonotic disease caused by Francisella tularensis, a Gram-negative, facultative intracellular bacterium. Typically, human and animal infections are caused by F tularensis subspecies tularensis (type A) strains mainly in Canada and USA, and F tularensis subspecies holarctica (type B) strains throughout the northern hemisphere, including Europe. In the past, the epidemiological, clinical, therapeutic, and prognostic aspects of tularaemia reported in the English medical literature were mainly those that had been reported in the USA, where the disease was first described. Tularaemia has markedly changed in the past decade, and a large number of studies have provided novel data for the disease characteristics in Europe. In this Review we aim to emphasise the specific and variable aspects of tularaemia in different European countries. In particular, two natural lifecycles of F tularensis have been described in this continent, although not fully characterised, which are associated with different modes of transmission, clinical features, and public health burdens of tularaemia.

  15. The genetics of bone mass and susceptibility to bone diseases.

    PubMed

    Karasik, David; Rivadeneira, Fernando; Johnson, Mark L

    2016-06-01

    Osteoporosis is characterized by low bone mass and an increased risk of fracture. Genetic factors, environmental factors and gene-environment interactions all contribute to a person's lifetime risk of developing an osteoporotic fracture. This Review summarizes key advances in understanding of the genetics of bone traits and their role in osteoporosis. Candidate-gene approaches dominated this field 20 years ago, but clinical and preclinical genetic studies published in the past 5 years generally utilize more-sophisticated and better-powered genome-wide association studies (GWAS). High-throughput DNA sequencing, large genomic databases and improved methods of data analysis have greatly accelerated the gene-discovery process. Linkage analyses of single-gene traits that segregate in families with extreme phenotypes have led to the elucidation of critical pathways controlling bone mass. For example, components of the Wnt-β-catenin signalling pathway have been validated (in both GWAS and functional studies) as contributing to various bone phenotypes. These notable advances in gene discovery suggest that the next decade will witness cataloguing of the hundreds of genes that influence bone mass and osteoporosis, which in turn will provide a roadmap for the development of new drugs that target diseases of low bone mass, including osteoporosis.

  16. 21 CFR 888.3015 - Bone heterograft.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Bone heterograft. 888.3015 Section 888.3015 Food... DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3015 Bone heterograft. (a) Identification. Bone heterograft is a device intended to be implanted that is made from mature (adult) bovine bones and used...

  17. 21 CFR 888.3015 - Bone heterograft.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Bone heterograft. 888.3015 Section 888.3015 Food... DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3015 Bone heterograft. (a) Identification. Bone heterograft is a device intended to be implanted that is made from mature (adult) bovine bones and used...

  18. 21 CFR 888.3015 - Bone heterograft.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Bone heterograft. 888.3015 Section 888.3015 Food... DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3015 Bone heterograft. (a) Identification. Bone heterograft is a device intended to be implanted that is made from mature (adult) bovine bones and used...

  19. 21 CFR 892.1180 - Bone sonometer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Bone sonometer. 892.1180 Section 892.1180 Food and... RADIOLOGY DEVICES Diagnostic Devices § 892.1180 Bone sonometer. (a) Identification. A bone sonometer is a device that transmits ultrasound energy into the human body to measure acoustic properties of bone...

  20. 21 CFR 892.1180 - Bone sonometer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Bone sonometer. 892.1180 Section 892.1180 Food and... RADIOLOGY DEVICES Diagnostic Devices § 892.1180 Bone sonometer. (a) Identification. A bone sonometer is a device that transmits ultrasound energy into the human body to measure acoustic properties of bone...

  1. 21 CFR 888.3015 - Bone heterograft.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Bone heterograft. 888.3015 Section 888.3015 Food... DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3015 Bone heterograft. (a) Identification. Bone heterograft is a device intended to be implanted that is made from mature (adult) bovine bones and used...

  2. 21 CFR 888.3015 - Bone heterograft.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Bone heterograft. 888.3015 Section 888.3015 Food... DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3015 Bone heterograft. (a) Identification. Bone heterograft is a device intended to be implanted that is made from mature (adult) bovine bones and used...

  3. 21 CFR 892.1180 - Bone sonometer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Bone sonometer. 892.1180 Section 892.1180 Food and... RADIOLOGY DEVICES Diagnostic Devices § 892.1180 Bone sonometer. (a) Identification. A bone sonometer is a device that transmits ultrasound energy into the human body to measure acoustic properties of bone...

  4. Clinical aspects of radiation nephropathy.

    PubMed

    Breitz, Hazel

    2004-06-01

    Small radiolabeled molecules are finding increasing clinical use for targeted radionuclide therapy. With the administration of radiolabeled small molecules, the bone marrow is not necessarily the first organ to show radiation toxicity. Rapid excretion of radioactivity through the urinary tract and the retention of radiolabeled small-protein molecules in the kidneys may expose the kidneys to radiation sufficient enough to cause toxicity--and in clinical trials, radiation toxicity of the urinary tract has become clinically relevant. The cells of the kidneys are slowly repairing cells; thus, the radiation toxicity may not be manifest for several months. The clinical and pathological features associated with radiation nephropathy, and issues particular to radiation nephropathy following targeted radionuclide therapy, are described here.

  5. [Otorhinolaryngologic aspects of diving sports].

    PubMed

    Strutz, J

    1993-08-01

    ENT disorders are the most common of all medical problems of diving. This review summarizes the specific conditions and ENT diseases in Scuba diving. During compression failure to equalize the pressure of air-filled cavities surrounded by bone deprives the middle ear or sinuses of aeration. Middle ear barotrauma is the most common barotrauma encountered in divers while sinus barotrauma and especially inner ear barotrauma (with rupture of the round or oval window) are less common. Decompression sickness in primarily the result of inert gas bubbles; deafness and vertigo may result if the inner ear is involved. The ENT examination necessary for assessment of diving fitness focuses on the middle and inner ear as well as the nose, sinuses and larynx. A list of ENT contra-indications is presented that mandate temporary or permanent disqualification from diving.

  6. Practical aspects of corrosion fundamentals

    SciTech Connect

    Isaacs, H.S.

    1994-08-01

    Aspects important in corrosion have been introduced. They are: (a) ``Pourbaix Diagrams`` which consider thermodynamic stability of metals as a function of electrical potential and water pH; (b) the anodic interfacial reaction rates which depend on potential and accumulation of reaction products; (c) the prediction of polarization curves based on the kinetics and thermodynamics; and (d) localized corrosion models, as this form of corrosion is a major cause of corrosion failures.

  7. Legal aspects of satellite teleconferencing

    NASA Technical Reports Server (NTRS)

    Smith, D. D.

    1971-01-01

    The application of satellite communications for teleconferencing purposes is discussed. The legal framework within which such a system or series of systems could be developed is considered. The analysis is based on: (1) satellite teleconferencing regulation, (2) the options available for such a system, (3) regulatory alternatives, and (4) ownership and management aspects. The system is designed to provide a capability for professional education, remote medical diagnosis, business conferences, and computer techniques.

  8. Precision digital solar aspect sensor

    NASA Technical Reports Server (NTRS)

    Scherer, H. P.

    1972-01-01

    The development of a digital solar aspect sensor with a resolution of approximately 14 arc-seconds is discussed. An interpolation technique was used to generate the fine angle measurements. The sensor and its mode of operation are described. The electronic and mechanical design of the sensor were completed, and two flight units, one for the OAO 4 and the other for determining the attitude of a spinning spacecraft, are being fabricated.

  9. Extreme Low Aspect Ratio Stellarators

    NASA Astrophysics Data System (ADS)

    Moroz, Paul

    1997-11-01

    Recently proposed Spherical Stellarator (SS) concept [1] includes the devices with stellarator features and low aspect ratio, A <= 3.5, which is very unusual for stellarators (typical stellarators have A ≈ 7-10 or above). Strong bootstrap current and high-β equilibria are two distinguished elements of the SS concept leading to compact, steady-state, and efficient fusion reactor. Different coil configurations advantageous for the SS have been identified and analyzed [1-6]. In this report, we will present results on novel stellarator configurations which are unusual even for the SS approach. These are the extreme-low-aspect-ratio-stellarators (ELARS), with the aspect ratio A ≈ 1. We succeeded in finding ELARS configurations with extremely compact, modular, and simple design compatible with significant rotational transform (ι ≈ 0.1 - 0.15), large plasma volume, and good particle transport characteristics. [1] P.E. Moroz, Phys. Rev. Lett. 77, 651 (1996); [2] P.E. Moroz, Phys. Plasmas 3, 3055 (1996); [3] P.E. Moroz, D.B. Batchelor et al., Fusion Tech. 30, 1347 (1996); [4] P.E. Moroz, Stellarator News 48, 2 (1996); [5] P.E. Moroz, Plasma Phys. Reports 23, 502 (1997); [6] P.E. Moroz, Nucl. Fusion 37, No. 8 (1997). *Supported by DOE Grant No. DE-FG02-97ER54395.

  10. Factors affecting bone strength other than osteoporosis.

    PubMed

    Ratti, Chiara; Vulcano, Ettore; Canton, Gianluca; Marano, Marco; Murena, Luigi; Cherubino, Paolo

    2013-10-01

    Osteoporosis is the most common cause of bone fragility, especially in post-menopausal women. Bone strength may be compromised by several other medical conditions and medications, which must be ruled out in the clinical management of patients affected by fragility fractures. Indeed, 20-30% of women and up to 50% of men affected by bone fragility are diagnosed with other conditions affecting bone strength other than osteoporosis. These conditions include disorders of bone homeostasis, impaired bone remodeling, collagen disorders, and medications qualitatively and quantitatively affecting bone strength. Proper diagnosis allows correct treatment to prevent the occurrence of fragility fractures. PMID:24046057

  11. Flavonoid intake and bone health.

    PubMed

    Weaver, Connie M; Alekel, D Lee; Ward, Wendy E; Ronis, Martin J

    2012-01-01

    Flavonoids, found in a wide diversity of plant foods from fruits and vegetables, herbs and spices, essential oils, and beverages, have the most potential of dietary components for promotion of bone health beyond calcium and vitamin D. Recent epidemiological studies show flavonoid consumption to have a stronger association with bone than general fruit and vegetable consumption. Bioactive flavonoids are being assessed for properties beyond their chemical antioxidant capacity, including anti-inflammatory actions. Some have been reported to enhance bone formation and to inhibit bone resorption through their action on cell signaling pathways that influence osteoblast and osteoclast differentiation. Future research is needed to determine which of the flavonoids and their metabolites are most effective and at what dose, as well as the mechanism of modulating cellular events, in order to set priorities for clinical trials.

  12. Bone Cancer: Questions and Answers

    MedlinePlus

    ... determine the level of an enzyme called alkaline phosphatase. A large amount of this enzyme is present ... abnormal bone tissue. Because high levels of alkaline phosphatase are normal in growing children and adolescents, this ...

  13. Bone biopsy in haematological disorders.

    PubMed Central

    Burkhardt, R; Frisch, B; Bartl, R

    1982-01-01

    Bone marrow biopsies are now widely used in the investigation and follow-up of many diseases. Semi-thin sections of 8216 undecalcified biopsies of patients with haematological disorders were studied. Observations were made on the cytopenias and the myelodysplastic syndromes, the acute leukaemias the myeloproliferative disorders, Hodgkin's disease and the malignant lymphomas including multiple myeloma, hairy cell leukaemia and angioimmunoblastic lymphadenopathy. Bone marrow biopsies are essential for the differential diagnosis of most cytopenias and for the early recognition of fibrosis which most frequently occurred as a consequence of megakaryocytic proliferation in the myeloproliferative disorders. Different patterns of bone marrow involvement were found in the lymphoproliferative disorders and both their type and extent constituted factors of prognostic significance. A survey of the literature is given and the conclusion is drawn that bone marrow biopsies provide indispensible information for the diagnostic evaluation and the follow-up of patients with haematological disorders. Images PMID:7040489

  14. Bare Bones of Bioactive Glass

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Paul Ducheyne, a principal investigator in the microgravity materials science program and head of the University of Pernsylvania's Center for Bioactive Materials and Tissue Engineering, is leading the trio as they use simulated microgravity to determine the optimal characteristics of tiny glass particles for growing bone tissue. The result could make possible a much broader range of synthetic bone-grafting applications. Bioactive glass particles (left) with a microporous surface (right) are widely accepted as a synthetic material for periodontal procedures. Using the particles to grow three-dimensional tissue cultures may one day result in developing an improved, more rugged bone tissue that may be used to correct skeletal disorders and bone defects. The work is sponsored by NASA's Office of Biological and Physical Research.

  15. Bone fractures: assessment and management.

    PubMed

    Lim, L; Sirichai, P

    2016-03-01

    Severe dental traumatic injuries often involve the supporting bone and soft tissues. This article outlines the current concepts in the management of dentoalveolar fractures for the general dental practitioner with case reports to illustrate management principles and techniques. PMID:26923449

  16. Bone fracture repair - series (image)

    MedlinePlus

    The three main treatment options for bone fractures are: Casting Open reduction, and internal fixation- this involves a surgery to repair the fracture-frequently, metal rods, screws or plates are used to repair the ...

  17. Bone fractures: assessment and management.

    PubMed

    Lim, L; Sirichai, P

    2016-03-01

    Severe dental traumatic injuries often involve the supporting bone and soft tissues. This article outlines the current concepts in the management of dentoalveolar fractures for the general dental practitioner with case reports to illustrate management principles and techniques.

  18. Treatment of Temporal Bone Fractures.

    PubMed

    Diaz, Rodney C; Cervenka, Brian; Brodie, Hilary A

    2016-10-01

    Traumatic injury to the temporal bone can lead to significant morbidity or mortality and knowledge of the pertinent anatomy, pathophysiology of injury, and appropriate management strategies is critical for successful recovery and rehabilitation of such injured patients. Most temporal bone fractures are caused by motor vehicle accidents. Temporal bone fractures are best classified as either otic capsule sparing or otic capsule disrupting-type fractures, as such classification correlates well with risk of concomitant functional complications. The most common complications of temporal bone fractures are facial nerve injury, cerebrospinal fluid (CSF) leak, and hearing loss. Assessment of facial nerve function as soon as possible following injury greatly facilitates clinical decision making. Use of prophylactic antibiotics in the setting of CSF leak is controversial; however, following critical analysis and interpretation of the existing classic and contemporary literature, we believe its use is absolutely warranted.

  19. Children's Bone Health and Calcium

    MedlinePlus

    ... Trials Resources and Publications Children's Bone Health and Calcium: Condition Information Skip sharing on social media links ... straight, walk, run, and lead an active life. Calcium is one of the key dietary building blocks ...

  20. Healthy Bones at Every Age

    MedlinePlus

    ... include walking and running, as well as team sports like soccer and basketball. AAOS does not endorse ... to cause hormonal changes that stop menstrual periods (amenorrhea). This loss of estrogen can cause bone loss ...

  1. Understanding the Structure of Bones

    MedlinePlus

    ... make up OI bone do not give the skeleton full strength because the quantity or shape of ... of fractures. They need more strength than the skeleton can provide. When growth stops after sexual maturation, ...

  2. Drugs Approved for Bone Cancer

    Cancer.gov

    This page lists cancer drugs approved by the Food and Drug Administration (FDA) for bone cancer. The list includes generic names and brand names. The drug names link to NCI's Cancer Drug Information summaries.

  3. Treatment of Temporal Bone Fractures.

    PubMed

    Diaz, Rodney C; Cervenka, Brian; Brodie, Hilary A

    2016-10-01

    Traumatic injury to the temporal bone can lead to significant morbidity or mortality and knowledge of the pertinent anatomy, pathophysiology of injury, and appropriate management strategies is critical for successful recovery and rehabilitation of such injured patients. Most temporal bone fractures are caused by motor vehicle accidents. Temporal bone fractures are best classified as either otic capsule sparing or otic capsule disrupting-type fractures, as such classification correlates well with risk of concomitant functional complications. The most common complications of temporal bone fractures are facial nerve injury, cerebrospinal fluid (CSF) leak, and hearing loss. Assessment of facial nerve function as soon as possible following injury greatly facilitates clinical decision making. Use of prophylactic antibiotics in the setting of CSF leak is controversial; however, following critical analysis and interpretation of the existing classic and contemporary literature, we believe its use is absolutely warranted. PMID:27648399

  4. Brown adipose tissue and bone

    PubMed Central

    Lidell, M E; Enerbäck, S

    2015-01-01

    Brown adipose tissue (BAT) is capable of transforming chemically stored energy, in the form of triglycerides, into heat. Recent studies have shown that metabolically active BAT is present in a large proportion of adult humans, where its activity correlates with a favorable metabolic status. Hence, the tissue is now regarded as an interesting target for therapies against obesity and associated diseases such as type 2 diabetes, the hypothesis being that an induction of BAT would be beneficial for these disease states. Apart from the association between BAT activity and a healthier metabolic status, later studies have also shown a positive correlation between BAT volume and both bone cross-sectional area and bone mineral density, suggesting that BAT might stimulate bone anabolism. The aim of this review is to give the reader a brief overview of the BAT research field and to summarize and discuss recent findings regarding BAT being a potential player in bone metabolism. PMID:27152171

  5. Unsuspected pregnancy during bone scintigraphy

    SciTech Connect

    Oates, E.; Ramberg, K.; Becker, J.L. )

    1990-06-01

    Despite careful screening efforts to avoid it, nuclear medicine studies are unintentionally performed on pregnant patients. Three-phase bone scanning is a common procedure performed in women of child-bearing age. Unsuspected pregnancies have been discovered on the flow and early view of the pelvis. The authors present a case of a pregnant girl, aged 15, who had a bone scan. They explain how this occurred and how they plan to prevent a recurrence. Dosimetry for the fetus also is considered.

  6. Thyroid hormones and bone development.

    PubMed

    Combs, C E; Nicholls, J J; Duncan Bassett, J H; Williams, G R

    2011-03-01

    Thyroid hormones are critical determinants of postnatal skeletal development. Thyroid hormone deficiency or excess in children results in severe abnormalities of linear growth and bone maturation. These clinical observations have been recapitulated in mutant mice and these models have facilitated studies of the mechanisms of thyroid hormone action in the developing skeleton. In this review, we consider in detail the direct and indirect effects of thyroid hormone on bone and the molecular mechanisms involved.

  7. Whole bone geometry and bone quality in distal forearm fracture.

    PubMed

    Parkinson, Ian H; Fazzalari, Nicola L

    2008-09-01

    Fracture of the distal radius is a sentinel for future increased risk of other "osteoporotic" fractures, in which the peak age for incidence of distal radius fracture is 5 to 10 years before that for spine and hip fractures. Mean bone mineral density (BMD) of the distal radius was lower in patients with osteoporosis compared with age- and sex-matched normal subjects. However, it has been shown that to predict the strength of the distal radius at the site where fractures occur requires more than measurement of bone mineral content (BMC) or BMD. Only moderate correlations have been found between forearm sites, which may be a result of differences in bone composition between sites. Different forearm sites may be used interchangeably for diagnostic purposes, but the prognostic value is not known. Using the distal radius as a screening tool for identifying individuals at risk of "osteoporotic" fracture shows that forearm site selection and accuracy of measurement can be important confounders in group studies.Improving resolution of computed tomography (CT) scanners has enabled quantitation of cortical bone density and cortical thickness. These measurements have enabled the mechanism of bone loss in the distal radius to be elucidated and show that, after menopause, bone loss is primarily through thinning of the cortex. CT imaging allows the precise localization of bone changes in individuals and should be of value in the assessment of the severity of osteoporosis. It also shows that this technology has the potential to determine the efficacy of therapeutic interventions. A concerted effort has been made to elucidate the interrelationships between the amount of bone and the geometry and that clinical imaging of BMC and/or cross-sectional area in the radius would provide improved prediction of an individual's risk of fracture.The technological tools are available, in the clinic, to accurately measure the 3-dimensional (3D) geometry of the distal radius and the amount of

  8. Research opportunities in bone demineralization, phase 3

    NASA Technical Reports Server (NTRS)

    Anderson, S. A. (Editor); Cohn, S. H. (Editor)

    1984-01-01

    An overview of bone demineralization during space flight, observations in bone demineralization and experiments related to bone loss planned for Spacelab flights, and suggestions for further research are investigated. The observations of the working group focused upon the following topics: (1) pathogenesis of bone demineralization, (2) potential for occurrence of renal stones consequent to prolonged hypercalciuria, (3) development of appropriate ground based and inflight models to study bone demineralization, (4) integration of research efforts, and (5) development of effective countermeasures.

  9. [Clinical nuclear medicine in bone metastases].

    PubMed

    Kawabe, Joji; Higashiyama, Shigeaki; Shiomi, Susumu

    2013-03-01

    (99m)Tc-hydroxymethylene diphosphonate is not directly to Calcium of the bone matrix, but is binding to hydroxyapatite within the bone matrix. Strontium-89 is a member of family II A of the periodic table, same as Calcium, and is incorporated into bone matrix directly. It is very important that the the regions of the pain from bone metastases are present in the site of the abnormal uptake by bone metastases. PMID:23445892

  10. Receptor tyrosine kinase inhibition causes simultaneous bone loss and excess bone formation within growing bone in rats

    SciTech Connect

    Nurmio, Mirja; Joki, Henna; Kallio, Jenny; Maeaettae, Jorma A.; Vaeaenaenen, H. Kalervo; Toppari, Jorma; Jahnukainen, Kirsi; Laitala-Leinonen, Tiina

    2011-08-01

    During postnatal skeletal growth, adaptation to mechanical loading leads to cellular activities at the growth plate. It has recently become evident that bone forming and bone resorbing cells are affected by the receptor tyrosine kinase (RTK) inhibitor imatinib mesylate (STI571, Gleevec (registered)) . Imatinib targets PDGF, ABL-related gene, c-Abl, c-Kit and c-Fms receptors, many of which have multiple functions in the bone microenvironment. We therefore studied the effects of imatinib in growing bone. Young rats were exposed to imatinib (150 mg/kg on postnatal days 5-7, or 100 mg/kg on postnatal days 5-13), and the effects of RTK inhibition on bone physiology were studied after 8 and 70 days (3-day treatment), or after 14 days (9-day treatment). X-ray imaging, computer tomography, histomorphometry, RNA analysis and immunohistochemistry were used to evaluate bone modeling and remodeling in vivo. Imatinib treatment eliminated osteoclasts from the metaphyseal osteochondral junction at 8 and 14 days. This led to a resorption arrest at the growth plate, but also increased bone apposition by osteoblasts, thus resulting in local osteopetrosis at the osteochondral junction. The impaired bone remodelation observed on day 8 remained significant until adulthood. Within the same bone, increased osteoclast activity, leading to bone loss, was observed at distal bone trabeculae on days 8 and 14. Peripheral quantitative computer tomography (pQCT) and micro-CT analysis confirmed that, at the osteochondral junction, imatinib shifted the balance from bone resorption towards bone formation, thereby altering bone modeling. At distal trabecular bone, in turn, the balance was turned towards bone resorption, leading to bone loss. - Research Highlights: > 3-Day imatinib treatment. > Causes growth plate anomalies in young rats. > Causes biomechanical changes and significant bone loss at distal trabecular bone. > Results in loss of osteoclasts at osteochondral junction.

  11. [Palliative surgery for bone metastases].

    PubMed

    Oetiker, R F; Meier, G; Hefti, F; Bereiter, H

    2001-12-01

    Advances in the treatment of patients who have bone metastases are an issue of high importance to the orthopaedic surgeon. Early diagnosis requires knowledge of the pathogenesis of bone metastases. A primary route of metastatic cells is via Batson's vertebral vein plexus. An understanding of the pathophysiology enables the surgeon to plan effective treatment. As many patients continue to survive for prolonged periods following the detection of bone metastases, it is important to plan treatment that relieves pain and is functional. In long bones non-operative treatment with radiotherapy, patient education to avoid excessive torsional loads and systemic chemotherapy or hormonal therapy as well as diphosphonates are utilized for small lesions with less than 25 percent of the cortical diameter. The indications for surgical treatment include lesions with elevated fracture risk according to Mirels score. Special emphasis is led on the surgical treatment of spinal metastasis. Early and effective treatment improves the remaining quality of life in patients with metastatic bone disease. However a firm knowledge of the pathogenesis and pathophysiology helps the clinician in making an early diagnosis. Nevertheless the orthopaedic surgeon must recognize the need to approach management of these patients from a multidisciplinary perspective in cooperation with the oncologist, radiotherapist, rehabilitation medicine specialist, radiologist, and pathologist. The cooperation among all members of the team will assure the best possible care for the patient who has metastatic bone disease. PMID:11797537

  12. Bone age in cerebral palsy

    PubMed Central

    Miranda, Eduardo Régis de Alencar Bona; Palmieri, Maurício D'arc; de Assumpção, Rodrigo Montezuma César; Yamada, Helder Henzo; Rancan, Daniela Regina; Fucs, Patrícia Maria de Moraes Barros

    2013-01-01

    Objective To compare the chronological age and bone age among cerebral palsy patients in the outpatient clinic and its correlation with the type of neurological involvement, gender and functional status. Methods 401 patients with spastic cerebral palsy, and ages ranging from three months to 20 years old, submitted to radiological examination for bone age and analyzed by two independent observers according Greulich & Pyle. Results In the topographic distribution, there was a significant delay (p<0.005) in tetraparetic (17.7 months), hemiparetic (10.1 months), and diparetic patients (7.9 months). In the hemiparetic group, the mean bone age in the affected side was 96.88 months and the uncompromised side was 101.13 months (p<0.005). Regarding functional status, the ambulatory group showed a delay of 18.73 months in bone age (p<0.005). Comparing bone age between genders, it was observed a greater delay in males (13.59 months) than in females (9.63 months), but not statistically significant (p = 0.54). Conclusion There is a delay in bone age compared to chronological age influenced by the topography of spasticity, functional level and gender in patients with cerebral palsy. Level of Evidence IV, Case Series. PMID:24453693

  13. Bone culture research

    NASA Technical Reports Server (NTRS)

    Partridge, Nicola C.

    1993-01-01

    The experiments described are aimed at exploring PTH regulation of production of collagenase and protein inhibitors of collagenase (tissue inhibitors of metalloproteases, TIMP-1 and -2) by osteoblast-like osteosarcoma cells under conditions of weightlessness. The results of this work will contribute to information as to whether a microgravity environment alters the functions and responsiveness of the osteoblast. The objectives of the Bone Culture Research (BCR) experiment are: to observe the effects of microgravity on the morphology, rate of proliferation, and behavior of the osteoblastic cells, UMR 106-01; to determine whether microgravy affects the hormonal sensitivity of osteroblastic cells; and to measure the secretion of collagenase and its inhibitors into the medium under conditions of microgravity. The methods employed will consist of the following: the osteoblast-like cells, UMR-106-01, will be cultured in four NASDA cell culture chambers; two chambers will be subjected to microgravity on SL-J; two chambers will remain on the ground at KSC as ground controls but subjected to an identical set of culture conditions as on the shuttle; media will be changed four times; twice the cells will receive the hormone parathyroid hormone-related protein (PTHrP) and media collected; cells will be photographed under conditions of microgravity; and media and photographs will be analyzed upon return to determine whether functions of the cells changed.

  14. Stones, bones, and heredity.

    PubMed

    Milliner, Dawn S

    2006-07-01

    Genetic disorders of mineral metabolism cause urolithiasis, renal disease, and osteodystrophy. Most are rare, such that the full spectrum of clinical expression is difficult to appreciate. Diagnosis is further complicated by overlap of clinical features. Dent's disease and primary hyperoxaluria, inherited causes of calcium urolithiasis, are both associated with nephrocalcinosis and urolithiasis in early childhood and renal failure that can occur at any age but is seen more often in adulthood. Bone disease is an inconsistent feature of each. Dent's disease is caused by mutations of the CLCN-5 gene with impaired kidney-specific CLC-5 chloride channel expression in the proximal tubule, thick ascending limb of Henle, and the collecting ducts. Resulting hypercalciuria and proximal tubule dysfunction, including phosphate wasting, are primarily responsible for the clinical manifestations. Low-molecular-weight proteinuria is characteristic. Definitive diagnosis is made by DNA mutation analysis. Primary hyperoxaluria, type I, is due to mutations of the AGXT gene leading to deficient hepatic alanine-glyoxylate aminotransferase activity. Marked overproduction of oxalate by hepatic cells results in the hyperoxaluria responsible for clinical features. Definitive diagnosis is by liver biopsy with measurement of enzyme activity, with DNA mutation analysis used increasingly as mutations and their frequency are defined. These disorders of calcium urolithiasis illustrate the value of molecular medicine for diagnosis and the promise it provides for innovative and more effective future treatments.

  15. In Vitro Co-Culture Models of Breast Cancer Metastatic Progression towards Bone.

    PubMed

    Arrigoni, Chiara; Bersini, Simone; Gilardi, Mara; Moretti, Matteo

    2016-01-01

    Advanced breast cancer frequently metastasizes to bone through a multistep process involving the detachment of cells from the primary tumor, their intravasation into the bloodstream, adhesion to the endothelium and extravasation into the bone, culminating with the establishment of a vicious cycle causing extensive bone lysis. In recent years, the crosstalk between tumor cells and secondary organs microenvironment is gaining much attention, being indicated as a crucial aspect in all metastatic steps. To investigate the complex interrelation between the tumor and the microenvironment, both in vitro and in vivo models have been exploited. In vitro models have some advantages over in vivo, mainly the possibility to thoroughly dissect in controlled conditions and with only human cells the cellular and molecular mechanisms underlying the metastatic progression. In this article we will review the main results deriving from in vitro co-culture models, describing mechanisms activated in the crosstalk between breast cancer and bone cells which drive the different metastatic steps. PMID:27571063

  16. In Vitro Co-Culture Models of Breast Cancer Metastatic Progression towards Bone

    PubMed Central

    Arrigoni, Chiara; Bersini, Simone; Gilardi, Mara; Moretti, Matteo

    2016-01-01

    Advanced breast cancer frequently metastasizes to bone through a multistep process involving the detachment of cells from the primary tumor, their intravasation into the bloodstream, adhesion to the endothelium and extravasation into the bone, culminating with the establishment of a vicious cycle causing extensive bone lysis. In recent years, the crosstalk between tumor cells and secondary organs microenvironment is gaining much attention, being indicated as a crucial aspect in all metastatic steps. To investigate the complex interrelation between the tumor and the microenvironment, both in vitro and in vivo models have been exploited. In vitro models have some advantages over in vivo, mainly the possibility to thoroughly dissect in controlled conditions and with only human cells the cellular and molecular mechanisms underlying the metastatic progression. In this article we will review the main results deriving from in vitro co-culture models, describing mechanisms activated in the crosstalk between breast cancer and bone cells which drive the different metastatic steps. PMID:27571063

  17. Bone Mass and Mineral Metabolism Alterations in Adult Celiac Disease: Pathophysiology and Clinical Approach

    PubMed Central

    Di Stefano, Michele; Mengoli, Caterina; Bergonzi, Manuela; Corazza, Gino Roberto

    2013-01-01

    Osteoporosis affects many patients with celiac disease (CD), representing the consequence of calcium malabsorption and persistent activation of mucosal inflammation. A slight increase of fracture risk is evident in this condition, particularly in those with overt malabsorption and in postmenopausal state. The adoption of a correct gluten-free diet (GFD) improves bone derangement, but is not able to normalize bone mass in all the patients. Biomarkers effective in the prediction of bone response to gluten-free diet are not yet available and the indications of guidelines are still imperfect and debated. In this review, the pathophysiology of bone loss is correlated to clinical aspects, defining an alternative proposal of management for this condition. PMID:24284619

  18. Imaging characteristics of bone graft materials.

    PubMed

    Beaman, Francesca D; Bancroft, Laura W; Peterson, Jeffrey J; Kransdorf, Mark J; Menke, David M; DeOrio, James K

    2006-01-01

    Bone graft materials are widely used in reconstructive orthopedic procedures to promote new bone formation and bone healing, provide a substrate and scaffolding for development of bone structure, and function as a means for direct antibiotic delivery. Bone graft materials include autografts, allografts, and synthetic substitutes. An autograft (from the patient's own bone) supplies both bone volume and osteogenic cells capable of new bone formation. The imaging appearance of an autograft depends on its type, composition, and age. Autografts often appear as osseous fragments at radiography. At computed tomography (CT), autografts appear similar to the adjacent cortical bone. At magnetic resonance (MR) imaging, however, autografts have a variable appearance as a consequence of the viable marrow inside them, a feature not present in other graft materials. An allograft (from cadaveric bone) has an appearance similar to that of cortical bone on radiographs and CT images. An allograft in the form of bone chips or morsels does not show those features on radiographs and CT images, but instead appears as a conglomerate with medium to high opacity and attenuation within the bone defect. In the immediate postoperative period, allografts appear hypointense on both T1- and T2-weighted MR images. Hematopoietic tissue replaces the normal fatty marrow in the later phases of graft incorporation. Synthetic bone substitutes are much more variable in imaging appearance. As the use of bone allografts and synthetic substitutes increases, familiarity with postoperative imaging features is essential for differentiation between grafts and residual or recurrent disease.

  19. Bone marrow-targeted liposomal carriers

    PubMed Central

    Sou, Keitaro; Goins, Beth; Oyajobi, Babatunde O.; Travi, Bruno L.; Phillips, William T.

    2011-01-01

    Introduction Bone marrow targeted drug delivery systems appear to offer a promising strategy for advancing diagnostic, protective, and/or therapeutic medicine for the hematopoietic system. Liposome technology can provide a drug delivery system with high bone marrow targeting that is mediated by specific phagocytosis in bone marrow. Area covered This review focuses on a bone marrow specific liposome formulation labeled with technetium-99m (99mTc). Interspecies differences in bone marrow distribution of the bone marrow targeted formulation are emphasized. This review provides a liposome technology to target bone marrow. In addition, the selection of proper species for the investigation of bone marrow targeting is suggested. Expert opinion It can be speculated that the bone marrow macrophages have a role in the delivery of lipids to the bone marrow as a source of energy and for membrane biosynthesis or in the delivery of fat soluble vitamins for hematopoiesis. This homeostatic system offers a potent pathway to deliver drugs selectively into bone marrow tissues from blood. High selectivity of the present BMT-liposome formulation for bone marrow suggests the presence of an active and specific mechanism, but specific factors affecting the uptake of the bone marrow MPS are still unknown. Further investigation of this mechanism will increase our understanding of factors required for effective transport of agents to the bone marrow, and may provide an efficient system for bone marrow delivery for therapeutic purposes. PMID:21275831

  20. Muscle Power Predicts Adolescent Bone Strength: Iowa Bone Development Study

    PubMed Central

    Janz, Kathleen F.; Letuchy, Elena M.; Burns, Trudy L.; Francis, Shelby L.; Levy, Steven M.

    2015-01-01

    Purpose To assess association between lower body muscle power and bone strength, as well as the mediating effect of muscle cross-sectional area (MCSA) on that association. Methods Participants (N=141 males; 162 females) were approximately 17 years. Muscle power was predicted using vertical jump and the Sayers equation. Using peripheral quantitative computed tomography (pQCT), bone strength indices were obtained at two locations of the tibia, corresponding to primary stressors acting upon each site: bone strength index for compression (BSI) at the distal 4% site; density-weighted polar section modulus strength-strain index [SSIp] and cortical bone area (CoA) at the 66% mid-shaft site for torsion. Muscle cross-sectional area (MCSA) was measured at the 66% site. Pearson bivariate and partial correlation coefficients were estimated to quantify the strength of the associations among variables. Direct and indirect mediation model effects were estimated and 95% bootstrap confidence intervals were constructed to test the causal hypothesis. Height and maturity were examined as covariates. Results Pearson correlation coefficients among muscle power, MCSA, and bone strength were statistically significant (p<0.01) and ranged from r=0.54 to 0.78. After adjustment for covariates, associations were reduced (r=0.37 to 0.69) (p<0.01). Mediation models for males for BSI, SSIp, and CoA accounted for 38%, 66%, and 54% of the variance in bone strength, respectively. Models for females for BSI, SSIp, and CoA accounted for 46%, 77%, and 66% of the variance, respectively. Conclusions We found strong and consistent associations, as well as direct and indirect pathways, among muscle power, MCSA, and tibia strength. These results support the use of muscle power as a component of health-related fitness in bone health interventions for older adolescents. PMID:25751769