Science.gov

Sample records for bone body composition

  1. Body Composition After Bone Marrow Transplantation in Childhood

    PubMed Central

    Ruble, Kathy; Hayat, Matthew; Stewart, Kerry J.; Chen, Allen

    2014-01-01

    Purpose/Objectives To describe the body composition and fat distribution of childhood bone marrow transplantation (BMT) survivors at least one year post-transplantation and examine the ability of the Centers for Disease Control and Prevention criteria to identify survivors with elevated body fat percentage. Design Cross-sectional, descriptive. Setting Pediatric oncology program at a National Cancer Institute–designated comprehensive cancer center. Sample 48 childhood BMT survivors (27 males and 21 females). Methods Measurements included dual-energy x-ray absorptiometry scan, height, weight, and physical activity. Descriptive statistics were reported and mixed-model linear regression models were used to describe findings and associations. Main Research Variables Total body fat percentage and central obesity (defined as a ratio of central to peripheral fat of 1 or greater). Findings Fifty-four percent of survivors had body fat percentages that exceeded recommendations for healthy body composition and 31% qualified as having central obesity. Previous treatment with total body irradiation was associated with higher body fat percentage and central obesity, and graft-versus-host disease was associated with lower body fat percentage. The body mass index (BMI) criteria did not correctly identify the BMT survivors who had elevated body fat percentage. Conclusions Survivors of childhood BMT are at risk for obesity and central obesity that is not readily identified with standard BMI criteria. Implications for Nursing Nurses caring for BMT survivors should include evaluation of general and central obesity in their assessments. Patient education materials and resources for healthy weight and muscle building should be made available to survivors. Research is needed to develop appropriate interventions. PMID:22374492

  2. Effect of dehydroepiandrosterone supplementation on bone mineral density, bone markers, and body composition in older adults

    PubMed Central

    von Mühlen, D.; Laughlin, G. A.; Kritz-Silverstein, D.; Bergstrom, J.; Bettencourt, R.

    2008-01-01

    Summary We present results of a randomized, placebo-controlled trial to examine the effect of 50 mg daily oral DHEA supplementation for one year on bone mineral density (BMD), bone metabolism and body composition in 225 healthy adults aged 55 to 85 years. Introduction Dehydroepiandrosterone (DHEA) levels decline dramatically with age, concurrent with the onset of osteoporosis, suggesting a role for DHEA supplementation in preventing age-related bone loss. Methods We conducted a randomized, placebo-controlled trial to examine the effect of 50 mg daily oral DHEA supplementation for one year on bone mineral density (BMD), bone metabolism and body composition in 225 healthy adults aged 55 to 85 years. Results DHEA treatment increased serum DHEA and DHEA sulfate levels to concentrations seen in young adults. Testosterone, estradiol and insulin-like growth factor (IGF-1) levels increased in women (all p<0.001), but not men, receiving DHEA. Serum C-terminal telopeptide of type-1 collagen levels decreased in women (p=0.03), but not men, whereas bone-specific alkaline phosphatase levels were not significantly altered in either sex. After 12 months, there was a positive effect of DHEA on lumbar spine BMD in women (p=0.03), but no effect was observed for hip, femoral neck or total body BMD, and no significant changes were observed at any site among men. Body composition was not affected by DHEA treatment in either sex. Conclusion Among older healthy adults, daily administration of 50 mg of DHEA has a modest and selective beneficial effect on BMD and bone resorption in women, but provides no bone benefit for men. PMID:18084691

  3. Body Composition and Bone Mineral Density in Patients With Heart Failure.

    PubMed

    Abshire, Demetrius A; Moser, Debra K; Clasey, Jody L; Chung, Misook L; Pressler, Susan J; Dunbar, Sandra B; Heo, Seongkum; Lennie, Terry A

    2016-07-10

    The purpose of this study was to examine associations among bone mineral density, osteopenia/osteoporosis, body mass index (BMI), and body composition in patients with heart failure (HF). A total of 119 patients (age = 61 ± 12 years, 65% male) underwent dual-energy X-ray absorptiometry scans to determine bone mineral density and body composition. In multivariable linear regressions, BMI, relative skeletal muscle index (RSMI), and mineral-free lean mass were positively associated with total body bone mineral density. Mineral-free lean mass was most strongly associated with bone mineral density (β = .398). In multivariable logistic regressions, higher BMI, RSMI, and mineral-free lean mass were associated with lower odds for osteopenia/osteoporosis. Fat mass was not associated with total body bone mineral density or osteopenia/osteoporosis. These results suggest that muscle mass may be the important component of body mass associated with bone mineral density in patients with HF.

  4. Body composition and bone mineral status in patients with Turner syndrome

    PubMed Central

    Shi, Kun; Liu, Li; He, Yao-Juan; Li, Duan; Yuan, Lian-Xiong; Lash, Gendie E.; Li, Li

    2016-01-01

    Turner syndrome (TS) is associated with decreased bone mineral density and increased fracture rate. However, the developmental trajectory of bone density or body composition in patients with TS is still unclear. The present study tested the hypothesis that different karyotypes and/or age contributes to abnormal body composition and decreased bone mineral status parameters in patients with TS. This study included 24 girls with TS, in which 13 girls exhibited X0 karyotype and 11 had mosaicism. Quantitative ultrasound (QUS) assessed the bone mineral status of the calcaneus, including bone mineral density (BMD), amplitude-dependent speed of sound (AD-SOS), broadband ultrasound attenuation (BUA) and InBody 770 assessed body composition. Pearson’s test was performed to correlate measured parameters with patient age. The body composition and bone mineral status parameters were not significantly influenced by patient karyotype. There was a correlation between patient age and AD-SOS (r = −0.61, P = 0.002) and BUA (r = 0.50, P = 0.013) but not BMD (r = −0.19, P = 0.379). In conclusion, there was no effect of karyotype on body composition or body mineral status. Bone mineral status, as evidenced by changes in AD-SOS and BUA, alters with age regardless of karyotype. The developmental trajectory demonstrated in the current study warrants further validation in a longitudinal study. PMID:27901060

  5. Association between bone mineralization, body composition, and cardiorespiratory fitness level in young Australian men.

    PubMed

    Liberato, Selma Coelho; Maple-Brown, Louise; Bressan, Josefina

    2015-01-01

    The critical age for attainment of peak bone mineralization is however 20-30 yr, but few studies have investigated bone mineralization and its association with body composition and cardiorespiratory fitness level in young men. This study aimed to investigate relationships between age, bone mineral measurements, body composition measurements, and cardiorespiratory fitness level in a group of young healthy Australian men. Thirty-five healthy men aged 18-25 yr had anthropometric measures, body composition, and cardiorespiratory fitness level assessed. Bone mineral content was significantly associated with height, body mass and lean mass, and bone mineral density positively correlated with lean mass and body mass. Bone mineral measurements did not correlate with fat mass, percentage of fat mass, or cardiorespiratory fitness level. Age was directly correlated with total body mass, body fat, and percentage of fat mass. Body mineral measurements correlated with lean mass but not with fat mass or with cardiorespiratory fitness in this group of young healthy men. Positive association between body fat and age in such young group suggests that more studies with young men are warranted and may help inform strategies to optimize increase in bone mineral measurements.

  6. Relation between body composition and bone mineral density in young undregraduate students with different nutritional status

    PubMed Central

    Rodrigues, Edil de Albuquerque; dos Santos, Marcos André Moura; da Silva, Amanda Tabosa Pereira; Farah, Breno Quintella; Costa, Manoel da Cunha; Campos, Florisbela de Arruda Camara e Siqueira; Falcão, Ana Patrícia Siqueira Tavares

    2016-01-01

    ABSTRACT Objective To investigate the relationship between total and segmental body fat, bone mineral density and bone mineral content in undergraduate students stratified according to nutritional status. Methods The study included 45 male undergraduate students aged between 20 and 30 years. Total and segmental body composition, bone mineral density and bone mineral content assessments were performed using dual energy X-ray absorptiometry. Subjects were allocated into three groups (eutrophic, overweight and obese). Results With the exception of upper limb bone mineral content, significantly higher (p<0.05) mean bone mineral density, bone mineral content, and relative body fat values were documented in the obese group. Total body and segmental relative body fat (lower limbs and trunk) were positively correlated (p<0.05) with bone mineral density in the overweight group. Upper limb fat was negatively correlated (p<0.05) with bone mineral content in the normal and eutrophic groups. Conclusion Total body and segmental body fat were correlated with bone mineral density and bone mineral content in male undergraduate students, particularly in overweight individuals. PMID:27074228

  7. Relation between body composition and bone mineral density in young undregraduate students with different nutritional status.

    PubMed

    Rodrigues Filho, Edil de Albuquerque; Santos, Marcos André Moura Dos; Silva, Amanda Tabosa Pereira da; Farah, Breno Quintella; Costa, Manoel da Cunha; Campos, Florisbela de Arruda Camara E Siqueira; Falcão, Ana Patrícia Siqueira Tavares

    2016-01-01

    To investigate the relationship between total and segmental body fat, bone mineral density and bone mineral content in undergraduate students stratified according to nutritional status. The study included 45 male undergraduate students aged between 20 and 30 years. Total and segmental body composition, bone mineral density and bone mineral content assessments were performed using dual energy X-ray absorptiometry. Subjects were allocated into three groups (eutrophic, overweight and obese). With the exception of upper limb bone mineral content, significantly higher (p<0.05) mean bone mineral density, bone mineral content, and relative body fat values were documented in the obese group. Total body and segmental relative body fat (lower limbs and trunk) were positively correlated (p<0.05) with bone mineral density in the overweight group. Upper limb fat was negatively correlated (p<0.05) with bone mineral content in the normal and eutrophic groups. Total body and segmental body fat were correlated with bone mineral density and bone mineral content in male undergraduate students, particularly in overweight individuals.

  8. Comparison of nutritional intake, body composition, bone mineral density, and isokinetic strength in collegiate female dancers.

    PubMed

    Lim, Se-Na; Chai, Joo-Hee; Song, Jong Kook; Seo, Myong-Won; Kim, Hyun-Bae

    2015-12-01

    This study compared nutritional intake, body composition, bone mineral density, and isokinetic strength by dance type in collegiate female dancers. The study subjects included Korean dancers (n=12), ballet dancers (n=13), contemporary dancers (n=8), and controls (n=12). Nutritional intake was estimated using the Computer Aided Nutritional Analysis Program. Body composition and bone mineral density were measured using dual-energy X-ray absorptiometry. Isokinetic knee joint strength was measured by Cybex 770-NORM. All statistical analyses were performed by SAS 9.2. Means and standard deviations were calculated using descriptive statistics. One-way analysis of variance was applied to evaluate nutritional intake, body composition, bone mineral density, and isokinetic strength differences. Duncan multiple range test was used for post hoc testing. A level of significance was set at P<0.05. The study results indicated no significant differences in nutritional in-take among dancer types. Despite no significant differences in body composition among dancer types, contemporary and ballet dancers had lower body fat percentages than controls (P<0.05). No significant differences were seen in bone mineral density and bone mineral contents among dancer types. No significant differences were found in isokinetic strength in right or left knee flexion and extension at 60°/sec (P<0.05). There were significant differences in body composition and isokinetic strength between dancer groups and the control group. Further studies of different professional dance type and more scientific methods of dance training are needed.

  9. Comparison of nutritional intake, body composition, bone mineral density, and isokinetic strength in collegiate female dancers

    PubMed Central

    Lim, Se-Na; Chai, Joo-Hee; Song, Jong Kook; Seo, Myong-Won; Kim, Hyun-Bae

    2015-01-01

    This study compared nutritional intake, body composition, bone mineral density, and isokinetic strength by dance type in collegiate female dancers. The study subjects included Korean dancers (n=12), ballet dancers (n=13), contemporary dancers (n=8), and controls (n=12). Nutritional intake was estimated using the Computer Aided Nutritional Analysis Program. Body composition and bone mineral density were measured using dual-energy X-ray absorptiometry. Isokinetic knee joint strength was measured by Cybex 770-NORM. All statistical analyses were performed by SAS 9.2. Means and standard deviations were calculated using descriptive statistics. One-way analysis of variance was applied to evaluate nutritional intake, body composition, bone mineral density, and isokinetic strength differences. Duncan multiple range test was used for post hoc testing. A level of significance was set at P<0.05. The study results indicated no significant differences in nutritional in-take among dancer types. Despite no significant differences in body composition among dancer types, contemporary and ballet dancers had lower body fat percentages than controls (P<0.05). No significant differences were seen in bone mineral density and bone mineral contents among dancer types. No significant differences were found in isokinetic strength in right or left knee flexion and extension at 60°/sec (P<0.05). There were significant differences in body composition and isokinetic strength between dancer groups and the control group. Further studies of different professional dance type and more scientific methods of dance training are needed. PMID:26730387

  10. Mineralization behavior and interface properties of BG-PVA/bone composite implants in simulated body fluid.

    PubMed

    Ma, Yanxuan; Zheng, Yudong; Huang, Xiaoshan; Xi, Tingfei; Lin, Xiaodan; Han, Dongfei; Song, Wenhui

    2010-04-01

    Due to the non-bioactivity and poor conjunction performance of present cartilage prostheses, the main work here is to develop the bioactive glass-polyvinyl alcohol hydrogel articular cartilage/bone (BG-PVA/bone) composite implants. The essential criterion for a biomaterial to bond with living bone is well-matched mechanical properties as well as biocompatibility and bioactivity. In vitro studies on the formation of a surface layer of carbonate hydroxyl apatite (HCA) and the corresponding variation of the properties of biomaterials are imperative for their clinical application. In this paper, the mineralization behavior and variation of the interface properties of BG-PVA/bone composites were studied in vitro by using simulated body fluid (SBF). The mineralization and HCA layer formed on the interface between the BG-PVA hydrogel and bone in SBF could provide the composites with bioactivity and firmer combination. The compression property, shear strength and interface morphology of BG-PVA/bone composite implants varying with the immersion time in SBF were characterized. Also, the influence laws of the immersion time, content of BG in the composites and aperture of bones to the mineralization behavior and interface properties were investigated. The good mineralization behavior and enhanced conjunction performance of BG-PVA/bone composites demonstrated that this kind of composite implant might be more appropriate cartilage replacements.

  11. Dietary supplements and physical exercise affecting bone and body composition in frail elderly persons.

    PubMed Central

    de Jong, N; Chin A Paw, M J; de Groot, L C; Hiddink, G J; van Staveren, W A

    2000-01-01

    OBJECTIVES: This study determined the effect of enriched foods and all-around physical exercise on bone and body composition in frail elderly persons. METHODS: A 17-week randomized, controlled intervention trial, following a 2 x 2 factorial design--(1) enriched foods, (2) exercise, (3) both, or (4) neither--was performed in 143 frail elderly persons (aged 78.6 +/- 5.6 years). Foods were enriched with multiple micronutrients; exercises focused on skill training, including strength, endurance, coordination, and flexibility. Main outcome parameters were bone and body composition. RESULTS: Exercise preserved lean mass (mean difference between exercisers and non-exercisers: 0.5 kg +/- 1.2 kg; P < .02). Groups receiving enriched food had slightly increased bone mineral density (+0.4%), bone mass (+0.6%), and bone calcium (+0.6%) compared with groups receiving non-enriched foods, in whom small decreases of 0.1%, 0.2%, and 0.4%, respectively, were found. These groups differed in bone mineral density (0.006 +/- 0.020 g/cm2; P = .08), total bone mass (19 +/- g; P = .04), and bone calcium (8 +/- 21 g; P = .03). CONCLUSIONS: Foods containing a physiologic dose of micronutrients slightly increased bone density, mass, and calcium, whereas moderately intense exercise preserved lean body mass in frail elderly persons. PMID:10846514

  12. The relationships of irisin with bone mineral density and body composition in PCOS patients.

    PubMed

    Gao, Shanshan; Cheng, Yan; Zhao, Lingling; Chen, Yuxin; Liu, Yu

    2016-05-01

    Our study aims to assay the irisin level and investigate the relationships of irisin level with body mass index (BMI), body composition and bone metabolism in the polycystic ovary syndrome (PCOS) and control women. Fifty two PCOS and 39 control women were recruited. Serum sex hormone, fasting insulin and C-peptide were tested. Fasting serum irisin and adiponectin were measured with enzyme-linked immunosorbent assay. Body composition and bone mineral density were assayed by dual energy X-ray absorptiometry. Polycystic ovary syndrome women showed different body compositions compared with controls. Serum irisin level of PCOS did not show significant difference compared with controls although it was decreased. The level of adiponectin in PCOS patients was significantly reduced. BMI had no correlation with irisin level. It indicated a positive correlation between serum irisin levels and bone mineral density in the control group and a negative correlation in the PCOS group after BMI and age adjusted. Furthermore, total lean mass has a significant effect on irisin concentration in the PCOS group. There are no correlations between adiponection and body compositions and bone mineral density in both groups. The abnormal body composition in PCOS may contribute to the circulation irisin. The crosstalk of irisin in different organs was found and may be related to disease development in PCOS. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Relationship between body composition and bone mineral density, related to physical activity, in elderly women.

    PubMed

    Levesque, Muriel; Ndangang, Marie; Riaudel, Typhaine; de Decker, Laure; Benichou, Jacques; Berrut, Gilles

    2016-12-01

    Changes in body composition, including a decrease in muscle and bone mass, accompany aging. Analyse the influence of lean mass on bone mineral density, related to physical activity, in elderly women. 37 women were included in this study via an osteoporosis consultation. Body composition and bone mineral density (BMD) measurements were performed using Dual-energy X-ray absorptiometry methodology (DXA). The BMD was measured at the femoral neck. Each participant had a physical activity test to respond and had to perform handgrip, a four meter walk and one leg balance. Simple regression analyze showed a positive association between lean masse et BMD; after multiple linear regression analysis, we found a positive association between BMD, lean mass, and one leg balance; lean masse and one leg balance were two independent variable. Bone Mineral density was signicantly associated to lean mass and one leg balance.

  14. Body composition and reproductive function exert unique influences on indices of bone health in exercising women.

    PubMed

    Mallinson, Rebecca J; Williams, Nancy I; Hill, Brenna R; De Souza, Mary Jane

    2013-09-01

    Reproductive function, metabolic hormones, and lean mass have been observed to influence bone metabolism and bone mass. It is unclear, however, if reproductive, metabolic and body composition factors play unique roles in the clinical measures of areal bone mineral density (aBMD) and bone geometry in exercising women. This study compares lumbar spine bone mineral apparent density (BMAD) and estimates of femoral neck cross-sectional moment of inertia (CSMI) and cross-sectional area (CSA) between exercising ovulatory (Ov) and amenorrheic (Amen) women. It also explores the respective roles of reproductive function, metabolic status, and body composition on aBMD, lumbar spine BMAD and femoral neck CSMI and CSA, which are surrogate measures of bone strength. Among exercising women aged 18-30 years, body composition, aBMD, and estimates of femoral neck CSMI and CSA were assessed by dual-energy x-ray absorptiometry. Lumbar spine BMAD was calculated from bone mineral content and area. Estrone-1-glucuronide (E1G) and pregnanediol glucuronide were measured in daily urine samples collected for one cycle or monitoring period. Fasting blood samples were collected for measurement of leptin and total triiodothyronine. Ov (n = 37) and Amen (n = 45) women aged 22.3 ± 0.5 years did not differ in body mass, body mass index, and lean mass; however, Ov women had significantly higher percent body fat than Amen women. Lumbar spine aBMD and BMAD were significantly lower in Amen women compared to Ov women (p < 0.001); however, femoral neck CSA and CSMI were not different between groups. E1G cycle mean and age of menarche were the strongest predictors of lumbar spine aBMD and BMAD, together explaining 25.5% and 22.7% of the variance, respectively. Lean mass was the strongest predictor of total hip and femoral neck aBMD as well as femoral neck CSMI and CSA, explaining 8.5-34.8% of the variance. Upon consideration of several potential osteogenic stimuli, reproductive function appears to play

  15. Insights into relationships between body mass, composition and bone: findings in elite rugby players.

    PubMed

    Hind, Karen; Gannon, Lisa; Brightmore, Amy; Beck, Belinda

    2015-01-01

    Recent reports indicate that bone strength is not proportional to body weight in obese populations. Elite rugby players have a similar body mass index (BMI) to obese individuals but differ markedly with low body fat, high lean mass, and frequent skeletal exposure to loading through weight-bearing exercise. The purpose of this study was to determine relationships between body weight, composition, and bone strength in male rugby players characterized by high BMI and high lean mass. Fifty-two elite male rugby players and 32 nonathletic, age-matched controls differing in BMI (30.2 ± 3.2 vs 24.1 ± 2.1 kg/m²; p = 0.02) received 1 total body and one total hip dual-energy X-ray absorptiometry scan. Hip structural analysis of the proximal femur was used to determine bone mineral density (BMD) and cross-sectional bone geometry. Multiple linear regression was computed to identify independent variables associated with total hip and femoral neck BMD and hip structural analysis-derived bone geometry parameters. Analysis of covariance was used to explore differences between groups. Further comparisons between groups were performed after normalizing parameters to body weight and to lean mass. There was a trend for a positive fat-bone relationship in rugby players, and a negative relationship in controls, although neither reached statistical significance. Correlations with lean mass were stronger for bone geometry (r(2): 0.408-0.520) than for BMD (r(2): 0.267-0.293). Relative to body weight, BMD was 6.7% lower in rugby players than controls (p < 0.05). Rugby players were heavier than controls, with greater lean mass and BMD (p < 0.01). Relative to lean mass, BMD was 10%-14.3% lower in rugby players (p < 0.001). All bone geometry measures except cross-sectional area were proportional to body weight and lean mass. To conclude, BMD in elite rugby players was reduced in proportion to body weight and lean mass. However, their superior bone geometry suggests that overall bone strength

  16. Body composition and bone mineral density of collegiate American football players

    PubMed Central

    Turnagöl, Hüseyin Hüsrev

    2016-01-01

    Abstract The aim of this study was to compare whole and segmental body composition and bone mineral density of collegiate American football players by playing positions. Forty collegiate American football players voluntarily participated in this study. Participants were categorized by playing positions into one of five categories i.e., defensive linemen, offensive linemen, defensive secondary players, offensive secondary players and receivers. Whole body composition and bone mineral density were measured by dual x-ray absorptiometry. Offensive and defensive linemen had higher body mass, a body mass index, lean mass and a fat mass index compared to the remaining three positions and a higher lean mass index compared to offensive secondary players and receivers. Offensive linemen had a higher body fat percentage and lower values of upper to lower lean mass than offensive and defensive secondary players and receivers, and higher total mass to the lean mass ratio and fat mass to the lean mass ratio compared to the other players. Offensive linemen had a higher fat mass index and fat mass to the lean mass ratio than defensive linemen. However, in all other measures they were similar. Offensive and defensive secondary players and receivers were similar with respect to the measured variables. Bone mineral density of the players was within the normal range and no difference in lean mass was observed between the legs. In conclusion, findings of this study showed that the total and segmental body composition profile of collegiate American football players reflected the demands of particular playing positions. PMID:28149373

  17. A pilot study on the impact of body composition on bone and mineral metabolism in Parkinson's disease.

    PubMed

    Fernández, María C; Parisi, Muriel S; Díaz, Sergio P; Mastaglia, Silvina R; Deferrari, Juan M; Seijo, Mariana; Bagur, Alicia; Micheli, Federico; Oliveri, Beatriz

    2007-08-01

    The impact of body composition on bone and mineral metabolism in Parkinson's disease (PD) was evaluated. Body fat mass, lean mass, bone mineral content, and bone mineral density (BMD) were measured by DXA in 22 PD patients and 104 controls. Female patients exhibited reduced body mass index, fat mass, and BMD compared to controls (p<0.05). Significant positive correlation was found between 25 OHD levels and BMC. Diminished bone mass in women with PD was found to be associated with alterations in body composition and low 25 OHD levels.

  18. [EFFECTS IN BODY COMPOSITION AND BONE MINERAL DENSITY OF SIMULATE ALTITUDE PROGRAM IN TRIATHLETES].

    PubMed

    Ramos-Campo, Domingo Jesús; Rubio Arias, Jacobo Ángel; Jiménez Diaz, José Fernando

    2015-09-01

    body composition is an important factor to improve athletic performance. Futhermore, bone mineral density informs about the bone stiffness of the skeletal system. the aim of the present research was to analyze modifications on body composition and bone mineral density parameters after a seven week intermittent hypoxia training (IHT) program. eighteen male trained triathletes were divided in two groups: an intermittent hypoxia training group (GIHT: n: 9; 26.0 ± 6.7 years; 173.3 ± 5.9 cm; 66.4 ± 5.9 kg; VO2 max: 59.5 ± 5.0 ml/kg/min) that conducted a normoxic training plus an IHT and a control group (GC: n: 9; 29.3 ± 6.8 years; 174.9 ± 4.6 cm; 59.7 ± 6.8 kg; VO2 max: 58.9 ± 4.5 ml/kg/min) that performed only a normoxic training. Training process was standardized across the two groups. The IHT program consisted on two 60 minutes sessions per week at intensities over the anaerobic threshold and atmospheric conditions between 14.5 and 15% FiO2. Before and after the seven week training, body composition and bone mineral density were analyzed. After this training program, the GIHT showed lower values in free fat mass in upper limbs and fat mass in lower limbs (p < 0.05) than before the program. In terms of bone mineral density variables, between the two groups no changes were found. the addition of an IHT program to normoxic training caused an improvement in body composition parameters compared to similar training under normoxic conditions. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  19. Relationships between body composition, muscular strength, and bone mineral density in estrogen-deficient postmenopausal women.

    PubMed

    Sherk, Vanessa D; Palmer, Ian J; Bemben, Michael G; Bemben, Debra A

    2009-01-01

    The purpose of this study was to examine relationships between muscular strength, body composition, and bone mineral density (BMD) in untrained postmenopausal women who are not on hormone replacement therapy (HRT). Fifty-five women (age: 63.3+/-0.6yr) completed menstrual history, physical activity, and calcium intake questionnaires. Total and regional body composition and total body, anteroposterior lumbar spine, nondominant forearm, and right proximal femur BMD were measured using dual-energy X-ray absorptiometry (DXA) (GE Lunar Prodigy, Prodigy enCORE software version 10.50.086, Madison, WI). Participants performed strength tests for 3 upper body and 5 lower body resistance exercises. Women with a relative skeletal muscle mass index (RSMI) value less than 5.45 kg/m(2) were defined as a sarcopenia group (SAR). SAR had significantly (p < 0.05) lower total body and forearm BMD compared with those who were not sarcopenic. BMD sites were significantly correlated with upper body strength (UBS) and lower body strength (LBS) (r = 0.28-0.50, p < 0.01), with the strength of relationship being site specific. Strength and fat mass (FM) significantly predicted total body BMD (R(2) = 0.232-0.241, p < 0.05), FM variables predicted spine BMD (R(2) = 0.109-0.140, p < 0.05), and LBS and RSMI predicted hip BMD sites (R(2) = 0.073-0.237, p < 0.05). Body composition variables failed to significantly predict LBS. In conclusion, the contribution of body composition and strength variables to BMD varied by site as FM was more important for total body, forearm and spine BMD, and LBS exerted greater influence on the hip sites.

  20. Veganism, bone mineral density, and body composition: a study in Buddhist nuns.

    PubMed

    Ho-Pham, L T; Nguyen, P L T; Le, T T T; Doan, T A T; Tran, N T; Le, T A; Nguyen, T V

    2009-12-01

    This cross-sectional study showed that, although vegans had lower dietary calcium and protein intakes than omnivores, veganism did not have adverse effect on bone mineral density and did not alter body composition. Whether a lifelong vegetarian diet has any negative effect on bone health is a contentious issue. We undertook this study to examine the association between lifelong vegetarian diet and bone mineral density and body composition in a group of postmenopausal women. One hundred and five Mahayana Buddhist nuns and 105 omnivorous women (average age = 62, range = 50-85) were randomly sampled from monasteries in Ho Chi Minh City and invited to participate in the study. By religious rule, the nuns do not eat meat or seafood (i.e., vegans). Bone mineral density (BMD) at the lumbar spine (LS), femoral neck (FN), and whole body (WB) was measured by DXA (Hologic QDR 4500). Lean mass, fat mass, and percent fat mass were also obtained from the DXA whole body scan. Dietary calcium and protein intakes were estimated from a validated food frequency questionnaire. There was no significant difference between vegans and omnivores in LSBMD (0.74 +/- 0.14 vs. 0.77 +/- 0.14 g/cm(2); mean +/- SD; P = 0.18), FNBMD (0.62 +/- 0.11 vs. 0.63 +/- 0.11 g/cm(2); P = 0.35), WBBMD (0.88 +/- 0.11 vs. 0.90 +/- 0.12 g/cm(2); P = 0.31), lean mass (32 +/- 5 vs. 33 +/- 4 kg; P = 0.47), and fat mass (19 +/- 5 vs. 19 +/- 5 kg; P = 0.77) either before or after adjusting for age. The prevalence of osteoporosis (T scores < or = -2.5) at the femoral neck in vegans and omnivores was 17.1% and 14.3% (P = 0.57), respectively. The median intake of dietary calcium was lower in vegans compared to omnivores (330 +/- 205 vs. 682 +/- 417 mg/day, P < 0.001); however, there was no significant correlation between dietary calcium and BMD. Further analysis suggested that whole body BMD, but not lumbar spine or femoral neck BMD, was positively correlated with the ratio of animal protein to vegetable protein. These

  1. Bone Mineralization in Rhythmic Gymnasts Entering Puberty: Associations with Jumping Performance and Body Composition Variables

    PubMed Central

    Võsoberg, Kristel; Tillmann, Vallo; Tamm, Anna-Liisa; Maasalu, Katre; Jürimäe, Jaak

    2017-01-01

    This study examined bone mineral density (BMD) accrual in prepubertal rhythmic gymnasts entering puberty and their age-matched untrained control girls, and associations with baseline jumping performance and body composition over the 3-year period. Whole body (WB) and femoral neck (FN) BMD, WB fat mass (FM) and fat free mass (FFM), countermovement jump (CMJ) and rebound jumps for 15 s (RJ15s) were assessed in 25 rhythmic gymnasts and 25 untrained controls at baseline and after 3-year period. The changes over this period were calculated (Δ scores). Pubertal maturation over the 3-year period was slower in rhythmic gymnasts compared to untrained controls, while no difference in bone age development was seen. WB BMD increased similarly in both groups, while the increase in FN BMD was higher in rhythmic gymnasts compared with untrained controls. In rhythmic gymnasts, baseline FFM was the most significant predictor of ΔWB BMD explaining 19.2% of the variability, while baseline RJ15s was the most significant predictor of ΔFN BMD explaining 18.5% of the variability. In untrained controls, baseline FM explained 51.8 and 18.9% of the variability in ΔWB BMD and ΔFN BMD, respectively. In conclusion, mechanical loading of high-intensity athletic activity had beneficial effect on BMD accrual in rhythmic gymnasts and may have counterbalanced such negative factors on bone development as slower pubertal maturation and lower body FM. Baseline FFM and repeated jumps test performance were related to BMD accrual in rhythmic gymnasts, while baseline FM was related to BMD accrual in untrained controls. Key points Sudy examined bone mineralization in prepubertal rhythmic gymnasts entering puberty and their age-matched untrained control girls, and associations with baseline jumping performance and body composition. Jumping performance and fat free mass values predicted bone mineral accrual in rhythmic gymnasts. Fat mass predicted bone mineral accrual in untrained control girls

  2. Body Composition.

    ERIC Educational Resources Information Center

    Mayhew, Jerry L.

    1981-01-01

    Body composition refers to the types and amounts of tissues which make up the body. The most acceptable method for assessing body composition is underwater weighing. A subcutaneous skinfold provides a quantitative measurement of fat below the skin. The skinfold technique permits a valid estimate of the body's total fat content. (JN)

  3. Body Composition.

    ERIC Educational Resources Information Center

    Mayhew, Jerry L.

    1981-01-01

    Body composition refers to the types and amounts of tissues which make up the body. The most acceptable method for assessing body composition is underwater weighing. A subcutaneous skinfold provides a quantitative measurement of fat below the skin. The skinfold technique permits a valid estimate of the body's total fat content. (JN)

  4. Associated among endocrine, inflammatory, and bone markers, body composition and weight loss induced bone loss

    USDA-ARS?s Scientific Manuscript database

    Weight loss reduces co-¬morbidities of obesity but decreases bone mass. Our aims were to determine whether adequate dairy intake could prevent weight loss related bone loss and to evaluate the contribution of energy-related hormones and inflammatory markers to bone metabolism. Overweight and obese w...

  5. Associations between Body Composition, Hormonal and Lifestyle Factors, Bone Turnover, and BMD

    PubMed Central

    Hammett-Stabler, Catherine A.; Renner, Jordan B.; Rubin, Janet E.

    2014-01-01

    Background The relative importance of body composition, lifestyle factors, bone turnover and hormonal factors in determining bone mineral density (BMD) is unknown. We studied younger postmenopausal women to determine whether modifiable or nonmodifiable risk factors for osteoporosis have stronger associations with BMD. Methods In multivariable linear regression models, we tested associations between non-bone body composition measures, self-reported measures of physical activity and dietary intake, urinary N-telopeptide (NTx), sex hormone concentrations, and BMD in 109 postmenopausal women aged 50 to 64 years, adjusting for current hormone therapy use and clinical risk factors for low BMD. Lean mass, fat mass and areal BMD (aBMD) at the lumbar spine, femoral neck, total hip and distal radius were measured using dual energy X-ray absorptiometry. Results Higher body weight and self-reported nonwhite race were independently associated with higher aBMD at the lumbar spine, femoral neck, total hip and distal radius. Lean and fat mass were not independently associated with aBMD. Older age and higher urinary NTx were independently associated with lower aBMD at the distal radius but not at weight-bearing sites. Sensitivity analyses demonstrated lack of an independent association between total daily protein or calorie intake and BMD. Conclusions BMD, weight and race were the most important determinants of aBMD at all sites. Older age and higher bone turnover were independently associated with lower aBMD at the distal radius. In a limited analysis, self-reported physical activity, dietary protein and calorie intake were not associated with aBMD after adjustment for the other variables. PMID:24707468

  6. Associations among Endocrine, Inflammatory, and Bone Markers, Body Composition and Physical Activity to Weight Loss Induced Bone Loss

    PubMed Central

    Labouesse, Marie A.; Gertz, Erik R.; Piccolo, Brian D.; Souza, Elaine C.; Schuster, Gertrud U.; Witbracht, Megan G.; Woodhouse, Leslie R.; Adams, Sean H.; Keim, Nancy L.; Van Loan, Marta D.

    2015-01-01

    INTRODUCTION Weight loss reduces co-morbidities of obesity, but decreases bone mass. PURPOSE Our aims were to 1) determine if adequate dairy intake attenuates weight loss-induced bone loss; 2) evaluate the associations of endocrine, inflammatory and bone markers, anthropometric and other parameters to bone mineral density and content (BMD, BMC) pre- and post-weight loss; 3) model the contribution of these variables to post weight-loss BMD and BMC METHODS Overweight/obese women (BMI: 28–37 kg/m2) were enrolled in an energy reduced (−500 kcal/d; −2092 kJ/d) diet with adequate dairy (AD: 3–4 servings/d; n=25, 32.2 ± 8.8y) or low dairy (LD: ≤ 1 serving/d; n=26, 31.7 ± 8.4 y). BMD, BMC and body composition were measured by DXA. Bone markers (CTX, PYD, BAP, OC), endocrine (PTH, vitamin D, leptin, adiponectin, ghrelin, amylin, insulin, GLP-1, PAI-1, HOMA) and inflammatory markers (CRP, IL1-β, IL-6, IL-8, TNF-α, cortisol) were measured in serum or plasma. PA was assessed by accelerometry. RESULTS Following weight loss, AD intake resulted in significantly greater (p= 0.004) lumbar spine BMD and serum osteocalcin (p=0.004) concentration compared to LD. Pre- and post- body fat were negatively associated with hip and lumbar spine BMC (r= −0.28, p=0.04 to −0.45, p=0.001). Of note were the significant negative associations among bone markers and IL-1β, TNFα and CRP ranging from r = −0.29 (p=0.04) to r = −0.34 (p=0.01); magnitude of associations did not change with weight loss. Adiponectin was negatively related to change in osteocalcin. Factor analysis resulted in 8 pre- and post-weight loss Factors. Pre-weight loss Factors accounted for 13.7% of the total variance in pre-weight loss hip BMD; post-weight loss Factors explained 19.6% of the total variance in post-weight loss hip BMD. None of the Factors contributed to the variance in lumbar spine BMD. CONCLUSION AD during weight loss resulted in higher lumbar spine BMD and osteocalcin compared to LD

  7. Energy-restricted diet benefits body composition but degrades bone integrity in middle-aged obese female rats.

    PubMed

    Shen, Chwan-Li; Zhu, Wenbin; Gao, Weimin; Wang, Shu; Chen, Lixia; Chyu, Ming-Chien

    2013-08-01

    This study investigates the effects of a restricted diet (RD) on body composition and musculoskeletal health along with endocrines and molecular mechanism in established mature obese rats. Twenty female rats were fed with a high-fat diet (HFD) ad libitum for 4 months and then assigned to either HFD or RD group for another 4 months. Another 10 rats were on a low-fat diet for 8 months. Outcome measures included body composition, bone mineral density, microarchitecrure, and strength; serum leptin, adiponectin, insulin-like growth factor I, and liver glutathione peroxidase activity; and protein expression and spleen tumor necrosis factor α messenger RNA expression. We hypothesized that mature obese rats on a 35% energy restriction diet for 4 months would improve body composition but degrade microstructural and mechanical properties of long bones, and such changes in musculoskeletal integrity are related to the modulation of obesity-related endocrines and proinflammation. Relative to HFD, RD benefited body composition (decreased body weight and %fat mass and increased %fat-free mass); decreased insulin-like growth factor I and leptin; elevated adiponectin, glutathione peroxidase activity and protein expression and tumor necrosis factor α messenger RNA expression; and suppressed bone formation and increased bone resorption, resulting in decreased trabecular and cortical bone volume, bone mineral density, and bone strength. Relative to low-fat diet, RD had a similar effect on body composition and serum markers but increased bone turnover rate and decreased bone mineral density and strength. Our data suggest that long-term RD has a negative impact on bone remodeling in obese female rats, probably through modification of endocrines and elevation of proinflammation. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. [MINERAL BONE DENSITY AND BODY COMPOSITION IN PARTICIPANTS IN EXPERIMENT MARS-500].

    PubMed

    Novikov, V E; Oganov, V S; Kabitskaya, O E; Murashko, L M; Naidina, V P; Chernikhova, E A

    2016-01-01

    Investigations of the bone system and body composition in Mars-500 test-subjects (prior to and on completion of the experiment) involved dual-energy X-ray absorptiometry (DXA) using the HOLOGIC Delphy densitometer and the protocol performed to examine cosmonauts. Bone density of lumber vertebrae and femoral proximal epiphysis, and body composition were measured. Reliable changes in vertebral density found in 3 test-subjects displayed different trends from +2.6 to -2.4%. At the same time, the experiment decreased significantly mineral density of the femoral proximal epiphysis, including the neck, in all test-subjects. Four test-subjects had cranial mineralization increased by 5-9%, same as in some cosmonauts after space flight. All tests-subjects incurred adipose loss from 2 to 7 kg; one test-subject lost 20 kg, i.e. his adipose mass became three times less. Changes in lean mass (1-3 kg) typically were negative; as for changes in lean mass of extremities, they could be linked with adherence to one or another type of physical activity. Therefore, extended exposure to confinement may affect mineralization of some parts of the skeleton. Unlike real space missions and long-term bedrest studies conducted at the Institute of Biomedical Problems in the past, Mars-500 did not cause clinically significant mineral losses (osteoporosis, osteopenia), probably because of the absence of effects of microgravity.

  9. Bone mineral density and body composition in postmenopausal women with psoriasis and psoriatic arthritis

    PubMed Central

    2011-01-01

    Introduction The aim of the present study was to compare bone mineral density (BMD) and body composition (BC) measurements as well as identify risk factors for low BMD and osteoporotic fractures in postmenopausal women with psoriasis (Ps) and psoriatic arthritis (PsA). Methods A cross-sectional study was carried out in 45 PsA women, 52 Ps women and 98 healthy female controls (HC). Clinical risk factors for low bone density and osteoporotic fracture were evaluated by a specific questionnaire. An X-ray absorptiometry (DXA) at the lumbar spine, total femur and total body was performed on all patients. Skin and joint outcomes were measured by specific tools (PASI, HAQ and DAS28). Morphometric vertebral fractures were evaluated by lumbar and thoracic spine X-ray, according to Genant's method. Results There were no significant differences in age, body mass index (BMI), total lean mass and bone mineral density among the groups. However, the PsA group had a significantly higher body fat percentage (BF%) than the Ps and HC groups. Osteoporotic fractures were more frequently observed in PsA and Ps groups than in the HC group (P = 0.01). Recurrent falls and a longer duration of disease increased the risk of fracture (odds ratio (OR) = 18.3 and 1.08, respectively) in the PsA group (P = 0.02). Disability was the main factor related to osteoporotic fracture in the Ps group (odds ratio (OR) = 11.1) (P = 0.02). Conclusions Ps and PsA patients did not present lower BMD. However, they had a higher prevalence of osteoporotic fractures and higher risk of metabolic syndrome. Patients with a longer duration of disease, disability and recurrent falls need preventive measures. PMID:21299865

  10. Body Composition During Childhood and Adolescence: Relations to Bone Strength and Microstructure

    PubMed Central

    Amin, Shreyasee; LeBrasseur, Nathan K.; Atkinson, Elizabeth J.; Achenbach, Sara J.; McCready, Louise K.; Joseph Melton, L.; Khosla, Sundeep

    2014-01-01

    Context: Numerous studies have examined the association of body composition with bone development in children and adolescents, but none have used micro-finite element (μFE) analysis of high-resolution peripheral quantitative computed tomography images to assess bone strength. Objective: This study sought to examine the relations of appendicular lean mass (ALM) and total body fat mass (TBFM) to bone strength (failure load) at the distal radius and tibia. Design, Participants, and Setting: This was a cross-sectional study of 198 healthy 8- to <15-year-old boys (n = 109) and girls (n = 89) performed in a Clinical Research Unit. Results: After adjusting for bone age, height, fracture history, ALM, and TBFM, multiple linear regression analyses in boys and girls, separately, showed robust positive associations between ALM and failure loads at both the distal radius (boys: β = 0.92, P < .001; girls: β = 0.66, P = .001) and tibia (boys: β = 0.96, P < .001; girls: β = 0.66, P < .001). By contrast, in both boys and girls the relationship between TBFM and failure load at the distal radius was virtually nonexistent (boys: β = −0.07; P = .284; girls: β = −0.03; P = .729). At the distal tibia, positive, albeit weak, associations were observed between TBFM and failure load in both boys (β = 0.09, P = .075) and girls (β = 0.17, P = .033). Conclusions: Our data highlight the importance of lean mass for optimizing bone strength during growth, and suggest that fat mass may have differential relations to bone strength at weight-bearing vs non-weight-bearing sites in children and adolescents. These observations suggest that the strength of the distal radius does not commensurately increase with excess gains in adiposity during growth, which may result in a mismatch between bone strength and the load experienced by the distal forearm during a fall. These findings may explain, in part, why obese children are over-represented among distal forearm fracture cases. PMID:25243571

  11. Bone mineral density and body composition in a myelomeningocele children population: effects of walking ability and sport activity.

    PubMed

    Ausili, E; Focarelli, B; Tabacco, F; Fortunelli, G; Caradonna, P; Massimi, L; Sigismondi, M; Salvaggio, E; Rendeli, C

    2008-01-01

    Myelomeningocele causes serious locomotor disability, osteoporosis and pathologic fractures. The aim of this study was to investigate the relationship between body composition, bone mineral density, walking ability and sport activity in myelomeningocele children. 60 patients aged between 5 and 14 yrs with myelomeningocele (22 ambulatory and 38 non-ambulatory), were studied. Fat mass and fat-free-mass were calculated by anthropometry. The bone mineral density at lumbar and femoral neck were evaluated. Bone mineral density at the lumbar and femoral neck was lower than in the normal population. In the non-ambulaty group, bone mineral density was approximately 1 SD lower than in the ambulatory one (p < 0.01). Fat mass was greater than expected but without significantly differences between walking group (mean 26%) and wheel-chair users (25%). Patients practised sport activity had a better bone mineral density and body fat compared with other patients with the same disability. Patients with myelomeningocele have decreased bone mineral density and are at higher risk of pathologic bone fractures. All subjects showed an excess of fat as percentage of body weight and are shorter than normal children. The measurement of bone mineral density may help to identify those patients at greatest risk of suffering of multiple fractures. Walk ability and sport activity, associated with the development of muscle mass, are important factors in promoting bone and body growth, to reduce the risk of obesity and of pathological fractures.

  12. Influence of Body Composition, Oral Contraceptive Use, and Physical Activity on Bone Mineral Density in Premenopausal Women.

    PubMed

    Sherk, Vanessa D; Howard, Clint D; Bemben, Michael G; Bemben, Debra A

    In premenopausal women, low bone density may reflect attainment of a lower peak bone mass which can increase risk of osteoporosis after menopause. The purpose of this study was to examine the relationship between total body, lumbar spine, and proximal femur bone mineral density (BMD) and body composition and oral contraceptive (OC) use in 18-30 year old women. Sixty-five healthy women, split into groups of oral contraceptive users (OC, n = 36) and non oral contraceptive users (Non-OC, n = 29), completed Baecke physical activity, calcium intake, and menstrual history questionnaires. Total body, AP lumbar spine, and dual proximal femur scans were performed using Dual Energy X-Ray Absorptiometry (DXA). Body composition measures were obtained from the total body scan analysis. No significant differences were found for BMD in OC users and non-users. Bone free lean body mass (BFLBM) and weight were positively correlated to all BMD sites, and fat mass was related to total body and L1-L4 spine BMD (p < 0.05). Stepwise regression analyses determined that weight was a significant predictor for all BMD sites (p < 0.05). When separating the two components of body weight, BFLBM was a significant predictor for all BMD sites, and fat mass only predicted total body BMD. In conclusion, this study indicates that weight and BFLBM are significant contributors to BMD in young healthy premenopausal women, and OC use did not influence the relationship between BMD and BFLBM.

  13. A comparison of bone mineral densities and body composition between Southeast Asia college students and Chinese college students.

    PubMed

    Liu, Peng; Ye, Ziliang; Lu, Jingjing; Lu, Haili; Guan, Liping; Teng, Zhihai; Gao, Shangzhi; Li, Mingyi

    2016-09-01

    The aim of this study was to compare bone mineral densities (BMDs) and body composition between Southeast Asia college students and Chinese college students, in order to provide a certain reference enhancing college students' physical fitness.A total of 1694 Chinese college students (294 men and 1400 women, aged 18-22 years) and 250 Southeast Asia college students (148 men and 102 women, aged 19-22 years) were included in the study. Weight, height, and body mass index were measured anthropometrically. BMD values were determined by ultrasound bone densitometer and body composition was determined by body composition analyzer.Southeast Asia college students were overweight than Chinese college students (250 vs 1694) (P < 0.05). Chinese college students had a significantly lower body weight, fat mass, lean tissue mass, lean body weight, estimation of bone mass, protein, and metabolic rate but higher BMD at the calcaneus compared with Southeast Asia college students (P < 0.05 for all parameters). However, body water, intracellular fluid, and extracellular fluid were not significantly different between Chinese college students and Southeast Asia college students (P > 0.01 for all parameters).The results of this cross-sectional study suggest that Chinese college students had a higher BMD but lower body composition than Southeast Asia college students, which may be associated with genes, diet, exercise, and other factors.

  14. Relative importance of body composition, osteoporosis-related behaviors, and parental income on bone speed of sound in adolescent females.

    PubMed

    Holmes, B L; Ludwa, I A; Gammage, K L; Mack, D E; Klentrou, P

    2010-11-01

    Adolescence provides a unique opportunity to employ strategies aimed at optimizing peak bone mass yet there are limited studies on the relationship between specific social constructs, osteoporosis-related behaviors, and bone health status in adolescent females. The purpose of this study was to examine associations between bone speed of sound (SOS) and body composition, osteoporosis-related health behaviors, and parental income in adolescent females. Four hundred forty-two female students in grades 9-12 from schools in Southern Ontario, Canada were measured for height, body mass, and percent body fat and completed a battery of instruments to assess osteoporosis-related health behaviors. Bone SOS was measured by transaxial quantitative ultrasound at the distal radius and midtibia. Percent body fat was a negative correlate of tibial SOS. No significant correlation was found between physical activity and bone SOS yet physical activity was negatively related to adiposity. Hierarchical regression showed that age and percent body fat were the most important predictors of the variance in tibial SOS scores, with calcium intake having a weaker, yet significant, relationship. Age was the only statistically significant predictor of radial SOS. Users of oral contraceptives had higher radial SOS when controlling for age. Higher parental income was not associated with bone SOS but positive associations between parental income, daily calcium intake, and weekly physical activity were noted. Bone SOS is reduced in adolescent females with increased adiposity, whereas it is positively influenced by oral contraceptives and daily calcium intake.

  15. Bone mineral density and body composition in ulcerative colitis: a six-year follow-up.

    PubMed

    Ulivieri, F M; Piodi, L P; Taioli, E; Lisciandrano, D; Ranzi, T; Vezzoli, M; Cermesoni, L; Bianchi, P

    2001-01-01

    Reduced bone mineral density (BMD) has been reported in ulcerative colitis (UC), but there are no data concerning body composition (fat and lean mass) in such patients. We used whole body dual-energy X-ray absorptiometry (Hologic QDR 1000 W) at baseline and after 6 years of follow-up to study bone density, and fat and lean mass in 43 outpatients with mild UC (21 men, mean age 36 years, range 21-57 years, and 22 women, mean age 35 years, range 23-45 years at baseline; disease extent: 2 proctitis, 18 proctosigmoiditis, 8 left colitis, 5 substantial colitis, 10 pancolitis; mean disease duration 8 years, range 2-18 years; no hospitalization; few relapses during the follow-up) and 111 healthy volunteers matched by sex, age and body mass index. There were 5 drop-outs. We observed no significant difference in BMD, or fat and lean mass between the male patients and controls at baseline or after 6 years. The total lean mass (Z-score = -3.2, p = 0.001) and trunk lean mass (Z-score = -2.01, p = 0.03) of the female patients were lower than those of the controls at baseline, whereas their limb lean mass was higher at both the beginning and the end of the study (Z-score = 2.14, p = 0.03; Z-score = 2.8, p = 0.004, respectively). At baseline there was a significant negative correlation between lifetime steroid intake (enteral and parenteral) and lumbar spine BMD, obtained as whole body subregion (r = -0.53, p = 0.0006). After 6 years there was a significant negative correlation in women between whole body and lumbar spine BMD and both steroid intake (r = -0.53, p = 0.01; and r = -0.62, p = 0.003) and the number of relapses (r = -0.49, p = 0.02; and r = -0.44, p = 0.05). Mild UC thus does not represent a risk factor for osteopenia per se. The differences in lean mass between the female patients and controls do not seem to be clinically relevant.

  16. [Effect of high impact movements on body composition, strength and bone mineral density on women over 60 years].

    PubMed

    Ramírez-Villada, Jhon F; León-Ariza, Henry H; Argüello-Gutiérrez, Yenny P; Porras-Ramírez, Keyla A

    2016-01-01

    Osteoporosis is characterised by loss of bone mass and deterioration of bone tissue microarchitecture that leads to fragility related to the risk of fractures. The aim of the study is to analyse the effects of a training program based on explosive movements and impact, assessed in a swimming pool, on body composition, explosive strength and bone mineral density in women over 60 years old. A total of 35 healthy physically active women (60±4.19 years) were divided into a training pool group using multi jumps (JG) and a control group (CG). JG trained for 24 weeks, 3 times a week, an hour and a half per session. Body composition testing, explosive strength, and bone mineral density were assessed before and after the program. There were differences in the explosive force (JG vs CG=P<.05 to .001) and the estimated power (JG vs CG=P<.05 to .002) between JG vs CG, with significant increases in JG. There were no significant differences in the percentage of fat and lean mass, bone mineral density lumbar and femoral between groups, although slightly significant increases in bone mineral density lumbar and femoral could be seen in JG after program implementation (JG pre-test vs JG post- test=P<.05). The training program with impact and explosive movements assessed in a pool induces gains in muscle strength and power with slight adaptations in body mass index in women over 60 years. Copyright © 2015 SEGG. Published by Elsevier Espana. All rights reserved.

  17. Genome-wide QTL mapping of nine body composition and bone mineral density traits in pigs.

    PubMed

    Rothammer, Sophie; Kremer, Prisca V; Bernau, Maren; Fernandez-Figares, Ignacio; Pfister-Schär, Jennifer; Medugorac, Ivica; Scholz, Armin M

    2014-10-28

    Since the pig is one of the most important livestock animals worldwide, mapping loci that are associated with economically important traits and/or traits that influence animal welfare is extremely relevant for efficient future pig breeding. Therefore, the purpose of this study was a genome-wide mapping of quantitative trait loci (QTL) associated with nine body composition and bone mineral traits: absolute (Fat, Lean) and percentage (FatPC, LeanPC) fat and lean mass, live weight (Weight), soft tissue X-ray attenuation coefficient (R), absolute (BMC) and percentage (BMCPC) bone mineral content and bone mineral density (BMD). Data on the nine traits investigated were obtained by Dual-energy X-ray absorptiometry for 551 pigs that were between 160 and 200 days old. In addition, all pigs were genotyped using Illumina's PorcineSNP60 Genotyping BeadChip. Based on these data, a genome-wide combined linkage and linkage disequilibrium analysis was conducted. Thus, we used 44 611 sliding windows that each consisted of 20 adjacent single nucleotide polymorphisms (SNPs). For the middle of each sliding window a variance component analysis was carried out using ASReml. The underlying mixed linear model included random QTL and polygenic effects, with fixed effects of sex, housing, season and age. Using a Bonferroni-corrected genome-wide significance threshold of P < 0.001, significant peaks were identified for all traits except BMCPC. Overall, we identified 72 QTL on 16 chromosomes, of which 24 were significantly associated with one trait only and the remaining with more than one trait. For example, a QTL on chromosome 2 included the highest peak across the genome for four traits (Fat, FatPC, LeanPC and R). The nearby gene, ZNF608, is known to be associated with body mass index in humans and involved in starvation in Drosophila, which makes it an extremely good candidate gene for this QTL. Our QTL mapping approach identified 72 QTL, some of which confirmed results of previous

  18. Bone mineral density and body composition in adult patients with cystic fibrosis.

    PubMed Central

    Grey, A B; Ames, R W; Matthews, R D; Reid, I R

    1993-01-01

    BACKGROUND--Cystic fibrosis is a multisystem disease characterised by chronic pulmonary sepsis and malnutrition. To ascertain whether osteoporosis is a feature of cystic fibrosis in adult patients, total body and regional bone mineral density (BMD) was measured in a group of eight men and eight women aged 17-42 years. METHODS--Total body and regional BMD (lumbar spine L2-L4, femoral neck, trochanteric, and Ward's triangle), as well as total body fat and lean mass, were measured by dual energy x ray absorptiometry. A range of biochemical, lifestyle, and anthropometric variables was also assessed. RESULTS--Patients with cystic fibrosis had significantly reduced bone density at all sites compared with normal young adults. The mean reductions ranged from 7% at Ward's triangle to 13% at the trochanter. Body mass index (BMI) was positively correlated with BMD at four sites and disease severity negatively correlated with BMD at two sites. Other biochemical and anthropometric variables were not predictive of bone density. Total body fat mass was reduced by 30% compared with normal young adults. CONCLUSIONS--Bone density is decreased in adult patients with cystic fibrosis and BMI and disease severity are independent predictors of bone density. PMID:8346485

  19. Fat-free body mass is the most important body composition determinant of 10-yr longitudinal development of lumbar bone in adult men and women.

    PubMed

    Bakker, Ingrid; Twisk, Jos W R; Van Mechelen, Willem; Kemper, Han C G

    2003-06-01

    The purpose of this study was to analyze the longitudinal relationship between body composition and lumbar bone mineral density (LBMD) and lumbar bone mineral content (LBMC) in (young) adults over a 10-yr period. The data are from the Amsterdam Growth and Health Longitudinal Study. Two hundred twenty-five men and 241 women were measured at 27, 32, and/or 36 yr of age. Nine body composition components were explored: total body weight, standing height, body mass index, waist circumference, hip circumference, waist to hip ratio, sum of four skinfolds, fat mass, and fat-free mass (FFM). Stratified analyses were performed by gender and adjustment was made for physical activity and calcium intake. Univariate multilevel analyses indicated that FFM was significantly positively related to the 10-yr development of both LBMD and LBMC in both sexes. Total body weight, standing height, and body mass index also showed a significant positive univariate relationships with LBMD and LBMC in both sexes, fat mass only with female LBMD. All best predictive multiple regression models included FFM, explaining 4-27% of the variation in bone mineral over this 10-yr period. Because FFM can be interpreted as a proxy for skeletal muscle mass, these results indicate the importance of muscle contractions on bone to increase bone strength in (young) adults.

  20. Serum myostatin in central south Chinese postmenopausal women: Relationship with body composition, lipids and bone mineral density.

    PubMed

    Ma, Yulin; Li, Xianping; Zhang, Hongbin; Ou, Yangna; Zhang, Zhimin; Li, Shuang; Wu, Feng; Sheng, Zhifeng; Liao, Eryuan

    2016-08-01

    Previous data suggest that myostatin has direct effects on the proliferation and differentiation of osteoprogenitor cells. The relationships between serum myostatin, body composition lipids and bone mineral density in postmenopausal women remain unclear. The aim of this study is to elucidate the relationships between serum myostatin, body composition, lipids and bone mineral density in central south Chinese postmenopausal women. A cross-sectional study was conducted in 175 healthy postmenopausal women, aged 51-75 years old. Bone mineral density (BMD) and body composition were measured by double energy X-ray absorptiometry (DXA). Serum myostatin, 25-dihydroxyvitamin D(25OH-D), parathyroid hormone (PTH), bone alkaline phosphatase (BAP) and carboxy-terminal telopeptide of type I collagen (CTX) were measured by enzyme-linked immunoabsorbent assay (ELISA). In contrast to the osteoporotic women, the women without osteoporosis had higher BMI, fat mass and lean mass (P<0.01). The osteoporotic women were older than women without osteoporosis (P<0.01). There were no differences between two groups with regard to serum BAP, CTX, (25OH-D), PTH, lipids and myostatin after adjusted by age. BMD at each site was positively correlated with age at menopause, fat mass and lean mass, and also negatively correlated with age and serum BAP. Serum myostatin was positively correlated with tryglicerides, not correlated with either body composition or BMD at each site. Our data indicated that serum myostatin concentration did not correlate with muscle and bone mass. Further studies are needed to demonstrate the role of myostatin in regulating the bone metabolism.

  1. Body Composition, Nutritional Profile and Muscular Fitness Affect Bone Health in a Sample of Schoolchildren from Colombia: The Fuprecol Study.

    PubMed

    Forero-Bogotá, Mónica Adriana; Ojeda-Pardo, Mónica Liliana; García-Hermoso, Antonio; Correa-Bautista, Jorge Enrique; González-Jiménez, Emilio; Schmidt-RíoValle, Jacqueline; Navarro-Pérez, Carmen Flores; Gracia-Marco, Luis; Vlachopoulos, Dimitris; Martínez-Torres, Javier; Ramírez-Vélez, Robinson

    2017-02-03

    The objective of the present study is to investigate the relationships between body composition, nutritional profile, muscular fitness (MF) and bone health in a sample of children and adolescents from Colombia. Participants included 1118 children and adolescents (54.6% girls). Calcaneal broadband ultrasound attenuation (c-BUA) was obtained as a marker of bone health. Body composition (fat mass and lean mass) was assessed using bioelectrical impedance analysis. Furthermore height, weight, waist circumference and Tanner stage were measured and body mass index (BMI) was calculated. Standing long-jump (SLJ) and isometric handgrip dynamometry were used respectively as indicators of lower and upper body muscular fitness. A muscular index score was also computed by summing up the standardised values of both SLJ and handgrip strength. Dietary intake and degree of adherence to the Mediterranean diet were assessed by a 7-day recall questionnaire for food frequency and the Kidmed questionnaire. Poor bone health was considered using a z-score cut off of ≤-1.5 standard deviation. Once the results were adjusted for age and Tanner stage, the predisposing factors of having a c-BUA z-score ≤-1.5 standard deviation included being underweight or obese, having an unhealthy lean mass, having an unhealthy fat mass, SLJ performance, handgrip performance, and unhealthy muscular index score. In conclusion, body composition (fat mass and lean body mass) and MF both influenced bone health in a sample of children and adolescents from Colombia. Thus promoting strength adaptation and preservation in Colombian youth will help to improve bone health, an important protective factor against osteoporosis in later life.

  2. Body Composition, Nutritional Profile and Muscular Fitness Affect Bone Health in a Sample of Schoolchildren from Colombia: The Fuprecol Study

    PubMed Central

    Forero-Bogotá, Mónica Adriana; Ojeda-Pardo, Mónica Liliana; García-Hermoso, Antonio; Correa-Bautista, Jorge Enrique; González-Jiménez, Emilio; Schmidt-RíoValle, Jacqueline; Navarro-Pérez, Carmen Flores; Gracia-Marco, Luis; Vlachopoulos, Dimitris; Martínez-Torres, Javier; Ramírez-Vélez, Robinson

    2017-01-01

    The objective of the present study is to investigate the relationships between body composition, nutritional profile, muscular fitness (MF) and bone health in a sample of children and adolescents from Colombia. Participants included 1118 children and adolescents (54.6% girls). Calcaneal broadband ultrasound attenuation (c-BUA) was obtained as a marker of bone health. Body composition (fat mass and lean mass) was assessed using bioelectrical impedance analysis. Furthermore height, weight, waist circumference and Tanner stage were measured and body mass index (BMI) was calculated. Standing long-jump (SLJ) and isometric handgrip dynamometry were used respectively as indicators of lower and upper body muscular fitness. A muscular index score was also computed by summing up the standardised values of both SLJ and handgrip strength. Dietary intake and degree of adherence to the Mediterranean diet were assessed by a 7-day recall questionnaire for food frequency and the Kidmed questionnaire. Poor bone health was considered using a z-score cut off of ≤−1.5 standard deviation. Once the results were adjusted for age and Tanner stage, the predisposing factors of having a c-BUA z-score ≤−1.5 standard deviation included being underweight or obese, having an unhealthy lean mass, having an unhealthy fat mass, SLJ performance, handgrip performance, and unhealthy muscular index score. In conclusion, body composition (fat mass and lean body mass) and MF both influenced bone health in a sample of children and adolescents from Colombia. Thus promoting strength adaptation and preservation in Colombian youth will help to improve bone health, an important protective factor against osteoporosis in later life. PMID:28165360

  3. The effects of long-term whole-body vibration and aerobic exercise on body composition and bone mineral density in obese middle-aged women

    PubMed Central

    Nam, Sang-seok; Park, Hun-young; Moon, Hwang-woon

    2016-01-01

    [Purpose] The purpose of this study was to determine the effectiveness of whole-body passive vibration exercise and its differences from aerobic exercise on body composition, bone mineral density (BMD) and bone mineral content (BMC). [Methods] Obese middle-aged women (n=33 out of 45) with 34±3% body fat completed the training protocol. They were randomly assigned into diet (n=9; control group), diet plus whole-body vibration exercise (n=13; vibration group), and diet plus aerobic exercise (n=11; aerobic group) groups and we compared their body composition, BMD, and BMC before and after 9 months of training. There were no significant differences in nutrient intake among groups during the training period. [Results] Relative body fat (%) decreased significantly (p < .05) in all three groups and the exercise groups showed a greater reduction in fat mass than the diet only group. BMD in the whole body, lumbar spine, hip and forearm were not significantly different among the three groups. Total body BMC increased significantly in the vibration group throughout the first 6 months of training. [Conclusion] Results suggest that long- term vibration training when used in conjunction with a diet program is as effective as aerobic exercise with a diet program in improving body composition of obese middle-aged women without compromising BMC or BMD. Thus, it can be considered a novel and effective method for reducing body fat. PMID:27508150

  4. Body composition and bone mineral density after ovarian hormone suppression with or without estradiol treatment.

    PubMed

    Shea, Karen L; Gavin, Kathleen M; Melanson, Edward L; Gibbons, Ellie; Stavros, Anne; Wolfe, Pamela; Kittelson, John M; Vondracek, Sheryl F; Schwartz, Robert S; Wierman, Margaret E; Kohrt, Wendy M

    2015-10-01

    Suppression of ovarian hormones in premenopausal women on gonadotropin-releasing hormone agonist (GnRH(AG)) therapy can cause fat mass (FM) gain and fat-free mass (FFM) loss. Whether this is specifically caused by a decline in serum estradiol (E2) is unknown. This study aims to evaluate the effects of GnRH(AG) with placebo (PL) or E2 add-back therapy on FM, FFM, and bone mineral density (BMD). Our exploratory aim was to evaluate the effects of resistance exercise training on body composition during the drug intervention. Seventy healthy premenopausal women underwent 5 months of GnRH(AG) therapy and were randomized to receive transdermal E2 (GnRH(AG) + E2, n = 35) or PL (GnRH(AG) + PL, n = 35) add-back therapy. As part of our exploratory aim to evaluate whether exercise can minimize the effects of hormone suppression, some women within each drug arm were randomized to undergo a resistance exercise program (GnRH(AG) + E2 + Ex, n = 12; GnRH(AG) + PL + Ex, n = 12). The groups did not differ in mean (SD) age (36 [8] and 35 [9] y) or mean (SD) body mass index (both 28 [6] kg/m). FFM declined in response to GnRH(AG) + PL (mean, -0.6 kg; 95% CI, -1.0 to -0.3) but not in response to GnRH(AG) + E2 (mean, 0.3 kg; 95% CI, -0.2 to 0.8) or GnRH(AG) + PL + Ex (mean, 0.1 kg; 95% CI, -0.6 to 0.7). Although FM did not change in either group, visceral fat area increased in response to GnRH(AG) + PL but not in response to GnRH(AG) + E2. GnRH(AG) + PL induced a decrease in BMD at the lumbar spine and proximal femur that was prevented by E2. Preliminary data suggest that exercise may have favorable effects on FM, FFM, and hip BMD. Suppression of ovarian E2 results in loss of bone and FFM and expansion of abdominal adipose depots. Failure of hormone suppression to increase total FM conflicts with previous studies of the effects of GnRH(AG). Further research is necessary to understand the role of estrogen in energy balance regulation and fat distribution.

  5. Longitudinal follow-up of bone density and body composition in children with precocious or early puberty before, during and after cessation of GnRH agonist therapy.

    PubMed

    van der Sluis, Inge M; Boot, Annemieke M; Krenning, Eric P; Drop, Stenvert L S; de Muinck Keizer-Schrama, Sabine M P F

    2002-02-01

    We studied bone mineral density (BMD), bone metabolism, and body composition in 47 children with central precocious puberty (n = 36) or early puberty (n = 11) before, during, and after cessation of GnRH agonist. Bone density and body composition were measured with dual energy x-ray absorptiometry and expressed as SD scores. Bone age and biochemical parameters of bone turnover were assessed. Measurements were performed at baseline, after 6 months, and on a yearly basis thereafter. Mean lumbar spine BMD SD scores for chronological age were significantly higher than zero at baseline and decreased during treatment. Lumbar spine bone mineral apparent density and total body BMD did not differ from normal at baseline and showed no significant changes during treatment. In contrast, BMD SD scores for bone age were significantly lower than zero at baseline and at cessation of therapy. Two years after therapy, bone mineral apparent density and BMD SD scores for bone age and chronological age did not differ from normal. Markers of bone turnover decreased during treatment, mainly in the first 6 months. Patients had increased percentage of fat and lean body mass at baseline. After an initial increase of percentage body fat during treatment, percentage body fat decreased and normalized within 1 yr after cessation of treatment. Our longitudinal analysis suggests that peak bone mass or body composition will not be impaired in patients with precocious or early puberty after GnRH agonist therapy.

  6. The effect of exercise on body composition and bone mineral density in breast cancer survivors taking aromatase inhibitors.

    PubMed

    Thomas, Gwendolyn A; Cartmel, Brenda; Harrigan, Maura; Fiellin, Martha; Capozza, Scott; Zhou, Yang; Ercolano, Elizabeth; Gross, Cary P; Hershman, Dawn; Ligibel, Jennifer; Schmitz, Kathryn; Li, Fang-Yong; Sanft, Tara; Irwin, Melinda L

    2017-02-01

    This study examined the effect of 12 months of aerobic and resistance exercise versus usual care on changes in body composition in postmenopausal breast cancer survivors taking aromatase inhibitors (AIs). The Hormones and Physical Exercise study enrolled 121 breast cancer survivors and randomized them to either supervised twice-weekly resistance exercise training and 150 min/wk of aerobic exercise (N = 61) or a usual care (N = 60) group. Dual-energy X-ray absorptiometry scans were conducted at baseline, 6 months, and 12 months to assess changes in body mass index, percent body fat, lean body mass, and bone mineral density. At 12 months, the exercise group relative to the usual care group had a significant increase in lean body mass (0.32 vs. -0.88 kg, P = 0.03), a decrease in percent body fat (-1.4% vs. 0.48%, P = 0.03), and a decrease in body mass index (-0.73 vs. 0.17 kg/m(2) , P = 0.03). Change in bone mineral density was not significantly different between groups at 12 months (0.001 vs. -0.006 g/cm(2) , P = 0.37). A combined resistance and aerobic exercise intervention improved body composition in breast cancer survivors taking AIs. Exercise interventions may help to mitigate the negative side effects of AIs and improve health outcomes in breast cancer survivors. © 2016 The Obesity Society.

  7. The behavior of novel hydrophilic composite bone cements in simulated body fluids.

    PubMed

    Boesel, Luciano F; Fernandes, Maria H V; Reis, Rui L

    2004-08-15

    Composite bone cements were formulated with bioactive glass (MgO--SiO(2)--3CaO. P(2)O(5)) as the filler and hydrophilic matrix. The matrix was composed of a starch/cellulose acetate blend (SCA) as the solid component and a mixture of methylmethacrylate/acrylic acid (MMA/AA) as the liquid component. The curing parameters, mechanical properties, and bioactive behavior of these composite cements were determined. The addition of up to 30 wt % of glass improved both compressive modulus and yield strength and kept the maximum curing temperature at the same value presented by a typical acrylic-based commercial formulation. The lack of a strongly bonded interface (because no coupling agent was used) had important effects on the swelling and mechanical properties of the novel bone cements. However, bone cements containing AA did not show a bioactive behavior, because of the deleterious effect of this monomer on the calcium phosphate precipitation on the polymeric surfaces. Formulations without AA were prepared with MMA or 2-hydroxyethyl methacrylate (HEMA) as the liquid component. Only these formulations could form an apatite-like layer on their surface. These systems, therefore, are very promising: They are bioactive, hydrophilic, partially degradable, and present interesting mechanical properties. This combination of properties could facilitate the release of bioactive agents from the cement, allow bone ingrowth in the cement, and induce a press-fitting effect, improving the interfaces with both the prosthesis and the bone.

  8. Body composition and bone mineral density in competitive athletes in different sports.

    PubMed

    Fiore, C E; Dieli, M; Vintaloro, G; Gibilaro, M; Giacone, G; Cottini, E

    1996-01-01

    Bone mineral density (BMD) of the vertebral spine, appendicular skeleton, and whole body was studied in male athletes who chronically trained by different forms of skeletal loading. Eighteen subjects performed weight-bearing activity (canoeists, n = 18), and 14 performed non-weight-bearing activity (cyclists, n = 14). Twenty-eight age-matched male students served as non-athletic controls. The canoeists had significantly higher spine, pelvic and total body BMD than cyclists and controls. No intergroup difference was observed in the BMD of arms and legs despite the fact that physical activity of canoeists and cyclists were characterized by forceful muscular contractions. It is concluded that weight-bearing activity is essential to obtain beneficial skeletal effects on total and regional bone mass in young subjects.

  9. Caloric restriction and calcium's effect on bone metabolism and body composition in overweight and obese premenopausal women.

    PubMed

    Radak, Tim L

    2004-12-01

    Obesity results in numerous preventable deaths and comorbidities. Unfortunately, a reduction of body weight has been correlated with a reduction in bone mass, the reasons for which have not been fully elucidated. The importance of maximizing peak bone mass during premenopausal years is well known. Most studies demonstrate a positive relationship between calcium intake and bone mass. However, during caloric restriction, which is commonly used for weight loss, calcium intake has shown mixed results. Calcium from dairy sources has received additional attention, beyond its importance to bone, for its role in regulating body weight and composition. Dairy foods are perceived as high fat, and therefore, are generally minimized or avoided during caloric restriction. The current calcium intake for premenopausal women is significantly below recommendations, and even if met during caloric restriction, may not be adequate. This review underscores the need for maintaining at least adequate intake levels of calcium, if not more, during weight loss regimens to minimize potential long-term detrimental effects on bone metabolism.

  10. Effects of physical activity, body weight and composition, and muscular strength on bone density in young women.

    PubMed

    Madsen, K L; Adams, W C; Van Loan, M D

    1998-01-01

    The purpose of this study was to examine the relationship between body weight and composition, muscular strength, physical activity, and bone mineral density (BMD) in eumenorrheic college-aged women. BMD and bone mineral content (BMC) of the total body, and BMD of the lumbar spine (L2-L4) and femoral neck (via dual energy x-ray absorptiometry), as well as body composition and muscular strength, were measured in 60 college-aged women. The women were divided into three groups: 1) low body weight athletes involved in weight-bearing, collegiate sports (N = 20), 2) matched low body weight and sedentary (N = 20), and 3) average body weight and sedentary (N = 20). All groups were matched for height, age, and age at menarche. The athletes had significantly greater (P < 0.05) (mean +/- SD) total body BMD (1.164 +/- 0.06 g x cm[-2]), L2-L4 BMD (1.240 +/- 0.13 g x cm[-2]), femoral neck BMD (1.144 +/- 0.13 g x cm[-2]) and total body BMC (2.44 +/- 0.30 kg) than the low body weight, sedentary (LWS) group, but were only greater than the average body weight sedentary group (AWS) for femoral neck BMD. Significant correlations were found between lean body mass (LBM) and all BMD variables (P < 0.001). A significant correlation (P < 0.01) was found between fat mass and all BMD variables in the sedentary subjects alone (N = 40), but with inclusion of the athletes (N = 60), none of the correlations between fat mass and BMD were significant. Arm and leg strength isometric torque values corrected for muscle + bone cross-sectional area (M + B CSA) were not significantly different between the athletes and LWS group, but the athletes were greater (P < 0.05) than the AWS group for both arm and leg strength/M + B CSA. No significant, site-specific correlations were found between strength/M + B and BMD. In summary, the athletes had significantly greater BMD, BMC, and LBM than the LWS group and, except for a greater femoral neck BMD, similar BMD, BMC, and LBM as the AWS group. These results

  11. Effect of a novel procedure for limiting motion on body composition and bone estimates by dual-energy X-ray absorptiometry in children.

    PubMed

    Rawal, Rita; Miller, Freeman; Modlesky, Christopher M

    2011-10-01

    We studied the effect of using the BodyFIX (Medical Intelligence Inc, Schwabmunchen, Germany) to immobilize children during a dual-energy X-ray absorptiometry scan on body composition and bone estimates. Overestimates of soft tissue and bone introduced by the BodyFIX were avoided by using a modified version of the system or were corrected by using mathematical models developed in this study.

  12. Dual X-Ray Absorptiometry Whole Body Composition of Bone Tissue in Rheumatoid Arthritis – a Cross-Sectional Study

    PubMed Central

    POPESCU, Claudiu; BOJINCA, Violeta; OPRIS, Daniela; IONESCU, Ruxandra

    2015-01-01

    Objectives: Previous studies of bone tissue in rheumatoid arthritis (RA) using dual X-ray absorptiometry (DXA) concentrated on regions of interest that were used to diagnose osteoporosis. This study aimed to compare the whole body bone tissue (wbBT) of RA patients with healthy subjects and to identify the RA variables which significantly predict wbBT. Methods: The study was cross-sectionally designed to include postmenopausal RA patients and age-matched healthy female controls. All 107 RA patients and all 104 controls underwent clinical examination, laboratory tests and whole body DXA composition, which recorded total and regional bone indices. Non-parametric standard statistical test and regression models after data normalization were used to assess correlations, associations and differences. Results: Compared to controls, RA patients had significantly lower whole body and regional bone mass (14.9 kg compared to 15.5 kg; p = 0.031). Disease duration (r = -0.402 ; p < 0.001), C-reactive protein (r = -0.279; p = 0.015) and inflammation (2.5% wbBT compared to 2.9%; p = 0.043), radiographic damage (14.3 kg compared to 16.2 kg; p < 0.001), disease activity scores (r = -0.275 ; p = 0.018 for HAQ) are significantly correlated/associated with lower wbBT. Clinical structural damage is associated with lower wbBT and it can significantly predict them (R2 = 0.014; p = 0.001), while glucocorticoid treatment, even in low doses, was associated with lower wbBT percent (2.6% compared to 2.8%; p = 0.045). Treatment with biologics was associated with a lower rate of whole body osteoporosis (0% compared to 22.2%; p = 0.013). Conclusions: The main associated factors with the generalized bone loss in female RA patients are disease duration and disease activity. Clinical structural damage is the most powerful predictor of the whole body bone loss. These results suggest a general disturbance of skeletal bone metabolism in RA and could explain a greater risk of fragility fractures of non

  13. Effects of conjugated linoleic acid supplementation during resistance training on body composition, bone density, strength, and selected hematological markers.

    PubMed

    Kreider, Richard B; Ferreira, Maria P; Greenwood, Michael; Wilson, Michael; Almada, Anthony L

    2002-08-01

    Conjugated linoleic acids (CLA) are essential fatty acids that have been reported in animal studies to decrease catabolism, promote fat loss, increase bone density, enhance immunity, and serve as an antiatherogenic and anticarcinogenic agent. For this reason, CLA has been marketed as a supplement to promote weight loss and general health. CLA has also been heavily marketed to resistance-trained athletes as a supplement that may help lessen catabolism, decrease body fat, and promote greater gains in strength and muscle mass during training. Although basic research is promising, few studies have examined whether CLA supplementation during training enhances training adaptations and/or affects markers of health. This study evaluated whether CLA supplementation during resistance training affects body composition, strength, and/or general markers of catabolism and immunity. In a double-blind and randomized manner, 23 experienced, resistance-trained subjects were matched according to body mass and training volume and randomly assigned to supplement their diet with 9 g;pdd(-1) of an olive oil placebo or 6 g;pdd(-1) of CLA with 3 g;pdd(-1) of fatty acids for 28 days. Prior to and following supplementation, fasting blood samples, total body mass, and dual-energy X-ray absorptiometry (DEXA) determined body composition, and isotonic bench press and leg press 1 repetition maximums (1RMs) were determined. Results revealed that although some statistical trends were observed with moderate to large effect sizes, CLA supplementation did not significantly affect (p > 0.05) changes in total body mass, fat-free mass, fat mass, percent body fat, bone mass, strength, serum substrates, or general markers of catabolism and immunity during training. These findings indicate that CLA does not appear to possess significant ergogenic value for experienced resistance-trained athletes.

  14. Changes in body composition and bone of female collegiate soccer players through the competitive season and off-season

    PubMed Central

    Minett, M.M.; Binkley, T.B.; Weidauer, L.A.; Specker, B.L.

    2017-01-01

    Objectives: To assess body composition and bone changes pre- to post-season (pre-post) and post- to off-season (post-off) in female soccer athletes (SC). Methods: Outcomes were assessed using DXA and pQCT in 23 SC and 17 controls at three times throughout season. Results: SC, non-starters in particular, lost lean mass pre-post (-0.9±0.2 kg, p<0.01; not different from controls, p=0.2) and gained fat mass post-off (1.4±0.3 kg, p<0.01; differed from controls, p=0.01). Baseline femoral neck and hip aBMD were higher in SC than controls (both, p<0.04), but increased in controls more than SC in pre-post and decreased post-off. SC cortical bone mineral content (BMC), cortical area and periosteal circumference increased pre-post (all, p<0.01; differed from controls, p<0.05) and trabecular vBMD decreased post-off (-3.0±1.3 mg/cm3; p=0.02; not different from controls, p=0.4). Both SC and controls increased cortical BMC, cortical area, and thickness post-off (all, p<0.01). Conclusion: Soccer players lost lean mass over the competitive season that was not recovered during off-season. Bone size increased pre- to post-season. Female soccer athletes experience body composition and bone geometry changes that differ depending on the time of season and on athlete’s playing status. Evaluations of athletes at key times across the training season are necessary to understand changes that occur. PMID:28250243

  15. Comparisons of body size, composition, and whole body bone mass between North American and South African children.

    PubMed

    Micklesfield, Lisa K; Norris, Shane A; Nelson, Dorothy A; Lambert, Estelle V; van der Merwe, Lize; Pettifor, John M

    2007-12-01

    We compared whole body BMC of 811 black, white, and mixed ancestral origin children from Detroit, MI; Johannesburg, South Africa; and Cape Town, South Africa. Our findings support the role of genetic and environmental influences in the determination of bone mass in prepubertal children. Higher bone mass and lower fracture rates have been shown in black compared with white children and adults in North America. We compared whole body BMC (WBBMC), whole body fat mass (WBFM), and whole body fat free soft tissue (WBFFST) data between three ethnic groups of children from Detroit, MI (n = 181 white, USW; n = 230 black, USB), Johannesburg, South Africa (n = 73 white, SAW; n = 263 black, SAB), and Cape Town, South Africa (n = 64 mixed ancestral origin, SAM). SAB and SAW groups were slightly older than USW and USB groups (9.5 +/- 0.3 versus 9.3 +/- 0.1 yr); however, USB and USW boys were significantly taller, were heavier, and had a higher BMI than SAM and SAB boys. USB girls were significantly taller than SAB girls and heavier than SAB and SAM girls. In South Africa and the United States, black children had a significantly higher WBBMC than white children, after adjusting for selected best predictors. After adjusting for age, weight, and height, WBBMC was significantly higher in the SAB and SAW boys than in USW and USB and in the SAM group compared with the USW and USB groups. WBFFST and WBFM made significant contributions to a best linear model for log(WBBMC), together with age, height, and ethnicity. The best model accounted for 79% of the WBBMC variance. When included separately in the model, the model containing WBFFST accounted for 76%, and the model containing WBFM accounted for 70%, of the variance in WBBMC. WBBMC is lower in children of European ancestry compared with African ancestry, irrespective of geographical location; however, South African children have significantly higher WBBMC compared with USB and USW groups, thereby acknowledging the possible

  16. Sex difference between body composition and weight-bearing bone mineral density in Korean adult twins: healthy twin study.

    PubMed

    Kim, Taehun; Sung, Joohon; Song, Yun-Mi; Lee, Kayoung; Cho, Sung-il

    2011-06-01

    We performed a monozygotic (MZ) cotwin-control study using the MZ twin pair difference in bone mineral density (BMD) to assess the relationship between body composition and BMD at weight-bearing sites. This study controlled for common genetic factors and applied only to environmental factors, using 185 MZ twin pairs aged 30-50 years (140 male subjects, 230 female subjects). As expected, total lean mass (TLM) was greater in males and total fat mass (TFM) was greater in females. In male twins, TLM was associated with BMD at the legs, pelvis, and spine, with percent BMD increases of 0.41 (95% confidence interval [CI] 0.17-0.64), 0.62 (95% CI 0.35-0.89), and 0.27 (95% CI 0.01-0.54) for every 1 kg. In female twins, TFM was associated with BMD at the legs and pelvis, with percent BMD increases of 0.10 (95% CI 0.03-0.17) and 0.10 (95% CI 0.02-0.18) for every 1 kg. The results support the hypothesis that skeletal muscle and bone mass in middle-aged men are linked. In contrast, this association was not shown in women, and the impact of TFM on BMD was significant. Therefore, there were sex differences in the relationship of body composition on BMD.

  17. Quantitative Comparison of 2 Dual-Energy X-ray Absorptiometry Systems in Assessing Body Composition and Bone Mineral Measurements.

    PubMed

    Xu, Wenhua; Chafi, Hatim; Guo, Beibei; Heymsfield, Steven B; Murray, Kori B; Zheng, Jolene; Jia, Guang

    2016-01-01

    Dual-energy X-ray absorptiometry (DXA) is widely used in body composition measurement and evaluation. Because of its numerous applications, the probability of instrument discrepancies has increased dramatically. This study quantitatively compares 2 different DXA systems. In this study, 96 subjects (60 female and 36 male, aged 19-82 years) were recruited and scanned using a General Electric Lunar iDXA and a Hologic Discovery scanner. Four measurements (percent fat, total mass, bone mineral density [BMD], and bone mineral content [BMC]) were quantitatively compared in the whole body and in specific anatomic regions (arms, legs, trunk, android, gynoid, head, ribs, and pelvis). A simple linear regression of each measurement was performed to examine the correlation between the 2 systems. Percent fat, total mass, BMC, and BMD were highly correlated between the 2 DXA systems, with correlation r values greater than 0.854 for both the whole body and the individual anatomic regions except for BMC and BMD in ribs. The high correlation between the 2 DXA systems with systematic differences enabled development of calibration equations for extending the multisystem measurements to advanced quantitative analyses.

  18. Relationship between body composition, body mass index and bone mineral density in a large population of normal, osteopenic and osteoporotic women.

    PubMed

    Andreoli, A; Bazzocchi, A; Celi, M; Lauro, D; Sorge, R; Tarantino, U; Guglielmi, G

    2011-10-01

    The knowledge of factors modulating the behaviour of bone mass is crucial for preventing and treating osteoporotic disease; among these factors, body weight (BW) has been shown to be of primary importance in postmenopausal women. Nevertheless, the relative effects of body composition indices are still being debated. Our aim was to analyze the relationship between body mass index (BMI), fat and lean mass and bone mineral density (BMD) in a large population of women. Moreover, this study represents a first important report on reference standard values for body composition in Italian women. Between 2005 and 2008, weight and height of 6,249 Italian women (aged 30-80 years) were measured and BMI was calculated; furthermore BMD, bone mineral content, fat and lean mass were measured by dual-energy X-ray absorptiometry. Individuals were divided into five groups by decades (group 1, 30.0-39.9; group 2, 40.0-49.9; group 3, 50.0-59.9; group 4, 60.0-69.9; group 5, 70.0-79.9). Differences among decades for all variables were calculated using a one-way analysis of variance (ANOVA) and Bonferroni test by the SPSS programme. Mean BW was 66.8±12.1 kg, mean height 159.1±6.3 cm and mean BMI 26.4±4.7 kg/m(2). According to BW and BMI, there was an increase of obesity with age, especially in women older than 50 years (p<0.001). Lean mass increased until 50 years of age but significantly decreased after this age (p<0.001). The percentage of osteopenia and osteoporosis in the examined population was 43.0% and 16.7%, respectively. Our data show that obesity significantly decreased the risk for osteoporosis but did not decrease the risk for osteopenia. It is strongly recommended that a strong policy regarding prevention of osteopenia and osteoporosis be commenced. An overall examination of our results suggests that both fat and lean body mass can influence bone mass and that their relative effect on bone could be modulated by their absolute amount and ratio to total BW.

  19. Biodegradable synthetic bone composites

    DOEpatents

    Liu, Gao; Zhao, Dacheng; Saiz, Eduardo; Tomsia, Antoni P.

    2013-01-01

    The invention provides for a biodegradable synthetic bone composition comprising a biodegradable hydrogel polymer scaffold comprising a plurality of hydrolytically unstable linkages, and an inorganic component; such as a biodegradable poly(hydroxyethylmethacrylate)/hydroxyapatite (pHEMA/HA) hydrogel composite possessing mineral content approximately that of human bone.

  20. Age and sex effects on the association between body composition and bone mineral density in healthy Chinese men and women.

    PubMed

    Cheng, Qun; Zhu, Ying Xiao; Zhang, Mei Xue; Li, Lin Hui; Du, Ping Yan; Zhu, Min Han

    2012-04-01

    Many studies have examined the relationships between body composition and bone mineral density (BMD), but little attention has been given to how these relationships vary by age and sex. The aim of this study was to investigate the distributions of lean mass (LM), fat mass (FM), and BMD and the correlation between body composition and BMD in Chinese men and women of different ages. In total, the body compositions of 1,475 men and 1,534 women aged 20 to 96 years were analyzed. Using dual-energy x-ray absorptiometry, we measured the BMD of the spine, femur, and total body and the LM, FM, and percentage of body fat (Fat %). The population was divided into groups based on age and sex: young, premenopausal, and postmenopausal women and young, middle-aged, and older men. The correlations between BMD and variables of body composition were investigated using the Pearson correlation test and multiple regression analysis. The peak BMD values of the spine, femur, and total body are observed in women aged 30 to 39, 20 to 29, and 30 to 39 years, respectively, and in men aged 20 to 29 years at all sites. The peak LM, FM, and Fat % values were observed at age 40 to 49, 60 to 69, and 70 to 79 years in women, respectively, and at 40 to 49, 70 to 79, and 70 to 79 years in men, respectively. A statistically significant correlation was observed between LM and BMD of all sites (r = 0.253-0.591, P < 0.01) in all groups. However, FM was significantly correlated to BMD only in postmenopausal women and older men (r = 0.089-0.336, P < 0.01). Fat % negatively correlated to BMD in young people (r = -0.169 to -0.366, P < 0.05). When stepwise regression models were analyzed, LM remained the strongest predictor of total body, spine, and femur BMD (standardized coefficients = 0.264-0.637, P < 0.001) in Chinese men and women of different ages. We believe that LM is the strongest predictor of BMD at all ages for Chinese men and women, even though positive correlations between FM and BMD existed in

  1. Green tea supplementation benefits body composition and improves bone properties in obese female rats fed with high-fat diet and caloric restricted diet.

    PubMed

    Shen, Chwan-Li; Han, Jia; Wang, Shu; Chung, Eunhee; Chyu, Ming-Chien; Cao, Jay J

    2015-12-01

    This study investigated the effects of green tea polyphenols (GTP) supplementation on body composition, bone properties, and serum markers in obese rats fed a high-fat diet (HFD) or a caloric restricted diet (CRD). Forty-eight female rats were fed an HFD ad libitum for 4 months, and then either continued on the HFD or the CRD with or without 0.5% GTP in water. Body composition, bone efficacy, and serum markers were measured. We hypothesized that GTP supplementation would improve body composition, mitigate bone loss, and restore bone microstructure in obese animals fed either HFD or CRD. CRD lowered percent fat mass; bone mass and trabecular number of tibia, femur and lumbar vertebrae; femoral strength; trabecular and cortical thickness of tibia; insulin-like growth factor-I and leptin. CRD also increased percent fat-free mass; trabecular separation of tibia and femur; eroded surface of tibia; bone formation rate and erosion rate at tibia shaft; and adiponectin. GTP supplementation increased femoral mass and strength (P = .026), trabecular thickness (P = .012) and number (P = .019), and cortical thickness of tibia (P < .001), and decreased trabecular separation (P = .021), formation rate (P < .001), and eroded surface (P < .001) at proximal tibia, and insulin-like growth factor-I and leptin. There were significant interactions (diet type × GTP) on osteoblast surface/bone surface, mineral apposition rate at periosteal and endocortical bones, periosteal bone formation rate, and trabecular thickness at femur and lumbar vertebrate (P < .05). This study demonstrates that GTP supplementation for 4 months benefited body composition and improved bone microstructure and strength in obese rats fed with HFD or HFD followed by CRD diet. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Precision errors, least significant change, and monitoring time interval in pediatric measurements of bone mineral density, body composition, and mechanostat parameters by GE lunar prodigy.

    PubMed

    Jaworski, Maciej; Pludowski, Pawel

    2013-01-01

    Dual-energy X-ray absorptiometry (DXA) method is widely used in pediatrics in the study of bone density and body composition. However, there is a limit to how precise DXA can estimate bone and body composition measures in children. The study was aimed to (1) evaluate precision errors for bone mineral density, bone mass and bone area, body composition, and mechanostat parameters, (2) assess the relationships between precision errors and anthropometric parameters, and (3) calculate a "least significant change" and "monitoring time interval" values for DXA measures in children of wide age range (5-18yr) using GE Lunar Prodigy densitometer. It is observed that absolute precision error values were different for thin and standard technical modes of DXA measures and depended on age, body weight, and height. In contrast, relative precision error values expressed in percentages were similar for thin and standard modes (except total body bone mineral density [TBBMD]) and were not related to anthropometric variables (except TBBMD). Concluding, due to stability of percentage coefficient of variation values in wide range of age, the use of precision error expressed in percentages, instead of absolute error, appeared as convenient in pediatric population.

  3. Body composition in multiple sclerosis

    PubMed Central

    Dionyssiotis, Y

    2013-01-01

    Multiple sclerosis affects central nervous system leading to disability. Among other complications the deterioration of body composition is usually neglected and increases the risk for diseases such as coronary heart disease, non-insulin dependent diabetes mellitus, lipid abnormalities and bone loss leading to fractures in this population. Body mass index values, the effect of spasticity, the increased number of drugs used and the relationship between skeletal muscle and bone which interacts with impaired motor function leading to body composition alterations in multiple sclerosis are reviewed. PMID:23935336

  4. Long-term effects of a ketogenic diet on body composition and bone mineralization in GLUT-1 deficiency syndrome: a case series.

    PubMed

    Bertoli, Simona; Trentani, Claudia; Ferraris, Cinzia; De Giorgis, Valentina; Veggiotti, Pierangelo; Tagliabue, Anna

    2014-06-01

    The only known treatment of glucose transporter 1 deficiency syndrome (GLUT-1 DS) is a ketogenic diet (KD), which provides the brain with an alternative fuel. Studies in children with intractable epilepsy have shown that a prolonged KD can induce a progressive loss of bone mineral content associated with poor bone health status, probably as a consequence of a chronic acidic environment. The aim of this study is to determine the long-term effects of a KD on body composition and bone mineral status of patients with GLUT-1 DS, is currently unknown. In this case series, we report the changes in body composition and bone mineral status observed in three adult patients with GLUT-1 DS who have been treated with a KD for more than 5 y. A long-term KD did not produce appreciable changes in weight and body composition of adults with GLUT-1 DS. Moreover, we found no evidence of potential adverse effects of a KD on bone health. In summary, this case series contributes to a small but growing body of literature that investigated the potential long-term effects of a KD on bone health. Our data suggest that maintaining a KD for more than 5 y does not pose any major negative effects on body composition, bone mineral content, and bone mineral density in adults with GLUT-1 DS, a finding that is at variance with previous reports focusing on children with intractable epilepsy. Further studies with larger sizes are needed to confirm and expand our findings. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Changes in bone mineral density and body composition of children with well-controlled homocystinuria caused by CBS deficiency.

    PubMed

    Lim, J S; Lee, D H

    2013-09-01

    Homocystinuria due to cystathionine β-synthase (CBS) deficiency is an inherited disorder of the metabolism of methionine. Clinical manifestations include mental retardation, dislocation of the optic lens, vascular lesions, arterial and venous thromboembolism, skeletal abnormalities, and osteoporosis. Most homocystinuria patients diagnosed in adulthood have severe osteoporosis, and homocystinuria is frequently mentioned as a cause of osteoporosis. Good control of plasma homocysteine may prevent or delay some of these complications. However, the effectiveness of bone mineral density (BMD) gain or fracture prevention has not been addressed. Here, we describe changes in BMD and body composition in 5 CBS deficiency patients who were diagnosed at young age and were managed with good metabolic control. We found that the BMD of each region was within the normal range. BMD gain was adequate and the patients had no significant change in skeletal morphology.

  6. Relationship between Bone-Specific Physical Activity Scores and Measures for Body Composition and Bone Mineral Density in Healthy Young College Women

    PubMed Central

    Kim, SoJung; So, Wi-Young; Kim, Jooyoung; Sung, Dong Jun

    2016-01-01

    Objective The purpose of this cross-sectional study was to investigate the relationship between bone-specific physical activity (BPAQ) scores, body composition, and bone mineral density (BMD) in healthy young college women. Methods Seventy-three college women (21.7 ± 1.8 years; 162.1 ± 4.6 cm; 53.9 ± 5.8 kg) between the ages of 19 and 26 years were recruited from the universities in Seoul and Gyeonggi province, South Korea. We used dual energy X-ray absorptiometry to measure the lumbar spine (L2-L4) and proximal femur BMD (left side; total hip, femoral neck). The BPAQ scores (past, pBPAQ; current, cBPAQ; total, tBPAQ) were used to obtain a comprehensive account of lifetime physical activity related to bone health. We used X-scan plus II instrumentation to measure height (cm), weight (kg), fat free mass (FFM, kg), percent body fat (%), and body mass index (BMI). Participants were asked to record their 24-hour food intake in a questionnaire. Results There were positive correlations between BPAQ scores and total hip (pBPAQ r = 0.308, p = 0.008; tBPAQ, r = 0.286, p = 0.014) and FN BMD (pBPAQ r = 0.309, p = 0.008; tBPAQ, r = 0.311, p = 0.007), while no significant relationships were found in cBPAQ (p > 0.05). When FFM, Vitamin D intake, cBPAQ, pBPAQ, and tBPAQ were included in a stepwise multiple linear regression analysis, FFM and pBPAQ were predictors of total hip, accounting for 16% (p = 0.024), while FFM and tBPAQ predicted 14% of the variance in FN (p = 0.015). Only FFM predicted 15% of the variance in L2-L4 (p = 0.004). There was a positive correlation between Vitamin D intake and L2-L4 (p = 0.025), but other dietary intakes variables were not significant (p > 0.05). Conclusions BPAQ-derived physical activity scores and FFM were positively associated with total hip and FN BMD in healthy young college women. Our study suggests that osteoporosis awareness and effective bone healthy behaviors for college women are required to prevent serious bone diseases later in

  7. Relationship of body composition, knee extensor strength, and standing balance to lumbar bone mineral density in postmenopausal females

    PubMed Central

    Shin, Seungsub; Lee, Kyeongjin; Song, Changho

    2016-01-01

    [Purpose] This study aimed to investigate correlations between lumbar bone mineral density (BMD) and general characteristics of postmenopausal females, including body composition, knee extensor strength, standing balance, and femur BMD. [Subjects and Methods] A total of 40 postmenopausal females (55.6 ± 4.6 years) who were caregivers or guardians of patients in the K hospital were included in the study. The weight, height, body composition, left and right knee extensor strength, standing balance, femur BMD, and lumbar BMD measurements of the subjects were obtained. [Results] The effect of measurement variables on lumbar BMD was examined. Increases in age and menopausal duration were observed to significantly increase lumbar BMD, whereas an increase in height was found to significantly decrease lumbar BMD. An increase in soft lean mass, skeletal muscle mass, fat-free mass, and femur BMD was also associated with significantly decreased lumbar BMD. [Conclusion] Age, menopausal duration, soft lean mass, skeletal muscle mass, and fat-free mass were factors that decreased lumbar BMD in menopausal females. This study is expected to provide basic knowledge for osteoporosis prevention and treatment programs for postmenopausal females. PMID:27512276

  8. Green tea polyphenols benefits body composition and improves bone quality in long-term high-fat diet-induced obese rats.

    PubMed

    Shen, Chwan-Li; Cao, Jay J; Dagda, Raul Y; Chanjaplammootil, Samuel; Lu, Chuanwen; Chyu, Ming-Chien; Gao, Weimin; Wang, Jia-Sheng; Yeh, James K

    2012-06-01

    This study investigates the effects of green tea polyphenols (GTPs) on body composition and bone properties along with mechanisms in obese female rats. Thirty-six 3-month-old Sprague Dawley female rats were fed either a low-fat (LF) or a high-fat (HF) diet for 4 months. Animals in the LF diet group continued on an LF diet for additional 4 months, whereas those in the HF diet group were divided into 2 groups: with GTP (0.5%) or without in drinking water, in addition to an HF diet for another 4 months. Body composition, femur bone mass and strength, serum endocrine and proinflammatory cytokines, and liver glutathione peroxidase (GPX) protein expression were determined. We hypothesized that supplementation of GTP in drinking water would benefit body composition, enhance bone quality, and suppress obesity-related endocrines in HF diet-induced obese female rats and that such changes are related to an elevation of antioxidant capacity and a reduction of proinflammatory cytokine production. After 8 months, compared with the LF diet, the HF diet increased percentage of fat mass and serum insulin-like growth factor I and leptin levels; reduced percentage of fat-free mass, bone strength, and GPX protein expression; but had no effect on bone mineral density and serum adiponectin levels in the rats. Green tea polyphenol supplementation increased percentage of fat-free mass, bone mineral density and strength, and GPX protein expression and decreased percentage of fat mass, serum insulin-like growth factor I, leptin, adiponectin, and proinflammatory cytokines in the obese rats. This study shows that GTP supplementation benefited body composition and bone properties in obese rats possibly through enhancing antioxidant capacity and suppressing inflammation. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Green tea polyphenols benefits body composition and improves bone quality in long-term high-fat diet-induced obese rats

    USDA-ARS?s Scientific Manuscript database

    This study investigated the effects of green tea polyphenols (GTP) on body composition and 2 bone properties in obese female rats. Thirty-six 3-month-old SD female rats were fed either a 3 low-fat (LF) diet (n = 12) or a high-fat (HF) diet (n= 24) for 4 months. Animals in the LF diet 4 group continu...

  10. Bone formation and body composition of European elk: an ontogenetic model.

    PubMed

    Bartosiewicz, L

    1989-01-01

    Metapodial and femur measurements were gathered on 8 female and 12 male western European elk (Alces alces [L. 1758] alces) skeletons in four osteological collections in Scandinavia. Additional variables such as carcass and bone weight as well as metacarpal measurements recorded on 43 females and 47 males hunted in Central Sweden were completed by metatarsal measurements available for 28 female and 29 male individuals of the same sample. These bones were divided into two gross age groups on the basis of epiphyseal fusion. Sex-dependent development of the metapodial bones was studied in terms of longitudinal growth and in relation to carcass weight and a number of important carcass characteristics. While metacarpals in both sexes grow at a slower rate relative to carcass weight than do metatarsals, skeletal development is more intensive in young females resulting in mature forms at a smaller absolute size. Analysis of the two sets of data was completed with parameters of dissection statistics from the literature and integrated into an ontogenetic model. A 100 to 140 kg carcass weight interval was found critical both in terms of weaning and the onset of sexual maturation.

  11. The influence of anthropometry and body composition on children's bone health: the childhood health, activity and motor performance school (the CHAMPS) study, Denmark.

    PubMed

    Heidemann, Malene; Holst, René; Schou, Anders J; Klakk, Heidi; Husby, Steffen; Wedderkopp, Niels; Mølgaard, Christian

    2015-02-01

    Overweight, physical inactivity and sedentary behaviour have become increasing problems during the past decade. Increased sedentary behaviour may change the body composition (BC) by increasing the fat mass relative to the lean mass (LM). These changes may influence bone health to describe how anthropometry and BC predict the development of the bone accruement. The longitudinal study is a part of The CHAMPS study-DK. Children were DXA scanned at baseline and at 2-year follow-up. BC (LM, BF %) and BMC, BMD and BA were measured. The relationship between bone traits, anthropometry and BC was analysed by multilevel regression analyses. Of the invited children, 742/800 (93%) accepted to participate. Of these, 682/742 (92%) participated at follow-up. Mean (range) of age at baseline was 9.5 years (7.7-12.1). Height, BMI, LM and BF % predicted bone mineral accrual and bone size positively and independently. Height and BMI are both positive predictors of bone accruement. LM is a more precise predictor of bone traits than BF % in both genders. The effects of height and BMI and LM on bone accruement are nearly identical in the two genders, while changes in BF % have different but positive effects on bone accretion in both boys and girls.

  12. Body Composition. A Round Table.

    ERIC Educational Resources Information Center

    Physician and Sportsmedicine, 1986

    1986-01-01

    Four experts discuss body composition, what it is, why it is assessed, how it is measured, and how to measure it in children and the aged. Standards of fatness, both overfat and underfat, and bone and muscle assessment are covered in the discussion. (MT)

  13. Aged-Related Changes in Body Composition and Association between Body Composition with Bone Mass Density by Body Mass Index in Chinese Han Men over 50-year-old

    PubMed Central

    Jin, Mengmeng; Gu, Zhaoyan; Pei, Yu; Meng, Ping

    2015-01-01

    Objectives Aging, body composition, and body mass index (BMI) are important factors in bone mineral density (BMD). Although several studies have investigated the various parameters and factors that differentially influence BMD, the results have been inconsistent. Thus, the primary goal of the present study was to further characterize the relationships of aging, body composition parameters, and BMI with BMD in Chinese Han males older than 50 years. Methods The present study was a retrospective analysis of the body composition, BMI, and BMD of 358 Chinese male outpatients between 50 and 89 years of age that were recruited from our hospital between 2009 and 2011. Qualified subjects were stratified according to age and BMI as follows: 50–59 (n = 35), 60–69 (n = 123), 70–79 (n = 93), and 80–89 (n = 107) years of age and low weight (BMI: < 20 kg/m2; n = 21), medium weight (20 ≤ BMI < 24 kg/m2; n = 118), overweight (24 ≤ BMI < 28 kg/m2; n = 178), and obese (BMI ≥ 28 kg/m2; n = 41). Dual-energy X-ray absorptiometry (DEXA) was used to assess bone mineral content (BMC), lean mass (LM), fat mass (FM), fat-free mass (FFM), lumbar spine (L1-L4) BMD, femoral neck BMD, and total hip BMD. Additionally, the FM index (FMI; FM/height2), LM index (LMI; LM/height2), FFM index (FFMI; [BMC+LM]/height2), percentage of BMC (%BMC; BMC/[BMC+FM+LM] × 100%), percentage of FM (%FM; FM/[BMC+FM+LM] × 100%), and percentage of LM (%LM; LM/(BMC+FM+LM) × 100%) were calculated. Osteopenia or osteoporosis was identified using the criteria and T-score of the World Health Organization. Results Although there were no significant differences in BMI among the age groups, there was a significant decline in height and weight according to age (p < 0.0001 and p = 0.0002, respectively). The LMI and FFMI also declined with age (both p < 0.0001) whereas the FMI exhibited a significant increase that peaked in the 80-89-years group (p = 0.0145). Although the absolute values of BMC and LM declined

  14. ASSESSMENT OF THE LATE EFFECTS ON BONES AND ON BODY COMPOSITION OF CHILDREN AND ADOLESCENTS TREATED FOR ACUTE LYMPHOCYTIC LEUKEMIA ACCORDING TO BRAZILIAN PROTOCOLS

    PubMed Central

    Molinari, Poliana Cristina Carmona; Lederman, Henrique Manoel; Lee, Maria Lucia de Martino; Caran, Eliana Maria Monteiro

    2017-01-01

    ABSTRACT Objective: To evaluate the impact of therapy on bone mineral density (BMD) and body composition in survivors of acute lymphoblastic leukemia (ALL) treated in accordance with Brazilian protocols by the Brazilian Cooperative Group of Treatment of Lymphoblastic Leukemia in Childhood (GBTLI) LLA-93 and LLA-99. Methods: A cross-sectional study with 101 patients was performed. BMD and body composition were evaluated using bone densitometry and were interpreted according to the age group and the reference population. Values between -1.1 and -1.9 in the group of children under 20 years were considered as risk group for low BMD z-scores. BMD values were compared to clinical characteristics, treatment received and body composition. A chi-square test, Fisher’s exact test, likelihood ratio and Student’s t-test were applied, with a 5% significance level. Results: The patients presented a frequency of fractures of 2%, of osteonecrosis, 2%, and of low BMD, 2.9%. In the group of 79 patients under 20 years of age, three had low BMD. The 16 that presented risk for low BMD, demonstrated lower valutes in lumbar vertebrae L1-L4 (p=0.01) and whole body (p=0.005), and smaller values of lean body mass (p=0.03). In the group of 22 patients over 20 years of age, ten had osteopenia. Conclusions: The low impact of treatment on BMD of this study confirms the concept that the bone mass gain occurs with increasing age and that the treatment does not influence the process. The population at risk for low BMD values presented lower bone mass values and could benefit from a long-term monitoring for possible bone toxicity. PMID:28977305

  15. ASSESSMENT OF THE LATE EFFECTS ON BONES AND ON BODY COMPOSITION OF CHILDREN AND ADOLESCENTS TREATED FOR ACUTE LYMPHOCYTIC LEUKEMIA ACCORDING TO BRAZILIAN PROTOCOLS.

    PubMed

    Molinari, Poliana Cristina Carmona; Lederman, Henrique Manoel; Lee, Maria Lucia de Martino; Caran, Eliana Maria Monteiro

    2017-01-01

    To evaluate the impact of therapy on bone mineral density (BMD) and body composition in survivors of acute lymphoblastic leukemia (ALL) treated in accordance with Brazilian protocols by the Brazilian Cooperative Group of Treatment of Lymphoblastic Leukemia in Childhood (GBTLI) LLA-93 and LLA-99. A cross-sectional study with 101 patients was performed. BMD and body composition were evaluated using bone densitometry and were interpreted according to the age group and the reference population. Values between -1.1 and -1.9 in the group of children under 20 years were considered as risk group for low BMD z-scores. BMD values were compared to clinical characteristics, treatment received and body composition. A chi-square test, Fisher's exact test, likelihood ratio and Student's t-test were applied, with a 5% significance level. The patients presented a frequency of fractures of 2%, of osteonecrosis, 2%, and of low BMD, 2.9%. In the group of 79 patients under 20 years of age, three had low BMD. The 16 that presented risk for low BMD, demonstrated lower valutes in lumbar vertebrae L1-L4 (p=0.01) and whole body (p=0.005), and smaller values of lean body mass (p=0.03). In the group of 22 patients over 20 years of age, ten had osteopenia. The low impact of treatment on BMD of this study confirms the concept that the bone mass gain occurs with increasing age and that the treatment does not influence the process. The population at risk for low BMD values presented lower bone mass values and could benefit from a long-term monitoring for possible bone toxicity.

  16. Effect on body composition and bone mineral density of walking with a robotic exoskeleton in adults with chronic spinal cord injury.

    PubMed

    Karelis, Antony D; Carvalho, Lívia Pinheiro; Castillo, Manuel Jose; Gagnon, Dany H; Aubertin-Leheudre, Mylène

    2017-01-19

    To examine the effect on body composition and bone mineral density of locomotor training using a robotic exoskeleton in individuals with spinal cord injury. Interventional study. Five adults with a non-progressive traumatic complete sensorimotor spinal cord injury who were using a wheelchair as a primary mode of mobility. Participants performed a personalized 6-week progressive locomotor training programme using a robotic exoskeleton 3 times/week for up to 60 min. Body composition measures were determined using dual energy X-ray absorptiometry and peripheral quantitative computed tomography. A significant increase in leg and appendicular lean body mass and a decrease in total, leg and appendicular fat mass was observed after the intervention. Furthermore, the calf muscle cross-sectional area increased significantly after the intervention. Finally, although not statistically significant, there was an increase of 14.5% in bone mineral density of the tibia, which may be clinically significant. A decrease of > 5 % was also noted for subcutaneous adipose tissue and intramuscular adipose tissue. Locomotor training using a robotic exoskeleton appears to be associated with improvements in body composition and, potentially, bone health.

  17. Sex Differences in the Effects of Weight Loss Diets on Bone Mineral Density and Body Composition: POUNDS LOST Trial

    PubMed Central

    Tirosh, Amir; de Souza, Russell J.; Sacks, Frank; Bray, George A.; Smith, Steven R.

    2015-01-01

    Context: Weight loss is associated with reduction in bone mineral density (BMD). Objective: The objective was to address the role of changes in fat mass (FM) and lean mass (LM) in BMD decline in both sexes. Design: A 2-year randomized controlled trial, the Preventing Overweight Using Novel Dietary Strategies (POUNDS-LOST). Setting: The setting was the general community. Patients or Other Participants: Enrolled were 424 overweight and obese participants (mean age, 52 ± 9 y; 57% females). Intervention: Intervention included weight loss diets differing in fat, protein, and carbohydrates. Main Outcome Measures: Main outcome measures were change in spine, total hip (TH), and femoral neck (FN) BMD and sex differences after dietary intervention. Results: At baseline, a stronger correlation between BMD and body composition measurements was observed in women, primarily with LM (r = 0.419, 0.507, and 0.523 for spine, FN, and TH, respectively; all P < .001). In men, only LM correlated with hip BMD (r = 0.298; P < .001). Mean weight loss at 2 years was −6.9%, without differences among diets. Two-year changes in BMD were 0.005 (P = .04), −0.014 (P < .001), and −0.014 g/cm2 (P < .001), at the spine, TH, and FN, respectively. These changes directly correlated with changes in LM in women (r = 0.200, 0.324, and 0.260 for spine, FN, and TH, respectively), whereas FM loss correlated only with changes in TH BMD (0.274; P < .001). In men, changes in LM (−0.323; P < .001) and FM (−0.213; P = .027) negatively correlated with changes in spine BMD. Conclusions: Weight loss diets result in sex-specific effects on BMD. Although men exhibited a paradoxical increase in spine BMD, women tended to decrease in BMD at all sites. PMID:25825948

  18. Sex Differences in the Effects of Weight Loss Diets on Bone Mineral Density and Body Composition: POUNDS LOST Trial.

    PubMed

    Tirosh, Amir; de Souza, Russell J; Sacks, Frank; Bray, George A; Smith, Steven R; LeBoff, Meryl S

    2015-06-01

    Weight loss is associated with reduction in bone mineral density (BMD). The objective was to address the role of changes in fat mass (FM) and lean mass (LM) in BMD decline in both sexes. A 2-year randomized controlled trial, the Preventing Overweight Using Novel Dietary Strategies (POUNDS-LOST). The setting was the general community. Enrolled were 424 overweight and obese participants (mean age, 52 ± 9 y; 57% females). Intervention included weight loss diets differing in fat, protein, and carbohydrates. Main outcome measures were change in spine, total hip (TH), and femoral neck (FN) BMD and sex differences after dietary intervention. At baseline, a stronger correlation between BMD and body composition measurements was observed in women, primarily with LM (r = 0.419, 0.507, and 0.523 for spine, FN, and TH, respectively; all P < .001). In men, only LM correlated with hip BMD (r = 0.298; P < .001). Mean weight loss at 2 years was -6.9%, without differences among diets. Two-year changes in BMD were 0.005 (P = .04), -0.014 (P < .001), and -0.014 g/cm(2) (P < .001), at the spine, TH, and FN, respectively. These changes directly correlated with changes in LM in women (r = 0.200, 0.324, and 0.260 for spine, FN, and TH, respectively), whereas FM loss correlated only with changes in TH BMD (0.274; P < .001). In men, changes in LM (-0.323; P < .001) and FM (-0.213; P = .027) negatively correlated with changes in spine BMD. Weight loss diets result in sex-specific effects on BMD. Although men exhibited a paradoxical increase in spine BMD, women tended to decrease in BMD at all sites.

  19. Effect of ¹⁸F-FDG administration on measurements of bone mineral density and body composition by dual-energy X-ray absorptiometry.

    PubMed

    Kim, Dae-Weung; Kim, Woo Hyoung; Kim, Myoung Hyoun; Kim, Seong Su; Mo, Eun Hee; Lee, Chun Ho; Kim, Chang Guhn

    2013-01-01

    The purpose of this study was to determine whether antecedent administration of ¹⁸F-fluorodeoxyglucose (FDG) used in positron emission tomography (PET) scanning results in corruption of bone mineral density (BMD) and body composition measured by dual-energy X-ray absorptiometry (DXA) system. DXA measurements of BMD and body composition had been performed twice, before and after ¹⁸F-FDG PET scan in 30 patients. The comparison of pre-values and post-values of all BMD values showed a decrease after the injection. However, only the decrease of whole-body BMD (WB-BMD) was statistically significant (p < 0.05). Whole-body fat mass had increased and whole-body lean body mass had decreased after the injection of ¹⁸F-FDG, and these were statistically significant (p < 0.05). There is statistically significant correlation between the injected ¹⁸F-FDG dose and a decrease of WB-BMD (r = -0.405; p < 0.05). The findings of this study suggest that when both ¹⁸F-FDG PET and DXA measurements for whole-body composition are performed in close-time proximity, ¹⁸F-FDG PET scans should follow the DXA measurement. Otherwise, BMD measurements of total femur or lumbar spine could be followed by ¹⁸F-FDG PET in close-time proximity.

  20. The effects of a 6-month resistance training and dried plum consumption intervention on strength, body composition, blood markers of bone turnover, and inflammation in breast cancer survivors.

    PubMed

    Simonavice, Emily; Liu, Pei-Yang; Ilich, Jasminka Z; Kim, Jeong-Su; Arjmandi, Bahram; Panton, Lynn B

    2014-06-01

    The purpose of this study was to examine the effects of resistance training (RT) and dried plum (DP) consumption on strength, body composition, blood markers of bone, and inflammation in breast cancer survivors (BCS). Twenty-three BCS (RT, n = 12; RT+DP, n = 11), aged 64 ± 7 years, were evaluated at baseline and after 6 months of intervention on the following: muscular strength (chest press and leg extension) via 1-repetition maximums (1RMs); body composition, specifically bone mineral density (BMD) by dual energy X-ray absorptiometry; biochemical markers of bone turnover (bone-specific alkaline phosphatase (BAP), tartrate resistant acid phosphatase (TRAP-5b)); and inflammation (C-reactive protein (CRP)). Target RT prescription was 2 days/week of 10 exercises, including 2 sets of 8-12 repetitions at ∼60%-80% of 1RM. RT+DP also consumed 90 g of DP daily. There were no baseline differences between groups or any group-by-time interactions for any of the variables. BCS increased upper (p < 0.05) (RT: 64 ± 14 to 80 ± 17 kg; RT+DP: 72 ± 23 to 91 ± 20 kg) and lower (p < 0.05) (RT: 69 ± 20 to 87 ± 28 kg; RT+DP: 78 ± 19 to 100 ± 21 kg) body strength. Body composition and BMD improvements were not observed. TRAP-5b decreased in the RT group (p < 0.05) (4.55 ± 1.57 to 4.04 ± 1.63 U/L) and the RT+DP group (p = 0.07) (5.10 ± 2.75 to 4.27 ± 2.03 U/L). Changes in BAP and CRP were not observed. RT was effective for improving biochemical markers of bone turnover and muscular strength in BCS. A longer and higher intensity intervention may be needed to reveal the true effects of RT and DP on body composition and biochemical markers of inflammation.

  1. The effect of dairy intake on bone mass and body composition in early pubertal girls and boys: a randomized controlled trial.

    PubMed

    Vogel, Kara A; Martin, Berdine R; McCabe, Linda D; Peacock, Munro; Warden, Stuart J; McCabe, George P; Weaver, Connie M

    2017-05-01

    Background: Calcium retention increases with increasing body mass index (BMI) on recommended calcium intakes. Dairy foods are an excellent source of essential nutrients that are needed to increase bone mineral content (BMC) and potentially decrease fracture.Objective: We compared children who were overweight with children who were healthy weight for the accrual of bone mass in response to an extra 3 servings dairy/d compared with usual intake.Design: Participants were 240 healthy boys and girls (64%), aged 8-15.9 y (mean ± SD age: 11.8 ± 1.5 y), who consumed low amounts of dairy (<800 mg Ca/d). A total of 181 subjects completed the trial-61% were black, 35% were white, and 4% were other; 50% of subjects were healthy weight [5th through 70th BMI percentiles for age (percentile)], and 50% of subjects were overweight (≥85th percentile). Participants were randomly assigned within BMI categories to receive an 18-mo dairy intervention (3 servings/d equivalent to ∼900 mg Ca/d) or control. Main outcome measures assessed every 6 mo included the total-body bone mineral content and density, cortical and trabecular bone mineral density (BMD), BMC, and bone area at the 4% tibia and anthropometric measures.Results: No significant differences in the change of BMD, BMC, or bone area for the total-body radius, lumbar spine, and total hip were observed between subjects who received the dairy intervention (achieved consumption of 1500 mg Ca/d) and subjects who did not (achieved 1000 mg Ca/d, which represented ∼2 cups milk or other dairy as part of the diet) with the exception of a tibial BMC gain, which was greater in the group who were given dairy (P = 0.02). Body fat was not influenced by the diet assignment.Conclusions: Dairy food interventions generally had no effect on bone mineral acquisition or body composition either within or between weight groups. This study suggests that 2 cups milk or the dairy equivalent is adequate for normal bone gain between ages 8 and 16 y

  2. Body composition and bone health in long-term survivors of acute lymphoblastic leukaemia in childhood and adolescence: the protocol for a cross-sectional cohort study.

    PubMed

    Barr, Ronald; Nayiager, Trishana; Gordon, Christopher; Marriott, Christopher; Athale, Uma

    2015-01-20

    Success in the treatment of young people with cancer, as measured conventionally by survival rates, is mitigated by late effects of therapy that impose a burden of morbidity and limit life expectancy. Among these adverse sequelae are altered body composition, especially obesity, and compromised bone health in the form of osteoporosis and increased fragility. These outcomes are potentially reversible and even preventable. This study will examine measures of body composition and bone health in long-term survivors of acute lymphoblastic leukaemia (ALL) in childhood and adolescence. These measures will be complemented by measures of physical activity and health-related quality of life (HRQL). Survivors of ALL who are at least 10 years from diagnosis, following treatment on uniform protocols, will undergo measurements of body mass index; triceps skin fold thickness and mid-upper arm circumference; fat mass, lean body mass, skeletal muscle mass and bone mineral density by dual energy X-ray absorptiometry; trabecular and cortical bone indices and muscle density by peripheral quantitative CT; physical activity by the Habitual Activity Estimation Scale; and HRQL by Health Utilities Index instruments. Descriptive measures will be used for continuous variables and number (percent) for categorical variables. Associations between variables will be assessed using Fisher's exact t test and the χ(2) test; correlations will be tested by the Pearson correlation coefficient. The study is approved by the institutional research ethics board and is supported by a competitive funding award. Dissemination of the results will occur by presentations to scientific meetings and publications in peer-reviewed journals, and by posting summaries of the results on websites accessed by adolescent and young adult survivors of cancer. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  3. A multinational study to develop universal standardization of whole-body bone density and composition using GE Healthcare Lunar and Hologic DXA systems.

    PubMed

    Shepherd, John A; Fan, Bo; Lu, Ying; Wu, Xiao P; Wacker, Wynn K; Ergun, David L; Levine, Michael A

    2012-10-01

    Dual-energy x-ray absorptiometry (DXA) is used to assess bone mineral density (BMD) and body composition, but measurements vary among instruments from different manufacturers. We sought to develop cross-calibration equations for whole-body bone density and composition derived using GE Healthcare Lunar and Hologic DXA systems. This multinational study recruited 199 adult and pediatric participants from a site in the US (n = 40, ages 6 through 16 years) and one in China (n = 159, ages 5 through 81 years). The mean age of the participants was 44.2 years. Each participant was scanned on both GE Healthcare Lunar and Hologic Discovery or Delphi DXA systems on the same day (US) or within 1 week (China) and all scans were centrally analyzed by a single technologist using GE Healthcare Lunar Encore version 14.0 and Hologic Apex version 3.0. Paired t-tests were used to test the results differences between the systems. Multiple regression and Deming regressions were used to derive the cross-conversion equations between the GE Healthcare Lunar and Hologic whole-body scans. Bone and soft tissue measures were highly correlated between the GE Healthcare Lunar and Hologic and systems, with r ranging from 0.96 percent fat [PFAT] to 0.98 (BMC). Significant differences were found between the two systems, with average absolute differences for PFAT, BMC, and BMD of 1.4%, 176.8 g and 0.013 g/cm(2) , respectively. After cross-calibration, no significant differences remained between GE Healthcare Lunar measured results and the results converted from Hologic. The equations we derived reduce differences between BMD and body composition as determined by GE Healthcare Lunar and Hologic systems and will facilitate combining study results in clinical or epidemiological studies.

  4. Body Composition and Bone Mineral Density of Division 1 Collegiate Football Players, a Consortium of College Athlete Research (C-CAR) Study.

    PubMed

    Bosch, Tyler A; Carbuhn, Aaron; Stanforth, Philip R; Oliver, Jonathan M; Keller, Kathryn A; Dengel, Donald R

    2017-03-08

    The purpose of the present study was to generate normative data for total and regional body composition in Division 1 collegiate football players using dual-energy X-ray absorptiometry (DXA) and examine positional differences in total and regional measurements. Data was used from the Consortium of College Athlete Research (C-CAR) group. Four hundred-sixty-seven players were included in this study. Height, weight, total and regional fat mass, lean mass and bone mineral density were measured in each athlete in the preseason (June-August). Players were categorized by their offensive or defensive position for comparisons. Linemen tended to have the higher fat and lean mass measures (p<0.05 for all) compared to other positions. Positions that mirror each other (ex. Linemen) had similar body composition and body ratios. All positions were classified as overweight or obese based on BMI (>25 kg/m), yet other than offensive and defensive linemen, all positions had healthy percent body fat (13-20%) and low visceral fat mass (<500 g). The data presented here provide normative positional data for total and regional fat mass, lean mass, and bone density in Division 1 collegiate football players. Player position had a significant effect on body composition measures and is likely associated with on-field positional requirements. From a player health perspective, even though all positions had relatively high BMI values, the majority of positions had relatively low body fat and visceral fat, which is important for the health of players during and after their playing career. The increased accuracy and reliability of DXA provides greater information regarding positional differences in college football players compared to other methods.

  5. Diet containing low n-6/n-3 polyunsaturated fatty acids ratio, provided by canola oil, alters body composition and bone quality in young rats.

    PubMed

    Costa, Carlos Alberto Soares da; Carlos, Aluana Santana; Gonzalez, Gabrielle de Paula Lopes; Reis, Rejane Pontes Gaspar; Ribeiro, Mariana Dos Santos; Dos Santos, Aline de Sousa; Monteiro, Alexandra Maria Vieira; de Moura, Egberto Gaspar; Nascimento-Saba, Celly Cristina Alves do

    2012-03-01

    Adipocytes and osteoblasts were derived from a common progenitor, and canola oil intake may have an adipogenic and osteogenic effect. Thus, our objective was to evaluate the effect on adipocyte, lipid profile, glucose homeostasis, and bone of canola oil as main lipid source on the diet during development. After weaning, rats were divided into two groups (n = 10 per group): control (S) and experimental (C) diets containing 7 mL/100 g soybean or canola oil, respectively. At 60 days, body composition, liver and intra-abdominal fat mass, adipocyte morphology, serum analysis, femur and lumbar vertebras density by dual-energy X-ray absorptiometry and computed tomography were determined. Differences were considered significant with P < 0.05. C group showed the following: lower liver (-12%) and intra-abdominal fat mass (-19%) area of adipocyte (-60%), cholesterol (-33%), insulin (-22%), lower total body (-9%) and spine (-33%) bone mineral content and bone area (-7 and -24%, respectively), femur mass (-9%), width of the diaphysis (-6%), femur (-10%) and lumbar vertebrae bone mineral density (-9%), and radiodensity of femoral head (-8%). The lower intra-abdominal adiposity could have more beneficial effects in a short term, since it can be associated with a better insulin sensitivity and lipid profile, than the small reduction in femur and lumbar vertebra density. However, it has to be considered the incremental effect of this reduction along the aging process.

  6. Bone and body composition measurements of small subjects: discrepancies from software for fan-beam dual energy X-ray absorptiometry.

    PubMed

    Koo, Winston W K; Hammami, Mouhanad; Shypailo, Roman J; Ellis, Kenneth J

    2004-12-01

    A piglet model was used to determine the variations in measurements from different software algorithms used in the same type of dual energy X ray absorptiometry (DXA) instruments from the same manufacturer. Forty-one piglets (6190 +/- 5856g, mean +/- SD) were scanned in duplicate with a fan-beam densitometer (Hologic QDR4500A, Hologic Inc, Bedford, MA) in the infant whole body scan mode. The same scans were analyzed with two software versions: vKH6 (validated with carcass chemical measurement) and v11.2 (commercial software from the same densitometer manufacturer). All analysis values were highly correlated (r = 0.90 to 1.00) and DXA values for total weights were almost identical. However, v11.2 results consistently overestimated bone mineral content (49.3 +/- 23.4%, mean +/- SD), bone area (21.1 +/- 8.2%), bone mineral density (24.1 +/- 22.2%), and fat mass (160.9 +/- 71.7%) but underestimated lean mass (-14.3 +/- 5.5%) when compared to the values from vKH6. Differences between software versions increased with heavier piglets. The commercial software for fan-beam DXA measurement of piglets, matched for the size of human infants and young children, has major inaccuracies for bone mineral and body composition that become further exaggerated with increasing weight of the subject.

  7. Selective Androgen Receptor Modulator Treatment Improves Muscle Strength and Body Composition and Prevents Bone Loss in Orchidectomized Rats

    PubMed Central

    Gao, Wenqing; Reiser, Peter J.; Coss, Christopher C.; Phelps, Mitch A.; Kearbey, Jeffrey D.; Miller, Duane D.; Dalton, James T.

    2007-01-01

    The partial agonist activity of a selective androgen receptor modulator (SARM) in the prostate was demonstrated in orchidectomized rats. In the current study, we characterized the full agonist activity of S-3-(4-acetylamino-phenoxy)-2-hydroxy-2-methyl-N-(4-nitro-3-trifluoromethyl-phenyl)-propionamide (a structurally related SARM referred to in other publications and hereafter as S-4) in skeletal muscle, bone, and pituitary of castrated male rats. Twelve weeks after castration, animals were treated with S-4 (3 or 10 mg/kg), dihydrotestosterone (DHT) (3 mg/kg), or vehicle for 8 wk. S-4 (3 and 10 mg/kg) restored soleus muscle mass and strength and levator ani muscle mass to that seen in intact animals. Similar changes were also observed in DHT-treated (3 mg/kg) animals. Compared with the anabolic effects observed in muscle, DHT (3 mg/kg) stimulated prostate and seminal vesicle weights moire than 2-fold greater than that observed in intact controls, whereas S-4 (3 mg/kg) returned these androgenic organs to only 16 and 17%, respectively, of the control levels. S-4 (3 and 10 mg/kg) and DHT (3 mg/kg) restored castration-induced loss in lean body mass. Furthermore, S-4 treatment caused a significantly larger increase in total body bone mineral density than DHT. S-4 (3 and 10 mg/kg) also demonstrated agonist activity in the pituitary and significantly decreased plasma LH and FSH levels in castrated animals in a dose-dependent manner. In summary, the strong anabolic effects of S-4 in skeletal muscle, bone, and pituitary were achieved with minimal pharmacologic effect in the prostate. The tissue-selective pharmacologic activity of SARMs provides obvious advantages over steroidal androgen therapy and demonstrates the promising therapeutic utility that this new class of drugs may hold. PMID:16099859

  8. Cross-sectional study of the association of body composition and physical fitness with bone status in children and adolescents from 11 to 16 years old.

    PubMed

    de Moraes, Anderson Marques; Gonçalves, Ezequiel Moreira; Barbeta, Vinicius Justino de Oliveira; Guerra-Júnior, Gil

    2013-08-09

    The aim of the study was to verify the association between body composition and physical fitness with bone status in children and adolescents. A cross-sectional study was conducted with 300 healthy students (148 boys, 152 girls). Weight, height, fat and fat-free mass, and percentage of body fat (%BF) were evaluated, as were physical fitness (abdominal exercise, flexibility, and horizontal jump tests) and maximum oxygen consumption. Bone parameters (amplitude-dependent speed of sound; AD-SoS) and the Ultrasound Bone Profile Index (UBPI) were evaluated using DBM Sonic BP ultrasonography. In the study group, girls had higher bone parameter values than boys. A univariate analysis assessed in a stepwise multiple regression model was conducted. It showed that for boys, the %BF and height were significant independent variables for AD-SoS and UBPI, but the horizontal jump test only for AD-SoS (adjusted r2 = 0.274; p < 0.001), and pubertal maturation only for UBPI (adjusted r2 = 0.295; p < 0.001). For girls, age and %BF were identified as significant independent variables for AD-SoS and UBPI (adjusted r2 = 0.093; p < 0.001) but height only for AD-SoS (adjusted r2 = 0.408; p < 0.001). Variables related to growth (age, height, and pubertal maturation) are independent positive predictors for the bone parameters in both boys and girls. %BF is an independent negative predictor. For boys, the horizontal jump test was an independent positive predictor for AD-SoS, indicating that physical fitness related to the neuromotor system can influence the amount of bone present.

  9. A family-centered lifestyle intervention to improve body composition and bone mass in overweight and obese children 6 through 8 years: a randomized controlled trial study protocol.

    PubMed

    Cohen, Tamara R; Hazell, Tom J; Vanstone, Catherine A; Plourde, Hugues; Rodd, Celia J; Weiler, Hope A

    2013-04-25

    Childhood obesity gives rise to health complications including impaired musculoskeletal development that associates with increased risk of fractures. Prevention and treatment programs should focus on nutrition education, increasing physical activity (PA), reducing sedentary behaviours, and should monitor bone mass as a component of body composition. To ensure lifestyle changes are sustained in the home environment, programs need to be family-centered. To date, no study has reported on a family-centered lifestyle intervention for obese children that aims to not only ameliorate adiposity, but also support increases in bone and lean muscle mass. Furthermore, it is unknown if programs of such nature can also favorably change eating and activity behaviors. The aim of this study is to determine the effects of a 1 y family-centered lifestyle intervention, focused on both nutrient dense foods including increased intakes of milk and alternatives, plus total and weight-bearing PA, on body composition and bone mass in overweight or obese children. The study design is a randomized controlled trial for overweight or obese children (6-8 y). Participants are randomized to control, standard treatment (StTx) or modified treatment (ModTx). This study is family-centred and includes individualized counselling sessions on nutrition, PA and sedentary behaviors occurring 4 weeks after baseline for 5 months, then at the end of month 8. The control group receives counselling at the end of the study. All groups are measured at baseline and every 3 months for the primary outcome of changes in body mass index Z-scores. At each visit blood is drawn and children complete a researcher-administered behavior questionnaire and muscle function testing. Changes from baseline to 12 months in body fat (% and mass), waist circumference, lean body mass, bone (mineral content, mineral density, size and volumetric density), dietary intake, self-reported PA and sedentary behaviour are examined. This family

  10. Multivariate analysis of lifestyle, constitutive and body composition factors influencing bone health in community-dwelling older adults from Madeira, Portugal.

    PubMed

    Gouveia, Élvio Rúbio; Blimkie, Cameron Joseph; Maia, José António; Lopes, Carla; Gouveia, Bruna Raquel; Freitas, Duarte Luís

    2014-01-01

    This study describes the association between habitual physical activity (PA), other lifestyle/constitutive factors, body composition, and bone health/strength in a large sample of older adults from Madeira, Portugal. This cross-sectional study included 401 males and 401 females aged 60-79 years old. Femoral strength index (FSI) and bone mineral density (BMD) of the whole body, lumbar spine (LS), femoral neck (FN), and total lean tissue mass (TLTM) and total fat mass (TFM) were determined by dual-energy X-ray absorptiometry-DXA. PA was assessed during face-to-face interviews using the Baecke questionnaire and for a sub-sample by Tritrac accelerometer. Demographic and health history information were obtained by telephone interview through questionnaire. The relationship between habitual PA variables and bone health/strength indicators (whole body BMD, FNBMD, LSBMD, and FSI) investigated using Pearson product-moment correlation coefficient was similar for females (0.098≤r≤0.189) and males (0.104≤r≤0.105). Results from standard multiple regression analysis indicated that the primary and most significant predictors for FNBMD in both sexes were age, TLTM, and TFM. For LSBMD, the most significant predictor was TFM in men and TFM, age, and TLTM in females. Our regression model explained 8.3-14.2% and 14.8-29.6% of the total variance in LSBMD and FNBMD for males and females, respectively. This study suggests that habitual PA is minimally but positively associated with BMD and FSI among older adult males and females and that body composition factors like TLTM and TFM are the strongest determinants of BMD and FSI in this population. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Changes in Physical Fitness, Bone Mineral Density and Body Composition During Inpatient Treatment of Underweight and Normal Weight Females with Longstanding Eating Disorders

    PubMed Central

    Bratland-Sanda, Solfrid; Martinsen, Egil W.; Sundgot-Borgen, Jorunn

    2012-01-01

    The purpose of this study was to examine changes in aerobic fitness, muscular strength, bone mineral density (BMD) and body composition during inpatient treatment of underweight and normal weight patients with longstanding eating disorders (ED). Twenty-nine underweight (BMI < 18.5, n = 7) and normal weight (BMI ≥ 18.5, n = 22) inpatients (mean (SD) age: 31.0 (9.0) years, ED duration: 14.9 (8.8) years, duration of treatment: 16.6 (5.5) weeks) completed this prospective naturalistic study. The treatment consisted of nutritional counseling, and 2 × 60 min weekly moderate intensive physical activity in addition to psychotherapy and milieu therapy. Underweight patients aimed to increase body weight with 0.5 kg/week until the weight gain goal was reached. Aerobic fitness, muscular strength, BMD and body composition were measured at admission and discharge. Results showed an increase in mean muscular strength, total body mass, fat mass, and body fat percentage, but not aerobic capacity, among both underweight and normal weight patients. Lumbar spine BMD increased among the underweight patients, no changes were observed in BMD among the normal weight patients. Three out of seven underweight patients were still underweight at discharge, and only three out of nine patients with excessive body fat (i.e., >33%) managed to reduce body fat to normal values during treatment. These results calls for a more individualized treatment approach to achieve a more optimal body composition among both underweight and normal to overweight patients with longstanding ED. PMID:22470294

  12. The association between body composition, 25(OH)D, and PTH and bone mineral density in black African and Asian Indian population groups.

    PubMed

    George, Jaya A; Micklesfield, L K; Norris, S A; Crowther, N J

    2014-06-01

    There are few data on the contribution of body composition to bone mineral density (BMD) in non-Caucasian populations. We therefore studied the contribution of body composition, and possible confounding of 25-hydroxyvitamin D and PTH, to BMD at various skeletal sites in black African (BA) and Asian Indian (AI) subjects. This was a cross-sectional study in Johannesburg, South Africa. BMD, body fat, and lean mass were measured using dual x-ray absorptiometry and abdominal fat distribution by ultrasound in 714 healthy subjects, aged 18-65 years. Whole-body (subtotal), hip, femoral neck, and lumbar spine (lumbar) BMD were significantly higher in BA than AI subjects (P < .001 for all). Whole-body lean mass positively associated with BMD at all sites in both ethnic groups (P < .001 for all) and partially explained the higher BMD in BA females compared with AI females. Whole-body fat mass correlated positively with lumbar BMD in BA (P = .001) and inversely with subtotal BMD in AI subjects (P < .0001). Visceral adiposity correlated inversely with subtotal BMD in the BA (P = .037) and with lumbar BMD in the AI group (P = .005). No association was found between serum 25-hydroxyvitamin D and BMD. PTH was inversely associated with hip BMD in the BA group (P = .01) and with subtotal (P = .002), hip (P = .001), and femoral BMD (P < .0001) in the AI group. Significant differences in whole-body and site-specific BMD between the BA and AI groups were observed, with lean mass the major contributor to BMD at all sites in both groups. The contribution of other components of body composition differed by site and ethnic group.

  13. Current body composition measurement techniques.

    PubMed

    Lemos, Thaisa; Gallagher, Dympna

    2017-10-01

    The current article reviews the most innovative and precise, available methods for quantification of in-vivo human body composition. Body composition measurement methods are continuously being perfected. Ongoing efforts involve multisegmental and multifrequency bioelectrical impedance analysis, quantitative magnetic resonance for total body water, fat, and lean tissue measurements, imaging to further define ectopic fat depots. Available techniques allow for the measurement of fat, fat-free mass, bone mineral content, total body water, extracellular water, total adipose tissue and its subdepots (visceral, subcutaneous, and intermuscular), skeletal muscle, select organs, and ectopic fat depots. There is an ongoing need for methods that yield information on metabolic and biological functions. Based on the wide range of measurable properties, analytical methods and known body composition models, clinicians, and scientists can quantify a number of body components and with longitudinal assessment, can track changes in health and disease with implications for understanding efficacy of nutritional and clinical interventions, diagnosis, prevention, and treatment in clinical settings. With the greater need to understand precursors of health risk beginning prior to conception, a gap exists in appropriate in-vivo measurement methods with application beginning during gestation, that is, fetal development.

  14. Association of Plasma SDF-1 with Bone Mineral Density, Body Composition, and Hip Fractures in Older Adults: The Cardiovascular Health Study.

    PubMed

    Carbone, Laura D; Bůžková, Petra; Fink, Howard A; Robbins, John A; Bethel, Monique; Hamrick, Mark W; Hill, William D

    2017-02-28

    Aging is associated with an increase in circulating inflammatory factors. One, the cytokine stromal cell-derived factor 1 (SDF-1 or CXCL12), is critical to stem cell mobilization, migration, and homing as well as to bone marrow stem cell (BMSC), osteoblast, and osteoclast function. SDF-1 has pleiotropic roles in bone formation and BMSC differentiation into osteoblasts/osteocytes, and in osteoprogenitor cell survival. The objective of this study was to examine the association of plasma SDF-1 in participants in the cardiovascular health study (CHS) with bone mineral density (BMD), body composition, and incident hip fractures. In 1536 CHS participants, SDF-1 plasma levels were significantly associated with increasing age (p < 0.01) and male gender (p = 0.04), but not with race (p = 0.63). In multivariable-adjusted models, higher SDF-1 levels were associated with lower total hip BMD (p = 0.02). However, there was no significant association of SDF-1 with hip fractures (p = 0.53). In summary, circulating plasma levels of SDF-1 are associated with increasing age and independently associated with lower total hip BMD in both men and women. These findings suggest that SDF-1 levels are linked to bone homeostasis.

  15. Moderate Exercise during Pregnancy in Wistar Rats Alters Bone and Body Composition of the Adult Offspring in a Sex-Dependent Manner

    PubMed Central

    Rosa, Brielle V.; Blair, Hugh T.; Vickers, Mark H.; Dittmer, Keren E.; Morel, Patrick C. H.; Knight, Cameron G.; Firth, Elwyn C.

    2013-01-01

    Exercise during pregnancy may have long-lasting effects on offspring health. Musculoskeletal growth and development, metabolism, and later-life disease risk can all be impacted by the maternal environment during pregnancy. The skeleton influences glucose handling through the actions of the bone-derived hormone osteocalcin. The purpose of this study was to test the effects of moderate maternal exercise during pregnancy on the bone and body composition of the offspring in adult life, and to investigate the role of osteocalcin in these effects. Groups of pregnant Wistar rats either performed bipedal standing exercise to obtain food/water throughout gestation but not lactation, or were fed conventionally. Litters were reduced to 8/dam and pups were raised to maturity under control conditions. Whole body dual-energy x-ray absorptiometry, and ex vivo peripheral quantitative computed tomography scans of the right tibia were performed. At study termination blood and tissue samples were collected. Serum concentrations of fully and undercarboxylated osteocalcin were measured, and the relative expression levels of osteocalcin, insulin receptor, Forkhead box transcription factor O1, and osteotesticular protein tyrosine phosphatase mRNA were quantified. Body mass did not differ between the offspring of exercised and control dams, but the male offspring of exercised dams had a greater % fat and lower % lean than controls (p=0.001 and p=0.0008, respectively). At the mid-tibial diaphysis, offspring of exercised dams had a lower volumetric bone mineral density than controls (p=0.01) and in the male offspring of exercised dams the bone: muscle relationship was fundamentally altered. Serum concentrations of undercarboxylated osteocalcin were significantly greater in the male offspring of exercised dams than in controls (p=0.02); however, the relative expression of the measured genes did not differ between groups. These results suggest that moderate exercise during pregnancy can

  16. Body Composition Changes Associated With Methadone Treatment

    PubMed Central

    Sadek, Gamal E.; Chiu, Simon; Cernovsky, Zack Z.

    2016-01-01

    Background: Methadone is associated with a statistically significant increase in BMI in the first 2 years of treatment. Objectives: To evaluate the changes of body composition (bone mass, % fat, % muscle mass, % water, and basal metabolic rate) related to this increase. Patients and Methods: Changes in body composition were monitored, via bioelectrical impedance, in 29 patients in methadone treatment for opiate dependency (age 18 to 44, mean = 29.3, SD = 7.0, 13 men, 16 women). Results: Within one year from admission to treatment, a statistically significant (t-tests, P < 0.05) increase was noted in their body mass index (BMI), % of body fat, average body mass, and average basal metabolic rate, and relative decrease in their % of muscle mass and % of bone mass. Neither absolute bone mass nor muscle mass changed significantly. Conclusions: Physicians involved in care of methadone patients should recommend dietary and lifestyle changes to improve their overall health. PMID:27162765

  17. Posthospital discharge feeding for preterm infants: effects of standard compared with enriched milk formula on growth, bone mass, and body composition.

    PubMed

    Koo, Winston W K; Hockman, Elaine M

    2006-12-01

    Despite the theoretical benefits of nutrient-enriched formula given to preterm infants after hospital discharge, its role in reversing growth deficits after hospital discharge remains poorly defined. The aim was to determine the effect of different formulas on the growth, bone mass, and body composition of preterm infants after hospital discharge. This was a randomized, double blind comparison of a nutrient-enriched formula (EF) and a formula for term infants (TF) given for 1 y after hospital discharge. Compared with the TF, the EF had a higher energy density and higher contents of protein, calcium, and phosphorus (by 10%, 21%, 44%, and 11%, respectively) and higher contents of almost all other nutrients (by >or=10%). Birth weights of the infants were 630-1620 g (median: 1250 g) and gestational ages were 24-34 wk (median: 29 wk). TF resulted in significantly greater weight, length, head circumference measurements, and their respective z scores on the basis of age- and sex-specific norms. At the end of the study, the mean z scores for the corrected age of infants in the TF group were -0.37 for weight, 0.001 for length, and 0.50 for head circumference. The TF group also had significantly greater dual-energy X-ray absorptiometry measured bone and lean and fat mass than did the EF group (P < 0.05 for all comparisons). The use of EF for preterm infants after hospital discharge shows no advantage over TF in growth, bone mineralization, and body composition. More studies are needed to determine the optimal postdischarge nutrition support for preterm infants.

  18. Short Bowel Patients Treated for Two Years with Glucagon-Like Peptide 2: Effects on Intestinal Morphology and Absorption, Renal Function, Bone and Body Composition, and Muscle Function

    PubMed Central

    Jeppesen, P. B.; Lund, P.; Gottschalck, I. B.; Nielsen, H. B.; Holst, J. J.; Mortensen, J.; Poulsen, S. S.; Quistorff, B.; Mortensen, P. B.

    2009-01-01

    Background and aims. In a short-term study, Glucagon-like peptide 2 (GLP-2) has been shown to improve intestinal absorption in short bowel syndrome (SBS) patients. This study describes longitudinal changes in relation to GLP-2 treatment for two years. Methods. GLP-2, 400 micrograms, s.c.,TID, were offered, to eleven SBS patients keeping parenteral support constant. 72-hour nutritional balance studies were performed at baseline, weeks 13, 26, 52 during two years intermitted by an 8-week washout period. In addition, mucosal morphometrics, renal function (by creatinine clearance), body composition and bone mineral density (by DEXA), biochemical markers of bone turnover (by s-CTX and osteocalcin, PTH and vitamin D), and muscle function (NMR, lungfunction, exercise test) were measured. Results. GLP-2 compliance was >93%. Three of eleven patients did not complete the study. In the remaining 8 patients, GLP-2 significantly reduced the fecal wet weight from approximately 3.0 to approximately 2.0 kg/day. This was accompanied by a decline in the oral wet weight intake, maintaining intestinal wet weight absorption and urinary weight constant. Renal function improved. No significant changes were demonstrated in energy intake or absorption, and GLP-2 did not significantly affect mucosal morphology, body composition, bone mineral density or muscle function. Conclusions. GLP-2 treatment reduces fecal weight by approximately 1000 g/d and enables SBS patients to maintain their intestinal fluid and electrolyte absorption at lower oral intakes. This was accompanied by a 28% improvement in creatinine clearance. PMID:19707516

  19. Effects of Randomized Rosuvastatin Compared to Placebo on Bone and Body Composition among HIV-Infected Adults

    PubMed Central

    Erlandson, Kristine M.; Jiang, Ying; Debanne, Sara M.; Mccomsey, Grace A.

    2015-01-01

    Background Statins have a beneficial effect on bone mineral density (BMD) and lean mass in some studies of HIV-uninfected adults, however this has never been investigated in the setting of HIV infection. Design HIV-infected subjects on stable antiretroviral therapy with a low-density lipoprotein cholesterol level of ≤ 130 mg/dL and evidence of heightened immune activation or inflammation were randomized to rosuvastatin 10mg daily or placebo for 96 weeks. Methods This was a prespecified interim analysis at 48 weeks. Between-group and within group differences were compared; multivariable regression models were constructed. Results 72 subjects were randomized to statin therapy and 75 to placebo. Modest 48 week relative increases in trochanter BMD (0.9%; 95% CI: -0.9, 0.6%) and total hip BMD (0.6%; 95% CI: 0.0, 1.1%) in the statin arm were significantly greater than placebo (p<0.05). The relationship between statin use and total hip BMD change was robust to adjustment of age, gender, race, and smoking status (p=0.02) and strengthened by inclusion of baseline (p=0.01) and week 48 change in sTNFR-1 (p=0.009). Relative increases in total body, trunk and limb fat were similar between statin and placebo arms (p ≥0.58). Although a significant gain in leg lean mass was seen in the statin arm, this was not significantly different compared to placebo (p=0.36). Conclusions The improvements seen in total hip BMD after 48 weeks of rosuvastatin therapy support further potential benefits of statin therapy in HIV, beyond a reduction of cardiovascular risk. PMID:25396266

  20. Applications of the direct photon absorption technique for measuring bone mineral content in vivo. Determination of body composition in vivo

    NASA Technical Reports Server (NTRS)

    Cameron, J. R.

    1972-01-01

    The bone mineral content, BMC, determined by monoenergetic photon absorption technique, of 29 different locations on the long bones and vertebral columns of 24 skeletons was measured. Compressive tests were made on bone from these locations in which the maximum load and maximum stress were measured. Also the ultimate strain, modulus of elasticity and energy absorbed to failure were determined for compact bone from the femoral diaphysis and cancellous bone from the eighth through eleventh thoracic vertebrae. Correlations and predictive relationships between these parameters were examined to investigate the applicability of using the BMC at sites normally measured in vivo, i.e. radius and ulna in estimating the BMC and/or strength of the spine or femoral neck. It was found that the BMC at sites on the same bone were highly correlated r = 0.95 or better; the BMC at sites on different bones were also highly interrelated, r = 0.85. The BMC at various sites on the long bones could be estimated to between 10 and 15 per cent from the BMC of sites on the radius or ulna.

  1. High fat diet attenuates hyperglycemia, body composition changes, and bone loss in male streptozotocin-induced type 1 diabetic mice.

    PubMed

    Carvalho, Adriana Lelis; DeMambro, Victoria E; Guntur, Anyonya R; Le, Phuong; Nagano, Kenichi; Baron, Roland; de Paula, Francisco José Albuquerque; Motyl, Katherine J

    2017-06-20

    There is a growing and alarming prevalence of obesity and the metabolic syndrome in type I diabetic patients (T1DM), particularly in adolescence. In general, low bone mass, higher fracture risk, and increased marrow adipose tissue (MAT) are features of diabetic osteopathy in insulin-deficient subjects. On the other hand, type 2 diabetes (T2DM) is associated with normal or high bone mass, a greater risk of peripheral fractures, and no change in MAT. Therefore, we sought to determine the effect of weight gain on bone turnover in insulin-deficient mice. We evaluated the impact of a 6-week high-fat (HFD) rich in medium chain fatty acids or low-fat diet (LFD) on bone mass and MAT in a streptozotocin (STZ)-induced model using male C57BL/6J mice at 8 weeks of age. Dietary intervention was initiated after diabetes confirmation. At the endpoint, lower non-fasting glucose levels were observed in diabetic mice fed with high fat diet compared to diabetic mice fed the low fat diet (STZ-LFD). Compared to euglycemic controls, the STZ-LFD had marked polydipsia and polyphagia, as well as reduced lean mass, fat mass, and bone parameters. Interestingly, STZ-HFD mice had higher bone mass, namely less cortical bone loss and more trabecular bone than STZ-LFD. Thus, we found that a HFD, rich in medium chain fatty acids, protects against bone loss in a T1DM mouse model. Whether this may also translate to T1DM patients who are overweight or obese in respect to maintenance of bone mass remains to be determined through longitudinal studies. © 2017 Wiley Periodicals, Inc.

  2. Oroesophageal Fish Bone Foreign Body

    PubMed Central

    Kim, Heung Up

    2016-01-01

    Fish bone foreign body (FFB) is the most frequent food-associated foreign body (FB) in adults, especially in Asia, versus meat in Western countries. The esophageal sphincter is the most common lodging site. Esophageal FB disease tends to occur more frequently in men than in women. The first diagnostic method is laryngoscopic examination. Because simple radiography of the neck has low sensitivity, if perforation or severe complications requiring surgery are expected, computed tomography should be used. The risk factors associated with poor prognosis are long time lapse after FB involvement, bone type, and longer FB (>3 cm). Bleeding and perforation are more common in FFB disease than in other FB diseases. Esophageal FB disease requires urgent treatment within 24 hours. However, FFB disease needs emergent treatment, preferably within 2 hours, and definitely within 6 hours. Esophageal FFB disease usually occurs at the physiological stricture of the esophagus. The aortic arch eminence is the second physiological stricture. If the FB penetrates the esophageal wall, a life-threatening aortoesophageal fistula can develop. Therefore, it is better to consult a thoracic surgeon prior to endoscopic removal. PMID:27461891

  3. Body composition analysis for healthy Italian vegetarians.

    PubMed

    Siani, V; Mohamed, E I; Maiolo, C; Di Daniele, N; Ratiu, A; Leonardi, A; De Lorenzo, A

    2003-10-01

    The elementary nutritional needs of vegetarians are totally, or in great part, supplied by vegetarian food; thus the body composition of vegetarians could differ from that of omnivorous persons. The objective of the present study was to compare healthy Italian vegetarians to healthy omnivorous individuals in terms of body composition, determined using dual X-ray absorptiometry. The study population consisted of 20 vegetarians [mean age (+/-SD), 34.78+/-15.07 years; mean BMI, 22.41+/-2.15 kg/m(2)] and 10 omnivorous persons matched for age and BMI. We found no significant differences between the two groups in terms of fat mass, lean body mass, soft tissue, bone mineral content, or bone mineral density. These findings suggest that the vegetarian diet does not induce negative alterations in body composition.

  4. The effect of 99mTc on dual-energy X-ray absorptiometry measurement of body composition and bone mineral density.

    PubMed

    Fosbøl, Marie Øbro; Dupont, Anders; Alslev, Louise; Zerahn, Bo

    2013-01-01

    Whether the γ-emission by radioisotopes influences the outcome of dual-energy X-ray absorptiometry (DXA) measurements is not fully elucidated. The aim of this study was to evaluate the effect of antecedent administration of 99mTc on DXA measurements regarding body composition and bone mineral density (BMD) using a K-edge filter scanner. The phantom measurements were performed by placing a urinary bladder phantom containing 40 mL of radioisotope solution on the pelvic region of a whole-body phantom. Twenty-seven patients attending our department for a routine examination involving the administration of a tracer marked with 99mTc were included. The patients underwent a whole-body DXA scan before and within 2 h after tracer injection using a GE/Lunar Prodigy scanner. Control scans were performed on 40 volunteers, who had not received any radioactive tracer. In both phantom and patient measurements, we found a significant dose-related decrease in fat mass and BMD and a corresponding increase in fat-free mass (p < 0.001). Based on the linear regression analysis, we suggest upper dose limits for the measurement of BMD at 0.77 μSv/h and body composition at 0.21 μSv/h (dose rate measured at a distance of 1m from the patient). Caution should be taken when interpreting the results of DXA scans performed in close temporal proximity to procedures involving the administration of 99mTc.

  5. Increasing the number of unloading/reambulation cycles does not adversely impact body composition and lumbar bone mineral density but reduces tissue sensitivity

    NASA Astrophysics Data System (ADS)

    Gupta, Shikha; Manske, Sarah L.; Judex, Stefan

    2013-11-01

    A single exposure to hindlimb unloading leads to changes in body mass, body composition and bone, but the consequences of multiple exposures are not yet understood. Within a 18 week period, adult C57BL/6 male mice were exposed to 1 (1x-HLU), 2 (2x-HLU) or 3 (3x-HLU) cycles of 2 weeks of hindlimb unloading (HLU) followed by 4 weeks of reambulation (RA), or served as ambulatory age-matched controls. In vivo μCT longitudinally tracked changes in abdominal adipose and lean tissues, lumbar vertebral apparent volumetric bone mineral density (vBMD) and upper hindlimb muscle cross-sectional area before and after the final HLU and RA cycle. During the final HLU cycle, significant decreases in total adipose tissue and vertebral vBMD in the three experimental groups occurred such that there were no significant between-group differences at the beginning of the final RA cycle. However, the magnitude of the HLU induced losses diminished in mice undergoing their 2nd or 3rd HLU cycle. Irrespective of the number of HLU/RA cycles, total adipose tissue and vertebral vBMD recovered and were no different from age-matched controls after the final RA period. In contrast, upper hindlimb muscle cross-sectional area was significantly lower than controls in all unloaded groups after the final RA period. These results suggest that tissues in the abdominal region are more resilient to multiple bouts of unloading and more amenable to recovery during reambulation than the peripheral musculoskeletal system.

  6. Effect of strength training and the practice of Alpine skiing on bone mass density, growth, body composition, and the strength and power of the legs of adolescent skiers.

    PubMed

    Alvarez-San Emeterio, Carlos; Antuñano, Nieves Palacios-Gil; López-Sobaler, Ana María; González-Badillo, Juan José

    2011-10-01

    This work examines the influence of practicing strength training and Alpine skiing over 2 years on bone mineral density (BMD), growth, body composition, and the strength and power of the legs of adolescent skiers. The study subjects were 20 adolescent skiers (10 girls and 10 boys) and 19 sedentary adolescents (9 girls and 10 boys), all 13-16 years of age. The BMDs of the lumbar column (L2-L4) and hip (neck of the femur, trochanter, and Ward's triangle) were determined by dual x-ray photon absorptiometry at the beginning and end of the experimental period. The increase in height and the percentage fat and muscular masses of the subjects were also recorded, as was their ability to jump (countermovement jump [CMJ]), their leg strength and power (squat test), and their leg anaerobic power (continuous jump test [CMJ15″]). No significant differences were seen in the increase in height, body weight, or percentage fat mass between the skiers and sedentary subjects, although the boy skiers showed a significant increase in percentage muscular mass (p < 0.05) compared to the sedentary boys. The improvement in the values of the different CMJ variables was significantly greater among the boy skiers than among the sedentary boys (p < 0.001-0.01). The same was true for the girls (p < 0.001), except for CMJ15″. The skiers experienced a significantly greater increase in L2-L4 BMD than the sedentary subjects (boys p < 0.05; girls p < 0.01). These results suggest that Alpine skiing combined with rational strength training involves no special risk for the physical development of young people, has a positive effect on the power and the percentage of muscle mass in the legs, and helps to have a higher bone density in the lumbar spine (L2-L4).

  7. An acute inflammatory response alters bone homeostasis, body composition, and the humoral immune response of broiler chickens.

    PubMed

    Mireles, A J; Kim, S M; Klasing, K C

    2005-04-01

    To quantify the effects of an acute phase response in broilers, chicks were injected with 1 mg/kg Escherichia coli lipopolysaccharide (LPS) at 15 and 23 d. Lipopolysaccharide injection increased feed/gain (P = 0.03), increased liver weight (P = 0.09), and decreased tibia calcium (P = 0.05) and breaking strength (P < 0.04) by d 28. In a second experiment, 3 d postinjection of chicks at d 31, LPS decreased BW (P < 0.01), breast weight (P = 0.08), and tibia breaking strength (P = 0.05), and increased liver weight (P < 0.01), mortality (P = 0.05), and titers to bronchitis and Mycoplasma gallisepticum that were induced by vaccination at hatch or by field exposure, respectively (P = 0.04). For experiment 3, chicks were challenged with LPS at 23d and 27d. Lipopolysaccharide-injected chicks had decreased BW (P = 0.06), feed consumption (P = 0.05), tibia weight (P< 0.01), and breaking strength (P < 0.01), and increased feed/gain (P < 0.01), liver weight (P < 0.01), and plasma ionized calcium level (P = 0.08). For experiment 4, chicks were injected with 0, 0.33, 0.66, 1.00, or 4.25 mg of LPS/kg of BW. There was an inverse relationship between LPS level and BW or bone breaking strength. Experiment 5 compared 4 broiler strains. Strain x LPS interactions were found for bone breaking strength (P = 0.01). Mortality before LPS challenge was inversely correlated to liver weight (r2 = 0.95, P = 0.02) and bone breaking strength (r2 = 0.99, P = 0.01) only after an LPS challenge.

  8. Bone density, body composition, and psychopathology of anorexia nervosa spectrum disorders in DSM-IV vs DSM-5.

    PubMed

    Schorr, Melanie; Thomas, Jennifer J; Eddy, Kamryn T; Dichtel, Laura E; Lawson, Elizabeth A; Meenaghan, Erinne; Lederfine Paskal, Margaret; Fazeli, Pouneh K; Faje, Alexander T; Misra, Madhusmita; Klibanski, Anne; Miller, Karen K

    2017-04-01

    DSM-5 revised the diagnostic criteria for anorexia nervosa (AN) by eliminating the amenorrhea requirement, liberalizing weight and psychological criteria, and adding the formal diagnosis of "atypical AN" for individuals with AN psychological symptoms without low weight. We sought to determine whether bone density (BMD) is impaired in women diagnosed with AN using the new, more liberal, DSM-5 criteria. Cross-sectional study of 168 women, 18 - 45y: (1) AN by DSM-IV (DSM-IV AN) (n = 37), (2) AN by DSM-5 but not DSM-IV criteria (DSM-5 AN) (n = 33), (3) atypical AN (ATYPICAL AN) (n = 77), (4) healthy comparison group (HC) (n = 21). Measurements included dual energy X-ray absorptiometry, Eating Disorder Examination-Questionnaire, Eating Disorder Inventory-2, Hamilton Depression and Anxiety Rating Scales. BMD Z-score <-1.0 was present in 78% of DSM-IV, 82% of DSM-5, and 69% of ATYPICAL. Mean Z-scores were comparably low in DSM-IV and DSM-5, intermediate in ATYPICAL, and highest in HC. Lack of prior low weight or amenorrhea was, but history of overweight/obesity was not, protective against bone loss. Mean lean mass and percent fat mass were significantly lower in all AN groups than HC. DSM-IV, DSM-5, and ATYPICAL had comparable psychopathology. Despite liberalizing diagnostic criteria, many women diagnosed with AN and atypical AN using DSM-5 criteria have low BMD. Presence or history of low weight and/or amenorrhea remain important indications for DXA. Loss of lean mass, in addition to fat mass, is present in all AN groups, and may contribute to low BMD. The deleterious effect of eating disorders on BMD extends beyond those with current low weight and amenorrhea. © 2016 Wiley Periodicals, Inc.(Int J Eat Disord 2017; 50:343-351). © 2016 Wiley Periodicals, Inc.

  9. Effect of recombinant human growth hormone on changes in height, bone mineral density, and body composition over 1-2 years in children with Hurler or Hunter syndrome.

    PubMed

    Polgreen, Lynda E; Thomas, William; Orchard, Paul J; Whitley, Chester B; Miller, Bradley S

    2014-02-01

    Patients with Hurler or Hunter syndrome typically have moderate to severe growth deficiencies despite therapy with allogeneic hematopoietic stem cell transplantation and/or enzyme replacement therapy. It is unknown whether treatment with recombinant human growth hormone (hGH) can improve growth in these children. The objectives of this study were to determine the effects of hGH on growth, bone mineral density (BMD), and body composition in children with Hurler or Hunter syndrome enrolled in a longitudinal observational study. The difference in annual change in outcomes between hGH treated and untreated subjects was estimated by longitudinal regression models that adjusted for age, Tanner stage, and sex where appropriate. We report on 23 participants who completed at least 2 annual study visits (10 [43%] treated with hGH): Hurler syndrome (n=13) average age of 9.8 ± 3.1 years (range 5.3-13.6 years; 54% female) and Hunter syndrome (n=10) average age of 12.0 ± 2.7 years (range 7.0-17.0 years; 0% female). As a group, children with Hurler or Hunter syndrome treated with hGH had no difference in annual change in height (growth velocity) compared to those untreated with hGH. Growth velocity in hGH treated individuals ranged from -0.4 to 8.1cm/year and from 0.3 to 6.6 cm/year in the untreated individuals. Among children with Hunter syndrome, 100% (N=4) of those treated but only 50% of those untreated with hGH had an annual increase in height standard deviation score (SDS). Of the individuals treated with hGH, those with GHD had a trend towards higher annualized growth velocity compared to those without GHD (6.5 ± 1.9 cm/year vs. 3.5 ± 2.1cm/year; p=.050). Children treated with hGH had greater annual gains in BMD and lean body mass. In conclusion, although as a group we found no significant difference in growth between individuals treated versus not treated with hGH, individual response was highly variable and we are unable to predict who will respond to treatment. Thus

  10. Association of physical fitness, body composition, cardiometabolic markers and adherence to the Mediterranean diet with bone mineral density in perimenopausal women. The FLAMENCO project.

    PubMed

    Aparicio, Virginia A; Ruiz-Cabello, Pilar; Borges-Cosic, Milkana; Andrade, Ana; Coll-Risco, Irene; Acosta-Manzano, Pedro; Soriano-Maldonado, Alberto

    2017-05-01

    This study aimed to analyse the association of different components of physical fitness, body composition, cardiometabolic markers and the Mediterranean diet with bone mineral density (BMD) in perimenopausal women, and to test which of these components are independently associated with BMD. The sample comprised 197 perimenopausal women (52.6 ± 4.5 years). Physical fitness was assessed with the "Senior Fitness Test" battery and the handgrip strength and Bruce tests. Fat and lean mass and BMD were measured using dual-energy X-ray absorptiometry. We analysed the markers of metabolic syndrome, C-reactive protein, and components of the Mediterranean diet. Handgrip muscle strength (β = 0.212, P = 0.005), body weight (β = 0.244, P = 0.001), BMI (β = 0.180, P = 0.011) and lean mass (β = 0.379, P < 0.001) were positively associated with BMD. No associations were observed between cardiometabolic markers or the Mediterranean diet with BMD (all P > 0.05). When all relevant indicators of BMD were simultaneously considered, lean mass was the only 1 showing an independent association with BMD (β = 0.392, P < 0.001), explaining 14% of the BMD variability. In conclusion, muscle strength might be a marker of BMD in perimenopausal women. However, lean mass was the only factor independently associated with BMD. Future research to determine whether increasing lean mass through specific exercise-based interventions contributes to increasing BMD is warranted.

  11. Vitamin D status and PTH in young men: a cross-sectional study on associations with bone mineral density, body composition and glucose metabolism.

    PubMed

    Frost, M; Abrahamsen, B; Nielsen, T L; Hagen, C; Andersen, M; Brixen, K

    2010-11-01

    Although vitamin D and bone metabolism are closely related, few studies have addressed the effects of vitamin D status on bone in men at time of peak bone mass. The objectives of this study were to evaluate the prevalence of vitamin D inadequacy in a cross-sectional study in young men and the effects of vitamin D and parathyroid hormone (PTH) on bone mass, bone markers and metabolic function. The study population consisted of 783 men aged 20-29 years. Bone mineral density (BMD) of the total hip, femoral neck and lumbar spine was measured. dual-energy X-ray absorptiometry was used to evaluate total body fat mass (BFAT). Visceral fat mass and abdominal subcutaneous fat mass (ViFM and ScFM) were assessed using magnetic resonance imaging. A radioimmunoassay was used to measure the level of 25-hydroxy vitamin D (25OHD). The prevalence of vitamin deficiency (serum 25OHD < 50 nm) was 6·3% during summer and 43·6% during winter. Serum 25OHD was associated with BMD at all sites and inversely associated with bone-specific alkaline phosphatase and directly with carboxyterminal telopeptide of type-1-collagen. 25OHD and PTH were inversely associated with BFAT, whereas 25OHD also was inversely associated with body mass index, waist-hip ratio, ViFM and ScFM after adjustment for confounders. The associations were found only to be present in participants with insufficient levels of 25OHD. 25-Hydroxy vitamin D and PTH were inversely related to insulin resistance in vitamin-insufficient participants only. No associations between PTH or 25OHD and blood pressure were noted. The study showed a high prevalence of 25OHD deficiency in young, northern European men, which was significantly associated with decreased BMD. PTH and 25OHD were found to be inversely related to the markers of insulin resistance. © 2010 Blackwell Publishing Ltd.

  12. Sire carcass breeding values affect body composition in lambs--2. Effects on fat and bone weight and their distribution within the carcass as measured by computed tomography.

    PubMed

    Anderson, F; Williams, A; Pannier, L; Pethick, D W; Gardner, G E

    2016-06-01

    This study assessed the effect of paternal Australian Sheep Breeding Values for post weaning c-site eye muscle depth (PEMD) and fat depth (PFAT), and post weaning weight (PWWT) on the composition of lamb carcasses. Composition was measured using computed tomography scans of 1665 lambs which were progeny of 85 Maternal, 115 Merino and 155 Terminal sires. Reducing sire PFAT decreased carcass fat weight by 4.8% and increased carcass bone by 1.3% per unit of PFAT (range 5.1 mm). Increasing sire PEMD reduced carcass fat weight by 3.8% in Maternal and 2% in Terminal sired lambs per unit of PEMD (range 4.3 and 7.8 mm), with no impact on bone. Increasing sire PWWT reduced carcass fat weight, but only at some experimental locations. Differences in composition varied between sire types with Maternal sired lambs having the most fat and Merino sired lambs the greatest bone weight. Genetic effects on fatness were greater than the environmental or production factor effects, with the converse true of bone.

  13. The Association between Trunk Body Composition and Spinal Bone Mineral Density in Korean Males versus Females: a Farmers' Cohort for Agricultural Work-Related Musculoskeletal Disorders (FARM) Study.

    PubMed

    Kang, Eun Kyoung; Park, Hee Won; Baek, Sora; Lim, Jae Young

    2016-10-01

    The purpose of this study was proposed to identify the association of trunk body composition with spinal bone mineral density (BMD) in Korean male and female farmers. A total of 523 Korean farmers (259 males, 44 premenopausal females, and 220 postmenopausal females) were recruited. Computed tomography scans were acquired at the mid-L4 vertebral level, and total trunk muscle mass (TMM, cm³), back muscle mass (BMM), and abdominal wall muscle mass (AMM), total trunk fat mass (TFM), visceral fat mass (VFM), and subcutaneous fat mass (SFM) were assessed. Spinal BMD (g/cm²) was estimated from dual-energy X-ray absorptiometry at the L4 level. In terms of muscle mass, spinal BMD was significantly correlated with all the components of the trunk muscle mass (r = 0.171-0.360; P < 0.05, P < 0.001) in female farmers, while only with AMM (r = 0.181; P < 0.01) in male farmers. In terms of fat mass, spinal BMD was significantly correlated with all components of the trunk fat mass (r = 0.142-0.424; P < 0.05, P < 0.001) in male and premenopausal female farmers, while only with VFM (r = 0.132; P < 0.05) in postmenopausal females. Adjusted multivariate regression analysis showed that AMM in male and post-menopausal female farmers was closely associated with spinal BMD. There may be positive associations between trunk muscle and fat mass and spinal BMD with sexual dimorphism, and abdominal wall muscle mass was an explanatory variable closely related to spinal BMD in Korean farmers. Registered at the Clinical Research Information Service (CRIS, http://cris.nih.go.kr), number KCT0000829.

  14. The Association between Trunk Body Composition and Spinal Bone Mineral Density in Korean Males versus Females: a Farmers' Cohort for Agricultural Work-Related Musculoskeletal Disorders (FARM) Study

    PubMed Central

    2016-01-01

    The purpose of this study was proposed to identify the association of trunk body composition with spinal bone mineral density (BMD) in Korean male and female farmers. A total of 523 Korean farmers (259 males, 44 premenopausal females, and 220 postmenopausal females) were recruited. Computed tomography scans were acquired at the mid-L4 vertebral level, and total trunk muscle mass (TMM, cm3), back muscle mass (BMM), and abdominal wall muscle mass (AMM), total trunk fat mass (TFM), visceral fat mass (VFM), and subcutaneous fat mass (SFM) were assessed. Spinal BMD (g/cm2) was estimated from dual-energy X-ray absorptiometry at the L4 level. In terms of muscle mass, spinal BMD was significantly correlated with all the components of the trunk muscle mass (r = 0.171-0.360; P < 0.05, P < 0.001) in female farmers, while only with AMM (r = 0.181; P < 0.01) in male farmers. In terms of fat mass, spinal BMD was significantly correlated with all components of the trunk fat mass (r = 0.142-0.424; P < 0.05, P < 0.001) in male and premenopausal female farmers, while only with VFM (r = 0.132; P < 0.05) in postmenopausal females. Adjusted multivariate regression analysis showed that AMM in male and post-menopausal female farmers was closely associated with spinal BMD. There may be positive associations between trunk muscle and fat mass and spinal BMD with sexual dimorphism, and abdominal wall muscle mass was an explanatory variable closely related to spinal BMD in Korean farmers. Registered at the Clinical Research Information Service (CRIS, http://cris.nih.go.kr), number KCT0000829. PMID:27550488

  15. Influence of Body Weight on Bone Mass, Architecture, and Turnover

    PubMed Central

    Iwaniec, Urszula T.; Turner, Russell T.

    2016-01-01

    Weight-dependent loading of the skeleton plays an important role in establishing and maintaining bone mass and strength. This review focuses on mechanical signaling induced by body weight as an essential mechanism for maintaining bone health. In addition, the skeletal effects of deviation from normal weight are discussed. The magnitude of mechanical strain experienced by bone during normal activities is remarkably similar among vertebrates, regardless of size, supporting the existence of a conserved regulatory mechanism, or mechanostat, that senses mechanical strain. The mechanostat functions as an adaptive mechanism to optimize bone mass and architecture based on prevailing mechanical strain. Changes in weight, due to altered mass, weightlessness (spaceflight), and hypergravity (modeled by centrifugation), induce an adaptive skeletal response. However, the precise mechanisms governing the skeletal response are incompletely understood. Furthermore, establishing whether the adaptive response maintains the mechanical competence of the skeleton has proven difficult, necessitating development of surrogate measures of bone quality. The mechanostat is influenced by regulatory inputs to facilitate non-mechanical functions of the skeleton, such as mineral homeostasis, as well as hormones and energy/nutrient availability that support bone metabolism. While the skeleton is very capable of adapting to changes in weight, the mechanostat has limits. At the limits, extreme deviations from normal weight and body composition are associated with impaired optimization of bone strength to prevailing body size. PMID:27352896

  16. Gonadotropin excretion and body composition.

    PubMed

    Penny, R; Goldstein, I P; Frasier, S D

    1978-02-01

    Urinary follicle stimulating hormone (FSH) and luteinizing hormone (LH) excretion was correlated with calculated total body water (TBW) and body fat (BF) in 140 normal girls and 142 normal boys, ages 3 to 16 years. In girls, there was a significant increase in gonadotropin excretion at the time of a significant increase in BF as a percent of body weight and decrease in TBW as a percent of body weight. Pubertal changes in body composition were seen in girls at the same chronological age and stage of puberty as increased gonadotropin excretion. Similar findings were observed in boys. Pubertal changes in body composition (an increase in TBW as a percent of body weight and decrease of BF as a percent of body weight) accompanied significantly increased gonadotropin excretion. Both developmental changes were seen at the same chronological age and stage of puberty. Our findings are consistent with the hypothesis that characteristic changes in body composition as well as the other hallmarks of puberty, including menarche in girls, result from increased gonadotropin and gonadal steroid secretion. They do not support the hypothesis that changes of body composition trigger increased hypothalamic function and hormone secretion leading to the subsequent events of puberty.

  17. Body composition of female wheelchair athletes.

    PubMed

    Sutton, L; Wallace, J; Goosey-Tolfrey, V; Scott, M; Reilly, T

    2009-04-01

    Wheelchair users undergo changes in body composition as a result of disability. In this study the distribution of bone mineral, lean and fat mass was assessed in highly-trained female wheelchair athletes and a reference group by dual-energy X-ray absorptiometry (DXA). The transferability of anthropometric equations commonly used in female groups was examined in order to establish a suitable field method of body composition assessment. The DXA total-body results indicated no difference between groups, but segmental analyses uncovered regional differences. The wheelchair athletes had greater BMD (p=0.088), more lean mass (p<0.001) and a lower percent fat (p=0.050) in their arms. The reverse was true of the legs (p< or =0.001). The trunk as a whole did not differ between groups. In general, the anthropometric equations showed a lack of transferability to the wheelchair group and tended to underestimate total percent body fat. Anthropometric measures such as body mass index (BMI) and waist girth showed strong correlations with body fat in the wheelchair group (BMI: r=0.90, p=0.001; waist: r=0.83, p=0.001), but weaker results in the reference group. It is recommended that specific anthropometric equations be developed for use in the absence of a 'gold standard' measure of body composition such as DXA.

  18. Chitosan composites for bone tissue engineering--an overview.

    PubMed

    Venkatesan, Jayachandran; Kim, Se-Kwon

    2010-08-02

    Bone contains considerable amounts of minerals and proteins. Hydroxyapatite [Ca₁₀(PO₄)₆(OH)₂] is one of the most stable forms of calcium phosphate and it occurs in bones as major component (60 to 65%), along with other materials including collagen, chondroitin sulfate, keratin sulfate and lipids. In recent years, significant progress has been made in organ transplantation, surgical reconstruction and the use of artificial prostheses to treat the loss or failure of an organ or bone tissue. Chitosan has played a major role in bone tissue engineering over the last two decades, being a natural polymer obtained from chitin, which forms a major component of crustacean exoskeleton. In recent years, considerable attention has been given to chitosan composite materials and their applications in the field of bone tissue engineering due to its minimal foreign body reactions, an intrinsic antibacterial nature, biocompatibility, biodegradability, and the ability to be molded into various geometries and forms such as porous structures, suitable for cell ingrowth and osteoconduction. The composite of chitosan including hydroxyapatite is very popular because of the biodegradability and biocompatibility in nature. Recently, grafted chitosan natural polymer with carbon nanotubes has been incorporated to increase the mechanical strength of these composites. Chitosan composites are thus emerging as potential materials for artificial bone and bone regeneration in tissue engineering. Herein, the preparation, mechanical properties, chemical interactions and in vitro activity of chitosan composites for bone tissue engineering will be discussed.

  19. Differences in bone density, body composition, physical activity, and diet between child gymnasts and untrained children 7-8 years of age.

    PubMed

    Zanker, C L; Gannon, L; Cooke, C B; Gee, K L; Oldroyd, B; Truscott, J G

    2003-06-01

    Strategies that enhance the acquisition of bone mass may be protective against osteoporosis. BMD was compared in 20 artistic gymnasts (10 boys; 10 girls) and 20 untrained children ages 7-8 years. Higher regional values of BMD were observed in female gymnasts than untrained girls. If retained to adulthood, this higher BMD may protect skeletal integrity in later life. Strategies that enhance the acquisition of bone mass in children may assist with the prevention of osteoporosis. This study explored the effects of regular high-impact and weight-bearing activity before the age of 7 years on total and regional bone mineral density (BMD). Twenty artistic gymnasts (10 boys and 10 girls) and 20 untrained children, 7-8 years of age, were recruited. The untrained children were matched to gymnasts by sex, height, weight, and age. Female gymnasts trained 8-10 h per week and had trained regularly for 3-4 years. Male gymnasts trained 4-6 h per week and had trained for 1-2 years. Measurements of bone mineral density were made using DXA for total body BMD (TBBMD); lumbar spine, both areal (aSBMD) and volumetric (vSBMD); total spine; pelvis; arms; and legs. Significant mean differences (8-10%) in aSBMD, vSBMD, arm BMD, and TBBMD were observed between female gymnasts and untrained girls (p < 0.05: aSBMD, vSBMD, and TBBMD body mass (BM); p < 0.01: arm BMD). A nonsignificant trend toward a higher TBBMD/BM and arm BMD was observed in male gymnasts compared with untrained boys. Trends toward a higher BMD within the pelvis, legs, and total spine were also observed in gymnasts. There were no differences in total and regional BMD between untrained boys and untrained girls. The results suggest that gymnastics training before the age of 7 years enhances the acquisition of bone mass at selected skeletal sites. The magnitude of this enhancement seems to be linked to the cumulative volume of such training. If retained during adolescence and young adulthood, a surfeit of bone acquired through

  20. Bone composition: relationship to bone fragility and antiosteoporotic drug effects

    PubMed Central

    Boskey, Adele L

    2013-01-01

    The composition of a bone can be described in terms of the mineral phase, hydroxyapatite, the organic phase, which consists of collagen type I, noncollagenous proteins, other components and water. The relative proportions of these various components vary with age, site, gender, disease and treatment. Any drug therapy could change the composition of a bone. This review, however, will only address those pharmaceuticals used to treat or prevent diseases of bone: fragility fractures in particular, and the way they can alter the composition. As bone is a heterogeneous tissue, its composition must be discussed in terms of the chemical makeup, properties of its chemical constituents and their distributions in the ever-changing bone matrix. Emphasis, in this review, is placed on changes in composition as a function of age and various diseases of bone, particularly osteoporosis. It is suggested that while some of the antiosteoporotic drugs can and do modify composition, their positive effects on bone strength may be balanced by negative ones. PMID:24501681

  1. Bone composition: relationship to bone fragility and antiosteoporotic drug effects.

    PubMed

    Boskey, Adele L

    2013-01-01

    The composition of a bone can be described in terms of the mineral phase, hydroxyapatite, the organic phase, which consists of collagen type I, noncollagenous proteins, other components and water. The relative proportions of these various components vary with age, site, gender, disease and treatment. Any drug therapy could change the composition of a bone. This review, however, will only address those pharmaceuticals used to treat or prevent diseases of bone: fragility fractures in particular, and the way they can alter the composition. As bone is a heterogeneous tissue, its composition must be discussed in terms of the chemical makeup, properties of its chemical constituents and their distributions in the ever-changing bone matrix. Emphasis, in this review, is placed on changes in composition as a function of age and various diseases of bone, particularly osteoporosis. It is suggested that while some of the antiosteoporotic drugs can and do modify composition, their positive effects on bone strength may be balanced by negative ones.

  2. Assessment methods in human body composition.

    PubMed

    Lee, Seon Yeong; Gallagher, Dympna

    2008-09-01

    The present study reviews the most recently developed and commonly used methods for the determination of human body composition in vivo with relevance for nutritional assessment. Body composition measurement methods are continuously being perfected with the most commonly used methods being bioelectrical impedance analysis, dilution techniques, air displacement plethysmography, dual energy X-ray absorptiometry, and MRI or magnetic resonance spectroscopy. Recent developments include three-dimensional photonic scanning and quantitative magnetic resonance. Collectively, these techniques allow for the measurement of fat, fat-free mass, bone mineral content, total body water, extracellular water, total adipose tissue and its subdepots (visceral, subcutaneous, and intermuscular), skeletal muscle, select organs, and ectopic fat depots. There is an ongoing need to perfect methods that provide information beyond mass and structure (static measures) to kinetic measures that yield information on metabolic and biological functions. On the basis of the wide range of measurable properties, analytical methods and known body composition models, clinicians and scientists can quantify a number of body components and with longitudinal assessment, can track changes in health and disease with implications for understanding efficacy of nutritional and clinical interventions, diagnosis, prevention, and treatment in clinical settings. With the greater need to understand precursors of health risk beginning in childhood, a gap exists in appropriate in-vivo measurement methods beginning at birth.

  3. Assessment methods in human body composition

    PubMed Central

    Lee, Seon Yeong; Gallagher, Dympna

    2009-01-01

    Purpose of review The present study reviews the most recently developed and commonly used methods for the determination of human body composition in vivo with relevance for nutritional assessment. Recent findings Body composition measurement methods are continuously being perfected with the most commonly used methods being bioelectrical impedance analysis, dilution techniques, air displacement plethysmography, dual energy X-ray absorptiometry, and MRI or magnetic resonance spectroscopy. Recent developments include three-dimensional photonic scanning and quantitative magnetic resonance. Collectively, these techniques allow for the measurement of fat, fat-free mass, bone mineral content, total body water, extracellular water, total adipose tissue and its subdepots (visceral, subcutaneous, and intermuscular), skeletal muscle, select organs, and ectopic fat depots. Summary There is an ongoing need to perfect methods that provide information beyond mass and structure (static measures) to kinetic measures that yield information on metabolic and biological functions. On the basis of the wide range of measurable properties, analytical methods and known body composition models, clinicians and scientists can quantify a number of body components and with longitudinal assessment, can track changes in health and disease with implications for understanding efficacy of nutritional and clinical interventions, diagnosis, prevention, and treatment in clinical settings. With the greater need to understand precursors of health risk beginning in childhood, a gap exists in appropriate in-vivo measurement methods beginning at birth. PMID:18685451

  4. Bone density and body composition on the Pacific rim: a comparison between Japan-born and U.S.-born Japanese-American women.

    PubMed

    Kin, K; Lee, J H; Kushida, K; Sartoris, D J; Ohmura, A; Clopton, P L; Inoue, T

    1993-07-01

    Bone mineral density (BMD) of total body, spine, and proximal femur and the percentage of body fat in 151 U.S.-born Japanese-American women and 137 Japan-born immigrant Japanese-American women living in San Diego, California were measured using dual-energy x-ray absorptiometry. These data were compared with unpublished data from Japanese women obtained in previous studies in Hamamatsu, Japan. The age-adjusted BMD for the spinal level, femoral neck, Ward's triangle, trochanter, and total body, respectively, of U.S.-born Japanese-American women were 10.2, 9.8, 9.9, 9.2, and 2.7% higher than those of native Japanese women. The U.S.-born Japanese-American women had significantly higher body fat than immigrant Japanese-American women. Furthermore, the immigrant women had higher BMD and higher body fat than their native Japanese counterparts; however, no significant total-body BMD differences were found among the three groups after age, height, and weight were adjusted. The U.S.-born Japanese-American women had BMD values equivalent to those of white normals at the spine and femur. Significant life-style differences between U.S.-born and immigrant Japanese-American women were noted. Weight, exercise, early menarche, and years of lifetime estrogen exposure correlated positively with BMD. The significant negative correlates of BMD were age, smoking, and percentage of body fat. Our study presents data suggesting that immigration to the United States has produced a higher BMD in Japanese-American women that is attributable to changes in life-style and diet.

  5. Bone fragments a body can make

    SciTech Connect

    Stout, S.D.; Ross, L.M. Jr. )

    1991-05-01

    Data obtained from various analytical techniques applied to a number of small bone fragments recovered from a crime scene were used to provide evidence for the occurrence of a fatality. Microscopic and histomorphometric analyses confirmed that the fragments were from a human skull. X-ray microanalysis of darkened areas on the bone fragments revealed a chemical signature that matched the chemical signature of a shotgun pellet recovered at the scene of the crime. The above findings supported the deoxyribonucleic acid (DNA) fingerprint evidence which, along with other evidence, was used to convict a man for the murder of his wife, even though her body was never recovered.

  6. A family-centered lifestyle intervention to improve body composition and bone mass in overweight and obese children 6 through 8 years: a randomized controlled trial study protocol

    PubMed Central

    2013-01-01

    Background Childhood obesity gives rise to health complications including impaired musculoskeletal development that associates with increased risk of fractures. Prevention and treatment programs should focus on nutrition education, increasing physical activity (PA), reducing sedentary behaviours, and should monitor bone mass as a component of body composition. To ensure lifestyle changes are sustained in the home environment, programs need to be family-centered. To date, no study has reported on a family-centered lifestyle intervention for obese children that aims to not only ameliorate adiposity, but also support increases in bone and lean muscle mass. Furthermore, it is unknown if programs of such nature can also favorably change eating and activity behaviors. The aim of this study is to determine the effects of a 1 y family-centered lifestyle intervention, focused on both nutrient dense foods including increased intakes of milk and alternatives, plus total and weight-bearing PA, on body composition and bone mass in overweight or obese children. Methods/design The study design is a randomized controlled trial for overweight or obese children (6–8 y). Participants are randomized to control, standard treatment (StTx) or modified treatment (ModTx). This study is family-centred and includes individualized counselling sessions on nutrition, PA and sedentary behaviors occurring 4 weeks after baseline for 5 months, then at the end of month 8. The control group receives counselling at the end of the study. All groups are measured at baseline and every 3 months for the primary outcome of changes in body mass index Z-scores. At each visit blood is drawn and children complete a researcher-administered behavior questionnaire and muscle function testing. Changes from baseline to 12 months in body fat (% and mass), waist circumference, lean body mass, bone (mineral content, mineral density, size and volumetric density), dietary intake, self-reported PA and sedentary

  7. Skeletal and body composition evaluation

    NASA Technical Reports Server (NTRS)

    Mazess, R. B.

    1983-01-01

    Research on radiation detectors for absorptiometry; analysis of errors affective single photon absorptiometry and development of instrumentation; analysis of errors affecting dual photon absorptiometry and development of instrumentation; comparison of skeletal measurements with other techniques; cooperation with NASA projects for skeletal evaluation in spaceflight (Experiment MO-78) and in laboratory studies with immobilized animals; studies of postmenopausal osteoporosis; organization of scientific meetings and workshops on absorptiometric measurement; and development of instrumentation for measurement of fluid shifts in the human body were performed. Instrumentation was developed that allows accurate and precise (2% error) measurements of mineral content in compact and trabecular bone and of the total skeleton. Instrumentation was also developed to measure fluid shifts in the extremities. Radiation exposure with those procedures is low (2-10 MREM). One hundred seventy three technical reports and one hundred and four published papers of studies from the University of Wisconsin Bone Mineral Lab are listed.

  8. Evaluation of body composition. Current issues.

    PubMed

    Heyward, V H

    1996-09-01

    In the selection of body composition field methods and prediction equations, exercise and health practitioners must consider their clients' demographics. Factors, such as age, gender, level of adiposity, physical activity and ethnicity influence the choice of method and equation. Also, it is important to evaluate the relative worth of prediction equations in terms of the criterion method used to derive reference measures of body composition for equation development. Given that hydrodensitometry, hydrometry and dual-energy x-ray absorptiometry are subject to measurement error and violation of basic assumptions underlying their use, none of these should be considered as a 'gold standard' method for in vivo body composition assessment. Reference methods, based on whole-body, 2-component body composition models, are limited, particularly for individuals whose fat-free body (FFB) density and hydration differ from values assumed for 2-component models. Use of field method prediction equations developed from 2-component model (Siri equation) reference measures of body composition will systematically underestimate relative body fatness of American Indian women, Black men and women, and Hispanic women because the average FFB density of these ethnic groups exceeds the assumed value (1.1 g/ml). Thus, some researchers have developed prediction equations based on multicomponent model estimates of body composition that take into account interindividual variability in the water, mineral, and protein content of the FFB. One multicomponent model approach adjusts body density (measured via hydrodensitometry) for total body water (measured by hydrometry) and/or total body mineral estimated from bone mineral (measured via dual-energy x-ray absorptiometry). Skinfold (SKF), bioelectrical impedance analysis (BIA), and near-infrared interactance (NIR) are 3 body composition methods used in clinical settings. Unfortunately, the overwhelming majority of field method prediction equations

  9. Muscle fibre type composition and body composition in hammer throwers.

    PubMed

    Terzis, Gerasimos; Spengos, Konstantinos; Kavouras, Stavros; Manta, Panagiota; Georgiadis, Giorgos

    2010-01-01

    Aim of the present study was to describe the muscle fibre type composition and body composition of well-trained hammer throwers. Six experienced hammer throwers underwent the following measurements: one repetition maximum in squat, snatch, and clean, standing broad jump, backward overhead shot throw and the hammer throw. Dual x-ray absorptiometry was used for body composition analysis. Fibre type composition and cross sectional area was determined in muscle biopsy samples of the right vastus lateralis. Eight physical education students served as a control group. One repetition maximum in squat, snatch and clean for the hammer throwers was 245 ± 21, 132 ± 13 and 165 ± 12kg, respectively. Lean body mass was higher in hammer throwers (85.9 ± 3. 9kg vs. 62.7 ± 5.1kg (p < 0.01). The percentage area of type II muscle fibres was 66.1 ± 4% in hammer throwers and 51 ± 8% in the control group (p < 0.05). Hammer throwers had significantly larger type IIA fibres (7703 ± 1171 vs. 5676 ± 1270μm(2), p < 0.01). Hammer throwing performance correlated significantly with lean body mass (r = 0.81, p < 0.05). These data indicate that hammer throwers have larger lean body mass and larger muscular areas occupied by type II fibres, compared with relatively untrained subjects. Moreover, it seems that the enlarged muscle mass of the hammer throwers contributes significantly to the hammer throwing performance. Key pointsWell-trained hammer throwers had increased lean body mass, higher type IIA muscle fibres cross sectional areas, as well as higher bone mineral density, compared to controls.Increased lean body mass was closely related with hammer throwing performance.The relative high percentage of type IIX muscle fibres in vastus lateralis in hammer throwers warrants further investigation.

  10. Muscle Fibre Type Composition and Body Composition in Hammer Throwers

    PubMed Central

    Terzis, Gerasimos; Spengos, Konstantinos; Kavouras, Stavros; Manta, Panagiota; Georgiadis, Giorgos

    2010-01-01

    Aim of the present study was to describe the muscle fibre type composition and body composition of well-trained hammer throwers. Six experienced hammer throwers underwent the following measurements: one repetition maximum in squat, snatch, and clean, standing broad jump, backward overhead shot throw and the hammer throw. Dual x-ray absorptiometry was used for body composition analysis. Fibre type composition and cross sectional area was determined in muscle biopsy samples of the right vastus lateralis. Eight physical education students served as a control group. One repetition maximum in squat, snatch and clean for the hammer throwers was 245 ± 21, 132 ± 13 and 165 ± 12kg, respectively. Lean body mass was higher in hammer throwers (85.9 ± 3. 9kg vs. 62.7 ± 5.1kg (p < 0.01). The percentage area of type II muscle fibres was 66.1 ± 4% in hammer throwers and 51 ± 8% in the control group (p < 0.05). Hammer throwers had significantly larger type IIA fibres (7703 ± 1171 vs. 5676 ± 1270μm2, p < 0.01). Hammer throwing performance correlated significantly with lean body mass (r = 0.81, p < 0.05). These data indicate that hammer throwers have larger lean body mass and larger muscular areas occupied by type II fibres, compared with relatively untrained subjects. Moreover, it seems that the enlarged muscle mass of the hammer throwers contributes significantly to the hammer throwing performance. Key points Well-trained hammer throwers had increased lean body mass, higher type IIA muscle fibres cross sectional areas, as well as higher bone mineral density, compared to controls. Increased lean body mass was closely related with hammer throwing performance. The relative high percentage of type IIX muscle fibres in vastus lateralis in hammer throwers warrants further investigation. PMID:24149393

  11. Effects of chronic acceleration on body composition

    NASA Technical Reports Server (NTRS)

    Pitts, G. C.

    1982-01-01

    Studies of the centrifugation of adult rats showed an unexpected decrease in the mass of fat-free muscle and bone, in spite of the added load induced by centrifugation. It is suggested that the lower but constant fat-free body mass was probably regulated during centrifugation. Rats placed in weightless conditions for 18.5 days gave indirect but strong evidence that the muscle had increased in mass. Other changes in the rats placed in weightless conditions included a smaller fraction of skeletal mineral, a smaller fraction of water in the total fat-free body, and a net shift of fluid from skin to viscera. Adult rats centrifuged throughout the post-weaning growth period exhibited smaller masses of bone and central nervous system (probably attributable to slower growth of the total body), and a larger mass of skin than controls at 1 G. Efforts at simulating the effects of weightlessness or centrifugation on the body composition of rats by regimens at terrestrial gravity were inconclusive.

  12. Effects of chronic acceleration on body composition

    NASA Technical Reports Server (NTRS)

    Pitts, G. C.

    1982-01-01

    Studies of the centrifugation of adult rats showed an unexpected decrease in the mass of fat-free muscle and bone, in spite of the added load induced by centrifugation. It is suggested that the lower but constant fat-free body mass was probably regulated during centrifugation. Rats placed in weightless conditions for 18.5 days gave indirect but strong evidence that the muscle had increased in mass. Other changes in the rats placed in weightless conditions included a smaller fraction of skeletal mineral, a smaller fraction of water in the total fat-free body, and a net shift of fluid from skin to viscera. Adult rats centrifuged throughout the post-weaning growth period exhibited smaller masses of bone and central nervous system (probably attributable to slower growth of the total body), and a larger mass of skin than controls at 1 G. Efforts at simulating the effects of weightlessness or centrifugation on the body composition of rats by regimens at terrestrial gravity were inconclusive.

  13. Influences of dietary vitamin D restriction on bone strength, body composition and muscle in rats fed a high-fat diet: involvement of mRNA expression of MyoD in skeletal muscle.

    PubMed

    Oku, Yuno; Tanabe, Rieko; Nakaoka, Kanae; Yamada, Asako; Noda, Seiko; Hoshino, Ayumi; Haraikawa, Mayu; Goseki-Sone, Masae

    2016-06-01

    Vitamin D insufficiency is associated with a greater risk of osteoporosis and also influences skeletal muscle functions, differentiation and development. The present study investigated the influences of vitamin D restriction on the body composition, bone and skeletal muscle in rats fed a high-fat diet. Sprague-Dawley strain male rats (11weeks old) were divided into four groups and fed experimental diets: a basic control diet (Cont.), a basic control diet with vitamin D restriction (DR), a high-fat diet (F) and a high-fat diet with vitamin D restriction (FDR). At 28days after starting the experimental diets, the visceral fat mass was significantly increased in the F group compared with Cont. group, and the muscle mass tended to decrease in the DR group compared with Cont. group. The total volume of the femur was significantly lower in the DR group compared with Cont. group, and the bone mineral density (BMD) of the femur was significantly lower in the FDR group compared with F group. MyoD is one of the muscle-specific transcription factors. The levels of mRNA expression of MyoD of the gastrocnemius and soleus muscles from the DR group were reduced markedly compared with those from the Cont. group. In conclusion, our findings revealed the influences of a vitamin D-restricted high-fat diet on the bone strength, body composition and muscle. Further studies on vitamin D insufficiency in the regulation of muscle as well as fat and bone metabolism would provide valuable data for the prevention of lifestyle-related disorders, including osteoporosis and sarcopenia.

  14. Porous composite prosthetic pylon for integration with skin and bone

    PubMed Central

    Pitkin, Mark; Raykhtsaum, Grigory; Pilling, John; Galibin, Oleg V.; Protasov, Mikhail V.; Chihovskaya, Julie V.; Belyaeva, Irina G.; Blinova, Miralda I.; Yudintseva, Natalia M.; Potokin, Igor L.; Pinaev, George P.; Moxson, Vladimir; Duz, Volodimir

    2012-01-01

    This article presents results of the further development and testing of the “skin and bone integrated pylon” (SBIP-1) for percutaneous (through skin) connection of the residual bone with an external limb prosthesis. We investigated a composite structure (called the SBIP-2) made of titanium particles and fine wires using mathematical modeling and mechanical testing. Results showed that the strength of the pylon was comparable with that of anatomical bone. In vitro and in vivo animal studies on 30 rats showed that the reinforcement of the composite pylon did not compromise its previously shown capacity for inviting skin and bone cell ingrowth through the device. These findings provide evidence for the safe and reliable long-term percutaneous transfer of vital and therapeutic substances, signals, and necessary forces and moments from a prosthetic device to the body. PMID:17943684

  15. Effect of physical activity on body composition

    SciTech Connect

    Zanzi, I; Ellis, K J; Aloia, J; Cohn, S H

    1980-01-01

    It has been noted that the deleterious effects on bone calcium of prolonged periods of inactivity, such as bed rest, are halted following resumption of activity. It would seem possible in light of the observations that have been made, that exercise may stimulate bone formation and perhaps counter, to some extent, bone loss as observed in the osteoporosis of aging. The present study was designed to determine the relation between total body calcium, total body potassium and bone mineral content of the radius to the degree of physical activity in a population of normal subjects. Measurement of the calcium was made by in-vivo total body neutron activation analysis. Bone mineral content of the radius and total body potassium, (an index of lean body mass) were measured by photon absorptiometry and the whole body counter, respectively.

  16. Composites structures for bone tissue reconstruction

    SciTech Connect

    Neto, W.; Santos, João; Avérous, L.; Schlatter, G.; Bretas, Rosario

    2015-05-22

    The search for new biomaterials in the bone reconstitution field is growing continuously as humane life expectation and bone fractures increase. For this purpose, composite materials with biodegradable polymers and hydroxyapatite (HA) have been used. A composite material formed by a film, nanofibers and HA has been made. Both, the films and the non-woven mats of nanofibers were formed by nanocomposites made of butylene adipate-co-terephthalate (PBAT) and HA. The techniques used to produce the films and nanofibers were spin coating and electrospinning, respectively. The composite production and morphology were evaluated. The composite showed an adequate morphology and fibers size to be used as scaffold for cell growth.

  17. Composites structures for bone tissue reconstruction

    NASA Astrophysics Data System (ADS)

    Neto, W.; Santos, João.; Avérous, L.; Schlatter, G.; Bretas, Rosario.

    2015-05-01

    The search for new biomaterials in the bone reconstitution field is growing continuously as humane life expectation and bone fractures increase. For this purpose, composite materials with biodegradable polymers and hydroxyapatite (HA) have been used. A composite material formed by a film, nanofibers and HA has been made. Both, the films and the non-woven mats of nanofibers were formed by nanocomposites made of butylene adipate-co-terephthalate (PBAT) and HA. The techniques used to produce the films and nanofibers were spin coating and electrospinning, respectively. The composite production and morphology were evaluated. The composite showed an adequate morphology and fibers size to be used as scaffold for cell growth.

  18. Effect of reducing the dose of stavudine on body composition, bone density, and markers of mitochondrial toxicity in HIV-infected subjects: a randomized, controlled study.

    PubMed

    McComsey, G A; Lo Re, V; O'Riordan, M; Walker, U A; Lebrecht, D; Baron, E; Mounzer, K; Frank, I

    2008-04-15

    Stavudine is widely used in developing countries. Lipoatrophy and mitochondrial toxicity have been linked to stavudine use, but it is unclear whether switching to a lower dose can reduce these toxicities while maintaining human immunodeficiency virus (HIV) suppression. HIV-infected subjects receiving standard-dose stavudine with undetectable HIV type 1 RNA for > or =6 months were randomized (ratio, 3:2) to receive one-half of the stavudine dose (switch arm) or to maintain the dose (continuation arm) while continuing to receive all other prescribed antiretrovirals. The following measurements were obtained at baseline and week 48: fasting lactate, pyruvate, and lipid levels; results of whole-body dual-energy x-ray absorptiometry; and mitochondrial DNA (mtDNA) measurements in fat and peripheral blood mononuclear cells. Change from baseline to week 48 was compared within and between groups. Twenty-four patients (79% of whom were men and 79% of whom were African American; median age, 45 years) were enrolled in the study, 15 were enrolled in the switch arm, and 9 were enrolled in the continuation arm. The median duration of stavudine treatment was 55 months (range, 21-126 months). The median CD4 cell count was 558 cells/mm(3) (range, 207-1698 cells/mm(3)). At baseline, the study arms had similar demographic characteristics and laboratory indices, except for body mass index, total lean body mass, and triglyceride levels (all of which were higher in the switch arm). Three patients (2 in the switch arm) discontinued the study because of study-unrelated reasons. CD4 cell counts remained unchanged. At 48 weeks, 6 patients (4 [27%] in the switch arm and 2 [22%] in the continuation arm) had detectable HIV RNA levels (median, 972 copies/mL; range, 60-49,400 copies/mL). All patients with detectable HIV RNA levels reported significant lapses in treatment adherence; none exhibited mutations in HIV genotype. After the treatment switch, significant changes from study entry to week 48

  19. SEPARATION OF NEWLY FORMED BONE FROM OLDER COMPACT BONE REVEALS CLEAR COMPOSITIONAL DIFFERENCES IN BONE MATRIX

    PubMed Central

    Midura, Ronald J.; Midura, Sharon B.; Su, Xiaowei; Gorski, Jeffrey P.

    2011-01-01

    In long bone diaphyses, woven bone forms first and then transitions into a more mineralized compact bone tissue. Prior evidence suggests that the non-collagenous protein composition of woven bone may be distinct from that of more mature bone tissue, particularly with respect to a diverse group of phosphorylated, extracellular matrix proteins. To critically test this hypothesis, we developed an in situ approach to isolate newly formed bone from more mature bone within the same long bone, and combine this anatomical approach with Western blotting to make relative comparisons of 7 phosphorylated matrix proteins important for bone physiology and biomineralization. Interestingly, 75 kDa bone sialoprotein (BSP), 63 kDa osteopontin, and the 75 kDa form of bone acidic glycoprotein-75 (BAG-75) were enriched in primary bone as opposed to more mature cortical bone, while osteonectin, fetuin A, matrix extracellular phosphoglycoprotein (MEPE) and dentin matrix protein-1 (DMP-1) appeared to be equally distributed between these two bone tissue compartments. Analyses also revealed the presence of larger sized forms of osteopontin (and to a lesser degree BSP) mostly in newly formed bone, while larger forms of BAG-75 were mostly detected in more mature cortical bone. Smaller sized forms of DMP-1 and BAG-75 were detected in both newly formed and more mature bone tissue extracts, and they are likely the result of proteolytic processing in vivo. Intact DMP-1 (97 kDa) was only detected in unmineralized matrix extracts. These findings indicate that newly formed bone exhibits a non-collagenous matrix protein composition distinct from that of more mature compact bone even within the same long bone, and suggest that the temporal fate of individual non-collagenous proteins is variable in growing bone. PMID:21958842

  20. Observational study of caloric and nutrient intake, bone density, and body composition in infants and children with Spinal Muscular Atrophy type I

    PubMed Central

    Poruk, Katherine E; Davis, Rebecca Hurst; Smart, Abby L; Chisum, Benjamin S; LaSalle, Bernie A; Chan, Gary M; Gill, Gurmail; Reyna, Sandra P; Swoboda, Kathryn J

    2012-01-01

    Clinical experience supports a critical role for nutrition in patients with spinal muscular atrophy (SMA). Three-day dietary intake records were analyzed for 156 visits in 47 SMA type I patients, 25 males and 22 females, ages 1 month-13 years (median 9.8 months) and compared to dietary reference intakes for gender and age along with anthropometric measures and dual-energy x-ray absorptiometry (DEXA) data. Using standardized growth curves, twelve patients met criteria for failure to thrive (FTT) with weight for age < 3rd percentile; eight met criteria based on weight for height. Percentage of body fat mass was not correlated with weight for height and weight for age across percentile categories. DEXA analysis further demonstrated that SMA type I children have higher fat mass and lower fat free mass than healthy peers (p<0.001). DEXA and dietary analysis indicates a strong correlation with magnesium intake and bone mineral density (r=0.65, p<0.001). Average caloric intake for 1–3 year olds was 68.8 ±15.8 kcal/kg - 67% of peers’ recommended intake. Children with SMA type I may have lower caloric requirements than healthy age-matched peers, increasing risk for over and undernourished states and deficiencies of critical nutrients. Standardized growth charts may overestimate FTT status in SMA type I. PMID:22832342

  1. Composite Hydrogels for Bone Regeneration

    PubMed Central

    Tozzi, Gianluca; De Mori, Arianna; Oliveira, Antero; Roldo, Marta

    2016-01-01

    Over the past few decades, bone related disorders have constantly increased. Among all pathological conditions, osteoporosis is one of the most common and often leads to bone fractures. This is a massive burden and it affects an estimated 3 million people only in the UK. Furthermore, as the population ages, numbers are due to increase. In this context, novel biomaterials for bone fracture regeneration are constantly under development. Typically, these materials aim at favoring optimal bone integration in the scaffold, up to complete bone regeneration; this approach to regenerative medicine is also known as tissue engineering (TE). Hydrogels are among the most promising biomaterials in TE applications: they are very flexible materials that allow a number of different properties to be targeted for different applications, through appropriate chemical modifications. The present review will focus on the strategies that have been developed for formulating hydrogels with ideal properties for bone regeneration applications. In particular, aspects related to the improvement of hydrogels’ mechanical competence, controlled delivery of drugs and growth factors are treated in detail. It is hoped that this review can provide an exhaustive compendium of the main aspects in hydrogel related research and, therefore, stimulate future biomaterial development and applications. PMID:28773392

  2. Aging human body: changes in bone, muscle and body fat with consequent changes in nutrient intake.

    PubMed

    JafariNasabian, Pegah; Inglis, Julia E; Reilly, Wendimere; Kelly, Owen J; Ilich, Jasminka Z

    2017-07-01

    Aging affects almost all physiological processes, but changes in body composition and body phenotype are most observable. In this review, we focus on these changes, including loss of bone and muscle and increase in body fat or redistribution of the latter, possibly leading to osteosarcopenic obesity syndrome. We also address low-grade chronic inflammation, prevalent in aging adults and a cause of many disorders including those associated with body composition. Changes in dietary intake and nutritional requirements of older individuals, that all may lead to some disturbances on tissue and organ levels, are discussed as well. Finally, we discuss the hormonal changes in the aging body, considering each of the tissues, bone, muscle and fat as separate endocrine organs, but yet in the continuous interface and communication with each other. Although there are still many unanswered questions in this field, this review will enable the readers to better understand the aging human body and measures needing to be implemented toward reducing impaired health and disability in older individuals. © 2017 Society for Endocrinology.

  3. Differential effects of calorie restriction and involuntary wheel running on body composition and bone structure in diet-induced obese rats

    USDA-ARS?s Scientific Manuscript database

    Weight reduction is recommended to reduce obesity-related health disorders. This study investigated the differential effects of weight reduction through caloric restriction and/or physical activity on bone structure and molecular characteristics of bone metabolism in an obese rat model. We tested th...

  4. Monolithic and assembled polymer-ceramic composites for bone regeneration.

    PubMed

    Nandakumar, Anandkumar; Cruz, Célia; Mentink, Anouk; Tahmasebi Birgani, Zeinab; Moroni, Lorenzo; van Blitterswijk, Clemens; Habibovic, Pamela

    2013-03-01

    The rationale for the use of polymer-ceramic composites for bone regeneration stems from the natural composition of bone, with collagen type I and biological apatite as the main organic and inorganic constituents, respectively. In the present study composite materials of PolyActive™ (PA), a poly(ethylene oxide terephthalate)/poly(butylene terephtalate) co-polymer, and hydroxyapatite (HA) at a weight ratio of 85:15 were prepared by rapid prototyping (RP) using two routes. In the first approach pre-extruded composite filaments of PA-HA were processed using three-dimensional fibre deposition (3DF) (conventional composite scaffolds). In the second approach PA scaffolds were fabricated using 3DF and combined with HA pillars produced inside stereolithographic moulds that fitted inside the pores of the PA three-dimensional structure (assembled composite scaffolds). Analysis of calcium and phosphate release in a simulated physiological solution, not containing calcium or phosphate, revealed significantly higher values for the HA pillars compared with other scaffolds. Release in simulated body fluid saturated with respect to HA did not show significant differences among the different scaffolds. Human mesenchymal stromal cells were cultured on polymer (3DF), conventional composite (3DF-HA) and assembled composite (HA assembled in 3DF) scaffolds and assessed for morphology, metabolic activity, DNA amount and gene expression of osteogenic markers using real time quantitative polymerase chain reaction (PCR). Scanning electron microscopy images showed that the cells attached to and infiltrated all the scaffolds. Assembled composites had a higher metabolic activity compared with 3DF-HA scaffolds while no significant differences were observed in DNA amounts. Gene expression of osteopontin in the assembled composite was significantly higher compared with the conventional composites. The strategy of composite fabrication by assembly appears to be a promising alternative to the

  5. Asymmetry in body composition in female hockey players.

    PubMed

    Krzykała, M; Leszczyński, P

    2015-08-01

    The aim of the study was to determine if a sport in which one side of the body is dominant, like field hockey, influences regional body composition and bone mineral density (BMD) distribution in particular body segments, and whether the sporting level is a determining factor. Dual energy X-ray absorptiometry (DXA) method (Lunar Prodigy Advance; General Electric, Madison, USA) with the whole body scan was used to measure bone mineral density, fat mass and lean mass in 31 female field hockey players divided according to their sporting level. The morphological asymmetry level was assessed between two body sides and body segments in athletes from the National Team (n=17) and from the Youth Team (n=14) separately and between groups. Bone mineral density in the lower extremity and of the trunk was significantly asymmetric in favor of the left side in the National Team. In the case of the Youth Team, only the trunk BMD indicated clear left-right difference with left side dominance. Both the lean mass and fat mass values were relatively higher on the left side of all body segments and it related to both analyzed groups of athletes. The present study shows that playing field hockey contributes to laterality in body composition and BMD and that the sporting level is a determining factor. In most cases the left side dominated. A greater asymmetry level was observed in more experienced female field hockey players.

  6. Body composition and calcium metabolism in adult treated coeliac disease.

    PubMed Central

    Bodé, S; Hassager, C; Gudmand-Høyer, E; Christiansen, C

    1991-01-01

    Twenty two treated adult patients with coeliac disease (aged 20-70 years) were examined. Body composition was assessed from anthropometry and directly measured by dual photon absorptiometry. Bone mineral content was measured in the spine (dual photon absorptiometry) and at two forearm sites (single photon absorptiometry). Compared with age matched healthy subjects, treated coeliac patients had lower body mass index (-5%, p less than 0.05) and lower directly measured total body fat mass (-30%, p less than 0.001). They also had decreased bone mineral content (-9 to -13%, p less than 0.01) in the spine and in the forearms. The serum concentrations of albumin, D vitamin binding protein, and iron were reduced (-6 to -22%, p less than 0.01), but otherwise blood and urine analyses were normal. We conclude that this group of treated adult coeliac patients had a reduced fat mass and bone mineral content compared with the general population. PMID:1752465

  7. Photoacoustic and ultrasound characterization of bone composition

    NASA Astrophysics Data System (ADS)

    Lashkari, Bahman; Yang, Lifeng; Liu, Lixian; Tan, Joel W. Y.; Mandelis, Andreas

    2015-02-01

    This study examines the sensitivity and specificity of backscattered ultrasound (US) and backscattering photoacoustic (PA) signals for bone composition variation assessment. The conventional approach in the evaluation of bone health relies on measurement of bone mineral density (BMD). Although, a crucial and probably the most important parameter, BMD is not the only factor defining the bone health. New trends in osteoporosis research, also pursue the changes in collagen content and cross-links with bone diseases and aging. Therefore, any non-invasive method that can assess any of these parameters can improve the diagnostic tools and also can help with the biomedical studies on the diseases themselves. Our previous studies show that both US and PA are responsive to changes in the BMD, PA is, in addition, sensitive to changes in the collagen content of the bone. Measurements were performed on bone samples before and after mild demineralization and decollagenization at the exact same points. Results show that combining both modalities can enhance the sensitivity and specificity of diagnostic tool.

  8. Composite bone substitutes prepared by two methods

    NASA Astrophysics Data System (ADS)

    Lee, Hoe Y.

    A variety of ceramics and polymers exists that can be used as bone substitute materials with desirable properties such as biocompatibility and osteoconductivity. A key feature missing in these bone substitutes, or scaffolds, is the ability to bear loads. This work explored two methods for solving this problem. The first used cancellous bone taken from bovine femoral bone to create a natural scaffold through a heat treating process that eliminated the organic components and sintered the bone minerals, known as hydroxyapatite, together. The strength and Young's modulus of the natural scaffold were greatly improved after polymer infiltration with polymethylmethacrylate. Unfortunately, compression testing revealed that there was not a good interfacial bond between the mineral and polymer phases. The second method employed a freeze-casting technique to create synthetic hydroxyapatite scaffolds that have an aligned lamellar microstructure. By varying the amount of hydroxyapatite in the initial slurry mixture and the cooling rate, synthetic scaffolds with a range of porosities and strengths was produced. The highest solid loading and fastest cooling rate produced a scaffold with a strength and modulus approaching that of cortical bone. Further study is required to produce a two phase composite that is chemically bonded together for optimal performance. The synthetic scaffolds, with their tunable mechanical properties and ease of fabrication, make them a promising material for a load-bearing bone substitute.

  9. Association of Hip Bone Mineral Density and Body Composition in a Rural Indian Population: The Andhra Pradesh Children and Parents Study (APCAPS)

    PubMed Central

    Matsuzaki, Mika; Kulkarni, Bharati; Kuper, Hannah; Wells, Jonathan C.; Ploubidis, George B.; Prabhakaran, Poornima; Gupta, Vipin; Walia, Gagandeep Kaur; Aggarwal, Aastha; Prabhakaran, Dorairaj; Davey Smith, George; Radhakrishna, Kankipati Vijaya; Ben-Shlomo, Yoav; Kinra, Sanjay

    2017-01-01

    Background Fat mass is variably associated with bone mass, possibly due to differential mechanical and biological effects of fat mass. We examined the association of fat mass with bone mass in a lean population. Objective To investigate association between hip bone mineral density and fat and lean mass in a cross-sectional study from southern India. Design The Andhra Pradesh Children and Parents Study is a prospective cohort study in Hyderabad, India. In 2009–2012, the study collected data on anthropometric measures, bone mineral density (BMD), fat mass, and lean mass measured by dual-energy x-ray absorptiometry, and socioeconomic data of the adult participants (n = 1760; mean age = 34.9 years old for women; 2130 and 32.3 for men). Results The median BMI (kg/m2) was 20.1 kg/m2. Women had relatively higher fat mass as compared to men. In models adjusted for lean mass, there was an association between hip bone mineral density and fat mass in women (β (95% confidence interval): premenopausal 0.025 (0.006 to 0.045); postmenopausal 0.045 (0.014 to 0.076)) but not in men (0.001 (-0.012 to 0.0014)). The association between hip BMD and fat mass was stronger in postmenopausal than premenopausal women. Hip BMD was consistently associated with lean mass, in both men and women. Conclusions In this relatively lean population, lean mass was more consistently associated with hip BMD than fat mass. Weight gain through lean mass improvement may be a more reliable public health strategy for strengthening bone health in transitional settings. PMID:28060826

  10. Association of Hip Bone Mineral Density and Body Composition in a Rural Indian Population: The Andhra Pradesh Children and Parents Study (APCAPS).

    PubMed

    Matsuzaki, Mika; Kulkarni, Bharati; Kuper, Hannah; Wells, Jonathan C; Ploubidis, George B; Prabhakaran, Poornima; Gupta, Vipin; Walia, Gagandeep Kaur; Aggarwal, Aastha; Prabhakaran, Dorairaj; Davey Smith, George; Radhakrishna, Kankipati Vijaya; Ben-Shlomo, Yoav; Kinra, Sanjay

    2017-01-01

    Fat mass is variably associated with bone mass, possibly due to differential mechanical and biological effects of fat mass. We examined the association of fat mass with bone mass in a lean population. To investigate association between hip bone mineral density and fat and lean mass in a cross-sectional study from southern India. The Andhra Pradesh Children and Parents Study is a prospective cohort study in Hyderabad, India. In 2009-2012, the study collected data on anthropometric measures, bone mineral density (BMD), fat mass, and lean mass measured by dual-energy x-ray absorptiometry, and socioeconomic data of the adult participants (n = 1760; mean age = 34.9 years old for women; 2130 and 32.3 for men). The median BMI (kg/m2) was 20.1 kg/m2. Women had relatively higher fat mass as compared to men. In models adjusted for lean mass, there was an association between hip bone mineral density and fat mass in women (β (95% confidence interval): premenopausal 0.025 (0.006 to 0.045); postmenopausal 0.045 (0.014 to 0.076)) but not in men (0.001 (-0.012 to 0.0014)). The association between hip BMD and fat mass was stronger in postmenopausal than premenopausal women. Hip BMD was consistently associated with lean mass, in both men and women. In this relatively lean population, lean mass was more consistently associated with hip BMD than fat mass. Weight gain through lean mass improvement may be a more reliable public health strategy for strengthening bone health in transitional settings.

  11. Association between Human Body Composition and Periodontal Disease.

    PubMed

    Salekzamani, Yagoub; Shirmohammadi, Adileh; Rahbar, Mohammad; Shakouri, Seyed-Kazem; Nayebi, Farough

    2011-01-01

    Obesity in humans might increase the risk of periodontitis. The aim of the present study was to examine the relationship between body composition of males and their periodontal status. AS total of 150 males (aged 30-60) were selected: 31 were periodontally healthy, 45 had gingivitis, 39 had initial periodontitis, and 35 suffered from established periodontitis. BMI (body mass index), WC (waist circumference), and body composition parameters (consisting of body water, body fat, and skeletal muscle and bone mass) were measured. After adjusting for age, history of diabetes, smoking, physical activity status, and socioeconomic status, statistically significant correlations were found between periodontitis and BMI, WC, and body composition. There was only a statistically significant difference between the periodontal health and established periodontitis; that is, periodontal disease in mild forms (gingivitis) and initial periodontitis do not influence these variables (BMI, WC, and body composition parameters) and only the severe form of the disease influences the variables. These data suggest that there is a considerable association between severe forms of periodontal disease in males and their body composition, but this preliminary finding needs to be confirmed in more extensive studies.

  12. Gravitational effects on body composition in birds

    NASA Technical Reports Server (NTRS)

    Smith, A. H.; Sanchez P., O.; Burton, R. R.

    1975-01-01

    Gallinaceous birds, presenting a wide range of body size, were adapted physiologically to hyperdynamic environments, provided by chronic centrifugation. Chemical composition was measured directly on prepared carcasses, which were anatomically comparable, and more amenable to analysis than the intact body. Body mass and body fat decreased arithmetically with increasing field strength and also with increasing body mass. Water content of lean tissue increased in hyperdynamic environments, but irrespectively of body size.

  13. Bone Composition Diagnostics: Photoacoustics Versus Ultrasound

    NASA Astrophysics Data System (ADS)

    Yang, Lifeng; Lashkari, Bahman; Mandelis, Andreas; Tan, Joel W. Y.

    2015-06-01

    Ultrasound (US) backscatter from bones depends on the mechanical properties and the microstructure of the interrogated bone. On the other hand, photoacoustics (PA) is sensitive to optical properties of tissue and can detect composition variation. Therefore, PA can provide complementary information about bone health and integrity. In this work, a comparative study of US backscattering and PA back-propagating signals from animal trabecular bones was performed. Both methods were applied using a linear frequency modulation chirp and matched filtering. A 2.2 MHz ultrasonic transducer was employed to detect both signals. The use of the frequency domain facilitates spectral analysis. The variation of signals shows that in addition to sensitivity to mineral changes, PA exhibits sensitivity to changes in the organic part of the bone. It is, therefore, concluded that the combination of both modalities can provide complementary detailed information on bone health than either method separately. In addition, comparison of PA and US depthwise images shows the higher penetration of US. Surface scan images exhibit very weak correlation between US and PA which could be caused by the different signal generation origins in mechanical versus optical properties, respectively.

  14. Whole-body vibration augments resistance training effects on body composition in postmenopausal women.

    PubMed

    Fjeldstad, Cecilie; Palmer, Ian J; Bemben, Michael G; Bemben, Debra A

    2009-05-20

    Age-related changes in body composition are well-documented with a decrease in lean body mass and a redistribution of body fat generally observed. Resistance training alone has been shown to have positive effects on body composition, however, these benefits may be enhanced by the addition of a vibration stimulus. The purpose of this study was to determine the effects of 8 months of resistance training with and without whole-body vibration (WBV) on body composition in sedentary postmenopausal women. Fifty-five women were assigned to resistance only (RG, n=22), vibration plus resistance (VR, n=21) or non-exercising control (CG, n=12) groups. Resistance training (3 sets 10 repetitions 80% strength) was performed using isotonic weight training equipment and whole-body vibration was done with the use of the power plate (Northbrooke, IL) vibration platform for three times per week for 8 months. Total and regional body composition was assessed from the total body DXA scans at baseline (pre) and after 8 months (post) of training. In the VR group, total % body fat decreased from pre- to post-time points (p<0.05), whereas, the CG group had a significant increase in total % body fat (p<0.05). Both training groups exhibited significant increases in bone free lean tissue mass for the total body, arm and trunk regions from pre to post (p<0.05). CG did not show any changes in lean tissue. In older women, resistance training alone and with whole-body vibration resulted in positive body composition changes by increasing lean tissue. However, only the combination of resistance training and whole-body vibration was effective for decreasing percent body fat.

  15. In vivo animal models of body composition in aging

    SciTech Connect

    Yasumura, S. |; Jones, K.; Spanne, P.; Schidlovsky, G.; Wielopolski, L.; Ren, X.; Glaros, D.; Xatzikonstantinou, Y. |

    1992-12-31

    We developed several techniques that provide data on body elemental composition from in vivo measurements in rats. These methods include total body potassium by whole-body counting of endogenous {sup 40}K; total body calcium (TBCa), sodium and chloride by in vivo neutron activation analysis and total body phosphorus (TBP) and nitrogen (TBN) by photon activation analysis. These elements provide information on total body fat, total body protein and skeletal mass. Measurements were made in 6-, 12- and 24-month-old rats. TBN Increased slightly between 6 and 12 months but was significantly lower by 24 months, indicating a substantial loss in total body protein. Working at the National Synchrotron light Source, we studied rat femurs by computed microtomography (CMT), and the elemental profile of the femur cortex by synchrotron-radiation induced X-ray emission (SRIXE). Although there were no significant changes in TBCA and TBP, indices of skeletal mass, CMT revealed a marked increase in the size and number of cavities in the endosteal region of the femur cortex with increasing age. The SRIXE analysis of this cortical bone revealed a parallel decrease in the endosteal Ca/P ratio. Thus, there are major alterations in bone morphology and regional elemental composition despite only modest changes in total skeletal mass.

  16. [BODY COMPOSITION AND SOMATOTYPE IN UNIVERSITY TRIATHLETES].

    PubMed

    Guillén Rivas, Laura; Mielgo-Ayuso, Juan; Norte-Navarro, Aurora; Cejuela, Roberto; Cabañas, María Dolores; Martínez-Sanz, José Miguel

    2015-08-01

    the triathlon is an endurance sport and individual that consists of three different disciplines: swimming, cycling and running. The aim of the study was to describe and analyze the anthropometric characteristics, body composition and somatotype in male college triathletes. observational and descriptive study of anthropometric characteristics, body composition and somatotype of 39 male college athletes from 24 ± 4,5 years, participants in the championship of Spain university triathlon sprint mode (Alicante 2010), from different universities Spanish. According to anthropometric measurement techniques adopted by the International Society for the Advancement of Kinanthropometry (ISAK) and the Spanish Group Cineantropometría (GREC) by an accredited assessor ISAK Level II. we find athletes of stunting, where you destacanvalores below normal in the subscapularis, supraspinatus, triceps and biceps skinfold, percentage of muscle mass (45.27 ± 3.29%) and fat mass (10.22 ± 2.92%) and bone (16.65 ± 1.34%) and where mesomorphy somatotipo predominates. the triathletes and runners have lower size that cyclists and swimmers. Triathletes and cyclists show a similar weight, less than swimmers line, and more than 10km runners. Iliac crest skinfold, abdominal and thigh front cyclists are less than triathletes. The percentage of fat mass of runners triathletes and swimmers are similar, however the muscle mass of athletes usually less than cyclists but similar to other forms. Somatotype resembles triathlete cyclist (mesomorph). The corridor is ectomorph and mesomorph-swimmer can range from a ectomorph mesomorph. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  17. Nutritional assessment with body composition measurements

    SciTech Connect

    Shizgal, H.M.

    1987-09-01

    The measurement of body composition by multiple isotope dilution provides an accurate and precise measure of both the nutritional state and the response to nutritional support. A multiple isotope dilution technique has been developed that permits measurement of the three major components of body composition: body fat, extracellular mass (ECM), and body cell mass (BCM). Normal body composition was defined by data obtained in 25 healthy volunteers. Malnutrition is characterized by a loss of BCM and an expansion of the ECM, and as a result the lean body mass is not significantly different from normal. The loss of body weight with malnutrition therefore often reflects the loss of body fat. The utility of body composition measurements was demonstrated by determining the effect of total parenteral nutrition on body composition to determine the relationship between caloric intake and the change in the BCM. A statistically significant relationship was developed which demonstrated that a caloric intake in the range of 30-40 cal/kg/day is required for maintenance. To restore a depleted or malnourished BCM requires a caloric intake in excess of that required for maintenance. The measurement of body composition by multiple isotope dilution is complex and time consuming, and requires specialized laboratory facilities and specially trained personnel. As a result, these measurements are not suited for routine patient management, but should rather be reserved for research purposes.

  18. Hydroxyapatite/PMMA composites as bone cements.

    PubMed

    Chu, K T; Oshida, Y; Hancock, E B; Kowolik, M J; Barco, T; Zunt, S L

    2004-01-01

    Currently PMMA is the polymer most commonly used as a bone cement for the fixation of total hip prostheses. Ideally, a bone cement material should be easy to handle, biologically compatible, nonsupporting of oral microbial growth, available in the particulate and molded forms, easy to obtain, nonallergenic, adaptable to a broad range of dental and medical applications, in possession of high compressive strength, and effective in guided tissue regenerative procedures. One of the problems associated with the conventional types of bone cement used is their unsatisfactory mechanical and exothermic reaction properties. The purpose of this in vitro study was to investigate and compare the mechanical properties (three-point bending strength, energy-to-break, and modulus of elasticity) and physical properties (setting time, water sorption, and exothermic heat) of HA/PMMA (HA group) and bovine-bone originated HA/PMMA (BB group) composites. Composites samples were fabricated by admixing method. It was found that the addition of HA and BB particles increased the water sorption. Generally 10 v/o 20 v/o HA and 0 v/o to 10 v/o BB ratio combinations had significant beneficial effects on the mechanical properties. The heat generated during polymerization was influenced by the different admixtures. More than 40 v/o HA and 40 v/o BB should be mixed into PMMA to reduce the peak temperature. Overall evaluation indicated that the BB group had better properties than the HA group.

  19. A Biodegradable and Proteolipid Bone Repair Composite,

    DTIC Science & Technology

    1983-11-10

    Report) OI. SUPPLEMENTARY NOTES None ".. .% " I. KEY WORDS (Continue on rever e ode it necessary And identify by block number) . .’ ~ Polylactide ...composite bone repair agent consisting of the copolymer polylactide and * . polyglycolide was completed with an acidic phospholipid. The resulting...Book Co, New York, pp. 1135-1143, 1979. 35. Hollinger JO, "Preliminary Report on the Osteogenic Potential of a Bio- degradable Copolymer of Polylactide

  20. Arthroscopic Curettage and Bone Grafting of Bone Cysts of the Talar Body.

    PubMed

    Lui, Tun Hing

    2017-02-01

    Talar bone cysts can develop as a result of osteochondral lesions of the talus. This can be a source of deep ankle pain. Open debridement and bone grafting of the bone cysts requires extensive soft tissue dissection and malleolar osteotomy. Removal of normal cartilage of the talus is frequently required to approach the bone cysts. Alternatively, the cysts can be grafted arthroscopically with minimal disruption of the normal cartilage surface. The key to success is careful preoperative planning with a computed tomogram of the ankle. Bone cyst of the posterior half of the talar body can be grafted via posterior ankle endoscopy. Bone cyst of the anterior half of the talar body can be debrided and grafted via anterior talar osseous portals. The purpose of this technical note is to describe a minimally invasive approach of curettage and bone grafting of the talar bone cysts with preservation of the articular surfaces.

  1. The frequency of low muscle mass and its overlap with low bone mineral density and lipodystrophy in individuals with HIV--a pilot study using DXA total body composition analysis.

    PubMed

    Buehring, Bjoern; Kirchner, Elizabeth; Sun, Zhiyuan; Calabrese, Leonard

    2012-01-01

    As a result of the advances in antiretroviral therapy, the life span of human immunodeficiency virus (HIV)-infected patients has increased dramatically. Attendant to these effects are signs of premature aging with notable changes in the musculoskeletal system. Although changes in bone and fat distribution have been studied extensively, far less is known about changes in muscle. This study examined the extent of low muscle mass (LMM) and its relationship with low bone mineral density (BMD) and lipodystrophy (LD) in HIV-positive males. As such, HIV-positive males on therapy or treatment naive underwent dual-energy X-ray absorptiometry total body composition measurements. Appendicular lean mass/(height)2 and lowest 20% of residuals from regression analysis were used to define LMM. BMD criteria defined osteopenia/osteoporosis, and the percent central fat/percent lower extremity ratio defined LD. Several potential risk factors were assessed through chart review. Sixty-six males (57 with treatment and 9 treatment naive) volunteered. Treated individuals were older than naive (44 vs 34 yr) and had HIV longer (108 vs 14 mo). When definitions for sarcopenia (SP) in elderly individuals were applied, the prevalence of LMM was 21.9% and 18.8% depending on the definition used. Low BMD was present in 68.2% of participants. LD with a cutoff of 1.5 and 1.961 was present in 54.7% and 42.2% of participants, respectively. LMM and LD were negatively associated. In conclusion, this study shows that LMM is common in males with HIV and that SP affecting muscle function could be present in a substantial number of individuals. Future research needs to examine what impact decreased muscle mass and function has on morbidity, physical function, and quality of life in individuals with HIV. Copyright © 2012 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  2. Evaluation of Body Composition: Why and How?

    USDA-ARS?s Scientific Manuscript database

    Evaluation of human body composition in vivo remains a critical component in the assessment of nutritional status of an individual.Whereas traditional measurements of standing height and body weight provide information on body mass index and, hence, the risk of some chronic diseases, advanced techno...

  3. Analysis of bone protein and mineral composition in bone disease using synchrotron infrared microspectroscopy

    NASA Astrophysics Data System (ADS)

    Miller, Lisa M.; Hamerman, David; Chance, Mark R.; Carlson, Cathy S.

    1999-10-01

    Infrared (IR) microspectroscopy is an analytical technique that is highly sensitive to the chemical components in bone. The brightness of a synchrotron source permits the examination of individual regions of bone in situ at a spatial resolution superior to that of a conventional infrared source. At Beamlines U10B and U2B at the National Synchrotron Light Source, we are examining the role of bone chemical composition in bone disease. In osteoarthritis (OA), it has been demonstrated that the bone underlying the joint cartilage (subchondral bone) becomes thickened prior to cartilage breakdown. Using synchrotron infrared microspectroscopy, we have examined the chemical composition of the subchondral bone in histologically normal and OA monkeys. Results demonstrate that the subchondral bone of OA monkeys is significantly more mineralized than the normal bone, primarily due to an increase in carbonate concentration in the OA bone. High resolution analysis indicates that differences in carbonate content are uniform throughout the subchondral bone region, suggesting that high subchondral bone carbonate may be a marker for OA. Conversely, increases in phosphate content are more pronounced in the region near the marrow space, suggesting that, as the subchondral bone thickens, the bone also becomes more mineralized. Osteoporosis is a disease characterized by a reduction in bone mass and a skeleton that is more susceptible to fracture. To date, it is unclear whether bone remodeled after the onset of osteoporosis differs in chemical composition from older bone. Using fluorescence-assisted infrared microspectroscopy, we are comparing the composition of monkey bone remodeled at various time points after the onset of osteoporosis (induced by ovariectomy). We find that the chemical composition of bone remodeled one year after ovariectomy and one year prior to necropsy is similar to normal bone. On the other hand, bone remodeled two years after ovariectomy is less mature, indicated

  4. Developing bioactive composite scaffolds for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Chen, Yun

    Poly(L-lactic acid) (PLLA) films were fabricated using the method of dissolving and evaporation. PLLA scaffold was prepared by solid-liquid phase separation of polymer solutions and subsequent sublimation of solvent. Bonelike apatite coating was formed on PLLA films, PLLA scaffolds and poly(glycolic acid) (PGA) scaffolds in 24 hours through an accelerated biomimetic process. The ion concentrations in the simulated body fluid (SBF) were nearly 5 times of those in human blood plasma. The apatite formed was characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The apatite formed in 5SBF was similar in morphology and composition to that formed in the classical biomimetic process employing SBF or 1.5SBF, and similar to that of natural bone. This indicated that the biomimetic apatite coating process could be accelerated by using concentrated simulated body fluid at 37°C. Besides saving time, the accelerated biomimetic process is particularly significant to biodegradable polymers. Some polymers which degrade too fast to be coated with apatite by a classical biomimetic process, for example PGA, could be coated with bone-like apatite in an accelerated biomimetic process. Collagen and apatite were co-precipitated as a composite coating on poly(L-lactic acid) (PLLA) in an accelerated biomimetic process. The incubation solution contained collagen (1g/L) and simulated body fluid (SBF) with 5 times inorganic ionic concentrations as human blood plasma. The coating formed on PLLA films and scaffolds after 24 hours incubation was characterized using EDX, XRD, FTIR, and SEM. It was shown that the coating contained carbonated bone-like apatite and collagen, the primary constituents of natural bone. SEM showed a complex composite coating of submicron bone-like apatite particulates combined with collagen fibrils. This work provided an efficient process to obtain

  5. Scaling of human body composition to stature: new insights into body mass index.

    PubMed

    Heymsfield, Steven B; Gallagher, Dympna; Mayer, Laurel; Beetsch, Joel; Pietrobelli, Angelo

    2007-07-01

    Although Quetelet first reported in 1835 that adult weight scales to the square of stature, limited or no information is available on how anatomical body compartments, including adipose tissue (AT), scale to height. We examined the critical underlying assumptions of adiposity-body mass index (BMI) relations and extended these analyses to major anatomical compartments: skeletal muscle (SM), bone, residual mass, weight (AT+SM+bone), AT-free mass, and organs (liver, brain). This was a cross-sectional analysis of 2 body-composition databases: one including magnetic resonance imaging and dual-energy X-ray absorptiometry (DXA) estimates of evaluated components in adults (total n=411; organs=76) and the other a larger DXA database (n=1346) that included related estimates of fat, fat-free mass, and bone mineral mass. Weight, primary lean components (SM, residual mass, AT-free mass, and fat-free mass), and liver scaled to height with powers of approximately 2 (all P<0.001); bone and bone mineral mass scaled to height with powers >2 (2.31-2.48), and the fraction of weight as bone mineral mass was significantly (P<0.001) correlated with height in women. AT scaled weakly to height with powers of approximately 2, and adiposity was independent of height. Brain mass scaled to height with a power of 0.83 (P=0.04) in men and nonsignificantly in women; the fraction of weight as brain was inversely related to height in women (P=0.002). These observations suggest that short and tall subjects with equivalent BMIs have similar but not identical body composition, provide new insights into earlier BMI-related observations and thus establish a foundation for height-normalized indexes, and create an analytic framework for future studies.

  6. Repair of long bone defects with demineralized bone matrix and autogenous bone composite

    PubMed Central

    Ozdemir, Mehmet T; Kir, Mustafa Ç

    2011-01-01

    Background: Repair of diaphyseal bone defects is a challenging problem for orthopedic surgeons. In large bone defects the quantity of harvested autogenous bone may not be sufficient to fill the gap and then the use of synthetic or allogenic grafts along with autogenous bone becomes mandatory to achieve compact filling. Finding the optimal graft mixture for treatment of large diaphyseal defects is an important goal in contemporary orthopedics and this was the main focus of this study. The aim of this study is to investigate the efficacy of demineralized bone matrix (DBM) and autogenous cancellous bone (ACB) graft composite in a rabbit bilateral ulna segmental defect model. Materials and Methods: Twenty-seven adult female rabbits were divided into five groups. A two-centimeter piece of long bone on the midshaft of the ulna was osteotomized and removed from the rabbits’ forearms. In group 1 (n=7) the defects were treated with ACB, in group 2 (n=7) with DBM, and in group 3 (n=7) with ACB and DBM in the ratio of 1:1. Groups 4 and 5, with three rabbits in each group, were the negative and positive controls, respectively. Twelve weeks after implantation the rabbits were sacrificed and union was evaluated with radiograph (Faxitron), dual-energy x-ray absorptiometry (DEXA), and histological methods (decalcified sectioning). Results: Union rates and the volume of new bone in the different groups were as follows: group 1 - 92.8% union and 78.6% new bone; group 2 - 72.2% union and 63.6% new bone; and group 3 - 100% union and 100% new bone. DEXA results (bone mineral density [BMD]) were as follows: group 1 - 0.164 g/cm2, group 2 - 0.138 g/cm2, and group 3 - 0.194 g/cm2. Conclusions: DBM serves as a graft extender or enhancer for autogenous graft and decreases the need of autogenous bone graft in the treatment of bone defects. In this study, the DBM and ACB composite facilitated the healing process. The union rate was better with the combination than with the use of any one of

  7. Selective Androgen Receptor Modulator (SARM) Treatment Prevents Bone Loss and Reduces Body Fat in Ovariectomized Rats

    PubMed Central

    Kearbey, Jeffrey D.; Gao, Wenqing; Narayanan, Ramesh; Fisher, Scott J.; Wu, Di; Miller, Duane D.; Dalton, James T.

    2007-01-01

    Purpose This study was conducted to examine the bone and body composition effects of S-4, an arylpropionamide derived Selective Androgen Receptor Modulator (SARM) in an ovariectomy induced model of accelerated bone loss. Methods One hundred twenty female Sprague-Dawley rats aged to twenty-three weeks were randomly assigned to twelve treatment groups. Drug treatment was initiated immediately following ovariectomy and continued for one hundred twenty days. Whole body bone mineral density (BMD), body composition, and lumbar vertebrae BMD were measured by dual energy x-ray absorptiometry. More stringent regional pQCT and biomechanical strength testing was performed on excised femurs. Results We found that S-4 treatment maintained whole body and trabecular BMD, cortical content, and increased bone strength while decreasing body fat in these animals. Conclusions The data presented herein show the protective skeletal effects of S-4. Our previous reports have shown the tissue selectivity and muscle anabolic activity of S-4. Together these data suggest that S-4 could reduce the incidence of fracture via two different mechanisms (i.e., via direct effects in bone and reducing the incidence of falls through increased muscle strength). This approach to fracture reduction would be advantageous over current therapies in these patients which are primarily antiresorptive in nature. PMID:17063395

  8. Reference Values for Body Composition and Anthropometric Measurements in Athletes

    PubMed Central

    Santos, Diana A.; Dawson, John A.; Matias, Catarina N.; Rocha, Paulo M.; Minderico, Cláudia S.; Allison, David B.; Sardinha, Luís B.; Silva, Analiza M.

    2014-01-01

    Background Despite the importance of body composition in athletes, reference sex- and sport-specific body composition data are lacking. We aim to develop reference values for body composition and anthropometric measurements in athletes. Methods Body weight and height were measured in 898 athletes (264 female, 634 male), anthropometric variables were assessed in 798 athletes (240 female and 558 male), and in 481 athletes (142 female and 339 male) with dual-energy X-ray absorptiometry (DXA). A total of 21 different sports were represented. Reference percentiles (5th, 25th, 50th, 75th, and 95th) were calculated for each measured value, stratified by sex and sport. Because sample sizes within a sport were often very low for some outcomes, the percentiles were estimated using a parametric, empirical Bayesian framework that allowed sharing information across sports. Results We derived sex- and sport-specific reference percentiles for the following DXA outcomes: total (whole body scan) and regional (subtotal, trunk, and appendicular) bone mineral content, bone mineral density, absolute and percentage fat mass, fat-free mass, and lean soft tissue. Additionally, we derived reference percentiles for height-normalized indexes by dividing fat mass, fat-free mass, and appendicular lean soft tissue by height squared. We also derived sex- and sport-specific reference percentiles for the following anthropometry outcomes: weight, height, body mass index, sum of skinfold thicknesses (7 skinfolds, appendicular skinfolds, trunk skinfolds, arm skinfolds, and leg skinfolds), circumferences (hip, arm, midthigh, calf, and abdominal circumferences), and muscle circumferences (arm, thigh, and calf muscle circumferences). Conclusions These reference percentiles will be a helpful tool for sports professionals, in both clinical and field settings, for body composition assessment in athletes. PMID:24830292

  9. Elastic properties of a porous titanium-bone tissue composite.

    PubMed

    Rubshtein, A P; Makarova, E B; Rinkevich, A B; Medvedeva, D S; Yakovenkova, L I; Vladimirov, A B

    2015-01-01

    The porous titanium implants were introduced into the condyles of tibias and femurs of sheep. New bone tissue fills the pore, and the porous titanium-new bone tissue composite is formed. The duration of composite formation was 4, 8, 24 and 52 weeks. The formed composites were extracted from the bone and subjected to a compression test. The Young's modulus was calculated using the measured stress-strain curve. The time dependence of the Young's modulus of the composite was obtained. After 4 weeks the new bone tissue that filled the pores does not affect the elastic properties of implants. After 24 and 52 weeks the Young's modulus increases by 21-34% and 62-136%, respectively. The numerical calculations of the elasticity of porous titanium-new bone tissue composite were conducted using a simple polydisperse model that is based on the consideration of heterogeneous structure as a continuous medium with spherical inclusions of different sizes. The kinetics of the change in the elasticity of the new bone tissue is presented via the intermediate characteristics, namely the relative ultimate tensile strength or proportion of mature bone tissue in the bone tissue. The calculated and experimentally measured values of the Young's modulus of the composite are in good agreement after 8 weeks of composite formation. The properties of the porous titanium-new bone tissue composites can only be predicted when data on the properties of new bone tissue are available after 8 weeks of contact between the implant and the native bone.

  10. Body composition estimations by BIA versus anthropometric equations in body builders and other power athletes.

    PubMed

    Huygens, W; Claessens, A L; Thomis, M; Loos, R; Van Langendonck, L; Peeters, M; Philippaerts, R; Meynaerts, E; Vlietinck, R; Beunen, G

    2002-03-01

    Two main questions are stated: 1) are BIA and anthropometric equations accurate in estimating body composition in male power athletes and more specifically in body builders and 2) is there a difference in body composition when body builders are compared to weight and power lifters? this is a descriptive, comparative study on a selected sample of power athletes. 49 Belgian elite and sub-top male power athletes (34 body builders and 15 weight and power lifters) were included in this sample. More than 70% was in preparation of competition at time of data collection. an extended set of anthropometric measures was taken. Body composition was estimated by BIA (Bioelectrical Impedance Analysis) and by regression equations of skinfolds. Somatotype and muscle+bone areas were calculated. Factor analysis on all anthropometric measures was carried out to determine the body structure of the athletes. Compared to external visual criteria, the equations of Durnin and Womersley and Lohman (skinfolds) and the Guo-equation (BIA) were the only equations that could accurately estimate the body composition for this specific group of athletes. However, the sum of skinfolds attains the most accurate estimate of subcutaneous fatness. Body builders have significantly (p<0.01) larger arm and thigh circumferences and are more mesomorfic than the other power athletes (5.9 vs 3.8). This study shows that to estimate body composition in extreme power athletes BIA is not as accurate as compared to anthropometric equations. Moreover, the sum of a larger set of skinfolds is preferred to anthropometric prediction equations. In addition, body builders are more muscular and leaner than other power athletes.

  11. Box-modeling of bone and tooth phosphate oxygen isotope compositions as a function of environmental and physiological parameters.

    PubMed

    Langlois, C; Simon, L; Lécuyer, Ch

    2003-12-01

    A time-dependent box model is developed to calculate oxygen isotope compositions of bone phosphate as a function of environmental and physiological parameters. Input and output oxygen fluxes related to body water and bone reservoirs are scaled to the body mass. The oxygen fluxes are evaluated by stoichiometric scaling to the calcium accretion and resorption rates, assuming a pure hydroxylapatite composition for the bone and tooth mineral. The model shows how the diet composition, body mass, ambient relative humidity and temperature may control the oxygen isotope composition of bone phosphate. The model also computes how bones and teeth record short-term variations in relative humidity, air temperature and delta18O of drinking water, depending on body mass. The documented diversity of oxygen isotope fractionation equations for vertebrates is accounted for by our model when for each specimen the physiological and diet parameters are adjusted in the living range of environmental conditions.

  12. Assessing body composition in infants and toddlers

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to compare different body composition techniques in infants and toddlers. Anthropometric measures including mid-upper arm circumference (MAC), triceps skinfold thickness (TSF), and weight-for-height or -length Z-scores (WHZ), and measures of body fat mass assessed wit...

  13. Measurement of Body Composition in Children.

    ERIC Educational Resources Information Center

    Lohman, T. G.

    1982-01-01

    Identification and treatment of obesity in children is believed to be an important factor in its control during the adult years. Laboratory and field methods for body composition measurement are described along with estimates of body fat content from anthropometric dimensions. (CJ)

  14. Relationship between Bone Mineral Density and Body Composition Estimated by Dual-Energy X-ray Absorptiometry: Comparison between Groups Aged 20-39 and 40-59 Years.

    PubMed

    Hayashida, Keiichi; Takeda, Yoshihiro; Yatake, Hidetoshi; Yamaguchi, Motoi; Yamamoto, Kenyu; Kuwano, Tadao; Katsuda, Toshizo

    2015-12-18

    Bone mineral density (BMD) is affected by lean body mass and body weight to various degrees in the course of aging. The attempt of this study is to determine the optimal time to begin prevention of osteoporosis. In this study, female hospital employees aged 20-59 years were divided into 2 age groups, 20-39 years and 40-59 years based on age at peak BMD, and the relations of total BMD, subtotal BMD and lumbar spine BMD to lean body mass and body weight were examined in both groups. Subtotal BMD was calculated by subtracting head BMD from total BMD along with whole body measurement. While persistent positive correlations were found among all factors in the 20-39-year-old group, subtotal BMD and lumbar spine BMD were positively correlated to lean body mass in the 40-59-year-old group. Thus, lean body mass and body weight appeared to exert a profound influence on subtotal BMD in those aged 20-39 years, but lean body mass in those aged 40-59 years. Lean body mass appears to provide the best prediction of subsequent development of osteoporosis.

  15. [Body composition investigation of 2321 Shenzhen government and enterprise staffs].

    PubMed

    Liu, Xiaoli; Zhou, Jichang; Sun, Shiqiang; Xu, Jiazhang; Zhou, Xiaoying; Huang, Changhua; He, Shan; Liu, Can; Xu, Jian; Gong, Chunmei

    2016-01-01

    To understand the laws of human body composition change and the status of the overweight and obesity of government and enterprise staffs. In July 2013 - January 2014, 2321 adults more than 20-year-old healthy check-up crowd with complete human body composition and height as well as weight data in a medical center in Shenzhen were collected by convenience sampling method. The overweight rates of male and female were 46.41% and 18.94% respectively (standardized overweight rates were 44.02% and 14.51%, respectively), and the difference between them was statisically significant (Χ2 = 201.01, P = 0. 000). The obesity rates of male and female were 12.13% and 3.57%, respectively (standardized overweight rates were 11.11% (see symbol) 2.63%, respectively), and the difference between them was statisically significant (X2 = 48.45, P = 0.000). The parameters of bone mineral quality, visceral fat area, body fat, body fat percentage, abdominal obesity, body moisture and free fat weight increased with body weight, and there were statistical significance among normal weight, overweight and obesity groups (P = 0.000). Bone mineral quality was highest at the age of 30 to 40 for men and women, and there was the statistical significance. There was statistical significance in visceral fat area between different ages in the same gender. Body fat percentage (34.24 + 5.39)% of all ages 50 to 59 years old and body moisture (28.53 + 3.77)% of age 40 - 49 group were highest in women. Male body fat percentage (27.08 + 5.01)% at the age of 60-age group was the highest. Male and female visceral fat area increasesd with age, but there was no statistical difference between men and women at the same age. The human body composition had not a statistically significant difference among normal weight and overweight groups, but a significant difference between normal weight and obesity groups (P = 0.000). Overweight and obesity rates in Shenzhen government and enterprise staffs increase with age

  16. Natural variations in calcium isotope composition as a monitor of bone mineral balance in humans.

    NASA Astrophysics Data System (ADS)

    Skulan, J.; Anbar, A.; Thomas, B.; Smith, S.

    2004-12-01

    The skeleton is the largest reservoir of calcium in the human body and is responsible for the short term control of blood levels of this element. Accurate measurement of changes in bone calcium balance is critical to understanding how calcium metabolism responds to physiological and environmental changes and, more specifically, to diagnosing and evaluating the effectiveness of treatments for osteoporosis and other serious calcium-related disorders. It is very difficult to measure bone calcium balance using current techniques, however, because these techniques rely either on separate estimates of bone resorption and formation that are not quantitatively comparable, or on complex and expensive studies of calcium kinetics using administered isotopic tracers. This difficulty is even more apparent and more severe for measurements of short-term changes in bone calcium balance that do not produce detectable changes in bone mineral density. Calcium isotopes may provide a novel means of addressing this problem. The foundation of this isotope application is the ca. 1.3 per mil fractionation of calcium during bone formation, favoring light calcium in the bone. This fractionation results in a steady-state isotopic offset between calcium in bone and calcium in soft tissues, blood and urine. Perturbations to this steady state due to changes in the net formation or resorption of bone should be reflected in changes in the isotopic composition of soft tissues and fluids. Here we present evidence that easily detectable shifts in the natural calcium isotope composition of human urine rapidly reflect changes in bone calcium balance. Urine from subjects in a 17-week bed rest study was analyzed for calcium isotopic composition. Bed rest promotes net resorption of bone, shifting calcium from bone to soft tissues, blood and urine. The calcium isotope composition of patients in this study shifted toward lighter values during bed rest, consistent with net resorption of isotopically

  17. Development of high strength hydroxyapatite for bone tissue regeneration using nanobioactive glass composites

    SciTech Connect

    Shrivastava, Pragya; Dalai, Sridhar; Vijayalakshmi, S.; Sudera, Prerna; Sivam, Santosh Param; Sharma, Pratibha

    2013-02-05

    With an increasing demand of biocompatible bone substitutes for the treatment of bone diseases and bone tissue regeneration, bioactive glass composites are being tested to improvise the osteoconductive as well as osteoinductive properties. Nanobioactive glass (nBG) composites, having composition of SiO{sub 2} 70 mol%, CaO 26 mol % and P{sub 2}O{sub 5} 4 mol% were prepared by Freeze drying method using PEG-PPG-PEG co-polymer. Polymer addition improves the mechanical strength and porosity of the scaffold of nBG. Nano Bioactive glass composites upon implantation undergo specific reactions leading to the formation of crystalline hydroxyapatite (HA). This is tested in vitro using Simulated Body Fluid (SBF). This high strength hydroxyapatite (HA) layer acts as osteoconductive in cellular environment, by acting as mineral base of bones, onto which new bone cells proliferate leading to new bone formation. Strength of the nBG composites as well as HA is in the range of cortical and cancellous bone, thus proving significant for bone tissue regeneration substitutes.

  18. Development of high strength hydroxyapatite for bone tissue regeneration using nanobioactive glass composites

    NASA Astrophysics Data System (ADS)

    Shrivastava, Pragya; Dalai, Sridhar; Sudera, Prerna; Sivam, Santosh Param; Vijayalakshmi, S.; Sharma, Pratibha

    2013-02-01

    With an increasing demand of biocompatible bone substitutes for the treatment of bone diseases and bone tissue regeneration, bioactive glass composites are being tested to improvise the osteoconductive as well as osteoinductive properties. Nanobioactive glass (nBG) composites, having composition of SiO2 70 mol%, CaO 26 mol % and P2O5 4 mol% were prepared by Freeze drying method using PEG-PPG-PEG co-polymer. Polymer addition improves the mechanical strength and porosity of the scaffold of nBG. Nano Bioactive glass composites upon implantation undergo specific reactions leading to the formation of crystalline hydroxyapatite (HA). This is tested in vitro using Simulated Body Fluid (SBF). This high strength hydroxyapatite (HA) layer acts as osteoconductive in cellular environment, by acting as mineral base of bones, onto which new bone cells proliferate leading to new bone formation. Strength of the nBG composites as well as HA is in the range of cortical and cancellous bone, thus proving significant for bone tissue regeneration substitutes.

  19. Body composition as a frailty marker for the elderly community.

    PubMed

    Falsarella, Gláucia Regina; Gasparotto, Lívia Pimenta Renó; Barcelos, Caroline Coutinho; Coimbra, Ibsen Bellini; Moretto, Maria Clara; Pascoa, Mauro Alexandre; Ferreira, Talita C B Rezende; Coimbra, Arlete Maria Valente

    2015-01-01

    Body composition (BC) in the elderly has been associated with diseases and mortality; however, there is a shortage of data on frailty in the elderly. To investigate the association between BC and frailty, and identify BC profiles in nonfrail, prefrail, and frail elderly people. A cross-sectional study comprising 235 elderly (142 females and 93 males) aged ≥65 years, from the city of Amparo, State of São Paulo, Brazil, was undertaken. Sociodemographic and cognitive features, comorbidities, medication, frailty, body mass index (BMI), muscle mass, fat mass, bone mass, and fat percent (%) data were evaluated. Aiming to examine the relationship between BC and frailty, the Mann-Whitney and Kruskal-Wallis nonparametric tests were applied. The statistical significance level was P<0.05. The nonfrail elderly showed greater muscle mass and greater bone mass compared with the prefrail and frail ones. The frail elderly had greater fat % than the nonfrail elderly. There was a positive association between grip strength and muscle mass with bone mass (P<0.001), and a negative association between grip strength and fat % (P<0.001). Gait speed was positively associated with fat mass (P=0.038) and fat % (P=0.002). The physical activity level was negatively associated with fat % (P=0.022). The weight loss criterion was positively related to muscle mass (P<0.001), bone mass (P=0.009), fat mass (P=0.018), and BMI (P=0.003). There was a negative association between fatigue and bone mass (P=0.008). Frailty in the elderly was characterized by a BC profile/phenotype with lower muscle mass and lower bone mass and with a higher fat %. The BMI was not effective in evaluating the relationship between BC and frailty. The importance of evaluating the fat % was verified when considering the tissue distribution in the elderly BC.

  20. Body Composition Methods: Comparisons and Interpretation

    PubMed Central

    Duren, Dana L.; Sherwood, Richard J.; Czerwinski, Stefan A.; Lee, Miryoung; Choh, Audrey C.; Siervogel, Roger M.; Cameron Chumlea, Wm.

    2008-01-01

    The incidence of obesity in the United States and other developed countries is epidemic. Because the prevalence of comorbidities to obesity, such as type 2 diabetes, has also increased, it is clear there is a great need to monitor and treat obesity and its comorbidities. Body composition assessments vary in precision and in the target tissue of interest. The most common assessments are anthropometric and include weight, stature, abdominal circumference, and skinfold measurements. More complex methods include bioelectrical impedance, dual-energy X-ray absorptiometry, body density, and total body water estimates. There is no single universally recommended method for body composition assessment in the obese, but each modality has benefits and drawbacks. We present here the most common methods and provide guidelines by way of examples to assist the clinician/researcher in choosing methods appropriate to their situation. PMID:19885303

  1. Scaling of adult regional body mass and body composition as a whole to height: Relevance to body shape and body mass index.

    PubMed

    Schuna, John M; Peterson, Courtney M; Thomas, Diana M; Heo, Moonseong; Hong, Sangmo; Choi, Woong; Heymsfield, Steven B

    2015-01-01

    Adult body mass (MB) empirically scales as height (Ht) squared (MB ∝ Ht(2) ), but does regional body mass and body composition as a whole also scale as Ht(2) ? This question is relevant to a wide range of biological topics, including interpretation of body mass index (BMI). Dual-energy X-ray absorptiometry (DXA) was used to quantify regional body mass [head (MH), trunk, arms, and legs] and whole-body composition [fat, lean soft tissue (LST), and bone mineral content (BMC)] in non-Hispanic (NH) white, NH black, Mexican American, and Korean adults participating in the National Health and Nutrition Examination Survey (NHANES; n = 17,126) and Korean NHANES (n = 8,942). Regression models were developed to establish Ht scaling powers for each measured component with adjustments for age and adiposity. Exploratory analyses revealed a consistent scaling pattern across men and women of the four population groups: regional mass powers, head (∼0.8-1) < arms and trunk (∼1.8-2.3) < legs (∼2.3-2.6); and body composition, LST (∼2.0-2.3) < BMC (∼2.1-2.4). Small sex and population differences in scaling powers were also observed. As body mass scaled uniformly across the eight sex and population groups as Ht(∼2) , tall and short subjects differed in body shape (e.g., MH/MB ∝ Ht(-∼1) ) and composition. Adult human body shape and relative composition are a function of body size as represented by stature, a finding that reveals a previously unrecognized phenotypic heterogeneity as defined by BMI. These observations provide new pathways for exploring mechanisms governing the interrelations between adult stature, body morphology, biomechanics, and metabolism. © 2014 Wiley Periodicals, Inc.

  2. Effects of weightlessness on body composition in the rat

    NASA Technical Reports Server (NTRS)

    Pitts, G. C.; Ushakov, A. S.; Pace, N.; Smith, A. H.; Rahlmann, D. F.; Smirnova, T. A.

    1983-01-01

    The effects of weightlessness on the body composition of rats were investigated using 5 male rats exposed to 18.5 days of weightlessness on the COSMOS 1129 biosatellite and killed after reentry. The animals were immediately dissected and the three major body divisions (musculoskeletal system, skin, and pooled viscera) were analyzed for fat, water, solids, and six elements. These results were determined as percentages of the fat-free body or its components and then compared with two groups of terrestrial controls, one of which was subjected to a flight simulation in a spacecraft mock-up while the other was under standard vivarium conditions. Compared with the control groups, the flight group was found to exhibit a reduced fraction of total body water, a net shift of body water from skin to viscera, a marked diminution in the fraction of extracellular water in the fat-free body, a marked reduction in the fraction of bone mineral, no change in the quantity of stored fat or adrenal masses, and a net increase in total muscle mass as indicated by total body creatine, protein, and body cell mass.

  3. Effects of weightlessness on body composition in the rat

    NASA Technical Reports Server (NTRS)

    Pitts, G. C.; Ushakov, A. S.; Pace, N.; Smith, A. H.; Rahlmann, D. F.; Smirnova, T. A.

    1983-01-01

    The effects of weightlessness on the body composition of rats were investigated using 5 male rats exposed to 18.5 days of weightlessness on the COSMOS 1129 biosatellite and killed after reentry. The animals were immediately dissected and the three major body divisions (musculoskeletal system, skin, and pooled viscera) were analyzed for fat, water, solids, and six elements. These results were determined as percentages of the fat-free body or its components and then compared with two groups of terrestrial controls, one of which was subjected to a flight simulation in a spacecraft mock-up while the other was under standard vivarium conditions. Compared with the control groups, the flight group was found to exhibit a reduced fraction of total body water, a net shift of body water from skin to viscera, a marked diminution in the fraction of extracellular water in the fat-free body, a marked reduction in the fraction of bone mineral, no change in the quantity of stored fat or adrenal masses, and a net increase in total muscle mass as indicated by total body creatine, protein, and body cell mass.

  4. Comparison of failure characteristics of a range of cancellous bone-bone cement composites.

    PubMed

    Lucksanasombool, P; Higgs, W A J; Ignat, M; Higgs, R J E D; Swain, M V

    2003-01-01

    Over the past decade, orthopedic surgery has embraced an increase in the depth of cement penetration into the adjacent cancellous bone structure. The resultant interdigitation transforms this zone into a thick layer of continuous interpenetrating composite material. The failure behavior of the composite formed with a number of potential bone cements with different bonding ability was investigated. The cancellous bone-cement composites exhibit considerable resistance to crack extension, and in situ optical observation indicates that the contribution of the cancellous bone is analogous to that of a typical fiber bridging process. The critical stress intensity factor and the work of fracture have been used to quantify the failure characteristics of the cancellous bone-cement composites. The nature of the crack propagation through these cement-bone composites was also captured via optical microscopy, and scanning electron microscopic images were taken of the failure surfaces. The R-curve behavior, or crack extension characteristic, of the cancellous bone-cement composite was also determined. The interesting outcome is that the cancellous bone-PMMA (poly-methylmethacrylate) composite, despite the absence of chemical bonding with bone, required the highest energy to fracture. In addition, the dimensional stability of the cement has a great effect on the interface.

  5. Childhood body composition in relation to body mass index.

    PubMed

    Maynard, L M; Wisemandle, W; Roche, A F; Chumlea, W C; Guo, S S; Siervogel, R M

    2001-02-01

    The aim is to describe body composition in relation to body mass index (BMI; body weight/stature(2)) to provide health care professionals insight into the meaning, significance, and limitations of BMI as an index of adiposity during childhood. Data from 387 healthy, white children 8 to 18 years of age from the Fels Longitudinal Study were analyzed. Measurements were scheduled annually and each child was examined 1 to 11 times, totaling 1748 observations. Total body fat (TBF) and fat-free mass (FFM) were determined from hydrodensitometry. Stature and weight were measured using standard methods and BMI and the components of BMI, TBF/stature(2), and FFM/stature(2) were calculated. Analyses included correlations between BMI and body composition variables; age-related patterns of BMI, TBF/stature(2), and FFM/stature(2); and annual changes in BMI, TBF/stature(2), and FFM/stature(2). Generally, correlations between BMI and body composition variables were strong and significantly different from zero. Means for BMI throughout childhood were similar for boys and girls, although significantly larger values were observed for girls at ages 12 to 13 years. Age-related patterns of TBF/stature(2) and FFM/stature(2) differed between sexes. In each sex, annual increases in BMI were driven primarily by increases in FFM/stature(2) until late adolescence, with increases in TBF/stature(2) contributing to a larger proportion of the BMI increases in girls than in boys. Unlike adults, annual increases in BMI during childhood are generally attributed to the lean rather than to the fat component of BMI. Because the properties of BMI vary during childhood, health care professionals must consider factors such as age and sex when interpreting BMI.

  6. Estimation of body composition of pigs

    SciTech Connect

    Ferrell, C.L.; Cornelius, S.G.

    1984-04-01

    A study was conducted to evaluate the use of deuterium oxide (D2O) for in vivo estimation of body composition of diverse types of pigs. Obese (Ob, 30) and contemporary Hampshire X Yorkshire (C, 30) types of pigs used in the study were managed and fed under typical management regimens. Indwelling catheters were placed in a jugular vein of 6 Ob and 6 C pigs at 4, 8, 12, 18 and 24 wk of age. The D2O was infused (.5 g/kg body weight) as a .9% NaCl solution into the jugular catheter. Blood samples were taken immediately before and at .25, 1, 4, 8, 12, 24 and 48 h after the D2O infusion and D2O concentration in blood water was determined. Pigs were subsequently killed by euthanasia injection. Contents of the gastrointestinal tract were removed and the empty body was then frozen and later ground and sampled for subsequent analyses. Ground body tissue samples were analyzed for water, fat, N, fat-free organic matter and ash. Pig type, age and the type X age interaction were significant sources of variation in live weight, D2O pool size and all empty body components, as well as all fat-free empty body components. Relationships between age and live weight or weight of empty body components, and between live weight, empty body weight, empty body water or D2O space and weight of empty components were highly significant but influenced, in most cases, by pig type. The results of this study suggested that, although relationships between D2O space and body component weights were highly significant, they were influenced by pig type and were little better than live weight for the estimation of body composition.

  7. Accurate body composition measures from whole-body silhouettes.

    PubMed

    Xie, Bowen; Avila, Jesus I; Ng, Bennett K; Fan, Bo; Loo, Victoria; Gilsanz, Vicente; Hangartner, Thomas; Kalkwarf, Heidi J; Lappe, Joan; Oberfield, Sharon; Winer, Karen; Zemel, Babette; Shepherd, John A

    2015-08-01

    Obesity and its consequences, such as diabetes, are global health issues that burden about 171 × 10(6) adult individuals worldwide. Fat mass index (FMI, kg/m(2)), fat-free mass index (FFMI, kg/m(2)), and percent fat mass may be useful to evaluate under- and overnutrition and muscle development in a clinical or research environment. This proof-of-concept study tested whether frontal whole-body silhouettes could be used to accurately measure body composition parameters using active shape modeling (ASM) techniques. Binary shape images (silhouettes) were generated from the skin outline of dual-energy x-ray absorptiometry (DXA) whole-body scans of 200 healthy children of ages from 6 to 16 yr. The silhouette shape variation from the average was described using an ASM, which computed principal components for unique modes of shape. Predictive models were derived from the modes for FMI, FFMI, and percent fat using stepwise linear regression. The models were compared to simple models using demographics alone [age, sex, height, weight, and body mass index z-scores (BMIZ)]. The authors found that 95% of the shape variation of the sampled population could be explained using 26 modes. In most cases, the body composition variables could be predicted similarly between demographics-only and shape-only models. However, the combination of shape with demographics improved all estimates of boys and girls compared to the demographics-only model. The best prediction models for FMI, FFMI, and percent fat agreed with the actual measures with R(2) adj. (the coefficient of determination adjusted for the number of parameters used in the model equation) values of 0.86, 0.95, and 0.75 for boys and 0.90, 0.89, and 0.69 for girls, respectively. Whole-body silhouettes in children may be useful to derive estimates of body composition including FMI, FFMI, and percent fat. These results support the feasibility of measuring body composition variables from simple cameras such as those found in cell

  8. Accurate body composition measures from whole-body silhouettes

    PubMed Central

    Xie, Bowen; Avila, Jesus I.; Ng, Bennett K.; Fan, Bo; Loo, Victoria; Gilsanz, Vicente; Hangartner, Thomas; Kalkwarf, Heidi J.; Lappe, Joan; Oberfield, Sharon; Winer, Karen; Zemel, Babette; Shepherd, John A.

    2015-01-01

    Purpose: Obesity and its consequences, such as diabetes, are global health issues that burden about 171 × 106 adult individuals worldwide. Fat mass index (FMI, kg/m2), fat-free mass index (FFMI, kg/m2), and percent fat mass may be useful to evaluate under- and overnutrition and muscle development in a clinical or research environment. This proof-of-concept study tested whether frontal whole-body silhouettes could be used to accurately measure body composition parameters using active shape modeling (ASM) techniques. Methods: Binary shape images (silhouettes) were generated from the skin outline of dual-energy x-ray absorptiometry (DXA) whole-body scans of 200 healthy children of ages from 6 to 16 yr. The silhouette shape variation from the average was described using an ASM, which computed principal components for unique modes of shape. Predictive models were derived from the modes for FMI, FFMI, and percent fat using stepwise linear regression. The models were compared to simple models using demographics alone [age, sex, height, weight, and body mass index z-scores (BMIZ)]. Results: The authors found that 95% of the shape variation of the sampled population could be explained using 26 modes. In most cases, the body composition variables could be predicted similarly between demographics-only and shape-only models. However, the combination of shape with demographics improved all estimates of boys and girls compared to the demographics-only model. The best prediction models for FMI, FFMI, and percent fat agreed with the actual measures with R2 adj. (the coefficient of determination adjusted for the number of parameters used in the model equation) values of 0.86, 0.95, and 0.75 for boys and 0.90, 0.89, and 0.69 for girls, respectively. Conclusions: Whole-body silhouettes in children may be useful to derive estimates of body composition including FMI, FFMI, and percent fat. These results support the feasibility of measuring body composition variables from simple

  9. Top 10 Research Questions Related to Body Composition

    ERIC Educational Resources Information Center

    Going, Scott; Lee, Vinson; Blew, Rob; Laddu, Deepika; Hetherington-Rauth, Megan

    2014-01-01

    An understanding of body composition is crucial to understanding human health, disease, and function. Research in body composition has focused on the development of assessment methods, description of normal changes in body composition with growth and development and aging, and the changes that occur in body composition in response to challenges…

  10. Top 10 Research Questions Related to Body Composition

    ERIC Educational Resources Information Center

    Going, Scott; Lee, Vinson; Blew, Rob; Laddu, Deepika; Hetherington-Rauth, Megan

    2014-01-01

    An understanding of body composition is crucial to understanding human health, disease, and function. Research in body composition has focused on the development of assessment methods, description of normal changes in body composition with growth and development and aging, and the changes that occur in body composition in response to challenges…

  11. Skeletal and body composition evaluation. Final report

    SciTech Connect

    Mazess, R.B.

    1983-03-01

    Research on radiation detectors for absorptiometry analysis of errors affecting single photon absorptiometry and development of instrumentation, analysis of errors affecting dual photon absorptiometry and development of instrumentation, comparison of skeletal measurements with other techniques, cooperation with NASA projects for skeletal evaluation in spaceflight (Experiment MO-78) and in laboratory studies with immobilized animals, studies of postmenopausal osteoporosis, organization of scientific meetings and workshops on absorptiometric measurement, and development of instrumentation for measurement of fluid shifts in the human body were performed. Instrumentation was developed that allows accurate and precise (2% error) measurements of mineral content in compact and trabecular bone and of the total skeleton. Instrumentation was also developed to measure fluid shifts in the extremities. Radiation exposure with those procedures is low (2-10 MREM). One hundred seventy three technical reports and one hundred and four published papers of studies from the University of Wisconsin Bone Mineral Lab are listed.

  12. Scaling of Adult Regional Body Mass and Body Composition as a Whole to Height: Relevance to Body Shape and Body Mass Index

    PubMed Central

    Schuna, John M.; Peterson, Courtney M.; Thomas, Diana M.; Heo, Moonseong; Hong, Sangmo; Choi, Woong; Heymsfield, Steven B.

    2015-01-01

    Objectives Adult body mass (MB) empirically scales as height (Ht) squared (MB ∝ Ht2), but does regional body mass and body composition as a whole also scale as Ht2? This question is relevant to a wide range of biological topics, including interpretation of body mass index. Methods Dual-energy x-ray absorptiometry (DXA) was used to quantify regional body mass (head [MH], trunk, arms, legs) and whole-body composition (fat, lean soft tissue [LST], and bone mineral content [BMC]) in non-Hispanic (NH) white, NH black, Mexican American, and Korean adults participating in the National Health and Nutrition Examination Survey (NHANES; n=17,126) and Korean NHANES (n=8,942). Regression models were developed to establish Ht scaling powers for each measured component with adjustments for age and adiposity. Results Exploratory analyses revealed a consistent scaling pattern across men and women of the four race/ethnic groups: regional mass powers, head (~0.8-1) < arms and trunk (~1.8-2.3) < legs (~2.3-2.6); and body composition, LST (~2.0-2.3) < BMC (~2.1-2.4). Small sex and race/ethnic differences in scaling powers were also observed. As body mass scaled uniformly across the eight sex and race/ethnic groups as Ht~2, tall and short subjects differed in body shape (e.g., Mh/Mb ∝ Ht−~1) and composition. Conclusions Adult human body shape and relative composition are a function of body size as defined by stature, a finding that has important implications in multiple areas of biological research. PMID:25381999

  13. Body/bone-marrow differential-temperature sensor

    NASA Technical Reports Server (NTRS)

    Anselmo, V. J.; Berdahl, C. M.

    1978-01-01

    Differential-temperature sensor developed to compare bone-marrow and body temperature in leukemia patients uses single stable amplifier to monitor temperature difference recorded by thermocouples. Errors are reduced by referencing temperatures to each other, not to separate calibration points.

  14. Body composition phenotypes and obesity paradox.

    PubMed

    Prado, Carla M; Gonzalez, M Cristina; Heymsfield, Steven B

    2015-11-01

    The obesity paradox is a highly controversial concept that may be attributed to methodological limitations related to its identification. One of the primary concerns is the use of BMI to define obesity. This index does not differentiate lean versus adipose tissue compartments (i.e. body composition) confounding health consequences for morbidity and mortality, especially in clinical populations. This review will describe the past year's evidence on the obesity paradox phenomenon, primarily focusing on the role of abnormal body composition phenotypes in explaining the controversies observed in the literature. In spite of the substantial number of articles investigating the obesity paradox phenomenon, less than 10% used a direct measure of body composition and when included, it was not fully explored (only adipose tissue compartment evaluated). When lean tissue or muscle mass is taken into account, the general finding is that a high BMI has no protective effect in the presence of low muscle mass and that it is the latter that associates with poor prognosis. In view of the body composition variability of patients with identical BMI, it is unreasonable to rely solely on this index to identify obesity. The consequences of a potential insubstantial obesity paradox are mixed messages related to patient-related prognostication.

  15. Writing Bodies: Somatic Mind in Composition Studies.

    ERIC Educational Resources Information Center

    Fleckenstein, Kristie S.

    1999-01-01

    Discusses the somatic mind, a permeable materiality in which mind and body resolve into a single entity which is (re)formed by the constantly shifting boundaries of discursive and corporeal intertextualities. Addresses its importance in composition studies. Critiques the poststructuralist disregard of corporeality. (CR)

  16. Comparison of Some Secondary Body Composition Algorithms

    ERIC Educational Resources Information Center

    Sutton, Robert A.; Miller, Carolyn

    2006-01-01

    Body composition measurements vary greatly in degree of measurement difficulty and accuracy. Hydrostatic weighing, chemical dilution or their equivalents were the accepted "gold" standards for assessing fat mass. Dual Energy X-ray Absorptiometry (DEXA) is fast replacing these techniques as the preferred standard. However, these direct measurement…

  17. Comparison of Some Secondary Body Composition Algorithms

    ERIC Educational Resources Information Center

    Sutton, Robert A.; Miller, Carolyn

    2006-01-01

    Body composition measurements vary greatly in degree of measurement difficulty and accuracy. Hydrostatic weighing, chemical dilution or their equivalents were the accepted "gold" standards for assessing fat mass. Dual Energy X-ray Absorptiometry (DEXA) is fast replacing these techniques as the preferred standard. However, these direct measurement…

  18. Characterization of a Composite Material to Mimic Human Cranial Bone

    DTIC Science & Technology

    2015-09-01

    ARL-RP-0552 ● SEP 2015 US Army Research Laboratory Characterization of a Composite Material to Mimic Human Cranial Bone by...presented at: 20th International Conference on Composite Materials; 2015 Jul 19–24; Copenhagen, Denmark. Approved for public release...US Army Research Laboratory Characterization of a Composite Material to Mimic Human Cranial Bone by Thomas A Plaisted Weapons and Materials

  19. Body Composition in Adult Patients with Thalassemia Major

    PubMed Central

    Alexiou, Evangelos; Thriskos, Paschalis; Fezoulidis, Ioannis; Vassiou, Katerina

    2016-01-01

    Objective. To assess body composition in adult male and female patients with thalassemia major by dual-energy X-ray absorptiometry (DXA) and to compare the findings with a group of healthy age-matched controls. Methods. Our study group included sixty-two patients (27 males, mean age 36 years, and 35 females, mean age 36.4 years) and fifteen age-matched healthy controls. All patients had an established diagnosis of thalassemia major and followed a regular blood transfusion scheme since childhood and chelation treatment. Fat, lean, and bone mineral density (BMD) were assessed with dual-energy X-ray absorptiometry. Ferritin levels and body mass index of all patients and controls were also recorded. Student t-test and Wilcoxon test were performed and statistical significance was set at p < 0.05. Results. BMD and whole body lean mass are lower in both male and female adult patients compared with controls (p < 0.01 in both groups), whereas whole body fat mass was found to have no statistically significant difference compared to controls. Regional trunk fat around the abdomen was found to be lower in male patients compared to controls (p = 0.02). Conclusion. Severe bone loss and diminished lean mass are expected in adult male and female patients with thalassemia major. Fat changes seem to affect mainly male patients. PMID:27956899

  20. Body Composition in Adult Patients with Thalassemia Major.

    PubMed

    Vlychou, Marianna; Alexiou, Evangelos; Thriskos, Paschalis; Fezoulidis, Ioannis; Vassiou, Katerina

    2016-01-01

    Objective. To assess body composition in adult male and female patients with thalassemia major by dual-energy X-ray absorptiometry (DXA) and to compare the findings with a group of healthy age-matched controls. Methods. Our study group included sixty-two patients (27 males, mean age 36 years, and 35 females, mean age 36.4 years) and fifteen age-matched healthy controls. All patients had an established diagnosis of thalassemia major and followed a regular blood transfusion scheme since childhood and chelation treatment. Fat, lean, and bone mineral density (BMD) were assessed with dual-energy X-ray absorptiometry. Ferritin levels and body mass index of all patients and controls were also recorded. Student t-test and Wilcoxon test were performed and statistical significance was set at p < 0.05. Results. BMD and whole body lean mass are lower in both male and female adult patients compared with controls (p < 0.01 in both groups), whereas whole body fat mass was found to have no statistically significant difference compared to controls. Regional trunk fat around the abdomen was found to be lower in male patients compared to controls (p = 0.02). Conclusion. Severe bone loss and diminished lean mass are expected in adult male and female patients with thalassemia major. Fat changes seem to affect mainly male patients.

  1. Bioactive nanoparticle-gelatin composite scaffold with mechanical performance comparable to cancellous bones.

    PubMed

    Wang, Chen; Shen, Hong; Tian, Ye; Xie, Yue; Li, Ailing; Ji, Lijun; Niu, Zhongwei; Wu, Decheng; Qiu, Dong

    2014-08-13

    Mechanical properties are among the most concerned issues for artificial bone grafting materials. The scaffolds used for bone grafts are either too brittle (glass) or too weak (polymer), and therefore composite scaffolds are naturally expected as the solution. However, despite the intensive studies on composite bone grafting materials, there still lacks a material that could be matched to the natural cancellous bones. In this study, nanosized bioactive particles (BP) with controllable size and good colloidal stability were used to composite with gelatin, forming macroporous scaffolds. It was found that the mechanical properties of obtained composite scaffolds, in terms of elastic modulus, compressive strength, and strain at failure, could match to that of natural cancellous bones. This is ascribed to the good distribution of particle in matrix and strong interaction between particle and gelatin. Furthermore, the incorporation of BPs endues the composite scaffolds with bioactivity, forming HA upon reacting with simulated body fluid (SBF) within days, thus stimulating preosteoblasts attachment, growth, and proliferation in these scaffolds. Together with their good mechanical properties, these composite scaffolds are promising artificial bone grating materials.

  2. Body composition in patients with classical homocystinuria: body mass relates to homocysteine and choline metabolism.

    PubMed

    Poloni, Soraia; Leistner-Segal, Sandra; Bandeira, Isabel Cristina; D'Almeida, Vânia; de Souza, Carolina Fischinger Moura; Spritzer, Poli Mara; Castro, Kamila; Tonon, Tássia; Nalin, Tatiéle; Imbard, Apolline; Blom, Henk J; Schwartz, Ida V D

    2014-08-10

    Classical homocystinuria is a rare genetic disease caused by cystathionine β-synthase deficiency, resulting in homocysteine accumulation. Growing evidence suggests that reduced fat mass in patients with classical homocystinuria may be associated with alterations in choline and homocysteine pathways. This study aimed to evaluate the body composition of patients with classical homocystinuria, identifying changes in body fat percentage and correlating findings with biochemical markers of homocysteine and choline pathways, lipoprotein levels and bone mineral density (BMD) T-scores. Nine patients with classical homocystinuria were included in the study. Levels of homocysteine, methionine, cysteine, choline, betaine, dimethylglycine and ethanolamine were determined. Body composition was assessed by bioelectrical impedance analysis (BIA) in patients and in 18 controls. Data on the last BMD measurement and lipoprotein profile were obtained from medical records. Of 9 patients, 4 (44%) had a low body fat percentage, but no statistically significant differences were found between patients and controls. Homocysteine and methionine levels were negatively correlated with body mass index (BMI), while cysteine showed a positive correlation with BMI (p<0.05). There was a trend between total choline levels and body fat percentage (r=0.439, p=0.07). HDL cholesterol correlated with choline and ethanolamine levels (r=0.757, p=0.049; r=0.847, p=0.016, respectively), and total cholesterol also correlated with choline levels (r=0.775, p=0.041). There was no association between BMD T-scores and body composition. These results suggest that reduced fat mass is common in patients with classical homocystinuria, and that alterations in homocysteine and choline pathways affect body mass and lipid metabolism. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. In vivo bone regeneration using a novel porous bioactive composite

    NASA Astrophysics Data System (ADS)

    Xie, En; Hu, Yunyu; Chen, Xiaofeng; Bai, Xuedong; Li, Dan; Ren, Li; Zhang, Ziru

    2008-11-01

    Many commercial bone graft substitutes (BGS) and experimental bone tissue engineering scaffolds have been developed for bone repair and regeneration. This study reports the in vivo bone regeneration using a newly developed porous bioactive and resorbable composite that is composed of bioactive glass (BG), collagen (COL), hyaluronic acid (HYA) and phosphatidylserine (PS), BG-COL-HYA-PS. The composite was prepared by a combination of sol-gel and freeze-drying methods. A rabbit radius defect model was used to evaluate bone regeneration at time points of 2, 4 and 8 weeks. Techniques including radiography, histology, and micro-CT were applied to characterize the new bone formation. 8 weeks results showed that (1) nearly complete bone regeneration was achieved for the BG-COL-HYA-PS composite that was combined with a bovine bone morphogenetic protein (BMP); (2) partial bone regeneration was achieved for the BG-COL-HYA-PS composites alone; and (3) control remained empty. This study demonstrated that the novel BG-COL-HYA-PS, with or without the grafting of BMP incorporation, is a promising BGS or a tissue engineering scaffold for non-load bearing orthopaedic applications.

  4. Obesity, body composition, and prostate cancer.

    PubMed

    Fowke, Jay H; Motley, Saundra S; Concepcion, Raoul S; Penson, David F; Barocas, Daniel A

    2012-01-18

    Established risk factors for prostate cancer have not translated to effective prevention or adjuvant care strategies. Several epidemiologic studies suggest greater body adiposity may be a modifiable risk factor for high-grade (Gleason 7, Gleason 8-10) prostate cancer and prostate cancer mortality. However, BMI only approximates body adiposity, and may be confounded by centralized fat deposition or lean body mass in older men. Our objective was to use bioelectric impedance analysis (BIA) to measure body composition and determine the association between prostate cancer and total body fat mass (FM) fat-free mass (FFM), and percent body fat (%BF), and which body composition measure mediated the association between BMI or waist circumference (WC) with prostate cancer. The study used a multi-centered recruitment protocol targeting men scheduled for prostate biopsy. Men without prostate cancer at biopsy served as controls (n = 1057). Prostate cancer cases were classified as having Gleason 6 (n = 402), Gleason 7 (n = 272), or Gleason 8-10 (n = 135) cancer. BIA and body size measures were ascertained by trained staff prior to diagnosis, and clinical and comorbidity status were determined by chart review. Analyses utilized multivariable linear and logistic regression. Body size and composition measures were not significantly associated with low-grade (Gleason 6) prostate cancer. In contrast, BMI, WC, FM, and FFM were associated with an increased risk of Gleason 7 and Gleason 8-10 prostate cancer. Furthermore, BMI and WC were no longer associated with Gleason 8-10 (OR(BMI) = 1.039 (1.000, 1.081), OR(WC) = 1.016 (0.999, 1.033), continuous scales) with control for total body FFM (OR(BMI) = 0.998 (0.946, 1.052), OR(WC) = 0.995 (0.974, 1.017)). Furthermore, increasing FFM remained significantly associated with Gleason 7 (OR(FFM) = 1.030 (1.008, 1.052)) and Gleason 8-10 (OR(FFM) = 1.044 (1.014, 1.074)) after controlling for FM. Our results suggest that associations between BMI and

  5. A Novel Injectable Magnesium/Calcium Sulfate Hemihydrate Composite Cement for Bone Regeneration

    PubMed Central

    2015-01-01

    Objective. A novel injectable magnesium/calcium sulfate hemihydrate (Mg/CSH) composite with improved properties was reported here. Methods. Composition, setting time, injectability, compressive strength, and bioactivity in simulated body fluid (SBF) of the Mg/CSH composite were evaluated. Furthermore, the cellular responses of canine bone marrow stromal cells (cBMSCs) and bone formation capacity after the implantation of Mg/CSH in tibia defects of canine were investigated. Results. Mg/CSH possessed a prolonged setting time and markedly improved injectability and mechanical property (p < 0.05). Mg/CSH samples showed better degradability than CSH in SBF after 21 days of soaking (p < 0.05). Moreover, the degrees of cell attachment, proliferation, and capability of osteogenic differentiation on the Mg/CSH specimens were higher than those on CSH, without significant cytotoxicity and with the increased proliferation index, ALP activity, and expression levels of integrin β1 and Coll I in cBMSCs (p < 0.05). Mg/CSH enhanced the efficiency of new bone formation at the tibia defect area, including the significantly elevated bone mineral density, bone area fraction, and Coll I expression level (p < 0.05). Conclusions. The results implied that this new injectable bone scaffold exhibited promising prospects for bone repair and had a great potential in bone tissue engineering. PMID:26114102

  6. A Novel Injectable Magnesium/Calcium Sulfate Hemihydrate Composite Cement for Bone Regeneration.

    PubMed

    Zhang, Shanchuan; Yang, Ke; Cui, Fuzhai; Jiang, Yi; E, Lingling; Xu, Baohua; Liu, Hongchen

    2015-01-01

    . A novel injectable magnesium/calcium sulfate hemihydrate (Mg/CSH) composite with improved properties was reported here. Composition, setting time, injectability, compressive strength, and bioactivity in simulated body fluid (SBF) of the Mg/CSH composite were evaluated. Furthermore, the cellular responses of canine bone marrow stromal cells (cBMSCs) and bone formation capacity after the implantation of Mg/CSH in tibia defects of canine were investigated. Mg/CSH possessed a prolonged setting time and markedly improved injectability and mechanical property (p < 0.05). Mg/CSH samples showed better degradability than CSH in SBF after 21 days of soaking (p < 0.05). Moreover, the degrees of cell attachment, proliferation, and capability of osteogenic differentiation on the Mg/CSH specimens were higher than those on CSH, without significant cytotoxicity and with the increased proliferation index, ALP activity, and expression levels of integrin β1 and Coll I in cBMSCs (p < 0.05). Mg/CSH enhanced the efficiency of new bone formation at the tibia defect area, including the significantly elevated bone mineral density, bone area fraction, and Coll I expression level (p < 0.05). The results implied that this new injectable bone scaffold exhibited promising prospects for bone repair and had a great potential in bone tissue engineering.

  7. Alginate composites for bone tissue engineering: a review.

    PubMed

    Venkatesan, Jayachandran; Bhatnagar, Ira; Manivasagan, Panchanathan; Kang, Kyong-Hwa; Kim, Se-Kwon

    2015-01-01

    Bone is a complex and hierarchical tissue consisting of nano hydroxyapatite and collagen as major portion. Several attempts have been made to prepare the artificial bone so as to replace the autograft and allograft treatment. Tissue engineering is a promising approach to solve the several issues and is also useful in the construction of artificial bone with materials including polymer, ceramics, metals, cells and growth factors. Composites consisting of polymer-ceramics, best mimic the natural functions of bone. Alginate, an anionic polymer owing enormous biomedical applications, is gaining importance particularly in bone tissue engineering due to its biocompatibility and gel forming properties. Several composites such as alginate-polymer (PLGA, PEG and chitosan), alginate-protein (collagen and gelatin), alginate-ceramic, alginate-bioglass, alginate-biosilica, alginate-bone morphogenetic protein-2 and RGD peptides composite have been investigated till date. These alginate composites show enhanced biochemical significance in terms of porosity, mechanical strength, cell adhesion, biocompatibility, cell proliferation, alkaline phosphatase increase, excellent mineralization and osteogenic differentiation. Hence, alginate based composite biomaterials will be promising for bone tissue regeneration. This review will provide a broad overview of alginate preparation and its applications towards bone tissue engineering.

  8. Feasibility of a braided composite for orthopedic bone cast.

    PubMed

    Evans, Katherine R; Carey, Jason P

    2013-01-01

    A tubular braided composite bone cast for improving the efficiency and quality of bone fracture treatment is investigated. Finite element analysis was used to evaluate stress concentrations in fracture sites supported with plate and tubular casts. The stress in a plated bone is 768 % of that in a whole bone at the same location, while it is only 47 % in a bone with a tubular cast. Three unbroken synthetic humeri were mechanically tested using an in-vitro long bone testing procedure developed in-house to find their stiffness at 20° and 60° abduction; these were found to be 116.8 ± 1.5 N/mm and 20.63 ± 0.02 N/mm, respectively. A 2 cm gap osteotomy was cut through the diaphysis in each bone. The bones were casted with a Kevlar/Cold cure composite, with calculated braid angles and thicknesses that Closely matched bone propoerties. The stiffness tests were repeated, and the results were within 10 % of the unbroken bone. This novel method of bone casting is promising if other clinical challenges can be minimized.

  9. Feasibility of a Braided Composite for Orthopedic Bone Cast

    PubMed Central

    Evans, Katherine R; Carey, Jason P

    2013-01-01

    A tubular braided composite bone cast for improving the efficiency and quality of bone fracture treatment is investigated. Finite element analysis was used to evaluate stress concentrations in fracture sites supported with plate and tubular casts. The stress in a plated bone is 768 % of that in a whole bone at the same location, while it is only 47 % in a bone with a tubular cast. Three unbroken synthetic humeri were mechanically tested using an in-vitro long bone testing procedure developed in-house to find their stiffness at 20° and 60° abduction; these were found to be 116.8 ± 1.5 N/mm and 20.63 ± 0.02 N/mm, respectively. A 2 cm gap osteotomy was cut through the diaphysis in each bone. The bones were casted with a Kevlar/Cold cure composite, with calculated braid angles and thicknesses that Closely matched bone propoerties. The stiffness tests were repeated, and the results were within 10 % of the unbroken bone. This novel method of bone casting is promising if other clinical challenges can be minimized. PMID:23459455

  10. Investigation on mechanical properties of contemporary metallic bone plates: towards the development of composite bone plates.

    PubMed

    Hoque, M E; Zainal, N H; Syarif, J

    2008-07-01

    This study aims at investigating the mechanical properties of the contemporary metallic bone plates determining the effect of their length, width and thickness on the properties and compares with the composite bone plates. Three-points bending test was performed over the stainless steel plates of different length, width and thickness. The test results showed that different plates had different mechanical properties. However, the properties are still much higher than that of particular bones intended to be treated. Therefore, the reported findings strongly encourage developing composite bone plates with biocompatible polymers/fibers that would have modulated properties according to the requirements.

  11. Bone repair analysis in a novel biodegradable hydroxyapatite/collagen composite implanted in bone.

    PubMed

    Nishikawa, Tetsunari; Masuno, Kazuya; Tominaga, Kazuya; Koyama, Yoshihisa; Yamada, Takeki; Takakuda, Kazuo; Kikuchi, Masanori; Tanaka, Junzo; Tanaka, Akio

    2005-09-01

    The purpose of this study was to evaluate a biodegradable hydroxyapatite/collagen composite and to examine the use of the calcium ion contained for bone formation and growth. Surgical holes were prepared in the femora and tibiae of beagle dogs, and were filled with the hydroxyapatite/collagen composite labeled with alizarin red. After 4 weeks, calcein was administered to the experimental dogs. After 1 additional week, the femora and tibiae were removed surgically and fixed in formalin. Light microscopy and confocal laser scanning microscopy were used to examine the surgical holes with their implanted materials and the surrounding bone. There were only a few inflammatory cells adjacent to the hydroxyapatite/collagen composite. The newly formed bone in the cortical bone was stained with calcein, which binds to serum calcium, and new bone near the hydroxyapatite/collagen composite in the holes was stained positive for alizarin red, which binds to the calcium in the hydroxyapatite/collagen composite. In addition, osteoblasts near the hydroxyapatite/collagen composite as well as newly formed bone adjacent to the osteoblasts showed alizarin red staining, but the new bone at a distance from the hydroxyapatite/collagen implant reacted only to calcein staining. These results, using the tissue labeling method with calcein and alizarin red, suggested that the calcium bound to the alizarin red released from the hydroxyapatite/collagen composite materials might have been translocated to sites of new bone formation. The present experiment showed that the novel hydroxyapatite/collagen composite is a useful implant material for bone augmentation and that the calcium in the newly formed bone might have been released from the implant.

  12. Composite Bone Models in Orthopaedic Surgery Research and Education

    PubMed Central

    Elfar, John; Stanbury, Spencer; Menorca, Ron Martin Garcia; Reed, Jeffrey Douglas

    2014-01-01

    Composite bone models are increasingly used in orthopaedic biomechanics research and surgical education—applications that traditionally relied on cadavers. Cadaver bones are suboptimal for myriad reasons, including issues of cost, availability, preservation, and inconsistency between specimens. Further, cadaver samples disproportionately represent the elderly, whose bone quality may not be representative of the greater orthopaedic population. The current fourth-generation composite bone models provide an accurate reproduction of the biomechanical properties of human bone when placed under bending, axial, and torsional loads. The combination of glass fiber and epoxy resin components into a single phase has enabled manufacturing by injection molding. The high anatomic fidelity of the cadaver-based molds and negligible shrinkage properties of the epoxy resin results in a process that allows for excellent definition of anatomic detail in the cortical wall and optimized consistency of features between models. Recent biomechanical studies of composites have validated their use as a suitable substitute for cadaver specimens. PMID:24486757

  13. Effect of parathyroidectomy on bone growth and composition in the young rat

    NASA Technical Reports Server (NTRS)

    Keil, L. C.; Prinz, J. A.; Evans, J. W.

    1974-01-01

    In an effort to determine the influence of the parathyroids on bone growth and composition, 28-day-old male Sprague-Dawley rats were sacrificed 28, 56, and 84 days after parathyroidectomy or sham parathyroidectomy. Body growth as well as femur growth were retarded following parathyroidectomy. Hypocalcemia and hyperphosphatemia occurred in all parathyroidectomized rats; no alterations in plasma magnesium levels were noted. Femur magnesium was increased by 22-30% in the parathyroidectomized rats whereas femur calcium remained unchanged. Bone phosphorus was increased 56 and 84 days following parathyroidectomy. Results of this study indicate that parathyroidectomy retards growth while increasing bone magnesium and phosphorus content.

  14. Effect of parathyroidectomy on bone growth and composition in the young rat

    NASA Technical Reports Server (NTRS)

    Keil, L. C.; Prinz, J. A.; Evans, J. W.

    1974-01-01

    In an effort to determine the influence of the parathyroids on bone growth and composition, 28-day-old male Sprague-Dawley rats were sacrificed 28, 56, and 84 days after parathyroidectomy or sham parathyroidectomy. Body growth as well as femur growth were retarded following parathyroidectomy. Hypocalcemia and hyperphosphatemia occurred in all parathyroidectomized rats; no alterations in plasma magnesium levels were noted. Femur magnesium was increased by 22-30% in the parathyroidectomized rats whereas femur calcium remained unchanged. Bone phosphorus was increased 56 and 84 days following parathyroidectomy. Results of this study indicate that parathyroidectomy retards growth while increasing bone magnesium and phosphorus content.

  15. Vacuum-sintered body of a novel apatite for artificial bone

    NASA Astrophysics Data System (ADS)

    Tamura, Kenichi; Fujita, Tatsushi; Morisaki, Yuriko

    2013-12-01

    We produced regenerative artificial bone material and bone parts using vacuum-sintered bodies of a novel apatite called "Titanium medical apatite (TMA®)" for biomedical applications. TMA was formed by chemically connecting a Ti oxide molecule with the reactive [Ca10(PO4)6] group of Hydroxyapatite (HAp). The TMA powders were kneaded with distilled water, and solid cylinders of compacted TMA were made by compression molding at 10 MPa using a stainless-steel vessel. The TMA compacts were dried and then sintered in vacuum (about 10-3 Pa) or in air using a resistance heating furnace in the temperature range 1073-1773 K. TMA compacts were sintered at temperatures greater than 1073 K, thus resulting in recrystallization. The TMA compact bodies sintered in the range 1273-1773 K were converted into mixtures composed of three crystalline materials: α-TCP (tricalcium phosphate), β-TCP, and Perovskite-CaTiO3. The Perovskite crystals were stable and hard. In vacuum-sintering, the Perovskite crystals were transformed into fibers (approximately 1 µm in diameter × 8 µm in length), and the fiber distribution was uniform in various directions. We refer to the TMA vacuum-sintered bodies as a "reinforced composite material with Perovskite crystal fibers." However, in atmospheric sintering, the Perovskite crystals were of various sizes and were irregularly distributed as a result of the effect of oxygen. After sintering temperature at 1573 K, the following results were obtained: the obtained TMA vacuum-sintered bodies (1) were white, (2) had a density of approximately 2300 kg/m3 (corresponding to that of a compact bone or a tooth), and had a thermal conductivity of approximately 31.3 W/(m·K) (corresponding to those of metal or ceramic implants). Further, it was possible to cut the TMA bodies into various forms with a cutting machine. An implant made of TMA and inserted into a rabbit jaw bone was covered by new bone tissues after just one month because of the high

  16. Body composition and somatotype of experienced mountain climbers.

    PubMed

    Barbieri, Davide; Zaccagni, Luciana; Cogo, Annalisa; Gualdi-Russo, Emanuela

    2012-03-01

    In order to evaluate body composition and somatotype, 10 Italian experienced mountain climbers were assessed from an anthropometric point of view, before a high altitude ascent. Body mass, height, girths, skinfolds, and bone breadths were gathered and used to calculate body composition and somatotype of each subject. Means and standard deviations of the subjects' anthropometric characteristics were calculated. Mesomorphism (5.28±1.10) is the dominant somatotype component in all but one the participants, endomorphism (1.55±0.49) is low, and body fat percentage (11.76%±2.93) is low. Comparisons with athletes involved in other climbing subdisciplines highlight the specificity of elite mountain climbers anthropometry. The elite mountain climbers in our sample were predominantly mesomorphic with somatotype attitudinal mean values lower than reported for male athletes participating in free-climbing, volleyball, gymnastics, and soccer. Anthropometric characteristics may therefore play a role in mountain climbing, even though the trainable components may be more relevant than the nontrainable ones.

  17. Total body composition by dual-photon (153Gd) absorptiometry

    SciTech Connect

    Mazess, R.B.; Peppler, W.W.; Gibbons, M.

    1984-10-01

    The lean-fat composition (%FATR) of soft tissue and the mineral mass of the skeleton were determined in vivo using dual-photon (153Gd) absorptiometry (dose under 2 mrem). A rectilinear raster scan was made over the entire body in 18 subjects (14 female, 4 male). Single-photon absorptiometry (125I) measured bone mineral content on the radius. Percentage fat (%FATD) was determined in the same subjects using body density (from underwater weighing with correction for residual lung volume). Lean body mass (LBM) was determined using both %FATR and %FATD. Percentage fat from absorptiometry and from underwater density were correlated (r . 0.87). The deviation of %FATD from %FATR was due to the amount of skeletal mineral as a percentage of the LBM (r . 0.90). Therefore, skeletal variability, even in normal subjects, where mineral ranges only from 4 to 8% of the LBM, essentially precludes use of body density as a composition indicator unless skeletal mass is measured. Anthropometry (fatfolds and weight) predicted %FATR and LBM at least as well as did underwater density. The predictive error of %FATR from fatfolds was 5% while the predictive error in predicting LBM from anthropometry was 2 to 3 kg (3%).

  18. Osteoconduction in keratin-hydroxyapatite composite bone-graft substitutes.

    PubMed

    Dias, George Jayantha; Mahoney, Patricia; Hung, Noelyn Anne; Sharma, Lavanya Ajay; Kalita, Priyakshi; Smith, Robert Allen; Kelly, Robert James; Ali, Azam

    2017-10-01

    Reconstituted keratin-hydroxyapatite (K-HA) composites have shown potential as nonload-bearing bone graft substitute material. This in vivo study investigated the bone regeneration response of keratin plus 40% HA composite materials in comparison to collagen counterparts and an unfilled defect site. The implantation site was a noncritical size defect created in the long bones (tibia) of sheep, with observations made at 1, 2, 4, 6, 8, and 12 weeks postimplantation. Porous K-HA materials displayed an excellent biocompatibility similar to collagen counterparts; however, the rate of bone regeneration at K-HA implantation sites was markedly slower than that of the collagen or unfilled defect sites. While collagen materials were undetectable by 4 weeks implantation, K-HA composite remnants were present at 12 weeks. However, there is evidence that K-HA implants participated in the natural remodelling process of bone, with bone regeneration occurring via a creeping substitution mechanism. Observations imply that the rate of bone ingrowth into the K-HA defect site was matched with the rate of K-HA resorption. These results suggest that K-HA materials may offer significant benefits as nonload-bearing bone graft substitutes where it is desirable that the degradation of the scaffolding material be well matched with the rate of bone regeneration. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2034-2044, 2017. © 2016 Wiley Periodicals, Inc.

  19. Methods for nurses to measure body composition.

    PubMed

    Moran, Jose Maria; Lavado-Garcia, Jesus Maria; Pedrera-Zamorano, Juan Diego

    2011-01-01

    Among the methods available for assessing body composition, traditional methods like hydrodensitometry and skin-fold measurements are well known. In this review, we focus on the impedance and interactance methods, which use systems that are usually inexpensive, easily transportable and simple to operate. We also discuss the usefulness of dual energy X-ray absorptiometry, particularly for the measurement of fat distribution. Nurses need to be skilled in the use of the equipment and familiar with the techniques.

  20. Women gaze behaviour in assessing female bodies: the effects of clothing, body size, own body composition and body satisfaction.

    PubMed

    Cundall, Amelia; Guo, Kun

    2017-01-01

    Often with minimally clothed figures depicting extreme body sizes, previous studies have shown women tend to gaze at evolutionary determinants of attractiveness when viewing female bodies, possibly for self-evaluation purposes, and their gaze distribution is modulated by own body dissatisfaction level. To explore to what extent women's body-viewing gaze behaviour is affected by clothing type, dress size, subjective measurements of regional body satisfaction and objective measurements of own body composition (e.g., chest size, body mass index, waist-to-hip ratio), in this self-paced body attractiveness and body size judgement experiment, we compared healthy, young women's gaze distributions when viewing female bodies in tight and loose clothing of different dress sizes. In contrast to tight clothing, loose clothing biased gaze away from the waist-hip to the leg region, and subsequently led to enhanced body attractiveness ratings and body size underestimation for larger female bodies, indicating the important role of clothing in mediating women's body perception. When viewing preferred female bodies, women's higher satisfaction of a specific body region was associated with an increased gaze towards neighbouring body areas, implying satisfaction might reduce the need for comparison of confident body parts; furthermore undesirable body composition measurements were correlated with a gaze avoidance process if the construct was less changeable (i.e. chest size) but a gaze comparison process if the region was more changeable (i.e. body mass index, dress size). Clearly, own body satisfaction and body composition measurements had an evident impact on women's body-viewing gaze allocation, possibly through different cognitive processes.

  1. Oxidatively Degradable Poly(thioketal urethane)/Ceramic Composite Bone Cements with Bone-Like Strength.

    PubMed

    McEnery, Madison A P; Lu, Sichang; Gupta, Mukesh K; Zienkiewicz, Katarzyna J; Wenke, Joseph C; Kalpakci, Kerem N; Shimko, Daniel; Duvall, Craig L; Guelcher, Scott A

    2016-01-01

    Synthetic bone cements are commonly used in orthopaedic procedures to aid in bone regeneration following trauma or disease. Polymeric cements like PMMA provide the mechanical strength necessary for orthopaedic applications, but they are not resorbable and do not integrate with host bone. Ceramic cements have a chemical composition similar to that of bone, but their brittle mechanical properties limit their use in weight-bearing applications. In this study, we designed oxidatively degradable, polymeric bone cements with mechanical properties suitable for bone tissue engineering applications. We synthesized a novel thioketal (TK) diol, which was crosslinked with a lysine triisocyanate (LTI) prepolymer to create hydrolytically stable poly(thioketal urethane)s (PTKUR) that degrade in the oxidative environment associated with bone defects. PTKUR films were hydrolytically stable for up to 6 months, but degraded rapidly (<1 week) under simulated oxidative conditions in vitro. When combined with ceramic micro- or nanoparticles, PTKUR cements exhibited working times comparable to calcium phosphate cements and strengths exceeding those of trabecular bone. PTKUR/ceramic composite cements supported appositional bone growth and integrated with host bone near the bone-cement interface at 6 and 12 weeks post-implantation in rabbit femoral condyle plug defects. Histological evidence of osteoclast-mediated resorption of the cements was observed at 6 and 12 weeks. These findings demonstrate that a PTKUR bone cement with bone-like strength can be selectively resorbed by cells involved in bone remodeling, and thus represent an important initial step toward the development of resorbable bone cements for weight-bearing applications.

  2. Unique biochemical and mineral composition of whale ear bones.

    PubMed

    Kim, Sora L; Thewissen, J G M; Churchill, Morgan M; Suydam, Robert S; Ketten, Darlene R; Clementz, Mark T

    2014-01-01

    Abstract Cetaceans are obligate aquatic mammals derived from terrestrial artiodactyls. The defining characteristic of cetaceans is a thick and dense lip (pachyosteosclerotic involucrum) of an ear bone (the tympanic). This unique feature is absent in modern terrestrial artiodactyls and is suggested to be important in underwater hearing. Here, we investigate the mineralogical and biochemical properties of the involucrum, as these may hold clues to the aquatic adaptations of cetaceans. We compared bioapatites (enamel, dentine, cementum, and skeletal bone) of cetaceans with those of terrestrial artiodactyls and pachyosteosclerotic ribs of manatees (Sirenia). We investigated organic, carbonate, and mineral composition as well as crystal size and crystallinity index. In all studied variables, bioapatites of the cetacean involucrum were intermediate in composition and structure between those of tooth enamel on the one hand and those of dentine, cementum, and skeletal bone on the other. We also studied the amino acid composition of the cetacean involucrum relative to that of other skeletal bone. The central involucrum had low glycine and hydroxyproline concentrations but high concentrations of nonessential amino acids, unlike most bone samples but similar to the tympanic of hippos and the (pachyosteosclerotic) ribs of manatees. These amino acid results are evidence of rapid bone development. We hypothesize that the mineralogical and amino acid composition of cetacean bullae differs from that of other bone because of (1) functional modifications for underwater sound reception and (2) structural adaptations related to rapid ossification.

  3. Body composition predictors of skeletal integrity in obesity.

    PubMed

    Schorr, Melanie; Dichtel, Laura E; Gerweck, Anu V; Torriani, Martin; Miller, Karen K; Bredella, Miriam A

    2016-06-01

    To determine body composition predictors of skeletal integrity in overweight/obese subjects using dual energy X-ray absorptiometry (DXA). We hypothesized that visceral adiposity would be negatively, and lean mass positively, associated with DXA measures of skeletal integrity in obesity. Our study was institutional review board (IRB)-approved and Health Insurance Portability and Accountability Act (HIPAA)-compliant and written informed consent was obtained. We studied 82 overweight or obese, but otherwise healthy premenopausal women and men of similar age who were part of a clinical trial (mean age: 37 ± 10 years, mean BMI: 34 ± 7 kg/m(2)). All subjects underwent DXA of the spine and hip for assessment of bone mineral density (BMD), trabecular bone score (TBS), and hip structural analysis (HSA), and of the whole body for the assessment of body composition, including estimated visceral adipose tissue (VAT). Sixty-three subjects (77 %) had normal BMD and 19 subjects (23 %) had osteopenia. There were strong age-, sex-, and BMD-independent positive associations between lean mass and HSA parameters (r = 0.50 to r = 0.81, p < 0.0001), whereas there was no association with TBS. There were strong age-, sex- and BMD-independent inverse associations between total fat and VAT mass and TBS (r = -0.60 and r = -0.72, p < 0.0001 for both correlations), whereas there were no associations with HSA parameters. Lean mass is a positive predictor of hip geometry, whereas fat and VAT mass are negative predictors of trabecular microarchitecture in overweight/obese subjects.

  4. DEXA body composition changes among 140 conscripts.

    PubMed

    Mattila, V M; Tallroth, K; Marttinen, M; Ohrankammen, O; Pihlajamaki, H

    2009-05-01

    The aim of the study was to determine changes in body composition and physical fitness during military service. A prospective cohort study of 140 healthy male conscripts was conducted. We examined subject characteristics, aerobic performance and muscle strength, and assessed body composition using dual-energy X-ray absorptiometry (DEXA) three times. Conscripts' mean baseline weight (79.5 kg) decreased by 2 kg during the first 3 months, but increased by 0.9 kg during the second 3-month period (p<0.001). Fat mass measured by DEXA decreased by 3.2 kg during the first but increased by 0.8 kg during the second 3-month period (p<0.001). Throughout the 6-month study, an increase was seen in distance of 12-min run test (from 2 380 m to 2 530 m; p<0.001), and muscle strength score (from 6.5 to 9.5 p<0.001). Finnish military training seems to have beneficial effects on physical fitness. However, considering the relatively modest changes in body fat and physical fitness seen in conscripts with average BMIs at baseline, design of diverse training programmes for the varying baseline BMI levels are warranted to improve the physical fitness results.

  5. Polymeric composites containing carbon nanotubes for bone tissue engineering.

    PubMed

    Sahithi, Kolli; Swetha, Maddela; Ramasamy, Kumarasamy; Srinivasan, Narasimhan; Selvamurugan, Nagarajan

    2010-04-01

    Several natural and synthetic polymers are now available for bone tissue engineering applications but they may lack mechanical integrity. In recent years, there are reports emphasizing the importance of carbon nanotubes (CNTs) in supporting bone growth. CNTs possess exceptional mechanical, thermal, and electrical properties, facilitating their use as reinforcements or additives in various materials to improve the properties of the materials. Biomaterials containing polymers often are placed adjacent to bone. The use of CNTs is anticipated in these biomaterials applied to bone mainly to improve their overall mechanical properties and expected to act as scaffolds to promote and guide bone tissue regeneration. This review paper provides a current state of knowledge available examining the use of the polymeric composites containing CNTs for promoting bone growth.

  6. Bone bonding ability of a new biodegradable composite for internal fixation of bone fractures.

    PubMed

    Furukawa, T; Matsusue, Y; Yasunaga, T; Nakagawa, Y; Shikinami, Y; Okuno, M; Nakamura, T

    2000-10-01

    Hydroxyapatite particles and poly(L-lactide) composites for internal fixation of bone fractures have been developed based on the hypothesis that incorporation of hydroxyapatite particles in a poly(L-lactide) matrix might enhance bone bonding. This study evaluated the bone bonding ability of these biodegradable composites. Two types of hydroxyapatite and poly(L-lactide) composite were used in this study: calcined hydroxyapatite/poly(L-lactide) and uncalcined hydroxyapatite/poly(L-lactide). Rectangular plates (2 x 10 x 15 mm) of each composite or poly(L-lactide) were implanted into the metaphysis of the tibiae of 33 male rabbits, and the failure load was measured by conducting a detaching test 8, 16, and 25 weeks after implantation. The failure loads of calcined hydroxyapatite/poly(L-lactide), uncalcined hydroxyapatite/poly(L-lactide), and poly(L-lactide), respectively, were 13.60, 13.95, and 0.46 N at 8 weeks; 29.84, 24.09, and 2.86 N at 16 weeks; and 25.50, 29.67, and 2.43 N at 25 weeks. Histologic observation revealed that the composites formed direct contact with the bone. The results in this study indicate that the composites improved the strength of the interface between bone and plate. This improved interfacial strength lead to a substantial decrease in the frequency of implant loosening in the treatment of fractured bones by internal fixation.

  7. The Body and the Beautiful: Health, Attractiveness and Body Composition in Men's and Women's Bodies.

    PubMed

    Brierley, Mary-Ellen; Brooks, Kevin R; Mond, Jonathan; Stevenson, Richard J; Stephen, Ian D

    2016-01-01

    The dominant evolutionary theory of physical attraction posits that attractiveness reflects physiological health, and attraction is a mechanism for identifying a healthy mate. Previous studies have found that perceptions of the healthiest body mass index (weight scaled for height; BMI) for women are close to healthy BMI guidelines, while the most attractive BMI is significantly lower, possibly pointing to an influence of sociocultural factors in determining attractive BMI. However, less is known about ideal body size for men. Further, research has not addressed the role of body fat and muscle, which have distinct relationships with health and are conflated in BMI, in determining perceived health and attractiveness. Here, we hypothesised that, if attractiveness reflects physiological health, the most attractive and healthy appearing body composition should be in line with physiologically healthy body composition. Thirty female and 33 male observers were instructed to manipulate 15 female and 15 male body images in terms of their fat and muscle to optimise perceived health and, separately, attractiveness. Observers were unaware that they were manipulating the muscle and fat content of bodies. The most attractive apparent fat mass for female bodies was significantly lower than the healthiest appearing fat mass (and was lower than the physiologically healthy range), with no significant difference for muscle mass. The optimal fat and muscle mass for men's bodies was in line with the healthy range. Male observers preferred a significantly lower overall male body mass than did female observers. While the body fat and muscle associated with healthy and attractive appearance is broadly in line with physiologically healthy values, deviations from this pattern suggest that future research should examine a possible role for internalization of body ideals in influencing perceptions of attractive body composition, particularly in women.

  8. Body Composition and Inflammation in Hemodialysis Patients.

    PubMed

    Mandic, Ante; Cavar, Ivan; Skoro, Ivana; Tomic, Ivan; Ljubic, Kristina; Coric, Slavica; Mikulic, Ivanka; Azinovic, Igor; Pravdic, Danijel

    2017-09-22

    The volume state of dialysis patients is important in guiding the dialysis process. Volume overload in these patients is associated with inflammation. The objectives of the present study were to assess the body composition of patients on hemodialysis; to determine the concentrations of B-type natriuretic peptide (BNP) in plasma and evaluate the association of BNP concentrations with volume overload; to determine the concentrations of C-reactive protein (CRP), albumin and superoxide dismutase (SOD) activities as indicators of inflammatory or antioxidant processes. The study included 79 maintenance hemodialysis patients. Assessment of body compartments was carried out using a body composition monitor (BCM). After BCM measurements, blood samples were taken from the patients for laboratory tests. There were 40 (50.6%) volume-overloaded patients (relative overhydration >15%). These patients had a higher prevalence of arterial hypertension (P < 0.05), significantly higher concentrations of BNP (P = 0.01), lower body mass index (P < 0.05) and lower fat tissue index (P < 0.05). There was a positive correlation between plasma BNP and CRP concentrations (ρ = 0.231; P < 0.05), and a negative correlation between (log) BNP and albumin (r = -0.021; P < 0.05), as well as (log) CRP and albumin concentrations (r = -3; P < 0.01). SOD activity was positively correlated with albumin concentrations (r = 0.254; P < 0.05). The concentrations of BNP in this study were associated with volume overload and inflammatory markers. Patients with a higher albumin concentration had higher SOD activity. © 2017 International Society for Apheresis, Japanese Society for Apheresis, and Japanese Society for Dialysis Therapy.

  9. [Body composition and polycystic ovary syndrome].

    PubMed

    Zabuliene, Lina; Tutkuviene, Janina

    2010-01-01

    Polycystic ovary syndrome (PCOS) is one of the most common endocrine metabolic disorders of reproductive age women. The main signs of PCOS are as follows: androgen excess, menstrual dysfunction, infertility, obesity, and other numerous health problems. By different authors, the disorder affects 2-28% of reproductive age women. Polycystic ovary syndrome is characterized by presence of hyperandrogenism, anovulation, menstrual cycle disturbances, also by the other metabolic changes. The lack of well-defined and universally accepted diagnostic criteria makes identification of this syndrome confusing to many clinicians. There are only few studies concerning the correlations between phenotypic expression, body composition and PCOS, and relationship with the processes of growth and sexual maturation and various environmental factors (nutrition, physical activity, stress, and other factors). There is a lack of knowledge about further PCOS development and prognosis, considering the individual and environmental factors. Variation in human body composition and shape ranges considerably: many body size and shape indices (height, weight, body composition, and proportions) are the result of long evolution process and adaptation to environment. Obviously, the morphological body parameters, physiological and biochemical indices are complex and compound the interdependent system. By current literature, more than 50% of women are overweight or obese. If waist circumference and waist-to-hip ratio of women with PCOS increase, reproductive function and metabolic state of a woman is altered more than in cases when there are no changes in these parameters. The investigations of the strongest sexual dimorphism sign--the subcutaneous and visceral fat topography--showed that women with PCOS have greater adipose tissue mass in the areas of the abdomen, waist, and upper arms than control women. It is known that some indices of sexual dimorphism may be considered as the morphological signs of

  10. Computer technology to evaluate body composition, nutrition, and exercise.

    PubMed

    Katch, F I; Katch, V L

    1983-09-01

    The use of computer technology has made it possible to make accurate determinations of body composition, nutrition, and exercise. With the FITCOMP computer assessment system, detailed measurements of physique status have been made on a variety of world-class athletes, including professional football and baseball players, as well as on diverse groups of young and older men and women throughout the United States. The FITCOMP measurement system allows the user a choice of measurement techniques: fatfolds, girths, bone diameters, and hydrostatic weighing. Combined with body composition assessment is a nutrition and exercise plan. The nutrition plan is based on guidelines formulated by the American Dietetic Association. This application of computer technology is unique, because individuals can select the foods they will eat from a list of preferred choices from the basic food groups. Individual menu plans for breakfast, lunch, and dinner are generated to provide an optimal blend of nutrients aimed at achieving ideal body mass and fat percentage. This is coupled with an aerobic exercise program that is selected by the individual from nine different forms, including walking, jogging, running, swimming, cycling, and various sport activities. The caloric output is designed to reduce total body fat through reductions in body weight of 1.4 to 2.5 pounds per week, depending on the exercise selected and total weight loss necessary to achieve a weight goal (and ideal fat percentage). The aerobic exercise plan is based on the method of overload, where intensity and duration are periodically increased dependent on individual capabilities. The use of fitness-oriented computer technology makes it possible to prepare detailed reports about current status and progress as well as to systematize record keeping.

  11. Assessment of the clumped isotope composition of fossil bone carbonate as a recorder of subsurface temperatures

    NASA Astrophysics Data System (ADS)

    Suarez, Marina B.; Passey, Benjamin H.

    2014-09-01

    Bone is susceptible to early diagenesis, and its carbon and oxygen isotopic compositions have been suggested to reflect conditions in the soil environment and shallow subsurface during fossilization. This implies open-system recrystallization involving mass exchange of carbon and oxygen among bioapatite, soil water, and DIC. Such recrystallization would also redistribute isotopic clumping (including 13C-18O bonds), leading to the possibility that the carbonate clumped isotope compositions of fossil bone record ground temperature during early diagenesis. We assess this possibility by studying Quaternary mammalian fossil bone from subtropical to polar latitudes: if recrystallization is early and pervasive, clumped isotope derived temperatures, T(Δ47), should closely mirror latitudinal gradients in ground temperature. Excluding results from a mummified specimen yielding T(Δ47) = 38 °C (that is, indistinguishable from mammalian body temperature), we find that T(Δ47) values are intermediate between mammalian body temperature and ground temperature, suggesting partial recrystallization of bone carbonate. XRD analyses show that the nature and extent of diagenesis varies among the samples and does not relate in a straightforward manner to T(Δ47). No clear correlation exists between T(Δ47) and mean annual temperature or mean warm season temperature. Furthermore, bone tends to retain the 18O-enriched signature of body water, suggesting incomplete oxygen isotope exchange with meteoric waters. Incomplete carbon and oxygen isotope exchange between bone carbonate and soil waters is also indicated for a set of late Miocene bone-enamel pairs from a sequence of stacked paleosols in northern China. Analysis of bone as old as Early Cretaceous shows that bone carbonate is susceptible to later diagenesis at elevated burial temperatures, although T(Δ47) does not closely conform to maximum burial temperature, again suggesting partial recrystallization, or recrystallization during

  12. Determination of replicate composite bone material properties using modal analysis.

    PubMed

    Leuridan, Steven; Goossens, Quentin; Pastrav, Leonard; Roosen, Jorg; Mulier, Michiel; Denis, Kathleen; Desmet, Wim; Sloten, Jos Vander

    2017-02-01

    Replicate composite bones are used extensively for in vitro testing of new orthopedic devices. Contrary to tests with cadaveric bone material, which inherently exhibits large variability, they offer a standardized alternative with limited variability. Accurate knowledge of the composite's material properties is important when interpreting in vitro test results and when using them in FE models of biomechanical constructs. The cortical bone analogue material properties of three different fourth-generation composite bone models were determined by updating FE bone models using experimental and numerical modal analyses results. The influence of the cortical bone analogue material model (isotropic or transversely isotropic) and the inter- and intra-specimen variability were assessed. Isotropic cortical bone analogue material models failed to represent the experimental behavior in a satisfactory way even after updating the elastic material constants. When transversely isotropic material models were used, the updating procedure resulted in a reduction of the longitudinal Young's modulus from 16.00GPa before updating to an average of 13.96 GPa after updating. The shear modulus was increased from 3.30GPa to an average value of 3.92GPa. The transverse Young's modulus was lowered from an initial value of 10.00GPa to 9.89GPa. Low inter- and intra-specimen variability was found.

  13. Optimisation of composite bone plates for ulnar transverse fractures.

    PubMed

    Chakladar, N D; Harper, L T; Parsons, A J

    2016-04-01

    Metallic bone plates are commonly used for arm bone fractures where conservative treatment (casts) cannot provide adequate support and compression at the fracture site. These plates, made of stainless steel or titanium alloys, tend to shield stress transfer at the fracture site and delay the bone healing rate. This study investigates the feasibility of adopting advanced composite materials to overcome stress shielding effects by optimising the geometry and mechanical properties of the plate to match more closely to the bone. An ulnar transverse fracture is characterised and finite element techniques are employed to investigate the feasibility of a composite-plated fractured bone construct over a stainless steel equivalent. Numerical models of intact and fractured bones are analysed and the mechanical behaviour is found to agree with experimental data. The mechanical properties are tailored to produce an optimised composite plate, offering a 25% reduction in length and a 70% reduction in mass. The optimised design may help to reduce stress shielding and increase bone healing rates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Material model of pelvic bone based on modal analysis: a study on the composite bone.

    PubMed

    Henyš, Petr; Čapek, Lukáš

    2017-02-01

    Digital models based on finite element (FE) analysis are widely used in orthopaedics to predict the stress or strain in the bone due to bone-implant interaction. The usability of the model depends strongly on the bone material description. The material model that is most commonly used is based on a constant Young's modulus or on the apparent density of bone obtained from computer tomography (CT) data. The Young's modulus of bone is described in many experimental works with large variations in the results. The concept of measuring and validating the material model of the pelvic bone based on modal analysis is introduced in this pilot study. The modal frequencies, damping, and shapes of the composite bone were measured precisely by an impact hammer at 239 points. An FE model was built using the data pertaining to the geometry and apparent density obtained from the CT of the composite bone. The isotropic homogeneous Young's modulus and Poisson's ratio of the cortical and trabecular bone were estimated from the optimisation procedure including Gaussian statistical properties. The performance of the updated model was investigated through the sensitivity analysis of the natural frequencies with respect to the material parameters. The maximal error between the numerical and experimental natural frequencies of the bone reached 1.74 % in the first modal shape. Finally, the optimised parameters were matched with the data sheets of the composite bone. The maximal difference between the calibrated material properties and that obtained from the data sheet was 34 %. The optimisation scheme of the FE model based on the modal analysis data provides extremely useful calibration of the FE models with the uncertainty bounds and without the influence of the boundary conditions.

  15. Ultrasound: Which role in body composition?

    PubMed

    Bazzocchi, Alberto; Filonzi, Giacomo; Ponti, Federico; Albisinni, Ugo; Guglielmi, Giuseppe; Battista, Giuseppe

    2016-08-01

    Ultrasound is a non-invasive, fast, relatively inexpensive and available tool for estimating adiposity in clinical practice, and in several research settings. It does not expose patients to ionizing radiation risks, making the method ideal for the evaluation, and for follow-up studies. Several parameters and indexes based on adipose tissue thickness have been introduced and tested, and these have been correlated with clinical and laboratoristic parameters. Moreover, ultrasound can also be directed to the estimation of adipose tissue and intracellular fat indirectly, at cellular-molecular level: an opportunity for many radiologists who already and sometimes unconsciously perform "body composition" assessment when looking at the liver, at muscle as well as at other organs. However, standardized procedure and parameters are needing to improve accuracy and reproducibility. The purposes of this review are: 1) to provide a complete overview of the most used and shared measurements of adiposity; 2) to analyze technical conditions, accuracy, and clinical meaning of ultrasound in the study of body composition; 3) to provide some elements for the use of ultrasound in the evaluation of intra-cellular lipids accumulation, in two hot spots: liver and skeletal muscle.

  16. 3D-Printing Composite Polycaprolactone-Decellularized Bone Matrix Scaffolds for Bone Tissue Engineering Applications.

    PubMed

    Rindone, Alexandra N; Nyberg, Ethan; Grayson, Warren L

    2017-05-11

    Millions of patients worldwide require bone grafts for treatment of large, critically sized bone defects from conditions such as trauma, cancer, and congenital defects. Tissue engineered (TE) bone grafts have the potential to provide a more effective treatment than current bone grafts since they would restore fully functional bone tissue in large defects. Most bone TE approaches involve a combination of stem cells with porous, biodegradable scaffolds that provide mechanical support and degrade gradually as bone tissue is regenerated by stem cells. 3D-printing is a key technique in bone TE that can be used to fabricate functionalized scaffolds with patient-specific geometry. Using 3D-printing, composite polycaprolactone (PCL) and decellularized bone matrix (DCB) scaffolds can be produced to have the desired mechanical properties, geometry, and osteoinductivity needed for a TE bone graft. This book chapter will describe the protocols for fabricating and characterizing 3D-printed PCL:DCB scaffolds. Moreover, procedures for culturing adipose-derived stem cells (ASCs) in these scaffolds in vitro will be described to demonstrate the osteoinductivity of the scaffolds.

  17. [Development of a Novel Body Phantom with Bone Equivalent Density for Evaluation of Bone SPECT].

    PubMed

    Ichikawa, Hajime; Miwa, Kenta; Matsutomo, Norikazu; Watanabe, Yoichi; Kato, Toyohiro; Shimada, Hideki

    2015-12-01

    We developed a custom-designed phantom for bone single photon emission computed tomography (SPECT)-specific radioactivity distribution and linear attenuation coefficient. The aim of this study was to evaluate the accuracy of the phantom. The lumbar phantom consisted of the trunk of a body phantom (background) containing a cylinder (vertebral body), a sphere (tumor), and a T-shaped container (processus). The vertebral body, tumor, and processus phantoms contained a K(2)HPO(4) solution of bone equivalent density and 50, 300 and 50 kBq/mL of (99m)Tc, respectively. The body phantom contained 8 kBq/mL of (99m)Tc solution. SPECT images were acquired using low-energy high-resolution collimation, a 128 × 128 matrix and 120 projections over 360° with a dwell time of 15 sec/view × 4 times. Thereafter, CT images were acquired at 130 kV and 70 ref mAs using adaptive dose modulation. The SPECT data were reconstructed with ordered subset expectation maximization with three-dimensional, scatter, and CT-based attenuation correction. Count ratio, linear attenuation coefficient (LAC), and full-width at half-maximum (FWHM) were measured. Count ratios between the background, the vertebral body, and the tumor in SPECT images were 463.8: 2888.0: 15150.3 (1: 6.23: 32.7). The LAC of the background and vertebral body in the CT-derived attenuation map were 0.155 cm⁻¹ and 0.284 cm⁻¹, respectively, and the FWHM measured from the processus was 15.27 mm. The precise counts and LAC indicated that the phantom was accurate and could serve as a tool for evaluating acquisition, reconstruction parameters, and quantitation in bone SPECT images.

  18. Body composition in remission of childhood cancer

    NASA Astrophysics Data System (ADS)

    Tseytlin, G. Ja; Anisimova, A. V.; Godina, E. Z.; Khomyakova, I. A.; Konovalova, M. V.; Nikolaev, D. V.; Rudnev, S. G.; Starunova, O. A.; Vashura, A. Yu

    2012-12-01

    Here, we describe the results of a cross-sectional bioimpedance study of body composition in 552 Russian children and adolescents aged 7-17 years in remission of various types of cancer (remission time 0-15 years, median 4 years). A sample of 1500 apparently healthy individuals of the same age interval was used for comparison. Our data show high frequency of malnutrition in total cancer patients group depending on type of cancer. 52.7% of patients were malnourished according to phase angle and percentage fat mass z-score with the range between 42.2% in children with solid tumors located outside CNS and 76.8% in children with CNS tumors. The body mass index failed to identify the proportion of patients with malnutrition and showed diagnostic sensitivity 50.6% for obesity on the basis of high percentage body fat and even much less so for undernutrition - 13.4% as judged by low phase angle. Our results suggest an advantage of using phase angle as the most sensitive bioimpedance indicator for the assessment of metabolic alterations, associated risks, and the effectiveness of rehabilitation strategies in childhood cancer patients.

  19. Validity of body composition methods across ethnic population groups.

    PubMed

    Deurenberg, P; Deurenberg-Yap, M

    2003-10-01

    Most in vivo body composition methods rely on assumptions that may vary among different population groups as well as within the same population group. The assumptions are based on in vitro body composition (carcass) analyses. The majority of body composition studies were performed on Caucasians and much of the information on validity methods and assumptions were available only for this ethnic group. It is assumed that these assumptions are also valid for other ethnic groups. However, if apparent differences across ethnic groups in body composition 'constants' and body composition 'rules' are not taken into account, biased information on body composition will be the result. This in turn may lead to misclassification of obesity or underweight at an individual as well as a population level. There is a need for more cross-ethnic population studies on body composition. Those studies should be carried out carefully, with adequate methodology and standardization for the obtained information to be valuable.

  20. Spine fusion using cell matrix composites enriched in bone marrow-derived cells.

    PubMed

    Muschler, George F; Nitto, Hironori; Matsukura, Yoichi; Boehm, Cynthia; Valdevit, Antonio; Kambic, Helen; Davros, William; Powell, Kimerly; Easley, Kirk

    2003-02-01

    Bone marrow-derived cells including osteoblastic progenitors can be concentrated rapidly from bone marrow aspirates using the surface of selected implantable matrices for selective cell attachment. Concentration of cells in this way to produce an enriched cellular composite graft improves graft efficacy. The current study was designed to test the hypothesis that the biologic milieu of a bone marrow clot will significantly improve the efficacy of such a graft. An established posterior spinal fusion model and cancellous bone matrix was used to compare an enriched cellular composite bone graft alone, bone matrix plus bone marrow clot, and an enriched bone matrix composite graft plus bone marrow clot. Union score, quantitative computed tomography, and mechanical testing were used to define outcome. The union score for the enriched bone matrix plus bone marrow clot composite was superior to the enriched bone matrix alone and the bone matrix plus bone marrow clot. The enriched bone matrix plus bone marrow clot composite also was superior to the enriched bone matrix alone in fusion volume and in fusion area. These data confirm that the addition of a bone marrow clot to an enriched cell-matrix composite graft results in significant improvement in graft performance. Enriched composite grafts prepared using this strategy provide a rapid, simple, safe, and inexpensive method for intraoperative concentration and delivery of bone marrow-derived cells and connective tissue progenitors that may improve the outcome of bone grafting.

  1. Comparison of body composition and adipokine levels between thin and normal-weight prepubertal children.

    PubMed

    Ambroszkiewicz, Jadwiga; Gajewska, Joanna; Szamotulska, Katarzyna; Rowicka, Grażyna; Klemarczyk, Witold; Chełchowska, Magdalena

    Thinness can have substantial consequences for child development and health. Adipokines, including leptin and adiponectin, play a significant role in the regulation of important metabolic functions. The aim of this study was to investigate associations between body composition and serum leptin and adiponectin levels in thin and normal-weight children. The authors examined 100 healthy prepubertal children, who were divided into two subgroups: thin (n=50) and normal-weight children (n=50). Body composition was assessed by dual-energy X-ray absorptiometry. Serum concentrations of adipokines were determined by immunoenzymatic assays. Thin children had a similar body height but significantly lower (p<0.0001) body weight, body mass index, fat mass, lean mass, and bone mineral content compared with normal-weight children. Serum concentrations of leptin were about 2-fold lower (p<0.0001) in thin vs. normal-weight subjects. Serum levels of total adiponectin, adiponectin multimers, and soluble leptin receptor (sOB-R) were similar in both groups. The leptin/soluble leptin receptor ratio and leptin/adiponectin ratios were lower (p<0.0001) in thin vs. normal-weight children. In both groups of children, it was found that body composition parameters were positively related with leptin but not with adiponectin levels. Additionally, bone mineral content was positively related with body mass index, fat mass, lean mass, and leptin level in thin and normal-weight children. Prepubertal thin children have disturbances in body composition and adipokine profile. Early recognition of thinness and determination of body composition parameters and adipokine levels can be useful in medical and nutritional care of thin children for the optimization of bone mineral accrual. Copyright © 2017 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  2. Bone-composition imaging using coherent-scatter computed tomography: Assessing bone health beyond bone mineral density

    SciTech Connect

    Batchelar, Deidre L.; Davidson, Melanie T.M.; Dabrowski, Waldemar; Cunningham, Ian A.

    2006-04-15

    Quantitative analysis of bone composition is necessary for the accurate diagnosis and monitoring of metabolic bone diseases. Accurate assessment of the bone mineralization state is the first requirement for a comprehensive analysis. In diagnostic imaging, x-ray coherent scatter depends upon the molecular structure of tissues. Coherent-scatter computed tomography (CSCT) exploits this feature to identify tissue types in composite biological specimens. We have used CSCT to map the distributions of tissues relevant to bone disease (fat, soft tissue, collagen, and mineral) within bone-tissue phantoms and an excised cadaveric bone sample. Using a purpose-built scanner, we have measured hydroxyapatite (bone mineral) concentrations based on coherent-scatter patterns from a series of samples with varying hydroxyapatite content. The measured scatter intensity is proportional to mineral density in true g/cm{sup 3}. Repeated measurements of the hydroxyapatite concentration in each sample were within, at most, 2% of each other, revealing an excellent precision in determining hydroxyapatite concentration. All measurements were also found to be accurate to within 3% of the known values. Phantoms simulating normal, over-, and under-mineralized bone were created by mixing known masses of pure collagen and hydroxyapatite. An analysis of the composite scatter patterns gave the density of each material. For each composite, the densities were within 2% of the known values. Collagen and hydroxyapatite concentrations were also examined in a bone-mimicking phantom, incorporating other bone constituents (fat, soft tissue). Tomographic maps of the coherent-scatter properties of each specimen were reconstructed, from which material-specific images were generated. Each tissue was clearly distinguished and the collagen-mineral ratio determined from this phantom was also within 2% of the known value. Existing bone analysis techniques cannot determine the collagen-mineral ratio in intact

  3. Composite vascularized skin/bone transplantation models for bone marrow-based tolerance studies.

    PubMed

    Ozmen, Selahattin; Ulusal, Betul G; Ulusal, Ali E; Izycki, Dariusz; Siemionow, Maria

    2006-03-01

    There is an ongoing need to understand the mechanisms of bone marrow-based allograft tolerance. This is important in clarifying the diverse variables influencing the ultimate outcome of the solid organ and composite tissue transplants. To establish bone marrow transplantation as a routine clinical application, further experimental studies should be conducted to overcome the obstacles related to the bone marrow transplantation. These obstacles include graft versus host disease, immunocompetence, and toxicity of the conditioning regimens. For these purposes, novel experimental models are needed. In an attempt to provide a reliable research tool for bone marrow-based tolerance induction studies, we introduced different experimental models of modified vascularized skin/bone marrow (VSBM) transplantation technique for tolerance induction, monitoring, and maintenance studies. In this skin/bone transplantation model, the technical feasibility of concurrent or consecutive transplantation of the combination of bilateral vascularized skin, vascularized bone marrow, or vascularized skin/bone marrow transplants was investigated. Isograft transplantations were performed between genetically identical Lewis (LEW, RT1) rats. Five different experimental designs in 5 groups of 5 animals each were studied. Group I: Bilateral vascularized skin (VS) transplantation; group II: bilateral vascularized skin/bone transplantation; group III: vascularized skin transplantation on one side and vascularized skin/bone transplantation on the contralateral side; group IV: vascularized bone transplantation on one side and vascularized skin/bone transplantation on the contralateral side; group V: vascularized bone transplantation on one side and vascularized skin transplantation on the contralateral side. Successful transplantations were performed in all groups. The survival of the isograft transplants was evaluated clinically and histologically. All skin flaps remained pink and pliable and grew new

  4. Dual-energy X-ray absorptiometry body composition in patients with secondary osteoporosis.

    PubMed

    Messina, Carmelo; Monaco, Cristian Giuseppe; Ulivieri, Fabio Massimo; Sardanelli, Francesco; Sconfienza, Luca Maria

    2016-08-01

    Due to the tight relationship between bone and soft tissues, there has been an increased interest in body composition assessment in patients with secondary osteoporosis as well as other pathological conditions. Dual-energy X-ray absorptiometry (DXA) is primarily devoted to the evaluation of bone mineral status, but continuous scientific advances of body composition software made DXA a rapid and easily available technique to assess body composition in terms of fat mass and lean mass. As a result, the International Society for Clinical Densitometry (ISCD) recently developed Official Positions regarding the use of this technique for body composition analysis. According to ISCD paper, indications are mainly limited to three conditions: HIV patients treated with antiretroviral agents associated with a risk of lipoatrophy; obese patients undergoing treatment for high weight loss; patients with sarcopenia or muscle weakness. Nevertheless, there are several other interesting clinical applications that were not included in the ISCD position paper, such as body composition assessment in patients undergoing organ transplantation, pulmonary disease as well as all those chronic condition that may lead to malnutrition. In conclusion, DXA body composition offers new diagnostic and research possibilities for a variety of diseases; due to its high reproducibility, DXA has also the potential to monitor body composition changes with pharmacological, nutritional or physic therapeutic interventions. ISCD addressed and recommended a list of clinical condition, but the crescent availability of DXA scans and software improvements may open the use of DXA to other indication in the next future. This article provides an overview of DXA body composition indications in the management of secondary osteoporosis and other clinical indications in adults.

  5. Effect of body composition methodology on heritability estimation of body fatness

    USDA-ARS?s Scientific Manuscript database

    Heritability estimates of human body fatness vary widely and the contribution of body composition methodology to this variability is unknown. The effect of body composition methodology on estimations of genetic and environmental contributions to body fatness variation was examined in 78 adult male ...

  6. Development and characterization of a bioglass/chitosan composite as an injectable bone substitute.

    PubMed

    Khoshakhlagh, Parastoo; Rabiee, Sayed Mahmood; Kiaee, Gita; Heidari, Pedram; Miri, Amir K; Moradi, Roshanak; Moztarzadeh, Fathollah; Ravarian, Roya

    2017-02-10

    SiO2-CaO-P2O5 based bioglass (BG) systems constitute a group of materials that have wide applications in bone implants. Chitosan (Cn) is a biocompatible and osteoconductive natural polymer that can promote wound healing. In this study, bioactivity of chitosan/bioglass (CnB) composites as minimally invasive bone regenerative materials was assessed both in vitro and in vivo. Injectability tests and scanning electron microscopy (SEM) results demonstrated the formation of uniform injectable paste-like composites using BG particles and Cn. Fourier transform infrared spectroscopy (FTIR) and SEM images confirmed hydroxyapatite deposition in vitro after incubation in simulated body fluid (SBF). Higher BG content in the composite correlated with increased human osteoblast proliferation. An in vivo study in a rat spinal fusion model confirmed that increasing the amount of BG improved osteoconductivity. Manual palpation, radiographic images and pathological assessments proved that the composites promote bone formation. Based on these data, the synthesized composites have a potential application in orthopedic and reconstructive surgeries as a minimally invasive bone substitute.

  7. Changes in bone mineral density over time by body mass index in the health ABC study.

    PubMed

    Lloyd, J T; Alley, D E; Hochberg, M C; Waldstein, S R; Harris, T B; Kritchevsky, S B; Schwartz, A V; Strotmeyer, E S; Womack, C; Orwig, D L

    2016-06-01

    Obesity appears protective against osteoporosis in cross-sectional studies. However, results from this longitudinal study found that obesity was associated with bone loss over time. Findings underscore the importance of looking at the longitudinal relationship, particularly given the increasing prevalence and duration of obesity among older adults. Cross-sectional studies have found a positive association between body mass index (BMI) and bone mineral density (BMD), but little is known about the longitudinal relationship in US older adults. We examined average annual rate of change in BMD by baseline BMI in the Health, Aging, and Body Composition Study. Repeated measurement of BMD was performed with dual-energy X-ray absorptiometry (DXA) at baseline and years 3, 5, 6, 8, and 10. Multivariate generalized estimating equations were used to predict mean BMD (femoral neck, total hip, and whole body) by baseline BMI (excluding underweight), adjusting for covariates. In the sample (n = 2570), 43 % were overweight and 24 % were obese with a mean baseline femoral neck BMD of 0.743 g/cm(2), hip BMD of 0.888 g/cm(2), and whole-body BMD of 1.09 g/cm(2). Change in total hip or whole-body BMD over time did not vary by BMI groups. However, obese older adults lost 0.003 g/cm(2) of femoral neck BMD per year more compared with normal weight older adults (p < 0.001). Femoral neck BMD change over time did not differ between the overweight and normal weight BMI groups (p = 0.74). In year 10, adjusted femoral neck BMD ranged from 0.696 g/cm(2) among obese, 0.709 g/cm(2) among normal weight, and 0.719 g/cm(2) among overweight older adults. Findings underscore the importance of looking at the longitudinal relationship between body composition and bone mineral density among older adults, indicating that high body mass may not be protective for bone loss over time.

  8. No association between body composition and cognition in ambulatory persons with multiple sclerosis: A brief report.

    PubMed

    Sandroff, Brian M; Hubbard, Elizabeth A; Pilutti, Lara A; Motl, Robert W

    2015-01-01

    There is evidence that body fat is inversely associated with cognitive functioning in adults from the general population, and this has been associated with systemic inflammation. The association between body fat and cognition might further be augmented in the presence of an immune-mediated, inflammatory disease such as multiple sclerosis (MS). This cross-sectional study investigated the associations between objective measures of body composition and cognitive function in 60 persons with MS. Participants underwent a neurological examination for generating Expanded Disability Status Scale scores, followed by the Brief International Cognitive Assessment in Multiple Sclerosis neuropsychological battery for measurement of cognitive processing speed, verbal learning and memory, and visual learning and memory. Whole-body fat mass, percent body fat, lean body mass, and bone mineral density were measured using dual-energy X-ray absorptiometry. Whole-body fat mass and percent body fat were not associated with any cognitive outcome (all p > 0.41). However, lean body mass was associated with cognitive processing speed (p < 0.03), and bone mineral density was associated with cognitive processing speed and verbal learning and memory. Those associations were attenuated and nonsignificant after controlling for age and Expanded Disability Status Scale scores (p > 0.13). Body composition might not represent a target of interventions for improving cognitive processing speed or learning and memory in MS.

  9. Fiber glass-bioactive glass composite for bone replacing and bone anchoring implants.

    PubMed

    Vallittu, Pekka K; Närhi, Timo O; Hupa, Leena

    2015-04-01

    Although metal implants have successfully been used for decades, devices made out of metals do not meet all clinical requirements, for example, metal objects may interfere with some new medical imaging systems, while their stiffness also differs from natural bone and may cause stress-shielding and over-loading of bone. Peer-review articles and other scientific literature were reviewed for providing up-dated information how fiber-reinforced composites and bioactive glass can be utilized in implantology. There has been a lot of development in the field of composite material research, which has focused to a large extent on biodegradable composites. However, it has become evident that biostable composites may also have several clinical benefits. Fiber reinforced composites containing bioactive glasses are relatively new types of biomaterials in the field of implantology. Biostable glass fibers are responsible for the load-bearing capacity of the implant, while the dissolution of the bioactive glass particles supports bone bonding and provides antimicrobial properties for the implant. These kinds of combination materials have been used clinically in cranioplasty implants and they have been investigated also as oral and orthopedic implants. The present knowledge suggests that by combining glass fiber-reinforced composite with particles of bioactive glass can be used in cranial implants and that the combination of materials may have potential use also as other types of bone replacing and repairing implants. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  10. Moderate zinc deficiency negatively affects biomechanical properties of rat tibiae independently of body composition.

    PubMed

    Scrimgeour, Angus G; Stahl, Chad H; McClung, James P; Marchitelli, Louis J; Young, Andrew J

    2007-12-01

    To guide development of novel nutritional strategies aimed at reducing the incidence of stress fractures, we observed the effects of manipulating dietary zinc (Zn) content on bone integrity in Sprague-Dawley rats fed either a severely Zn-deficient (ZnD; 1 ppm), a moderately Zn-deficient (MZnD; 5 ppm) or a Zn-adequate (ZnAD; 30 ppm) diet for 6 weeks. At the completion of the diet period, body composition, bone mineral content (BMC), bone area (BA) and bone mineral density (BMD) were determined in vivo by using dual-energy X-ray absorptiometry. Following euthanasia, long bones were collected for determination of Zn content and biomechanical strength testing. Despite significant positive correlations between dietary Zn and both body weight (BW) and bone Zn content for the entire cohort (r = .77 and r = .83, respectively), rats fed MZnD or ZnAD diets did not differ in feed intakes, body composition, BMC, BA, BMD or BW. Tibial bones, but not femur bones, appear to be more responsive to dietary Zn manipulation, as all bone biomechanical strength indices in the ZnAD-fed rats were significantly greater than in rats fed the ZnD diets. Rats fed either MZnD or ZnAD diets had stronger tibiae (129% increase in maximum load and stress at maximum load, P<.01) compared with those fed ZnD diets. The load at breakage for the tibial bones of rats fed MZnD diets was not different from the ZnD rats, but lower (P<.05) than that of the ZnAD rats. These results suggest that since feed intakes, body composition, BMC, BA, BMD and BW were not significantly different between the MZnD- and ZnAD-fed animals, the reduced bone integrity observed in the MZnD-fed rats resulted from dietary Zn inadequacy, and not as a result of the reduced growth that is typically associated with Zn deficiency.

  11. Administration of saccharin to neonatal mice influences body composition of adult males and reduces body weight of females.

    PubMed

    Parlee, Sebastian D; Simon, Becky R; Scheller, Erica L; Alejandro, Emilyn U; Learman, Brian S; Krishnan, Venkatesh; Bernal-Mizrachi, Ernesto; MacDougald, Ormond A

    2014-04-01

    Nutritional or pharmacological perturbations during perinatal growth can cause persistent effects on the function of white adipose tissue, altering susceptibility to obesity later in life. Previous studies have established that saccharin, a nonnutritive sweetener, inhibits lipolysis in mature adipocytes and stimulates adipogenesis. Thus, the current study tested whether neonatal exposure to saccharin via maternal lactation increased susceptibility of mice to diet-induced obesity. Saccharin decreased body weight of female mice beginning postnatal week 3. Decreased liver weights on week 14 corroborated this diminished body weight. Initially, saccharin also reduced male mouse body weight. By week 5, weights transiently rebounded above controls, and by week 14, male body weights did not differ. Body composition analysis revealed that saccharin increased lean and decreased fat mass of male mice, the latter due to decreased adipocyte size and epididymal, perirenal, and sc adipose weights. A mild improvement in glucose tolerance without a change in insulin sensitivity or secretion aligned with this leaner phenotype. Interestingly, microcomputed tomography analysis indicated that saccharin also increased cortical and trabecular bone mass of male mice and modified cortical bone alone in female mice. A modest increase in circulating testosterone may contribute to the leaner phenotype in male mice. Accordingly, the current study established a developmental period in which saccharin at high concentrations reduces adiposity and increases lean and bone mass in male mice while decreasing generalized growth in female mice.

  12. Administration of Saccharin to Neonatal Mice Influences Body Composition of Adult Males and Reduces Body Weight of Females

    PubMed Central

    Parlee, Sebastian D.; Simon, Becky R.; Scheller, Erica L.; Alejandro, Emilyn U.; Learman, Brian S.; Krishnan, Venkatesh; Bernal-Mizrachi, Ernesto

    2014-01-01

    Nutritional or pharmacological perturbations during perinatal growth can cause persistent effects on the function of white adipose tissue, altering susceptibility to obesity later in life. Previous studies have established that saccharin, a nonnutritive sweetener, inhibits lipolysis in mature adipocytes and stimulates adipogenesis. Thus, the current study tested whether neonatal exposure to saccharin via maternal lactation increased susceptibility of mice to diet-induced obesity. Saccharin decreased body weight of female mice beginning postnatal week 3. Decreased liver weights on week 14 corroborated this diminished body weight. Initially, saccharin also reduced male mouse body weight. By week 5, weights transiently rebounded above controls, and by week 14, male body weights did not differ. Body composition analysis revealed that saccharin increased lean and decreased fat mass of male mice, the latter due to decreased adipocyte size and epididymal, perirenal, and sc adipose weights. A mild improvement in glucose tolerance without a change in insulin sensitivity or secretion aligned with this leaner phenotype. Interestingly, microcomputed tomography analysis indicated that saccharin also increased cortical and trabecular bone mass of male mice and modified cortical bone alone in female mice. A modest increase in circulating testosterone may contribute to the leaner phenotype in male mice. Accordingly, the current study established a developmental period in which saccharin at high concentrations reduces adiposity and increases lean and bone mass in male mice while decreasing generalized growth in female mice. PMID:24456165

  13. Associations of lean and fat mass measures with whole body bone mineral content and bone mineral density in female adolescent weightlifters and swimmers.

    PubMed

    Koşar, Şükran Nazan

    2016-01-01

    Body composition and sport participation have been associated with bone mass. The purpose of this study was to determine the associations of lean and fat mass measures with whole body bone mineral content (BMC) and bone mineral density (BMD) in female adolescent weightlifters, swimmers and non-athletic counterparts. This study included a total of 25 female adolescents (mean age: 15.3±1.1 years). Body composition and bone mass were measured by dual-energy X-ray absorptiometry. In most of the studied variables weight lifters had higher values compared to swimmers and non-athletes (p < 0.05). No significant difference was observed between swimmers and non-athletes (p > 0.05). Lean and fat mass measures were positively associated with BMC and BMD for the total participants (p < 0.05) while the associations differed when the study groups were analysed separately. In conclusion, both lean and fat mass measures were strongly related to BMC and BMD in female adolescents while these associations differed in swimmers, weightlifters and non-athletes.

  14. Body size, body composition and fat distribution: comparative analysis of European, Maori, Pacific Island and Asian Indian adults.

    PubMed

    Rush, Elaine C; Freitas, Ismael; Plank, Lindsay D

    2009-08-01

    Although there is evidence that Asian Indians, Polynesians and Europeans differ in their body fat (BF)-BMI relationships, detailed comparative analysis of their underlying body composition and build characteristics is lacking. We investigated differences in the relationships between body fatness and BMI, fat distribution, muscularity, bone mineral mass, leg length and age-related changes in body composition between these ethnic groups. Cross-sectional analysis of 933 European, Maori, Pacific Island and Asian Indian adult volunteers was performed for total and percentage of BF, abdominal fat, thigh fat, appendicular muscle mass, bone mineral content and leg length measured by dual-energy X-ray absorptiometry. Asian Indian men and women (BMI of 24 and 26 kg/m2, respectively) had the same percentage of BF as Europeans with a BMI of 30 kg/m2 or Pacific men and women with BMI of 34 and 35 kg/m2, respectively. Asian Indians had more fat, both total and in the abdominal region, with less lean mass, skeletal muscle and bone mineral than all other ethnic groups. Leg length was relatively longer in Pacific men and Asian and Pacific women than in other ethnic groups. In Asian Indians, abdominal fat increased with increasing age, while the percentage of BF showed little change. In the other ethnic groups, both abdominal and total BF increased with age. In conclusion, ethnic differences in fat distribution, muscularity, bone mass and leg length may contribute to ethnic-specific relationships between body fatness and BMI. The use of universal BMI cut-off points may not be appropriate for the comparison of obesity prevalence between ethnic groups.

  15. Bone formation: The rules for fabricating a composite ceramic

    SciTech Connect

    Caplan, A.I. )

    1990-01-01

    Bone, teeth and shells are complex composite ceramics which are fabricated at low temperature by living organisms. The detailed understanding of this fabrication process is required if we are to attempt to mimic this low temperature assembly process. The guiding principles and major components are outlined with the intent of establishing non-vital fabrication schemes to form a complex composite ceramic consisting of an organix matrix inorganic crystalline phase. 19 refs.

  16. Body image, body mass index, and body composition in young adults.

    PubMed

    Streeter, Veronica M; Milhausen, Robin R; Buchholz, Andrea C

    2012-01-01

    Associations were examined between body image and body mass index (BMI) in comparison with body composition in healthy weight, overweight, and obese young adults. Weight and height were determined, and the percentage of fat mass (%FM) and percentage of fat-free mass (%FFM) were measured by dual energy X-ray absorptiometry in 75 male and 87 female young adults (21.1 ± 1.9 years; 25.2 ± 4.4 kg/m² [mean ± standard deviation]). Body image was measured using the three subscales Weight Esteem, Appearance Esteem, and External Attribution of the Body-Esteem Scale for Adolescents and Adults (BESAA). Body mass index and %FM were highly correlated (r for males = 0.74, r for females = 0.82; both p<0.001), and were inversely associated with body image, particularly Weight Esteem. After adjustment for physical activity, BMI and %FM (and %FFM, although in the opposite direction) were associated with each BESAA subscale: %FM, %FFM, and BMI explained 12% to 14% of the variance in Appearance Esteem for both sexes, 33% to 41% in Weight Esteem in women and 16% to 18% in men, and 8% to 10% in External Attribution in women (all p<0.05) and <5% for men (NS). Clinicians should be aware that as their clients' BMI and %FM increase, body image decreases, particularly in women.

  17. Relation between body mass index and bone mineral density among haemodialysis patients with chronic kidney disease.

    PubMed

    Castillo, Rafael Fernández; de la Rosa, Rafael José Esteban

    2009-03-01

    Renal osteodystrophy is a serious problem for patients with chronic kidney disease. Measurements of bone mineral density, T-score and Z-score were taken in the lumbar region and femur of 73 patients who were being treated on the haemodialysis programme. These measurements were compared with the anthropometric values of weight, height and body mass index (BMI) obtaining a positive correlation between them. Alterations in the bone mineral metabolism are an important cause of morbidity and mortality among haemodialysis patients with chronic renal failure. Bone mass diminution, together with fracture risk, is a frequent finding in these patients; this fact is explained by different factors, amongst which are those related to their anthropometric values. Bone mineral density (BMD) was studied, T-score and Z-score measurements were taken in the neck of the femur, trochanter, intertrochanter, 1/3 of proximal femur, Ward's triangle and L2, L3 and L4 vertebrae; body composition was also studied. With this aim, DXA densitometry was used on 73 haemodialysis patients (40 men and 33 women). The mean of the total haemodialysis time in these patients was 9.7 years. The group showed a very significant positive correlation between BMD, weight, height, BMI, fractures, dialysis time and intact PTH. CKD patients undergoing the haemodialysis programme show a significant BMD reduction, which affects both lumbar spine and femur. Weight and height affect BMD and bone change, being thus important factors of prediction for fracture risk. Furthermore, BMI is the main determinant of BMD, a finding that is confirmed in the units in this study and with the evidence described by other authors (Negri et al. (2005).

  18. Mineralized polymer composites as biogenic bone substitute material

    NASA Astrophysics Data System (ADS)

    Shah, Rushita; Saha, Nabanita; Kitano, Takeshi; Saha, Petr

    2015-05-01

    Mineralized polymer composites (MPC) are recognized as potential fillers of bone defects. Though bioceramics exhibits quite a good bone-bonding and vascularization, it is considered to be too stiff and brittle for using alone. Thus, the use of polymer scaffold instead of bioceramics has several advantages including combining the osteoconductivity and bone-bonding potential of the inorganic phase with the porosity and interconnectivity of the three-dimensional construction. Aiming the advantages of ceramic-polymer composite scaffolds, the calcium carbonate (CaCO3) based biomineralized scaffold was prepared, where the PVP-CMC hydrogel was used as an extracellular matrix. This paper is reported about the morphology, swelling trend (in physiological solution) and viscoelastic behavior of (90 min mineralized) MPC. The dry MPC are off-white, coarse in texture, comparatively less flexible than the original PVP-CMC based hydrogel film, and the deposition of granular structures on the surface of the hydrogel film confirms about the development of biomineralized scaffold/polymer composites. Irrespective of thickness, the dry MPC shows higher values of swelling ratio within 30 min, which varies between 200-250 approximately. The dynamic viscoelastic nature of freshly prepared MPC was investigated applying 1% and 10% strain. At higher strain the viscoelastic moduli (G' and G") show significant change, and the nature of MPC turns from elastic to viscous. Based on the observed basic properties, the MPC (calcite based polymer composites) can be recommended for the treatment of adyanamic bone disorder.

  19. Strontium and zoledronate hydroxyapatites graded composite coatings for bone prostheses.

    PubMed

    Boanini, Elisa; Torricelli, Paola; Sima, Felix; Axente, Emanuel; Fini, Milena; Mihailescu, Ion N; Bigi, Adriana

    2015-06-15

    Both strontium and zoledronate (ZOL) are known to be useful for the treatment of bone diseases associated to the loss of bone substance. In this work, we applied an innovative technique, Combinatorial Matrix-Assisted Pulsed Laser Evaporation (C-MAPLE), to deposit gradient thin films with variable compositions of Sr-substituted hydroxyapatite (SrHA) and ZOL modified hydroxyapatite (ZOLHA) on Titanium substrates. Compositional gradients were obtained by simultaneous laser vaporization of the two distinct material targets. The coatings display good crystallinity and granular morphology, which do not vary with composition. Osteoblast-like MG63 cells and human osteoclasts were co-cultured on the thin films up to 21 days. The results show that Sr counteracts the negative effect of relatively high concentration of ZOL on osteoblast viability, whereas both Sr and ZOL enhance extracellular matrix deposition. In particular, ZOL promotes type I collagen production, whereas Sr increases the production of alkaline phosphatase. Moreover, ZOL exerts a greater effect than Sr on osteoprotegerin/RANKL ratio and, as a consequence, on the reduction of osteoclast proliferation and activity. The deposition method allows to modulate the composition of the thin films and hence the promotion of bone growth and the inhibition of bone resorption.

  20. Effects of Whole Body Vibration Training on Body Composition in Adolescents with Down Syndrome

    ERIC Educational Resources Information Center

    Gonzalez-Aguero, Alejandro; Matute-Llorente, Angel; Gomez-Cabello, Alba; Casajus, Jose A.; Vicente-Rodriguez, German

    2013-01-01

    The present study aimed to determine the effect of 20 weeks of whole body vibration (WBV) on the body composition of adolescents with Down syndrome (DS). Thirty adolescent with DS were divided into two groups: control and WBV. Whole body, upper and lower limbs body fat and lean body mass were measured with dual energy X-ray absorptiometry (DXA)…

  1. Effects of Whole Body Vibration Training on Body Composition in Adolescents with Down Syndrome

    ERIC Educational Resources Information Center

    Gonzalez-Aguero, Alejandro; Matute-Llorente, Angel; Gomez-Cabello, Alba; Casajus, Jose A.; Vicente-Rodriguez, German

    2013-01-01

    The present study aimed to determine the effect of 20 weeks of whole body vibration (WBV) on the body composition of adolescents with Down syndrome (DS). Thirty adolescent with DS were divided into two groups: control and WBV. Whole body, upper and lower limbs body fat and lean body mass were measured with dual energy X-ray absorptiometry (DXA)…

  2. Impact of Wheelchair Rugby on Body Composition of Subjects With Tetraplegia: A Pilot Study.

    PubMed

    Gorla, José I; Costa e Silva, Anselmo de A; Borges, Mariane; Tanhoffer, Ricardo A; Godoy, Priscila S; Calegari, Décio R; Santos, Allan de O; Ramos, Celso D; Nadruz Junior, Wilson; Cliquet Junior, Alberto

    2016-01-01

    To investigate the longitudinal effects of wheelchair rugby (WR) training on body composition of subjects with tetraplegia. Subjects were evaluated at baseline and after WR training. Faculty of physical education settings. Individuals with tetraplegia (N=13; age, 26.6±6.0y). Four sessions per week of WR training composed by aerobic and anaerobic activities and technical and tactical aspects of WR. The average time of intervention was 8.1±2.5 months. Body composition assessed by dual-energy x-ray absorptiometry. After training, fat mass was significantly reduced in the whole body (15,191±4603 vs 13,212±3318 g, P=.016), trunk (7058±2639 vs 5693±1498 g, P=.012), and legs (2847±817 vs 2534±742 g, P=.003). Conversely, increased bone mineral content (183±35 vs 195±32 g, P=.01) and fat-free mass (2991±549 vs 3332±602 g, P=.016) in the arms and reduced bone mineral content in the trunk (553±82 vs 521±86 g, P=.034) were observed after training. Furthermore, no significant correlation between the duration of training and changes in body composition was detected. Regular WR training increased lean mass and bone mineral content in the arms and decreased total body fat mass. Conversely, WR training was associated with decreased bone mineral content in the trunk. These results suggest that regular WR training improves body composition in subjects with tetraplegia. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  3. Si-doping bone composite based on protein template-mediated assembly for enhancing bone regeneration

    NASA Astrophysics Data System (ADS)

    Yang, Qin; Du, Yingying; Wang, Yifan; Wang, Zhiying; Ma, Jun; Wang, Jianglin; Zhang, Shengmin

    2017-06-01

    Bio-inspired hybrid materials that contain organic and inorganic networks interpenetration at the molecular level have been a particular focus of interest on designing novel nanoscale composites. Here we firstly synthesized a series of hybrid bone composites, silicon-hydroxyapatites/silk fibroin/collagen, based on a specific molecular assembled strategy. Results of material characterization confirmed that silicate had been successfully doped into nano-hydroxyapatite lattice. In vitro evaluation at the cellular level clearly showed that these Si-doped composites were capable of promoting the adhesion and proliferation of rat mesenchymal stem cells (rMSCs), extremely enhancing osteoblastic differentiation of rMSCs compared with silicon-free composite. More interestingly, we found there was a critical point of silicon content in the composition on regulating multiple cell behaviors. In vivo animal evaluation further demonstrated that Si-doped composites enabled to significantly improve the repair of cranial bone defect. Consequently, our current work not only suggests fabricating a potential bone repair materials by integrating element-doping and molecular assembled strategy in one system, but also paves a new way for constructing multi-functional composite materials in the future.

  4. [Effects of cuttlefish bone-bone morphogenetic protein composite material on osteogenesis and revascularization of bone defect in rats].

    PubMed

    Liu, Yuan; Yu, Jiang; Bai, Jie; Gu, Jin-song; Cai, Bin; Zhou, Xia

    2013-12-01

    To study the effects of cuttlefish bone-bone morphogenetic protein (BMP) composite material on osteogenesis and revascularization of bone defect in rats. The cuttlefish bone was formed into cylinder with the diameter of about 5 mm and height of about 2 mm after the shell was removed, and then it was soaked in the recombinant human BMP 2 to make a cuttlefish bone-BMP (CBB) composite material. Thirty SD rats, with a defect of skull in every rat, were divided into the CBB and pure cuttlefish bone (PCB) groups according to the random number table, with 15 rats in each group. The rats in the group CBB and group PCB were transplanted with the corresponding material to repair the skull defect. At post transplantation week (PTW) 4, 6, and 8, 5 rats from every group were sacrificed by exsanguination, and ink perfusion was performed. One day later, all the transplants and part of the skull surrounding the defect were harvested, and general observation was conducted at the same time. The specimens were paraffin sectioned for HE staining and Masson staining. The area of microvessel and the area of newborn bone were observed and analyzed through histopathological techniques and image collection system. Data were processed with the analysis of variance of factorial design and LSD test. The correlation between the area of microvessel and the area of newborn bone of the group CBB was analyzed with Pearson correlation analysis. (1) The general observation of the transplant region showed that the transplants were encapsulated by a capsule of fibrous connective tissue. The texture of capsule was soft and relatively thick at PTW 4. The texture was tenacious and thin, but rather compact at PTW 6 and 8. The transplants became gelatinous at PTW 4, and similar to the cartilage tissue at PTW 6 and 8. (2) Histological observation showed that the structure of the transplants in two groups was damaged at PTW 4. A moderate quantity of inflammatory cell infiltration could be observed. The

  5. Comparison of different body composition models in acromegaly.

    PubMed

    Brummer, R J; Lönn, L; Bengtsson, B A; Kvist, H; Bosaeus, I; Sjöström, L

    1996-12-01

    The aberrant body composition of 10 patients with active acromegaly was used to evaluate the validity and limitations of several models and methods to assess body composition. Body composition was determined using either a two-compartment model, dividing the body in a body fat (BF) compartment and a fat-free mass (FFM) compartment, or a four-compartment model in which the FFM compartment comprises the three following components: body cell mass, extracellular water and the fat-free extracellular solids. The measurement techniques consisted of anthropometry, bioelectrical impedance analysis (BIA)-applying various established regression equations-tritiated water dilution, whole body 40K-counting, and whole body computed tomography (CT). This latter method was used as the reference technique. Assessment of total body water using BIA - applying the RJL or Kushner equation-correlated significantly with the assessment using tritiated water dilution (P < 0.01). Body fat assessment using the two-compartment model based on either tritiated water dilution or BIA-applying the RJL or Lukaski equation-as well as body fat assessment using the four-compartment model based on tritiated water dilution and whole body 40K-counting were significantly correlated with body fat assessment using CT (P < 0.01) and resulted in good agreement with each other with respect to the absolute values of the body fat determination. BIA using other regression equations overestimated body fat by 7.2-13.7 kg. Whole body 40K-counting was significantly correlated with CT-determined muscle plus skin volume (P < 0.001). CT-calibrated anthropometric predictions significantly overestimated body fat. It is concluded that in patients with active acromegaly, the determination of body composition using either certain two-compartment models based on measurement of total body water or bioelectrical impedance, or a four-compartment model based on total body water and total body potassium measurements show good

  6. Measurement precision of body composition variables using the lunar DPX-L densitometer.

    PubMed

    Kiebzak, G M; Leamy, L J; Pierson, L M; Nord, R H; Zhang, Z Y

    2000-01-01

    The objective of the study was to determine the precision of total- and regional-body composition measurements from a total-body scan using dual-energy X-ray absorptiometry (DXA). This is critical information necessary to determine the smallest change from baseline that could be detected with statistical significance when conducting longitudinal measurements of body composition variables in an individual. Twenty volunteers were scanned once each day for 4 consecutive days using a Lunar DPX-L densitometer and manufacturer-supplied software (version 1.3z). Coefficients of variation (CV, %) derived from data using the (preferred) extended research mode of analysis were 0.62, 1.89, 0.63, 2.0, 1.11, 1.10, and 1.09% for total-body bone mineral density (BMD), total percentage fat, total body tissue mass, fat mass, lean mass, bone mineral content (BMC), and total bone calcium, respectively. Regional measurements (arm, leg, trunk, pelvis, and spine) were less precise than total body measurements, with CVs in the range of 1% to 3% (but fat mass for arms was 4.26%, trunk 3.08%, BMC 3.65%). Small but statistically significant differences in mean values for most body composition variables were found when data were compared between extended and standard modes of analysis. Inconsistent use of analysis mode in a cohort or when following a patient longitudinally may negatively affect precision. We conclude that the measurement precision of total and regional body composition variables was generally comparable to the precision limits typically associated with lumbar spine and proximal femur BMD data.

  7. Body Composition and Somatotype of Male and Female Nordic Skiers

    ERIC Educational Resources Information Center

    Sinning, Wayne E.; And Others

    1977-01-01

    Anthropometric measurements (body composition and somatotype characteristics) for male and female Nordic skiers showed small values for measures of variance, suggesting that the subjects represented a select body type for the sport. (Author/MJB)

  8. Single walled carbon nanotube composites for bone tissue engineering.

    PubMed

    Gupta, Ashim; Woods, Mia D; Illingworth, Kenneth David; Niemeier, Ryan; Schafer, Isaac; Cady, Craig; Filip, Peter; El-Amin, Saadiq F

    2013-09-01

    The purpose of this study was to develop single walled carbon nanotubes (SWCNT) and poly lactic-co-glycolic acid (PLAGA) composites for orthopedic applications and to evaluate the interaction of human stem cells (hBMSCs) and osteoblasts (MC3T3-E1 cells) via cell growth, proliferation, gene expression, extracellular matrix production and mineralization. PLAGA and SWCNT/PLAGA composites were fabricated with various amounts of SWCNT (5, 10, 20, 40, and 100 mg), characterized and degradation studies were performed. Cells were seeded and cell adhesion/morphology, growth/survival, proliferation and gene expression analysis were performed to evaluate biocompatibility. Imaging studies demonstrated uniform incorporation of SWCNT into the PLAGA matrix and addition of SWCNT did not affect the degradation rate. Imaging studies revealed that MC3T3-E1 and hBMSCs cells exhibited normal, non-stressed morphology on the composites and all were biocompatible. Composites with 10 mg SWCNT resulted in highest rate of cell proliferation (p < 0.05) among all composites. Gene expression of alkaline phosphatase, collagen I, osteocalcin, osteopontin, Runx-2, and Bone Sialoprotein was observed on all composites. In conclusion, SWCNT/PLAGA composites imparted beneficial cellular growth capabilities and gene expression, and mineralization abilities were well established. These results demonstrate the potential of SWCNT/PLAGA composites for musculoskeletal regeneration and bone tissue engineering (BTE) and are promising for orthopedic applications.

  9. [Aging and body composition: the sarcopenic obesity in Spain].

    PubMed

    Gómez-Cabello, A; Vicente Rodríguez, G; Vila-Maldonado, S; Casajús, J A; Ara, I

    2012-01-01

    The increase in life expectancy occurred during the last decades has resulted in a growth of the elderly population, being estimated that a third of the Spanish population will be elderly (> 65 years) in the year 2050. Human aging involves many changes, such as a variation in body composition. Different factors work together leading to an increase in fat mass, decreased muscle mass and reduced bone mass among seniors. These characteristic changes among elderly people may lead to suffer several diseases such as obesity, sarcopenia and osteoporosis and may result in decreased quality of life, increased dependence and increased risk of mortality in this population. In the late 90's, "sarcopenic obesity" was a concept that emerged in order to define those people who simultaneously have an excess of body fat and a significant loss of muscle mass. Recently, for the first time in Spain (the elderly EXERNET multi-centre study), it has been shown that the prevalence of sarcopenic obesity in a representative sample of non-institutionalized seniors reaches values of 15%.

  10. The computation of body composition data using a programmable calculator.

    PubMed

    Withers, R T

    1986-01-01

    A body composition programme has been developed for the Texas Instruments TI 59 programmable calculator and printer. The methodology involves the determination of body density by underwater weighing with the ventilated residual volume being measured by helium dilution. Some of the labelled output variables included on the printout are: body density, percent body fat, fat mass and fat free mass.

  11. Human body composition: advances in models and methods.

    PubMed

    Heymsfield, S B; Wang, Z; Baumgartner, R N; Ross, R

    1997-01-01

    The field of human body composition research is reaching a mature stage in its development: The three interconnected areas that define body composition research--models and their rules, methodology, and biological effects--are well-defined and are actively investigated by scientists in diverse disciplines from many different nations; and methods are available for measuring all major atomic, molecular, cellular, and tissue-system level body composition components in research, clinical, and epidemiological settings. This review summarizes main body composition research concepts, examines new component-measurement methodologies, and identifies potential areas of future research.

  12. Rat body size, composition and growth at hypo- and hypergravity

    NASA Technical Reports Server (NTRS)

    Pitts, G. C.

    1983-01-01

    The effects of hypergravity (centrifugation) on body composition were investigated. Hypogravitational and hypergravitational aspects were reflected in the research effort. A list of publications is provided.

  13. A novel injectable calcium phosphate cement-bioactive glass composite for bone regeneration.

    PubMed

    Yu, Long; Li, Yang; Zhao, Kang; Tang, Yufei; Cheng, Zhe; Chen, Jun; Zang, Yuan; Wu, Jianwei; Kong, Liang; Liu, Shuai; Lei, Wei; Wu, Zixiang

    2013-01-01

    Calcium phosphate cement (CPC) can be molded or injected to form a scaffold in situ, which intimately conforms to complex bone defects. Bioactive glass (BG) is known for its unique ability to bond to living bone and promote bone growth. However, it was not until recently that literature was available regarding CPC-BG applied as an injectable graft. In this paper, we reported a novel injectable CPC-BG composite with improved properties caused by the incorporation of BG into CPC. The novel injectable bioactive cement was evaluated to determine its composition, microstructure, setting time, injectability, compressive strength and behavior in a simulated body fluid (SBF). The in vitro cellular responses of osteoblasts and in vivo tissue responses after the implantation of CPC-BG in femoral condyle defects of rabbits were also investigated. CPC-BG possessed a retarded setting time and markedly better injectability and mechanical properties than CPC. Moreover, a new Ca-deficient apatite layer was deposited on the composite surface after immersing immersion in SBF for 7 days. CPC-BG samples showed significantly improved degradability and bioactivity compared to CPC in simulated body fluid (SBF). In addition, the degrees of cell attachment, proliferation and differentiation on CPC-BG were higher than those on CPC. Macroscopic evaluation, histological evaluation, and micro-computed tomography (micro-CT) analysis showed that CPC-BG enhanced the efficiency of new bone formation in comparison with CPC. A novel CPC-BG composite has been synthesized with improved properties exhibiting promising prospects for bone regeneration.

  14. A Novel Injectable Calcium Phosphate Cement-Bioactive Glass Composite for Bone Regeneration

    PubMed Central

    Zhao, Kang; Tang, Yufei; Cheng, Zhe; Chen, Jun; Zang, Yuan; Wu, Jianwei; Kong, Liang; Liu, Shuai; Lei, Wei; Wu, Zixiang

    2013-01-01

    Background Calcium phosphate cement (CPC) can be molded or injected to form a scaffold in situ, which intimately conforms to complex bone defects. Bioactive glass (BG) is known for its unique ability to bond to living bone and promote bone growth. However, it was not until recently that literature was available regarding CPC-BG applied as an injectable graft. In this paper, we reported a novel injectable CPC-BG composite with improved properties caused by the incorporation of BG into CPC. Materials and Methods The novel injectable bioactive cement was evaluated to determine its composition, microstructure, setting time, injectability, compressive strength and behavior in a simulated body fluid (SBF). The in vitro cellular responses of osteoblasts and in vivo tissue responses after the implantation of CPC-BG in femoral condyle defects of rabbits were also investigated. Results CPC-BG possessed a retarded setting time and markedly better injectability and mechanical properties than CPC. Moreover, a new Ca-deficient apatite layer was deposited on the composite surface after immersing immersion in SBF for 7 days. CPC-BG samples showed significantly improved degradability and bioactivity compared to CPC in simulated body fluid (SBF). In addition, the degrees of cell attachment, proliferation and differentiation on CPC-BG were higher than those on CPC. Macroscopic evaluation, histological evaluation, and micro-computed tomography (micro-CT) analysis showed that CPC-BG enhanced the efficiency of new bone formation in comparison with CPC. Conclusions A novel CPC-BG composite has been synthesized with improved properties exhibiting promising prospects for bone regeneration. PMID:23638115

  15. Body composition in MesoAmerica.

    PubMed

    Solomons, N W; Mazariegos, M

    1995-03-01

    The fundamental paradigm for the region is short stature. Adult height is on the order of 160 cm for men and 140 cm for women. The timing of this delayed growth has been fixed to the first two years of life, when as much as 2 Z-scores of stature may be loss to the median of the NCHS reference. In the elderly of the region, we have the issue of being initially short and then suffering further loss of stature with age. The height/armspan ratio has proven instructive for exploring that change in height with age. It appears to be less than in Europeans. Demands of a rigorous agricultural lifestyle, the energy content and density of the diet, and the ravages of recurrent infection and parasitism comprise the environmental determinants of body composition in poor MesoAmerican population. They are conducive to a low storage of fat, with lean body mass being subject to response to infections. Because of the basic short stature but muscular maturity of children and adults, one questions whether the assumptions of proportionality of weight for height from the NCHS reference data apply, or whether MesoAmericans should be normally greater in weight for height than a comparably short North American. For some at the lower end of the stature scale, no international reference standards actually exist for adults. All than can be measured with microtoise, calliper, flexible tape and balance has long been recorded in MesoAmerican populations. Certain high-cost and facility- dependent technologies, such as nuclear magnetic resonance imaging and whole-body neutron activation analysis, are beyond the scientific economies of any part of the region. Dual energy x-ray absorbitometry instruments are available for clinical diagnosis in Mexico, Guatemala and Costa Rica, and could be turned to research ends. Underwater weighing has been practiced variously in MesoAmerica. Researchers in Guatemala have pioneered in the investigative use of bioelectrical impedance analysis to all ages from low

  16. Relationship of lean body mass with bone mass and bone mineral density in the general Korean population.

    PubMed

    Moon, Seong-Su

    2014-09-01

    We investigated association of lean body mass with bone mass (BM) and bone mineral density (BMD) according to gender and menopausal status in the general Korean population. Participants included 4,299 males and 5,226 females who were 20 years of age or older from the fourth and fifth Korea National Health and Nutritional Examination Surveys (2009-2010). Dual-energy X-ray absorptiometry was used for measurement of BMD and body composition. BMD was measured in the femur and lumbar spine. Appendicular skeletal muscle mass (ASM) was defined as the sum of the lean soft tissue masses for the arms and legs. Analysis was performed after categorizing participants into four groups (males <50 years, males ≥ 50 years, premenopausal females, and postmenopausal females). In males, the highest ASM was observed in the 20-29-year group and then showed a gradual decrease as age increased, and BM and BMD showed similar patterns of change, while in females, ASM, BMD, and BM reached the peak level in the 40-49-year group and then decreased. In multiple regression analysis, after adjusting for confounding factors, the results showed an independent association of ASM with an increase in BM and BMD (P < 0.05). After adjusting for confounding factors, total fat mass showed a significant association with BM (P < 0.05). These aforementioned relationships were commonly observed on both femur and lumbar spine in every group. Lean body mass showed an independent association with increased BM and BMD, regardless of gender, age in men, and menopausal status in women.

  17. Proposal for methods of diagnosis of fish bone foreign body in the Esophagus.

    PubMed

    Woo, Seung Hoon; Kim, Kyung Hee

    2015-11-01

    To investigate the methods of diagnosis of fish bone foreign body in the esophagus and suggest a diagnostic protocol. Prospective cohort study. A prospective study was performed on 286 patients with a history of fish bone foreign body impaction. Among them, 88 patients had negative findings in the oral cavity and laryngopharynx. Subsequent radiologic assessment of these patients included plain radiography and computed tomography (CT). Sixty-six patients showed positive findings in the esophagus, and an attempt was made to remove the obstruction using transnasal esophagoscopy. In 66 patients, a fish bone foreign body was detected in the esophagus by CT. In contrast, plain radiography detected a foreign body in only 30 patients. The overall detection rate of plain radiography compared with CT for fish bones was 45.5%. Plain radiography detected 35.9% of the simple type fish bones and 54.5% of the gill bone detected by CT. However, jaw bones had a detection rate of 100% with both methods. The fish bone foreign bodies were most commonly located in the upper esophagus (n=65, 98.5%), followed by the lower esophagus (n=1, 1.5%). CT is a useful method for identification of esophageal fish bone foreign bodies. Therefore, CT should be considered as the first-choice technique for the diagnosis of esophageal fish bone foreign body. 4. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  18. Different Short-Term Mild Exercise Modalities Lead to Differential Effects on Body Composition in Healthy Prepubertal Male Rats

    PubMed Central

    Sontam, D. M.; Vickers, M. H.; O'Sullivan, J. M.; Watson, M.; Firth, E. C.

    2015-01-01

    Physical activity has a vital role in regulating and improving bone strength. Responsiveness of bone mass to exercise is age dependent with the prepubertal period suggested to be the most effective stage for interventions. There is a paucity of data on the effects of exercise on bone architecture and body composition when studied within the prepubertal period. We examined the effect of two forms of low-impact exercise on prepubertal changes in body composition and bone architecture. Weanling male rats were assigned to control (CON), bipedal stance (BPS), or wheel exercise (WEX) groups for 15 days until the onset of puberty. Distance travelled via WEX was recorded, food intake measured, and body composition quantified. Trabecular and cortical microarchitecture of the femur were determined by microcomputed tomography. WEX led to a higher lean mass and reduced fat mass compared to CON. WEX animals had greater femoral cortical cross-sectional thickness and closed porosity compared to CON. The different exercise modalities had no effect on body weight or food intake, but WEX significantly altered body composition and femoral microarchitecture. These data suggest that short-term mild voluntary exercise in normal prepubertal rats can alter body composition dependent upon the exercise modality. PMID:25695074

  19. Validity of body impedance analysis for evaluating body composition in patients undergoing long-term hemodialysis.

    PubMed

    Noguchi, Masahiro; Yamaguchi, Shinichi; Koshino, Yoshitaka; Kimura, Akira; Miyagi, Shigeji

    2015-06-01

    [Purpose] This study assessed changes in body composition before and after dialysis in chronic hemodialysis patients and determined the relationships between various body composition parameters and blood lipid levels in these patients. [Subjects] The cross-sectional study included 19 dialysis outpatients (17 men and 2 women, aged 35-82 years). [Methods] Body mass index, body weight, percent body fat, and percent skeletal muscle were measured before and after dialysis by using body impedance analysis. Blood lipid levels were obtained from patients' clinical records. The body composition parameters before and after dialysis were compared using paired t-tests. Spearman's rank correlation coefficients were calculated to determine relationships between the body composition parameters, before and after dialysis, and the blood lipid levels. [Results] All body composition parameters differed significantly before and after dialysis. High-density lipoprotein cholesterol level significantly correlated with all the body composition parameters, whereas total cholesterol, low-density lipoprotein cholesterol, and triglyceride levels significantly correlated with some of these parameters. The correlation coefficients revealed no major differences in the relationships between blood lipid parameters and body compositions before and after dialysis. [Conclusion] Our findings suggest that body composition parameters, whether measured before or after dialysis, can be used to evaluate obesity in longitudinal studies.

  20. The effect of soluble salt in bone ash and other factors on the rheological properties of bone china bodies

    NASA Astrophysics Data System (ADS)

    Cheng, Shifan

    A dynamic stress rheometric technique was developed to determine the plasticity of bone china bodies. In addition, the effect of natural variations of commercial bone ash on the rheology and processability of bone china was examined. The plasticity was then related to the floc characteristics of the body. In carrying out this study the physical and colloidal characteristics of a wide range of commercial bone ash batches were determined. The effect of washing bone ash on the properties of bone ash was also determined. The preparation of bone china body followed accepted industrial processing. The extent of flocculation of the bone china body was determined using the Carmen-Kozeny model for filter pressed cakes. Dynamic mechanical analyses were conducted on all samples using a dynamic stress rheometer using a of parallel plate geometery. Stress sweep analyses were used to determine the linear viscoelastic range for other tests and the loss factor of the sample. Frequency sweep analyses were run to obtain the instantaneous modulus as the measurement of plasticity. Creep test analyses were carried out to find the steady viscosity. Mean relaxation time was calculated out from the measured instantaneous modulus and steady viscosity.

  1. REVIEW: Development of methods for body composition studies

    NASA Astrophysics Data System (ADS)

    Mattsson, Sören; Thomas, Brian J.

    2006-07-01

    This review is focused on experimental methods for determination of the composition of the human body, its organs and tissues. It summarizes the development and current status of fat determinations from body density, total body water determinations through the dilution technique, whole and partial body potassium measurements for body cell mass estimates, in vivo neutron activation analysis for body protein measurements, dual-energy absorptiometry (DEXA), computed tomography (CT) and magnetic resonance imaging (MRI, fMRI) and spectroscopy (MRS) for body composition studies on tissue and organ levels, as well as single- and multiple-frequency bioimpedance (BIA) and anthropometry as simple easily available methods. Methods for trace element analysis in vivo are also described. Using this wide range of measurement methods, together with gradually improved body composition models, it is now possible to quantify a number of body components and follow their changes in health and disease.

  2. Osteoinductive silk-silica composite biomaterials for bone regeneration.

    PubMed

    Mieszawska, Aneta J; Fourligas, Nikolaos; Georgakoudi, Irene; Ouhib, Nadia M; Belton, David J; Perry, Carole C; Kaplan, David L

    2010-12-01

    Osteoinductive and biodegradable composite biomaterials for bone regeneration were prepared by combining silk fibroin with silica particles. The influence of these composite systems on osteogenesis was evaluated with human mesenchymal stem cells (hMSCs) subjected to osteogenic differentiation. hMSCs adhered, proliferated, and differentiated towards osteogenic lineages on silk/silica films. The addition of the silica to the silk films influenced gene expression leading to upregulation of bone sialoprotein (BSP) and collagen type 1 (Col 1) osteogenic markers. Evidence for early bone formation in the form of collagen fibers and apatite nodules was obtained on the silk/silica films. Collagen fibers were closely associated with apatite deposits and overall collagen content was higher for the silica containing samples. Also, smaller sized silica particles (24 nm-2 μm) with large surface area facilitated silica biodegradation in vitro through particle dissolution, leading to ∼5-fold decrease in silica content over 10 weeks. These results indicate the suitability of silk/silica composite system towards bone regeneration, where degradation/remodeling rates of the organic and inorganic components can be controlled. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Osteoinductive silk-silica composite biomaterials for bone regeneration

    PubMed Central

    Mieszawska, Aneta J.; Fourligas, Nikolaos; Georgakoudi, Irene; Ouhib, Nadia; Belton, David J.; Perry, Carole C.; Kaplan, David L.

    2010-01-01

    Osteoinductive and biodegradable composite biomaterials for bone regeneration were prepared by combining silk fibroin with silica particles. The influence of these composite systems on osteogenesis was evaluated with human mesenchymal stem cells (hMSCs) subjected to osteogenic differentiation. hMSCs adhered, proliferated, and differentiated towards osteogenic lineages on silk/silica films. The addition of the silica to the silk films influenced gene expression leading to upregulation of bone sialoprotein (BSP) and collagen type 1 (Col 1) osteogenic markers. Evidence for early bone formation in the form of collagen fibers and apatite nodules was obtained on the silk/silica films. Collagen fibers were closely associated with apatite deposits and overall collagen content was higher for the silica containing samples. Also, smaller sized silica particles (24 nm – 2 μm) with large surface area facilitated silica biodegradation in vitro through particle dissolution, leading to ~5 fold decrease in silica content over 10 weeks. These results indicate suitability of silk/silica composite system towards bone regeneration, where degradation/remodeling rates of the organic and inorganic components can be controlled. PMID:20817293

  4. The Official Positions of the International Society for Clinical Densitometry: body composition analysis reporting.

    PubMed

    Petak, Steven; Barbu, Carmen G; Yu, Elaine W; Fielding, Roger; Mulligan, Kathleen; Sabowitz, Brian; Wu, Chih-Hsing; Shepherd, John A

    2013-01-01

    Dual-energy x-ray absorptiometry (DXA) measurements of body composition increasingly are used in the evaluation of clinical disorders, but there has been little guidance on how to effectively report these measures. Uniformity in reporting of body composition measures will aid in the diagnosis of clinical disorders such as obesity, sarcopenia, and lipodystrophy. At the 2013 International Society for Clinical Densitometry Position Development Conference on body composition, the reporting section recommended that all DXA body composition reports should contain parameters of body mass index, bone mineral density, BMC, total mass, total lean mass, total fat mass, and percent fat mass. The inclusion of additional measures of adiposity and lean mass are optional, including visceral adipose tissue, appendicular lean mass index, android/gynoid percent fat ratio, trunk to leg fat mass ratio, lean mass index, and fat mass index. Within the United States, we recommend the use of the National Health and Nutrition Examination Survey 1999-2004 body composition dataset as an age-, gender-, and race-specific reference and to calibrate BMC in 4-compartment models. Z-scores and percentiles of body composition measures may be useful for clinical interpretation if methods are used to adjust for non-normality. In particular, DXA body composition measures may be useful for risk-stratification of obese and sarcopenic patients, but there needs to be validation of thresholds to define obesity and sarcopenia. To summarize, these guidelines provide evidence-based standards for the reporting and clinical application of DXA-based measures of body composition.

  5. Long-term antibiotic delivery by chitosan-based composite coatings with bone regenerative potential

    NASA Astrophysics Data System (ADS)

    Ordikhani, F.; Simchi, A.

    2014-10-01

    Composite coatings with bone-bioactivity and drug-eluting capacity are considered as promising materials for titanium bone implants. In this work, drug-eluting chitosan-bioactive glass coatings were fabricated by a single-step electrophoretic deposition technique. Drug-loading and -releasing capacity of the composite coatings were carried out using the vancomycin antibiotic. Uniform coatings with a thickness of ∼55 μm containing 23.7 wt% bioactive glass particles and various amounts of the antibiotic (380-630 μg/cm2) were produced. The coatings were bioactive in terms of apatite-forming ability in simulated body fluid and showed favorable cell adhesion and growth. In vitro biological tests also indicated that the composite coatings had better cellular affinity than pristine chitosan coatings. The in vitro elution kinetics of the composite coating revealed an initial burst release of around 40% of the drug within the first elution step of 1 h and following by a continuous eluting over 4 weeks, revealing long-term drug-delivering potential. Antibacterial tests using survival assay against Gram-positive Staphylococcus aureus bacteria determined the effect of vancomycin release on reduction of infection risk. Almost no bacteria were survived on the coatings prepared from the EPD suspension containing ≥0.5 g/l vancomycin. The developed chitosan-based composite coatings with bone bioactivity and long-term drug-delivery ability may be potentially useful for metallic implants to reduce infection risk.

  6. Reconstructing the sequence of events surrounding body disposition based on color staining of bone*.

    PubMed

    Huculak, Meaghan A; Rogers, Tracy L

    2009-09-01

    Literature regarding bone color is limited to determining location of primary and secondary dispositions. This research is the first to use bone color to interpret the sequence of events surrounding body disposition. Two scenarios were compared-bones buried and then exposed on the ground surface and bones exposed then buried. Forty juvenile pig humeri with minimal tissue were used in each scenario with an additional 20 controls to determine if decomposing tissue affects bone color. Munsell Color Charts were used to record bone color of surface and 2.5 cm cross-sections. Results reveal five main surface colors attributed to soil, sun, hemolysis, decomposition, and fungi. Fungi on buried bones suggests prior surface exposure. Cross-sections of strictly buried bones are identical to buried then exposed bone, stressing the importance of bone surface analysis. Cross-sectioning may help verify remains have been exposed then buried. Decomposition of excess tissue creates minimal color staining.

  7. Hydroxyapatite-alumina composites and bone-bonding.

    PubMed

    Li, J; Fartash, B; Hermansson, L

    1995-03-01

    Hydroxyapatite-alumina (HA/Al2O3) composites, with HA contents of 15, 25, 30 and 70, and pure HA as well as pure Al2O3, were densified at 1275 degrees C at a top pressure of 200 MPa for 2 h, using glass-encapsulated hot isostatic pressing. From the sintered ceramics, cylinders 2.8 x 6 mm2 were prepared by ultrasonic machining and implanted into the femoral cortical bones of 12 New Zealand White rabbits for 3 months. After killing the animals, the femur was dissected out and cut into three sections, each containing one cylinder. The specimens were mounted in a push-out device and force was applied along the long axis of the cylinder. The maximum force required to loosen the implant was recorded and the fracture surface of the bone implant was studied by scanning electron microscopy (SEM). The results indicate the important role of HA in new bone apposition to the implants, reflected by increasing bonding strength with increasing HA content in the composites. However, the relationship between HA content and the bonding strength was not linear. The composite with 70% HA and the pure HA ceramic had the same level of bonding strength and similar fracture interfaces in SEM, which supports the high bonding strength detected (about 15 MPa). Fractures occurred both in the bone and in the implant, indicating the stress transfer ability of the contact zone. This study presents qualitatively and quantitatively HA-dependent characteristics in bone-bonding. The mechanical strength of the composites was measured by a three-point bending test. The bending strength of the materials decreases with increasing HA content.

  8. Common endocrine control of body weight, reproduction, and bone mass

    NASA Technical Reports Server (NTRS)

    Takeda, Shu; Elefteriou, Florent; Karsenty, Gerard

    2003-01-01

    Bone mass is maintained constant between puberty and menopause by the balance between osteoblast and osteoclast activity. The existence of a hormonal control of osteoblast activity has been speculated for years by analogy to osteoclast biology. Through the search for such humoral signal(s) regulating bone formation, leptin has been identified as a strong inhibitor of bone formation. Furthermore, intracerebroventricular infusion of leptin has shown that the effect of this adipocyte-derived hormone on bone is mediated via a brain relay. Subsequent studies have led to the identification of hypothalamic groups of neurons involved in leptin's antiosteogenic function. In addition, those neurons or neuronal pathways are distinct from neurons responsible for the regulation of energy metabolism. Finally, the peripheral mediator of leptin's antiosteogenic function has been identified as the sympathetic nervous system. Sympathomimetics administered to mice decreased bone formation and bone mass. Conversely, beta-blockers increased bone formation and bone mass and blunted the bone loss induced by ovariectomy.

  9. Mechanical properties of bone-shaped-short-fiber reinforced composites

    SciTech Connect

    Zhu, Y.T.; Valdez, J.A.; Beyerlein, I.J.; Zhou, S.J.; Liu, C.; Stout, M.G.; Butt, D.P.; Lowe, T.C.

    1999-04-23

    Short-fiber composites usually have low strength and toughness relative to continuous fiber composites, an intrinsic problem caused by discontinuities at fiber ends and interfacial debonding. In this work a model polyethylene bone-shaped-short (BSS) fiber-reinforced polyester-matrix composite was fabricated to prove that fiber morphology, instead of interfacial strength, solves this problem. Experimental tensile and fracture toughness test results show that BSS fibers can bridge matrix cracks more effectively, and consume many times more energy when pulled out, than conventional straight short (CSS) fibers. This leads to both higher strength and fracture toughness for the BSS-fiber composites. A computational model was developed to simulate crack propagation in both BSS- and CSS-fiber composites, accounting for stress concentrations, interface debonding, and fiber pull-put. Model predictions were validated by experimental results and will be useful in optimizing BSS-fiber morphology and other material system parameters.

  10. Associations between body mass index-related genetic variants and adult body composition: the Fenland cohort study

    PubMed Central

    Clifton, Emma A D; Day, Felix R; De Lucia Rolfe, Emanuella; Forouhi, Nita G; Brage, Soren; Griffin, Simon J; Wareham, Nicholas J; Ong, Ken K

    2016-01-01

    Background/Objective Body mass index (BMI) is a surrogate measure of adiposity but does not distinguish fat from lean or bone mass. The genetic determinants of BMI are thought to predominantly influence adiposity but this has not been confirmed. Here we characterise the association between BMI-related genetic variants and body composition in adults. Subjects/Methods Among 9667 adults aged 29-64 years from the Fenland study, a genetic risk score for BMI (BMI-GRS) was calculated for each individual as the weighted sum of BMI-increasing alleles across 96 reported BMI-related variants. Associations between the BMI-GRS and body composition, estimated by DXA scans, were examined using age-adjusted linear regression models, separately by sex. Results The BMI-GRS was positively associated with all fat, lean and bone variables. Across body regions, associations of the greatest magnitude were observed for adiposity variables e.g. for each standard deviation (SD) increase in BMI-GRS predicted BMI, we observed a 0.90 SD (95% CI: 0.71, 1.09) increase in total fat mass for men (P=3.75×10−21) and a 0.96 SD (95% CI: 0.77, 1.16) increase for women (P=6.12×10−22). Associations of intermediate magnitude were observed with lean variables e.g. total lean mass: men: 0.68 SD (95% CI: 0.49, 0.86) (P=1.91×10−12); women: 0.85 SD (95% CI: 0.65, 1.04) (P=2.66×10−17) and of a lower magnitude with bone variables e.g. total bone mass: men: 0.39 SD (95% CI: 0.20, 0.58) (P=5.69×10−5); women: 0.45 SD (95% CI: 0.26, 0.65) (P=3.96×10−6). Nominally significant associations with BMI were observed for 28 SNPs. All 28 were positively associated with fat mass and 13 showed adipose-specific effects. Conclusion In adults, genetic susceptibility to elevated BMI influences adiposity more than lean or bone mass. This mirrors the association between BMI and body composition. The BMI-GRS can be used to model the effects of measured BMI and adiposity on health and other outcomes. PMID:28096530

  11. Peer Victimisation and Its Relationships with Perceptions of Body Composition

    ERIC Educational Resources Information Center

    Frisen, Ann; Lunde, Carolina; Hwang, Philip

    2009-01-01

    The present study examined the links between children's exposure to peer victimisation, in terms of type and frequency, their body composition and subjective perceptions of body composition. A total of 960 Swedish 10-year-olds (515 girls and 445 boys) completed questionnaires about their peer victimisation experiences, weight and height, and…

  12. The Body Composition of a College Football Team.

    ERIC Educational Resources Information Center

    Wickkiser, John D.; Kelly, John M.

    This study focuses on the body composition and anthropometric measurements of 65 college football players. Body composition was determined by underwater weighing with an accurate assessment of residual volume. The anthropometric measurements included height, weight, seven skinfolds, waist circumference, and wrist diameter. A step-wise multiple…

  13. Peer Victimisation and Its Relationships with Perceptions of Body Composition

    ERIC Educational Resources Information Center

    Frisen, Ann; Lunde, Carolina; Hwang, Philip

    2009-01-01

    The present study examined the links between children's exposure to peer victimisation, in terms of type and frequency, their body composition and subjective perceptions of body composition. A total of 960 Swedish 10-year-olds (515 girls and 445 boys) completed questionnaires about their peer victimisation experiences, weight and height, and…

  14. Relationship of sarcopenia and body composition with osteoporosis.

    PubMed

    He, H; Liu, Y; Tian, Q; Papasian, C J; Hu, T; Deng, H-W

    2016-02-01

    The purpose of the study is to investigate the relationship between sarcopenia and body composition and osteoporosis in cohorts of three different races with a total of 17,891 subjects. Lean mass and grip strength were positively associated with bone mineral densities (BMDs). Subjects with sarcopenia were two times more likely to have osteoporosis compared with normal subjects. The relationship between sarcopenia and osteoporosis is not totally clear. First, the present study assessed this relationship by using two different definitions for sarcopenia. Second, we examined the associations of body composition (including muscle mass as a major and important component) and muscle strength on regional and whole-body BMDs. In total, 17,891 subjects of African American, Caucasian, and Chinese ethnicities were analyzed. Sarcopenia was defined by relative appendicular skeletal muscle mass (RASM) cut points and also by the definition of the European Working Group on Sarcopenia in Older People (low RASM plus low muscle function). Multiple regression analyses were conducted to examine the association of fat mass, lean mass (including muscle mass), and grip strength with regional and whole-body BMDs. Multivariate logistic regression analysis was performed to explore the association between sarcopenia and osteopenia/osteoporosis. BMDs were positively associated with lean mass and negatively associated with fat mass, after controlling for potential confounders. Grip strength was significantly associated with higher BMDs. Each standard deviation (SD) increase in RASM resulted in a ~37 % reduction in risk of osteopenia/osteoporosis (odds ratio (OR) = 0.63; 95 % confidence interval (CI) = 0.59, 0.66). Subjects with sarcopenia defined by RASM were two times more likely to have osteopenia/osteoporosis compared with the normal subjects (OR = 2.04; 95 % CI = 1.61, 2.60). Similarly, subjects with sarcopenia (low muscle mass and low grip strength) were ~1.8 times more

  15. Comparison of whole-body MRI and bone scintigraphy in the detection of bone metastases in renal cancer.

    PubMed

    Sohaib, S A; Cook, G; Allen, S D; Hughes, M; Eisen, T; Gore, M

    2009-08-01

    This study aims to compare the sensitivity of whole-body MRI with bone scintigraphy in the detection of bone metastases in patients with renal cancer. A prospective study was carried out in 47 patients with renal cancer (mean age 62 years, range 29-79 years). All patients had assessment of the skeleton with whole-body bone scintigraphy (with technetium-99m methylene diphosphonate) and whole-body MRI (coronal T(1) weighted and short tau inversion recovery sequences). The number and sites of bony metastases were assessed on each imaging investigation independently. Sites of extra-osseous metastasis on MRI were also noted. The imaging findings were correlated with other imaging modalities and follow-up. 15 patients (32%) had bone metastases at 34 different sites. Both scintigraphy and MRI were highly specific (94% and 97%, respectively), but the sensitivity of MRI (94%) was superior (p = 0.007) to that of scintigraphy (62%). MRI identified more metastases in the spine and appendicular skeleton, whereas scintigraphy showed more lesions in the skull/facial and thoracic bones. MRI identified extra-osseous metastases in 33 patients (70%), these were mainly lung and retroperitoneal in site. Whole-body MRI is a more sensitive method for detection of bone metastases in renal cancer than bone scintigraphy, and also allows the assessment of soft-tissue disease.

  16. Fabrication of Bone like Composites Material and Evaluation of its Ossiferous Ability

    NASA Astrophysics Data System (ADS)

    Hisamori, Noriyuki; Kimura, Megumi; Morisue, Hikaru; Matsumoto, Morio; Toyama, Yoshiaki

    Many kinds of materials are currently used as artificial bone substitutes. Hydroxyapatite (HA), the same as the main inorganic component of bone, is one of commonly used bio-ceramics and has excellent bioactivity and biocompatibility with hard tissues. However, it has problems as the bone filler or bone tissue-engineering scaffold due to low fracture toughness and low degradation rate. Recently, biodegradable materials for bone tissue have been developed to respond the requirement. Collagen, the same as the main organic component of bone, is biocompatible, biodegradable and promotes cell adhesion. A composites associated with HA is expected to have early osteoconduction and bone replacement ability. The present study was to fabricate bone-like composites consist of HA and collagen. Besides the ossiferous ability of the material in vivo is evaluated by using rabbits. Bone-like composites were successfully fabricated in this study, associating the collagen with HA. And the composites presented good osteoconductive and bone replacement potential.

  17. The Composite of Bone Marrow Concentrate and PRP as an Alternative to Autologous Bone Grafting

    PubMed Central

    Hakimi, Mohssen; Grassmann, Jan-Peter; Betsch, Marcel; Schneppendahl, Johannes; Gehrmann, Sebastian; Hakimi, Ahmad-Reza; Kröpil, Patric; Sager, Martin; Herten, Monika; Wild, Michael; Windolf, Joachim; Jungbluth, Pascal

    2014-01-01

    One possible alternative to the application of autologous bone grafts represents the use of autologous bone marrow concentrate (BMC). The purpose of our study was to evaluate the potency of autologous platelet-rich plasma (PRP) in combination with BMC. In 32 mini-pigs a metaphyseal critical-size defect was surgically created at the proximal tibia. The animals were allocated to four treatment groups of eight animals each (1. BMC+CPG group, 2. BMC+CPG+PRP group, 3. autograft group, 4. CPG group). In the BMC+CPG group the defect was filled with autologous BMC in combination with calcium phosphate granules (CPG), whereas in the BMC+CPG+PRP group the defect was filled with the composite of autologous BMC, CPG and autologous PRP. In the autograft group the defect was filled with autologous cancellous graft, whereas in the CPG group the defect was filled with CPG solely. After 6 weeks radiological and histomorphometrical analysis showed significantly more new bone formation in the BMC+CPG+PRP group compared to the BMC+CPG group and the CPG group. There were no significant differences between the BMC+CPG+PRP group and the autograft group. In the PRP platelets were enriched significantly about 4.7-fold compared to native blood. In BMC the count of mononuclear cells increased significantly (3.5-fold) compared to the bone marrow aspirate. This study demonstrates that the composite of BMC+CPG+PRP leads to a significantly higher bone regeneration of critical-size defects at the proximal tibia in mini-pigs than the use of BMC+CPG without PRP. Furthermore, within the limits of the present study the composite BMC+CPG+PRP represents a comparable alternative to autologous bone grafting. PMID:24950251

  18. Assessing body composition: the skinfold method.

    PubMed

    Talbot, L A; Lister, Z

    1995-12-01

    1. Excess body fat contributes to many chronic diseases. Using a case scenario, an initial screening assessment is performed on two clients. The occupational health nurse provides feedback on current lifestyle behaviors and educates the clients about relevant lifestyle changes. 2. Tables illustrate the step by step procedures for measuring body fat using the skinfold thickness method. Photographs show the multiple body sites used in the skinfold analysis. 3. Commonly asked client questions related to body fat are discussed in detail, and the use of body fat assessment as a screening method for the health promotion professional is described.

  19. Body composition and dietary intake in neoplasic disease

    SciTech Connect

    Cohn, S.H.; Gartenhaus, W.; Vartsky, D.; Sawitsky, A.; Zanzi, I.; Vaswani, A. Yasummure, S.; Rai, K.; Cartes, E.; Ellis, K.J.

    1981-10-01

    Changes in body composition in 37 cancer patients were studied over a period of 6 months. Initially, the patients were divided into two groups: those who lost body weight (over 10%) and those who maintained or gained body weight before the study. Analysis of body composition indicated that patients who lost body weight has caloric and protein intakes markedly below ''normal'' levels at the beginning of the study. There also appears to be a direct relationship between the protein intake and the total body potassium/total body water ratio in the cancer patients. At the end of the 6-month study, the patients were again placed into two groups on the basis of weight loss or gain (and maintenance). Changes in body composition over the period were analyzed in terms of lean body mass, its protein constituent, water, and fat. Weight loss was found to reflect primarily the loss of fat, water, lean body mass (potassium), and only to a minor extent the protein component of lean body mass (nitrogen). Further, on the basis of the values of the ratios of total body nitrogen/total body potassium/total body water, it was possible to ascertain the relative normalcy of the body tissue gained or lost in the 6-month period. The results of the study suggest that the ratio total body nitrogen/total body potassium may serve as the best indicator of recent or ongoing catabolism or anabolism of the neoplastic process. By means of the application of the techniques used for the determination of body composition, it should be possible to assess regimes of hyperalimentation of cancer patients who lose body weight. (JMT)

  20. Frozen Autograft-Prosthesis Composite Reconstruction in Malignant Bone Tumors.

    PubMed

    Subhadrabandhu, Saran; Takeuchi, Akihiko; Yamamoto, Norio; Shirai, Toshiharu; Nishida, Hideji; Hayashi, Katsuhiro; Miwa, Shinji; Tsuchiya, Hiroyuki

    2015-10-01

    Several methods are available using an endoprosthesis or biological reconstruction for malignant bone tumors. Methods that use allograft-prosthesis composites have shown promising results. In 1999, the authors developed a method of reconstruction that uses a tumor-bearing autograft treated with liquid nitrogen. This technique was modified to produce a pedicle frozen autograft to maintain anatomical continuity on one side. In this study, the results of bone reconstructions using frozen autograft-prosthesis composites were retrospectively evaluated. The demographic data, histological records, surgical procedures, functional scores, and complications of 22 patients who had bone sarcoma or metastasis and at least 2 years of follow-up were reviewed. There were 19 patients with primary bone sarcoma and 3 with bone metastasis. Average age was 36 years (range, 9-73 years), and mean follow-up was 63 months (range, 24-176 months). Reconstructions were performed on 10 proximal femurs, 5 distal femurs, 4 proximal tibias, 1 proximal humerus, 1 proximal radius, and 1 hemipelvis. There were 12 pedicle-freezing and 10 free-freezing procedures. Union rate was 90% (9/10), and average union time was 9.5 months. Average Musculoskeletal Tumor Society score was 89.3%. Complications included 1 fracture, 2 infections, 3 soft tissue recurrences, and 1 posterior interosseous nerve palsy. The authors concluded that the frozen autograft-prosthesis composite demonstrated excellent Musculoskeletal Tumor Society scores, a low complication rate, and a good union rate and was superior when used with the pedicle-freezing technique.

  1. Effect of calcium sulfate-chitosan composite: pellet on bone formation in bone defect.

    PubMed

    Cho, Byung Chae; Kim, Tae Gyu; Yang, Jung Duk; Chung, Ho Yun; Park, Jae Woo; Kwon, Ick Chan; Roh, Kyung Ho; Chung, Hye Sun; Lee, Dong Sin; Park, Nang Un; Kim, In San

    2005-03-01

    The purpose of this experiment was to study the effects of chitosan, calcium sulfate, and calcium sulfate-chitosan composite pellet on the osteogenesis of defective tibia in rabbits. Eighty New Zealand white rabbits, each weighing approximately 3 to 3.5 kg, were used for this study. A 1-cm ostectomy was made on the middle of the tibia of each rabbit with the periosteum preserved. Nothing was implanted in the control group (group 1), and five chitosan pellets (60 mg/pellet) were implanted in group 1, three OsteoSet pellets (100 mg/pellet) in group 3, and four calcium sulfate-chitosan composite pellets (1 pellet, 80 mg; calcium sulfate 40 mg/pellet, chitosan 40 mg/pellet) in group 4. For each group, a radiographic study, bone mineral density test, three-point bending test, and histologic examination were performed in the second, fourth, and sixth weeks. In the radiologic study, in group 1, cortical bone was not formed even at 6 weeks. In group 2, it was observed at 6 weeks. In groups 3 and 4, cortical bone was partially seen around the fourth week. At 6 weeks, it was clearly observed on both sides, and the projection of the marrow cavity became distinctive, so bone consolidation was considered to be much progressed. The bone mineral density test and three-point bending test results appeared to be highly similar in groups 3 and 4 and in groups 2 and 1. Particularly at 6 weeks, the measures for groups 3 and 4 were statistically significant compared with those for groups 1 and 2 (P < 0.05). In histologic examination, new bone formation began to be seen at 2 weeks in all groups, but it was more active and faster in groups 3 and 4. At 6 weeks, fibrous connective tissue still remained at the center in groups 1 and 2; however, the fibrous connective tissue at the center was replaced with callus, the bony bridge was obvious, and lamellation of callus was observed more in groups 3 and 4. The results indicate that chitosan pellets, OsteoSet, and chitosan-calcium sulfate

  2. Effects of ingesting supplements designed to promote lean tissue accretion on body composition during resistance training.

    PubMed

    Kreider, R B; Klesges, R; Harmon, K; Grindstaff, P; Ramsey, L; Bullen, D; Wood, L; Li, Y; Almada, A

    1996-09-01

    This study examined the effects of ingesting nutritional supplements designed to promote lean tissue accretion on body composition alterations during resistance training. Twenty-eight resistance-trained males blindly supplemented their diets with maltodextrin (M), Gainers Fuel 1000 (GF), or Phosphagain (P). No significant differences were observed in absolute or relative total body water among groups. Energy intake and body weight significantly increased in all groups combined throughout the study with no group or interaction differences observed. Dual energy x-ray absorptiometry-determined body mass significantly increased in each group throughout the study with significantly greater gains observed in the GF and P groups. Lean tissue mass (excluding bone) gain was significantly greater in the P group, while fat mass and percent body fat were significantly increased in the GF group. Results indicate that total body weight significantly increased in each group and that P supplementation resulted in significantly greater gains in lean tissue mass during resistance training.

  3. Biocompatibility of artificial bone based on vancomycin loaded mesoporous silica nanoparticles and calcium sulfate composites.

    PubMed

    Gu, Jisheng; Wang, Teng; Fan, Guoxin; Ma, Junhua; Hu, Wei; Cai, Xiaobing

    2016-04-01

    The aim of this study was to evaluate the in vitro and in vivo biocompatibility of artificial bone based on vancomycin loaded mesoporous silica nanoparticles and calcium sulfate composites. In vitro cytotoxicity tests by cholecystokinin octapeptide (CCK-8) assay showed that the 5%Van-MSN-CaSO4 and Van-CaSO4 bone cements were cytocompatible for mouse osteoblastic cell line MC3T3-E1. The microscopic observation confirmed that MC3T3-E1cells incubated with Van-CaSO4 group and 5%Van-MSN-CaSO4 group exhibited clear spindle-shaped changes, volume increase and maturation, showing that these cements supported adhesion of osteoblastic cells on their surfaces. In addition, the measurement of alkaline phosphatase activity revealed the osteoconductive property of these biomaterials. In order to assess in vivo biocompatibility, synthesized cements were implanted into the distal femur of twelve adult male and female New Zealand rabbits. After implantation in artificial defects of the distal femur, 5%Van-MSN-CaSO4 and Van-CaSO4 bone cements did not damage the function of main organs of rabbits. In addition, the Van-MSN-CaSO4 composite allowed complete repair of bone defects with new bone formation 3 months after implantation. These results show potential application of Van-MSN-CaSO4 composites as bone graft materials for the treatment of open fracture in human due to its mechanical, osteoconductive and potential sustained drug release characteristics and the absence of adverse effects on the body.

  4. [Progress of researches on carbon/carbon composites used in human loaded bones].

    PubMed

    Sui, Jinling; Li, Musen; Lü, Yupeng

    2004-08-01

    Carbon/carbon composites have excellent biocompatibility with human hard tissue and elasticity modulus similar with that of human bones, which endow them great potential applications in substitution for human loaded bones. The current research situations and applications of carbon/carbon composites in human loaded bones are reviewed. The coating technologies of bioactive layers on carbon/carbon composites are discussed. The problems to be solved and the prospects of carbon/carbon composites in human loaded bones are analyzed and predicted. It is believed that bioactive layers coating on carbon/carbon composites should play an important role in human loaded bones.

  5. Composite bone cements loaded with a bioactive and ferrimagnetic glass-ceramic: Leaching, bioactivity and cytocompatibility.

    PubMed

    Verné, Enrica; Bruno, Matteo; Miola, Marta; Maina, Giovanni; Bianco, Carlotta; Cochis, Andrea; Rimondini, Lia

    2015-08-01

    In this work, composite bone cements, based on a commercial polymethylmethacrylate matrix (Palamed®) loaded with ferrimagnetic bioactive glass-ceramic particles (SC45), were produced and characterized in vitro. The ferrimagnetic bioactive glass-ceramic belongs to the system SiO2-Na2O-CaO-P2O5-FeO-Fe2O3 and contains magnetite (Fe3O4) crystals into a residual amorphous bioactive phase. Three different formulations (containing 10, 15 and 20 wt.% of glass-ceramic particles respectively) have been investigated. These materials are intended to be applied as bone fillers for the hyperthermic treatment of bone tumors. The morphological, compositional, calorimetric and mechanical properties of each formulation have been already discussed in a previous paper. The in vitro properties of the composite bone cements described in the present paper are related to iron ion leaching test (by graphite furnace atomic absorption spectrometer), bioactivity (i.e. the ability to stimulate the formation of a hydroxyapatite - HAp - layer on their surface after soaking in simulated body fluid SBF) and cytocompatibility toward human osteosarcoma cells (ATCC CRL-1427, Mg63). Morphological and chemical characterizations by scanning electron microscopy and energy dispersion spectrometry have been performed on the composite samples after each test. The iron release was negligible and all the tested samples showed the growth of HAp on their surface after 28 days of immersion in a simulated body fluid (SBF). Cells showed good viability, morphology, adhesion, density and the ability to develop bridge-like structures on all investigated samples. A synergistic effect between bioactivity and cell mineralization was also evidenced.

  6. Body composition in Pan paniscus compared with Homo sapiens has implications for changes during human evolution

    PubMed Central

    Zihlman, Adrienne L.; Bolter, Debra R.

    2015-01-01

    The human body has been shaped by natural selection during the past 4–5 million years. Fossils preserve bones and teeth but lack muscle, skin, fat, and organs. To understand the evolution of the human form, information about both soft and hard tissues of our ancestors is needed. Our closest living relatives of the genus Pan provide the best comparative model to those ancestors. Here, we present data on the body composition of 13 bonobos (Pan paniscus) measured during anatomical dissections and compare the data with Homo sapiens. These comparative data suggest that both females and males (i) increased body fat, (ii) decreased relative muscle mass, (iii) redistributed muscle mass to lower limbs, and (iv) decreased relative mass of skin during human evolution. Comparison of soft tissues between Pan and Homo provides new insights into the function and evolution of body composition. PMID:26034269

  7. Effects of creatine supplementation on the performance and body composition of competitive swimmers.

    PubMed

    Mendes, Renata Rebello; Pires, Ivanir; Oliveira, Althair; Tirapegui, Julio

    2004-08-01

    The objective of this study was to determine the effect of creatine supplementation on performance and body composition of swimmers. Eighteen swimmers were evaluated in terms of post-performance lactate accumulation, body composition, creatine and creatinine excretion, and serum creatinine concentrations before and after creatine or placebo supplementation. No significant differences were observed in the marks obtained in swimming tests after supplementation, although lactate concentrations were higher in placebo group during this period. In the creatine-supplemented group, urinary creatine, creatinine, and body mass, lean mass and body water were significantly increased, but no significant difference in muscle or bone mass was observed. These results suggest that creatine supplementation cannot be considered to be an ergogenic supplement ensuring improved performance and muscle mass gain in swimmers.

  8. Body composition in Pan paniscus compared with Homo sapiens has implications for changes during human evolution.

    PubMed

    Zihlman, Adrienne L; Bolter, Debra R

    2015-06-16

    The human body has been shaped by natural selection during the past 4-5 million years. Fossils preserve bones and teeth but lack muscle, skin, fat, and organs. To understand the evolution of the human form, information about both soft and hard tissues of our ancestors is needed. Our closest living relatives of the genus Pan provide the best comparative model to those ancestors. Here, we present data on the body composition of 13 bonobos (Pan paniscus) measured during anatomical dissections and compare the data with Homo sapiens. These comparative data suggest that both females and males (i) increased body fat, (ii) decreased relative muscle mass, (iii) redistributed muscle mass to lower limbs, and (iv) decreased relative mass of skin during human evolution. Comparison of soft tissues between Pan and Homo provides new insights into the function and evolution of body composition.

  9. Body Composition Measurements of 161-km Ultramarathon Participants

    USDA-ARS?s Scientific Manuscript database

    This study compares body composition characteristics with performance among participants in a 161-km trail ultramarathon. Height, mass, and percent body fat from bioimpedence spectroscopy were measured on 72 starters. Correlation analyses were used to compare body characteristics with finish time, ...

  10. Changes in body composition of neonatal piglets during growth

    USDA-ARS?s Scientific Manuscript database

    During studies of neonatal piglet growth it is important to be able to accurately assess changes in body composition. Previous studies have demonstrated that quantitative magnetic resonance (QMR) provides precise and accurate measurements of total body fat mass, lean mass and total body water in non...

  11. Development of Composite Scaffolds for Load Bearing Segmental Bone Defects

    DTIC Science & Technology

    2013-07-01

    progressed from laboratory benchtop studies to preclinical testing in animals. This review is based on an exhaustive literature search of various...follow, a comprehensive review of in vivo models used to test composite scaffolds in SBDs is detailed to serve as a guide to design appropriate...related to fractures, sport and blast injuries. Diseases include bone cancer (osteosarcoma), tumor resection and reconstruction, osteoporosis

  12. Body composition of piglets exhibiting different growth rates

    USDA-ARS?s Scientific Manuscript database

    The growth and composition of the neonatal pig is of interest because of potential impact on subsequent growth and finally, composition at market weight. The purpose of this study was to compare at weaning the growth and body composition of the largest and smallest pigs (excluding runts) from each o...

  13. Injectable Hydrogel Composite Based Gelatin-PEG and Biphasic Calcium Phosphate Nanoparticles for Bone Regeneration

    NASA Astrophysics Data System (ADS)

    Van, Thuy Duong; Tran, Ngoc Quyen; Nguyen, Dai Hai; Nguyen, Cuu Khoa; Tran, Dai Lam; Nguyen, Phuong Thi

    2016-05-01

    Gelatin hydrogels have recently attracted much attention for tissue regeneration because of their biocompatibility. In this study, we introduce poly-ethylene glycol (PEG)—grafted gelatin containing tyramine moieties which have been utilized for in situ enzyme-mediated hydrogel preparation. The hydrogel can be used to load nanoparticles of biphasic calcium phosphate, a mixture of hydroxyapatite and β-tricalcium phosphate, and forming injectable bio-composites. Proton nuclear magnetic resonance (1H NMR) spectra indicated that tyramine-functionalized polyethylene glycol-nitrophenyl carbonate ester was conjugated to the gelatin. The hydrogel composite was rapidly formed in situ (within a few seconds) in the presence of horseradish peroxidase and hydrogen peroxide. In vitro experiments with bio-mineralization on the hydrogel composite surfaces was well-observed after 2 weeks soaking in simulated body fluid solution. The obtained results indicated that the hydrogel composite could be a potential injectable material for bone regeneration.

  14. Bioinspired Design of Polycaprolactone Composite Nanofibers as Artificial Bone Extracellular Matrix for Bone Regeneration Application.

    PubMed

    Gao, Xiang; Song, Jinlin; Zhang, Yancong; Xu, Xiao; Zhang, Siqi; Ji, Ping; Wei, Shicheng

    2016-10-07

    The design and development of functional biomimetic systems for programmed stem cell response is a field of topical interest. To mimic bone extracellular matrix, we present an innovative strategy for constructing drug-loaded composite nanofibrous scaffolds in this study, which could integrate multiple cues from calcium phosphate mineral, bioactive molecule, and highly ordered fiber topography for the control of stem cell fate. Briefly, inspired by mussel adhesion mechanism, a polydopamine (pDA)-templated nanohydroxyapatite (tHA) was synthesized and then surface-functionalized with bone morphogenetic protein-7-derived peptides via catechol chemistry. Afterward, the resulting peptide-loaded tHA (tHA/pep) particles were blended with polycaprolactone (PCL) solution to fabricate electrospun hybrid nanofibers with random and aligned orientation. Our research demonstrated that the bioactivity of grafted peptides was retained in composite nanofibers. Compared to controls, PCL-tHA/pep composite nanofibers showed improved cytocompatibility. Moreover, the incorporated tHA/pep particles in nanofibers could further facilitate osteogenic differentiation potential of human mesenchymal stem cells (hMSCs). More importantly, the aligned PCL-tHA/pep composite nanofibers showed more osteogenic activity than did randomly oriented counterparts, even under nonosteoinductive conditions, indicating excellent performance of biomimetic design in cell fate decision. After in vivo implantation, the PCL-tHA/pep composite nanofibers with highly ordered structure could significantly promote the regeneration of lamellar-like bones in a rat calvarial critical-sized defect. Accordingly, the presented strategy in our work could be applied for a wide range of potential applications in not only bone regeneration application but also pharmaceutical science.

  15. Functional adaptation of long bone extremities involves the localized ``tuning'' of the cortical bone composition; evidence from Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Buckley, Kevin; Kerns, Jemma G.; Birch, Helen L.; Gikas, Panagiotis D.; Parker, Anthony W.; Matousek, Pavel; Goodship, Allen E.

    2014-11-01

    In long bones, the functional adaptation of shape and structure occurs along the whole length of the organ. This study explores the hypothesis that adaptation of bone composition is also site-specific and that the mineral-to-collagen ratio of bone (and, thus, its mechanical properties) varies along the organ's length. Raman spectroscopy was used to map the chemical composition of long bones along their entire length in fine spatial resolution (1 mm), and then biochemical analysis was used to measure the mineral, collagen, water, and sulfated glycosaminoglycan content where site-specific differences were seen. The results show that the mineral-to-collagen ratio of the bone material in human tibiae varies by <5% along the mid-shaft but decreases by >10% toward the flared extremities of the bone. Comparisons with long bones from other large animals (horses, sheep, and deer) gave similar results with bone material composition changing across tens of centimeters. The composition of the bone apatite also varied with the phosphate-to-carbonate ratio decreasing toward the ends of the tibia. The data highlight the complexity of adaptive changes and raise interesting questions about the biochemical control mechanisms involved. In addition to their biological interest, the data provide timely information to researchers developing Raman spectroscopy as a noninvasive tool for measuring bone composition in vivo (particularly with regard to sampling and measurement protocol).

  16. Osteogenic Embryoid Body-Derived Material Induces Bone Formation In Vivo

    PubMed Central

    Sutha, Ken; Schwartz, Zvi; Wang, Yun; Hyzy, Sharon; Boyan, Barbara D.; McDevitt, Todd C.

    2015-01-01

    The progressive loss of endogenous regenerative capacity that accompanies mammalian aging has been attributed at least in part to alterations in the extracellular matrix (ECM) composition of adult tissues. Thus, creation of a more regenerative microenvironment, analogous to embryonic morphogenesis, may be achieved via pluripotent embryonic stem cell (ESC) differentiation and derivation of devitalized materials as an alternative to decellularized adult tissues, such as demineralized bone matrix (DBM). Transplantation of devitalized ESC materials represents a novel approach to promote functional tissue regeneration and reduce the inherent batch-to-batch variability of allograft-derived materials. In this study, the osteoinductivity of embryoid body-derived material (EBM) was compared to DBM in a standard in vivo ectopic osteoinduction assay in nude mice. EBM derived from EBs differentiated for 10 days with osteogenic media (+β-glycerophosphate) exhibited similar osteoinductivity to active DBM (osteoinduction score = 2.50 ± 0.27 vs. 2.75 ± 0.16) based on histological scoring, and exceeded inactive DBM (1.13 ± 0.13, p < 0.005). Moreover, EBM stimulated formation of new bone, ossicles, and marrow spaces, similar to active DBM. The potent osteoinductivity of EBM demonstrates that morphogenic factors expressed by ESCs undergoing osteogenic differentiation yield a novel devitalized material capable of stimulating de novo bone formation in vivo. PMID:25961152

  17. Repairing Fractured Bones by Use of Bioabsorbable Composites

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.

    2006-01-01

    A proposed method of surgical repair of fractured bones would incorporate recent and future advances in the art of composite materials. The composite materials used in this method would be biocompatible and at least partly bioabsorbable: that is, during the healing process following surgery, they would be wholly or at least partly absorbed into the bones and other tissues in which they were implanted. Relative to the traditional method, the proposed method would involve less surgery, pose less of a risk of infection, provide for better transfer of loads across fracture sites, and thereby promote better healing while reducing the need for immobilization by casts and other external devices. One requirement that both the traditional and proposed methods must satisfy is to fix the multiple segments of a broken bone in the correct relative positions. Mechanical fixing techniques used in the traditional method include the use of plates spanning the fracture site and secured to the bone by screws, serving of wire along the bone across the fracture site, insertion of metallic intramedullary rods through the hollow portion of the fractured bone, and/or inserting transverse rods through the bone, muscle, and skin to stabilize the fractured members. After the bone heals, a second surgical operation is needed to remove the mechanical fixture(s). In the proposed method, there would be no need for a second surgical operation. The proposed method is based partly on the observation that in the fabrication of a structural member, it is generally more efficient and reliable to use multiple small fasteners to transfer load across a joint than to use a single or smaller number of larger fasteners, provided that the stress fields of neighboring small fasteners do not overlap or interact. Also, multiple smaller fasteners are more reliable than are larger and fewer fasteners. However, there is a trade-off between structural efficiency and the cost of insertion time and materials. The

  18. [Body composition analysis in obesity: radionuclide and non radionuclide methods].

    PubMed

    Tzotzas, Themistoklis; Krassas, Gerasimos E; Doumas, Argirios

    2008-01-01

    Body composition (BC) assessment provides important information regarding the absolute or relative amount of bone, lean and fat tissue. Different somatometric techniques have been applied in numerous epidemiological and experimental studies, as well as in every day clinical practice. Traditional techniques for BC analysis include skin fold thickness measurements, radioisotope dilution methods, hydrodensitometry and underwater weighing, while newer techniques include bioelectrical impedance analysis (BIA), air displacement plethysmography (ADP), dual energy X-rays absorptiometry (DEXA), computer tomography and magnetic resonance imaging. In addition, positron emission tomography helped to the functional investigation of adipose tissue, in particular of brown tissue. All these techniques have contributed a lot to the understanding of physiological conditions such as exercise training, menopause and ageing, adolescence health parameters, as well as pathological conditions such as disorders of nutrition, cancer, obesity and diabetes mellitus. In obesity, BC contributed to diagnosis and the pathological impact of visceral adipose tissue. In addition, conditions such as pseudo- or hypermuscular obesity and sarcopenia, which are often observed in various endocrine diseases, were investigated in detail by using such methods. During weight loss, some of these methods were quite accurate in measuring changes in fat and lean mass. Apart from anthropometric measurements, a BC measurement if possible should be included in obesity assessment. Measurements of skin fold thickness combined with BIA are quite sufficient for routine clinical practice. However, in specialized clinics and in research, more sophisticated methods like ADP or DEXA are used.

  19. Bone and body mass changes during space flight

    NASA Astrophysics Data System (ADS)

    Schneider, V.; Oganov, V.; LeBlanc, A.; Rakmonov, A.; Taggart, L.; Bakulin, A.; Huntoon, C.; Grigoriev, A.; Varonin, L.

    Long duration space flight has shown us that humans have significant bone loss and mineral changes because they are living in microgravity. Skylab and the longer Salyut and Mir missions, are providing us useful data and allowing us to explore the mechanism involved in skeletal turnover. Bone redistribution occurs throughout space flight with bone loss predominately in the weight bearing bones of posture and locomotion. The primary health hazards which may occur during space flight induced by skeletal changes include signs and symptoms of hypercalcemia, and the risk of kidney stones and metastatic calcification. After flight lengthy recovery of bone mass and the possible increase in the risk of bone fracture should be considered. Continued research studies are being directed toward determining the mechanisms by which bone is lost in space and developing more effective countermeasures by both the US (Schneider and McDonald, 1984 and Schneider, LeBlanc & Huntoon, 1993) and Russian (Grigoriev et. al., 1989) space programs.

  20. Biomimetic chitosan-calcium phosphate composites with potential applications as bone substitutes: preparation and characterization.

    PubMed

    Tanase, Constantin E; Popa, Marcel I; Verestiuc, Liliana

    2012-04-01

    A novel biomimetic technique for obtaining chitosan-calcium phosphates (Cs-CP) scaffolds are presented: calcium phosphates are precipitated from its precursors, CaCl(2) and NaH(2) PO(4) on the Cs matrix, under physiological conditions (human body temperature and body fluid pH; 37°C and pH = 7.2, respectively). Materials composition and structure have been confirmed by various techniques: elemental analysis, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), and scanning electron microscopy (SEM). FTIR and SEM data have shown the arrangement of the calcium phosphates-hydroxyapatite (CP-Hap) onto Cs matrix. In this case the polymer is acting as glue, bonding the calcium phosphates crystals. Behavior in biological simulated fluids (phosphate buffer solution-PBS and PBS-albumin) revealed an important contribution of the chelation between -NH3(+) and Ca(2+) on the scaffold interaction with aqueous mediums; increased quantities of chitosan in composites permit the interaction with human albumin and improve the retention of fluid. The composites are slightly degraded by the lysozyme which facilitates an in vivo degradation control of bone substitutes. Modulus of elasticity is strongly dependent of the ratio chitosan/calcium phosphates and recommends the obtained biomimetic composites as promising materials for a prospective bone application. Copyright © 2011 Wiley Periodicals, Inc.

  1. Impact of milk consumption and resistance training on body composition of female athletes.

    PubMed

    Josse, Andrea R; Phillips, Stuart M

    2012-01-01

    Resistance exercise (RE) preceding the provision of high-quality dairy protein supports muscle anabolism. Milk contains bioactive components, including two high-quality protein fractions, calcium and vitamin D, each of which has been shown modulate body composition (increasing lean mass and decreasing fat mass) under energy balance and hypoenergetic conditions. These dairy nutrients are also essential for skeletal health. Acutely, no study of RE and milk/whey consumption has been undertaken exclusively in female athletes, let alone women, nevertheless, studies with both men and women show increased lean mass accretion following milk/whey compared to soy/placebo. Currently, no longer-term RE studies with milk supplementation have been done in female athletes. However, trials in young recreationally active women demonstrated augmented increases in lean mass and decreases in fat mass with RE and milk or whey protein consumption. The amount of protein consumed post-exercise is also important; two trials using yogurt (5 g protein/6 oz) failed to demonstrate a positive change in body composition compared to placebo. For bone health, RE plus dairy improved bone mineral density at clinically important sites and reduced bone resorption. With energy restriction, in one study, higher dairy plus higher protein resulted in greater fat loss, lean mass gain and improved bone health in overweight women. In another study, milk and calcium supplementation showed no greater benefit. Neither trial exclusively utilized RE. Overall, RE and milk/dairy consumption positively impact body composition in women by promoting losses in fat, gains or maintenance of lean mass and preservation of bone. Future studies in female athletes and under energy restriction with RE alone are warranted.

  2. New concept of 3D printed bone clip (polylactic acid/hydroxyapatite/silk composite) for internal fixation of bone fractures.

    PubMed

    Yeon, Yeung Kyu; Park, Hae Sang; Lee, Jung Min; Lee, Ji Seung; Lee, Young Jin; Sultan, Md Tipu; Seo, Ye Bin; Lee, Ok Joo; Kim, Soon Hee; Park, Chan Hum

    2017-09-22

    Open reduction with internal fixation is commonly used for the treatment of bone fractures. However, postoperative infection associated with internal fixation devices (intramedullary nails, plates, and screws) remains a significant complication, and it is technically difficult to fix multiple fragmented bony fractures using internal fixation devices. In addition, drilling in the bone to install devices can lead to secondary fracture, bone necrosis associated with postoperative infection. In this study, we developed bone clip type internal fixation device using three- dimensional (3D) printing technology. Standard 3D model of the bone clip was generated based on computed tomography (CT) scan of the femur in the rat. Polylacticacid (PLA), hydroxyapatite (HA), and silk were used for bone clip material. The purpose of this study was to characterize 3D printed PLA, PLA/HA, and PLA/HA/Silk composite bone clip and evaluate the feasibility of these bone clips as an internal fixation device. Based on the results, PLA/HA/Silk composite bone clip showed similar mechanical property, and superior biocompatibility compared to other types of the bone clip. PLA/HA/Silk composite bone clip demonstrated excellent alignment of the bony segments across the femur fracture site with well-positioned bone clip in an animal study. Our 3D printed bone clips have several advantages: (1) relatively noninvasive (drilling in the bone is not necessary), (2) patient-specific design (3) mechanically stable device, and (4) it provides high biocompatibility. Therefore, we suggest that our 3D printed PLA/HA/Silk composite bone clip is a possible internal fixation device.

  3. Body composition changes in pregnancy: measurement, predictors and outcomes

    PubMed Central

    Widen, EM; Gallagher, D

    2014-01-01

    Prevalence of overweight and obesity has risen in the United States over the past few decades. Concurrent with this rise in obesity has been an increase in pregravid body mass index and gestational weight gain affecting maternal body composition changes in pregnancy. During pregnancy, many of the assumptions inherent in body composition estimation are violated, particularly the hydration of fat-free mass, and available methods are unable to disentangle maternal composition from fetus and supporting tissues; therefore, estimates of maternal body composition during pregnancy are prone to error. Here we review commonly used and available methods for assessing body composition changes in pregnancy, including: (1) anthropometry, (2) total body water, (3) densitometry, (4) imaging, (5) dual-energy X-ray absorptiometry, (6) bioelectrical impedance and (7) ultrasound. Several of these methods can measure regional changes in adipose tissue; however, most of these methods provide only whole-body estimates of fat and fat-free mass. Consideration is given to factors that may influence changes in maternal body composition, as well as long-term maternal and offspring outcomes. Finally, we provide recommendations for future research in this area. PMID:24667754

  4. Body composition by DEXA in older adults: accuracy and influence of scan mode.

    PubMed

    Clasey, J L; Hartman, M L; Kanaley, J; Wideman, L; Teates, C D; Bouchard, C; Weltman, A

    1997-04-01

    Dual energy x-ray absorptiometry (DEXA) measures bone mineral content (BMC), bone mineral density (BMD), fat-free mass (FFM), and provides estimates of percent body fat. Changes in scan mode geometry (pencil beam vs array) may impact these measures and body composition estimates using multi-compartment models. Forty-one adults, ages 59-79 yr, were scanned in each mode and also underwent hydrostatic weighing and measurement of total body water (tritiated water dilution). The effect of scan mode on measurement of DEXA BMC, BMD, FFM, and percent body fat (DEXA %Fat) was examined. The effect of scan mode on percentage body fat determined by a 4-compartment body composition model (4 Comp %Fat) and comparison of DEXA %Fat and 4 Comp %Fat were also examined. BMC and DEXA %Fat were greater (1.3% and 3.9%, respectively, P < 0.01), and BMD and FFM were lower (1.1% and 1.9%, respectively, P < 0.01) with the array scan mode. The 4 Comp %Fat was significantly greater (0.2%) when the array scan mode measurements of total body bone mineral were used; however, these differences were physiologically inconsequential. Comparison between DEXA %Fat and 4 Comp %Fat measures revealed a total error of +/-5.0% in the older adults examined. These results indicate significant scan mode differences in total body BMC, BMD, FFM, and DEXA %Fat measurements and demonstrate the importance of using a single DEXA scan mode for clinical investigation, particularly with longitudinal studies. For all investigations with DEXA, the scan mode should be reported. Furthermore, the error associated with using DEXA alone to estimate percent fat in an older population suggests that this technique is unacceptable in a research setting.

  5. Composition of chitosan-hydroxyapatite-collagen composite scaffold evaluation after simulated body fluid immersion as reconstruction material

    NASA Astrophysics Data System (ADS)

    Verisqa, F.; Triaminingsih, S.; Corputty, J. E. M.

    2017-08-01

    Hydroxyapatite (HA) formation is one of the most important aspects of bone regeneration. Because domestically made chitosan-hydroxyapatite-collagen composite scaffolding from crab shell and bovine bone and tendon has potential as a maxillofacial reconstruction material, the material’s HA-forming ability requires evaluation. The aim of this research is to investigate chitosan-hydroxyapatite-collagen composite scaffold’s potential as a maxillofacial reconstruction material by observing the scaffold’s compositional changes. Scaffold specimens were immersed in 37°C simulated body fluid (SBF) for periods of 2, 4, 6, and 8 days. Scaffold composition was then evaluated by using energy dispersive spectroscopy (EDS). The calcium (Ca) and phosphorus (P) percentages of the scaffold were found to increase following SBF immersion. The high Ca/P ratio (3.82) on the scaffold indicated HA formation. Ion exchange played a significant role in the increased percentages of Ca and P, which led to new HA layer formation. The scaffold’s HA acted as a nucleation site of Ca and P from the SBF, with collagen and chitosan as the scaffold’s matrix. Chitosan-hydroxyapatite-collagen composite scaffold shows potential as a maxillofacial reconstruction material, since its composition favors HA formation.

  6. [Preparation and properties of calcium silicate-phosphate composite bone cements].

    PubMed

    Wang, Zhiqiang; Hu, Jilin; Liu, Xiaolei; Chen, Xiaoxu; Lü, Bingling

    2006-02-01

    In this paper, alpha-tricalcium phosphate (alpha-TCP) and tetracalcium phosphate (TTCP) respectively were chosen as basic compositions of phosphate bone cements. Other auxiliary materials such as hydroxyapatite (HAP), dicalcium phosphate dihydrate (DCPD), calcium carbonate (CaCO3), calcium oxide (CaO) and amorphous calcium silicate (CaSiO3) were added in the cements. Six kinds of composite bone cements were decided with 1.50 as their Ca/P ratio. Then the primary properties of them were studied. Ringer's simulated body fluid (SBF) tests were carried out for the samples. The changes of pH value in SBF and the compressive strength of the samples with the immersion time were studied. The results showed: the mixing liquid 0.25 M K2HPO4/KH2PO4 and amorphous CaSiO3 were effective for accelerating the setting of the cements; the initial setting time (It) was about 4-5.5 min and the final setting time (Ft) was about 18-19. 5 min. Amorphous calcium silicate can increase the compressive strength of the bone cements remarkably; the compressive strength of the alpha-TCP bone cement with the addition of suitable amount amorphous CaSiO3 reached 45.3 MPa after immersion in SBF for 14 days.

  7. Biological evaluation of porous aliphatic polyurethane/hydroxyapatite composite scaffolds for bone tissue engineering.

    PubMed

    Yang, Wanxun; Both, Sanne K; Zuo, Yi; Birgani, Zeinab Tahmasebi; Habibovic, Pamela; Li, Yubao; Jansen, John A; Yang, Fang

    2015-07-01

    Biomaterial scaffolds meant to function as supporting structures to osteogenic cells play a pivotal role in bone tissue engineering. Recently, we synthesized an aliphatic polyurethane (PU) scaffold via a foaming method using non-toxic components. Through this procedure a uniform interconnected porous structure was created. Furthermore, hydroxyapatite (HA) particles were introduced into this process to increase the bioactivity of the PU matrix. To evaluate the biological performances of these PU-based scaffolds, their influence on in vitro cellular behavior and in vivo bone forming capacity of the engineered cell-scaffold constructs was investigated in this study. A simulated body fluid test demonstrated that the incorporation of 40 wt % HA particles significantly promoted the biomineralization ability of the PU scaffolds. Enhanced in vitro proliferation and osteogenic differentiation of the seeded mesenchymal stem cells were also observed on the PU/HA composite. Next, the cell-scaffold constructs were implanted subcutaneously in a nude mice model. After 8 weeks, a considerable amount of vascularized bone tissue with initial marrow stroma development was generated in both PU and PU/HA40 scaffold. In conclusion, the PU/HA composite is a potential scaffold for bone regeneration applications.

  8. Non-invasive techniques for determining musculoskeleton body composition

    SciTech Connect

    Cohn, S.H.

    1984-01-01

    In vivo neutron activation analysis, combined with gamma spectrometry, has ushered in a new era of clinical diagnosis and evaluation of therapies, as well as investigation into and modelling of body composition in both normal individuals and patients suffering from various diseases and dysfunctions. Body composition studies have provided baseline data on such vital constituents as nitrogen, potassium and calcium. The non-invasive measurement techniques are particularly suitable for study of the musculo-skeletal changes in body composition. Of particular relevance here is the measurement of calcium loss in astronauts during prolonged space flights.

  9. A DXA Whole Body Composition Cross-Calibration Experience: Evaluation With Humans, Spine, and Whole Body Phantoms.

    PubMed

    Krueger, Diane; Libber, Jessie; Sanfilippo, Jennifer; Yu, Hui Jing; Horvath, Blaine; Miller, Colin G; Binkley, Neil

    2016-01-01

    New densitometer installation requires cross-calibration for accurate longitudinal assessment. When replacing a unit with the same model, the International Society for Clinical Densitometry recommends cross-calibrating by scanning phantoms 10 times on each instrument and states that spine bone mineral density (BMD) should be within 1%, whereas total body lean, fat, and %fat mass should be within 2% of the prior instrument. However, there is limited validation that these recommendations provide adequate total body cross-calibration. Here, we report a total body cross-calibration experience with phantoms and humans. Cross-calibration between an existing and new Lunar iDXA was performed using 3 encapsulated spine phantoms (GE [GE Lunar, Madison, WI], BioClinica [BioClinica Inc, Princeton, NJ], and Hologic [Hologic Inc, Bedford, MA]), 1 total body composition phantom (BioClinica), and 30 human volunteers. Thirty scans of each phantom and a total body scan of human volunteers were obtained on each instrument. All spine phantom BMD means were similar (within 1%; <-0.010 g/cm2 bias) between the existing and new dual-energy X-ray absorptiometry unit. The BioClinica body composition phantom (BBCP) BMD and bone mineral content (BMC) values were within 2% with biases of 0.005 g/cm2 and -3.4 g. However, lean and fat mass and %fat differed by 4.6%-7.7% with biases of +463 g, -496 g, and -2.8%, respectively. In vivo comparison supported BBCP data; BMD and BMC were within ∼2%, but lean and fat mass and %fat differed from 1.6% to 4.9% with biases of +833 g, -860 g, and -1.1%. As all body composition comparisons exceeded the recommended 2%, the new densitometer was recalibrated. After recalibration, in vivo bias was lower (<0.05%) for lean and fat; -23 and -5 g, respectively. Similarly, BBCP lean and fat agreement improved. In conclusion, the BBCP behaves similarly, but not identical, to human in vivo measurements for densitometer cross-calibration. Spine phantoms, despite good

  10. Imaging methods for analyzing body composition in human obesity and cardiometabolic disease.

    PubMed

    Seabolt, Lynn A; Welch, E Brian; Silver, Heidi J

    2015-09-01

    Advances in the technological qualities of imaging modalities for assessing human body composition have been stimulated by accumulating evidence that individual components of body composition have significant influences on chronic disease onset, disease progression, treatment response, and health outcomes. Importantly, imaging modalities have provided a systematic method for differentiating phenotypes of body composition that diverge from what is considered normal, that is, having low bone mass (osteopenia/osteoporosis), low muscle mass (sarcopenia), high fat mass (obesity), or high fat with low muscle mass (sarcopenic obesity). Moreover, advances over the past three decades in the sensitivity and quality of imaging not just to discern the amount and distribution of adipose and lean tissue but also to differentiate layers or depots within tissues and cells is enhancing our understanding of distinct mechanistic, metabolic, and functional roles of body composition within human phenotypes. In this review, we focus on advances in imaging technologies that show great promise for future investigation of human body composition and how they are being used to address the pandemic of obesity, metabolic syndrome, and diabetes.

  11. Hydroxyapatite-titanium bulk composites for bone tissue engineering applications.

    PubMed

    Kumar, Alok; Biswas, Krishanu; Basu, Bikramjit

    2015-02-01

    The research work on bulk hydroxyapatite (HA)-based composites are driven by the need to develop biomaterials with better mechanical properties without compromising its bioactivity and biocompatibility properties. Despite several years of research, the mechanical properties of the HA-based composites still need to be enhanced to match the properties of natural cortical bone. In this regard, the scope of this review on the HA-based bulk biomaterials is limited to the processing and the mechanical as well as biocompatibility properties for bone tissue engineering applications of a model system that is hydroxyapatite-titanium (HA-Ti) bulk composites. It will be discussed in this review how HA-Ti based bulk composites can be processed to have better fracture toughness and strength without compromising biocompatibility. The advantages of the functionally gradient materials to integrate the mechanical and biocompatibility properties is a promising approach in hard tissue engineering and has been emphasized here in reference to the limited literature reports. On the biomaterials fabrication aspect, the recent results are discussed to demonstrate that advanced manufacturing techniques, like spark plasma sintering can be adopted as a processing route to restrict the sintering reactions, while enhancing the mechanical properties. Various toughening mechanisms related to careful tailoring of microstructure are discussed. The in vitro cytocompatibilty, cell fate processes as well as in vivo biocompatibility results are also reviewed and the use of flow cytometry to quantify in vitro cell fate processes is being emphasized. © 2014 Wiley Periodicals, Inc.

  12. Women Build Long Bones With Less Cortical Mass Relative to Body Size and Bone Size Compared With Men.

    PubMed

    Jepsen, Karl J; Bigelow, Erin M R; Schlecht, Stephen H

    2015-08-01

    The twofold greater lifetime risk of fracturing a bone for white women compared with white men and black women has been attributed in part to differences in how the skeletal system accumulates bone mass during growth. On average, women build more slender long bones with less cortical area compared with men. Although slender bones are known to have a naturally lower cortical area compared with wider bones, it remains unclear whether the relatively lower cortical area of women is consistent with their increased slenderness or is reduced beyond that expected for the sex-specific differences in bone size and body size. Whether this sexual dimorphism is consistent with ethnic background and is recapitulated in the widely used mouse model also remains unclear. We asked (1) do black women build bones with reduced cortical area compared with black men; (2) do white women build bones with reduced cortical area compared with white men; and (3) do female mice build bones with reduced cortical area compared with male mice? Bone strength and cross-sectional morphology of adult human and mouse bone were calculated from quantitative CT images of the femoral midshaft. The data were tested for normality and regression analyses were used to test for differences in cortical area between men and women after adjusting for body size and bone size by general linear model (GLM). Linear regression analysis showed that the femurs of black women had 11% lower cortical area compared with those of black men after adjusting for body size and bone size (women: mean=357.7 mm2; 95% confidence interval [CI], 347.9-367.5 mm2; men: mean=400.1 mm2; 95% CI, 391.5-408.7 mm2; effect size=1.2; p<0.001, GLM). Likewise, the femurs of white women had 12% less cortical area compared with those of white men after adjusting for body size and bone size (women: mean=350.1 mm2; 95% CI, 340.4-359.8 mm2; men: mean=394.3 mm2; 95% CI, 386.5-402.1 mm2; effect size=1.3; p<0.001, GLM). In contrast, female and male femora

  13. Hydroxyapatite-calcium sulfate-hyaluronic acid composite encapsulated with collagenase as bone substitute for alveolar bone regeneration.

    PubMed

    Subramaniam, Sadhasivam; Fang, Yen-Hsin; Sivasubramanian, Savitha; Lin, Feng-Huei; Lin, Chun-pin

    2016-01-01

    Periodontitis is a very severe inflammatory condition of the periodontium that progressively damages the soft tissue and destroys the alveolar bone that supports the teeth. The bone loss is naturally irreversible because of limited reparability of the teeth. Advancement in tissue engineering provides an effective regeneration of osseous defects with suitable dental implants or tissue-engineered constructs. This study reports a hydroxyapatite, calcium sulfate hemihydrate and hyaluronic acid laden collagenase (HAP/CS/HA-Col) as a bone substitute for the alveolar bone regeneration. The composite material was mechanically tested and the biocompatibility was evaluated by WST-1 assay. The in vivo bone formation was assessed in rat with alveolar bone defects and the bone augmentation by the HAP/CS/HA-Col composite was confirmed by micro-CT images and histological examination. The mechanical strength of 6.69 MPa with excellent biocompatibility was obtained for the HAP/CS/HA-Col composite. The collagenase release profile had facilitated the acceleration of bone remodeling process and it was confirmed by the findings of micro-CT and H&E staining. The bone defects implanted with HAP/CS/HA composite containing 2 mg/mL type I collagenase have shown improved new bone formation with matured bone morphology in comparison with the HAP/CS/HA composite that lacks the collagenase and the porous hydroxyapatite (p-HAP) granules. The said findings demonstrated that the collagenase inclusion in HAP/CS/HA composite is a feasible approach for the alveolar bone regeneration and the same design can also be applied to other defective tissues. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Validation of dual x-ray absorptiometry for body-composition assessment of rats exposed to dietary stressors.

    PubMed

    Lukaski, H C; Hall, C B; Marchello, M J; Siders, W A

    2001-01-01

    Evidence of the validity and accuracy of dual x-ray absorptiometry (DXA) to measure soft-tissue composition of laboratory rats with altered body composition associated with nutritional perturbations is lacking. We compared DXA determinations made in prone and supine positions with measurements of chemical composition of 49 male, weanling Sprague-Dawley rats that were fed the basal AIN-93 growth diet, were fed the basal diet modified to contain 30% fat, were fasted for 2 d, were limit fed 6 g of the basal diet daily for 1 wk, or were treated with furosemide (10 mg/kg intraperitoneally 2 h before DXA). DXA produced similar estimates of body mass and soft-tissue composition in the prone and supine positions. DXA estimates of body composition were significantly correlated with reference composition values (R(2) = 0.371-0.999). DXA discriminated treatment effects on body mass, fat-free and bone-free mass, fat mass, and body fatness; it significantly underestimated body mass (1% to 2%) and fat-free and bone-free mass (3%) and significantly overestimated fat mass and body fatness (3% to 25%). The greatest errors occurred in treatment groups in which body mass was diminished and body hydration was decreased. These findings suggest that DXA can determine small changes in fat-free, bone-free mass in response to obesity and weight loss. Errors in DXA determination of fat mass and body fatness associated with extra corporeal fluid and dehydration indicate the need for revision of calculation algorithms for soft-tissue determination.

  15. Ward's area location, physical activity, and body composition in 8- and 9-year-old boys and girls.

    PubMed

    Cardadeiro, Graça; Baptista, Fátima; Zymbal, Vera; Rodrigues, Luís A; Sardinha, Luís B

    2010-11-01

    Bone strength is the result of its material composition and structural design, particularly bone mass distribution. The purpose of this study was to analyze femoral neck bone mass distribution by Ward's area location and its relationship with physical activity (PA) and body composition in children 8 and 9 years of age. The proximal femur shape was defined by geometric morphometric analysis in 88 participants (48 boys and 40 girls). Using dual-energy X-ray absorptiometry (DXA) images, 18 landmarks were digitized to define the proximal femur shape and to identify Ward's area position. Body weight, lean and fat mass, and bone mineral were assessed by DXA, PA by accelerometry, and bone age by the Tanner-Whitehouse III method. Warps analysis with Thin-Plate Spline software showed that the first axis explained 63% of proximal femur shape variation in boys and 58% in girls. Most of this variation was associated with differences in Ward's area location, from the central zone to the superior aspect of the femoral neck in both genders. Regression analysis demonstrated that body composition explained 4% to 7% of the proximal femur shape variation in girls. In boys, body composition variables explained a similar amount of variance, but moderate plus vigorous PA (MVPA) also accounted for 6% of proximal femur shape variation. In conclusion, proximal femur shape variation in children ages 8 and 9 was due mainly to differences in Ward's area position determined, in part, by body composition in both genders and by MVPA in boys. These variables were positively associated with a central Ward's area and thus with a more balanced femoral neck bone mass distribution.

  16. Infant BMI trajectories are associated with young adult body composition

    PubMed Central

    Slining, M. M.; Herring, A. H.; Popkin, B. M.; Mayer-Davis, E. J.; Adair, L. S.

    2013-01-01

    The dynamic aspect of early life growth is not fully captured by typical analyses, which focus on one specific time period. To better understand how infant and young child growth relate to the development of adult body composition, the authors characterized body mass index (BMI) trajectories using latent class growth analysis (LCGA) and evaluated their association with adult body composition. Data are from the Cebu Longitudinal Health and Nutrition Survey, which followed a birth cohort to age 22 years (n=1749). In both males and females, LCGA identified seven subgroups of respondents with similar BMI trajectories from 0 to 24 months (assessed with bimonthly anthropometrics). Trajectory groups were compared with conventional approaches: (1) accelerated growth between two time points (0–4 months), (2) continuous BMI gain between two points (0–4 months and 0–24 months) and (3) BMI measured at one time point (24 months) as predictors of young adult body composition measures. The seven trajectory groups were distinguished by age-specific differences in tempo and timing of BMI gain in infancy. Infant BMI trajectories were better than accelerated BMI gain between 0 and 4 months at predicting young adult body composition. After controlling for BMI at age 2 years, infant BMI trajectories still explained variation in adult body composition. Using unique longitudinal data and methods, we find that distinct infant BMI trajectories have long-term implications for the development of body composition. PMID:24040489

  17. Comparison of the effectiveness of body mass index and body fat percentage in defining body composition.

    PubMed

    Goonasegaran, Arvin Raj; Nabila, Fatin Nabila; Shuhada, Nurul Shuhada

    2012-06-01

    Body mass index (BMI) has limited diagnostic performance due to its inability to discriminate between fat and lean mass. This study was conducted to compare the effectiveness of body fat percentage (BFP) against BMI in defining body composition. A cross-sectional study was conducted on students aged 17-30 years in Melaka, Malaysia. Basic anthropometric measurements were acquired using a manual weighing scale, measuring tape and a fixed stadiometer. BFP was calculated using the United States Navy formula. Data was tabulated and analysed using Epi Info and Statistical Package for the Social Sciences software. Pearson's correlation coefficient and Kappa values were used. A p-value < 0.05 was considered statistically significant. Out of the 490 subjects recruited, 43% of males and 24.6% of females were found to be overweight, while 14.3% of males and 7.8% of females were obese, when calculated using BMI. However, 8.9% of males and 22.8% of females were considered obese based on the BFP. BFP plays a more important role in distinguishing between healthy and obese individuals, as it has a greater ability to differentiate between lean mass and fat mass compared to BMI.

  18. Bone cell responses to the composite of Ricinus communis polyurethane and alkaline phosphatase.

    PubMed

    Beloti, Marcio Mateus; de Oliveira, Paulo Tambasco; Tagliani, Marcela Martini; Rosa, Adalberto Luiz

    2008-02-01

    The aim of this study was to evaluate the response of osteoblastic cells to the composite of Ricinus communis polyurethane (RCP) and alkaline phosphatase (ALP) incubated in synthetic body fluid (SBF). RCP pure (RCPp) and RCP blended with ALP 6 mg/mL polymer (RCP+ALP) were incubated in SBF for 17 days. Four groups of RCP were tested: RCPp, RCP+ALP, and RCPp and RCP+ALP incubated in SBF (RCPp/SBF and RCP+ALP/SBF). Stem cells from rat bone marrow were cultured in conditions that allowed osteoblastic differentiation on RCP discs and were evaluated: cell adhesion, culture growth, cell viability, total protein content, ALP activity, and bone-like nodule formation. Data were compared by ANOVA or Kruskal-Wallis test. The group RCP+ALP was highly cytotoxic and, therefore, was not considered here. Cell adhesion (p = 0.14), culture growth (p = 0.39), viability (p = 0.46) and total protein content (p = 0.12) were not affected by either RCP composition or incubation in SBF. ALP activity was affected (p = 0.0001) as follows: RCPp < RCPp/SBF < RCP+ALP/SBF. Bone-like nodule formation was not observed on all evaluated groups. The composite RCP+ALP prior to SBF incubation is cytotoxic and must not be considered as biomaterial, but the incorporation of ALP to the RCP followed by SBF incubation could be a useful alternative to improve the biological properties of the RCP.

  19. VDR Haploinsufficiency Impacts Body Composition and Skeletal Acquisition in a Gender-Specific Manner

    PubMed Central

    de Paula, Francisco J. A.; Dick-de-Paula, Ingrid; Bornstein, Sheila; Rostama, Bahman; Le, Phuong; Lotinun, Sutada; Baron, Roland; Rosen, Clifford J.

    2011-01-01

    The vitamin D receptor (VDR) is crucial for virtually all of vitamin D’s actions and is thought to be ubiquitously expressed. We hypothesized that disruption of one allele of the VDR gene would impact bone development and would have metabolic consequences. Body composition and bone mass (BMD) in VDR heterozygous (VDR HET) mice were compared to those obtained in male and female VDR KO and WT mice at 8 weeks of age. Male mice were also evaluated at 16 weeks, and bone marrow mesenchymal stem cell (MSC) differentiation was evaluated in VDR female mice. Additionally, female VDR HET and WT mice received intermittent PTH treatment or vehicle (VH) for 4 weeks. BMD was determined at baseline and after treatment. MRI was done in vivo at the end of treatment; μCT and bone histomorphometry were performed after killing the animals. VDR HET male mice had normal skeletal development until 16 weeks of age but showed significantly less gain in fat mass than WT mice. In contrast, female VDR HET mice showed decreased total-body BMD at age 8 weeks but ad a normal skeletal response to PTH. MSC differentiation was also impaired in VDR HET female mice. Thus, female VDR HET mice show early impairment in bone acquisition, while male VDR HET mice exhibit a lean phenotype. Our results indicate that the VDR HET mouse is a useful model for studying the metabolic and skeletal impact of decreased vitamin D sensitivity. PMID:21637996

  20. EANM Dosimetry Committee guidelines for bone marrow and whole-body dosimetry.

    PubMed

    Hindorf, Cecilia; Glatting, Gerhard; Chiesa, Carlo; Lindén, Ola; Flux, Glenn

    2010-06-01

    The level of administered activity in radionuclide therapy is often limited by haematological toxicity resulting from the absorbed dose delivered to the bone marrow. The purpose of these EANM guidelines is to provide advice to scientists and clinicians on data acquisition and data analysis related to bone-marrow and whole-body dosimetry. The guidelines are divided into sections "Data acquisition" and "Data analysis". The Data acquisition section provides advice on the measurements required for accurate dosimetry including blood samples, quantitative imaging and/or whole-body measurements with a single probe. Issues specific to given radiopharmaceuticals are considered. The Data analysis section provides advice on the calculation of absorbed doses to the whole body and the bone marrow. The total absorbed dose to the bone marrow consists of contributions from activity in the bone marrow itself (self-absorbed dose) and the cross-absorbed dose to the bone marrow from activity in bone, larger organs and the remainder of the body. As radionuclide therapy enters an era where patient-specific dosimetry is used to guide treatments, accurate bone-marrow and whole-body dosimetry will become an essential element of treatment planning. We hope that these guidelines will provide a basis for the optimization and standardization of the treatment of cancer with radiopharmaceuticals, which will facilitate single- and multi-centre radionuclide therapy studies.

  1. From Milk to Bones, Moving Calcium Through the Body: Calcium Kinetics During Space Flight

    NASA Technical Reports Server (NTRS)

    Smith, Scott; Bloomberg, Jacob; Lee, Angie (Technical Monitor)

    2002-01-01

    Did you know that when astronauts are in space, their height increases about two inches? This happens because the weightlessness of space allows the spine, usually compressed in Earth's gravity, to expand. While this change is relatively harmless, other more serious things can happen with extended stays in weightlessness, notably bone loss. From previous experiments, scientists have observed that astronauts lose bone mass at a rate of about one percent per month during flight. Scientists know that bone is a dynamic tissue - continually being made and repaired by specialized bone cells throughout life. Certain cells produce new bone, while other cells are responsible for removing and replacing old bone. Research on the mechanisms of bone metabolism and the effects of space flight on its formation and repair are part of the exciting studies that will be performed during STS-107. Calcium plays a central role because 1) it gives strength and structure to bone and 2) all types of cells require it to function normally. Ninety-nine percent of calcium in the body is stored in the skeleton. However, calcium may be released, or resorbed, from bone to provide for other tissues when you are not eating. To better understand how and why weightlessness induces bone loss, astronauts will participate in a study of calcium kinetics - that is, the movement of calcium through the body, including absorption from food, and its role in the formation and breakdown of bone.

  2. From Milk to Bones, Moving Calcium Through the Body: Calcium Kinetics During Space Flight

    NASA Technical Reports Server (NTRS)

    Smith, Scott; Bloomberg, Jacob; Lee, Angie (Technical Monitor)

    2002-01-01

    Did you know that when astronauts are in space, their height increases about two inches? This happens because the weightlessness of space allows the spine, usually compressed in Earth's gravity, to expand. While this change is relatively harmless, other more serious things can happen with extended stays in weightlessness, notably bone loss. From previous experiments, scientists have observed that astronauts lose bone mass at a rate of about one percent per month during flight. Scientists know that bone is a dynamic tissue - continually being made and repaired by specialized bone cells throughout life. Certain cells produce new bone, while other cells are responsible for removing and replacing old bone. Research on the mechanisms of bone metabolism and the effects of space flight on its formation and repair are part of the exciting studies that will be performed during STS-107. Calcium plays a central role because 1) it gives strength and structure to bone and 2) all types of cells require it to function normally. Ninety-nine percent of calcium in the body is stored in the skeleton. However, calcium may be released, or resorbed, from bone to provide for other tissues when you are not eating. To better understand how and why weightlessness induces bone loss, astronauts will participate in a study of calcium kinetics - that is, the movement of calcium through the body, including absorption from food, and its role in the formation and breakdown of bone.

  3. Development of a degradable cement of calcium phosphate and calcium sulfate composite for bone reconstruction.

    PubMed

    Guo, H; Wei, J; Liu, C S

    2006-12-01

    A new type of composite bone cement was prepared and investigated by adding calcium sulfate (CS) to calcium phosphate cement (CPC). This composite cement can be handled as a paste and easily shaped into any contour, which can set within 5-20 min, the setting time largely depending on the liquid-solid (L/S) ratio; adding CS to CPC had little effect on the setting time of the composite cements. No obvious temperature increase and pH change were observed during setting and immersion in simulated body fluid (SBF). The compressive strength of the cement decreased with an increase in the content of CS. The degradation rate of the composite cements increased with time when the CS content was more than 20 wt%. Calcium deficient apatite could form on the surface of the composite cement because the release of calcium into SBF from the dissolution of CS and the apatite of the cement induced the new apatite formation; increasing the content of CS in the composite could improve the bioactivity of the composite cements. The results suggested that composite cement has a reasonable setting time, excellent degradability and suitable mechanical strength and bioactivity, which shows promising prospects for development as a clinical cement.

  4. Biodegradable composite scaffolds of bioactive glass/chitosan/carboxymethyl cellulose for hemostatic and bone regeneration.

    PubMed

    Chen, Chen; Li, Hong; Pan, Jianfeng; Yan, Zuoqin; Yao, Zhenjun; Fan, Wenshuai; Guo, Changan

    2015-02-01

    Hemostasis in orthopedic osteotomy or bone cutting requires different methods and materials. The bleeding of bone marrow can be mostly stopped by bone wax. However, the wax cannot be absorbed, which leads to artificial prosthesis loosening, foreign matter reaction, and infection. Here, a bioactive glass/chitosan/carboxymethyl cellulose (BG/CS/CMC) composite scaffold was designed to replace traditional wax. WST-1 assay indicated the BG/CS/CMC composite resulted in excellent biocompatibility with no cytotoxicity. In vivo osteogenesis assessment revealed that the BG/CS/CMC composite played a dominant role in bone regeneration and hemostasis. The BG/CS/CMC composite had the same hemostasis effect as bone wax; in addition its biodegradation also led to the functional reconstruction of bone defects. Thus, BG/CS/CMC scaffolds can serve as a potential material for bone repair and hemostasis in critical-sized bone defects.

  5. Bone growth and composition in weanling and mature rats exposed to chronic centrifugation

    NASA Technical Reports Server (NTRS)

    Keil, L. C.; Evans, J. W.

    1982-01-01

    The primary objective of the study is to determine the effect of continuous exposure to hypergravity on the development and composition of weight-bearing bone. The experimental results are seen to suggest that many, if not all, of the changes observed in bone growth and composition derive from the retarded growth rate of the centrifuged rats. Both centrifuged weanling and mature rats exhibit a significant reduction in femur length and mass. The changes in femur size are more apparent in the weanlings since they are exposed to hypergravity during their most rapid phase of skeletal development. In addition to a slower growth rate, the body mass of the mature and weanling animals is reduced even further by the depletion of body fat. The rapid loss of body fat observed in rats and mice during centrifugation, it is found, can produce a prompt and significant rise in relative femur mass after two weeks of exposure. After adaptation to centrifugation, however, relative femur mass is similar to that of controls at four and eight weeks. At 18 weeks, the centrifuged rats again exhibit an increase in relative femur mass. It is thought that this increase in relative femur mass may be generated by the difference in fat deposition between the 1-G controls and the high-G rats.

  6. Bone growth and composition in weanling and mature rats exposed to chronic centrifugation

    NASA Technical Reports Server (NTRS)

    Keil, L. C.; Evans, J. W.

    1982-01-01

    The primary objective of the study is to determine the effect of continuous exposure to hypergravity on the development and composition of weight-bearing bone. The experimental results are seen to suggest that many, if not all, of the changes observed in bone growth and composition derive from the retarded growth rate of the centrifuged rats. Both centrifuged weanling and mature rats exhibit a significant reduction in femur length and mass. The changes in femur size are more apparent in the weanlings since they are exposed to hypergravity during their most rapid phase of skeletal development. In addition to a slower growth rate, the body mass of the mature and weanling animals is reduced even further by the depletion of body fat. The rapid loss of body fat observed in rats and mice during centrifugation, it is found, can produce a prompt and significant rise in relative femur mass after two weeks of exposure. After adaptation to centrifugation, however, relative femur mass is similar to that of controls at four and eight weeks. At 18 weeks, the centrifuged rats again exhibit an increase in relative femur mass. It is thought that this increase in relative femur mass may be generated by the difference in fat deposition between the 1-G controls and the high-G rats.

  7. Bioelectrical Impedance and Body Composition Assessment

    ERIC Educational Resources Information Center

    Martino, Mike

    2006-01-01

    This article discusses field tests that can be used in physical education programs. The most common field tests are anthropometric measurements, which include body mass index (BMI), girth measurements, and skinfold testing. Another field test that is gaining popularity is bioelectrical impedance analysis (BIA). Each method has particular strengths…

  8. Bioelectrical Impedance and Body Composition Assessment

    ERIC Educational Resources Information Center

    Martino, Mike

    2006-01-01

    This article discusses field tests that can be used in physical education programs. The most common field tests are anthropometric measurements, which include body mass index (BMI), girth measurements, and skinfold testing. Another field test that is gaining popularity is bioelectrical impedance analysis (BIA). Each method has particular strengths…

  9. Fully automated shape model positioning for bone segmentation in whole-body CT scans

    NASA Astrophysics Data System (ADS)

    Fränzle, A.; Sumkauskaite, M.; Hillengass, J.; Bäuerle, T.; Bendl, R.

    2014-03-01

    Analysing osteolytic and osteoblastic bone lesions in systematically affected skeletons, e.g. in multiple myeloma or bone metastasis, is a complex task. Quantification of the degree of bone destruction needs segmentation of all lesions but cannot be managed manually. Automatic bone lesion detection is necessary. Our future objective is comparing modified bones with healthy shape models. For applying model based strategies successfully, identification and position information of single bones is necessary. A solution to these requirements based on bone medullary cavities is presented in this paper. Medullary cavities are useful for shape model positioning since they have similar position and orientation as the bone itself but can be separated more easily. Skeleton segmentation is done by simple thresholding. Inside the skeleton medullary cavities are segmented by a flood filling algorithm. The filled regions are considered as medullary cavity objects. To provide automatic shape model selection, medullary cavity objects are assigned to bone structures with pattern recognition. To get a good starting position for shape models, principal component analysis of medullary cavities is performed. Bone identification was tested on 14 whole-body low-dose CT scans of multiple myeloma patients. Random forest classification assigns medullary cavities of long bones to the corresponding bone (overall accuracy 90%). Centroid and first principal component of medullary cavity are sufficiently similar to those of bone (mean centroid difference 21.7 mm, mean difference angle 1.54° for all long bones of one example patient) and therefore suitable for shape model initialization. This method enables locating long bone structures in whole-body CT scans and provides useful information for a reasonable shape model initialization.

  10. Body composition by the four-compartment model: validity of the BOD POD for assessing body fat in Mexican elderly.

    PubMed

    Alemán-Mateo, H; Huerta, R H; Esparza-Romero, J; Méndez, R O; Urquidez, R; Valencia, M E

    2007-07-01

    The aims of this study were to validate BOD POD in a wide sample of healthy and independent Mexican elderly men and women subjects using the 4 compartment (4C) model as the reference method, and to evaluate the assumptions of the densitometric two-compartment (2C) model. Cross-sectional study designed to assess body composition and validation of a method based on 2C model (BOD POD). Urban and rural regions of Sonora, Mexico. Two hundred and two free-living subjects >or=60 years old were completed in this study. Body density and body fat were measured by the BOD POD, total body water by deuterium dilution and total body bone ash by dual energy X-ray absorptiometry. Body composition was determined using Baumgartner's equation. Percent body fat by the 4C model was 31.2 and 42.5% in men and women, respectively (P<0.001). Group mean accuracy of body fat by BOD POD against that of the 4C model showed an effect of sex (P<0.001), but not the method (P=0.27). Results of individual accuracy showed no significant difference with the identity line and the slope was significantly different from zero or a slope similar to one. Precision assessed by model R (2) was high for all subjects and for men and women by separate. The standard error of the estimate was low for all and for men and women by separate. Bland and Altman analysis showed no significant bias. The BOD POD technique is a valid and reliable method compared to the 4C model and it could be applied in subjects with similar physical and anthropometric characteristics to subjects of this study.

  11. A polycaprolactone/cuttlefish bone-derived hydroxyapatite composite porous scaffold for bone tissue engineering.

    PubMed

    Kim, Beom-Su; Yang, Sun-Sik; Lee, Jun

    2014-07-01

    Cuttlefish bone (CB) is an attractive natural biomaterial source to obtain hydroxyapatite (HAp). In this study, a porous polycaprolactone (PCL) scaffold incorporating CB-derived HAp (CB-HAp) powder was fabricated using the solvent casting and particulate leaching method. The presence of CB-HAp in PCL/CB-HAp scaffold was confirmed by X-ray diffraction (XRD). Scanning electron microscopy (SEM) and porosity analysis showed that the average pore dimension of the fabricated scaffold was approximately 200-300 μm, with ∼85% porosity, and that the compressive modulus increased after addition of CB-HAp powders. In vitro tests such as cell proliferation assay, cytotoxicity analysis, cell attachment observations, and alkaline phosphatase activity assays showed that the PCL/CB-HAp scaffold could improve the proliferation, viability, adherence, and osteoblast differentiation rate of MG-63 cells. When surgically implanted into rabbit calvarial bone defects, consistent with the in vitro results, PCL/CB-HAp scaffold implantation resulted in significantly higher new bone formation than did implantation of PCL alone. These findings suggest that addition of CB-HAp powder to the PCL scaffold can improve cellular response and that the PCL/CB-HAp composite scaffold has great potential for use in bone tissue engineering. © 2013 Wiley Periodicals, Inc.

  12. Impact of Body Weight and Body Composition on Ovarian Cancer Prognosis.

    PubMed

    Purcell, Sarah A; Elliott, Sarah A; Kroenke, Candyce H; Sawyer, Michael B; Prado, Carla M

    2016-02-01

    Measures of body weight and anthropometrics such as body mass index (BMI) are commonly used to assess nutritional status in clinical conditions including cancer. Extensive research has evaluated associations between body weight and prognosis in ovarian cancer patients, yet little is known about the potential impact of body composition (fat mass (FM) and fat-free mass (FFM)) in these patients. Thus, the purpose of this publication was to review the literature (using PubMed and EMBASE) evaluating the impact of body weight and particularly body composition on surgical complications, morbidity, chemotherapy dosing and toxicity (as predictors of prognosis), and survival in ovarian cancer patients. Body weight is rarely associated with intra-operative complications, but obesity predicts higher rates of venous thromboembolism and wound complications post-operatively in ovarian cancer patients. Low levels of FM and FFM are superior predictors of length of hospital stay compared to measures of body weight alone, but the role of body composition on other surgical morbidities is unknown. Obesity complicates chemotherapy dosing due to altered pharmacokinetics, imprecise dosing strategies, and wide variability in FM and FFM. Measurement of body composition has the potential to reduce toxicity if the results are incorporated into chemotherapy dosing calculations. Some findings suggest that excess body weight adversely affects survival, while others find no such association. Limited studies indicate that FM is a better predictor of survival than body weight in ovarian cancer patients, but the direction of this relationship has not been determined. In conclusion, body composition as an indicator of nutritional status is a better prognostic tool than body weight or BMI alone in ovarian cancer patients.

  13. Changes in bone mineral status and bone size during pregnancy and the influences of body weight and calcium intake.

    PubMed

    Olausson, Hanna; Laskey, M Ann; Goldberg, Gail R; Prentice, Ann

    2008-10-01

    Calcium may be mobilized from the maternal skeleton during pregnancy, which may be influenced by several factors. The objective was to investigate changes in bone mineral status and size during pregnancy and to consider the influences of body weight and calcium intake. Thirty-four British women were studied before pregnancy and 2 wk postpartum (Preg). Eighty-four nonpregnant, nonlactating (NPNL) women were studied over a corresponding time. Bone mineral content (BMC), bone area (BA), areal bone mineral density (aBMD), and BA-adjusted BMC of the whole-body, lumbar spine, radius, and hip were measured by dual-energy X-ray absorptiometry. The Preg group experienced significant decreases in BMC, aBMD, and BA-adjusted BMC at the whole-body, spine, and total hip of between 1% and 4%. Whole-body BMC increased in the NPNL group, and aBMD and BA-adjusted BMC decreased at the spine and hip by 0.5% to 1%. Whole-body BMC decreased in the Preg group by -2.16 +/- 0.46%, equivalent to -2.71 +/- 0.43% relative to the NPNL group (P < or = 0.001). Weight change was a positive predictor of skeletal change at the spine, hip, and radius in both groups. Differences between the Preg and NPNL groups in change in BA-adjusted BMC, after correction for weight change and other influences, were as follows (P < or = 0.01): whole-body, -1.70 +/- 0.25%; spine, -3.03 +/- 0.72%; and total hip, -1.87 +/- 0.60%. Calcium intake was not a significant predictor of skeletal change in either group. Pregnancy is associated with decreases in whole-body and regional bone mineral status sufficient to make a sizeable contribution to maternal and fetal calcium economy. Calcium intake is not a significant predictor of the skeletal response to pregnancy in well-nourished women.

  14. Treatment with a sclerostin antibody increases cancellous bone formation and bone mass regardless of marrow composition in adult female rats.

    PubMed

    Tian, XiaoYan; Setterberg, Rebecca B; Li, Xiaodong; Paszty, Chris; Ke, Hua Zhu; Jee, Webster S S

    2010-09-01

    The current report describes the skeletal effects of a sclerostin monoclonal antibody (Scl-AbIII) treatment at a yellow (fatty) marrow skeletal site in adult female rats. Ten-month-old female Sprague-Dawley rats were treated with vehicle or Scl-AbIII at 5 or 25 mg/kg, twice per week by s.c. injection for 4 weeks. Trabecular bone from a yellow (fatty) marrow site, the 5th caudal vertebral body (CVB), was processed undecalcified for quantitative bone histomorphometric analysis. Compared to vehicle controls, Scl-AbIII at both doses significantly increased bone formation parameters and trabecular bone volume and thickness and decreased bone resorption parameter in the trabecular bone of the CVB. As a reference, we also found that the Scl-AbIII at both doses significantly decreased bone resorption and increased bone formation and bone volume in a red (hematopoietic) marrow site, the 4th lumber vertebral body (LVB). It appears that the percentage of increase in trabecular bone volume induced by Scl-AbIII treatment was slightly larger in the LVB than in the CVB. In summary, these preclinical findings show that antibody-mediated sclerostin inhibition has significant bone anabolic effects at both red and yellow marrow skeletal sites.

  15. High-acceleration whole body vibration stimulates cortical bone accrual and increases bone mineral content in growing mice.

    PubMed

    Gnyubkin, Vasily; Guignandon, Alain; Laroche, Norbert; Vanden-Bossche, Arnaud; Malaval, Luc; Vico, Laurence

    2016-06-14

    Whole body vibration (WBV) is a promising tool for counteracting bone loss. Most WBV studies on animals have been performed at acceleration <1g and frequency between 30 and 90Hz. Such WBV conditions trigger bone growth in osteopenia models, but not in healthy animals. In order to test the ability of WBV to promote osteogenesis in young animals, we exposed seven-week-old male mice to vibration at 90Hz and 2g peak acceleration for 15min/day, 5 days/week. We examined the effects on skeletal tissues with micro-computed tomography and histology. We also quantified bone vascularization and mechanosensitive osteocyte proteins, sclerostin and DMP1. Three weeks of WBV resulted in an increase of femur cortical thickness (+5%) and area (+6%), associated with a 25% decrease of sclerostin expression, and 35% increase of DMP1 expression in cortical osteocytes. Mass-structural parameters of trabecular bone were unaltered in femur or vertebra, while osteoclastic parameters and bone formation rate were increased at both sites. Three weeks of WBV resulted in higher blood vessel numbers (+23%) in the distal femoral metaphysis. After 9-week WBV, we have not observed the difference in structural cortical or trabecular parameters. However, the tissue mineral density of cortical bone was increased by 2.5%. Three or nine weeks of 2g/90Hz WBV treatment did not affect longitudinal growth rate or body weight increase under our experimental conditions, indicating that these are safe to use. These results validate a potential of 2g/90Hz WBV to stimulate trabecular bone cellular activity, accelerate cortical bone growth, and increase bone mineral density. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Body Composition Assessment--Some Practical Answers to Teachers' Questions.

    ERIC Educational Resources Information Center

    Thomas, David Q.; Whitehead, James R.

    1993-01-01

    Presents information about body composition assessment, including how useful the measurement is, how to conduct assessment, accurate skinfold measurement, body mass index versus skinfold results, interpreting results, standards for score interpretation, other types of measurement, how to approach skinfold assessment, and handling sensitivity and…

  17. Executive summary of the 2013 International Society for Clinical Densitometry Position Development Conference on Body Composition.

    PubMed

    Shepherd, John A; Baim, Sanford; Bilezikian, John P; Schousboe, John T

    2013-01-01

    There have been many scientific advances in measurement of fat and lean body mass as determined by dual-energy X-ray absorptiometry (DXA). The International Society for Clinical Densitometry (ISCD) convened a Position Development Conference (PDC) on the use of DXA for body composition measurement. Previously, no guidelines to the use of DXA for body composition existed. The recommendations pertain to clinically relevant issues regarding DXA indications of use, acquisition, analysis, quality control, interpretation, and reporting were addressed. The topics and questions for consideration were developed by the ISCD Board of Directors and the Scientific Advisory Committee and were designed to address the needs of clinical practitioners. Three Task Forces were created and assigned these questions and asked to conduct comprehensive literature reviews. The Task Forces included participants from 6 countries and a variety of interests including academic institutions, private clinics, and industry. Reports with proposed Position Statements were then presented to an international panel of experts with backgrounds in DXA and bone densitometry and a variety of fields that use body composition measures. The PDC was held in Tampa, FL, contemporaneously with the Annual Meeting of the ISCD, March 21 through March 23, 2013. This report describes the methodology of the 2013 ISCD Body Composition PDC and summarizes the results. Three separate articles in this issue will detail the rationale, discussion, and additional research topics for each question the Task Forces addressed. Copyright © 2013 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  18. Bone loss of vertebral bodies at the operative segment after cervical arthroplasty: a potential complication?

    PubMed

    Heo, Dong Hwa; Lee, Dong Chan; Oh, Jong Yang; Park, Choon Keun

    2017-02-01

    OBJECTIVE Bony overgrowth and spontaneous fusion are complications of cervical arthroplasty. In contrast, bone loss or bone remodeling of vertebral bodies at the operation segment after cervical arthroplasty has also been observed. The purpose of this study is to investigate a potential complication-bone loss of the anterior portion of the vertebral bodies at the surgically treated segment after cervical total disc replacement (TDR)-and discuss the clinical significance. METHODS All enrolled patients underwent follow-up for more than 24 months after cervical arthroplasty using the Baguera C disc. Clinical evaluations included recording demographic data and measuring the visual analog scale and Neck Disability Index scores. Radiographic evaluations included measurements of the functional spinal unit's range of motion and changes such as bone loss and bone remodeling. The grading of the bone loss of the operative segment was classified as follows: Grade 1, disappearance of the anterior osteophyte or small minor bone loss; Grade 2, bone loss of the anterior portion of the vertebral bodies at the operation segment without exposure of the artificial disc; or Grade 3, significant bone loss with exposure of the anterior portion of the artificial disc. RESULTS Forty-eight patients were enrolled in this study. Among them, bone loss developed in 29 patients (Grade 1 in 15 patients, Grade 2 in 6 patients, and Grade 3 in 8 patients). Grade 3 bone loss was significantly associated with postoperative neck pain (p < 0.05). Bone loss was related to the motion preservation effect of the operative segment after cervical arthroplasty in contrast to heterotopic ossification. CONCLUSIONS Bone loss may be a potential complication of cervical TDR and affect early postoperative neck pain. However, it did not affect mid- to long-term clinical outcomes or prosthetic failure at the last follow-up. Also, this phenomenon may result in the motion preservation effect in the operative segment

  19. In vivo measurement of human body composition

    NASA Technical Reports Server (NTRS)

    Pace, N.; Grunbaum, B. W.; Kodama, A. M.; Price, D. C.

    1974-01-01

    The female bed rest study has shown that, the response of women to prolonged recumbency of 2 to 3 weeks duration is very similar to that displayed by men. Some of the key findings in the women after 17 days of continuous recumbency are: (1) a decrease in plasma volume of 12-13 per cent; (2) a small decrease in total body water; (3) a decrease in total body potassium of 3 to 4 per cent; (4) a decrease in plasma potassium concentration of 4 to 5 per cent; (5) a decrease in total circulating plasma protein of 11 to 12 per cent; (6) a decrease in urinary norepinephrine excretion rate of 27 to 28 per cent; (7) a possible increase in urinary magnesium, calcium, and phosphate excretion rates; and (8) a possible increase in urinary citrate excretion rate.

  20. Effect of in vivo loading on bone composition varies with animal age

    PubMed Central

    Aido, Marta; Kerschnitzki, Michael; Hoerth, Rebecca; Checa, Sara; Spevak, Lyudmila; Boskey, Adele; Fratzl, Peter; Duda, Georg N.; Wagermaier, Wolfgang; Willie, Bettina M.

    2015-01-01

    Loading can increase bone mass and size and this response is reduced with aging. It is unclear, however how loading affects bone mineral and matrix properties. Fourier Transform Infrared Imaging and high resolution synchrotron scanning small angle X-ray scattering were used to study how bone’s microscale and nanoscale compositional properties were altered in the tibial midshaft of young, adult, and elderly female C57Bl/6J mice after two weeks of controlled in vivo compressive loading in comparison to physiological loading. The effect of controlled loading on bone composition varied with animal age, since it predominantly influenced the bone composition of elderly mice. Interestingly, controlled loading led to enhanced collagen maturity in elderly mice. In addition, although the rate of bone formation was increased by controlled loading based on histomorphometry, the newly formed tissue had similar material quality to new bone tissue formed during physiological loading. Similar to previous studies, our data showed that bone composition was animal and tissue age dependent during physiological loading. The findings that the new tissue formed in response to controlled loading and physiological loading had similar bone composition and that controlled loading enhanced bone composition in elderly mice further supports the use of physical activity as a noninvasive treatment to enhance bone quality as well as maintain bone mass in individuals suffering from age-related bone loss. PMID:25639943

  1. Association of swim distance and age with body composition in adult female swimmers.

    PubMed

    Tuuri, Georgianna; Loftin, Mark; Oescher, Jeffrey

    2002-12-01

    The purpose of this investigation was to examine the relationship between average weekly swimming distance and age with body composition in adult female endurance swimmers. Thirty-five women, aged 21-73 yr, volunteered to participate. Weekly swimming distance was determined from a self-reported exercise log. Body composition was estimated by dual-energy x-ray absorptiometry (DXA), waist circumference, abdominal sagittal diameter, and skinfold thickness measures. Associations between swimming distance and age with body composition were examined using regression analysis. Swimming distance had shared variances as follows: 23% with percent body fat, 26% with waist circumference, 20% with abdominal sagittal diameter, and 20%, 24%, and 22% with subscapular, suprailiac, and triceps skinfolds, respectively. Abdominal sagittal diameter was the only adiposity measure demonstrating a stronger relationship with age (R2 = 0.29, P = 0.00) than with swimming distance (R2 = 0.20, P = 0.03). Bone mineral content was linearly related to swimming distance and age having a negative association with age (r2 = 0.18, P = 0.01) and a positive one with swimming distance (r2 = 0.12, P = 0.05). In addition, there was a negative linear association observed between swimmer age and bone mineral density (r2 = 0.12, P = 0.05). In these female adults, endurance swimming was mildly associated with body adiposity. Age was not associated with body fat mass independently from swimming activity except with that measure reflecting abdominal visceral fat deposits. These data suggest that greater fat mass in female swimmers is more strongly related to lower levels of exercise than to age but that there is an additional influence of age on fat accumulation in the intra-abdominal area of the body.

  2. Impact of Incident Heart Failure on Body Composition Over Time in the Health, Aging, and Body Composition Study Population.

    PubMed

    Forman, Daniel E; Santanasto, Adam J; Boudreau, Robert; Harris, Tamara; Kanaya, Alka M; Satterfield, Suzanne; Simonsick, Eleanor M; Butler, Javed; Kizer, Jorge R; Newman, Anne B

    2017-09-01

    Prevalence of heart failure (HF) increases significantly with age, coinciding with age-related changes in body composition that are common and consequential. Still, body composition is rarely factored in routine HF care. The Health, Aging, and Body Composition study is a prospective cohort study of nondisabled adults. Using yearly dual-energy x-ray absorptiometry, body composition was assessed in the Health, Aging, and Body Composition study over 6 years, comparing those who developed incident HF versus those who did not. Among 2815 Health, Aging, and Body Composition participants (48.5% men; 59.6% whites; mean age, 73.6±2.9 years), 111 developed incident HF over the 6-year study period. At entry into the Health, Aging, and Body Composition study, men and women who later developed HF had higher total body mass when compared with those versus those who did not develop HF (men, 80.9±10 versus 78.6±12.9 kg, P=0.05; women, 72.7±15.0 versus 68.2±14.2 kg, P=0.01, respectively). However, after developing HF, loss of total lean body mass was disproportionate; men with HF lost 654.6 versus 391.4 g/y in non-HF participants, P=0.02. Loss of appendicular lean mass was also greater with HF (-419.9 versus -318.2 g/y; P=0.02), even after accounting for total weight change. Among women with HF, loss of total and appendicular lean mass were also greater than in non-HF participants but not to the extent seen among men. Incident HF in older adults was associated with disproportionate loss of lean mass, particularly among men. Prognostic implications are significant, with key sex-specific inferences on physical function, frailty, disability, and pharmacodynamics that all merit further investigation. © 2017 American Heart Association, Inc.

  3. Application of standards and models in body composition analysis.

    PubMed

    Müller, Manfred J; Braun, Wiebke; Pourhassan, Maryam; Geisler, Corinna; Bosy-Westphal, Anja

    2016-05-01

    The aim of this review is to extend present concepts of body composition and to integrate it into physiology. In vivo body composition analysis (BCA) has a sound theoretical and methodological basis. Present methods used for BCA are reliable and valid. Individual data on body components, organs and tissues are included into different models, e.g. a 2-, 3-, 4- or multi-component model. Today the so-called 4-compartment model as well as whole body MRI (or computed tomography) scans are considered as gold standards of BCA. In practice the use of the appropriate method depends on the question of interest and the accuracy needed to address it. Body composition data are descriptive and used for normative analyses (e.g. generating normal values, centiles and cut offs). Advanced models of BCA go beyond description and normative approaches. The concept of functional body composition (FBC) takes into account the relationships between individual body components, organs and tissues and related metabolic and physical functions. FBC can be further extended to the model of healthy body composition (HBC) based on horizontal (i.e. structural) and vertical (e.g. metabolism and its neuroendocrine control) relationships between individual components as well as between component and body functions using mathematical modelling with a hierarchical multi-level multi-scale approach at the software level. HBC integrates into whole body systems of cardiovascular, respiratory, hepatic and renal functions. To conclude BCA is a prerequisite for detailed phenotyping of individuals providing a sound basis for in depth biomedical research and clinical decision making.

  4. Body composition assessment in horses using bioimpedance spectroscopy.

    PubMed

    Ward, L C; White, K J; van der Aa Kuhle, K; Cawdell-Smith, J; Bryden, W L

    2016-02-01

    Assessment of equine body composition using objective measurements is difficult owing to the large size of the animals and the costs involved. Bioelectrical impedance spectroscopy (BIS), a technique widely used for the assessment of body composition in humans, was investigated for practicality of use in horses. BIS uses algorithms that require values for the apparent resistivities of body fluids and body proportion factors (Kb), currently not available for horses. Aims of the present study were to derive resistivity coefficients and body proportion factors and to validate their use for prediction of body composition horses. Validation of coefficients and predictive power using a split-sample agreement study design using correlation and limits of agreement analysis. Whole body impedance measurements were performed on 35 standardbred horses, yearlings to 14 yr, concurrently with determination of total body water volume (TBW) by deuterium dilution and extracellular water volume (ECW) by bromide dilution. Kb was determined in an independent group of 38 mixed-breed, age, and sex horses. Mean apparent resistivity coefficients were 511.4 and 1415.9 ohm.cm for intracellular water and TBW, respectively. Mean Kb was 1.52 ± 0.1. Using these coefficients, TBW and fat-free mass could be predicted with limits of agreement (2SD) of ± 11.6%; mean fat-free mass and fat mass were under- and overestimated by 3.1% and 14.1%, respectively, compared to measured reference values although these differences were not statistically significant. BIS is a practical technique for the assessment of body composition in equids, but the relatively wide limits of agreement, particularly for fat mass, may limit its usefulness for predicting body composition in individual horses.

  5. Effect of intense military training on body composition.

    PubMed

    Malavolti, Marcella; Battistini, Nino C; Dugoni, Manfredo; Bagni, Bruno; Bagni, Ilaria; Pietrobelli, Angelo

    2008-03-01

    Individuals in a structural physical training program can show beneficial changes in body composition, such as body fat reduction and muscle mass increase. This study measured body composition changes by using 3 different techniques-skinfold thickness (SF) measurements, air displacement plethysmography (BOD-POD), and dual-energy x-ray absorptiometry (DXA)-during 9 months of intense training in healthy young men engaged in military training. Twenty-seven young men were recruited from a special faction of the Italian Navy. The program previewed three phases: ground combat, sea combat, and amphibious combat. Body composition was estimated at the beginning, in the middle, and at the end of the training. After the subjects performed the ground combat phase, body composition variables significantly decreased: body weight (P < 0.05), fat-free mass (FFM) (P < 0.001), and fat mass (FM) (P < 0.03). During the amphibious combat phase, body weight increased significantly (P < 0.01), mainly because of an increase in FFM (P < 0.001) and a smaller mean decrease in FM. There was a significant difference (P < 0.05) in circumferences and SF at various sites after starting the training course. Bland-Altman analysis did not show any systematic difference between FM and FFM measured with the 3 different techniques on any occasion. On any visit, FFM and FM correlation measured by BOD-POD (P = 0.90) and DXA was significantly greater than measured by SF. A significant difference was found in body mass index (BMI) measured during the study. BOD-POD and SF, compared with DXA, provide valid and reliable measurement of changes in body composition in healthy young men engaged in military training. In conclusion, the findings suggest that for young men of normal weight, changes in body weight alone and in BMI are not a good measure to assess the effectiveness of intense physical training programs, because lean mass gain can masquerade fat weight loss.

  6. Calcium phosphate cement - gelatin powder composite testing in canine models: Clinical implications for treatment of bone defects.

    PubMed

    Yomoda, Mitsuhiro; Sobajima, Satoshi; Kasuya, Akihiro; Neo, Masashi

    2015-05-01

    Previous studies have reported the excellent biocompatibility of calcium phosphate cement. However, calcium phosphate cement needs further improvement in order for it to promote bone replacement and eventual bone substitution, as it exhibits slow biodegradability and thus remains in the body over an extended period of time. In this study, we mixed calcium phosphate cement with gelatin powder in order to create a composite containing macropores with interconnectivity, and we then implanted it into canine femurs from the diaphysis to the distal metaphysis. Eight dogs were divided into the sham group, the control (C0) group with 100 wt% calcium phosphate cement, the C10 group with 90 wt% calcium phosphate cement and 10 wt% gelatin powder, and the C15 group with 85 wt% calcium phosphate cement and 15 wt% gelatin powder. Bone replaceability in C10 and C15 at 3 and 6 months was evaluated by radiography, micro-CT, histomorphometry, and mineral apposition rate. New bone formation was seen in C10 and C15 although that was not seen in C0 at six months. The mineral apposition rate was significantly higher in C15 than in C10 in both the diaphysis and metaphysis, and the composite was found to have excellent biodegradability and bone replaceability in canine subjects. As the composite is easily and rapidly prepared, it is likely to become a new bone substitute for use in clinical settings.

  7. Two- and three-body wear of composite resins.

    PubMed

    Koottathape, Natthavoot; Takahashi, Hidekazu; Iwasaki, Naohiko; Kanehira, Masafumi; Finger, Werner J

    2012-12-01

    The aim of the present study was to investigate two- and three-body wear of microfilled, micro-hybrid and nano-hybrid composite resins using a ball-on-disc sliding device. One microfilled (Durafill VS), one micro-hybrid (Filtek Z250), one hybrid (Clearfil AP-X), one nanofilled (Filtek Supreme XT), and two nano-hybrid (MI Flow, Venus Diamond) composite resins were examined. The composites were filled in a cylindrical cavity, and light polymerized. After storage in 37°C distilled water for 7days, all specimens were tested with a custom-made ball-on-disc sliding device with a zirconia ball as antagonist (50N loads, 1.2Hz, 10,000 cycles) immersed in water, poppy seed slurry and polymethyl methacrylate slurry, respectively. Maximum wear depth and volume loss of worn surfaces were quantified by a digital CCD microscope and analyzed with two-way analysis of variance. The interactions between composite resin and condition of their maximum wear depth and volume loss were significant (p<0.01). The abrasive wear produced at three-body loading with poppy seed slurry was very large for the microfilled composite, and small for all other composites tested. In contrast, two-body wear of the microfilled composite, and one nano-hybrid composite was very low. The ball-on-disc sliding device used is considered suitable to simulate sliding of an antagonist cusp on an opposing occlusal composite restoration, either in the two- or the three-body wear mode. All tested materials except for the microfilled composite showed low surface wear when exposed to poppy seed as the third-body medium. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  8. The influence of body composition on youth throwing kinetics.

    PubMed

    Garner, John C; MacDonald, Chris; Wade, Chip; Johnson, Andrea; Ford, M Allison

    2011-08-01

    The primary objective of this study was to investigate the influence of segmental mass and body composition on the upper extremity biomechanics of overweight youth participating in baseball activities. The study used a regression framework to investigate the relationship between whole body, throwing arm segmental mass and body composition measures to kinetic variables about the shoulder and elbow. The multivariate regression results indicated a strong positive significant relationship between each of the mass variables to that of the moment variables about the shoulder and elbow. Participants who had a greater percentage of fat mass produced greater injury correlated moments about the shoulder and elbow.

  9. Body composition data from the rat subjects of Cosmos 1129 experiment K-316

    NASA Technical Reports Server (NTRS)

    Pace, N.; Smith, A. H.; Pitts, G. C.; Ushakov, A. S.; Smirnova, T. A.

    1982-01-01

    The effects of 18.5 days of weightlessness on the body composition of young, growing, male laboratory rats were examined. Three groups of 5 rats each were examined. It is indicated that exposure of young, growing, male rats to 18.5 days of weightlessness produces: (1) no effect on the quantity of fat stored by the body; (2) a slight reduction in the quantity of fat free tissue laid down by the body; (3) a small reduction in the fraction of water contained by the fat free body mass; (4) a similar reduction in the fraction of water contained by the fat free skin and fat free carcass; (5) a shift in relative distribution of the total body water from skin to viscera; (6) a diminution in the fraction of extracellular water contained by the fat free body; (7) no effect on the fraction of total skeletal musculature contained by the fat free body, as indicated by body creatine content; (8) a sizeable reduction in the fraction of bone mineral contained by the fat free body, as calculated from body calcium content. The nature of the physiological changes induced by unloading from Earth gravity in the mammalian organism are illustrated.

  10. Repair of bone defect in primate mandible using a bone morphogenetic protein (BMP)-hydroxyapatite-collagen composite.

    PubMed

    Asahina, I; Watanabe, M; Sakurai, N; Mori, M; Enomoto, S

    1997-09-01

    The purpose of this study was to evaluate a hydroxyapatite (HA)-collagen (Col)-bone morphogenetic protein (BMP) composite as an osteoinductive bone substitute. Partially-purified BMP from bovine bone was mechanically mixed with highly purified type I collagen from calf dermis and then subsequently mixed with pure synthetic hydroxyapatite granules or block. The HA-Col-BMP composite, or the HA-Col composite as a control, was implanted in a surgically-induced mandible bone defect (6 x 7 x 10 mm) in an adult Japanese monkey. The mandible was excised three months after implantation and studied histologically. The BMP-containing implant induced much more new bone than the control implant in all experimental animals of each group, with either HA granules or HA block. Newly formed bone was attached tightly to HA and infiltrated deeply into the pores of the HA of the BMP-containing implant, while fibrous tissue existed between the host bone and HA in the control implant. Thus, we conclude that an HA-Col-BMP composite could be a superior biomaterial for a bone substitute.

  11. Method for Forming Fiber Reinforced Composite Bodies with Graded Composition and Stress Zones

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay (Inventor); Levine, Stanley R. (Inventor); Smialek, James A. (Inventor)

    1999-01-01

    A near-net, complex shaped ceramic fiber reinforced silicon carbide based composite bodies with graded compositions and stress zones is disclosed. To provide the composite a fiber preform is first fabricated and an interphase is applied by chemical vapor infiltration, sol-gel or polymer processes. This first body is further infiltrated with a polymer mixture containing carbon, and/or silicon carbide, and additional oxide, carbide, or nitride phases forming a second body. One side of the second body is spray coated or infiltrated with slurries containing high thermal expansion and oxidation resistant. crack sealant phases and the other side of this second body is coated with low expansion phase materials to form a third body. This third body consisting of porous carbonaceous matrix surrounding the previously applied interphase materials, is then infiltrated with molten silicon or molten silicon-refractory metal alloys to form a fourth body. The resulting fourth body comprises dense composites consisting of fibers with the desired interphase which are surrounded by silicon carbide and other second phases materials at the outer and inner surfaces comprising material of silicon, germanium, refractory metal suicides, borides, carbides, oxides, and combinations thereof The resulting composite fourth body has different compositional patterns from one side to the other.

  12. Relationships Between Body Image, Body Composition, Sexual Functioning, and Sexual Satisfaction Among Heterosexual Young Adults.

    PubMed

    Milhausen, Robin R; Buchholz, Andrea C; Opperman, Emily A; Benson, Lindsay E

    2015-08-01

    This study investigated the association between body image and body-image self-consciousness on sexual satisfaction, accounting for relationships between body fat and body image, and between sexual functioning and sexual satisfaction, while controlling for relationship satisfaction. Participants were 143, 18-25 year-old Caucasian men and women in heterosexual monogamous relationships, recruited from the University of Guelph and surrounding community in Ontario, Canada. Various domains of body image, body-image self-consciousness, sexual satisfaction and functioning, and relationship satisfaction data were collected by questionnaires. Body fat was measured using dual energy X-ray absorptiometry. Among men, body image was positively associated with sexual satisfaction, after controlling for relationship satisfaction. Men with greater body fat were more likely to have poorer behavioral and affective body image. Only body image specific to the sexual encounter influenced sexual functioning. Among women, no domain of body image was associated with sexual satisfaction, after controlling for relationship satisfaction. Women with greater body fat were more likely to have poorer affective and sexual-encounter-specific body image. As percent total fat increased, sexual functioning decreased. Our results suggest a complex pattern of relationships exists among body image and body composition constructs and sexual and relationship variable; and that these relationships are not the same for men and women.

  13. Influence of increased body mass and body composition on cycling anaerobic power.

    PubMed

    Maciejczyk, Marcin; Wiecek, Magdalena; Szymura, Jadwiga; Szygula, Zbigniew; Brown, Lee E

    2015-01-01

    Recent evidence suggests that not only body fat (BF) but high lean body mass (HLBM) adversely affects aerobic performance and may reduce aerobic endurance performance as well. However, the influence of body composition on anaerobic performance remains controversial. This study aimed to examine the effects of increased body mass (BM) and body composition on cycling anaerobic power. Peak power (PP) and mean power (MP) measurements were conducted in 2 groups of men with similar total BM but different body compositions resulting from (a) high level of BF [HBF group] or (b) high level of lean body mass [HLBM group] and in a control group. Peak power and MP were calculated in absolute values, relative to BM and lean body mass (LBM), and using allometric scaling. Absolute PP and MP were significantly higher in the HLBM group compared with the control and HBF groups. However, PP and MP relative to BM and using allometric scaling were similar in the HLBM and control groups, yet significantly higher than in the HBF group. There were no significant differences between groups in PP and MP when presented relative to LBM. Therefore, it seems that it is not BM but rather body composition that affects PP. Increased BM, resulting from increased LBM, does not adversely affect cycling anaerobic power, but a BM increase resulting from an increase in BF may adversely affect PP. Therefore, coaches and athletes should avoid excess BF to maximize cycling anaerobic power.

  14. A novel composite material specifically developed for ultrasound bone phantoms: cortical, trabecular and skull

    NASA Astrophysics Data System (ADS)

    Wydra, A.; Maev, R. Gr

    2013-11-01

    In the various stages of developing diagnostic and therapeutic equipment, the use of phantoms can play a very important role in improving the process, help in implementation, testing and calibrations. Phantoms are especially useful in developing new applications and training new doctors in medical schools. However, devices that use different physical factors, such as MRI, Ultrasound, CT Scan, etc will require the phantom to be made of different physical properties. In this paper we introduce the properties of recently designed new materials for developing phantoms for ultrasonic human body investigation, which in today's market make up more than 30% in the world of phantoms. We developed a novel composite material which allows fabrication of various kinds of ultrasound bone phantoms to mimic most of the acoustical properties of human bones. In contrast to the ex vivo tissues, the proposed material can maintain the physical and acoustical properties unchanged for long periods of time; moreover, these properties can be custom designed and created to suit specific needs. As a result, we introduce three examples of ultrasound phantoms that we manufactured in our laboratory: cortical, trabecular and skull bone phantoms. The paper also presents the results of a comparison study between the acoustical and physical properties of actual human bones (reported in the referenced literatures) and the phantoms manufactured by us.

  15. Calcium phosphate porous composites and ceramics prospective as bone implants

    NASA Astrophysics Data System (ADS)

    Rabadjieva, D.; Tepavitcharova, S.; Gergulova, R.; Sezanova, K.; Ilieva, R.; Gabrashanska, M.; Alexandrov, M.

    2013-12-01

    Two types of calcium phosphate materials prospective as bone implants were prepared in the shape of granules and their biochemical behavior was tested by in vivo studies: (i) composite materials consisting of gelatin and bi-phase ion modified calcium phosphate Mg,Zn-(HA + β-TCP); and (ii) ceramics of ion modified calcium phosphate Mg,Zn-(HA + β-TCP). The starting fine powders were prepared by the method of biomimetic precipitation of the precursors followed by hightemperature treatment. Then granules were prepared by dispersion in liquid paraffin of a thick suspension containing 20% of gelatin gel and thus prepared calcium phosphate powders (1:1 ratios). The composite granules were obtained by subsequent hardening in a glutaraldehyde solution, while the highly porous ceramic granules - by further sintering at 1100°C. The in vivo behavior of both types of granules was tested in experimental rat models. Bone defects were created in rat tibia and were filled with the implants. Biochemical studies were performed. Three months after operation both bio-materials displayed analogous behavior.

  16. Boron enhances strength and alters mineral composition of bone in rabbits fed a high energy diet.

    PubMed

    Hakki, Sema S; Dundar, Niyazi; Kayis, Seyit Ali; Hakki, Erdogan E; Hamurcu, Mehmet; Kerimoglu, Ulku; Baspinar, Nuri; Basoglu, Abdullah; Nielsen, Forrest H

    2013-04-01

    An experiment was performed to determine whether boron had a beneficial effect on bone strength and composition in rabbits with apparent adiposity induced by a high energy diet. Sixty female New Zealand rabbits, aged 8 months, were randomly divided into five groups with the following treatments for seven months: control 1, fed alfalfa hay only (5.91 MJ/kg); control 2, high energy diet (11.76 MJ and 3.88 mg boron/kg); B10, high energy diet+10 mg/kg body weight boron gavage/96 h; B30, high energy diet+30 mg/kg body weight boron gavage/96 h; B50, high energy diet+50mg/kg body weight boron gavage/96 h. Bone boron concentrations were lowest in rabbits fed the high energy diet without boron supplementation, which suggested an inferior boron status. Femur maximum breaking force was highest in the B50 rabbits. Tibia compression strength was highest in B30 and B50 rabbits. All boron treatments significantly increased calcium and magnesium concentrations, and the B30 and B50 treatments increased the phosphorus concentration in tibia of rabbits fed the high energy diet. The B30 treatment significantly increased calcium, phosphorus and magnesium concentrations in femur of rabbits fed the high energy diet. Principal component analysis of the tibia minerals showed that the three boron treatments formed a separate cluster from controls. Discriminant analysis suggested that the concentrations of the minerals in femur could predict boron treatment. The findings indicate boron has beneficial effects on bone strength and mineral composition in rabbits fed a high energy diet. Copyright © 2012 Elsevier GmbH. All rights reserved.

  17. Bone remodeling in a new biomimetic polymer-composite hip stem.

    PubMed

    Bougherara, Habiba; Bureau, Martin N; Yahia, L'Hocine

    2010-01-01

    Adaptive bone remodeling is an important factor that leads to bone resorption in the surrounding femoral bone and implant loosening. Taking into account this factor in the design of hip implants is of clinical importance, because it allows the prediction of the bone-density redistribution and enables the monitoring of bone adaptation after prosthetic implantation. In this article, adaptive bone remodeling around a new biomimetic polymer-composite-based (CF/PA12) hip prosthesis is investigated to evaluate the amount of stress shielding and bone resorption. The design concept of this new prosthesis is based on a hollow substructure made of hydroxyapatite-coated, continuous carbon fiber (CF)-reinforced polyamide 12 (PA12) composite with an internal soft polymer-based core. Strain energy density theory coupled with 3D Finite Element models is used to predict bone density redistributions in the femoral bone before and after total hip replacement (THR) using both polymer-composite and titanium (Ti) stems. The result of numerical simulations of bone remodeling revealed that the CF/PA12 composite stem generates a better bone density pattern compared with the Ti-based stem, indicating the effectiveness of the composite stem to reduce bone resorption caused by stress-shielding phenomenon. This may result in an extended lifetime of THR.

  18. Myeloid regeneration after whole body irradiation, autologous bone marrow transplantation, and treatment with an anabolic steroid.

    PubMed

    Ambrus, C M; Ambrus, J L

    1975-01-01

    Stumptail monkeys (Macaca speciosa) received lethal whole body radiation. Autologous bone marrow injection resulted in survival of the majority of the animals. Treatment with Deca-Durabolin, an anabolic steroid, caused more rapid recovery of colony-forming cell numbers in the bone marrow than in control animals. Both the Deca-Durabolin-treated and control groups were given autologous bone marrow transplantation. Anabolic steroid effect on transplanted bone marrow colonyforming cells may explain the increased rate of leukopoietic regeneration in anabolic steroid-treated animals as compared to controls.

  19. Compositional dependence of hematopoietic stem cells expansion on bioceramic composite scaffolds for bone tissue engineering.

    PubMed

    Mishra, Sarika; Rajyalakshmi, A; Balasubramanian, K

    2012-09-01

    Bioceramics are although well known for their osteoinductive and osseointegrative properties in bone tissue regeneration, yet, they are inappropriate for load bearing applications due to inadequate mechanical strength. In this article, the authors report the expansion of hematopoietic stem cells (HSCs) on as-synthesized composite scaffolds from hydroxyapatite and β-tricalcium phosphate for bone tissue engineering, in an adequate load-bearing application. The physical, structural, and mechanical properties of the composite scaffolds have been examined and correlated with the in vitro adhesion pattern of HSCs. The results indicated that the response of HSCs varies with change in the stoichiometry of composite scaffolds. The H2T2 scaffolds have exhibited the highest expansion of CD34+ cells and long-term culture initiating cells when compared with other stoichiometries. The results suggest that H2T2 composite can be a potential strategic bone-graft substitute in contrast with monolithic bioceramics, serving a dual role of bioresorbability and enhanced load-bearing capacity.

  20. Body composition and anthropometry in Japanese and Australian Caucasian males and Japanese females.

    PubMed

    Kagawa, Masaharu; Binns, Colin B; Hills, Andrew P

    2007-01-01

    The total amount and location of fat deposition are important factors in the development of obesity and the metabolic syndrome. To date there have been no reported studies of ethnic and gender differences in body composition and fat distribution patterns in Japanese and Australian young adults. The aim of this study was to assess body composition of young Japanese and Australian Caucasian adults using whole-body dual energy x-ray absorptiometry (DXA) and anthropometry to examine body fat deposition patterns. Body composition of 45 Japanese males and 42 Australian Caucasian males living in Australia (aged 18-40 years) and 139 Japanese females living in Japan (aged 18-27 years) were measured using whole-body DXA scanning and anthropometry. Differences in relationships between BMI and waist circumference (WC), sum of skinfolds (SigmaSF) and %BF obtained from DXA were assessed using multivariate analyses. Distinct gender and ethnic differences (p<0.05) in bone density and waist circumference were observed but no gender differences in BMI and bone mineral content and no ethnic differences in sum of skinfolds and %BF. Both Japanese males and females showed a greater %BF at given BMI, WC and SigmaSF values (p<0.05). The results indicate differences in relationships between %BF and anthropometric measures in young Japanese compared to Caucasians and the importance of population-specific cut-off points for these indices. These findings also have implications for the development of chronic disease and further research, including studies in other Asian countries, is recommended.

  1. Optimum Anthropometric Criteria for Ideal Body Composition Related Fitness

    PubMed Central

    Kilani, Hashem; Abu-Eisheh, Asem

    2010-01-01

    Objectives The three aims of this study were to establish equations for ideal body composition related fitness to be used by adults willing to gain optimum body composition related fitness; to predict the possible symmetrical major muscle circumference, and to compute the ideal body fat percentage (BFP) with ideal body weight (IBW) based on the body mass index (BMI). Methods Twenty-four athletes were intentionally selected, with heights of 166–190 cm and aged 20–42 years, according to a judging committee that used modified International Fitness Federation criteria for the Mr. Fitness competition “super body category”. Common anthropometric and body composition measurements were taken for the following independent variables: body height, upper limb length, lower limb length, thigh length, arm length, shoulder width, forearm length, shank length, and wrist girth; and for the following dependent variables: circumferences of shoulder, thigh, waist, hip, chest, biceps, forearm, shank, and neck. Skin fold thickness was measured at three sites by a Harpenden caliper to calculate BFP. Results The findings indicate that there was a predictive correlation between major independent variables and body circumferences. The mean range used to find out the ideal BFP percentage which was 5.6–6.7 %. The BMI equation used to find the IBW was H2 × 23.77 ± 2 SE. Stepwise multiple regressions were also used to derive predictive equations. The most predictive independent variables were wrist girth and height. Conclusion It is suggested that the above equations, the ideal BFP percentage and the IBW be used as criteria in training sessions to achieve ideal body composition related fitness. PMID:21509084

  2. Body composition after endogenous (Cushing's syndrome) and exogenous (rheumatoid arthritis) exposure to glucocorticoids.

    PubMed

    Resmini, E; Farkas, C; Murillo, B; Barahona, M J; Santos, A; Martínez-Momblán, M A; Roig, O; Ybarra, J; Geli, C; Webb, S M

    2010-07-01

    Exposure to chronic glucocorticoid (GC) excess determines changes in body composition. The aim of the study was to compare body composition in women exposed to endogenous hypercortisolism (Cushing's syndrome, CS), exogenous glucocorticoid treatment (rheumatoid arthritis, RA) and controls. Fifty-one CS women, 26 RA women treated with low-dose prednisone (5 mg/day or 10 mg/2 days), and 78 female controls were included. Fourteen CS patients were hypercortisolemic, 37 in remission (10 required hydrocortisone substitution after surgery). Body composition parameters were measured by dual-energy X-ray absorptiometry scanning (DEXA). RA patients had a greater waist-hip ratio (WHR) (p<0.01), less lean body mass (LBM) (p<0.01), and lumbar bone mineral density (BMD) (p<0.01) than controls. CS patients, globally and those with cured disease, had more total fat (both percentage and kg) and trunk fat percentage, and less whole body-BMD than RA patients (p<0.05, p<0.01, p<0.05, respectively). Active CS patients had less whole body-BMD and more LBM than RA patients (p<0.05, p=0.01, respectively). Cured CS patients not taking hydrocortisone had more total fat [both percentage (p<0.05) and kg (p<0.05)], trunk fat percentage (p<0.05), lumbar BMD (p<0.01) than RA patients. Cured CS patients requiring hydrocortisone only differed from RA patients by smaller WHR (p<0.01). All the differences in BMD disappeared when the data were reanalyzed including only the estrogen-deficient groups. Hypercortisoliof CS determines an irreversible increase in body fat, greater than in RA. Endogenous and exogenous exposure to GC negatively affects body composition by increasing the WHR. There appears to be no additional effect on BMD in estrogen-deficient women.

  3. A bone composition model for Monte Carlo x-ray transport simulations

    SciTech Connect

    Zhou Hu; Keall, Paul J.; Graves, Edward E.

    2009-03-15

    In the megavoltage energy range although the mass attenuation coefficients of different bones do not vary by more than 10%, it has been estimated that a simple tissue model containing a single-bone composition could cause errors of up to 10% in the calculated dose distribution. In the kilovoltage energy range, the variation in mass attenuation coefficients of the bones is several times greater, and the expected error from applying this type of model could be as high as several hundred percent. Based on the observation that the calcium and phosphorus compositions of bones are strongly correlated with the bone density, the authors propose an analytical formulation of bone composition for Monte Carlo computations. Elemental compositions and densities of homogeneous adult human bones from the literature were used as references, from which the calcium and phosphorus compositions were fitted as polynomial functions of bone density and assigned to model bones together with the averaged compositions of other elements. To test this model using the Monte Carlo package DOSXYZnrc, a series of discrete model bones was generated from this formula and the radiation-tissue interaction cross-section data were calculated. The total energy released per unit mass of primary photons (terma) and Monte Carlo calculations performed using this model and the single-bone model were compared, which demonstrated that at kilovoltage energies the discrepancy could be more than 100% in bony dose and 30% in soft tissue dose. Percentage terma computed with the model agrees with that calculated on the published compositions to within 2.2% for kV spectra and 1.5% for MV spectra studied. This new bone model for Monte Carlo dose calculation may be of particular importance for dosimetry of kilovoltage radiation beams as well as for dosimetry of pediatric or animal subjects whose bone composition may differ substantially from that of adult human bones.

  4. The study of lifetime of polymer and composite bone joint screws under cyclical loads and in vitro conditions.

    PubMed

    Jan, Chłopek; Grzegorz, Kmita

    2005-11-01

    The "strain-life time" method has been adapted for life-time prediction of polymer and composite bone joint screws. Mechanical and fatigue properties of screws made of biostable (polysulfone), biosorbable (poly(lactide-co-glycolide) and short carbon fibre reinforced polymer composite materials have been examined in this study. The lifetime predictions under in vitro conditions were calculated for polymer and composite implants. The forecasting of joint screws stability under conditions close to natural body environment is shown to be feasible based on equations describing lifetime of the examined joint screws.

  5. Levofloxacin loaded mesoporous silica microspheres/nano-hydroxyapatite/polyurethane composite scaffold for the treatment of chronic osteomyelitis with bone defects.

    PubMed

    Wang, Qi; Chen, Cheng; Liu, Wen; He, Xiaoqiang; Zhou, Nian; Zhang, Dongli; Gu, Hongchen; Li, Jidong; Jiang, Jiaxing; Huang, Wei

    2017-02-02

    Chronic osteomyelitis is a prolonged persistent disease accompanied by bone destruction and sequestrum formation, it is very difficult to treat. Antibiotic loaded polymethyl methacrylate (PMMA) has been used in clinical. However, when PMMA was implanted in the body, the deficiencies is that it is non-biodegradable and a second operation is needed. Here, we synthesize a novel levofloxacin loaded mesoporous silica microspheres/nano-hydroxyapatite/polyurethane composite scaffolds, and evaluated the therapeutic effect in treating chronic osteomyelitis with bone defects in rabbit model compared with bulk PMMA. X-ray, Micro CT, gross pathology as well as immunohistochemical staining were performed at predesignated time points (1, 3, 6 and 12 weeks). Our results demonstrated that the efficiency of mesoporous silica microspheres/nano-hydroxyapatite/polyurethane composite scaffolds loaded with 5 mg levofloxacin was much better at treating bone defects than the other groups. This novel synthetic scaffold may provide a solution for the treatment of chronic osteomyelitis.

  6. Levofloxacin loaded mesoporous silica microspheres/nano-hydroxyapatite/polyurethane composite scaffold for the treatment of chronic osteomyelitis with bone defects

    PubMed Central

    Wang, Qi; Chen, Cheng; Liu, Wen; He, Xiaoqiang; Zhou, Nian; Zhang, Dongli; Gu, Hongchen; Li, Jidong; Jiang, Jiaxing; Huang, Wei

    2017-01-01

    Chronic osteomyelitis is a prolonged persistent disease accompanied by bone destruction and sequestrum formation, it is very difficult to treat. Antibiotic loaded polymethyl methacrylate (PMMA) has been used in clinical. However, when PMMA was implanted in the body, the deficiencies is that it is non-biodegradable and a second operation is needed. Here, we synthesize a novel levofloxacin loaded mesoporous silica microspheres/nano-hydroxyapatite/polyurethane composite scaffolds, and evaluated the therapeutic effect in treating chronic osteomyelitis with bone defects in rabbit model compared with bulk PMMA. X-ray, Micro CT, gross pathology as well as immunohistochemical staining were performed at predesignated time points (1, 3, 6 and 12 weeks). Our results demonstrated that the efficiency of mesoporous silica microspheres/nano-hydroxyapatite/polyurethane composite scaffolds loaded with 5 mg levofloxacin was much better at treating bone defects than the other groups. This novel synthetic scaffold may provide a solution for the treatment of chronic osteomyelitis. PMID:28150731

  7. Top 10 research questions related to body composition.

    PubMed

    Going, Scott; Lee, Vinson; Blew, Rob; Laddu, Deepika; Hetherington-Rauth, Megan

    2014-03-01

    An understanding of body composition is crucial to understanding human health, disease, and function. Research in body composition has focused on the development of assessment methods, description of normal changes in body composition with growth and development and aging, and the changes that occur in body composition in response to challenges ranging from illness to planned interventions. Each focus is significant, and in a sense, they are interdependent, because technological advances allow more sophisticated questions to be addressed, which in turn drives the development of better methods. Significant advances have been made in each area, although perhaps surprisingly basic questions remain. For example, growth trajectories are often estimated from cross-sectional data, given the resources needed for long-term observational studies, and thus, longitudinal descriptive data are still needed. Along with advances in laboratory methods, development of field methods remains relevant for screening and clinical practice. Despite recognition of wide interindividual differences in intervention response, average outcomes continue to be emphasized. With technological advances, it is now possible to examine genetic along with nongenetic factors that underlie changes in body composition, and these techniques need to be applied in long-term, well-controlled trials. In this article, we review 10 key questions in related areas in which research is needed to continue to advance the field.

  8. The relationship between bone and ash weight to body weight and body length of Thai corpses in Bangkok and central part of Thailand after cremation.

    PubMed

    Chirachariyavej, Thamrong; Limburanasombat, Sulawan; Tiensuwan, Montip

    2007-09-01

    Although information about bone and ash weight compare to body weight and body length of Thai people exists, it was based on a few samples. Collect data of the bone and ash weight after cremation and find out the relationship between bone and ash weight, body weight, body length, and age. Two hundred and twenty three corpses, 97 females and 126 males were collected from four temples, three temples from Bangkok and one temple from Angtong province. The crematoria used in the present study created a temperature between 850 degrees C and 1,200 degrees C. Each cremation took about 1-1.5 hours. The average with SD of bone and ash weight of males was 2.44 kg +/- 0.9 Kg, while the weight of females was 2.07 +/- 0.89 Kg, and the average of bone and ash weight of total subjects was 2.28 +/- 0.95. There was negative correlation between age and bone & ash weight, while there was positive correlation between body length and body weight, body length and bone & ash weight, and body weight and bone & ash weight. The results of the present study indicated that age and body weight affected the bone and ash weight. The fitted linear equation was Log (bone & ash weight +1) = 0.413 - 0.001 (age) + 0.003 (body weight). Age and body weight affect bone and ash weight. Moreover, the age, body weight, and body length could be estimated by using the bone and ash weight.

  9. Feasibility of knitted carbon/PEEK composites for orthopedic bone plates.

    PubMed

    Fujihara, K; Huang, Zheng-Ming; Ramakrishna, S; Satknanantham, K; Hamada, H

    2004-08-01

    This paper focuses on fabrication and characterization of knitted carbon/PEEK fabric composites for orthopedic bone plate application. Bending performance of the knitted carbon/PEEK composite bone plates was investigated with respect to two principal knitting directions (wale- and course-directions). As a result, the wale-direction knitted composite bone plates had much scattering in bending stiffness and maximum bending moment although they exhibited the same bending behavior as that of the course-direction specimens. In comparison with our previously developed braided composite bone plates, the knitted composite bone plates had 55-59% bending stiffness, 40-63% yield bending moment, and 54-77% maximum bending moment. However, the knitted composite bone plates showed higher deformability. Based on the results of the braided composite bone plates, it is considered that the knitted composite plate with 3.2mm thickness can be suitable for forearm or humerus treatment especially when damaged bones need higher deformation to encourage bone ossification.

  10. Injectable calcium phosphate cement and fibrin sealant recombined human bone morphogenetic protein-2 composite in vertebroplasty: an animal study

    PubMed Central

    Qian, Guang; Dong, Youhai; Yang, Wencheng; Wang, Minghai

    2012-01-01

    Polymethylmethacrylate (PMMA) is currently the most commonly-used material, but it may induce adjacent vertebral fracture due to low degradation and high strength. Our study evaluated the feasibility of injectable calcium phosphate cement (ICPC) and fibrin sealant (FS) as an injectable compound carrier of human bone morphogenetic protein-2 (rhBMP-2) in New Zealand rabbits for vertebroplasty. Results showed ICPC/FS/rhBMP-2 composites induced alkaline phosphatase most effectively at 2 and 4 weeks after implantation. Histological examination confirmed that new bone and vessels developed at 4 weeks in the ICPC/FS/rhBMP-2 group. At 8 weeks, parts of the ICPC/FS/rhBMP-2 cement degraded with mature bone tissues and neovascularization. New bone was observed by MicroCT to form early and massively, and the ossification was almost synchronous with the material degradation. In the PMMA Group, however, no new bone formation or material degradation was found. The stiffness and tension of vertebral bodies implanted with ICPC/FS/rhBMP-2 were weaker than those of normal vertebral bodies as well as vertebral bodies implanted with PMMA at 4 weeks (p<0.05). At 8 weeks, the stiffness and tension of vertebral bodies implanted with ICPC/FS/rhBMP-2 became strong; no significant difference was noted in the stiffness and tension, compared with normal vertebral bodies (p>0.05), while they were significantly lower, compared with vertebral bodies implanted with PMMA (p<0.05). It is concluded that, with good characteristics of osteoinductivity, the bone substitution is synchronous with material degradation. PMID:23198937

  11. Role of the hypothalamus in the neuroendocrine regulation of body weight and composition during energy deficit.

    PubMed

    Sainsbury, A; Zhang, L

    2012-03-01

    Energy deficit in lean or obese animals or humans stimulates appetite, reduces energy expenditure and possibly also decreases physical activity, thereby contributing to weight regain. Often overlooked in weight loss trials for obesity, however, is the effect of energy restriction on neuroendocrine status. Negative energy balance in lean animals and humans consistently inhibits activity of the hypothalamo-pituitary-thyroid, -gonadotropic and -somatotropic axes (or reduces circulating insulin-like growth factor-1 levels), while concomitantly activating the hypothalamo-pituitary-adrenal axis, with emerging evidence of similar changes in overweight and obese people during lifestyle interventions for weight loss. These neuroendocrine changes, which animal studies show may result in part from hypothalamic actions of orexigenic (e.g. neuropeptide Y, agouti-related peptide) and anorexigenic peptides (e.g. alpha-melanocyte-stimulating hormone, and cocaine and amphetamine-related transcript), can adversely affect body composition by promoting the accumulation of adipose tissue (particularly central adiposity) and stimulating the loss of lean body mass and bone. As such, current efforts to maximize loss of excess body fat in obese people may inadvertently be promoting long-term complications such as central obesity and associated health risks, as well as sarcopenia and osteoporosis. Future weight loss trials would benefit from assessment of the effects on body composition and key hormonal regulators of body composition using sensitive techniques.

  12. Somatotype and Body Composition of Normal and Dysphonic Adult Speakers.

    PubMed

    Franco, Débora; Fragoso, Isabel; Andrea, Mário; Teles, Júlia; Martins, Fernando

    2017-01-01

    Voice quality provides information about the anatomical characteristics of the speaker. The patterns of somatotype and body composition can provide essential knowledge to characterize the individuality of voice quality. The aim of this study was to verify if there were significant differences in somatotype and body composition between normal and dysphonic speakers. Cross-sectional study. Anthropometric measurements were taken of a sample of 72 adult participants (40 normal speakers and 32 dysphonic speakers) according to International Society for the Advancement of Kinanthropometry standards, which allowed the calculation of endomorphism, mesomorphism, ectomorphism components, body density, body mass index, fat mass, percentage fat, and fat-free mass. Perception and acoustic evaluations as well as nasoendoscopy were used to assign speakers into normal or dysphonic groups. There were no significant differences between normal and dysphonic speakers in the mean somatotype attitudinal distance and somatotype dispersion distance (in spite of marginally significant differences [P < 0.10] in somatotype attitudinal distance and somatotype dispersion distance between groups) and in the mean vector of the somatotype components. Furthermore, no significant differences were found between groups concerning the mean of percentage fat, fat mass, fat-free mass, body density, and body mass index after controlling by sex. The findings suggested no significant differences in the somatotype and body composition variables, between normal and dysphonic speakers. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  13. Somatic maturation and body composition in female healthy adolescents with or without adjustment for body fat

    PubMed Central

    Miranda, Valter Paulo N.; de Faria, Franciane Rocha; de Faria, Eliane Rodrigues; Priore, Silvia Eloiza

    2014-01-01

    Objective: To evaluate the relationship between the stages of somatic maturation and body composition in eutrophic female adolescents with or without excessive body fat. Methods: Cross-sectional study of 118 female adolescents, from 14 to 19 years-old, in Viçosa, Minas Gerais, Southeast Brazil. The adolescents were divided in two groups: Group 1 (G1), eutrophic with adequate body fat percentage, and Group 2 (G2), eutrophic with high body fat percentage. The somatic maturation was assessed by the formula for estimating the Peak Height Velocity (PHV). Results: The PHV had higher average score in G1 adolescents compared to G2 (0.26 versus 0.05; p=0.032). There was an association between G1, G2 and the somatic maturation (p=0.049). The female adolescents before and during PHV presented higher values of fat body BMI (p=0.034) and percentage of central fat (p=0.039) compared to the adolescents after PHV. There was a correspondence between before PHV stage and the excess of body fat (α=0.751). Conclusions: There was an association between somatic maturation and body composition in eutrophic female adolescents. Length, BMI and fat percentage were different among the somatic maturation stages. It is relevant to evaluate the somatic maturation and the changes occurring in the body composition during adolescence in order to better evaluate and manage the nutritional status and the body fat excess. PMID:24676194

  14. Longitudinal Body Composition Changes in NCAA Division I College Football Players.

    PubMed

    Trexler, Eric T; Smith-Ryan, Abbie E; Mann, J Bryan; Ivey, Pat A; Hirsch, Katie R; Mock, Meredith G

    2017-01-01

    Trexler, ET, Smith-Ryan, AE, Mann, JB, Ivey, PA, Hirsch, KR, and Mock, MG. Longitudinal body composition changes in NCAA Division I college football players. J Strength Cond Res 31(1): 1-8, 2017-Many athletes seek to optimize body composition to fit the physical demands of their sport. American football requires a unique combination of size, speed, and power. The purpose of the current study was to evaluate longitudinal changes in body composition in Division I collegiate football players. For 57 players (mean ± SD, age = 19.5 ± 0.9 years, height = 186.9 ± 5.7 cm, weight = 107.7 ± 19.1 kg), body composition was assessed via dual-energy x-ray absorptiometry in the off-season (March-Pre), end of off-season (May), mid-July (Pre-Season), and the following March (March-Post). Outcome variables included weight, body fat percentage (BF%), fat mass, lean mass (LM), android and gynoid (GYN) fat, bone mineral content (BMC), and bone mineral density (BMD). For a subset of athletes (n = 13 out of 57), changes over a 4-year playing career were evaluated with measurements taken every March. Throughout a single year, favorable changes were observed for BF% (Δ = -1.3 ± 2.5%), LM (Δ = 2.8 ± 2.8 kg), GYN (Δ = -1.5 ± 3.0%), BMC (Δ = 0.06 ± 0.14 kg), and BMD (Δ = 0.015 ± 0.027 g·cm, all p ≤ 0.05). Across 4 years, weight increased significantly (Δ = 6.6 ± 4.1 kg) and favorable changes were observed for LM (Δ = 4.3 ± 3.0 kg), BMC (Δ = 0.18 ± 0.17 kg), and BMD (Δ = 0.033 ± 0.039 g·cm, all p ≤ 0.05). Similar patterns in body composition changes were observed for linemen and non-linemen. Results indicate that well-trained collegiate football players at high levels of competition can achieve favorable changes in body composition, even late in the career, which may confer benefits for performance and injury prevention.

  15. Bioactive ceramic-reinforced composites for bone augmentation

    PubMed Central

    Tanner, K. E.

    2010-01-01

    Biomaterials have been used to repair the human body for millennia, but it is only since the 1970s that man-made composites have been used. Hydroxyapatite (HA)-reinforced polyethylene (PE) is the first of the ‘second-generation’ biomaterials that have been developed to be bioactive rather than bioinert. The mechanical properties have been characterized using quasi-static, fatigue, creep and fracture toughness testing, and these studies have allowed optimization of the production method. The in vitro and in vivo biological properties have been investigated with a range of filler content and have shown that the presence of sufficient bioactive filler leads to a bioactive composite. Finally, the material has been applied clinically, initially in the orbital floor and later in the middle ear. From this initial combination of HA in PE other bioactive ceramic polymer composites have been developed. PMID:20591846

  16. REGULATION OF BODY COMPOSITION AND BIOENERGETICS BY ESTROGENS

    PubMed Central

    Van Pelt, Rachael E.; Gavin, Kathleen M.; Kohrt, Wendy M.

    2015-01-01

    SYNOPSIS Evidence from basic, preclinical, and clinical research points to an important role of estradiol (E2) in the regulation of body composition and bioenergetics. There is consistent evidence from basic and preclinical research that the disruption of E2 signaling, through either genetic manipulation (e.g., estrogen receptor deletion) or surgical intervention (e.g., ovariectomy), accelerates fat accumulation, with a disproportionate increase in abdominal fat. Clinical evidence for the regulation of body composition and bioenergetics by E2 is less consistent. Evidence exists both for and against menopause as the mediator of changes in body composition. This is likely related to the prolonged nature of the menopause transition in women and the associated complexities of distinguishing effects of the loss of gonadal function from other phenomena of aging. However, a need remains to better understand the metabolic actions of estrogens in women because of the potential impact on health after the menopause. PMID:26316249

  17. Fructose in Breast Milk Is Positively Associated with Infant Body Composition at 6 Months of Age

    PubMed Central

    Goran, Michael I.; Martin, Ashley A.; Alderete, Tanya L.; Fujiwara, Hideji; Fields, David A.

    2017-01-01

    Dietary sugars have been shown to promote excess adiposity among children and adults; however, no study has examined fructose in human milk and its effects on body composition during infancy. Twenty-five mother–infant dyads attended clinical visits to the Oklahoma Health Sciences Center at 1 and 6 months of infant age. Infants were exclusively breastfed for 6 months and sugars in breast milk (i.e., fructose, glucose, lactose) were measured by Liquid chromatography-mass spectrometry (LC-MS/MS) and glucose oxidase. Infant body composition was assessed using dual-energy X-ray absorptiometry at 1 and 6 months. Multiple linear regression was used to examine associations between breast milk sugars and infant body composition at 6 months of age. Fructose, glucose, and lactose were present in breast milk and stable across visits (means = 6.7 μg/mL, 255.2 μg/mL, and 7.6 g/dL, respectively). Despite its very low concentration, fructose was the only sugar significantly associated with infant body composition. A 1-μg/mL higher breast milk fructose was associated with a 257 g higher body weight (p = 0.02), 170 g higher lean mass (p = 0.01), 131 g higher fat mass (p = 0.05), and 5 g higher bone mineral content (p = 0.03). In conclusion, fructose is detectable in human breast milk and is positively associated with all components of body composition at 6 months of age. PMID:28212335

  18. Fructose in Breast Milk Is Positively Associated with Infant Body Composition at 6 Months of Age.

    PubMed

    Goran, Michael I; Martin, Ashley A; Alderete, Tanya L; Fujiwara, Hideji; Fields, David A

    2017-02-16

    Dietary sugars have been shown to promote excess adiposity among children and adults; however, no study has examined fructose in human milk and its effects on body composition during infancy. Twenty-five mother-infant dyads attended clinical visits to the Oklahoma Health Sciences Center at 1 and 6 months of infant age. Infants were exclusively breastfed for 6 months and sugars in breast milk (i.e., fructose, glucose, lactose) were measured by Liquid chromatography-mass spectrometry (LC-MS/MS) and glucose oxidase. Infant body composition was assessed using dual-energy X-ray absorptiometry at 1 and 6 months. Multiple linear regression was used to examine associations between breast milk sugars and infant body composition at 6 months of age. Fructose, glucose, and lactose were present in breast milk and stable across visits (means = 6.7 μg/mL, 255.2 μg/mL, and 7.6 g/dL, respectively). Despite its very low concentration, fructose was the only sugar significantly associated with infant body composition. A 1-μg/mL higher breast milk fructose was associated with a 257 g higher body weight (p = 0.02), 170 g higher lean mass (p = 0.01), 131 g higher fat mass (p = 0.05), and 5 g higher bone mineral content (p = 0.03). In conclusion, fructose is detectable in human breast milk and is positively associated with all components of body composition at 6 months of age.

  19. Bone engineering by phosphorylated-pullulan and β-TCP composite.

    PubMed

    Takahata, Tomohiro; Okihara, Takumi; Yoshida, Yasuhiro; Yoshihara, Kumiko; Shiozaki, Yasuyuki; Yoshida, Aki; Yamane, Kentaro; Watanabe, Noriyuki; Yoshimura, Masahide; Nakamura, Mariko; Irie, Masao; Van Meerbeek, Bart; Tanaka, Masato; Ozaki, Toshifumi; Matsukawa, Akihiro

    2015-11-20

    A multifunctional biomaterial with the capacity bond to hard tissues, such as bones and teeth, is a real need for medical and dental applications in tissue engineering and regenerative medicine. Recently, we created phosphorylated-pullulan (PPL), capable of binding to hydroxyapatite in bones and teeth. In the present study, we employed PPL as a novel biocompatible material for bone engineering. First, an in vitro evaluation of the mechanical properties of PPL demonstrated both PPL and PPL/β-TCP composites have higher shear bond strength than materials in current clinical use, including polymethylmethacrylate (PMMA) cement and α-tricalcium phosphate (TCP) cement, Biopex-R. Further, the compressive strength of PPL/β-TCP composite was significantly higher than Biopex-R. Next, in vivo osteoconductivity of PPL/β-TCP composite was investigated in a murine intramedular injection model. Bone formation was observed 5 weeks after injection of PPL/β-TCP composite, which was even more evident at 8 weeks; whereas, no bone formation was detected after injection of PPL alone. We then applied PPL/β-TCP composite to a rabbit ulnar bone defect model and observed bone formation comparable to that induced by Biopex-R. Implantation of PPL/β-TCP composite induced new bone formation at 4 weeks, which was remarkably evident at 8 weeks. In contrast, Biopex-R remained isolated from the surrounding bone at 8 weeks. In a pig vertebral bone defect model, defects treated with PPL/β-TCP composite were almost completely replaced by new bone; whereas, PPL alone failed to induce bone formation. Collectively, our results suggest PPL/β-TCP composite may be useful for bone engineering.

  20. Antibacterial and bioactive composite bone cements containing surface silver-doped glass particles.

    PubMed

    Miola, Marta; Fucale, Giacomo; Maina, Giovanni; Verné, Enrica

    2015-10-20

    A bioactive silica-based glass powder (SBA2) was doped with silver (Ag(+)) ions by means of an ion-exchange process. Scanning electron microscopy (SEM), energy dispersion spectrometry (EDS) and x-ray diffraction (XRD) evidenced that the glass powder was enriched with Ag(+) ions. However, a small amount of Ag2CO3 precipitated with increased Ag concentrations in the exchange solution. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of Ag-SBA2 towards Staphylococcus aureus were also evaluated and were respectively 0.05 mg ml(-1) and 0.2 mg ml(-1). Subsequently, Ag-SBA2 glass was used as filler (30%wt) in a commercial formulation of bone cement (Simplex(™) P) in order to impart both antibacterial and bioactive properties. The composite bone cement was investigated in terms of morphology (using SEM) and composition (using EDS); the glass powder was well dispersed and exposed on the cement surface. Bioactivity tests in simulated body fluid (SBF) evidenced the precipitation of hydroxyapatite on sample surfaces. Composite cement demonstrated antibacterial properties and a compressive strength comparable to the commercial formulation.

  1. Lean Mass and Body Fat Percentage Are Contradictory Predictors of Bone Mineral Density in Pre-Menopausal Pacific Island Women

    PubMed Central

    Casale, Maria; von Hurst, Pamela R.; Beck, Kathryn L.; Shultz, Sarah; Kruger, Marlena C.; O’Brien, Wendy; Conlon, Cathryn A.; Kruger, Rozanne

    2016-01-01

    Anecdotally, it is suggested that Pacific Island women have good bone mineral density (BMD) compared to other ethnicities; however, little evidence for this or for associated factors exists. This study aimed to explore associations between predictors of bone mineral density (BMD, g/cm2), in pre-menopausal Pacific Island women. Healthy pre-menopausal Pacific Island women (age 16–45 years) were recruited as part of the larger EXPLORE Study. Total body BMD and body composition were assessed using Dual X-ray Absorptiometry and air-displacement plethysmography (n = 83). A food frequency questionnaire (n = 56) and current bone-specific physical activity questionnaire (n = 59) were completed. Variables expected to be associated with BMD were applied to a hierarchical multiple regression analysis. Due to missing data, physical activity and dietary intake factors were considered only in simple correlations. Mean BMD was 1.1 ± 0.08 g/cm2. Bone-free, fat-free lean mass (LMO, 52.4 ± 6.9 kg) and age were positively associated with BMD, and percent body fat (38.4 ± 7.6) was inversely associated with BMD, explaining 37.7% of total variance. Lean mass was the strongest predictor of BMD, while many established contributors to bone health (calcium, physical activity, protein, and vitamin C) were not associated with BMD in this population, partly due to difficulty retrieving dietary data. This highlights the importance of physical activity and protein intake during any weight loss interventions to in order to minimise the loss of muscle mass, whilst maximizing loss of adipose tissue. PMID:27483314

  2. Lean Mass and Body Fat Percentage Are Contradictory Predictors of Bone Mineral Density in Pre-Menopausal Pacific Island Women.

    PubMed

    Casale, Maria; von Hurst, Pamela R; Beck, Kathryn L; Shultz, Sarah; Kruger, Marlena C; O'Brien, Wendy; Conlon, Cathryn A; Kruger, Rozanne

    2016-07-30

    Anecdotally, it is suggested that Pacific Island women have good bone mineral density (BMD) compared to other ethnicities; however, little evidence for this or for associated factors exists. This study aimed to explore associations between predictors of bone mineral density (BMD, g/cm²), in pre-menopausal Pacific Island women. Healthy pre-menopausal Pacific Island women (age 16-45 years) were recruited as part of the larger EXPLORE Study. Total body BMD and body composition were assessed using Dual X-ray Absorptiometry and air-displacement plethysmography (n = 83). A food frequency questionnaire (n = 56) and current bone-specific physical activity questionnaire (n = 59) were completed. Variables expected to be associated with BMD were applied to a hierarchical multiple regression analysis. Due to missing data, physical activity and dietary intake factors were considered only in simple correlations. Mean BMD was 1.1 ± 0.08 g/cm². Bone-free, fat-free lean mass (LMO, 52.4 ± 6.9 kg) and age were positively associated with BMD, and percent body fat (38.4 ± 7.6) was inversely associated with BMD, explaining 37.7% of total variance. Lean mass was the strongest predictor of BMD, while many established contributors to bone health (calcium, physical activity, protein, and vitamin C) were not associated with BMD in this population, partly due to difficulty retrieving dietary data. This highlights the importance of physical activity and protein intake during any weight loss interventions to in order to minimise the loss of muscle mass, whilst maximizing loss of adipose tissue.

  3. Spine and total body bone mineral density and serum testosterone levels in male athletes.

    PubMed

    Smith, R; Rutherford, O M

    1993-01-01

    The aim of this study was to compare the effects of intense endurance vs strengthening exercise on bone mass and serum testosterone levels in male athletes. Bone mineral density (BMD) of the total body and spine and serum testosterone levels were measured in male rowers (n = 12), triathletes (n = 8) and sedentary controls (n = 13). The total body scan also gave values for percentage body fat and regional bone densities. Calcium intake and physical activity levels were measured by questionnaire. The rowers had significantly higher BMD in the spine and total body than the triathletes (P < 0.01 and P < 0.05 respectively) and sedentary controls (P < 0.01 and P < 0.05). There were no differences between the triathletes and controls. Serum testosterone levels were significantly lower in the triathletes than in the controls (P < 0.05); there was no significant difference between the rowers and controls. All groups fell within the normal range for testosterone. In a step-wise multiple regression, including age, body mass, height, calcium intake and activity, no single factor had a significant effect on spine BMD. Body mass had a significant effect on total body BMD and could account for the differences between the groups. A significant positive correlation was found between calcium intake and total body BMD. The heavy weight training typical of rowing training seemed to result in significant bone accretion. The low testosterone levels in the triathletes may have negated any positive effect of the increased exercise on BMD.

  4. Use of a calcium sulfate-calcium phosphate synthetic bone graft composite in the surgical management of primary bone tumors.

    PubMed

    Evaniew, Nathan; Tan, Victoria; Parasu, Naveen; Jurriaans, Erik; Finlay, Karen; Deheshi, Benjamin; Ghert, Michelle

    2013-02-01

    Benign primary bone tumors are commonly treated with intralesional curettage with or without the use of surgical adjuvants. The reconstructive approach to the resulting contained bone defects is controversial, and clinical practice is varied. Synthetic bone substitutes may provide early mechanical support while minimizing the risks of disease transmission, nonunion, infection, and donor-site morbidity. Limited data exists regarding the use of calcium sulfate-calcium phosphate composite bone substitute for this purpose. The authors retrospectively reviewed the clinical outcomes of 24 patients with benign primary bone tumors who underwent intralesional curettage followed by reconstruction with a calcium sulfate-calcium phosphate composite bone substitute. Mean follow-up was 23 months. The most common diagnosis was giant cell tumor of bone. Six patients had upper-extremity tumors and 18 had lower-extremity tumors. Mean preoperative radiographic tumor volume was 41.0 cm(3). Mean volume of PRO-DENSE (Wright Medical Technology, Arlington, Tennessee) used in each patient was 15.6 cm(3). Mean time to full weight bearing for all patients was 7.3 weeks. Two patients sustained local tumor recurrences. No postoperative fractures occurred, and no complications occurred related to the use of the calcium sulfate-calcium phosphate composite. One case of deep infection occurred secondary to wound breakdown. The use of a calcium sulfate-calcium phosphate composite was associated with rapid biological integration and an early return to activities of daily living, with no composite-related complications. This technique is a viable option in the reconstruction of cavitary bone defects following intralesional curettage of primary benign bone tumors. Copyright 2013, SLACK Incorporated.

  5. Body adiposity and bone parameters of male rats from mothers fed diet containing flaxseed flour during lactation.

    PubMed

    da Costa, C A S; da Silva, P C A; Ribeiro, D C; Pereira, A D D; Santos, A D S D; Maia, L D A; Ruffoni, L D G; de Santana, F C; de Abreu, M D C; Boueri, B F D C; Pessanha, C R; Nonaka, K O; Mancini-Filho, J; do Nascimento-Saba, C C A; Boaventura, G T

    2015-12-07

    Obesity and osteoporosis may have their origins in early postnatal life. This study was designed to evaluate whether flaxseed flour use during lactation period bears effect on body adiposity and skeletal structure of male rat pups at weaning. At birth, male Wistar rats were randomly assigned to control and experimental (FF) groups, whose dams were treated with control or flaxseed flour diet, respectively, during lactation. At 21 days of age, pups were weaned to assess body mass, length and composition by dual-energy X-ray absorptiometry. The animals were then sacrificed to carry out analysis of serum profile, intra-abdominal adipocyte morphology and femur characteristics. Differences were considered significant when P<0.05. The FF group displayed the following characteristics (P<0.05): higher body mass, length, bone mineral content, bone area and concentrations of osteoprotegerin, osteocalcin and high-density lipoprotein cholesterol; higher levels of stearic, α-linolenic, eicosapentaenoic and docosapentaenoic acids and lower levels of arachidonic acid and cholesterol; smaller adipocyte area; and higher mass, epiphysis distance, diaphysis width, maximal load, break load, resilience and stiffness of femur. Flaxseed flour intake during lactation period promoted adipocyte hypertrophy down-regulation and contributed to pup bone quality at weaning.

  6. Effects of diet containing flaxseed flour (Linum usitatissimum) on body adiposity and bone health in young male rats.

    PubMed

    da Costa, Carlos Alberto Soares; da Silva, Paula Cristina Alves; Ribeiro, Danielle Cavalcante; Pereira, Aline D'Avila; dos Santos, Aline de Sousa; de Abreu, Maíra Duque Coutinho; Pessoa, Letícia Rozeno; Boueri, Bianca Ferolla da Camara; Pessanha, Carolina Ribeiro; do Nascimento-Saba, Celly Cristina Alves; da Silva, Eduardo Moreira; Boaventura, Gilson Teles

    2016-02-01

    Flaxseed flour has been described as an excellent alpha-linolenic acid source. This study was designed to evaluate the effects of flaxseed flour on body adiposity and bone health in rats fed a flaxseed flour diet during lactation until 90 days. At birth, male Wistar rats were randomly assigned to control (C) and experimental (FF) groups, whose dams were treated with a control or flaxseed flour diet, respectively, during lactation. At 21 days, pups were weaned and fed a control and experimental diet until 90 days. Food intake, body mass and length were evaluated during a 21-90 day period. At 90 days, composition by dual-energy X-ray absorptiometry, serum hormonal profile, intra-abdominal fat mass, and lumbar vertebra and femur analyses was determined. Differences were deemed significant at p < 0.05. The FF group displayed the following (P < 0.05): a higher total lean mass (+7%), a lower total (-16%) and intra-abdominal (-24%) fat mass, a smaller adipocyte area (-30%), a higher femoral mass (+5%), bone mineral density (+5%) and radiodensity (+20%), and a higher maximum force (+10%) and breaking strength (+11%). The flaxseed flour diet displayed functional properties related to body growth maintenance associated with a lower risk of developing metabolic alterations, obesity and bone fragility.

  7. The Body and the Beautiful: Health, Attractiveness and Body Composition in Men’s and Women’s Bodies

    PubMed Central

    Brierley, Mary-Ellen; Brooks, Kevin R.; Mond, Jonathan; Stevenson, Richard J.

    2016-01-01

    The dominant evolutionary theory of physical attraction posits that attractiveness reflects physiological health, and attraction is a mechanism for identifying a healthy mate. Previous studies have found that perceptions of the healthiest body mass index (weight scaled for height; BMI) for women are close to healthy BMI guidelines, while the most attractive BMI is significantly lower, possibly pointing to an influence of sociocultural factors in determining attractive BMI. However, less is known about ideal body size for men. Further, research has not addressed the role of body fat and muscle, which have distinct relationships with health and are conflated in BMI, in determining perceived health and attractiveness. Here, we hypothesised that, if attractiveness reflects physiological health, the most attractive and healthy appearing body composition should be in line with physiologically healthy body composition. Thirty female and 33 male observers were instructed to manipulate 15 female and 15 male body images in terms of their fat and muscle to optimise perceived health and, separately, attractiveness. Observers were unaware that they were manipulating the muscle and fat content of bodies. The most attractive apparent fat mass for female bodies was significantly lower than the healthiest appearing fat mass (and was lower than the physiologically healthy range), with no significant difference for muscle mass. The optimal fat and muscle mass for men’s bodies was in line with the healthy range. Male observers preferred a significantly lower overall male body mass than did female observers. While the body fat and muscle associated with healthy and attractive appearance is broadly in line with physiologically healthy values, deviations from this pattern suggest that future research should examine a possible role for internalization of body ideals in influencing perceptions of attractive body composition, particularly in women. PMID:27257677

  8. Body composition in children and adolescents born after in vitro fertilization or spontaneous conception.

    PubMed

    Ceelen, Manon; van Weissenbruch, Mirjam M; Roos, Jan C; Vermeiden, Jan P W; van Leeuwen, Flora E; Delemarre-van de Waal, Henriette A

    2007-09-01

    Increasing evidence suggests that adverse conditions during prenatal life are associated with the development of chronic diseases in adult life. It is still unclear whether in vitro fertilization (IVF) conception could affect the vulnerable developmental processes in humans occurring during early prenatal development with long-term perturbations of developmental pathways. Our objective was to examine body composition in 8- to 18-yr-old IVF singletons and spontaneously conceived controls born from subfertile parents. This follow-up study was conducted at the VU University Medical Center in Amsterdam, The Netherlands. Participants included 233 IVF children (139 pubertal children) and 233 age- and gender-matched control children (143 pubertal children). Body composition measures were assessed by anthropometry and dual-energy x-ray absorptiometry in the pubertal subpopulation. IVF children had a significantly lower subscapular-triceps skinfold ratio and a significantly higher sum of peripheral skinfolds, peripheral body mass, and percentage of peripheral body fat as compared with controls. Although not reaching statistical significance, both dual-energy x-ray absorptiometry and skinfold measurements suggested that total body fat in IVF children is increased. Neither current and early risk factors nor parental factors, such as subfertility cause, could explain the differences in peripheral fat assessed by anthropometry between IVF children and controls. No differences in bone mineral composition between IVF children and controls were found. Our observations indicate that body fat composition in IVF children is disturbed. Follow-up of IVF children to monitor body fat pattern and potentially related health problems from adolescence into adulthood is of great importance.

  9. [Body composition and metabolic risk in small for gestational age children treated with growth hormone].

    PubMed

    Aurensanz Clemente, Esther; Samper Villagrasa, Pilar; Ayerza Casas, Ariadna; Ruiz Frontera, Pablo; Moreno Aznar, Luis Alberto; Bueno Lozano, Gloria

    2016-09-16

    Small for gestational age (SGA) children are at increased risk of metabolic syndrome. Our objective is to evaluate changes in body composition produced by growth hormone (GH) treatment. A group of 28 SGA children without catch-up growth and undergoing treatment with GH was selected for evaluation. Over the course of 3 years from the beginning of the treatment with GH, the children's body composition variables (bone mineral density [BMD], fat and lean body mass proportion) were evaluated annually with dual-energy X-ray absorptiometry. A study of correlation between metabolic and body composition variables was also made. Treatment with GH produces a reduction in fat mass proportion in relation to lean body mass, decreasing from 25.94±6.09 to 22.88±5.38% (P=.034). In the abdominal regions we observe an increase in lean mass, from 1,356,91±426,71 to 2,570,96±814,36g (P=.000) and a tendency for visceral fat deposits to decrease. BMD in lumbar vertebrae improved from -1.55±0.68 to -0.90±0.79Z (P=.019). Treatment with GH produces changes in body composition, improving BMD and increasing the proportion of lean body mass with a reduction in fat mass. If these changes persisted into adulthood, they may cause a reduction in the metabolic and cardiovascular risk in this group of patients. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  10. Growth in bone strength, body size, and muscle size in a juvenile longitudinal sample.

    PubMed

    Ruff, Christopher

    2003-09-01

    A longitudinal sample of 20 subjects, measured an average of 34 to 35 times each at approximately 6-month intervals from near birth through late adolescence, was used to investigate relationships between body size, muscle size, and bone structural development. The section modulus, an index of bone strength, was calculated from humeral and femoral diaphyseal breadth measurements obtained from serial radiographs. Muscle breadths of the forearm and thigh, also measured radiographically, were used to estimate muscle cross-sectional areas. Body size was assessed as the product of body weight and bone length (humeral or femoral). Stature was also investigated as a surrogate body size measure. Growth velocity in femoral strength was strongly correlated with growth velocity in body weight. femoral length (r2=0.65-0.80), very poorly correlated with growth velocity in stature (r2<0.06), and weakly but significantly correlated with growth velocity in thigh muscle size (r2=0.10-.25). Growth velocity in humeral strength was moderately correlated with that for body weight x humeral length (r2=0.40-0.73), very poorly correlated with that for stature (r2<0.05), and showed a marked sex difference with forearm muscle area velocity, with males having a stronger correlation (r2 approximately 0.65) and females a much weaker correlation (r2 approximately 0.15). Ages at peak adolescent growth velocity were nonsignificantly different between bone strength, body weight x bone length, and muscle area, but significantly earlier for stature. Thus, while there was an early adolescent "lag" between stature and bone strength, there was no such "lag" between a more mechanically appropriate measure of body size and bone strength. "Infancy peaks" in bone strength velocities, earlier in the humerus than in the femur and not paralleled by similar changes in body size, may be the result of the initiation of walking, when mechanical loads relative to body size are changing in both the upper and lower

  11. Development of monetite/phosphorylated chitosan composite bone cement.

    PubMed

    Boroujeni, Nariman Mansouri; Zhou, Huan; Luchini, Timothy J F; Bhaduri, Sarit B

    2014-02-01

    In this article, we report the development of a biodegradable monetite [dicalcium phosphate anhydrous (DCPA), CaHPO4 ]/phosphorylated chitosan (p-chitosan) composite orthopedic cement. The cement pastes showed desirable handling properties, injectability, and washout resistance. The incorporation of p-chitosan powders at 5 wt % shortened the setting time of DCPA and significantly improved the mechanical performance of DCPA cement, increasing the compressive strength almost twice from 11.09 ± 1.85 MPa at 0% chitosan to 23.43 ± 1.47 MPa at 5 wt % p-chitosan. On the other hand, higher p-chitosan content or untreated chitosan incorporation lowered the performance of DCPA cements. The cytocompatibility of the composite cement was investigated in vitro using the preosteoblast cell line MC3T3-E1. An increase in cell proliferation was observed in both DCPA and DCPA-p-chitosan. The results show that both the materials are as cytocompatible as hydroxyapatite. Based on these results, DCPA-p-chitosan composite cement can be considered as potential bone repair material.

  12. Body Composition in Individuals with Asymptomatic Osteoarthritis of the Knee.

    PubMed

    Ho-Pham, Lan T; Lai, Thai Q; Mai, Linh D; Doan, Minh C; Nguyen, Tuan V

    2016-02-01

    Greater body mass index (BMI) is associated with a greater risk of osteoarthritis (OA). This study sought to investigate whether the association is mediated by fat mass or lean mass. The study involved 170 men and 488 women aged between 20 and 90 (average age: 55) who were randomly recruited from Ho Chi Minh City, Vietnam. The presence of knee OA was radiographically diagnosed based on the Kellgren-Lawrence criteria. Lean mass (LM) and fat mass (FM) were obtained from the DXA whole body scan (Hologic QDR-4500). The relationship between OA, LM, and FM was analyzed by a series of multiple linear regression models which take into account the effects of gender and age. As expected, men and women with knee OA were older than those without OA (65 vs 51 year in men, and 64 vs 52 year in women). After adjusting for age, OA was associated with greater FM and percent body fat (PBF), but the association was only observed in women, not in men. There was no statistically significant difference in LM between OA and non-OA individuals. Moreover, after adjusting for age and BMI or PBF, bone density in OA patients was not significantly different from non-OA individuals. Women with OA of the knee have greater fat mass than non-OA individuals, and that there is no significant difference in bone density between OA and non-OA individuals. Thus, the association between body mass index and OA is mainly mediated by fat mass.

  13. Validation and calibration of DEXA body composition in mice.

    PubMed

    Brommage, Robert

    2003-09-01

    Validated methods of determining murine body composition are required for studies of obesity in mice. Dual-energy X-ray absorptiometry (DEXA) provides a noninvasive approach to assess body fat and lean tissue contents. Similar to DEXA analyses in other species, body fat measurements in mice show acceptable precision but suffer from poor accuracy. Because fat and lean tissues each contain various components, these inaccuracies likely result from selection of inappropriate calibration standards. Analysis of solvents showed that the PIXImus2 DEXA gave results consistent with theoretical calculations. Male mice weighing 26-60 g and having body fat percentages ranging from 3 to 49% were analyzed by both PIXImus2 DEXA and chemical carcass analysis. DEXA overestimated mouse fat content by an average of 3.3 g, and algorithms were generated to calculate body fat from both measured body fat values and the measured ratio of high- to low-energy X-ray attenuations. With calibration to mouse body fat content measured by carcass analysis, the PIXImus2 DEXA gives accurate body composition values in mice.

  14. Effects of weightlessness on body composition in the rat.

    PubMed

    Pitts, G C; Ushakov, A S; Pace, N; Smith, A H; Rahlmann, D F; Smirnova, T A

    1983-03-01

    Five male rats were exposed to 18.5 days of weightlessness in the Soviet mission COSMOS 1129 (flight group) and killed after reentry. They were immediately dissected into three major body subdivisions: musculoskeletal system, skin, and pooled viscera analyzed for fat, water, solids, and six elements. These results, expressed as percentages of the fat-free body or its components, were compared with two groups of terrestrial controls: one subjected to a flight simulation in a spacecraft mock-up and the other under standard vivarium conditions. Relative to the control groups the flight group showed 1) a reduced fraction of total body water, 2) a net shift of body water from skin to viscera, 3) a marked diminution in fraction of extracellular water in the fat-free body, 4) a marked reduction in fraction of bone mineral, 5) no change in the quantity of stored fat or adrenal masses, and 6) a net increase in total muscle mass as indicated by total body creatine, protein, and body cell mass.

  15. [Analysis of the body composition of Spanish women with fibromyalgia].

    PubMed

    Aparicio, Virginia A; Ortega, Francisco B; Heredia, José M; Carbonell-Baeza, Ana; Delgado-Fernández, Manuel

    2011-01-01

    To describe the anthropometric profile and body composition of women from Southern Spain diagnosed with fibromyalgia (FM) and to compare the observed values with values from other studies conducted on FM patients and with national reference values. The body composition of 104 women diagnosed with FM was assessed using an eight-electrode impedance meter. The reliability of the body composition measurement was tested in a randomly selected sub-sample (n=28). The reliability study showed a test-retest systematic error close to zero in most of the parameters studied. The women with FM who were studied had a mean weight of 71.3±13.4 kg, height of 158±6 cm, body mass index of 28.6±5.1 kg/m(2), body fat mass of 38.6±7.6%, total body water of 31.6±3.8 l and muscle mass of 23.4±3.0 kg. In general, there were no substantial differences in weight and body mass index between women with FM and those analyzed in other Spanish and European studies involving FM patients, nor when they were compared with regional or national reference values. However, the prevalence of obesity in the women with FM under study was 33.7%, a higher figure than that from the national reference data for obesity in similarly aged women (i.e. 26,4%). The results suggest that obesity is a common condition in women diagnosed with FM, its prevalence in this population being higher than the national reference values. This study provides detailed information about the body composition characteristics of women with FM. Copyright © 2010 Elsevier España, S.L. All rights reserved.

  16. Determination of carcass and body fat compositions of grazing crossbred bulls using body measurements.

    PubMed

    Fernandes, H J; Tedeschi, L O; Paulino, M F; Paiva, L M

    2010-04-01

    The objectives of this study were to analyze body measurements of 40 crossbred bulls grazing low quality forage with different supplementation strategies, to estimate interrelationships among those measurements and carcass and body compositions, and to develop systems of equations to predict body fat using body and carcass measurements. Eight animals were slaughtered at the beginning of the experiment, and the remaining animals were slaughtered at 90 or 220 d. The biometric measures (BM) were obtained the day before the slaughter and included hook width, pin width, pelvic girdle length, rump depth, rump height, abdomen width, body length, height at withers, rib depth, girth, and body diagonal length. Other measurements included full, shrunk, and empty BW; internal physical and chemical fats; body volume; body area; carcass weight; 9th- to 11th-rib section weight and composition; fat thickness; subcutaneous fat; intermuscular fat; carcass chemical fat; and empty body physical and chemical fats. The relationships between BM and body components were evaluated, and equations to predict body area, body volume, subcutaneous fat, and carcass and body physical and chemical fat were developed. Biological interpretations of the parameter estimates of equations were similar to those found in the literature such as a ratio of 1 kg of subcutaneous fat to 1.6 kg of intermuscular fat and a deposit of 72 to 76% of body fat in the carcass. The first system used to predict carcass and empty body physical and chemical fat was devised using in vivo information, whereas the second system used BW and the 9th- to 11th-rib fat weight. Our results indicated the combination of BW, carcass traits, and BM was precise and accurate in estimating carcass and body fat composition of backgrounding bulls. The second system had better adequacy statistics [r(2) > 0.92, concordance correlation coefficient (CCC) > 0.957, and root mean square error (RMSE) < 14.4% of the average observed value] compared

  17. Variations in Urine Calcium Isotope: Composition Reflect Changes in Bone Mineral Balance in Humans

    NASA Technical Reports Server (NTRS)

    Skulan, Joseph; Anbar, Ariel; Bullen, Thomas; Puzas, J. Edward; Shackelford, Linda; Smith, Scott M.

    2004-01-01

    Changes in bone mineral balance cause rapid and systematic changes in the calcium isotope composition of human urine. Urine from subjects in a 17 week bed rest study was analyzed for calcium isotopic composition. Comparison of isotopic data with measurements of bone mineral density and metabolic markers of bone metabolism indicates the calcium isotope composition of urine reflects changes in bone mineral balance. Urine calcium isotope composition probably is affected by both bone metabolism and renal processes. Calcium isotope. analysis of urine and other tissues may provide information on bone mineral balance that is in important respects better than that available from other techniques, and illustrates the usefulness of applying geochemical techniques to biomedical problems.

  18. Biomimetic composite scaffolds containing bioceramics and collagen/gelatin for bone tissue engineering - A mini review.

    PubMed

    Kuttappan, Shruthy; Mathew, Dennis; Nair, Manitha B

    2016-12-01

    Bone is a natural composite material consisting of an organic phase (collagen) and a mineral phase (calcium phosphate, especially hydroxyapatite). The strength of bone is attributed to the apatite, while the collagen fibrils are responsible for the toughness and visco-elasticity. The challenge in bone tissue engineering is to develop such biomimetic composite scaffolds, having a balance between biological and biomechanical properties. This review summarizes the current state of the field by outlining composite scaffolds made of gelatin/collagen in combination with bioactive ceramics for bone tissue engineering application.

  19. Body composition and risk for metabolic alterations in female adolescents

    PubMed Central

    de Faria, Eliane Rodrigues; Gontijo, Cristiana Araújo; Franceschini, Sylvia do Carmo C.; Peluzio, Maria do Carmo G.; Priore, Silvia Eloiza

    2014-01-01

    OBJECTIVE: To study anthropometrical and body composition variables as predictors of risk for metabolic alterations and metabolic syndrome in female adolescents. METHODS: Biochemical, clinical and corporal composition data of 100 adolescents from 14 to 17 years old, who attended public schools in Viçosa, Southeastern Brazil, were collected. RESULTS: Regarding nutritional status, 83, 11 and 6% showed eutrophia, overweight/obesity and low weight, respectively, and 61% presented high body fat percent. Total cholesterol presented the highest percentage of inadequacy (57%), followed by high-density lipoprotein (HDL - 50%), low-density lipoprotein (LDL - 47%) and triacylglycerol (22%). Inadequacy was observed in 11, 9, 3 and 4% in relation to insulin resistance, fasting insulin, blood pressure and glycemia, respectively. The highest values of the fasting insulin and the Homeostasis Model Assessment-Insulin Resistance (HOMA-IR) were verified at the highest quartiles of body mass index (BMI), waist perimeter, waist-to-height ratio and body fat percent. Body mass index, waist perimeter, and waist-to-height ratio were the better predictors for high levels of HOMA-IR, blood glucose and fasting insulin. Waist-to-hip ratio was associated to arterial hypertension diagnosis. All body composition variables were effective in metabolic syndrome diagnosis. CONCLUSIONS: Waist perimeter, BMI and waist-to-height ratio showed to be good predictors for metabolic alterations in female adolescents and then should be used together for the nutritional assessment in this age range. PMID:25119752

  20. Determination of body composition from skinfold thickness: a validation study.

    PubMed Central

    Reilly, J J; Wilson, J; Durnin, J V

    1995-01-01

    Measurement of body composition is proving increasingly important in clinical nutrition and research. Skinfold thickness is a simple means of estimating body composition which is widely used in children, but there is little information on its validity. There has been a proliferation of equations for estimation of body composition from skinfolds, but some doubt as to their general applicability. The aim of the present study was to validate five currently used equations for this purpose in a sample of 98 healthy prepubertal children (64 boys, 34 girls), mean (SD) age 9.1 (1.7) years by comparison of estimates from each equation with measurements of fatness derived from hydrodensitometry. Differences between methods were determined by calculation of biases and limits of agreement. Limits of agreement between predicted and measured fatness were wide, particularly in the girls, and some distinct biases were apparent. Choice of prediction equation therefore has a substantial influence on the estimate of fatness obtained when using skinfolds in children. The existing published equations are associated with large random errors or significant systematic errors. For the time being skinfolds might best be regarded as indices (rather than measures) of body fatness in individuals, or means of estimating body fatness of groups. Estimating the total body fatness of individual prepubertal children using skinfolds, on the basis of this evidence, is not advisable at present. PMID:7492193

  1. Precision Error in Dual-Energy X-Ray Absorptiometry Body Composition Measurements in Elite Male Rugby League Players.

    PubMed

    Barlow, Matthew J; Oldroyd, Brian; Smith, Debbie; Lees, Matthew J; Brightmore, Amy; Till, Kevin; Jones, Benjamin; Hind, Karen

    2015-01-01

    Body composition analysis using dual-energy X-ray absorptiometry (DXA) is becoming increasingly popular in both clinical and sports science settings. Obesity, characterized by high fat mass (FM), is associated with larger precision errors; however, precision error for athletic groups with high levels of lean mass (LM) are unclear. Total (TB) and regional (limbs and trunk) body composition were determined from 2 consecutive total body scans (GE Lunar iDXA) with re-positioning in 45 elite male rugby league players (age: 21.8 ± 5.4 yr; body mass index: 27.8 ± 2.5 kg m(-1)). The root mean squared standard deviation (percentage co-efficient of variation) were TB