Sample records for bone body composition

  1. Growth, body composition, and bone density following pediatric liver transplantation.

    PubMed

    Sheikh, Amin; Cundy, Tim; Evans, Helen Maria

    2018-04-24

    Patients transplanted for cholestatic liver disease are often significantly fat-soluble vitamin deficient and malnourished pretransplant, with significant corticosteroid exposure post-transplant, with increasing evidence of obesity and metabolic syndrome post-LT. Our study aimed to assess growth, body composition, and BMD in patients post-pediatric LT. Body composition and bone densitometry scans were performed on 21 patients. Pre- and post-transplant anthropometric data were analyzed. Bone health was assessed using serum ALP, calcium, phosphate, and procollagen-1-N-peptide levels. Median ages at transplant and at this assessment were 2.7 and 10.6 years, respectively. Physiological markers of bone health, median z-scores for total body, and lumbar spine aBMD were normal. Bone area was normal for height and BMAD at L3 was normal for age, indicating, respectively, normal cortical and trabecular bone accrual. Median z-scores for weight, height, and BMI were 0.6, -0.9, 1.8 and 0.6, 0.1, 0.8 pre- and post-transplant, respectively. Total body fat percentages measured on 21 body composition scans revealed 2 underweight, 7 normal, 6 overweight, and 6 obese. Bone mass is preserved following pediatric LT with good catch-up height. About 52% of patients were either overweight/obese post-transplant, potentially placing them at an increased risk of metabolic syndrome and its sequelae in later life. BMI alone is a poor indicator of nutritional status post-transplant. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. [Relationship between weight, body composition and bone mass in peritoneal dialysis].

    PubMed

    Negri, A L; Barone, R; Bogado, C E; Zanchetta, J R

    2005-01-01

    Patients in chronic dialysis show a decrease in total bone mass. The factors that determine this decrease are not well known. In normal populations weight and its compartments are important determinants of bone mass. We studied total bone mineral content (TBMC), a measure of bone mass, and body composition using DEXA densitometry in 65 patients (45 females and 20 males) who had been in peritoneal dialysis for a mean of 40.3 +/- 23.2 months. Forty-eight patients (73.8%) had been previously in hemodialysis. The mean total time in dialysis for these patients was 76.8 months. As a group patients showed a very significant positive correlation between TBMC and weight, height, and lean body mass. A negative correlation was found between TBMC with the time in dialysis and iPTH. In men we found significant simple positive correlations between TBMC and weight, height and lean body mass. In women we found simple positive correlations of TBMC with weight, height and lean body mass and a negative correlation with iPTH. In the multiple regression analysis, lean body mass was the only body composition parameter that had a significantly positive correlation with TBMC in men; in women only height correlated positively with TBMC and iPTH continued to correlate negatively with bone mass. When we considered pre and postmenopausal women separately, bone mass was correlated positively with height and lean body mass and negatively with iPTH in postmenopausal women and only with height in pre-menopausal females. We conclude that the lean body mass compartment. is the most important component of weight that determines TBMC in peritoneal dialysis patients particularly in males and postmenopausal women. In postmenopausal women, secondary hyperparathyroidism seems to be particularly detrimental on bone mass.

  3. The relationships of irisin with bone mineral density and body composition in PCOS patients.

    PubMed

    Gao, Shanshan; Cheng, Yan; Zhao, Lingling; Chen, Yuxin; Liu, Yu

    2016-05-01

    Our study aims to assay the irisin level and investigate the relationships of irisin level with body mass index (BMI), body composition and bone metabolism in the polycystic ovary syndrome (PCOS) and control women. Fifty two PCOS and 39 control women were recruited. Serum sex hormone, fasting insulin and C-peptide were tested. Fasting serum irisin and adiponectin were measured with enzyme-linked immunosorbent assay. Body composition and bone mineral density were assayed by dual energy X-ray absorptiometry. Polycystic ovary syndrome women showed different body compositions compared with controls. Serum irisin level of PCOS did not show significant difference compared with controls although it was decreased. The level of adiponectin in PCOS patients was significantly reduced. BMI had no correlation with irisin level. It indicated a positive correlation between serum irisin levels and bone mineral density in the control group and a negative correlation in the PCOS group after BMI and age adjusted. Furthermore, total lean mass has a significant effect on irisin concentration in the PCOS group. There are no correlations between adiponection and body compositions and bone mineral density in both groups. The abnormal body composition in PCOS may contribute to the circulation irisin. The crosstalk of irisin in different organs was found and may be related to disease development in PCOS. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Body composition and bone mineral density of collegiate American football players

    PubMed Central

    Turnagöl, Hüseyin Hüsrev

    2016-01-01

    Abstract The aim of this study was to compare whole and segmental body composition and bone mineral density of collegiate American football players by playing positions. Forty collegiate American football players voluntarily participated in this study. Participants were categorized by playing positions into one of five categories i.e., defensive linemen, offensive linemen, defensive secondary players, offensive secondary players and receivers. Whole body composition and bone mineral density were measured by dual x-ray absorptiometry. Offensive and defensive linemen had higher body mass, a body mass index, lean mass and a fat mass index compared to the remaining three positions and a higher lean mass index compared to offensive secondary players and receivers. Offensive linemen had a higher body fat percentage and lower values of upper to lower lean mass than offensive and defensive secondary players and receivers, and higher total mass to the lean mass ratio and fat mass to the lean mass ratio compared to the other players. Offensive linemen had a higher fat mass index and fat mass to the lean mass ratio than defensive linemen. However, in all other measures they were similar. Offensive and defensive secondary players and receivers were similar with respect to the measured variables. Bone mineral density of the players was within the normal range and no difference in lean mass was observed between the legs. In conclusion, findings of this study showed that the total and segmental body composition profile of collegiate American football players reflected the demands of particular playing positions. PMID:28149373

  5. Proandrogenic and Antiandrogenic Progestins in Transgender Youth: Differential Effects on Body Composition and Bone Metabolism.

    PubMed

    Tack, Lloyd J W; Craen, Margarita; Lapauw, Bruno; Goemaere, Stefan; Toye, Kaatje; Kaufman, Jean-Marc; Vandewalle, Sara; T'Sjoen, Guy; Zmierczak, Hans-Georg; Cools, Martine

    2018-06-01

    Progestins can be used to attenuate endogenous hormonal effects in late-pubertal transgender (trans) adolescents (Tanner stage B4/5 and G4/5). Currently, no data are available on the effects of progestins on the development of bone mass or body composition in trans youth. To study prospectively the evolution of body composition and bone mass in late-pubertal trans adolescents using the proandrogenic or antiandrogenic progestins lynestrenol (L) and cyproterone acetate (CA), respectively. Forty-four trans boys (Tanner B4/5) and 21 trans girls (Tanner G4/5) were treated with L or CA for 11.6 (4 to 40) and 10.6 (5 to 31) months, respectively. Anthropometry, grip strength, body composition, and bone mass, size, and density were determined by dual-energy X-ray absorptiometry and peripheral quantitative computed tomography before the start of progestin and before addition of cross-sex hormones. Using L, lean mass [+3.2 kg (8.6%)] and grip strength [+3 kg (10.6%)] significantly increased, which coincided with a more masculine body shape in trans boys. Trans girls showed loss of lean mass [-2.2 kg (4.7%)], gain of fat mass [+1.5 kg (9.4%)], and decreased grip strength Z scores. CA limited normal bone expansion and impeded pubertal bone mass accrual, mostly at the lumbar spine [Z score: -0.765 to -1.145 (P = 0.002)]. L did not affect physiological bone development. Proandrogenic and antiandrogenic progestins induce body composition changes in line with the desired appearance within 1 year of treatment. Bone health, especially at the lumbar spine, is of concern in trans girls, as bone mass accrual is severely affected by androgen suppressive therapy.

  6. Body composition and bone mineral density of national football league players.

    PubMed

    Dengel, Donald R; Bosch, Tyler A; Burruss, T Pepper; Fielding, Kurt A; Engel, Bryan E; Weir, Nate L; Weston, Todd D

    2014-01-01

    The purpose of the present study was to examine the body composition of National Football League (NFL) players before the start of the regular season. Four hundred eleven NFL players were measured for height, weight and lean, fat, and bone mass using dual-energy x-ray absorptiometry (DXA). Subjects were categorized by their offensive or defensive position for comparison. On average, positions that mirror each other (i.e., offensive lineman [OL] vs. defensive lineman [DL]) have very similar body composition. Although OL had more fat mass than DL, they were similar in total and upper and lower lean mass. Linebackers (LB) and running backs (RB) were similar for all measures of fat and lean mass. Tight ends were unique in that they were similar to RB and LB on measures of fat mass; however, they had greater lean mass than both RB and LB and upper-body lean mass that was similar to OL. Quarterbacks and punters/kickers were similar in fat and lean masses. All positions had normal levels of bone mineral density. The DXA allowed us to measure differences in lean mass between arms and legs for symmetry assessments. Although most individuals had similar totals of lean mass in each leg and or arms, there were outliers who may be at risk for injury. The data presented demonstrate not only differences in total body composition, but also show regional body composition differences that may provide positional templates.

  7. Body composition, adipokines, bone mineral density and bone remodeling markers in relation to IGF-1 levels in adults with Prader-Willi syndrome.

    PubMed

    van Nieuwpoort, I Caroline; Twisk, Jos W R; Curfs, Leopold M G; Lips, Paul; Drent, Madeleine L

    2018-01-01

    In patients with Prader-Willi syndrome (PWS) body composition is abnormal and alterations in appetite regulating factors, bone mineral density and insulin-like growth factor-1 (IGF-1) levels have been described. Studies in PWS adults are limited. In this study, we investigated body composition, appetite regulating peptides, bone mineral density and markers of bone remodeling in an adult PWS population. Furthermore, we investigated the association between these different parameters and IGF-1 levels because of the described similarities with growth hormone deficient patients. In this cross-sectional observational cohort study in a university hospital setting we studied fifteen adult PWS patients. Anthropometric and metabolic parameters, IGF-1 levels, bone mineral density and bone metabolism were evaluated. The homeostasis model assessment of insulin resistance (HOMA2-IR) was calculated. Fourteen healthy siblings served as a control group for part of the measurements. In the adult PWS patients, height, fat free mass, IGF-1 and bone mineral content were significantly lower when compared to controls; body mass index (BMI), waist, waist-to-hip ratio and fat mass were higher. There was a high prevalence of osteopenia and osteoporosis in the PWS patients. Also, appetite regulating peptides and bone remodelling markers were aberrant when compared to reference values. Measurements of body composition were significantly correlated to appetite regulating peptides and high-sensitive C-reactive protein (hs-CRP), furthermore HOMA was correlated to BMI and adipokines. In adults with Prader-Willi syndrome alterations in body composition, adipokines, hs-CRP and bone mineral density were demonstrated but these were not associated with IGF-1 levels. Further investigations are warranted to gain more insight into the exact pathophysiology and the role of these alterations in the metabolic and cardiovascular complications seen in PWS, so these complications can be prevented or treated as

  8. [EFFECTS IN BODY COMPOSITION AND BONE MINERAL DENSITY OF SIMULATE ALTITUDE PROGRAM IN TRIATHLETES].

    PubMed

    Ramos-Campo, Domingo Jesús; Rubio Arias, Jacobo Ángel; Jiménez Diaz, José Fernando

    2015-09-01

    body composition is an important factor to improve athletic performance. Futhermore, bone mineral density informs about the bone stiffness of the skeletal system. the aim of the present research was to analyze modifications on body composition and bone mineral density parameters after a seven week intermittent hypoxia training (IHT) program. eighteen male trained triathletes were divided in two groups: an intermittent hypoxia training group (GIHT: n: 9; 26.0 ± 6.7 years; 173.3 ± 5.9 cm; 66.4 ± 5.9 kg; VO2 max: 59.5 ± 5.0 ml/kg/min) that conducted a normoxic training plus an IHT and a control group (GC: n: 9; 29.3 ± 6.8 years; 174.9 ± 4.6 cm; 59.7 ± 6.8 kg; VO2 max: 58.9 ± 4.5 ml/kg/min) that performed only a normoxic training. Training process was standardized across the two groups. The IHT program consisted on two 60 minutes sessions per week at intensities over the anaerobic threshold and atmospheric conditions between 14.5 and 15% FiO2. Before and after the seven week training, body composition and bone mineral density were analyzed. After this training program, the GIHT showed lower values in free fat mass in upper limbs and fat mass in lower limbs (p < 0.05) than before the program. In terms of bone mineral density variables, between the two groups no changes were found. the addition of an IHT program to normoxic training caused an improvement in body composition parameters compared to similar training under normoxic conditions. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  9. Relation between body composition and bone mineral density in young undregraduate students with different nutritional status

    PubMed Central

    Rodrigues, Edil de Albuquerque; dos Santos, Marcos André Moura; da Silva, Amanda Tabosa Pereira; Farah, Breno Quintella; Costa, Manoel da Cunha; Campos, Florisbela de Arruda Camara e Siqueira; Falcão, Ana Patrícia Siqueira Tavares

    2016-01-01

    ABSTRACT Objective To investigate the relationship between total and segmental body fat, bone mineral density and bone mineral content in undergraduate students stratified according to nutritional status. Methods The study included 45 male undergraduate students aged between 20 and 30 years. Total and segmental body composition, bone mineral density and bone mineral content assessments were performed using dual energy X-ray absorptiometry. Subjects were allocated into three groups (eutrophic, overweight and obese). Results With the exception of upper limb bone mineral content, significantly higher (p<0.05) mean bone mineral density, bone mineral content, and relative body fat values were documented in the obese group. Total body and segmental relative body fat (lower limbs and trunk) were positively correlated (p<0.05) with bone mineral density in the overweight group. Upper limb fat was negatively correlated (p<0.05) with bone mineral content in the normal and eutrophic groups. Conclusion Total body and segmental body fat were correlated with bone mineral density and bone mineral content in male undergraduate students, particularly in overweight individuals. PMID:27074228

  10. Associations between body composition and bone density and structure in men and women across the adult age spectrum.

    PubMed

    Baker, Joshua F; Davis, Matthew; Alexander, Ruben; Zemel, Babette S; Mostoufi-Moab, Sogol; Shults, Justine; Sulik, Michael; Schiferl, Daniel J; Leonard, Mary B

    2013-03-01

    The objective of this study was to identify independent associations between body composition and bone outcomes, including cortical structure and cortical and trabecular volumetric bone mineral density (vBMD) across the adult age spectrum. This cross-sectional study evaluated over 400 healthy adults (48% male, 44% black race), ages 21-78years. Multivariable linear regression models evaluated associations between whole-body DXA measures of lean body mass index (LBMI) and fat mass index (FMI) and tibia peripheral quantitative CT (pQCT) measures of cortical section modulus, cortical and trabecular vBMD and muscle density (as a measure of intramuscular fat), adjusted for age, sex, and race. All associations reported below were statistically significant (p<0.05). Older age and female sex were associated with lower LBMI and muscle strength. Black race was associated with greater LBMI but lower muscle density. Greater FMI was associated with lower muscle density. Cortical section modulus was positively associated with LBMI and muscle strength and negatively associated with FMI. Adjustment for body composition eliminated the greater section modulus observed in black participants and attenuated the lower section modulus in females. Greater LBMI was associated with lower cortical BMD and greater trabecular BMD. FMI was not associated with either BMD outcome. Greater muscle density was associated with greater trabecular and cortical BMD. Associations between body composition and bone outcomes did not vary by sex (no significant tests for interaction). These data highlight age-, sex- and race-specific differences in body composition, muscle strength and muscle density, and demonstrate discrete associations with bone density and structure. These data also show that age-, sex- and race-related patterns of bone density and strength are independent of differences in body composition. Longitudinal studies are needed to examine the temporal relations between changes in bone and body

  11. Associations between Body Composition and Bone Density and Structure in Men and Women across the Adult Age Spectrum

    PubMed Central

    Baker, Joshua F.; Davis, Matthew; Alexander, Ruben; Zemel, Babette S.; Mostoufi-Moab, Sogol; Shults, Justine; Sulik, Michael; Schiferl, Daniel J.; Leonard, Mary B.

    2012-01-01

    Background/Purpose The objective of this study was identify independent associations between body composition and bone outcomes, including cortical structure and cortical and trabecular volumetric bone mineral density (vBMD) across the adult age spectrum. Methods This cross-sectional study evaluated over 400 healthy adults (48% male, 44% black race), ages 21–78 years. Multivariable linear regression models evaluated associations between whole-body DXA measures of lean body mass index (LBMI) and fat mass index (FMI) and tibia peripheral quantitative CT (pQCT) measures of cortical section modulus, cortical and trabecular vBMD and muscle density (as a measure of intramuscular fat), adjusted for age, sex, and race. All associations reported below were statistically significant (p < 0.05). Results Older age and female sex were associated with lower LBMI and muscle strength. Black race was associated with greater LBMI but lower muscle density. Greater FMI was associated with lower muscle density. Cortical section modulus was positively associated with LBMI and muscle strength and negatively associated with FMI. Adjustment for body composition eliminated the greater section modulus observed in black participants and attenuated the lower section modulus in females. Greater LBMI was associated with lower cortical BMD and greater trabecular BMD. FMI was not associated with either BMD outcome. Greater muscle density was associated with greater trabecular and cortical BMD. Associations between body composition and bone outcomes did not vary by sex (no significant tests for interaction). Conclusions These data highlight age, sex- and race-specific differences in body composition, muscle strength and muscle density, and demonstrate discrete associations with bone density and structure. These data also show that age, sex- and race- related patterns of bone density and strength are independent of differences in body composition. Longitudinal studies are needed to examine the

  12. The risk of eating disorders and bone health in young adults: the mediating role of body composition and fitness.

    PubMed

    Garrido-Miguel, Miriam; Torres-Costoso, Ana; Martínez-Andrés, María; Notario-Pacheco, Blanca; Díez-Fernández, Ana; Álvarez-Bueno, Celia; García-Prieto, Jorge Cañete; Martínez-Vizcaíno, Vicente

    2017-11-13

    To analyze the independent relationship between the risk of eating disorders and bone health and to examine whether this relationship is mediated by body composition and cardiorespiratory fitness (CRF). In this cross-sectional study, bone-related variables, lean mass, fat mass (by DXA), risk of eating disorders (SCOFF questionnaire), height, weight, waist circumference and CRF were measured in 487 university students aged 18-30 years from the University of Castilla-La Mancha, Spain. ANCOVA models were estimated to test mean differences in bone mass categorized by body composition, CRF or risk of eating disorders. Subsequently, linear regression models were fitted according to Baron and Kenny's procedures for mediation analysis. The marginal estimated mean ± SE values of total body bone mineral density for the categories "no risk of eating disorders" and "risk of eating disorders" were 1.239 ± 0.126 < 1.305 ± 0.089, P = 0.021. However, this relationship disappeared after adjustment for any of the parameters of body composition or CRF. Therefore, all body composition parameters (except for lean mass) and CRF turned out to be full mediators in the association between the risk of eating disorders and bone health in young adults. Body composition and CRF mediate the association between the risk of eating disorders and bone health. These findings highlight the importance of maintaining a healthy weight and good CRF for the prevention of the development of eating disorders and for the maintenance of good bone health in young adults. Level V, cross-sectional descriptive study.

  13. Veganism, bone mineral density, and body composition: a study in Buddhist nuns.

    PubMed

    Ho-Pham, L T; Nguyen, P L T; Le, T T T; Doan, T A T; Tran, N T; Le, T A; Nguyen, T V

    2009-12-01

    This cross-sectional study showed that, although vegans had lower dietary calcium and protein intakes than omnivores, veganism did not have adverse effect on bone mineral density and did not alter body composition. Whether a lifelong vegetarian diet has any negative effect on bone health is a contentious issue. We undertook this study to examine the association between lifelong vegetarian diet and bone mineral density and body composition in a group of postmenopausal women. One hundred and five Mahayana Buddhist nuns and 105 omnivorous women (average age = 62, range = 50-85) were randomly sampled from monasteries in Ho Chi Minh City and invited to participate in the study. By religious rule, the nuns do not eat meat or seafood (i.e., vegans). Bone mineral density (BMD) at the lumbar spine (LS), femoral neck (FN), and whole body (WB) was measured by DXA (Hologic QDR 4500). Lean mass, fat mass, and percent fat mass were also obtained from the DXA whole body scan. Dietary calcium and protein intakes were estimated from a validated food frequency questionnaire. There was no significant difference between vegans and omnivores in LSBMD (0.74 +/- 0.14 vs. 0.77 +/- 0.14 g/cm(2); mean +/- SD; P = 0.18), FNBMD (0.62 +/- 0.11 vs. 0.63 +/- 0.11 g/cm(2); P = 0.35), WBBMD (0.88 +/- 0.11 vs. 0.90 +/- 0.12 g/cm(2); P = 0.31), lean mass (32 +/- 5 vs. 33 +/- 4 kg; P = 0.47), and fat mass (19 +/- 5 vs. 19 +/- 5 kg; P = 0.77) either before or after adjusting for age. The prevalence of osteoporosis (T scores < or = -2.5) at the femoral neck in vegans and omnivores was 17.1% and 14.3% (P = 0.57), respectively. The median intake of dietary calcium was lower in vegans compared to omnivores (330 +/- 205 vs. 682 +/- 417 mg/day, P < 0.001); however, there was no significant correlation between dietary calcium and BMD. Further analysis suggested that whole body BMD, but not lumbar spine or femoral neck BMD, was positively correlated with the ratio of animal protein to vegetable protein. These

  14. Body composition and reproductive function exert unique influences on indices of bone health in exercising women.

    PubMed

    Mallinson, Rebecca J; Williams, Nancy I; Hill, Brenna R; De Souza, Mary Jane

    2013-09-01

    Reproductive function, metabolic hormones, and lean mass have been observed to influence bone metabolism and bone mass. It is unclear, however, if reproductive, metabolic and body composition factors play unique roles in the clinical measures of areal bone mineral density (aBMD) and bone geometry in exercising women. This study compares lumbar spine bone mineral apparent density (BMAD) and estimates of femoral neck cross-sectional moment of inertia (CSMI) and cross-sectional area (CSA) between exercising ovulatory (Ov) and amenorrheic (Amen) women. It also explores the respective roles of reproductive function, metabolic status, and body composition on aBMD, lumbar spine BMAD and femoral neck CSMI and CSA, which are surrogate measures of bone strength. Among exercising women aged 18-30 years, body composition, aBMD, and estimates of femoral neck CSMI and CSA were assessed by dual-energy x-ray absorptiometry. Lumbar spine BMAD was calculated from bone mineral content and area. Estrone-1-glucuronide (E1G) and pregnanediol glucuronide were measured in daily urine samples collected for one cycle or monitoring period. Fasting blood samples were collected for measurement of leptin and total triiodothyronine. Ov (n = 37) and Amen (n = 45) women aged 22.3 ± 0.5 years did not differ in body mass, body mass index, and lean mass; however, Ov women had significantly higher percent body fat than Amen women. Lumbar spine aBMD and BMAD were significantly lower in Amen women compared to Ov women (p < 0.001); however, femoral neck CSA and CSMI were not different between groups. E1G cycle mean and age of menarche were the strongest predictors of lumbar spine aBMD and BMAD, together explaining 25.5% and 22.7% of the variance, respectively. Lean mass was the strongest predictor of total hip and femoral neck aBMD as well as femoral neck CSMI and CSA, explaining 8.5-34.8% of the variance. Upon consideration of several potential osteogenic stimuli, reproductive function appears to play

  15. Mineralization behavior and interface properties of BG-PVA/bone composite implants in simulated body fluid.

    PubMed

    Ma, Yanxuan; Zheng, Yudong; Huang, Xiaoshan; Xi, Tingfei; Lin, Xiaodan; Han, Dongfei; Song, Wenhui

    2010-04-01

    Due to the non-bioactivity and poor conjunction performance of present cartilage prostheses, the main work here is to develop the bioactive glass-polyvinyl alcohol hydrogel articular cartilage/bone (BG-PVA/bone) composite implants. The essential criterion for a biomaterial to bond with living bone is well-matched mechanical properties as well as biocompatibility and bioactivity. In vitro studies on the formation of a surface layer of carbonate hydroxyl apatite (HCA) and the corresponding variation of the properties of biomaterials are imperative for their clinical application. In this paper, the mineralization behavior and variation of the interface properties of BG-PVA/bone composites were studied in vitro by using simulated body fluid (SBF). The mineralization and HCA layer formed on the interface between the BG-PVA hydrogel and bone in SBF could provide the composites with bioactivity and firmer combination. The compression property, shear strength and interface morphology of BG-PVA/bone composite implants varying with the immersion time in SBF were characterized. Also, the influence laws of the immersion time, content of BG in the composites and aperture of bones to the mineralization behavior and interface properties were investigated. The good mineralization behavior and enhanced conjunction performance of BG-PVA/bone composites demonstrated that this kind of composite implant might be more appropriate cartilage replacements.

  16. Serum myostatin in central south Chinese postmenopausal women: Relationship with body composition, lipids and bone mineral density.

    PubMed

    Ma, Yulin; Li, Xianping; Zhang, Hongbin; Ou, Yangna; Zhang, Zhimin; Li, Shuang; Wu, Feng; Sheng, Zhifeng; Liao, Eryuan

    2016-08-01

    Previous data suggest that myostatin has direct effects on the proliferation and differentiation of osteoprogenitor cells. The relationships between serum myostatin, body composition lipids and bone mineral density in postmenopausal women remain unclear. The aim of this study is to elucidate the relationships between serum myostatin, body composition, lipids and bone mineral density in central south Chinese postmenopausal women. A cross-sectional study was conducted in 175 healthy postmenopausal women, aged 51-75 years old. Bone mineral density (BMD) and body composition were measured by double energy X-ray absorptiometry (DXA). Serum myostatin, 25-dihydroxyvitamin D(25OH-D), parathyroid hormone (PTH), bone alkaline phosphatase (BAP) and carboxy-terminal telopeptide of type I collagen (CTX) were measured by enzyme-linked immunoabsorbent assay (ELISA). In contrast to the osteoporotic women, the women without osteoporosis had higher BMI, fat mass and lean mass (P<0.01). The osteoporotic women were older than women without osteoporosis (P<0.01). There were no differences between two groups with regard to serum BAP, CTX, (25OH-D), PTH, lipids and myostatin after adjusted by age. BMD at each site was positively correlated with age at menopause, fat mass and lean mass, and also negatively correlated with age and serum BAP. Serum myostatin was positively correlated with tryglicerides, not correlated with either body composition or BMD at each site. Our data indicated that serum myostatin concentration did not correlate with muscle and bone mass. Further studies are needed to demonstrate the role of myostatin in regulating the bone metabolism.

  17. Effects of dietary phytase on body weight gain, body composition and bone strength in growing rats fed a low-zinc diet.

    PubMed

    McClung, James P; Stahl, Chad H; Marchitelli, Louis J; Morales-Martinez, Nelson; Mackin, Katherine M; Young, Andrew J; Scrimgeour, Angus G

    2006-03-01

    Phytic acid, a major phosphorous storage compound found in foodstuffs, is known to form insoluble complexes with nutritionally essential minerals, including zinc (Zn). Phytases are enzymes that catalyze the removal of these minerals from phytic acid, improving their bioavailability. The objective of the present study was to determine the ability of dietary phytase to affect body weight, body composition, and bone strength in growing rats fed a high phytic acid, low Zn diet. Rats (n = 20) were fed either a control (AIN-93) or phytase supplemented (Natuphos, BASF, 1,500 phytase units (FTU)/kg) diet for a period of 8 weeks. Phytase supplementation resulted in increased (P<.05) bone and plasma Zn, but no change in plasma inorganic phosphorous or bone levels of Ca, Fe, or Mg. The addition of phytase to the diets resulted in a 22.4% increase (P<.05) in body weight at the end of the study as compared with rats fed a control diet. Dual x-ray absorptiometry (DXA) revealed that phytase supplementation resulted in increase lean body mass (LBM, P<.001) and increased bone mineral content (BMC, P<.001) as compared with feeding the control diet. Bone studies indicated that femurs and tibias from phytase supplemented rats had greater mass (P<.05) and were stronger (P<.05) than rats fed the control diet. This data suggest that the addition of phytase to low Zn diets results in improved Zn status, which may be responsible for beneficial effects on growth, body composition, and bone strength.

  18. Insights into relationships between body mass, composition and bone: findings in elite rugby players.

    PubMed

    Hind, Karen; Gannon, Lisa; Brightmore, Amy; Beck, Belinda

    2015-01-01

    Recent reports indicate that bone strength is not proportional to body weight in obese populations. Elite rugby players have a similar body mass index (BMI) to obese individuals but differ markedly with low body fat, high lean mass, and frequent skeletal exposure to loading through weight-bearing exercise. The purpose of this study was to determine relationships between body weight, composition, and bone strength in male rugby players characterized by high BMI and high lean mass. Fifty-two elite male rugby players and 32 nonathletic, age-matched controls differing in BMI (30.2 ± 3.2 vs 24.1 ± 2.1 kg/m²; p = 0.02) received 1 total body and one total hip dual-energy X-ray absorptiometry scan. Hip structural analysis of the proximal femur was used to determine bone mineral density (BMD) and cross-sectional bone geometry. Multiple linear regression was computed to identify independent variables associated with total hip and femoral neck BMD and hip structural analysis-derived bone geometry parameters. Analysis of covariance was used to explore differences between groups. Further comparisons between groups were performed after normalizing parameters to body weight and to lean mass. There was a trend for a positive fat-bone relationship in rugby players, and a negative relationship in controls, although neither reached statistical significance. Correlations with lean mass were stronger for bone geometry (r(2): 0.408-0.520) than for BMD (r(2): 0.267-0.293). Relative to body weight, BMD was 6.7% lower in rugby players than controls (p < 0.05). Rugby players were heavier than controls, with greater lean mass and BMD (p < 0.01). Relative to lean mass, BMD was 10%-14.3% lower in rugby players (p < 0.001). All bone geometry measures except cross-sectional area were proportional to body weight and lean mass. To conclude, BMD in elite rugby players was reduced in proportion to body weight and lean mass. However, their superior bone geometry suggests that overall bone strength

  19. Depressive symptoms, body composition and bone mass in young adults: a prospective cohort study.

    PubMed

    Zhu, K; Allen, K; Mountain, J; Lye, S; Pennell, C; Walsh, J P

    2017-04-01

    An association between depression and obesity is well recognised, but longitudinal studies of depressive symptoms in adolescents as a predictor of body composition are lacking. We examined depressive symptoms at age 14, 17 and 20 years as predictors of lean, fat and bone mass at age 20 years in a birth cohort. In 1161 participants (569 females) in the Western Australia Pregnancy Cohort (Raine) Study, depressive symptoms were assessed using the Beck Depression Inventory for Youth at age 14 and 17 years, and the Depression, Anxiety and Stress Scale 21 at age 20 years. Participants were further classified into two trajectories using latent class analysis: no/transient and persistent/recurrent depression. At age 20 years, lean body mass (LBM), fat body mass (FBM) and total body bone mass were measured by dual-energy X-ray absorptiometry. In females, accounting for age and lifestyle factors, depression scores at age 14 and 20 years were positively associated with body weight, body mass index (BMI), FBM and % FBM (r=0.110-0.184, P<0.05) but negatively correlated with % LBM (r=-0.120, P<0.05) at age 20 years. Females in the persistent/recurrent depression trajectory (n=99) had significantly higher body weight (+5.1 kg), BMI (+1.8 kg m -2 ), FBM (+3.9 kg) and % FBM (+2.2%) and significantly lower % LBM (-2.2%) at age 20 years than those with no/transient depression (n=470; all P<0.05). In males, depression scores at age 17 and 20 years were negatively associated with LBM but not weight or BMI, and depression trajectory was not a predictor of body composition at age 20 years. Depression scores and trajectories did not predict bone mass in either males or females. Depressive symptoms and persistent/recurrent depression in adolescence are predictors of greater adiposity at age 20 years in females, but not males, but do not predict bone mass in either gender.

  20. The effects of growth hormone treatment on bone mineral density and body composition in girls with turner syndrome.

    PubMed

    Ari, Mim; Bakalov, Vladimir K; Hill, Suvimol; Bondy, Carolyn A

    2006-11-01

    Many girls with Turner syndrome (TS) are treated with GH to increase adult height. In addition to promoting longitudinal bone growth, GH has effects on bone and body composition. The objective was to determine how GH treatment affects bone mineral density (BMD) and body composition in girls with TS. In a cross-sectional study, we compared measures of body composition and BMD by dual energy x-ray absorptiometry, and phalangeal cortical thickness by hand radiography in 28 girls with TS who had never received GH and 39 girls who were treated with GH for at least 1 yr. All girls were participants in a National Institutes of Health (NIH) Clinical Research Center (CRC) protocol between 2001 and 2006. The two groups were similar in age (12.3 yr, sd 2.9), bone age (11.5 yr, sd 2.6), and weight (42.8 kg, sd 16.6); but the GH-treated group was taller (134 vs. 137 cm, P = 0.001). The average duration of GH treatment was 4.2 (sd 3.2) yr (range 1-14 yr). After adjustment for size and bone age, there were no significant differences in BMD at L1-L4, 1/3 radius or cortical bone thickness measured at the second metacarpal. However, lean body mass percent was higher (P < 0.001), whereas body fat percent was lower (P < 0.001) in the GH-treated group. These effects were independent of estrogen exposure and were still apparent in girls that had finished GH treatment at least 1 yr previously. Although GH treatment has little effect on cortical or trabecular BMD in girls with TS, it is associated with increased lean body mass and reduced adiposity.

  1. Long-term effects of a ketogenic diet on body composition and bone mineralization in GLUT-1 deficiency syndrome: a case series.

    PubMed

    Bertoli, Simona; Trentani, Claudia; Ferraris, Cinzia; De Giorgis, Valentina; Veggiotti, Pierangelo; Tagliabue, Anna

    2014-06-01

    The only known treatment of glucose transporter 1 deficiency syndrome (GLUT-1 DS) is a ketogenic diet (KD), which provides the brain with an alternative fuel. Studies in children with intractable epilepsy have shown that a prolonged KD can induce a progressive loss of bone mineral content associated with poor bone health status, probably as a consequence of a chronic acidic environment. The aim of this study is to determine the long-term effects of a KD on body composition and bone mineral status of patients with GLUT-1 DS, is currently unknown. In this case series, we report the changes in body composition and bone mineral status observed in three adult patients with GLUT-1 DS who have been treated with a KD for more than 5 y. A long-term KD did not produce appreciable changes in weight and body composition of adults with GLUT-1 DS. Moreover, we found no evidence of potential adverse effects of a KD on bone health. In summary, this case series contributes to a small but growing body of literature that investigated the potential long-term effects of a KD on bone health. Our data suggest that maintaining a KD for more than 5 y does not pose any major negative effects on body composition, bone mineral content, and bone mineral density in adults with GLUT-1 DS, a finding that is at variance with previous reports focusing on children with intractable epilepsy. Further studies with larger sizes are needed to confirm and expand our findings. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Bone mineral density, body composition and bone turnover in patients with congenital hypogonadotropic hypogonadism.

    PubMed

    Laitinen, E-M; Hero, M; Vaaralahti, K; Tommiska, J; Raivio, T

    2012-08-01

    Patients with congenital hypogonadotropic hypogonadism (HH) may have reduced peak bone mass in early adulthood, and increased risk for osteoporosis despite long-term hormonal replacement therapy (HRT). To investigate the relationship between HRT history and measures of bone health in patients with HH, we recruited 33 subjects (24 men, nine women; mean age 39.8 years, range: 24.0-69.1) with congenital HH (Kallmann syndrome or normosmic HH). They underwent clinical examination, were interviewed and medical charts were reviewed. Twenty-six subjects underwent dual-energy X-ray absorptiometry for evaluation of BMD of lumbar spine, hip, femoral neck and whole body; body composition and vertebral morphology were evaluated in 22 and 23 subjects, respectively. Circulating PINP, ICTP and sex hormone levels were measured. HRT history clearly associated to bone health: BMDs of lumbar spine, femoral neck, hip and whole body were lower in subjects (n = 9) who had had long (≥5 years) treatment pauses or low dose testosterone (T) treatment as compared to subjects without such history (n = 17; all p-values < 0.05). In addition, fat mass and body mass index (BMI) were significantly higher in men with deficient treatment history (median fat mass: 37.5 vs. 23.1%, p = 0.005; BMI: 32.6 vs. 25.2 kg/m(2), p < 0.05). Serum PINP correlated with ICTP (r(s) = 0.61; p < 0.005) in men, but these markers correlated neither with circulating T, nor with serum estradiol levels in women. In conclusion, patients with congenital HH require life-long follow-up to avoid inadequate HRT, long treatment pauses and further morbidity. © 2012 The Authors. International Journal of Andrology © 2012 European Academy of Andrology.

  3. The impact of LRP5 polymorphism (rs556442) on calcium homeostasis, bone mineral density, and body composition in Iranian children.

    PubMed

    Ashouri, Elham; Meimandi, Elham Mahmoodi; Saki, Forough; Dabbaghmanesh, Mohammad Hossein; Omrani, Gholamhossein Ranjbar; Bakhshayeshkaram, Marzieh

    2015-11-01

    Failure to achieve optimal bone mass in childhood is the primary cause of decreased adult bone mineral density (BMD) and increased bone fragility in later life. Activating and inactivating LRP5 gene mutations has been associated with extreme bone-related phenotypes. Our aim was to investigate the role of LRP5 polymorphism on BMD, mineral biochemical parameters, and body composition in Iranian children. This cross-sectional study was performed on 9-18 years old children (125 boys, 137 girls). The serum level of calcium, phosphorous, alkaline phosphatase, and vitamin D parameters were checked. The body composition and BMD variables were measured by the Hologic system DXA. The rs566442 (V1119V) coding polymorphism in exon 15 of LRP5 was performed using PCR-RFLP method. Linear regression analysis, with adjustment for age, gender, body size parameters, and pubertal status was used to determine the association between LRP5 polymorphism (rs556442) and bone and body composition parameters. The allele frequency of the rs566442 gene was 35.5 % A and 63.9 % G. Our study revealed that LRP5 (rs556442) has not any significant influence on serum calcium, phosphorus, 25OHvitD, and serum alkaline phosphatase (P > 0.05). Total lean mass was greater in GG genotype (P = 0.028). Total body less head area (P = 0.044), spine BMD (P = 0.04), and total femoral BMC (P = 0.049) were lower in AG heterozygote genotype. This study show LRP5 polymorphism may associate with body composition and BMD in Iranian children. However, further investigations should be done to evaluate the role of other polymorphism.

  4. Effect of puberty on body composition.

    PubMed

    Loomba-Albrecht, Lindsey A; Styne, Dennis M

    2009-02-01

    Here we examine the effect of puberty on components of human body composition, including adiposity (total body fat, percentage body fat and fat distribution), lean body mass and bone mineral content and density. New methods and longitudinal studies have expended our knowledge of these remarkable changes. Human differences in adiposity, fat free mass and bone mass reflect differences in endocrine status (particularly with respect to estrogens, androgens, growth hormone and IGF-1), genetic factors, ethnicity and the environment. During puberty, males gain greater amounts of fat free mass and skeletal mass, whereas females acquire significantly more fat mass. Both genders reach peak bone accretion during the pubertal years, though males develop a greater skeletal mass. Body proportions and fat distribution change during the pubertal years as well, with males assuming a more android body shape and females assuming a more gynecoid shape. Pubertal body composition may predict adult body composition and affects both pubertal timing and future health. Sexual dimorphism exists to a small degree at birth, but striking differences develop during the pubertal years. The development of this dimorphism in body composition is largely regulated by endocrine factors, with critical roles played by growth hormone and gonadal steroids. It is important for clinicians and researchers to know the normal changes in order to address pathologic findings in disease states.

  5. Body Composition, Nutritional Profile and Muscular Fitness Affect Bone Health in a Sample of Schoolchildren from Colombia: The Fuprecol Study.

    PubMed

    Forero-Bogotá, Mónica Adriana; Ojeda-Pardo, Mónica Liliana; García-Hermoso, Antonio; Correa-Bautista, Jorge Enrique; González-Jiménez, Emilio; Schmidt-RíoValle, Jacqueline; Navarro-Pérez, Carmen Flores; Gracia-Marco, Luis; Vlachopoulos, Dimitris; Martínez-Torres, Javier; Ramírez-Vélez, Robinson

    2017-02-03

    The objective of the present study is to investigate the relationships between body composition, nutritional profile, muscular fitness (MF) and bone health in a sample of children and adolescents from Colombia. Participants included 1118 children and adolescents (54.6% girls). Calcaneal broadband ultrasound attenuation (c-BUA) was obtained as a marker of bone health. Body composition (fat mass and lean mass) was assessed using bioelectrical impedance analysis. Furthermore height, weight, waist circumference and Tanner stage were measured and body mass index (BMI) was calculated. Standing long-jump (SLJ) and isometric handgrip dynamometry were used respectively as indicators of lower and upper body muscular fitness. A muscular index score was also computed by summing up the standardised values of both SLJ and handgrip strength. Dietary intake and degree of adherence to the Mediterranean diet were assessed by a 7-day recall questionnaire for food frequency and the Kidmed questionnaire. Poor bone health was considered using a z -score cut off of ≤-1.5 standard deviation. Once the results were adjusted for age and Tanner stage, the predisposing factors of having a c-BUA z-score ≤-1.5 standard deviation included being underweight or obese, having an unhealthy lean mass, having an unhealthy fat mass, SLJ performance, handgrip performance, and unhealthy muscular index score. In conclusion, body composition (fat mass and lean body mass) and MF both influenced bone health in a sample of children and adolescents from Colombia. Thus promoting strength adaptation and preservation in Colombian youth will help to improve bone health, an important protective factor against osteoporosis in later life.

  6. Body Composition, Nutritional Profile and Muscular Fitness Affect Bone Health in a Sample of Schoolchildren from Colombia: The Fuprecol Study

    PubMed Central

    Forero-Bogotá, Mónica Adriana; Ojeda-Pardo, Mónica Liliana; García-Hermoso, Antonio; Correa-Bautista, Jorge Enrique; González-Jiménez, Emilio; Schmidt-RíoValle, Jacqueline; Navarro-Pérez, Carmen Flores; Gracia-Marco, Luis; Vlachopoulos, Dimitris; Martínez-Torres, Javier; Ramírez-Vélez, Robinson

    2017-01-01

    The objective of the present study is to investigate the relationships between body composition, nutritional profile, muscular fitness (MF) and bone health in a sample of children and adolescents from Colombia. Participants included 1118 children and adolescents (54.6% girls). Calcaneal broadband ultrasound attenuation (c-BUA) was obtained as a marker of bone health. Body composition (fat mass and lean mass) was assessed using bioelectrical impedance analysis. Furthermore height, weight, waist circumference and Tanner stage were measured and body mass index (BMI) was calculated. Standing long-jump (SLJ) and isometric handgrip dynamometry were used respectively as indicators of lower and upper body muscular fitness. A muscular index score was also computed by summing up the standardised values of both SLJ and handgrip strength. Dietary intake and degree of adherence to the Mediterranean diet were assessed by a 7-day recall questionnaire for food frequency and the Kidmed questionnaire. Poor bone health was considered using a z-score cut off of ≤−1.5 standard deviation. Once the results were adjusted for age and Tanner stage, the predisposing factors of having a c-BUA z-score ≤−1.5 standard deviation included being underweight or obese, having an unhealthy lean mass, having an unhealthy fat mass, SLJ performance, handgrip performance, and unhealthy muscular index score. In conclusion, body composition (fat mass and lean body mass) and MF both influenced bone health in a sample of children and adolescents from Colombia. Thus promoting strength adaptation and preservation in Colombian youth will help to improve bone health, an important protective factor against osteoporosis in later life. PMID:28165360

  7. [MINERAL BONE DENSITY AND BODY COMPOSITION IN PARTICIPANTS IN EXPERIMENT MARS-500].

    PubMed

    Novikov, V E; Oganov, V S; Kabitskaya, O E; Murashko, L M; Naidina, V P; Chernikhova, E A

    2016-01-01

    Investigations of the bone system and body composition in Mars-500 test-subjects (prior to and on completion of the experiment) involved dual-energy X-ray absorptiometry (DXA) using the HOLOGIC Delphy densitometer and the protocol performed to examine cosmonauts. Bone density of lumber vertebrae and femoral proximal epiphysis, and body composition were measured. Reliable changes in vertebral density found in 3 test-subjects displayed different trends from +2.6 to -2.4%. At the same time, the experiment decreased significantly mineral density of the femoral proximal epiphysis, including the neck, in all test-subjects. Four test-subjects had cranial mineralization increased by 5-9%, same as in some cosmonauts after space flight. All tests-subjects incurred adipose loss from 2 to 7 kg; one test-subject lost 20 kg, i.e. his adipose mass became three times less. Changes in lean mass (1-3 kg) typically were negative; as for changes in lean mass of extremities, they could be linked with adherence to one or another type of physical activity. Therefore, extended exposure to confinement may affect mineralization of some parts of the skeleton. Unlike real space missions and long-term bedrest studies conducted at the Institute of Biomedical Problems in the past, Mars-500 did not cause clinically significant mineral losses (osteoporosis, osteopenia), probably because of the absence of effects of microgravity.

  8. Body composition and skeletal health: too heavy? Too thin?

    PubMed

    Faje, Alexander; Klibanski, Anne

    2012-09-01

    The relationship between body composition and skeletal metabolism has received growing recognition. Low body weight is an established risk factor for fracture. The effect of obesity on skeletal health is less well defined. Extensive studies in patients with anorexia nervosa and obesity have illuminated many of the underlying biologic mechanisms by which body composition modulates bone mass. This review examines the relationship between body composition and bone mass through data from recent research studies throughout the weight spectrum ranging from anorexia nervosa to obesity.

  9. Associations among endocrine, inflammatory, and bone markers, body composition and weight loss induced bone loss.

    PubMed

    Labouesse, Marie A; Gertz, Erik R; Piccolo, Brian D; Souza, Elaine C; Schuster, Gertrud U; Witbracht, Megan G; Woodhouse, Leslie R; Adams, Sean H; Keim, Nancy L; Van Loan, Marta D

    2014-07-01

    Weight loss reduces co-morbidities of obesity, but decreases bone mass. Our aims were to (1) determine if adequate dairy intake attenuates weight loss-induced bone loss; (2) evaluate the associations of endocrine, inflammatory and bone markers, anthropometric and other parameters to bone mineral density and content (BMD, BMC) pre- and post-weight loss; and (3) model the contribution of these variables to post weight-loss BMD and BMC. Overweight/obese women (BMI: 28-37 kg/m2) were enrolled in an energy reduced (-500 kcal/d; -2092 kJ/d) diet with adequate dairy (AD: 3-4 servings/d; n=25, 32.2±8.8 years) or low dairy (LD: ≤1 serving/d; n=26, 31.7±8.4 years). BMD, BMC and body composition were measured by DXA. Bone markers (CTX, PYD, BAP, OC), endocrine (PTH, vitamin D, leptin, adiponectin, ghrelin, amylin, insulin, GLP-1, PAI-1, HOMA) and inflammatory markers (CRP, IL1-β, IL-6, IL-8, TNF-α, cortisol) were measured in serum or plasma. PA was assessed by accelerometry. Following weight loss, AD intake resulted in significantly greater (p=0.004) lumbar spine BMD and serum osteocalcin (p=0.004) concentration compared to LD. Pre- and post-body fat was negatively associated with hip and lumbar spine BMC (r=-0.28, p=0.04 to -0.45, p=0.001). Of note were the significant negative associations among bone markers and IL-1β, TNFα and CRP ranging from r = -0.29 (p=0.04) to r = -0.34 (p=0.01); magnitude of associations did not change with weight loss. Adiponectin was negatively related to change in osteocalcin. Factor analysis resulted in 8 pre- and post-weight loss factors. Pre-weight loss factors accounted for 13.7% of the total variance in pre-weight loss hip BMD; post-weight loss factors explained 19.6% of the total variance in post-weight loss hip BMD. None of the factors contributed to the variance in lumbar spine BMD. AD during weight loss resulted in higher lumbar spine BMD and osteocalcin compared to LD. Significant negative associations were observed between bone

  10. Physical performance in relation to body composition and bone mineral density in healthy, overweight, and obese postmenopausal women.

    PubMed

    Shin, Hyehyung; Liu, Pei-Yang; Panton, Lynn B; Ilich, Jasminka Z

    2014-01-01

    Diminished physical performance can be detrimental among the older adults, causing falls and subsequent fractures, loss of independence, and increased morbidity and mortality rates. Therefore, it is important to maintain functional ability from the early onset of aging. The purpose of this study was to investigate the relationship between physical performance measures and body composition (bone, fat, and lean mass) in healthy, overweight and obese, early postmenopausal white women. A total of 97 participants aged 56.0 (4.4) years (mean (SD)) with body mass index of 31.0 (4.6) kg/m(2) were included. Weight and height were recorded and 3 days of dietary records and physical activity were collected. Dual-energy x-ray absorptiometry measurements for body composition and bone mineral density were performed. Fasting blood samples were used for serum 25-hydroxy vitamin D (25OHD) analysis. Measures of physical performance included handgrip strength, 8-meter walking speed, one-leg-stance time, 8-foot Timed Get-Up-and-Go Test, and chair sit-to-stand test. Results showed that higher lean mass was related to better physical performance on items assessing body strength, including handgrip (r ranged from 0.22 to 0.25, P < .05) while higher body fat was related to the poorer physical performance in each of the assessed measures. Bone mineral density of the forearm was positively related to the handgrip strength (r = 0.207, P < .05). In regression analyses (controlled for age, weight, height, serum 25OHD status, calcium intake, physical activity, and smoking), fat mass of the lower extremities was inversely related to walking speed, one-leg-stance time, and Get-Up-and-Go measures, all crucial for mobility (r(2) = 0.13-0.23, P < .05). Overall, higher fat and lower lean mass was related to poorer physical performance, while forearm bone mineral density was related to the handgrip strength only. Further investigation may be beneficial for a better understanding of how body

  11. Relationship between body composition, body mass index and bone mineral density in a large population of normal, osteopenic and osteoporotic women.

    PubMed

    Andreoli, A; Bazzocchi, A; Celi, M; Lauro, D; Sorge, R; Tarantino, U; Guglielmi, G

    2011-10-01

    The knowledge of factors modulating the behaviour of bone mass is crucial for preventing and treating osteoporotic disease; among these factors, body weight (BW) has been shown to be of primary importance in postmenopausal women. Nevertheless, the relative effects of body composition indices are still being debated. Our aim was to analyze the relationship between body mass index (BMI), fat and lean mass and bone mineral density (BMD) in a large population of women. Moreover, this study represents a first important report on reference standard values for body composition in Italian women. Between 2005 and 2008, weight and height of 6,249 Italian women (aged 30-80 years) were measured and BMI was calculated; furthermore BMD, bone mineral content, fat and lean mass were measured by dual-energy X-ray absorptiometry. Individuals were divided into five groups by decades (group 1, 30.0-39.9; group 2, 40.0-49.9; group 3, 50.0-59.9; group 4, 60.0-69.9; group 5, 70.0-79.9). Differences among decades for all variables were calculated using a one-way analysis of variance (ANOVA) and Bonferroni test by the SPSS programme. Mean BW was 66.8±12.1 kg, mean height 159.1±6.3 cm and mean BMI 26.4±4.7 kg/m(2). According to BW and BMI, there was an increase of obesity with age, especially in women older than 50 years (p<0.001). Lean mass increased until 50 years of age but significantly decreased after this age (p<0.001). The percentage of osteopenia and osteoporosis in the examined population was 43.0% and 16.7%, respectively. Our data show that obesity significantly decreased the risk for osteoporosis but did not decrease the risk for osteopenia. It is strongly recommended that a strong policy regarding prevention of osteopenia and osteoporosis be commenced. An overall examination of our results suggests that both fat and lean body mass can influence bone mass and that their relative effect on bone could be modulated by their absolute amount and ratio to total BW.

  12. [Effect of high impact movements on body composition, strength and bone mineral density on women over 60 years].

    PubMed

    Ramírez-Villada, Jhon F; León-Ariza, Henry H; Argüello-Gutiérrez, Yenny P; Porras-Ramírez, Keyla A

    2016-01-01

    Osteoporosis is characterised by loss of bone mass and deterioration of bone tissue microarchitecture that leads to fragility related to the risk of fractures. The aim of the study is to analyse the effects of a training program based on explosive movements and impact, assessed in a swimming pool, on body composition, explosive strength and bone mineral density in women over 60 years old. A total of 35 healthy physically active women (60±4.19 years) were divided into a training pool group using multi jumps (JG) and a control group (CG). JG trained for 24 weeks, 3 times a week, an hour and a half per session. Body composition testing, explosive strength, and bone mineral density were assessed before and after the program. There were differences in the explosive force (JG vs CG=P<.05 to .001) and the estimated power (JG vs CG=P<.05 to .002) between JG vs CG, with significant increases in JG. There were no significant differences in the percentage of fat and lean mass, bone mineral density lumbar and femoral between groups, although slightly significant increases in bone mineral density lumbar and femoral could be seen in JG after program implementation (JG pre-test vs JG post- test=P<.05). The training program with impact and explosive movements assessed in a pool induces gains in muscle strength and power with slight adaptations in body mass index in women over 60 years. Copyright © 2015 SEGG. Published by Elsevier Espana. All rights reserved.

  13. Bone mineral density and body composition of the United States Olympic women's field hockey team

    PubMed Central

    Sparling, P. B.; Snow, T. K.; Rosskopf, L. B.; O'Donnell, E. M.; Freedson, P. S.; Byrnes, W. C.

    1998-01-01

    OBJECTIVE: To evaluate total bone mineral density (BMD) and body composition (% fat) in world class women field hockey players, members of the 1996 United States Olympic team. METHODS: Whole body BMD (g/cm2) and relative body fatness (% fat) were assessed by dual energy x ray absorptiometry using a Lunar DPX-L unit with software version 1.3z. Body composition was also estimated by hydrostatic weighing and the sum of seven skinfolds. Results: Mean (SD) BMD was 1.253 (0.048) g/cm2 which is 113.2 (4.0)% of age and weight adjusted norms. Estimates of body composition from the three methods were similar (statistically non- significant): 16.1 (4.4)% fat from dual energy x ray absorptiometry, 17.6 (3.2)% from hydrostatic weighing, and 16.9 (2.6)% from the sum of seven skinfolds. Mean fat free mass was approximately 50 kg. CONCLUSIONS: The mean whole body BMD value for members of the 1996 United States Olympic women's field hockey team is one of the highest reported for any women's sports team. Moreover, the mean fat free mass per unit height was quite high and % fat was low. In this group of world class sportswomen, low % fat was not associated with low BMD. 




 PMID:9865404

  14. Bodybuilders' body composition: effect of nandrolone decanoate.

    PubMed

    van Marken Lichtenbelt, Wouter D; Hartgens, Fred; Vollaard, Niels B J; Ebbing, Spike; Kuipers, Harm

    2004-03-01

    The use of androgenic-anabolic steroids (AAS) among bodybuilders to increase muscle mass is widespread. Nandrolone decanoate (ND) is one of the most popular misused AAS, although the effects on body composition are equivocal. Therefore, the purpose of this study was to determine the effect of ND on body composition in male bodybuilders, with special reference to muscle mass alterations. Using a randomized "double-blind" "placebo-controlled" design, 16 experienced male bodybuilders (age: 19-44 yr) either received ND (200 mg.wk(-1), intramuscularly) or placebo for 8 wk. Body composition was assessed using the four-component model, combining results from underwater weighing, dual-energy x-ray absorptiometry (DXA), and deuterium dilution. Total bone mineral content and density were measured using DXA. Water compartments (extracellular water [ECW] and intracellular water [ICW]) were determined using deuterium dilution and bromide dilution. ND administration resulted in significant increments of body mass (+2.2 kg), fat-free mass (FFM: +2.6 kg), and total body water (+1.4 kg). No significant changes in fat mass, percentage fat, ECW, ICW, ECW/ICW ratio, hydration of the FFM, and on bone mineral measurements were observed. The results show that the administration of 200 mg.wk(-1) of ND (intramuscularly) for 8 wk significantly increased body mass and FFM, whereas fat mass, bone mineral content, bone mineral density, and the hydration of the FFM remained unaffected. These data indicate that the changes can be attributed to an increase of muscle mass.

  15. Design of bone-integrating organic-inorganic composite suitable for bone repair.

    PubMed

    Miyazaki, Toshiki

    2013-01-01

    Several ceramics exhibit specific biological affinity, i.e. direct bone integration, when implanted in bony defects. They are called bioactive ceramics and utilized as important bone substitutes. However, there is limitation on clinical application, because of their inappropriate mechanical properties such as high Young's modulus and low fracture toughness. Novel bioactive materials exhibiting high machinability and flexibility have been desired in medical fields. Mixing bioactive ceramic powders and organic polymers have developed various organic-inorganic composites. Their mechanical property and bioactivity are mainly governed by the ceramics content. It is known that bioactive ceramics integrate with the bone through bone-like hydroxyapatite layer formed on their surfaces by chemical reaction with body fluid. This is triggered by a catalytic effect of various functional groups. On the basis of these facts, novel bioactive organic-inorganic nanocomposites have been developed. In these composites, inorganic components effective for triggering the hydroxyapatite nucleation are dispersed in polymer matrix at molecular level. Concept of the organic-inorganic composite is also applicable for providing polymethyl methacrylate (PMMA) bone cement with the bioactivity.

  16. Chitosan Composites for Bone Tissue Engineering—An Overview

    PubMed Central

    Venkatesan, Jayachandran; Kim, Se-Kwon

    2010-01-01

    Bone contains considerable amounts of minerals and proteins. Hydroxyapatite [Ca10(PO4)6(OH)2] is one of the most stable forms of calcium phosphate and it occurs in bones as major component (60 to 65%), along with other materials including collagen, chondroitin sulfate, keratin sulfate and lipids. In recent years, significant progress has been made in organ transplantation, surgical reconstruction and the use of artificial protheses to treat the loss or failure of an organ or bone tissue. Chitosan has played a major role in bone tissue engineering over the last two decades, being a natural polymer obtained from chitin, which forms a major component of crustacean exoskeleton. In recent years, considerable attention has been given to chitosan composite materials and their applications in the field of bone tissue engineering due to its minimal foreign body reactions, an intrinsic antibacterial nature, biocompatibility, biodegradability, and the ability to be molded into various geometries and forms such as porous structures, suitable for cell ingrowth and osteoconduction. The composite of chitosan including hydroxyapatite is very popular because of the biodegradability and biocompatibility in nature. Recently, grafted chitosan natural polymer with carbon nanotubes has been incorporated to increase the mechanical strength of these composites. Chitosan composites are thus emerging as potential materials for artificial bone and bone regeneration in tissue engineering. Herein, the preparation, mechanical properties, chemical interactions and in vitro activity of chitosan composites for bone tissue engineering will be discussed. PMID:20948907

  17. Changes in body composition and bone of female collegiate soccer players through the competitive season and off-season.

    PubMed

    Minett, M M; Binkley, T B; Weidauer, L A; Specker, B L

    2017-03-01

    To assess body composition and bone changes pre- to post-season (pre-post) and post- to off-season (post-off) in female soccer athletes (SC). Outcomes were assessed using DXA and pQCT in 23 SC and 17 controls at three times throughout season. SC, non-starters in particular, lost lean mass pre-post (-0.9±0.2 kg, p<0.01; not different from controls, p=0.2) and gained fat mass post-off (1.4±0.3 kg, p<0.01; differed from controls, p=0.01). Baseline femoral neck and hip aBMD were higher in SC than controls (both,p<0.04), but increased in controls more than SC in pre-post and decreased post-off. SC cortical bone mineral content (BMC), cortical area and periosteal circumference increased pre-post (all, p<0.01; differed from controls, p<0.05) and trabecular vBMD decreased post-off (-3.0±1.3 mg/cm 3 ; p=0.02; not different from controls, p=0.4). Both SC and controls increased cortical BMC, cortical area, and thickness post-off (all, p<0.01). Soccer players lost lean mass over the competitive season that was not recovered during off-season. Bone size increased pre- to post-season. Female soccer athletes experience body composition and bone geometry changes that differ depending on the time of season and on athlete's playing status. Evaluations of athletes at key times across the training season are necessary to understand changes that occur.

  18. Changes in body composition and bone of female collegiate soccer players through the competitive season and off-season

    PubMed Central

    Minett, M.M.; Binkley, T.B.; Weidauer, L.A.; Specker, B.L.

    2017-01-01

    Objectives: To assess body composition and bone changes pre- to post-season (pre-post) and post- to off-season (post-off) in female soccer athletes (SC). Methods: Outcomes were assessed using DXA and pQCT in 23 SC and 17 controls at three times throughout season. Results: SC, non-starters in particular, lost lean mass pre-post (-0.9±0.2 kg, p<0.01; not different from controls, p=0.2) and gained fat mass post-off (1.4±0.3 kg, p<0.01; differed from controls, p=0.01). Baseline femoral neck and hip aBMD were higher in SC than controls (both, p<0.04), but increased in controls more than SC in pre-post and decreased post-off. SC cortical bone mineral content (BMC), cortical area and periosteal circumference increased pre-post (all, p<0.01; differed from controls, p<0.05) and trabecular vBMD decreased post-off (-3.0±1.3 mg/cm3; p=0.02; not different from controls, p=0.4). Both SC and controls increased cortical BMC, cortical area, and thickness post-off (all, p<0.01). Conclusion: Soccer players lost lean mass over the competitive season that was not recovered during off-season. Bone size increased pre- to post-season. Female soccer athletes experience body composition and bone geometry changes that differ depending on the time of season and on athlete’s playing status. Evaluations of athletes at key times across the training season are necessary to understand changes that occur. PMID:28250243

  19. A multinational study to develop universal standardization of whole-body bone density and composition using GE Healthcare Lunar and Hologic DXA systems.

    PubMed

    Shepherd, John A; Fan, Bo; Lu, Ying; Wu, Xiao P; Wacker, Wynn K; Ergun, David L; Levine, Michael A

    2012-10-01

    Dual-energy x-ray absorptiometry (DXA) is used to assess bone mineral density (BMD) and body composition, but measurements vary among instruments from different manufacturers. We sought to develop cross-calibration equations for whole-body bone density and composition derived using GE Healthcare Lunar and Hologic DXA systems. This multinational study recruited 199 adult and pediatric participants from a site in the US (n = 40, ages 6 through 16 years) and one in China (n = 159, ages 5 through 81 years). The mean age of the participants was 44.2 years. Each participant was scanned on both GE Healthcare Lunar and Hologic Discovery or Delphi DXA systems on the same day (US) or within 1 week (China) and all scans were centrally analyzed by a single technologist using GE Healthcare Lunar Encore version 14.0 and Hologic Apex version 3.0. Paired t-tests were used to test the results differences between the systems. Multiple regression and Deming regressions were used to derive the cross-conversion equations between the GE Healthcare Lunar and Hologic whole-body scans. Bone and soft tissue measures were highly correlated between the GE Healthcare Lunar and Hologic and systems, with r ranging from 0.96 percent fat [PFAT] to 0.98 (BMC). Significant differences were found between the two systems, with average absolute differences for PFAT, BMC, and BMD of 1.4%, 176.8 g and 0.013 g/cm(2) , respectively. After cross-calibration, no significant differences remained between GE Healthcare Lunar measured results and the results converted from Hologic. The equations we derived reduce differences between BMD and body composition as determined by GE Healthcare Lunar and Hologic systems and will facilitate combining study results in clinical or epidemiological studies. Copyright © 2012 American Society for Bone and Mineral Research.

  20. Associations among Endocrine, Inflammatory, and Bone Markers, Body Composition and Physical Activity to Weight Loss Induced Bone Loss

    PubMed Central

    Labouesse, Marie A.; Gertz, Erik R.; Piccolo, Brian D.; Souza, Elaine C.; Schuster, Gertrud U.; Witbracht, Megan G.; Woodhouse, Leslie R.; Adams, Sean H.; Keim, Nancy L.; Van Loan, Marta D.

    2015-01-01

    INTRODUCTION Weight loss reduces co-morbidities of obesity, but decreases bone mass. PURPOSE Our aims were to 1) determine if adequate dairy intake attenuates weight loss-induced bone loss; 2) evaluate the associations of endocrine, inflammatory and bone markers, anthropometric and other parameters to bone mineral density and content (BMD, BMC) pre- and post-weight loss; 3) model the contribution of these variables to post weight-loss BMD and BMC METHODS Overweight/obese women (BMI: 28–37 kg/m2) were enrolled in an energy reduced (−500 kcal/d; −2092 kJ/d) diet with adequate dairy (AD: 3–4 servings/d; n=25, 32.2 ± 8.8y) or low dairy (LD: ≤ 1 serving/d; n=26, 31.7 ± 8.4 y). BMD, BMC and body composition were measured by DXA. Bone markers (CTX, PYD, BAP, OC), endocrine (PTH, vitamin D, leptin, adiponectin, ghrelin, amylin, insulin, GLP-1, PAI-1, HOMA) and inflammatory markers (CRP, IL1-β, IL-6, IL-8, TNF-α, cortisol) were measured in serum or plasma. PA was assessed by accelerometry. RESULTS Following weight loss, AD intake resulted in significantly greater (p= 0.004) lumbar spine BMD and serum osteocalcin (p=0.004) concentration compared to LD. Pre- and post- body fat were negatively associated with hip and lumbar spine BMC (r= −0.28, p=0.04 to −0.45, p=0.001). Of note were the significant negative associations among bone markers and IL-1β, TNFα and CRP ranging from r = −0.29 (p=0.04) to r = −0.34 (p=0.01); magnitude of associations did not change with weight loss. Adiponectin was negatively related to change in osteocalcin. Factor analysis resulted in 8 pre- and post-weight loss Factors. Pre-weight loss Factors accounted for 13.7% of the total variance in pre-weight loss hip BMD; post-weight loss Factors explained 19.6% of the total variance in post-weight loss hip BMD. None of the Factors contributed to the variance in lumbar spine BMD. CONCLUSION AD during weight loss resulted in higher lumbar spine BMD and osteocalcin compared to LD

  1. Aging human body: changes in bone, muscle and body fat with consequent changes in nutrient intake.

    PubMed

    JafariNasabian, Pegah; Inglis, Julia E; Reilly, Wendimere; Kelly, Owen J; Ilich, Jasminka Z

    2017-07-01

    Aging affects almost all physiological processes, but changes in body composition and body phenotype are most observable. In this review, we focus on these changes, including loss of bone and muscle and increase in body fat or redistribution of the latter, possibly leading to osteosarcopenic obesity syndrome. We also address low-grade chronic inflammation, prevalent in aging adults and a cause of many disorders including those associated with body composition. Changes in dietary intake and nutritional requirements of older individuals, that all may lead to some disturbances on tissue and organ levels, are discussed as well. Finally, we discuss the hormonal changes in the aging body, considering each of the tissues, bone, muscle and fat as separate endocrine organs, but yet in the continuous interface and communication with each other. Although there are still many unanswered questions in this field, this review will enable the readers to better understand the aging human body and measures needing to be implemented toward reducing impaired health and disability in older individuals. © 2017 Society for Endocrinology.

  2. Rowing performance, body composition, and bone mineral density outcomes in college-level rowers after a season of concurrent training.

    PubMed

    Young, Kaelin C; Kendall, Kristina L; Patterson, Kaitlyn M; Pandya, Priyanka D; Fairman, Ciaran M; Smith, Samuel W

    2014-11-01

    To assess changes in body composition, lumbar-spine bone mineral density (BMD), and rowing performance in college-level rowers over a competition season. Eleven Division I college rowers (mean ± SD 21.4 ± 3.7 y) completed 6 testing sessions throughout the course of their competition season. Testing included measurements of fat mass, bone-free lean mass (BFLM), body fat (%BF), lumbar-spine BMD, and 2000-m time-trial performance. After preseason testing, rowers participated in a periodized training program, with the addition of resistance training to the traditional aerobic-training program. Significant (P < .05) improvements in %BF, total mass, and BFLM were observed at midseason and postseason compared with preseason. Neither lumbar-spine BMD nor BMC significantly changed over the competitive season (P > .05). Finally, rowing performance (as measured by 2000-m time and average watts achieved) significantly improved at midseason and postseason compared with preseason. Our results highlight the efficacy of a seasonal concurrent training program serving to improve body composition and rowing performance, as measured by 2000-m times and average watts, among college-level rowers. Our findings offer practical applications for coaches and athletes looking to design a concurrent strength and aerobic training program to improve rowing performance across a season.

  3. Relationships between bone mineral density and new indices of body composition in young, sedentary men and women.

    PubMed

    Kęska, Anna; Lutosławska, Grażyna; Bertrandt, Jerzy; Sobczak, Małgorzata

    2018-03-14

    Data concerning the relationship between body fat and BMD are equivocal since both positive and negative effects have been noted. Recently, the index of fat mass (IFM) representing subjects with different body fat and similar lean mass and index of lean mass (ILM) representing subjects with different lean body mass and similar body fat, have been used to evaluate body composition effect on BMD in middle-aged women. This study aimed at determination of ILM and IFM association with BMD in young men and women. A total of 212 university students of Public Health (125 women and 87 men) participated in the study. Body composition was determined by the bioelectrical impedance method (BIA) using BC 418 MA equipment (Tanita Co., Japan). Fat mass and fat free mass were used to calculate ILM and IFM. Bone mineral density was measured on the wrist of the non-dominant hand using the DEXA method and EXA 3000 equipment (HFS Ltd., Korea). BMD was evaluated using Z-score, with values lower than -2.0 indicating inadequate BMD for subject chronological age. Exclusively in women, IFM was markedly and positively correlated with Z-score (r=0.366, P<0.001). In both genders, a significant relationship was found between ILM and Z-scores (r=0.420; p<0.001 and r=0.220; p<0.02 in men and women, respectively). Women with lower than median IFM but similar ILM, were characterized by significantly lower Z-scores vs. women with higher IFM (-1.016 vs. -0.512; p<0.001). Irrespective of gender, participants with higher ILM but similar IFM, were characterized by markedly higher Z-score vs. their counterparts with low ILM. The use of IFM and ILM in the present study, allowed the observation that in young adults lean body mass was associated with BMD, regardless of gender, while fat mass is significant for bone mineral density only in women.

  4. Scaling of human body composition to stature: new insights into body mass index.

    PubMed

    Heymsfield, Steven B; Gallagher, Dympna; Mayer, Laurel; Beetsch, Joel; Pietrobelli, Angelo

    2007-07-01

    Although Quetelet first reported in 1835 that adult weight scales to the square of stature, limited or no information is available on how anatomical body compartments, including adipose tissue (AT), scale to height. We examined the critical underlying assumptions of adiposity-body mass index (BMI) relations and extended these analyses to major anatomical compartments: skeletal muscle (SM), bone, residual mass, weight (AT+SM+bone), AT-free mass, and organs (liver, brain). This was a cross-sectional analysis of 2 body-composition databases: one including magnetic resonance imaging and dual-energy X-ray absorptiometry (DXA) estimates of evaluated components in adults (total n=411; organs=76) and the other a larger DXA database (n=1346) that included related estimates of fat, fat-free mass, and bone mineral mass. Weight, primary lean components (SM, residual mass, AT-free mass, and fat-free mass), and liver scaled to height with powers of approximately 2 (all P<0.001); bone and bone mineral mass scaled to height with powers >2 (2.31-2.48), and the fraction of weight as bone mineral mass was significantly (P<0.001) correlated with height in women. AT scaled weakly to height with powers of approximately 2, and adiposity was independent of height. Brain mass scaled to height with a power of 0.83 (P=0.04) in men and nonsignificantly in women; the fraction of weight as brain was inversely related to height in women (P=0.002). These observations suggest that short and tall subjects with equivalent BMIs have similar but not identical body composition, provide new insights into earlier BMI-related observations and thus establish a foundation for height-normalized indexes, and create an analytic framework for future studies.

  5. Development of high strength hydroxyapatite for bone tissue regeneration using nanobioactive glass composites

    NASA Astrophysics Data System (ADS)

    Shrivastava, Pragya; Dalai, Sridhar; Sudera, Prerna; Sivam, Santosh Param; Vijayalakshmi, S.; Sharma, Pratibha

    2013-02-01

    With an increasing demand of biocompatible bone substitutes for the treatment of bone diseases and bone tissue regeneration, bioactive glass composites are being tested to improvise the osteoconductive as well as osteoinductive properties. Nanobioactive glass (nBG) composites, having composition of SiO2 70 mol%, CaO 26 mol % and P2O5 4 mol% were prepared by Freeze drying method using PEG-PPG-PEG co-polymer. Polymer addition improves the mechanical strength and porosity of the scaffold of nBG. Nano Bioactive glass composites upon implantation undergo specific reactions leading to the formation of crystalline hydroxyapatite (HA). This is tested in vitro using Simulated Body Fluid (SBF). This high strength hydroxyapatite (HA) layer acts as osteoconductive in cellular environment, by acting as mineral base of bones, onto which new bone cells proliferate leading to new bone formation. Strength of the nBG composites as well as HA is in the range of cortical and cancellous bone, thus proving significant for bone tissue regeneration substitutes.

  6. Physical Activity, Physical Fitness, Body Composition, and Nutrition Are Associated with Bone Status in University Students

    PubMed Central

    Hervás, Gotzone; Ruiz-Litago, Fátima; Irazusta, Jon; Fernández-Atutxa, Ainhoa; Fraile-Bermúdez, Ana Belen; Zarrazquin, Idoia

    2018-01-01

    Understanding the modifiable factors that improve and maximize peak bone mass at an early age is necessary to design more effective intervention programs to prevent osteoporosis. To identify these modifiable factors, we analyzed the relationship of physical activity (PA), physical fitness, body composition, and dietary intake with bone stiffness index (SI), measured by quantitative ultrasonometry in young university students (18–21 years). Moderate-to-vigorous PA (MVPA) was the strongest predictor of SI (β = 0.184; p = 0.035). SI was most closely related with very vigorous PA in males (β = 0.288; p = 0.040) and with the number of steps/day in females (β = 0.319; p = 0.002). An association between thigh muscle and SI was consistent in both sexes (β = 0.328; p < 0.001). Additionally, extension maximal force was a bone SI predictor factor in females (β = 0.263; p = 0.016) independent of thigh muscle perimeter. Calcium intake was the only nutrition parameter that had a positive relationship with SI (R = 0.217; p = 0.022). However, it was not included as a predictor for SI in our regression models. This study identifies predictors of bone status in each sex and indicates that muscle and bone interrelate with PA and fitness in young adults. PMID:29320446

  7. Physical Activity, Physical Fitness, Body Composition, and Nutrition Are Associated with Bone Status in University Students.

    PubMed

    Hervás, Gotzone; Ruiz-Litago, Fátima; Irazusta, Jon; Fernández-Atutxa, Ainhoa; Fraile-Bermúdez, Ana Belen; Zarrazquin, Idoia

    2018-01-10

    Understanding the modifiable factors that improve and maximize peak bone mass at an early age is necessary to design more effective intervention programs to prevent osteoporosis. To identify these modifiable factors, we analyzed the relationship of physical activity (PA), physical fitness, body composition, and dietary intake with bone stiffness index (SI), measured by quantitative ultrasonometry in young university students (18-21 years). Moderate-to-vigorous PA (MVPA) was the strongest predictor of SI (β = 0.184; p = 0.035). SI was most closely related with very vigorous PA in males (β = 0.288; p = 0.040) and with the number of steps/day in females (β = 0.319; p = 0.002). An association between thigh muscle and SI was consistent in both sexes (β = 0.328; p < 0.001). Additionally, extension maximal force was a bone SI predictor factor in females (β = 0.263; p = 0.016) independent of thigh muscle perimeter. Calcium intake was the only nutrition parameter that had a positive relationship with SI ( R = 0.217; p = 0.022). However, it was not included as a predictor for SI in our regression models. This study identifies predictors of bone status in each sex and indicates that muscle and bone interrelate with PA and fitness in young adults.

  8. Box-modeling of bone and tooth phosphate oxygen isotope compositions as a function of environmental and physiological parameters.

    PubMed

    Langlois, C; Simon, L; Lécuyer, Ch

    2003-12-01

    A time-dependent box model is developed to calculate oxygen isotope compositions of bone phosphate as a function of environmental and physiological parameters. Input and output oxygen fluxes related to body water and bone reservoirs are scaled to the body mass. The oxygen fluxes are evaluated by stoichiometric scaling to the calcium accretion and resorption rates, assuming a pure hydroxylapatite composition for the bone and tooth mineral. The model shows how the diet composition, body mass, ambient relative humidity and temperature may control the oxygen isotope composition of bone phosphate. The model also computes how bones and teeth record short-term variations in relative humidity, air temperature and delta18O of drinking water, depending on body mass. The documented diversity of oxygen isotope fractionation equations for vertebrates is accounted for by our model when for each specimen the physiological and diet parameters are adjusted in the living range of environmental conditions.

  9. An Investigation Into the Differences in Bone Density and Body Composition Measurements Between 2 GE Lunar Densitometers and Their Comparison to a 4-Component Model.

    PubMed

    Watson, Laura P E; Venables, Michelle C; Murgatroyd, Peter R

    We describe a study to assess the precision of the GE Lunar iDXA and the agreement between the iDXA and GE Lunar Prodigy densitometers for the measurement of regional- and total-body bone and body composition in normal to obese healthy adults. We compare the whole-body fat mass by dual-energy X-ray absorptiometry (DXA) to measurements by a 4-component (4-C) model. Sixty-nine participants, aged 37 ± 12 yr, with a body mass index of 26.2 ± 5.1 kg/cm 2 , were measured once on the Prodigy and twice on the iDXA. The 4-C model estimated fat mass from body mass, total body water by deuterium dilution, body volume by air displacement plethysmography, and bone mass by DXA. Agreements between measurements made on the 2 instruments and by the 4-C model were analyzed by Bland-Altman and linear regression analyses. Where appropriate, translational cross-calibration equations were derived. Differences between DXA software versions were investigated. iDXA precision was less than 2% of the measured value for all regional- and whole-body bone and body composition measurements with the exception of arm fat mass (2.28%). We found significant differences between iDXA and Prodigy (p < 0.05) whole-body and regional bone, fat mass (FM), and lean mass, with the exception of hip bone mass, area and density, and spine area. Compared to iDXA, Prodigy overestimated FM and underestimated lean mass. However, compared to 4-C, iDXA showed a smaller bias and narrower limits of agreement than Prodigy. No significant differences between software versions in FM estimations existed. Our results demonstrate excellent iDXA precision. However, significant differences exist between the 2 GE Lunar instruments, Prodigy and iDXA measurement values. A divergence from the reference 4-C observations remains in FM estimations made by DXA even following the recent advances in technology. Further studies are particularly warranted in individuals with large FM contents. Copyright © 2017. Published

  10. Multivariate analysis of lifestyle, constitutive and body composition factors influencing bone health in community-dwelling older adults from Madeira, Portugal.

    PubMed

    Gouveia, Élvio Rúbio; Blimkie, Cameron Joseph; Maia, José António; Lopes, Carla; Gouveia, Bruna Raquel; Freitas, Duarte Luís

    2014-01-01

    This study describes the association between habitual physical activity (PA), other lifestyle/constitutive factors, body composition, and bone health/strength in a large sample of older adults from Madeira, Portugal. This cross-sectional study included 401 males and 401 females aged 60-79 years old. Femoral strength index (FSI) and bone mineral density (BMD) of the whole body, lumbar spine (LS), femoral neck (FN), and total lean tissue mass (TLTM) and total fat mass (TFM) were determined by dual-energy X-ray absorptiometry-DXA. PA was assessed during face-to-face interviews using the Baecke questionnaire and for a sub-sample by Tritrac accelerometer. Demographic and health history information were obtained by telephone interview through questionnaire. The relationship between habitual PA variables and bone health/strength indicators (whole body BMD, FNBMD, LSBMD, and FSI) investigated using Pearson product-moment correlation coefficient was similar for females (0.098≤r≤0.189) and males (0.104≤r≤0.105). Results from standard multiple regression analysis indicated that the primary and most significant predictors for FNBMD in both sexes were age, TLTM, and TFM. For LSBMD, the most significant predictor was TFM in men and TFM, age, and TLTM in females. Our regression model explained 8.3-14.2% and 14.8-29.6% of the total variance in LSBMD and FNBMD for males and females, respectively. This study suggests that habitual PA is minimally but positively associated with BMD and FSI among older adult males and females and that body composition factors like TLTM and TFM are the strongest determinants of BMD and FSI in this population. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Whole body BMC in pediatric Crohn disease: independent effects of altered growth, maturation, and body composition.

    PubMed

    Burnham, Jon M; Shults, Justine; Semeao, Edisio; Foster, Bethany; Zemel, Babette S; Stallings, Virginia A; Leonard, Mary B

    2004-12-01

    Whole body BMC was assessed in 104 children and young adults with CD and 233 healthy controls. CD was associated with significant deficits in BMC and lean mass, relative to height. Adjustment for lean mass eliminated the bone deficit in CD. Steroid exposure was associated with short stature but not bone deficits relative to height. Children with Crohn disease (CD) have multiple risk factors for impaired bone accrual. The confounding effects of poor growth and delayed maturation limit the interpretation of prior studies of bone health in CD. The objective of this study was to assess BMC relative to growth, body composition, and maturation in CD compared with controls. Whole body BMC and lean mass were assessed by DXA in 104 CD subjects and 233 healthy controls, 4-26 years of age. Multivariable linear regression models were developed to sequentially adjust for differences in skeletal size, pubertal maturation, and muscle mass. BMC-for-height z scores were derived to determine CD-specific covariates associated with bone deficits. Subjects with CD had significantly lower height z score, body mass index z score, and lean mass relative to height compared with controls (all p < 0.0001). After adjustment for group differences in age, height, and race, the ratio of BMC in CD relative to controls was significantly reduced in males (0.86; 95% CI, 0.83, 0.94) and females (0.91; 95% CI, 0.85, 0.98) with CD. Adjustment for pubertal maturation did not alter the estimate; however, addition of lean mass to the model eliminated the bone deficit. Steroid exposure was associated with short stature but not bone deficits. This study shows the importance of considering differences in body size and composition when interpreting DXA data in children with chronic inflammatory conditions and shows an association between deficits in muscle mass and bone in pediatric CD.

  12. Body Composition and Bone Mineral Density of Division 1 Collegiate Football Players, a Consortium of College Athlete Research (C-CAR) Study.

    PubMed

    Bosch, Tyler A; Carbuhn, Aaron; Stanforth, Philip R; Oliver, Jonathan M; Keller, Kathryn A; Dengel, Donald R

    2017-03-08

    The purpose of the present study was to generate normative data for total and regional body composition in Division 1 collegiate football players using dual-energy X-ray absorptiometry (DXA) and examine positional differences in total and regional measurements. Data was used from the Consortium of College Athlete Research (C-CAR) group. Four hundred-sixty-seven players were included in this study. Height, weight, total and regional fat mass, lean mass and bone mineral density were measured in each athlete in the preseason (June-August). Players were categorized by their offensive or defensive position for comparisons. Linemen tended to have the higher fat and lean mass measures (p<0.05 for all) compared to other positions. Positions that mirror each other (ex. Linemen) had similar body composition and body ratios. All positions were classified as overweight or obese based on BMI (>25 kg/m), yet other than offensive and defensive linemen, all positions had healthy percent body fat (13-20%) and low visceral fat mass (<500 g). The data presented here provide normative positional data for total and regional fat mass, lean mass, and bone density in Division 1 collegiate football players. Player position had a significant effect on body composition measures and is likely associated with on-field positional requirements. From a player health perspective, even though all positions had relatively high BMI values, the majority of positions had relatively low body fat and visceral fat, which is important for the health of players during and after their playing career. The increased accuracy and reliability of DXA provides greater information regarding positional differences in college football players compared to other methods.

  13. Bioactive nanoparticle-gelatin composite scaffold with mechanical performance comparable to cancellous bones.

    PubMed

    Wang, Chen; Shen, Hong; Tian, Ye; Xie, Yue; Li, Ailing; Ji, Lijun; Niu, Zhongwei; Wu, Decheng; Qiu, Dong

    2014-08-13

    Mechanical properties are among the most concerned issues for artificial bone grafting materials. The scaffolds used for bone grafts are either too brittle (glass) or too weak (polymer), and therefore composite scaffolds are naturally expected as the solution. However, despite the intensive studies on composite bone grafting materials, there still lacks a material that could be matched to the natural cancellous bones. In this study, nanosized bioactive particles (BP) with controllable size and good colloidal stability were used to composite with gelatin, forming macroporous scaffolds. It was found that the mechanical properties of obtained composite scaffolds, in terms of elastic modulus, compressive strength, and strain at failure, could match to that of natural cancellous bones. This is ascribed to the good distribution of particle in matrix and strong interaction between particle and gelatin. Furthermore, the incorporation of BPs endues the composite scaffolds with bioactivity, forming HA upon reacting with simulated body fluid (SBF) within days, thus stimulating preosteoblasts attachment, growth, and proliferation in these scaffolds. Together with their good mechanical properties, these composite scaffolds are promising artificial bone grating materials.

  14. Association between Human Body Composition and Periodontal Disease.

    PubMed

    Salekzamani, Yagoub; Shirmohammadi, Adileh; Rahbar, Mohammad; Shakouri, Seyed-Kazem; Nayebi, Farough

    2011-01-01

    Obesity in humans might increase the risk of periodontitis. The aim of the present study was to examine the relationship between body composition of males and their periodontal status. AS total of 150 males (aged 30-60) were selected: 31 were periodontally healthy, 45 had gingivitis, 39 had initial periodontitis, and 35 suffered from established periodontitis. BMI (body mass index), WC (waist circumference), and body composition parameters (consisting of body water, body fat, and skeletal muscle and bone mass) were measured. After adjusting for age, history of diabetes, smoking, physical activity status, and socioeconomic status, statistically significant correlations were found between periodontitis and BMI, WC, and body composition. There was only a statistically significant difference between the periodontal health and established periodontitis; that is, periodontal disease in mild forms (gingivitis) and initial periodontitis do not influence these variables (BMI, WC, and body composition parameters) and only the severe form of the disease influences the variables. These data suggest that there is a considerable association between severe forms of periodontal disease in males and their body composition, but this preliminary finding needs to be confirmed in more extensive studies.

  15. Scaling of human body composition to stature: new insights into body mass index 123

    PubMed Central

    Heymsfield, Steven B; Gallagher, Dympna; Mayer, Laurel; Beetsch, Joel; Pietrobelli, Angelo

    2009-01-01

    Background Although Quetelet first reported in 1835 that adult weight scales to the square of stature, limited or no information is available on how anatomical body compartments, including adipose tissue (AT), scale to height. Objective We examined the critical underlying assumptions of adiposity–body mass index (BMI) relations and extended these analyses to major anatomical compartments: skeletal muscle (SM), bone, residual mass, weight (AT+SM+bone), AT-free mass, and organs (liver, brain). Design This was a cross-sectional analysis of 2 body-composition databases: one including magnetic resonance imaging and dual-energy X-ray absorptiometry (DXA) estimates of evaluated components in adults (total n = 411; organs = 76) and the other a larger DXA database (n = 1346) that included related estimates of fat, fat-free mass, and bone mineral mass. Results Weight, primary lean components (SM, residual mass, AT-free mass, and fat-free mass), and liver scaled to height with powers of ≈2 (all P < 0.001); bone and bone mineral mass scaled to height with powers > 2 (2.31–2.48), and the fraction of weight as bone mineral mass was significantly (P < 0.001) correlated with height in women. AT scaled weakly to height with powers of ≈2, and adiposity was independent of height. Brain mass scaled to height with a power of 0.83 (P = 0.04) in men and nonsignificantly in women; the fraction of weight as brain was inversely related to height in women (P = 0.002). Conclusions These observations suggest that short and tall subjects with equivalent BMIs have similar but not identical body composition, provide new insights into earlier BMI-related observations and thus establish a foundation for height-normalized indexes, and create an analytic framework for future studies. PMID:17616766

  16. Relationship between body mass, lean mass, fat mass, and limb bone cross-sectional geometry: Implications for estimating body mass and physique from the skeleton.

    PubMed

    Pomeroy, Emma; Macintosh, Alison; Wells, Jonathan C K; Cole, Tim J; Stock, Jay T

    2018-05-01

    Estimating body mass from skeletal dimensions is widely practiced, but methods for estimating its components (lean and fat mass) are poorly developed. The ability to estimate these characteristics would offer new insights into the evolution of body composition and its variation relative to past and present health. This study investigates the potential of long bone cross-sectional properties as predictors of body, lean, and fat mass. Humerus, femur and tibia midshaft cross-sectional properties were measured by peripheral quantitative computed tomography in sample of young adult women (n = 105) characterized by a range of activity levels. Body composition was estimated from bioimpedance analysis. Lean mass correlated most strongly with both upper and lower limb bone properties (r values up to 0.74), while fat mass showed weak correlations (r ≤ 0.29). Estimation equations generated from tibial midshaft properties indicated that lean mass could be estimated relatively reliably, with some improvement using logged data and including bone length in the models (minimum standard error of estimate = 8.9%). Body mass prediction was less reliable and fat mass only poorly predicted (standard errors of estimate ≥11.9% and >33%, respectively). Lean mass can be predicted more reliably than body mass from limb bone cross-sectional properties. The results highlight the potential for studying evolutionary trends in lean mass from skeletal remains, and have implications for understanding the relationship between bone morphology and body mass or composition. © 2018 The Authors. American Journal of Physical Anthropology Published by Wiley Periodicals, Inc.

  17. Bone mineral density and body composition of collegiate modern dancers.

    PubMed

    Friesen, Karlie J; Rozenek, Ralph; Clippinger, Karen; Gunter, Kathy; Russo, Albert C; Sklar, Susan E

    2011-03-01

    This study investigates body composition (BC), bone mineral density (BMD), eating behaviors, and menstrual dysfunction in collegiate modern dancers. Thirty-one female collegiate modern dance majors (D), 18 to 25 years of age, and 30 age-matched controls (C) participated in the study. BC and BMD were measured using dual energy x-ray absorptiometry (DXA). Upper and lower body strength was assessed by chest and leg press one-repetition maximum tests. Participants completed three-day food records, and the diet was analyzed using nutritional software. Menstrual dysfunction (MD) and history of eating disorder (ED) data were collected via questionnaires. BC and BMD variables were analyzed using MANCOVA and frequency of ED and MD by Chi-Square analysis. BMD was greater in D than C at the spine (1.302 ± 0.135 g/cm(2) vs. 1.245 ± 0.098 g/cm(2)), and both the right hip (1.163 ± 0.111 g/cm(2) vs. 1.099 ± 0.106 g/cm(2)) and left hip (1.160 ± 0.114 g/cm(2) vs. 1.101 ± 0.104 g/cm(2); p ≤ 0.05). Total body fat percentage was lower in D than C (25.9 ± 4.2% vs. 32.0 ± 5.9%; p ≤ 0.05), and percent of fat distributed in the android region was also lower in D than C (28.0 ± 6.2% vs. 37.6 ± 8.6%; p ≤ 0.05). With regard to diet composition, only percent fat intake was lower in D than C (27.54 ± 6.8% vs. 31.5 ± 7.4%, p ≤ 0.05). A greater incidence of ED was reported by D than C (12.9% vs. 0%; p ≤ 0.05), as well as a greater incidence of secondary amenorrhea (41.9% vs 13.3%; p ≤ 0.05). No differences were found for incidence of primary amenorrhea, oligomenorrhea, or use of birth control. Strength values were higher in D than C for both chest press (30.1 ± 0.9 kg vs. 28.4 ± 1.0 kg; p ≤ 0.05) and leg press (170.7 ± 4.2 kg vs.163.1 ± 3.9 kg; p ≤ 0.05). It is concluded that the dancers in our study had a healthy body weight, yet reported a higher incidence of eating disorders and menstrual dysfunction, than non-dancers. These dancers' higher BMD may be

  18. Increased bone mineral density in Aboriginal and Torres Strait Islander Australians: impact of body composition differences.

    PubMed

    Maple-Brown, L J; Hughes, J; Piers, L S; Ward, L C; Meerkin, J; Eisman, J A; Center, J R; Pocock, N A; Jerums, G; O'Dea, K

    2012-07-01

    Bone mineral density (BMD) has been reported to be both higher and lower in Indigenous women from different populations. Body composition data have been reported for Indigenous Australians, but there are few published BMD data in this population. We assessed BMD in 161 Indigenous Australians, identified as Aboriginal (n=70), Torres Strait Islander (n=68) or both (n=23). BMD measurements were made on Norland-XR46 (n=107) and Hologic (n=90) dual-energy X-ray absorptiometry (DXA) machines. Norland BMD and body composition measurements in these individuals, and also in 36 Caucasian Australians, were converted to equivalent Hologic BMD (BMD(H)) and body composition measurements for comparison. Femoral neck (FN) and lumbar spine Z-scores were high in Indigenous participants (mean FN Z-score: Indigenous men +0.98, p<0.0001 vs. mean zero; Indigenous women +0.82, p<0.0001 vs. mean zero). FN BMD(H) was higher in Aboriginal and/or Torres Strait Islander than Caucasian participants, after adjusting for age, gender, diabetes and height and remained higher in men after addition of lean mass to the model. We conclude that FN BMD is higher in Aboriginal and/or Torres Strait Islander Australians than Caucasian Australian reference ranges and these differences still remained significant in men after adjustment for lean mass. It remains to be seen whether these BMD differences translate to differences in fracture rates. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. The effects of a 6-month resistance training and dried plum consumption intervention on strength, body composition, blood markers of bone turnover, and inflammation in breast cancer survivors.

    PubMed

    Simonavice, Emily; Liu, Pei-Yang; Ilich, Jasminka Z; Kim, Jeong-Su; Arjmandi, Bahram; Panton, Lynn B

    2014-06-01

    The purpose of this study was to examine the effects of resistance training (RT) and dried plum (DP) consumption on strength, body composition, blood markers of bone, and inflammation in breast cancer survivors (BCS). Twenty-three BCS (RT, n = 12; RT+DP, n = 11), aged 64 ± 7 years, were evaluated at baseline and after 6 months of intervention on the following: muscular strength (chest press and leg extension) via 1-repetition maximums (1RMs); body composition, specifically bone mineral density (BMD) by dual energy X-ray absorptiometry; biochemical markers of bone turnover (bone-specific alkaline phosphatase (BAP), tartrate resistant acid phosphatase (TRAP-5b)); and inflammation (C-reactive protein (CRP)). Target RT prescription was 2 days/week of 10 exercises, including 2 sets of 8-12 repetitions at ∼60%-80% of 1RM. RT+DP also consumed 90 g of DP daily. There were no baseline differences between groups or any group-by-time interactions for any of the variables. BCS increased upper (p < 0.05) (RT: 64 ± 14 to 80 ± 17 kg; RT+DP: 72 ± 23 to 91 ± 20 kg) and lower (p < 0.05) (RT: 69 ± 20 to 87 ± 28 kg; RT+DP: 78 ± 19 to 100 ± 21 kg) body strength. Body composition and BMD improvements were not observed. TRAP-5b decreased in the RT group (p < 0.05) (4.55 ± 1.57 to 4.04 ± 1.63 U/L) and the RT+DP group (p = 0.07) (5.10 ± 2.75 to 4.27 ± 2.03 U/L). Changes in BAP and CRP were not observed. RT was effective for improving biochemical markers of bone turnover and muscular strength in BCS. A longer and higher intensity intervention may be needed to reveal the true effects of RT and DP on body composition and biochemical markers of inflammation.

  20. Influence of Body Weight on Bone Mass, Architecture, and Turnover

    PubMed Central

    Iwaniec, Urszula T.; Turner, Russell T.

    2016-01-01

    Weight-dependent loading of the skeleton plays an important role in establishing and maintaining bone mass and strength. This review focuses on mechanical signaling induced by body weight as an essential mechanism for maintaining bone health. In addition, the skeletal effects of deviation from normal weight are discussed. The magnitude of mechanical strain experienced by bone during normal activities is remarkably similar among vertebrates, regardless of size, supporting the existence of a conserved regulatory mechanism, or mechanostat, that senses mechanical strain. The mechanostat functions as an adaptive mechanism to optimize bone mass and architecture based on prevailing mechanical strain. Changes in weight, due to altered mass, weightlessness (spaceflight), and hypergravity (modeled by centrifugation), induce an adaptive skeletal response. However, the precise mechanisms governing the skeletal response are incompletely understood. Furthermore, establishing whether the adaptive response maintains the mechanical competence of the skeleton has proven difficult, necessitating development of surrogate measures of bone quality. The mechanostat is influenced by regulatory inputs to facilitate non-mechanical functions of the skeleton, such as mineral homeostasis, as well as hormones and energy/nutrient availability that support bone metabolism. While the skeleton is very capable of adapting to changes in weight, the mechanostat has limits. At the limits, extreme deviations from normal weight and body composition are associated with impaired optimization of bone strength to prevailing body size. PMID:27352896

  1. Developing bioactive composite scaffolds for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Chen, Yun

    Poly(L-lactic acid) (PLLA) films were fabricated using the method of dissolving and evaporation. PLLA scaffold was prepared by solid-liquid phase separation of polymer solutions and subsequent sublimation of solvent. Bonelike apatite coating was formed on PLLA films, PLLA scaffolds and poly(glycolic acid) (PGA) scaffolds in 24 hours through an accelerated biomimetic process. The ion concentrations in the simulated body fluid (SBF) were nearly 5 times of those in human blood plasma. The apatite formed was characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The apatite formed in 5SBF was similar in morphology and composition to that formed in the classical biomimetic process employing SBF or 1.5SBF, and similar to that of natural bone. This indicated that the biomimetic apatite coating process could be accelerated by using concentrated simulated body fluid at 37°C. Besides saving time, the accelerated biomimetic process is particularly significant to biodegradable polymers. Some polymers which degrade too fast to be coated with apatite by a classical biomimetic process, for example PGA, could be coated with bone-like apatite in an accelerated biomimetic process. Collagen and apatite were co-precipitated as a composite coating on poly(L-lactic acid) (PLLA) in an accelerated biomimetic process. The incubation solution contained collagen (1g/L) and simulated body fluid (SBF) with 5 times inorganic ionic concentrations as human blood plasma. The coating formed on PLLA films and scaffolds after 24 hours incubation was characterized using EDX, XRD, FTIR, and SEM. It was shown that the coating contained carbonated bone-like apatite and collagen, the primary constituents of natural bone. SEM showed a complex composite coating of submicron bone-like apatite particulates combined with collagen fibrils. This work provided an efficient process to obtain

  2. Composition and functionality of bone affected by dietary glycated compounds.

    PubMed

    Delgado-Andrade, Cristina; Roncero-Ramos, Irene; Carballo, José; Rufián-Henares, Joséángel; Seiquer, Isabel; Navarro, María Pilar

    2013-04-25

    Our aim was to investigate the effects of Maillard reaction products (MRPs) from bread crust (BC) on bone composition and its mechanical properties, determining whether any such effects are related to the molecular weight of different MRPs. For 88 days after weaning rats were fed a control diet or diets containing BC, or its soluble low molecular weight (LMW), soluble high molecular weight (HMW) or insoluble fractions. Animals' food consumption and body weights were monitored. After sacrifice, the femur, pelvic bone and tibia were removed for composition, physical and biomechanical properties analysis. It was found that body and femur weights, density, volume and organic matrix decreased, whereas pentosidine increased after consumption of experimental diets, especially in the HMW and insoluble groups (104.7 and 102.9 mmol mol(-1) collagen) vs. the control group (41.7 mmol mol(-1) collagen). Bone stiffness fell by 50% in the LMW, HMW and insoluble groups and failure load and energy to failure tended to decrease in the same animals after MRPs intake. Consumption of diets containing assayed MRPs during growth leads to lower bone size and introduces some changes in its mechanical behavior which appear to be related to an increase in the pentosidine level of bone.

  3. Effects of chronic acceleration on body composition

    NASA Technical Reports Server (NTRS)

    Pitts, G. C.

    1982-01-01

    Studies of the centrifugation of adult rats showed an unexpected decrease in the mass of fat-free muscle and bone, in spite of the added load induced by centrifugation. It is suggested that the lower but constant fat-free body mass was probably regulated during centrifugation. Rats placed in weightless conditions for 18.5 days gave indirect but strong evidence that the muscle had increased in mass. Other changes in the rats placed in weightless conditions included a smaller fraction of skeletal mineral, a smaller fraction of water in the total fat-free body, and a net shift of fluid from skin to viscera. Adult rats centrifuged throughout the post-weaning growth period exhibited smaller masses of bone and central nervous system (probably attributable to slower growth of the total body), and a larger mass of skin than controls at 1 G. Efforts at simulating the effects of weightlessness or centrifugation on the body composition of rats by regimens at terrestrial gravity were inconclusive.

  4. Biodegradable synthetic bone composites

    DOEpatents

    Liu, Gao; Zhao, Dacheng; Saiz, Eduardo; Tomsia, Antoni P.

    2013-01-01

    The invention provides for a biodegradable synthetic bone composition comprising a biodegradable hydrogel polymer scaffold comprising a plurality of hydrolytically unstable linkages, and an inorganic component; such as a biodegradable poly(hydroxyethylmethacrylate)/hydroxyapatite (pHEMA/HA) hydrogel composite possessing mineral content approximately that of human bone.

  5. Aged-Related Changes in Body Composition and Association between Body Composition with Bone Mass Density by Body Mass Index in Chinese Han Men over 50-year-old

    PubMed Central

    Jin, Mengmeng; Gu, Zhaoyan; Pei, Yu; Meng, Ping

    2015-01-01

    Objectives Aging, body composition, and body mass index (BMI) are important factors in bone mineral density (BMD). Although several studies have investigated the various parameters and factors that differentially influence BMD, the results have been inconsistent. Thus, the primary goal of the present study was to further characterize the relationships of aging, body composition parameters, and BMI with BMD in Chinese Han males older than 50 years. Methods The present study was a retrospective analysis of the body composition, BMI, and BMD of 358 Chinese male outpatients between 50 and 89 years of age that were recruited from our hospital between 2009 and 2011. Qualified subjects were stratified according to age and BMI as follows: 50–59 (n = 35), 60–69 (n = 123), 70–79 (n = 93), and 80–89 (n = 107) years of age and low weight (BMI: < 20 kg/m2; n = 21), medium weight (20 ≤ BMI < 24 kg/m2; n = 118), overweight (24 ≤ BMI < 28 kg/m2; n = 178), and obese (BMI ≥ 28 kg/m2; n = 41). Dual-energy X-ray absorptiometry (DEXA) was used to assess bone mineral content (BMC), lean mass (LM), fat mass (FM), fat-free mass (FFM), lumbar spine (L1-L4) BMD, femoral neck BMD, and total hip BMD. Additionally, the FM index (FMI; FM/height2), LM index (LMI; LM/height2), FFM index (FFMI; [BMC+LM]/height2), percentage of BMC (%BMC; BMC/[BMC+FM+LM] × 100%), percentage of FM (%FM; FM/[BMC+FM+LM] × 100%), and percentage of LM (%LM; LM/(BMC+FM+LM) × 100%) were calculated. Osteopenia or osteoporosis was identified using the criteria and T-score of the World Health Organization. Results Although there were no significant differences in BMI among the age groups, there was a significant decline in height and weight according to age (p < 0.0001 and p = 0.0002, respectively). The LMI and FFMI also declined with age (both p < 0.0001) whereas the FMI exhibited a significant increase that peaked in the 80-89-years group (p = 0.0145). Although the absolute values of BMC and LM declined

  6. Body composition and bone mineral density in users of the etonogestrel-releasing contraceptive implant.

    PubMed

    Modesto, Waleska; Dal Ava, Natália; Monteiro, Ilza; Bahamondes, Luis

    2015-12-01

    There is scarce information about bone mineral density (BMD) and body composition (BC) among users of the etonogestrel (ENG)-releasing implant. To evaluate BC and BMD in ENG-releasing implant users as compared to copper intrauterine device (Cu-IUD)-users. A prospective study was conducted on 75 users of both contraceptive methods. BMD was evaluated at femoral neck (FN) and lumbar spine (LS) (L1-L4) and BC at baseline and at 12 months after insertion. The mean (±SD) age was 30.4 ± 6.8 and 29.8 ± 8.4 years and body mass index (kg/m(2)) was 24.9 ± 4.1 and 24.6 ± 3.5 in ENG-releasing implant- and Cu-IUD-users, respectively. ENG-releasing implant users did not show significant differences on BMD at the LS and FN at 12 months of use. Furthermore, ENG-implant users had an increase in body weight at 12 months (p < 0.001) and an increase of 2 % in the percentage of body fat, when compared with Cu-IUD users. There was a significant increase in lean mass in ENG-implant users at 12 months (p = 0.020). No significant changes of BMD were seen after the first year of use among the ENG-releasing implant-users, albeit an increase of weight and fat mass was seen when compared to Cu-IUD users.

  7. Porous composite prosthetic pylon for integration with skin and bone

    PubMed Central

    Pitkin, Mark; Raykhtsaum, Grigory; Pilling, John; Galibin, Oleg V.; Protasov, Mikhail V.; Chihovskaya, Julie V.; Belyaeva, Irina G.; Blinova, Miralda I.; Yudintseva, Natalia M.; Potokin, Igor L.; Pinaev, George P.; Moxson, Vladimir; Duz, Volodimir

    2012-01-01

    This article presents results of the further development and testing of the “skin and bone integrated pylon” (SBIP-1) for percutaneous (through skin) connection of the residual bone with an external limb prosthesis. We investigated a composite structure (called the SBIP-2) made of titanium particles and fine wires using mathematical modeling and mechanical testing. Results showed that the strength of the pylon was comparable with that of anatomical bone. In vitro and in vivo animal studies on 30 rats showed that the reinforcement of the composite pylon did not compromise its previously shown capacity for inviting skin and bone cell ingrowth through the device. These findings provide evidence for the safe and reliable long-term percutaneous transfer of vital and therapeutic substances, signals, and necessary forces and moments from a prosthetic device to the body. PMID:17943684

  8. Ward's area location, physical activity, and body composition in 8- and 9-year-old boys and girls.

    PubMed

    Cardadeiro, Graça; Baptista, Fátima; Zymbal, Vera; Rodrigues, Luís A; Sardinha, Luís B

    2010-11-01

    Bone strength is the result of its material composition and structural design, particularly bone mass distribution. The purpose of this study was to analyze femoral neck bone mass distribution by Ward's area location and its relationship with physical activity (PA) and body composition in children 8 and 9 years of age. The proximal femur shape was defined by geometric morphometric analysis in 88 participants (48 boys and 40 girls). Using dual-energy X-ray absorptiometry (DXA) images, 18 landmarks were digitized to define the proximal femur shape and to identify Ward's area position. Body weight, lean and fat mass, and bone mineral were assessed by DXA, PA by accelerometry, and bone age by the Tanner-Whitehouse III method. Warps analysis with Thin-Plate Spline software showed that the first axis explained 63% of proximal femur shape variation in boys and 58% in girls. Most of this variation was associated with differences in Ward's area location, from the central zone to the superior aspect of the femoral neck in both genders. Regression analysis demonstrated that body composition explained 4% to 7% of the proximal femur shape variation in girls. In boys, body composition variables explained a similar amount of variance, but moderate plus vigorous PA (MVPA) also accounted for 6% of proximal femur shape variation. In conclusion, proximal femur shape variation in children ages 8 and 9 was due mainly to differences in Ward's area position determined, in part, by body composition in both genders and by MVPA in boys. These variables were positively associated with a central Ward's area and thus with a more balanced femoral neck bone mass distribution. © 2010 American Society for Bone and Mineral Research.

  9. Vacuum-sintered body of a novel apatite for artificial bone

    NASA Astrophysics Data System (ADS)

    Tamura, Kenichi; Fujita, Tatsushi; Morisaki, Yuriko

    2013-12-01

    We produced regenerative artificial bone material and bone parts using vacuum-sintered bodies of a novel apatite called "Titanium medical apatite (TMA®)" for biomedical applications. TMA was formed by chemically connecting a Ti oxide molecule with the reactive [Ca10(PO4)6] group of Hydroxyapatite (HAp). The TMA powders were kneaded with distilled water, and solid cylinders of compacted TMA were made by compression molding at 10 MPa using a stainless-steel vessel. The TMA compacts were dried and then sintered in vacuum (about 10-3 Pa) or in air using a resistance heating furnace in the temperature range 1073-1773 K. TMA compacts were sintered at temperatures greater than 1073 K, thus resulting in recrystallization. The TMA compact bodies sintered in the range 1273-1773 K were converted into mixtures composed of three crystalline materials: α-TCP (tricalcium phosphate), β-TCP, and Perovskite-CaTiO3. The Perovskite crystals were stable and hard. In vacuum-sintering, the Perovskite crystals were transformed into fibers (approximately 1 µm in diameter × 8 µm in length), and the fiber distribution was uniform in various directions. We refer to the TMA vacuum-sintered bodies as a "reinforced composite material with Perovskite crystal fibers." However, in atmospheric sintering, the Perovskite crystals were of various sizes and were irregularly distributed as a result of the effect of oxygen. After sintering temperature at 1573 K, the following results were obtained: the obtained TMA vacuum-sintered bodies (1) were white, (2) had a density of approximately 2300 kg/m3 (corresponding to that of a compact bone or a tooth), and had a thermal conductivity of approximately 31.3 W/(m·K) (corresponding to those of metal or ceramic implants). Further, it was possible to cut the TMA bodies into various forms with a cutting machine. An implant made of TMA and inserted into a rabbit jaw bone was covered by new bone tissues after just one month because of the high

  10. [Nano-hydroxyapatite/collagen composite for bone repair].

    PubMed

    Feng, Qing-ling; Cui, Fu-zhai; Zhang, Wei

    2002-04-01

    To develop nano-hydroxyapatite/collagen (NHAC) composite and test its ability in bone repairing. NHAC composite was developed by biomimetic method. The composite showed some features of natural bone in both composition and microstructure. The minerals could contribute to 50% by weight of the composites in sheet form. The inorganic phase in the composite was carbonate-substituted hydroxyapatite (HA) with low crystallinity and nanometer size. HA precipitates were uniformly distributed on the type I collagen matrix without preferential orientation. The composite exhibited an isotropic mechanical behavior. However, the resistance of the composite to localized pressure could reach the lower limit of that of femur compacta. The tissue response to the NHAC composite implanted in marrow cavity was investigated. Knoop micro-hardness test was performed to compare the mechanical behavior of the composite and bone. At the interface of the implant and marrow tissue, solution-mediated dissolution and macrophage-mediated resorption led to the degradation of the composite, followed by interfacial bone formation by osteoblasts. The process of implant degradation and bone substitution was reminiscent of bone remodeling. The composite can be incorporated into bone metabolism instead of being a permanent implant.

  11. Accounting for racial/ethnic variation in bone mineral content and density: the competing influences of socioeconomic factors, body composition, health and lifestyle, and circulating androgens and estrogens.

    PubMed

    Travison, T G; Chiu, G R; McKinlay, J B; Araujo, A B

    2011-10-01

    The relative importance of various contributors to racial/ethnic variation in BMC/BMD is not established. Using population-based data, we determined that body composition differences (specifically skeletal muscle and fat mass) are among the strongest contributors to these variations. Racial/ethnic variation in fracture risk is well documented, but the mechanisms by which such heterogeneity arises are poorly understood. We analyzed data from black, Hispanic, and white men enrolled in the Boston Area Community Health/Bone (BACH/Bone) Survey to determine the contributions of risk factors to racial/ethnic differences in bone mineral content (BMC) and density (BMD). In a population-based study, BMC, BMD, and body composition were ascertained by DXA. Socioeconomic status, health history, and dietary intake were obtained via interview. Hormones and markers of bone turnover were obtained from non-fasting blood samples. Multivariate analyses measured percentage reductions in estimated racial/ethnic differences in BMC/BMD, accompanying the successive removal of covariates from linear regression models. Black men demonstrated greater BMC than their Hispanic and white counterparts. At the femoral neck, adjustment for covariables was sufficient to reduce these differences by 46% and 35%, respectively. While absolute differences in BMC were smaller at the distal radius than femoral neck, the proportionate reductions in racial/ethnic differences after covariable adjustment were comparable or greater. Multivariate models provided evidence that lean and fat mass, serum 25(OH)D, osteocalcin, estradiol, and aspects of socioeconomic status influence the magnitude of racial/ethnic differences in BMC, with lean and fat mass providing the strongest effects. Results for BMD were similar, but typically of lesser magnitude and statistical significance. These cross-sectional analyses demonstrate that much of the racial/ethnic heterogeneity in measures of bone mass and density can be

  12. Studies of body composition in Slovenia.

    PubMed

    Tomazo-Ravnik, T

    1998-12-01

    The distribution of subcutaneous fat, fat mass and body composition in the growth period between 14 and 18 years of age was analysed in Slovenian youths. Measurements were taken in the years 1988/89 on 282 boys and 299 girls originating from towns and villages. The fat pattern was analysed using the indices of subcutaneous adiposity, trunk adiposity, extremity adiposity and trunk/extremity ratio. Fat mass was calculated using the method of Slaughter and body composition with the five-way fractionation method of Ross and Kerr. The amount of fat increases with age, with higher values in girls. Lean body mass is as expected greater in boys. This analysis shows the dynamics of changes of skin, adipose, muscle, bone and residual masses. The difference between predicted and actual, measured weights in the male series are between 3.53 to 3.17 kg and in the female between 4.02 to 4.69 kg.

  13. Associations between body mass index-related genetic variants and adult body composition: the Fenland cohort study

    PubMed Central

    Clifton, Emma A D; Day, Felix R; De Lucia Rolfe, Emanuella; Forouhi, Nita G; Brage, Soren; Griffin, Simon J; Wareham, Nicholas J; Ong, Ken K

    2016-01-01

    Background/Objective Body mass index (BMI) is a surrogate measure of adiposity but does not distinguish fat from lean or bone mass. The genetic determinants of BMI are thought to predominantly influence adiposity but this has not been confirmed. Here we characterise the association between BMI-related genetic variants and body composition in adults. Subjects/Methods Among 9667 adults aged 29-64 years from the Fenland study, a genetic risk score for BMI (BMI-GRS) was calculated for each individual as the weighted sum of BMI-increasing alleles across 96 reported BMI-related variants. Associations between the BMI-GRS and body composition, estimated by DXA scans, were examined using age-adjusted linear regression models, separately by sex. Results The BMI-GRS was positively associated with all fat, lean and bone variables. Across body regions, associations of the greatest magnitude were observed for adiposity variables e.g. for each standard deviation (SD) increase in BMI-GRS predicted BMI, we observed a 0.90 SD (95% CI: 0.71, 1.09) increase in total fat mass for men (P=3.75×10−21) and a 0.96 SD (95% CI: 0.77, 1.16) increase for women (P=6.12×10−22). Associations of intermediate magnitude were observed with lean variables e.g. total lean mass: men: 0.68 SD (95% CI: 0.49, 0.86) (P=1.91×10−12); women: 0.85 SD (95% CI: 0.65, 1.04) (P=2.66×10−17) and of a lower magnitude with bone variables e.g. total bone mass: men: 0.39 SD (95% CI: 0.20, 0.58) (P=5.69×10−5); women: 0.45 SD (95% CI: 0.26, 0.65) (P=3.96×10−6). Nominally significant associations with BMI were observed for 28 SNPs. All 28 were positively associated with fat mass and 13 showed adipose-specific effects. Conclusion In adults, genetic susceptibility to elevated BMI influences adiposity more than lean or bone mass. This mirrors the association between BMI and body composition. The BMI-GRS can be used to model the effects of measured BMI and adiposity on health and other outcomes. PMID:28096530

  14. Longitudinal study of body composition in spinal cord injury patients.

    PubMed

    Singh, Roop; Rohilla, Rajesh K; Saini, Gaurav; Kaur, Kiranpreet

    2014-03-01

    Bone mass loss and muscle atrophy are the frequent complications occurring after spinal cord injury (SCI). The potential risks involved with these changes in the body composition have implications for the health of the SCI individual. Thus, there is a need to quantitate and monitor body composition changes accurately in an individual with SCI. Very few longitudinal studies have been reported in the literature to assess body composition and most include relatively small number of patients. The present prospective study aimed to evaluate the body composition changes longitudinally by DEXA in patients with acute SCI. Ninety five patients with acute SCI with neurological deficits were evaluated for bone mineral content (BMC), body composition [lean body mass (LBM) and fat mass] by dual-energy X-ray absorptiometry during the first year of SCI. There was a significant decrease in BMC (P < 0.05) and LBM (P < 0.05) and increase in total body fat mass (TBFM) and percentage fat at infra-lesional sites. The average decrease was 14.5% in BMC in lower extremities, 20.5% loss of LBM in legs and 15.1% loss of LBM in trunk, and increase of 0.2% in fat mass in legs and 17.3% increased fat in the lower limbs at 1 year. The tetraplegic patients had significant decrease in arm BMC (P < 0.001), arm LBM (P < 0.01) and fat percentage (P < 0.01) compared to paraplegics. Patients with complete motor injury had higher values of TBFM and fat percentage, but comparable values of BMC and LBM to patients with incomplete motor injury. Our findings suggest that there is a marked decrease in BMC and LBM with increase in adiposity during the first year of SCI. Although these changes depend on the level and initial severity of lesions, they are also influenced by the neurological recovery after SCI.

  15. A Novel Injectable Calcium Phosphate Cement-Bioactive Glass Composite for Bone Regeneration

    PubMed Central

    Zhao, Kang; Tang, Yufei; Cheng, Zhe; Chen, Jun; Zang, Yuan; Wu, Jianwei; Kong, Liang; Liu, Shuai; Lei, Wei; Wu, Zixiang

    2013-01-01

    Background Calcium phosphate cement (CPC) can be molded or injected to form a scaffold in situ, which intimately conforms to complex bone defects. Bioactive glass (BG) is known for its unique ability to bond to living bone and promote bone growth. However, it was not until recently that literature was available regarding CPC-BG applied as an injectable graft. In this paper, we reported a novel injectable CPC-BG composite with improved properties caused by the incorporation of BG into CPC. Materials and Methods The novel injectable bioactive cement was evaluated to determine its composition, microstructure, setting time, injectability, compressive strength and behavior in a simulated body fluid (SBF). The in vitro cellular responses of osteoblasts and in vivo tissue responses after the implantation of CPC-BG in femoral condyle defects of rabbits were also investigated. Results CPC-BG possessed a retarded setting time and markedly better injectability and mechanical properties than CPC. Moreover, a new Ca-deficient apatite layer was deposited on the composite surface after immersing immersion in SBF for 7 days. CPC-BG samples showed significantly improved degradability and bioactivity compared to CPC in simulated body fluid (SBF). In addition, the degrees of cell attachment, proliferation and differentiation on CPC-BG were higher than those on CPC. Macroscopic evaluation, histological evaluation, and micro-computed tomography (micro-CT) analysis showed that CPC-BG enhanced the efficiency of new bone formation in comparison with CPC. Conclusions A novel CPC-BG composite has been synthesized with improved properties exhibiting promising prospects for bone regeneration. PMID:23638115

  16. Reduced adiposity in ob/ob mice following total body irradiation and bone marrow transplantation.

    PubMed

    Ablamunits, Vitaly; Weisberg, Stuart P; Lemieux, Jacob E; Combs, Terry P; Klebanov, Simon

    2007-06-01

    The objective of this study was to assess long-term metabolic consequences of total body irradiation (TBI) and bone marrow transplantation. Severe obesity develops due to both hypertrophy and hyperplasia of adipocytes. We hypothesized that TBI would arrest adipose tissue growth and would affect insulin resistance (IR). We exposed 2-month-old female ob/ob mice to 8 Grays of TBI followed by bone marrow transplantation and tested the animals for body weight (BW) gain, body composition, blood glucose, and insulin sensitivity. Two months after TBI, irradiated mice stopped gaining BW, whereas non-treated mice continued to grow. At the age of 9.5 months, body mass of irradiated mice was 60.6 +/- 1.4 grams, which was only 61% of that in non-treated ob/ob controls (99.4 +/- 1.6 grams). Body composition measurements by DXA showed that decreased BW was primarily due to an impaired fat accumulation. This could not result from the production of leptin by bone marrow-derived adipocyte progenitors because inhibition of the obese phenotype was identical in recipients of both B6 and ob/ob bone marrow. Inability of the irradiated mice to accumulate fat was associated with hepatomegaly, lower levels of monocyte chemoattractant protein-1 expression in adipose tissue, and increased IR. Our data argue in favor of the hypothesis that inability of adipose tissue to expand may increase IR. This mouse model may be valuable for studies of late-onset radiation-induced IR in humans.

  17. Assessment methods in human body composition.

    PubMed

    Lee, Seon Yeong; Gallagher, Dympna

    2008-09-01

    The present study reviews the most recently developed and commonly used methods for the determination of human body composition in vivo with relevance for nutritional assessment. Body composition measurement methods are continuously being perfected with the most commonly used methods being bioelectrical impedance analysis, dilution techniques, air displacement plethysmography, dual energy X-ray absorptiometry, and MRI or magnetic resonance spectroscopy. Recent developments include three-dimensional photonic scanning and quantitative magnetic resonance. Collectively, these techniques allow for the measurement of fat, fat-free mass, bone mineral content, total body water, extracellular water, total adipose tissue and its subdepots (visceral, subcutaneous, and intermuscular), skeletal muscle, select organs, and ectopic fat depots. There is an ongoing need to perfect methods that provide information beyond mass and structure (static measures) to kinetic measures that yield information on metabolic and biological functions. On the basis of the wide range of measurable properties, analytical methods and known body composition models, clinicians and scientists can quantify a number of body components and with longitudinal assessment, can track changes in health and disease with implications for understanding efficacy of nutritional and clinical interventions, diagnosis, prevention, and treatment in clinical settings. With the greater need to understand precursors of health risk beginning in childhood, a gap exists in appropriate in-vivo measurement methods beginning at birth.

  18. Assessment methods in human body composition

    PubMed Central

    Lee, Seon Yeong; Gallagher, Dympna

    2009-01-01

    Purpose of review The present study reviews the most recently developed and commonly used methods for the determination of human body composition in vivo with relevance for nutritional assessment. Recent findings Body composition measurement methods are continuously being perfected with the most commonly used methods being bioelectrical impedance analysis, dilution techniques, air displacement plethysmography, dual energy X-ray absorptiometry, and MRI or magnetic resonance spectroscopy. Recent developments include three-dimensional photonic scanning and quantitative magnetic resonance. Collectively, these techniques allow for the measurement of fat, fat-free mass, bone mineral content, total body water, extracellular water, total adipose tissue and its subdepots (visceral, subcutaneous, and intermuscular), skeletal muscle, select organs, and ectopic fat depots. Summary There is an ongoing need to perfect methods that provide information beyond mass and structure (static measures) to kinetic measures that yield information on metabolic and biological functions. On the basis of the wide range of measurable properties, analytical methods and known body composition models, clinicians and scientists can quantify a number of body components and with longitudinal assessment, can track changes in health and disease with implications for understanding efficacy of nutritional and clinical interventions, diagnosis, prevention, and treatment in clinical settings. With the greater need to understand precursors of health risk beginning in childhood, a gap exists in appropriate in-vivo measurement methods beginning at birth. PMID:18685451

  19. Reference Values for Body Composition and Anthropometric Measurements in Athletes

    PubMed Central

    Santos, Diana A.; Dawson, John A.; Matias, Catarina N.; Rocha, Paulo M.; Minderico, Cláudia S.; Allison, David B.; Sardinha, Luís B.; Silva, Analiza M.

    2014-01-01

    Background Despite the importance of body composition in athletes, reference sex- and sport-specific body composition data are lacking. We aim to develop reference values for body composition and anthropometric measurements in athletes. Methods Body weight and height were measured in 898 athletes (264 female, 634 male), anthropometric variables were assessed in 798 athletes (240 female and 558 male), and in 481 athletes (142 female and 339 male) with dual-energy X-ray absorptiometry (DXA). A total of 21 different sports were represented. Reference percentiles (5th, 25th, 50th, 75th, and 95th) were calculated for each measured value, stratified by sex and sport. Because sample sizes within a sport were often very low for some outcomes, the percentiles were estimated using a parametric, empirical Bayesian framework that allowed sharing information across sports. Results We derived sex- and sport-specific reference percentiles for the following DXA outcomes: total (whole body scan) and regional (subtotal, trunk, and appendicular) bone mineral content, bone mineral density, absolute and percentage fat mass, fat-free mass, and lean soft tissue. Additionally, we derived reference percentiles for height-normalized indexes by dividing fat mass, fat-free mass, and appendicular lean soft tissue by height squared. We also derived sex- and sport-specific reference percentiles for the following anthropometry outcomes: weight, height, body mass index, sum of skinfold thicknesses (7 skinfolds, appendicular skinfolds, trunk skinfolds, arm skinfolds, and leg skinfolds), circumferences (hip, arm, midthigh, calf, and abdominal circumferences), and muscle circumferences (arm, thigh, and calf muscle circumferences). Conclusions These reference percentiles will be a helpful tool for sports professionals, in both clinical and field settings, for body composition assessment in athletes. PMID:24830292

  20. Changes in bone mineral density and body composition during pregnancy and postpartum. A controlled cohort study.

    PubMed

    Møller, U K; Við Streym, S; Mosekilde, L; Rejnmark, L

    2012-04-01

    In a controlled cohort study, bone mineral density (BMD) was measured in 153 women pre-pregnancy; during pregnancy; and 0.5, 4, 9, and 19 months postpartum. Seventy-five age-matched controls, without pregnancy plans, were followed in parallel. Pregnancy and breastfeeding cause a reversible bone loss, which, initially, is most pronounced at trabecular sites but also involves cortical sites during prolonged breastfeeding. Conflicting results have been reported on effects of pregnancy and breastfeeding on BMD and body composition (BC). In a controlled cohort study, we elucidate changes in BMD and BC during and following a pregnancy. We measured BMD and BC in 153 women planning pregnancy (n = 92 conceived), once in each trimester during pregnancy and 15, 129, and 280 days postpartum. Moreover, BMD was measured 19 months postpartum (n = 31). Seventy-five age-matched controls, without pregnancy plans, were followed in parallel. Compared with controls, BMD decreased significantly during pregnancy by 1.8 ± 0.5% at the lumbar spine, 3.2 ± 0.5% at the total hip, 2.4 ± 0.3% at the whole body, and 4.2 ± 0.7% at the ultra distal forearm. Postpartum, BMD decreased further with an effect of breastfeeding. At 9 months postpartum, women who had breastfed for <9 months had a BMD similar to that of the controls, whereas BMD at the lumbar spine and hip was decreased in women who were still breastfeeding. During prolonged breastfeeding, BMD at sites which consist of mostly trabecular bone started to be regained, whereas BMD at sites rich in cortical bone decreased further. At 19 months postpartum, BMD did not differ from baseline at any site. During pregnancy, fat- and lean-tissue mass increased by 19 ± 22% and 5 ± 6% (p < 0.001), respectively. Postpartum, changes in fat mass differed according to breastfeeding status with a slower decline in women who continued breastfeeding. Calcium and vitamin D intake was not associated with BMD changes

  1. A Novel Injectable Magnesium/Calcium Sulfate Hemihydrate Composite Cement for Bone Regeneration

    PubMed Central

    2015-01-01

    Objective. A novel injectable magnesium/calcium sulfate hemihydrate (Mg/CSH) composite with improved properties was reported here. Methods. Composition, setting time, injectability, compressive strength, and bioactivity in simulated body fluid (SBF) of the Mg/CSH composite were evaluated. Furthermore, the cellular responses of canine bone marrow stromal cells (cBMSCs) and bone formation capacity after the implantation of Mg/CSH in tibia defects of canine were investigated. Results. Mg/CSH possessed a prolonged setting time and markedly improved injectability and mechanical property (p < 0.05). Mg/CSH samples showed better degradability than CSH in SBF after 21 days of soaking (p < 0.05). Moreover, the degrees of cell attachment, proliferation, and capability of osteogenic differentiation on the Mg/CSH specimens were higher than those on CSH, without significant cytotoxicity and with the increased proliferation index, ALP activity, and expression levels of integrin β1 and Coll I in cBMSCs (p < 0.05). Mg/CSH enhanced the efficiency of new bone formation at the tibia defect area, including the significantly elevated bone mineral density, bone area fraction, and Coll I expression level (p < 0.05). Conclusions. The results implied that this new injectable bone scaffold exhibited promising prospects for bone repair and had a great potential in bone tissue engineering. PMID:26114102

  2. Scaling of Adult Regional Body Mass and Body Composition as a Whole to Height: Relevance to Body Shape and Body Mass Index

    PubMed Central

    Schuna, John M.; Peterson, Courtney M.; Thomas, Diana M.; Heo, Moonseong; Hong, Sangmo; Choi, Woong; Heymsfield, Steven B.

    2015-01-01

    Objectives Adult body mass (MB) empirically scales as height (Ht) squared (MB ∝ Ht2), but does regional body mass and body composition as a whole also scale as Ht2? This question is relevant to a wide range of biological topics, including interpretation of body mass index. Methods Dual-energy x-ray absorptiometry (DXA) was used to quantify regional body mass (head [MH], trunk, arms, legs) and whole-body composition (fat, lean soft tissue [LST], and bone mineral content [BMC]) in non-Hispanic (NH) white, NH black, Mexican American, and Korean adults participating in the National Health and Nutrition Examination Survey (NHANES; n=17,126) and Korean NHANES (n=8,942). Regression models were developed to establish Ht scaling powers for each measured component with adjustments for age and adiposity. Results Exploratory analyses revealed a consistent scaling pattern across men and women of the four race/ethnic groups: regional mass powers, head (~0.8-1) < arms and trunk (~1.8-2.3) < legs (~2.3-2.6); and body composition, LST (~2.0-2.3) < BMC (~2.1-2.4). Small sex and race/ethnic differences in scaling powers were also observed. As body mass scaled uniformly across the eight sex and race/ethnic groups as Ht~2, tall and short subjects differed in body shape (e.g., Mh/Mb ∝ Ht−~1) and composition. Conclusions Adult human body shape and relative composition are a function of body size as defined by stature, a finding that has important implications in multiple areas of biological research. PMID:25381999

  3. [Body composition investigation of 2321 Shenzhen government and enterprise staffs].

    PubMed

    Liu, Xiaoli; Zhou, Jichang; Sun, Shiqiang; Xu, Jiazhang; Zhou, Xiaoying; Huang, Changhua; He, Shan; Liu, Can; Xu, Jian; Gong, Chunmei

    2016-01-01

    To understand the laws of human body composition change and the status of the overweight and obesity of government and enterprise staffs. In July 2013 - January 2014, 2321 adults more than 20-year-old healthy check-up crowd with complete human body composition and height as well as weight data in a medical center in Shenzhen were collected by convenience sampling method. The overweight rates of male and female were 46.41% and 18.94% respectively (standardized overweight rates were 44.02% and 14.51%, respectively), and the difference between them was statisically significant (Χ2 = 201.01, P = 0. 000). The obesity rates of male and female were 12.13% and 3.57%, respectively (standardized overweight rates were 11.11% (see symbol) 2.63%, respectively), and the difference between them was statisically significant (X2 = 48.45, P = 0.000). The parameters of bone mineral quality, visceral fat area, body fat, body fat percentage, abdominal obesity, body moisture and free fat weight increased with body weight, and there were statistical significance among normal weight, overweight and obesity groups (P = 0.000). Bone mineral quality was highest at the age of 30 to 40 for men and women, and there was the statistical significance. There was statistical significance in visceral fat area between different ages in the same gender. Body fat percentage (34.24 + 5.39)% of all ages 50 to 59 years old and body moisture (28.53 + 3.77)% of age 40 - 49 group were highest in women. Male body fat percentage (27.08 + 5.01)% at the age of 60-age group was the highest. Male and female visceral fat area increasesd with age, but there was no statistical difference between men and women at the same age. The human body composition had not a statistically significant difference among normal weight and overweight groups, but a significant difference between normal weight and obesity groups (P = 0.000). Overweight and obesity rates in Shenzhen government and enterprise staffs increase with age

  4. Associations between ethnicity, body composition, and bone mineral density in a Southeast Asian population.

    PubMed

    Yang, P L S; Lu, Y; Khoo, C M; Leow, M K S; Khoo, E Y H; Teo, A; Lee, Y S; Das De, S; Chong, Y S; Gluckman, P D; Tai, E S; Venkataraman, K; Ng, C M A

    2013-11-01

    Chinese men in Singapore have a higher incidence of hip fractures than Malay and Indian men. We investigated whether there were corresponding ethnic differences in peak bone mineral density (BMD) in young men and whether differences in body composition influenced peak BMD. This was a cross-sectional study of healthy volunteers in a tertiary medical center. A total of 100 Chinese, 82 Malay, and 80 Indian men aged 21 to 40 years, with body mass index between 18 and 30 kg/m(2) underwent dual-energy x-ray absorptiometry to assess BMD, lean mass (LM) and fat mass (FM), and magnetic resonance imaging to quantify abdominal subcutaneous and visceral adipose tissue. Multiple linear regression models, with adjustment for age and height (as a proxy for skeletal size), were used. Malay and Indian men had significantly higher BMD than Chinese men at the lumbar spine (Malay: B, 0.06 ± 0.02, P = .001; Indian: B, 0.03 ± 0.02, P = .049), femoral neck (Malay: B 0.04 ± 0.02, P = .034; Indian: B, 0.04 ± 0.02, P = .041), hip (Malay: B, 0.05 ± 0.02, P = .016; Indian: B, 0.06 ± 0.02, P = .001), and ultradistal radius (Malay: B, 0.03 ± 0.01, P < .001; Indian: B, 0.02 ± 0.01, P = .029), and this difference was retained after adjustment for LM and FM, except in Malay men at the femoral neck and in Indian men at the ultradistal radius. LM was an important independent determinant of BMD at all sites, whereas FM, subcutaneous adipose tissue, and visceral adipose tissue were not significantly associated with BMD at any site. Lower peak BMD in Chinese men may partly explain the higher fracture incidence in this ethnic group. Further studies are needed to elucidate the reasons for these ethnic differences in bone accumulation.

  5. Long-term effect of exercise on bone mineral density and body composition in post-menopausal ex-elite athletes: a retrospective study.

    PubMed

    Andreoli, A; Celi, M; Volpe, S L; Sorge, R; Tarantino, U

    2012-01-01

    The aim of this retrospective study was to determine the long-term effect of exercise on bone mineral density (BMD), bone mineral content (BMC) and body composition (BC) in post-menopausal women who were elite athletes during their youth compared with sedentary controls. It is a retrospective study and carried out in an outpatient clinic. A total of 48 post-menopausal women (54-73 years of age) were enrolled. Ex-elite athletes with long-term (>20 years) histories of significant training and performance were divided into two groups: weight-bearing sports (runners, n=12) and non-weight-bearing sports (swimmers, n=12). The athletes were age matched with sedentary controls (n=24). BMD, BMC and BC were measured using dual-energy X-ray absorptiometry. Healthcare and sport activity histories were evaluated using a questionnaire. No significant differences were found with regard to body weight, height, body mass index and hours of activity between the two groups of athletes. There were no significant differences in activity levels between athletes and controls at the time of this study. BMD and BMC were not significantly different between athletes; they were significantly higher in athletes than in controls (P<0.001). Although the ex-athletes did not significantly differ in BC, left and right lean arm mass and arm BMD were significantly higher in swimmers than in runners (P<0.0001). The high level of physical activity observed in female athletes is associated with improved muscle mass, BMD and BMC, and physical activity during youth seems to have a beneficial effect on bone mass and helps to prevent bone loss due to aging.

  6. Body Composition.

    ERIC Educational Resources Information Center

    Mayhew, Jerry L.

    1981-01-01

    Body composition refers to the types and amounts of tissues which make up the body. The most acceptable method for assessing body composition is underwater weighing. A subcutaneous skinfold provides a quantitative measurement of fat below the skin. The skinfold technique permits a valid estimate of the body's total fat content. (JN)

  7. Body composition and somatotype of experienced mountain climbers.

    PubMed

    Barbieri, Davide; Zaccagni, Luciana; Cogo, Annalisa; Gualdi-Russo, Emanuela

    2012-03-01

    In order to evaluate body composition and somatotype, 10 Italian experienced mountain climbers were assessed from an anthropometric point of view, before a high altitude ascent. Body mass, height, girths, skinfolds, and bone breadths were gathered and used to calculate body composition and somatotype of each subject. Means and standard deviations of the subjects' anthropometric characteristics were calculated. Mesomorphism (5.28±1.10) is the dominant somatotype component in all but one the participants, endomorphism (1.55±0.49) is low, and body fat percentage (11.76%±2.93) is low. Comparisons with athletes involved in other climbing subdisciplines highlight the specificity of elite mountain climbers anthropometry. The elite mountain climbers in our sample were predominantly mesomorphic with somatotype attitudinal mean values lower than reported for male athletes participating in free-climbing, volleyball, gymnastics, and soccer. Anthropometric characteristics may therefore play a role in mountain climbing, even though the trainable components may be more relevant than the nontrainable ones.

  8. Scaling of adult regional body mass and body composition as a whole to height: Relevance to body shape and body mass index.

    PubMed

    Schuna, John M; Peterson, Courtney M; Thomas, Diana M; Heo, Moonseong; Hong, Sangmo; Choi, Woong; Heymsfield, Steven B

    2015-01-01

    Adult body mass (MB) empirically scales as height (Ht) squared (MB ∝ Ht(2) ), but does regional body mass and body composition as a whole also scale as Ht(2) ? This question is relevant to a wide range of biological topics, including interpretation of body mass index (BMI). Dual-energy X-ray absorptiometry (DXA) was used to quantify regional body mass [head (MH), trunk, arms, and legs] and whole-body composition [fat, lean soft tissue (LST), and bone mineral content (BMC)] in non-Hispanic (NH) white, NH black, Mexican American, and Korean adults participating in the National Health and Nutrition Examination Survey (NHANES; n = 17,126) and Korean NHANES (n = 8,942). Regression models were developed to establish Ht scaling powers for each measured component with adjustments for age and adiposity. Exploratory analyses revealed a consistent scaling pattern across men and women of the four population groups: regional mass powers, head (∼0.8-1) < arms and trunk (∼1.8-2.3) < legs (∼2.3-2.6); and body composition, LST (∼2.0-2.3) < BMC (∼2.1-2.4). Small sex and population differences in scaling powers were also observed. As body mass scaled uniformly across the eight sex and population groups as Ht(∼2) , tall and short subjects differed in body shape (e.g., MH/MB ∝ Ht(-∼1) ) and composition. Adult human body shape and relative composition are a function of body size as represented by stature, a finding that reveals a previously unrecognized phenotypic heterogeneity as defined by BMI. These observations provide new pathways for exploring mechanisms governing the interrelations between adult stature, body morphology, biomechanics, and metabolism. © 2014 Wiley Periodicals, Inc.

  9. ABCD: Anthropometry, Body Composition, and Crohn Disease.

    PubMed

    Brookes, Denise S K; Briody, Julie N; Davies, Peter S W; Hill, Rebecca J

    2016-07-01

    Young individuals with Crohn disease (CD) are at risk of poor bone mineral density (BMD) and reduced lean tissue mass (LTM). The importance of LTM for maintaining skeletal health, in both incident and established CD, is evidenced. We used dual-energy x-ray absorptiometry assessment to identify areal BMD and LTM in individuals with CD. In 57 patients with CD (15F; 12.99-14.16 years) anthropometric, disease activity, bone age assessment, and total body dual-energy x-ray absorptiometry measurements were acquired. A 4-step algorithm was used to assess simultaneous bone and body composition data: areal BMD and height z scores, and LTM for height and bone mineral content (BMC) for LTM z scores were calculated. Low z score cut-off values were defined as ≤1 standard deviations below the population means. The CD cohort showed: low areal BMD z scores (P = 0.00); and low LTM for height (P = 0.00) according to defined cut-off values. BMC appeared to be adapting for the lower amount of LTM. Correcting for bone age eliminated the low areal BMD z scores. As expected, LTM for height and BMC for LTM z scores remained unchanged. We present a useful clinical algorithm to show significant LTM for height deficits, regardless of chronological or bone age, in this CD cohort. BMC seemed to adapt to the reduced LTM, indicating clinically "normal" areal BMD for age when considered for height. The ongoing deficits in LTM may, however, create chronic long-term consequences for bone health. Improving LTM should be a focus of clinical treatment in individuals with CD.

  10. The influence of anthropometry and body composition on children's bone health: the childhood health, activity and motor performance school (the CHAMPS) study, Denmark.

    PubMed

    Heidemann, Malene; Holst, René; Schou, Anders J; Klakk, Heidi; Husby, Steffen; Wedderkopp, Niels; Mølgaard, Christian

    2015-02-01

    Overweight, physical inactivity and sedentary behaviour have become increasing problems during the past decade. Increased sedentary behaviour may change the body composition (BC) by increasing the fat mass relative to the lean mass (LM). These changes may influence bone health to describe how anthropometry and BC predict the development of the bone accruement. The longitudinal study is a part of The CHAMPS study-DK. Children were DXA scanned at baseline and at 2-year follow-up. BC (LM, BF %) and BMC, BMD and BA were measured. The relationship between bone traits, anthropometry and BC was analysed by multilevel regression analyses. Of the invited children, 742/800 (93%) accepted to participate. Of these, 682/742 (92%) participated at follow-up. Mean (range) of age at baseline was 9.5 years (7.7-12.1). Height, BMI, LM and BF % predicted bone mineral accrual and bone size positively and independently. Height and BMI are both positive predictors of bone accruement. LM is a more precise predictor of bone traits than BF % in both genders. The effects of height and BMI and LM on bone accruement are nearly identical in the two genders, while changes in BF % have different but positive effects on bone accretion in both boys and girls.

  11. The association between body composition, 25(OH)D, and PTH and bone mineral density in black African and Asian Indian population groups.

    PubMed

    George, Jaya A; Micklesfield, L K; Norris, S A; Crowther, N J

    2014-06-01

    There are few data on the contribution of body composition to bone mineral density (BMD) in non-Caucasian populations. We therefore studied the contribution of body composition, and possible confounding of 25-hydroxyvitamin D and PTH, to BMD at various skeletal sites in black African (BA) and Asian Indian (AI) subjects. This was a cross-sectional study in Johannesburg, South Africa. BMD, body fat, and lean mass were measured using dual x-ray absorptiometry and abdominal fat distribution by ultrasound in 714 healthy subjects, aged 18-65 years. Whole-body (subtotal), hip, femoral neck, and lumbar spine (lumbar) BMD were significantly higher in BA than AI subjects (P < .001 for all). Whole-body lean mass positively associated with BMD at all sites in both ethnic groups (P < .001 for all) and partially explained the higher BMD in BA females compared with AI females. Whole-body fat mass correlated positively with lumbar BMD in BA (P = .001) and inversely with subtotal BMD in AI subjects (P < .0001). Visceral adiposity correlated inversely with subtotal BMD in the BA (P = .037) and with lumbar BMD in the AI group (P = .005). No association was found between serum 25-hydroxyvitamin D and BMD. PTH was inversely associated with hip BMD in the BA group (P = .01) and with subtotal (P = .002), hip (P = .001), and femoral BMD (P < .0001) in the AI group. Significant differences in whole-body and site-specific BMD between the BA and AI groups were observed, with lean mass the major contributor to BMD at all sites in both groups. The contribution of other components of body composition differed by site and ethnic group.

  12. Ethnic differences in body composition and their relation to health and disease in women.

    PubMed

    Gasperino, J

    1996-12-01

    Differences in body composition between black and white women have been well established. Black women have more bone and muscle mass, but less fat, as a percentage of body weight, than white women, after controlling for ethnic differences in age, body weight, and height. In addition, black women have more upper-body fat than white women. These ethnic differences in body composition appear to be associated with disease risk in women. The greater skeletal and muscle mass in black compared to white women appears to protect them from osteoporosis. The relationship between fat distribution and cardiovascular disease also appears to be influenced by ethnicity. This review has two purposes: (1) To examine previous research investigating ethnic differences in body composition between black and white women; and (2) To demonstrate the relationship between body composition and disease in women as a function of ethnicity.

  13. BMP-2/PLGA delayed-release microspheres composite graft, selection of bone particulate diameters, and prevention of aseptic inflammation for bone tissue engineering.

    PubMed

    Ji, Ye; Xu, Gong Ping; Zhang, Zhi Peng; Xia, Jing Jun; Yan, Jing Long; Pan, Shang Ha

    2010-03-01

    Autogenous bone grafts are widely used in the repair of bone defects. Growth factors such as bone morphogenetic protein 2 (BMP-2) can induce bone regeneration and enhance bone growth. The combination of an autogenous bone graft and BMP-2 may provide a better osteogenic effect than either treatment alone, but BMP-2 is easily inactivated in body fluid. The objective of this study was to develop a technique that can better preserve the in vivo activity of BMP-2 incorporated in bone grafts. In this study, we first prepared BMP-2/poly(lactic-co-glycolic acid) (PLGA) delayed-release microspheres, and then combined collagen, the delayed-release microspheres, and rat autologous bone particulates to form four groups of composite grafts with different combinations: collagen in group A; collagen combined with bone particulates in group B; collagen combined with BMP-2/PLGA delayed-release microspheres in group C; and collagen combined with both bone particulates and BMP-2/PLGA delayed-release microspheres in group D. The four groups of composite grafts were implanted into the gluteus maximus pockets in rats. The ectopic osteogenesis and ALP level in group D (experimental group) were compared with those in groups A, B, and C (control groups) to study whether it had higher osteogenic capability. Results showed that the composite graft design increased the utility of BMP-2 and reduced the required dose of BMP-2 and volume of autologous bone. The selection of bone particulate diameter had an impact on the osteogenetic potential of bone grafts. Collagen prevented the occurrence of aseptic inflammation and improved the osteoinductivity of BMP-2. These results showed that this composite graft design is effective and feasible for use in bone repair.

  14. Bone engineering by phosphorylated-pullulan and β-TCP composite.

    PubMed

    Takahata, Tomohiro; Okihara, Takumi; Yoshida, Yasuhiro; Yoshihara, Kumiko; Shiozaki, Yasuyuki; Yoshida, Aki; Yamane, Kentaro; Watanabe, Noriyuki; Yoshimura, Masahide; Nakamura, Mariko; Irie, Masao; Van Meerbeek, Bart; Tanaka, Masato; Ozaki, Toshifumi; Matsukawa, Akihiro

    2015-11-20

    A multifunctional biomaterial with the capacity bond to hard tissues, such as bones and teeth, is a real need for medical and dental applications in tissue engineering and regenerative medicine. Recently, we created phosphorylated-pullulan (PPL), capable of binding to hydroxyapatite in bones and teeth. In the present study, we employed PPL as a novel biocompatible material for bone engineering. First, an in vitro evaluation of the mechanical properties of PPL demonstrated both PPL and PPL/β-TCP composites have higher shear bond strength than materials in current clinical use, including polymethylmethacrylate (PMMA) cement and α-tricalcium phosphate (TCP) cement, Biopex-R. Further, the compressive strength of PPL/β-TCP composite was significantly higher than Biopex-R. Next, in vivo osteoconductivity of PPL/β-TCP composite was investigated in a murine intramedular injection model. Bone formation was observed 5 weeks after injection of PPL/β-TCP composite, which was even more evident at 8 weeks; whereas, no bone formation was detected after injection of PPL alone. We then applied PPL/β-TCP composite to a rabbit ulnar bone defect model and observed bone formation comparable to that induced by Biopex-R. Implantation of PPL/β-TCP composite induced new bone formation at 4 weeks, which was remarkably evident at 8 weeks. In contrast, Biopex-R remained isolated from the surrounding bone at 8 weeks. In a pig vertebral bone defect model, defects treated with PPL/β-TCP composite were almost completely replaced by new bone; whereas, PPL alone failed to induce bone formation. Collectively, our results suggest PPL/β-TCP composite may be useful for bone engineering.

  15. TREATMENT OF SUBCLINICAL HYPERTHYROIDISM: EFFECT ON BODY COMPOSITION.

    PubMed

    Boj-Carceller, Diana; Sanz-París, Alejandro; Sánchez-Oriz, Enrique; García-Foncillas López, Rafael; Calmarza-Calmarza, Pilar; Blay-Cortes, Vicente; Abós-Olivares, Ma Dolores

    2015-11-01

    subclinical hyperthyroidism (SHT) is associated with harmful effects on cardiovascular system, bone metabolism and progression to clinical hyperthyroidism. Loss of weight is a common fact in patients with clinical hyperthyroidism and of particular relevance in elderly patients. to assess changes in body composition after radioiodine therapy for SHT due to toxic nodular goiter. prospective controlled cohort study. Patients with persistent SHT due to toxic nodular goiter were purposed to receive treatment with radioiodine (treatment group) or to delay treatment until the study was over (control group). All treated patients received 555 MBq of ¹³¹I. Body composition (lean mass, fat mass and bone mineral content) was determined by dual-energy X-ray absorptiometry (DEXA) at baseline and 12 months after. twenty-nine patients were studied (age 69.5 ± 11.5; 75.9% women; BMI 27.1 ± 5.7 kg/m²; serum thyrotropin (TSH) 0.20 ± 0.21 μUI/mL; serum free thyroxine (T4) 1.01 ± 0.19 ng/dL), 17 belonging to the treatment group and 12 to the control group. Study groups were comparable, although there was a trend for the treatment group to have more fat mass. No longitudinal changes in body composition were noted in either group, except for a trend to gain fat mass. However, when individuals with age > 65 years were selected, only patients who received radioiodine therapy showed a significant increase in body weight (from 64.1 ± 10.0 to 66.9 ± 9.2 kg), BMI (from 27.3 ± 4.8 to 28.7 ± 4.5 kg/m²), fat mass (from 26.1 ± 8.5 to 27.8 ± 7.9 kg), lean mass (from 36.3 ± 0.4 to 37.4 ± 0.4 kg) and skeletal muscle mass index (SMI) (from 6.0 ± 0.6 to 6.3 ± 0.6 kg/m²). treatment of SHT has impact on body composition in subjects older than 65 years. Weight gain reflects increases in fat and, more interestingly, in lean mass. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  16. Effect of parathyroidectomy on bone growth and composition in the young rat

    NASA Technical Reports Server (NTRS)

    Keil, L. C.; Prinz, J. A.; Evans, J. W.

    1974-01-01

    In an effort to determine the influence of the parathyroids on bone growth and composition, 28-day-old male Sprague-Dawley rats were sacrificed 28, 56, and 84 days after parathyroidectomy or sham parathyroidectomy. Body growth as well as femur growth were retarded following parathyroidectomy. Hypocalcemia and hyperphosphatemia occurred in all parathyroidectomized rats; no alterations in plasma magnesium levels were noted. Femur magnesium was increased by 22-30% in the parathyroidectomized rats whereas femur calcium remained unchanged. Bone phosphorus was increased 56 and 84 days following parathyroidectomy. Results of this study indicate that parathyroidectomy retards growth while increasing bone magnesium and phosphorus content.

  17. Bone apatite composition of necrotic trabecular bone in the femoral head of immature piglets.

    PubMed

    Aruwajoye, Olumide O; Kim, Harry K W; Aswath, Pranesh B

    2015-04-01

    Ischemic osteonecrosis of the femoral head (IOFH) can lead to excessive resorption of the trabecular bone and collapse of the femoral head as a structure. A well-known mineral component to trabecular bone is hydroxyapatite, which can be present in many forms due to ionic substitution, thus altering chemical composition. Unfortunately, very little is known about the chemical changes to bone apatite following IOFH. We hypothesized that the apatite composition changes in necrotic bone possibly contribute to increased osteoclast resorption and structural collapse of the femoral head. The purpose of this study was to assess the macroscopic and local phosphate composition of actively resorbed necrotic trabecular bone to isolate differences between areas of increased osteoclast resorption and normal bone formation. A piglet model of IOFH was used. Scanning electron microscopy (SEM), histology, X-ray absorbance near edge structure (XANES), and Raman spectroscopy were performed on femoral heads to characterize normal and necrotic trabecular bone. Backscattered SEM, micro-computed tomography and histology showed deformity and active resorption of necrotic bone compared to normal. XANES and Raman spectroscopy obtained from actively resorbed necrotic bone and normal bone showed increased carbonate-to-phosphate content in the necrotic bone. The changes in the apatite composition due to carbonate substitution may play a role in the increased resorption of necrotic bone due to its increase in solubility. Indeed, a better understanding of the apatite composition of necrotic bone could shed light on osteoclast activity and potentially improve therapeutic treatments that target excessive resorption of bone.

  18. Elastic properties of a porous titanium-bone tissue composite.

    PubMed

    Rubshtein, A P; Makarova, E B; Rinkevich, A B; Medvedeva, D S; Yakovenkova, L I; Vladimirov, A B

    2015-01-01

    The porous titanium implants were introduced into the condyles of tibias and femurs of sheep. New bone tissue fills the pore, and the porous titanium-new bone tissue composite is formed. The duration of composite formation was 4, 8, 24 and 52 weeks. The formed composites were extracted from the bone and subjected to a compression test. The Young's modulus was calculated using the measured stress-strain curve. The time dependence of the Young's modulus of the composite was obtained. After 4 weeks the new bone tissue that filled the pores does not affect the elastic properties of implants. After 24 and 52 weeks the Young's modulus increases by 21-34% and 62-136%, respectively. The numerical calculations of the elasticity of porous titanium-new bone tissue composite were conducted using a simple polydisperse model that is based on the consideration of heterogeneous structure as a continuous medium with spherical inclusions of different sizes. The kinetics of the change in the elasticity of the new bone tissue is presented via the intermediate characteristics, namely the relative ultimate tensile strength or proportion of mature bone tissue in the bone tissue. The calculated and experimentally measured values of the Young's modulus of the composite are in good agreement after 8 weeks of composite formation. The properties of the porous titanium-new bone tissue composites can only be predicted when data on the properties of new bone tissue are available after 8 weeks of contact between the implant and the native bone. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Analysis of bone protein and mineral composition in bone disease using synchrotron infrared microspectroscopy

    NASA Astrophysics Data System (ADS)

    Miller, Lisa M.; Hamerman, David; Chance, Mark R.; Carlson, Cathy S.

    1999-10-01

    Infrared (IR) microspectroscopy is an analytical technique that is highly sensitive to the chemical components in bone. The brightness of a synchrotron source permits the examination of individual regions of bone in situ at a spatial resolution superior to that of a conventional infrared source. At Beamlines U10B and U2B at the National Synchrotron Light Source, we are examining the role of bone chemical composition in bone disease. In osteoarthritis (OA), it has been demonstrated that the bone underlying the joint cartilage (subchondral bone) becomes thickened prior to cartilage breakdown. Using synchrotron infrared microspectroscopy, we have examined the chemical composition of the subchondral bone in histologically normal and OA monkeys. Results demonstrate that the subchondral bone of OA monkeys is significantly more mineralized than the normal bone, primarily due to an increase in carbonate concentration in the OA bone. High resolution analysis indicates that differences in carbonate content are uniform throughout the subchondral bone region, suggesting that high subchondral bone carbonate may be a marker for OA. Conversely, increases in phosphate content are more pronounced in the region near the marrow space, suggesting that, as the subchondral bone thickens, the bone also becomes more mineralized. Osteoporosis is a disease characterized by a reduction in bone mass and a skeleton that is more susceptible to fracture. To date, it is unclear whether bone remodeled after the onset of osteoporosis differs in chemical composition from older bone. Using fluorescence-assisted infrared microspectroscopy, we are comparing the composition of monkey bone remodeled at various time points after the onset of osteoporosis (induced by ovariectomy). We find that the chemical composition of bone remodeled one year after ovariectomy and one year prior to necropsy is similar to normal bone. On the other hand, bone remodeled two years after ovariectomy is less mature, indicated

  20. Systematic review: body composition in adults with inflammatory bowel disease.

    PubMed

    Bryant, R V; Trott, M J; Bartholomeusz, F D; Andrews, J M

    2013-08-01

    There is a paucity of data on body composition in patients with inflammatory bowel disease (IBD). Alterations of fat and muscle may affect bone health, muscle performance, quality of life (QoL) and overall morbidity. To systematically review the literature on body composition in adults with IBD, and to discuss potential contributory factors and associations. A systematic search was performed in July 2012 of OVID SP MEDLINE, OVID EMBASE and National Library of Medicine's PubMed Central Medline (Limitations: English, humans, from 1992). A total of 19 articles comparing body composition in patients with IBD with healthy age- and sex-matched control populations were included in the primary analysis. A total of 631 patients with Crohn's disease (CD) and 295 with ulcerative colitis (UC), mean age 37.1 (s.d. ± 9.2) years; 485 (52%) female, were reported upon. Data were heterogeneous and methodology varied. Compared with controls, a statistically significant reduction in body mass index (BMI) was reported in 37% of CD and 20% of UC patients; reduced fat-free mass in 28% CD and 13% UC patients, and reduced fat mass in 31% CD and 13% UC patients. There was no consistent association between body composition and disease activity, duration, extent or therapies. BMI did not accurately predict body composition. Current data, although heterogeneous, suggest that many patients with IBD are affected by aberrations in fat and lean mass, which may not be detected during routine clinical assessment. The prevalence and impact of altered body composition amongst this population warrant further investigation. © 2013 John Wiley & Sons Ltd.

  1. Longitudinal Body Composition Changes in NCAA Division I College Football Players

    PubMed Central

    Trexler, Eric T.; Smith-Ryan, Abbie E.; Mann, J. Bryan; Ivey, Pat A.; Hirsch, Katie R.; Mock, Meredith G.

    2016-01-01

    Many athletes seek to optimize body composition to fit the physical demands of their sport. American football requires a unique combination of size, speed, and power. The purpose of the current study was to evaluate longitudinal changes in body composition in Division I collegiate football players. For 57 players (Mean ± SD; Age=19.5 ± 0.9 yrs; Height=186.9 ± 5.7 cm; Weight=107.7 ± 19.1 kg), body composition was assessed via dual-energy x-ray absorptiometry in the off-season (March-Pre), end of off-season (May), mid-July (Pre-Season), and the following March (March-Post). Outcome variables included weight, body fat percentage (BF%), fat mass (FM), lean mass (LM), android (AND) and gynoid (GYN) fat, bone mineral content (BMC), and bone density (BMD). For a subset of athletes (n=13 out of 57), changes over a 4-year playing career were evaluated with measurements taken every March. Throughout a single year, favorable changes were observed for BF% (Δ=−1.3 ± 2.5%), LM (Δ=2.8 ± 2.8 kg), GYN (Δ=−1.5 ± 3.0%), BMC (Δ=0.06 ± 0.14 kg), and BMD (Δ=0.015 ± 0.027g·cm−2; all p<0.05). Across four years, weight increased significantly (Δ=6.6 ± 4.1kg), and favorable changes were observed for LM (Δ=4.3 ± 3.0 kg), BMC (Δ=0.18 ± 0.17 kg), and BMD (Δ=0.033 ± 0.039 g·cm−2; all p<0.05). Similar patterns in body composition changes were observed for linemen and non-linemen. Results indicate that well-trained collegiate football players at high levels of competition can achieve favorable changes in body composition, even late in the career, which may confer benefits for performance and injury prevention. PMID:28005635

  2. Body composition and somatotypes of male Zimbabwean Premier League football referees.

    PubMed

    Banda, Morris; Grobbelaar, Heinrich W; Terblanche, Elmarie

    2018-04-20

    Elite athletes need to optimise their body composition to deliver world class performances and this argument could be extended to elite referees as well. Unfortunately, there is a scarcity of body composition information among football referees. The aim of the study was to determine and compare the body composition and somatotypes of male football referees and assistant referees who officiated in the 2013 Zimbabwe Premier Football League. Forty-one participants (21 referees, 20 assistant referees; 8 FIFA, 33 ZIFA licenced referees) with a mean age of 34.89 ± 5.13 years took part. They had on average 10.85 ± 3.85 years of refereeing experience. The ISAK restricted anthropometric profile was used to measure body mass, height, skinfolds, girths and bone breadths, from which body mass index (BMI), waist-to-hip ratio (WHR), percentage body fat and somatotype were calculated. The referees were significantly taller than the assistant referees. The FIFA referees had moderately more desirable anthropometric profiles than the ZIFA referees. With a mean somatotype of 2.62-4.65-2.65, the total sample could be classified as balanced mesomorphs. They had lower BMI and body fat percentages than that observed among referees from other nationalities in the available literature. The results add to the paucity of information on the body composition of football officials. Referees aiming to excel at higher levels need to obtain and maintain an ideal body composition since elite level football is intense and requires high fitness levels.

  3. Association between body composition and pulmonary function in children and young people with cystic fibrosis.

    PubMed

    Calella, Patrizia; Valerio, Giuliana; Thomas, Matt; McCabe, Helen; Taylor, Jake; Brodlie, Malcolm; Siervo, Mario

    2018-04-01

    Body mass index (BMI) has significant limitations when assessing nutritional status in pediatric patients with cystic fibrosis (CF). We evaluated whether measurements of lean body mass (LBM) and fat mass (FM) are more sensitive nutritional parameters by testing their association with pulmonary function in adolescent patients with CF. Sixty-nine male and female adolescents with CF were studied (age: 14.5 ± 2.3, BMI: 19.5 ± 2.3 kg/m 2 ). Dual-energy x-ray absorptiometry (DXA) was used to measure total and segmental (appendicular, truncal) body composition (FM, LBM bone mineral density, and content) as routine care to monitor bone health. Correlation and multiple regression analyses were performed to assess the association among body composition variables and forced expiratory volume in 1 s (FEV 1 ). We also evaluated the influence of the F508del mutation on body composition. FEV 1 was significantly associated with total (r = 0.68, P <0.001), truncal (r = 0.71, P <0.001), and appendicular (r = 0.67, P <0.001) LBM, whereas it was not associated with total (r = 0.02, P = 0.89) and truncal (r = 0.04, P = 0.77) FM. BMI had a significant but weaker correlation with FEV 1 (r = 0.52, P <0.001) compared with LBM. LBM was the only significant predictor of FEV 1 in fully adjusted regression models. LBM is a significant predictor of pulmonary function in CF adolescent patients. DXA scanning performed as part of routine bone health monitoring in CF can provide important body composition data relevant to clinical interventions that optimize nutritional status. DXA reference data for LBM in non-adult populations are needed to enhance diagnostic assessment and monitor clinical progression of CF. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Imaging methods for analyzing body composition in human obesity and cardiometabolic disease.

    PubMed

    Seabolt, Lynn A; Welch, E Brian; Silver, Heidi J

    2015-09-01

    Advances in the technological qualities of imaging modalities for assessing human body composition have been stimulated by accumulating evidence that individual components of body composition have significant influences on chronic disease onset, disease progression, treatment response, and health outcomes. Importantly, imaging modalities have provided a systematic method for differentiating phenotypes of body composition that diverge from what is considered normal, that is, having low bone mass (osteopenia/osteoporosis), low muscle mass (sarcopenia), high fat mass (obesity), or high fat with low muscle mass (sarcopenic obesity). Moreover, advances over the past three decades in the sensitivity and quality of imaging not just to discern the amount and distribution of adipose and lean tissue but also to differentiate layers or depots within tissues and cells is enhancing our understanding of distinct mechanistic, metabolic, and functional roles of body composition within human phenotypes. In this review, we focus on advances in imaging technologies that show great promise for future investigation of human body composition and how they are being used to address the pandemic of obesity, metabolic syndrome, and diabetes. © 2015 New York Academy of Sciences.

  5. Composition of chitosan-hydroxyapatite-collagen composite scaffold evaluation after simulated body fluid immersion as reconstruction material

    NASA Astrophysics Data System (ADS)

    Verisqa, F.; Triaminingsih, S.; Corputty, J. E. M.

    2017-08-01

    Hydroxyapatite (HA) formation is one of the most important aspects of bone regeneration. Because domestically made chitosan-hydroxyapatite-collagen composite scaffolding from crab shell and bovine bone and tendon has potential as a maxillofacial reconstruction material, the material’s HA-forming ability requires evaluation. The aim of this research is to investigate chitosan-hydroxyapatite-collagen composite scaffold’s potential as a maxillofacial reconstruction material by observing the scaffold’s compositional changes. Scaffold specimens were immersed in 37°C simulated body fluid (SBF) for periods of 2, 4, 6, and 8 days. Scaffold composition was then evaluated by using energy dispersive spectroscopy (EDS). The calcium (Ca) and phosphorus (P) percentages of the scaffold were found to increase following SBF immersion. The high Ca/P ratio (3.82) on the scaffold indicated HA formation. Ion exchange played a significant role in the increased percentages of Ca and P, which led to new HA layer formation. The scaffold’s HA acted as a nucleation site of Ca and P from the SBF, with collagen and chitosan as the scaffold’s matrix. Chitosan-hydroxyapatite-collagen composite scaffold shows potential as a maxillofacial reconstruction material, since its composition favors HA formation.

  6. Body Composition Changes in Severely Burned Children During ICU Hospitalization.

    PubMed

    Cambiaso-Daniel, Janos; Malagaris, Ioannis; Rivas, Eric; Hundeshagen, Gabriel; Voigt, Charles D; Blears, Elizabeth; Mlcak, Ron P; Herndon, David N; Finnerty, Celeste C; Suman, Oscar E

    2017-12-01

    Prolonged hospitalization due to burn injury results in physical inactivity and muscle weakness. However, how these changes are distributed among body parts is unknown. The aim of this study was to evaluate the degree of body composition changes in different anatomical regions during ICU hospitalization. Retrospective chart review. Children's burn hospital. Twenty-four severely burned children admitted to our institution between 2000 and 2015. All patients underwent a dual-energy x-ray absorptiometry within 2 weeks after injury and 2 weeks before discharge to determine body composition changes. No subject underwent anabolic intervention. We analyzed changes of bone mineral content, bone mineral density, total fat mass, total mass, and total lean mass of the entire body and specifically analyzed the changes between the upper and lower limbs. In the 24 patients, age was 10 ± 5 years, total body surface area burned was 59% ± 17%, time between dual-energy x-ray absorptiometries was 34 ± 21 days, and length of stay was 39 ± 24 days. We found a significant (p < 0.001) average loss of 3% of lean mass in the whole body; this loss was significantly greater (p < 0.001) in the upper extremities (17%) than in the lower extremities (7%). We also observed a remodeling of the fat compartments, with a significant whole-body increase in fat mass (p < 0.001) that was greater in the truncal region (p < 0.0001) and in the lower limbs (p < 0.05). ICU hospitalization is associated with greater lean mass loss in the upper limbs of burned children. Mobilization programs should include early mobilization of upper limbs to restore upper extremity function.

  7. Composites structures for bone tissue reconstruction

    NASA Astrophysics Data System (ADS)

    Neto, W.; Santos, João.; Avérous, L.; Schlatter, G.; Bretas, Rosario.

    2015-05-01

    The search for new biomaterials in the bone reconstitution field is growing continuously as humane life expectation and bone fractures increase. For this purpose, composite materials with biodegradable polymers and hydroxyapatite (HA) have been used. A composite material formed by a film, nanofibers and HA has been made. Both, the films and the non-woven mats of nanofibers were formed by nanocomposites made of butylene adipate-co-terephthalate (PBAT) and HA. The techniques used to produce the films and nanofibers were spin coating and electrospinning, respectively. The composite production and morphology were evaluated. The composite showed an adequate morphology and fibers size to be used as scaffold for cell growth.

  8. Interruption or deferral of antiretroviral therapy reduces markers of bone turnover compared with continuous therapy: the SMART Body Composition Substudy

    PubMed Central

    Hoy, Jennifer; Grund, Birgit; Roediger, Mollie; Ensrud, Kristine E.; Brar, Indira; Colebunders, Robert; De Castro, Nathalie; Johnson, Margaret; Sharma, Anjali; Carr, Andrew

    2013-01-01

    Bone mineral density (BMD) declines significantly in HIV patients on antiretroviral therapy (ART). We compared the effects of intermittent versus continuous ART on markers of bone turnover in the Body Composition substudy of the Strategies for Management of AntiRetroviral Therapy (SMART) trial and determined whether early changes in markers predicted subsequent change in BMD. For 202 participants (median age 44 years, 17% female, 74% on ART) randomised to continuous or intermittent ART, plasma markers of inflammation and bone turnover were evaluated at baseline, months 4 and 12; BMD at the spine (dual X-ray absorptiometry [DXA] and computed tomography) and hip (DXA) was evaluated annually. Compared to the continuous ART group, mean bone-specific alkaline phosphatase (bALP), osteocalcin, procollagen type 1 N-terminal propeptide (P1NP), N-terminal cross-linking telopeptide of type 1 collagen (NTX), and C-terminal cross-linking telopeptide of type 1 collagen (βCTX) decreased significantly in the intermittent ART group, whereas RANKL and the RANKL:osteoprotegerin (OPG) ratio increased (all p≤0.002 at month 4 and month 12). Increases in bALP, osteocalcin, P1NP, NTX, and βCTX at month 4 predicted decrease in hip BMD at month 12, while increases in RANKL and the RANKL:OPG ratio at month 4 predicted increase in hip and spine BMD at month 12. This study has shown that compared with continuous ART, interruption of ART results in a reduction in markers of bone turnover and increase in BMD at hip and spine, and that early changes in markers of bone turnover predict BMD changes at 12 months. PMID:23299909

  9. Synthesis and mechanical behavior of β-tricalcium phosphate/titania composites addressed to regeneration of long bone segments.

    PubMed

    Sprio, Simone; Guicciardi, Stefano; Dapporto, Massimiliano; Melandri, Cesare; Tampieri, Anna

    2013-01-01

    Bioactive tricalcium phosphate/titania ceramic composites were synthesized by pressureless air sintering of mixed hydroxyapatite and titania (TiO2) powders. The sintering process was optimized to achieve dense ceramic bodies consisting in a bioactive/bioresorbable matrix (β-tricalcium phosphate) reinforced with defined amounts of sub-micron sized titania particles. Extensive chemico-physical and mechanical characterization was carried out on the resulting composites, which displayed values of flexural strength, fracture toughness and elastic modulus in the range or above the typical ranges of values manifested by human cortical bone. It was shown that titania particles provided a toughening effect to the calcium-phosphate matrix and a reinforcement in fracture strength, in comparison with sintered hydroxyapatite bodies characterized by similar relative density. The characteristics of the resulting composites, i.e. bioactivity/bioresorbability and ability of manifesting biomimetic mechanical behavior, are features that can promote processes of bone regeneration in load-bearing sites. Hence, in the perspective of developing porous bone scaffolds with high bioactivity and improved biomechanical behavior, TCP/TiO2 composites with controlled composition can be considered as very promising biomaterials for application in a field of orthopedics where no acceptable clinical solutions still exist. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. In vivo experimental study on bone regeneration in critical bone defects using PIB nanogels/boron-containing mesoporous bioactive glass composite scaffold

    PubMed Central

    Chen, Xiaohui; Zhao, Yanbing; Geng, Shinan; Miron, Richard J; Zhang, Qiao; Wu, Chengtie; Zhang, Yufeng

    2015-01-01

    Purpose In the present study, the fabrication of novel p(N-isopropylacrylamide-co-butyl methylacrylate) (PIB) nanogels was combined with boron-containing mesoporous bioactive glass (B-MBG) scaffolds in order to improve the mechanical properties of PIB nanogels alone. Scaffolds were tested for mechanical strength and the ability to promote new bone formation in vivo. Patients and methods To evaluate the potential of each scaffold in bone regeneration, ovariectomized rats were chosen as a study model to determine the ability of PIB nanogels to stimulate bone formation in a complicated anatomical bone defect. PIB nanogels and PIB nanogels/B-MBG composites were respectively implanted into ovariectomized rats with critical-sized femur defects following treatment periods of 2, 4, and 8 weeks post-implantation. Results Results from the present study demonstrate that PIB nanogels/B-MBG composites showed greater improvement in mechanical strength when compared to PIB nanogels alone. In vivo, hematoxylin and eosin staining revealed significantly more newly formed bone in defects containing PIB nanogels/B-MBG composite scaffolds when compared to PIB nanogels alone. Tartrate-resistant acid phosphatase-positive staining demonstrated that both scaffolds were degraded over time and bone remodeling occurred in the surrounding bone defect as early as 4 weeks post-implantation. Conclusion The results from the present study indicate that PIB nanogels are a potential bone tissue engineering biomaterial able to treat defects of irregular shapes and deformities as an injectable, thermoresponsive, biocompatible hydrogel which undergoes rapid thermal gelation once body temperature is reached. Furthermore, its combination with B-MBG scaffolds improves the mechanical properties and ability to promote new bone formation when compared to PIB nanogels alone. PMID:25653525

  11. In vivo experimental study on bone regeneration in critical bone defects using PIB nanogels/boron-containing mesoporous bioactive glass composite scaffold.

    PubMed

    Chen, Xiaohui; Zhao, Yanbing; Geng, Shinan; Miron, Richard J; Zhang, Qiao; Wu, Chengtie; Zhang, Yufeng

    2015-01-01

    In the present study, the fabrication of novel p(N-isopropylacrylamide-co-butyl methylacrylate) (PIB) nanogels was combined with boron-containing mesoporous bioactive glass (B-MBG) scaffolds in order to improve the mechanical properties of PIB nanogels alone. Scaffolds were tested for mechanical strength and the ability to promote new bone formation in vivo. To evaluate the potential of each scaffold in bone regeneration, ovariectomized rats were chosen as a study model to determine the ability of PIB nanogels to stimulate bone formation in a complicated anatomical bone defect. PIB nanogels and PIB nanogels/B-MBG composites were respectively implanted into ovariectomized rats with critical-sized femur defects following treatment periods of 2, 4, and 8 weeks post-implantation. Results from the present study demonstrate that PIB nanogels/B-MBG composites showed greater improvement in mechanical strength when compared to PIB nanogels alone. In vivo, hematoxylin and eosin staining revealed significantly more newly formed bone in defects containing PIB nanogels/B-MBG composite scaffolds when compared to PIB nanogels alone. Tartrate-resistant acid phosphatase-positive staining demonstrated that both scaffolds were degraded over time and bone remodeling occurred in the surrounding bone defect as early as 4 weeks post-implantation. The results from the present study indicate that PIB nanogels are a potential bone tissue engineering biomaterial able to treat defects of irregular shapes and deformities as an injectable, thermoresponsive, biocompatible hydrogel which undergoes rapid thermal gelation once body temperature is reached. Furthermore, its combination with B-MBG scaffolds improves the mechanical properties and ability to promote new bone formation when compared to PIB nanogels alone.

  12. A DXA Whole Body Composition Cross-Calibration Experience: Evaluation With Humans, Spine, and Whole Body Phantoms.

    PubMed

    Krueger, Diane; Libber, Jessie; Sanfilippo, Jennifer; Yu, Hui Jing; Horvath, Blaine; Miller, Colin G; Binkley, Neil

    2016-01-01

    New densitometer installation requires cross-calibration for accurate longitudinal assessment. When replacing a unit with the same model, the International Society for Clinical Densitometry recommends cross-calibrating by scanning phantoms 10 times on each instrument and states that spine bone mineral density (BMD) should be within 1%, whereas total body lean, fat, and %fat mass should be within 2% of the prior instrument. However, there is limited validation that these recommendations provide adequate total body cross-calibration. Here, we report a total body cross-calibration experience with phantoms and humans. Cross-calibration between an existing and new Lunar iDXA was performed using 3 encapsulated spine phantoms (GE [GE Lunar, Madison, WI], BioClinica [BioClinica Inc, Princeton, NJ], and Hologic [Hologic Inc, Bedford, MA]), 1 total body composition phantom (BioClinica), and 30 human volunteers. Thirty scans of each phantom and a total body scan of human volunteers were obtained on each instrument. All spine phantom BMD means were similar (within 1%; <-0.010 g/cm2 bias) between the existing and new dual-energy X-ray absorptiometry unit. The BioClinica body composition phantom (BBCP) BMD and bone mineral content (BMC) values were within 2% with biases of 0.005 g/cm2 and -3.4 g. However, lean and fat mass and %fat differed by 4.6%-7.7% with biases of +463 g, -496 g, and -2.8%, respectively. In vivo comparison supported BBCP data; BMD and BMC were within ∼2%, but lean and fat mass and %fat differed from 1.6% to 4.9% with biases of +833 g, -860 g, and -1.1%. As all body composition comparisons exceeded the recommended 2%, the new densitometer was recalibrated. After recalibration, in vivo bias was lower (<0.05%) for lean and fat; -23 and -5 g, respectively. Similarly, BBCP lean and fat agreement improved. In conclusion, the BBCP behaves similarly, but not identical, to human in vivo measurements for densitometer cross-calibration. Spine phantoms, despite good

  13. Body Composition and Cardiovascular Risk Markers after Remission of Cushing's Disease: A Prospective Study Using Whole-Body MRI

    PubMed Central

    Shen, Wei; Strohmayer, Erika; Post, Kalmon D.; Freda, Pamela U.

    2012-01-01

    Context: Cushing's Disease (CD) alters fat distribution, muscle mass, adipokine profile, and cardiovascular risk factors. It is not known whether remission entirely reverses these changes. Objectives: Our objective was to determine whether the adverse body composition and cardiovascular risk profile in CD change after remission. Design, Setting, and Patients: Fourteen CD patients were studied prospectively: before surgery (active disease) and again postoperatively 6 months after discontinuing oral glucocorticoids (remission). Whole-body magnetic resonance imaging was used to examine lean and fat tissue distributions. Outcome Measures: Body composition (skeletal muscle and fat in the visceral, bone marrow, sc, and inter-muscular compartments) and cardiovascular risk factors (serum insulin, glucose, leptin, high-molecular-weight adiponectin, C-reactive protein, and lipid profile) were measured in active CD and remission (mean 20 months after surgery). Results: Remission decreased visceral, pelvic bone marrow, sc (including trunk and limb sc), and total fat; waist circumference; and weight (P < 0.05). Remission altered fat distribution, resulting in decreased visceral/total fat (P = 0.04) and visceral fat/skeletal muscle ratios (P = 0.006). Remission decreased the absolute muscle mass (P = 0.015). Cardiovascular risk factors changed: insulin resistance, leptin, and total cholesterol decreased (P < 0.05), but adiponectin, C-reactive protein, and other lipid measures did not change. Conclusions: CD remission reduced nearly all fat depots and reverted fat to a distribution more consistent with favorable cardiovascular risk but decreased skeletal muscle. Remission improved some but not all cardiovascular risk markers. Remission from CD dramatically improves body composition abnormalities but may still be associated with persistent cardiovascular risk. PMID:22419708

  14. Composites structures for bone tissue reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neto, W.; Santos, João; Avérous, L.

    2015-05-22

    The search for new biomaterials in the bone reconstitution field is growing continuously as humane life expectation and bone fractures increase. For this purpose, composite materials with biodegradable polymers and hydroxyapatite (HA) have been used. A composite material formed by a film, nanofibers and HA has been made. Both, the films and the non-woven mats of nanofibers were formed by nanocomposites made of butylene adipate-co-terephthalate (PBAT) and HA. The techniques used to produce the films and nanofibers were spin coating and electrospinning, respectively. The composite production and morphology were evaluated. The composite showed an adequate morphology and fibers size tomore » be used as scaffold for cell growth.« less

  15. [Effects of sexual maturation on body composition, dermatoglyphics, somatotype and basic physical qualities of adolescents].

    PubMed

    Linhares, Renato Vidal; Matta, Marcelo de Oliveira; Lima, Jorge R P; Dantas, Paulo M Silva; Costa, Mônica Barros; Fernandes Filho, José

    2009-02-01

    Describe the characteristics of body composition, somatotype, basic physical qualities, dermatoglyphics and bone age regarding sexual maturation stages of boys. A transversal study was carried out in 136 boys, between 10 and 14 years of age. Clinical assessment, physical examination and radiography of wrists and hands to calculate bone age were performed. A tendency of increasing total body mass, stature, body mass index, body bone diameters and muscle circumferences and basic physical qualities was found with the advancing of puberty. No differences were found in dermatoglyphics and somatotype between different stages of puberty maturation. Due to the changes in important parameters of physical training that occur during puberty, it can be concluded that the selection of children and adolescents for sport training and competitions should be based not only on chronological age but also, and mainly on sexual maturation, for better physical assessment and appropriate training for this population.

  16. [Effect of Acupuncture Therapy on Body Compositions in Patients with Obesity].

    PubMed

    Zhang, Hui-Min; Wu, Xue-Liang; Jiang, Chao; Shi, Rong-Xing

    2017-04-25

    To observe the clinical effectiveness of acupuncture intervention in weight reduction by modulating body compositions in obesity patients. A total of 71 obesity patients during weight-loss procedure were allocated to acupuncture+nutrition-consultation group ( n =40) and simple nutrition-consultation group ( n =31). The patients of the acupuncture +nutrition-consultation group were treated by acupuncture stimulation of Zhongwan (CV 12), Xiawan (CV 10), Tianshu (ST 25), Wailing (ST 26), Qihai (CV 6), Guanyuan (CV 4), etc. for 30 min, once every other day, 3 times per week, 12 times altogether, and also given with weekly nutrition consultation (including subjective query, objective measurement, analysis, program for nutrition support) at the same time. The patients of the simple nutrition-consultation group were treated by only weekly nutrition consultation for 4 weeks. Before and after the treatment, the patients' body weight, body mass index (BMI), fat mass, percentage of body fat, muscle mass, protein quality, water quality and bone mass were measured by using a composition analyzer. After 4 weeks' treatment, the body mass, BMI, fat mass and fat percentage in both acupuncture+nutrition-consultation and simple nutrition-consultation groups were significantly decreased ( P <0.01), while the weight levels of muscle, protein, bone and water content had no apparent changes ( P >0.05). The therapeutic effect of acupuncture+nutrition-consultation group was markedly superior to that of the simple nutrition-consultation group in increasing the improved degrees of body weight, BMI, fat mass and fat percentage ( P <0.01). Acupuncture plus nutrition consultation is effective in reducing body mass, fat mass and percentage of body fat in obesity patients.

  17. Body composition and anthropometry in Japanese and Australian Caucasian males and Japanese females.

    PubMed

    Kagawa, Masaharu; Binns, Colin B; Hills, Andrew P

    2007-01-01

    The total amount and location of fat deposition are important factors in the development of obesity and the metabolic syndrome. To date there have been no reported studies of ethnic and gender differences in body composition and fat distribution patterns in Japanese and Australian young adults. The aim of this study was to assess body composition of young Japanese and Australian Caucasian adults using whole-body dual energy x-ray absorptiometry (DXA) and anthropometry to examine body fat deposition patterns. Body composition of 45 Japanese males and 42 Australian Caucasian males living in Australia (aged 18-40 years) and 139 Japanese females living in Japan (aged 18-27 years) were measured using whole-body DXA scanning and anthropometry. Differences in relationships between BMI and waist circumference (WC), sum of skinfolds (SigmaSF) and %BF obtained from DXA were assessed using multivariate analyses. Distinct gender and ethnic differences (p<0.05) in bone density and waist circumference were observed but no gender differences in BMI and bone mineral content and no ethnic differences in sum of skinfolds and %BF. Both Japanese males and females showed a greater %BF at given BMI, WC and SigmaSF values (p<0.05). The results indicate differences in relationships between %BF and anthropometric measures in young Japanese compared to Caucasians and the importance of population-specific cut-off points for these indices. These findings also have implications for the development of chronic disease and further research, including studies in other Asian countries, is recommended.

  18. Internet-delivered lifestyle physical activity intervention improves body composition in multiple sclerosis: preliminary evidence from a randomized controlled trial.

    PubMed

    Pilutti, Lara A; Dlugonski, Deirdre; Sandroff, Brian M; Klaren, Rachel E; Motl, Robert W

    2014-07-01

    To examine the efficacy of a physical activity behavioral intervention for improving outcomes of body composition in persons with multiple sclerosis (MS). Secondary analysis of data from a randomized controlled trial. University research laboratory. Ambulatory persons with MS (N=82). A 6-month, internet-delivered physical activity behavioral intervention designed to increase lifestyle physical activity, primarily walking. The behavioral intervention was based on principles of social cognitive theory. Whole-body bone mineral content (BMC), bone mineral density (BMD), and soft tissue composition, using dual-energy x-ray absorptiometry. There were no significant differences between conditions posttrial on body composition outcomes using the adjusted critical value (P<.008). There was a significant effect of the intervention on whole-body BMC (P=.04, ω(2)<.001) and BMD (P=.01, ω(2)=.003) using the unadjusted critical value (P<.05). The effect of the intervention on percent body fat (P=.09, ω(2)=.001) and whole-body fat mass (P=.05, ω(2)=.003) approached significance using unadjusted criteria. There was not a significant effect on whole-body lean soft tissue (P=.28, ω(2)<.001) or body mass index (P=.86, ω(2)<.001). Our results provide preliminary evidence that an internet-delivered lifestyle physical activity intervention might improve bone health and body composition in MS. Such findings are important considering that physical activity is a modifiable behavior with the potential to confer long-term benefits for the prevention and management of fracture risk and comorbidities among those with MS. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  19. Composite bone cements loaded with a bioactive and ferrimagnetic glass-ceramic: Leaching, bioactivity and cytocompatibility.

    PubMed

    Verné, Enrica; Bruno, Matteo; Miola, Marta; Maina, Giovanni; Bianco, Carlotta; Cochis, Andrea; Rimondini, Lia

    2015-08-01

    In this work, composite bone cements, based on a commercial polymethylmethacrylate matrix (Palamed®) loaded with ferrimagnetic bioactive glass-ceramic particles (SC45), were produced and characterized in vitro. The ferrimagnetic bioactive glass-ceramic belongs to the system SiO2-Na2O-CaO-P2O5-FeO-Fe2O3 and contains magnetite (Fe3O4) crystals into a residual amorphous bioactive phase. Three different formulations (containing 10, 15 and 20 wt.% of glass-ceramic particles respectively) have been investigated. These materials are intended to be applied as bone fillers for the hyperthermic treatment of bone tumors. The morphological, compositional, calorimetric and mechanical properties of each formulation have been already discussed in a previous paper. The in vitro properties of the composite bone cements described in the present paper are related to iron ion leaching test (by graphite furnace atomic absorption spectrometer), bioactivity (i.e. the ability to stimulate the formation of a hydroxyapatite - HAp - layer on their surface after soaking in simulated body fluid SBF) and cytocompatibility toward human osteosarcoma cells (ATCC CRL-1427, Mg63). Morphological and chemical characterizations by scanning electron microscopy and energy dispersion spectrometry have been performed on the composite samples after each test. The iron release was negligible and all the tested samples showed the growth of HAp on their surface after 28 days of immersion in a simulated body fluid (SBF). Cells showed good viability, morphology, adhesion, density and the ability to develop bridge-like structures on all investigated samples. A synergistic effect between bioactivity and cell mineralization was also evidenced. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. [Effects of simulated body fluid flowing rate on bone-like apatite formation on porous calcium phosphate ceramics].

    PubMed

    Duan, You-rong; Liu, Ke-wei; Chen, Ji-yong; Zhang, Xing-dong

    2002-06-01

    Objective. Bone-like apatite formation on the surface of calcium phosphate ceramics was believed to be the necessary step that new bone grows on the ceramics and to be relative to the osteoinductivity of the material. This study aimed at investigating the influence of the flow rate of simulated body fluid (SBF) (2 ml/min) in skeletal muscle upon the formation of bone-like apatite on porous calcium phosphate ceramics. Method. The dynamic condition was realized by controlling the SBF flowing in/out of the sample chamber of 100 ml. The flow rate of 2 ml/min is close to that in human muscle environment. The pH and inorganic ionic composition of SBF are close to those of human body fluid. Result. Bone-like apatite formation was relatively easier to occur in static SBF than in dynamic SBF. Experiment with flowing SBF (dynamic SBF) is better in mimicking the living body fluid than static SBF. Conclusion. The results from dynamic SBF may more truly show the relation between apatite layer formation and osteoinduction in biomaterials than that from in vitro experiments before.

  1. Osteoporosis and body composition.

    PubMed

    Crepaldi, G; Romanato, G; Tonin, P; Maggi, S

    2007-01-01

    The Epidemiologic Study on the Prevalence of Osteoporosis in Italy showed that the prevalence of osteoporosis among women and men aged 60 yr and over is 22.8% and 14.5%, respectively, giving rise to about 80,000 new fractures a yr. Sarcopenia is considered to be one of the main features of the aging process. It is characterized by a reduction in muscle mass and muscle strength, and affects women more than men. It is associated with a increased risk of fractures consequent upon a greater predisposition to falls, but also to the lack of bone remodeling due to reduced muscle mechanical strength. Muscle strength determines quality bone modifications such as density, strength, and microarchitecture. Variations in the ratios of cortical and muscle areas give rise to various types of osteoporosis, with different risks of fracture. Bone mineral density increases with body fat mass, and obesity has a protective effect against osteoporosis. This protective effect is explained by a combination of hormonal (peripheral aromatization of androgens to estrogens in adipose tissue) and mechanical factors (on weight-bearing bone sites), but the hormone leptin also probably mediates fat and bone mass. Serum leptin levels are closely related to body fat mass, and some findings suggest the peripheral effect of leptin, which exerts estrogenic effects, enhancing osteoblastic differentiation and inhibiting late adipocytic differentiation. The overall effect of leptin on bone results from a balance between negative central effects and positive direct peripheral effects, according to serum leptin levels.

  2. Fiber glass-bioactive glass composite for bone replacing and bone anchoring implants.

    PubMed

    Vallittu, Pekka K; Närhi, Timo O; Hupa, Leena

    2015-04-01

    Although metal implants have successfully been used for decades, devices made out of metals do not meet all clinical requirements, for example, metal objects may interfere with some new medical imaging systems, while their stiffness also differs from natural bone and may cause stress-shielding and over-loading of bone. Peer-review articles and other scientific literature were reviewed for providing up-dated information how fiber-reinforced composites and bioactive glass can be utilized in implantology. There has been a lot of development in the field of composite material research, which has focused to a large extent on biodegradable composites. However, it has become evident that biostable composites may also have several clinical benefits. Fiber reinforced composites containing bioactive glasses are relatively new types of biomaterials in the field of implantology. Biostable glass fibers are responsible for the load-bearing capacity of the implant, while the dissolution of the bioactive glass particles supports bone bonding and provides antimicrobial properties for the implant. These kinds of combination materials have been used clinically in cranioplasty implants and they have been investigated also as oral and orthopedic implants. The present knowledge suggests that by combining glass fiber-reinforced composite with particles of bioactive glass can be used in cranial implants and that the combination of materials may have potential use also as other types of bone replacing and repairing implants. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Body composition in patients with classical homocystinuria: body mass relates to homocysteine and choline metabolism.

    PubMed

    Poloni, Soraia; Leistner-Segal, Sandra; Bandeira, Isabel Cristina; D'Almeida, Vânia; de Souza, Carolina Fischinger Moura; Spritzer, Poli Mara; Castro, Kamila; Tonon, Tássia; Nalin, Tatiéle; Imbard, Apolline; Blom, Henk J; Schwartz, Ida V D

    2014-08-10

    Classical homocystinuria is a rare genetic disease caused by cystathionine β-synthase deficiency, resulting in homocysteine accumulation. Growing evidence suggests that reduced fat mass in patients with classical homocystinuria may be associated with alterations in choline and homocysteine pathways. This study aimed to evaluate the body composition of patients with classical homocystinuria, identifying changes in body fat percentage and correlating findings with biochemical markers of homocysteine and choline pathways, lipoprotein levels and bone mineral density (BMD) T-scores. Nine patients with classical homocystinuria were included in the study. Levels of homocysteine, methionine, cysteine, choline, betaine, dimethylglycine and ethanolamine were determined. Body composition was assessed by bioelectrical impedance analysis (BIA) in patients and in 18 controls. Data on the last BMD measurement and lipoprotein profile were obtained from medical records. Of 9 patients, 4 (44%) had a low body fat percentage, but no statistically significant differences were found between patients and controls. Homocysteine and methionine levels were negatively correlated with body mass index (BMI), while cysteine showed a positive correlation with BMI (p<0.05). There was a trend between total choline levels and body fat percentage (r=0.439, p=0.07). HDL cholesterol correlated with choline and ethanolamine levels (r=0.757, p=0.049; r=0.847, p=0.016, respectively), and total cholesterol also correlated with choline levels (r=0.775, p=0.041). There was no association between BMD T-scores and body composition. These results suggest that reduced fat mass is common in patients with classical homocystinuria, and that alterations in homocysteine and choline pathways affect body mass and lipid metabolism. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Postmenopausal weight status, body composition and body fat distribution in relation to parameters of menstrual and reproductive history.

    PubMed

    Kirchengast, S; Gruber, D; Sator, M; Huber, J

    1999-10-24

    In the present study the association between menstrual and reproductive history patterns and weight status, fat distribution and body composition during postmenopause was tested. In 106 healthy postmenopausal women ranging in age from 48 to 58 years (x = 53.7 year) the weight status was classified according to the recommendations of the WHO. Additionally body composition was estimated by dual energy X-ray absorptiometry and fat distribution was calculated using the fat distribution index. Weight status, body composition and fat distribution were correlated with self-reported parameters of menstrual and reproductive history (age at menarche, average cycle length, number of births, age at first and last birth, average pregnancy weight gain, age at menopause). It was shown that number of births, age at first birth and pregnancy weight gain were related significantly to the postmenopausal weight status, body composition and fat distribution. An early first birth a low number of births and a high weight gain during pregnancies can be assumed as risk factors for overweight, a higher amount of adipose tissue, android fat patterning and therefore for the development of the metabolic syndrome during postmenopause. In contrast no adverse effect of menstrual and reproductive parameters on postmenopausal bone mass was found.

  5. Swimming training repercussion on metabolic and structural bone development; benefits of the incorporation of whole body vibration or pilometric training; the RENACIMIENTO project.

    PubMed

    Gómez-Bruton, A; Gonzalez-Agüero, A; Casajus, J A; Vicente-Rodriguez, German

    2014-08-01

    Enviromental factors such as exercise participation and nutrition have often been linked to bone improvements. However, not all sports have the same effects, being non-osteogenic sports such as swimming defined as negative or neutral sports to practice regarding bone mass by some authors, similarly exercise-diet interaction in especific groups is still not clear. To present the methodology of the RENACIMENTO project that aims to evaluate body composition and more specifically bone mass by several techniques in adolescent swimmers and to observe the effects and perdurability of whole body vibration (WBV) and jumping intervention (JIN) on body composition and fitness on this population and explore posible diet interactions. Randomized controlled trial. 78 swimmers (12-17 y) and 26 sex- and age-matched controls will participate in this study. Dual energy X-ray, peripheral Quantitative Computed Tomography, Quantitative Ultrasound, Bioelectrical Impedance Analysis, and anthropometry measurements will be performed in order to evaluate body composition. Physical activity, nutrition, pubertal development and socio-economical status may act as confounders of body composition and therefore will also be registered. Several fitness factors regarding strength, endurance, performance and others will also be registered to evaluate differences with controls and act as confounders. A 7-month WBV therapy will be performed by 26 swimmers consisting of a training of 15 minutes 3 times per week. An 8 month JIM will also be performed by 26 swimmers 3 times per week. The remaining 26 swimmers will continue their normal swimming training. Four evaluations will be performed, the first one in order to describe differences between swimmers and controls. The second one to describe the effects of the interventions and the third and fourth evaluations to describe the perdurability of the effects of the WBV and JIN. The RENACIMIENTO project will allow to answer several questions regarding body

  6. Body composition in males with adolescent idiopathic scoliosis: a case-control study with dual-energy X-ray absorptiometry.

    PubMed

    Wang, Weijun; Wang, Zhiwei; Zhu, Zezhang; Zhu, Feng; Qiu, Yong

    2016-02-29

    In contrast to the well-characterized body growth and development of females with adolescent idiopathic scoliosis (AIS), the pubertal growth pattern of male patients has not been well-documented. Recently, significantly lower body weight (BW) and body mass index (BMI) were reported in males with AIS, and were thought to be related to curve progression. A case-control study was carried out to characterize the body composition and bone status of males with AIS, with the aim of gaining a better understanding of lower BW among these patients. Forty-seven males with AIS and forty age- and gender-matched healthy controls were recruited. Standing height (SH) and BW were measured. The SH of the males who had AIS was corrected using Bjure's equation, and then the BMI was calculated. Body composition, including subcranial fat mass (FM), lean mass (LM), and bone mineral content (BMC), and bone mineral density (BMD) were analyzed using dual-energy X-ray absorptiometry. The LM index (LMi) and the FM index (FMi) were calculated by dividing the FM and LM by the square of the SH. Logistic regression analysis was employed for comparison between AIS and controls. The AIS patients had comparable age and Tanner staging for pubic hair as the controls. After adjustment for age, the AIS patients showed comparable SH but significantly lower BW and BMI than that of the controls. The LM, LMi, BMC and BMD were also significantly lower in the AIS patients than in the controls. However, the difference in BMC between two groups was not significant by adjusting for age, FM and LM. The male AIS patients showed abnormal body composition, presenting as significantly lower LM than the controls. The lower BMC observed in the patients might due to the abnormal body composition.

  7. Body Composition Predicts Growth in Infants and Toddlers With Chronic Liver Disease.

    PubMed

    Hurtado-López, Erika F; Vásquez-Garibay, Edgar M; Trujillo, Xóchitl; Larrosa-Haro, Alfredo

    2017-12-01

    This cross-sectional study was conducted on 15 infants and toddlers with chronic liver disease to validate arm anthropometry as an accurate measure of body composition (BC) compared to dual-energy x-ray absorptiometry and to predict growth from BC. The z score means of the anthropometric indicators were <-2 standard deviation, except for body fat index and subscapular skinfold, which were between -2 and +2 standard deviation. Fat mass was predicted by arm adiposity indicators and fat-free mass by arm muscle area. Bone mineral content explained 87% of variation in length. Two multiple regression models predicted length: 1 with fat mass plus fat-free mass; and the second with fat mass and bone mineral content. These observations suggest that arm anthropometry is a useful tool to estimate BC and the nutritional status in infants and toddlers with chronic liver disease. Length and head circumference can be predicted by fat mass, fat-free mass, and bone mineral content.

  8. Administration of Saccharin to Neonatal Mice Influences Body Composition of Adult Males and Reduces Body Weight of Females

    PubMed Central

    Parlee, Sebastian D.; Simon, Becky R.; Scheller, Erica L.; Alejandro, Emilyn U.; Learman, Brian S.; Krishnan, Venkatesh; Bernal-Mizrachi, Ernesto

    2014-01-01

    Nutritional or pharmacological perturbations during perinatal growth can cause persistent effects on the function of white adipose tissue, altering susceptibility to obesity later in life. Previous studies have established that saccharin, a nonnutritive sweetener, inhibits lipolysis in mature adipocytes and stimulates adipogenesis. Thus, the current study tested whether neonatal exposure to saccharin via maternal lactation increased susceptibility of mice to diet-induced obesity. Saccharin decreased body weight of female mice beginning postnatal week 3. Decreased liver weights on week 14 corroborated this diminished body weight. Initially, saccharin also reduced male mouse body weight. By week 5, weights transiently rebounded above controls, and by week 14, male body weights did not differ. Body composition analysis revealed that saccharin increased lean and decreased fat mass of male mice, the latter due to decreased adipocyte size and epididymal, perirenal, and sc adipose weights. A mild improvement in glucose tolerance without a change in insulin sensitivity or secretion aligned with this leaner phenotype. Interestingly, microcomputed tomography analysis indicated that saccharin also increased cortical and trabecular bone mass of male mice and modified cortical bone alone in female mice. A modest increase in circulating testosterone may contribute to the leaner phenotype in male mice. Accordingly, the current study established a developmental period in which saccharin at high concentrations reduces adiposity and increases lean and bone mass in male mice while decreasing generalized growth in female mice. PMID:24456165

  9. Comparisons of body size, composition, and whole body bone mass between North American and South African children.

    PubMed

    Micklesfield, Lisa K; Norris, Shane A; Nelson, Dorothy A; Lambert, Estelle V; van der Merwe, Lize; Pettifor, John M

    2007-12-01

    We compared whole body BMC of 811 black, white, and mixed ancestral origin children from Detroit, MI; Johannesburg, South Africa; and Cape Town, South Africa. Our findings support the role of genetic and environmental influences in the determination of bone mass in prepubertal children. Higher bone mass and lower fracture rates have been shown in black compared with white children and adults in North America. We compared whole body BMC (WBBMC), whole body fat mass (WBFM), and whole body fat free soft tissue (WBFFST) data between three ethnic groups of children from Detroit, MI (n = 181 white, USW; n = 230 black, USB), Johannesburg, South Africa (n = 73 white, SAW; n = 263 black, SAB), and Cape Town, South Africa (n = 64 mixed ancestral origin, SAM). SAB and SAW groups were slightly older than USW and USB groups (9.5 +/- 0.3 versus 9.3 +/- 0.1 yr); however, USB and USW boys were significantly taller, were heavier, and had a higher BMI than SAM and SAB boys. USB girls were significantly taller than SAB girls and heavier than SAB and SAM girls. In South Africa and the United States, black children had a significantly higher WBBMC than white children, after adjusting for selected best predictors. After adjusting for age, weight, and height, WBBMC was significantly higher in the SAB and SAW boys than in USW and USB and in the SAM group compared with the USW and USB groups. WBFFST and WBFM made significant contributions to a best linear model for log(WBBMC), together with age, height, and ethnicity. The best model accounted for 79% of the WBBMC variance. When included separately in the model, the model containing WBFFST accounted for 76%, and the model containing WBFM accounted for 70%, of the variance in WBBMC. WBBMC is lower in children of European ancestry compared with African ancestry, irrespective of geographical location; however, South African children have significantly higher WBBMC compared with USB and USW groups, thereby acknowledging the possible

  10. Comparative Efficacies of Collagen-Based 3D Printed PCL/PLGA/β-TCP Composite Block Bone Grafts and Biphasic Calcium Phosphate Bone Substitute for Bone Regeneration.

    PubMed

    Hwang, Kyoung-Sub; Choi, Jae-Won; Kim, Jae-Hun; Chung, Ho Yun; Jin, Songwan; Shim, Jin-Hyung; Yun, Won-Soo; Jeong, Chang-Mo; Huh, Jung-Bo

    2017-04-17

    The purpose of this study was to compare bone regeneration and space maintaining ability of three-dimensional (3D) printed bone grafts with conventional biphasic calcium phosphate (BCP). After mixing polycaprolactone (PCL), poly (lactic-co-glycolic acid) (PLGA), and β-tricalcium phosphate (β-TCP) in a 4:4:2 ratio, PCL/PLGA/β-TCP particulate bone grafts were fabricated using 3D printing technology. Fabricated particulate bone grafts were mixed with atelocollagen to produce collagen-based PCL/PLGA/β-TCP composite block bone grafts. After formation of calvarial defects 8 mm in diameter, PCL/PLGA/β-TCP composite block bone grafts and BCP were implanted into bone defects of 32 rats. Although PCL/PLGA/β-TCP composite block bone grafts were not superior in bone regeneration ability compared to BCP, the results showed relatively similar performance. Furthermore, PCL/PLGA/β-TCP composite block bone grafts showed better ability to maintain bone defects and to support barrier membranes than BCP. Therefore, within the limitations of this study, PCL/PLGA/β-TCP composite block bone grafts could be considered as an alternative to synthetic bone grafts available for clinical use.

  11. Loss of lean body mass affects low bone mineral density in patients with rheumatoid arthritis - results from the TOMORROW study.

    PubMed

    Okano, Tadashi; Inui, Kentaro; Tada, Masahiro; Sugioka, Yuko; Mamoto, Kenji; Wakitani, Shigeyuki; Koike, Tatsuya; Nakamura, Hiroaki

    2017-11-01

    Osteoporosis is one of the complications for patients with rheumatoid arthritis (RA). Rheumatoid cachexia, the loss of lean body mass, is another. However, the relationship between decreased lean body mass and reduced bone mineral density (BMD) in patients with RA has not been well studied. This study included 413 participants, comprising 208 patients with RA and 205 age- and sex-matched healthy volunteers. Clinical data, BMD, bone metabolic markers (BMM) and body composition, such as lean body mass and percent fat, were collected. Risk factors for osteoporosis in patients with RA including the relationship BMD and body composition were analyzed. Patients with RA showed low BMD and high BMM compared with controls. Moreover, lean body mass was lower and percent fat was higher in patients with RA. Lean body mass correlated positively and percent fat negatively with BMD. Lean body mass was a positive and disease duration was a negative independent factor for BMD in multivariate statistical analysis. BMD and lean body mass were significantly lower in patients with RA compared to healthy controls. Lean body mass correlated positively with BMD and decreased lean body mass and disease duration affected low BMD in patients with RA. [UMIN Clinical Trials Registry, http://www.umin.ac.jp/ctr/ , UMIN000003876].

  12. In vivo bone regeneration using a novel porous bioactive composite

    NASA Astrophysics Data System (ADS)

    Xie, En; Hu, Yunyu; Chen, Xiaofeng; Bai, Xuedong; Li, Dan; Ren, Li; Zhang, Ziru

    2008-11-01

    Many commercial bone graft substitutes (BGS) and experimental bone tissue engineering scaffolds have been developed for bone repair and regeneration. This study reports the in vivo bone regeneration using a newly developed porous bioactive and resorbable composite that is composed of bioactive glass (BG), collagen (COL), hyaluronic acid (HYA) and phosphatidylserine (PS), BG-COL-HYA-PS. The composite was prepared by a combination of sol-gel and freeze-drying methods. A rabbit radius defect model was used to evaluate bone regeneration at time points of 2, 4 and 8 weeks. Techniques including radiography, histology, and micro-CT were applied to characterize the new bone formation. 8 weeks results showed that (1) nearly complete bone regeneration was achieved for the BG-COL-HYA-PS composite that was combined with a bovine bone morphogenetic protein (BMP); (2) partial bone regeneration was achieved for the BG-COL-HYA-PS composites alone; and (3) control remained empty. This study demonstrated that the novel BG-COL-HYA-PS, with or without the grafting of BMP incorporation, is a promising BGS or a tissue engineering scaffold for non-load bearing orthopaedic applications.

  13. Silk fibroin/kappa-carrageenan composite scaffolds with enhanced biomimetic mineralization for bone regeneration applications.

    PubMed

    Nourmohammadi, Jhamak; Roshanfar, Fahimeh; Farokhi, Mehdi; Haghbin Nazarpak, Masoumeh

    2017-07-01

    The combination of protein-polysaccharide in scaffolding together with the ability to induce bone-like apatite formation has become a promising approach to mimic extracellular matrix composition. In the present study, we developed and characterized new bioactive composite scaffolds from kappa-carrageenan/silk fibroin for bone regeneration applications. Three dimensional (3D) scaffolds were fabricated by adding various amounts of carrageenan to a silk fibroin solution, followed by freeze-drying. Various characterization techniques were applied to analyze such items as the structure, morphology, compressive strength, and bone-like apatite mineralization of the composites, which were then compared to those of pure fibroin scaffolds. The results demonstrated the formation of a highly porous structure with interconnected pores. The mean pore size and porosity both increased by increasing carrageenan content. Moreover, the addition of carrageenan to silk fibroin led to the formation of a bone-like apatite layer throughout the scaffolds after 7days of soaking them in simulated body fluid. Osteoblast-like cell (MG 63) culture experiments indicated that all scaffolds are biocompatible. The cells attached well to the surfaces of all scaffolds and tended to join their adjacent cells. However, higher carrageenan content led to better cellular proliferation and higher Alkaline phosphatase expression. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. In vitro investigation of nanohydroxyapatite/poly(L-lactic acid) spindle composites used for bone tissue engineering.

    PubMed

    Yan, W; Zhang, C Y; Xia, L L; Zhang, T; Fang, Q F

    2016-08-01

    Calcium phosphate ceramics such as synthetic hydroxyapatite and tricalcium phosphate are widely used in the clinic, but they stimulate less bone regeneration. In this paper, nano-hydroxyapatite/poly(L-lactic acid) (nano-HA/PLLA) spindle composites with good mechanical performance were fabricated by a modified in situ precipitation method. The HA part of composite, distributing homogenously in PLLA matrix, is spindle shape with size of 10-30 nm in diameter and 60-100 nm in length. The molar ratio of Ca/P in the synthesized nano-HA spindles was deduced as 1.52 from the EDS spectra, which is close to the stoichiometric composition of HA (Ca/P & 1.67). The compress strength is up to 150 MPa when the HA content increase to 20 %. The in vitro tests indicate that HA/PLLA bio-composites have good biodegradability and bioactivity when immersed in simulated body fluid solutions. All the results suggested that HA/PLLA nano-biocomposites are appropriate to be applied as bone substitute in bone tissue engineering.

  15. Body composition in untreated adult patients with Laron syndrome (primary GH insensitivity).

    PubMed

    Laron, Zvi; Ginsberg, Shira; Lilos, Pearl; Arbiv, Mira; Vaisman, Nahum

    2006-07-01

    To quantify body adiposity and its distribution in untreated adult patients with Laron syndrome (LS; primary GH insensitivity) caused by molecular defects of the GH receptor gene or postreceptor pathways and characterized by dwarfism, obesity, insulin resistance and hyperlipidaemia. Eleven LS patients (seven females and four males) aged 28-53 years were studied. Seven healthy males and six healthy females served as controls. Body composition of the total body trunk, upper and lower extremities was determined using dual-energy X-ray absorptiometry (DEXA). Statistical analysis using an analysis of variance (anova) and Mann-Whitney nonparametric methods was performed separately in males and females. Percentage body fat in the LS patients was much higher (P < 0.01) than that in the control population and the female LS patients were significantly more obese (59% total body fat) than the male patients (39% total body fat) (P < 0.002). It was also evident that in these types of patients with markedly increased body fat and decreased muscle and bone mass, body mass index (BMI) does not accurately reflect the body composition. Lifelong congenital IGF-I deficiency leads to extreme adiposity.

  16. Optimisation of composite bone plates for ulnar transverse fractures.

    PubMed

    Chakladar, N D; Harper, L T; Parsons, A J

    2016-04-01

    Metallic bone plates are commonly used for arm bone fractures where conservative treatment (casts) cannot provide adequate support and compression at the fracture site. These plates, made of stainless steel or titanium alloys, tend to shield stress transfer at the fracture site and delay the bone healing rate. This study investigates the feasibility of adopting advanced composite materials to overcome stress shielding effects by optimising the geometry and mechanical properties of the plate to match more closely to the bone. An ulnar transverse fracture is characterised and finite element techniques are employed to investigate the feasibility of a composite-plated fractured bone construct over a stainless steel equivalent. Numerical models of intact and fractured bones are analysed and the mechanical behaviour is found to agree with experimental data. The mechanical properties are tailored to produce an optimised composite plate, offering a 25% reduction in length and a 70% reduction in mass. The optimised design may help to reduce stress shielding and increase bone healing rates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Long-term antibiotic delivery by chitosan-based composite coatings with bone regenerative potential

    NASA Astrophysics Data System (ADS)

    Ordikhani, F.; Simchi, A.

    2014-10-01

    Composite coatings with bone-bioactivity and drug-eluting capacity are considered as promising materials for titanium bone implants. In this work, drug-eluting chitosan-bioactive glass coatings were fabricated by a single-step electrophoretic deposition technique. Drug-loading and -releasing capacity of the composite coatings were carried out using the vancomycin antibiotic. Uniform coatings with a thickness of ∼55 μm containing 23.7 wt% bioactive glass particles and various amounts of the antibiotic (380-630 μg/cm2) were produced. The coatings were bioactive in terms of apatite-forming ability in simulated body fluid and showed favorable cell adhesion and growth. In vitro biological tests also indicated that the composite coatings had better cellular affinity than pristine chitosan coatings. The in vitro elution kinetics of the composite coating revealed an initial burst release of around 40% of the drug within the first elution step of 1 h and following by a continuous eluting over 4 weeks, revealing long-term drug-delivering potential. Antibacterial tests using survival assay against Gram-positive Staphylococcus aureus bacteria determined the effect of vancomycin release on reduction of infection risk. Almost no bacteria were survived on the coatings prepared from the EPD suspension containing ≥0.5 g/l vancomycin. The developed chitosan-based composite coatings with bone bioactivity and long-term drug-delivery ability may be potentially useful for metallic implants to reduce infection risk.

  18. Advanced body composition assessment: from body mass index to body composition profiling.

    PubMed

    Borga, Magnus; West, Janne; Bell, Jimmy D; Harvey, Nicholas C; Romu, Thobias; Heymsfield, Steven B; Dahlqvist Leinhard, Olof

    2018-06-01

    This paper gives a brief overview of common non-invasive techniques for body composition analysis and a more in-depth review of a body composition assessment method based on fat-referenced quantitative MRI. Earlier published studies of this method are summarized, and a previously unpublished validation study, based on 4753 subjects from the UK Biobank imaging cohort, comparing the quantitative MRI method with dual-energy X-ray absorptiometry (DXA) is presented. For whole-body measurements of adipose tissue (AT) or fat and lean tissue (LT), DXA and quantitative MRIs show excellent agreement with linear correlation of 0.99 and 0.97, and coefficient of variation (CV) of 4.5 and 4.6 per cent for fat (computed from AT) and LT, respectively, but the agreement was found significantly lower for visceral adipose tissue, with a CV of >20 per cent. The additional ability of MRI to also measure muscle volumes, muscle AT infiltration and ectopic fat, in combination with rapid scanning protocols and efficient image analysis tools, makes quantitative MRI a powerful tool for advanced body composition assessment. © American Federation for Medical Research (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  19. Longitudinal body composition of children born to mothers with normal weight, overweight, and obesity.

    PubMed

    Andres, Aline; Hull, Holly R; Shankar, Kartik; Casey, Patrick H; Cleves, Mario A; Badger, Thomas M

    2015-06-01

    The longitudinal trajectories of body composition of children born to mothers with normal weight, overweight, and obesity have not been evaluated using precise body composition methods. This study investigated the relationship between maternal prepregnancy BMI and offspring body composition trajectories during the first 6 years of life. Healthy infants (N = 325) were assessed longitudinally (at ages 0.25, 0.5, 0.75, 1, 2, 3, 4, 5, and 6 years) using dual-energy X-ray absorptiometry. Mixed-effects regression for repeated measures was used to model each continuous outcome as a function of maternal BMI and covariates (race, gestational age, birth weight, and mode of infant feeding). Maternal obesity differentially impacted body fat, but not bone mineral content or density, of girls and boys. Boys born to mothers with obesity have higher body fat from ages 2-6 years compared to boys born to normal-weight and overweight mothers (P < 0.05), whereas body composition of girls born to mothers with obesity was not different across groups during the first 6 years of life (P > 0.05). This clinical observational study demonstrates a sexual dimorphism in offspring body composition until age 6 years based on maternal BMI, with a greater effect of maternal adiposity seen in boys than in girls. © 2015 The Obesity Society.

  20. Total body composition by dual-photon (153Gd) absorptiometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazess, R.B.; Peppler, W.W.; Gibbons, M.

    1984-10-01

    The lean-fat composition (%FATR) of soft tissue and the mineral mass of the skeleton were determined in vivo using dual-photon (153Gd) absorptiometry (dose under 2 mrem). A rectilinear raster scan was made over the entire body in 18 subjects (14 female, 4 male). Single-photon absorptiometry (125I) measured bone mineral content on the radius. Percentage fat (%FATD) was determined in the same subjects using body density (from underwater weighing with correction for residual lung volume). Lean body mass (LBM) was determined using both %FATR and %FATD. Percentage fat from absorptiometry and from underwater density were correlated (r . 0.87). The deviationmore » of %FATD from %FATR was due to the amount of skeletal mineral as a percentage of the LBM (r . 0.90). Therefore, skeletal variability, even in normal subjects, where mineral ranges only from 4 to 8% of the LBM, essentially precludes use of body density as a composition indicator unless skeletal mass is measured. Anthropometry (fatfolds and weight) predicted %FATR and LBM at least as well as did underwater density. The predictive error of %FATR from fatfolds was 5% while the predictive error in predicting LBM from anthropometry was 2 to 3 kg (3%).« less

  1. Proposal for methods of diagnosis of fish bone foreign body in the Esophagus.

    PubMed

    Woo, Seung Hoon; Kim, Kyung Hee

    2015-11-01

    To investigate the methods of diagnosis of fish bone foreign body in the esophagus and suggest a diagnostic protocol. Prospective cohort study. A prospective study was performed on 286 patients with a history of fish bone foreign body impaction. Among them, 88 patients had negative findings in the oral cavity and laryngopharynx. Subsequent radiologic assessment of these patients included plain radiography and computed tomography (CT). Sixty-six patients showed positive findings in the esophagus, and an attempt was made to remove the obstruction using transnasal esophagoscopy. In 66 patients, a fish bone foreign body was detected in the esophagus by CT. In contrast, plain radiography detected a foreign body in only 30 patients. The overall detection rate of plain radiography compared with CT for fish bones was 45.5%. Plain radiography detected 35.9% of the simple type fish bones and 54.5% of the gill bone detected by CT. However, jaw bones had a detection rate of 100% with both methods. The fish bone foreign bodies were most commonly located in the upper esophagus (n=65, 98.5%), followed by the lower esophagus (n=1, 1.5%). CT is a useful method for identification of esophageal fish bone foreign bodies. Therefore, CT should be considered as the first-choice technique for the diagnosis of esophageal fish bone foreign body. 4. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  2. Dietary inflammatory index, bone health and body composition in a population of young adults: a cross-sectional study.

    PubMed

    Correa-Rodríguez, María; Rueda-Medina, Blanca; González-Jiménez, Emilio; Correa-Bautista, Jorge Enrique; Ramírez-Vélez, Robinson; Schmidt-RioValle, Jacqueline

    2018-03-07

    Diet quality has been postulated as a relevant factor in disorders like obesity and osteoporosis as it modulates inflammatory biomarkers. The aim of this study was to investigate whether the dietary inflammatory index (DII) is associated with bone health status and body composition parameters in a population of young adults. The study population consisted of 599 young adults (aged 20.41 ± 2.72). Linear regression analysis revealed that weight and fat-free mass (FFM) were significantly associated with the DII after adjustments for age, sex and total energy (β = -0.91, 95% CI -1.782, -0.213, p = .013 and β = -0.059, 95% CI -0.842, -0.107, p = .011, respectively). Our results suggest that the inflammatory potential of diet, measured using the DII, is associated with obesity-related parameters such as FFM and weight, although it may not contribute to osteoporosis in early adulthood.

  3. Influence of high-fat diet from differential dietary sources on bone mineral density, bone strength, and bone fatty acid composition in rats.

    PubMed

    Lau, Beatrice Y; Fajardo, Val Andrew; McMeekin, Lauren; Sacco, Sandra M; Ward, Wendy E; Roy, Brian D; Peters, Sandra J; Leblanc, Paul J

    2010-10-01

    Previous studies have suggested that high-fat diets adversely affect bone development. However, these studies included other dietary manipulations, including low calcium, folic acid, and fibre, and (or) high sucrose or cholesterol, and did not directly compare several common sources of dietary fat. Thus, the overall objective of this study was to investigate the effect of high-fat diets that differ in fat quality, representing diets high in saturated fatty acids (SFA), n-3 polyunsaturated fatty acids (PUFA), or n-6 PUFA, on femur bone mineral density (BMD), strength, and fatty acid composition. Forty-day-old male Sprague-Dawley rats were maintained for 65 days on high-fat diets (20% by weight), containing coconut oil (SFA; n = 10), flaxseed oil (n-3 PUFA; n = 10), or safflower oil (n-6 PUFA; n = 11). Chow-fed rats (n = 10), at 105 days of age, were included to represent animals on a control diet. Rats fed high-fat diets had higher body weights than the chow-fed rats (p < 0.001). Among all high-fat groups, there were no differences in femur BMD (p > 0.05) or biomechanical strength properties (p > 0.05). Femurs of groups fed either the high n-3 or high n-6 PUFA diets were stronger (as measured by peak load) than those of the chow-fed group, after adjustment for significant differences in body weight (p = 0.001). As expected, the femur fatty acid profile reflected the fatty acid composition of the diet consumed. These results suggest that high-fat diets, containing high levels of PUFA in the form of flaxseed or safflower oil, have a positive effect on bone strength when fed to male rats 6 to 15 weeks of age.

  4. Effect of anti-TNF treatment on body composition and serum adiponectin levels of women with rheumatoid arthritis.

    PubMed

    Serelis, John; Kontogianni, Meropi D; Katsiougiannis, Stergios; Bletsa, Maria; Tektonidou, Maria G; Skopouli, Fotini N

    2008-06-01

    The aim of this study was to investigate the effect of anti-tumor necrosis factor alpha (anti-TNF) treatment on body composition and serum adiponectin levels of women with rheumatoid arthritis (RA). Nineteen women with RA starting anti-TNF treatment were included in the study. Disease activity, body composition, lumbar spine bone mineral density (BMD) and serum adiponectin concentrations were measured at baseline and after 1 year of follow-up. No important changes on body composition and lumbar spine BMD were observed, while the serum levels of adiponectin levels increased after 1 year of anti-TNF treatment (p = 0.02). Anti-TNF treatment in women with RA does not have any significant effect on body composition; however, it is associated with increase in adiponectin levels which may ameliorate the systemic inflammatory response state associated with RA.

  5. Fully-automated, high-throughput micro-computed tomography analysis of body composition enables therapeutic efficacy monitoring in preclinical models.

    PubMed

    Wyatt, S K; Barck, K H; Kates, L; Zavala-Solorio, J; Ross, J; Kolumam, G; Sonoda, J; Carano, R A D

    2015-11-01

    The ability to non-invasively measure body composition in mouse models of obesity and obesity-related disorders is essential for elucidating mechanisms of metabolic regulation and monitoring the effects of novel treatments. These studies aimed to develop a fully automated, high-throughput micro-computed tomography (micro-CT)-based image analysis technique for longitudinal quantitation of adipose, non-adipose and lean tissue as well as bone and demonstrate utility for assessing the effects of two distinct treatments. An initial validation study was performed in diet-induced obesity (DIO) and control mice on a vivaCT 75 micro-CT system. Subsequently, four groups of DIO mice were imaged pre- and post-treatment with an experimental agonistic antibody specific for anti-fibroblast growth factor receptor 1 (anti-FGFR1, R1MAb1), control immunoglobulin G antibody, a known anorectic antiobesity drug (rimonabant, SR141716), or solvent control. The body composition analysis technique was then ported to a faster micro-CT system (CT120) to markedly increase throughput as well as to evaluate the use of micro-CT image intensity for hepatic lipid content in DIO and control mice. Ex vivo chemical analysis and colorimetric analysis of the liver triglycerides were performed as the standard metrics for correlation with body composition and hepatic lipid status, respectively. Micro-CT-based body composition measures correlate with ex vivo chemical analysis metrics and enable distinction between DIO and control mice. R1MAb1 and rimonabant have differing effects on body composition as assessed by micro-CT. High-throughput body composition imaging is possible using a modified CT120 system. Micro-CT also provides a non-invasive assessment of hepatic lipid content. This work describes, validates and demonstrates utility of a fully automated image analysis technique to quantify in vivo micro-CT-derived measures of adipose, non-adipose and lean tissue, as well as bone. These body composition

  6. Demineralized dentin matrix composite collagen material for bone tissue regeneration.

    PubMed

    Li, Jianan; Yang, Juan; Zhong, Xiaozhong; He, Fengrong; Wu, Xiongwen; Shen, Guanxin

    2013-01-01

    Demineralized dentin matrix (DDM) had been successfully used in clinics as bone repair biomaterial for many years. However, particle morphology of DDM limited it further applications. In this study, DDM and collagen were prepared to DDM composite collagen material. The surface morphology of the material was studied by scanning electron microscope (SEM). MC3T3-E1 cells responses in vitro and tissue responses in vivo by implantation of DDM composite collagen material in bone defect of rabbits were also investigated. SEM analysis showed that DDM composite collagen material evenly distributed and formed a porous scaffold. Cell culture and animal models results indicated that DDM composite collagen material was biocompatible and could support cell proliferation and differentiation. Histological evaluation showed that DDM composite collagen material exhibited good biocompatibility, biodegradability and osteoconductivity with host bone in vivo. The results suggested that DDM composite collagen material might have a significant clinical advantage and potential to be applied in bone and orthopedic surgery.

  7. Bone growth and composition in weanling and mature rats exposed to chronic centrifugation

    NASA Technical Reports Server (NTRS)

    Keil, L. C.; Evans, J. W.

    1982-01-01

    The primary objective of the study is to determine the effect of continuous exposure to hypergravity on the development and composition of weight-bearing bone. The experimental results are seen to suggest that many, if not all, of the changes observed in bone growth and composition derive from the retarded growth rate of the centrifuged rats. Both centrifuged weanling and mature rats exhibit a significant reduction in femur length and mass. The changes in femur size are more apparent in the weanlings since they are exposed to hypergravity during their most rapid phase of skeletal development. In addition to a slower growth rate, the body mass of the mature and weanling animals is reduced even further by the depletion of body fat. The rapid loss of body fat observed in rats and mice during centrifugation, it is found, can produce a prompt and significant rise in relative femur mass after two weeks of exposure. After adaptation to centrifugation, however, relative femur mass is similar to that of controls at four and eight weeks. At 18 weeks, the centrifuged rats again exhibit an increase in relative femur mass. It is thought that this increase in relative femur mass may be generated by the difference in fat deposition between the 1-G controls and the high-G rats.

  8. Feasibility of a Braided Composite for Orthopedic Bone Cast

    PubMed Central

    Evans, Katherine R; Carey, Jason P

    2013-01-01

    A tubular braided composite bone cast for improving the efficiency and quality of bone fracture treatment is investigated. Finite element analysis was used to evaluate stress concentrations in fracture sites supported with plate and tubular casts. The stress in a plated bone is 768 % of that in a whole bone at the same location, while it is only 47 % in a bone with a tubular cast. Three unbroken synthetic humeri were mechanically tested using an in-vitro long bone testing procedure developed in-house to find their stiffness at 20° and 60° abduction; these were found to be 116.8 ± 1.5 N/mm and 20.63 ± 0.02 N/mm, respectively. A 2 cm gap osteotomy was cut through the diaphysis in each bone. The bones were casted with a Kevlar/Cold cure composite, with calculated braid angles and thicknesses that Closely matched bone propoerties. The stiffness tests were repeated, and the results were within 10 % of the unbroken bone. This novel method of bone casting is promising if other clinical challenges can be minimized. PMID:23459455

  9. Feasibility of a braided composite for orthopedic bone cast.

    PubMed

    Evans, Katherine R; Carey, Jason P

    2013-01-01

    A tubular braided composite bone cast for improving the efficiency and quality of bone fracture treatment is investigated. Finite element analysis was used to evaluate stress concentrations in fracture sites supported with plate and tubular casts. The stress in a plated bone is 768 % of that in a whole bone at the same location, while it is only 47 % in a bone with a tubular cast. Three unbroken synthetic humeri were mechanically tested using an in-vitro long bone testing procedure developed in-house to find their stiffness at 20° and 60° abduction; these were found to be 116.8 ± 1.5 N/mm and 20.63 ± 0.02 N/mm, respectively. A 2 cm gap osteotomy was cut through the diaphysis in each bone. The bones were casted with a Kevlar/Cold cure composite, with calculated braid angles and thicknesses that Closely matched bone propoerties. The stiffness tests were repeated, and the results were within 10 % of the unbroken bone. This novel method of bone casting is promising if other clinical challenges can be minimized.

  10. Associated among endocrine, inflammatory, and bone markers, body composition and weight loss induced bone loss

    USDA-ARS?s Scientific Manuscript database

    Weight loss reduces co-¬morbidities of obesity but decreases bone mass. Our aims were to determine whether adequate dairy intake could prevent weight loss related bone loss and to evaluate the contribution of energy-related hormones and inflammatory markers to bone metabolism. Overweight and obese w...

  11. Autogenous bone particle/titanium fiber composites for bone regeneration in a rabbit radius critical-size defect model.

    PubMed

    Xie, Huanxin; Ji, Ye; Tian, Qi; Wang, Xintao; Zhang, Nan; Zhang, Yicai; Xu, Jun; Wang, Nanxiang; Yan, Jinglong

    2017-11-01

    To explore the effects of autogenous bone particle/titanium fiber composites on repairing segmental bone defects in rabbits. A model of bilateral radial bone defect was established in 36 New Zealand white rabbits which were randomly divided into 3 groups according to filling materials used for bilaterally defect treatment: in group C, 9 animal bone defect areas were prepared into simple bilateral radius bone defect (empty sham) as the control group; 27 rabbits were used in groups ABP and ABP-Ti. In group ABP, left defects were simply implanted with autogenous bone particles; meanwhile, group ABP-Ti animals had right defects implanted with autogenous bone particle/titanium fiber composites. Animals were sacrificed at 4, 8, and 12 weeks, respectively, after operation. Micro-CT showed that group C could not complete bone regeneration. Bone volume to tissue volume values in group ABP-Ti were better than group ABP. From histology and histomorphometry Groups ABP and ABP-Ti achieved bone repair, the bone formation of group ABP-Ti was better. The mechanical strength of group ABP-Ti was superior to that of other groups. These results confirmed the effectiveness of autologous bone particle/titanium fiber composites for promoting bone regeneration and mechanical strength.

  12. Si-doping bone composite based on protein template-mediated assembly for enhancing bone regeneration

    NASA Astrophysics Data System (ADS)

    Yang, Qin; Du, Yingying; Wang, Yifan; Wang, Zhiying; Ma, Jun; Wang, Jianglin; Zhang, Shengmin

    2017-06-01

    Bio-inspired hybrid materials that contain organic and inorganic networks interpenetration at the molecular level have been a particular focus of interest on designing novel nanoscale composites. Here we firstly synthesized a series of hybrid bone composites, silicon-hydroxyapatites/silk fibroin/collagen, based on a specific molecular assembled strategy. Results of material characterization confirmed that silicate had been successfully doped into nano-hydroxyapatite lattice. In vitro evaluation at the cellular level clearly showed that these Si-doped composites were capable of promoting the adhesion and proliferation of rat mesenchymal stem cells (rMSCs), extremely enhancing osteoblastic differentiation of rMSCs compared with silicon-free composite. More interestingly, we found there was a critical point of silicon content in the composition on regulating multiple cell behaviors. In vivo animal evaluation further demonstrated that Si-doped composites enabled to significantly improve the repair of cranial bone defect. Consequently, our current work not only suggests fabricating a potential bone repair materials by integrating element-doping and molecular assembled strategy in one system, but also paves a new way for constructing multi-functional composite materials in the future.

  13. Composite Bone Models in Orthopaedic Surgery Research and Education

    PubMed Central

    Elfar, John; Stanbury, Spencer; Menorca, Ron Martin Garcia; Reed, Jeffrey Douglas

    2014-01-01

    Composite bone models are increasingly used in orthopaedic biomechanics research and surgical education—applications that traditionally relied on cadavers. Cadaver bones are suboptimal for myriad reasons, including issues of cost, availability, preservation, and inconsistency between specimens. Further, cadaver samples disproportionately represent the elderly, whose bone quality may not be representative of the greater orthopaedic population. The current fourth-generation composite bone models provide an accurate reproduction of the biomechanical properties of human bone when placed under bending, axial, and torsional loads. The combination of glass fiber and epoxy resin components into a single phase has enabled manufacturing by injection molding. The high anatomic fidelity of the cadaver-based molds and negligible shrinkage properties of the epoxy resin results in a process that allows for excellent definition of anatomic detail in the cortical wall and optimized consistency of features between models. Recent biomechanical studies of composites have validated their use as a suitable substitute for cadaver specimens. PMID:24486757

  14. Composite bone models in orthopaedic surgery research and education.

    PubMed

    Elfar, John; Menorca, Ron Martin Garcia; Reed, Jeffrey Douglas; Stanbury, Spencer

    2014-02-01

    Composite bone models are increasingly used in orthopaedic biomechanics research and surgical education-applications that traditionally relied on cadavers. Cadaver bones are suboptimal for many reasons, including issues of cost, availability, preservation, and inconsistency between specimens. Further, cadaver samples disproportionately represent the elderly, whose bone quality may not be representative of the greater orthopaedic population. The current fourth-generation composite bone models provide an accurate reproduction of the biomechanical properties of human bone when placed under bending, axial, and torsional loads. The combination of glass fiber and epoxy resin components into a single phase has enabled manufacturing by injection molding. The high level of anatomic fidelity of the cadaver-based molds and negligible shrinkage properties of the epoxy resin results in a process that allows for excellent definition of anatomic detail in the cortical wall and optimized consistency of features between models. Recent biomechanical studies of composites have validated their use as a suitable substitute for cadaver specimens.

  15. [EXPERIMENTAL STUDY ON CHITOSAN/ALLOGENEIC BONE POWDER COMPOSITE POROUS SCAFFOLD TO REPAIR BONE DEFECTS IN RATS].

    PubMed

    Kang, Xiangang; Zhao, Zhiyuan; Wu, Xuzhi; Shen, Qingxin; Wang, Zhiqiang; Kang, Yue; Xing, Zhenguang; Zhang, Tao

    2016-03-01

    To explore the feasibility of chitosan/allogeneic bone powder composite porous scaffold as scaffold material of bone tissue engineering in repairing bone defect. The composite porous scaffolds were prepared with chitosan and decalcified allogeneic bone powder at a ratio of 1 : 5 by vacuum freeze-drying technique. Chitosan scaffold served as control. Ethanol alternative method was used to measure its porosity, and scanning electron microscopy (SEM) to measure pore size. The hole of 3.5 mm in diameter was made on the bilateral femoral condyles of 40 adult Sprague Dawley rats. The composite porous scaffolds and chitosan scaffolds were implanted into the hole of the left femoral condyle (experimental group) and the hole of the right femoral condyle (control group), respectively. At 2, 4, 8, and 12 weeks after implantation, the tissues were harvested for gross observation, histological observation, and immunohistochemical staining. The composite porous scaffold prepared by vacuum freeze-drying technique had yellowish color, and brittle and easily broken texture; pore size was mostly 200-300 μm; and the porosity was 76.8% ± 1.1%, showing no significant difference when compared with the porosity of pure chitosan scaffold (78.4% ± 1.4%) (t = -2.10, P = 0.09). The gross observation and histological observation showed that the defect area was filled with new bone with time, and new bone of the experimental group was significantly more than that of the control group. At 4, 8, and 12 weeks after implantation, the bone forming area of the experimental group was significantly larger than that of the control group (P < 0.05). The immunohistochemical staining results showed that osteoprotegerin (OPG) positive expression was found in the experimental group at different time points, and the positive expression level was significantly higher than that in the control group (P < 0.05). Chitosan/allogeneic bone powder composite porous scaffold has suitable porosity and good

  16. Effects of weightlessness on body composition in the rat

    NASA Technical Reports Server (NTRS)

    Pitts, G. C.; Ushakov, A. S.; Pace, N.; Smith, A. H.; Rahlmann, D. F.; Smirnova, T. A.

    1983-01-01

    The effects of weightlessness on the body composition of rats were investigated using 5 male rats exposed to 18.5 days of weightlessness on the COSMOS 1129 biosatellite and killed after reentry. The animals were immediately dissected and the three major body divisions (musculoskeletal system, skin, and pooled viscera) were analyzed for fat, water, solids, and six elements. These results were determined as percentages of the fat-free body or its components and then compared with two groups of terrestrial controls, one of which was subjected to a flight simulation in a spacecraft mock-up while the other was under standard vivarium conditions. Compared with the control groups, the flight group was found to exhibit a reduced fraction of total body water, a net shift of body water from skin to viscera, a marked diminution in the fraction of extracellular water in the fat-free body, a marked reduction in the fraction of bone mineral, no change in the quantity of stored fat or adrenal masses, and a net increase in total muscle mass as indicated by total body creatine, protein, and body cell mass.

  17. Unique biochemical and mineral composition of whale ear bones.

    PubMed

    Kim, Sora L; Thewissen, J G M; Churchill, Morgan M; Suydam, Robert S; Ketten, Darlene R; Clementz, Mark T

    2014-01-01

    Abstract Cetaceans are obligate aquatic mammals derived from terrestrial artiodactyls. The defining characteristic of cetaceans is a thick and dense lip (pachyosteosclerotic involucrum) of an ear bone (the tympanic). This unique feature is absent in modern terrestrial artiodactyls and is suggested to be important in underwater hearing. Here, we investigate the mineralogical and biochemical properties of the involucrum, as these may hold clues to the aquatic adaptations of cetaceans. We compared bioapatites (enamel, dentine, cementum, and skeletal bone) of cetaceans with those of terrestrial artiodactyls and pachyosteosclerotic ribs of manatees (Sirenia). We investigated organic, carbonate, and mineral composition as well as crystal size and crystallinity index. In all studied variables, bioapatites of the cetacean involucrum were intermediate in composition and structure between those of tooth enamel on the one hand and those of dentine, cementum, and skeletal bone on the other. We also studied the amino acid composition of the cetacean involucrum relative to that of other skeletal bone. The central involucrum had low glycine and hydroxyproline concentrations but high concentrations of nonessential amino acids, unlike most bone samples but similar to the tympanic of hippos and the (pachyosteosclerotic) ribs of manatees. These amino acid results are evidence of rapid bone development. We hypothesize that the mineralogical and amino acid composition of cetacean bullae differs from that of other bone because of (1) functional modifications for underwater sound reception and (2) structural adaptations related to rapid ossification.

  18. Body composition and physical fitness in women with bulimia nervosa or binge‐eating disorder

    PubMed Central

    Rosenvinge, Jan H.; Friborg, Oddgeir; Pettersen, Gunn; Stensrud, Trine; Hansen, Bjørge Herman; Underhaug, Karoline E.; Teinung, Elisabeth; Vrabel, KariAnne; Svendsen, Mette; Bratland‐Sanda, Solfrid; Sundgot‐Borgen, Jorunn

    2018-01-01

    Abstract Objective Knowledge about physical fitness in women with bulimia nervosa (BN) or binge‐eating disorder (BED) is sparse. Previous studies have measured physical activity largely through self‐report, and physical fitness variables are mainly restricted to body mass index (BMI) and bone mineral density. We expanded the current knowledge in these groups by including a wider range of physical fitness indicators and objective measures of physical activity, assessed the influence of a history of anorexia nervosa (AN), and evaluated predictive variables for physical fitness. Method Physical activity, blood pressure, cardiorespiratory fitness (CRF), muscle strength, body composition, and bone mineral density were measured in 156 women with BN or BED, with mean (SD) age 28.4 years (5.7) and BMI 25.3 (4.8) kg m−2. Results Level of physical activity was higher than normative levels, still <50% met the official physical activity recommendation. Fitness in women with BN were on an average comparable with recommendations or normative levels, while women with BED had lower CRF and higher BMI, VAT, and body fat percentage. We found 10–12% with masked obesity. A history of AN did not predict current physical fitness, still values for current body composition were lower when comparing those with history of AN to those with no such history. Discussion Overall, participants with BN or BED displayed adequate physical fitness; however, a high number had unfavorable CRF and body composition. This finding calls for inclusion of physical fitness in routine clinical examinations and guided physical activity and dietary recommendations in the treatment of BN and BED. PMID:29473191

  19. Body composition and physical fitness in women with bulimia nervosa or binge-eating disorder.

    PubMed

    Mathisen, Therese Fostervold; Rosenvinge, Jan H; Friborg, Oddgeir; Pettersen, Gunn; Stensrud, Trine; Hansen, Bjørge Herman; Underhaug, Karoline E; Teinung, Elisabeth; Vrabel, KariAnne; Svendsen, Mette; Bratland-Sanda, Solfrid; Sundgot-Borgen, Jorunn

    2018-04-01

    Knowledge about physical fitness in women with bulimia nervosa (BN) or binge-eating disorder (BED) is sparse. Previous studies have measured physical activity largely through self-report, and physical fitness variables are mainly restricted to body mass index (BMI) and bone mineral density. We expanded the current knowledge in these groups by including a wider range of physical fitness indicators and objective measures of physical activity, assessed the influence of a history of anorexia nervosa (AN), and evaluated predictive variables for physical fitness. Physical activity, blood pressure, cardiorespiratory fitness (CRF), muscle strength, body composition, and bone mineral density were measured in 156 women with BN or BED, with mean (SD) age 28.4 years (5.7) and BMI 25.3 (4.8) kg m -2 . Level of physical activity was higher than normative levels, still <50% met the official physical activity recommendation. Fitness in women with BN were on an average comparable with recommendations or normative levels, while women with BED had lower CRF and higher BMI, VAT, and body fat percentage. We found 10-12% with masked obesity. A history of AN did not predict current physical fitness, still values for current body composition were lower when comparing those with history of AN to those with no such history. Overall, participants with BN or BED displayed adequate physical fitness; however, a high number had unfavorable CRF and body composition. This finding calls for inclusion of physical fitness in routine clinical examinations and guided physical activity and dietary recommendations in the treatment of BN and BED. © 2018 The Authors International Journal of Eating Disorders Published by Wiley Periodicals, Inc.

  20. Body composition and wages.

    PubMed

    Wada, Roy; Tekin, Erdal

    2010-07-01

    This paper examines the relationship between body composition and wages in the United States. We develop measures of body composition--body fat (BF) and fat-free mass (FFM)--using data on bioelectrical impedance analysis (BIA) that are available in the National Health and Nutrition Examination Survey III and estimate wage models for respondents in the National Longitudinal Survey of Youth 1979. Previous research uses body size or BMI as measures of obesity despite a growing concern that they do not distinguish between body fat and fat-free body mass or adequately control for non-homogeneity inside the human body. Therefore, measures presented in this paper represent a useful alternative to BMI-based proxies of obesity. Our results indicate that BF is associated with decreased wages for both males and females among whites and blacks. We also present evidence suggesting that FFM is associated with increased wages. We show that these results are not the artifacts of unobserved heterogeneity. Finally, our findings are robust to numerous specification checks and to a large number of alternative BIA prediction equations from which the body composition measures are derived. 2010 Elsevier B.V. All rights reserved.

  1. Is fatty acid composition of human bone marrow significant to bone health?

    PubMed

    Pino, Ana María; Rodríguez, J Pablo

    2017-12-16

    The bone marrow adipose tissue (BMAT) is a conserved component of the marrow microenvironment, providing storage and release of energy and stabilizing the marrow extent. Also, it is recognized both the amount and quality of BMAT are relevant to preserve the functional relationships between BMAT, bone, and blood cell production. In this article we ponder the information supporting the tenet that the quality of BMAT is relevant to bone health. In the human adult the distribution of BMAT is heterogeneous over the entire skeleton, and both BMAT accumulation and bone loss come about with aging in healthy populations. But some pathological conditions which increase BMAT formation lead to bone impairment and fragility. Analysis in vivo of the relative content of saturated and unsaturated fatty acids (FA) in BMAT indicates site-related bone marrow fat composition and an association between increased unsaturation index (UI) and bone health. With aging some impairment ensues in the regulation of bone marrow cells and systemic signals leading to local chronic inflammation. Most of the bone loss diseases which evolve altered BMAT composition have as common factors aging and/or chronic inflammation. Both saturated and unsaturated FAs originate lipid species which are active mediators in the inflammation process. Increased free saturated FAs may lead to lipotoxicity of bone marrow cells. The pro-inflammatory, anti-inflammatory or resolving actions of compounds derived from long chain poly unsaturated FAs (PUFA) on bone cells is varied, and depending on the metabolism of the parent n:3 or n:6 PUFAs series. Taking together the evidence substantiate that marrow adipocyte function is fundamental for an efficient link between systemic and marrow fatty acids to accomplish specific energy or regulatory needs of skeletal and marrow cells. Further, they reveal marrow requirements of PUFAs. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Functional adaptation of long bone extremities involves the localized ``tuning'' of the cortical bone composition; evidence from Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Buckley, Kevin; Kerns, Jemma G.; Birch, Helen L.; Gikas, Panagiotis D.; Parker, Anthony W.; Matousek, Pavel; Goodship, Allen E.

    2014-11-01

    In long bones, the functional adaptation of shape and structure occurs along the whole length of the organ. This study explores the hypothesis that adaptation of bone composition is also site-specific and that the mineral-to-collagen ratio of bone (and, thus, its mechanical properties) varies along the organ's length. Raman spectroscopy was used to map the chemical composition of long bones along their entire length in fine spatial resolution (1 mm), and then biochemical analysis was used to measure the mineral, collagen, water, and sulfated glycosaminoglycan content where site-specific differences were seen. The results show that the mineral-to-collagen ratio of the bone material in human tibiae varies by <5% along the mid-shaft but decreases by >10% toward the flared extremities of the bone. Comparisons with long bones from other large animals (horses, sheep, and deer) gave similar results with bone material composition changing across tens of centimeters. The composition of the bone apatite also varied with the phosphate-to-carbonate ratio decreasing toward the ends of the tibia. The data highlight the complexity of adaptive changes and raise interesting questions about the biochemical control mechanisms involved. In addition to their biological interest, the data provide timely information to researchers developing Raman spectroscopy as a noninvasive tool for measuring bone composition in vivo (particularly with regard to sampling and measurement protocol).

  3. Functional adaptation of long bone extremities involves the localized "tuning" of the cortical bone composition; evidence from Raman spectroscopy.

    PubMed

    Buckley, Kevin; Kerns, Jemma G; Birch, Helen L; Gikas, Panagiotis D; Parker, Anthony W; Matousek, Pavel; Goodship, Allen E

    2014-01-01

    In long bones, the functional adaptation of shape and structure occurs along the whole length of the organ. This study explores the hypothesis that adaptation of bone composition is also site-specific and that the mineral-to-collagen ratio of bone (and, thus, its mechanical properties) varies along the organ's length. Raman spectroscopy was used to map the chemical composition of long bones along their entire length in fine spatial resolution (1 mm), and then biochemical analysis was used to measure the mineral, collagen, water, and sulfated glycosaminoglycan content where site-specific differences were seen. The results show that the mineral-to-collagen ratio of the bone material in human tibiae varies by <5% along the mid-shaft but decreases by >10% toward the flared extremities of the bone. Comparisons with long bones from other large animals (horses, sheep, and deer) gave similar results with bone material composition changing across tens of centimeters. The composition of the bone apatite also varied with the phosphate-to-carbonate ratio decreasing toward the ends of the tibia. The data highlight the complexity of adaptive changes and raise interesting questions about the biochemical control mechanisms involved. In addition to their biological interest, the data provide timely information to researchers developing Raman spectroscopy as a noninvasive tool for measuring bone composition in vivo (particularly with regard to sampling and measurement protocol).

  4. Body/bone-marrow differential-temperature sensor

    NASA Technical Reports Server (NTRS)

    Anselmo, V. J.; Berdahl, C. M.

    1978-01-01

    Differential-temperature sensor developed to compare bone-marrow and body temperature in leukemia patients uses single stable amplifier to monitor temperature difference recorded by thermocouples. Errors are reduced by referencing temperatures to each other, not to separate calibration points.

  5. Oroesophageal Fish Bone Foreign Body.

    PubMed

    Kim, Heung Up

    2016-07-01

    Fish bone foreign body (FFB) is the most frequent food-associated foreign body (FB) in adults, especially in Asia, versus meat in Western countries. The esophageal sphincter is the most common lodging site. Esophageal FB disease tends to occur more frequently in men than in women. The first diagnostic method is laryngoscopic examination. Because simple radiography of the neck has low sensitivity, if perforation or severe complications requiring surgery are expected, computed tomography should be used. The risk factors associated with poor prognosis are long time lapse after FB involvement, bone type, and longer FB (>3 cm). Bleeding and perforation are more common in FFB disease than in other FB diseases. Esophageal FB disease requires urgent treatment within 24 hours. However, FFB disease needs emergent treatment, preferably within 2 hours, and definitely within 6 hours. Esophageal FFB disease usually occurs at the physiological stricture of the esophagus. The aortic arch eminence is the second physiological stricture. If the FB penetrates the esophageal wall, a life-threatening aortoesophageal fistula can develop. Therefore, it is better to consult a thoracic surgeon prior to endoscopic removal.

  6. Effect of Daily Exposure to an Isolated Soy Protein Supplement on Body Composition, Energy and Macronutrient Intake, Bone Formation Markers, and Lipid Profile in Children in Colombia.

    PubMed

    Mejía, Wilson; Córdoba, Diana; Durán, Paola; Chacón, Yersson; Rosselli, Diego

    2018-01-16

    A soy protein-based supplement may optimize bone health, support physical growth, and stimulate bone formation. This study aimed to assess the effect of a daily soy protein supplement (SPS) on nutritional status, bone formation markers, lipid profile, and daily energy and macronutrient intake in children. One hundred seven participants (62 girls), ages 2 to 9, started the study and were randomly assigned to lunch fruit juice with (n = 57, intervention group) or without (n = 50, control group) addition of 45 g (230 Kcal) of a commercial SPS during 12 months; 84 children (51 girls, 33 boys) completed the study (45 and 39 intervention and control, respectively). Nutritional assessment included anthropometry and nutrient intakes; initial and final blood samples were taken; insulin-like growth factor-I (IGF-I), osteocalcin, bone specific alkaline phosphatase (BAP), insulin-like growth factor binding protein-3 (IGFBP-3), cholesterol, triglycerides, low-density lipoprotein (LDL), and high-density lipoprotein (HDL) were analyzed. Statistically significant changes (p < .05) in body mass index and weight for age Z scores were observed between groups while changes in body composition were not. Changes in energy, total protein, and carbohydrate intakes were significantly higher in the intervention group (p < .01). Calorie intake changes were statistically significant between groups (p < .001), and BAP decreased in both groups, with values within normal ranges. Osteocalcin, IGFBP-3, and lipid profile were not different between groups. IGF-I levels and IGF/IGFBP-3 ratio increased significantly in both groups. In conclusion, changes in macronutrient and energy intake and nutritional status in the intervention group compared to control group may ensure harmonious and adequate bone health and development.

  7. Three-Compartment Body Composition in Academy and Senior Rugby League Players.

    PubMed

    Till, Kevin; Jones, Ben; O'Hara, John; Barlow, Matthew; Brightmore, Amy; Lees, Matthew; Hind, Karen

    2016-03-01

    To compare the body size and 3-compartment body composition between academy and senior professional rugby league players using dual-energy X-ray absorptiometry (DXA). Academy (age 18.1 ± 1.1 y, n = 34) and senior (age 26.2 ± 4.6 y, n = 63) rugby league players received 1 total-body DXA scan. Height, body mass, and body-fat percentage alongside total and regional fat mass, lean mass, and bone mineral content (BMC) were compared. Independent t tests with Cohen d effect sizes and multivariate analysis of covariance (MANCOVA), controlling for height and body mass, with partial eta-squared (η2) effect sizes, were used to compare total and regional body composition. Senior players were taller (183.2 ± 5.8 vs 179.2 ± 5.7 cm, P = .001, d = 0.70) and heavier (96.5 ± 9.3 vs 86.5 ± 9.0 kg, P < .001, d = 1.09) with lower body-fat percentage (16.3 ± 3.7 vs 18.0 ± 3.7%, P = .032, d = 0.46) than academy players. MANCOVA identified significant overall main effects for total and regional body composition between academy and senior players. Senior players had lower total fat mass (P < .001, η2 = 0.15), greater total lean mass (P < .001, η2 = 0.14), and greater total BMC (P = .001, η2 = 0.12) than academy players. For regional sites, academy players had significantly greater fat mass at the legs (P < .001, η2 = 0.29) than senior players. The lower age, height, body mass, and BMC of academy players suggest that these players are still developing musculoskeletal characteristics. Gradual increases in lean mass and BMC while controlling fat mass is an important consideration for practitioners working with academy rugby league players, especially in the lower body.

  8. Body composition analysis: Cellular level modeling of body component ratios.

    PubMed

    Wang, Z; Heymsfield, S B; Pi-Sunyer, F X; Gallagher, D; Pierson, R N

    2008-01-01

    During the past two decades, a major outgrowth of efforts by our research group at St. Luke's-Roosevelt Hospital is the development of body composition models that include cellular level models, models based on body component ratios, total body potassium models, multi-component models, and resting energy expenditure-body composition models. This review summarizes these models with emphasis on component ratios that we believe are fundamental to understanding human body composition during growth and development and in response to disease and treatments. In-vivo measurements reveal that in healthy adults some component ratios show minimal variability and are relatively 'stable', for example total body water/fat-free mass and fat-free mass density. These ratios can be effectively applied for developing body composition methods. In contrast, other ratios, such as total body potassium/fat-free mass, are highly variable in vivo and therefore are less useful for developing body composition models. In order to understand the mechanisms governing the variability of these component ratios, we have developed eight cellular level ratio models and from them we derived simplified models that share as a major determining factor the ratio of extracellular to intracellular water ratio (E/I). The E/I value varies widely among adults. Model analysis reveals that the magnitude and variability of each body component ratio can be predicted by correlating the cellular level model with the E/I value. Our approach thus provides new insights into and improved understanding of body composition ratios in adults.

  9. [Experiment of porous calcium phosphate/bone matrix gelatin composite cement for repairing lumbar vertebral bone defect in rabbit].

    PubMed

    Wang, Song; Yang, Han; Yang, Jian; Kang, Jianping; Wang, Qing; Song, Yueming

    2017-12-01

    To investigate the effect of a porous calcium phosphate/bone matrix gelatin (BMG) composite cement (hereinafter referred to as the "porous composite cement") for repairing lumbar vertebral bone defect in a rabbit model. BMG was extracted from adult New Zealand rabbits according to the Urist's method. Poly (lactic-co-glycolic) acid (PLGA) microsphere was prepared by W/O/W double emulsion method. The porous composite cement was developed by using calcium phosphate cement (CPC) composited with BMG and PLGA microsphere. The physicochemical characterizations of the porous composite cement were assessed by anti-washout property, porosity, and biomechanical experiment, also compared with the CPC. Thirty 2-month-old New Zealand rabbits were used to construct vertebral bone defect at L 3 in size of 4 mm×3 mm×3 mm. Then, the bone defect was repaired with porous composite cement (experimental group, n =15) or CPC (control group, n =15). At 4, 8, and 12 weeks after implantation, each bone specimen was assessed by X-ray films for bone fusion, micro-CT for bone mineral density (BMD), bone volume fraction (BVF), trabecular thickness (Tb. Th.), trabecular number (Tb.N.), and trabecular spacing (Tb. Sp.), and histological section with toluidine blue staining for new-born bone formation. The study demonstrated well anti-washout property in 2 groups. The porous composite cement has 55.06%±1.18% of porosity and (51.63±6.73) MPa of compressive strength. The CPC has 49.38%±1.75% of porosity and (63.34±3.27) MPa of compressive strength. There were significant differences in porosity and compressive strength between different cements ( t =4.254, P =0.006; t =2.476, P =0.034). X-ray films revealed that the zone between the cement and host bone gradually blurred with the time extending. At 12 weeks after implantation, the zone was disappeared in the experimental group, but clear in the control group. There were significant differences in BMD, BVF, Tb. Th., Tb. N., and Tb. Sp. between

  10. Material model of pelvic bone based on modal analysis: a study on the composite bone.

    PubMed

    Henyš, Petr; Čapek, Lukáš

    2017-02-01

    Digital models based on finite element (FE) analysis are widely used in orthopaedics to predict the stress or strain in the bone due to bone-implant interaction. The usability of the model depends strongly on the bone material description. The material model that is most commonly used is based on a constant Young's modulus or on the apparent density of bone obtained from computer tomography (CT) data. The Young's modulus of bone is described in many experimental works with large variations in the results. The concept of measuring and validating the material model of the pelvic bone based on modal analysis is introduced in this pilot study. The modal frequencies, damping, and shapes of the composite bone were measured precisely by an impact hammer at 239 points. An FE model was built using the data pertaining to the geometry and apparent density obtained from the CT of the composite bone. The isotropic homogeneous Young's modulus and Poisson's ratio of the cortical and trabecular bone were estimated from the optimisation procedure including Gaussian statistical properties. The performance of the updated model was investigated through the sensitivity analysis of the natural frequencies with respect to the material parameters. The maximal error between the numerical and experimental natural frequencies of the bone reached 1.74 % in the first modal shape. Finally, the optimised parameters were matched with the data sheets of the composite bone. The maximal difference between the calibrated material properties and that obtained from the data sheet was 34 %. The optimisation scheme of the FE model based on the modal analysis data provides extremely useful calibration of the FE models with the uncertainty bounds and without the influence of the boundary conditions.

  11. New concept of 3D printed bone clip (polylactic acid/hydroxyapatite/silk composite) for internal fixation of bone fractures.

    PubMed

    Yeon, Yeung Kyu; Park, Hae Sang; Lee, Jung Min; Lee, Ji Seung; Lee, Young Jin; Sultan, Md Tipu; Seo, Ye Bin; Lee, Ok Joo; Kim, Soon Hee; Park, Chan Hum

    Open reduction with internal fixation is commonly used for the treatment of bone fractures. However, postoperative infection associated with internal fixation devices (intramedullary nails, plates, and screws) remains a significant complication, and it is technically difficult to fix multiple fragmented bony fractures using internal fixation devices. In addition, drilling in the bone to install devices can lead to secondary fracture, bone necrosis associated with postoperative infection. In this study, we developed bone clip type internal fixation device using three- dimensional (3D) printing technology. Standard 3D model of the bone clip was generated based on computed tomography (CT) scan of the femur in the rat. Polylacticacid (PLA), hydroxyapatite (HA), and silk were used for bone clip material. The purpose of this study was to characterize 3D printed PLA, PLA/HA, and PLA/HA/Silk composite bone clip and evaluate the feasibility of these bone clips as an internal fixation device. Based on the results, PLA/HA/Silk composite bone clip showed similar mechanical property, and superior biocompatibility compared to other types of the bone clip. PLA/HA/Silk composite bone clip demonstrated excellent alignment of the bony segments across the femur fracture site with well-positioned bone clip in an animal study. Our 3D printed bone clips have several advantages: (1) relatively noninvasive (drilling in the bone is not necessary), (2) patient-specific design (3) mechanically stable device, and (4) it provides high biocompatibility. Therefore, we suggest that our 3D printed PLA/HA/Silk composite bone clip is a possible internal fixation device.

  12. Women Build Long Bones With Less Cortical Mass Relative to Body Size and Bone Size Compared With Men.

    PubMed

    Jepsen, Karl J; Bigelow, Erin M R; Schlecht, Stephen H

    2015-08-01

    The twofold greater lifetime risk of fracturing a bone for white women compared with white men and black women has been attributed in part to differences in how the skeletal system accumulates bone mass during growth. On average, women build more slender long bones with less cortical area compared with men. Although slender bones are known to have a naturally lower cortical area compared with wider bones, it remains unclear whether the relatively lower cortical area of women is consistent with their increased slenderness or is reduced beyond that expected for the sex-specific differences in bone size and body size. Whether this sexual dimorphism is consistent with ethnic background and is recapitulated in the widely used mouse model also remains unclear. We asked (1) do black women build bones with reduced cortical area compared with black men; (2) do white women build bones with reduced cortical area compared with white men; and (3) do female mice build bones with reduced cortical area compared with male mice? Bone strength and cross-sectional morphology of adult human and mouse bone were calculated from quantitative CT images of the femoral midshaft. The data were tested for normality and regression analyses were used to test for differences in cortical area between men and women after adjusting for body size and bone size by general linear model (GLM). Linear regression analysis showed that the femurs of black women had 11% lower cortical area compared with those of black men after adjusting for body size and bone size (women: mean=357.7 mm2; 95% confidence interval [CI], 347.9-367.5 mm2; men: mean=400.1 mm2; 95% CI, 391.5-408.7 mm2; effect size=1.2; p<0.001, GLM). Likewise, the femurs of white women had 12% less cortical area compared with those of white men after adjusting for body size and bone size (women: mean=350.1 mm2; 95% CI, 340.4-359.8 mm2; men: mean=394.3 mm2; 95% CI, 386.5-402.1 mm2; effect size=1.3; p<0.001, GLM). In contrast, female and male femora

  13. Association of regional body composition with bone mineral density in HIV-infected and HIV-uninfected women: women's interagency HIV study.

    PubMed

    Sharma, Anjali; Tian, Fang; Yin, Michael T; Keller, Marla J; Cohen, Mardge; Tien, Phyllis C

    2012-12-01

    To understand how regional body composition affects bone mineral density (BMD) in HIV-infected and HIV-uninfected women. Dual energy x-ray absorptiometry was used to measure regional lean and fat mass and BMD at lumbar spine (LS), total hip (TH), and femoral neck (FN) in 318 HIV-infected and 122 HIV-uninfected Women's Interagency HIV Study participants at baseline and 2 and 5 years later. Total lean and fat mass were measured using bioimpedance analysis. Multivariate marginal linear regression models assessed the association of HIV status and body composition on BMD change. Compared with HIV-uninfected women, HIV-infected women were older (44 vs. 37 years), more likely to be Hepatitis C virus-infected (32% vs. 14%), and postmenopausal (26% vs. 3%) and had lower baseline total fat mass, trunk fat, and leg fat. In multivariate models, increased total lean mass was independently associated with increased BMD at LS, TH, and FN, and total fat mass was associated with increased BMD at TH and FN (all P < 0.05). When total fat was replaced in multivariate models with trunk fat and leg fat, increased trunk fat (and not leg fat) was associated with increased TH and FN BMD (P < 0.001). Total fat and lean mass are strong independent predictors of TH and FN BMD, and lean mass was associated with greater LS BMD. Regardless of HIV status, greater trunk fat (and not leg fat) was associated with increased TH and FN BMD, suggesting that weight-bearing fat may be a more important predictor of BMD in the hip.

  14. Study of body composition in small animals by a multifrequency impedancemeter

    NASA Astrophysics Data System (ADS)

    Ribbe, E.; Khider, N.; Moreno, M. V.

    2010-04-01

    Bioimpedance is essentially used today to study the body composition in the human body but not really in small animals. The aim of this paper is to develop a model for body composition in rats to help pharmaceutical labs assessing effects of medicine on rats. We propose a non invasive, rapid and scientific method. With a multifrequency impedancemeter, Z-Métrix® (BioparHom© Company France), resistances and reactances are measured at 55 frequencies for a population of 40 rats (males and females). With our model, derived from Cole-Cole model, resistances of extracellular (Re) and total body (Rinf) compartment are extrapolated. Three methods were applied: posterior to posterior leg, anterior to posterior leg on the left and on the right side. Measurements by CT imaging were performed on the anesthetized population to determine Fat Mass (FM), Lean Body Mass (LBM) and Bone Mineral Content (BMC), as our reference measurements. With electrical data, age, sex and weight, equations are created to calculate FM, LBM and BMC with the three methods. Graphs of correlation, between tissue masses calculated by bioimpedance and obtained with scanner, indicate that measurements with posterior to posterior leg are better. Moreover, there is no significantly difference between tissue masses measured by bioimpedance and with the scanner.

  15. 3D bioactive composite scaffolds for bone tissue engineering.

    PubMed

    Turnbull, Gareth; Clarke, Jon; Picard, Frédéric; Riches, Philip; Jia, Luanluan; Han, Fengxuan; Li, Bin; Shu, Wenmiao

    2018-09-01

    Bone is the second most commonly transplanted tissue worldwide, with over four million operations using bone grafts or bone substitute materials annually to treat bone defects. However, significant limitations affect current treatment options and clinical demand for bone grafts continues to rise due to conditions such as trauma, cancer, infection and arthritis. Developing bioactive three-dimensional (3D) scaffolds to support bone regeneration has therefore become a key area of focus within bone tissue engineering (BTE). A variety of materials and manufacturing methods including 3D printing have been used to create novel alternatives to traditional bone grafts. However, individual groups of materials including polymers, ceramics and hydrogels have been unable to fully replicate the properties of bone when used alone. Favourable material properties can be combined and bioactivity improved when groups of materials are used together in composite 3D scaffolds. This review will therefore consider the ideal properties of bioactive composite 3D scaffolds and examine recent use of polymers, hydrogels, metals, ceramics and bio-glasses in BTE. Scaffold fabrication methodology, mechanical performance, biocompatibility, bioactivity, and potential clinical translations will be discussed.

  16. Anorexia Nervosa, Obesity and Bone Metabolism

    PubMed Central

    Misra, Madhusmita; Klibanski, Anne

    2014-01-01

    Anorexia nervosa and obesity are conditions at the extreme ends of the nutritional spectrum, associated with marked reductions versus increases respectively in body fat content. Both conditions are also associated with an increased risk for fractures. In anorexia nervosa, body composition and hormones secreted or regulated by body fat content are important determinants of low bone density, impaired bone structure and reduced bone strength. In addition, anorexia nervosa is characterized by increases in marrow adiposity and decreases in cold activated brown adipose tissue, both of which are related to low bone density. In obese individuals, greater visceral adiposity is associated with greater marrow fat, lower bone density and impaired bone structure. In this review, we discuss bone metabolism in anorexia nervosa and obesity in relation to adipose tissue distribution and hormones secreted or regulated by body fat content. PMID:24079076

  17. Canine body composition quantification using 3 tesla fat-water MRI.

    PubMed

    Gifford, Aliya; Kullberg, Joel; Berglund, Johan; Malmberg, Filip; Coate, Katie C; Williams, Phillip E; Cherrington, Alan D; Avison, Malcolm J; Welch, E Brian

    2014-02-01

    To test the hypothesis that a whole-body fat-water MRI (FWMRI) protocol acquired at 3 Tesla combined with semi-automated image analysis techniques enables precise volume and mass quantification of adipose, lean, and bone tissue depots that agree with static scale mass and scale mass changes in the context of a longitudinal study of large-breed dogs placed on an obesogenic high-fat, high-fructose diet. Six healthy adult male dogs were scanned twice, at weeks 0 (baseline) and 4, of the dietary regiment. FWMRI-derived volumes of adipose tissue (total, visceral, and subcutaneous), lean tissue, and cortical bone were quantified using a semi-automated approach. Volumes were converted to masses using published tissue densities. FWMRI-derived total mass corresponds with scale mass with a concordance correlation coefficient of 0.931 (95% confidence interval = [0.813, 0.975]), and slope and intercept values of 1.12 and -2.23 kg, respectively. Visceral, subcutaneous and total adipose tissue masses increased significantly from weeks 0 to 4, while neither cortical bone nor lean tissue masses changed significantly. This is evidenced by a mean percent change of 70.2% for visceral, 67.0% for subcutaneous, and 67.1% for total adipose tissue. FWMRI can precisely quantify and map body composition with respect to adipose, lean, and bone tissue depots. The described approach provides a valuable tool to examine the role of distinct tissue depots in an established animal model of human metabolic disease. Copyright © 2013 Wiley Periodicals, Inc.

  18. Body adiposity and bone parameters of male rats from mothers fed diet containing flaxseed flour during lactation.

    PubMed

    da Costa, C A S; da Silva, P C A; Ribeiro, D C; Pereira, A D D; Santos, A D S D; Maia, L D A; Ruffoni, L D G; de Santana, F C; de Abreu, M D C; Boueri, B F D C; Pessanha, C R; Nonaka, K O; Mancini-Filho, J; do Nascimento-Saba, C C A; Boaventura, G T

    2015-12-07

    Obesity and osteoporosis may have their origins in early postnatal life. This study was designed to evaluate whether flaxseed flour use during lactation period bears effect on body adiposity and skeletal structure of male rat pups at weaning. At birth, male Wistar rats were randomly assigned to control and experimental (FF) groups, whose dams were treated with control or flaxseed flour diet, respectively, during lactation. At 21 days of age, pups were weaned to assess body mass, length and composition by dual-energy X-ray absorptiometry. The animals were then sacrificed to carry out analysis of serum profile, intra-abdominal adipocyte morphology and femur characteristics. Differences were considered significant when P<0.05. The FF group displayed the following characteristics (P<0.05): higher body mass, length, bone mineral content, bone area and concentrations of osteoprotegerin, osteocalcin and high-density lipoprotein cholesterol; higher levels of stearic, α-linolenic, eicosapentaenoic and docosapentaenoic acids and lower levels of arachidonic acid and cholesterol; smaller adipocyte area; and higher mass, epiphysis distance, diaphysis width, maximal load, break load, resilience and stiffness of femur. Flaxseed flour intake during lactation period promoted adipocyte hypertrophy down-regulation and contributed to pup bone quality at weaning.

  19. Relationships between cognitive function and body composition among community-dwelling older adults: a cross-sectional study.

    PubMed

    Noh, Hye-Mi; Oh, Sohee; Song, Hong Ji; Lee, Eun Young; Jeong, Jin-Young; Ryu, Ohk-Hyun; Hong, Kyung-Soon; Kim, Dong-Hyun

    2017-11-02

    Previous studies reported mixed results regarding the association between cognition and body weight in late life. We evaluated the relationships between cognitive function and body composition among community-dwelling older adults. Three hundred twenty subjects (≥65 years, women 53%) with available data of cognitive function and body composition from 2010 Hallym Aging Study. Cognitive function was assessed using Korean Mini-Mental State Examination (K-MMSE). Dual-energy X-ray absorptiometry (DEXA) was used for measuring body composition including body fat and lean body mass. Anthropometric measurements and laboratory data were collected in clinical examination. Body composition variables were divided into sex-specific tertiles, and examined by multivariable logistic regression. Among female, the highest tertile group of fat mass and second tertile group of total lean body mass were associated with lower risk for cognitive impairment compared to the respective first tertile groups (odds ratios, 0.23 and 0.09, respectively; 95% confidence intervals, 0.04-0.88 and 0.01-0.44, respectively) after adjusting for confounding factors. In male, higher arm bone mineral content was associated with lower risk for cognitive impairment, but significance was lost after adjusting for adiponectin, age, and education. Higher fat mass and lean body mass were associated with lower risk of cognitive impairment in older women. These observations suggest that body fat and lean mass later in life might be beneficial for cognition.

  20. Effects on growth and body composition of growth hormone treatment in children with juvenile idiopathic arthritis requiring steroid therapy.

    PubMed

    Simon, Dominique; Lucidarme, Nadine; Prieur, Anne-Marie; Ruiz, Jean Charles; Czernichow, Paul

    2003-11-01

    Decreased growth velocity and abnormal body composition including severe osteoporosis are common in glucocorticoid-treated patients with juvenile idiopathic arthritis (JIA). We evaluated the effects of recombinant human growth hormone (GH) given for 3 years on growth velocity, height standard deviation score (SDS), and body composition, together with potential adverse effects on glucose tolerance. Thirteen patients received GH (0.46 mg/kg/week) for 3 years. Body composition was assessed by dual-energy x-ray absorptiometry and glucose tolerance by annual oral glucose tolerance tests. Median growth velocity increased from 2.1 to 6.0 cm/year (p = 0.002) in the first year and remained higher than baseline in the second year of treatment. Height SDS did not change significantly (-4.6 SDS at baseline vs -4.3 SDS at study completion), but the growth response varied markedly across patients. Compared with baseline, lean mass increased by 33%, fat mass remained stable, and lumbar bone mineral density increased by 36.6%. Transient glucose intolerance developed in 6 patients, but glycosylated hemoglobin concentrations did not change significantly and diabetes mellitus did not occur. Treatment with GH restored linear growth without inducing catch-up growth, significantly improved body composition, and prevented further bone loss. Prolonged followup is needed to assess the benefits of GH and longterm consequences of hyperinsulinism.

  1. Low temperature setting polymer-ceramic composites for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Sethuraman, Swaminathan

    Tissue engineering is defined as "the application of biological, chemical and engineering principles towards the repair, restoration or regeneration of tissues using scaffolds, cells, factors alone or in combination". The hypothesis of this thesis is that a matrix made of a synthetic biocompatible, biodegradable composite can be designed to mimic the properties of bone, which itself is a composite. The overall goal was to design and develop biodegradable, biocompatible polymer-ceramic composites that will be a practical alternative to current bone repair materials. The first specific aim was to develop and evaluate the osteocompatibility of low temperature self setting calcium deficient apatites for bone tissue engineering. The four different calcium deficient hydroxyapatites evaluated were osteocompatible and expressed the characteristic genes for osteoblast proliferation, maturation, and differentiation. Our next objective was to develop and evaluate the osteocompatibility of biodegradable amino acid ester polyphosphazene in vitro as candidates for forming composites with low temperature apatites. We determined the structure-property relationship, the cellular adhesion, proliferation, and differentiation of primary rat osteoblast cells on two dimensional amino acid ester based polyphosphazene films. Our next goal was to evaluate the amino acid ester based polyphosphazenes in a subcutaneous rat model and our results demonstrated that the polyphosphazenes evaluated in the study were biocompatible. The physio-chemical property characterization, cellular response and gene expression on the composite surfaces were evaluated. The results demonstrated that the precursors formed calcium deficient hydroxyapatite in the presence of biodegradable polyphosphazenes. In addition, cells on the surface of the composites expressed normal phenotype and characteristic genes such as type I collagen, alkaline phosphatase, osteocalcin, osteopontin, and bone sialoprotein. The in vivo

  2. Onlay bone augmentation on mouse calvarial bone using a hydroxyapatite/collagen composite material with total blood or platelet-rich plasma.

    PubMed

    Ohba, Seigo; Sumita, Yoshinori; Umebayashi, Mayumi; Yoshimura, Hitoshi; Yoshida, Hisato; Matsuda, Shinpei; Kimura, Hideki; Asahina, Izumi; Sano, Kazuo

    2016-01-01

    The aim of this study was to assess newly formed onlay bone on mouse calvarial bone using a new artificial bone material, a hydroxyapatite/collagen composite, with total blood or platelet-rich plasma. The hydroxyapatite/collagen composite material with normal saline, total blood or platelet-rich plasma was transplanted on mouse calvarial bone. The mice were sacrificed and the specimens were harvested four weeks after surgery. The newly formed bone area was measured on hematoxylin and eosin stained specimens using Image J software. The hydroxyapatite/collagen composite materials with total blood or platelet-rich plasma induced a significantly greater amount of newly formed bone than that with normal saline. Moreover, bone marrow was observed four weeks after surgery in the transplanted materials with total blood or platelet-rich plasma but not with normal saline. However, there were no significant differences in the amount of newly formed bone between materials used with total blood versus platelet-rich plasma. The hydroxyapatite/collagen composite material was valid for onlay bone augmentation and this material should be soaked in total blood or platelet-rich plasma prior to transplantation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Alcohol consumption and body composition in a population-based sample of elderly Australian men.

    PubMed

    Coulson, Carolyn E; Williams, Lana J; Brennan, Sharon L; Berk, Michael; Kotowicz, Mark A; Lubman, Dan I; Pasco, Julie A

    2013-05-01

    Alcohol is calorie dense, and impacts activity, appetite and lipid processing. The aim of this study was to therefore investigate the association between alcohol consumption and components of body composition including bone, fat and lean tissue. Participants were recruited from a randomly selected, population-based sample of 534 men aged 65 years and older enrolled in the Geelong Osteoporosis Study. Alcohol intake was ascertained using a food frequency questionnaire and the sample categorised as non-drinkers or alcohol users who consumed ≤2, 3-4 or ≥5 standard drinks on a usual drinking day. Bone mineral density (BMD), lean body mass and body fat mass were measured using dual energy X-ray absorptiometry; overall adiposity (%body fat), central adiposity (%truncal fat) and body mass index (BMI) were calculated. Bone quality was determined by quantitative heel ultrasound (QUS). There were 90 current non-drinkers (16.9 %), 266 (49.8 %) consumed 1-2 drinks/day, 104 (19.5 %) 3-4 drinks/day and 74 (13.8 %) ≥5 drinks/day. Those consuming ≥5 drinks/day had greater BMI (+4.8 %), fat mass index (+20.1 %), waist circumference (+5.0 %), %body fat (+15.2 %) and proportion of trunk fat (+5.3 %) and lower lean mass (-5.0 %) than non-drinkers after adjustment for demographic and lifestyle factors. Furthermore, they were more likely to be obese than non-drinkers according to criteria based on BMI (OR = 2.83, 95 %CI 1.10-7.29) or waist circumference (OR = 3.36, 95 %CI 1.32-8.54). There was an inverse relationship between alcohol consumption and QUS parameters and BMD at the mid forearm site; no differences were detected for BMD at other skeletal sites. Higher alcohol intake was associated with greater total and central adiposity and reduced bone quality.

  4. Increasing the number of unloading/reambulation cycles does not adversely impact body composition and lumbar bone mineral density but reduces tissue sensitivity

    NASA Astrophysics Data System (ADS)

    Gupta, Shikha; Manske, Sarah L.; Judex, Stefan

    2013-11-01

    A single exposure to hindlimb unloading leads to changes in body mass, body composition and bone, but the consequences of multiple exposures are not yet understood. Within a 18 week period, adult C57BL/6 male mice were exposed to 1 (1x-HLU), 2 (2x-HLU) or 3 (3x-HLU) cycles of 2 weeks of hindlimb unloading (HLU) followed by 4 weeks of reambulation (RA), or served as ambulatory age-matched controls. In vivo μCT longitudinally tracked changes in abdominal adipose and lean tissues, lumbar vertebral apparent volumetric bone mineral density (vBMD) and upper hindlimb muscle cross-sectional area before and after the final HLU and RA cycle. During the final HLU cycle, significant decreases in total adipose tissue and vertebral vBMD in the three experimental groups occurred such that there were no significant between-group differences at the beginning of the final RA cycle. However, the magnitude of the HLU induced losses diminished in mice undergoing their 2nd or 3rd HLU cycle. Irrespective of the number of HLU/RA cycles, total adipose tissue and vertebral vBMD recovered and were no different from age-matched controls after the final RA period. In contrast, upper hindlimb muscle cross-sectional area was significantly lower than controls in all unloaded groups after the final RA period. These results suggest that tissues in the abdominal region are more resilient to multiple bouts of unloading and more amenable to recovery during reambulation than the peripheral musculoskeletal system.

  5. [Bone mineral density, biochemical bone turnover markers and factors associated with bone health in young Korean women].

    PubMed

    Park, Young Joo; Lee, Sook Ja; Shin, Nah Mee; Shin, Hyunjeong; Kim, Yoo Kyung; Cho, Yunjung; Jeon, Songi; Cho, Inhae

    2014-10-01

    This study was done to assess the bone mineral density (BMD), biochemical bone turnover markers (BTMs), and factors associated with bone health in young Korean women. Participants were 1,298 women, ages 18-29, recruited in Korea. Measurements were BMD by calcaneus quantitative ultrasound, BTMs for Calcium, Phosphorus, Osteocalcin, and C-telopeptide cross-links (CTX), body composition by physical measurements, nutrients by food frequency questionnaire and psychosocial factors associated with bone health by self-report. The mean BMD (Z-score) was -0.94. 8.7% women had lower BMD (Z-score≤-2) and 14.3% women had higher BMD (Z-score≥0) than women of same age. BTMs were not significantly different between high-BMD (Z-score≥0) and low-BMD (Z-score<0) women. However, Osteocalcin and CTX were higher in women preferring caffeine intake, sedentary lifestyle and alcoholic drinks. Body composition and Calcium intake were significantly higher in high-BMD. Low-BMD women reported significantly higher susceptibility and barriers to exercise in health beliefs, lower bone health self-efficacy and promoting behaviors. Results of this study indicate that bone health of young Korean women is not good. Development of diverse strategies to intervene in factors such as exercise, nutrients, self-efficacy, health beliefs and behaviors, shown to be important, are needed to improve bone health.

  6. Mineralized polymer composites as biogenic bone substitute material

    NASA Astrophysics Data System (ADS)

    Shah, Rushita; Saha, Nabanita; Kitano, Takeshi; Saha, Petr

    2015-05-01

    Mineralized polymer composites (MPC) are recognized as potential fillers of bone defects. Though bioceramics exhibits quite a good bone-bonding and vascularization, it is considered to be too stiff and brittle for using alone. Thus, the use of polymer scaffold instead of bioceramics has several advantages including combining the osteoconductivity and bone-bonding potential of the inorganic phase with the porosity and interconnectivity of the three-dimensional construction. Aiming the advantages of ceramic-polymer composite scaffolds, the calcium carbonate (CaCO3) based biomineralized scaffold was prepared, where the PVP-CMC hydrogel was used as an extracellular matrix. This paper is reported about the morphology, swelling trend (in physiological solution) and viscoelastic behavior of (90 min mineralized) MPC. The dry MPC are off-white, coarse in texture, comparatively less flexible than the original PVP-CMC based hydrogel film, and the deposition of granular structures on the surface of the hydrogel film confirms about the development of biomineralized scaffold/polymer composites. Irrespective of thickness, the dry MPC shows higher values of swelling ratio within 30 min, which varies between 200-250 approximately. The dynamic viscoelastic nature of freshly prepared MPC was investigated applying 1% and 10% strain. At higher strain the viscoelastic moduli (G' and G") show significant change, and the nature of MPC turns from elastic to viscous. Based on the observed basic properties, the MPC (calcite based polymer composites) can be recommended for the treatment of adyanamic bone disorder.

  7. Association of age and physical exercise with bodyweight and body composition in Asian Chinese men.

    PubMed

    Goh, Victor H-H; Tong, Terry Y Y

    2010-12-01

    The present study sought to examine the association between physical exercise as a lifestyle habit with anthropometric parameters and body composition and aging in men. Intensity of exercise was scored as metabolic equivalent-min/week (MET-min/week) from data of the questionnaire, while anthropometric parameters and body composition were carried out by standard measuring instruments and dual-energy X-ray absorptiometry scanner, respectively. Age was associated with decreases in bodyweight, height, total lean mass and bone mass, but an increase in fat mass. The negative association of lean mass with age was predominantly due to the negative association of lean masses in the legs and arm, while the positive association of fat mass with age was primarily due to the positive association of fat masses in the trunk and abdomen. Exercise of intensity greater than 1000 MET-min/week was significantly associated with higher lean and bone masses and lower fat mass. The increase in lean mass was predominantly in the legs, while the decreases in fat mass were in the trunk and abdomen. The study showed that the high intensity of physical exercise, equivalent to greater than 1000 MET-min/week, is required to effect beneficial changes in the body composition. Hence, results from the study support the importance of promoting a lifestyle habit of exercise of sufficient intensity in order to mitigate the increase risks of sarcopenia and obesity and their attendant ill effects on health in men as they age.

  8. Influence of weight and body fat distribution on bone density in postmenopausal women.

    PubMed

    Murillo-Uribe, A; Carranza-Lira, S; Martínez-Trejo, N; Santos-González, J

    2000-01-01

    To determine whether obesity or body fat distribution induces a greater modification on bone remodeling biochemistry (BRB) and bone density in postmenopausal women. One hundred and thirteen postmenopausal patients were studied. They were initially divided according to body mass index (BMI), and afterwards by waist-hip ratio (WHR) as well as combinations of the two factors. Hormone measurements and assessments of BRB were also done. Dual-emission X-ray absorptiometry from the lumbar column and hip was performed with Lunar DPXL equipment, and the standard deviation in relation to young adult (T) and age-matched subjects (Z) was calculated. Statistical analysis was done by the Mann-Whitney U test. The relation of BMI and WHR with the variables was calculated by simple regression analysis. When divided according to BMI, there was greater bone density in the femoral neck in those with normal weight. After dividing according to WHR, the Z scores had a trend to a lesser decrease in those with upper level body fat distribution. Divided according to BMI and WHR, obese patients with upper-level body fat distribution had greater bone density in the lumbar column than those with normal weight and lower-level body fat distribution. With the same WHR, those with normal weight had greater bone density than those who were obese. A beneficial effect of upper-level body fat distribution on bone density was found. It is greater than that from obesity alone, and obesity and upper-level body fat distribution have an additive effect on bone density.

  9. Effect of body composition methodology on heritability estimation of body fatness

    USDA-ARS?s Scientific Manuscript database

    Heritability estimates of human body fatness vary widely and the contribution of body composition methodology to this variability is unknown. The effect of body composition methodology on estimations of genetic and environmental contributions to body fatness variation was examined in 78 adult male ...

  10. rhIGF-1 Treatment Increases Bone Mineral Density and Trabecular Bone Structure in Children with PAPP-A2 Deficiency.

    PubMed

    Hawkins-Carranza, Federico G; Muñoz-Calvo, María T; Martos-Moreno, Gabriel Á; Allo-Miguel, Gonzalo; Del Río, Luis; Pozo, Jesús; Chowen, Julie A; Pérez-Jurado, Luis A; Argente, Jesús

    2018-01-01

    Our objective was to determine changes in bone mineral density (BMD), trabecular bone score (TBS), and body composition after 2 years of therapy with recombinant human insulin-like growth factor-1 (rhIGF-1) in 2 prepubertal children with a complete lack of circulating PAPP-A2 due to a homozygous mutation in PAPP-A2 (p.D643fs25*) resulting in a premature stop codon. Body composition, BMD, and bone structure were determined by dual-energy X-ray absorptiometry at baseline and after 1 and 2 years of rhIGF-1 treatment. Height increased from 132 to 145.5 cm (patient 1) and from 111.5 to 124.5 cm (patient 2). Bone mineral content increased from 933.40 to 1,057.97 and 1,152.77 g in patient 1, and from 696.12 to 773.26 and 911.51 g in patient 2, after 1 and 2 years, respectively. Whole-body BMD also increased after 2 years of rhIGF-1 from baseline 0.788 to 0.869 g/cm2 in patient 1 and from 0.763 to 0.829 g/cm2 in patient 2. After 2 years of treatment, both children had an improvement in TBS. During therapy, a slight increase in body fat mass was seen, with a concomitant increase in lean mass. No adverse effects were reported. Two years of rhIGF-1 improved growth, with a tendency to improve bone mass and bone microstructure and to modulate body composition. © 2018 S. Karger AG, Basel.

  11. Body composition in Pan paniscus compared with Homo sapiens has implications for changes during human evolution.

    PubMed

    Zihlman, Adrienne L; Bolter, Debra R

    2015-06-16

    The human body has been shaped by natural selection during the past 4-5 million years. Fossils preserve bones and teeth but lack muscle, skin, fat, and organs. To understand the evolution of the human form, information about both soft and hard tissues of our ancestors is needed. Our closest living relatives of the genus Pan provide the best comparative model to those ancestors. Here, we present data on the body composition of 13 bonobos (Pan paniscus) measured during anatomical dissections and compare the data with Homo sapiens. These comparative data suggest that both females and males (i) increased body fat, (ii) decreased relative muscle mass, (iii) redistributed muscle mass to lower limbs, and (iv) decreased relative mass of skin during human evolution. Comparison of soft tissues between Pan and Homo provides new insights into the function and evolution of body composition.

  12. Body composition and cross-sectional areas of limb lean tissues in Olympic weight lifters.

    PubMed

    Kanehisa, H; Ikegawa, S; Fukunaga, T

    1998-10-01

    The cross-sectional area (CSAs) of bone and muscle tissues in the forearm, upper arm, lower leg, and thigh and body composition were determined by B-mode ultrasound and underwater weighing methods, respectively for 56 college Olympic weight lifters and 28 age-matched non-athletes to investigate the magnitude of musculoskeletal development in the strength-trained athletes belonging to the weight-classified sports event. The average value of fat-free mass (FFM) for the weight lifters ranked 12.6 kg above the regression line of FFM on stature for untrained subjects. In the weight lifters, however, the percentage of fat mass to body mass was also highly correlated to body mass index. Bone and muscle CSAs in every site were significantly larger in the weight lifter than in the untrained subjects with relative differences of 22 to 58% and 17 to 56%, respectively. Moreover, as a result of regression analysis for the mixed data from weight lifters and untrained subjects, significant correlation was found between bone and muscle CSAs in every site (r = 0.620 to 0.791, P < 0.05). The differences in lean (bone + muscle) CSA were still significant in all sites except for the lower leg even when the difference in body size was statistically controlled. The comparisons between the weight lifters and untrained subjects on the lean CSA ratios of site to site and muscle CSA ratios of flexors to extensors indicated that the weight lifters had achieved a high relative distribution of lean tissues in the arms and a dominant development in elbow and knee extensors. Thus, the present results suggested that participation in weight lifting exercises for a long period could increase bone CSA as well as muscle CSA, and induce in the participants a noticeable enlargement in given sites and muscle groups responsible for performing the Olympic lifts.

  13. VDR Haploinsufficiency Impacts Body Composition and Skeletal Acquisition in a Gender-Specific Manner

    PubMed Central

    de Paula, Francisco J. A.; Dick-de-Paula, Ingrid; Bornstein, Sheila; Rostama, Bahman; Le, Phuong; Lotinun, Sutada; Baron, Roland; Rosen, Clifford J.

    2011-01-01

    The vitamin D receptor (VDR) is crucial for virtually all of vitamin D’s actions and is thought to be ubiquitously expressed. We hypothesized that disruption of one allele of the VDR gene would impact bone development and would have metabolic consequences. Body composition and bone mass (BMD) in VDR heterozygous (VDR HET) mice were compared to those obtained in male and female VDR KO and WT mice at 8 weeks of age. Male mice were also evaluated at 16 weeks, and bone marrow mesenchymal stem cell (MSC) differentiation was evaluated in VDR female mice. Additionally, female VDR HET and WT mice received intermittent PTH treatment or vehicle (VH) for 4 weeks. BMD was determined at baseline and after treatment. MRI was done in vivo at the end of treatment; μCT and bone histomorphometry were performed after killing the animals. VDR HET male mice had normal skeletal development until 16 weeks of age but showed significantly less gain in fat mass than WT mice. In contrast, female VDR HET mice showed decreased total-body BMD at age 8 weeks but ad a normal skeletal response to PTH. MSC differentiation was also impaired in VDR HET female mice. Thus, female VDR HET mice show early impairment in bone acquisition, while male VDR HET mice exhibit a lean phenotype. Our results indicate that the VDR HET mouse is a useful model for studying the metabolic and skeletal impact of decreased vitamin D sensitivity. PMID:21637996

  14. VDR haploinsufficiency impacts body composition and skeletal acquisition in a gender-specific manner.

    PubMed

    de Paula, Francisco J A; Dick-de-Paula, Ingrid; Bornstein, Sheila; Rostama, Bahman; Le, Phuong; Lotinun, Sutada; Baron, Roland; Rosen, Clifford J

    2011-09-01

    The vitamin D receptor (VDR) is crucial for virtually all of vitamin D's actions and is thought to be ubiquitously expressed. We hypothesized that disruption of one allele of the VDR gene would impact bone development and would have metabolic consequences. Body composition and bone mass (BMD) in VDR heterozygous (VDR HET) mice were compared to those obtained in male and female VDR KO and WT mice at 8 weeks of age. Male mice were also evaluated at 16 weeks, and bone marrow mesenchymal stem cell (MSC) differentiation was evaluated in VDR female mice. Additionally, female VDR HET and WT mice received intermittent PTH treatment or vehicle (VH) for 4 weeks. BMD was determined at baseline and after treatment. MRI was done in vivo at the end of treatment; μCT and bone histomorphometry were performed after killing the animals. VDR HET male mice had normal skeletal development until 16 weeks of age but showed significantly less gain in fat mass than WT mice. In contrast, female VDR HET mice showed decreased total-body BMD at age 8 weeks but had a normal skeletal response to PTH. MSC differentiation was also impaired in VDR HET female mice. Thus, female VDR HET mice show early impairment in bone acquisition, while male VDR HET mice exhibit a lean phenotype. Our results indicate that the VDR HET mouse is a useful model for studying the metabolic and skeletal impact of decreased vitamin D sensitivity.

  15. Variations in Urine Calcium Isotope: Composition Reflect Changes in Bone Mineral Balance in Humans

    NASA Technical Reports Server (NTRS)

    Skulan, Joseph; Anbar, Ariel; Bullen, Thomas; Puzas, J. Edward; Shackelford, Linda; Smith, Scott M.

    2004-01-01

    Changes in bone mineral balance cause rapid and systematic changes in the calcium isotope composition of human urine. Urine from subjects in a 17 week bed rest study was analyzed for calcium isotopic composition. Comparison of isotopic data with measurements of bone mineral density and metabolic markers of bone metabolism indicates the calcium isotope composition of urine reflects changes in bone mineral balance. Urine calcium isotope composition probably is affected by both bone metabolism and renal processes. Calcium isotope. analysis of urine and other tissues may provide information on bone mineral balance that is in important respects better than that available from other techniques, and illustrates the usefulness of applying geochemical techniques to biomedical problems.

  16. [Body composition and heart rate variability in patients with chronic obstructive pulmonary disease pulmonary rehabilitation candidates].

    PubMed

    Curilem Gatica, Cristian; Almagià Flores, Atilio; Yuing Farías, Tuillang; Rodríguez Rodríguez, Fernando

    2014-07-01

    Body composition is a non-invasive method, which gives us information about the distribution of tissues in the body structure, it is also an indicator of the risk of mortality in patients with chronic obstructive pulmonary disease. The heart rate variability is a technique that gives us information of autonomic physiological condition, being recognized as an indicator which is decreased in a number of diseases. The purpose of this study was to assess body composition and heart rate variability. The methodology used is that of Debora Kerr (1988) endorsed by the International Society for advances in Cineantropometría for body composition and heart rate variability of the guidelines described by the American Heart Association (1996). Roscraff equipment, caliper Slimguide and watch Polar RS 800CX was used. , BMI 26.7 ± 3.9 kg / m²; Muscle Mass 26.1 ± 6.3 kg ; Bone Mass 1.3 kg ± 8.1 76 ± 9.9 years Age : 14 candidates for pulmonary rehabilitation patients were evaluated , Adipose mass 16.4 ± 3.6 kg ; FEV1 54 ± 14%. Increased waist circumference and waist hip ratio was associated with a lower overall heart rate variability. The bone component was positively related to the variability of heart rate and patients with higher forced expiratory volume in one second had lower high frequency component in heart rate variability. In these patients, the heart rate variability is reduced globally and is associated with cardiovascular risk parameters. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  17. Bone Composition Diagnostics: Photoacoustics Versus Ultrasound

    NASA Astrophysics Data System (ADS)

    Yang, Lifeng; Lashkari, Bahman; Mandelis, Andreas; Tan, Joel W. Y.

    2015-06-01

    Ultrasound (US) backscatter from bones depends on the mechanical properties and the microstructure of the interrogated bone. On the other hand, photoacoustics (PA) is sensitive to optical properties of tissue and can detect composition variation. Therefore, PA can provide complementary information about bone health and integrity. In this work, a comparative study of US backscattering and PA back-propagating signals from animal trabecular bones was performed. Both methods were applied using a linear frequency modulation chirp and matched filtering. A 2.2 MHz ultrasonic transducer was employed to detect both signals. The use of the frequency domain facilitates spectral analysis. The variation of signals shows that in addition to sensitivity to mineral changes, PA exhibits sensitivity to changes in the organic part of the bone. It is, therefore, concluded that the combination of both modalities can provide complementary detailed information on bone health than either method separately. In addition, comparison of PA and US depthwise images shows the higher penetration of US. Surface scan images exhibit very weak correlation between US and PA which could be caused by the different signal generation origins in mechanical versus optical properties, respectively.

  18. Bisphenyl-Polymer/Carbon-Fiber-Reinforced Composite Compared to Titanium Alloy Bone Implant.

    PubMed

    Petersen, Richard C

    2011-05-03

    Aerospace/aeronautical thermoset bisphenyl-polymer/carbon-fiber-reinforced composites are considered as new advanced materials to replace metal bone implants. In addition to well-recognized nonpolar chemistry with related bisphenol-polymer estrogenic factors, carbon-fiber-reinforced composites can offer densities and electrical conductivity/resistivity properties close to bone with strengths much higher than metals on a per-weight basis. In vivo bone-marrow tests with Sprague-Dawley rats revealed far-reaching significant osseoconductivity increases from bisphenyl-polymer/carbon-fiber composites when compared to state-of-the-art titanium-6-4 alloy controls. Midtibial percent bone area measured from the implant surface increased when comparing the titanium alloy to the polymer composite from 10.5% to 41.6% at 0.8 mm, P < 10 -4 , and 19.3% to 77.7% at 0.1 mm, P < 10 -8 . Carbon-fiber fragments planned to occur in the test designs, instead of producing an inflammation, stimulated bone formation and increased bone integration to the implant. In addition, low-thermal polymer processing allows incorporation of minerals and pharmaceuticals for future major tissue-engineering potential.

  19. The morphology of human hyoid bone in relation to sex, age and body proportions.

    PubMed

    Urbanová, P; Hejna, P; Zátopková, L; Šafr, M

    2013-06-01

    Morphological aspects of the human hyoid bone are, like many other skeletal elements in human body, greatly affected by individual's sex, age and body proportions. Still, the known sex-dependent bimodality of a number of body size characteristics overshadows the true within-group patterns. Given the ambiguity of the causal effects of age, sex and body size upon hyoid morphology the present study puts the relationship between shape of human hyoid bone and body proportions (height and weight) under scrutiny of a morphological study. Using 211 hyoid bones and landmark-based methods of geometric morphometrics, it was shown that the size of hyoid bones correlated positively with measured body dimensions but showed no correlation if the individual's sex was controlled for. For shape variables, our results revealed that hyoid morphology is clearly related to body size as expressed in terms of the height and weight. Yet, the hyoid shape was shown to result primarily from the sex-related bimodal distribution of studied body size descriptors which, in the case of the height-dependent model, exhibited opposite trends for males and females. Apart from the global hyoid shape given by spatial arrangements of the greater horns, body size dependency was translated into size and position of the hyoid body. None of the body size characters had any impact on hyoid asymmetry. Ultimately, sexually dimorphic variation was revealed for age-dependent changes in both size and shape of hyoid bones as male hyoids tend to be more susceptible to modifications with age than female bones. Copyright © 2013 Elsevier GmbH. All rights reserved.

  20. Determination of replicate composite bone material properties using modal analysis.

    PubMed

    Leuridan, Steven; Goossens, Quentin; Pastrav, Leonard; Roosen, Jorg; Mulier, Michiel; Denis, Kathleen; Desmet, Wim; Sloten, Jos Vander

    2017-02-01

    Replicate composite bones are used extensively for in vitro testing of new orthopedic devices. Contrary to tests with cadaveric bone material, which inherently exhibits large variability, they offer a standardized alternative with limited variability. Accurate knowledge of the composite's material properties is important when interpreting in vitro test results and when using them in FE models of biomechanical constructs. The cortical bone analogue material properties of three different fourth-generation composite bone models were determined by updating FE bone models using experimental and numerical modal analyses results. The influence of the cortical bone analogue material model (isotropic or transversely isotropic) and the inter- and intra-specimen variability were assessed. Isotropic cortical bone analogue material models failed to represent the experimental behavior in a satisfactory way even after updating the elastic material constants. When transversely isotropic material models were used, the updating procedure resulted in a reduction of the longitudinal Young's modulus from 16.00GPa before updating to an average of 13.96 GPa after updating. The shear modulus was increased from 3.30GPa to an average value of 3.92GPa. The transverse Young's modulus was lowered from an initial value of 10.00GPa to 9.89GPa. Low inter- and intra-specimen variability was found. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. The Association of Fat and Lean Tissue With Whole Body and Spine Bone Mineral Density Is Modified by HIV Status and Sex in Children and Youth.

    PubMed

    Jacobson, Denise L; Lindsey, Jane C; Coull, Brent A; Mulligan, Kathleen; Bhagwat, Priya; Aldrovandi, Grace M

    2018-01-01

    HIV-infected (HIV-pos) male children/youth showed lower bone mineral density at sexual maturity than HIV-uninfected (HIV-neg) females. It is not known whether complications of HIV disease, including abnormal body fat distribution, contribute to lower bone accrual in male HIV-pos adolescents. In a cross-sectional study, we evaluated the relationship between body composition (fat and lean mass) and bone mass in HIV-pos and HIV-neg children/youth and determined if it is modified by HIV status and sex. We used generalized estimating equations to simultaneously model the effect of fat/lean mass on multiple bone outcomes, including total body bone mineral density and bone mineral content and spine bone mineral density. We evaluated effect modification by HIV and sex. The analysis cohort consisted of 143 HIV-neg and 236 HIV-pos, of whom 55% were black non-Hispanic and 53% were male. Ages ranged from 7 to < 25 years. Half of the children/youth were at Tanner stage 1 and 20% at Tanner 5. Fat mass was more strongly positively correlated with bone mass in HIV-neg than HIV-pos children/youth and these relationships were more evident for total body bone than spine outcomes. Within HIV strata, fat mass and bone were more correlated in female than male children/youth. The relationship between lean mass and bone varied by sex, but not by HIV status. HIV disease diminishes the positive relationship of greater fat mass on bone mass in children/youth. Disruptions in body fat distribution, which are common in HIV disease, may have an impact on bone accretion during pubertal development.

  2. Does chemical composition of antler bone reflect the physiological effort made to grow it?

    PubMed

    Landete-Castillejos, T; Estevez, J A; Martínez, A; Ceacero, F; Garcia, A; Gallego, L

    2007-04-01

    In a previous study, antler bone chemical composition was found to differ between base and tip. If such variation is in part due to the physiological effort made to grow the antler, composition trends should differ between antlers from deer population differing in mineral or food availability, or body reserves. To assess this, we examined cortical thickness and bone composition along the antler shaft, and compared trends between antlers from two populations: captive, well-fed, health-managed deer (n=15), and free-ranging deer with lower food quality and no health treatment (n=10). Significant and clear divergent trends supporting greater physiological exhaustion in free-ranging deer and high or moderate predictive models were found for cortical thickness (R(2)=61.8%), content of Na (R(2)=68.6%), Mg (R(2)=56.3%), K (R(2)=40.0%), and Zn (34.6%); lower predictive power was found for protein (R(2)=25.6%) and ash content (R(2)=19.5%); and poor predictive power was found for Ca (R(2)=4.3%), Fe (R(2)=11.1%), and Si (R(2)=4.7%). A second part of the study assessed similar antler structures grown at the beginning (brow tine) and end (top tine) of antler growth within captive deer. Greater cortical thickness and ash content was found for brow tine, as well as a smaller protein, K and Mg content. In contrast, no difference was found for Ca, Na, Zn, Fe or Si. The results suggest that thickness and mineral composition reflect the physiological effort made to build antler bone.

  3. Vascularization of repaired limb bone defects using chitosan-β-tricalcium phosphate composite as a tissue engineering bone scaffold.

    PubMed

    Yang, Le; Wang, Qinghua; Peng, Lihua; Yue, Hong; Zhang, Zhendong

    2015-08-01

    Ensuring histocompatibility in the tissue engineering of bones is a complex issue. The aim of this study was to observe the feasibility of chitosan-β-tricalcium phosphate composite in repairing limb bone defects, and to evaluate the therapeutic effects on osteogenesis. Beagle mesenchymal stem cells (MSCs) were divided into an experimental group that was cultured with an injectable form of chitosan-β-tricalcium phosphate composite and a control group. The effect of the composite on bone tissue growth was evaluated by MTT assay. In addition, 12-month-old beagles were subjected to 15-mm femur defects and subsequently implanted with scaffolds to observe the effects on osteogenesis and vascularization. The dogs were subdivided into two groups of five animals: Group A, which was implanted with scaffold-MSC compounds, and Group B, which was implanted with scaffolds alone. The dogs were observed on the 2nd, 4th, 8th and 12th weeks post-implantation. Scanning electron microscopy analysis revealed that the composite was compatible with MSCs, with similar outcomes in the control and experimental groups. MTT analysis additionally showed that the MSCs in the experimental group grew in a similar manner to those in the control group. The composite did not significantly affect the MSC growth or proliferation. In combination with MSCs, the scaffold materials were effective in the promotion of osteogenesis and vascularization. In conclusion, the chitosan-β-tricalcium phosphate composite was compatible with the MSCs and did not affect cellular growth or proliferation, therefore proving to be an effective injectable composite for tissue engineered bone. Simultaneous implantation of stem cells with a carrier composite proved to function effectively in the repair of bone defects.

  4. Photoacoustic and ultrasound characterization of bone composition

    NASA Astrophysics Data System (ADS)

    Lashkari, Bahman; Yang, Lifeng; Liu, Lixian; Tan, Joel W. Y.; Mandelis, Andreas

    2015-02-01

    This study examines the sensitivity and specificity of backscattered ultrasound (US) and backscattering photoacoustic (PA) signals for bone composition variation assessment. The conventional approach in the evaluation of bone health relies on measurement of bone mineral density (BMD). Although, a crucial and probably the most important parameter, BMD is not the only factor defining the bone health. New trends in osteoporosis research, also pursue the changes in collagen content and cross-links with bone diseases and aging. Therefore, any non-invasive method that can assess any of these parameters can improve the diagnostic tools and also can help with the biomedical studies on the diseases themselves. Our previous studies show that both US and PA are responsive to changes in the BMD, PA is, in addition, sensitive to changes in the collagen content of the bone. Measurements were performed on bone samples before and after mild demineralization and decollagenization at the exact same points. Results show that combining both modalities can enhance the sensitivity and specificity of diagnostic tool.

  5. HBM Mice Have Altered Bone Matrix Composition And Improved Material Toughness

    DOE PAGES

    Ross, Ryan D.; Mashiatulla, Maleeha; Acerbo, Alvin S.; ...

    2016-05-26

    Here, the G171V mutation in the low density lipoprotein receptor-related protein 5 (LRP5) leads to a high bone mass (HBM) phenotype. Studies using an HBM transgenic mouse model have consistently found increased bone mass and whole-bone strength, but little attention has been paid to bone matrix quality. The current study sought to determine if the cortical bone matrix composition differs in HBM and wild-type mice and to determine how much of the variance in bone material properties is explained by variance in matrix composition. Consistent with previous studies, HBM mice had greater cortical area, moment of inertia, ultimate force, bendingmore » stiffness, and energy to failure than wild-type animals. Interestingly, the increased energy to failure was primarily caused by a large increase in post-yield behavior, with no difference in pre-yield behavior. The HBM mice had increased mineral-to-matrix and collagen cross-link ratios, and decreased crystallinity and carbonate substitution, but no differences in crystal length, intra-fibular strains, and mineral spacing compared to wild-type controls. The largest difference in material properties was a 2-fold increase in the modulus of toughness in HBM mice. Step-wise regression analyses found weak correlations between matrix composition and material properties, and interestingly, the matrix compositional parameters associated with the material properties varied between the wild-type and HBM genotypes. Although the mechanisms controlling the paradoxical combination of more mineralized yet tougher bone in HBM mice remain to be fully explained, the findings suggest that LRP5 represents a target to not only build greater bone quantity, but also to improve bone quality.« less

  6. HBM Mice Have Altered Bone Matrix Composition And Improved Material Toughness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, Ryan D.; Mashiatulla, Maleeha; Acerbo, Alvin S.

    Here, the G171V mutation in the low density lipoprotein receptor-related protein 5 (LRP5) leads to a high bone mass (HBM) phenotype. Studies using an HBM transgenic mouse model have consistently found increased bone mass and whole-bone strength, but little attention has been paid to bone matrix quality. The current study sought to determine if the cortical bone matrix composition differs in HBM and wild-type mice and to determine how much of the variance in bone material properties is explained by variance in matrix composition. Consistent with previous studies, HBM mice had greater cortical area, moment of inertia, ultimate force, bendingmore » stiffness, and energy to failure than wild-type animals. Interestingly, the increased energy to failure was primarily caused by a large increase in post-yield behavior, with no difference in pre-yield behavior. The HBM mice had increased mineral-to-matrix and collagen cross-link ratios, and decreased crystallinity and carbonate substitution, but no differences in crystal length, intra-fibular strains, and mineral spacing compared to wild-type controls. The largest difference in material properties was a 2-fold increase in the modulus of toughness in HBM mice. Step-wise regression analyses found weak correlations between matrix composition and material properties, and interestingly, the matrix compositional parameters associated with the material properties varied between the wild-type and HBM genotypes. Although the mechanisms controlling the paradoxical combination of more mineralized yet tougher bone in HBM mice remain to be fully explained, the findings suggest that LRP5 represents a target to not only build greater bone quantity, but also to improve bone quality.« less

  7. Top 10 Research Questions Related to Body Composition

    ERIC Educational Resources Information Center

    Going, Scott; Lee, Vinson; Blew, Rob; Laddu, Deepika; Hetherington-Rauth, Megan

    2014-01-01

    An understanding of body composition is crucial to understanding human health, disease, and function. Research in body composition has focused on the development of assessment methods, description of normal changes in body composition with growth and development and aging, and the changes that occur in body composition in response to challenges…

  8. Bioinspired Design of Polycaprolactone Composite Nanofibers as Artificial Bone Extracellular Matrix for Bone Regeneration Application.

    PubMed

    Gao, Xiang; Song, Jinlin; Zhang, Yancong; Xu, Xiao; Zhang, Siqi; Ji, Ping; Wei, Shicheng

    2016-10-07

    The design and development of functional biomimetic systems for programmed stem cell response is a field of topical interest. To mimic bone extracellular matrix, we present an innovative strategy for constructing drug-loaded composite nanofibrous scaffolds in this study, which could integrate multiple cues from calcium phosphate mineral, bioactive molecule, and highly ordered fiber topography for the control of stem cell fate. Briefly, inspired by mussel adhesion mechanism, a polydopamine (pDA)-templated nanohydroxyapatite (tHA) was synthesized and then surface-functionalized with bone morphogenetic protein-7-derived peptides via catechol chemistry. Afterward, the resulting peptide-loaded tHA (tHA/pep) particles were blended with polycaprolactone (PCL) solution to fabricate electrospun hybrid nanofibers with random and aligned orientation. Our research demonstrated that the bioactivity of grafted peptides was retained in composite nanofibers. Compared to controls, PCL-tHA/pep composite nanofibers showed improved cytocompatibility. Moreover, the incorporated tHA/pep particles in nanofibers could further facilitate osteogenic differentiation potential of human mesenchymal stem cells (hMSCs). More importantly, the aligned PCL-tHA/pep composite nanofibers showed more osteogenic activity than did randomly oriented counterparts, even under nonosteoinductive conditions, indicating excellent performance of biomimetic design in cell fate decision. After in vivo implantation, the PCL-tHA/pep composite nanofibers with highly ordered structure could significantly promote the regeneration of lamellar-like bones in a rat calvarial critical-sized defect. Accordingly, the presented strategy in our work could be applied for a wide range of potential applications in not only bone regeneration application but also pharmaceutical science.

  9. Body composition in Pan paniscus compared with Homo sapiens has implications for changes during human evolution

    PubMed Central

    Zihlman, Adrienne L.; Bolter, Debra R.

    2015-01-01

    The human body has been shaped by natural selection during the past 4–5 million years. Fossils preserve bones and teeth but lack muscle, skin, fat, and organs. To understand the evolution of the human form, information about both soft and hard tissues of our ancestors is needed. Our closest living relatives of the genus Pan provide the best comparative model to those ancestors. Here, we present data on the body composition of 13 bonobos (Pan paniscus) measured during anatomical dissections and compare the data with Homo sapiens. These comparative data suggest that both females and males (i) increased body fat, (ii) decreased relative muscle mass, (iii) redistributed muscle mass to lower limbs, and (iv) decreased relative mass of skin during human evolution. Comparison of soft tissues between Pan and Homo provides new insights into the function and evolution of body composition. PMID:26034269

  10. Fructose in Breast Milk Is Positively Associated with Infant Body Composition at 6 Months of Age.

    PubMed

    Goran, Michael I; Martin, Ashley A; Alderete, Tanya L; Fujiwara, Hideji; Fields, David A

    2017-02-16

    Dietary sugars have been shown to promote excess adiposity among children and adults; however, no study has examined fructose in human milk and its effects on body composition during infancy. Twenty-five mother-infant dyads attended clinical visits to the Oklahoma Health Sciences Center at 1 and 6 months of infant age. Infants were exclusively breastfed for 6 months and sugars in breast milk (i.e., fructose, glucose, lactose) were measured by Liquid chromatography-mass spectrometry (LC-MS/MS) and glucose oxidase. Infant body composition was assessed using dual-energy X-ray absorptiometry at 1 and 6 months. Multiple linear regression was used to examine associations between breast milk sugars and infant body composition at 6 months of age. Fructose, glucose, and lactose were present in breast milk and stable across visits (means = 6.7 μg/mL, 255.2 μg/mL, and 7.6 g/dL, respectively). Despite its very low concentration, fructose was the only sugar significantly associated with infant body composition. A 1-μg/mL higher breast milk fructose was associated with a 257 g higher body weight ( p = 0.02), 170 g higher lean mass ( p = 0.01), 131 g higher fat mass ( p = 0.05), and 5 g higher bone mineral content ( p = 0.03). In conclusion, fructose is detectable in human breast milk and is positively associated with all components of body composition at 6 months of age.

  11. Bone fragments a body can make

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stout, S.D.; Ross, L.M. Jr.

    Data obtained from various analytical techniques applied to a number of small bone fragments recovered from a crime scene were used to provide evidence for the occurrence of a fatality. Microscopic and histomorphometric analyses confirmed that the fragments were from a human skull. X-ray microanalysis of darkened areas on the bone fragments revealed a chemical signature that matched the chemical signature of a shotgun pellet recovered at the scene of the crime. The above findings supported the deoxyribonucleic acid (DNA) fingerprint evidence which, along with other evidence, was used to convict a man for the murder of his wife, evenmore » though her body was never recovered.« less

  12. Boron enhances strength and alters mineral composition of bone in rabbits fed a high energy diet.

    PubMed

    Hakki, Sema S; Dundar, Niyazi; Kayis, Seyit Ali; Hakki, Erdogan E; Hamurcu, Mehmet; Kerimoglu, Ulku; Baspinar, Nuri; Basoglu, Abdullah; Nielsen, Forrest H

    2013-04-01

    An experiment was performed to determine whether boron had a beneficial effect on bone strength and composition in rabbits with apparent adiposity induced by a high energy diet. Sixty female New Zealand rabbits, aged 8 months, were randomly divided into five groups with the following treatments for seven months: control 1, fed alfalfa hay only (5.91 MJ/kg); control 2, high energy diet (11.76 MJ and 3.88 mg boron/kg); B10, high energy diet+10 mg/kg body weight boron gavage/96 h; B30, high energy diet+30 mg/kg body weight boron gavage/96 h; B50, high energy diet+50mg/kg body weight boron gavage/96 h. Bone boron concentrations were lowest in rabbits fed the high energy diet without boron supplementation, which suggested an inferior boron status. Femur maximum breaking force was highest in the B50 rabbits. Tibia compression strength was highest in B30 and B50 rabbits. All boron treatments significantly increased calcium and magnesium concentrations, and the B30 and B50 treatments increased the phosphorus concentration in tibia of rabbits fed the high energy diet. The B30 treatment significantly increased calcium, phosphorus and magnesium concentrations in femur of rabbits fed the high energy diet. Principal component analysis of the tibia minerals showed that the three boron treatments formed a separate cluster from controls. Discriminant analysis suggested that the concentrations of the minerals in femur could predict boron treatment. The findings indicate boron has beneficial effects on bone strength and mineral composition in rabbits fed a high energy diet. Copyright © 2012 Elsevier GmbH. All rights reserved.

  13. Impact of Body Weight and Body Composition on Ovarian Cancer Prognosis.

    PubMed

    Purcell, Sarah A; Elliott, Sarah A; Kroenke, Candyce H; Sawyer, Michael B; Prado, Carla M

    2016-02-01

    Measures of body weight and anthropometrics such as body mass index (BMI) are commonly used to assess nutritional status in clinical conditions including cancer. Extensive research has evaluated associations between body weight and prognosis in ovarian cancer patients, yet little is known about the potential impact of body composition (fat mass (FM) and fat-free mass (FFM)) in these patients. Thus, the purpose of this publication was to review the literature (using PubMed and EMBASE) evaluating the impact of body weight and particularly body composition on surgical complications, morbidity, chemotherapy dosing and toxicity (as predictors of prognosis), and survival in ovarian cancer patients. Body weight is rarely associated with intra-operative complications, but obesity predicts higher rates of venous thromboembolism and wound complications post-operatively in ovarian cancer patients. Low levels of FM and FFM are superior predictors of length of hospital stay compared to measures of body weight alone, but the role of body composition on other surgical morbidities is unknown. Obesity complicates chemotherapy dosing due to altered pharmacokinetics, imprecise dosing strategies, and wide variability in FM and FFM. Measurement of body composition has the potential to reduce toxicity if the results are incorporated into chemotherapy dosing calculations. Some findings suggest that excess body weight adversely affects survival, while others find no such association. Limited studies indicate that FM is a better predictor of survival than body weight in ovarian cancer patients, but the direction of this relationship has not been determined. In conclusion, body composition as an indicator of nutritional status is a better prognostic tool than body weight or BMI alone in ovarian cancer patients.

  14. Body composition in athletes: assessment and estimated fatness.

    PubMed

    Malina, Robert M

    2007-01-01

    The study of body composition attempts to partition and quantify body weight or mass into its basic components. Body weight is a gross measure of the mass of the body, which can be studied at several levels from basic chemical elements and specific tissues to the entire body. Body composition is a factor that can influence athletic performance and as such is of considerable interest to athletes and coaches. This article provides an overview of models and methods used for studying body composition, changes in body composition during adolescence and the transition into adulthood, and applications to adolescent and young adult athletes.

  15. Comparison of atlas-based techniques for whole-body bone segmentation.

    PubMed

    Arabi, Hossein; Zaidi, Habib

    2017-02-01

    We evaluate the accuracy of whole-body bone extraction from whole-body MR images using a number of atlas-based segmentation methods. The motivation behind this work is to find the most promising approach for the purpose of MRI-guided derivation of PET attenuation maps in whole-body PET/MRI. To this end, a variety of atlas-based segmentation strategies commonly used in medical image segmentation and pseudo-CT generation were implemented and evaluated in terms of whole-body bone segmentation accuracy. Bone segmentation was performed on 23 whole-body CT/MR image pairs via leave-one-out cross validation procedure. The evaluated segmentation techniques include: (i) intensity averaging (IA), (ii) majority voting (MV), (iii) global and (iv) local (voxel-wise) weighting atlas fusion frameworks implemented utilizing normalized mutual information (NMI), normalized cross-correlation (NCC) and mean square distance (MSD) as image similarity measures for calculating the weighting factors, along with other atlas-dependent algorithms, such as (v) shape-based averaging (SBA) and (vi) Hofmann's pseudo-CT generation method. The performance evaluation of the different segmentation techniques was carried out in terms of estimating bone extraction accuracy from whole-body MRI using standard metrics, such as Dice similarity (DSC) and relative volume difference (RVD) considering bony structures obtained from intensity thresholding of the reference CT images as the ground truth. Considering the Dice criterion, global weighting atlas fusion methods provided moderate improvement of whole-body bone segmentation (DSC= 0.65 ± 0.05) compared to non-weighted IA (DSC= 0.60 ± 0.02). The local weighed atlas fusion approach using the MSD similarity measure outperformed the other strategies by achieving a DSC of 0.81 ± 0.03 while using the NCC and NMI measures resulted in a DSC of 0.78 ± 0.05 and 0.75 ± 0.04, respectively. Despite very long computation time, the extracted

  16. Comminuted olecranon fracture fixation with pre-contoured plate: Comparison of composite and cadaver bones

    PubMed Central

    Hamilton Jr, David A; Reilly, Danielle; Wipf, Felix; Kamineni, Srinath

    2015-01-01

    AIM: To determine whether use of a precontoured olecranon plate provides adequate fixation to withstand supraphysiologic force in a comminuted olecranon fracture model. METHODS: Five samples of fourth generation composite bones and five samples of fresh frozen human cadaveric left ulnae were utilized for this study. The cadaveric specimens underwent dual-energy X-ray absorptiometry (DEXA) scanning to quantify the bone quality. The composite and cadaveric bones were prepared by creating a comminuted olecranon fracture and fixed with a pre-contoured olecranon plate with locking screws. Construct stiffness and failure load were measured by subjecting specimens to cantilever bending moments until failure. Fracture site motion was measured with differential variable resistance transducer spanning the fracture. Statistical analysis was performed with two-tailed Mann-Whitney-U test with Monte Carlo Exact test. RESULTS: There was a significant difference in fixation stiffness and strength between the composite bones and human cadaver bones. Failure modes differed in cadaveric and composite specimens. The load to failure for the composite bones (n = 5) and human cadaver bones (n = 5) specimens were 10.67 nm (range 9.40-11.91 nm) and 13.05 nm (range 12.59-15.38 nm) respectively. This difference was statistically significant (P ˂ 0.007, 97% power). Median stiffness for composite bones and human cadaver bones specimens were 5.69 nm/mm (range 4.69-6.80 nm/mm) and 7.55 nm/mm (range 6.31-7.72 nm/mm). There was a significant difference for stiffness (P ˂ 0.033, 79% power) between composite bones and cadaveric bones. No correlation was found between the DEXA results and stiffness. All cadaveric specimens withstood the physiologic load anticipated postoperatively. Catastrophic failure occurred in all composite specimens. All failures resulted from composite bone failure at the distal screw site and not hardware failure. There were no catastrophic fracture failures in the cadaveric

  17. Bisphenyl-Polymer/Carbon-Fiber-Reinforced Composite Compared to Titanium Alloy Bone Implant

    PubMed Central

    Petersen, Richard C.

    2014-01-01

    Aerospace/aeronautical thermoset bisphenyl-polymer/carbon-fiber-reinforced composites are considered as new advanced materials to replace metal bone implants. In addition to well-recognized nonpolar chemistry with related bisphenol-polymer estrogenic factors, carbon-fiber-reinforced composites can offer densities and electrical conductivity/resistivity properties close to bone with strengths much higher than metals on a per-weight basis. In vivo bone-marrow tests with Sprague-Dawley rats revealed far-reaching significant osseoconductivity increases from bisphenyl-polymer/carbon-fiber composites when compared to state-of-the-art titanium-6-4 alloy controls. Midtibial percent bone area measured from the implant surface increased when comparing the titanium alloy to the polymer composite from 10.5% to 41.6% at 0.8 mm, P < 10−4, and 19.3% to 77.7% at 0.1 mm, P < 10−8. Carbon-fiber fragments planned to occur in the test designs, instead of producing an inflammation, stimulated bone formation and increased bone integration to the implant. In addition, low-thermal polymer processing allows incorporation of minerals and pharmaceuticals for future major tissue-engineering potential. PMID:25553057

  18. 3D-Printing Composite Polycaprolactone-Decellularized Bone Matrix Scaffolds for Bone Tissue Engineering Applications.

    PubMed

    Rindone, Alexandra N; Nyberg, Ethan; Grayson, Warren L

    2017-05-11

    Millions of patients worldwide require bone grafts for treatment of large, critically sized bone defects from conditions such as trauma, cancer, and congenital defects. Tissue engineered (TE) bone grafts have the potential to provide a more effective treatment than current bone grafts since they would restore fully functional bone tissue in large defects. Most bone TE approaches involve a combination of stem cells with porous, biodegradable scaffolds that provide mechanical support and degrade gradually as bone tissue is regenerated by stem cells. 3D-printing is a key technique in bone TE that can be used to fabricate functionalized scaffolds with patient-specific geometry. Using 3D-printing, composite polycaprolactone (PCL) and decellularized bone matrix (DCB) scaffolds can be produced to have the desired mechanical properties, geometry, and osteoinductivity needed for a TE bone graft. This book chapter will describe the protocols for fabricating and characterizing 3D-printed PCL:DCB scaffolds. Moreover, procedures for culturing adipose-derived stem cells (ASCs) in these scaffolds in vitro will be described to demonstrate the osteoinductivity of the scaffolds.

  19. Muscle strength and regional lean body mass influence on mineral bone health in young male adults.

    PubMed

    Guimarães, Bianca Rosa; Pimenta, Luciana Duarte; Massini, Danilo Alexandre; Dos Santos, Daniel; Siqueira, Leandro Oliveira da Cruz; Simionato, Astor Reis; Dos Santos, Luiz Gustavo Almeida; Neiva, Cassiano Merussi; Pessôa Filho, Dalton Muller

    2018-01-01

    The relationship between muscle strength and bone mineral content (BMC) and bone mineral density (BMD) is supposed from the assumption of the mechanical stress influence on bone tissue metabolism. However, the direct relationship is not well established in younger men, since the enhancement of force able to produce effective changes in bone health, still needs to be further studied. This study aimed to analyze the influence of muscle strength on BMC and BMD in undergraduate students. Thirty six men (24.9 ± 8.6 y/o) were evaluated for regional and whole-body composition by dual energy X-ray absorptiometry (DXA). One repetition maximum tests (1RM) were assessed on flat bench-press (BP), lat-pull down (LPD), leg-curl (LC), knee extension (KE), and leg-press 45° (LP45) exercises. Linear regression modelled the relationships of BMD and BMC to the regional body composition and 1RM values. Measurements of dispersion and error (R2adj and standard error of estimate (SEE)) were tested, setting ρ at ≤0.05. The BMD mean value for whole-body was 1.12±0.09 g/cm2 and BMC attained 2477.9 ± 379.2 g. The regional lean mass (LM) in upper-limbs (UL) (= 6.80±1.21 kg) was related to BMC and BMD for UL (R2adj = 0.74, p<0.01, SEE = 31.0 g and R2adj = 0.63, SEE = 0.08 g/cm2), and LM in lower-limbs (LL) (= 19.13±2.50 kg) related to BMC and BMD for LL (R2adj = 0.68, p<0,01, SEE = 99.3 g and R2adj = 0.50, SEE = 0.20 g/cm2). The 1RM in BP was related to BMD (R2adj = 0.51, SEE = 0.09 g/cm2), which was the strongest relationship among values of 1RM for men; but, 1RM on LPD was related to BMC (R2adj = 0.47, p<0.01, SEE = 44.6 g), and LC was related to both BMC (R2adj = 0.36, p<0.01, SEE = 142.0 g) and BMD (R2adj = 0.29, p<0.01, SEE = 0.23 g/cm2). Hence, 1RM for multi-joint exercises is relevant to BMC and BMD in young men, strengthening the relationship between force and LM, and suggesting both to parametrizes bone mineral health.

  20. Custom-made composite scaffolds for segmental defect repair in long bones.

    PubMed

    Reichert, Johannes C; Wullschleger, Martin E; Cipitria, Amaia; Lienau, Jasmin; Cheng, Tan K; Schütz, Michael A; Duda, Georg N; Nöth, Ulrich; Eulert, Jochen; Hutmacher, Dietmar W

    2011-08-01

    Current approaches for segmental bone defect reconstruction are restricted to autografts and allografts which possess osteoconductive, osteoinductive and osteogenic properties, but face significant disadvantages. The objective of this study was to compare the regenerative potential of scaffolds with different material composition but similar mechanical properties to autologous bone graft from the iliac crest in an ovine segmental defect model. After 12 weeks, in vivo specimens were analysed by X-ray imaging, torsion testing, micro-computed tomography and histology to assess amount, strength and structure of the newly formed bone. The highest amounts of bone neoformation with highest torsional moment values were observed in the autograft group and the lowest in the medical grade polycaprolactone and tricalcium phosphate composite group. The study results suggest that scaffolds based on aliphatic polyesters and ceramics, which are considered biologically inactive materials, induce only limited new bone formation but could be an equivalent alternative to autologous bone when combined with a biologically active stimulus such as bone morphogenetic proteins.

  1. Impact of intra- and extra-osseous soft tissue composition on changes in bone mineral density with weight loss and regain.

    PubMed

    Bosy-Westphal, Anja; Later, Wiebke; Schautz, Britta; Lagerpusch, Merit; Goele, Kristin; Heller, Martin; Glüer, Claus-C; Müller, Manfred J

    2011-07-01

    Recent studies report a significant gain in bone mineral density (BMD) after diet-induced weight loss. This might be explained by a measurement artefact. We therefore investigated the impact of intra- and extra-osseous soft tissue composition on bone measurements by dual X-ray absorptiometry (DXA) in a longitudinal study of diet-induced weight loss and regain in 55 women and 17 men (19-46 years, BMI 28.2-46.8 kg/m(2)). Total and regional BMD were measured before and after 12.7 ± 2.2 week diet-induced weight loss and 6 months after significant weight regain (≥30%). Hydration of fat free mass (FFM) was assessed by a 3-compartment model. Skeletal muscle (SM) mass, extra-osseous adipose tissue, and bone marrow were measured by whole body magnetic resonance imaging (MRI). Mean weight loss was -9.2 ± 4.4 kg (P < 0.001) and was followed by weight regain in a subgroup of 24 subjects (+6.3 ± 2.9 kg; P < 0.001). With weight loss, bone marrow and extra-osseous adipose tissue decreased whereas BMD increased at the total body, lumbar spine, and the legs (women only) but decreased at the pelvis (men only, all P < 0.05). The decrease in BMD(pelvis) correlated with the loss in visceral adipose tissue (VAT) (P < 0.05). Increases in BMD(legs) were reversed after weight regain and inversely correlated with BMD(legs) decreases. No other associations between changes in BMD and intra- or extra-osseous soft tissue composition were found. In conclusion, changes in extra-osseous soft tissue composition had a minor contribution to changes in BMD with weight loss and decreases in bone marrow adipose tissue (BMAT) were not related to changes in BMD.

  2. Study of bone mineral metabolism. [during body immobilization, bed rest, and space flight

    NASA Technical Reports Server (NTRS)

    Palmer, H. E.

    1975-01-01

    The use of Sr-85 as an indicator of the skeletal location and relative amount of bone demineralization which occurs during immobilization of the body or body parts, bed-rest or space flight was studied. The bone mineral replacement which occurs after immobilization was measured rather than the bone loss which occurs during immobilization. In a study with two adult beagle dogs, the Sr-85 uptake in a leg which had been immobilized for two months was 400 percent higher than the uptake in the legs in regular use. This increased uptake probably resulted from only a few percent loss in bone mineral and indicates that losses less than one percent can be easily detected and located. The sensitivity, simplicity, and low radiation dose associated with the use of this method indicates that it should receive consideration for use on humans in bed-rest and space flight studies. Methods for measuring changes in total body nitrogen and in assisting the Johnson Space Center in calibrating a whole body counter for total body potassium measurements were also investigated.

  3. On optimization of a composite bone plate using the selective stress shielding approach.

    PubMed

    Samiezadeh, Saeid; Tavakkoli Avval, Pouria; Fawaz, Zouheir; Bougherara, Habiba

    2015-02-01

    Bone fracture plates are used to stabilize fractures while allowing for adequate compressive force on the fracture ends. Yet the high stiffness of conventional bone plates significantly reduces compression at the fracture site, and can lead to subsequent bone loss upon healing. Fibre-reinforced composite bone plates have been introduced to address this drawback. However, no studies have optimized their configurations to fulfill the requirements of proper healing. In the present study, classical laminate theory and the finite element method were employed for optimization of a composite bone plate. A hybrid composite made of carbon fibre/epoxy with a flax/epoxy core, which was introduced previously, was optimized by varying the laminate stacking sequence and the contribution of each material, in order to minimize the axial stiffness and maximize the torsional stiffness for a given range of bending stiffness. The initial 14×4(14) possible configurations were reduced to 13 after applying various design criteria. A comprehensive finite element model, validated against a previous experimental study, was used to evaluate the mechanical performance of each composite configuration in terms of its fracture stability, load sharing, and strength in transverse and oblique Vancouver B1 fracture configurations at immediately post-operative, post-operative, and healed bone stages. It was found that a carbon fibre/epoxy plate with an axial stiffness of 4.6 MN, and bending and torsional stiffness of 13 and 14 N·m(2), respectively, showed an overall superiority compared with other laminate configurations. It increased the compressive force at the fracture site up to 14% when compared to a conventional metallic plate, and maintained fracture stability by ensuring the fracture fragments' relative motions were comparable to those found during metallic plate fixation. The healed stage results revealed that implantation of the titanium plate caused a 40.3% reduction in bone stiffness

  4. Maternal Flaxseed Oil During Lactation Enhances Bone Development in Male Rat Pups.

    PubMed

    Pereira, Aline D'Avila; Ribeiro, Danielle Cavalcante; de Santana, Fernanda Carvalho; de Sousa Dos Santos, Aline; Mancini-Filho, Jorge; do Nascimento-Saba, Celly Cristina Alves; Velarde, Luis Guillermo Coca; da Costa, Carlos Alberto Soares; Boaventura, Gilson Teles

    2016-08-01

    Flaxseed oil is an alpha linolenic acid source important in the growth and body development stage; furthermore, this acid acts on adipose tissue and bone health. The aim of this study was to evaluate body composition, fatty acid composition, hormone profile, retroperitoneal adipocyte area and femur structure of pups at weaning, whose mothers were fed a diet containing flaxseed oil during lactation. After birth, pups were randomly assigned: control (C, n = 12) and flaxseed oil (FO, n = 12), rats whose mothers were treated with diet containing soybean or flaxseed oil. At 21 days, the pups were weaned and body mass, length, body composition, biochemical parameter, leptin, osteoprotegerin, osteocalcin, fatty acids composition, intra-abdominal fat mass and femur structure were analyzed. FO showed (p < 0.05): higher body mass (+12 %) and length (+9 %); body fat mass (g, +45 %); bone mineral density (+8 %), bone mineral content (+55 %) and bone area (+35 %), osteocalcin (+173 %) and osteoprotegerin (+183 %). Arachidonic acid was lower (p < 0.0001), alpha-linolenic and eicosapentaenoic were higher (p < 0.0001). Intra-abdominal fat mass was higher (+25 %), however, the retroperitoneal adipocytes area was lower (-44 %). Femur mass (+10 %), distance between epiphyses (+4 %) and bone mineral density (+13 %) were higher. The study demonstrates that adequate flaxseed oil content during a lactation diet plays an important role in the development of pups.

  5. [BODY COMPOSITION AND SOMATOTYPE IN UNIVERSITY TRIATHLETES].

    PubMed

    Guillén Rivas, Laura; Mielgo-Ayuso, Juan; Norte-Navarro, Aurora; Cejuela, Roberto; Cabañas, María Dolores; Martínez-Sanz, José Miguel

    2015-08-01

    the triathlon is an endurance sport and individual that consists of three different disciplines: swimming, cycling and running. The aim of the study was to describe and analyze the anthropometric characteristics, body composition and somatotype in male college triathletes. observational and descriptive study of anthropometric characteristics, body composition and somatotype of 39 male college athletes from 24 ± 4,5 years, participants in the championship of Spain university triathlon sprint mode (Alicante 2010), from different universities Spanish. According to anthropometric measurement techniques adopted by the International Society for the Advancement of Kinanthropometry (ISAK) and the Spanish Group Cineantropometría (GREC) by an accredited assessor ISAK Level II. we find athletes of stunting, where you destacanvalores below normal in the subscapularis, supraspinatus, triceps and biceps skinfold, percentage of muscle mass (45.27 ± 3.29%) and fat mass (10.22 ± 2.92%) and bone (16.65 ± 1.34%) and where mesomorphy somatotipo predominates. the triathletes and runners have lower size that cyclists and swimmers. Triathletes and cyclists show a similar weight, less than swimmers line, and more than 10km runners. Iliac crest skinfold, abdominal and thigh front cyclists are less than triathletes. The percentage of fat mass of runners triathletes and swimmers are similar, however the muscle mass of athletes usually less than cyclists but similar to other forms. Somatotype resembles triathlete cyclist (mesomorph). The corridor is ectomorph and mesomorph-swimmer can range from a ectomorph mesomorph. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  6. In vivo bone regeneration with injectable chitosan/hydroxyapatite/collagen composites and mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    Huang, Zhi; Chen, Yan; Feng, Qing-Ling; Zhao, Wei; Yu, Bo; Tian, Jing; Li, Song-Jian; Lin, Bo-Miao

    2011-09-01

    For reconstruction of irregular bone defects, injectable biomaterials are more appropriate than the preformed biomaterials. We herein develop a biomimetic in situ-forming composite consisting of chitosan (CS) and mineralized collagen fibrils (nHAC), which has a complex hierarchical structure similar to natural bone. The CS/nHAC composites with or without mesenchymal stem cells (MSCs) are injected into cancellous bone defects at the distal end of rabbit femurs. Defects are assessed by radiographic, histological diagnosis and Raman microscopy until 12 weeks. The results show that MSCs improve the biocompatibility of CS/nHAC composites and enhance new bone formation in vivo at 12 weeks. It can be concluded that the injectable CS/nHAC composites combined with MSCs may be a novel method for reconstruction of irregular bone defects.

  7. Postnatal Anthropometric and Body Composition Profiles in Infants with Intrauterine Growth Restriction Identified by Prenatal Doppler

    PubMed Central

    Mazarico, E.; Martinez-Cumplido, R.; Díaz, M.; Sebastiani, G.; Ibáñez, L.; Gómez-Roig, M. D.

    2016-01-01

    Introduction Infant anthropometry and body composition have been previously assessed to gauge the impact of intrauterine growth restriction (IUGR) at birth, but the interplay between prenatal Doppler measurements and postnatal development has not been studied in this setting. The present investigation was performed to assess the significance of prenatal Doppler findings relative to postnatal anthropometrics and body composition in IUGR newborns over the first 12 months of life. Patients and Methods Consecutive cases of singleton pregnancies with suspected IUGR were prospectively enrolled over 12 months. Fetal biometry and prenatal Doppler ultrasound examinations were performed. Body composition was assessed by absorptiometry at ages 10 days, and at 4 and12 months. Results A total of 48 pregnancies qualifying as IUGR were studied. Doppler parameters were normal in 26 pregnancies. The remaining 22 deviated from normal, marked by an Umbilical Artery Pulsatility Index (UA-PI) >95th centil or Cerebro-placental ratio (CPR) <5th centile. No significant differences emerged when comparing anthropometry and body composition at each time point, in relation to Doppler findings. Specifically, those IUGR newborns with and without abnormal Doppler findings had similar weight, length, body mass index, lean and fat mass, and bone mineral content throughout the first 12 months of life. In a separate analysis, when comparing IUGR newborns by Doppler (abnormal UA-PI vs. abnormal CPR), anthropometry and body composition did not differ significantly. Conclusions Infants with IUGR maintain a pattern of body composition during the first year of life that is independent of prenatal Doppler findings. Future studies with larger sample sizes and correlating with hormonal status are warranted to further extend the phenotypic characterization of the various conditions now classified under the common label of IUGR. PMID:26938993

  8. Synthesis and characterization of an injectable allograft bone/polymer composite bone void filler with tunable mechanical properties.

    PubMed

    Dumas, Jerald E; Zienkiewicz, Katarzyna; Tanner, Shaun A; Prieto, Edna M; Bhattacharyya, Subha; Guelcher, Scott A

    2010-08-01

    In recent years, considerable effort has been expended toward the development of synthetic bone graft materials. Injectable biomaterials offer several advantages relative to implants due to their ability to cure in situ, thus conforming to irregularly shaped defects. While Food and Drug Administration-approved injectable calcium phosphate cements have excellent osteoconductivity and compressive strengths, these materials have small pore sizes (e.g., 1 mum) and are thus relatively impermeable to cellular infiltration. To overcome this limitation, we aimed to develop injectable allograft bone/polyurethane (PUR) composite bone void fillers with tunable properties that support rapid cellular infiltration and remodeling. The materials comprised particulated (e.g., >100 microm) allograft bone particles and a biodegradable two-component PUR, and had variable (e.g., 30%-70%) porosities. The injectable void fillers exhibited an initial dynamic viscosity of 220 Pa.s at clinically relevant shear rates (40 s(-1)), wet compressive strengths ranging from < 1 to 13 MPa, working times from 3 to 8 min, and setting times from 10 to 20 min, which are comparable to the properties of calcium phosphate bone cements. When injected in femoral plug defects in athymic rats, the composites supported extensive cellular infiltration, allograft resorption, collagen deposition, and new bone formation at 3 weeks. The combination of both initial mechanical properties suitable for weight-bearing applications as well as the ability of the materials to undergo rapid cellular infiltration and remodeling may present potentially compelling opportunities for injectable allograft/PUR composites as biomedical devices for bone regeneration.

  9. Short-term lower-body plyometric training improves whole body BMC, bone metabolic markers, and physical fitness in early pubertal male basketball players.

    PubMed

    Zribi, Anis; Zouch, Mohamed; Chaari, Hamada; Bouajina, Elyes; Ben Nasr, Hela; Zaouali, Monia; Tabka, Zouhair

    2014-02-01

    The effects of a 9-week lower-body plyometric training program on bone mass, bone markers and physical fitness was examined in 51 early pubertal male basketball players divided randomly into a plyometric group (PG: 25 participants) and a control group (CG: 26 participants). Areal bone mineral density (aBMD), bone mineral content (BMC), and bone area (BA) in the whole body, L2-L4 vertebrae, and in total hip, serum levels of osteocalcin (Oc) and C-terminal telopeptide fragment of Type I collagen (CTx), jump, sprint and power abilities were assessed at baseline and 9 weeks. Group comparisons were done by independent student's t-test between means and analyses of (ANOVA) and covariance (ANCOVA), adjusting for baseline values. PG experienced a significant increase in Oc (p < .01) and all physical fitness except for the 5-jump test. However, there was no improvement in aBMD, BMC and BA in any measured site, except in whole body BMC of the PG. A positive correlation was observed between percentage increase (Δ%) of physical fitness and those of (Oc) for the PG. In summary, biweekly sessions of lower body plyometric training program were successful for improving whole body BMC, bone formation marker (Oc) and physical fitness in early pubertal male basketball players.

  10. Bone Metabolism of the Patient with a Malignant Melanoma during the Entry Examination and the Check-up of Whole-body Bone Scintigraphy.

    PubMed

    Weissensteiner, Jaroslav; Babušíková, Eva

    Malignant melanoma is a malignancy located predominantly in the skin and the incidence of melanoma increases. We compared the markers of bone metabolism - osteocalcin (OC), beta-carboxyterminal cross-linked telopeptide of type I collagen (β-CrossLaps, β-CTx) and tumour marker - human epididymis protein 4 (HE4) in the serum with finding during the entry examination and the check-up of whole-body bone scintigraphy of the patient with a malignant melanoma. Serum concentrations of OC, β-CTx, HE4 were determined in 1 patient (female, age 64 years) with malignant melanoma and correlated with the presence of equivocal bone metastases detected by whole-body bone scintigraphy (the entry examination and check-up after 6 months). Concentrations of bone metabolism markers decreased during six months and we observed progress in bone metastases. The change of the markers levels during the entry examination and the check-up of the whole-body bone scintigraphy with equivocal finding of bone metastases could be a sign of a possible initiating progression of malignant melanoma despite a clinically negative finding that does not prove the progression of the disease.

  11. Age, gender, and skeletal variation in bone marrow composition: a preliminary study at 3.0 Tesla.

    PubMed

    Liney, Gary P; Bernard, Clare P; Manton, David J; Turnbull, Lindsay W; Langton, Chris M

    2007-09-01

    To evaluate the efficacy of MR Spectroscopy (MRS) at 3.0 Tesla for the assessment of normal bone marrow composition and assess the variation in terms of age, gender, and skeletal site. A total of 16 normal subjects (aged between eight and 57 years) were investigated on a 3.0 Tesla GE Signa system. To investigate axial and peripheral skeleton differences, non-water-suppressed spectra were acquired from single voxels in the calcaneus and lumbar spine. In addition, spectra were acquired at multiple vertebral bodies to assess variation within the lumbar spine. Data was also correlated with bone mineral density (BMD) measured in six subjects using dual-energy X-ray absorptiometry (DXA). Fat content was an order of magnitude greater in the heel compared to the spine. An age-related increase was demonstrated in the spine with values greater in men compared to female subjects. Significant trends in vertebral bodies within the same subjects were also shown, with fat content increasing L5 > L1. Population coefficient of variation (CV) was greater for fat fraction (FF) compared to BMD. Significant normal variations of marrow composition have been demonstrated, which provide important data for the future interpretation of patient investigations. (c) 2007 Wiley-Liss, Inc.

  12. The composition of human cortical allograft bone derived from FDA/AATB-screened donors.

    PubMed

    Pietrzak, William S; Woodell-May, Jennifer

    2005-07-01

    Allograft human bone is an integral part of the surgeons' armamentarium and will continue to be for the near future. The intraoperative handling and/or mechanical properties are critical to its function. These properties are significantly influenced by the composition and the structure of the bone, which varies from donor to donor. Published studies of human bone composition use bone derived from a population that may differ from the population of qualified donors from which allograft bone is derived and may not well represent the pool of clinical allograft bone. This study investigated the cortical bone composition from 20 donors (males and females, 17 to 65 years of age) that had passed the US Food and Drug Administration and American Association of Tissue Banks screening procedures for donor qualification. As such, this represents a subset of the general population. The analysis yielded the following composition: mineral (ash) = 67.0% +/- 1.3% (w/w); matrix (predominantly type I collagen and other proteins) = 31.9% +/- 1.1% (w/w); and lipid (hexane extractables) = 1.1% +/- 1.5% (w/w). In general, these results were well within the ranges specified in the literature, with the significance being the demonstration of low variability within the study population. No age or gender compositional dependency was evident in this series, possibly as a result of the relatively homogenous population, which may have limited the ability to observe trends. Visually, the bone powders ranged from nearly white to red-brown. The more intense colors appeared to be associated with greater lipid content, perhaps indicating the presence of residual oxidized lipids.

  13. FGF21 decreases body weight without reducing food intake or bone mineral density in high-fat fed obese rhesus macaque monkeys.

    PubMed

    Andersen, Birgitte; Straarup, Ellen M; Heppner, Kristy M; Takahashi, Diana L; Raffaele, Virginia; Dissen, Gregory A; Lewandowski, Katherine; Bödvarsdottir, Thóra B; Raun, Kirsten; Grove, Kevin L; Kievit, Paul

    2018-06-11

    Administration of FGF21 and FGF21 analogues reduce body weight; improve insulin sensitivity and dyslipidemia in animal models of obesity and in short term clinical trials. However potential adverse effects identified in mice have raised concerns for the development of FGF21 therapeutics. Therefore, this study was designed to address the actions of FGF21 on body weight, glucose and lipid metabolism and importantly its effects on bone mineral density (BMD), bone markers, and plasma cortisol in high-fat fed obese rhesus macaque monkeys. Obese non-diabetic rhesus macaque monkeys (five males and five ovariectomized (OVX) females) were maintained on a high-fat diet and treated for 12 weeks with escalating doses of FGF21. Food intake was assessed daily and body weight weekly. Bone mineral content (BMC) and BMD were measured by DEXA scanning prior to the study and on several occasions throughout the treatment period as well as during washout. Plasma glucose, glucose tolerance, insulin, lipids, cortisol, and bone markers were likewise measured throughout the study. On average, FGF21 decreased body weight by 17.6 ± 1.6% after 12 weeks of treatment. No significant effect on food intake was observed. No change in BMC or BMD was observed, while a 2-fold increase in CTX-1, a marker of bone resorption, was seen. Overall glucose tolerance was improved with a small but significant decrease in HbA 1C . Furthermore, FGF21 reduced concentrations of plasma triglycerides and very low density lipoprotein cholesterol. No adverse changes in clinical chemistry markers were demonstrated, and no alterations in plasma cortisol were observed during the study. In conclusion, FGF21 reduced body weight in obese rhesus macaque monkeys without reducing food intake. Furthermore, FGF21 had beneficial effects on body composition, insulin sensitivity, and plasma triglycerides. No adverse effects on bone density or plasma cortisol were observed after 12 weeks of treatment.

  14. The Composite of Bone Marrow Concentrate and PRP as an Alternative to Autologous Bone Grafting

    PubMed Central

    Hakimi, Mohssen; Grassmann, Jan-Peter; Betsch, Marcel; Schneppendahl, Johannes; Gehrmann, Sebastian; Hakimi, Ahmad-Reza; Kröpil, Patric; Sager, Martin; Herten, Monika; Wild, Michael; Windolf, Joachim; Jungbluth, Pascal

    2014-01-01

    One possible alternative to the application of autologous bone grafts represents the use of autologous bone marrow concentrate (BMC). The purpose of our study was to evaluate the potency of autologous platelet-rich plasma (PRP) in combination with BMC. In 32 mini-pigs a metaphyseal critical-size defect was surgically created at the proximal tibia. The animals were allocated to four treatment groups of eight animals each (1. BMC+CPG group, 2. BMC+CPG+PRP group, 3. autograft group, 4. CPG group). In the BMC+CPG group the defect was filled with autologous BMC in combination with calcium phosphate granules (CPG), whereas in the BMC+CPG+PRP group the defect was filled with the composite of autologous BMC, CPG and autologous PRP. In the autograft group the defect was filled with autologous cancellous graft, whereas in the CPG group the defect was filled with CPG solely. After 6 weeks radiological and histomorphometrical analysis showed significantly more new bone formation in the BMC+CPG+PRP group compared to the BMC+CPG group and the CPG group. There were no significant differences between the BMC+CPG+PRP group and the autograft group. In the PRP platelets were enriched significantly about 4.7-fold compared to native blood. In BMC the count of mononuclear cells increased significantly (3.5-fold) compared to the bone marrow aspirate. This study demonstrates that the composite of BMC+CPG+PRP leads to a significantly higher bone regeneration of critical-size defects at the proximal tibia in mini-pigs than the use of BMC+CPG without PRP. Furthermore, within the limits of the present study the composite BMC+CPG+PRP represents a comparable alternative to autologous bone grafting. PMID:24950251

  15. Octacalcium phosphate collagen composite facilitates bone regeneration of large mandibular bone defect in humans.

    PubMed

    Kawai, Tadashi; Suzuki, Osamu; Matsui, Keiko; Tanuma, Yuji; Takahashi, Tetsu; Kamakura, Shinji

    2017-05-01

    Recently it was reported that the implantation of octacalcium phosphate (OCP) and collagen composite (OCP-collagen) was effective at promoting bone healing in small bone defects after cystectomy in humans. In addition, OCP-collagen promoted bone regeneration in a critical-sized bone defect of a rodent or canine model. In this study, OCP-collagen was implanted into a human mandibular bone defect with a longer axis of approximately 40 mm, which was diagnosed as a residual cyst with apical periodontitis. The amount of OCP-collagen implanted was about five times greater than the amounts implanted in previous clinical cases. Postoperative wound healing was satisfactory and no infection or allergic reactions occurred. The OCP-collagen-treated lesion was gradually filled with radio-opaque figures, and the alveolar region occupied the whole of the bone defect 12 months after implantation. This study suggests that OCP-collagen could be a useful bone substitute material for repairing large bone defects in humans that might not heal spontaneously. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Clinical anthropometrics and body composition from 3D whole-body surface scans

    PubMed Central

    Ng, BK; Hinton, BJ; Fan, B; Kanaya, AM; Shepherd, JA

    2017-01-01

    BACKGROUND/OBJECTIVES Obesity is a significant worldwide epidemic that necessitates accessible tools for robust body composition analysis. We investigated whether widely available 3D body surface scanners can provide clinically relevant direct anthropometrics (circumferences, areas and volumes) and body composition estimates (regional fat/lean masses). SUBJECTS/METHODS Thirty-nine healthy adults stratified by age, sex and body mass index (BMI) underwent whole-body 3D scans, dual energy X-ray absorptiometry (DXA), air displacement plethysmography and tape measurements. Linear regressions were performed to assess agreement between 3D measurements and criterion methods. Linear models were derived to predict DXA body composition from 3D scan measurements. Thirty-seven external fitness center users underwent 3D scans and bioelectrical impedance analysis for model validation. RESULTS 3D body scan measurements correlated strongly to criterion methods: waist circumference R2 = 0.95, hip circumference R2 = 0.92, surface area R2 = 0.97 and volume R2 = 0.99. However, systematic differences were observed for each measure due to discrepancies in landmark positioning. Predictive body composition equations showed strong agreement for whole body (fat mass R2 = 0.95, root mean square error (RMSE) = 2.4 kg; fat-free mass R2 = 0.96, RMSE = 2.2 kg) and arms, legs and trunk (R2 = 0.79–0.94, RMSE = 0.5–1.7 kg). Visceral fat prediction showed moderate agreement (R2 = 0.75, RMSE = 0.11 kg). CONCLUSIONS 3D surface scanners offer precise and stable automated measurements of body shape and composition. Software updates may be needed to resolve measurement biases resulting from landmark positioning discrepancies. Further studies are justified to elucidate relationships between body shape, composition and metabolic health across sex, age, BMI and ethnicity groups, as well as in those with metabolic disorders. PMID:27329614

  17. Clinical anthropometrics and body composition from 3D whole-body surface scans.

    PubMed

    Ng, B K; Hinton, B J; Fan, B; Kanaya, A M; Shepherd, J A

    2016-11-01

    Obesity is a significant worldwide epidemic that necessitates accessible tools for robust body composition analysis. We investigated whether widely available 3D body surface scanners can provide clinically relevant direct anthropometrics (circumferences, areas and volumes) and body composition estimates (regional fat/lean masses). Thirty-nine healthy adults stratified by age, sex and body mass index (BMI) underwent whole-body 3D scans, dual energy X-ray absorptiometry (DXA), air displacement plethysmography and tape measurements. Linear regressions were performed to assess agreement between 3D measurements and criterion methods. Linear models were derived to predict DXA body composition from 3D scan measurements. Thirty-seven external fitness center users underwent 3D scans and bioelectrical impedance analysis for model validation. 3D body scan measurements correlated strongly to criterion methods: waist circumference R 2 =0.95, hip circumference R 2 =0.92, surface area R 2 =0.97 and volume R 2 =0.99. However, systematic differences were observed for each measure due to discrepancies in landmark positioning. Predictive body composition equations showed strong agreement for whole body (fat mass R 2 =0.95, root mean square error (RMSE)=2.4 kg; fat-free mass R 2 =0.96, RMSE=2.2 kg) and arms, legs and trunk (R 2 =0.79-0.94, RMSE=0.5-1.7 kg). Visceral fat prediction showed moderate agreement (R 2 =0.75, RMSE=0.11 kg). 3D surface scanners offer precise and stable automated measurements of body shape and composition. Software updates may be needed to resolve measurement biases resulting from landmark positioning discrepancies. Further studies are justified to elucidate relationships between body shape, composition and metabolic health across sex, age, BMI and ethnicity groups, as well as in those with metabolic disorders.

  18. Method for Forming Fiber Reinforced Composite Bodies with Graded Composition and Stress Zones

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay (Inventor); Levine, Stanley R. (Inventor); Smialek, James A. (Inventor)

    1999-01-01

    A near-net, complex shaped ceramic fiber reinforced silicon carbide based composite bodies with graded compositions and stress zones is disclosed. To provide the composite a fiber preform is first fabricated and an interphase is applied by chemical vapor infiltration, sol-gel or polymer processes. This first body is further infiltrated with a polymer mixture containing carbon, and/or silicon carbide, and additional oxide, carbide, or nitride phases forming a second body. One side of the second body is spray coated or infiltrated with slurries containing high thermal expansion and oxidation resistant. crack sealant phases and the other side of this second body is coated with low expansion phase materials to form a third body. This third body consisting of porous carbonaceous matrix surrounding the previously applied interphase materials, is then infiltrated with molten silicon or molten silicon-refractory metal alloys to form a fourth body. The resulting fourth body comprises dense composites consisting of fibers with the desired interphase which are surrounded by silicon carbide and other second phases materials at the outer and inner surfaces comprising material of silicon, germanium, refractory metal suicides, borides, carbides, oxides, and combinations thereof The resulting composite fourth body has different compositional patterns from one side to the other.

  19. Vertebral body bone strength: the contribution of individual trabecular element morphology.

    PubMed

    Parkinson, I H; Badiei, A; Stauber, M; Codrington, J; Müller, R; Fazzalari, N L

    2012-07-01

    Although the amount of bone explains the largest amount of variability in bone strength, there is still a significant proportion unaccounted for. The morphology of individual bone trabeculae explains a further proportion of the variability in bone strength and bone elements that contribute to bone strength depending on the direction of loading. Micro-CT imaging enables measurement of bone microarchitecture and subsequently mechanical strength of the same sample. It is possible using micro-CT data to perform morphometric analysis on individual rod and plate bone trabeculae using a volumetric spatial decomposition algorithm and hence determine their contribution to bone strength. Twelve pairs of vertebral bodies (T12/L1 or L4/L5) were harvested from human cadavers, and bone cubes (10 × 10 × 10 mm) were obtained. After micro-CT imaging, a volumetric spatial decomposition algorithm was applied, and measures of individual trabecular elements were obtained. Bone strength was measured in compression, where one bone specimen from each vertebral segment was tested supero-inferiorly (SI) and the paired specimen was tested antero-posteriorly (AP). Bone volume fraction was the strongest individual determinant of SI strength (r(2) = 0.77, p < 0.0001) and AP (r(2) = 0.54, p < 0.0001). The determination of SI strength was improved to r(2) = 0.87 with the addition of mean rod length and relative plate bone volume fraction. The determination of AP strength was improved to r(2) = 0.85 with the addition of mean rod volume and relative rod bone volume fraction. Microarchitectural measures of individual trabeculae that contribute to bone strength have been identified. In addition to the contribution of BV/TV, trabecular rod morphology increased the determination of AP strength by 57%, whereas measures of trabecular plate and rod morphology increased determination of SI strength by 13%. Decomposing vertebral body bone architecture into its constituent

  20. Skeletal status and body composition in young women with functional hypothalamic amenorrhea.

    PubMed

    Podfigurna-Stopa, Agnieszka; Pludowski, Pawel; Jaworski, Maciej; Lorenc, Roman; Genazzani, Andrea R; Meczekalski, Blazej

    2012-04-01

    Functional hypothalamic amenorrhea (FHA) related to hypoestrogenism and hormonal status may influence skeletal homeostasis and body composition. The study aimed to evaluate hormones concentrations, body composition and bone strength in FHA cases. Total body scans using DXA method (DPX-L, GE Lunar) were performed in a group of 27 women aged 21.8 years ± 3.9 with FHA related to weight loss. References of healthy control subjects were used to calculate Z-scores (age and gender matched), SD-scores (height and gender matched), and SDs-scores (weight and gender matched). Whole skeleton bone mineral content (TBBMC, g) and density (TBBMD, g/cm(2)), lumbar spine (L2-L4) bone mineral density (SBMD; g/cm(2)), lean body mass (LBM, g) and fat mass (FM, g) were investigated. Relative bone strength index was calculated as the TBBMC/LBM ratio. Serum follicle-stimulating hormone (FSH), luteinizing hormone (LH), estradiol, testosterone, and prolactin (PRL) concentrations were assayed to characterize hormonal profile of FHA cases. Hormonal evaluation in patients with FHA revealed significantly decreased serum concentrations of gonadotropins and estradiol. Serum LH concentrations were 1.47 ± 0.89 mIU/ml, FSH 4.44 ± 1.94 mIU/ml. Estradiol concentrations in serum were 27.08 ± 13.10 pg/ml. As evidenced by Z-scores, FHA cases had decreased SBMD, TBBMD and TBBMC Z-scores of -1.23 ± 0.90 (p < 0.0001), -0.72 ± 0.86 (p < 0.001), and -0.90 ± 1.40 (p < 0.01), respectively. Reduced FM, LBM and FM/LBM ratio Z-scores of -1.80 ± 2.28 (p < 0.001), -0.59 ± 1.49 (p < 0.05) and -0.74 ± 1.55 (p < 0.05), but not TBBMC/LBM Z-score of -0.54 ± 2.14 (ns) were noted in FHA cases compared with healthy control cases. TBBMC, TBBMD, TBBMC/LBM when BH- or BW-matched were normal as evidenced by SD-scores and SDs-scores. SBMD remained reduced when BH-matched (SD-score = -0.40 ± 0.86; p < 0.05) whereas FM and FM/LBM were lower

  1. Sarcopenia and age-related changes in body composition and functional capacity.

    PubMed

    Evans, W J; Campbell, W W

    1993-02-01

    Advancing adult age is associated with profound changes in body composition. One of the most prominent of these changes is sarcopenia, defined as the age-related loss in skeletal muscle mass, which results in decreased strength and aerobic capacity and thus functional capacity. Sarcopenia is also closely linked to age-related losses in bone mineral, basal metabolic rate and increased body fat content. Through physical exercise and training, especially resistance training, it may be possible to prevent sarcopenia and the remarkable array of associated abnormalities, such as type II diabetes, coronary artery disease, hypertension, osteoporosis and obesity. Using an exercise program of sufficient frequency, intensity and duration, it is quite possible to increase muscle strength and endurance at any age. There is no pharmacological intervention that holds a greater promise of improving health and promoting independence in the elderly than does exercise.

  2. Method of adhering bone to a rigid substrate using a graphite fiber reinforced bone cement

    NASA Technical Reports Server (NTRS)

    Knoell, A. C.; Maxwell, H. G. (Inventor)

    1977-01-01

    A method is described for adhering bone to the surface of a rigid substrate such as a metal or resin prosthesis using an improved surgical bone cement. The bone cement has mechanical properties more nearly matched to those of animal bone and thermal curing characteristics which result in less traumatization of body tissues and comprises a dispersion of short high modulus graphite fibers within a bonder composition including polymer dissolved in reactive monomer such as polymethylmethacrylate dissolved in methylmethacrylate monomer.

  3. Muscle size, quality, and body composition: characteristics of division I cross-country runners.

    PubMed

    Roelofs, Erica J; Smith-Ryan, Abbie E; Melvin, Malia N; Wingfield, Hailee L; Trexler, Eric T; Walker, Nina

    2015-02-01

    The primary purpose of this study was to identify the relationship between muscle cross-sectional area (mCSA), echo intensity (EI), and body composition of Division I cross-country runners. The secondary purpose was to examine differences in these variables in athletes stratified based on stress-fracture (SFx) history. Thirty-six athletes were stratified based on sex and SFx history. A panoramic scan vastus lateralis was performed using a GE Logiq-e B-mode ultrasound. Echo intensity and mCSA were determined from the scan using a grayscale imaging software (ImageJ). Body composition measures were determined using dual-energy x-ray absorptiometry. For females, mCSA was significantly correlated with left leg lean mass (LM; R = 0.54) and EI (R = -0.57). Lean mass was significantly correlated with bone mineral density (BMD; R = 0.58) and bone mineral content (BMC; R = 0.56), whereas BMC was also correlated with leg LM (R = 0.72). For males, mCSA was significantly correlated with leg LM (R = 0.66), BMD (R = 0.50), and BMC (R = 0.54). Leg LM was significantly correlated with BMD (R = 0.53) and BMC (R = 0.77). Personal best times for males were significantly correlated with fat mass (R = 0.489) and %fat (R = 0.556) for the 10- and 5-km races, respectively. Female and male athletes with a history of SFx were not significantly different across any variables when compared with athletes with no history. These correlations suggest that more muscle mass may associate with higher BMD and BMC for stronger bone structure. Modifications in training strategies to include heavy resistance training and plyometrics may be advantageous for preventing risk factors associated with SFx reoccurrence.

  4. Bone-bonding behavior of alumina bead composite.

    PubMed

    Shinzato, S; Kobayashi, M; Choju, K; Kokubo, T; Nakamura, T

    1999-08-01

    Previously we developed an alumina bead composite (ABC) consisting of alumina bead powder (AL-P) and bisphenol-alpha-glycidyl methacrylate (Bis-GMA)-based resin and reported its excellent osteoconductivity in rat tibiae. In the present study, are evaluated histologically and mechanically the effect of alumina crystallinity on the osteoconductivity and bone-bonding strength of the composite. AL-P was manufactured by fusing crushed alpha-alumina powder and quenching it. The AL-P was composed mainly of amorphous and delta-crystal phases of alumina. Its average particle size was 3.5 microm, and it took a spherical form. Another composite (alpha ALC), filled with pure alpha-alumina powder (alpha AL-P), was used as a referential material. The proportion of powder added to each composite was 70% w/w. Mechanical testing of ABC and alpha ALC indicated that they would be strong enough for use under weight-bearing conditions. The affinity indices for ABC, determined using male Wistar rat tibiae, were significantly higher than those for alpha ALC (p < 0.0001) up to 8 weeks. Composite plates (15 x 10 x 2 mm) that had an uncured surface layer on one side were made in situ in a rectangular mold. One of the plates was implanted into the proximal metaphysis of the tibia of a male Japanese white rabbit, and the failure load was measured by a detaching test 10 weeks after implantation. The failure loads for ABC on its uncured surface [1.91+/-1.23 kgf (n = 8)] were significantly higher than those for alpha ALC on its uncured surface [0.35+/-0.33 kgf (n = 8); (p < 0.0001)], and they also were significantly higher than those for ABC on the other (cured surface) side (p < 0.0001). Histological examinations using rabbit tibiae revealed bone ingrowth into the composite only on the uncured surface of ABC. This study revealed that the amorphous phase of alumina and formation of an uncured surface layer are needed for the osteoconductive and bone-bonding ability of ABC. ABC shows promise as a

  5. Validity of body composition methods across ethnic population groups.

    PubMed

    Deurenberg, P; Deurenberg-Yap, M

    2003-10-01

    Most in vivo body composition methods rely on assumptions that may vary among different population groups as well as within the same population group. The assumptions are based on in vitro body composition (carcass) analyses. The majority of body composition studies were performed on Caucasians and much of the information on validity methods and assumptions were available only for this ethnic group. It is assumed that these assumptions are also valid for other ethnic groups. However, if apparent differences across ethnic groups in body composition 'constants' and body composition 'rules' are not taken into account, biased information on body composition will be the result. This in turn may lead to misclassification of obesity or underweight at an individual as well as a population level. There is a need for more cross-ethnic population studies on body composition. Those studies should be carried out carefully, with adequate methodology and standardization for the obtained information to be valuable.

  6. Biomimetic composite coating on rapid prototyped scaffolds for bone tissue engineering.

    PubMed

    Arafat, M Tarik; Lam, Christopher X F; Ekaputra, Andrew K; Wong, Siew Yee; Li, Xu; Gibson, Ian

    2011-02-01

    The objective of this present study was to improve the functional performance of rapid prototyped scaffolds for bone tissue engineering through biomimetic composite coating. Rapid prototyped poly(ε-caprolactone)/tri-calcium phosphate (PCL/TCP) scaffolds were fabricated using the screw extrusion system (SES). The fabricated PCL/TCP scaffolds were coated with a carbonated hydroxyapatite (CHA)-gelatin composite via biomimetic co-precipitation. The structure of the prepared CHA-gelatin composite coating was studied by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. Compressive mechanical testing revealed that the coating process did not have any detrimental effect on the mechanical properties of the scaffolds. The cell-scaffold interaction was studied by culturing porcine bone marrow stromal cells (BMSCs) on the scaffolds and assessing the proliferation and bone-related gene and protein expression capabilities of the cells. Confocal laser microscopy and SEM images of the cell-scaffold constructs showed a uniformly distributed cell sheet and accumulation of extracellular matrix in the interior of CHA-gelatin composite-coated PCL/TCP scaffolds. The proliferation rate of BMSCs on CHA-gelatin composite-coated PCL/TCP scaffolds was about 2.3 and 1.7 times higher than that on PCL/TCP scaffolds and CHA-coated PCL/TCP scaffolds, respectively, by day 10. Furthermore, reverse transcription polymerase chain reaction and Western blot analysis revealed that CHA-gelatin composite-coated PCL/TCP scaffolds stimulate osteogenic differentiation of BMSCs the most, compared with PCL/TCP scaffolds and CHA-coated PCL/TCP scaffolds. These results demonstrate that CHA-gelatin composite-coated rapid prototyped PCL/TCP scaffolds are promising for bone tissue engineering. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Enhanced bone regeneration using an insulin-loaded nano-hydroxyapatite/collagen/PLGA composite scaffold.

    PubMed

    Wang, Xing; Zhang, Guilan; Qi, Feng; Cheng, Yongfeng; Lu, Xuguang; Wang, Lu; Zhao, Jing; Zhao, Bin

    2018-01-01

    Insulin is widely considered as a classical hormone and drug in maintaining energy and glucose homeostasis. Recently, insulin has been increasingly recognized as an indispensable factor for osteogenesis and bone turnover, but its applications in bone regeneration have been restricted because of the short periods of activity and uncontrolled release. In this study, we incorporated insulin-loaded poly lactic-co-glycolic-acid (PLGA) nanospheres into nano-hydroxyapatite/collagen (nHAC) scaffolds and investigated the bioactivity of the composite scaffolds in vitro and in vivo. Bioactive insulin was successfully released from the nanospheres within the scaffold, and the release kinetics of insulin could be efficiently controlled by uniform-sized nanospheres. The physical characterizations of the composite scaffolds demonstrated that incorporation of nanospheres in nHAC scaffolds using this method did not significantly change the porosity, pore diameters, and compressive strengths of nHAC. In vitro, the insulin-loaded nHAC/PLGA composite scaffolds possessed favorable biological function for bone marrow mesenchymal stem cells adhesion and proliferation, as well as the differentiation into osteoblasts. In vivo, the optimized bone regenerative capability of this composite scaffold was confirmed in rabbit mandible critical size defects. These results demonstrated successful development of a functional insulin-PLGA-nHAC composite scaffold that enhances the bone regeneration capability of nHAC.

  8. Sire carcass breeding values affect body composition in lambs--2. Effects on fat and bone weight and their distribution within the carcass as measured by computed tomography.

    PubMed

    Anderson, F; Williams, A; Pannier, L; Pethick, D W; Gardner, G E

    2016-06-01

    This study assessed the effect of paternal Australian Sheep Breeding Values for post weaning c-site eye muscle depth (PEMD) and fat depth (PFAT), and post weaning weight (PWWT) on the composition of lamb carcasses. Composition was measured using computed tomography scans of 1665 lambs which were progeny of 85 Maternal, 115 Merino and 155 Terminal sires. Reducing sire PFAT decreased carcass fat weight by 4.8% and increased carcass bone by 1.3% per unit of PFAT (range 5.1 mm). Increasing sire PEMD reduced carcass fat weight by 3.8% in Maternal and 2% in Terminal sired lambs per unit of PEMD (range 4.3 and 7.8 mm), with no impact on bone. Increasing sire PWWT reduced carcass fat weight, but only at some experimental locations. Differences in composition varied between sire types with Maternal sired lambs having the most fat and Merino sired lambs the greatest bone weight. Genetic effects on fatness were greater than the environmental or production factor effects, with the converse true of bone. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Effect of Body Composition Methodology on Heritability Estimation of Body Fatness

    PubMed Central

    Elder, Sonya J.; Roberts, Susan B.; McCrory, Megan A.; Das, Sai Krupa; Fuss, Paul J.; Pittas, Anastassios G.; Greenberg, Andrew S.; Heymsfield, Steven B.; Dawson-Hughes, Bess; Bouchard, Thomas J.; Saltzman, Edward; Neale, Michael C.

    2014-01-01

    Heritability estimates of human body fatness vary widely and the contribution of body composition methodology to this variability is unknown. The effect of body composition methodology on estimations of genetic and environmental contributions to body fatness variation was examined in 78 adult male and female monozygotic twin pairs reared apart or together. Body composition was assessed by six methods – body mass index (BMI), dual energy x-ray absorptiometry (DXA), underwater weighing (UWW), total body water (TBW), bioelectric impedance (BIA), and skinfold thickness. Body fatness was expressed as percent body fat, fat mass, and fat mass/height2 to assess the effect of body fatness expression on heritability estimates. Model-fitting multivariate analyses were used to assess the genetic and environmental components of variance. Mean BMI was 24.5 kg/m2 (range of 17.8–43.4 kg/m2). There was a significant effect of body composition methodology (p<0.001) on heritability estimates, with UWW giving the highest estimate (69%) and BIA giving the lowest estimate (47%) for fat mass/height2. Expression of body fatness as percent body fat resulted in significantly higher heritability estimates (on average 10.3% higher) compared to expression as fat mass/height2 (p=0.015). DXA and TBW methods expressing body fatness as fat mass/height2 gave the least biased heritability assessments, based on the small contribution of specific genetic factors to their genetic variance. A model combining DXA and TBW methods resulted in a relatively low FM/ht2 heritability estimate of 60%, and significant contributions of common and unique environmental factors (22% and 18%, respectively). The body fatness heritability estimate of 60% indicates a smaller contribution of genetic variance to total variance than many previous studies using less powerful research designs have indicated. The results also highlight the importance of environmental factors and possibly genotype by environmental

  10. Advanced bredigite-containing magnesium-matrix composites for biodegradable bone implant applications.

    PubMed

    Dezfuli, Sina Naddaf; Huan, Zhiguang; Mol, Arjan; Leeflang, Sander; Chang, Jiang; Zhou, Jie

    2017-10-01

    The present research was aimed at developing magnesium-matrix composites that could allow effective control over their physiochemical and mechanical responses when in contact with physiological solutions. A biodegradable, bioactive ceramic - bredigite was chosen as the reinforcing phase in the composites, based on the hypothesis that the silicon- and magnesium-containing ceramic could protect magnesium from fast corrosion and at the same time stimulate cell proliferation. Methods to prepare composites with integrated microstructures - a prerequisite to achieve controlled biodegradation were developed. A systematic experimental approach was taken in order to elucidate the in vitro biodegradation mechanisms and kinetics of the composites. It was found that the composites with 20-40% homogenously dispersed bredigite particles, prepared from powders, could indeed significantly decrease the degradation rate of magnesium by up to 24 times. Slow degradation of the composites resulted in the retention of the mechanical integrity of the composites within the strength range of cortical bone after 12days of immersion in a cell culture medium. Cell attachment, cytotoxicity and bioactivity tests confirmed the stimulatory effects of bredigite embedded in the composites on the attachment, viability and differentiation of bone marrow stromal cells. Thus, the multiple benefits of adding bredigite to magnesium in enhancing degradation behavior, mechanical properties, biocompatibility and bioactivity were obtained. The results from this research showed the excellent potential of the bredigite-containing composites for bone implant applications, thus warranting further in vitro and in vivo research. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Hematoxylin Bodies in Pediatric Bone Marrow Aspirates and Their Utility in the Diagnosis of Systemic Lupus Erythematosus.

    PubMed

    Xu, Min; Chisholm, Karen M; Fan, Guang; Stevens, Anne M; Rutledge, Joe C

    2017-01-01

    In our recent case report, the finding of lupus erythematosus (LE) cells in a bone marrow aspirate led to the diagnosis of systemic lupus erythematosus (SLE) and appropriate treatment, although the patient was not clinically suspected to have SLE. To determine whether LE cells are present in the bone marrow aspirates of SLE patients, but overlooked in routine bone marrow morphology review, bone marrow aspirates from 30 pediatric patients (15 with SLE and 15 with other diagnoses) evaluated by rheumatologists were reviewed. LE cells were found in the bone marrow aspirates of only 1 SLE patient and none in non-SLE patients. However, hematoxylin bodies were identified in 53% (8/15) of SLE patients. Neither hematoxylin bodies nor LE cells were found in the aspirates from patients with other disorders. Three additional pediatric patients identified prospectively were found to have hematoxylin bodies in the bone marrow aspirates. Although the diagnosis was not initially suspected, 2 of the 3 patients were subsequently diagnosed with SLE. All patients with hematoxylin bodies and SLE had antinuclear antibody titers ≥1:640 with a homogeneous staining pattern. In addition, bone marrow aspirates of 9 adult patients were reviewed, and neither LE cells nor hematoxylin bodies were identified. In summary, hematoxylin bodies were present in the bone marrow aspirates of many pediatric SLE patients, while LE cells were rare. The finding of hematoxylin bodies in pediatric bone marrow aspirates is a helpful and specific diagnostic clue that may lead to the diagnosis of SLE when other clinical features are nonspecific.

  12. Nanostructured hydroxyapatite/poly(lactic-co-glycolic acid) composite coating for controlling magnesium degradation in simulated body fluid.

    PubMed

    Johnson, Ian; Akari, Khalid; Liu, Huinan

    2013-09-20

    Biodegradable magnesium (Mg) and its alloys have many attractive properties (e.g. comparable mechanical properties to cortical bone) for orthopedic implant applications, but they degrade too rapidly in the human body to meet clinical requirements. Nanostructured hydroxyapatite (nHA)/poly(lactic-co-glycolic acid) (PLGA) composite coatings provide synergistic properties for controlling degradation of Mg-based substrates and improving bone-implant integration. In this study, nHA/PLGA composites were spin coated onto Mg-based substrates and the results showed that the nHA/PLGA coatings retained nano-scale features with nHA dispersed in PLGA matrix. In comparison with non-coated Mg, the nHA/PLGA composite coated Mg increased the corrosion potential and decreased the corrosion current in revised simulated body fluid (rSBF). After 24 h of immersion in rSBF, increased calcium phosphate (CaP) deposition and formation of Mg-substituted CaP rosettes were observed on the surface of the nHA/PLGA coated Mg, indicating greater bioactivity. In contrast, no significant CaP was deposited on the PLGA coated Mg. Since both PLGA coating and nHA/PLGA coating showed some degree of delamination from Mg-based substrates during extended immersion in rSBF, the coating processing and properties should be further optimized in order to take full advantage of biodegradable Mg and nHA/PLGA nanocomposites for orthopedic applications.

  13. Nanostructured hydroxyapatite/poly(lactic-co-glycolic acid) composite coating for controlling magnesium degradation in simulated body fluid

    NASA Astrophysics Data System (ADS)

    Johnson, Ian; Akari, Khalid; Liu, Huinan

    2013-09-01

    Biodegradable magnesium (Mg) and its alloys have many attractive properties (e.g. comparable mechanical properties to cortical bone) for orthopedic implant applications, but they degrade too rapidly in the human body to meet clinical requirements. Nanostructured hydroxyapatite (nHA)/poly(lactic-co-glycolic acid) (PLGA) composite coatings provide synergistic properties for controlling degradation of Mg-based substrates and improving bone-implant integration. In this study, nHA/PLGA composites were spin coated onto Mg-based substrates and the results showed that the nHA/PLGA coatings retained nano-scale features with nHA dispersed in PLGA matrix. In comparison with non-coated Mg, the nHA/PLGA composite coated Mg increased the corrosion potential and decreased the corrosion current in revised simulated body fluid (rSBF). After 24 h of immersion in rSBF, increased calcium phosphate (CaP) deposition and formation of Mg-substituted CaP rosettes were observed on the surface of the nHA/PLGA coated Mg, indicating greater bioactivity. In contrast, no significant CaP was deposited on the PLGA coated Mg. Since both PLGA coating and nHA/PLGA coating showed some degree of delamination from Mg-based substrates during extended immersion in rSBF, the coating processing and properties should be further optimized in order to take full advantage of biodegradable Mg and nHA/PLGA nanocomposites for orthopedic applications.

  14. [Fabrication and in vivo implantation of ligament-bone composite scaffolds based on three-dimensional printing technique].

    PubMed

    Zhang, Wenyou; He, Jiankang; Li, Xiang; Liu, Yaxiong; Bian, Weiguo; Li, Dichen; Jin, Zhongmin

    2014-03-01

    To solve the fixation problem between ligament grafts and host bones in ligament reconstruction surgery by using ligament-bone composite scaffolds to repair the ligaments, to explore the fabrication method for ligament-bone composite scaffolds based on three-dimensional (3-D) printing technique, and to investigate their mechanical and biological properties in animal experiments. The model of bone scaffolds was designed using CAD software, and the corresponding negative mould was created by boolean operation. 3-D printing techinique was employed to fabricate resin mold. Ceramic bone scaffolds were obtained by casting the ceramic slurry in the resin mould and sintering the dried ceramics-resin composites. Ligament scaffolds were obtained by weaving degummed silk fibers, and then assembled with bone scaffolds and bone anchors. The resultant ligament-bone composite scaffolds were implanted into 10 porcine left anterior cruciate ligament rupture models at the age of 4 months. Mechanical testing and histological examination were performed at 3 months postoperatively, and natural anterior cruciate ligaments of the right sides served as control. Biomechanical testing showed that the natural anterior cruciate ligament of control group can withstand maximum tensile force of (1 384 +/- 181) N and dynamic creep of (0.74 +/- 0.21) mm, while the regenerated ligament-bone scaffolds of experimental group can withstand maximum tensile force of (370 +/- 103) N and dynamic creep of (1.48 +/- 0.49) mm, showing significant differences (t = 11.617, P = 0.000; t = 2.991, P = 0.020). In experimental group, histological examination showed that new bone formed in bone scaffolds. A hierarchical transition structure regenerated between ligament-bone scaffolds and the host bones, which was similar to the structural organizations of natural ligament-bone interface. Ligament-bone composite scaffolds based on 3-D printing technique facilitates the regeneration of biomimetic ligament-bone

  15. Single walled carbon nanotube composites for bone tissue engineering.

    PubMed

    Gupta, Ashim; Woods, Mia D; Illingworth, Kenneth David; Niemeier, Ryan; Schafer, Isaac; Cady, Craig; Filip, Peter; El-Amin, Saadiq F

    2013-09-01

    The purpose of this study was to develop single walled carbon nanotubes (SWCNT) and poly lactic-co-glycolic acid (PLAGA) composites for orthopedic applications and to evaluate the interaction of human stem cells (hBMSCs) and osteoblasts (MC3T3-E1 cells) via cell growth, proliferation, gene expression, extracellular matrix production and mineralization. PLAGA and SWCNT/PLAGA composites were fabricated with various amounts of SWCNT (5, 10, 20, 40, and 100 mg), characterized and degradation studies were performed. Cells were seeded and cell adhesion/morphology, growth/survival, proliferation and gene expression analysis were performed to evaluate biocompatibility. Imaging studies demonstrated uniform incorporation of SWCNT into the PLAGA matrix and addition of SWCNT did not affect the degradation rate. Imaging studies revealed that MC3T3-E1 and hBMSCs cells exhibited normal, non-stressed morphology on the composites and all were biocompatible. Composites with 10 mg SWCNT resulted in highest rate of cell proliferation (p < 0.05) among all composites. Gene expression of alkaline phosphatase, collagen I, osteocalcin, osteopontin, Runx-2, and Bone Sialoprotein was observed on all composites. In conclusion, SWCNT/PLAGA composites imparted beneficial cellular growth capabilities and gene expression, and mineralization abilities were well established. These results demonstrate the potential of SWCNT/PLAGA composites for musculoskeletal regeneration and bone tissue engineering (BTE) and are promising for orthopedic applications. Copyright © 2013 Orthopaedic Research Society.

  16. Method for palliation of pain in human bone cancer using therapeutic tin-117m compositions

    DOEpatents

    Srivastava, Suresh C.; Meinken, George E.; Mausner, Leonard F.; Atkins, Harold L.

    1998-12-29

    The invention provides a method for the palliation of bone pain due to cancer by the administration of a unique dosage of a tin-117m (Sn-117m) stannic chelate complex in a pharmaceutically acceptable composition. In addition, the invention provides a method for simultaneous palliation of bone pain and radiotherapy in cancer patients using compositions containing Sn-117m chelates. The invention also provides a method for palliating bone pain in cancer patients using Sn-117m-containing compositions and monitoring patient status by imaging the distribution of the Sn-117m in the patients. Also provided are pharmaceutically acceptable compositions containing Sn-117m chelate complexes for the palliation of bone pain in cancer patients.

  17. Correlations Between Bone Mechanical Properties and Bone Composition Parameters in Mouse Models of Dominant and Recessive Osteogenesis Imperfecta and the Response to Anti-TGF-β Treatment.

    PubMed

    Bi, Xiaohong; Grafe, Ingo; Ding, Hao; Flores, Rene; Munivez, Elda; Jiang, Ming Ming; Dawson, Brian; Lee, Brendan; Ambrose, Catherine G

    2017-02-01

    Osteogenesis imperfecta (OI) is a group of genetic disorders characterized by brittle bones that are prone to fracture. Although previous studies in animal models investigated the mechanical properties and material composition of OI bone, little work has been conducted to statistically correlate these parameters to identify key compositional contributors to the impaired bone mechanical behaviors in OI. Further, although increased TGF-β signaling has been demonstrated as a contributing mechanism to the bone pathology in OI models, the relationship between mechanical properties and bone composition after anti-TGF-β treatment in OI has not been studied. Here, we performed follow-up analyses of femurs collected in an earlier study from OI mice with and without anti-TGF-β treatment from both recessive (Crtap -/- ) and dominant (Col1a2 +/P.G610C ) OI mouse models and WT mice. Mechanical properties were determined using three-point bending tests and evaluated for statistical correlation with molecular composition in bone tissue assessed by Raman spectroscopy. Statistical regression analysis was conducted to determine significant compositional determinants of mechanical integrity. Interestingly, we found differences in the relationships between bone composition and mechanical properties and in the response to anti-TGF-β treatment. Femurs of both OI models exhibited increased brittleness, which was associated with reduced collagen content and carbonate substitution. In the Col1a2 +/P.G610C femurs, reduced hydroxyapatite crystallinity was also found to be associated with increased brittleness, and increased mineral-to-collagen ratio was correlated with increased ultimate strength, elastic modulus, and bone brittleness. In both models of OI, regression analysis demonstrated that collagen content was an important predictor of the increased brittleness. In summary, this work provides new insights into the relationships between bone composition and material properties in

  18. Comparison of image enhancement methods for the effective diagnosis in successive whole-body bone scans.

    PubMed

    Jeong, Chang Bu; Kim, Kwang Gi; Kim, Tae Sung; Kim, Seok Ki

    2011-06-01

    Whole-body bone scan is one of the most frequent diagnostic procedures in nuclear medicine. Especially, it plays a significant role in important procedures such as the diagnosis of osseous metastasis and evaluation of osseous tumor response to chemotherapy and radiation therapy. It can also be used to monitor the possibility of any recurrence of the tumor. However, it is a very time-consuming effort for radiologists to quantify subtle interval changes between successive whole-body bone scans because of many variations such as intensity, geometry, and morphology. In this paper, we present the most effective method of image enhancement based on histograms, which may assist radiologists in interpreting successive whole-body bone scans effectively. Forty-eight successive whole-body bone scans from 10 patients were obtained and evaluated using six methods of image enhancement based on histograms: histogram equalization, brightness-preserving bi-histogram equalization, contrast-limited adaptive histogram equalization, end-in search, histogram matching, and exact histogram matching (EHM). Comparison of the results of the different methods was made using three similarity measures peak signal-to-noise ratio, histogram intersection, and structural similarity. Image enhancement of successive bone scans using EHM showed the best results out of the six methods measured for all similarity measures. EHM is the best method of image enhancement based on histograms for diagnosing successive whole-body bone scans. The method for successive whole-body bone scans has the potential to greatly assist radiologists quantify interval changes more accurately and quickly by compensating for the variable nature of intensity information. Consequently, it can improve radiologists' diagnostic accuracy as well as reduce reading time for detecting interval changes.

  19. Dietary intake and body composition in HIV-positive and -negative South African women.

    PubMed

    Wrottesley, Stephanie V; Micklesfield, Lisa K; Hamill, Matthew M; Goldberg, Gail R; Prentice, Ann; Pettifor, John M; Norris, Shane A; Feeley, Alison B

    2014-07-01

    The present paper examines dietary intake and body composition in antiretroviral (ARV)-naïve HIV-positive compared with HIV-negative South African women, as well as the impact of disease severity on these variables. Baseline data from a longitudinal study assessing bone health in HIV-negative and HIV-positive premenopausal South African women over 18 years of age were used. Anthropometry and body composition, measured by dual energy X-ray absorptiometry, were analysed together with dietary intake data assessed using an interviewer-based quantitative FFQ. Soweto, Johannesburg, South Africa. Black, urban South African women were divided into three groups: (i) HIV-negative (HIV-; n 98); (ii) HIV-positive with preserved CD4 counts (HIV+ non-ARV; n 74); and (iii) HIV-positive with low CD4 counts and due to start ARV treatment (HIV+ pre-ARV; n 75). The prevalence of overweight and obesity was high in this population (59 %). The HIV+ pre-ARV group was lighter and had a lower BMI than the other two groups (all P < 0·001). HIV+ pre-ARV women also had lower fat and lean masses and percentage body fat than their HIV- and HIV+ non-ARV counterparts. After adjustment, there were no differences in macronutrient intakes across study groups; however, fat and sugar intakes were high and consumption of predominantly refined food items was common overall. HIV-associated immunosuppression may be a key determinant of body composition in HIV-positive women. However, in populations with high obesity prevalence, these differences become evident only at advanced stages of infection.

  20. [Anthropometry, body composition and functional limitations in the elderly].

    PubMed

    Arroyo, Patricia; Lera, Lydia; Sánchez, Hugo; Bunout, Daniel; Santos, José Luis; Albala, Cecilia

    2007-07-01

    Functional limitations limit the independence and jeopardize the quality of life of elderly subjects. To assess the association between anthropometric measures and body composition with functional limitations in community-living older people. Cross-sectional survey of 377 people > or = 6 5 years old (238 women), randomly selected from the SABE/Chile project. Complete anthropometric measurements were done. Handgrip muscle strength was measured using dynamometers. Body composition was determined using Dual-Energy X-Ray Absorptiometry. Functional limitations were assessed using self reported and observed activities. Body mass index was strongly associated with fat mass (men r =0.87; women r =0.91) and with lean mass (men r =0.55; women r =0.62). Males had significantly greater lean mass (48.9 kg vs 34.9 kg), and bone mass than females (2.6 kg vs 1.8 kg) and women had higher fat mass than men (26.3 kg vs 22.9 kg). The prevalence of functional limitations was high, affecting more women than men (63.7% vs 37.5%, p <0.01). Functional limitations were associated with lower handgrip strength in both sexes. In the multiple regression models, with functional limitations as dependent variable and anthropometric measures as contributing variables, only hand grip strength had a significant association (negative) with functional limitations in both genders. Age was also a significant risk factor for functional limitations among women. Hand grip strength was strongly and inversely associated with functional limitations. Handgrip dynamometry is an easy, cheap and low time-consuming indicator for the assessment of functional limitations and the evaluation of geriatric interventions aimed to improve functional ability.

  1. A study of bone marrow and subcutaneous fatty acid composition in subjects of varying bone mineral density.

    PubMed

    Griffith, James F; Yeung, David K W; Ahuja, Anil T; Choy, Carol W Y; Mei, Wong Yin; Lam, Sherlock S L; Lam, T P; Chen, Zhen-Yu; Leung, Ping C

    2009-06-01

    Osteoporosis is associated with an increase in marrow fat. Fats, particularly polyunsaturated fats, either in co-cultures or diet, have been shown to significantly influence bone remodeling. Whether the increase in marrow fat seen in osteoporosis is also associated with a change in fatty acid composition is not known. This study was undertaken to investigate the fatty acid composition in subjects of varying bone mineral density (BMD). Samples of marrow fat and subcutaneous fat from 126 subjects (98 females, 34 males, mean age 69.7+/-10.5 years) undergoing orthopedic surgery were analyzed for fatty acid composition by gas chromatography. These results were correlated with BMD assessed by DXA. A total of 22 fatty acids were identified in marrow and subcutaneous fat. Significant differences in fatty acid composition existed between marrow and subcutaneous fat as well as between marrow fat samples obtained from the proximal femur and proximal tibia. Other than cis-7-hexadecenoic acid [C16:1 (n=9)] and docosanoic acid [C22:0], no difference in marrow fatty acid composition was evident between subject groups of varying BMD (normal, low bone mass, and osteoporosis). In conclusion, there exists a wide range of individual fatty acids in marrow fat. Marrow fatty acid composition differs from that of subcutaneous fat and varies between predominantly erythropoetic and fatty marrow sites. Other than cis-7-hexadecenoic acid [C16:1 (n=9)] and docosanoic acid [C22:0], no difference in marrow fatty acid composition was evident between subjects of varying BMD.

  2. Diet, weight, cytokines and bone health in postmenopausal women.

    PubMed

    Gunn, C A; Weber, J L; Kruger, M C

    2014-05-01

    To investigate diet and nutrition-related factors associated with bone loss in a group of postmenopausal (PM) women. Nutritional intake, inflammatory markers and body composition (weight, body mass index, fat/lean mass) were analysed for associations with bone mineral density (BMD). A cross sectional study examining correlations between BMD (Duel-energy X ray absorptiometry; (DXA) and dietary intake (3-day diaries), body composition and plasma bone and inflammatory markers: C-terminal telopeptide of type I collagen (CTX) and procollagen type I N propeptide (P1NP), C- reactive protein (CRP), interleukin 6 and 10 (IL-6, IL-10), tumour necrosis factor (TNF) and osteoprotegerin (OPG). Community dwelling women from the Auckland, Hawke's Bay and Manawatu regions in New Zealand. 142 healthy, PM women aged 50-70 years. OPG (per kilogram fat mass) was increased in women with osteoporosis (p<0.001) compared to groups classified with normal BMD and osteopenia. Protein, vitamin B12, zinc, potassium and dairy intake were all positively correlated with higher BMD while dairy and potassium intakes also inversely correlated with CTX. Body composition (weight, BMI and fat/lean mass) had strong positive associations with BMD. Multiple regression analysis showed body weight, potassium and dairy intake were predictors of increased BMD in PM women and explained 39% (r2=0.39, p< 0.003) of variance. BMD was negatively correlated with OPG and positively with weight, dairy and potassium intake. This study highlights the importance of maintaining adequate body weight and emphasising dairy and potassium predominantly sourced from fruit/vegetables to reduce bone loss at midlife.

  3. The role of lean body mass and physical activity in bone health in children.

    PubMed

    Baptista, Fátima; Barrigas, Carlos; Vieira, Filomena; Santa-Clara, Helena; Homens, Pedro Mil; Fragoso, Isabel; Teixeira, Pedro J; Sardinha, Luís B

    2012-01-01

    In the context of physical education curricula, markers of physical fitness (e.g., aerobic capacity, muscular strength, flexibility, and body mass index or body fat) are usually evaluated in reference to health standards. Despite their possible mediating role in the relationship between weight-bearing or muscle forces and features of bone tissue, these attributes of fitness may not be the most relevant to predict skeletal health. It is therefore important to analyze the relative contribution of these factors to the variability in bone tissue of different parts of the skeleton, and to analyze it by gender, as sensitivity to mechanical loading can diverge for boys and girls. We compared the effects of habitual physical activity (PA) and lean mass, as surrogates of weight-bearing and muscle forces, and of physical fitness (aerobic and muscle capacity of lower and upper limbs) on bone mineral content (BMC) and size of total body, lumbar spine, femoral neck, and 1/3 radius in 53 girls and 64 boys from 7.9 to 9.7 years of age. After controlling for bone age, body mass, body height, and calcium intake, lean mass was the most important predictor of bone size and/or mineral in both genders (p < 0.05), while habitual weight-bearing PA positively influenced BMC in boys (p < 0.05). The effect of muscle in bone was not determined by PA and fitness score did not explain bone variability. Femoral neck was the bone site more closely associated with mechanical loading factors; boys with a PA > 608 counts/min/day (~105 min/day of moderate and vigorous intensity) showed 13-20% more BMC than those with less physical activity, and girls with a lean mass >19 kg showed 12-19% more BMC than those with less lean mass. These findings suggest that lean mass was the most important predictor of bone size and/or mineralization in both genders, while habitual weight-bearing PA appears to positively impact on bone mineral in prepubertal boys and that both lean mass and PA need to be

  4. Effects of Particle Size and Porosity on In Vivo Remodeling of Settable Allograft Bone/Polymer Composites

    PubMed Central

    Prieto, Edna M.; Talley, Anne D.; Gould, Nicholas R.; Zienkiewicz, Katarzyna J.; Drapeau, Susan J.; Kalpakci, Kerem N.

    2014-01-01

    Established clinical approaches to treat bone voids include the implantation of autograft or allograft bone, ceramics, and other bone void fillers (BVFs). Composites prepared from lysine-derived polyurethanes and allograft bone can be injected as a reactive liquid and set to yield BVFs with mechanical strength comparable to trabecular bone. In this study, we investigated the effects of porosity, allograft particle size, and matrix mineralization on remodeling of injectable and settable allograft/polymer composites in a rabbit femoral condyle plug defect model. Both low viscosity (LV) and high viscosity (HV) grafts incorporating small (<105 μm) particles only partially healed at 12 weeks, and the addition of 10% demineralized bone matrix did not enhance healing. In contrast, composite grafts with large (105 – 500 μm) allograft particles healed at 12 weeks post-implantation, as evidenced by radial μCT and histomorphometric analysis. This study highlights particle size and surface connectivity as influential parameters regulating the remodeling of composite bone scaffolds. PMID:25581686

  5. Differential effects of raloxifene and estrogen on body composition in growth hormone-replaced hypopituitary women.

    PubMed

    Birzniece, Vita; Meinhardt, Udo J; Gibney, James; Johannsson, Gudmundur; Armstrong, Nicola; Baxter, Robert C; Ho, Ken K Y

    2012-03-01

    GH deficiency causes reduction in muscle and bone mass and an increase in fat mass (FM), the changes reversed by GH replacement. The beneficial effects of GH on fat oxidation and protein anabolism are attenuated more markedly by raloxifene, a selective estrogen receptor modulator, compared with 17β-estradiol. Whether this translates to a long-term detrimental effect on body composition is unknown. Our objective was to compare the effects of 17β-estradiol and raloxifene on FM, lean body mass (LBM), and bone mineral density (BMD) during GH replacement. This was an open-label randomized crossover study. Sixteen hypopituitary women received GH (0.5 mg/d) replacement for 24 months. One group received 17β-estradiol (2 mg/d) for the first 6 months before crossover to raloxifene (60 mg/d) for the remaining 18 months; the other received the reversed sequence. Serum IGF-I and IGF-binding protein-3 concentrations, and FM, LBM, lumbar spine and femoral neck BMD were analyzed at baseline and at 6, 12, and 24 months within and between subjects. GH therapy significantly increased mean IGF-I during 17β-estradiol and raloxifene cotreatments equally, but elevated IGF-binding protein-3 to a greater extent during raloxifene cotreatment. GH cotreatment with 17β-estradiol increased LBM and lumbar spine and femoral neck BMD and reduced FM to a greater extent than with raloxifene. In hypopituitary women, raloxifene at therapeutic doses significantly attenuated the beneficial effects of GH on body composition compared with 17β-estradiol. Raloxifene has no metabolic advantage over 17β-estradiol during GH replacement.

  6. Mandibular body fracture repair with wire-reinforced interdental composite splint in small dogs.

    PubMed

    Guzu, Michel; Hennet, Philippe R

    2017-11-01

    To report the outcome of mandibular body fractures treated with a wire-reinforced interdental composite splint (WRICS) in small breed dogs. Retrospective case series. Client-owned small breed dogs (n = 24). Medical records (1998-2012) of small breed dogs (<10 kg) with mandibular body fractures treated by WRICS were reviewed for signalment, history, type of fracture, treatment, and clinical and radiological follow-up. The angle of the fracture line (ANG) was measured on dental radiographs. A mandibular injury severity score (MISS) and a dental injury score (DIS) were evaluated as potential prognostic factors. Fractures most commonly involved P4-M1 (56%), and healed in a mean time of 2.37 ± 0.7 months. Healing was slower (P = .012) if teeth were present in the fracture line and required extraction, hemisection, or root canal therapy prior to WRICS placement (2.39 ± 0.7 months) than if no dental treatment was required (1.46 ± 0.8 months). Contrary to the MISS, the DIS was associated with longer time to bone healing (P = .001; r = .63) and risk of complications (P = .004). Bone healing time was decreased (P = .003; r = .61) with increasing fracture angles. WRICS can be considered to treat mandibular body fractures in small breed dogs if the fracture is not severely comminuted, and if at least the canine and first molar tooth can be used for anchorage. More severe lesions, such as those with teeth in the fracture line and a shorter fracture surface, are associated with prolonged bone healing. © 2017 The American College of Veterinary Surgeons.

  7. Bone health in Down syndrome.

    PubMed

    García-Hoyos, Marta; Riancho, José Antonio; Valero, Carmen

    2017-07-21

    Patients with Down syndrome have a number of risk factors that theoretically could predispose them to osteoporosis, such as early aging, development disorders, reduced physical activity, limited sun exposure, frequent comorbidities and use of drug therapies which could affect bone metabolism. In addition, the bone mass of these people may be affected by their anthropometric and body composition peculiarities. In general terms, studies in adults with Down syndrome reported that these people have lower areal bone mineral density (g/cm 2 ) than the general population. However, most of them have not taken the smaller bone size of people with Down syndrome into account. In fact, when body mineral density is adjusted by bone size and we obtain volumetric body mineral density (g/cm 3 ), the difference between both populations disappears. On the other hand, although people with Down syndrome have risk factor of hypovitaminosis D, the results of studies regarding 25(OH)D in this population are not clear. Likewise, the studies about biochemical bone markers or the prevalence of fractures are not conclusive. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  8. Body composition data from the rat subjects of Cosmos 1129 experiment K-316

    NASA Technical Reports Server (NTRS)

    Pace, N.; Smith, A. H.; Pitts, G. C.; Ushakov, A. S.; Smirnova, T. A.

    1982-01-01

    The effects of 18.5 days of weightlessness on the body composition of young, growing, male laboratory rats were examined. Three groups of 5 rats each were examined. It is indicated that exposure of young, growing, male rats to 18.5 days of weightlessness produces: (1) no effect on the quantity of fat stored by the body; (2) a slight reduction in the quantity of fat free tissue laid down by the body; (3) a small reduction in the fraction of water contained by the fat free body mass; (4) a similar reduction in the fraction of water contained by the fat free skin and fat free carcass; (5) a shift in relative distribution of the total body water from skin to viscera; (6) a diminution in the fraction of extracellular water contained by the fat free body; (7) no effect on the fraction of total skeletal musculature contained by the fat free body, as indicated by body creatine content; (8) a sizeable reduction in the fraction of bone mineral contained by the fat free body, as calculated from body calcium content. The nature of the physiological changes induced by unloading from Earth gravity in the mammalian organism are illustrated.

  9. Women gaze behaviour in assessing female bodies: the effects of clothing, body size, own body composition and body satisfaction.

    PubMed

    Cundall, Amelia; Guo, Kun

    2017-01-01

    Often with minimally clothed figures depicting extreme body sizes, previous studies have shown women tend to gaze at evolutionary determinants of attractiveness when viewing female bodies, possibly for self-evaluation purposes, and their gaze distribution is modulated by own body dissatisfaction level. To explore to what extent women's body-viewing gaze behaviour is affected by clothing type, dress size, subjective measurements of regional body satisfaction and objective measurements of own body composition (e.g., chest size, body mass index, waist-to-hip ratio), in this self-paced body attractiveness and body size judgement experiment, we compared healthy, young women's gaze distributions when viewing female bodies in tight and loose clothing of different dress sizes. In contrast to tight clothing, loose clothing biased gaze away from the waist-hip to the leg region, and subsequently led to enhanced body attractiveness ratings and body size underestimation for larger female bodies, indicating the important role of clothing in mediating women's body perception. When viewing preferred female bodies, women's higher satisfaction of a specific body region was associated with an increased gaze towards neighbouring body areas, implying satisfaction might reduce the need for comparison of confident body parts; furthermore undesirable body composition measurements were correlated with a gaze avoidance process if the construct was less changeable (i.e. chest size) but a gaze comparison process if the region was more changeable (i.e. body mass index, dress size). Clearly, own body satisfaction and body composition measurements had an evident impact on women's body-viewing gaze allocation, possibly through different cognitive processes.

  10. Method for palliation of pain in human bone cancer using therapeutic tin-117m compositions

    DOEpatents

    Srivastava, S.C.; Meinken, G.E.; Mausner, L.F.; Atkins, H.L.

    1998-12-29

    The invention provides a method for the palliation of bone pain due to cancer by the administration of a unique dosage of a tin-117m (Sn-117m) stannic chelate complex in a pharmaceutically acceptable composition. In addition, the invention provides a method for simultaneous palliation of bone pain and radiotherapy in cancer patients using compositions containing Sn-117m chelates. The invention also provides a method for palliating bone pain in cancer patients using Sn-117m-containing compositions and monitoring patient status by imaging the distribution of the Sn-117m in the patients. Also provided are pharmaceutically acceptable compositions containing Sn-117m chelate complexes for the palliation of bone pain in cancer patients. 5 figs.

  11. Acid-resistant calcium silicate-based composite implants with high-strength as load-bearing bone graft substitutes and fracture fixation devices.

    PubMed

    Wei, Chung-Kai; Ding, Shinn-Jyh

    2016-09-01

    To achieve the excellent mechanical properties of biodegradable materials used for cortical bone graft substitutes and fracture fixation devices remains a challenge. To this end, the biomimetic calcium silicate/gelatin/chitosan oligosaccharide composite implants were developed, with an aim of achieving high strength, controlled degradation, and superior osteogenic activity. The work focused on the effect of gelatin on mechanical properties of the composites under four different kinds of mechanical stresses including compression, tensile, bending, and impact. The evaluation of in vitro degradability and fatigue at two simulated body fluid (SBF) of pH 7.4 and 5.0 was also performed, in which the pH 5.0 condition simulated clinical conditions caused by bacterial induced local metabolic acidosis or tissue inflammation. In addition, human mesenchymal stem cells (hMSCs) were sued to examine osteogenic activity. Experimental results showed that the appropriate amount of gelatin positively contributed to failure enhancement in compressive and impact modes. The 10wt% gelatin-containing composite exhibits the maximum value of the compressive strength (166.1MPa), which is within the reported compressive strength for cortical bone. The stability of the bone implants was apparently affected by the in vitro fatigue, but not by the initial pH environments (7.4 or 5.0). The gelatin not only greatly enhanced the degradation of the composite when soaked in the dynamic SBF solution, but effectively promoted attachment, proliferation, differentiation, and formation of mineralization of hMSCs. The 10wt%-gelatin composite with high initial strength may be a potential implant candidate for cortical bone repair and fracture fixation applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Body composition changes in pregnancy: measurement, predictors and outcomes

    PubMed Central

    Widen, EM; Gallagher, D

    2014-01-01

    Prevalence of overweight and obesity has risen in the United States over the past few decades. Concurrent with this rise in obesity has been an increase in pregravid body mass index and gestational weight gain affecting maternal body composition changes in pregnancy. During pregnancy, many of the assumptions inherent in body composition estimation are violated, particularly the hydration of fat-free mass, and available methods are unable to disentangle maternal composition from fetus and supporting tissues; therefore, estimates of maternal body composition during pregnancy are prone to error. Here we review commonly used and available methods for assessing body composition changes in pregnancy, including: (1) anthropometry, (2) total body water, (3) densitometry, (4) imaging, (5) dual-energy X-ray absorptiometry, (6) bioelectrical impedance and (7) ultrasound. Several of these methods can measure regional changes in adipose tissue; however, most of these methods provide only whole-body estimates of fat and fat-free mass. Consideration is given to factors that may influence changes in maternal body composition, as well as long-term maternal and offspring outcomes. Finally, we provide recommendations for future research in this area. PMID:24667754

  13. Surface-enrichment with hydroxyapatite nanoparticles in stereolithography-fabricated composite polymer scaffolds promotes bone repair.

    PubMed

    Guillaume, O; Geven, M A; Sprecher, C M; Stadelmann, V A; Grijpma, D W; Tang, T T; Qin, L; Lai, Y; Alini, M; de Bruijn, J D; Yuan, H; Richards, R G; Eglin, D

    2017-05-01

    Fabrication of composite scaffolds using stereolithography (SLA) for bone tissue engineering has shown great promises. However, in order to trigger effective bone formation and implant integration, exogenous growth factors are commonly combined to scaffold materials. In this study, we fabricated biodegradable composite scaffolds using SLA and endowed them with osteopromotive properties in the absence of biologics. First we prepared photo-crosslinkable poly(trimethylene carbonate) (PTMC) resins containing 20 and 40wt% of hydroxyapatite (HA) nanoparticles and fabricated scaffolds with controlled macro-architecture. Then, we conducted experiments to investigate how the incorporation of HA in photo-crosslinked PTMC matrices improved human bone marrow stem cells osteogenic differentiation in vitro and kinetic of bone healing in vivo. We observed that bone regeneration was significantly improved using composite scaffolds containing as low as 20wt% of HA, along with difference in terms of osteogenesis and degree of implant osseointegration. Further investigations revealed that SLA process was responsible for the formation of a rich microscale layer of HA corralling scaffolds. To summarize, this work is of substantial importance as it shows how the fabrication of hierarchical biomaterials via surface-enrichment of functional HA nanoparticles in composite polymer stereolithographic structures could impact in vitro and in vivo osteogenesis. This study reports for the first time the enhance osteopromotion of composite biomaterials, with controlled macro-architecture and microscale distribution of hydroxyapatite particles, manufactured by stereolithography. In this process, the hydroxyapatite particles are not only embedded into an erodible polymer matrix, as reported so far in the literature, but concentrated at the surface of the structures. This leads to robust in vivo bone formation at low concentration of hydroxyapatite. The reported 3D self-corralling composite

  14. Neuronal hypothalamic regulation of body metabolism and bone density is galanin dependent.

    PubMed

    Idelevich, Anna; Sato, Kazusa; Nagano, Kenichi; Rowe, Glenn; Gori, Francesca; Baron, Roland

    2018-06-01

    In the brain, the ventral hypothalamus (VHT) regulates energy and bone metabolism. Whether this regulation uses the same or different neuronal circuits is unknown. Alteration of AP1 signaling in the VHT increases energy expenditure, glucose utilization, and bone density, yet the specific neurons responsible for each or all of these phenotypes are not identified. Using neuron-specific, genetically targeted AP1 alterations as a tool in adult mice, we found that agouti-related peptide-expressing (AgRP-expressing) or proopiomelanocortin-expressing (POMC-expressing) neurons, predominantly present in the arcuate nucleus (ARC) within the VHT, stimulate whole-body energy expenditure, glucose utilization, and bone formation and density, although their effects on bone resorption differed. In contrast, AP1 alterations in steroidogenic factor 1-expressing (SF1-expressing) neurons, present in the ventromedial hypothalamus (VMH), increase energy but decrease bone density, suggesting that these effects are independent. Altered AP1 signaling also increased the level of the neuromediator galanin in the hypothalamus. Global galanin deletion (VHT galanin silencing using shRNA) or pharmacological galanin receptor blockade counteracted the observed effects on energy and bone. Thus, AP1 antagonism reveals that AgRP- and POMC-expressing neurons can stimulate body metabolism and increase bone density, with galanin acting as a central downstream effector. The results obtained with SF1-expressing neurons, however, indicate that bone homeostasis is not always dictated by the global energy status, and vice versa.

  15. Nutritional interventions for optimizing healthy body composition in older adults in the community: an umbrella review of systematic reviews.

    PubMed

    Schultz, Timothy J; Roupas, Peter; Wiechula, Richard; Krause, Debra; Gravier, Susan; Tuckett, Anthony; Hines, Sonia; Kitson, Alison

    2016-08-01

    Optimizing body composition for healthy aging in the community is a significant challenge. There are a number of potential interventions available for older people to support both weight gain (for those who are underweight) and weight loss (for overweight or obese people). While the benefits of weight gain for underweight people are generally clearly defined, the value of weight loss in overweight or obese people is less clear, particularly for older people. This umbrella review aimed to measure the effectiveness of nutritional interventions for optimizing healthy body composition in older adults living in the community and to explore theirqualitative perceptions. The participants were older adults, 60 years of age or older, living in the community. The review examinedsix types of nutritional interventions: (i) dietary programs, (ii) nutritional supplements, (iii) meal replacements, (iv) food groups, (v) food delivery support and eating behavior, and (vi) nutritional counselling or education. This umbrella review considered any quantitative systematic reviews and meta-analyses of effectiveness, or qualitative systematic reviews, or a combination (i.e. comprehensive reviews). The quantitative outcome measures of body composition were: (i) nutritional status (e.g. proportion of overweight or underweight patients); (ii) fat mass (kg), (iii) lean mass or muscle mass (kg), (iv) weight (kg) or BMI (kg/m), (v) bone mass (kg) or bone measures such as bone mineral density, and (vi) hydration status. The phenomena of interestwere the qualitative perceptions and experiences of participants. We developed an iterative search strategy for nine bibliometric databases and gray literature. Critical appraisal of 13 studies was conducted independently in pairs using standard Joanna Briggs Institute tools. Six medium quality and seven high quality studies were identified. Data was extracted independently in pairs from all 13 included studies using the standard Joanna Briggs Institute

  16. Biofunctional Ionic-Doped Calcium Phosphates: Silk Fibroin Composites for Bone Tissue Engineering Scaffolding.

    PubMed

    Pina, S; Canadas, R F; Jiménez, G; Perán, M; Marchal, J A; Reis, R L; Oliveira, J M

    2017-01-01

    The treatment and regeneration of bone defects caused by traumatism or diseases have not been completely addressed by current therapies. Lately, advanced tools and technologies have been successfully developed for bone tissue regeneration. Functional scaffolding materials such as biopolymers and bioresorbable fillers have gained particular attention, owing to their ability to promote cell adhesion, proliferation, and extracellular matrix production, which promote new bone growth. Here, we present novel biofunctional scaffolds for bone regeneration composed of silk fibroin (SF) and β-tricalcium phosphate (β-TCP) and incorporating Sr, Zn, and Mn, which were successfully developed using salt-leaching followed by a freeze-drying technique. The scaffolds presented a suitable pore size, porosity, and high interconnectivity, adequate for promoting cell attachment and proliferation. The degradation behavior and compressive mechanical strengths showed that SF/ionic-doped TCP scaffolds exhibit improved characteristics for bone tissue engineering when compared with SF scaffolds alone. The in vitro bioactivity assays using a simulated body fluid showed the growth of an apatite layer. Furthermore, in vitro assays using human adipose-derived stem cells presented different effects on cell proliferation/differentiation when varying the doping agents in the biofunctional scaffolds. The incorporation of Zn into the scaffolds led to improved proliferation, while the Sr- and Mn-doped scaffolds presented higher osteogenic potential as demonstrated by DNA quantification and alkaline phosphatase activity. The combination of Sr with Zn led to an influence on cell proliferation and osteogenesis when compared with single ions. Our results indicate that biofunctional ionic-doped composite scaffolds are good candidates for further in vivo studies on bone tissue regeneration. © 2017 S. Karger AG, Basel.

  17. Tissue Reaction to a Novel Bone Substitute Material Fabricated With Biodegradable Polymer-Calcium Phosphate Nanoparticle Composite.

    PubMed

    Shimizu, Hideo; Jinno, Yohei; Ayukawa, Yasunori; Atsuta, Ikiru; Arahira, Takaaki; Todo, Mitsugu; Koyano, Kiyoshi

    2016-10-01

    The aim of this study was to evaluate the effectiveness of a novel bone substitute material fabricated using a biodegradable polymer-calcium phosphate nanoparticle composite. Porous structured poly-L-lactic acid (PLLA) and hydroxyapatite (HA) nanoparticle composite, which was fabricated using solid-liquid phase separation and freeze-drying methods, was grafted into bone defects created in rat calvarium or tibia. Rats were killed 4 weeks after surgery, and histological analyses were performed to evaluate new bone formation. Scanning electron microscopic observation showed the interconnecting pores within the material and the pore diameter was approximately 100 to 300 μm. HA nanoparticles were observed to be embedded into the PLLA beams. In the calvarial implantation model, abundant blood vessels and fibroblastic cells were observed penetrating into pores, and in the tibia model, newly formed bone was present around and within the composite. The PLLA-HA nanoparticle composite bone substitute developed in this study showed biocompatibility, elasticity, and operability and thus has potential as a novel bone substitute.

  18. Body composition changes in female bodybuilders during preparation for competition.

    PubMed

    van der Ploeg, G E; Brooks, A G; Withers, R T; Dollman, J; Leaney, F; Chatterton, B E

    2001-04-01

    To determine anthropometric and body composition changes in female bodybuilders during preparation for competition. There was an attempt to match subjects in the control and experimental groups for height and percentage body fat (%BF) for the initial test of this longitudinal study. Five competitive bodybuilders (-X +/- s.d.: 35.3 +/- 5.7 y; 167.3 +/- 3.7 cm; 66.38 +/- 6.30 kg; 18.3 +/- 3.5 %BF) and five athletic females (-X +/- s.d.: 30.9 +/- 13.0 y; 166.9 +/- 3.9 cm; 55.94 +/- 3.59 kg; 19.1 +/- 3.3 %BF) were recruited from advertisements in a bodybuilding newsletter and placed on sports centre noticeboards. The following measurements were conducted 12 weeks, 6 weeks and 3-5 d before the bodybuilders' competitions: anthropometric profile, body density by underwater weighing, total body water via deuterium dilution and bone mineral mass from a dual-energy X-ray absorptiometry scan. A combination of the last three measurements enabled the %BF to the determined by a four compartment model. A significant (P < or = 0.001) 5.80 kg body mass loss by the bodybuilders as they prepared for competition was primarily due to a reduction in fat mass (FM; -4.42 kg; 76.2%) as opposed to fat-free mass (FFM; -1.38 kg; 23.8%). The decreases in body mass and FM over the final 6 weeks were greater than those over the first 6 weeks. Their %BF decreased (P < 0.001) from 18.3 to 12.7, whereas the values for the control group remained essentially unchanged at 19.1-19.6 %BF. These body composition changes by the bodybuilders were accompanied by a significant decline (P < 0.001) of 25.5 mm (76.3-50.8 mm) in the sum of eight skinfold thicknesses (triceps + subscapular + biceps + iliac crest + supraspinale + abdominal + front thigh + medial calf). Although the bodybuilders presented with low %BFs at the start of the experiment, they still significantly decreased their body mass during the 12 week preparation for competition and most of this loss was due to a reduction in FM as opposed to FFM.

  19. Bone-to-bone Fixation Enhances Functional Healing of the Porcine Anterior Cruciate Ligament Using a Collagen-Platelet Composite

    PubMed Central

    Murray, Martha M.; Magarian, Elise; Zurakowski, David; Fleming, Braden C.

    2010-01-01

    Purpose The purpose of this study was to determine if providing bony stabilization between the tibia and femur would improve the structural properties of an “enhanced” ACL repair using a collagen-platelet composite when compared to the traditional (Marshall) suture technique. Methods Twelve pigs underwent unilateral ACL transection and were treated with sutures connecting the bony femoral ACL attachment site to the distal ACL stump (LIGAMENT group), or to the tibia via a bone tunnel (TIBIA group). A collagen-platelet composite was placed around the sutures to enhance the biologic repair in both groups. Anteroposterior (AP) knee laxity and the graft structural properties were measured after 15 weeks of healing in both the ACL-repaired and contralateral ACL-intact joints. Results Enhanced ACL repair with bone-to-bone fixation significantly improved yield load and linear stiffness of the ACL repairs (p<0.05) after 15 weeks of healing. However, laxity values of the knees were similar in both groups of repaired knees (p>0.10). Conclusions Using an enhanced ACL suture repair technique that includes bone-to-bone fixation to protect the repair in the initial healing stages resulted in an ACL with improved structural properties after 15 weeks in the porcine model. Clinical Relevance The healing response of an ACL suture repair using a collagen-platelet composite can be enhanced by providing bony stabilization between the tibia and femur to protect the graft during the initial healing process in a translational model. PMID:20810092

  20. Hypogonadal Men with Higher Body Mass Index have Higher Bone Density and Better Bone Quality but Reduced Muscle Density.

    PubMed

    Aguirre, Lina E; Colleluori, Georgia; Dorin, Richard; Robbins, David; Chen, Rui; Jiang, Bryan; Qualls, Clifford; Villareal, Dennis T; Armamento-Villareal, Reina

    2017-12-01

    Although hypogonadism is a risk factor for bone loss and fractures, the different etiopathophysiology and hormonal profile of classical and obesity-induced hypogonadism may lead to differences in musculoskeletal profile. This is a cross-sectional study of hypogonadal men between 40 and 74 years old. Our outcomes include: areal bone mineral density (aBMD) and body composition by dual-energy X-ray absorptiometry; volumetric BMD (vBMD) and soft tissue composition of the tibia by peripheral quantitative computed tomography. Fracture risk assessment tool (FRAX) scores were evaluated. Testosterone, estradiol, luteinizing hormone, follicle stimulating hormone, sex hormone-binding globulin, C-telopeptide, osteocalcin, and sclerostin were measured. We divided the population into subgroups of BMI: group 1: BMI < 30; group 2: BMI ≥30 to <35 and group 3: BMI ≥ 35 kg/m 2 . One-hundred five men were enrolled. Spine and hip aBMD, and total and trabecular vBMD at the 4% tibia significantly increased with increasing BMI. Cortical thickness (330.7 ± 53.2, 343.3 ± 35.4, and 358.7 ± 38.2 mm, p = 0.04; groups 1, 2 and 3, respectively) and cortical area (5.3 ± 0.7, 5.5 ± 0.6, and 5.7 ± 0.6 mm, p = 0.01; groups 1, 2 and 3, respectively) at 38% tibia increased with increasing BMI. While absolute lean mass increased with increasing BMI, % lean mass and muscle density (70.2 ± 5.0, 71.3 ± 6.4, and 67.1 ± 5.1 mg/cm 3 ; groups 1, 2 and 3, respectively) were lowest in group 3. Although severely obese hypogondal men have better BMD and bone quality, they have reduced muscle density, the significance of which remains to be determined.

  1. Regional, but not total, body composition changes in overweight and obese adults consuming a higher protein, energy-restricted diet are sex specific.

    PubMed

    Tang, Minghua; Leidy, Heather J; Campbell, Wayne W

    2013-08-01

    Secondary analyses of data from 2 studies were used to assess the effects of protein intake and sex on diet-induced changes in body composition. The primary hypothesis was that the changes of body composition via energy restriction (ie, lean body mass [LBM], fat mass [FM], and bone) would be sex and diet specific. For 12 weeks, 43 male (study 1) and 45 female (study 2) overweight and obese adults consumed an energy-deficit diet (750 kcal/d less than energy needs) containing either 0.8 (normal protein [NP], 21 men and 23 women) or 1.4 g protein∙kg(-1)∙d(-1) (high protein [HP], 22 men and 22 women). Body composition measurements were performed at preintervention and postintervention. Over time, all research participants lost weight, LBM, and FM. Independent of protein intake, the men lost more LBM in the trunk (-0.9 vs -0.5 kg) and less in the legs (-1.5 vs -1.1 kg) compared with the women (P < .05). Independent of sex, the HP group lost less LBM in the trunk and legs than the NP group. These sex and protein intake responses resulted in the NP men losing the most LBM in the legs and the NP women losing the most LBM in the trunk. Over time, men lost more FM (-5.0 vs -3.9 kg) from the trunk and less from legs (-1.7 vs -2.1 kg) than women (P < .05), which resulted in a greater decrease of the android-to-gynoid fat ratio for the men. Protein intake did not influence these sex-specific responses or have any independent effects on changes in FM. In addition, protein intake did not influence bone mineral density responses over time; bone mineral density was reduced in women, but not in men. These findings indicate that higher protein intake during weight loss promotes the retention of LBM in both the trunk and legs despite the sex-specific changes in these body regions. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Bone, body weight, and weight reduction: what are the concerns?

    PubMed

    Shapses, Sue A; Riedt, Claudia S

    2006-06-01

    Of the U.S. population, 65% is either overweight or obese, and weight loss is recommended to reduce co-morbid conditions. However, bone mobilization and loss may also occur with weight loss. The risk for bone loss depends on initial body weight, age, gender, physical activity, and conditions of dieting such as the extent of energy restriction and specific levels of nutrient intake. Older populations are more prone to bone loss with weight loss; in women, this is due at least in part to a reduced dietary Ca intake and/or efficiency of absorption. Potential hormonal mechanisms regulating bone loss during weight loss are discussed, including decreases in estrogen, leptin, glucagon-like peptide-2, growth hormone, and insulin-like growth factor-1, or an increase in cortisol. In contrast, the rise in adiponectin and ghrelin with weight reduction should not be detrimental to bone. Combining energy restriction with exercise does not necessarily prevent bone loss, but may attenuate loss as was shown with additional Ca intake or osteoporosis medications. Future controlled weight loss trials should be designed to further address mechanisms influencing the density and quality of bone sites vulnerable to fracture, in the prevention of osteoporosis.

  3. Comparison of body composition methods during weight loss in obese women using herbal formula.

    PubMed

    Kim, Ho-Jun; Gallagher, Dympna; Song, Mi-Yeon

    2005-01-01

    Bioelectrical impedance analysis (BIA), a device that analyzes the current conduction differences between the fat and water components is widely used for reasons that include convenience of use, non-invasiveness, safety, and low cost. Dual energy X-ray absorptiometry (DXA) allows for the assessment of total body and regional lean and fat tissues and bone mineral content (BMC). The objective of this study was to compare body composition assessments by BIA and DXA before and after a 6-week herbal diet intervention program in 50 pre-menopausal women [mean +/- SD: age 30.58 +/- 6.15, body mass index (BMI) 31.72 +/- 3.78]. Waist-to-hip ratio (WHR) was measured by BIA and anthropometry. Lean body mass (LBM), body fat (BF), BMC and percent body fat (%BF) were measured by BIA and DXA. Highly significant correlations were observed between BIA and DXA measurements for LBM, BF, BMC and %BF (r = 0.73, 0.93, 0.53, 0.79, respectively) before the intervention. Differences between BIA and DXA measurements were observed in LBM, BF, %BF and BMC before intervention (p < 0.01) where WHR by BIA was significantly higher compared to anthropometry before (p < 0.01) and after the intervention (p < 0.01). BIA underestimated LBM by 1.85 kg and overestimated BF by 2.54 kg compared to DXA before the intervention. Although BIA and DXA showed highly significant correlations for LBM, BF, BMC and %BF before the intervention, they did not produce statistically comparable results in pre-menopausal Korean women and therefore should not be used interchangeably when measuring body composition.

  4. Repairing Fractured Bones by Use of Bioabsorbable Composites

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.

    2006-01-01

    A proposed method of surgical repair of fractured bones would incorporate recent and future advances in the art of composite materials. The composite materials used in this method would be biocompatible and at least partly bioabsorbable: that is, during the healing process following surgery, they would be wholly or at least partly absorbed into the bones and other tissues in which they were implanted. Relative to the traditional method, the proposed method would involve less surgery, pose less of a risk of infection, provide for better transfer of loads across fracture sites, and thereby promote better healing while reducing the need for immobilization by casts and other external devices. One requirement that both the traditional and proposed methods must satisfy is to fix the multiple segments of a broken bone in the correct relative positions. Mechanical fixing techniques used in the traditional method include the use of plates spanning the fracture site and secured to the bone by screws, serving of wire along the bone across the fracture site, insertion of metallic intramedullary rods through the hollow portion of the fractured bone, and/or inserting transverse rods through the bone, muscle, and skin to stabilize the fractured members. After the bone heals, a second surgical operation is needed to remove the mechanical fixture(s). In the proposed method, there would be no need for a second surgical operation. The proposed method is based partly on the observation that in the fabrication of a structural member, it is generally more efficient and reliable to use multiple small fasteners to transfer load across a joint than to use a single or smaller number of larger fasteners, provided that the stress fields of neighboring small fasteners do not overlap or interact. Also, multiple smaller fasteners are more reliable than are larger and fewer fasteners. However, there is a trade-off between structural efficiency and the cost of insertion time and materials. The

  5. Bio-composites composed of a solid free-form fabricated polycaprolactone and alginate-releasing bone morphogenic protein and bone formation peptide for bone tissue regeneration.

    PubMed

    Kim, MinSung; Jung, Won-Kyo; Kim, GeunHyung

    2013-11-01

    Biomedical scaffolds should be designed with highly porous three-dimensional (3D) structures that have mechanical properties similar to the replaced tissue, biocompatible properties, and biodegradability. Here, we propose a new composite composed of solid free-form fabricated polycaprolactone (PCL), bone morphogenic protein (BMP-2) or bone formation peptide (BFP-1), and alginate for bone tissue regeneration. In this study, PCL was used as a mechanical supporting component to enhance the mechanical properties of the final biocomposite and alginate was used as the deterring material to control the release of BMP-2 and BFP-1. A release test revealed that alginate can act as a good release control material. The in vitro biocompatibilities of the composites were examined using osteoblast-like cells (MG63) and the alkaline phosphatase (ALP) activity and calcium deposition were assessed. The in vitro test results revealed that PCL/BFP-1/Alginate had significantly higher ALP activity and calcium deposition than the PCL/BMP-2/Alginate composite. Based on these findings, release-controlled BFP-1 could be a good growth factor for enhancement of bone tissue growth and the simple-alginate coating method will be a useful tool for fabrication of highly functional biomaterials through release-control supplementation.

  6. Preparation of porous PLA/DBM composite biomaterials and experimental research of repair rabbit radius segmental bone defect.

    PubMed

    Zhang, Yumin; Wang, Jianru; Wang, Jue; Niu, Xiaojun; Liu, Jianchun; Gao, Lan; Zhai, Xiaoyan; Chu, Kaibo

    2015-12-01

    Bone substitutes are used in wide range of orthopaedic application. An ideal bone substitute should exhibit superior osteoinductive and osteoconductive properties. Neither bio-derived materials nor synthetic materials can meet the needs of an ideal bone substitute. Preparation of composite materials is a promising way to improve properties of biomaterial. In this study, the porous poly lactic acid (PLA)/demineralized bone matrix (DBM) composite biomaterials prepared by supercritical CO2 technique were implanted to repair rabbit radius segmental bone defect. By comparing with PLA and bone autograft, the X-ray result and histological analysis showed the repair effect of PLA/DBM porous composite materials is significantly better than that of the PLA group and the blank control group, and is similar to autologous bone. The PLA/DBM can promote the healing of bone defects and can be used as a kind of ideal alternative materials to repair bone defects.

  7. Biophysicochemical evaluation of chitosan-hydroxyapatite-marine sponge collagen composite for bone tissue engineering.

    PubMed

    Pallela, Ramjee; Venkatesan, Jayachandran; Janapala, Venkateswara Rao; Kim, Se-Kwon

    2012-02-01

    Tricomponent scaffold systems prepared by natural materials especially of marine origin are gaining much attention nowadays for the application in bone tissue engineering. A novel scaffold (Chi-HAp-MSCol) containing chitosan (Chi), hydroxyapatite (HAp) derived from Thunnus obesus bone and marine sponge (Ircinia fusca) collagen (MSCol) was prepared using freeze-drying and lyophilization method. This biomimetic scaffold, along with the Chi and Chi-HAp scaffolds were characterized biophysicochemically for their comparative significance in bone grafting applications. The structural composition of the chitosan, Chi-Hap, and Chi-HAp-MSCol scaffolds were characterized by Fourier Transform Infrared spectroscopy. The porosity, water uptake, and retention abilities of the composite scaffolds decreased, whereas Thermogravimetric and Differential Thermal Analyses results revealed the increase in thermal stability in the scaffold because of the highly stable HAp and MSCol. Homogeneous dispersion of HAp and MSCol in chitosan matrix with interconnected porosity of 60-180 μm (Chi-HAp) and 50-170 μm (Chi-HAp-MSCol) was observed by Scanning Electron Microscopy, X-ray diffraction, and optical microscopy. Cell proliferation in composite scaffolds was relatively higher than pure chitosan when observed by MTT assay and Hoechst staining in vitro using MG-63 cell line. These observations suggest that the novel Chi-HAp-MSCol composite scaffolds are promising biomaterials for matrix-based bone repair and bone augmentation. Copyright © 2011 Wiley Periodicals, Inc.

  8. Ovine prenatal growth restriction impacts glucose metabolism and body composition throughout life in both sexes.

    PubMed

    Wallace, Jacqueline M; Milne, John S; Aitken, Raymond P; Horgan, Graham W; Adam, Clare L

    2018-05-22

    Low birthweight is a risk factor for later adverse health. Here the impact of placentally-mediated prenatal growth-restriction followed by postnatal nutrient abundance on growth, glucose metabolism and body composition was assessed in both sexes at key stages from birth to mid-adult life. Singleton-bearing adolescent dams were fed control or high nutrient intakes to induce normal or growth-restricted pregnancies, respectively. Restricted lambs had ~40% reduced birthweight. Fractional growth rates were higher in restricted lambs of both sexes predominantly during suckling/juvenile phases. Thereafter, rates and patterns of growth differed by sex. Absolute catch-up was not achieved and restricted offspring had modestly reduced weight and stature at mid-adulthood necropsy (~109 weeks). Dual-energy X-ray absorptiometry revealed lower bone mineral density in restricted versus normal lambs at 11, 41, 64 and 107 weeks, with males>females from 41 weeks onwards. Body fat percentage was higher in females versus males throughout, in restricted versus normal lambs at weaning (both sexes), and in restricted versus normal females at mid-adulthood. Insulin secretion after glucose-challenge was greater in restricted versus normal of both sexes at 7 weeks, and in restricted-males at 32 weeks. In both sexes fasting glucose concentrations were greater in restricted offspring across the life-course, while glucose area-under-the-curve after challenge was higher in restricted offspring at 32, 60, 85 and 106 weeks, indicative of persistent glucose intolerance. Therefore prenatal growth-restriction has negative consequences for body composition and metabolism throughout the life-course with the effects modulated by sex differences in postnatal growth rates, fat deposition and bone mass accrual.

  9. Surface nitridation improves bone cell response to melt-derived bioactive silicate/borosilicate glass composite scaffolds.

    PubMed

    Orgaz, Felipe; Dzika, Alexandra; Szycht, Olga; Amat, Daniel; Barba, Flora; Becerra, José; Santos-Ruiz, Leonor

    2016-01-01

    Novel bioactive amorphous glass-glass composite scaffolds (ICIE16/BSG) with interconnected porosity have been developed. Hierarchically interconnected porous glass scaffolds were prepared from a mixture of two melt-derived glasses: a ICIE16 bioactive glass that was previously developed by Wu et al. (2011) to prevent crystallization, and a borosilicate glass of composition 73.48 SiO2-11.35 B2O3-15.15 Na2O (wt%). The resulting melt derived glass-glass composite scaffolds (ICIE16/BSG) were subject to surface functionalization to further improve its interaction with biological systems. Surface functionalization was performed by a nitridation process with hot gas N2/ammonia at 550°C for 2h, obtaining the ICIE16/BSG-NITRI. Evaluation of the degradation rate and the conversion to hydroxyapatite after immersion in simulated body fluid predicted a good biological activity of all the scaffolds, but particularly of the nitrided ones. In vitro evaluation of osteoblastic cells cultured onto the nitrided and non-nitrided scaffolds showed cell attachment, proliferation and differentiation on all scaffolds, but both proliferation and differentiation were improved in the nitrided ICIE16/BSG-NITRI. Biomaterials are often required in the clinic to stimulate bone repair. We have developed a novel bioglass (ICIE16/SBG-NITRI) that can be sintered into highly porous 3D scaffolds, and we have further improved its bioactivity by nitridation. ICIE16/SBG-NITRI was synthesized from a mixture of two melt-derived glasses through combined gel casting and foam replication techniques, followed by nitridation. To mimic bone, it presents high-interconnected porosity while being mechanically stable. Nitridation improved its reactivity and bioactivity facilitating its resorption and the deposition of apatite (bone-like mineral) on its surface and increasing its degradation rate. The nitrided surface also improved the bioglass' interaction with bone cells, which were found to attach better to ICIE16

  10. Non-invasive techniques for determining musculoskeleton body composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohn, S.H.

    1984-01-01

    In vivo neutron activation analysis, combined with gamma spectrometry, has ushered in a new era of clinical diagnosis and evaluation of therapies, as well as investigation into and modelling of body composition in both normal individuals and patients suffering from various diseases and dysfunctions. Body composition studies have provided baseline data on such vital constituents as nitrogen, potassium and calcium. The non-invasive measurement techniques are particularly suitable for study of the musculo-skeletal changes in body composition. Of particular relevance here is the measurement of calcium loss in astronauts during prolonged space flights.

  11. The Body and the Beautiful: Health, Attractiveness and Body Composition in Men's and Women's Bodies.

    PubMed

    Brierley, Mary-Ellen; Brooks, Kevin R; Mond, Jonathan; Stevenson, Richard J; Stephen, Ian D

    2016-01-01

    The dominant evolutionary theory of physical attraction posits that attractiveness reflects physiological health, and attraction is a mechanism for identifying a healthy mate. Previous studies have found that perceptions of the healthiest body mass index (weight scaled for height; BMI) for women are close to healthy BMI guidelines, while the most attractive BMI is significantly lower, possibly pointing to an influence of sociocultural factors in determining attractive BMI. However, less is known about ideal body size for men. Further, research has not addressed the role of body fat and muscle, which have distinct relationships with health and are conflated in BMI, in determining perceived health and attractiveness. Here, we hypothesised that, if attractiveness reflects physiological health, the most attractive and healthy appearing body composition should be in line with physiologically healthy body composition. Thirty female and 33 male observers were instructed to manipulate 15 female and 15 male body images in terms of their fat and muscle to optimise perceived health and, separately, attractiveness. Observers were unaware that they were manipulating the muscle and fat content of bodies. The most attractive apparent fat mass for female bodies was significantly lower than the healthiest appearing fat mass (and was lower than the physiologically healthy range), with no significant difference for muscle mass. The optimal fat and muscle mass for men's bodies was in line with the healthy range. Male observers preferred a significantly lower overall male body mass than did female observers. While the body fat and muscle associated with healthy and attractive appearance is broadly in line with physiologically healthy values, deviations from this pattern suggest that future research should examine a possible role for internalization of body ideals in influencing perceptions of attractive body composition, particularly in women.

  12. [Effects of cuttlefish bone-bone morphogenetic protein composite material on osteogenesis and revascularization of bone defect in rats].

    PubMed

    Liu, Yuan; Yu, Jiang; Bai, Jie; Gu, Jin-song; Cai, Bin; Zhou, Xia

    2013-12-01

    To study the effects of cuttlefish bone-bone morphogenetic protein (BMP) composite material on osteogenesis and revascularization of bone defect in rats. The cuttlefish bone was formed into cylinder with the diameter of about 5 mm and height of about 2 mm after the shell was removed, and then it was soaked in the recombinant human BMP 2 to make a cuttlefish bone-BMP (CBB) composite material. Thirty SD rats, with a defect of skull in every rat, were divided into the CBB and pure cuttlefish bone (PCB) groups according to the random number table, with 15 rats in each group. The rats in the group CBB and group PCB were transplanted with the corresponding material to repair the skull defect. At post transplantation week (PTW) 4, 6, and 8, 5 rats from every group were sacrificed by exsanguination, and ink perfusion was performed. One day later, all the transplants and part of the skull surrounding the defect were harvested, and general observation was conducted at the same time. The specimens were paraffin sectioned for HE staining and Masson staining. The area of microvessel and the area of newborn bone were observed and analyzed through histopathological techniques and image collection system. Data were processed with the analysis of variance of factorial design and LSD test. The correlation between the area of microvessel and the area of newborn bone of the group CBB was analyzed with Pearson correlation analysis. (1) The general observation of the transplant region showed that the transplants were encapsulated by a capsule of fibrous connective tissue. The texture of capsule was soft and relatively thick at PTW 4. The texture was tenacious and thin, but rather compact at PTW 6 and 8. The transplants became gelatinous at PTW 4, and similar to the cartilage tissue at PTW 6 and 8. (2) Histological observation showed that the structure of the transplants in two groups was damaged at PTW 4. A moderate quantity of inflammatory cell infiltration could be observed. The

  13. Case Study: The Effect of 32 Weeks of Figure-Contest Preparation on a Self-Proclaimed Drug-Free Female's Lean Body and Bone Mass.

    PubMed

    Petrizzo, John; DiMenna, Frederick J; Martins, Kimberly; Wygand, John; Otto, Robert M

    2017-12-01

    To achieve the criterion appearance before competing in a physique competition, athletes undergo preparatory regimens involving high-volume intense resistance and aerobic exercise with hypocaloric energy intake. As the popularity of "drug-free" competition increases, more athletes are facing this challenge without the recuperative advantage provided by performance-enhancing drugs. Consequently, the likelihood of loss of lean body and/or bone mass is increased. The purpose of this investigation was to monitor changes in body composition for a 29-year-old self-proclaimed drug-free female figure competitor during a 32-week preparatory regimen comprising high-volume resistance and aerobic exercise with hypocaloric energy intake. We used dual-energy x-ray absorptiometry (DXA) to evaluate regional fat and bone mineral density. During the initial 22 weeks, the subject reduced energy intake and engaged in resistance (4-5 sessions/week) and aerobic (3 sessions/week) training. During the final 10 weeks, the subject increased exercise frequency to 6 (resistance) and 4 (aerobic) sessions/week while ingesting 1130-1380 kcal/day. During this 10-week period, she consumed a high quantity of protein (~55% of energy intake) and nutritional supplements. During the 32 weeks, body mass and fat mass decreased by 12% and 55%, respectively. Conversely, lean body mass increased by 1.5%, an amount that exceeded the coefficient of variation associated with DXA-derived measurement. Total bone mineral density was unchanged throughout. In summary, in preparation for a figure competition, a self-proclaimed drug-free female achieved the low body-fat percentage required for success in competition without losing lean mass or bone density by following a 32-week preparatory exercise and nutritional regimen.

  14. A novel composite material specifically developed for ultrasound bone phantoms: cortical, trabecular and skull

    NASA Astrophysics Data System (ADS)

    Wydra, A.; Maev, R. Gr

    2013-11-01

    In the various stages of developing diagnostic and therapeutic equipment, the use of phantoms can play a very important role in improving the process, help in implementation, testing and calibrations. Phantoms are especially useful in developing new applications and training new doctors in medical schools. However, devices that use different physical factors, such as MRI, Ultrasound, CT Scan, etc will require the phantom to be made of different physical properties. In this paper we introduce the properties of recently designed new materials for developing phantoms for ultrasonic human body investigation, which in today's market make up more than 30% in the world of phantoms. We developed a novel composite material which allows fabrication of various kinds of ultrasound bone phantoms to mimic most of the acoustical properties of human bones. In contrast to the ex vivo tissues, the proposed material can maintain the physical and acoustical properties unchanged for long periods of time; moreover, these properties can be custom designed and created to suit specific needs. As a result, we introduce three examples of ultrasound phantoms that we manufactured in our laboratory: cortical, trabecular and skull bone phantoms. The paper also presents the results of a comparison study between the acoustical and physical properties of actual human bones (reported in the referenced literatures) and the phantoms manufactured by us.

  15. A novel composite material specifically developed for ultrasound bone phantoms: cortical, trabecular and skull.

    PubMed

    Wydra, A; Maev, R Gr

    2013-11-21

    In the various stages of developing diagnostic and therapeutic equipment, the use of phantoms can play a very important role in improving the process, help in implementation, testing and calibrations. Phantoms are especially useful in developing new applications and training new doctors in medical schools. However, devices that use different physical factors, such as MRI, Ultrasound, CT Scan, etc will require the phantom to be made of different physical properties. In this paper we introduce the properties of recently designed new materials for developing phantoms for ultrasonic human body investigation, which in today's market make up more than 30% in the world of phantoms. We developed a novel composite material which allows fabrication of various kinds of ultrasound bone phantoms to mimic most of the acoustical properties of human bones. In contrast to the ex vivo tissues, the proposed material can maintain the physical and acoustical properties unchanged for long periods of time; moreover, these properties can be custom designed and created to suit specific needs. As a result, we introduce three examples of ultrasound phantoms that we manufactured in our laboratory: cortical, trabecular and skull bone phantoms. The paper also presents the results of a comparison study between the acoustical and physical properties of actual human bones (reported in the referenced literatures) and the phantoms manufactured by us.

  16. Making the invisible body visible. Bone scans, osteoporosis and women's bodily experiences.

    PubMed

    Reventlow, Susanne Dalsgaard; Hvas, Lotte; Malterud, Kirsti

    2006-06-01

    The imaging technology of bone scans allows visualization of the bone structure, and determination of a numerical value. Both these are subjected to professional interpretation according to medical (epidemiological) evidence to estimate the individual's risk of fractures. But when bodily experience is challenged by a visual diagnosis, what effect does this have on an individual? The aim of this study was to explore women's bodily experiences after a bone scan and to analyse how the scan affects women's self-awareness, sense of bodily identity and integrity. We interviewed 16 Danish women (aged 61-63) who had had a bone scan for osteoporosis. The analysis was based on Merleau-Ponty's perspective of perception as an embodied experience in which bodily experience is understood to be the existential ground of culture and self. Women appeared to take the scan literally and planned their lives accordingly. They appeared to believe that the 'pictures' revealed some truth in themselves. The information supplied by the scan fostered a new body image. The women interpreted the scan result (a mark on a curve) to mean bodily fragility which they incorporated into their bodily perception. The embodiment of this new body image produced new symptom interpretations and preventive actions, including caution. The result of the bone scan and its cultural interpretation triggered a reconstruction of the body self as weak with reduced capacity. Women's interpretation of the bone scan reorganized their lived space and time, and their relations with others and themselves. Technological information about osteoporosis appeared to leave most affected women more uncertain and restricted rather than empowered. The findings raise some fundamental questions concerning the use of medical technology for the prevention of asymptomatic disorders.

  17. Quantitative MRI and spectroscopy of bone marrow

    PubMed Central

    Ruschke, Stefan; Dieckmeyer, Michael; Diefenbach, Maximilian; Franz, Daniela; Gersing, Alexandra S.; Krug, Roland; Baum, Thomas

    2017-01-01

    Bone marrow is one of the largest organs in the human body, enclosing adipocytes, hematopoietic stem cells, which are responsible for blood cell production, and mesenchymal stem cells, which are responsible for the production of adipocytes and bone cells. Magnetic resonance imaging (MRI) is the ideal imaging modality to monitor bone marrow changes in healthy and pathological states, thanks to its inherent rich soft‐tissue contrast. Quantitative bone marrow MRI and magnetic resonance spectroscopy (MRS) techniques have been also developed in order to quantify changes in bone marrow water–fat composition, cellularity and perfusion in different pathologies, and to assist in understanding the role of bone marrow in the pathophysiology of systemic diseases (e.g. osteoporosis). The present review summarizes a large selection of studies published until March 2017 in proton‐based quantitative MRI and MRS of bone marrow. Some basic knowledge about bone marrow anatomy and physiology is first reviewed. The most important technical aspects of quantitative MR methods measuring bone marrow water–fat composition, fatty acid composition, perfusion, and diffusion are then described. Finally, previous MR studies are reviewed on the application of quantitative MR techniques in both healthy aging and diseased bone marrow affected by osteoporosis, fractures, metabolic diseases, multiple myeloma, and bone metastases. Level of Evidence: 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:332–353. PMID:28570033

  18. Effects of a short-term whole body vibration intervention on bone mass and structure in elderly people.

    PubMed

    Gómez-Cabello, Alba; González-Agüero, Alejandro; Morales, Silvia; Ara, Ignacio; Casajús, José A; Vicente-Rodríguez, Germán

    2014-03-01

    We aimed to clarify whether a short-term whole body vibration training has a beneficial effect on bone mass and structure in elderly men and women. Randomised controlled trial. A total of 49 non-institutionalised elderly (20 men and 29 women) volunteered to participate in the study. Participants who met the inclusion criteria were randomly assigned to one of the study groups (whole body vibration or control). A total of 24 elderly trained squat positioned on a vibration platform 3 times per week for 11 weeks. Bone-related variables were assessed by dual-energy X-ray absorptiometry and peripheral quantitative computed tomography. Two-way repeated measures one-way analysis of variance (group by time) was used to determine the effects of the intervention on the bone-related variables and also to determinate the changes within group throughout the intervention period. Analysis of covariance was used to test the differences between groups for bone-related variables in pre- and post-training assessments and in the percentage of change between groups. All analysis were carried out including age, height, subtotal lean mass and daily calcium intake as covariates. 11 weeks of whole body vibration training led to no changes in none of the bone mineral content and bone mineral density parameters measured by dual-energy X-ray absorptiometry through the skeleton. At the tibia, total, trabecular and cortical volumetric bone mineral density decreased significantly in the whole body vibration group (all P<0.05). A short-term whole body vibration therapy is not enough to cause any changes on bone mineral content or bone mineral density and it only produces a slight variation on bone structure among elderly people. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  19. Bone Metabolism in Adolescent Athletes With Amenorrhea, Athletes With Eumenorrhea, and Control Subjects

    PubMed Central

    Christo, Karla; Prabhakaran, Rajani; Lamparello, Brooke; Cord, Jennalee; Miller, Karen K.; Goldstein, Mark A.; Gupta, Nupur; Herzog, David B.; Klibanski, Anne; Misra, Madhusmita

    2011-01-01

    OBJECTIVE We hypothesized that, despite increased activity, bone density would be low in athletes with amenorrhea, compared with athletes with eumenorrhea and control subjects, because of associated hypogonadism and would be associated with a decrease in bone formation and increases in bone-resorption markers. METHODS In a cross-sectional study, we examined bone-density measures (spine, hip, and whole body) and body composition by using dual-energy radiograph absorptiometry and assessed fasting levels of insulin-like growth factor I and bone-turnover markers (N-terminal propeptied of type 1 procollagen and N-telopeptide) in 21 athletes with amenorrhea, 18 athletes with eumenorrhea, and 18 control subjects. Subjects were 12 to 18 years of age and of comparable chronologic and bone age. RESULTS Athletes with amenorrhea had lower bone-density z scores at the spine and whole body, compared with athletes with eumenorrhea and control subjects, and lower hip z scores, compared with athletes with eumenorrhea. Lean mass did not differ between groups. However, athletes with amenorrhea had lower BMI z scores than did athletes with eumenorrhea and lower insulin-like growth factor I levels than did control subjects. Levels of both markers of bone turnover were lower in athletes with amenorrhea than in control subjects. BMI z scores, lean mass, insulin-like growth factor I levels, and diagnostic category were important independent predictors of bone mineral density z scores. CONCLUSIONS Although they showed no significant differences in lean mass, compared with athletes with eumenorrhea and control subjects, athletes with amenorrhea had lower bone density at the spine and whole body. Insulin-like growth factor I levels, body-composition parameters, and menstrual status were important predictors of bone density. Follow-up studies are necessary to determine whether amenorrhea in athletes adversely affects the rate of bone mass accrual and therefore peak bone mass. PMID:18519482

  20. Rotator Cuff Repair with a Tendon-Fibrocartilage-Bone Composite Bridging Patch

    PubMed Central

    Ji, Xiaoxi; Chen, Qingshan; Thoreson, Andrew R.; Qu, Jin; An, Kai-Nan; Amadio, Peter C.; Steinmann, Scott P.; Zhao, Chunfeng

    2015-01-01

    Background To compare the mechanical performance of a rotator cuff repaired with a novel tendon-fibrocartilage-bone composite bridging patch vs the traditional Mason-Allen repair in an in vitro canine model. Methods Twenty shoulders and 10 bridging patches from patellar tendon were harvested. The patches were trimmed and sliced into 2 layers. An infraspinatus tendon tear was created in each shoulder. Modified Mason-Allen sutures were used to repair the infraspinatus tendon to the greater tuberosity, with or without the bridging patch (bridging patch group and controls, respectively). Shoulders were loaded to failure under displacement control at a rate of 0.5mm/sec. Findings The ultimate tensile load was significantly higher in the bridging patch group than control (mean [SD], 365.46 [36.45] vs 272.79 [48.88] N; P<.001). Stiffness at the greater tuberosity repair site and the patch-infraspinatus tendon repair site was significantly higher than the control repair site (93.96 [27.72] vs 42.62 [17.48] N/mm P<.001; 65.94 [24.51] vs 42.62 [17.48] N/mm P=.02, respectively). Interpretation The tendon-fibrocartilage-bone composite bridging patch achieved higher ultimate tensile load and stiffness at the patch–greater tuberosity repair site compared with traditional repair in a canine model. This composite tissue transforms the traditional tendon-to-bone healing interface (with dissimilar tissues) into a pair of bone-to-bone and tendon-to-tendon interfaces, which may improve healing quality and reduce retear rate. PMID:26190097

  1. Rotator cuff repair with a tendon-fibrocartilage-bone composite bridging patch.

    PubMed

    Ji, Xiaoxi; Chen, Qingshan; Thoreson, Andrew R; Qu, Jin; An, Kai-Nan; Amadio, Peter C; Steinmann, Scott P; Zhao, Chunfeng

    2015-11-01

    To compare the mechanical performance of a rotator cuff repaired with a novel tendon-fibrocartilage-bone composite bridging patch vs the traditional Mason-Allen repair in an in vitro canine model. Twenty shoulders and 10 bridging patches from patellar tendon were harvested. The patches were trimmed and sliced into 2 layers. An infraspinatus tendon tear was created in each shoulder. Modified Mason-Allen sutures were used to repair the infraspinatus tendon to the greater tuberosity, with or without the bridging patch (bridging patch group and controls, respectively). Shoulders were loaded to failure under displacement control at a rate of 0.5mm/s. The ultimate tensile load was significantly higher in the bridging patch group than control (mean [SD], 365.46 [36.45] vs 272.79 [48.88] N; P<.001). Stiffness at the greater tuberosity repair site and the patch-infraspinatus tendon repair site was significantly higher than the control repair site (93.96 [27.72] vs 42.62 [17.48] N/mm P<.001; 65.94 [24.51] vs 42.62 [17.48] N/mm P=.02, respectively). The tendon-fibrocartilage-bone composite bridging patch achieved higher ultimate tensile load and stiffness at the patch-greater tuberosity repair site compared with traditional repair in a canine model. This composite tissue transforms the traditional tendon-to-bone healing interface (with dissimilar tissues) into a pair of bone-to-bone and tendon-to-tendon interfaces, which may improve healing quality and reduce retear rate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Growth in bone and body size among Asian and white girls in the Female Adolescent Maturation (FAM) study.

    PubMed

    Novotny, Rachel; Davis, James

    2015-01-01

    This study intends to identify differences in growth of Asian and White girls. Asian girls gained bone at similar rates to White girls. Physical activity was important to bone growth. Ethnic differences remained after adjusting for physical activity, demographics, and diet. Physical activity can improve bone gain. The purpose of this study is to examine differences in body size and bone growth of Asian, White, and Asian-White Mixed girls. Three prospective examinations of 99 Asian, 73 White, and 63 Mixed Asian and White girls, with a mean age of 11.0 years at enrollment were performed. Calcaneal bone mass, skeletal breadths, and body fat were measured. Physical activity, diet, and birth size were reported. The analyses examined the extent that body dimensions and bone size changed over time by demographic, diet, physical activity, body, and bone size parameters. White children were the most physically active yet had lower calcaneal ultrasound values for speed of sound (SOS). Based on regression models, bone mass, and subscapular skinfold thickness were greater in Asian girls compared to White and Asian-White Mixed girls at age 10 years. Asian-White Mixed girls had greater BMI compared to Asian or White girls. Asian girls gained body size more slowly than White girls, but changes in bone parameters did not differ significantly; Asian-White Mixed girls gained abdomen, hip, and weight more slowly than White girls. Among all girls, SOS and broadband ultrasound attenuation (BUA) increased significantly by level of physical activity before 12 years, but not after. Asian girls had more upper body (subscapular) fat at age 10 years and gained height and hip and abdomen circumferences more slowly than Asian-White and White girls. Asian girls had greater bone SOS and BUA at age 10 years but gained bone at similar rates to White girls. Physical activity was especially important to bone growth before age 12 years. However, ethnic differences remained after adjusting for

  3. Allograft-prosthesis composites after bone tumor resection at the proximal tibia.

    PubMed

    Biau, David Jean; Dumaine, Valérie; Babinet, Antoine; Tomeno, Bernard; Anract, Philippe

    2007-03-01

    The survival of irradiated allograft-prosthesis composites at the proximal tibia is mostly unknown. However, allograft-prosthesis composites have proved beneficial at other reconstruction sites. We presumed allograft-prosthesis composites at the proximal tibia would improve survival and facilitate reattachment of the extensor mechanism compared with that of conventional (megaprostheses) reconstructions. We retrospectively reviewed 26 patients who underwent resection of proximal tibia tumors followed by reconstruction with allo-graft-prosthesis composites. Patients received Guepar massive custom-made fully constrained prostheses. Allografts were sterilized with gamma radiation, and the stems were cemented into the allograft and host bone. The minimum followup was 6 months (median, 128 months; range, 6-195 months). Fourteen patients had one or more components removed. The median allograft-prosthesis composite survival was 102 months (95% confidence interval, 64.2-infinity). Of the 26 allografts, seven fractured, six showed signs of partial resorption, and six had infections develop. Seven allografts showed signs of fusion with the host bone. Six extensor mechanism reconstructions failed. Allograft-prosthesis composites sterilized by gamma radiation yielded poor results for proximal tibial reconstruction as complications and failures were common. We do not recommend irradiated allograft-prosthesis composites for proximal tibia reconstruction.

  4. [Concept of optimal body composition of professional football players].

    PubMed

    Grigoryan, S

    2011-09-01

    Body composition and body weight are two of the many factors that contribute to optimal exercise performance. Body weight can influence an athlete's speed, endurance, and power, whereas body composition can affect an athlete's strength, agility, and appearance. Individualized assessment of an athlete's body composition and body weight or body image may be advantageous for the improvement of athletic performance. The purpose of the present research consists in development of physiologically proved modelling characteristic of high performance football players on the basis of the analysis of dynamics (changes) of the major parameters of structure of weight of football players of various ages in process of acquiring game experience and skill. 344 football players from 15 to 35 years old were surveyed. The basic parameters of body composition were determined. It was found that general tendency in dynamics of the basic components of structure of body composition at the end of playing season is expressed in appreciable gain of active cellular weight as analogue of the muscular mass, decrease in the absolute fat contents, increase in endocellular liquid and eritrocyte mass. Comparison of changeable parameters to external criteria of success in competition and tested productivity, adaptive reactions and stability of motivation led to the conclusion that quantitative sports-skill evaluation and forecast of the growth in achievements is possible.

  5. From Milk to Bones, Moving Calcium Through the Body: Calcium Kinetics During Space Flight

    NASA Technical Reports Server (NTRS)

    Smith, Scott; Bloomberg, Jacob; Lee, Angie (Technical Monitor)

    2002-01-01

    Did you know that when astronauts are in space, their height increases about two inches? This happens because the weightlessness of space allows the spine, usually compressed in Earth's gravity, to expand. While this change is relatively harmless, other more serious things can happen with extended stays in weightlessness, notably bone loss. From previous experiments, scientists have observed that astronauts lose bone mass at a rate of about one percent per month during flight. Scientists know that bone is a dynamic tissue - continually being made and repaired by specialized bone cells throughout life. Certain cells produce new bone, while other cells are responsible for removing and replacing old bone. Research on the mechanisms of bone metabolism and the effects of space flight on its formation and repair are part of the exciting studies that will be performed during STS-107. Calcium plays a central role because 1) it gives strength and structure to bone and 2) all types of cells require it to function normally. Ninety-nine percent of calcium in the body is stored in the skeleton. However, calcium may be released, or resorbed, from bone to provide for other tissues when you are not eating. To better understand how and why weightlessness induces bone loss, astronauts will participate in a study of calcium kinetics - that is, the movement of calcium through the body, including absorption from food, and its role in the formation and breakdown of bone.

  6. Composite Bone and Soft Tissue Loss Treated with Distraction Histiogenesis

    DTIC Science & Technology

    2010-01-01

    their frames removed had healed docking sites, and the fourth whose frame remained in place had a healing fracture without evidence of delayed union ...interventions (3–8). The goals of limb salvage surgery in this setting are to restore length and alignment, regenerate bone loss, obtain fracture union ...angulation to manage composite bone and soft tissue loss associated with combat-related type IIIB open tibia fractures . Four patients underwent placement

  7. Longitudinal Changes and Seasonal Variation in Body Composition in Professional Australian Football Players.

    PubMed

    Bilsborough, Johann C; Kempton, Thomas; Greenway, Kate; Cordy, Justin; Coutts, Aaron J

    2017-01-01

    To compare development and variations in body composition of early-, mid-, and late-career professional Australian Football (AF) players over 3 successive seasons. Regional and total-body composition (body mass [BM], fat mass [FM], fat-free soft-tissue mass [FFSTM], and bone mineral content [BMC]) were assessed 4 times, at the same time of each season-start preseason (SP), end preseason (EP), midseason (MS), and end season (ES)-from 22 professional AF players using pencil-beam dual-energy X-ray absorptiometry. Nutritional intake for each player was evaluated concomitantly using 3-d food diaries. Players were classified according to their age at the beginning of the observational period as either early- (<21 y, n = 8), mid- (21 to 25 y, n = 9), or late- (>25 y, n = 5) career athletes. Early-career players had lower FFSTM, BMC, and BM than mid- and late-career throughout. FM and %FM had greatest variability, particularly in the early-career players. FM reduced and FFSTM increased from SP to EP, while FM and FFSTM decreased from EP to MS. FM increased and FFSTM decreased from MS to ES, while FM and FFSTM increased during the off-season. Early-career players may benefit from greater emphasis on specific nutrition and resistance-training strategies aimed at increasing FFSTM, while all players should balance training and diet toward the end of season to minimize increases in FM.

  8. Telehealth Coaching: Impact on Dietary and Physical Activity Contributions to Bone Health During a Military Deployment.

    PubMed

    Frank, Laura L; McCarthy, Mary S

    2016-05-01

    To examine the difference in bone health and body composition via blood biomarkers, bone mineral density, anthropometrics and dietary intake following deployment to Afghanistan among soldiers randomized to receive telehealth coaching promoting nutrition and exercise. This was a prospective, longitudinal, cluster-randomized, controlled trial with repeated measures in 234 soldiers. Measures included heel bone scan for bone mineral density, blood biomarkers for bone formation, resorption, and turnover, body composition via Futrex, resting metabolic rate via MedGem, physical activity using the Baecke Habitual Physical Activity Questionnaire, and dietary intake obtained from the Block Food Frequency Questionnaire. There were significant increases in body fat (p = 0.00035), osteocalcin (0.0152), and sports index (p = 0.0152) for the telehealth group. No other statistically significant differences were observed between groups. Vitamin D intake among soldiers was ≤ 35% of the suggested Dietary Reference Intakes for age. A 9-month deployment to Afghanistan increased body fat, bone turnover, and physical activity among soldiers randomized to receive telehealth strategies to build bone with nutrition and exercise. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.

  9. Multi-Component Molecular-Level Body Composition Reference Methods: Evolving Concepts and Future Directions

    PubMed Central

    Heymsfield, Steven B.; Ebbeling, Cara B.; Zheng, Jolene; Pietrobelli, Angelo; Strauss, Boyd J.; Silva, Analiza M.; Ludwig, David S.

    2015-01-01

    Excess adiposity is the main phenotypic feature that defines human obesity and that plays a pathophysiological role in most chronic diseases. Measuring the amount of fat mass present is thus a central aspect of studying obesity at the individual and population levels. Nevertheless, a consensus is lacking among investigators on a single accepted “reference” approach for quantifying fat mass in vivo. While the research community generally relies on the multicomponent body-volume class of “reference” models for quantifying fat mass, no definable guide discerns among different applied equations for partitioning the four (fat, water, protein, and mineral mass) or more quantified components, standardizes “adjustment” or measurement system approaches for model-required labeled water dilution volumes and bone mineral mass estimates, or firmly establishes the body temperature at which model physical properties are assumed. The resulting differing reference strategies for quantifying body composition in vivo leads to small but under some circumstances important differences in the amount of measured body fat. Recent technological advances highlight opportunities to expand model applications to new subject groups and measured components such as total body protein. The current report reviews the historical evolution of multicomponent body volume-based methods in the context of prevailing uncertainties and future potential. PMID:25645009

  10. Measurement of Body Composition in Children.

    ERIC Educational Resources Information Center

    Lohman, T. G.

    1982-01-01

    Identification and treatment of obesity in children is believed to be an important factor in its control during the adult years. Laboratory and field methods for body composition measurement are described along with estimates of body fat content from anthropometric dimensions. (CJ)

  11. The relationships among total body fat, bone mineral content and bone marrow adipose tissue in early-pubertal girls

    PubMed Central

    L Newton, Anna; J Hanks, Lynae; Davis, Michelle; Casazza, Krista

    2013-01-01

    Investigation of the physiologic relevance of bone marrow adipose tissue (BMAT) during growth may promote understanding of the bone-fat axis and confluence with metabolic factors. The objective of this pilot investigation was two-fold: (1) to evaluate the relationships among total body fat, bone mineral content (BMC) and femoral BMAT during childhood and underlying metabolic determinants and (2) to determine if the relationships differ by race. Participants included white and non-Hispanic black girls (n=59) ages 4–10 years. Femoral BMAT volume was measured by magnetic resonance imaging, BMC and body fat by dual-energy X-ray absorptiometry. Metabolic parameters were assessed in the fasted state. Total fat and BMC were positively associated with BMAT; however, simultaneous inclusion of BMC and body fat in the statistical model attenuated the association between BMC and BMAT. Differences in BMAT volume were observed, non-Hispanic black girls exhibiting marginally greater BMAT at age eight (P=0.05) and white girls exhibiting greater BMAT at age ten (P<0.001). Metabolic parameters conferred differential impact by race, such that, a positive association for BMAT and leptin (P=0.02) and adiponectin (P=0.002) in white girls while BMAT and insulin were inversely related in non-Hispanic black girls (P=0.008). Our findings revealed a positive relationship between BMAT, body fat and BMC, although body fat, respective to leptin, contributed partly to the relationship between BMAT and BMC. Despite large differences in total fat between non-Hispanic black and white, the relationship between BMAT and BMC was similar to white girls. However, this relationship appeared to be impacted through different mechanisms according to race. PMID:23951544

  12. The relationships among total body fat, bone mineral content and bone marrow adipose tissue in early-pubertal girls.

    PubMed

    L Newton, Anna; J Hanks, Lynae; Davis, Michelle; Casazza, Krista

    2013-01-01

    Investigation of the physiologic relevance of bone marrow adipose tissue (BMAT) during growth may promote understanding of the bone-fat axis and confluence with metabolic factors. The objective of this pilot investigation was two-fold: (1) to evaluate the relationships among total body fat, bone mineral content (BMC) and femoral BMAT during childhood and underlying metabolic determinants and (2) to determine if the relationships differ by race. Participants included white and non-Hispanic black girls (n=59) ages 4-10 years. Femoral BMAT volume was measured by magnetic resonance imaging, BMC and body fat by dual-energy X-ray absorptiometry. Metabolic parameters were assessed in the fasted state. Total fat and BMC were positively associated with BMAT; however, simultaneous inclusion of BMC and body fat in the statistical model attenuated the association between BMC and BMAT. Differences in BMAT volume were observed, non-Hispanic black girls exhibiting marginally greater BMAT at age eight (P=0.05) and white girls exhibiting greater BMAT at age ten (P<0.001). Metabolic parameters conferred differential impact by race, such that, a positive association for BMAT and leptin (P=0.02) and adiponectin (P=0.002) in white girls while BMAT and insulin were inversely related in non-Hispanic black girls (P=0.008). Our findings revealed a positive relationship between BMAT, body fat and BMC, although body fat, respective to leptin, contributed partly to the relationship between BMAT and BMC. Despite large differences in total fat between non-Hispanic black and white, the relationship between BMAT and BMC was similar to white girls. However, this relationship appeared to be impacted through different mechanisms according to race.

  13. The Body Composition of a College Football Team.

    ERIC Educational Resources Information Center

    Wickkiser, John D.; Kelly, John M.

    This study focuses on the body composition and anthropometric measurements of 65 college football players. Body composition was determined by underwater weighing with an accurate assessment of residual volume. The anthropometric measurements included height, weight, seven skinfolds, waist circumference, and wrist diameter. A step-wise multiple…

  14. Body composition changes after laparoscopic adjustable gastric banding: what is the role of -174G>C interleukin-6 promoter gene polymorphism in the therapeutic strategy?

    PubMed

    Di Renzo, L; Carbonelli, M G; Bianchi, A; Iacopino, L; Fiorito, R; Di Daniele, N; De Lorenzo, A

    2012-03-01

    There is growing evidence that interleukin-6 (IL-6) is linked to the regulation of fat mass (FM). Our previous data define the common -174G>C IL-6 polymorphism as a marker for 'vulnerable' individuals at risk of age- and obesity-related diseases. An association between -174G>C IL-6 polymorphism and weight loss after bariatric surgery has been demonstrated. We investigated the impact of -174G>C IL-6 polymorphism on weight loss, body composition, fluid distribution and cardiometabolic changes in obese subjects, after laparoscopic adjustable gastric banding (LAGB) surgery. A total of 40 obese subjects were studied at baseline and at 6 months follow-up after LAGB surgery. Cardiometabolic and genetic assessment of -174G>C IL-6 polymorphism, anthropometric, body composition and fluid distribution analysis were performed. After LAGB surgery, significant reductions in weight (Δ%=-11.66 ± 7.78, P<0.001), body mass index (P<0.001), total and trunk FM (kg, %) (Δ% of total FM=-22.22 ± 12.15, P<0.01), bone mineral density (T-score) (P<0.001), resting metabolic rate (RMR) (P<0.01), and total body water and intracellular water (TBW, ICW) (P<0.05) were observed. At baseline, C(-) carriers of IL-6 polymorphism had a significantly higher RMR (P<0.05), free FM (kg), but less total and trunk FM (%), higher body cell mass (BCM), content of TBW (L) and ECW (extracellular water)/ICW ratio compared with C(+) carriers (P<0.001). After LAGB, C(+) carriers had a significantly stronger reduction of total FM (kg), but lower bone density, compared with C(-) carriers (P<0.05). Beyond the relationship between -174G>C IL-6 polymorphism and body composition, this study provides first evidence about the association of IL-6 variant with fluid distribution, at baseline, and FM and bone density loss in obese subjects at 6 months follow-up after LAGB surgery. LAGB was less effective if the subjects were carrying risk genotypes, C(-) carriers, for obesity, suggesting a role of genetic variations on

  15. The development of a composite bone model for training on placement of dental implants

    PubMed Central

    Alkhodary, Mohamed Ahmed; Abdelraheim, Abdelraheim Emad Eldin; Elsantawy, Abd Elaleem Hassan; Al Dahman, Yousef Hamad; Al-Mershed, Mohammed

    2015-01-01

    Objectives It takes a lot of training on patients for both undergraduate to develop clinical sense as regards to the placement of dental implants in the jaw bones, also, the models provided by the dental implant companies for training are usually made of strengthened synthetic foams, which are far from the composition, and tactile sense provided by natural bone during drilling for clinical placement of dental implants. Methodology This is an in-vitro experimental study which utilized bovine femur bone, where the shaft of the femur provided the surface compact layer, and the head provided the cancellous bone layer, to provide a training model similar to jaw bones macroscopic anatomy. Both the compact and cancellous bone samples were characterized using mechanical compressive testing. Results The elastic moduli of the cancellous and cortical femur bone were comparable to those of the human mandible, and the prepared training model provided a more lifelike condition during the drilling and placement of dental implants. Conclusion The composite bone model developed simulated the macroscopic anatomy of the jaw bones having a surface layer of compact bone, and a core of cancellous bone, and provided a better and a more natural hands-on experience for placement of dental implants as compared to plastic models made of polyurethane. PMID:26309434

  16. The development of a composite bone model for training on placement of dental implants.

    PubMed

    Alkhodary, Mohamed Ahmed; Abdelraheim, Abdelraheim Emad Eldin; Elsantawy, Abd Elaleem Hassan; Al Dahman, Yousef Hamad; Al-Mershed, Mohammed

    2015-04-01

    It takes a lot of training on patients for both undergraduate to develop clinical sense as regards to the placement of dental implants in the jaw bones, also, the models provided by the dental implant companies for training are usually made of strengthened synthetic foams, which are far from the composition, and tactile sense provided by natural bone during drilling for clinical placement of dental implants. This is an in-vitro experimental study which utilized bovine femur bone, where the shaft of the femur provided the surface compact layer, and the head provided the cancellous bone layer, to provide a training model similar to jaw bones macroscopic anatomy. Both the compact and cancellous bone samples were characterized using mechanical compressive testing. The elastic moduli of the cancellous and cortical femur bone were comparable to those of the human mandible, and the prepared training model provided a more lifelike condition during the drilling and placement of dental implants. The composite bone model developed simulated the macroscopic anatomy of the jaw bones having a surface layer of compact bone, and a core of cancellous bone, and provided a better and a more natural hands-on experience for placement of dental implants as compared to plastic models made of polyurethane.

  17. The rs3736228 polymorphism in the LRP5 gene is associated with calcaneal ultrasound parameter but not with body composition in a cohort of young Caucasian adults.

    PubMed

    Correa-Rodríguez, María; Schmidt-RioValle, Jacqueline; Rueda-Medina, Blanca

    2017-11-01

    The aim of the present study was to investigate the possible influence of low-density lipoprotein receptor-related protein 5 (LRP5) and sclerostin (SOST) genes as genetic factors contributing to calcaneal quantitative ultrasound (QUS) and body composition variables in a population of young Caucasian adults. The study population comprised a total of 575 individuals (mean age 20.41years; SD 2.36) whose bone mass was assessed through QUS to determine broadband ultrasound attenuation (BUA, dB/MHz). Body composition measurements were performed using a body composition analyser. Seven single-nucleotide polymorphisms (SNPs) of LRP5 (rs2306862, rs599083, rs556442 and rs3736228) and SOST (rs4792909, rs851054 and rs2023794) were selected as genetic markers and genotyped using TaqMan OpenArray ® technology. Linear regression analysis was used to test the possible association of the tested SNPs with QUS and body composition parameters. Linear regression analysis revealed that the rs3736228 SNP of LPR5 was significantly associated with BUA after adjustment for age, sex, weight, height, physical activity and calcium intake (P = 0.028, β (95% CI) = 0.089 (0.099-1.691). For the remaining SNPs, no significant association with the QUS measurement was observed. Regarding body composition, no significant association was found between LRP5 and SOST polymorphisms and body mass index, total fat mass and total lean mass after adjustment for age and sex as covariates. We concluded that the rs3736228 LRP5 genetic polymorphism influences calcaneal QUS parameter in a population of young Caucasian adults. This finding suggests that LRP5 might be an important genetic marker contributing to bone mass accrual early in life.

  18. Strength training and body composition in middle-age women.

    PubMed

    Burrup, Rachelle; Tucker, Larry A; LE Cheminant, James D; Bailey, Bruce W

    2018-01-01

    Strength training is a sound method to improve body composition. However, the effect of age, diet, menopause, and physical activity on the relationship between strength training and body composition in women remains unknown. The purpose of this study was to examine the intricacies of the relationship between strength training and body composition in 257 middle-age women and to quantify the effect of these factors on the association. The study was cross-sectional. Five variables were used to index strength training participation. Body composition was assessed by dual-energy X-ray absorptiometry. Diet was assessed by 7-day weighed food records, and physical activity was measured objectively using accelerometers. There were 109 strength trainers in the sample. For each day per week of strength training, body fat was 1.3 percentage points lower (F=14.8, P<0.001) and fat-free mass was 656 g higher (F=18.9, P<0.001). Likewise, the more time women spent lifting and the more intensely they trained, the better their body composition tended to be. Differences in age, energy and protein consumption had little effect on the associations. However, adjusting for differences in physical activity, and to a lesser extent, menopause status, weakened the relationships significantly. The more days, time, and effort women devote to strength training, the lower their body fat and the higher their fat-free mass tend to be. A significant portion of the differences in body composition seems to result from lifters participating in more physical activity than non-lifters. Menopause status also contributes significantly to the relationship.

  19. Bone loss of vertebral bodies at the operative segment after cervical arthroplasty: a potential complication?

    PubMed

    Heo, Dong Hwa; Lee, Dong Chan; Oh, Jong Yang; Park, Choon Keun

    2017-02-01

    OBJECTIVE Bony overgrowth and spontaneous fusion are complications of cervical arthroplasty. In contrast, bone loss or bone remodeling of vertebral bodies at the operation segment after cervical arthroplasty has also been observed. The purpose of this study is to investigate a potential complication-bone loss of the anterior portion of the vertebral bodies at the surgically treated segment after cervical total disc replacement (TDR)-and discuss the clinical significance. METHODS All enrolled patients underwent follow-up for more than 24 months after cervical arthroplasty using the Baguera C disc. Clinical evaluations included recording demographic data and measuring the visual analog scale and Neck Disability Index scores. Radiographic evaluations included measurements of the functional spinal unit's range of motion and changes such as bone loss and bone remodeling. The grading of the bone loss of the operative segment was classified as follows: Grade 1, disappearance of the anterior osteophyte or small minor bone loss; Grade 2, bone loss of the anterior portion of the vertebral bodies at the operation segment without exposure of the artificial disc; or Grade 3, significant bone loss with exposure of the anterior portion of the artificial disc. RESULTS Forty-eight patients were enrolled in this study. Among them, bone loss developed in 29 patients (Grade 1 in 15 patients, Grade 2 in 6 patients, and Grade 3 in 8 patients). Grade 3 bone loss was significantly associated with postoperative neck pain (p < 0.05). Bone loss was related to the motion preservation effect of the operative segment after cervical arthroplasty in contrast to heterotopic ossification. CONCLUSIONS Bone loss may be a potential complication of cervical TDR and affect early postoperative neck pain. However, it did not affect mid- to long-term clinical outcomes or prosthetic failure at the last follow-up. Also, this phenomenon may result in the motion preservation effect in the operative segment

  20. Gravitational effects on body composition in birds

    NASA Technical Reports Server (NTRS)

    Smith, A. H.; Sanchez P., O.; Burton, R. R.

    1975-01-01

    Gallinaceous birds, presenting a wide range of body size, were adapted physiologically to hyperdynamic environments, provided by chronic centrifugation. Chemical composition was measured directly on prepared carcasses, which were anatomically comparable, and more amenable to analysis than the intact body. Body mass and body fat decreased arithmetically with increasing field strength and also with increasing body mass. Water content of lean tissue increased in hyperdynamic environments, but irrespectively of body size.

  1. Evaluation of Body Composition: Why and How?

    USDA-ARS?s Scientific Manuscript database

    Evaluation of human body composition in vivo remains a critical component in the assessment of nutritional status of an individual.Whereas traditional measurements of standing height and body weight provide information on body mass index and, hence, the risk of some chronic diseases, advanced techno...

  2. The effects of phytoestrogen isoflavones on bone density in women: a double-blind, randomized, placebo-controlled trial.

    PubMed

    Atkinson, Charlotte; Compston, Juliet E; Day, Nicholas E; Dowsett, Mitch; Bingham, Sheila A

    2004-02-01

    Isoflavone phytoestrogen therapy has been proposed as a natural alternative to hormone replacement therapy (HRT). HRT has a beneficial effect on bone, but few trials in humans have investigated the effects of isoflavones on bone. The objective of the study was to determine the effect on bone density of a red clover-derived isoflavone supplement that provided a daily dose of 26 mg biochanin A, 16 mg formononetin, 1 mg genistein, and 0.5 mg daidzein for 1 y. Effects on biochemical markers of bone turnover and body composition were also studied. Women aged 49-65 y (n = 205) were enrolled in a double-blind, randomized, placebo-controlled trial; 177 completed the trial. Bone density, body composition, bone turnover markers, and diet were measured at baseline and after 12 mo. Loss of lumbar spine bone mineral content and bone mineral density was significantly (P = 0.04 and P = 0.03, respectively) lower in the women taking the isoflavone supplement than in those taking the placebo. There were no significant treatment effects on hip bone mineral content or bone mineral density, markers of bone resorption, or body composition, but bone formation markers were significantly increased (P = 0.04 and P = 0.01 for bone-specific alkaline phosphatase and N-propeptide of collagen type I, respectively) in the intervention group compared with placebo in postmenopausal women. Interactions between treatment group and menopausal status with respect to changes in other outcomes were not significant. These data suggest that, through attenuation of bone loss, isoflavones have a potentially protective effect on the lumbar spine in women.

  3. Effect of intense military training on body composition.

    PubMed

    Malavolti, Marcella; Battistini, Nino C; Dugoni, Manfredo; Bagni, Bruno; Bagni, Ilaria; Pietrobelli, Angelo

    2008-03-01

    Individuals in a structural physical training program can show beneficial changes in body composition, such as body fat reduction and muscle mass increase. This study measured body composition changes by using 3 different techniques-skinfold thickness (SF) measurements, air displacement plethysmography (BOD-POD), and dual-energy x-ray absorptiometry (DXA)-during 9 months of intense training in healthy young men engaged in military training. Twenty-seven young men were recruited from a special faction of the Italian Navy. The program previewed three phases: ground combat, sea combat, and amphibious combat. Body composition was estimated at the beginning, in the middle, and at the end of the training. After the subjects performed the ground combat phase, body composition variables significantly decreased: body weight (P < 0.05), fat-free mass (FFM) (P < 0.001), and fat mass (FM) (P < 0.03). During the amphibious combat phase, body weight increased significantly (P < 0.01), mainly because of an increase in FFM (P < 0.001) and a smaller mean decrease in FM. There was a significant difference (P < 0.05) in circumferences and SF at various sites after starting the training course. Bland-Altman analysis did not show any systematic difference between FM and FFM measured with the 3 different techniques on any occasion. On any visit, FFM and FM correlation measured by BOD-POD (P = 0.90) and DXA was significantly greater than measured by SF. A significant difference was found in body mass index (BMI) measured during the study. BOD-POD and SF, compared with DXA, provide valid and reliable measurement of changes in body composition in healthy young men engaged in military training. In conclusion, the findings suggest that for young men of normal weight, changes in body weight alone and in BMI are not a good measure to assess the effectiveness of intense physical training programs, because lean mass gain can masquerade fat weight loss.

  4. Toward body composition reference data for infants, children, and adolescents.

    PubMed

    Wells, Jonathan C K

    2014-05-01

    Growth charts for weight and height have provided the basis for assessment of children's nutritional status for over half a century, with charts for body mass index (BMI) introduced in the 1990s. However, BMI does not provide information on the proportions of fat and lean mass; and within the past decade, growth charts for children's body composition have been produced by using techniques such as skinfold thicknesses, body circumferences, bioelectrical impedance analysis (BIA), and dual-energy X-ray absorptiometry (DXA). For public health research, BIA and skinfold thicknesses show negligible average bias but have wider limits of agreement than specialized techniques. For patients, DXA is the best individual method, but multicomponent models remain ideal because they address perturbations in lean mass composition. Data can be expressed in age- and sex-specific SD scores, in some cases adjusting for height. Most such reference data derive from high-income countries, but techniques such as air-displacement plethysmography allow infant body composition growth charts to be developed in low- and middle-income settings, where the data may improve understanding of the effects of low birth weight, wasting, and stunting on body composition. Recent studies suggest that between-population variability in body composition may derive in part from genetic factors, suggesting a universal human body composition reference may not be viable. Body composition growth charts may be extended into adult life to evaluate changes in fat and lean mass through the entire life course. These reference data will improve the understanding of the association between growth, body composition, health, and disease. © 2014 American Society for Nutrition.

  5. A review on effects of conjugated linoleic fatty acid (CLA) upon body composition and energetic metabolism.

    PubMed

    Lehnen, Tatiana Ederich; da Silva, Marcondes Ramos; Camacho, Augusto; Marcadenti, Aline; Lehnen, Alexandre Machado

    2015-01-01

    Conjugated linoleic acid (CLA) is highly found in fats from ruminants and it appears to favorably modify the body composition and cardiometabolic risk factors. The capacity of CLA to reduce the body fat levels as well as its benefic actions on glycemic profile, atherosclerosis and cancer has already been proved in experimental models. Furthermore, CLA supplementation may modulate the immune function, help re-synthetize of glycogen and potentiate the bone mineralization. CLA supplementation also could increase the lipolysis and reduce the accumulation of fatty acids on the adipose tissue; the putative mechanisms involved may be its action in reducing the lipase lipoprotein activity and to increase the carnitine-palmitoil-transferase-1 (CAT-1) activity, its interaction with PPARγ, and to raise the expression of UCP-1. Although studies made in human have shown some benefits of CLA supplementation as the weight loss, the results are still discordant. Moreover, some have shown adverse effects, such as negative effects on glucose metabolism and lipid profile. The purpose of this article is to review the available data regarding the benefits of CLA on the energetic metabolism and body composition, emphasizing action mechanisms.

  6. Skeletal and body composition evaluation

    NASA Technical Reports Server (NTRS)

    Mazess, R. B.

    1983-01-01

    Research on radiation detectors for absorptiometry; analysis of errors affective single photon absorptiometry and development of instrumentation; analysis of errors affecting dual photon absorptiometry and development of instrumentation; comparison of skeletal measurements with other techniques; cooperation with NASA projects for skeletal evaluation in spaceflight (Experiment MO-78) and in laboratory studies with immobilized animals; studies of postmenopausal osteoporosis; organization of scientific meetings and workshops on absorptiometric measurement; and development of instrumentation for measurement of fluid shifts in the human body were performed. Instrumentation was developed that allows accurate and precise (2% error) measurements of mineral content in compact and trabecular bone and of the total skeleton. Instrumentation was also developed to measure fluid shifts in the extremities. Radiation exposure with those procedures is low (2-10 MREM). One hundred seventy three technical reports and one hundred and four published papers of studies from the University of Wisconsin Bone Mineral Lab are listed.

  7. CHARACTERIZATION OF FATTY ACID COMPOSITION IN BONE MARROW FLUID FROM POSTMENOPAUSAL WOMEN: MODIFICATION AFTER HIP FRACTURE

    PubMed Central

    Miranda, Melissa; Pino, Ana María; Fuenzalida, Karen; Rosen, Clifford J.; Seitz, Germán; Rodríguez, J. Pablo

    2016-01-01

    Bone marrow adipose tissue (BMAT) is associated with low bone mass, although the functional consequences for skeletal maintenance of increased BMAT are currently unclear. BMAT might have a role in systemic energy metabolism, and could be an energy source as well as an endocrine organ for neighboring bone cells, releasing cytokines, adipokines and free fatty acids into the bone marrow microenvironment. The aim of the present report was to compare the fatty acid composition in the bone marrow supernatant fluid (BMSF) and blood plasma of postmenopausal women women (65 to 80 years old). BMSF was obtained after spinning the aspirated bone marrow samples; donors were classified as control, osteopenic or osteoporotic after dual-energy X-ray absorptiometry. Total lipids from human bone marrow fluid and plasma were extracted, converted to the corresponding methyl esters, and finally analyzed by a gas chromatographer coupled with a mass spectrometer. Results showed that fatty acid composition in BMSF was dynamic and distinct from blood plasma, implying significance in the locally produced lipids. The fatty acid composition in the BMSF was enriched in saturated fatty acid and decreased in unsaturated fatty acids as compared to blood plasma, but this relationship switched in women who suffered a hip fracture. On the other hand, there was no relationship between BMSF and bone mineral density. In conclusion, lipid composition of BMSF is distinct from the circulatory compartment, most likely reflecting the energy needs of the marrow compartment. PMID:27416518

  8. The beneficial effects of aerobic and concurrent training on metabolic profile and body composition after detraining: a 1-year follow-up in postmenopausal women.

    PubMed

    Rossi, F E; Diniz, T A; Neves, L M; Fortaleza, A C S; Gerosa-Neto, J; Inoue, D S; Buonani, C; Cholewa, J M; Lira, F S; Freitas, I F

    2017-05-01

    Aerobic and concurrent training (CT, aerobic and strength training) improves body composition and metabolic profile; however, it is not known whether these positive outcomes acquired after aerobic or CT are maintained long term (⩾6 months) after program interruption in postmenopausal women. This study investigated the changes in total and appendicular body composition, bone mineral density and metabolic profile following 16 weeks of aerobic or CT, and through 6 months and 1 year of detraining in postmenopausal women. In total, 60 postmenopausal women were divided into the following groups: aerobic (AT), aerobic plus strength training (CT) and control group (CG), and 31 participants were assessed for the 1 year follow-up. Body composition and bone mineral density were evaluated by dual-energy X-ray absorptiometry (DXA), and total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triacylglycerol, glucose, insulin, leptin, adiponectin and plasminogen activator inhibitor-1 (PAI-1) were assessed. There were main effects of time for arm fat mass, arm lean mass and trunk lean mass (P<0.05). There was a statistical difference between AT and CG for leg fat mass and percentage of fat (P<0.05). After 6 months of detraining, leg lean mass decreased in relation to post-intervention, and there was a statistically significant interaction for total and appendicular lean mass (P<0.05). There were differences between CT and CG in glucose and between AT and CG in glucose and triacylglycerol (P<0.05). A duration of 16 weeks of aerobic or CT improved total and appendicular body composition and metabolic profile but after 6 months of detraining, leg lean mass returned to the values obtained pre-training in CT.

  9. Early Hormonal Treatment Affects Body Composition and Body Shape in Young Transgender Adolescents.

    PubMed

    Klaver, Maartje; de Mutsert, Renée; Wiepjes, Chantal M; Twisk, Jos W R; den Heijer, Martin; Rotteveel, Joost; Klink, Daniël T

    2018-02-01

    Transgender adolescents aspiring to have the body characteristics of the affirmed sex can receive hormonal treatment. However, it is unknown how body shape and composition develop during treatment and whether transgender persons obtain the desired body phenotype. To examine the change in body shape and composition from the start of treatment with gonadotropin-releasing hormone agonists (GnRHa) until 22 years of age and to compare these measurements at 22 years with those of age-matched peers. 71 transwomen (birth-assigned boys) and 121 transmen (birth-assigned girls) who started treatment from 1998 through 2014 were included in this retrospective study. GnRHa treatment was started and cross-sex hormonal treatment was added at 16 years of age. Anthropometric and whole-body dual-energy x-ray absorptiometry data were retrieved from medical records. Linear mixed model regression was performed to examine changes over time. SD scores (SDS) were calculated to compare body shape and composition with those of age-matched peers. Change in waist-hip ratio (WHR), total body fat (TBF), and total lean body mass (LBM) during hormonal treatment. SDS of measures of body shape and composition compared with age-matched peers at 22 years of age. In transwomen, TBF increased (+10%, 95% CI = 7-11) while total LBM (-10%, 95% CI = -11 to -7) and WHR (-0.04, 95% CI = -0.05 to -0.02) decreased. Compared with ciswomen, SDS at 22 years of age were +0.3 (95% CI = 0.0-0.5) for WHR, and 0.0 (95% CI = -0.2 to 0.3) for TBF. Compared with cismen, SDS were -1.0 (95% CI = -1.3 to -0.7) for WHR, and +2.2 (95% CI = 2.2-2.4) for TBF. In transmen, TBF decreased (-3%, 95% CI = -4 to -1), while LBM (+3%, 95% CI = 1-4) and WHR (+0.03, 95% CI = 0.01-0.04) increased. Compared with ciswomen, SDS at 22 years of age were +0.6 (95% CI = 0.4-0.8) for WHR, and -1.1 (95% CI = -1.4 to -0.9) for TBF. Compared with cismen, SDS were -0.5 (95% CI = -0.8 to -0.3) for WHR, and +1.8 (95% CI = 1.6-1.9) for TBF. Knowing body

  10. Characterizing the composition of bone formed during fracture healing using scanning electron microscopy techniques.

    PubMed

    Perdikouri, Christina; Tägil, Magnus; Isaksson, Hanna

    2015-01-01

    About 5-10% of all bone fractures suffer from delayed healing, which may lead to non-union. Bone morphogenetic proteins (BMPs) can be used to induce differentiation of osteoblasts and enhance the formation of the bony callus, and bisphosphonates help to retain the newly formed callus. The aim of this study was to investigate if scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) can identify differences in the mineral composition of the newly formed bone compared to cortical bone from a non-fractured control. Moreover, we investigate whether the use of BMPs and bisphosphonates-alone or combined-may have an effect on bone mineralization and composition. Twelve male Sprague-Dawley rats at 9 weeks of age were randomly divided into four groups and treated with (A) saline, (B) BMP-7, (C) bisphosphonates (Zoledronate), and (D) BMP-7 + Zoledronate. The rats were sacrificed after 6 weeks. All samples were imaged using SEM and chemically analyzed with EDS to quantify the amount of C, N, Ca, P, O, Na, and Mg. The Ca/P ratio was the primary outcome. In the fractured samples, two areas of interest were chosen for chemical analysis with EDS: the callus and the cortical bone. In the non-fractured samples, only the cortex was analyzed. Our results showed that the element composition varied to a small extent between the callus and the cortical bone in the fractured bones. However, the Ca/P ratio did not differ significantly, suggesting that the mineralization at all sites is similar 6 weeks post-fracture in this rat model.

  11. Can physical activity improve peak bone mass?

    PubMed

    Specker, Bonny; Minett, Maggie

    2013-09-01

    The pediatric origin of osteoporosis has led many investigators to focus on determining factors that influence bone gain during growth and methods for optimizing this gain. Bone responds to bone loading activities by increasing mass or size. Overall, pediatric studies have found a positive effect of bone loading on bone size and accrual, but the types of loads necessary for a bone response have only recently been investigated in human studies. Findings indicate that responses vary by sex, maturational status, and are site-specific. Estrogen status, body composition, and nutritional status also may influence the bone response to loading. Despite the complex interrelationships among these various factors, it is prudent to conclude that increased physical activity throughout life is likely to optimize bone health.

  12. High strength, biodegradable and cytocompatible alpha tricalcium phosphate-iron composites for temporal reduction of bone fractures.

    PubMed

    Montufar, E B; Casas-Luna, M; Horynová, M; Tkachenko, S; Fohlerová, Z; Diaz-de-la-Torre, S; Dvořák, K; Čelko, L; Kaiser, J

    2018-04-01

    In this work alpha tricalcium phosphate (α-TCP)/iron (Fe) composites were developed as a new family of biodegradable, load-bearing and cytocompatible materials. The composites with composition from pure ceramic to pure metallic samples were consolidated by pulsed electric current assisted sintering to minimise processing time and temperature while improving their mechanical performance. The mechanical strength of the composites was increased and controlled with the Fe content, passing from brittle to ductile failure. In particular, the addition of 25 vol% of Fe produced a ceramic matrix composite with elastic modulus much closer to cortical bone than that of titanium or biodegradable magnesium alloys and specific compressive strength above that of stainless steel, chromium-cobalt alloys and pure titanium, currently used in clinic for internal fracture fixation. All the composites studied exhibited higher degradation rate than their individual components, presenting values around 200 μm/year, but also their compressive strength did not show a significant reduction in the period required for bone fracture consolidation. Composites showed preferential degradation of α-TCP areas rather than β-TCP areas, suggesting that α-TCP can produce composites with higher degradation rate. The composites were cytocompatible both in indirect and direct contact with bone cells. Osteoblast-like cells attached and spread on the surface of the composites, presenting proliferation rate similar to cells on tissue culture-grade polystyrene and they showed alkaline phosphatase activity. Therefore, this new family of composites is a potential alternative to produce implants for temporal reduction of bone fractures. Biodegradable alpha-tricalcium phosphate/iron (α-TCP/Fe) composites are promising candidates for the fabrication of temporal osteosynthesis devices. Similar to biodegradable metals, these composites can avoid implant removal after bone fracture healing, particularly in

  13. Dietary boron does not affect tooth strength, micro-hardness, and density, but affects tooth mineral composition and alveolar bone mineral density in rabbits fed a high-energy diet.

    PubMed

    Hakki, Sema S; SiddikMalkoc; Dundar, Niyazi; Kayis, Seyit Ali; Hakki, Erdogan E; Hamurcu, Mehmet; Baspinar, Nuri; Basoglu, Abdullah; Nielsen, Forrest H; Götz, Werner

    2015-01-01

    The objective of this study was to determine whether dietary boron (B) affects the strength, density and mineral composition of teeth and mineral density of alveolar bone in rabbits with apparent obesity induced by a high-energy diet. Sixty female, 8-month-old, New Zealand rabbits were randomly assigned for 7 months into five groups as follows: (1) control 1, fed alfalfa hay only (5.91 MJ/kg and 57.5 mg B/kg); (2) control 2, high energy diet (11.76 MJ and 3.88 mg B/kg); (3) B10, high energy diet + 10 mg B gavage/kg body weight/96 h; (4) B30, high energy diet + 30 mg B gavage/kg body weight/96 h; (5) B50, high energy diet + 50 mg B gavage/kg body weight/96 h. Maxillary incisor teeth of the rabbits were evaluated for compression strength, mineral composition, and micro-hardness. Enamel, dentin, cementum and pulp tissue were examined histologically. Mineral densities of the incisor teeth and surrounding alveolar bone were determined by using micro-CT. When compared to controls, the different boron treatments did not significantly affect compression strength, and micro-hardness of the teeth, although the B content of teeth increased in a dose-dependent manner. Compared to control 1, B50 teeth had decreased phosphorus (P) concentrations. Histological examination revealed that teeth structure (shape and thickness of the enamel, dentin, cementum and pulp) was similar in the B-treated and control rabbits. Micro CT evaluation revealed greater alveolar bone mineral density in B10 and B30 groups than in controls. Alveolar bone density of the B50 group was not different than the controls. Although the B treatments did not affect teeth structure, strength, mineral density and micro-hardness, increasing B intake altered the mineral composition of teeth, and, in moderate amounts, had beneficial effects on surrounding alveolar bone.

  14. Biocompatibility of single-walled carbon nanotube composites for bone regeneration.

    PubMed

    Gupta, A; Liberati, T A; Verhulst, S J; Main, B J; Roberts, M H; Potty, A G R; Pylawka, T K; El-Amin Iii, S F

    2015-05-01

    The purpose of this study was to evaluate in vivo biocompatibility of novel single-walled carbon nanotubes (SWCNT)/poly(lactic-co-glycolic acid) (PLAGA) composites for applications in bone and tissue regeneration. A total of 60 Sprague-Dawley rats (125 g to 149 g) were implanted subcutaneously with SWCNT/PLAGA composites (10 mg SWCNT and 1gm PLAGA 12 mm diameter two-dimensional disks), and at two, four, eight and 12 weeks post-implantation were compared with control (Sham) and PLAGA (five rats per group/point in time). Rats were observed for signs of morbidity, overt toxicity, weight gain and food consumption, while haematology, urinalysis and histopathology were completed when the animals were killed. No mortality and clinical signs were observed. All groups showed consistent weight gain, and the rate of gain for each group was similar. All groups exhibited a similar pattern for food consumption. No difference in urinalysis, haematology, and absolute and relative organ weight was observed. A mild to moderate increase in the summary toxicity (sumtox) score was observed for PLAGA and SWCNT/PLAGA implanted animals, whereas the control animals did not show any response. Both PLAGA and SWCNT/PLAGA showed a significantly higher sumtox score compared with the control group at all time intervals. However, there was no significant difference between PLAGA and SWCNT/PLAGA groups. Our results demonstrate that SWCNT/PLAGA composites exhibited in vivo biocompatibility similar to the Food and Drug Administration approved biocompatible polymer, PLAGA, over a period of 12 weeks. These results showed potential of SWCNT/PLAGA composites for bone regeneration as the low percentage of SWCNT did not elicit a localised or general overt toxicity. Following the 12-week exposure, the material was considered to have an acceptable biocompatibility to warrant further long-term and more invasive in vivo studies. Cite this article: Bone Joint Res 2015;4:70-7. ©2015 The British Editorial

  15. Physicochemical composition of osteoporotic bone in the trichothiodystrophy premature aging mouse determined by confocal Raman microscopy.

    PubMed

    van Apeldoorn, Aart A; de Boer, Jan; van Steeg, Harry; Hoeijmakers, Jan H J; Otto, Cees; van Blitterswijk, Clemens A

    2007-01-01

    Although it has been established that premature aging trichothiodystrophy (TTD) mice display typical signs of osteoporosis, exact changes in physicochemical properties of these mice have not been elucidated. We used confocal Raman microscopy and histology to study femora of TTD mice. We measured femora isolated from xeroderma pigmentosum group A (XPA)/TTD double mutant mice to establish that Raman microscopy can be applied to measure differences in bone composition. Raman data from XPA/TTD mice showed remarkable changes in bone mineral composition. Moreover, we observed a severe form of osteoporosis, with strongly reduced cortical bone thickness. We used Raman microscopy to analyze bone composition in eight wild-type and eight TTD animals, and observed decreased levels of phosphate and carbonate in the cortex of femora isolated from TTD mice. In contrast, the bands representing the bone protein matrix were not affected in these mice.

  16. Comparisons of bone mineral density and bone quality in adult rock climbers, resistance-trained men, and untrained men.

    PubMed

    Sherk, Vanessa D; Bemben, Michael G; Bemben, Debra A

    2010-09-01

    The nature of muscular contractions and episodes of impact loading during technical rock climbing are often varied and complex, and the resulting effects on bone health are unclear. The purpose of this study was to compare total body, lumbar spine, proximal femur, and forearm areal bone mineral density (aBMD) and tibia and forearm bone quality in male rock climbers (RC) (n = 15), resistance trained men (RT) (n = 16), and untrained male controls (CTR) (n = 16). Total body, anteroposterior (AP) lumbar spine, proximal femur, and forearm aBMD and body composition were measured using dual-energy X-ray absorptiometry (DXA) (Lunar Prodigy, v. 10.50.086; GE Healthcare, Waukesha, Wisconsin, U.S.A.). Volumetric BMD (vBMD), bone content, bone area, and muscle cross-sectional area (MCSA) of the tibia and forearm were measured using pQCT (peripheral quantitative computed tomography; Stratec XCT 3000, Pforzheim, Germany). No significant group differences were seen in bone-free lean body mass. CTR had significantly (p < 0.05) greater body fat % than RC and RT and significantly (p < 0.05) greater fat mass than RC. Lumbar spine and femoral neck aBMD were significantly (p < 0.05) greater in RT compared to both RC and CTR. RC had significantly (p < 0.05) lower aBMD at the 33% radius site than CTR. Forearm MCSA was significantly (p < 0.05) lower in CTR than in the other groups. No significant differences were seen between groups for vBMD or bone area of the tibia and forearm. In conclusion, resistance-trained men had higher bone density at the central skeletal sites than rock climbers; however, bone quality variables of the peripheral limbs were similar in rock climber and resistance-trained groups.

  17. Organic composite-mediated surface coating of human acellular bone matrix with strontium.

    PubMed

    Huang, Yi-Zhou; Wang, Jing-Jing; Huang, Yong-Can; Wu, Cheng-Guang; Zhang, Yi; Zhang, Chao-Liang; Bai, Lin; Xie, Hui-Qi; Li, Zhao-Yang; Deng, Li

    2018-03-01

    Acellular bone matrix (ACBM) provides an osteoconductive scaffold for bone repair, but its osteoinductivity is poor. Strontium (Sr) improves the osteoinductivity of bone implants. In this study, we developed an organic composite-mediated strontium coating strategy for ACBM scaffolds by using the ion chelating ability of carboxymethyl cellulose (CMC) and the surface adhesion ability of dopamine (DOPA). The organic coating composite, termed the CMC-DOPA-Sr composite, was synthesized under a mild condition, and its chemical structure and strontium ion chelating ability were then determined. After surface decoration, the physicochemical properties of the strontium-coated ACBM (ACBM-Sr) scaffolds were characterized, and their biocompatibility and osteoinductivity were determined in vitro and in vivo. The results showed that the CMC-DOPA-Sr composite facilitated strontium coating on the surface of ACBM scaffolds. The ACBM-Sr scaffolds possessed a sustained strontium ion release profile, exhibited good cytocompatibility, and enhanced the osteogenic differentiation of mesenchymal stem cells in vitro. Furthermore, the ACBM-Sr scaffolds showed good histocompatibility after subcutaneous implantation in nude mice. Taken together, this study provided a simple and mild strategy to realize strontium coating for ACBM scaffolds, which resulted in good biocompatibility and improved osteoinductivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Bioactive Glass Fiber Reinforced Starch-Polycaprolactone Composite for Bone Applications

    NASA Astrophysics Data System (ADS)

    Jukola, H.; Nikkola, L.; Gomes, M. E.; Chiellini, F.; Tukiainen, M.; Kellomäki, M.; Chiellini, E.; Reis, R. L.; Ashammakhi, N.

    2008-02-01

    For bone regeneration and repair, combinations of different materials are often needed. Biodegradable polymers are often combined with osteoconductive materials, such as bioactive glass (BaG), which can also improve the mechanical properties of the composite. The aim of this study was to develop and characterize BaG fiber-reinforced starch-poly-ɛ-caprolactone (SPCL) composite. Sheets of SPCL (30/70 wt%) were produced using single-screw extrusion. They were then cut and compression molded in layers with BaG fibers to form composite structures of different combinations. Thermal, mechanical, and degradation properties of the composites were studied. The actual amount of BaG in the composites was determined using combustion tests. A strong endothermic peak indicating melting at about 56 °C was observed by differential scanning calorimetry (DSC) analysis. Thermal gravimetry analysis (TGA) showed that thermal decomposition of SPCL started at 325 °C with the decomposition of starch and continued at 400 °C with the degradation of polycaprolactone (PCL). Initial mechanical properties of the reinforced composites were at least 50% better than the properties of the non-reinforced composites. However, the mechanical properties of the composites after two weeks of hydrolysis were comparable to those of the non-reinforced samples. During the six weeks' hydrolysis the mass of the composites had decreased only by about 5%. The amount of glass in the composites remained the same for the six-week period of hydrolysis. In conclusion, it is possible to enhance the initial mechanical properties of SPCL by reinforcing it with BaG fibers. However, the mechanical properties of the composites are only sufficient for use as filler material and they need to be further improved to allow long-lasting bone applications.

  19. Bioactive Glass Fiber Reinforced Starch-Polycaprolactone Composite for Bone Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jukola, H.; Nikkola, L.; Tukiainen, M.

    2008-02-15

    For bone regeneration and repair, combinations of different materials are often needed. Biodegradable polymers are often combined with osteoconductive materials, such as bioactive glass (BaG), which can also improve the mechanical properties of the composite. The aim of this study was to develop and characterize BaG fiber-reinforced starch-poly-{epsilon}-caprolactone (SPCL) composite. Sheets of SPCL (30/70 wt%) were produced using single-screw extrusion. They were then cut and compression molded in layers with BaG fibers to form composite structures of different combinations. Thermal, mechanical, and degradation properties of the composites were studied. The actual amount of BaG in the composites was determined usingmore » combustion tests. A strong endothermic peak indicating melting at about 56 deg. C was observed by differential scanning calorimetry (DSC) analysis. Thermal gravimetry analysis (TGA) showed that thermal decomposition of SPCL started at 325 deg. C with the decomposition of starch and continued at 400 deg. C with the degradation of polycaprolactone (PCL). Initial mechanical properties of the reinforced composites were at least 50% better than the properties of the non-reinforced composites. However, the mechanical properties of the composites after two weeks of hydrolysis were comparable to those of the non-reinforced samples. During the six weeks' hydrolysis the mass of the composites had decreased only by about 5%. The amount of glass in the composites remained the same for the six-week period of hydrolysis. In conclusion, it is possible to enhance the initial mechanical properties of SPCL by reinforcing it with BaG fibers. However, the mechanical properties of the composites are only sufficient for use as filler material and they need to be further improved to allow long-lasting bone applications.« less

  20. Migrating pharyngeal foreign bodies: a series of four cases of saw-toothed fish bones.

    PubMed

    Chung, Sung Min; Kim, Han Su; Park, Eun Hee

    2008-09-01

    Pharyngeal foreign bodies are common problems seen at emergency rooms or ENT outpatient clinics, and fish bones are the most common foreign bodies encountered in East Asia and in Korea. One of the rare complications of a swallowed sharp fish bone is its migration from the site of entry into the subcutaneous tissues of the neck. We present four unusual cases of ingested fish bones that migrated out of the upper digestive tract to the neck. In the first case, this caused a recurrent deep neck infection for 2 years; in the second case, there was penetration of the facial artery; in the third case, there was a hematoma of the floor of the mouth; in the fourth case, there was a retropharyngeal abscess.

  1. The biocompatibility of carbon hydroxyapatite/β-glucan composite for bone tissue engineering studied with Raman and FTIR spectroscopic imaging.

    PubMed

    Sroka-Bartnicka, Anna; Kimber, James A; Borkowski, Leszek; Pawlowska, Marta; Polkowska, Izabela; Kalisz, Grzegorz; Belcarz, Anna; Jozwiak, Krzysztof; Ginalska, Grazyna; Kazarian, Sergei G

    2015-10-01

    The spectroscopic approaches of FTIR imaging and Raman mapping were applied to the characterisation of a new carbon hydroxyapatite/β-glucan composite developed for bone tissue engineering. The composite is an artificial bone material with an apatite-forming ability for the bone repair process. Rabbit bone samples were tested with an implanted bioactive material for a period of several months. Using spectroscopic and chemometric methods, we were able to determine the presence of amides and phosphates and the distribution of lipid-rich domains in the bone tissue, providing an assessment of the composite's bioactivity. Samples were also imaged in transmission using an infrared microscope combined with a focal plane array detector. CaF2 lenses were also used on the infrared microscope to improve spectral quality by reducing scattering artefacts, improving chemometric analysis. The presence of collagen and lipids at the bone/composite interface confirmed biocompatibility and demonstrate the suitability of FTIR microscopic imaging with lenses in studying these samples. It confirmed that the composite is a very good background for collagen growth and increases collagen maturity with the time of the bone growth process. The results indicate the bioactive and biocompatible properties of this composite and demonstrate how Raman and FTIR spectroscopic imaging have been used as an effective tool for tissue characterisation.

  2. Characterization of Fatty Acid Composition in Bone Marrow Fluid From Postmenopausal Women: Modification After Hip Fracture.

    PubMed

    Miranda, Melissa; Pino, Ana María; Fuenzalida, Karen; Rosen, Clifford J; Seitz, Germán; Rodríguez, J Pablo

    2016-10-01

    Bone marrow adipose tissue (BMAT) is associated with low bone mass, although the functional consequences for skeletal maintenance of increased BMAT are currently unclear. BMAT might have a role in systemic energy metabolism, and could be an energy source as well as an endocrine organ for neighboring bone cells, releasing cytokines, adipokines and free fatty acids into the bone marrow microenvironment. The aim of the present report was to compare the fatty acid composition in the bone marrow supernatant fluid (BMSF) and blood plasma of postmenopausal women women (65-80 years old). BMSF was obtained after spinning the aspirated bone marrow samples; donors were classified as control, osteopenic or osteoporotic after dual-energy X-ray absorptiometry. Total lipids from human bone marrow fluid and plasma were extracted, converted to the corresponding methyl esters, and finally analyzed by a gas chromatographer coupled with a mass spectrometer. Results showed that fatty acid composition in BMSF was dynamic and distinct from blood plasma, implying significance in the locally produced lipids. The fatty acid composition in the BMSF was enriched in saturated fatty acid and decreased in unsaturated fatty acids as compared to blood plasma, but this relationship switched in women who suffered a hip fracture. On the other hand, there was no relationship between BMSF and bone mineral density. In conclusion, lipid composition of BMSF is distinct from the circulatory compartment, most likely reflecting the energy needs of the marrow compartment. J. Cell. Biochem. 117: 2370-2376, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. [Daily calorie and macronutrient consumption in girls of different somatotypes with different shares of body fat, muscle and bone components].

    PubMed

    Fefelova, V V; Fefelova, Yu A; Koloskova, T P; Kazakova, T V; Sergeeva, E Yu

    2016-01-01

    211 practically healthy girls, the students of Krasnoyarsk Medical University in the ages of 16 to 20 years, have been examined. We determined their somatotypes (euriplastic, athletic, subathletic and stenoplastic) and body composition (fat, muscle, bone component). Actual nutrition in these subjects was studied by the method. of 24-hour nutrition recall involving foodstuffs models. Energy consumption in cohorts with different somatotypes did not differ from one another and ranged from 1880 to 2115 kilocalories per day, that corresponded to normal physiological needs in women of this age with the coefficient of physical activity as 1.4 (students). Only the intake of fat (% of calories) exceeded the performance standards. As for macronutrients, the majority of indicators of nutrient intake did not differ significantly among girls with different somatotype, except for fat intake in girls with athletic and stenoplastic somatotypes (p<0.034) and carbohydrate consumption in the objects with euriplastic and subathletic somatotypes (p<0.046). The most significant of the findings is the absence of veracious differences in daily energy consumption between the cohorts with different somatotypes with statistically considerable, differences in both overall dimensions (body mass and length) and the ratios between fat, muscle and bone as somatic components. In general, macronutrient consumption did not show any differences as well. Thus, apart from the energy and macronutrient consumption, definite meaning within the process of the formation of body composition can belong to the characteristics of the changes following nutrition load on lipoid spectrum of blood serum as well 'as the peculiarities of the distribution of substrate flow among cell metabolic paths, appropriate of definite somatotypes.

  4. Evaluation of morphological indices and total body electrical conductivity to assess body composition in big brown bats

    USGS Publications Warehouse

    Pearce, R.D.; O'Shea, T.J.; Wunder, B.A.

    2008-01-01

    Bat researchers have used both morphological indices and total body electric conductivity (TOBEC) as proxies for body condition in a variety of studies, but have typically not validated these indices against direct measurement of body composition. We quantified body composition (total carcass lipids) to determine if morphological indices were useful predictors of body condition in big brown bats (Eptesicus fuscus). We also evaluated body composition indirectly by TOBEC using EM-SCAN?? technology. The most important predictors of body composition in multiple regression analysis were body mass-to-forearm ratio (partial r2 = 0.82, P < 0.001) followed by TOBEC measurement (partial r2 = 0.08, P < 0.001) and to a minor extent head length (partial r2 = 0.02, P < 0.05). Morphological condition indices alone may be adequate for some studies because of lower cost and effort. Marking bats with passive integrated transponder (PIT) tags affected TOBEC measurements. ?? Museum and Institute of Zoology PAS.

  5. [Body composition in women with gestational diabetes mellitus].

    PubMed

    Moreno Martinez, Socorro; Tufiño Olivares, Edith; Chávez Loya, Vicente; Rodríguez Morán, Martha; Guerrero Romero, Fernando; Levario Carrillo, Margarita

    2009-06-01

    Several techniques have been used to determine body composition during pregnancy. To determine the characteristics of body composition in women with gestational diabetes mellitus in comparison with women with normal glucose tolerance and pre-gestacional diabetes. Pregnant women with gestational diabetes mellitus, pre-gestacional diabetes, and normal glucose tolerance, between 24 to 32 weeks of single gestation, were enrolled in a cross-sectional study. Screening of DMG was carried out using 50 g of glucose load; diagnosis was confirmed by oral glucose tolerance test. Evaluation of body composition was carried out by bioelectrical impedance. The Kruskal Wallis test was used for statistical analysis. A total of 79 women were included; of these, diagnosis of gestational diabetes mellitus, pre-gestacional diabetes, and normal glucose tolerance was established in 14, 9, and 56 women, respectively. Pre-gestational body mass index was greater in women with diabetes (p < 0.01). Fat free mass and total body water were similar in the studied groups. Fat mass was greater in women with gestational diabetes mellitus (range 21.0-29.4 kg) and patients with pre-gestacional diabetes (range 26.4-32.7 kg) than in the women with normal glucose tolerance (range 150.8-25.9 kg), p < 0.01. The body composition of women, between 24 to 32 weeks of single gestation, is different in the women with gestational diabetes mellitus compared with women with normal glucose tolerance. Women with gestational diabetes mellitus show a significant increase in fat mass without significant changes in the fat free mass and total body water.

  6. Synergistic effect of scaffold composition and dynamic culturing environment in multilayered systems for bone tissue engineering.

    PubMed

    Rodrigues, Márcia T; Martins, Albino; Dias, Isabel R; Viegas, Carlos A; Neves, Nuno M; Gomes, Manuela E; Reis, Rui L

    2012-11-01

    Bone extracellular matrix (ECM) is composed of mineralized collagen fibrils which support biological apatite nucleation that participates in bone outstanding properties. Understanding and mimicking bone morphological and physiological parameters at a biological scale is a major challenge in tissue engineering scaffolding. Using emergent (nano)technologies scaffold designing may be critically improved, enabling highly functional tissue substitutes for bone applications. This study aims to develop novel biodegradable composite scaffolds of tricalcium phosphate (TCPs) and electrospun nanofibers of poly(ϵ-caprolactone) (PCL), combining TCPs osteoconductivity with PCL biocompatibility and elasticity, mimicking bone structure and composition. We hypothesized that scaffolds with such structure/composition would stimulate the proliferation and differentiation of bone marrow stromal cells (BMSCs) towards the osteogenic phenotype. Composite scaffolds, developed by electrospining using consecutive stacked layers of PCL and TCPs, were characterized by FTIR spectroscopy, X-Ray diffraction and scanning electronic microscopy. Cellular behavior was assessed in goat BMSCs seeded onto composite scaffolds and cultured in static or dynamic conditions, using basal or osteogenic media during 7, 14 or 21 days. Cellular proliferation was quantified and osteogenic differentiation confirmed by alkaline phosphatase activity, alizarin red staining and immunocytochemistry for osteocalcin and collagen I. Results suggest that PCL-TCP scaffolds provide a 3D support for gBMSCs proliferation and osteogenic differentiation with production of ECM. TCPs positively stimulate the osteogenic process, especially under dynamic conditions, where PCL-TCP scaffolds are sufficient to promote osteogenic differentiation even in basal medium conditions. The enhancement of the osteogenic potential in dynamic conditions evidences the synergistic effect of scaffold composition and dynamic stimulation in g

  7. Association of Body Weight and Body Mass Index with Bone Mineral Density in Women and Men from Kosovo

    PubMed Central

    Rexhepi, Sylejman; Bahtiri, Elton; Rexhepi, Mjellma; Sahatciu-Meka, Vjollca; Rexhepi, Blerta

    2015-01-01

    Background and objective: Body weight and body mass index (BMI) are considered potentially modifiable determinants of bone mass. Therefore, the aim of this study was to explore the association between body weight and body mass index (BMI) with total hip and lumbar spine bone mineral density (BMD). Methods: This cross-sectional study included a population of 100 women and 32 men from Kosovo into three BMI groups. All the study subjects underwent dual-energy X-ray absorptiometry (DXA) measurements. Results: Total hip BMD levels of obese menopausal and premenopausal women and men were significantly higher compared to overweight or normal weight subjects, while lumbar spine BMD levels of only menopausal women and men were higher among obese subjects. Age-adjusted linear regression analysis showed that BMI is a significant independent associate of lumbar spine and total hip BMD in menopausal women and men. Conclusion: Despite positive association between BMI and lumbar spine and total hip BMD in menopausal women, presence of more obese and osteoporotic subjects among menopausal women represent a population at risk for fractures because of poor balance and frequent falls; therefore, both obesity and osteoporosis prevention efforts should begin early on in life. PMID:26543419

  8. Association of Body Weight and Body Mass Index with Bone Mineral Density in Women and Men from Kosovo.

    PubMed

    Rexhepi, Sylejman; Bahtiri, Elton; Rexhepi, Mjellma; Sahatciu-Meka, Vjollca; Rexhepi, Blerta

    2015-08-01

    Body weight and body mass index (BMI) are considered potentially modifiable determinants of bone mass. Therefore, the aim of this study was to explore the association between body weight and body mass index (BMI) with total hip and lumbar spine bone mineral density (BMD). This cross-sectional study included a population of 100 women and 32 men from Kosovo into three BMI groups. All the study subjects underwent dual-energy X-ray absorptiometry (DXA) measurements. Total hip BMD levels of obese menopausal and premenopausal women and men were significantly higher compared to overweight or normal weight subjects, while lumbar spine BMD levels of only menopausal women and men were higher among obese subjects. Age-adjusted linear regression analysis showed that BMI is a significant independent associate of lumbar spine and total hip BMD in menopausal women and men. Despite positive association between BMI and lumbar spine and total hip BMD in menopausal women, presence of more obese and osteoporotic subjects among menopausal women represent a population at risk for fractures because of poor balance and frequent falls; therefore, both obesity and osteoporosis prevention efforts should begin early on in life.

  9. Whole-body vibration therapy in children with severe motor disabilities.

    PubMed

    Kilebrant, Sophie; Braathen, Gunnar; Emilsson, Roger; Glansén, Ulla; Söderpalm, Ann-Charlott; Zetterlund, Bo; Westerberg, Barbro; Magnusson, Per; Swolin-Eide, Diana

    2015-03-01

    To study the effect of whole-body vibration therapy on bone mass, bone turnover and body composition in severely disabled children. Nineteen non-ambulatory children aged 5.1-16.3 years (6 males, 13 females) with severe motor disabilities participated in an intervention programme with standing exercise on a self-controlled dynamic platform, which included whole-body vibration therapy (vibration, jump and rotation movements). Whole-body vibration therapy was performed at 40-42 Hz, with an oscillation amplitude of 0.2 mm, 5-15 min/treatment, twice/week for 6 months. Bone mass parameters and bone markers were measured at the study start, and after 6 and 12 months. Whole-body vibration therapy was appreciated by the children. Total-body bone mineral density increased during the study period (p < 0.05). Z-scores for total-body bone mineral density ranged from -5.10 to -0.60 at study start and remained unchanged throughout. Approximately 50% of the subjects had increased levels of carboxy-terminal telopeptides of type I collagen and decreased levels of osteocalcin at the start. Body mass index did not change during the intervention period, but had increased by the 12-month follow-up (p < 0.05). Whole-body vibration therapy appeared to be well tolerated by children with severe motor disabilities. Total-body bone mineral density increased after 6 months of whole-body vibration therapy. Higher carboxy-terminal telopeptides of type I collagen and lower osteocalcin values indicated that severely disabled children have a reduced capacity for bone acquisition.

  10. Chitosan composite three dimensional macrospheric scaffolds for bone tissue engineering.

    PubMed

    Vyas, Veena; Kaur, Tejinder; Thirugnanam, Arunachalam

    2017-11-01

    The present work deals with the fabrication of chitosan composite scaffolds with controllable and predictable internal architecture for bone tissue engineering. Chitosan (CS) based composites were developed by varying montmorillonite (MMT) and hydroxyapatite (HA) combinations to fabricate macrospheric three dimensional (3D) scaffolds by direct agglomeration of the sintered macrospheres. The fabricated CS, CS/MMT, CS/HA and CS/MMT/HA 3D scaffolds were characterized for their physicochemical, biological and mechanical properties. The XRD and ATR-FTIR studies confirmed the presence of the individual constituents and the molecular interaction between them, respectively. The reinforcement with HA and MMT showed reduced swelling and degradation rate. It was found that in comparison to pure CS, the CS/HA/MMT composites exhibited improved hemocompatibility and protein adsorption. The sintering of the macrospheres controlled the swelling ability of the scaffolds which played an important role in maintaining the mechanical strength of the 3D scaffolds. The CS/HA/MMT composite scaffold showed 14 folds increase in the compressive strength when compared to pure CS scaffolds. The fabricated scaffolds were also found to encourage the MG 63 cell proliferation. Hence, from the above studies it can be concluded that the CS/HA/MMT composite 3D macrospheric scaffolds have wider and more practical application in bone tissue regeneration applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The Body and the Beautiful: Health, Attractiveness and Body Composition in Men’s and Women’s Bodies

    PubMed Central

    Brierley, Mary-Ellen; Brooks, Kevin R.; Mond, Jonathan; Stevenson, Richard J.

    2016-01-01

    The dominant evolutionary theory of physical attraction posits that attractiveness reflects physiological health, and attraction is a mechanism for identifying a healthy mate. Previous studies have found that perceptions of the healthiest body mass index (weight scaled for height; BMI) for women are close to healthy BMI guidelines, while the most attractive BMI is significantly lower, possibly pointing to an influence of sociocultural factors in determining attractive BMI. However, less is known about ideal body size for men. Further, research has not addressed the role of body fat and muscle, which have distinct relationships with health and are conflated in BMI, in determining perceived health and attractiveness. Here, we hypothesised that, if attractiveness reflects physiological health, the most attractive and healthy appearing body composition should be in line with physiologically healthy body composition. Thirty female and 33 male observers were instructed to manipulate 15 female and 15 male body images in terms of their fat and muscle to optimise perceived health and, separately, attractiveness. Observers were unaware that they were manipulating the muscle and fat content of bodies. The most attractive apparent fat mass for female bodies was significantly lower than the healthiest appearing fat mass (and was lower than the physiologically healthy range), with no significant difference for muscle mass. The optimal fat and muscle mass for men’s bodies was in line with the healthy range. Male observers preferred a significantly lower overall male body mass than did female observers. While the body fat and muscle associated with healthy and attractive appearance is broadly in line with physiologically healthy values, deviations from this pattern suggest that future research should examine a possible role for internalization of body ideals in influencing perceptions of attractive body composition, particularly in women. PMID:27257677

  12. Insulin Resistance Is Associated With Smaller Cortical Bone Size in Nondiabetic Men at the Age of Peak Bone Mass.

    PubMed

    Verroken, Charlotte; Zmierczak, Hans-Georg; Goemaere, Stefan; Kaufman, Jean-Marc; Lapauw, Bruno

    2017-06-01

    In type 2 diabetes mellitus, fracture risk is increased despite preserved areal bone mineral density. Although this apparent paradox may in part be explained by insulin resistance affecting bone structure and/or material properties, few studies have investigated the association between insulin resistance and bone geometry. We aimed to explore this association in a cohort of nondiabetic men at the age of peak bone mass. Nine hundred ninety-six nondiabetic men aged 25 to 45 years were recruited in a cross-sectional, population-based sibling pair study at a university research center. Insulin resistance was evaluated using the homeostasis model assessment of insulin resistance (HOMA-IR), with insulin and glucose measured from fasting serum samples. Bone geometry was assessed using peripheral quantitative computed tomography at the distal radius and the radial and tibial shafts. In age-, height-, and weight-adjusted analyses, HOMA-IR was inversely associated with trabecular area at the distal radius and with cortical area, periosteal and endosteal circumference, and polar strength strain index at the radial and tibial shafts (β ≤ -0.13, P < 0.001). These associations remained essentially unchanged after additional adjustment for dual-energy X-ray absorptiometry-derived body composition, bone turnover markers, muscle size or function measurements, or adiponectin, leptin, insulin-like growth factor 1, or sex steroid levels. In this cohort of nondiabetic men at the age of peak bone mass, insulin resistance is inversely associated with trabecular and cortical bone size. These associations persist after adjustment for body composition, muscle size or function, or sex steroid levels, suggesting an independent effect of insulin resistance on bone geometry. Copyright © 2017 Endocrine Society

  13. Bio-mimetic composite scaffold from mussel shells, squid pen and crab chitosan for bone tissue engineering.

    PubMed

    Shavandi, Amin; Bekhit, Alaa El-Din A; Ali, M Azam; Sun, Zhifa

    2015-09-01

    In the present study, chitosan/hydroxyapatite (HA)/β-tircalcium phosphate (β-TCP) composites were produced using squid pen derived chitosan (CHS) and commercial crab derived chitosan (CHC). CHS was prepared from squid pens by alkaline N-deacetylation. HA and β-TCP were extracted from mussel shells using a microwave irradiation method. Two different composites were prepared by incorporating 50% (w/w) HA/(β-TCP) in CHS or CHC followed by lyophilization and cross-linking of composites by tripolyphosphate (TPP). The effect of different freezing temperatures of -20, -80 and -196 °C on the physicochemical characteristics of composites was investigated. A simulated body fluid (SBF) solution was used for preliminary in vitro study for 1, 7, 14 and 28 days and the composites were characterized by XRD, FTIR, TGA, SEM, μ-CT and ICP-MS. Porosity, pore size, water uptake; water retention abilities and in vitro degradations of the prepared composites were evaluated. The CHS composites were found to have higher porosity (62%) compared to the CHC composites (porosity 42%) and better mechanical properties. The results of this study indicated that composites produced at -20 °C had higher mechanical properties and lower degradation rate compared with -80 °C. Chitosan from the squid pen is an excellent biomaterial candidate for bone tissue engineering applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Appendicular and whole body lean mass outcomes are associated with finite element analysis-derived bone strength at the distal radius and tibia in adults aged 40years and older.

    PubMed

    Gibbs, Jenna C; Giangregorio, Lora M; Wong, Andy K O; Josse, Robert G; Cheung, Angela M

    2017-10-01

    The purpose of this cross-sectional study was to determine how appendicular lean mass index (ALMI), and whole body lean (LMI) and fat mass indices (FMI) associate with estimated bone strength outcomes at the distal radius and tibia in adults aged 40 years and older. Dual energy X-ray absorptiometry (DXA) scans were performed to determine body composition, including whole body lean and fat mass, and appendicular lean mass. ALMI (appendicular lean mass/height 2 ), LMI (lean tissue mass/height 2 ) and FMI (fat mass/height 2 ) were calculated. High-resolution peripheral quantitative computed tomography (HRpQCT) scans were performed to assess bone structural properties at the distal radius and tibia. Using finite element analysis, failure load (N), stiffness (N/mm), ultimate stress (MPa), and cortical-to-trabecular load ratio were estimated from HRpQCT scans. The associations between body composition (ALMI, LMI, FMI) and estimated bone strength were examined using bivariate and multivariable linear regression analyses adjusting for age, sex, and other confounding variables. In 197 participants (127 women; mean±SD, age: 69.5±10.3y, body mass index: 27.95±4.95kg/m 2 , ALMI: 7.31±1.31kg/m 2 ), ALMI and LMI were significantly associated with failure load at the distal radius and tibia (explained 39%-48% of the variance) and remained significant after adjusting for confounding variables and multiple testing (R 2 =0.586-0.645, p<0.001). ALMI, LMI, and FMI did not have significant associations with ultimate stress in our multivariable models. FMI was significantly associated with cortical-to-trabecular load ratio at the distal radius and tibia (explained 6%-12% of the variance) and remained significant after adjusting for confounders and multiple testing (R 2 =0.208-0.243, p<0.001). FMI was no longer significantly associated with failure load after adjusting for confounders. These findings suggest that ALMI and LMI are important determinants of estimated bone strength

  15. Toward Body Composition Reference Data for Infants, Children, and Adolescents123

    PubMed Central

    Wells, Jonathan C. K.

    2014-01-01

    Growth charts for weight and height have provided the basis for assessment of children’s nutritional status for over half a century, with charts for body mass index (BMI) introduced in the 1990s. However, BMI does not provide information on the proportions of fat and lean mass; and within the past decade, growth charts for children’s body composition have been produced by using techniques such as skinfold thicknesses, body circumferences, bioelectrical impedance analysis (BIA), and dual-energy X-ray absorptiometry (DXA). For public health research, BIA and skinfold thicknesses show negligible average bias but have wider limits of agreement than specialized techniques. For patients, DXA is the best individual method, but multicomponent models remain ideal because they address perturbations in lean mass composition. Data can be expressed in age- and sex-specific SD scores, in some cases adjusting for height. Most such reference data derive from high-income countries, but techniques such as air-displacement plethysmography allow infant body composition growth charts to be developed in low- and middle-income settings, where the data may improve understanding of the effects of low birth weight, wasting, and stunting on body composition. Recent studies suggest that between-population variability in body composition may derive in part from genetic factors, suggesting a universal human body composition reference may not be viable. Body composition growth charts may be extended into adult life to evaluate changes in fat and lean mass through the entire life course. These reference data will improve the understanding of the association between growth, body composition, health, and disease. PMID:24829484

  16. Composite material

    DOEpatents

    Hutchens, Stacy A [Knoxville, TN; Woodward, Jonathan [Solihull, GB; Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN

    2012-02-07

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  17. Estimation of body composition of pigs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrell, C.L.; Cornelius, S.G.

    A study was conducted to evaluate the use of deuterium oxide (D2O) for in vivo estimation of body composition of diverse types of pigs. Obese (Ob, 30) and contemporary Hampshire X Yorkshire (C, 30) types of pigs used in the study were managed and fed under typical management regimens. Indwelling catheters were placed in a jugular vein of 6 Ob and 6 C pigs at 4, 8, 12, 18 and 24 wk of age. The D2O was infused (.5 g/kg body weight) as a .9% NaCl solution into the jugular catheter. Blood samples were taken immediately before and at .25,more » 1, 4, 8, 12, 24 and 48 h after the D2O infusion and D2O concentration in blood water was determined. Pigs were subsequently killed by euthanasia injection. Contents of the gastrointestinal tract were removed and the empty body was then frozen and later ground and sampled for subsequent analyses. Ground body tissue samples were analyzed for water, fat, N, fat-free organic matter and ash. Pig type, age and the type X age interaction were significant sources of variation in live weight, D2O pool size and all empty body components, as well as all fat-free empty body components. Relationships between age and live weight or weight of empty body components, and between live weight, empty body weight, empty body water or D2O space and weight of empty components were highly significant but influenced, in most cases, by pig type. The results of this study suggested that, although relationships between D2O space and body component weights were highly significant, they were influenced by pig type and were little better than live weight for the estimation of body composition.« less

  18. Long-term changes in body composition and prevalence of overweight and obesity in girls (aged 3-18 years) from Kraków (Poland) from 1983, 2000 and 2010.

    PubMed

    Kowal, Małgorzata; Kryst, Łukasz; Woronkowicz, Agnieszka; Sobiecki, Jan

    2014-01-01

    Body mass disorders are an increasing problem, especially in industrialized countries. Determination of time- and age-related differences in the prevalence of overweight, obesity and in body composition in girls from 1983, 2000 and 2010. In 2010 an anthropological study was conducted on 1970 girls aged 3-18 years living in Kraków (Poland). Data on selected skin-folds, BMI, muscle mass and bone mass were compared to two studies on analogous populations carried out in 1983 and 2000. Compared to 1983, the share of overweight girls in 2010 had decreased (from 12.4% to 11.2%), while the obesity rate had increased slightly from 2.3% to 3.2%. Girls from 2010 had lower overall body fat content than their peers studied in 1983. However, in 2010 suprailiac adiposity prevalence was higher, while triceps, subscapular and abdominal adiposity rates were lower. They also had higher muscle mass and lower bone mass. The prevalence of overweight and obesity has not changed significantly over the last 30 years. However, significant changes have occurred in body composition. Girls measured in 2010 had lower total adipose tissue, although they also showed a tendency towards increased central adiposity.

  19. Body composition and size in sprint athletes.

    PubMed

    Barbieri, Davide; Zaccagni, Luciana; Babić, Vesna; Rakovac, Marija; Mišigoj-Duraković, Marjeta; Gualdi-Russo, Emanuela

    2017-09-01

    The aims of the present study were to assess competitive sprinters' body size and composition and to determine their impact on performance. Ninety-eight competitive male sprinters (100 m) participated in this cross-sectional study. A series of measurements was directly taken and data on muscular strength and power tests were self-reported. Body composition was assessed by skinfold method and somatotype was calculated by the Heath-Carter anthropometric method. Sprinters were classified into three groups depending on their personal best time and comparisons were performed between the athletes in the top and in the bottom tertiles. Relationships between anthropometric traits and performance were assessed by Pearson's correlation coefficients. Top sprinters had significantly greater body mass index, relaxed and contracted upper arm girths, thigh and calf girths, fat free mass and fat free mass index, and lower ectomorphy than the lowest tertile. Strength and power were significantly higher. Personal best time was significantly correlated with several anthropometric traits and indices of lean body mass. Body size, composition and somatotype differ between performance levels in speed running. Being less ectomorphic, with a greater fat free mass and strength, can explain significant differences in sprinting performances. The results presented in this study provide a point of reference about sprinter characteristics, which can help coaches and sport scientists to improve sprinter performance.

  20. Effects of diagenesis on strontium, carbon, nitrogen and oxygen concentration and isotopic composition of bone

    NASA Astrophysics Data System (ADS)

    Nelson, Bruce K.; Deniro, Michael J.; Schoeninger, Margaret J.; De Paolo, Donald J.; Hare, P. E.

    1986-09-01

    Paleodietary analysis based on variations in the trace element and stable isotopic composition of inorganic and organic phases in fossil bone depends on the assumption that measured values reflect in vivo values. To test for postmortem alteration, we measured 87Sr /86Sr , 13C /12C , 18O /16O and 15N /14N ratios and Sr concentrations in modern and prehistoric (610 to 5470 yr old) bones of animals with marine or terrestrial diets from Greenland. Bones from modern terrestrial feeders have substantially lower Sr concentrations and more radiogenic 87Sr /86Sr ratios than those from modern marine feeders. This contrast was not preserved in the prehistoric samples, which showed almost complete overlap for both Sr concentration and isotopic composition in bones from the two types of animals. Leaching experiments, X-ray diffraction analysis and infrared spectroscopy indicate that alteration of the Sr concentration and isotopic composition in prehistoric bone probably results from nearly complete exchange with groundwater. Oxygen isotope ratios in fossil apatite carbonate also failed to preserve the original discrimination between modern terrestrial and marine feeders. The C isotope ratio of apatite carbonate did not discriminate between animals with marine or terrestrial diets in the modern samples. Even so, the ranges of apatite δ 13C values in prehistoric bone are more scattered than in modern samples for both groups, suggesting alteration had occurred. δ 13C and δ 15N values of collagen in modern bone are distinctly different for the two feeding types, and this distinction is preserved in most of the prehistoric samples. Our results suggest that postmortem alteration of dietary tracers in the inorganic phases of bone may be a problem at all archaeological sites and must be evaluated in each case. While collagen analyzed in this study was resistant to alteration, evaluation of the possibility of diagenetic alteration of its isotopic composition in bones from other

  1. Dual-energy X-ray absorptiometry–based body volume measurement for 4-compartment body composition123

    PubMed Central

    Wilson, Joseph P; Mulligan, Kathleen; Fan, Bo; Sherman, Jennifer L; Murphy, Elizabeth J; Tai, Viva W; Powers, Cassidy L; Marquez, Lorena; Ruiz-Barros, Viviana

    2012-01-01

    Background: Total body volume (TBV), with the exclusion of internal air voids, is necessary to quantify body composition in Lohman's 4-compartment (4C) model. Objective: This investigation sought to derive a novel, TBV measure with the use of only dual-energy X-ray absorptiometry (DXA) attenuation values for use in Lohman's 4C body composition model. Design: Pixel-specific masses and volumes were calculated from low- and high-energy attenuation values with the use of first principle conversions of mass attenuation coefficients. Pixel masses and volumes were summed to derive body mass and total body volume. As proof of concept, 11 participants were recruited to have 4C measures taken: DXA, air-displacement plethysmography (ADP), and total body water (TBW). TBV measures with the use of only DXA (DXA-volume) and ADP-volume measures were compared for each participant. To see how body composition estimates were affected by these 2 methods, we used Lohman's 4C model to quantify percentage fat measures for each participant and compared them with conventional DXA measures. Results: DXA-volume and ADP-volume measures were highly correlated (R2 = 0.99) and showed no statistically significant bias. Percentage fat by DXA volume was highly correlated with ADP-volume percentage fat measures and DXA software-reported percentage fat measures (R2 = 0.96 and R2 = 0.98, respectively) but were slightly biased. Conclusions: A novel method to calculate TBV with the use of a clinical DXA system was developed, compared against ADP as proof of principle, and used in Lohman's 4C body composition model. The DXA-volume approach eliminates many of the inherent inaccuracies associated with displacement measures for volume and, if validated in larger groups of participants, would simplify the acquisition of 4C body composition to a single DXA scan and TBW measure. PMID:22134952

  2. Poly(trimethylene carbonate)-based composite materials for reconstruction of critical-sized cranial bone defects in sheep.

    PubMed

    Zeng, Ni; van Leeuwen, Anne C; Grijpma, Dirk W; Bos, Ruud R M; Kuijer, Roel

    2017-02-01

    The use of ceramic materials in repair of bone defects is limited to non-load-bearing sites. We tested poly(trimethylene carbonate) (PTMC) combined with β-tricalcium phosphate or biphasic calcium phosphate particles for reconstruction of cranial defects. PTMC-calcium phosphate composite matrices were implanted in cranial defects in sheep for 3 and 9 months. Micro-computed tomography quantification and histological observation were performed for analysis. No differences were found in new bone formation among the defects left unfilled, filled with PTMC scaffolds, or filled with either kind of PTMC-calcium phosphate composite scaffolds. Porous β-TCP scaffolds as control led to a larger amount of newly formed bone in the defects than all other materials. Histology revealed abundant new bone formation in the defects filled with porous β-TCP scaffolds. New bone formation was limited in defects filled with PTMC scaffolds or different PTMC-calcium phosphate matrices. PTMC matrices were degraded uneventfully. New bone formation within the defects followed an orderly pattern. PTMC did not interfere with bone regeneration in sheep cranial defects and is suitable as a polymer matrix for incorporating calcium phosphate particles. Increasing the content of calcium phosphate particles in the composite matrices may enhance the beneficial effects of the particles on new bone formation. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  3. [Advances in research and application of beta-tricalcium phosphate, collagen and beta-tricalcium phosphate/collagen composite in bone tissue engineering].

    PubMed

    Han, Xiang-Yong; Fu, Yuan-Fei; Zhang, Fu-Qiang

    2007-02-01

    Bone defects in oral and maxillofacial region was a common problem. To repair the defect, bone grafts including autograft, allograft and artificial bone graft were used in clinic despite of their disadvantages. Nowadays, bone tissue engineering has become a commonly used method to repair bone defect. This paper reviewed the application of beta-TCP, collagen and beta-TCP/collagen composite in bone tissue engineering. It was concluded that beta-TCP/collagen composite was a promising materials in bone tissue engineering.

  4. [Epoxide acrylate maleic resin and hydroxyapatite composite material as a bone graft substitute in surgical correction of orbital reconstruction].

    PubMed

    Mu, X; Dong, J; Wang, W

    1995-11-01

    This paper illustrates the results of surgical correction in 11 cases with orbital deformities such as periorbital deficiency after orbitotomy for retinoblastoma and orbital malposition after facial trauma. EH composite material, mixture of hydroxyapatite and epoxide acrylate maleic resin in constant proportion, was used as a good bone graft substitute in all 11 cases. This material was easier to be molded during surgery, safe to human body, had no toxic effects, no irritation and no implant-related complications. The early results obtained in these patients are encouraging.

  5. Body Composition Measurements of 161-km Ultramarathon Participants

    USDA-ARS?s Scientific Manuscript database

    This study compares body composition characteristics with performance among participants in a 161-km trail ultramarathon. Height, mass, and percent body fat from bioimpedence spectroscopy were measured on 72 starters. Correlation analyses were used to compare body characteristics with finish time, ...

  6. Diatomite reinforced chitosan composite membrane as potential scaffold for guided bone regeneration.

    PubMed

    Tamburaci, Sedef; Tihminlioglu, Funda

    2017-11-01

    In this study, natural silica source, diatomite, incorporated novel chitosan based composite membranes were fabricated and characterized for bone tissue engineering applications as possible bone regeneration membrane. The effect of diatomite loading on the mechanical, morphological, chemical, thermal and surface properties, wettability and in vitro cytotoxicity and cell proliferation on of composite membranes were investigated and observed by tensile test, atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), protein adsorption assay, air/water contact angle analysis and WST-1 respectively. Swelling studies were also performed by water absorption capacity determination. Results showed that incorporation of diatomite to the chitosan matrix increased the surface roughness, swelling capacity and tensile modulus of membranes. An increase of about 52% in Young's modulus was achieved for 10wt% diatomite composite membranes compared with chitosan membranes. High cell viability results were obtained with indirect extraction method. Besides, in vitro cell proliferation and ALP activity results showed that diatom incorporation significantly increased the ALP activity of Saos-2 cells cultured on chitosan membranes. The novel composite membranes prepared in the present study with tunable properties can be considered as a potential candidate as a scaffold in view of its enhanced physical & chemical properties as well as biological activities for bone tissue engineering applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Seasonal Changes in Soccer Players' Body Composition and Dietary Intake Practices.

    PubMed

    Devlin, Brooke L; Kingsley, Michael; Leveritt, Michael D; Belski, Regina

    2017-12-01

    Devlin, BL, Kingsley, M, Leveritt, MD, and Belski, R. Seasonal changes in soccer players' body composition and dietary intake practices. J Strength Cond Res 31(12): 3319-3326, 2017-The aims of this study were 2-fold: to determine seasonal changes in dietary intake and body composition in elite soccer players and to evaluate the influence of self-determined individual body composition goals on dietary intake and body composition. This longitudinal, observational study assessed body composition (total mass, fat-free soft tissue mass, and fat mass) using dual-energy x-ray absorptiometry and dietary intake (energy and macronutrients) via multiple-pass 24-hour recalls, at 4 time points over a competitive season in elite soccer players from one professional club in the Australian A-League competition. Self-reported body composition goals were also recorded. Eighteen elite male soccer players took part (25 ± 5 years, 180.5 ± 7.4 cm, 75.6 ± 6.5 kg). Majority (≥67%) reported the goal to maintain weight. Fat-free soft tissue mass increased from the start of preseason (55,278 ± 5,475 g) to the start of competitive season (56,784 ± 5,168 g; p < 0.001), and these gains were maintained until the end of the season. Fat mass decreased over the preseason period (10,072 ± 2,493 g to 8,712 ± 1,432 g; p < 0.001), but increased during the latter part of the competitive season. Dietary intake practices on training days were consistent over time and low compared with sport nutrition recommendations. The self-reported body composition goals did not strongly influence dietary intake practices or changes in body composition. This study has demonstrated that body composition changes over the course of a soccer season are subtle in elite soccer players despite relatively low self-reported intake of energy and carbohydrate.

  8. Knotless anchors with sutures external to the anchor body may be at risk for suture cutting through osteopenic bone.

    PubMed

    Ono, Y; Woodmass, J M; Nelson, A A; Boorman, R S; Thornton, G M; Lo, I K Y

    2016-06-01

    This study evaluated the mechanical performance, under low-load cyclic loading, of two different knotless suture anchor designs: sutures completely internal to the anchor body (SpeedScrew) and sutures external to the anchor body and adjacent to bone (MultiFIX P). Using standard suture loops pulled in-line with the rotator cuff (approximately 60°), anchors were tested in cadaveric bone and foam blocks representing normal to osteopenic bone. Mechanical testing included preloading to 10 N and cyclic loading for 500 cycles from 10 N to 60 N at 60 mm/min. The parameters evaluated were initial displacement, cyclic displacement and number of cycles and load at 3 mm displacement relative to preload. Video recording throughout testing documented the predominant source of suture displacement and the distance of 'suture cutting through bone'. In cadaveric bone and foam blocks, MultiFIX P anchors had significantly greater initial displacement, and lower number of cycles and lower load at 3 mm displacement than SpeedScrew anchors. Video analysis revealed 'suture cutting through bone' as the predominant source of suture displacement in cadaveric bone (qualitative) and greater 'suture cutting through bone' comparing MultiFIX P with SpeedScrew anchors in foam blocks (quantitative). The greater suture displacement in MultiFIX P anchors was predominantly from suture cutting through bone, which was enhanced in an osteopenic bone model. Anchors with sutures external to the anchor body are at risk for suture cutting through bone since the suture eyelet is at the distal tip of the implant and the suture directly abrades against the bone edge during cyclic loading. Suture cutting through bone may be a significant source of fixation failure, particularly in osteopenic bone.Cite this article: Y. Ono, J. M. Woodmass, A. A. Nelson, R. S. Boorman, G. M. Thornton, I. K. Y. Lo. Knotless anchors with sutures external to the anchor body may be at risk for suture cutting through osteopenic bone

  9. Polymer ceramic composite that follows the rules of bone growth

    NASA Astrophysics Data System (ADS)

    Dry, Carolyn M.; Warner, Carrie

    1998-07-01

    Research at the University of Illinois School of Architecture Material's Lab is being done on a biomimetic building material with the unique properties of bone. This polymer/ceramic composite will mimic bone by controlling the (1) the structure and form of the material, (2) chemical makeup and sequencing of fabrication, (3) ability to adapt to environmental changes during fabrication, and (4) ability to later adapt and repair itself. Bones and shells obtain their great toughness and strength as a result of careful control of these four factors. The organic fibers are made first and the matrix grown around them as opposed to conventional ceramics in which any fibers are added to the matrix. Constituents are also placed in the material which allow it to later adapt to outside changes. The rules under which bone material naturally forms and adapts, albeit at a macroscale, are followed. Our efforts have concentrated on the chemical makeup, and basic sequencing of fabrication. Our research sought to match the intimate connection between material phases of bone by developing the chemical makeup.

  10. Influence of Body Composition on Gait Kinetics throughout Pregnancy and Postpartum Period

    PubMed Central

    Branco, Marco; Santos-Rocha, Rita; Vieira, Filomena; Silva, Maria-Raquel; Aguiar, Liliana; Veloso, António P.

    2016-01-01

    Pregnancy leads to several changes in body composition and morphology of women. It is not clear whether the biomechanical changes occurring in this period are due exclusively to body composition and size or to other physiological factors. The purpose was to quantify the morphology and body composition of women throughout pregnancy and in the postpartum period and identify the contribution of these parameters on the lower limb joints kinetic during gait. Eleven women were assessed longitudinally, regarding anthropometric, body composition, and kinetic parameters of gait. Body composition and body dimensions showed a significant increase during pregnancy and a decrease in the postpartum period. In the postpartum period, body composition was similar to the 1st trimester, except for triceps skinfold, total calf area, and body mass index, with higher results than at the beginning of pregnancy. Regression models were developed to predict women's internal loading through anthropometric variables. Four models include variables associated with the amount of fat; four models include variables related to overall body weight; three models include fat-free mass; one model includes the shape of the trunk as a predictor variable. Changes in maternal body composition and morphology largely determine kinetic dynamics of the joints in pregnant women. PMID:27073713

  11. History of the U.S. Navy Body Composition program.

    PubMed

    Peterson, David D

    2015-01-01

    The Navy currently employs maximum weight-for-height tables and body fat prediction equations based on circumference measurements to assess body composition. However, many Sailors believe the current method fails to accurately predict body fat percentage. As a result, the Naval Health Research Center (NHRC) conducted numerous studies in an attempt to improve the accuracy and reliability of the Navy's Body Composition Analysis program. In 2012, NHRC conducted a study that researched the feasibility of using a single abdominal circumference (AC) measurement in lieu of circumference measurements. The Air Force and National Institutes of Health (NIH) employ a single AC measurement taken at the superior border of the iliac crest to assess body composition and all-cause mortality risk. Although the Air Force and NIH use the iliac crest, NHRC is proposing the Navy use the umbilicus as the AC site since it is less invasive and easier to identify. If implemented, the Navy would use cutoff values of 40 in. and 36 in. for males and females, respectively. The purpose of this article is to provide a brief history of the Navy's Body Composition Analysis program as well as propose the transition from circumference measurements to a single AC measurement. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.

  12. Age, gender, and race/ethnic differences in total body and subregional bone density.

    PubMed

    Looker, A C; Melton, L J; Harris, T; Borrud, L; Shepherd, J; McGowan, J

    2009-07-01

    Total body bone density of adults from National Health and Nutrition Examination Survey (NHANES) 1999-2004 differed as expected for some groups (men>women and blacks>whites) but not others (whites>Mexican Americans). Cross-sectional age patterns in bone mineral density (BMD) of older adults differed at skeletal sites that varied by degree of weight-bearing. Total body dual-energy X-ray absorptiometry (DXA) data offer the opportunity to compare bone density of demographic groups across the entire skeleton. The present study uses total body DXA data (Hologic QDR 4500A, Hologic, Bedford MA, USA) from the NHANES 1999-2004 to examine BMD of the total body and selected skeletal subregions in a wide age range of adult men and women from three race/ethnic groups. Total body, lumbar spine, pelvis, right leg, and left arm BMD and lean mass from 13,091 adults aged 20 years and older were used. The subregions were chosen to represent sites with different degrees of weight-bearing. Mean BMD varied in expected ways for some demographic characteristics (men>women and non-Hispanic blacks>non-Hispanic whites) but not others (non-Hispanic whites>Mexican Americans). Differences in age patterns in BMD also emerged for some characteristics (sex) but not others (race/ethnicity). Differences in cross-sectional age patterns in BMD and lean mass by degree of weight-bearing in older adults were observed for the pelvis, leg, and arm. This information may be useful for generating hypotheses about age, race, and sex differences in fracture risk in the population.

  13. Do Lower-Body Dimensions and Body Composition Explain Vertical Jump Ability?

    PubMed

    Caia, Johnpaul; Weiss, Lawrence W; Chiu, Loren Z F; Schilling, Brian K; Paquette, Max R; Relyea, George E

    2016-11-01

    Caia, J, Weiss, LW, Chiu, LZF, Schilling, BK, Paquette, MR, and Relyea, GE. Do lower-body dimensions and body composition explain vertical jump ability? J Strength Cond Res 30(11): 3073-3083, 2016-Vertical jump (VJ) capability is integral to the level of success attained by individuals participating in numerous sport and physical activities. Knowledge of factors related to jump performance may help with talent identification and/or optimizing training prescription. Although myriad variables are likely related to VJ, this study focused on determining if various lower-body dimensions and/or body composition would explain some of the variability in performance. Selected anthropometric dimensions were obtained from 50 university students (25 men and 25 women) on 2 occasions separated by 48 or 72 hours. Estimated body fat percentage (BF%), height, body weight, hip width, pelvic width, bilateral quadriceps angle (Q-angle), and bilateral longitudinal dimensions of the feet, leg, thigh, and lower limb were obtained. Additionally, participants completed countermovement VJs. Analysis showed BF% to have the highest correlation with countermovement VJ displacement (r = -0.76, p < 0.001). When examining lower-body dimensions, right-side Q-angle displayed the strongest association with countermovement VJ displacement (r = -0.58, p < 0.001). Regression analysis revealed that 2 different pairs of variables accounted for the greatest variation (66%) in VJ: (a) BF% and sex and (b) BF% and body weight. Regression models involving BF% and lower-body dimensions explained up to 61% of the variance observed in VJ. Although the variance explained by BF% may be increased by using several lower-body dimensions, either sex identification or body weight explains comparatively more. Therefore, these data suggest that the lower-body dimensions measured herein have limited utility in explaining VJ performance.

  14. Bioactive glass/polymer composite materials with mechanical properties matching those of cortical bone.

    PubMed

    Koleganova, Veronika A; Bernier, Suzanne M; Dixon, S Jeffrey; Rizkalla, Amin S

    2006-06-01

    Stress shielding resulting from mismatch in dynamic mechanical properties contributes to the reduced stability of osseous implants. Our objective was to develop biocompatible composites having mechanical properties similar to those of cortical bone. Polymers of urethane dimethacrylate (UDMA) and 2-hydroxyethyl methacrylate (HEMA, 0-20%) and composites containing bioactive glass particles (70% SiO(2), 25% CaO, and 5% P(2)O(5)), with or without silane treatment were prepared. Young's moduli of composites containing silane-treated glass (16 GPa) were significantly greater than those of composites containing untreated glass (12-13 GPa) or of unfilled polymers (5-6 GPa). Bioactive glass reduced water sorption by the composites and incorporation of silane-treated glass prevented HEMA-induced increases in water sorption. Osteoblast-like cells attached equally well to UDMA polymer and composite containing silane-treated bioactive glass. Thus, silane treatment improved the mechanical properties of bioactive glass composites without compromising biocompatibility. This material has a Young's modulus comparable to that of cortical bone. Therefore, silane-treated bioactive glass composites, when used as implant or cement materials, would reduce stress shielding and improve implant stability.

  15. Oleic acid surfactant in polycaprolactone/hydroxyapatite-composites for bone tissue engineering.

    PubMed

    Cardoso, Guinea B C; Maniglio, Devid; Volpato, Fabio Z; Tondon, Abhishek; Migliaresi, Claudio; Kaunas, Roland R; Zavaglia, Cecilia A C

    2016-08-01

    Bone substitutes are required to repair osseous defects caused by a number of factors, such as traumas, degenerative diseases, and cancer. Autologous bone grafting is typically used to bridge bone defects, but suffers from chronic pain at the donor-site and limited availability of graft material. Tissue engineering approaches are being investigated as viable alternatives, which ideal scaffold should be biocompatible, biodegradable, and promote cellular interactions and tissue development, need to present proper mechanical and physical properties. In this study, poly(ε-caprolactone) (PCL), oleic acid (OA) and hydroxyapatite (HAp) were used to obtain films whose properties were investigated by contact angle, scanning electron microscopy, atomic force microscopy, tensile mechanical tests, and in vitro tests with U2OS human osteosarcoma cells by direct contact. Our results indicate that by using OA as surfactant/dispersant, it was possible to obtain a homogenous film with HAp. The PCL/OA/Hap sample had twice the roughness of the control (PCL) and a lower contact angle, indicating increased hydrophilicity of the film. Furthermore, mechanical testing showed that the addition of HAp decreased the load at yield point and tensile strength and increased tensile modulus, indicating a more brittle composition vs. PCL matrix. Preliminary cell culture experiments carried out with the films demonstrated that U2OS cells adhered and proliferated on all surfaces. The data demonstrate the improved dispersion of HAp using OA and the important consequences of this addition on the composite, unveiling the potentially of this composition for bone growth support. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1076-1082, 2016. © 2015 Wiley Periodicals, Inc.

  16. Assessing body composition in infants and toddlers

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to compare different body composition techniques in infants and toddlers. Anthropometric measures including mid-upper arm circumference (MAC), triceps skinfold thickness (TSF), and weight-for-height or -length Z-scores (WHZ), and measures of body fat mass assessed wit...

  17. A randomized and controlled clinical trial of two different compositions of deproteinized bovine bone and autogenous bone used for lateral ridge augmentation.

    PubMed

    Mordenfeld, Arne; Johansson, Carina B; Albrektsson, Tomas; Hallman, Mats

    2014-03-01

    The aim of the study was to radiologically and histologically evaluate the graft healing and volumetric changes after lateral augmentation with two different compositions of deproteinized bovine bone (DPBB) and autogenous bone (AB). Thirteen patients with a mean age of 59.6 ± 12.1 years (six men and seven women) were included in this randomized and controlled trial, designed as a split-mouth study. Ten edentulous and four partially edentulous jaws with an alveolar ridge width of ≤4 mm were laterally augmented with a graft composition of 60 : 40 (DPBB/AB) on one side and 90 : 10 (DPBB/AB) on the contralateral side. Cone beam computed tomography (CB/CT) was obtained immediately postoperatively and after a healing period of 7.5 months. Width changes were measured on CB/CT scans. After a mean healing period of 8.1 months (range, 7.9-8.3), biopsies were retrieved perpendicular to the crest from each graft by means of a trephine bur. Histomorphometry was performed, and the following variables were recorded: Ingrowth of new bone (percentage of total graft width), percentage of DPBB, bone and soft tissue, and percentage of DPBB particles in contact with bone. The mean gained width of the alveolar crest after 7.5 months was significantly more for the 60 : 40 mixture compared with the 90 : 10 mixture, 3.5 (±1.3) mm and 2.9 (±1.3) mm, respectively. There was a significant difference in graft width reduction between 60 : 40 and 90 : 10 after 7.5 months, 37 (±19.9)% and 46.9 (±23.5)%, respectively. New bone ingrowth had occurred in 82.1 (±23.3)% and 82.3 (±26.6)% of the graft, respectively. There were no statistical differences between fractions of different tissues between the 90 : 10 and 60 : 40 compositions. However, there were significantly more soft tissue and less new bone formation closer to the periosteum compared with the graft portion closer to the residual bone in both 60 : 40 and 90 : 10 compositions. There was significantly less

  18. Electron Microscopy and Analytical X-ray Characterization of Compositional and Nanoscale Structural Changes in Fossil Bone

    NASA Astrophysics Data System (ADS)

    Boatman, Elizabeth Marie

    The nanoscale structure of compact bone contains several features that are direct indicators of bulk tissue mechanical properties. Fossil bone tissues represent unique opportunities to understand the compact bone structure/property relationships from a deep time perspective, offering a possible array of new insights into bone diseases, biomimicry of composite materials, and basic knowledge of bioapatite composition and nanoscale bone structure. To date, most work with fossil bone has employed microscale techniques and has counter-indicated the survival of bioapatite and other nanoscale structural features. The obvious disconnect between the use of microscale techniques and the discernment of nanoscale structure has prompted this work. The goal of this study was to characterize the nanoscale constituents of fossil compact bone by applying a suite of diffraction, microscopy, and spectrometry techniques, representing the highest levels of spatial and energy resolution available today, and capable of complementary structural and compositional characterization from the micro- to the nanoscale. Fossil dinosaur and crocodile long bone specimens, as well as modern ratite and crocodile femurs, were acquired from the UC Museum of Paleontology. Preserved physiological features of significance were documented with scanning electron microscopy back-scattered imaging. Electron microprobe wavelength-dispersive X-ray spectroscopy (WDS) revealed fossil bone compositions enriched in fluorine with a complementary loss of oxygen. X-ray diffraction analyses demonstrated that all specimens were composed of apatite. Transmission electron microscopy (TEM) imaging revealed preserved nanocrystallinity in the fossil bones and electron diffraction studies further identified these nanocrystallites as apatite. Tomographic analyses of nanoscale elements imaged by TEM and small angle X-ray scattering were performed, with the results of each analysis further indicating that nanoscale structure is

  19. Novel composite implant in craniofacial bone reconstruction.

    PubMed

    Peltola, Matti J; Vallittu, Pekka K; Vuorinen, Ville; Aho, Allan A J; Puntala, Antti; Aitasalo, Kalle M J

    2012-02-01

    Bioactive glass (BAG) and polymethyl methacrylate (PMMA) have been used in clinical applications. Antimicrobial BAG has the ability to attach chemically to surrounding bone, but it is not possible to bend, drill or shape BAG during the operation. PMMA has advantages in terms of shaping during the operation, but it does not attach chemically to the bone and is an exothermic material. To increase the usefulness of BAG and PMMA in skull bone defect reconstructions, a new composite implant containing BAG and PMMA in craniofacial reconstructions is presented. Three patients had pre-existing large defects in the calvarial and one in the midface area. An additive manufacturing (AM) model was used preoperatively for treatment planning and custom-made implant production. The trunk of the PMMA implant was coated with BAG granules. Clinical and radiological follow-up was performed postoperatively at 1 week, and 3, 6 and 12 months, and thereafter annually up to 5 years. Computer tomography (CT) and positron emission tomography (PET-CT) were performed at 12 and 24 months postoperatively. Uneventful clinical recovery with good esthetic and functional outcome was seen. CT and PET-CT findings supported good clinical outcome. The BAG-PMMA implant seems to be a promising craniofacial reconstruction alternative. However, more clinical experience is needed.

  20. Body composition in men with anorexia nervosa: Longitudinal study.

    PubMed

    El Ghoch, Marwan; Calugi, Simona; Milanese, Chiara; Bazzani, Paola Vittoria; Dalle Grave, Riccardo

    2017-07-01

    To compare body composition patterns before and after complete weight restoration in men with anorexia nervosa. Dual-energy X-ray absorptiometry (DXA) was used to measure body composition patterns in 10 men with anorexia nervosa before and after complete weight restoration, and in 10 healthy men matched to age and patients' post-treatment body mass index (BMI). Before weight restoration, men with anorexia nervosa displayed lower total body fat mass (FM) and lean mass (LBM) than those in the healthy comparison group, with a greater FM loss from the extremity than the trunk region. After short-term weight restoration, patients displayed complete normalization in total LBM and FM, but greater deposition of FM in the trunk region. Short-term weight restoration can normalize body composition patterns in men with anorexia nervosa, but results in a central adiposity phenotype. The clinical implication of this finding is unknown, but should be explored given the high levels of concern about central adiposity in anorexia nervosa. © 2017 Wiley Periodicals, Inc.

  1. Body composition of Colombian women.

    PubMed

    Spurr, G B; Reina, J C; Li, S J; de Orozco, B; Dufour, D L

    1994-08-01

    Measurements of anthropometry and total body water (TBW) were made in 99 women 19-44 y of age living in socioeconomically deprived circumstances in Cali, Colombia. TBW was measured by dilution of deuterium oxide. An empirical equation for estimating lean body mass (LBM) was derived and applied satisfactorily to an independent study group. Comparisons were also made with body-composition values obtained by the Durnin and Womersley equations and an equation derived from rural women living in Guatemala. Neither set of equations was suitable for use with the Colombian subjects because both significantly overestimated LBM and therefore underestimated body fat. Lower values of standing height in older women suggest that they may have been subjected to more severe undernutrition during their growth than the younger subjects. When compared with a group of US women, Colombian subjects were less physically fit and had greater subcutaneous-fat deposits, which were distributed over the trunk and limbs, whereas body mass indexes and waist-hip ratios were not significantly different.

  2. Longitudinal relationships between whole body and central adiposity on weight-bearing bone geometry, density, and bone strength: a pQCT study in young girls

    PubMed Central

    Farr, Joshua N.; Laudermilk, Monica J.; Lee, Vinson R.; Blew, Robert M.; Stump, Craig; Houtkooper, Linda; Lohman, Timothy G.; Going, Scott B.

    2015-01-01

    Summary Longitudinal relationships between adiposity (total body and central) and bone development were assessed in young girls. Total body and android fat masses were positively associated with bone strength and density parameters of the femur and tibia. These results suggest adiposity may have site-specific stimulating effects on the developing bone. Introduction Childhood obesity may impair bone development, but the relationships between adiposity and bone remain unclear. Failure to account for fat pattern may explain the conflicting results. Purpose Longitudinal associations of total body fat mass (TBFM) and android fat mass (AFM) with 2-year changes in weight-bearing bone parameters were examined in 260 girls aged 8–13 years at baseline. Peripheral quantitative computed tomography was used to measure bone strength index (BSI, square milligrams per quartic millimeter), strength–strain index (SSI, cubic millimeters), and volumetric bone mineral density (vBMD, milligrams per cubic centimeter) at distal metaphyseal and diaphyseal regions of the femur and tibia. TBFM and AFM were assessed by dual-energy x-ray absorptiometry. Results Baseline TBFM and AFM were positively associated with the change in femur BSI (r =0.20, r =0.17, respectively) and femur trabecular vBMD (r =0.19, r =0.19, respectively). Similarly, positive associations were found between TBFM and change in tibia BSI and SSI (r =0.16, r =0.15, respectively), and femur total and trabecular vBMD (r =0.12, r =0.14, respectively). Analysis of covariance showed that girls in the middle thirds of AFM had significantly lower femur trabecular vBMD and significantly higher tibia cortical vBMD than girls in the highest thirds of AFM. All results were significant at p <0.05. Conclusions Whereas baseline levels of TBFM and AFM are positive predictors of bone strength and density at the femur and tibia, higher levels of AFM above a certain level may impair cortical vBMD growth at weight-bearing sites. Future

  3. Determination of composition and structure of spongy bone tissue in human head of femur by Raman spectral mapping.

    PubMed

    Kozielski, M; Buchwald, T; Szybowicz, M; Błaszczak, Z; Piotrowski, A; Ciesielczyk, B

    2011-07-01

    Biomechanical properties of bone depend on the composition and organization of collagen fibers. In this study, Raman microspectroscopy was employed to determine the content of mineral and organic constituents and orientation of collagen fibers in spongy bone in the human head of femur at the microstructural level. Changes in composition and structure of trabecula were illustrated using Raman spectral mapping. The polarized Raman spectra permit separate analysis of local variations in orientation and composition. The ratios of ν₂PO₄³⁻/Amide III, ν₄PO₄³⁻/Amide III and ν₁CO₃²⁻/ν₂PO₄³⁻ are used to describe relative amounts of spongy bone components. The ν₁PO₄³⁻/Amide I ratio is quite susceptible to orientation effect and brings information on collagen fibers orientation. The results presented illustrate the versatility of the Raman method in the study of bone tissue. The study permits better understanding of bone physiology and evaluation of the biomechanical properties of bone.

  4. Body composition of term healthy Indian newborns.

    PubMed

    Jain, V; Kurpad, A V; Kumar, B; Devi, S; Sreenivas, V; Paul, V K

    2016-04-01

    Previous anthropometry-based studies have suggested that in Indian newborns fat mass is conserved at the expense of lean tissue. This study was undertaken to assess the body composition of Indian newborns and to evaluate its relation with parents' anthropometry, birth weight and early postnatal weight gain. Body composition of healthy term singleton newborns was assessed by the deuterium dilution method in the second week of life. Anthropometry was carried out at birth and on the day of study. Data from 127 babies were analyzed. Birth weight was 2969±383 g. Body composition was assessed at a mean age of 12.7±3.1 days. Fat and fat-free mass were 354±246 and 2764±402 g, respectively, and fat mass percentage (FM%) was 11.3±7.3%. Birth weight and fat-free mass were higher among boys, but no gender difference was noted in FM%. Birth weight was positively correlated with fat as well as fat-free mass but not FM%. FM% showed positive correlation with gain in weight from birth to the day of assessment. This is the first study from India to report body composition in newborns using deuterium dilution. FM% was comparable to that reported for Western populations for babies of similar age. Our results suggest that the percentage of fat and fat-free mass is relatively constant over the range of birth weights included in this study, and greater weight gain during early postnatal period results in greater increase in FM%.

  5. The relationship between body composition and femoral neck osteoporosis or osteopenia in adults with previous poliomyelitis.

    PubMed

    Chang, Kwang-Hwa; Tseng, Sung-Hui; Lin, Yu-Ching; Lai, Chien-Hung; Hsiao, Wen-Tien; Chen, Shih-Ching

    2015-04-01

    Articles in the literature describing the association between body composition and osteoporosis in subjects with poliomyelitis are scarce. To assess the relationship between body composition and femoral neck osteoporosis or osteopenia in adults with previous polio. After excluding postmenopausal women, 44 polio (mean age ± standard deviation, 46.1 ± 3.3 years) and 44 able-bodied control volunteers (47.0 ± 4.0 years) participated in the study. Each participant's femoral neck bone mineral density (FNBMD) and whole body composition were measured using dual-energy X-ray absorptiometry. With local reference BMD values of normal young adults installed in the instrument, we obtained T-score values that depended on each FNBMD value. A T-score value of ≤-1.0 indicated decreased T-score, including osteoporosis (T-score ≤ -2.5) and osteopenia (-1.0 to -2.5). This study conducted logistic regression analyses to find factors associated with osteoporosis and osteopenia. Based on the FNBMD T-score values, 60.0% of middle-aged men with polio had osteoporosis. In adjusted logistic regression analyses, total lean tissue mass (Adjusted odds ratio [95% confidence interval], 0.74 [0.56-0.99], P < 0.05) and male gender (947.16 [6.02-148,926.16], P < 0.01) were important factors associated with decreased T-score in polio group. Osteoporosis or osteopenia is a common medical problem for middle-aged men with polio. Reduced total lean tissue mass seems to be one of the important factors associated with osteoporosis or osteopenia among subjects with polio. Further research for a clinical tool to assess lean tissue mass for subjects with polio is needed. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Prostate Cancer Metastases Alter Bone Mineral and Matrix Composition Independent of Effects on Bone Architecture in Mice A Quantitative Study Using microCT and Raman Spectroscopy

    PubMed Central

    Bi, Xiaohong; Sterling, Julie A.; Merkel, Alyssa R.; Perrien, Daniel S.; Nyman, Jeffry; Mahadevan-Jansen, Anita

    2013-01-01

    Prostate cancer is the most common primary tumor and the second leading cause of cancer-related deaths in men in the United States. Prostate cancer bone metastases are characterized by abnormal bone remodeling processes and result in a variety of skeletal morbidities. Prevention of skeletal complications is a crucial element in prostate cancer management. This study investigated prostate cancer-induced alterations in the molecular composition and morphological structure of metastasis-bearing bones in a mouse model of prostate cancer using Raman spectroscopy and micro-computed tomography (microCT). LNCaP C4-2B prostate cancer cells were injected into the right tibiae of 5-week old male SCID mice. Upon sacrifice at 8 weeks post tumor inoculation, two out of the ten tumor-bearing tibiae showed only osteoblastic lesions in the radiographs, 4 osteolytic lesions only and 4 mixed with osteoblastic and osteolytic lesions.. Carbonate substitution was significantly increased while there was a marked reduction in the level of collagen mineralization, mineral crystallinity, and carbonate:matrix ratio in the cortex of the intact tumor-bearing tibiae compared to contralateral controls. MicroCT analysis revealed a significant reduction in bone volume/total volume, trabecular number and trabecular thickness, as well as significant increase in bone surface/volume ratio in tibiae with osteolytic lesions, suggesting active bone remodeling and bone loss. None of the changes in bone compositional properties were correlated with lesion area from radiographs or the changes in bone architecture from microCT. This study indicates that LNCaP C4-2B prostate cancer metastases alter bone tissue composition independent of changes in architecture, and altered bone quality may be an important contributor to fracture risk in these patients. Raman spectroscopy may provide a new avenue of investigation into interactions between tumor and bone microenvironment. PMID:23867219

  7. Evaluation of porous gradient hydroxyapatite/zirconia composites for repair of lumbar vertebra defect in dogs.

    PubMed

    Shao, Rong-Xue; Quan, Ren-Fu; Huang, Xiao-Long; Wang, Tuo; Xie, Shang-Ju; Gao, Huan-Huan; Wei, Xi-Cheng; Yang, Di-Sheng

    2016-04-01

    To evaluate the effects of porous gradient composites with hydroxyapatite/zirconia and autologous iliac in repair of lumbar vertebra body defects in dogs. (1) New porous gradient hydroxyapatite/zirconia composites were prepared using foam immersion, gradient compound and high temperature sintering; (2) A total of 18 adult beagle dogs, aged five to eight months and weighted 10-13 kg, were randomly assigned into two subgroups, which were implanted with new porous gradient hydroxyapatite/zirconia composites (subgroup A in 12) or autologous iliac bone (subgroup B in 6); (3) The post-operative data were analyzed and compared between the subgroups to repair the vertebral body defect by roentgenoscopy, morphology and biomechanics. The porosity of new porous gradient hydroxyapatite/zirconia composites is at 25 poles per inch, and the size of pores is at between 150 and 300 µm. The post-operative roentgenoscopy displayed that new-bone formation is increased gradually, and the interface between composites and host-bone becomes became blur, and the new-bone around the composites were integrated into host-bone at 24 weeks postoperatively in subgroup A. As to subgroup B, the resorption and restructure were found at six weeks after the surgery, and the graft-bone and host-bone have been integrated completely without obvious boundary at 24 weeks postoperatively. Histomorphologic study showed that the amount of bone within pores of the porous gradient hydroxyapatite/zirconia composites increased continuously with a prolonged implantation time, and that partial composites were degradated and replaced by new-bone trabeculae. There was no significant difference between subgroups (P > 0.05) in the ultimate compressive strengths. New porous gradient hydroxyapatite/zirconia composites can promote the repair of bony defect, and induce bone tissue to ingrow into the pores, which may be applied widely to the treatment of bony defect in the future. © The Author(s) 2016.

  8. Relationship between ultrasound bone parameters, lung function, and body mass index in healthy student population.

    PubMed

    Cvijetić, Selma; Pipinić, Ivana Sabolić; Varnai, Veda Maria; Macan, Jelena

    2017-03-01

    Low bone mineral density has been reported in paediatric and adult patients with different lung diseases, but limited data are available on the association between lung function and bone density in a healthy young population. We explored the predictors of association between bone mass and pulmonary function in healthy first-year university students, focusing on body mass index (BMI). In this cross-sectional study we measured bone density with ultrasound and lung function with spirometry in 370 university students (271 girls and 99 boys). Information on lifestyle habits, such as physical activity, smoking, and alcohol consumption were obtained with a questionnaire. All lung function and bone parameters were significantly higher in boys than in girls (P<0.001). Underweight students had a significantly lower forced vital capacity (FVC%) (P=0.001 girls; P=0.012 boys), while overweight students had a significantly higher FVC% than normal weight students (P=0.024 girls; P=0.001 boys). BMI significantly correlated with FVC% (P=0.001) and forced expiratory volume in 1 second (FEV1 %) in both genders (P=0.001 girls; P=0.018 boys) and with broadband ultrasound attenuation (BUA) in boys. There were no significant associations between any of the bone and lung function parameters either in boys or girls. The most important determinant of lung function and ultrasound bone parameters in our study population was body mass index, with no direct association between bone density and lung function.

  9. Urinary incontinence in older women: the role of body composition and muscle strength from the Health, Aging, and Body Composition Study

    PubMed Central

    Suskind, Anne M; Cawthon, Peggy M.; Nakagawa, Sanae; Subak, Leslee L.; Reinders, Ilse; Satterfield, Suzanne; Cummings, Steve; Cauley, Jane A.; Harris, Tamara; Huang, Alison J.

    2016-01-01

    Objectives To evaluate prospective relationships between body composition and muscle strength with predominantly stress- and urgency urinary incontinence (SUI and UUI) in older women. Design Prospective community-dwelling observational cohort study (Health, Aging, and Body Composition study). Participants Women initially aged 70 to 79 years recruited from Pittsburgh, PA and Memphis, TN. Measurements Urinary incontinence was assessed by structured questionnaires. Body mass index (BMI), grip strength, quadriceps torque and walking speed were assessed by physical examination and performance testing. Appendicular lean body mass (ALM) and whole-body fat mass were measured using dual-energy x-ray absorptiometry. Results Of 1475 women, 212 (14%) and 233 (16%) reported at least monthly predominantly SUI and UUI at baseline, respectively. At 3 years, there were 1137 women, 164 (14%) with new/persistent SUI and 320 (28%) with new/persistent UUI. Women had increased odds of new/persistent SUI if they demonstrated ≥5% decrease in grip strength, (adjusted OR [AOR] 1.60, p=0.047). Alternatively, women had decreased odds of new/persistent SUI if they demonstrated ≥5% decrease in BMI (AOR 0.46; p=0.014), ≥5% increase in ALM corrected for BMI (AOR 0.17; p=0.004), or ≥5% decrease in fat mass (AOR 0.53; p=0.010). Only a ≥5% increase in walking speed was associated with new/persistent UUI over 3 years (AOR 1.54; p=0.040). Conclusion Among women 70 years and older, changes in body composition and grip strength were associated with changes in SUI frequency over time. In contrast, changes in these factors did not influence UUI. Findings suggest that optimization of body composition and muscle strength is more likely to modify SUI than UUI risk among older women. PMID:27918084

  10. Assessment of nutritional status in cancer--the relationship between body composition and pharmacokinetics.

    PubMed

    Prado, Carla M M; Maia, Yara L M; Ormsbee, Michael; Sawyer, Michael B; Baracos, Vickie E

    2013-10-01

    Several nutritional assessment tools have been used in oncology settings to monitor nutritional status and its associated prognostic significance. Body composition is fundamental for the assessment of nutritional status. Recently, the use of accurate and precise body composition tools has significantly added to the value of nutritional assessment in this clinical setting. Computerized tomography (CT) is an example of a technique which provides state-of-the-art assessment of body composition. With use of CT images, a great variability in body composition of cancer patients has been identified even in people with identical body weight or body mass index. Severe muscle depletion (sarcopenia) has emerged as a prevalent body composition phenotype which is predictive of poor functional status, shorter time to tumor progression, shorter survival, and higher incidence of dose-limiting toxicity. Variability in body composition of cancer patients may be a source of disparities in the metabolism of cytotoxic agents. Future clinical trials investigating dose reductions in patients with sarcopenia and dose-escalating studies based on pre-treatment body composition assessment have the potential to alter cancer treatment paradigms.

  11. Greener synthesis of electrospun collagen/hydroxyapatite composite fibers with an excellent microstructure for bone tissue engineering

    PubMed Central

    Zhou, Yuanyuan; Yao, Hongchang; Wang, Jianshe; Wang, Dalu; Liu, Qian; Li, Zhongjun

    2015-01-01

    In bone tissue engineering, collagen/hydroxyapatite (HAP) fibrous composite obtained via electrospinning method has been demonstrated to support the cells’ adhesion and bone regeneration. However, electrospinning of natural collagen often requires the use of cytotoxic organic solvents, and the HAP crystals were usually aggregated and randomly distributed within a fibrous matrix of collagen, limiting their clinical potential. Here, an effective and greener method for the preparation of collagen/HAP composite fibers was developed for the first time, and this green product not only had 40 times higher mechanical properties than that previously reported, but also had an excellent microstructure similar to that of natural bone. By dissolving type I collagen in environmentally friendly phosphate buffered saline/ethanol solution instead of the frequently-used cytotoxic organic solvents, followed with the key step of desalination, co-electrospinning the collagen solution with the HAP sol, generates a collagen/HAP composite with a uniform and continuous fibrous morphology. Interestingly, the nano-HAP needles were found to preferentially orient along the longitudinal direction of the collagen fibers, which mimicked the nanostructure of natural bones. Based on the characterization of the related products, the formation mechanism for this novel phenomenon was proposed. After cross-linking with 1-ethyl-3-(3-dimethyl-aminopropyl)-1-carbodiimide hydrochloride/N-hydroxysuccinimide, the obtained composite exhibited a significant enhancement in mechanical properties. In addition, the biocompatibility of the obtained composite fibers was evaluated by in vitro culture of the human myeloma cells (U2-OS). Taken together, the process outlined herein provides an effective, non-toxic approach for the fabrication of collagen/HAP composite nanofibers that could be good candidates for bone tissue engineering. PMID:25995630

  12. Greener synthesis of electrospun collagen/hydroxyapatite composite fibers with an excellent microstructure for bone tissue engineering.

    PubMed

    Zhou, Yuanyuan; Yao, Hongchang; Wang, Jianshe; Wang, Dalu; Liu, Qian; Li, Zhongjun

    2015-01-01

    In bone tissue engineering, collagen/hydroxyapatite (HAP) fibrous composite obtained via electrospinning method has been demonstrated to support the cells' adhesion and bone regeneration. However, electrospinning of natural collagen often requires the use of cytotoxic organic solvents, and the HAP crystals were usually aggregated and randomly distributed within a fibrous matrix of collagen, limiting their clinical potential. Here, an effective and greener method for the preparation of collagen/HAP composite fibers was developed for the first time, and this green product not only had 40 times higher mechanical properties than that previously reported, but also had an excellent microstructure similar to that of natural bone. By dissolving type I collagen in environmentally friendly phosphate buffered saline/ethanol solution instead of the frequently-used cytotoxic organic solvents, followed with the key step of desalination, co-electrospinning the collagen solution with the HAP sol, generates a collagen/HAP composite with a uniform and continuous fibrous morphology. Interestingly, the nano-HAP needles were found to preferentially orient along the longitudinal direction of the collagen fibers, which mimicked the nanostructure of natural bones. Based on the characterization of the related products, the formation mechanism for this novel phenomenon was proposed. After cross-linking with 1-ethyl-3-(3-dimethyl-aminopropyl)-1-carbodiimide hydrochloride/N-hydroxysuccinimide, the obtained composite exhibited a significant enhancement in mechanical properties. In addition, the biocompatibility of the obtained composite fibers was evaluated by in vitro culture of the human myeloma cells (U2-OS). Taken together, the process outlined herein provides an effective, non-toxic approach for the fabrication of collagen/HAP composite nanofibers that could be good candidates for bone tissue engineering.

  13. Expanding the Description of Spaceflight Effects beyond Bone Mineral Density [BMD]: Trabecular Bone Score [TBS] in ISS Astronauts

    NASA Technical Reports Server (NTRS)

    Sibonga, J. D.; Spector, E. R.; King, L. J.; Evans, H. J.; Smith, S. A.

    2014-01-01

    Dual-energy x-ray absorptiometry [DXA] is the widely-applied bone densitometry method used to diagnose osteoporosis in a terrestrial population known to be at risk for age-related bone loss. This medical test, which measures areal bone mineral density [aBMD] of clinically-relevant skeletal sites (e.g., hip and spine), helps the clinician to identify which persons, among postmenopausal women and men older than 50 years, are at high risk for low trauma or fragility fractures and might require an intervention. The most recognized osteoporotic fragility fracture is the vertebral compression fracture which can lead to kyphosis or hunched backs typically seen in the elderly. DXA measurement of BMD however is recognized to be insufficient as a sole index for assessing fracture risk. DXA's limitation may be related to its inability to monitor changes in structural parameters, such as trabecular vs. cortical bone volumes, bone geometry or trabecular microarchitecture. Hence, in order to understand risks to human health and performance due to space exposure, NASA needs to expand its measurements of bone to include other contributors to skeletal integrity. To this aim, the Bone and Mineral Lab conducted a pilot study for a novel measurement of bone microarchitecture that can be obtained by retrospective analysis of DXA scans. Trabecular Bone Score (TBS) assesses changes to trabecular microarchitecture by measuring the grey color "texture" information extracted from DXA images of the lumbar spine. An analysis of TBS in 51 ISS astronauts was conducted to assess if TBS could detect 1) an effect of spaceflight and 2) a response to countermeasures independent of DXA BMD. In addition, changes in trunk body lean tissue mass and in trunk body fat tissue mass were also evaluated to explore an association between body composition, as impacted by ARED exercise, and bone microarchitecture. The pilot analysis of 51 astronaut scans of the lumbar spine suggests that, following an ISS

  14. Effects of Whole Body Vibration Training on Body Composition in Adolescents with Down Syndrome

    ERIC Educational Resources Information Center

    Gonzalez-Aguero, Alejandro; Matute-Llorente, Angel; Gomez-Cabello, Alba; Casajus, Jose A.; Vicente-Rodriguez, German

    2013-01-01

    The present study aimed to determine the effect of 20 weeks of whole body vibration (WBV) on the body composition of adolescents with Down syndrome (DS). Thirty adolescent with DS were divided into two groups: control and WBV. Whole body, upper and lower limbs body fat and lean body mass were measured with dual energy X-ray absorptiometry (DXA)…

  15. Developing a novel magnesium glycerophosphate/silicate-based organic-inorganic composite cement for bone repair.

    PubMed

    Ding, Zhengwen; Li, Hong; Wei, Jie; Li, Ruijiang; Yan, Yonggang

    2018-06-01

    Considering that the phospholipids and glycerophosphoric acid are the basic materials throughout the metabolism of the whole life period and the bone is composed of organic polymer collagen and inorganic mineral apatite, a novel self-setting composite of magnesium glycerophosphate (MG) and di-calcium silicate(C2S)/tri-calcium silicate(C3S) was developed as bio-cement for bone repair, reconstruction and regeneration. The composite was prepared by mixing the MG, C2S and C3S with the certain ratios, and using the deionized water and phosphoric acid solution as mixed liquid. The combination and formation of the composites was characterized by FTIR, XPS and XRD. The physicochemical properties were studied by setting time, compressive strength, pH value, weight loss in the PBS and surface change by SEM-EDX. The biocompatibility was evaluated by cell culture in the leaching solution of the composites. The preliminary results showed that when di- and tri-calcium silicate contact with water, there are lots of Ca(OH) 2 generated making the pH value of solution is higher than 9 which is helpful for the formation of hydroxyapatite(HA) that is the main bone material. The new organic-inorganic self-setting bio-cements showed initial setting time is ranged from 20 min to 85 min and the compressive strength reached 30 MPa on the 7th days, suitable as the bone fillers. The weight loss was 20% in the first week, and 25% in the 4th week. Meanwhile, the new HA precipitated on the composite surface during the incubation in the SBF showed bioactivity. The cell cultured in the leaching liquid of the composite showed high proliferation inferring the new bio-cement has good biocompatibility to the cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Knotless anchors with sutures external to the anchor body may be at risk for suture cutting through osteopenic bone

    PubMed Central

    Ono, Y.; Woodmass, J. M.; Nelson, A. A.; Boorman, R. S.; Thornton, G. M.

    2016-01-01

    Objectives This study evaluated the mechanical performance, under low-load cyclic loading, of two different knotless suture anchor designs: sutures completely internal to the anchor body (SpeedScrew) and sutures external to the anchor body and adjacent to bone (MultiFIX P). Methods Using standard suture loops pulled in-line with the rotator cuff (approximately 60°), anchors were tested in cadaveric bone and foam blocks representing normal to osteopenic bone. Mechanical testing included preloading to 10 N and cyclic loading for 500 cycles from 10 N to 60 N at 60 mm/min. The parameters evaluated were initial displacement, cyclic displacement and number of cycles and load at 3 mm displacement relative to preload. Video recording throughout testing documented the predominant source of suture displacement and the distance of ‘suture cutting through bone’. Results In cadaveric bone and foam blocks, MultiFIX P anchors had significantly greater initial displacement, and lower number of cycles and lower load at 3 mm displacement than SpeedScrew anchors. Video analysis revealed ‘suture cutting through bone’ as the predominant source of suture displacement in cadaveric bone (qualitative) and greater ‘suture cutting through bone’ comparing MultiFIX P with SpeedScrew anchors in foam blocks (quantitative). The greater suture displacement in MultiFIX P anchors was predominantly from suture cutting through bone, which was enhanced in an osteopenic bone model. Conclusions Anchors with sutures external to the anchor body are at risk for suture cutting through bone since the suture eyelet is at the distal tip of the implant and the suture directly abrades against the bone edge during cyclic loading. Suture cutting through bone may be a significant source of fixation failure, particularly in osteopenic bone. Cite this article: Y. Ono, J. M. Woodmass, A. A. Nelson, R. S. Boorman, G. M. Thornton, I. K. Y. Lo. Knotless anchors with sutures external to the anchor body may be

  17. Organic-inorganic composites designed for biomedical applications.

    PubMed

    Miyazaki, Toshiki; Ishikawa, Kunio; Shirosaki, Yuki; Ohtsuki, Chikara

    2013-01-01

    Several varieties of ceramics, such as Bioglass-type glasses, sintered hydroxyapatite and glass-ceramic A-W, exhibit specific biological affinity, i.e., direct bonding to surrounding bone, when implanted in bony defects. These bone-bonding ceramics are called bioactive ceramics and are utilized as important bone substitutes in the medical field. However, there is a limitation to their clinical applications because of their inappropriate mechanical properties. Natural bone takes a kind of organic-inorganic composite, where apatite nanocrystals are precipitated on collagen fibers. Therefore, problems with the bioactive ceramics can be solved by material design based on the composites. In this paper, current research topics on the development of bioactive organic-inorganic composites inspired by actual bone microstructure have been reviewed in correlation with preparation methods and various properties. Several kinds of inorganic components have been found to exhibit bioactivity in the body environment. Combination of the inorganic components with various organic polymers enables the development of bioactive organic-inorganic composites. In addition, novel biomedical applications of the composites to drug delivery systems, scaffolds for tissue regeneration and injectable biomaterials are available by combining drugs or biological molecules with appropriate control of its microstructure.

  18. Evidence of associations between feto-maternal vitamin D status, cord parathyroid hormone and bone-specific alkaline phosphatase, and newborn whole body bone mineral content

    USDA-ARS?s Scientific Manuscript database

    In spite of a high prevalence of vitamin D inadequacy in pregnant women and neonates, relationships among vitamin D status [25(OH)D], parathyroid hormone (PTH), bone specific alkaline phosphatase (BALP), and whole body bone mineral content (WBBMC) in the newborn are poorly characterized. The purpose...

  19. Composition of bone and apatitic biomaterials as revealed by intravital Raman microspectroscopy.

    PubMed

    Penel, G; Delfosse, C; Descamps, M; Leroy, G

    2005-05-01

    Microcharacterization of biominerals allows a better understanding of the pathophysiological events that occur in calcified tissues and synthetic biomaterials. Different methods have been extensively used to conduct such investigations. A new model for the intravital study of the composition and structure of membranous bone by Raman microspectroscopy is described. Titanium bone chambers equipped with a fused-silica optical window were implanted transcutaneously in the calvaria of New Zealand rabbits. The implanted optical windows were well tolerated, and spectral acquisitions were performed without any additional invasive procedure. Bone and implanted apatitic biomaterials were analyzed at different times after surgery. All Raman bands were unambiguously identified in the bone and biomaterial spectra. The main PO4 and CO3 Raman bands in bone spectra were consistent with those found in the carbonated apatite spectrum. The major collagen bands were always observed around 1200-1300 (amide III) and 1600-1700 (amide I) delta cm(-1) and, 1400-1470 and 2800-3100 delta cm(-1) (bending and stretching modes of CH groups, respectively). The phenylalanine (Phe) band was identified in all spectra at 1003 delta cm(-1) and overlapped that of the weak HPO4(2-) ion. The CH bands frequently overlapped the lipid bands. However a distinct protein and lipid bands were detected at 2950 and 2852 delta cm(-1), respectively. In bone areas close to blood vessels, the Raman signature of hemoglobin was detected with a characteristic band at 754 delta cm(-1). The changes observed in bone varied as a function of time and location. The composition and structure of all of the biomaterials studied--including those that were resorbable--seemed to remain stable over time and location. We report for the first time the complete intravital study of Raman spectra of bone and calcium phosphate biomaterials over a period of 8 months. This new approach does not require specimen preparation and allows

  20. Are there effects of age, gender, height, and body fat on the functional muscle-bone unit in children and adults?

    PubMed

    Duran, I; Martakis, K; Hamacher, S; Stark, C; Semler, O; Schoenau, E

    2018-05-01

    The aim was to describe the effect of age, gender, height, different stages of human life, and body fat on the functional muscle-bone unit. All these factors had a significant effect on the functional muscle-bone unit and should be addressed when assessing functional muscle-bone unit in children and adults. For the clinical evaluation of the functional muscle-bone unit, it was proposed to evaluate the adaptation of the bone to the acting forces. A frequently used parameter for this is the total body less head bone mineral content (TBLH-BMC) determined by dual-energy X-ray absorptiometry (DXA) in relation to the lean body mass (LBM by DXA). LBM correlates highly with muscle mass. Therefore, LBM is a surrogate parameter for the muscular forces acting in everyday life. The aim of the study was to describe the effect of age and gender on the TBLH-BMC for LBM and to evaluate the impact of other factors, such as height, different stages of human life, and of body fat. As part of the National Health and Nutrition Examination Survey (NHANES) study, between the years 1999-2006 whole-body DXA scans on randomly selected Americans from 8 years of age were carried out. From all eligible DXA scans (1999-2004), three major US ethnic groups were evaluated (non-Hispanic Whites, non-Hispanic Blacks, and Mexican Americans) for further statistical analysis. For the statistical analysis, the DXA scans of 8190 non-Hispanic White children and adults (3903 female), of 4931 non-Hispanic Black children and adults (2250 female) and 5421 of Mexican-American children and adults (2424 female) were eligible. Age, gender, body height, and especially body fat had a significant effect on the functional muscle-bone unit. When assessing TBLH-BMC for LBM in children and adults, the effects of age, gender, body fat, and body height should be addressed. These effects were analyzed for the first time in such a large cohort.

  1. Radiocarbon dating and compositional analysis of pre-Columbian human bones

    NASA Astrophysics Data System (ADS)

    Andrade, E.; Solís, C.; Canto, C. E.; de Lucio, O. G.; Chavez, E.; Rocha, M. F.; Villanueva, O.; Torreblanca, C. A.

    2014-08-01

    Analysis of ancient human bones found in "El Cóporo", an archaeological site in Guanajuato, Mexico; were performed using a multi techniques scheme: 14C radiocarbon dating, IBA (Ion Beam Analysis), SEM-EDS (Scanning Electron Microscope Energy Dispersive X-ray Spectroscopy). We measured the elemental composition of the bones, especially some with a superficial black pigmentation. Soil samples collected from the burial place were also analyzed. The 14C dating was performed with a new High Voltage Europe 1 MV Tandentron Accelerator Mass Spectrometer (AMS) recently installed in the IFUNAM (Instituto de Física, Universidad Nacional Autónoma de México). The radiocarbon dating allowed us to determine the date of death of the individual in a period between the year 890 and 975 AD, which is consistent with the late period of the Cóporo civilization. The element sample analysis of bones with the surface black pigmentation show higher levels of Fe, Mn and Ba compared when bone's black surface was mechanically removed. These three elements were found in soil samples from the skeleton burial place. These results indicate more likely that the bone black coloration is due to a postmortem alteration occurring in the burial environment.

  2. Design, fabrication and structural optimization of tubular carbon/Kevlar®/PMMA/graphene nanoplate composite for bone fixation prosthesis.

    PubMed

    Nasiri, F; Ajeli, S; Semnani, D; Jahanshahi, M; Emadi, R

    2018-05-02

    The present work investigates the mechanical properties of tubular carbon/Kevlar ® composite coated with poly(methyl methacrylate)/graphene nanoplates as used in the internal fixation of bones. Carbon fibers are good candidates for developing high-strength biomaterials and due to better stress transfer and electrical properties, they can enhance tissue formation. In order to improve carbon brittleness, ductile Kevlar ® was added to the composite. The tubular carbon/Kevlar ® composites have been prepared with tailorable braiding technology by changing the fiber pattern and angle in the composite structure and the number of composite layers. Fuzzy analyses are used for optimizing the tailorable parameters of 80 prepared samples and then mechanical properties of selected samples are discussed from the viewpoint of mechanical properties required for a bone fixation device. Experimental results showed that with optimizing braiding parameters the desired composite structure with mechanical properties close to bone properties could be produced. Results showed that carbon/Kevlar ® braid's physical properties, fiber composite distribution and diameter uniformity resulted in matrix uniformity, which enhanced strength and modulus due to better ability for distributing stress on the composite. Finally, as graphene nanoplates demonstrated their potential properties to improve wound healing intended for bone replacement, so reinforcing the PMMA matrix with graphene nanoplates enhanced the composite quality, for use as an implant.

  3. Accounting for body size deviations when reporting bone mineral density variables in children.

    PubMed

    Webber, C E; Sala, A; Barr, R D

    2009-01-01

    In a child, bone mineral density (BMD) may differ from an age-expected normal value, not only because of the presence of disease, but also because of deviations of height or weight from population averages. Appropriate adjustment for body size deviations simplifies interpretation of BMD measurements. For children, a bone mineral density (BMD) measurement is normally expressed as a Z score. Interpretation is complicated when weight or height distinctly differ from age-matched children. We develop a procedure to allow for the influence of body size deviations upon measured BMD. We examined the relation between body size deviation and spine, hip and whole body BMD deviation in 179 normal children (91 girls). Expressions were developed that allowed derivation of an expected BMD based on age, gender and body size deviation. The difference between measured and expected BMD was expressed as a HAW score (Height-, Age-, Weight-adjusted score). In a second independent sample of 26 normal children (14 girls), measured spine, total femur and whole body BMD all fell within the same single normal range after accounting for age, gender and body size deviations. When traditional Z scores and HAW scores were compared in 154 children, 17.5% showed differences of more than 1 unit and such differences were associated with height and weight deviations. For almost 1 in 5 children, body size deviations influence BMD to an extent that could alter clinical management.

  4. Alterations of body mass index and body composition in atomic bomb survivors.

    PubMed

    Tatsukawa, Y; Misumi, M; Yamada, M; Masunari, N; Oyama, H; Nakanishi, S; Fukunaga, M; Fujiwara, S

    2013-08-01

    Obesity, underweight, sarcopenia and excess accumulation of abdominal fat are associated with a risk of death and adverse health outcomes. Our aim was to determine whether body mass index (BMI) and body composition, assessed with dual-energy X-ray absorptiometry (DXA), are associated with radiation exposure among atomic bomb (A-bomb) survivors. This was a cross-sectional study conducted in the Adult Health Study of the Radiation Effects Research Foundation. We examined 2686 subjects (834 men and 1852 women), aged 48-89 years (0-40 years at A-bomb exposure), for BMI analysis. Among them, 550 men and 1179 women underwent DXA in 1994-1996 and were eligible for a body composition study. After being adjusted for age and other potential confounding factors, A-bomb radiation dose was associated significantly and negatively with BMI in both sexes (P=0.01 in men, P=0.03 in women) and appendicular lean mass (P<0.001 in men, P=0.05 in women). It was positively associated with trunk-to-limb fat ratio in women who were less than 15 years old at the time of exposure (P=0.03). This is the first study to report a significant dose response for BMI and body composition 50 years after A-bomb radiation exposure. We will need to conduct further studies to evaluate whether these alterations affect health status.

  5. Impact of obesity on bone metabolism.

    PubMed

    López-Gómez, Juan J; Pérez Castrillón, José L; de Luis Román, Daniel A

    2016-12-01

    High weight is a protective factor against osteoporosis and risk of fracture. In obesity, however, where overweight is associated to excess fat, this relationship does not appear to be so clear, excess weight has sometimes been associated to decreased bone mass. Obesity interferes with bone metabolism through mechanical, hormonal, and inflammatory factors. These factors are closely related to weight, body composition, and dietary patterns of these patients. The net beneficial or harmful effect on bone mass or risk of fracture of the different components of this condition is not well known. We need to recognize patients at a greater risk of bone disease related to obesity to start an adequate intervention. Copyright © 2016. Publicado por Elsevier España, S.L.U.

  6. Osteoinductive-nanoscaled silk/HA composite scaffolds for bone tissue engineering application.

    PubMed

    Huang, Xiaowei; Bai, Shumeng; Lu, Qiang; Liu, Xi; Liu, Shanshan; Zhu, Hesun

    2015-10-01

    Osteoinductive silk/hydroxyapatite (HA) composite scaffolds for bone regeneration were prepared by combining silk with HA/silk core-shell nanoparticles. The HA/silk nanoparticles were directly dispersed in silk solution to form uniform silk/HA blend and then composite scaffolds after a freeze-drying process. The HA/silk nanoparticles uniformly distributed in silk scaffolds at nanometer scale at varying HA content up to 40%, and substantially improved the compressive strength of the scaffolds produced. Rat bone mesenchymal stem cells (rBMSCs) were cultured in these scaffolds and cell proliferation was analyzed by confocal microscopy and DNA assay. Gene expression and biochemical assays were employed to study the influence of increasing HA/silk nanoparticles on in vitro osteogenic differentiation of rBMSCs. Increasing HA/silk nanoparticles inside silk scaffolds improved the growth and osteogenic capability of rBMSCs in the absence of osteogenic growth factors, and also significantly increased the calcium and collagen I deposition. In addition, compared to silk/HA composite scaffolds containing HA aggregates, the scaffolds loaded with HA/silk nanoparticles showed remarkably higher stiffness and better osteogenic property at same HA content, implying a preferable microenvironment for rBMSCs. These results suggest that the osteogenic property as well as mechanical property of silk/HA scaffolds could be further improved through fabricating their structure and topography at nanometer scale, providing more suitable systems for bone regeneration. © 2014 Wiley Periodicals, Inc.

  7. Behaviour of Structural Carbonate Stable Carbon and Oxygen Isotope Compositions in Bioapatite During Burning of Bone

    NASA Astrophysics Data System (ADS)

    Munro, L. E.; Longstaffe, F. J.; White, C. D.

    2003-12-01

    Bioapatite, the principal inorganic phase comprising bone, commonly contains a small fraction of carbonate, which has been substituted into the phosphate structure during bone formation. The isotopic compositions of both the phosphate oxygen and the structural carbonate oxygen are now commonly used in palaeoclimatological and bioarchaeological investigations. The potential for post-mortem alteration of these isotopic compositions, therefore, is of interest, with the behaviour of structural carbonate being of most concern. In bioarchaeological studies, alteration of bone isotopic compositions has the potential to occur not only during low-temperature processes associated with burial but also during food preparation involving heating (burning, boiling). Here, we examine the stable isotopic behaviour of structural carbonate oxygen and carbon, and coexisting phosphate oxygen during the burning of bone. Freshly deceased (6<8 months) white-tailed deer leg bones (Odocoileus virginianus) were collected from Pinery Provincial Park, Ontario, Canada. Each long bone was sectioned and incrementally heated from 25 to 900° C, in 25° intervals. The samples were then ground to a standardized grain-size (45<63μ m), and changes in bioapatite crystallinity (CI) were determined using powder X-ray diffraction (pXRD), and Fourier transform infra-red spectroscopy (FTIR). Combined differential thermal and thermogravimetric analyses (DTA/TG) were used to evaluate weight loss and associated reactions during heating. Stable carbon isotope compositions of the bioapatite remain relatively constant (+/-1‰ ) during heating to 650° C. A 4‰ increase in stable carbon isotopic composition then occurs between 650-750° C, accompanied by an increase in CI, followed by a 10‰ decline at temperatures above 800° C, as carbonate carbon is lost. Carbonate and phosphate oxygen isotopic compositions are correlated over the entire heating range, with carbonate being enriched relative to phosphate by

  8. [Correlation analysis of cement leakage with volume ratio of intravertebral bone cement to vertebral body and vertebral body wall incompetence in percutaneous vertebroplasty for osteoporotic vertebral compression fractures].

    PubMed

    Liang, De; Ye, Linqiang; Jiang, Xiaobing; Huang, Weiquan; Yao, Zhensong; Tang, Yongchao; Zhang, Shuncong; Jin, Daxiang

    2014-11-01

    To investigate the risk factors of cement leakage in percutaneous vertebroplasty (PVP) for osteoporotic vertebral compression fracture (OVCF). Between March 2011 and March 2012, 98 patients with single level OVCF were treated by PVP, and the clinical data were analyzed retrospectively. There were 13 males and 85 females, with a mean age of 77.2 years (range, 54-95 years). The mean disease duration was 43 days (range, 15-120 days), and the mean T score of bone mineral density (BMD) was -3.8 (range, -6.7- -2.5). Bilateral transpedicular approach was used in all the patients. The patients were divided into cement leakage group and no cement leakage group by occurrence of cement leakage based on postoperative CT. Single factor analysis was used to analyze the difference between 2 groups in T score of BMD, operative level, preoperative anterior compression degree of operative vertebrae, preoperative middle compression degree of operative vertebrae, preoperative sagittal Cobb angle of operative vertebrae, preoperative vertebral body wall incompetence, cement volume, and volume ratio of intravertebral bone cement to vertebral body. All relevant factors were introduced to logistic regression analysis to analyze the risk factors of cement leakage. All procedures were performed successfully. The mean operation time was 40 minutes (range, 30-50 minutes), and the mean volume ratio of intravertebral bone cement to vertebral body was 24.88% (range, 7.84%-38.99%). Back pain was alleviated significantly in all the patients postoperatively. All patients were followed up with a mean time of 8 months (range, 6-12 months). Cement leakage occurred in 49 patients. Single factor analysis showed that there were significant differences in the volume ratio of intravertebral bone cement to vertebral body and preoperative vertebral body wall incompetence between 2 groups (P < 0.05), while no significant difference in T score of BMD, operative level, preoperative anterior compression degree of

  9. Preparation of Calcium Phosphate Cement and Polymethyl Methacrylate for Biological Composite Bone Cements

    PubMed Central

    Yang, Jun; Zhang, Kairui; Zhang, Sheng; Fan, Jiping; Guo, Xinhui; Dong, Weiqiang; Wang, Shengnan; Chen, Yirong; Yu, Bin

    2015-01-01

    Background We studied the biological safety, biomechanics, and tissue compatibility of calcium phosphate cement and Polymethyl Methacrylate composite bone cement mixed in different ratios. Material/Methods CPC and PMMA were mixed in different ratios (3: 1, 2: 1, 1: 1, 1: 2, 1: 5, 1: 10, 1: 15, and 1: 20). PMMA solvent is a general solvent containing a dissolved preparation of the composite bone cement specific to a given specimen to determine biological safety, biomechanics, and tissue compatibility. Results The CPC/PMMA (33%) group, CPC/PMMA (50%) group, CPC/PMMA (67%) group, and CPC/PMMA (75%) group were more in line with the composite bone cement without cytotoxicity requirements. The compressive strength of the CPC/PMMA (67%) group and CPC/PMMA (75%) group was 20Mpa–30Mpa, while that of the CPC/PMMA (4.8%) group, CPC/PMMA (6.25%) group, CPC/PMMA (9.1%) group, CPC/PMMA (16.7%) group, CPC/PMMA (33%) group, and CPC/PMMA (50%) group was 40Mpa–70Mpa. Curing time was longer in the CPC group (more than 11 min) and shorter in the PMMA group (less than 2 min). The results of weight loss rate showed that there were no significant differences between the CPC/PMMA group (4.8%, 6.25%, 9.1%, 16.7%, 33%) and PMMA control group (p>0.05). With the decrease of CPC content, the rate of weight loss gradually decreased. Conclusions The CPC/PMMA (50%) group, CPC/PMMA (67%) group, and CPC/PMMA (75%) group provide greater variability and selectivity for the composite bone cement in obtaining better application. PMID:25904398

  10. Cost-effectiveness of bone densitometry among Caucasian women and men without a prior fracture according to age and body weight.

    PubMed

    Schousboe, J T; Gourlay, M; Fink, H A; Taylor, B C; Orwoll, E S; Barrett-Connor, E; Melton, L J; Cummings, S R; Ensrud, K E

    2013-01-01

    We used a microsimulation model to estimate the threshold body weights at which screening bone densitometry is cost-effective. Among women aged 55-65 years and men aged 55-75 years without a prior fracture, body weight can be used to identify those for whom bone densitometry is cost-effective. Bone densitometry may be more cost-effective for those with lower body weight since the prevalence of osteoporosis is higher for those with low body weight. Our purpose was to estimate weight thresholds below which bone densitometry is cost-effective for women and men without a prior clinical fracture at ages 55, 60, 65, 75, and 80 years. We used a microsimulation model to estimate the costs and health benefits of bone densitometry and 5 years of fracture prevention therapy for those without prior fracture but with femoral neck osteoporosis (T-score ≤ -2.5) and a 10-year hip fracture risk of ≥3%. Threshold pre-test probabilities of low BMD warranting drug therapy at which bone densitometry is cost-effective were calculated. Corresponding body weight thresholds were estimated using data from the Study of Osteoporotic Fractures (SOF), the Osteoporotic Fractures in Men (MrOS) study, and the National Health and Nutrition Examination Survey (NHANES) for 2005-2006. Assuming a willingness to pay of $75,000 per quality adjusted life year (QALY) and drug cost of $500/year, body weight thresholds below which bone densitometry is cost-effective for those without a prior fracture were 74, 90, and 100 kg, respectively, for women aged 55, 65, and 80 years; and were 67, 101, and 108 kg, respectively, for men aged 55, 75, and 80 years. For women aged 55-65 years and men aged 55-75 years without a prior fracture, body weight can be used to select those for whom bone densitometry is cost-effective.

  11. [A study on alpha-tricalcium phosphate bone cement carbon fiber-reinforced].

    PubMed

    Wu, Wenjin; Yang, Weizhong; Zhou, Dali; Ma, Jiang; Xiao, Bin

    2006-06-01

    In order to improve the mechanical properties of alpha-tricalcium phosphate (alpha-TCP), we prepared surface-modified carbon fibers (CF) reinforced alpha-TCP composite bone cement. Bone cement was soaked in Ringer's body solution to test its capacity of fast formation of hydroxyapatite crystals and self-solidification. Scan electronic microscope (SEM) observation and compressive strength measurement were taken to analyze the mechanical properties and the micro- morphological structure of CF reinforced alpha-TCP bone cement. The results showed that the bone cement was transferred into hydroxyapatite plates after being soaked in Ringer's simulated body fluid for 5 days. Suitable amount of carbon fibers could well spread in and bond with the matrix of the bone cement. The mechanical properties of the bone cement have been improved by CF reinforcing; the compressive strength reaches 46.7 MPa when the amount of carbon fibers is 0.5% in weight percent, which is 22% higher than that of the non-reinforced alpha-TCP bone cement.

  12. Bone Diseases

    MedlinePlus

    Your bones help you move, give you shape and support your body. They are living tissues that rebuild constantly ... childhood and your teens, your body adds new bone faster than it removes old bone. After about ...

  13. Is there a role of whole-body bone scan in patients with esophageal squamous cell carcinoma

    PubMed Central

    2012-01-01

    Background Correct detection of bone metastases in patients with esophageal squamous cell carcinoma is pivotal for prognosis and selection of an appropriate treatment regimen. Whole-body bone scan for staging is not routinely recommended in patients with esophageal squamous cell carcinoma. The aim of this study was to investigate the role of bone scan in detecting bone metastases in patients with esophageal squamous cell carcinoma. Methods We retrospectively evaluated the radiographic and scintigraphic images of 360 esophageal squamous cell carcinoma patients between 1999 and 2008. Of these 360 patients, 288 patients received bone scan during pretreatment staging, and sensitivity, specificity, positive predictive value, and negative predictive value of bone scan were determined. Of these 360 patients, surgery was performed in 161 patients including 119 patients with preoperative bone scan and 42 patients without preoperative bone scan. Among these 161 patients receiving surgery, 133 patients had stages II + III disease, including 99 patients with preoperative bone scan and 34 patients without preoperative bone scan. Bone recurrence-free survival and overall survival were compared in all 161 patients and 133 stages II + III patients, respectively. Results The diagnostic performance for bone metastasis was as follows: sensitivity, 80%; specificity, 90.1%; positive predictive value, 43.5%; and negative predictive value, 97.9%. In all 161 patients receiving surgery, absence of preoperative bone scan was significantly associated with inferior bone recurrence-free survival (P = 0.009, univariately). In multivariate comparison, absence of preoperative bone scan (P = 0.012, odds ratio: 5.053) represented the independent adverse prognosticator for bone recurrence-free survival. In 133 stages II + III patients receiving surgery, absence of preoperative bone scan was significantly associated with inferior bone recurrence-free survival (P = 0

  14. [Noncollagen bone proteins use in the composition of osteoplactic material Gapkol modified by vacuum].

    PubMed

    Volozhin, A I; Grigor'ian, A S; Desiatnichenko, K S; Ozhelevskaia, S A; Doktorov, A A; Kurdiumov, S G; Fionova, E V; Gurin, A N; Karakov, K G

    2008-01-01

    In rat experiments the ability of noncollagen bone proteins (NCBP) in the composition of osteoplactic modified material Gapkol (not tanned in formalin and subjected to vacuum extraction) to increase bone reparation in comparison with traditional Gapkol was studied. Quantitative evaluation was performed on rat parietal bone and qualitative evaluation was performed on rat mandible. It was shown that Gapkol with NCBP (not tanned in formalin and subjected to vacuum extraction) increased reparative osteogenesis.

  15. A high-fat diet increases body weight and circulating estradiol concentrations but does not improve bone structural properties in ovariectomized mice.

    PubMed

    Cao, Jay J; Gregoire, Brian R

    2016-04-01

    Bone health is influenced by body mass and estrogen. The objective of the study was to determine whether high-fat diet-induced obesity affects bone structure and alters markers of bone turnover in ovariectomized (OVX) mice. We hypothesized that a high-fat diet would increase body weight gain and serum estradiol levels in OVX mice but would not improve bone structural parameter in OVX mice. Thirty-five C57BL/6 mice were either sham operated or OVX at the age of 4 months and then fed either a normal-fat diet (10% energy as fat) or a high-fat diet (45% energy as fat with extra fat from lard) ad libitum for 11 weeks. Ovariectomy increased body weight, serum tartrate-resistant acid phosphatase concentration, and expression of cathepsin K in bone; decreased serum estradiol concentration; and induced significant bone loss manifested by decreased bone volume/total volume (BV/TV), connectivity density (Conn.D), trabecular number, and trabecular thickness with increased trabecular separation and structural model index (P < .01). The high-fat diet increased body weight (P < .01) in OVX mice and nonsignificantly decreased BV/TV (P = .08) and Conn.D (P = .10). Despite having similar serum estradiol concentrations and higher body weight, OVX mice consuming the high-fat diet had lower BV/TV, Conn.D, trabecular number, trabecular thickness, and higher structural model index and trabecular separation than did sham mice fed the normal-fat diet. These findings indicate that increased body weight and elevated serum estradiol concentration induced by a high-fat diet do not mitigate ovariectomy-induced bone loss in mice. Published by Elsevier Inc.

  16. Holistic processing of human body postures: evidence from the composite effect.

    PubMed

    Willems, Sam; Vrancken, Leia; Germeys, Filip; Verfaillie, Karl

    2014-01-01

    The perception of socially relevant stimuli (e.g., faces and bodies) has received considerable attention in the vision science community. It is now widely accepted that human faces are processed holistically and not only analytically. One observation that has been taken as evidence for holistic face processing is the face composite effect: two identical top halves of a face tend to be perceived as being different when combined with different bottom halves. This supports the hypothesis that face processing proceeds holistically. Indeed, the interference effect disappears when the two face parts are misaligned (blocking holistic perception). In the present study, we investigated whether there is also a composite effect for the perception of body postures: are two identical body halves perceived as being in different poses when the irrelevant body halves differ from each other? Both a horizontal (i.e., top-bottom body halves; Experiment 1) and a vertical composite effect (i.e., left-right body halves; Experiment 2) were examined by means of a delayed matching-to-sample task. Results of both experiments indicate the existence of a body posture composite effect. This provides evidence for the hypothesis that body postures, as faces, are processed holistically.

  17. Holistic processing of human body postures: evidence from the composite effect

    PubMed Central

    Willems, Sam; Vrancken, Leia; Germeys, Filip; Verfaillie, Karl

    2014-01-01

    The perception of socially relevant stimuli (e.g., faces and bodies) has received considerable attention in the vision science community. It is now widely accepted that human faces are processed holistically and not only analytically. One observation that has been taken as evidence for holistic face processing is the face composite effect: two identical top halves of a face tend to be perceived as being different when combined with different bottom halves. This supports the hypothesis that face processing proceeds holistically. Indeed, the interference effect disappears when the two face parts are misaligned (blocking holistic perception). In the present study, we investigated whether there is also a composite effect for the perception of body postures: are two identical body halves perceived as being in different poses when the irrelevant body halves differ from each other? Both a horizontal (i.e., top-bottom body halves; Experiment 1) and a vertical composite effect (i.e., left-right body halves; Experiment 2) were examined by means of a delayed matching-to-sample task. Results of both experiments indicate the existence of a body posture composite effect. This provides evidence for the hypothesis that body postures, as faces, are processed holistically. PMID:24999337

  18. Advances in bionanomaterials for bone tissue engineering.

    PubMed

    Scott, Timothy G; Blackburn, Gary; Ashley, Michael; Bayer, Ilker S; Ghosh, Anindya; Biris, Alexandru S; Biswas, Abhijit

    2013-01-01

    Bone is a specialized form of connective tissue that forms the skeleton of the body and is built at the nano and microscale levels as a multi-component composite material consisting of a hard inorganic phase (minerals) in an elastic, dense organic network. Mimicking bone structure and its properties present an important frontier in the fields of nanotechnology, materials science and bone tissue engineering, given the complex morphology of this tissue. There has been a growing interest in developing artificial bone-mimetic nanomaterials with controllable mineral content, nanostructure, chemistry for bone, cartilage tissue engineering and substitutes. This review describes recent advances in bionanomaterials for bone tissue engineering including developments in soft tissue engineering. The significance and basic process of bone tissue engineering along with different bionanomaterial bone scaffolds made of nanocomposites and nanostructured biopolymers/bioceramics and the prerequisite biomechanical functions are described. It also covers latest developments in soft-tissue reconstruction and replacement. Finally, perspectives on the future direction in nanotechnology-enabled bone tissue engineering are presented.

  19. Biocompatibility of single-walled carbon nanotube composites for bone regeneration

    PubMed Central

    Gupta, A.; Liberati, T. A.; Verhulst, S. J.; Main, B. J.; Roberts, M. H.; Potty, A. G. R.; Pylawka, T. K.; El-Amin III, S. F.

    2015-01-01

    Objectives The purpose of this study was to evaluate in vivo biocompatibility of novel single-walled carbon nanotubes (SWCNT)/poly(lactic-co-glycolic acid) (PLAGA) composites for applications in bone and tissue regeneration. Methods A total of 60 Sprague-Dawley rats (125 g to 149 g) were implanted subcutaneously with SWCNT/PLAGA composites (10 mg SWCNT and 1gm PLAGA 12 mm diameter two-dimensional disks), and at two, four, eight and 12 weeks post-implantation were compared with control (Sham) and PLAGA (five rats per group/point in time). Rats were observed for signs of morbidity, overt toxicity, weight gain and food consumption, while haematology, urinalysis and histopathology were completed when the animals were killed. Results No mortality and clinical signs were observed. All groups showed consistent weight gain, and the rate of gain for each group was similar. All groups exhibited a similar pattern for food consumption. No difference in urinalysis, haematology, and absolute and relative organ weight was observed. A mild to moderate increase in the summary toxicity (sumtox) score was observed for PLAGA and SWCNT/PLAGA implanted animals, whereas the control animals did not show any response. Both PLAGA and SWCNT/PLAGA showed a significantly higher sumtox score compared with the control group at all time intervals. However, there was no significant difference between PLAGA and SWCNT/PLAGA groups. Conclusions Our results demonstrate that SWCNT/PLAGA composites exhibited in vivo biocompatibility similar to the Food and Drug Administration approved biocompatible polymer, PLAGA, over a period of 12 weeks. These results showed potential of SWCNT/PLAGA composites for bone regeneration as the low percentage of SWCNT did not elicit a localised or general overt toxicity. Following the 12-week exposure, the material was considered to have an acceptable biocompatibility to warrant further long-term and more invasive in vivo studies. Cite this article: Bone Joint Res 2015

  20. Maternal Perinatal Diet Induces Developmental Programming of Bone Architecture

    PubMed Central

    Devlin, MJ; Grasemann, C; Cloutier, AM; Louis, L; Alm, C; Palmert, MR; Bouxsein, ML

    2013-01-01

    Maternal high fat diet can alter offspring metabolism via perinatal developmental programming. This study tests the hypothesis that maternal high fat diet also induces perinatal programming of offspring bone mass and strength. We compared skeletal acquisition in pups from C57Bl/6J mice fed high fat or normal diet from preconception through lactation. Three-week-old male and female pups from high fat (HF-N) and normal mothers (N-N) were weaned onto normal diet. Outcomes at 14 and 26 wks of age included body mass, body composition, whole body bone mineral content via pDXA, femoral cortical and trabecular architecture via μCT, and glucose tolerance. Female HF-N had normal body mass and glucose tolerance, with lower %body fat but higher serum leptin at 14 wks vs. N-N (p<0.05 for both). Whole body bone mineral content was 12% lower at 14 wks and 5% lower at 26 wks, but trabecular bone volume fraction was 20% higher at 14 wks in female HF-N vs. N-N (p<0.05 for all). Male HF-N had normal body mass and mildly impaired glucose tolerance, with lower %body fat at 14 wks and lower serum leptin at 26 wks vs. N-N (p<0.05 for both). Serum insulin was higher at 14 wks and lower at 26 wks in HF-N vs. N-N (p<0.05). Trabecular BV/TV was 34% higher and cortical bone area was 6% higher at 14 wks vs. N-N (p<0.05 for both). These data suggest maternal high fat diet has complex effects on offspring bone, supporting the hypothesis that maternal diet alters postnatal skeletal homeostasis. PMID:23503967

  1. Modeling the movement and equilibrium of water in the body of ruminants in relation to estimating body composition by deuterium oxide dilution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnold, R.N.

    1986-01-01

    Deuterium oxide (D/sub 2/O) dilution was evaluated for use in estimating body composition of ruminants. Empty body composition of cattle could not be accurately estimated by two- or three-compartment models when solved on the basis of clearance of D/sub 2/O from blood. A 29-compartment blood-flow model was developed from measured blood flow rates and water volumes of tissues of sheep. The rates of equilibration of water in tissues that were simulated by the blood-flow model were much faster than actual rates measured in sheep and cattle. The incorporation of diffusion hindrances for movement of water into tissues enabled the bloodmore » flow model to simulate the measured equilibration rates in tissues, but the values of the diffusion coefficients were different for each tissue. The D/sub 2/O-disappearance curve for blood simulated by the blood-flow model with diffusion limitations was comprised for four exponential components. The tissues and gastrointestinal tract contents were placed into five groups based upon the rate of equilibration. Water in the organs of the body equilibrated with water in blood within 3 min. Water in visceral fat, head, and some of the gastrointestinal tract tissues equilibrated within 8 to 16 min. Water in skeletal muscle, fat, and bone and the contents of some segments of the gastrointestinal tract equilibrated within 30 to 36 min. Water in the tissues and contents of the cecum and upper-large intestine equilibrated within 160 to 200 min. Water in ruminal tissue and contents equilibrated within 480 min.« less

  2. Body composition in elderly people: effect of criterion estimates on predictive equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumgartner, R.N.; Heymsfield, S.B.; Lichtman, S.

    1991-06-01

    The purposes of this study were to determine whether there are significant differences between two- and four-compartment model estimates of body composition, whether these differences are associated with aqueous and mineral fractions of the fat-free mass (FFM); and whether the differences are retained in equations for predicting body composition from anthropometry and bioelectric resistance. Body composition was estimated in 98 men and women aged 65-94 y by using a four-compartment model based on hydrodensitometry, {sup 3}H{sub 2}O dilution, and dual-photon absorptiometry. These estimates were significantly different from those obtained by using Siri's two-compartment model. The differences were associated significantly (Pmore » less than 0.0001) with variation in the aqueous fraction of FFM. Equations for predicting body composition from anthropometry and resistance, when calibrated against two-compartment model estimates, retained these systematic errors. Equations predicting body composition in elderly people should be calibrated against estimates from multicompartment models that consider variability in FFM composition.« less

  3. Bone density and body composition on the Pacific rim: a comparison between Japan-born and U.S.-born Japanese-American women.

    PubMed

    Kin, K; Lee, J H; Kushida, K; Sartoris, D J; Ohmura, A; Clopton, P L; Inoue, T

    1993-07-01

    Bone mineral density (BMD) of total body, spine, and proximal femur and the percentage of body fat in 151 U.S.-born Japanese-American women and 137 Japan-born immigrant Japanese-American women living in San Diego, California were measured using dual-energy x-ray absorptiometry. These data were compared with unpublished data from Japanese women obtained in previous studies in Hamamatsu, Japan. The age-adjusted BMD for the spinal level, femoral neck, Ward's triangle, trochanter, and total body, respectively, of U.S.-born Japanese-American women were 10.2, 9.8, 9.9, 9.2, and 2.7% higher than those of native Japanese women. The U.S.-born Japanese-American women had significantly higher body fat than immigrant Japanese-American women. Furthermore, the immigrant women had higher BMD and higher body fat than their native Japanese counterparts; however, no significant total-body BMD differences were found among the three groups after age, height, and weight were adjusted. The U.S.-born Japanese-American women had BMD values equivalent to those of white normals at the spine and femur. Significant life-style differences between U.S.-born and immigrant Japanese-American women were noted. Weight, exercise, early menarche, and years of lifetime estrogen exposure correlated positively with BMD. The significant negative correlates of BMD were age, smoking, and percentage of body fat. Our study presents data suggesting that immigration to the United States has produced a higher BMD in Japanese-American women that is attributable to changes in life-style and diet.

  4. A composite demineralized bone matrix--self assembling peptide scaffold for enhancing cell and growth factor activity in bone marrow.

    PubMed

    Hou, Tianyong; Li, Zhiqiang; Luo, Fei; Xie, Zhao; Wu, Xuehui; Xing, Junchao; Dong, Shiwu; Xu, Jianzhong

    2014-07-01

    The need for suitable bone grafts is high; however, there are limitations to all current graft sources, such as limited availability, the invasive harvest procedure, insufficient osteoinductive properties, poor biocompatibility, ethical problems, and degradation properties. The lack of osteoinductive properties is a common problem. As an allogenic bone graft, demineralized bone matrix (DBM) can overcome issues such as limited sources and comorbidities caused by invasive harvest; however, DBM is not sufficiently osteoinductive. Bone marrow has been known to magnify osteoinductive components for bone reconstruction because it contains osteogenic cells and factors. Mesenchymal stem cells (MSCs) derived from bone marrow are the gold standard for cell seeding in tissue-engineered biomaterials for bone repair, and these cells have demonstrated beneficial effects. However, the associated high cost and the complicated procedures limit the use of tissue-engineered bone constructs. To easily enrich more osteogenic cells and factors to DBM by selective cell retention technology, DBM is modified by a nanoscale self-assembling peptide (SAP) to form a composite DBM/SAP scaffold. By decreasing the pore size and increasing the charge interaction, DBM/SAP scaffolds possess a much higher enriching yield for osteogenic cells and factors compared with DBM alone scaffolds. At the same time, SAP can build a cellular microenvironment for cell adhesion, proliferation, and differentiation that promotes bone reconstruction. As a result, a suitable bone graft fabricated by DBM/SAP scaffolds and bone marrow represents a new strategy and product for bone transplantation in the clinic. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Biomechanical properties of an advanced new carbon/flax/epoxy composite material for bone plate applications.

    PubMed

    Bagheri, Zahra S; El Sawi, Ihab; Schemitsch, Emil H; Zdero, Rad; Bougherara, Habiba

    2013-04-01

    This work is part of an ongoing program to develop a new carbon fiber/flax/epoxy (CF/flax/epoxy) hybrid composite material for use as an orthopaedic long bone fracture plate, instead of a metal plate. The purpose of this study was to evaluate the mechanical properties of this new novel composite material. The composite material had a "sandwich structure", in which two thin sheets of CF/epoxy were attached to each outer surface of the flax/epoxy core, which resulted in a unique structure compared to other composite plates for bone plate applications. Mechanical properties were determined using tension, three-point bending, and Rockwell hardness tests. Also, scanning electron microscopy (SEM) was used to characterize the failure mechanism of specimens in tension and three-point bending tests. The results of mechanical tests revealed a considerably high ultimate strength in both tension (399.8MPa) and flexural loading (510.6MPa), with a higher elastic modulus in bending tests (57.4GPa) compared to tension tests (41.7GPa). The composite material experienced brittle catastrophic failure in both tension and bending tests. The SEM images, consistent with brittle failure, showed mostly fiber breakage and fiber pull-out at the fractured surfaces with perfect bonding at carbon fibers and flax plies. Compared to clinically-used orthopaedic metal plates, current CF/flax/epoxy results were closer to human cortical bone, making the material a potential candidate for use in long bone fracture fixation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. In vitro evaluation of three-dimensional single-walled carbon nanotube composites for bone tissue engineering.

    PubMed

    Gupta, Ashim; Main, Benjamin J; Taylor, Brittany L; Gupta, Manu; Whitworth, Craig A; Cady, Craig; Freeman, Joseph W; El-Amin, Saadiq F

    2014-11-01

    The purpose of this study was to develop three-dimensional single-walled carbon nanotube composites (SWCNT/PLAGA) using 10-mg single-walled carbon nanotubes (SWCNT) for bone regeneration and to determine the mechanical strength of the composites, and to evaluate the interaction of MC3T3-E1 cells via cell adhesion, growth, survival, proliferation, and gene expression. PLAGA (polylactic-co-glycolic acid) and SWCNT/PLAGA microspheres and composites were fabricated, characterized, and mechanical testing was performed. MC3T3-E1 cells were seeded and cell adhesion/morphology, growth/survival, proliferation, and gene expression analysis were performed to evaluate biocompatibility. Imaging studies demonstrated microspheres with uniform shape and smooth surfaces, and uniform incorporation of SWCNT into PLAGA matrix. The microspheres bonded in a random packing manner while maintaining spacing, thus resembling trabeculae of cancellous bone. Addition of SWCNT led to greater compressive modulus and ultimate compressive strength. Imaging studies revealed that MC3T3-E1 cells adhered, grew/survived, and exhibited normal, nonstressed morphology on the composites. SWCNT/PLAGA composites exhibited higher cell proliferation rate and gene expression compared with PLAGA. These results demonstrate the potential of SWCNT/PLAGA composites for musculoskeletal regeneration, for bone tissue engineering, and are promising for orthopedic applications as they possess the combined effect of increased mechanical strength, cell proliferation, and gene expression. © 2014 Wiley Periodicals, Inc.

  7. Amino acid and proximate composition of fish bone gelatin from different warm-water species: A comparative study

    NASA Astrophysics Data System (ADS)

    Atma, Y.

    2017-03-01

    Research on fish bone gelatin has been increased in the last decade. The quality of gelatin depends on its physicochemical properties. Fish bone gelatin from warm-water fishes has a superior amino acid composition than cold-water fishes. The composition of amino acid can determine the strength and stability of gelatin. Thus, it is important to analyze the composition of amino acid as well as proximate composition for potential gelatin material. The warm water fish species used in this study were Grass carp, Pangasius catfish, Catfish, Lizard fish, Tiger-toothed croaker, Pink perch, Red snapper, Brown spotted grouper, and King weakfish. There werre five dominant amino acid in fish bone gelatin including glycine (21.2-36.7%), proline (8.7-11.7%), hydroxyproline (5.3-9.6%), alanine (8.48-12.9%), and glutamic acid (7.23-10.15%). Different warm-water species has some differences in amino acid composition. The proximate composition showed that fishbone gelatin from Pangasius catfish has the highest protein content. The water composition of all fishbone gelatin was well suited to the standard. Meanwhile, based on ash content, only gelatin from gelatin Pangasius catfish met the standard for food industries.

  8. Reduced bone density in androgen-deficient women with acquired immune deficiency syndrome wasting.

    PubMed

    Huang, J S; Wilkie, S J; Sullivan, M P; Grinspoon, S

    2001-08-01

    Women with acquired immune deficiency syndrome wasting are at an increased risk of osteopenia because of low weight, changes in body composition, and hormonal alterations. Although women comprise an increasing proportion of human immunodeficiency virus-infected patients, prior studies have not investigated bone loss in this expanding population of patients. In this study we investigated bone density, bone turnover, and hormonal parameters in 28 women with acquired immune deficiency syndrome wasting and relative androgen deficiency (defined as free testosterone < or =3.0 pg/ml, weight < or =90% ideal body weight, weight loss > or =10% from preillness maximum weight, or weight <100% ideal body weight with weight loss > or =5% from preillness maximum weight). Total body (1.04 +/- 0.08 vs. 1.10 +/- 0.07 g/cm2, human immunodeficiency virus-infected vs. control respectively; P < 0.01), anteroposterior lumbar spine (0.94 +/- 0.12 vs. 1.03 +/- 0.09 g/cm2; P = 0.005), lateral lumbar spine (0.71 +/- 0.14 vs. 0.79 +/- 0.09 g/cm2; P = 0.02), and hip (Ward's triangle; 0.68 +/- 0.14 vs. 0.76 +/- 0.12 g/cm2; P = 0.05) bone density were reduced in the human immunodeficiency virus-infected compared with control subjects. Serum N-telopeptide, a measure of bone resorption, was increased in human immunodeficiency virus-infected patients, compared with control subjects (14.6 +/- 5.8 vs. 11.3 +/- 3.8 nmol/liter bone collagen equivalents, human immunodeficiency virus-infected vs. control respectively; P = 0.03). Although body mass index was similar between the groups, muscle mass was significantly reduced in the human immunodeficiency virus-infected vs. control subjects (16 +/- 4 vs. 21 +/- 4 kg, human immunodeficiency virus-infected vs. control, respectively; P < 0.0001). In univariate regression analysis, muscle mass (r = 0.53; P = 0.004) and estrogen (r = 0.51; P = 0.008), but not free testosterone (r = -0.05, P = 0.81), were strongly associated with lumbar spine bone density in the

  9. [Preparation of sodium alginate-nanohydroxyapatite composite material for bone repair and its biocompatibility].

    PubMed

    Wang, Yanmei; He, Jiacai; Li, Quanli; Shen, Jijia

    2014-02-01

    To prepare sodium alginate-nanohydroxyapatite composite material and to explore its feasibility as a bone repair material. Sodium alginate-nanohydroxyapatite composite material was prepared using chemical cross-linking and freeze-drying technology. The composite was characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM) and its porosity was measured by liquid displacement method. The fifth passage of bone marrow stromal stem cells (BMSCs) were incubated on the composite material and then growth was observed by inverted microscope and SEM. BMSCs were cultured with liquid extracts of the material, methyl thiazolyl tetrazolium (MTT) assay was used to calculate the relative growth rate (RGR) on 1, 3, 5 d and to evaluate the cytotoxicity. Fresh dog blood was added into the liquid extracts to conduct hemolysis test, the spectrophotometer was used to determine the optical density (OD) and to calculate the hemolysis rate. Sodium alginate-nanohydroxyapatite composite material displayed porosity, the porous pore rate was (88.6 +/- 4.5)%. BMSCs showed full stretching and vigorous growth under inverted microscope and SEM. BMSCs cultured with liquid extracts of the material had good activities. The toxicity of composite material was graded as 1. Hemolysis test results showed that the hemolysis rate of the composite material was 1.28%, thus meeting the requirement of medical biomaterials. The composite material fabricated in this study has high porosity and good biocompatibility.

  10. Small body size and extreme cortical bone remodeling indicate phyletic dwarfism in Magyarosaurus dacus (Sauropoda: Titanosauria)

    PubMed Central

    Stein, Koen; Csiki, Zoltan; Rogers, Kristina Curry; Weishampel, David B.; Redelstorff, Ragna; Carballido, Jose L.; Sander, P. Martin

    2010-01-01

    Sauropods were the largest terrestrial tetrapods (>105 kg) in Earth's history and grew at rates that rival those of extant mammals. Magyarosaurus dacus, a titanosaurian sauropod from the Upper Cretaceous (Maastrichtian) of Romania, is known exclusively from small individuals (<103 kg) and conflicts with the idea that all sauropods were massive. The diminutive M. dacus was a classical example of island dwarfism (phyletic nanism) in dinosaurs, but a recent study suggested that the small Romanian titanosaurs actually represent juveniles of a larger-bodied taxon. Here we present strong histological evidence that M. dacus was indeed a dwarf (phyletic nanoid). Bone histological analysis of an ontogenetic series of Magyarosaurus limb bones indicates that even the smallest Magyarosaurus specimens exhibit a bone microstructure identical to fully mature or old individuals of other sauropod taxa. Comparison of histologies with large-bodied sauropods suggests that Magyarosaurus had an extremely reduced growth rate, but had retained high basal metabolic rates typical for sauropods. The uniquely decreased growth rate and diminutive body size in Magyarosaurus were adaptations to life on a Cretaceous island and show that sauropod dinosaurs were not exempt from general ecological principles limiting body size. PMID:20435913

  11. Small body size and extreme cortical bone remodeling indicate phyletic dwarfism in Magyarosaurus dacus (Sauropoda: Titanosauria).

    PubMed

    Stein, Koen; Csiki, Zoltan; Rogers, Kristina Curry; Weishampel, David B; Redelstorff, Ragna; Carballido, Jose L; Sander, P Martin

    2010-05-18

    Sauropods were the largest terrestrial tetrapods (>10(5) kg) in Earth's history and grew at rates that rival those of extant mammals. Magyarosaurus dacus, a titanosaurian sauropod from the Upper Cretaceous (Maastrichtian) of Romania, is known exclusively from small individuals (<10(3) kg) and conflicts with the idea that all sauropods were massive. The diminutive M. dacus was a classical example of island dwarfism (phyletic nanism) in dinosaurs, but a recent study suggested that the small Romanian titanosaurs actually represent juveniles of a larger-bodied taxon. Here we present strong histological evidence that M. dacus was indeed a dwarf (phyletic nanoid). Bone histological analysis of an ontogenetic series of Magyarosaurus limb bones indicates that even the smallest Magyarosaurus specimens exhibit a bone microstructure identical to fully mature or old individuals of other sauropod taxa. Comparison of histologies with large-bodied sauropods suggests that Magyarosaurus had an extremely reduced growth rate, but had retained high basal metabolic rates typical for sauropods. The uniquely decreased growth rate and diminutive body size in Magyarosaurus were adaptations to life on a Cretaceous island and show that sauropod dinosaurs were not exempt from general ecological principles limiting body size.

  12. Relationship of total body fat mass to weight-bearing bone volumetric density, geometry, and strength in young girls

    PubMed Central

    Farr, Joshua N.; Chen, Zhao; Lisse, Jeffrey R.; Lohman, Timothy G.; Going, Scott B.

    2010-01-01

    Understanding the influence of total body fat mass (TBFM) on bone during the peri-pubertal years is critical for the development of future interventions aimed at improving bone strength and reducing fracture risk. Thus, we evaluated the relationship of TBFM to volumetric bone mineral density (vBMD), geometry, and strength at metaphyseal and diaphyseal sites of the femur and tibia of young girls. Data from 396 girls aged 8–13 years from the “Jump-In: Building Better Bones” study were analyzed. Bone parameters were assessed using peripheral quantitative computed tomography (pQCT) at the 4% and 20% distal femur and 4% and 66% distal tibia of the non-dominant leg. Bone parameters at the 4% sites included trabecular vBMD, periosteal circumference, and bone strength index (BSI), while at the 20% femur and 66% tibia, parameters included cortical vBMD, periosteal circumference, and strength-strain index (SSI). Multiple linear regression analyses were used to assess associations between bone parameters and TBFM, controlling for muscle cross-sectional area (MCSA). Regression analyses were then repeated with maturity, bone length, physical activity, and ethnicity as additional covariates. Analysis of covariance (ANCOVA) was used to compare bone parameters among tertiles of TBFM. In regression models with TBFM and MCSA, associations between TBFM and bone parameters at all sites were not significant. TBFM explained very little variance in all bone parameters (0.2–2.3%). In contrast, MCSA was strongly related (p < 0.001) to all bone parameters, except cortical vBMD. The addition of maturity, bone length, physical activity, and ethnicity did not alter the relationship between TBFM and bone parameters. With bone parameters expressed relative to total body mass, ANCOVA showed that all outcomes were significantly (p < 0.001) greater in the lowest compared to the middle and highest tertiles of TBFM. Although TBFM is correlated with femur and tibia vBMD, periosteal

  13. Changes in body composition after spasticity treatment with intrathecal baclofen.

    PubMed

    Skogberg, Olle; Samuelsson, Kersti; Ertzgaard, Per; Levi, Richard

    2017-01-19

    To assess changes in body composition, body weight and resting metabolic rate in patients who received intrathecal baclofen therapy for spasticity. Prospective, longitudinal, quasi-experimental, with a pre/post design. Twelve patients with spasticity, fulfilling study criteria, and due for pump implantation for intrathecal baclofen therapy, completed the study. Data were obtained before, 6 months and 12 months after commencement of intrathecal baclofen therapy as regards body composition (by skinfold calliper), body weight, and resting metabolic rate (by resting oxygen consumption). Spasticity was assessed according to the Modified Ashworth Scale (MAS) and Penn Spasm Frequency Scale (PSFS). A reduction in spasticity according to MAS occurred. Mean fat body mass increased and mean lean body mass decreased. Mean body weight showed a non-significant increase and resting metabolic rate a non-significant decrease. This explorative study indicates that unfavourable changes in body composition might occur after intrathecal baclofen therapy. Since obesity and increased fat body mass contribute to an increased cardiovascular risk, these findings may indicate a need for initiation of countermeasures, e.g. increased physical activity and/or dietary measures, in conjunction with intrathecal baclofen therapy. Further studies, including larger study samples and control groups, are needed to corroborate these findings.

  14. Peer Victimisation and Its Relationships with Perceptions of Body Composition

    ERIC Educational Resources Information Center

    Frisen, Ann; Lunde, Carolina; Hwang, Philip

    2009-01-01

    The present study examined the links between children's exposure to peer victimisation, in terms of type and frequency, their body composition and subjective perceptions of body composition. A total of 960 Swedish 10-year-olds (515 girls and 445 boys) completed questionnaires about their peer victimisation experiences, weight and height, and…

  15. Home-based resistance training improves femoral bone mineral density in women on hormone therapy.

    PubMed

    Judge, James Oat; Kleppinger, Alison; Kenny, Anne; Smith, Jo-Anne; Biskup, Brad; Marcella, Glenn

    2005-09-01

    This study tested whether moderate resistance training would improve femoral bone mineral density (BMD) in long-term users of hormone therapy with low BMD. The study was a 2-year randomized, controlled, trial (RCT) of moderate resistance training of either the lower extremity or the upper extremity. Eighty-five women participated in a 6-month observation period. The setting was center-based and home-based training. The participants were 189 women aged 59-78 years, with total femur T-scores from -0.8 to -2.8 and on hormone therapy (HT) for a minimum of 2 years (mean 11.8 years); 153 completed the trial. Lower extremity training used weight belts (mean 7.8 kg) in step-ups and chair rises; upper extremity training used elastic bands and dumbbells. Measurements were BMD and body composition [dual-energy X-ray absorptiometry (DXA)], bone turnover markers. Total femoral BMD showed a downward trend during the observation period: 0.35%+/-0.18% (P=0.14). The response to training was similar in the upper and lower groups in the primary outcomes. At 2 years, total femoral BMD increased 1.5% (95% CI 0.8%-2.2%) in the lower group and 1.8% (95% CI 1.1%-2.5%) in the upper group. Trochanter BMD increased 2.4% (95% CI 1.3%-3.5%) in the lower group and 2.5% (95% CI 1.4%-3.6%) in the upper group (for both analyses time effect P<0.001). At 1 year, a bone resorption marker (C-telopeptide) decreased 9% (P=0.04). Bone formation markers, bone-specific alkaline phosphatase, decreased 5% (P<0.001), and N-terminal type I procollagen peptide decreased 7% (P=0.01). Body composition (percent lean and percent body fat) was maintained in both groups. We concluded that long-term moderate resistance training reversed bone loss, decreased bone turnover, increased femur BMD, and maintained body composition. The similarity of response in upper and lower groups supports a systemic response rather than a site-specific response to moderate resistance training.

  16. Relationships between body composition, body dimensions, and peak speed in cross-country sprint skiing.

    PubMed

    Stoggl, Thomas; Enqvist, Jonas; Muller, Erich; Holmberg, Hans-Christer

    2010-01-01

    In modern sprint cross-country skiing, strength and maximal speed are major determinants of performance. The aims of this study were to ascertain the anthropometric characteristics of world-class sprint skiers and to evaluate whether a specific body composition and/or body dimension characterizes a successful sprint skier. Our hypothesis was that body height and lean body mass are related to peak speed in double poling and diagonal stride. Fourteen male national and international elite skiers performed two peak speed tests in double poling and diagonal stride roller skiing on a treadmill and were analysed using dual-energy X-ray absorptiometry to determine body composition and body dimensions. Relative pole length was positively correlated with both techniques (double poling: r = 0.77, P < 0.01; diagonal stride: r = 0.60, P < 0.05) and was the only variable that was part of the multiple regression model for both double poling and diagonal stride peak speed. Body height was not correlated with any technique, whereas lean trunk mass (r = 0.75, P < 0.01), body mass index (r = 0.66, P < 0.01), total lean mass (r = 0.69, P < 0.01), and body mass (r = 0.57, P < 0.05) were positively related to double poling peak speed. Total lean mass (absolute: r = 0.58, P < 0.05; relative: r = 0.76, P < 0.001) and relative lean mass of the trunk, arms (both r = 0.72, P < 0.01), and legs (r = 0.54, P < 0.05) were positively related to diagonal stride peak speed. In conclusion, skiers should aim to achieve a body composition with a high percentage of lean mass and low fat mass. A focus on trunk mass through increased muscle mass appears to be important, especially for double poling. The use of longer poles (percent body height) seems to be advantageous for both double poling and diagonal stride peak speed, whereas body dimensions do not appear to be a predictive factor.

  17. Hybrid use of combined and sequential delivery of growth factors and ultrasound stimulation in porous multilayer composite scaffolds to promote both vascularization and bone formation in bone tissue engineering.

    PubMed

    Yan, Haoran; Liu, Xia; Zhu, Minghua; Luo, Guilin; Sun, Tao; Peng, Qiang; Zeng, Yi; Chen, Taijun; Wang, Yingying; Liu, Keliang; Feng, Bo; Weng, Jie; Wang, Jianxin

    2016-01-01

    In this study, a multilayer coating technology would be adopted to prepare a porous composite scaffold and the growth factor release and ultrasound techniques were introduced into bone tissue engineering to finally solve the problems of vascularization and bone formation in the scaffold whilst the designed multilayer composite with gradient degradation characteristics in the space was used to match the new bone growth process better. The results of animal experiments showed that the use of low intensity pulsed ultrasound (LIPUS) combined with growth factors demonstrated excellent capabilities and advantages in both vascularization and new bone formation in bone tissue engineering. The degradation of the used scaffold materials could match new bone formation very well. The results also showed that only RGD-promoted cell adhesion was insufficient to satisfy the needs of new bone formation while growth factors and LIPUS stimulation were the key factors in new bone formation. © 2015 Wiley Periodicals, Inc.

  18. Does graded reaming affect the composition of reaming products in intramedullary nailing of long bones?

    PubMed

    Kouzelis, Antonis Th; Kourea, Helen; Megas, Panagiotis; Panagiotopoulos, Elias; Marangos, Markos; Lambiris, Elias

    2004-08-01

    Reaming products taken during intramedullary nailing were examined to identify possible differences in their composition depending on the reaming percentage. Reaming products were taken from 39 fresh closed tibial and femoral diaphyseal fractures in patients with an average age of 29 years. According to histology, reaming products mainly consisted of bone trabeculae, viable or nonviable, and bone marrow stroma. A statistically significant reverse correlation exists between viable bone mass percentage and reaming progress. Reaming 1 mm less than the minimum canal diameter provides a higher viable bone mass percentage, which might be an important factor in the bone healing process.

  19. Evaluation of chitosan-hydroxyapatite-collagen composite strength as scaffold material by immersion in simulated body fluid

    NASA Astrophysics Data System (ADS)

    Sari, N. K.; Indrani, D. J.; Johan, C.; Corputty, J. E. M.

    2017-08-01

    The reconstruction of bone tissue defects is a major challenge facing oral and maxillofacial surgeons. The essential elements needed for tissue engineering are cells, scaffolds (matrix), and stimulant molecules (growth factors). The mechanical properties of chitosan-hydroxyapatite-collagen scaffolds produced by BATAN, Jakarta, have not yet been studied. This study therefore analyzed the mechanical properties of chitosan-hydroxyapatite-collagen composite scaffolds prepared by BATAN, Jakarta, before and after immersion in simulated body fluid (SBF) for eight days. The compressive and tensile strengths of the chitosan-hydroxyapatite-collagen composite scaffolds were analyzed after immersion in SBF at 37°C for eight days. Each scaffold was removed and dried at room temperature on days 0, 2, 4, 6, and 8. The data obtained were processed and analyzed. Variations in the compressive strength and tensile strength were attributed to several aspects, such the specimen size, which was not uniform, the scaffold composition, scaffold pore size, which was also not uniform, and the degradation of the polymer. The chitosan-hydroxyapatite-collagen composite scaffold does not exhibit differences in the tensile strength and compressive strength before and after immersion in SBF.

  20. Ethnic Differences in Bone Health

    PubMed Central

    Zengin, Ayse; Prentice, Ann; Ward, Kate Anna

    2015-01-01

    There are differences in bone health between ethnic groups in both men and in women. Variations in body size and composition are likely to contribute to reported differences. Most studies report ethnic differences in areal bone mineral density (aBMD), which do not consistently parallel ethnic patterns in fracture rates. This suggests that other parameters beside aBMD should be considered when determining fracture risk between and within populations, including other aspects of bone strength: bone structure and microarchitecture, as well as muscle strength (mass, force generation, anatomy) and fat mass. We review what is known about differences in bone-densitometry-derived outcomes between ethnic groups and the extent to which they account for the differences in fracture risk. Studies are included that were published primarily between 1994 and 2014. A “one size fits all approach” should definitely not be used to understand better ethnic differences in fracture risk. PMID:25852642

  1. Weight and lean body mass change with antiretroviral initiation and impact on bone mineral density.

    PubMed

    Erlandson, Kristine M; Kitch, Douglas; Tierney, Camlin; Sax, Paul E; Daar, Eric S; Tebas, Pablo; Melbourne, Kathleen; Ha, Belinda; Jahed, Nasreen C; McComsey, Grace A

    2013-08-24

    To compare the effect that initiating different antiretroviral therapy (ART) regimens has on weight, BMI, and lean body mass (LBM) and explore how changes in body composition are associated with bone mineral density (BMD). A5224s was a sub-study of A5202, a prospective trial of 1857 ART-naive participants randomized to blinded abacavir-lamivudine (ABC/3TC) or tenofovir DF-emtricitabine (TDF/FTC) with open-label efavirenz (EFV) or atazanavir-ritonavir (ATV/r). All participants underwent dual-energy absorptiometry (DXA) and abdominal computed tomography for body composition. Analyses used two-sample t-tests and linear regression. A5224s included 269 participants: 85% men, 47% white non-Hispanic, median age 38 years, HIV-1 RNA 4.6 log10 copies/ml, and CD4 cell count 233 cells/μl. Overall, significant gains occurred in weight, BMI, and LBM at 96 weeks post-randomization (all P<0.001). Assignment to ATV/r (vs. EFV) resulted in significantly greater weight (mean difference 3.35 kg) and BMI gain (0.88 kg/m; both P=0.02), but not LBM (0.67 kg; P=0.15), whereas ABC/3TC and TDF/FTC were not significantly different (P≥0.10). In multivariable analysis, only lower baseline CD4 cell count and higher HIV-1 RNA were associated with greater increase in weight, BMI, or LBM. In multivariable analyses, increased LBM was associated with an increased hip BMD. ABC/3TC vs. TDF/FTC did not differ in change in weight, BMI, or LBM; ATV/r vs. EFV resulted in greater weight and BMI gain but not LBM. A positive association between increased LBM and increased hip BMD should be further investigated through prospective interventional studies to verify the impact of increased LBM on hip BMD.

  2. Bone attachment to glass-fibre-reinforced composite implant with porous surface.

    PubMed

    Mattila, R H; Laurila, P; Rekola, J; Gunn, J; Lassila, L V J; Mäntylä, T; Aho, A J; Vallittu, P K

    2009-06-01

    A method has recently been developed for producing fibre-reinforced composites (FRC) with porous surfaces, intended for use as load-bearing orthopaedic implants. This study focuses on evaluation of the bone-bonding behaviour of FRC implants. Three types of cylindrical implants, i.e. FRC implants with a porous surface, solid polymethyl methacrylate (PMMA) implants and titanium (Ti) implants, were inserted in a transverse direction into the intercondular trabeculous bone area of distal femurs and proximal tibias of New Zealand White rabbits. Animals were sacrificed at 3, 6 and 12 weeks post operation, and push-out tests (n=5-6 per implant type per time point) were then carried out. At 12 weeks the shear force at the porous FRC-bone interface was significantly higher (283.3+/-55.3N) than the shear force at interfaces of solid PMMA/bone (14.4+/-11.0 N; p<0.001) and Ti/bone (130.6+/-22.2N; p=0.001). Histological observation revealed new bone growth into the porous surface structure of FRC implants. Solid PMMA and Ti implants were encapsulated mostly with fibrous connective tissue. Finite element analysis (FEA) revealed that porous FRC implants had mechanical properties which could be tailored to smooth the shear stress distribution at the bone-implant interface and reduce the stress-shielding effect.

  3. Diagnostic performance of 18F-FDG PET/CT and whole-body diffusion-weighted imaging with background body suppression (DWIBS) in detection of lymph node and bone metastases from pediatric neuroblastoma.

    PubMed

    Ishiguchi, Hiroaki; Ito, Shinji; Kato, Katsuhiko; Sakurai, Yusuke; Kawai, Hisashi; Fujita, Naotoshi; Abe, Shinji; Narita, Atsushi; Nishio, Nobuhiro; Muramatsu, Hideki; Takahashi, Yoshiyuki; Naganawa, Shinji

    2018-06-01

    Recent many studies have shown that whole body "diffusion-weighted imaging with background body signal suppression" (DWIBS) seems a beneficial tool having higher tumor detection sensitivity without ionizing radiation exposure for pediatric tumors. In this study, we evaluated the diagnostic performance of whole body DWIBS and 18 F-FDG PET/CT for detecting lymph node and bone metastases in pediatric patients with neuroblastoma. Subjects in this retrospective study comprised 13 consecutive pediatric patients with neuroblastoma (7 males, 6 females; mean age, 2.9 ± 2.0 years old) who underwent both 18 F-FDG PET/CT and whole-body DWIBS. All patients were diagnosed as neuroblastoma on the basis of pathological findings. Eight regions of lymph nodes and 17 segments of skeletons in all patients were evaluated. The images of 123 I-MIBG scintigraphy/SPECT-CT, bone scintigraphy/SPECT, and CT were used to confirm the presence of lymph node and bone metastases. Two radiologists trained in nuclear medicine evaluated independently the uptake of lesions in 18 F-FDG PET/CT and the signal-intensity of lesions in whole-body DWIBS visually. Interobserver difference was overcome through discussion to reach a consensus. The sensitivities, specificities, and overall accuracies of 18 F-FDG PET/CT and whole-body DWIBS were compared using McNemer's test. Positive predictive values (PPVs) and negative predictive values (NPVs) of both modalities were compared using Fisher's exact test. The total numbers of lymph node regions and bone segments which were confirmed to have metastasis in the total 13 patients were 19 and 75, respectively. The sensitivity, specificity, overall accuracy, PPV, and NPV of 18 F-FDG PET/CT for detecting lymph node metastasis from pediatric neuroblastoma were 100, 98.7, 98.9, 95.0, and 100%, respectively, and those for detecting bone metastasis were 90.7, 73.1, 80.3, 70.1, and 91.9%, respectively. In contrast, the sensitivity, specificity, overall accuracy, PPV

  4. Growth hormone treatment of growth failure secondary to total body irradiation and bone marrow transplantation.

    PubMed Central

    Papadimitriou, A; Urena, M; Hamill, G; Stanhope, R; Leiper, A D

    1991-01-01

    Growth hormone was given to 13 children (nine boys, four girls) with acute leukaemia who had undergone treatment with cyclophosphamide and total body irradiation before bone marrow transplantation. Mean age at total body irradiation and bone marrow transplantation was 9.0 years (range 3.7-15.8). Endocrinological investigation was carried out at a mean of 2.0 years (range 0.4-4.0) after bone marrow transplantation. Peak serum growth hormone responses to hypoglycaemia were less than 10.0 micrograms/l (less than 20.0 mU/l) in 10, 10.5 micrograms/l (21.0 mU/l) in one, greater than 16.0 micrograms/l (greater than 32.0 mU/l) in two patients. Mean age of the patients at the start of growth hormone treatment was 12.2 years (range 5.8-18.2). The mean time between total body irradiation and bone marrow transplantation and the start of growth hormone treatment was 3.2 years (range, 1.1-5.0). Height velocity SD score (SD) increased from a mean pretreatment value of -1.27 (0.65) to + 0.22 (0.81) in the first year, +0.16 (1.11) in the second year, and +0.42 (0.71) in the third year of treatment. Height SD score (SD) changed only slightly from -1.52 (0.42) to -1.50 (0.47) in the first year, to -1.50 (0.46) in the second year, and -1.74 (0.92) in the third year. Measurement of segmental proportions showed no significant increase in subischial leg length from -0.87 (0.67) to -0.63 (0.65) in the first year, to -0.58 (0.70) in the second year, and -0.80 (1.14) in the third year of treatment. Our data indicate that children who have undergone total body irradiation and bone marrow transplantation respond to treatment with growth hormone in either of two dose regimens, with an increase in height velocity that is adequate to restore a normal growth rate but not to 'catch up', and that total body irradiation impairs not only spinal but also leg growth, possibly by a direct effect of irradiation on the epiphyses and soft tissues. PMID:2053788

  5. Impact of Vitamin D Supplementation during Lactation on Vitamin D Status and Body Composition of Mother-Infant Pairs: A MAVID Randomized Controlled Trial

    PubMed Central

    Czech-Kowalska, Justyna; Latka-Grot, Julita; Bulsiewicz, Dorota; Jaworski, Maciej; Pludowski, Pawel; Wygledowska, Grazyna; Chazan, Bogdan; Pawlus, Beata; Zochowska, Anna; Borszewska-Kornacka, Maria K.; Karczmarewicz, Elzbieta; Czekuc-Kryskiewicz, Edyta; Dobrzanska, Anna

    2014-01-01

    Objective The optimal vitamin D intake for nursing women is controversial. Deterioration, at least in bone mass, is reported during lactation. This study evaluated whether vitamin D supplementation during lactation enhances the maternal and infant’s vitamin D status, bone mass and body composition. Design and Methods After term delivery, 174 healthy mothers were randomized to receive 1200 IU/d (800 IU/d+400 IU/d from multivitamins) or 400 IU/d (placebo+400 IU/d from multivitamins) of cholecalciferol for 6 months while breastfeeding. All infants received 400 IU/d of cholecalciferol. Serum 25-hydroxyvitamin D [25(OH)D], iPTH, calcium, urinary calcium, and densitometry were performed in mother-offspring pairs after delivery, and at 3 and 6 months later. Results A total of 137 (79%) (n = 70; 1200 IU/d, n = 67; 400 IU/d) completed the study. 25(OH)D was similar in both groups at baseline (13.7 ng/ml vs. 16.1 ng/ml; P = 0.09) and at 3 months (25.7 ng/ml vs. 24.5 ng/ml; P = 0.09), but appeared higher in the 1200 IU/d group at 6 months of supplementation (25.6 ng/ml vs. 23.1 ng/ml; P = 0.009). The prevalence of 25(OH)D <20 ng/ml was comparable between groups at baseline (71% vs. 64%, P = 0.36) but lower in the 1200 IU/d group after 3 months (9% vs. 25%, P = 0.009) and 6 months (14% vs. 30%, P = 0.03). Maternal and infants’ iPTH, calciuria, bone mass and body composition as well as infants’ 25(OH)D levels were not significantly different between groups during the study. Significant negative correlations were noted between maternal 25(OH)D and fat mass (R = −0.49, P = 0.00001), android fat mass (R = −0.53, P = 0.00001), and gynoid fat mass (R = −0.43, P = 0.00001) after 6 months of supplementation. Conclusions Vitamin D supplementation at a dose of 400 IU/d was not sufficient to maintain 25(OH)D >20 ng/ml in nursing women, while 1200 IU/d appeared more effective, but had no effect on breastfed offspring

  6. Natural calcium isotopic composition of urine as a marker of bone mineral balance.

    PubMed

    Skulan, Joseph; Bullen, Thomas; Anbar, Ariel D; Puzas, J Edward; Shackelford, Linda; LeBlanc, Adrian; Smith, Scott M

    2007-06-01

    We investigated whether changes in the natural isotopic composition of calcium in human urine track changes in net bone mineral balance, as predicted by a model of calcium isotopic behavior in vertebrates. If so, isotopic analysis of natural urine or blood calcium could be used to monitor short-term changes in bone mineral balance that cannot be detected with other techniques. Calcium isotopic compositions are expressed as delta(44)Ca, or the difference in parts per thousand between the (44)Ca/(40)Ca of a sample and the (44)Ca/(40)Ca of a standard reference material. delta(44)Ca was measured in urine samples from 10 persons who participated in a study of the effectiveness of countermeasures to bone loss in spaceflight, in which 17 weeks of bed rest was used to induce bone loss. Study participants were assigned to 1 of 3 treatment groups: controls received no treatment, one treatment group received alendronate, and another group performed resistive exercise. Measurements were made on urine samples collected before, at 2 or 3 points during, and after bed rest. Urine delta(44)Ca values during bed rest were lower in controls than in individuals treated with alendronate (P <0.05, ANOVA) or exercise (P <0.05), and lower than the control group baseline (P <0.05, t-test). Results were consistent with the model and with biochemical and bone mineral density data. Results confirm the predicted relationship between bone mineral balance and calcium isotopes, suggesting that calcium isotopic analysis of urine might be refined into a clinical and research tool.

  7. Changes in Bone Mineral Density, Body Composition, Vitamin D Status, and Mineral Metabolism in Urban HIV-Positive South African Women Over 12 Months.

    PubMed

    Hamill, Matthew M; Pettifor, John M; Ward, Kate A; Norris, Shane A; Prentice, Ann

    2017-08-01

    Human immunodeficiency virus (HIV) infection and antiretroviral therapy (ART) are associated with bone loss and poor vitamin D status in white populations, though their relative roles are not known. No previous studies have examined longitudinal changes in areal bone mineral density (aBMD), measured by dual-energy X-ray absorptiometry (DXA), or in vitamin D status in HIV-positive African women. Of 247 premenopausal, urban, black African women from Soweto, South Africa, initially recruited, 187 underwent anthropometry, DXA scanning and blood and urine collections at both baseline and 12 months. Of these, 67 were HIV-negative throughout (Nref), 60 were HIV-positive with preserved CD4 counts at baseline (Ppres), and 60 were HIV-positive with low CD4 counts at baseline, eligible for ART by South African standards of care at the time (Plow). No participant had been exposed to ART at baseline. By 12 months, 51 Plow women had initiated ART, >85% of whom took combined tenofovir disoproxil fumarate (TDF), lamivudine, and efavirenz. By 12 months, Plow and Nref, but not Ppres, increased in body weight and fat mass (group-by-timepoint p ≤ 0.001, p = 0.002, respectively). Plow had significant decreases in aBMD of 2% to 3%, before and after size adjustment, at the femoral neck (p ≤ 0.002) and lumbar spine (p ≤ 0.001), despite significant weight gain. These decreases were associated with increased bone turnover but there were no significant differences or changes over time in vitamin D status, serum phosphate concentrations, or renal phosphate handling. Excluding data from nine Plow women unexposed to ART and 11 Ppres women who had initiated ART accentuated these findings, suggesting the bone loss in Plow was related to ART exposure. This is the first study describing DXA-defined bone loss in HIV-positive Sub-Saharan African women in association with ART. Further work is required to establish if bone loss continues with ongoing ART and, if so, whether this

  8. Changes in body composition of neonatal piglets during growth

    USDA-ARS?s Scientific Manuscript database

    During studies of neonatal piglet growth it is important to be able to accurately assess changes in body composition. Previous studies have demonstrated that quantitative magnetic resonance (QMR) provides precise and accurate measurements of total body fat mass, lean mass and total body water in non...

  9. The Assessment of Bone Regulatory Pathways, Bone Turnover, and Bone Mineral Density in Vegetarian and Omnivorous Children

    PubMed Central

    Ambroszkiewicz, Jadwiga; Chełchowska, Magdalena; Szamotulska, Katarzyna; Rowicka, Grażyna; Klemarczyk, Witold; Strucińska, Małgorzata

    2018-01-01

    Vegetarian diets contain many beneficial properties as well as carry a risk of inadequate intakes of several nutrients important to bone health. The aim of the study was to evaluate serum levels of bone metabolism markers and to analyze the relationships between biochemical bone markers and anthropometric parameters in children on vegetarian and omnivorous diets. The study included 70 prepubertal children on a lacto-ovo-vegetarian diet and 60 omnivorous children. Body composition, bone mineral content (BMC), and bone mineral density (BMD) were assessed by dual-energy X-ray absorptiometry. Biochemical markers—bone alkaline phosphatase (BALP), C-terminal telopeptide of type I collagen (CTX-I), osteoprotegerin (OPG), nuclear factor κB ligand (RANKL), sclerostin, and Dickkopf-related protein 1 (Dkk-1)—were measured using immunoenzymatic assays. In vegetarians, we observed a significantly higher level of BALP (p = 0.002) and CTX-I (p = 0.027), and slightly lower spine BMC (p = 0.067) and BMD (p = 0.060) than in omnivores. Concentrations of OPG, RANKL, sclerostin, and Dkk-1 were comparable in both groups of children. We found that CTX-I was positively correlated with BMC, total BMD, and lumbar spine BMD in vegetarians, but not in omnivores. A well-planned vegetarian diet with proper dairy and egg intake does not lead to significantly lower bone mass; however, children following a lacto-ovo-vegetarian diet had a higher rate of bone turnover and subtle changes in bone regulatory markers. CTX-I might be an important marker for the protection of vegetarians from bone abnormalities. PMID:29414859

  10. The Assessment of Bone Regulatory Pathways, Bone Turnover, and Bone Mineral Density in Vegetarian and Omnivorous Children.

    PubMed

    Ambroszkiewicz, Jadwiga; Chełchowska, Magdalena; Szamotulska, Katarzyna; Rowicka, Grażyna; Klemarczyk, Witold; Strucińska, Małgorzata; Gajewska, Joanna

    2018-02-07

    Vegetarian diets contain many beneficial properties as well as carry a risk of inadequate intakes of several nutrients important to bone health. The aim of the study was to evaluate serum levels of bone metabolism markers and to analyze the relationships between biochemical bone markers and anthropometric parameters in children on vegetarian and omnivorous diets. The study included 70 prepubertal children on a lacto-ovo-vegetarian diet and 60 omnivorous children. Body composition, bone mineral content (BMC), and bone mineral density (BMD) were assessed by dual-energy X-ray absorptiometry. Biochemical markers-bone alkaline phosphatase (BALP), C-terminal telopeptide of type I collagen (CTX-I), osteoprotegerin (OPG), nuclear factor κB ligand (RANKL), sclerostin, and Dickkopf-related protein 1 (Dkk-1)-were measured using immunoenzymatic assays. In vegetarians, we observed a significantly higher level of BALP ( p = 0.002) and CTX-I ( p = 0.027), and slightly lower spine BMC ( p = 0.067) and BMD ( p = 0.060) than in omnivores. Concentrations of OPG, RANKL, sclerostin, and Dkk-1 were comparable in both groups of children. We found that CTX-I was positively correlated with BMC, total BMD, and lumbar spine BMD in vegetarians, but not in omnivores. A well-planned vegetarian diet with proper dairy and egg intake does not lead to significantly lower bone mass; however, children following a lacto-ovo-vegetarian diet had a higher rate of bone turnover and subtle changes in bone regulatory markers. CTX-I might be an important marker for the protection of vegetarians from bone abnormalities.

  11. Physique and Body Composition in Soccer Players across Adolescence

    PubMed Central

    Nikolaidis, Pantelis Theodoros; Vassilios Karydis, Nikos

    2011-01-01

    Purpose Although the contribution of physique and body composition in soccer performance was recognized, these parameters of physical fitness were not well-studied in adolescent players. Aim of this study was to investigate physique and body composition across adolescence. Methods Male adolescents (N=297 aged 12.01–20.98 y), classified into nine one-year age-groups, child (control group, N=16 aged 7.34–11.97 y) and adult players (control group, N=29 aged 21.01–31.59 y), all members of competitive soccer clubs, performed a series of anthropometric measures (body mass, height, skinfolds, circumferences and girths), from which body mass index (BMI), percentage of body fat (BF%), fat mass (FM), fat free mass (FFM) and somatotype (Heath-Carter method) were calculated. Results Age had a positive association with FM (r=0.2, P<0.001) and FFM (r=0.68, P<0.001), and a negative association with BF (r=−0.12, P=0.047). Somatotype components changed across adolescence as well; age was linked to endomorphy (r=−0.17, P=0.005), mesomorphy (r=0.14, P=0.019) and ectomorphy (r=−0.17, P=0.004). Compared with age-matched general population, participants exhibited equal body mass, higher stature, lower body mass index and lower BF. Conclusion During adolescence, soccer players presented significant differences in terms of body composition and physique. Thus, these findings could be employed by coaches and fitness trainers engaged in soccer training in the context of physical fitness assessment and talent identification. PMID:22375222

  12. Body composition assessment in Taiwanese individuals with poliomyelitis.

    PubMed

    Chang, Kwang-Hwa; Lai, Chien-Hung; Chen, Shih-Ching; Hsiao, Wen-Tien; Liou, Tsan-Hon; Lee, Chi-Ming

    2011-07-01

    To measure the changes in the total and regional body fat mass, and assess the clinical usefulness of the body mass index (BMI) in detecting overweight subjects with sequelae of poliomyelitis. Prospective, cross-sectional study. General community. Subjects with poliomyelitis (n=17; age range, 42-57y; mean, 47y; 12 men, 5 women) and able-bodied people (n=17) matched by sex, age, body weight, and body height participated in the study. Not applicable. Total and regional body composition was measured with dual-energy x-ray absorptiometry. Clinical characteristics such as blood pressure, serum biochemical studies, and habitual behaviors (daily cigarette smoking, alcohol consumption, and exercise regimen) of all participants were evaluated. Compared with able-bodied controls, subjects with poliomyelitis had a 50% greater total body fat mass, significant increases in the regional fat mass in every part of the body, and had the greatest increase of fat mass in the thorax. Nearly all the subjects (94%) with poliomyelitis were obese according to standards of body composition. However, one third of them had a BMI value of less than 25.0kg/m(2). People with poliomyelitis have a higher prevalence of obesity and a significant increase in total and regional fat mass. Current BMI underestimates the total body fat mass percentage compared with the control; therefore, a population-specific BMI should be used to address the prevalence of obesity in postpolio survivors. Copyright © 2011 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  13. Whole Body Vibration Reduces Inflammatory Bone Loss in a Lipopolysaccharide Murine Model.

    PubMed

    Kim, I S; Lee, B; Yoo, S J; Hwang, S J

    2014-07-01

    Whole body vibration (WBV) stimulation has a beneficial effect on the recovery of osteoporotic bone. We aimed to investigate the immediate effect of WBV on lipopolysaccharide (LPS)-mediated inflammatory bone loss by varying the exposure timing. Balb/C mice were divided into the following groups: control, LPS (L), and LPS with vibration (LV). The L and LV groups received LPS (5 mg/kg) by 2 intraperitoneal injections on days 0 and 4. The LV group was exposed to WBV (0.4 g, 45 Hz) either during LPS treatment (LV1) or after cessation of LPS injection (LV2) and then continued WBV treatment for 10 min/d for 3 d. Evaluation based on micro-computed tomography was performed 7 d after the first injection, when the L group showed a significant decrease in bone volume (-25.8%) and bone mineral density (-33.5%) compared with the control group. The LV2 group recovered bone volume (35%) and bone mineral density (19.9%) compared with the L group, whereas the LV1 group showed no improvement. This vibratory signal showed a suppressive effect on the LPS-mediated induction of inflammatory cytokines such as IL-1β or TNF-α in human mesenchymal stem cells in vitro. These findings suggest that immediate exposure to WBV after the conclusion of LPS treatment efficiently reduces trabecular bone loss, but WBV might be less effective during the course of treatment with inflammatory factor. © International & American Associations for Dental Research.

  14. Whole Body Vibration Reduces Inflammatory Bone Loss in a Lipopolysaccharide Murine Model

    PubMed Central

    Kim, I.S.; Lee, B.; Yoo, S.J.; Hwang, S.J.

    2014-01-01

    Whole body vibration (WBV) stimulation has a beneficial effect on the recovery of osteoporotic bone. We aimed to investigate the immediate effect of WBV on lipopolysaccharide (LPS)–mediated inflammatory bone loss by varying the exposure timing. Balb/C mice were divided into the following groups: control, LPS (L), and LPS with vibration (LV). The L and LV groups received LPS (5 mg/kg) by 2 intraperitoneal injections on days 0 and 4. The LV group was exposed to WBV (0.4 g, 45 Hz) either during LPS treatment (LV1) or after cessation of LPS injection (LV2) and then continued WBV treatment for 10 min/d for 3 d. Evaluation based on micro–computed tomography was performed 7 d after the first injection, when the L group showed a significant decrease in bone volume (−25.8%) and bone mineral density (−33.5%) compared with the control group. The LV2 group recovered bone volume (35%) and bone mineral density (19.9%) compared with the L group, whereas the LV1 group showed no improvement. This vibratory signal showed a suppressive effect on the LPS-mediated induction of inflammatory cytokines such as IL-1β or TNF-α in human mesenchymal stem cells in vitro. These findings suggest that immediate exposure to WBV after the conclusion of LPS treatment efficiently reduces trabecular bone loss, but WBV might be less effective during the course of treatment with inflammatory factor. PMID:24810275

  15. Aligned porous barium titanate/hydroxyapatite composites with high piezoelectric coefficients for bone tissue engineering.

    PubMed

    Zhang, Yan; Chen, Liangjian; Zeng, Jing; Zhou, Kechao; Zhang, Dou

    2014-06-01

    It was proposed that the piezoelectric effect played an important physiological role in bone growth, remodelling and fracture healing. An aligned porous piezoelectric composite scaffold was fabricated by freeze casting hydroxyapatite/barium titanate (HA/BT) suspensions. The highest compressive strength and lowest porosity of 14.5MPa and 57.4% with the best parallelism of the pore channels were achieved in the HA10/BT90 composite. HA30/BT70 and HA10/BT90 composites exhibited piezoelectric coefficient d33 of 1.2 and 2.8pC/N, respectively, both of which were higher than the piezoelectric coefficient of natural bone. Increase of the solid loading of the suspension and solidification velocity led to the improvement of piezoelectric coefficient d33. Meanwhile, double-templates resulted in the coexistence of lamellar pores and aligned macro-pores, exhibiting the ability to produce an oriented long-range ordered architecture. The manipulation flexibility of this method indicated the potential for customized needs in the application of bone substitute. An MTT assay indicated that the obtained scaffolds had no cytotoxic effects on L929 cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Bodies in Composition: Teaching Writing through Kinesthetic Performance

    ERIC Educational Resources Information Center

    Butler, Janine

    2017-01-01

    This article calls on composition instructors to reflect consciously on how we can use our bodies kinesthetically to perform multimodal writing processes through gestural, visual, and spatial modes. Teaching writing through kinesthetic performance can show students that our bodies are being constructed via interaction with audiences, akin to the…

  17. Maternal perinatal diet induces developmental programming of bone architecture.

    PubMed

    Devlin, M J; Grasemann, C; Cloutier, A M; Louis, L; Alm, C; Palmert, M R; Bouxsein, M L

    2013-04-01

    Maternal high-fat (HF) diet can alter offspring metabolism via perinatal developmental programming. This study tests the hypothesis that maternal HF diet also induces perinatal programming of offspring bone mass and strength. We compared skeletal acquisition in pups from C57Bl/6J mice fed HF or normal diet from preconception through lactation. Three-week-old male and female pups from HF (HF-N) and normal mothers (N-N) were weaned onto normal diet. Outcomes at 14 and 26 weeks of age included body mass, body composition, whole-body bone mineral content (WBBMC) via peripheral dual-energy X-ray absorptiometry, femoral cortical and trabecular architecture via microcomputed tomography, and glucose tolerance. Female HF-N had normal body mass and glucose tolerance, with lower body fat (%) but higher serum leptin at 14 weeks vs. N-N (P<0.05 for both). WBBMC was 12% lower at 14 weeks and 5% lower at 26 weeks, but trabecular bone volume fraction was 20% higher at 14 weeks in female HF-N vs. N-N (P<0.05 for all). Male HF-N had normal body mass and mildly impaired glucose tolerance, with lower body fat (%) at 14 weeks and lower serum leptin at 26 weeks vs. N-N (P<0.05 for both). Serum insulin was higher at 14 weeks and lower at 26 weeks in HF-N vs. N-N (P<0.05). Trabecular BV/TV was 34% higher and cortical bone area was 6% higher at 14 weeks vs. N-N (P<0.05 for both). These data suggest that maternal HF diet has complex effects on offspring bone, supporting the hypothesis that maternal diet alters postnatal skeletal homeostasis.

  18. Anabolic action of parathyroid hormone (PTH) does not compromise bone matrix mineral composition or maturation.

    PubMed

    Vrahnas, Christina; Pearson, Thomas A; Brunt, Athena R; Forwood, Mark R; Bambery, Keith R; Tobin, Mark J; Martin, T John; Sims, Natalie A

    2016-12-01

    Intermittent administration of parathyroid hormone (PTH) is used to stimulate bone formation in patients with osteoporosis. A reduction in the degree of matrix mineralisation has been reported during treatment, which may reflect either production of undermineralised matrix or a greater proportion of new matrix within the bone samples assessed. To explore these alternatives, high resolution synchrotron-based Fourier Transform Infrared Microspectroscopy (sFTIRM) coupled with calcein labelling was used in a region of non-remodelling cortical bone to determine bone composition during anabolic PTH treatment compared with region-matched samples from controls. 8week old male C57BL/6 mice were treated with vehicle or 50μg/kg PTH, 5 times/week for 4weeks (n=7-9/group). Histomorphometry confirmed greater trabecular and periosteal bone formation and 3-point bending tests confirmed greater femoral strength in PTH-treated mice. Dual calcein labels were used to match bone regions by time-since-mineralisation (bone age) and composition was measured by sFTIRM in six 15μm 2 regions at increasing depth perpendicular to the most immature bone on the medial periosteal edge; this allowed in situ measurement of progressive changes in bone matrix during its maturation. The sFTIRM method was validated in vehicle-treated bones where the expected progressive increases in mineral:matrix ratio and collagen crosslink type ratio were detected with increasing bone maturity. We also observed a gradual increase in carbonate content that strongly correlated with an increase in longitudinal stretch of the collagen triple helix (amide I:amide II ratio). PTH treatment did not alter the progressive changes in any of these parameters from the periosteal edge through to the more mature bone. These data provide new information about how the bone matrix matures in situ and confirm that bone deposited during PTH treatment undergoes normal collagen maturation and normal mineral accrual. Copyright © 2016

  19. Differential Effects of Dietary Fat Content and Protein Source on Bone Phenotype and Fatty Acid Oxidation in Female C57Bl/6 Mice

    PubMed Central

    Sawin, Emily A.; Stroup, Bridget M.; Murali, Sangita G.; O’Neill, Lucas M.; Ntambi, James M.

    2016-01-01

    Background Glycomacropeptide (GMP) is a 64-amino acid glycophosphopeptide released from κ-casein during cheesemaking that promotes satiety, reduces body fat, increases bone mass and infers prebiotic and anti-inflammatory effects. The impact of adiposity and gender on bone health is unclear. Objective To determine how feeding female mice diets providing 60% Fat Kcal (high-fat) or 13% Fat Kcal (control) with either GMP or casein as the protein source impacts: body composition, ex vivo fatty acid oxidation, bone (femoral) biomechanical performance, and the relationship between body composition and bone. Methods Weanling female C57Bl/6 mice were fed high-fat (60% Fat Kcal) or control diets (13% Fat Kcal) with GMP or casein from 3 to 32 weeks of age with assessment of body weight and food intake. Body composition was assessed by dual-energy X-ray absorptiometry (DXA). Fatty acid oxidation was measured in liver, muscle, and fat tissues using 14C-palmitate. Plasma concentrations of hormones and cytokines were determined. Bone biomechanical performance was assessed by the 3-point bending test. Results Female mice fed high-fat diets showed increased fatty acid oxidation capacity in both gastrocnemius muscle and brown adipose tissue compared to mice fed the control diets with a lower fat content. Despite increased fat mass in mice fed the high-fat diets, there was little evidence of glucose impairment or inflammation. Mice fed the high-fat diets had significantly greater total body bone mineral density (BMD), femoral BMD, and femoral cross-sectional area than mice fed the control diets. Femora of mice fed the high-fat diets had increased yield load and maximum load before fracture, consistent with greater bone strength, but reduced post-yield displacement or ductility, consistent with bone brittleness. Female mice fed a high-fat GMP diet displayed increased fat oxidation capacity in subcutaneous fat relative to mice fed the high-fat casein diet. Regardless of dietary fat

  20. Human Body Odour Composites Are Not Perceived More Positively than the Individual Samples.

    PubMed

    Fialová, Jitka; Sorokowska, Agnieszka; Roberts, S Craig; Kubicová, Lydie; Havlíček, Jan

    2018-01-01

    It is well established that composite facial images are perceived as more attractive compared with individual images, suggesting a preference for heterozygosity. Similarly, there is evidence that preferences for body odours might be linked to heterozygosity. Here, we tested whether blending individual body odours into composites would follow a similar pattern as observed in the perception of faces. We collected axillary odour samples from 38 individuals, which were subsequently assessed individually and as composites of two ( N  = 19) or four ( N  = 9) body odours regarding their pleasantness, attractiveness and intensity. We found no significant differences between mean ratings of individual odour samples or composites of two or four odour samples. Our results indicate that, in contrast to faces, composite body odours are not rated as more attractive. Composite body odours retain similar hedonic perceptual qualities as individual odours, thus highlighting differences in visual and chemosensory perceptual mechanisms.

  1. Human Body Odour Composites Are Not Perceived More Positively than the Individual Samples

    PubMed Central

    Fialová, Jitka; Sorokowska, Agnieszka; Roberts, S. Craig; Kubicová, Lydie; Havlíček, Jan

    2018-01-01

    It is well established that composite facial images are perceived as more attractive compared with individual images, suggesting a preference for heterozygosity. Similarly, there is evidence that preferences for body odours might be linked to heterozygosity. Here, we tested whether blending individual body odours into composites would follow a similar pattern as observed in the perception of faces. We collected axillary odour samples from 38 individuals, which were subsequently assessed individually and as composites of two (N = 19) or four (N = 9) body odours regarding their pleasantness, attractiveness and intensity. We found no significant differences between mean ratings of individual odour samples or composites of two or four odour samples. Our results indicate that, in contrast to faces, composite body odours are not rated as more attractive. Composite body odours retain similar hedonic perceptual qualities as individual odours, thus highlighting differences in visual and chemosensory perceptual mechanisms. PMID:29770184

  2. Somatic maturation and body composition in female healthy adolescents with or without adjustment for body fat

    PubMed Central

    Miranda, Valter Paulo N.; de Faria, Franciane Rocha; de Faria, Eliane Rodrigues; Priore, Silvia Eloiza

    2014-01-01

    Objective: To evaluate the relationship between the stages of somatic maturation and body composition in eutrophic female adolescents with or without excessive body fat. Methods: Cross-sectional study of 118 female adolescents, from 14 to 19 years-old, in Viçosa, Minas Gerais, Southeast Brazil. The adolescents were divided in two groups: Group 1 (G1), eutrophic with adequate body fat percentage, and Group 2 (G2), eutrophic with high body fat percentage. The somatic maturation was assessed by the formula for estimating the Peak Height Velocity (PHV). Results: The PHV had higher average score in G1 adolescents compared to G2 (0.26 versus 0.05; p=0.032). There was an association between G1, G2 and the somatic maturation (p=0.049). The female adolescents before and during PHV presented higher values of fat body BMI (p=0.034) and percentage of central fat (p=0.039) compared to the adolescents after PHV. There was a correspondence between before PHV stage and the excess of body fat (α=0.751). Conclusions: There was an association between somatic maturation and body composition in eutrophic female adolescents. Length, BMI and fat percentage were different among the somatic maturation stages. It is relevant to evaluate the somatic maturation and the changes occurring in the body composition during adolescence in order to better evaluate and manage the nutritional status and the body fat excess. PMID:24676194

  3. [Body composition and polycystic ovary syndrome].

    PubMed

    Zabuliene, Lina; Tutkuviene, Janina

    2010-01-01

    Polycystic ovary syndrome (PCOS) is one of the most common endocrine metabolic disorders of reproductive age women. The main signs of PCOS are as follows: androgen excess, menstrual dysfunction, infertility, obesity, and other numerous health problems. By different authors, the disorder affects 2-28% of reproductive age women. Polycystic ovary syndrome is characterized by presence of hyperandrogenism, anovulation, menstrual cycle disturbances, also by the other metabolic changes. The lack of well-defined and universally accepted diagnostic criteria makes identification of this syndrome confusing to many clinicians. There are only few studies concerning the correlations between phenotypic expression, body composition and PCOS, and relationship with the processes of growth and sexual maturation and various environmental factors (nutrition, physical activity, stress, and other factors). There is a lack of knowledge about further PCOS development and prognosis, considering the individual and environmental factors. Variation in human body composition and shape ranges considerably: many body size and shape indices (height, weight, body composition, and proportions) are the result of long evolution process and adaptation to environment. Obviously, the morphological body parameters, physiological and biochemical indices are complex and compound the interdependent system. By current literature, more than 50% of women are overweight or obese. If waist circumference and waist-to-hip ratio of women with PCOS increase, reproductive function and metabolic state of a woman is altered more than in cases when there are no changes in these parameters. The investigations of the strongest sexual dimorphism sign--the subcutaneous and visceral fat topography--showed that women with PCOS have greater adipose tissue mass in the areas of the abdomen, waist, and upper arms than control women. It is known that some indices of sexual dimorphism may be considered as the morphological signs of

  4. Massage therapy during early postnatal life promotes greater lean mass and bone growth, mineralization, and strength in juvenile and young adult rats.

    PubMed

    Chen, H; Miller, S; Shaw, J; Moyer-Mileur, L

    2009-01-01

    The objects of this study were to investigate the effects of massage therapy during early life on postnatal growth, body composition, and skeletal development in juvenile and young adult rats. Massage therapy was performed for 10 minutes daily from D6 to D10 of postnatal life in rat pups (MT, n=24). Body composition, bone area, mineral content, and bone mineral density were measured by dual energy X-ray absorptiometry (DXA); bone strength and intrinsic stiffness on femur shaft were tested by three-point bending; cortical and cancellous bone histomorphometric measurements were performed at D21 and D60. Results were compared to age- and gender-matched controls (C, n=24). D21 body weight, body length, lean mass, and bone area were significantly greater in the MT cohort. Greater bone mineral content was found in male MT rats; bone strength and intrinsic stiffness were greater in D60 MT groups. At D60 MT treatment promoted bone mineralization by increasing trabecular mineral apposition rate in male and endosteal mineral surface in females, and also improved micro-architecture by greater trabeculae width in males and decreasing trabecular separation in females. In summary, massage therapy during early life elicited immediate and prolonged anabolic effects on postnatal growth, lean mass and skeletal developmental in a gender-specific manner in juvenile and young adult rats.

  5. Early body composition, but not body mass, is associated with future accelerated decline in muscle quality

    PubMed Central

    Chiles Shaffer, Nancy; Gonzalez‐Freire, Marta; Shardell, Michelle D.; Zoli, Marco; Studenski, Stephanie A.; Ferrucci, Luigi

    2017-01-01

    Abstract Background Muscle quality (MQ) or strength‐to‐mass ratio declines with aging, but the rate of MQ change with aging is highly heterogeneous across individuals. The identification of risk factors for accelerated MQ decline may offer clues to identity the underpinning physiological mechanisms and indicate targets for prevention and treatment. Using data from the Baltimore Longitudinal Study of Aging, we tested whether measures of body mass and body composition are associated with differential rates of changes in MQ with aging. Methods Participants included 511 men and women, aged 50 years or older, followed for an average of 4 years (range: 1–8). MQ was operationalized as ratio between knee‐extension isokinetic strength and CT‐thigh muscle cross‐sectional area. Predictors included body mass and body composition measures: weight (kg), body mass index (BMI, kg/m2), dual‐energy x‐ray absorptiometry‐measured total body fat mass (TFM, kg) and lean mass (TLM, kg), and body fatness (TFM/weight). Covariates were baseline age, sex, race, and body height. Results Muscle quality showed a significant linear decline over the time of the follow up (average rate of decline 0.02 Nm/cm2 per year, P < .001). Independent of covariates, neither baseline body weight (P = .756) nor BMI (P = .777) was predictive of longitudinal rate of decline in MQ. Instead, higher TFM and lower TLM at baseline predicted steeper longitudinal decline in MQ (P = .036 and P < .001, respectively). In particular, participants with both high TFM and low TLM at baseline experienced the most dramatic decline compared with those with low TFM and high TLM (about 3% per year vs. 0.5% per year, respectively). Participants in the higher tertile of baseline body fatness presented a significantly faster decline of MQ than the rest of the population (P = .021). Similar results were observed when body mass, TFM, and TLM were modeled as time‐dependent predictors. Conclusions Body

  6. Bone marrow fat composition as a novel imaging biomarker in postmenopausal women with prevalent fragility fractures.

    PubMed

    Patsch, Janina M; Li, Xiaojuan; Baum, Thomas; Yap, Samuel P; Karampinos, Dimitrios C; Schwartz, Ann V; Link, Thomas M

    2013-08-01

    The goal of this magnetic resonance (MR) imaging study was to quantify vertebral bone marrow fat content and composition in diabetic and nondiabetic postmenopausal women with fragility fractures and to compare them with nonfracture controls with and without type 2 diabetes mellitus. Sixty-nine postmenopausal women (mean age 63 ± 5 years) were recruited. Thirty-six patients (47.8%) had spinal and/or peripheral fragility fractures. Seventeen fracture patients were diabetic. Thirty-three women (52.2%) were nonfracture controls. Sixteen women were diabetic nonfracture controls. To quantify vertebral bone marrow fat content and composition, patients underwent MR spectroscopy (MRS) of the lumbar spine at 3 Tesla. Bone mineral density (BMD) was determined by dual-energy X-ray absorptiometry (DXA) of the hip and lumbar spine (LS) and quantitative computed tomography (QCT) of the LS. To evaluate associations of vertebral marrow fat content and composition with spinal and/or peripheral fragility fractures and diabetes, we used linear regression models adjusted for age, race, and spine volumetric bone mineral density (vBMD) by QCT. At the LS, nondiabetic and diabetic fracture patients had lower vBMD than controls and diabetics without fractures (p = 0.018; p = 0.005). However, areal bone mineral density (aBMD) by DXA did not differ between fracture and nonfracture patients. After adjustment for age, race, and spinal vBMD, the prevalence of fragility fractures was associated with -1.7% lower unsaturation levels (confidence interval [CI] -2.8% to -0.5%, p = 0.005) and +2.9% higher saturation levels (CI 0.5% to 5.3%, p = 0.017). Diabetes was associated with -1.3% (CI -2.3% to -0.2%, p = 0.018) lower unsaturation and +3.3% (CI 1.1% to 5.4%, p = 0.004) higher saturation levels. Diabetics with fractures had the lowest marrow unsaturation and highest saturation. There were no associations of marrow fat content with diabetes or fracture. Our results

  7. Phytase supplementation increases bone mineral density, lean body mass and voluntary physical activity in rats fed a low-zinc diet.

    PubMed

    Scrimgeour, Angus G; Marchitelli, Louis J; Whicker, Jered S; Song, Yang; Ho, Emily; Young, Andrew J

    2010-07-01

    Phytic acid forms insoluble complexes with nutritionally essential minerals, including zinc (Zn). Animal studies show that addition of microbial phytase (P) to low-Zn diets improves Zn status and bone strength. The present study determined the effects of phytase supplementation on bone mineral density (BMD), body composition and voluntary running activity of male rats fed a high phytic acid, low-Zn diet. In a factorial design, rats were assigned to ZnLO (5 mg/kg diet), ZnLO+P (ZnLO diet with 1500 U phytase/kg) or ZnAD (30 mg/kg diet) groups and were divided into voluntary exercise (EX) or sedentary (SED) groups, for 9 weeks. SED rats were significantly heavier from the second week, and no catch-up growth occurred in EX rats. Feed intakes were not different between groups throughout the study. ZnLO animals had decreased food efficiency ratios compared to both phytase-supplemented (ZnLO+P) and Zn-adequate (ZnAD) animals (P<.01 compared to ZnLO). The ZnLO+P and ZnAD rats ran 56-75 km more total distance than ZnLO rats (P<.05), with the ZnLO+P rats running more kilometers per week than the ZnLO rats by Week 6. In vivo DEXA analyses indicate that rats fed phytase-supplemented diets had higher lean body mass (LBM) than those fed ZnLO diets; and that rats fed the Zn-adequate diets had the highest LBM. Body fat (%) was significantly lower in EX rats and was both Zn- and phytase insensitive. Rats fed phytase-supplemented diets had higher bone mineral content (BMC), bone area (BA) and BMD than rats fed ZnLO diets; and in rats fed ZnAD diets these indices were the highest. The dietary effects on BMC, BA and BMD were independent of activity level. We conclude that consuming supplemental dietary phytase or dietary Zn additively enhances Zn status to increase BMD, LBM and voluntary physical activity in rats fed a low-Zn diet. While the findings confirm that bone health is vulnerable to disruption by moderate Zn deficiency in rats, this new data suggests that if dietary Zn is

  8. Bone Marrow Lipids in Rats Exposed to Total-Body Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, Fred; Cress, Edgar A.

    1963-05-01

    ABS>Thin-layer chromatography was used to demonstrate that bone marrow lipids of rats were primarily triglycerides; gas-liquid chromatography of the fraction revealed that palmitic and oleic acids account for more than 80% of the fatty acids. Minor lipid components present in the control and irradiated marrow are glyceryl ethers, cholesterol, fatty acids, and phospholipids. Cholesterol esters were not found. Total-body irradiation (800 r) increases the femur marrow triglyceride fraction approximately six times by 1 week after irradiation, and it remains elevated for many weeks. The relationship between dose and increase in marrow triglycerides appears to fit the equation y = bxmore » a. The water and lipid content of bone marrow bear a reciprocal relation to each other, while both water and residue are significantly reduced in the irradiated femur marrow.« less

  9. Effect of chronic centrifugation on body composition in the rat.

    NASA Technical Reports Server (NTRS)

    Pitts, G. C.; Bull, L. S.; Oyama, J.

    1972-01-01

    Two groups of adult female rats were chronically centrifuged for 60 days (2.76 G, 4.15 G, controls at 1.00 G). Live weights of centrifugal rats decreased about 20 g (6%) per Delta 1 G above control. This weight loss comprised reductions in both body fat and fat-free body weight (FFBW) as determined by body-composition studies on eight rats per group killed at the end of centrifugation. Of nine components constituting the FFBW, only skeletal muscle, liver, and heart changed significantly in weight. Chemical composition showed reductions (compared with controls) in the fat fraction of most components and increases in the water fraction of liver and gut. Identical measurements were made on the remaining eight rats per group killed 43 days after return to 1 G. Neither centrifuged group had reached the control body-weight level at this time. No statistically significant effect of previous G level was found in any of the body-composition parameters. The possible involvment of physiological regulation was considered.

  10. Eicosapentaenoic acid in cancer improves body composition and modulates metabolism.

    PubMed

    Pappalardo, Giulia; Almeida, Ana; Ravasco, Paula

    2015-04-01

    The objective of this review article is to present the most recent intervention studies with EPA on nutritional outcomes in cancer patients, e.g. nutritional status, weight & lean body mass. For this purpose a PubMed(®) and MedLine(®) search of the published literature up to and including January 2014 that contained the keywords: cancer, sarcopenia, EPA, ω-3 fatty acids, weight, intervention trial, muscle mass was conducted. The collected data was summarized and written in text format and in tables that contained: study design, patient' population, sample size, statistical significance and results of the intervention. The paper will cover malignancy, body composition, intervention with EPA, physiological mechanisms of action of EPA, effect of EPA on weight and body composition, future research. In cancer patients deterioration of muscle mass can be present regardless of body weight or Body Mass Index (BMI). Thus, sarcopenia in cancer patients with excessive fat mass (FM), entitled sarcopenic obesity, has gained greater relevance in clinical practice; it can negatively influence patients' functional status, tolerance to treatments & disease prognosis. The search for an effective nutritional intervention that improves body composition (preservation of muscle mass and muscle quality) is of utmost importance for clinicians and patients. The improvement of muscle quality is an even more recent area of interest because it has probable implications in patients' prognosis. Eicosapentaenoic acid (EPA) has been identified as a promising nutrient with the wide clinical benefits. Several mechanisms have been proposed to explain EPA potential benefits on body composition: inhibition of catabolic stimuli by modulating pro-inflammatory cytokines production and enhancing insulin sensitivity that induces protein synthesis; also, EPA may attenuate deterioration of nutritional status resulting from antineoplastic therapies by improving calorie and protein intake as well. Indeed

  11. Do 6 months of whole-body vibration training improve lean mass and bone mass acquisition of adolescent swimmers?

    PubMed

    Gómez-Bruton, A; González-Agüero, A; Matute-Llorente, A; Julián, C; Lozano-Berges, G; Gómez-Cabello, A; Casajús, J A; Vicente-Rodríguez, G

    2017-12-01

    Swimming has little effect on bone mass. Therefore, adolescent swimmers should complement their water training with a short and intense weight-bearing training, aiming to increase their bone acquisition. Forty swimmers performed a six-month whole-body vibration (WBV) training. WBV had no effect on adolescent swimmers' bone mass or lean mass. The aims of the present study were to evaluate the effects of a whole-body vibration (WBV) intervention on bone mineral density (BMD), bone mineral content (BMC) and lean mass (LM) in adolescent swimmers. Forty male and female adolescent swimmers (VIB; mean age 14.2 ± 1.9 years) completed the WBV protocol that consisted of 15 min of training 3 days per week during a 6-month period (ranging from 3.6 to 11.6 g), while 23 swimmers (SWI; mean age 15.0 ± 2.2 years) continued with their regular swimming training alone. VIB were divided into tertiles according to training compliance in order to evaluate if any dose-effect relation existed. BMD, BMC and LM were measured longitudinally by dual energy X-ray at the whole body, lumbar-spine and hip. No group by time interactions and no differences in change percentage were found for BMD, BMC or LM in any of the measured variables. The mean change percentage of the subtotal body (whole body minus the head) for VIB and SWI, respectively, was 2.3 vs. 2.4% for BMD, 5.7 vs 5.7% for BMC and 7.3 vs. 8.0% for lean mass. Moreover, no indication for dose-response was observed. The proposed WBV protocol had no effect on BMD, BMC and LM in adolescent swimmers. Other types of training should be used in this population to improve both bone and lean mass.

  12. Trend of Body Compositions with Aging among Chinese Adolescents, Adults and Elders.

    PubMed

    Xu, T; Zhu, G; Han, S

    2015-12-01

    Rare reports can be found about sex- and age-specific body composition survey among Chinese population. The aim of this study is to explore the change of sex-specific body compositions with aging among Chinese adolescents, adults and elders. In a large-scale population survey about physiological constants and health conditions, 75,714 subjects who aged from 8 to 80 completed body composition array. Body mass index (BMI), percentage body fat (PBF), water percentage of body weight (WPBW), water percentage of lean body mass (WPLBM), fat-free mass index (FFMI) and basic metabolic rate were examined with Biodynamics BI-310 body composition analyzer. General obesity is defined as BMI equal to or greater than 28 kg/m2. The prevalence rates of general obesity were 9.4% for males and 7.7% for females respectively. With aging, PBF and FMI showed a U-shape curvilinear trend and WPBW showed a parabolic trend for males. At same age group: 18-19 age groups, PBF and FMI declined to the valley and WPBW rose to the peak. For females, PBF, WPBW and FMI changed in a linear trend. The values of WPLBM and FFMI showed same curvilinear trend for two genders. WPLBM changed in a U-shape trend and touched the valley in twenties for males and in 18-19 age groups for females. The value of FFMI was larger for older age groups in the younger generation but smaller in the older generation. A parabolic trend peaking was seen in the thirties for males and in the forties for females. Regression models with age as independent variable showed that the larger rate of increase of PBF and smaller rates of increase for WPBM and WPLBM with aging for males. This study presents detailed data about sex-specific body composition conditions. Different change trend with aging was found about body composition conditions.

  13. Effects of NUTRIOSE® dietary fiber supplementation on body weight, body composition, energy intake, and hunger in overweight men.

    PubMed

    Guerin-Deremaux, Laetitia; Li, Shuguang; Pochat, Marine; Wils, Daniel; Mubasher, Mohamed; Reifer, Cheryl; Miller, Larry E

    2011-09-01

    The objective of the present study was to determine the effectiveness of a soluble dietary fiber, NUTRIOSE(®), on body weight, body composition, energy intake and hunger in overweight Chinese men. The volunteers were randomized in double-blind fashion to 250 ml fruit juice supplemented with NUTRIOSE(®) (Test, n = 60) or a maltodextrin (Control, n = 60) at a dosage of 17 g twice daily for 12 weeks. Body weight, body composition were performed at 0, 4, 8 and 12 weeks while daily energy intake and hunger were assessed every 3 days. Test subjects had reductions in body weight (1.5 kg, P < 0.001), body mass index (0.5 kg/m(2), P < 0.001) and body fat percentage (0.3%, P < 0.001) versus Controls. NUTRIOSE(®) supplementation resulted in a lower daily energy intake (3,079 kJ/day, P < 0.001) with group differences noted as early as 3 days. Test subjects reported less hunger across the study period versus Controls (P < 0.01). NUTRIOSE(®) supplementation for 12 weeks results in body composition improvements and reduces body weight, energy intake and hunger in overweight men.

  14. TiO2/bone composite materials for the separation of heavy metal impurities from waste water solutions

    NASA Astrophysics Data System (ADS)

    Dakroury, G.; Labib, Sh.; Abou El-Nour, F. H.

    2012-09-01

    Pure bone material obtained from cow meat, as apatite-rich material, and TiO2-bone composite materials are prepared and studied to be used for heavy metal ions separation from waste water solutions. Meat wastes are chemically and thermally treated to control their microstructure in order to prepare the composite materials that fulfill all the requirements to be used as selective membranes with high performance, stability and mechanical strength. The prepared materials are analyzed using Hg-porosimetry for surface characterization, energy dispersive X-ray spectroscopy (EDAX) for elemental analysis and Fourier transform infrared spectroscopy (FTIR) for chemical composition investigation. Structural studies are performed using X-ray diffraction (XRD). Microstructural properties are studied using scanning electron microscopy (SEM) and specific surface area studies are performed using Brunauer-Emmet-Teller (BET) method. XRD studies show that multiphase structures are obtained as a result of 1h sintering at 700-1200 °C for both pure bone and TiO2-bone composite materials. The factors affecting the transport of different heavy metal ions through the selected membranes are determined from permeation flux measurements. It is found that membrane pore size, membrane surface roughness and membrane surface charge are the key parameters that control the transport or rejection of heavy metal ions through the selected membranes.

  15. Changes in body composition in triathletes during an Ironman race.

    PubMed

    Mueller, Sandro Manuel; Anliker, Elmar; Knechtle, Patrizia; Knechtle, Beat; Toigo, Marco

    2013-09-01

    Triathletes lose body mass during an Ironman triathlon. However, the associated body composition changes remain enigmatic. Thus, the purpose of this study was to investigate Ironman-induced changes in segmental body composition, using for the first time dual-energy X-ray absorptiometry (DXA) and peripheral quantitative computed tomography (pQCT). Before and after an Ironman triathlon, segmental body composition and lower leg tissue mass, areas and densities were assessed using DXA and pQCT, respectively, in eight non-professional male triathletes. In addition, blood and urine samples were collected for the determination of hydration status. Body mass decreased by 1.9 ± 0.8 kg. This loss was due to 0.4 ± 0.3 and 1.4 ± 0.8 kg decrease in fat and lean mass, respectively (P < 0.01). Calf muscle density was reduced by 1.93 ± 1.04 % (P < 0.01). Hemoglobin, hematocrit, and plasma [K(+)] remained unchanged, while plasma [Na(+)] (P < 0.05), urine specific gravity and plasma and urine osmolality increased (P < 0.01). The loss in lean mass was explained by a decrease in muscle density, as an indicator of glycogen loss, and increases in several indicators for dehydration. The measurement of body composition with DXA and pQCT before and after an Ironman triathlon provided exact values for the loss in fat and lean mass. Consequently, these results yielded more detailed insights into tissue catabolism during ultra-endurance exercise.

  16. PMMA-hydroxyapatite composite material retards fatigue failure of augmented bone compared to augmentation with plain PMMA: in vivo study using a sheep model.

    PubMed

    Arabmotlagh, Mohammad; Bachmaier, Samuel; Geiger, Florian; Rauschmann, Michael

    2014-11-01

    Polymethylmethacrylate (PMMA) is the most commonly used void filler for augmentation of osteoporotic vertebral fracture, but the differing mechanical features of PMMA and osteoporotic bone result in overload and failure of adjacent bone. The aim of this study was to compare fatigue failure of bone after augmentation with PMMA-nanocrystalline hydroxyapatite (HA) composite material or with plain PMMA in a sheep model. After characterization of the mechanical properties of a composite material consisting of PMMA and defined amounts (10, 20, and 30% volume fraction) of HA, the composite material with 30% volume fraction HA was implanted in one distal femur of sheep; plain PMMA was implanted in the other femur. Native non-augmented bone served as control. Three and 6 months after implantation, the augmented bone samples were exposed to cyclic loading and the evolution of damage was investigated. The fatigue life was highest for the ovine native bone and lowest for bone-PMMA specimens. Bone-composite specimens showed significantly higher fatigue life than the respective bone-PMMA specimens in both 3- and 6-month follow-up groups. These results suggest that modification of mechanical properties of PMMA by addition of HA to approximate those of cancellous bone retards fatigue failure of the surrounding bone compared to augmented bone with plain PMMA. © 2014 Wiley Periodicals, Inc.

  17. Body composition: A predictive factor of cycle fecundity

    PubMed Central

    Kayatas, Semra; Api, Murat; Kurt, Didar; Eroglu, Mustafa; Arınkan, Sevcan Arzu

    2014-01-01

    Objective To study the effect of body composition on reproduction in women with unexplained infertility treated with a controlled ovarian hyperstimulation and intrauterine insemination programme. Methods This prospective observational study was conducted on 308 unexplained infertile women who were scheduled for a controlled ovarian hyperstimulation and intrauterine insemination programme and were grouped as pregnant and non-pregnant. Anthropometric measurements were performed using TANITA-420MA before the treatment cycle. Body composition was determined using a bioelectrical impedance analysis system. Results Body fat mass was significantly lower in pregnant women than in non-pregnant women (15.61±3.65 vs.18.78±5.97, respectively) (p=0.01). In a multiple regression analysis, body fat mass proved to have a stronger association with fecundity than the percentage of body fat, body mass index, or the waist/hip ratio (standardized regression coefficient≥0.277, t-value≥2.537; p<0.05). The cut-off value of fat mass, which was evaluated using the receiver operating characteristics curve, was 16.65 with a sensitivity of 61.8% and a specificity of 70.2%. Below this cut-off value, the odds of the pregnancy occurrence was found to be 2.5 times more likely. Conclusion Body fat mass can be predictive for pregnancy in patients with unexplained infertility scheduled for a controlled ovarian hyperstimulation and intrauterine insemination programme. PMID:25045631

  18. Natural calcium isotonic composition of urine as a marker of bone mineral balance

    USGS Publications Warehouse

    Skulan, J.; Bullen, T.; Anbar, A.D.; Puzas, J.E.; Shackelford, L.; LeBlanc, A.; Smith, S.M.

    2007-01-01

    Background: We investigated whether changes in the natural isotopic composition of calcium in human urine track changes in net bone mineral balance, as predicted by a model of calcium isotopic behavior in vertebrates. If so, isotopic analysis of natural urine or blood calcium could be used to monitor short-term changes in bone mineral balance that cannot be detected with other techniques. Methods: Calcium isotopic compositions are expressed as ??44Ca, or the difference in parts per thousand between the 44Ca/40Ca of a sample and the 44Ca/ 40Ca of a standard reference material. ??44Ca was measured in urine samples from 10 persons who participated in a study of the effectiveness of countermeasures to bone loss in spaceflight, in which 17 weeks of bed rest was used to induce bone loss. Study participants were assigned to 1 of 3 treatment groups: controls received no treatment, one treatment group received alendronate, and another group performed resistive exercise. Measurements were made on urine samples collected before, at 2 or 3 points during, and after bed rest. Results: Urine ??44Ca values during bed rest were lower in controls than in individuals treated with alendronate (P <0.05, ANOVA) or exercise (P <0.05), and lower than the control group baseline (P <0.05, Mest). Results were consistent with the model and with biochemical and bone mineral density data. Conclusion: Results confirm the predicted relationship between bone mineral balance and calcium isotopes, suggesting that calcium isotopic analysis of urine might be refined into a clinical and research tool. ?? 2007 American Association for Clinical Chemistry.

  19. Polymer-Ceramic Spiral Structured Scaffolds for Bone Tissue Engineering: Effect of Hydroxyapatite Composition on Human Fetal Osteoblasts

    PubMed Central

    Zhang, Xiaojun; Chang, Wei; Lee, Paul; Wang, Yuhao; Yang, Min; Li, Jun; Kumbar, Sangamesh G.; Yu, Xiaojun

    2014-01-01

    For successful bone tissue engineering, a scaffold needs to be osteoconductive, porous, and biodegradable, thus able to support attachment and proliferation of bone cells and guide bone formation. Recently, hydroxyapatites (HA), a major inorganic component of natural bone, and biodegrade polymers have drawn much attention as bone scaffolds. The present study was designed to investigate whether the bone regenerative properties of nano-HA/polycaprolactone (PCL) spiral scaffolds are augmented in an HA dose dependent manner, thereby establishing a suitable composition as a bone formation material. Nano-HA/PCL spiral scaffolds were prepared with different weight ratios of HA and PCL, while porosity was introduced by a modified salt leaching technique. Human fetal osteoblasts (hFOBs) were cultured on the nano-HA/PCL spiral scaffolds up to 14 days. Cellular responses in terms of cell adhesion, viability, proliferation, differentiation, and the expression of bone-related genes were investigated. These scaffolds supported hFOBs adhesion, viability and proliferation. Cell proliferation trend was quite similar on polymer-ceramic and neat polymer spiral scaffolds on days 1, 7, and 14. However, the significantly increased amount of alkaline phosphatase (ALP) activity and mineralized matrix synthesis was evident on the nano-HA/PCL spiral scaffolds. The HA composition in the scaffolds showed a significant effect on ALP and mineralization. Bone phenotypic markers such as bone sialoprotein (BSP), osteonectin (ON), osteocalcin (OC), and type I collagen (Col-1) were semi-quantitatively estimated by reverse transcriptase polymerase chain reaction analysis. All of these results suggested the osteoconductive characteristics of HA/PCL nanocomposite and cell maturation were HA dose dependent. For instance, HA∶PCL = 1∶4 group showed significantly higher ALP mineralization and elevated levels of BSP, ON, OC and Col-I expression as compared other lower or higher ceramic ratios

  20. Individual and combined effects of noise-like whole-body vibration and parathyroid hormone treatment on bone defect repair in ovariectomized mice.

    PubMed

    Matsumoto, Takeshi; Sato, Daisuke; Hashimoto, Yoshihiro

    2016-01-01

    The effectiveness of intermittent administration of parathyroid hormone and exposure to whole-body vibration on osteoporotic fracture healing has been previously investigated, but data on their concurrent use are lacking. Thus, we evaluated the effects of intermittent administration of parathyroid hormone, whole-body vibration, and their combination on bone repair in osteoporotic mice. Noise-like whole-body vibration with a broad frequency range was used instead of conventional sine-wave whole-body vibration at a specific frequency. Mice were ovariectomized at 9 weeks of age and subjected to drill-hole surgery in the right tibial diaphysis at 11 weeks. The animals were divided into four groups (n = 12 each): a control group, and groups treated with intermittent administration of parathyroid hormone, noise-like whole-body vibration, and both. From postoperative day 2, the groups treated with intermittent administration of parathyroid hormone and groups treated with both intermittent administration of parathyroid hormone and noise-like whole-body vibration were subcutaneously administered parathyroid hormone at a dose of 30 µg/kg/day. The groups treated with noise-like whole-body vibration and groups treated with both intermittent administration of parathyroid hormone and noise-like whole-body vibration were exposed to noise-like whole-body vibration at a root mean squared acceleration of 0.3g and frequency components of 45-100 Hz for 20 min/day. Following 18 days of interventions, the right tibiae were harvested, and the regenerated bone was analyzed by micro-computed tomography and nanoindentation testing. Compared with the control group, callus volume fraction was 40% higher in groups treated with intermittent administration of parathyroid hormone and 73% higher in groups treated with both intermittent administration of parathyroid hormone and noise-like whole-body vibration, and callus thickness was 35% wider in groups treated with both

  1. Body composition explains sex differential in physical performance among older adults.

    PubMed

    Tseng, Lisa A; Delmonico, Matthew J; Visser, Marjolein; Boudreau, Robert M; Goodpaster, Bret H; Schwartz, Ann V; Simonsick, Eleanor M; Satterfield, Suzanne; Harris, Tamara; Newman, Anne B

    2014-01-01

    Older women have higher percent body fat, poorer physical function, lower strength, and higher rates of nonfatal chronic conditions than men. We sought to determine whether these differences explained physical performance differences between men and women. Physical performance was assessed in the Health, Aging and Body Composition study in 2,863 men and women aged 70-79 with a composite 0-4 point score consisting of chair stands, standing balance including one-leg stand, and 6-m usual and narrow walk tests. Total body composition was measured by dual x-ray absorptiometry, thigh composition by computed tomography, and knee extensor strength by isokinetic dynamometer. Analysis of covariance estimated least square mean performance scores for men and women. Men had higher performance scores than women (least square means: 2.33±0.02 vs 2.03±0.02, p < .0001), adjusted for race, study site, age, and height. Body composition measures (total body fat and thigh muscle area, muscle density, subcutaneous fat, and intermuscular fat) accounted for differences between men and women (least square means: 2.15±0.02 vs 2.17±0.02, p = .53). Higher strength in men partly explained the sex difference (least square means: 2.28±0.02 vs 2.12±0.02, p < .0001). Strength attenuated the association of thigh muscle mass with performance. Chronic health conditions did not explain the sex difference. In a well-functioning cohort, poorer physical function in women compared with men can be explained predominantly by their higher fat mass, but also by other body composition differences. The higher proportion of body fat in women may put them at significant biomechanical disadvantage for greater disability in old age.

  2. A principal components approach to parent-to-newborn body composition associations in South India

    PubMed Central

    Veena, Sargoor R; Krishnaveni, Ghattu V; Wills, Andrew K; Hill, Jacqueline C; Fall, Caroline HD

    2009-01-01

    Background Size at birth is influenced by environmental factors, like maternal nutrition and parity, and by genes. Birth weight is a composite measure, encompassing bone, fat and lean mass. These may have different determinants. The main purpose of this paper was to use anthropometry and principal components analysis (PCA) to describe maternal and newborn body composition, and associations between them, in an Indian population. We also compared maternal and paternal measurements (body mass index (BMI) and height) as predictors of newborn body composition. Methods Weight, height, head and mid-arm circumferences, skinfold thicknesses and external pelvic diameters were measured at 30 ± 2 weeks gestation in 571 pregnant women attending the antenatal clinic of the Holdsworth Memorial Hospital, Mysore, India. Paternal height and weight were also measured. At birth, detailed neonatal anthropometry was performed. Unrotated and varimax rotated PCA was applied to the maternal and neonatal measurements. Results Rotated PCA reduced maternal measurements to 4 independent components (fat, pelvis, height and muscle) and neonatal measurements to 3 components (trunk+head, fat, and leg length). An SD increase in maternal fat was associated with a 0.16 SD increase (β) in neonatal fat (p < 0.001, adjusted for gestation, maternal parity, newborn sex and socio-economic status). Maternal pelvis, height and (for male babies) muscle predicted neonatal trunk+head (β = 0. 09 SD; p = 0.017, β = 0.12 SD; p = 0.006 and β = 0.27 SD; p < 0.001). In the mother-baby and father-baby comparison, maternal BMI predicted neonatal fat (β = 0.20 SD; p < 0.001) and neonatal trunk+head (β = 0.15 SD; p = 0.001). Both maternal (β = 0.12 SD; p = 0.002) and paternal height (β = 0.09 SD; p = 0.030) predicted neonatal trunk+head but the associations became weak and statistically non-significant in multivariate analysis. Only paternal height predicted neonatal leg length (β = 0.15 SD; p = 0

  3. Physical activity and body composition changes during military service.

    PubMed

    Mikkola, Ilona; Jokelainen, Jari J; Timonen, Markku J; Härkönen, Pirjo K; Saastamoinen, Eero; Laakso, Mauri A; Peitso, Ari J; Juuti, Anna-Kaisa; Keinänen-Kiukaanniemi, Sirkka M; Mäkinen, Tiina M

    2009-09-01

    To examine how body composition changes in different body mass index (BMI) categories among young Finnish men during military service, which is associated with marked changes in diet and physical activity. In addition, this study examined how reported previous physical activity affected the body composition changes. Altogether 1003 men (19 yr) were followed throughout their military service (6-12 months). Height, weight, BMI, waist circumference, and waist-to-hip ratio (WHR) were recorded. Previous physical activity was assessed at the beginning of the service by a questionnaire. Body composition was measured by bioelectrical impedance assessments (BIA) at the beginning and at the end of the service. The measured parameters were fat mass (FM), fat percentage (fat %), fat-free mass (FFM), visceral fat area (VFA), lean body mass (LBM), and skeletal muscle mass (SMM). On average, military training decreased weight by 0.7%, FM by 9.7%, fat % by 6.6%, and VFA by 43.4%. FFM increased by 1.3%, LBM by 1.2%, and SMM by 1.7%. The group of underweight and normal-weight men gained weight, FM, and FFM, whereas overweight and obese men lost weight and FM and gained FFM. FM was most reduced in the groups of overweight (20.8%) and obese (24.9%) men. The amount of VFA was reduced in all BMI groups (38%-44%). Among overweight men who reported being inactive previous to the military service, more beneficial changes in body composition were observed compared with those who reported being physically active. The lifestyle changes associated with military service markedly reduce fat tissue and increase the amount of lean tissue. These beneficial changes are prominent among previously inactive subjects with high BMI.

  4. SGLT2 inhibitor-induced changes in body composition and simultaneous changes in metabolic profile: 52-week prospective LIGHT Study with luseogliflozin.

    PubMed

    Sasaki, Takashi; Sugawara, Masahiro; Fukuda, Masahiro

    2018-04-16

    It is unclear how changes in body composition induced by sodium-glucose cotransporter 2 (SGLT2) inhibitor treatment correlate with metabolic profile changes. We aimed to clarify how metabolic profile changes correlate with body component changes, and if SGLT2 inhibitor treatment causes sarcopenia and bone mineral content (BMC) loss. Moderately obese Japanese type 2 diabetes (T2D) patients, treated with luseogliflozin for a year, were observed prospectively and evaluated for body composition changes. We analyzed the changes in the individual body components during treatment, and their correlation with other clinical variables. The efficacy analysis set comprised 37 of 43 enrolled patients. The total fat mass significantly decreased early in the treatment at and after Week 4, with a mean decrease of -1.97 kg [95% CI: -2.66 to -1.28] at Week 24. The visceral fat area at Week 24 showed an average downward trend, although this was not significant. The changes in visceral fat area in individual patients demonstrated a significant negative correlation with the extent of the baseline visceral fat area (r=-0.399, p=0.023). The skeletal muscle mass index exhibited a significant but small change at and after Week 36. The BMC profile showed a transient significant decrease only at Week 12. No significant change in BMC was noted at other time points. Luseogliflozin treatment brought about favorable changes in body composition and metabolism of moderately obese Japanese T2D patients, accompanied by body fat reduction and minimal muscle and BMC reduction. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Body mass index and body composition scaling to height in children and adolescent.

    PubMed

    Chung, Sochung

    2015-09-01

    Childhood obesity prevalence has been increased and known to be related to various diseases and mortality in adult and body mass index (BMI) has been widely used as a screening tool in children with obesity. It is important to understand what BMI is and its limitations. BMI is a measure of weight adjusted for height. Weight scales to height with a power of about 2, is the basis of BMI (weight/height(2)) as the scaling of body weight to height across adults provides powers rounded to 2. BMI has the advantage of a simple and noninvasive surrogate measure of body fat, but it has limitation in differentiating body fat from lean (fat free) mass and low-moderate sensitivity is problematic for clinical applications. Among overweight children higher BMI levels can be a result of increased either fat or fat-free mass. BMI could be divided into fat-free mass index and fat mass index. Monitoring of the changes in body composition is important as distinguishing changes in each component occur with rapid growth in adolescents as it is occur in concert with changes in the hormonal environment. Reference values for each body composition indexes and chart created with selected percentiles of a normal adolescent population could be helpful in growth assessment and health risk evaluation.

  6. Estimating body weight and body composition of chickens by using noninvasive measurements.

    PubMed

    Latshaw, J D; Bishop, B L

    2001-07-01

    The major objective of this research was to develop equations to estimate BW and body composition using measurements taken with inexpensive instruments. We used five groups of chickens that were created with different genetic stocks and feeding programs. Four of the five groups were from broiler genetic stock, and one was from sex-linked heavy layers. The goal was to sample six males from each group when the group weight was 1.20, 1.75, and 2.30 kg. Each male was weighed and measured for back length, pelvis width, circumference, breast width, keel length, and abdominal skinfold thickness. A cloth tape measure, calipers, and skinfold calipers were used for measurement. Chickens were scanned for total body electrical conductivity (TOBEC) before being euthanized and frozen. Six females were selected at weights similar to those for males and were measured in the same way. Each whole chicken was ground, and a portion of ground material of each was used to measure water, fat, ash, and energy content. Multiple linear regression was used to estimate BW from body measurements. The best single measurement was pelvis width, with an R2 = 0.67. Inclusion of three body measurements in an equation resulted in R2 = 0.78 and the following equation: BW (g) = -930.0 + 68.5 (breast, cm) + 48.5 (circumference, cm) + 62.8 (pelvis, cm). The best single measurement to estimate body fat was abdominal skinfold thickness, expressed as a natural logarithm. Inclusion of weight and skinfold thickness resulted in R2 = 0.63 for body fat according to the following equation: fat (%) = 24.83 + 6.75 (skinfold, ln cm) - 3.87 (wt, kg). Inclusion of the result of TOBEC and the effect of sex improved the R2 to 0.78 for body fat. Regression analysis was used to develop additional equations, based on fat, to estimate water and energy contents of the body. The body water content (%) = 72.1 - 0.60 (body fat, %), and body energy (kcal/g) = 1.097 + 0.080 (body fat, %). The results of the present study

  7. Distinct frequency dependent effects of whole-body vibration on non-fractured bone and fracture healing in mice.

    PubMed

    Wehrle, Esther; Wehner, Tim; Heilmann, Aline; Bindl, Ronny; Claes, Lutz; Jakob, Franz; Amling, Michael; Ignatius, Anita

    2014-08-01

    Low-magnitude high-frequency vibration (LMHFV) provokes anabolic effects in non-fractured bone; however, in fracture healing, inconsistent results were reported and optimum vibration conditions remain unidentified. Here, we investigated frequency dependent effects of LMHFV on fracture healing. Twelve-week-old, female C57BL/6 mice received a femur osteotomy stabilized using an external fixator. The mice received whole-body vibrations (20 min/day) with 0.3g peak-to-peak acceleration and a frequency of either 35 or 45 Hz. After 10 and 21 days, the osteotomized femurs and intact bones (contra-lateral femurs, lumbar spine) were evaluated using bending-testing, µ-computed tomography, and histomorphometry. In non-fractured trabecular bone, vibration with 35 Hz significantly increased the relative amount of bone (+28%) and the trabecular number (+29%), whereas cortical bone was not influenced. LMHFV with 45 Hz failed to provoke anabolic effects in trabecular or cortical bone. Fracture healing was not significantly influenced by whole-body vibration with 35 Hz, whereas 45 Hz significantly reduced bone formation (-64%) and flexural rigidity (-34%) of the callus. Although the exact mechanisms remain open, our results suggest that small vibration setting changes could considerably influence LMHFV effects on bone formation in remodeling and repair, and even disrupt fracture healing, implicating caution when treating patients with impaired fracture healing. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  8. Changes in chemical composition of bone matrix in ovariectomized (OVX) rats detected by Raman spectroscopy and multivariate analysis

    NASA Astrophysics Data System (ADS)

    Oshima, Yusuke; Iimura, Tadahiro; Saitou, Takashi; Imamura, Takeshi

    2015-02-01

    Osteoporosis is a major bone disease that connotes the risk of fragility fractures resulting from alterations to bone quantity and/or quality to mechanical competence. Bone strength arises from both bone quantity and quality. Assessment of bone quality and bone quantity is important for prediction of fracture risk. In spite of the two factors contribute to maintain the bone strength, only one factor, bone mineral density is used to determine the bone strength in the current diagnosis of osteoporosis. On the other hand, there is no practical method to measure chemical composition of bone tissue including hydroxyapatite and collagen non-invasively. Raman spectroscopy is a powerful technique to analyze chemical composition and material properties of bone matrix non-invasively. Here we demonstrated Raman spectroscopic analysis of the bone matrix in osteoporosis model rat. Ovariectomized (OVX) rat was made and the decalcified sections of tibias were analyzed by a Raman microscope. In the results, Raman bands of typical collagen appeared in the obtained spectra. Although the typical mineral bands at 960 cm-1 (Phosphate) was absent due to decalcified processing, we found that Raman peak intensities of amide I and C-C stretching bands were significantly different between OVX and sham-operated specimens. These differences on the Raman spectra were statistically compared by multivariate analyses, principal component analysis (PCA) and liner discrimination analysis (LDA). Our analyses suggest that amide I and C-C stretching bands can be related to stability of bone matrix which reflects bone quality.

  9. Influence of third-body particles originating from bone void fillers on the wear of ultra-high-molecular-weight polyethylene

    PubMed Central

    Cowie, Raelene M; Carbone, Silvia; Aiken, Sean; Cooper, John J; Jennings, Louise M

    2016-01-01

    Calcium sulfate bone void fillers are increasingly being used for dead space management in infected arthroplasty revision surgery. The presence of these materials as loose beads close to the bearing surfaces of joint replacements gives the potential for them to enter the joint becoming trapped between the articulating surfaces; the resulting damage to cobalt chrome counterfaces and the subsequent wear of ultra-high-molecular-weight polyethylene is unknown. In this study, third-body damage to cobalt chrome counterfaces was simulated using particles of the calcium sulfate bone void fillers Stimulan® (Biocomposites Ltd., Keele, UK) and Osteoset® (Wright Medical Technology, TN, USA) using a bespoke rig. Scratches on the cobalt chrome plates were quantified in terms of their density and mean lip height, and the damage caused by the bone void fillers was compared to that caused by particles of SmartSet GMV PMMA bone cement (DePuy Synthes, IN, USA). The surface damage from Stimulan® was below the resolution of the analysis technique used; SmartSet GMV caused 0.19 scratches/mm with a mean lip height of 0.03 µm; Osteoset® led to a significantly higher number (1.62 scratches/mm) of scratches with a higher mean lip height (0.04 µm). Wear tests of ultra-high-molecular-weight polyethylene were carried out in a six-station multi-axial pin on plate reciprocating rig against the damaged plates and compared to negative (highly polished) and positive control plates damaged with a diamond stylus (2 µm lip height). The wear of ultra-high-molecular-weight polyethylene was shown to be similar against the negative control plates and those damaged with third-body particles; there was a significantly higher (p < 0.001) rate of ultra-high-molecular-weight polyethylene wear against the positive control plates. This study showed that bone void fillers of similar composition can cause varying damage to cobalt chrome counterfaces. However, the lip heights of the scratches

  10. Investigating the weight ratio variation of alginate-hydroxyapatite composites for vertebroplasty method bone filler material

    NASA Astrophysics Data System (ADS)

    Lestari, Gusti Ruri; Yuwono, Akhmad Herman; Sofyan, Nofrijon; Ramahdita, Ghiska

    2017-02-01

    One of the newly developed methods for curing spinal fracture due to osteoporosis is vertebroplasty. The method is basically based on injection of special material directly to the fractured spine in order to commence the formation of new bone. Therefore, appropriate injectable materials are very important to the curing success. In this study, injectable alginate-hydroxyapatite (HA) composites were fabricated varying the weight percentage of alginate upon synthesis procedure. The result of injection capability and compressive tests as well as Fourier transform infrared (FTIR) spectroscopy and scanning electron microscope (SEM) suggested that bone filler composite containing 60 wt% alginate is the optimum composition obtaining a compressive modulus up to 0.15 MPa, injection capability of more than 85% and morphology with uniform porous and fibrous structure. This injectable composite fabrication process can be used for the development of injectable materials system for vertebroplasty method.

  11. Electrospun Gelatin/β-TCP Composite Nanofibers Enhance Osteogenic Differentiation of BMSCs and In Vivo Bone Formation by Activating Ca (2+) -Sensing Receptor Signaling.

    PubMed

    Zhang, Xuehui; Meng, Song; Huang, Ying; Xu, Mingming; He, Ying; Lin, Hong; Han, Jianmin; Chai, Yuan; Wei, Yan; Deng, Xuliang

    2015-01-01

    Calcium phosphate- (CaP-) based composite scaffolds have been used extensively for the bone regeneration in bone tissue engineering. Previously, we developed a biomimetic composite nanofibrous membrane of gelatin/β-tricalcium phosphate (TCP) and confirmed their biological activity in vitro and bone regeneration in vivo. However, how these composite nanofibers promote the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) is unknown. Here, gelatin/β-TCP composite nanofibers were fabricated by incorporating 20 wt% β-TCP nanoparticles into electrospun gelatin nanofibers. Electron microscopy showed that the composite β-TCP nanofibers had a nonwoven structure with a porous network and a rough surface. Spectral analyses confirmed the presence and chemical stability of the β-TCP and gelatin components. Compared with pure gelatin nanofibers, gelatin/β-TCP composite nanofibers caused increased cell attachment, proliferation, alkaline phosphatase activity, and osteogenic gene expression in rat BMSCs. Interestingly, the expression level of the calcium-sensing receptor (CaSR) was significantly higher on the composite nanofibrous scaffolds than on pure gelatin. For rat calvarial critical sized defects, more extensive osteogenesis and neovascularization occurred in the composite scaffolds group compared with the gelatin group. Thus, gelatin/β-TCP composite scaffolds promote osteogenic differentiation of BMSCs in vitro and bone regeneration in vivo by activating Ca(2+)-sensing receptor signaling.

  12. Body composition in children with spastic quadriplegic cerebral palsy.

    PubMed

    Stallings, V A; Cronk, C E; Zemel, B S; Charney, E B

    1995-05-01

    To determine the pattern of body composition and nutritional status in a group of prepubertal children with spastic quadriplegic cerebral palsy (SQCP) compared with healthy control children. Subjects were enrolled for this cross-sectional study from two tertiary care settings. One hundred thirty-six subjects with SQCP, 2 to 12 years of age, were evaluated by anthropometric measures, or by anthropometric and total body water (TBW) measures (n = 28), with 39 control subjects. Body composition and nutritional status indicators were significantly reduced in children with SQCP. Accretion of fat-free mass with age was smaller for children with SQCP. Calculation of body fat from two skin folds correlated best with measures of fat mass from TBW. Malnutrition is common in children with SQCP. Clinically available, serial anthropometric measures enable the clinician to identify malnourished children with SQCP.

  13. Robotic dispensing of composite scaffolds and in vitro responses of bone marrow stromal cells.

    PubMed

    Hong, Seok-Jung; Jeong, Ishik; Noh, Kyung-Tae; Yu, Hye-Sun; Lee, Gil-Su; Kim, Hae-Won

    2009-09-01

    The development of bioactive scaffolds with a designed pore configuration is of particular importance in bone tissue engineering. In this study, bone scaffolds with a controlled pore structure and a bioactive composition were produced using a robotic dispensing technique. A poly(epsilon-caprolactone) (PCL) and hydroxyapatite (HA) composite solution (PCL/HA = 1) was constructed into a 3-dimensional (3D) porous scaffold by fiber deposition and layer-by-layer assembly using a computer-aided robocasting machine. The in vitro tissue cell compatibility was examined using rat bone marrow stromal cells (rBMSCs). The adhesion and growth of cells onto the robotic dispensed scaffolds were observed to be limited by applying the conventional cell seeding technique. However, the initially adhered cells were viable on the scaffold surface. The alkaline phosphatase activity of the cells was significantly higher on the HA-PCL than on the PCL and control culture dish, suggesting that the robotic dispensed HA-PCL scaffold should stimulate the osteogenic differentiation of rBMSCs. Moreover, the expression of a series of bone-associated genes, including alkaline phosphatase and collagen type I, was highly up-regulated on the HA-PCL scaffold as compared to that on the pure PCL scaffold. Overall, the robotic dispensed HA-PCL is considered to find potential use as a bioactive 3D scaffold for bone tissue engineering.

  14. [Analysis of the body composition of Spanish women with fibromyalgia].

    PubMed

    Aparicio, Virginia A; Ortega, Francisco B; Heredia, José M; Carbonell-Baeza, Ana; Delgado-Fernández, Manuel

    2011-01-01

    To describe the anthropometric profile and body composition of women from Southern Spain diagnosed with fibromyalgia (FM) and to compare the observed values with values from other studies conducted on FM patients and with national reference values. The body composition of 104 women diagnosed with FM was assessed using an eight-electrode impedance meter. The reliability of the body composition measurement was tested in a randomly selected sub-sample (n=28). The reliability study showed a test-retest systematic error close to zero in most of the parameters studied. The women with FM who were studied had a mean weight of 71.3±13.4 kg, height of 158±6 cm, body mass index of 28.6±5.1 kg/m(2), body fat mass of 38.6±7.6%, total body water of 31.6±3.8 l and muscle mass of 23.4±3.0 kg. In general, there were no substantial differences in weight and body mass index between women with FM and those analyzed in other Spanish and European studies involving FM patients, nor when they were compared with regional or national reference values. However, the prevalence of obesity in the women with FM under study was 33.7%, a higher figure than that from the national reference data for obesity in similarly aged women (i.e. 26,4%). The results suggest that obesity is a common condition in women diagnosed with FM, its prevalence in this population being higher than the national reference values. This study provides detailed information about the body composition characteristics of women with FM. Copyright © 2010 Elsevier España, S.L. All rights reserved.

  15. Sequentially-crosslinked biomimetic bioactive glass/gelatin methacryloyl composites hydrogels for bone regeneration.

    PubMed

    Zheng, Jiafu; Zhao, Fujian; Zhang, Wen; Mo, Yunfei; Zeng, Lei; Li, Xian; Chen, Xiaofeng

    2018-08-01

    In recent years, gelatin-based composites hydrogels have been intensively investigated because of their inherent bioactivity, biocompatibility and biodegradability. Herein, we fabricated photocrosslinkable biomimetic composites hydrogels from bioactive glass (BG) and gelatin methacryloyl (GelMA) by a sequential physical and chemical crosslinking (gelation + UV) approach. The results showed that the compressive modulus of composites hydrogels increased significantly through the sequential crosslinking approach. The addition of BG resulted in a significant increase in physiological stability and apatite-forming ability. In vitro data indicated that BG/GelMA composites hydrogels promoted cell attachment, proliferation and differentiation. Overall, the BG/GelMA composites hydrogels combined the advantages of good biocompatibility and bioactivity, and had potential applications in bone regeneration. Copyright © 2018. Published by Elsevier B.V.

  16. The Role of Nutrition in the Changes in Bone and Calcium Metabolism During Space Flight

    NASA Technical Reports Server (NTRS)

    Morey-Holton, Emily R.; Arnaud, Sara B.

    1995-01-01

    On Earth, the primary purpose of the skeleton is provide structural support for the body. In space, the support function of the skeleton is reduced since, without gravity, structures have only mass and no weight. The adaptation to space flight is manifested by shifts in mineral distribution, altered bone turnover, and regional mineral deficits in weight-bearing bones. The shifts in mineral distribution appear to be related to the cephalic fluid shift. The redistribution of mineral from one bone to another or to and from areas in the same bone in response to alterations in gravitational loads is more likely to affect skeletal function than quantitative whole body losses and gains. The changes in bone turnover appear dependent upon changes in body weight with weight loss tending to increase bone resorption as well as decrease bone formation. During bedrest, the bone response to unloading varies depending upon the routine activity level of the subjects with more active subjects showing a greater suppression of bone formation in the iliac crest with inactivity. Changes in body composition during space flight are predicted by bedrest studies on Earth which show loss of lean body mass and increase tn body fat in adult males after one month. In ambulatory studies on Earth, exercising adult males of the same age, height, g weight, body mass index, and shoe size show significantly higher whole body mineral and lean body mass. than non-exercising subjects. Nutritional preference appears to change with activity level. Diet histories in exercisers and nonexercisers who maintain identical body weights show no differences in nutrients except for slightly higher carbohydrate intake in the exercisers. The absence of differences in dietary calcium in men with higher total body calcium is noteworthy. In this situation, the increased bone mineral content was facilitated by the calcium endocrine system. This regulatory system can be by-passed by raising dietary calcium. Increased

  17. MRI-guided attenuation correction in whole-body PET/MR: assessment of the effect of bone attenuation.

    PubMed

    Akbarzadeh, A; Ay, M R; Ahmadian, A; Alam, N Riahi; Zaidi, H

    2013-02-01

    Hybrid PET/MRI presents many advantages in comparison with its counterpart PET/CT in terms of improved soft-tissue contrast, decrease in radiation exposure, and truly simultaneous and multi-parametric imaging capabilities. However, the lack of well-established methodology for MR-based attenuation correction is hampering further development and wider acceptance of this technology. We assess the impact of ignoring bone attenuation and using different tissue classes for generation of the attenuation map on the accuracy of attenuation correction of PET data. This work was performed using simulation studies based on the XCAT phantom and clinical input data. For the latter, PET and CT images of patients were used as input for the analytic simulation model using realistic activity distributions where CT-based attenuation correction was utilized as reference for comparison. For both phantom and clinical studies, the reference attenuation map was classified into various numbers of tissue classes to produce three (air, soft tissue and lung), four (air, lungs, soft tissue and cortical bones) and five (air, lungs, soft tissue, cortical bones and spongeous bones) class attenuation maps. The phantom studies demonstrated that ignoring bone increases the relative error by up to 6.8% in the body and up to 31.0% for bony regions. Likewise, the simulated clinical studies showed that the mean relative error reached 15% for lesions located in the body and 30.7% for lesions located in bones, when neglecting bones. These results demonstrate an underestimation of about 30% of tracer uptake when neglecting bone, which in turn imposes substantial loss of quantitative accuracy for PET images produced by hybrid PET/MRI systems. Considering bones in the attenuation map will considerably improve the accuracy of MR-guided attenuation correction in hybrid PET/MR to enable quantitative PET imaging on hybrid PET/MR technologies.

  18. Fecal Microbiota Composition Changes after a Body Weight Loss Diet in Beagle Dogs.

    PubMed

    Salas, A; Jeusette, I; Castillo, I; Manuelian, C L; Lionnet, C; Iraculis, N; Sanchez, N; Fernández, S; Vilaseca, L L; Torre, C

    2018-05-22

    In developed countries, dogs and cats frequently suffer from obesity. Recently, gut microbiota composition in humans has been related to obesity and metabolic diseases. This study aimed to evaluate changes in body composition, and gut microbiota composition in obese Beagle dogs after a 17-week body weight (BW) loss program. A total of six neutered adult Beagle dogs with an average initial BW of 16.34 ± 1.52 kg and BCS of 7.8 ± 0.1 points (9-point scale) were restrictedly fed with a hypocaloric, low-fat and high-fiber dry-type diet. Body composition was assessed with dual-energy X-ray absorptiometry scan, before (T0) and after (T1) BW loss program. Individual stool samples were collected at T0 and T1 for the 16S rRNA analyses of gut microbiota. Taxonomic analysis was done with amplicon-based metagenomic results, and functional analysis of the metabolic potential of the microbial community were done with shotgun metagenomic results. All dogs reached their ideal BW at T1, with an average weekly proportion of BW loss of -1.07 ± 0.03% of starting BW. Body fat (T0, 7.02 ± 0.76 kg) was reduced by half (P < 0.001), while bone (T0, 0.56 ± 0.06 kg) and muscle mass (T0, 8.89 ± 0.80 kg) remained stable (P > 0.05). The most abundant identified phylum was Firmicutes (T0, 74.27 ± 0.08%; T1, 69.38 ± 0.07%), followed by Bacteriodetes (T0, 12.68 ± 0.08%; T1, 16.68 ± 0.05%), Fusobacteria (T0, 7.45 ± 0.02%; T1, 10.18 ± 0.03%), Actinobacteria (T0, 4.53 ± 0.02%; T1, 3.34 ± 0.01%), and Proteobacteria (T0, 1.06 ± 0.01%; T1, 1.40 ± 0.00%). At genus level, the presence of Clostridium, Lactobacillus and Dorea, at T1 decreased (P = 0.028), while Allobaculum increased (P = 0.046). Although the microbiota communities at T0 and T1 showed a low separation level when compared (Anosim's R value = 0.39), they were significantly biodiverse (P = 0.01). Those differences on microbiota composition could be explained by 13 genus (α = 0.05, linear discriminant analysis (LDA) score > 2

  19. Effects of Low-Dose Total-Body Irradiation on Canine Bone Marrow Function and Canine Lymphoma

    DTIC Science & Technology

    1981-11-01

    SCIENTIFIC REPORT Effects of low-dose total-body irradiation on canine bone marrow function and canine lymphoma cc ca D. E. Cowal! 7. J. MacVittie G... CANINE BONE MARROW FUNCTION AND CANINE LYMPHOMA 6. PERFORMING O1G. REPORT NUMBER 7. AUTHO1R(s) 8. CONTRACT OR GRANT NUMBER(s) Dt E. Cowall*, T. J...ott it e r .f00 !(1414011V byt block tumbv,) canine , I’M, bone marrow, GM-CFC 20 A US TR AC y t (𔃺t 104#0 00 ,r ,. @#PS#0 It Ml 0 le~ 9 ncj0 dd0 19

  20. Body mass index and body composition among rescue firefighters personnel in Selangor, Malaysia

    NASA Astrophysics Data System (ADS)

    Rahimi, Nor Atiqah; Sedek, Razalee; Teh, Arnida Hani

    2016-11-01

    Obesity is a major public health problem in general population and there is no exception for firefighters. This disorder is definitely a burden for firefighters as they needed to be physically fit in order to work in dangerous situation and extinguishing fires. The purposes of this study were to determine physical characteristics and body composition among Malaysian Firefighters (MF) and to explore their association. This cross-sectional study involved 330 rescue firefighters aged between 20-50 years old from nine different districts in Selangor conducted between August and November 2015. Anthropometric measurements included height, weight and waist circumference (WC). Body composition was measured using bioelectrical impedance. The mean height, weight, body mass index (BMI), WC and body fat percentage were 169.4±5.3 cm, 74.5±12.2 kg, 25.9±3.82 kg/m2, 90.7±48.3 cm and 25.8±6.2 % respectively. The results also showed that 0.6% of them were underweight, 41.5% were normal, 44.8% were overweight and 13% were obese. The percentage of 34.8% firefighters with WC values of more than 90 cm means that they were at greater risk to have cardiovascular and diabetes disease. Body composition analysis showed that 75.5% of the subjects have high body fat level, 19.7% subjects were in healthy range but only 4.8% were considered as lean subjects. BMI was highly correlated with weight (r=0.917, p<0.01), WC (r=0.858, p<0.01) and body fat percentage (r=0.757, <0.01). Body fat percentage also showed to have a high correlation with BMI (r=0.757, p<0.01) and WC (r=0.693, p<0.01). Furthermore, overweight and obesity were found to be more prevalent among firefighters personnel of older age, married, less educated and have longer duration of services. It can be concluded that more than half of the firefighter personnel were either overweight or obese and 35% of them were at greater risk of having non-communicable diseases. This study provides useful information and serves as a source of