Computed tomographic findings of cerebral fat embolism following multiple bone fractures.
Law, Huong Ling; Wong, Siong Lung; Tan, Suzet
2013-02-01
Fat embolism to the lungs and brain is an uncommon complication following fractures. Few reports with descriptions of computed tomographic (CT) findings of emboli to the brain or cerebral fat embolism are available. We report a case of cerebral fat embolism following multiple skeletal fractures and present its CT findings here.
Walshe, Criona M; Cooper, James D; Kossmann, Thomas; Hayes, Ivan; Iles, Linda
2007-06-01
A 19-year-old woman with multiple fractures and mild brain injury developed severe cerebral fat embolism syndrome after "damage control" orthopaedic surgery. Acetazolamide therapy to manage ocular trauma, in association with hyperchloraemia, caused a profound metabolic acidosis with appropriate compensatory hypocapnia. During ventilator weaning, unexpected brainstem coning followed increased sedation and brief normalisation of arterial carbon dioxide concentration. Autopsy found severe cerebral fat embolism and brain oedema. In patients with multiple trauma, cerebral fat embolism syndrome is difficult to diagnose, and may be more common after delayed fixation of long-bone fractures. Acetazolamide should be used with caution, as sudden restoration of normocapnia during compensated metabolic acidosis in patients with raised intracranial pressure may precipitate coning.
Cerebral fat embolism: pulmonary contusion is a more important etiology than long bone fractures.
Aydin, M D; Akçay, F; Aydin, N; Gündogdu, C
2005-01-01
Lipid embolism is a serious and life-threatening problem and usually arises as a complication of severe trauma associated with long bone or pelvic fractures. It is generally thought that fat droplets enter the circulation at the site of fracture. In the systemic circulation, they become emboli to brain, kidney and other areas. Lipids are absorbed from the intestinal tract and transported into pulmonary tissue via thoracic duct and exposed to first catabolic procedures in the lungs. We have predicted that systemic lipid embolism may not occur unless bone fractures lead to pulmonary injury. This study was planned to investigate this hypothesis with respect to the role of pulmonary contusion and long bone fractures in the formation of cerebral fat embolism. Twenty male hybrid rabbits were included in this study. Pulmonary contusion was performed on half of the rabbits (n = 10) and femur fracture was applied to the remaining ones (n = 10). Ten days after procedure, all rabbits were sacrificed. Brain specimens were taken by frozen-section method and stained with Sudan black. Intraarteriolar lipid particles in the brain were examined microscopically. Cerebral fat embolism was detected in seven animals exposed to pulmonary contusion and only in one animal exposed to femur fracture. The mean number of branches of middle cerebral artery at midparietal level occluded with fat particles were higher in the pulmonary contusion group than in the long bone fracture group. In conclusion, we found that pulmonary contusion had more deleterious effects than long bone fracture in the formation of cerebral fat embolism.
Kontani, Satoru; Nakamura, Akinobu; Tokumi, Hiroshi; Hirose, Genjirou
2014-01-01
A 83 years old woman was slipped and injured with right femoral neck fracture. After three days from the fracture, she underwent an artificial head bone replacement operation. Immediately after surgery, she complained of chest discomfort, nausea and dyspnea. A few hours later, she became comatose. Brain CT showed no abnormality and clinical diagnosis of heart failure was made without pulmonary embolism on enhanced chest CT. Magnetic resonance imaging (MRI) of the brain next day showed multiple small patchy hyperintense lesion in bilateral hemispheres on diffusion-weighted images (DWI), producing a "star field pattern''. Based on Criteria of Gurd, this patient had one major criterion and four minor criteria. And according to the Criteria of Schonfeld, this patient had 5 points, consistent with clinical diagnosis of fat embolism. Because of these criteria, she was diagnosed as cerebral fat embolism syndrome. We started supported care and edaravon. Two weeks after surgery, her condition recovered and remaind to stuporous state even six month after surgery. We experienced a typical case of cerebral fat embolism, after bone surgery with diagnostic findings on MRI-DWI. Diagnosis of cerebral fat embolism syndrome requires a history of long bone fracture and/or replacing surgery with typical finding on MRI images, such as "star field pattern''.
Fat embolism syndrome: Clinical and imaging considerations: Case report and review of literature
Shaikh, Nissar; Parchani, Ashok; Bhat, Venkatraman; Kattren, Marie Anne
2008-01-01
Fat embolism syndrome (FES) is a serious clinical disorder occurring after trauma, orthopedic procedures and rarely in non-traumatic patients. Fat emboli develop in nearly all patients with bone fractures, but they are usually asymptomatic. Small number of patients develop signs and symptoms of various organ system dysfunction due to either mechanical obstruction of capillaries by fat emboli or due to hydrolysis of fat to fatty acids. A triad of lung, brain and skin involvement develop after an asymptomatic period of 24 to 72 hours. This symptom complex is called FES. The incidence reported is up to 30%, but many mild cases may recover unnoticed. Diagnosis of fat embolism is clinical with nonspecific, insensitive diagnostic test results. Treatment of fat embolism syndrome remains supportive and in most cases can be prevented by early fixation of large bone factures. Here we report two cases of traumatic fat embolism, which were diagnosed initially by Gurd's criteria and subsequently confirmed by typical appearance on magnetic resonance imaging (MRI) of the brain in these patients. These patients were successfully treated with supportive management. In conclusion, diagnosis of FES needs high index of suspicion, exclusion of other conditions and use of clinical criteria in combination with imaging. Magnetic resonance imaging of the brain is of great importance in diagnosis and management of these patients. PMID:19826589
Bugnitz, Christopher J; Cripe, Linda H; Lo, Warren D; Flanigan, Kevin M
2016-10-01
Individuals with Duchenne muscular dystrophy have an increased risk of long bone fractures. Such fractures are sometimes associated with brain dysfunction due to fat embolism syndrome, although this syndrome has seldom been documented in muscular dystrophy patients. We describe a child with Duchenne muscular dystrophy who developed fat embolism syndrome with neurological dysfunction following multiple long bone fractures. He experienced recurrent cerebral infarctions that probably resulted from embolization through a patent foramen ovale. The patent foramen ovale was closed by an occluder device in the cardiac catheterization laboratory, and he did not experience further infarctions. Fat embolism with ischemic cerebral infarction can occur in individuals with Duchenne muscular dystrophy following long bone fractures. In this setting it is important to identify and close atrial level shunts in order to prevent additional infarctions. Copyright © 2016 Elsevier Inc. All rights reserved.
Fat Embolism Syndrome: A Case Report and Review Literature.
Uransilp, Nattaphol; Muengtaweepongsa, Sombat; Chanalithichai, Nuttawut; Tammachote, Nattapol
2018-01-01
Fat embolism syndrome (FES) is a life-threatening complication in patients with orthopedic trauma, especially long bone fractures. The diagnosis of fat embolism is made by clinical features alone with no specific laboratory findings. FES has no specific treatment and requires supportive care, although it can be prevented by early fixation of bone fractures. Here, we report a case of FES in a patient with right femoral neck fracture, which was diagnosed initially by Gurd's criteria and subsequently confirmed by typical appearances on magnetic resonance imaging (MRI) of the brain. The patient received supportive management and a short course of intravenous methylprednisolone.
Scaling of human body composition to stature: new insights into body mass index.
Heymsfield, Steven B; Gallagher, Dympna; Mayer, Laurel; Beetsch, Joel; Pietrobelli, Angelo
2007-07-01
Although Quetelet first reported in 1835 that adult weight scales to the square of stature, limited or no information is available on how anatomical body compartments, including adipose tissue (AT), scale to height. We examined the critical underlying assumptions of adiposity-body mass index (BMI) relations and extended these analyses to major anatomical compartments: skeletal muscle (SM), bone, residual mass, weight (AT+SM+bone), AT-free mass, and organs (liver, brain). This was a cross-sectional analysis of 2 body-composition databases: one including magnetic resonance imaging and dual-energy X-ray absorptiometry (DXA) estimates of evaluated components in adults (total n=411; organs=76) and the other a larger DXA database (n=1346) that included related estimates of fat, fat-free mass, and bone mineral mass. Weight, primary lean components (SM, residual mass, AT-free mass, and fat-free mass), and liver scaled to height with powers of approximately 2 (all P<0.001); bone and bone mineral mass scaled to height with powers >2 (2.31-2.48), and the fraction of weight as bone mineral mass was significantly (P<0.001) correlated with height in women. AT scaled weakly to height with powers of approximately 2, and adiposity was independent of height. Brain mass scaled to height with a power of 0.83 (P=0.04) in men and nonsignificantly in women; the fraction of weight as brain was inversely related to height in women (P=0.002). These observations suggest that short and tall subjects with equivalent BMIs have similar but not identical body composition, provide new insights into earlier BMI-related observations and thus establish a foundation for height-normalized indexes, and create an analytic framework for future studies.
Scaling of human body composition to stature: new insights into body mass index 123
Heymsfield, Steven B; Gallagher, Dympna; Mayer, Laurel; Beetsch, Joel; Pietrobelli, Angelo
2009-01-01
Background Although Quetelet first reported in 1835 that adult weight scales to the square of stature, limited or no information is available on how anatomical body compartments, including adipose tissue (AT), scale to height. Objective We examined the critical underlying assumptions of adiposity–body mass index (BMI) relations and extended these analyses to major anatomical compartments: skeletal muscle (SM), bone, residual mass, weight (AT+SM+bone), AT-free mass, and organs (liver, brain). Design This was a cross-sectional analysis of 2 body-composition databases: one including magnetic resonance imaging and dual-energy X-ray absorptiometry (DXA) estimates of evaluated components in adults (total n = 411; organs = 76) and the other a larger DXA database (n = 1346) that included related estimates of fat, fat-free mass, and bone mineral mass. Results Weight, primary lean components (SM, residual mass, AT-free mass, and fat-free mass), and liver scaled to height with powers of ≈2 (all P < 0.001); bone and bone mineral mass scaled to height with powers > 2 (2.31–2.48), and the fraction of weight as bone mineral mass was significantly (P < 0.001) correlated with height in women. AT scaled weakly to height with powers of ≈2, and adiposity was independent of height. Brain mass scaled to height with a power of 0.83 (P = 0.04) in men and nonsignificantly in women; the fraction of weight as brain was inversely related to height in women (P = 0.002). Conclusions These observations suggest that short and tall subjects with equivalent BMIs have similar but not identical body composition, provide new insights into earlier BMI-related observations and thus establish a foundation for height-normalized indexes, and create an analytic framework for future studies. PMID:17616766
Forteza, Alejandro M; Koch, Sebastian; Campo-Bustillo, Iszet; Gutierrez, Jose; Haussen, Diogo C; Rabinstein, Alejandro A; Romano, Jose; Zych, Gregory A; Duncan, Robert
2011-05-10
The fat embolism syndrome is clinically characterized by dyspnea, skin petechiae, and neurological dysfunction. It is associated mainly with long bone fracture and bone marrow fat passage to the systemic circulation. An intracardiac right-to-left shunt (RLS) could allow larger fat particles to reach the systemic circulation. Transcranial Doppler can be a useful tool to detect both RLS and the fat particles reaching the brain. We prospectively studied patients with femur shaft fracture with RLS evaluation, daily transcranial Doppler with embolus detection studies, and neurological examinations to evaluate the relation of RLS and microembolic signals to the development of fat embolism syndrome. Forty-two patients were included; 14 had an RLS detected. Seven patients developed neurological symptoms; all of them had a positive RLS (P=<0.001). The patients with an RLS showed higher counts and higher intensities of microembolic signals (P=<0.05 and P=<0.01, respectively) compared with those who did not have an RLS identified. The presence of high microembolic signal counts and intensities in patients with RLS was strongly predictive of the occurrence of neurological symptoms (odds ratio, 204; 95% confidence interval, 11 to 3724; P<0.001) with a positive predictive value of 86% and negative predictive value of 97%. In patients with long bone fractures, the presence of an RLS is associated with larger and more frequent microembolic signals to the brain detected by transcranial Doppler study and can predict the development of neurological symptoms.
Endocrine Regulation of Bone and Energy Metabolism in Hibernating Mammals
Doherty, Alison H.; Florant, Gregory L.; Donahue, Seth W.
2014-01-01
Precise coordination among organs is required to maintain homeostasis throughout hibernation. This is particularly true in balancing bone remodeling processes (bone formation and resorption) in hibernators experiencing nutritional deprivation and extreme physical inactivity, two factors normally leading to pronounced bone loss in non-hibernating mammals. In recent years, important relationships between bone, fat, reproductive, and brain tissues have come to light. These systems share interconnected regulatory mechanisms of energy metabolism that potentially protect the skeleton during hibernation. This review focuses on the endocrine and neuroendocrine regulation of bone/fat/energy metabolism in hibernators. Hibernators appear to have unique mechanisms that protect musculoskeletal tissues while catabolizing their abundant stores of fat. Furthermore, the bone remodeling processes that normally cause disuse-induced bone loss in non-hibernators are compared to bone remodeling processes in hibernators, and possible adaptations of the bone signaling pathways that protect the skeleton during hibernation are discussed. Understanding the biological mechanisms that allow hibernators to survive the prolonged disuse and fasting associated with extreme environmental challenges will provide critical information regarding the limit of convergence in mammalian systems and of skeletal plasticity, and may contribute valuable insight into the etiology and treatment of human diseases. PMID:24556365
Leptin: a potential mediator for protective effects of fat mass on bone tissue.
Thomas, Thierry
2003-02-01
Body weight is among the most powerful predictors of bone status, and adipose tissue plays a substantial role in weight-related protective effects on bone. An understanding of the mechanisms underlying the relation between adipose tissue and bone may open up new perspectives for treatment. Leptin, which is known to regulate appetite and energy expenditures, may also contribute to mediate the effects of fat mass on bone. Although reported data are somewhat conflicting, there is some evidence that leptin may decrease bone formation via a central nervous effect and may stimulate both bone formation and bone resorption via direct peripheral effects on stromal precursor cells. The net result of these central and peripheral effects may depend on serum leptin levels and blood-brain barrier permeability, of which the first increase and the second decrease as obesity develops. Further work is needed to improve our understanding of these effects.
Fat Embolism Syndrome: A Case Report and Review Literature
Uransilp, Nattaphol
2018-01-01
Fat embolism syndrome (FES) is a life-threatening complication in patients with orthopedic trauma, especially long bone fractures. The diagnosis of fat embolism is made by clinical features alone with no specific laboratory findings. FES has no specific treatment and requires supportive care, although it can be prevented by early fixation of bone fractures. Here, we report a case of FES in a patient with right femoral neck fracture, which was diagnosed initially by Gurd's criteria and subsequently confirmed by typical appearances on magnetic resonance imaging (MRI) of the brain. The patient received supportive management and a short course of intravenous methylprednisolone. PMID:29853905
Cerebral fat embolism syndrome after long bone fracture due to gunshot injury.
Duran, Latif; Kayhan, Servet; Kati, Celal; Akdemir, Hizir Ufuk; Balci, Kemal; Yavuz, Yucel
2014-03-01
Cerebral fat embolism syndrome is a lethal complication of long-bone fractures and clinically manifasted with respiratory distress, altered mental status, and petechial rash. We presented a 20-year-old male admitted with gun-shot wounds to his left leg. Twenty-four hours after the event, he had generalized tonic clonic seizures, decorticate posture and a Glascow Coma Scale of seven with localization of painful stimuli. Subsequent magnetic resonance imaging of the brain showed a star-field pattern defining multiple lesions of restricted diffusion. On a 4-week follow-up, he had returned to normal neurological function. Despite the severity of the neurological condition upon initial presentation, the case cerebral fat embolism illustrates that, cerebral dysfunction associated with cerebral fat embolism illustrates reversible.
Effect of maternal obesity on fetal bone development in the rat
USDA-ARS?s Scientific Manuscript database
Epidemiological studies show that quality of nutrition during intrauterine and postnatal early life impact the risk of low bone mass and fracture later in life. Maternal consumption of high-fat diets has been demonstrated to affect health outcomes, such as: brain development; obesity; insulin resist...
Epigenetic control of fetal bone development through HoxA10 in the rat
USDA-ARS?s Scientific Manuscript database
Epidemiological studies show that quality of nutrition during intrauterine and early postnatal life impact the risk of low bone mass and fracture later in life. Maternal consumption of high-fat diets has been demonstrated to affect health outcomes, such as: brain development; obesity; insulin resist...
Sato, Takashi; Soejima, Kenzo; Nakayama, Sohei; Satomi, Ryosuke; Sayama, Koichi; Asano, Koichiro
2010-10-01
A 76-year-old woman with multiple bone metastases from lung adenocarcinoma was admitted due to a pathological femoral fracture. On the night after admission, her consciousness deteriorated rapidly and she developed progressive respiratory failure. Computed tomography of the chest revealed diffuse ground glass opacities in both lungs, and magnetic resonance imaging of the brain showed multiple acute infarctions. Her condition improved after several days of supportive treatment with oxygen, corticosteroids and diuretics. Fat embolism syndrome should be considered as a differential diagnosis if consciousness disturbance and respiratory failure occur in patients with metastatic bone carcinoma and pathological long bone fractures.
Cerebral fat embolism syndrome after long bone fracture due to gunshot injury
Duran, Latif; Kayhan, Servet; Kati, Celal; Akdemir, Hizir Ufuk; Balci, Kemal; Yavuz, Yucel
2014-01-01
Cerebral fat embolism syndrome is a lethal complication of long-bone fractures and clinically manifasted with respiratory distress, altered mental status, and petechial rash. We presented a 20-year-old male admitted with gun-shot wounds to his left leg. Twenty-four hours after the event, he had generalized tonic clonic seizures, decorticate posture and a Glascow Coma Scale of seven with localization of painful stimuli. Subsequent magnetic resonance imaging of the brain showed a star-field pattern defining multiple lesions of restricted diffusion. On a 4-week follow-up, he had returned to normal neurological function. Despite the severity of the neurological condition upon initial presentation, the case cerebral fat embolism illustrates that, cerebral dysfunction associated with cerebral fat embolism illustrates reversible. PMID:24701067
Central and peripheral mechanisms of the NPY system in the regulation of bone and adipose tissue.
Shi, Yan-Chuan; Baldock, Paul A
2012-02-01
Skeletal research is currently undergoing a period of marked expansion. The boundaries of "bone" research are being re-evaluated and with this, a growing recognition of a more complex and interconnected biology than previously considered. One aspect that has become the focus of particular attention is the relationship between bone and fat homeostasis. Evidence from a number of avenues indicates that bone and adipose regulation are both related and interdependent. This review examines the neuropeptide Y (NPY) system, known to exert powerful control over both bone and fat tissue. The actions of this system are characterized by signaling both within specific nuclei of the hypothalamus and also the target tissues, mediated predominantly through two G-protein coupled receptors (Y1 and Y2). In bone tissue, elevated NPY levels act consistently to repress osteoblast activity. Moreover, both central Y2 receptor and osteoblastic Y1 receptor signaling act similarly to repress bone formation. Conversely, loss of NPY expression or receptor signaling induces increased osteoblast activity and bone mass in both cortical and cancellous envelopes. In fat tissue, NPY action is more complex. Energy homeostasis is powerfully altered by elevations in hypothalamic NPY, resulting in increases in fat accretion and body-wide energy conservation, through the action of locally expressed Y1 receptors, while local Y2 receptors act to inhibit NPY-ergic tone. Loss of central NPY expression has a markedly reduced effect, consistent with a physiological drive to promote fat accretion. In fat tissue, NPY and Y1 receptors act to promote lipogenesis, consistent with their roles in the brain. Y2 receptors expressed in adipocytes also act in this manner, showing an opposing action to their role in the hypothalamus. While direct investigation of these processes has yet to be completed, these responses appear to be interrelated to some degree. The starvation-based signal of elevated central NPY inducing marked inhibition of osteoblast activity, whilst promoting fat accretion, indicating skeletal tissue is a component of the energy conservation system. Moreover, when NPY expression is reduced, consistent with high calorie intake and weight gain, bone formation is stimulated, strengthening the skeleton. In conclusion, NPY acts to regulate both bone and fat tissue in a coordinated manner, and remains a strong candidate for mediating interactions between these two tissues. Copyright © 2011 Elsevier Inc. All rights reserved.
Fat Embolism Syndrome With Cerebral Fat Embolism Associated With Long-Bone Fracture.
DeFroda, Steven F; Klinge, Stephen A
Fat embolism syndrome (FES) is a well-known sequela of long-bone fracture and fixation. FES most commonly affects the pulmonary system. Brain emboli may lead to a symptomatic cerebral fat embolism (CFE), which is devastating. In this article, we review the presentation, causes, and management of FES presenting with CFE, report a case, and review the literature. The case involved an otherwise healthy 42-year-old woman who developed CFE after reamed intramedullary nail fixation of femoral and tibial shaft fractures during a single operation. When the patient presented after surgery, she was nonverbal and was having diffuse extremity weakness. The diagnosis was stroke and resultant diffuse encephalopathy secondary to CFE. Within days of urgent management, the patient's cognitive and ophthalmologic deficits were substantially improved. Six months after surgery, cognitive and ophthalmologic recovery was excellent, and the fractures were healing with good functional recovery in the affected limb.
Richards, Robin R.
1997-01-01
Fat embolism syndrome, an important contributor to the development of acute respiratory distress syndrome, has been associated with both traumatic and nontraumatic disorders. Fat embolization after long bone trauma is probably common as a subclinical event. Fat emboli can deform and pass through the lungs, resulting in systemic embolization, most commonly to the brain and kidneys. The diagnosis of fat embolism syndrome is based on the patient’s history, supported by clinical signs of pulmonary, cerebral and cutaneous dysfunction and confirmed by the demonstration of arterial hypoxemia in the absence of other disorders. Treatment of fat embolism syndrome consists of general supportive measures, including splinting, maintenance of fluid and electrolyte balance and the administration of oxygen. Endotracheal intubation and mechanical ventilatory assistance can be indicated. The role of corticosteroids remains controversial. Early stabilization of long bone fractures has been shown to decrease the incidence of pulmonary complications. Clinical and experimental studies suggest that the exact method of fracture fixation plays a minor role in the development of pulmonary dysfunction. As more is learned about the specifics of the various triggers for the development of fat embolism syndrome, it is hoped that the prospect of more specific therapy for the prevention and treatment of this disorder will become a reality. PMID:9336522
Fat embolism syndrome in a patient demonstrating only neurologic symptoms
Bardana, David; Rudan, John; Cervenko, Frank; Smith, Roger
1998-01-01
Fat embolism syndrome (FES) is a recognized complication of both long bone fractures and intramedullary orthopedic procedures. The usual presenting features are respiratory failure, neurologic dysfunction and petechiae. In this report, a 25-year-old woman with FES presented with serious neurologic symptoms and signs in the absence of respiratory dysfunction. The diagnosis is essentially a clinical one, but nuclear magnetic resonance imaging of the brain revealed distinctive lesions that may help future diagnosis of FES. PMID:9793509
Good, Bad, or Ugly: the Biological Roles of Bone Marrow Fat.
Singh, Lakshman; Tyagi, Sonia; Myers, Damian; Duque, Gustavo
2018-04-01
Bone marrow fat expresses mixed characteristics, which could correspond to white, brown, and beige types of fat. Marrow fat could act as either energy storing and adipokine secreting white fat or as a source of energy for hematopoiesis and bone metabolism, thus acting as brown fat. However, there is also a negative interaction between marrow fat and other elements of the bone marrow milieu, which is known as lipotoxicity. In this review, we will describe the good and bad roles of marrow fat in the bone, while focusing on the specific components of the negative effect of marrow fat on bone metabolism. Lipotoxicity in the bone is exerted by bone marrow fat through the secretion of adipokines and free fatty acids (FFA) (predominantly palmitate). High levels of FFA found in the bone marrow of aged and osteoporotic bone are associated with decreased osteoblastogenesis and bone formation, decreased hematopoiesis, and increased osteoclastogenesis. In addition, FFA such as palmitate and stearate induce apoptosis and dysfunctional autophagy in the osteoblasts, thus affecting their differentiation and function. Regulation of marrow fat could become a therapeutic target for osteoporosis. Inhibition of the synthesis of FFA by marrow fat could facilitate osteoblastogenesis and bone formation while affecting osteoclastogenesis. However, further studies testing this hypothesis are still required.
Bone and fat connection in aging bone.
Duque, Gustavo
2008-07-01
The fat and bone connection plays an important role in the pathophysiology of age-related bone loss. This review will focus on the age-induced mechanisms regulating the predominant differentiation of mesenchymal stem cells into adipocytes. Additionally, bone marrow fat will be considered as a diagnostic and therapeutic approach to osteoporosis. There are two types of bone and fat connection. The 'systemic connection', usually seen in obese patients, is hormonally regulated and associated with high bone mass and strength. The 'local connection' happens inside the bone marrow. Increasing amounts of bone marrow fat affect bone turnover through the inhibition of osteoblast function and survival and the promotion of osteoclast differentiation and activation. This interaction is regulated by paracrine secretion of fatty acids and adipokines. Additionally, bone marrow fat could be quantified using noninvasive methods and could be used as a therapeutic approach due to its capacity to transdifferentiate into bone without affecting other types of fat in the body. The bone and fat connection within the bone marrow constitutes a typical example of lipotoxicity. Additionally, bone marrow fat could be used as a new diagnostic and therapeutic approach for osteoporosis in older persons.
High fat diet promotes achievement of peak bone mass in young rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malvi, Parmanand; Piprode, Vikrant; Chaube, Balkrishna
Highlights: • High fat diet helps in achieving peak bone mass at younger age. • Shifting from high fat to normal diet normalizes obese parameters. • Bone parameters are sustained even after withdrawal of high fat diet. - Abstract: The relationship between obesity and bone is complex. Epidemiological studies demonstrate positive as well as negative correlation between obesity and bone health. In the present study, we investigated the impact of high fat diet-induced obesity on peak bone mass. After 9 months of feeding young rats with high fat diet, we observed obesity phenotype in rats with increased body weight, fatmore » mass, serum triglycerides and cholesterol. There were significant increases in serum total alkaline phosphatase, bone mineral density and bone mineral content. By micro-computed tomography (μ-CT), we observed a trend of better trabecular bones with respect to their microarchitecture and geometry. This indicated that high fat diet helps in achieving peak bone mass and microstructure at younger age. We subsequently shifted rats from high fat diet to normal diet for 6 months and evaluated bone/obesity parameters. It was observed that after shifting rats from high fat diet to normal diet, fat mass, serum triglycerides and cholesterol were significantly decreased. Interestingly, the gain in bone mineral density, bone mineral content and trabecular bone parameters by HFD was retained even after body weight and obesity were normalized. These results suggest that fat rich diet during growth could accelerate achievement of peak bone mass that is sustainable even after withdrawal of high fat diet.« less
High fat diet promotes achievement of peak bone mass in young rats.
Malvi, Parmanand; Piprode, Vikrant; Chaube, Balkrishna; Pote, Satish T; Mittal, Monika; Chattopadhyay, Naibedya; Wani, Mohan R; Bhat, Manoj Kumar
2014-12-05
The relationship between obesity and bone is complex. Epidemiological studies demonstrate positive as well as negative correlation between obesity and bone health. In the present study, we investigated the impact of high fat diet-induced obesity on peak bone mass. After 9 months of feeding young rats with high fat diet, we observed obesity phenotype in rats with increased body weight, fat mass, serum triglycerides and cholesterol. There were significant increases in serum total alkaline phosphatase, bone mineral density and bone mineral content. By micro-computed tomography (μ-CT), we observed a trend of better trabecular bones with respect to their microarchitecture and geometry. This indicated that high fat diet helps in achieving peak bone mass and microstructure at younger age. We subsequently shifted rats from high fat diet to normal diet for 6 months and evaluated bone/obesity parameters. It was observed that after shifting rats from high fat diet to normal diet, fat mass, serum triglycerides and cholesterol were significantly decreased. Interestingly, the gain in bone mineral density, bone mineral content and trabecular bone parameters by HFD was retained even after body weight and obesity were normalized. These results suggest that fat rich diet during growth could accelerate achievement of peak bone mass that is sustainable even after withdrawal of high fat diet.
Zayzafoon, M.; Rymaszewski, M.; Heiny, J.; Rios, M.; Hauschka, P. V.
2012-01-01
Brain-derived neurotrophic factor (BDNF) plays important roles in neuronal differentiation/survival, the regulation of food intake, and the pathobiology of obesity and type 2 diabetes mellitus. BDNF and its receptor are expressed in osteoblasts and chondrocyte. BDNF in vitro has a positive effect on bone; whether central BDNF affects bone mass in vivo is not known. We therefore examined bone mass and energy use in brain-targeted BDNF conditional knockout mice (Bdnf2lox/2lox/93). The deletion of BDNF in the brain led to a metabolic phenotype characterized by hyperphagia, obesity, and increased abdominal white adipose tissue. Central BDNF deletion produces a marked skeletal phenotype characterized by increased femur length, elevated whole bone mineral density, and bone mineral content. The skeletal changes are developmentally regulated and appear concurrently with the metabolic phenotype, suggesting that the metabolic and skeletal actions of BDNF are linked. The increased bone development is evident in both the cortical and trabecular regions. Compared with control, Bdnf2lox/2lox/93 mice show greater trabecular bone volume (+50% for distal femur, P < 0.001; +35% for vertebral body, P < 0.001) and midfemoral cortical thickness (+11 to 17%, P < 0.05), measured at 3 and 6 months of age. The skeletal and metabolic phenotypes were gender dependent, with female being more affected than male mice. However, uncoupling protein-1 expression in brown fat, a marker of sympathetic tone, was not different between genotypes. We show that deletion of central BDNF expression in mice results in increased bone mass and white adipose tissue, with no significant changes in sympathetic signaling or peripheral serotonin, associated with hyperphagia, obesity, and leptin resistance. PMID:23011922
Sawin, Emily A.; Stroup, Bridget M.; Murali, Sangita G.; O’Neill, Lucas M.; Ntambi, James M.
2016-01-01
Background Glycomacropeptide (GMP) is a 64-amino acid glycophosphopeptide released from κ-casein during cheesemaking that promotes satiety, reduces body fat, increases bone mass and infers prebiotic and anti-inflammatory effects. The impact of adiposity and gender on bone health is unclear. Objective To determine how feeding female mice diets providing 60% Fat Kcal (high-fat) or 13% Fat Kcal (control) with either GMP or casein as the protein source impacts: body composition, ex vivo fatty acid oxidation, bone (femoral) biomechanical performance, and the relationship between body composition and bone. Methods Weanling female C57Bl/6 mice were fed high-fat (60% Fat Kcal) or control diets (13% Fat Kcal) with GMP or casein from 3 to 32 weeks of age with assessment of body weight and food intake. Body composition was assessed by dual-energy X-ray absorptiometry (DXA). Fatty acid oxidation was measured in liver, muscle, and fat tissues using 14C-palmitate. Plasma concentrations of hormones and cytokines were determined. Bone biomechanical performance was assessed by the 3-point bending test. Results Female mice fed high-fat diets showed increased fatty acid oxidation capacity in both gastrocnemius muscle and brown adipose tissue compared to mice fed the control diets with a lower fat content. Despite increased fat mass in mice fed the high-fat diets, there was little evidence of glucose impairment or inflammation. Mice fed the high-fat diets had significantly greater total body bone mineral density (BMD), femoral BMD, and femoral cross-sectional area than mice fed the control diets. Femora of mice fed the high-fat diets had increased yield load and maximum load before fracture, consistent with greater bone strength, but reduced post-yield displacement or ductility, consistent with bone brittleness. Female mice fed a high-fat GMP diet displayed increased fat oxidation capacity in subcutaneous fat relative to mice fed the high-fat casein diet. Regardless of dietary fat content, GMP increased total body bone mineral content and femur length. The prebiotic properties of GMP may mediate the beneficial effects of GMP on bone. Conclusions Female mice adapt to high-fat feeding by increasing oxidative capacity in muscle tissue and to a lesser extent brown adipose tissue. High-fat feeding in female mice leads to development of a bone phenotype where femora show increased BMD and are stronger, yet more brittle. The increased brittleness of bone was associated with increased body fat content due to high-fat feeding. In summary, high-fat feeding in female mice increases mineralization of bone, but negatively impacts bone quality resulting in brittle bones. PMID:27695036
MR-Based Assessment of Bone Marrow Fat in Osteoporosis, Diabetes, and Obesity
Cordes, Christian; Baum, Thomas; Dieckmeyer, Michael; Ruschke, Stefan; Diefenbach, Maximilian N.; Hauner, Hans; Kirschke, Jan S.; Karampinos, Dimitrios C.
2016-01-01
Bone consists of the mineralized component (i.e., cortex and trabeculae) and the non-mineralized component (i.e., bone marrow). Most of the routine clinical bone imaging uses X-ray-based techniques and focuses on the mineralized component. However, bone marrow adiposity has been also shown to have a strong linkage with bone health. Specifically, multiple previous studies have demonstrated a negative association between bone marrow fat fraction (BMFF) and bone mineral density. Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) are ideal imaging techniques for non-invasively investigating the properties of bone marrow fat. In the present work, we first review the most important MRI and MRS methods for assessing properties of bone marrow fat, including methodologies for measuring BMFF and bone marrow fatty acid composition parameters. Previous MRI and MRS studies measuring BMFF and fat unsaturation in the context of osteoporosis are then reviewed. Finally, previous studies investigating the relationship between bone marrow fat, other fat depots, and bone health in patients with obesity and type 2 diabetes are presented. In summary, MRI and MRS are powerful non-invasive techniques for measuring properties of bone marrow fat in osteoporosis, obesity, and type 2 diabetes and can assist in future studies investigating the pathophysiology of bone changes in the above clinical scenarios. PMID:27445977
Cerebral Fat Embolism After Video-Assisted Thoracic Surgery.
Scarpino, Maenia; Lanzo, Giovanni; Cappelli, Francesco; Moretti, Marco; Misuri, Gianni; Voltolini, Luca; Pistolesi, Massimo; Amantini, Aldo; Grippo, Antonello
2016-11-01
Cerebral fat embolism (CFE) is an uncommon disease occurring mainly after traumatic lower limb long bone fractures. A 64-year-old woman with pneumonia and bilateral pleural effusion underwent video-assisted thoracic surgery (VATS). After 3 days, the patient had an acute decrease in consciousness level followed by the onset of seizures and right hemiparesis. Brain computed tomography and magnetic resonance imaging showed findings suggestive of CFE. CFE occurring after an uncommon nontraumatic cause of fat embolism, such as VATS, is a rare clinical event whose diagnosis could be challenging. Neuroimaging can hasten diagnosis and prevent other unnecessary investigations and treatments. Copyright © 2016 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Altinoz, M A; Ince, B; Sav, A; Dincer, A; Cengiz, S; Mercan, S; Yazici, Z; Bilgen, M N
2014-02-01
Undecomposed human bodies and organs always attracted interest in terms of understanding biological tissue stability and immortality. Amongst these, cases of natural mummification found in glaciers, bog sediments and deserts caused even more attention. In 2010, an archeological excavation of a Bronze Age layer in a tumulus near the Western Anatolia city Kütahya revealed fire affected regions with burnt human skeletons and charred wooden objects. Inside of the cracked skulls, undecomposed brains were discernible. To analyze the burial taphonomy of the rare phenomenon of brain preservation, we analyzed brains, bone, teeth and surrounding soils elements using Inductively Coupled Plasma-Mass Spectrometer (ICP-MS). Adipocere formation or saponification of postmortem tissue fat requires high levels of alkalinity and especially potassium. Indeed, ICP-MS analysis of the brain, teeth and bone and also of the surrounding soil revealed high levels of potassium, magnesium, aluminum and boron, which are compatible with the famous role of Kütahya in tile production with its soil containing high level of alkalines and tile-glazing boron. Fatty acid chromatography revealed simultaneous saturation of fats and protection of fragile unsaturated fatty acids consistent with soil-presence of both pro-oxidant and anti-oxidant trace metals. Computerized tomography revealed protection of diencephalic, metencephalic and occipital tissue in one of the best-preserved specimens. Boron was previously found as an intentional preservative of Tutankhamen and Deir el Bahari mummies. Here, in natural soil with its insect-repellant, anti-bacterial and fire-resistance qualities it may be a factor to preserve heat-affected brains as almost bioporcellain specimens. Copyright © 2013 Elsevier GmbH. All rights reserved.
Energy Sparing Orexigenic Inflammation of Obesity.
Lee, Aileen; Dixit, Vishwa Deep
2017-07-05
The neuro-immune interactions that integrate host metabolism in health and disease are unclear. A new study by Valdearcos et al. (2017) describes how sensing of high-fat diet by microglia, brain's resident innate immune cells, recruits additional bone-marrow-derived myeloid cells into the hypothalamus to produce inflammation and cause weight gain. Copyright © 2017 Elsevier Inc. All rights reserved.
Fat, Sugar, and Bone Health: A Complex Relationship
Tian, Li; Yu, Xijie
2017-01-01
With people aging, osteoporosis is expected to increase notably. Nutritional status is a relatively easily-modified risk factor, associated with many chronic diseases, and is involved in obesity, diabetes, and coronary heart disease (CHD), along with osteoporosis. Nutrients, such as fats, sugars, and proteins, play a primary function in bone metabolism and maintaining bone health. In Western nations, diets are generally high in saturated fats, however, currently, the nutritional patterns dominating in China continue to be high in carbohydrates from starch, cereals, and sugars. Moreover, high fat or high sugar (fructose, glucose, or sucrose) impart a significant impact on bone structural integrity. Due to diet being modifiable, demonstrating the effects of nutrition on bone health can provide an approach for osteoporosis prevention. Most researchers have reported that a high-fat diet consumption is associated with bone mineral density (BMD) and, as bone strength diminishes, adverse microstructure changes occur in the cancellous bone compartment, which is involved with lipid metabolism modulation disorder and the alteration of the bone marrow environment, along with an increased inflammatory environment. Some studies, however, demonstrated that a high-fat diet contributes to achieving peak bone mass, along with microstructure, at a younger age. Contrary to these results, others have shown that a high-fructose diet consumption leads to stronger bones with a superior microarchitecture than those with the intake of a high-glucose diet and, at the same time, research indicated that a high-fat diet usually deteriorates cancellous bone parameters, and that the incorporation of fructose into a high-fat diet did not aggravate bone mass loss. High-fat/high-sucrose diets have shown both beneficial and detrimental influences on bone metabolism. Combined, these studies showed that nutrition exerts different effects on bone health. Thus, a better understanding of the regulation between dietary nutrition and bone health might provide a basis for the development of strategies to improve bone health by modifying nutritional components. PMID:28513571
Fat, Sugar, and Bone Health: A Complex Relationship.
Tian, Li; Yu, Xijie
2017-05-17
With people aging, osteoporosis is expected to increase notably. Nutritional status is a relatively easily-modified risk factor, associated with many chronic diseases, and is involved in obesity, diabetes, and coronary heart disease (CHD), along with osteoporosis. Nutrients, such as fats, sugars, and proteins, play a primary function in bone metabolism and maintaining bone health. In Western nations, diets are generally high in saturated fats, however, currently, the nutritional patterns dominating in China continue to be high in carbohydrates from starch, cereals, and sugars. Moreover, high fat or high sugar (fructose, glucose, or sucrose) impart a significant impact on bone structural integrity. Due to diet being modifiable, demonstrating the effects of nutrition on bone health can provide an approach for osteoporosis prevention. Most researchers have reported that a high-fat diet consumption is associated with bone mineral density (BMD) and, as bone strength diminishes, adverse microstructure changes occur in the cancellous bone compartment, which is involved with lipid metabolism modulation disorder and the alteration of the bone marrow environment, along with an increased inflammatory environment. Some studies, however, demonstrated that a high-fat diet contributes to achieving peak bone mass, along with microstructure, at a younger age. Contrary to these results, others have shown that a high-fructose diet consumption leads to stronger bones with a superior microarchitecture than those with the intake of a high-glucose diet and, at the same time, research indicated that a high-fat diet usually deteriorates cancellous bone parameters, and that the incorporation of fructose into a high-fat diet did not aggravate bone mass loss. High-fat/high-sucrose diets have shown both beneficial and detrimental influences on bone metabolism. Combined, these studies showed that nutrition exerts different effects on bone health. Thus, a better understanding of the regulation between dietary nutrition and bone health might provide a basis for the development of strategies to improve bone health by modifying nutritional components.
Bredella, Miriam A; Gerweck, Anu V; Barber, Lauren A; Breggia, Anne; Rosen, Clifford J; Torriani, Martin; Miller, Karen K
2014-05-01
Abdominal adiposity is associated with low BMD and decreased growth hormone (GH) secretion, an important regulator of bone homeostasis. The purpose of our study was to determine the effects of a short course of GH on markers of bone turnover and bone marrow fat in premenopausal women with abdominal adiposity. In a 6-month, randomized, double-blind, placebo-controlled trial we studied 79 abdominally obese premenopausal women (21-45 y) who underwent daily sc injections of GH vs. placebo. Main outcome measures were body composition by DXA and CT, bone marrow fat by proton MR spectroscopy, P1NP, CTX, 25(OH)D, hsCRP, undercarboxylated osteocalcin (ucOC), preadipocyte factor 1 (Pref 1), apolipoprotein B (ApoB), and IGF-1. GH increased IGF-1, P1NP, 25(OH)D, ucOC, bone marrow fat and lean mass, and decreased abdominal fat, hsCRP, and ApoB compared with placebo (p<0.05). There was a trend toward an increase in CTX and Pref-1. Among all participants, a 6-month increase in IGF-1 correlated with 6-month increase in P1NP (p=0.0005), suggesting that subjects with the greatest increases in IGF-1 experienced the greatest increases in bone formation. A six-month decrease in abdominal fat, hsCRP, and ApoB inversely predicted 6-month change in P1NP, and 6-month increase in lean mass and 25(OH)D positively predicted 6-month change in P1NP (p≤0.05), suggesting that subjects with greatest decreases in abdominal fat, inflammation and ApoB, and the greatest increases in lean mass and 25(OH)D experienced the greatest increases in bone formation. A six-month increase in bone marrow fat correlated with 6-month increase in P1NP (trend), suggesting that subjects with the greatest increases in bone formation experienced the greatest increases in bone marrow fat. Forward stepwise regression analysis indicated that increase in lean mass and decrease in abdominal fat were positive predictors of P1NP. When IGF-1 was added to the model, it became the only predictor of P1NP. GH replacement in abdominally obese premenopausal women for 6 months increased bone turnover and bone marrow fat. Reductions in abdominal fat, and inflammation, and increases in IGF-1, lean mass and vitamin D were associated with increased bone formation. The increase in bone marrow fat may reflect changes in energy demand from increased bone turnover. Copyright © 2014 Elsevier Inc. All rights reserved.
Cerebral Fat Embolism: Recognition, Complications, and Prognosis.
Godoy, Daniel Agustín; Di Napoli, Mario; Rabinstein, Alejandro A
2017-09-20
Fat embolism syndrome (FES) is a rare syndrome caused by embolization of fat particles into multiple organs including the brain. It typically manifests with petechial rash, deteriorating mental status, and progressive respiratory insufficiency, usually occurring within 24-48 h of trauma with long-bone fractures or an orthopedic surgery. The diagnosis of FES is based on clinical and imaging findings, but requires exclusion of alternative diagnoses. Although there is no specific treatment for FES, prompt recognition is important because it can avoid unnecessary interventions and clarify prognosis. Patients with severe FES can become critically ill, but even comatose patients with respiratory failure may recover favorably. Prophylactic measures, such as early stabilization of fractures and certain intraoperative techniques, may help decrease the incidence and severity of FES.
Shen, Wei; Gong, Xiuqun; Weiss, Jessica; Jin, Ye
2013-01-01
An increasing number of studies are utilizing different magnetic resonance (MR) methods to quantify bone marrow fat due to its potential role in osteoporosis. Our aim is to compare the measurements of bone marrow fat among T1-weighted magnetic resonance imaging (MRI), modified Dixon method (also called fat fraction MRI (FFMRI)), and magnetic resonance spectroscopy (MRS). Contiguous MRI scans were acquired in 27 Caucasian postmenopausal women with a modified Dixon method (i.e., FFMRI). Bone marrow adipose tissue (BMAT) of T1-weighted MRI and bone marrow fat fraction of the L3 vertebra and femoral necks were quantified using SliceOmatic and Matlab. MRS was also acquired at the L3 vertebra. Correlation among the three MR methods measured bone marrow fat fraction and BMAT ranges from 0.78 to 0.88 (P < 0.001) in the L3 vertebra. Correlation between BMAT measured by T1-weighted MRI and bone marrow fat fraction measured by modified FFMRI is 0.86 (P < 0.001) in femoral necks. There are good correlations among T1-weighted MRI, FFMRI, and MRS for bone marrow fat quantification. The inhomogeneous distribution of bone marrow fat, the threshold segmentation of the T1-weighted MRI, and the ambiguity of the FFMRI may partially explain the difference among the three methods.
Shen, Wei; Gong, Xiuqun; Weiss, Jessica; Jin, Ye
2013-01-01
Introduction. An increasing number of studies are utilizing different magnetic resonance (MR) methods to quantify bone marrow fat due to its potential role in osteoporosis. Our aim is to compare the measurements of bone marrow fat among T1-weighted magnetic resonance imaging (MRI), modified Dixon method (also called fat fraction MRI (FFMRI)), and magnetic resonance spectroscopy (MRS). Methods. Contiguous MRI scans were acquired in 27 Caucasian postmenopausal women with a modified Dixon method (i.e., FFMRI). Bone marrow adipose tissue (BMAT) of T1-weighted MRI and bone marrow fat fraction of the L3 vertebra and femoral necks were quantified using SliceOmatic and Matlab. MRS was also acquired at the L3 vertebra. Results. Correlation among the three MR methods measured bone marrow fat fraction and BMAT ranges from 0.78 to 0.88 (P < 0.001) in the L3 vertebra. Correlation between BMAT measured by T1-weighted MRI and bone marrow fat fraction measured by modified FFMRI is 0.86 (P < 0.001) in femoral necks. Conclusion. There are good correlations among T1-weighted MRI, FFMRI, and MRS for bone marrow fat quantification. The inhomogeneous distribution of bone marrow fat, the threshold segmentation of the T1-weighted MRI, and the ambiguity of the FFMRI may partially explain the difference among the three methods. PMID:23606951
Cao, Jay J; Gregoire, Brian R
2016-04-01
Bone health is influenced by body mass and estrogen. The objective of the study was to determine whether high-fat diet-induced obesity affects bone structure and alters markers of bone turnover in ovariectomized (OVX) mice. We hypothesized that a high-fat diet would increase body weight gain and serum estradiol levels in OVX mice but would not improve bone structural parameter in OVX mice. Thirty-five C57BL/6 mice were either sham operated or OVX at the age of 4 months and then fed either a normal-fat diet (10% energy as fat) or a high-fat diet (45% energy as fat with extra fat from lard) ad libitum for 11 weeks. Ovariectomy increased body weight, serum tartrate-resistant acid phosphatase concentration, and expression of cathepsin K in bone; decreased serum estradiol concentration; and induced significant bone loss manifested by decreased bone volume/total volume (BV/TV), connectivity density (Conn.D), trabecular number, and trabecular thickness with increased trabecular separation and structural model index (P < .01). The high-fat diet increased body weight (P < .01) in OVX mice and nonsignificantly decreased BV/TV (P = .08) and Conn.D (P = .10). Despite having similar serum estradiol concentrations and higher body weight, OVX mice consuming the high-fat diet had lower BV/TV, Conn.D, trabecular number, trabecular thickness, and higher structural model index and trabecular separation than did sham mice fed the normal-fat diet. These findings indicate that increased body weight and elevated serum estradiol concentration induced by a high-fat diet do not mitigate ovariectomy-induced bone loss in mice. Published by Elsevier Inc.
Hetherington-Rauth, Megan; Bea, Jennifer W; Blew, Robert M; Funk, Janet L; Hingle, Melanie D; Lee, Vinson R; Roe, Denise J; Wheeler, Mark D; Lohman, Timothy G; Going, Scott B
2018-05-22
With the high prevalence of childhood obesity, especially among Hispanic children, understanding how body weight and its components of lean and fat mass affect bone development is important, given that the amount of bone mineral accrued during childhood can determine osteoporosis risk later in life. The aim of this study was to assess the independent contributions of lean and fat mass on volumetric bone mineral density (vBMD), geometry, and strength in both weight-bearing and non-weight-bearing bones of Hispanic and non-Hispanic girls. Bone vBMD, geometry, and strength were assessed at the 20% distal femur, the 4% and 66% distal tibia, and the 66% distal radius of the non-dominant limb of 326, 9- to 12-year-old girls using peripheral quantitative computed tomography (pQCT). Total body lean and fat mass were measured by dual-energy x-ray absorptiometry (DXA). Multiple linear regression was used to assess the independent relationships of fat and lean mass with pQCT bone measures while adjusting for relevant confounders. Potential interactions between ethnicity and both fat and lean mass were also tested. Lean mass was a significant positive contributor to all bone outcomes (p < 0.05) with the exception of vBMD at diaphyseal sites. Fat mass was a significant contributor to bone strength at weight bearing sites, but did not significantly contribute to bone strength at the non-weight bearing radius and was negatively associated with radius cortical content and thickness. Bone measures did not significantly differ between Hispanic and non-Hispanic girls, although there was a significant interaction between ethnicity and fat mass with total bone area at the femur (p = 0.02) and 66% tibia (p = 0.005) as well as bone strength at the femur (p = 0.03). Lean mass is the main determinant of bone strength for appendicular skeletal sites. Fat mass contributes to bone strength in the weight-bearing skeleton but does not add to bone strength in non-weight-bearing locations and may potentially be detrimental. Bone vBMD, geometry, and strength did not differ between Hispanic and non-Hispanic girls; fat mass may be a stronger contributor to bone strength in weight-bearing bones of Hispanic girls compared to non-Hispanic. Copyright © 2018. Published by Elsevier Inc.
Jacobson, Denise L; Lindsey, Jane C; Coull, Brent A; Mulligan, Kathleen; Bhagwat, Priya; Aldrovandi, Grace M
2018-01-01
HIV-infected (HIV-pos) male children/youth showed lower bone mineral density at sexual maturity than HIV-uninfected (HIV-neg) females. It is not known whether complications of HIV disease, including abnormal body fat distribution, contribute to lower bone accrual in male HIV-pos adolescents. In a cross-sectional study, we evaluated the relationship between body composition (fat and lean mass) and bone mass in HIV-pos and HIV-neg children/youth and determined if it is modified by HIV status and sex. We used generalized estimating equations to simultaneously model the effect of fat/lean mass on multiple bone outcomes, including total body bone mineral density and bone mineral content and spine bone mineral density. We evaluated effect modification by HIV and sex. The analysis cohort consisted of 143 HIV-neg and 236 HIV-pos, of whom 55% were black non-Hispanic and 53% were male. Ages ranged from 7 to < 25 years. Half of the children/youth were at Tanner stage 1 and 20% at Tanner 5. Fat mass was more strongly positively correlated with bone mass in HIV-neg than HIV-pos children/youth and these relationships were more evident for total body bone than spine outcomes. Within HIV strata, fat mass and bone were more correlated in female than male children/youth. The relationship between lean mass and bone varied by sex, but not by HIV status. HIV disease diminishes the positive relationship of greater fat mass on bone mass in children/youth. Disruptions in body fat distribution, which are common in HIV disease, may have an impact on bone accretion during pubertal development.
High-fat diets affect energy and bone metabolism in growing rats.
Macri, Elisa V; Gonzales Chaves, Macarena M; Rodriguez, Patricia N; Mandalunis, Patricia; Zeni, Susana; Lifshitz, Fima; Friedman, Silvia M
2012-06-01
High-fat diets are usually associated with greater weight (W) gain and body fat (BF). However, it is still unclear whether the type and amount of fat consumed influence BF. Additionally, dietary fat intake may also have consequences on skeletal health. To evaluate in healthy growing rats the effects of high-fat diets and type of dietary fat intake (saturated or vegetable oils) on energy and bone metabolism. At weaning, male Wistar rats (n = 50) were fed either a control diet (C; fat = 7% w/w) or a high-fat diet (20% w/w) containing either: soybean oil, corn oil (CO), linseed oil (LO), or beef tallow (BT) for 8 weeks. Zoometric parameters, BF, food intake and digestibility, and total and bone alkaline phosphatase (b-AP) were assessed. Total skeleton bone mineral density (BMD) and content (BMC), BMC/W, spine BMD, and bone volume (static-histomorphometry) were measured. Animals fed BT diet achieved lower W versus C. Rats fed high-fat vegetable oil diets showed similar effects on the zoometric parameters but differed in BF. BT showed the lowest lipid digestibility and BMC. In contrast, high vegetable oil diets produced no significant differences in BMC, BMC/W, BMD, spine BMD, and bone volume. Marked differences were observed for LO and BT groups in b-AP and CO and BT groups in bone volume. BT diet rich in saturated fatty acids had decreased digestibility and adversely affected energy and bone metabolisms, in growing healthy male rats. There were no changes in zoometric and bone parameters among rats fed high vegetable oil diets.
Karampinos, Dimitrios C.; Melkus, Gerd; Baum, Thomas; Bauer, Jan S.; Rummeny, Ernst J.; Krug, Roland
2013-01-01
Purpose The purpose of the present study was to test the relative performance of chemical shift-based water-fat imaging in measuring bone marrow fat fraction in the presence of trabecular bone, having as reference standard the single-voxel magnetic resonance spectroscopy (MRS). Methods Six-echo gradient echo imaging and single-voxel MRS measurements were performed on the proximal femur of seven healthy volunteers. The bone marrow fat spectrum was characterized based on the magnitude of measurable fat peaks and an a priori knowledge of the chemical structure of triglycerides, in order to accurately extract the water peak from the overlapping broad fat peaks in MRS. The imaging-based fat fraction results were then compared to the MRS-based results both without and with taking into consideration the presence of short T2* water components in MRS. Results There was a significant underestimation of the fat fraction using the MRS model not accounting for short T2* species with respect to the imaging-based water fraction. A good equivalency was observed between the fat fraction using the MRS model accounting for short T2* species and the imaging-based fat fraction (R2=0.87). Conclusion The consideration of the short T2* water species effect on bone marrow fat quantification is essential when comparing MRS-based and imaging-based fat fraction results. PMID:23657998
Di Iorgi, Natascia; Rosol, Michael; Mittelman, Steven D.; Gilsanz, Vicente
2008-01-01
Background: Studies in the elderly suggest a reciprocal relation between increased marrow adiposity and bone loss, supporting basic research data indicating that osteoblasts and adipocytes share a common progenitor cell. However, whether this relation represents a preferential differentiation of stromal cells from osteoblasts to adipocytes or whether a passive accumulation of fat as bone is lost and marrow space increases with aging is unknown. To address this question and avoid the confounding effect of bone loss, we examined teenagers and young adults. Methods: Using computed tomography, we obtained measurements of bone density and cross-sectional area of the lumbar vertebral bodies and cortical bone area, cross-sectional area, marrow canal area, and fat density in the marrow of the femurs in 255 sexually mature subjects (126 females, 129 males; 15–24.9 yr of age). Additionally, values for total body fat were obtained with dual-energy x-ray absorptiometry. Results: Regardless of gender, reciprocal relations were found between fat density and measures of vertebral bone density and femoral cortical bone area (r = 0.19–0.39; all P values ≤ .03). In contrast, there was no relation between marrow canal area and cortical bone area in the femurs, neither between fat density and the cross-sectional dimensions of the bones. We also found no relation between anthropometric or dual-energy x-ray absorptiometry fat values and measures for marrow fat density. Conclusions: Our results indicate an inverse relation between bone marrow adiposity and the amount of bone in the axial and appendicular skeleton and support the notion of a common progenitor cell capable of mutually exclusive differentiation into the cell lineages responsible for bone and fat formation. PMID:18381577
Rodrigues, Edil de Albuquerque; dos Santos, Marcos André Moura; da Silva, Amanda Tabosa Pereira; Farah, Breno Quintella; Costa, Manoel da Cunha; Campos, Florisbela de Arruda Camara e Siqueira; Falcão, Ana Patrícia Siqueira Tavares
2016-01-01
ABSTRACT Objective To investigate the relationship between total and segmental body fat, bone mineral density and bone mineral content in undergraduate students stratified according to nutritional status. Methods The study included 45 male undergraduate students aged between 20 and 30 years. Total and segmental body composition, bone mineral density and bone mineral content assessments were performed using dual energy X-ray absorptiometry. Subjects were allocated into three groups (eutrophic, overweight and obese). Results With the exception of upper limb bone mineral content, significantly higher (p<0.05) mean bone mineral density, bone mineral content, and relative body fat values were documented in the obese group. Total body and segmental relative body fat (lower limbs and trunk) were positively correlated (p<0.05) with bone mineral density in the overweight group. Upper limb fat was negatively correlated (p<0.05) with bone mineral content in the normal and eutrophic groups. Conclusion Total body and segmental body fat were correlated with bone mineral density and bone mineral content in male undergraduate students, particularly in overweight individuals. PMID:27074228
Adenovirus 36, Adiposity, and Bone Strength in Late-Adolescent Females
Laing, Emma M; Tripp, Ralph A; Pollock, Norman K; Baile, Clifton A; Della-Fera, Mary Anne; Rayalam, Srujana; Tompkins, Stephen M; Keys, Deborah A; Lewis, Richard D
2017-01-01
Adenovirus 36 (Ad36) is the only adenovirus to date that has been linked with obesity in humans. Our previous studies in late-adolescent females suggest that excess weight in the form of fat mass is associated with lower cortical bone strength. The purpose of this study was to assess the relationship between Ad36-specific antibodies, adiposity, and bone strength in our sample of late-adolescent females. A cross-sectional study of 115 females aged 18 to 19 years was performed. Participants were classified according to adiposity by dual-energy X-ray absorptiometry (body fat percentage as normal-fat [<32% body fat; n=93] or high-fat [≥ 32% body fat; n=22]), and according to the presence of Ad36-specific neutralizing antibodies. Peripheral quantitative computed tomography measured bone parameters at the 4% (trabecular bone) and 20% (cortical bone) site, and muscle cross-sectional area (MCSA) at the 66% site, from the distal metaphyses of the radius and the tibia. Bone strength was determined from volumetric bone mineral density and bone geometry to calculate bone strength index (BSI; trabecular site) and polar strength–strain index (SSI; cortical site). After adjustment for MCSA and limb length, radial SSI was lower in Ad36+ versus Ad36− subjects from the high-fat group (p<0.03), but not the normal-fat group. No significant differences were observed between groups in tibial SSI or BSI. These data support an association of adiposity and cortical bone strength at the radius with the presence of neutralizing antibodies to Ad36 in late-adolescent females. PMID:23296755
Kim, Misung; Na, Woori; Sohn, Cheongmin
2013-09-01
Several reports suggest that obesity is a risk factor for osteoporosis. Vitamin K plays an important role in improving bone metabolism. This study examined the effects of vitamin K1 and vitamin K2 supplementation on the biochemical markers of bone turnover and morphological microstructure of the bones by using an obese mouse model. Four-week-old C57BL/6J male mice were fed a 10% fat normal diet group or a 45% kcal high-fat diet group, with or without 200 mg/1000 g vitamin K1 (Normal diet + K1, high-fat diet + K1) and 200 mg/1000 g vitamin K2 (Normal diet + K2, high-fat diet + K2) for 12 weeks. Serum levels of osteocalcin were higher in the high-fat diet + K2 group than in the high-fat diet group. Serum OPG level of the high-fat diet group, high-fat diet + K1 group, and high-fat diet + K2 group was 2.31 ± 0.31 ng/ml, 2.35 ± 0.12 ng/ml, and 2.90 ± 0.11 ng/ml, respectively. Serum level of RANKL in the high-fat diet group was significantly higher than that in the high-fat diet + K1 group and high-fat diet + K2 group (p<0.05). Vitamin K supplementation seems to tend to prevent bone loss in high-fat diet induced obese state. These findings suggest that vitamin K supplementation reversed the high fat diet induced bone deterioration by modulating osteoblast and osteoclast activities and prevent bone loss in a high-fat diet-induced obese mice.
Assessment of alveolar bone marrow fat content using 15 T MRI.
Cortes, Arthur Rodriguez Gonzalez; Cohen, Ouri; Zhao, Ming; Aoki, Eduardo Massaharu; Ribeiro, Rodrigo Alves; Abu Nada, Lina; Costa, Claudio; Arita, Emiko Saito; Tamimi, Faleh; Ackerman, Jerome L
2018-03-01
Bone marrow fat is inversely correlated with bone mineral density. The aim of this study is to present a method to quantify alveolar bone marrow fat content using a 15 T magnetic resonance imaging (MRI) scanner. A 15 T MRI scanner with a 13-mm inner diameter loop-gap radiofrequency coil was used to scan seven 3-mm diameter alveolar bone biopsy specimens. A 3-D gradient-echo relaxation time (T1)-weighted pulse sequence was chosen to obtain images. All images were obtained with a voxel size (58 µm 3 ) sufficient to resolve trabecular spaces. Automated volume of the bone marrow fat content and derived bone volume fraction (BV/TV) were calculated. Results were compared with actual BV/TV obtained from micro-computed tomography (CT) scans. Mean fat tissue volume was 20.1 ± 11%. There was a significantly strong inverse correlation between fat tissue volume and BV/TV (r = -0.68; P = .045). Furthermore, there was a strong agreement between BV/TV derived from MRI and obtained with micro-CT (interclass correlation coefficient = 0.92; P = .001). Bone marrow fat of small alveolar bone biopsy specimens can be quantified with sufficient spatial resolution using an ultra-high-field MRI scanner and a T1-weighted pulse sequence. Copyright © 2017 Elsevier Inc. All rights reserved.
Whitney, Daniel G; Singh, Harshvardhan; Miller, Freeman; Barbe, Mary F; Slade, Jill M; Pohlig, Ryan T; Modlesky, Christopher M
2017-01-01
Nonambulatory children with severe cerebral palsy (CP) have underdeveloped bone architecture, low bone strength and a high degree of fat infiltration in the lower extremity musculature. The present study aims to determine if such a profile exists in ambulatory children with mild CP and if excess fat infiltration extends into the bone marrow. Ambulatory children with mild spastic CP and typically developing children (4 to 11years; 12/group) were compared. Magnetic resonance imaging was used to estimate cortical bone, bone marrow and total bone volume and width, bone strength [i.e., section modulus (Z) and polar moment of inertia (J)], and bone marrow fat concentration in the midtibia, and muscle volume, intermuscular, subfascial, and subcutaneous adipose tissue (AT) volume and intramuscular fat concentration in the midleg. Accelerometer-based activity monitors worn on the ankle were used to assess physical activity. There were no group differences in age, height, body mass, body mass percentile, BMI, BMI percentile or tibia length, but children with CP had lower height percentile (19th vs. 50th percentile) and total physical activity counts (44%) than controls (both p<0.05). Children with CP also had lower cortical bone volume (30%), cortical bone width in the posterior (16%) and medial (32%) portions of the shaft, total bone width in the medial-lateral direction (15%), Z in the medial-lateral direction (34%), J (39%) and muscle volume (39%), and higher bone marrow fat concentration (82.1±1.8% vs. 80.5±1.9%), subfascial AT volume (3.3 fold) and intramuscular fat concentration (25.0±8.0% vs. 16.1±3.3%) than controls (all p<0.05). When tibia length was statistically controlled, all group differences in bone architecture, bone strength, muscle volume and fat infiltration estimates, except posterior cortical bone width, were still present (all p<0.05). Furthermore, a higher intermuscular AT volume in children with CP compared to controls emerged (p<0.05). Ambulatory children with mild spastic CP exhibit an underdeveloped bone architecture and low bone strength in the midtibia and a greater infiltration of fat in the bone marrow and surrounding musculature compared to typically developing children. Whether the deficit in the musculoskeletal system of children with CP is associated with higher chronic disease risk and whether the deficit can be mitigated requires further investigation. Copyright © 2016 Elsevier Inc. All rights reserved.
Anorexia Nervosa, Obesity and Bone Metabolism
Misra, Madhusmita; Klibanski, Anne
2014-01-01
Anorexia nervosa and obesity are conditions at the extreme ends of the nutritional spectrum, associated with marked reductions versus increases respectively in body fat content. Both conditions are also associated with an increased risk for fractures. In anorexia nervosa, body composition and hormones secreted or regulated by body fat content are important determinants of low bone density, impaired bone structure and reduced bone strength. In addition, anorexia nervosa is characterized by increases in marrow adiposity and decreases in cold activated brown adipose tissue, both of which are related to low bone density. In obese individuals, greater visceral adiposity is associated with greater marrow fat, lower bone density and impaired bone structure. In this review, we discuss bone metabolism in anorexia nervosa and obesity in relation to adipose tissue distribution and hormones secreted or regulated by body fat content. PMID:24079076
Fatal fat embolism syndrome in a case of isolated L1 vertebral fracture-dislocation.
Yamauchi, Koun; Fushimi, Kazunari; Ikeda, Tsuneko; Fukuta, Masashi
2013-11-01
Although fat embolism syndrome is a well-known complication of fractures of the long bones or pelvis, fat embolism syndrome occurring subsequent to fracture of the lumbar spine is rare. We report a fatal case of fat embolism syndrome characterized by fat and bone marrow embolism that occurred 36 h after an isolated fracture-dislocation of the L1 vertebra. A postmortem examination was performed and pathological finding demonstrated fat and bone marrow tissue which were disseminated in the bilateral pulmonary arteries. We need to be aware of the possibility of fat embolism syndrome as a complication of spinal fractures, including isolated vertebral body fractures.
Delgado, Jorge; Bedoya, Maria A; Green, Abby M; Jaramillo, Diego; Ho-Fung, Victor
2015-12-01
Children with sickle cell disease (SCD) are at risk of bone infarcts and acute osteomyelitis. The clinical differentiation between a bone infarct and acute osteomyelitis is a diagnostic challenge. Unenhanced T1-W fat-saturated MR images have been proposed as a potential tool to differentiate bone infarcts from osteomyelitis. To evaluate the reliability of unenhanced T1-W fat-saturated MRI for differentiation between bone infarcts and acute osteomyelitis in children with SCD. We retrospectively reviewed the records of 31 children (20 boys, 11 girls; mean age 10.6 years, range 1.1-17.9 years) with SCD and acute bone pain who underwent MR imaging including unenhanced T1-W fat-saturated images from 2005 to 2010. Complete clinical charts were reviewed by a pediatric hematologist with training in infectious diseases to determine a clinical standard to define the presence or absence of osteomyelitis. A pediatric radiologist reviewed all MR imaging and was blinded to clinical information. Based on the signal intensity in T1-W fat-saturated images, the children were further classified as positive for osteomyelitis (low bone marrow signal intensity) or positive for bone infarct (high bone marrow signal intensity). Based on the clinical standard, 5 children were classified as positive for osteomyelitis and 26 children as positive for bone infarct (negative for osteomyelitis). The bone marrow signal intensity on T1-W fat-saturated imaging was not significant for the differentiation between bone infarct and osteomyelitis (P = 0.56). None of the additional evaluated imaging parameters on unenhanced MRI proved reliable in differentiating these diagnoses. The bone marrow signal intensity on unenhanced T1-W fat-saturated MR images is not a reliable criterion to differentiate bone infarcts from osteomyelitis in children.
Chan, Grace M F; Riandini, Tessa; Ng, Sheryl Hui Xian; Goh, Su Yen; Tan, Chuen Seng; Tai, E Shyong; Duque, Gustavo; Ng, Alvin Choon-Meng; Venkataraman, Kavita
2018-01-01
Osteoporosis is an important health issue for older adults, and has been relatively understudied in older men. This study aimed to examine ethnic differences in bone mineral density (BMD), and elucidate the role of bone turnover markers (BTMs), fat and fat biomarkers on these ethnic differences. BMD at the lumbar spine and femoral neck, marrow fat at femoral neck, visceral adipose tissue (VAT) and subcutaneous adipose tissue, bone and fat biomarkers were evaluated in 120 healthy men aged ≥ 60 years. Indians had higher BMD values compared to Chinese at the lumbar spine (β = 20.336, SE = 4.749, p < 0.001) and the femoral neck (e β = 1.105, SE = 0.032, p < 0.001), after adjusting for BTMs, fat composition and lifestyle choices. Marrow fat, VAT and adiponectin were independent predictors of BMD. However, these factors did not explain the lower BMD observed in older Chinese men. Our findings suggest that older Chinese men are at significant risk of osteoporotic fractures due to lower BMD. Fat appears to be a key factor associated with lower BMD, and warrants further longitudinal studies to elucidate the complex interactions between adipose tissue and bone strength.
Scarless abdominal fat graft harvest for neurosurgical procedures: technical note.
Trinh, Victoria T; Duckworth, Edward A M
2015-02-01
Background Abdominal fat grafts are often harvested for use in skull base reconstruction and cerebrospinal fluid (CSF) leak repairs, and for operations traversing the nasal sinuses or mastoid bone. Although the endoscopic transnasal surgery has gained significant popularity, in part because it is considered "scarless," a common adjunct, the abdominal fat graft, can result in a disfiguring scar across the abdomen. Objective This is the first report of a scarless abdominal fat graft technique for skull base reconstruction. Methods Ten patients with a median age of 56.5 years (range: 45-73 years) underwent endoscopic transsphenoidal tumor resection with intraumbilical fat graft harvest. Careful circumferential fat dissection at the umbilicus, with progressive retraction of the graft, was crucial to ensure maximal visualization and to prevent injury to the subcutaneous vessels and rectus fascia. Results Following reconstruction of the sellar skull base, all patients did well postoperatively with no evidence of CSF leak. At 12-week follow-up for all patients, there was no evidence of scar, intracavity hematoma, or wound infection. Conclusions Fat graft harvest through an intraumbilical incision results in a scar-free abdominal harvest, and is a useful procedural adjunct to complement "scarless" brain surgery.
Pulmonary fat embolism after pelvic and long bone fractures in a trauma patient.
Huang, Brady K; Monu, Johnny U V; Wandtke, John
2009-09-01
Fat embolism is a common complication of pelvic and long bone fractures. Macroscopic fat emboli in the pulmonary arteries on computed tomography have been reported postoperatively after fixation of long bone fractures for trauma, however the quantification of attenuation values of fat emboli have been infrequently reported in the literature. We present a case of pulmonary fat embolism in a 52-year-old female after acute bony trauma sustained during a motor vehicle accident. To the authors' knowledge however, pulmonary fat embolism has not been described on the initial trauma CT scan.
Cerebral fat embolism and the "starfield" pattern: a case report.
Aravapalli, Amit; Fox, James; Lazaridis, Christos
2009-11-19
Nearly all long-bone fractures are accompanied by some form of fat embolism. The rare complication of clinically significant fat embolism syndrome, however, occurs in only 0.9-2.2% of cases. The clinical triad of fat embolism syndrome consists of respiratory distress, altered mental status, and petechial rash. Cerebral fat embolism causes the neurologic involvement seen in fat embolism syndrome. A 19-year-old African-American male was admitted with gunshot wounds to his right hand and right knee. He had diffuse hyperactive deep tendon reflexes, bilateral ankle clonus and decerebrate posturing with a Glasgow Coma Scale (GCS) score of 4T. Subsequent MRI of the brain showed innumerable punctate areas of restricted diffusion consistent with "starfield" pattern. On a 10-week follow up he has a normal neurological examination and he is discharged home. Despite the severity of the neurologic insult upon initial presentation, the majority of case reports on cerebral fat embolism illustrate that cerebral dysfunction associated with cerebral fat embolism is reversible. When neurologic deterioration occurs in the non-head trauma patient, then a systemic cause such as fat emboli should be considered. We describe a patient with non-head trauma who demonstrated the classic "starfield" pattern on diffusion-weighted MRI imaging.
Dietary patterns associated with fat and bone mass in young children123
Khoury, Philip R; Claytor, Randal P; Copeland, Kristen A; Hornung, Richard W; Daniels, Stephen R; Kalkwarf, Heidi J
2010-01-01
Background: Obesity and osteoporosis have origins in childhood, and both are affected by dietary intake and physical activity. However, there is little information on what constitutes a diet that simultaneously promotes low fat mass and high bone mass accrual early in life. Objective: Our objective was to identify dietary patterns related to fat and bone mass in children during the age period of 3.8–7.8 y. Design: A total of 325 children contributed data from 13 visits over 4 separate study years (age ranges: 3.8–4.8, >4.8–5.8, >5.8–6.8, and >6.8–7.8 y). We performed reduced-rank regression to identify dietary patterns related to fat mass and bone mass measured by dual-energy X-ray absorptiometry for each study year. Covariables included race, sex, height, weight, energy intake, calcium intake, physical activity measured by accelerometry, and time spent viewing television and playing outdoors. Results: A dietary pattern characterized by a high intake of dark-green and deep-yellow vegetables was related to low fat mass and high bone mass; high processed-meat intake was related to high bone mass; and high fried-food intake was related to high fat mass. Dietary pattern scores remained related to fat mass and bone mass after all covariables were controlled for (P < 0.001–0.03). Conclusion: Beginning at preschool age, diets rich in dark-green and deep-yellow vegetables and low in fried foods may lead to healthy fat and bone mass accrual in young children. PMID:20519562
Urs, Sumithra; Henderson, Terry; Le, Phuong; Rosen, Clifford J.; Liaw, Lucy
2012-01-01
We recently characterized Sprouty1 (Spry1), a growth factor signaling inhibitor as a regulator of marrow progenitor cells promoting osteoblast differentiation at the expense of adipocytes. Adipose tissue specific Spry1 expression in mice resulted in increased bone mass and reduced body fat while conditional knockout of Spry1 had the opposite effect with decreased bone and increased body fat. Because Spry1 suppresses normal fat development, we tested the hypothesis that Spry1 expression prevents high fat diet-induced obesity, bone loss, and associated lipid abnormalities and demonstrate that Spry1 has a long-term protective effect on mice fed a high caloric diet. We studied diet-induced obesity in mice with fatty acid binding promoter (aP2)-driven expression or conditional knockout of Spry1 in adipocytes. Phenotyping was performed by whole body dual-energy X-ray absorptiometry, microCT, histology and blood analysis. In conditional Spry1 null mice, high fat diet increased body fat by 40%, impaired glucose regulation, and led to liver steatosis. However, over-expression of Spry1 led to 35% lower body fat, reduced bone loss, and normal metabolic function compared to single transgenics. This protective phenotype was associated with decreased circulating insulin (70%) and leptin (54%) compared to controls on a high fat diet. Additionally, Spry1 expression decreased adipose tissue inflammation by 45%. We show that conditional Spry1 expression in adipose tissue protects against high fat diet-induced obesity and associated bone loss. PMID:22142492
Urs, Sumithra; Henderson, Terry; Le, Phuong; Rosen, Clifford J; Liaw, Lucy
2012-09-28
We recently characterised Sprouty1 (Spry1), a growth factor signalling inhibitor as a regulator of marrow progenitor cells promoting osteoblast differentiation at the expense of adipocytes. Adipose tissue-specific Spry1 expression in mice resulted in increased bone mass and reduced body fat, while conditional knockout of Spry1 had the opposite effect with decreased bone mass and increased body fat. Because Spry1 suppresses normal fat development, we tested the hypothesis that Spry1 expression prevents high-fat diet-induced obesity, bone loss and associated lipid abnormalities, and demonstrate that Spry1 has a long-term protective effect on mice fed a high-energy diet. We studied diet-induced obesity in mice with fatty acid binding promoter-driven expression or conditional knockout of Spry1 in adipocytes. Phenotyping was performed by whole-body dual-energy X-ray absorptiometry, microCT, histology and blood analysis. In conditional Spry1-null mice, a high-fat diet increased body fat by 40 %, impaired glucose regulation and led to liver steatosis. However, overexpression of Spry1 led to 35 % (P < 0·05) lower body fat, reduced bone loss and normal metabolic function compared with single transgenics. This protective phenotype was associated with decreased circulating insulin (70 %) and leptin (54 %; P < 0·005) compared with controls on a high-fat diet. Additionally, Spry1 expression decreased adipose tissue inflammation by 45 %. We show that conditional Spry1 expression in adipose tissue protects against high-fat diet-induced obesity and associated bone loss.
[Obesity, fat and bones: friends or foes ?
Biver, Emmanuel
2017-04-19
Low fat mass is associated with an increased risk of fracture because of low bone mineral density (BMD) and altered bone micro-architecture. Conversely, overweight and obese patients also have an increased risk of fracture, particularly of the humerus and ankle, despite greater BMD. Visceral abdominal fat, which is the most metabolically active, may be associated with poorer quality of bone tissue properties, as suggested in diabetes. Other factors may contribute to higher fracture risk in overweight patients, notably higher frequency of falls and lower bioavailability of vitamin D stoked in fat. Thus, fat mass and its distribution should be taken into account beyond BMD and classical clinical risk factors in the assessment of fracture risk.
Exercise prevents high fat diet-induced bone loss, marrow adiposity and dysbiosis in male mice.
McCabe, Laura R; Irwin, Regina; Tekalur, Arjun; Evans, Christian; Schepper, Jonathan D; Parameswaran, Narayanan; Ciancio, Mae
2018-03-29
High fat diets can have detrimental effects on the skeleton as well as cause intestinal dysbiosis. Exercise prevents high fat (HF) diet-induced obesity and also improves bone density and prevents the intestinal dysbiosis that promotes energy storage. Previous studies indicate a link between intestinal microbial balance and bone health. Therefore, we examined whether exercise could prevent HF-induced bone pathology in male mice and determined whether benefits correlate to changes in host intestinal microbiota. Male C57Bl/6 mice were fed either a low fat diet (LF; 10 kcal% fat) or a HF diet (60 kcal% fat) and put under sedentary or voluntary exercise conditions for 14 weeks. Our results indicated that HF diet reduced trabecular bone volume, when corrected for differences in body weight, of both the tibia (40% reduction) and vertebrae (25% reduction) as well and increased marrow adiposity (44% increase). More importantly, these effects were prevented by exercise. Exercise also had a significant effect on several cortical bone parameters and enhanced bone mechanical properties in LF but not HF fed mice. Microbiome analyses indicated that exercise altered the HF induced changes in microbial composition by reducing the Firmicutes/Bacteriodetes ratio. This ratio negatively correlated with bone volume as did levels of Clostridia and Lachnospiraceae. In contrast, the abundance of several Actinobacteria phylum members (i.e., Bifidobacteriaceae) were positively correlated with bone volume. Taken together, exercise can prevent many of the negative effects of a high fat diet on male skeletal health. Exercise induced changes in microbiota composition could represent a novel mechanism that contributes to exercise induced benefits to bone health. Copyright © 2018 Elsevier Inc. All rights reserved.
Whitney, Daniel G.; Singh, Harshvardhan; Miller, Freeman; Barbe, Mary F.; Slade, Jill M.; Pohlig, Ryan T.; Modlesky, Christopher M.
2016-01-01
Introduction Nonambulatory children with severe cerebral palsy (CP) have an underdeveloped bone architecture, low bone strength and a high degree of fat infiltration in the lower extremity musculature. The present study aims to determine if such a profile exists in ambulatory children with mild CP and if excess fat infiltration extends into the bone marrow. Materials and methods Ambulatory children with mild spastic CP and typically developing children (4 to 11 years; 12/group) were tested. Magnetic resonance imaging was used to estimate cortical, medullary and total bone volume and width, bone strength [i.e., section modulus (Z) and polar moment of inertia (J)], and bone marrow fat concentration in the midtibia, and muscle volume, intermuscular, subfascial, and subcutaneous adipose tissue (AT) volume and intramuscular fat concentration in the midleg. Physical activity monitors worn on the ankle were used to assess physical activity. Results There were no group differences in age, height, body mass, body mass percentile, BMI, BMI percentile or tibia length, but children with CP had lower height percentile (19th vs. 50th percentile) and total physical activity counts (44 %) than controls (both p < 0.05). Children with CP also had lower cortical volume (30 %), cortical width in the posterior (16 %) and medial (32 %) portion of the shaft, total bone width in the medial-lateral direction (15 %), Z in the medial-lateral direction (34 %), J (39 %) and muscle volume (39 %), and higher bone marrow fat concentration (82.1 ± 1.8 % vs. 80.5 ± 1.9 %), subfascial AT volume (3.3 fold) and intramuscular fat concentration (25.0 ± 8.0 % vs. 16.1 ± 3.3 %) than controls (all p < 0.05). When tibia length was statistically controlled, all group differences in bone architecture, bone strength, muscle volume and fat infiltration estimates, except posterior cortical width, were still present (all p < 0.05). Furthermore, a higher intermuscular AT volume in children with CP compared to controls emerged (p < 0.05). Conclusions Ambulatory children with mild CP exhibit an underdeveloped bone architecture and low bone strength in the midtibia and a greater infiltration of fat in the bone marrow and surrounding musculature compared to typically developing children. Whether the deficit in the musculoskeletal system of children with CP is associated with higher chronic disease risk and whether the deficit can be mitigated requires further investigation. PMID:27732905
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, H; Lee, Y; Ruschin, M
2015-06-15
Purpose: Automatically derive electron density of tissues using MR images and generate a pseudo-CT for MR-only treatment planning of brain tumours. Methods: 20 stereotactic radiosurgery (SRS) patients’ T1-weighted MR images and CT images were retrospectively acquired. First, a semi-automated tissue segmentation algorithm was developed to differentiate tissues with similar MR intensities and large differences in electron densities. The method started with approximately 12 slices of manually contoured spatial regions containing sinuses and airways, then air, bone, brain, cerebrospinal fluid (CSF) and eyes were automatically segmented using edge detection and anatomical information including location, shape, tissue uniformity and relative intensity distribution.more » Next, soft tissues - muscle and fat were segmented based on their relative intensity histogram. Finally, intensities of voxels in each segmented tissue were mapped into their electron density range to generate pseudo-CT by linearly fitting their relative intensity histograms. Co-registered CT was used as a ground truth. The bone segmentations of pseudo-CT were compared with those of co-registered CT obtained by using a 300HU threshold. The average distances between voxels on external edges of the skull of pseudo-CT and CT in three axial, coronal and sagittal slices with the largest width of skull were calculated. The mean absolute electron density (in Hounsfield unit) difference of voxels in each segmented tissues was calculated. Results: The average of distances between voxels on external skull from pseudo-CT and CT were 0.6±1.1mm (mean±1SD). The mean absolute electron density differences for bone, brain, CSF, muscle and fat are 78±114 HU, and 21±8 HU, 14±29 HU, 57±37 HU, and 31±63 HU, respectively. Conclusion: The semi-automated MR electron density mapping technique was developed using T1-weighted MR images. The generated pseudo-CT is comparable to that of CT in terms of anatomical position of tissues and similarity of electron density assignment. This method can allow MR-only treatment planning.« less
Severe fat embolism in perioperative abdominal liposuction and fat grafting.
de Lima E Souza, Rodrigo; Apgaua, Bruno Tavares; Milhomens, João Daniel; Albuquerque, Francisco Tadeu Motta; Carneiro, Luiz Antônio; Mendes, Márcio Henrique; Garcia, Tiago Carvalho; Paiva, Clerisson; Ladeia, Felipe; Jeunon, Deiler Célio
2016-01-01
Fat embolism syndrome may occur in patients suffering from multiple trauma (long bone fractures) or plastic surgery (liposuction), compromising the circulatory, respiratory and/or central nervous systems. This report shows the evolution of severe fat embolism syndrome after liposuction and fat grafting. SSS, 42 years old, ASA 1, no risk factors for thrombosis, candidate for abdominal liposuction and breast implant prosthesis. Subjected to balanced general anesthesia with basic monitoring and controlled ventilation. After 45min of procedure, there was a sudden and gradual decrease of capnometry, severe hypoxemia and hypotension. The patient was immediately monitored for MAP and central catheter, treated with vasopressors, inotropes, and crystalloid infusion, stabilizing her condition. Arterial blood sample showed pH=7.21; PCO2=51mmHg; PO2=52mmHg; BE=-8; HCO3=18mEqL(-1), and lactate=6.0mmolL(-1). Transthoracic echocardiogram showed PASP=55mmHg, hypocontractile VD and LVEF=60%. Diagnosis of pulmonary embolism. After 24h of intensive treatment, the patient developed anisocoria and coma (Glasgow coma scale=3). A brain CT was performed which showed severe cerebral hemispheric ischemia with signs of fat emboli in right middle cerebral artery; transesophageal echocardiography showed a patent foramen ovale. Finally, after 72h of evolution, the patient progressed to brain death. Fat embolism syndrome usually occurs in young people. Treatment is based mainly on the infusion of fluids and vasoactive drugs, mechanical ventilation, and triggering factor correction (early fixation of fractures or suspension of liposuction). The multiorgânico involvement indicates a worse prognosis. Copyright © 2014 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.
Fat embolism syndrome following percutaneous vertebroplasty: a case report.
Ahmadzai, Hasib; Campbell, Scott; Archis, Constantine; Clark, William A
2014-04-01
Vertebroplasty is commonly performed for management of pain associated with vertebral compression fractures. There have been two previous reports of fatal fat embolism following vertebroplasty. Here we describe a case of fat embolism syndrome following this procedure, and also provide fluoroscopic video evidence consistent with this occurrence. The purpose of this study was to review the literature and report a case of fat embolism syndrome in a patient who underwent percutaneous vertebroplasty for compression fracture. The study design for this manuscript was of a clinical case report. A 68-year-old woman who developed sudden back pain with minimal trauma was found to have a T6 vertebral compression fracture on radiographs and bone scans. Percutaneous vertebroplasty of T5 and T6 was performed. Fluoroscopic imaging during the procedure demonstrated compression and rarefaction of the fractured vertebra associated with changes in intrathoracic pressure. Immediately after the procedure, the patient's back pain resolved and she was discharged home. Two days later, she developed increasing respiratory distress, confusion, and chest pain. A petechial rash on her upper arms also appeared. No evidence of bone cement leakage or pulmonary filling defects were seen on computed tomography-pulmonary angiography. Brain magnetic resonance imaging demonstrated hyperintensities in the periventricular and subcortical white matter on T2/fluid-attenuated inversion recovery sequences. A diagnosis of fat embolism syndrome was made, and the patient recovered with conservative management. Percutaneous vertebroplasty is a relatively safe and simple procedure, reducing pain and improving functional limitations in patients with vertebral fractures. This case demonstrates an uncommon yet serious complication of fat embolism syndrome. Clinicians must be aware of this complication when explaining the procedure to patients and provide prompt supportive care when it does occur. Copyright © 2014 Elsevier Inc. All rights reserved.
Pulmonary Embolization of Fat and Bone Marrow in Cynomolgus Macaques (Macaca fascicularis)
Fong, Derek L.; Murnane, Robert D.; Hotchkiss, Charlotte E.; Green, Damian J.; Hukkanen, Renee R.
2011-01-01
Fat embolization (FE), the introduction of bone marrow elements into circulation, is a known complication of bone fractures. Although FE has been described in other animal models, this study represents the first reported cases of FE and bone marrow embolism in nonhuman primates. Histopathologic findings from cynomolgus macaques (Macaca fascicularis) indicated that in all 5 cases, fat and bone marrow embolization occurred subsequent to multiple bone marrow biopsies. In the most severe case, extensive embolization was associated pulmonary damage consistent with acute respiratory distress syndrome. Fat embolism syndrome (FES) is an infrequent clinical outcome of FE and is triggered by systemic biochemical and mechanical responses to fat in circulation. Although clinical criteria diagnostic of FES were not investigated at the time of death, this severe case may represent the fulminant form of FES, which occurs within 12 h after trauma. Bone marrow biopsy as an etiology of FES has been reported only once in humans. In addition, the association of embolization with bone marrow biopsies suggests that nonhuman primates may be a useful animal model of FE. FE and FES represent important research confounders and FES should be considered as a differential diagnosis for clinical complications subsequent to skeletal trauma. PMID:21819686
Pulmonary embolization of fat and bone marrow in cynomolgus Macaques (Macaca fascicularis).
Fong, Derek L; Murnane, Robert D; Hotchkiss, Charlotte E; Green, Damian J; Hukkanen, Renee R
2011-02-01
Fat embolization (FE), the introduction of bone marrow elements into circulation, is a known complication of bone fractures. Although FE has been described in other animal models, this study represents the first reported cases of FE and bone marrow embolism in nonhuman primates. Histopathologic findings from cynomolgus macaques (Macaca fascicularis) indicated that in all 5 cases, fat and bone marrow embolization occurred subsequent to multiple bone marrow biopsies. In the most severe case, extensive embolization was associated pulmonary damage consistent with acute respiratory distress syndrome. Fat embolism syndrome (FES) is an infrequent clinical outcome of FE and is triggered by systemic biochemical and mechanical responses to fat in circulation. Although clinical criteria diagnostic of FES were not investigated at the time of death, this severe case may represent the fulminant form of FES, which occurs within 12 h after trauma. Bone marrow biopsy as an etiology of FES has been reported only once in humans. In addition, the association of embolization with bone marrow biopsies suggests that nonhuman primates may be a useful animal model of FE. FE and FES represent important research confounders and FES should be considered as a differential diagnosis for clinical complications subsequent to skeletal trauma.
Emergency management of fat embolism syndrome
Shaikh, Nissar
2009-01-01
Fat emboli occur in all patients with long-bone fractures, but only few patients develop systemic dysfunction, particularly the triad of skin, brain, and lung dysfunction known as the fat embolism syndrome (FES). Here we review the FES literature under different subheadings. The incidence of FES varies from 1–29%. The etiology may be traumatic or, rarely, nontraumatic. Various factors increase the incidence of FES. Mechanical and biochemical theories have been proposed for the pathophysiology of FES. The clinical manifestations include respiratory and cerebral dysfunction and a petechial rash. Diagnosis of FES is difficult. The other causes for the above-mentioned organ dysfunction have to be excluded. The clinical criteria along with imaging studies help in diagnosis. FES can be detected early by continuous pulse oximetry in high-risk patients. Treatment of FES is essentially supportive. Medications, including steroids, heparin, alcohol, and dextran, have been found to be ineffective. PMID:19561953
Yan, Lin; Nielsen, Forrest H; Sundaram, Sneha; Cao, Jay
2017-04-04
Bone loss occurs in obesity and cancer-associated complications including wasting. This study determined whether a high-fat diet and a deficiency in monocyte chemotactic protein-1 (MCP-1) altered bone structural defects in male C57BL/6 mice with Lewis lung carcinoma (LLC) metastases in lungs. Compared to non-tumor-bearing mice, LLC reduced bone volume fraction, connectivity density, trabecular number, trabecular thickness and bone mineral density and increased trabecular separation in femurs. Similar changes occurred in vertebrae. The high-fat diet compared to the AIN93G diet exacerbated LLC-induced detrimental structural changes; the exacerbation was greater in femurs than in vertebrae. Mice deficient in MCP-1 compared to wild-type mice exhibited increases in bone volume fraction, connectivity density, trabecular number and decreases in trabecular separation in both femurs and vertebrae, and increases in trabecular thickness and bone mineral density and a decrease in structure model index in vertebrae. Lewis lung carcinoma significantly decreased osteocalcin but increased tartrate-resistant acid phosphatase 5b (TRAP 5b) in plasma. In LLC-bearing mice, the high-fat diet increased and MCP-1 deficiency decreased plasma TRAP 5b; neither the high-fat diet nor MCP-1 deficiency resulted in significant changes in plasma concentration of osteocalcin. In conclusion, pulmonary metastasis of LLC is accompanied by detrimental bone structural changes; MCP-1 deficiency attenuates and high-fat diet exacerbates the metastasis-associated bone wasting.
Yoneda, Toshiki; Tomofuji, Takaaki; Kunitomo, Muneyoshi; Ekuni, Daisuke; Irie, Koichiro; Azuma, Tetsuji; Machida, Tatsuya; Miyai, Hisataka; Fujimori, Kouhei; Morita, Manabu
2017-01-01
Obesity induces gingival oxidative stress, which is involved in the progression of alveolar bone resorption. The antioxidant effect of hydrogen-rich water may attenuate gingival oxidative stress and prevent alveolar bone resorption in cases of obesity. We examined whether hydrogen-rich water could suppress gingival oxidative stress and alveolar bone resorption in obese rats fed a high-fat diet. Male Fischer 344 rats (n = 18) were divided into three groups of six rats each: a control group (fed a regular diet and drinking distilled water) and two experimental groups (fed a high-fat diet and drinking distilled water or hydrogen-rich water). The level of 8-hydroxydeoxyguanosine was determined to evaluate oxidative stress. The bone mineral density of the alveolar bone was analyzed by micro-computerized tomography. Obese rats, induced by a high-fat diet, showed a higher gingival level of 8-hydroxydeoxyguanosine and a lower level of alveolar bone density compared to the control group. Drinking hydrogen-rich water suppressed body weight gain, lowered gingival level of 8-hydroxydeoxyguanosine, and reduced alveolar bone resorption in rats on a high-fat diet. The results indicate that hydrogen-rich water could suppress gingival oxidative stress and alveolar bone resorption by limiting obesity. PMID:28098768
Yoneda, Toshiki; Tomofuji, Takaaki; Kunitomo, Muneyoshi; Ekuni, Daisuke; Irie, Koichiro; Azuma, Tetsuji; Machida, Tatsuya; Miyai, Hisataka; Fujimori, Kouhei; Morita, Manabu
2017-01-13
Obesity induces gingival oxidative stress, which is involved in the progression of alveolar bone resorption. The antioxidant effect of hydrogen-rich water may attenuate gingival oxidative stress and prevent alveolar bone resorption in cases of obesity. We examined whether hydrogen-rich water could suppress gingival oxidative stress and alveolar bone resorption in obese rats fed a high-fat diet. Male Fischer 344 rats ( n = 18) were divided into three groups of six rats each: a control group (fed a regular diet and drinking distilled water) and two experimental groups (fed a high-fat diet and drinking distilled water or hydrogen-rich water). The level of 8-hydroxydeoxyguanosine was determined to evaluate oxidative stress. The bone mineral density of the alveolar bone was analyzed by micro-computerized tomography. Obese rats, induced by a high-fat diet, showed a higher gingival level of 8-hydroxydeoxyguanosine and a lower level of alveolar bone density compared to the control group. Drinking hydrogen-rich water suppressed body weight gain, lowered gingival level of 8-hydroxydeoxyguanosine, and reduced alveolar bone resorption in rats on a high-fat diet. The results indicate that hydrogen-rich water could suppress gingival oxidative stress and alveolar bone resorption by limiting obesity.
Maternal high-fat diet and offspring expression levels of vitamin K-dependent proteins.
Lanham, S A; Cagampang, F R; Oreffo, R O C
2014-12-01
Studies suggest that bone growth and development and susceptibility to vascular disease in later life are influenced by maternal nutrition during intrauterine and early postnatal life. There is evidence for a role of vitamin K-dependent proteins (VKDPs) including osteocalcin, matrix Gla protein, periostin, and growth-arrest specific- protein 6, in both bone and vascular development. We have examined whether there are alterations in these VKDPs in bone and vascular tissue from offspring of mothers subjected to a nutritional challenge: a high-fat diet during pregnancy and postnatally, using 6-week-old mouse offspring. Bone site-specific and sex-specific differences across femoral and vertebral bone in male and female offspring were observed. Overall a high-fat maternal diet and offspring diet exacerbated the bone changes observed. Sex-specific differences and tissue-specific differences were observed in VKDP levels in aorta tissue from high-fat diet-fed female offspring from high-fat diet-fed mothers displaying increased levels of Gas6 and Ggcx compared with those of female controls. In contrast, differences were seen in VKDP levels in femoral bone of female offspring with lower expression levels of Mgp in offspring of mothers fed a high-fat diet compared with those of controls. We observed a significant correlation in Mgp expression levels within the femur to measures of bone structure of the femur and vertebra, particularly in the male offspring cohort. In summary, the current study has highlighted the importance of maternal nutrition on offspring bone development and the correlation of VKDPs to bone structure.
Influence of weight and body fat distribution on bone density in postmenopausal women.
Murillo-Uribe, A; Carranza-Lira, S; Martínez-Trejo, N; Santos-González, J
2000-01-01
To determine whether obesity or body fat distribution induces a greater modification on bone remodeling biochemistry (BRB) and bone density in postmenopausal women. One hundred and thirteen postmenopausal patients were studied. They were initially divided according to body mass index (BMI), and afterwards by waist-hip ratio (WHR) as well as combinations of the two factors. Hormone measurements and assessments of BRB were also done. Dual-emission X-ray absorptiometry from the lumbar column and hip was performed with Lunar DPXL equipment, and the standard deviation in relation to young adult (T) and age-matched subjects (Z) was calculated. Statistical analysis was done by the Mann-Whitney U test. The relation of BMI and WHR with the variables was calculated by simple regression analysis. When divided according to BMI, there was greater bone density in the femoral neck in those with normal weight. After dividing according to WHR, the Z scores had a trend to a lesser decrease in those with upper level body fat distribution. Divided according to BMI and WHR, obese patients with upper-level body fat distribution had greater bone density in the lumbar column than those with normal weight and lower-level body fat distribution. With the same WHR, those with normal weight had greater bone density than those who were obese. A beneficial effect of upper-level body fat distribution on bone density was found. It is greater than that from obesity alone, and obesity and upper-level body fat distribution have an additive effect on bone density.
Carvalho, Adriana Lelis; DeMambro, Victoria E; Guntur, Anyonya R; Le, Phuong; Nagano, Kenichi; Baron, Roland; de Paula, Francisco José Albuquerque; Motyl, Katherine J
2018-02-01
There is a growing and alarming prevalence of obesity and the metabolic syndrome in type I diabetic patients (T1DM), particularly in adolescence. In general, low bone mass, higher fracture risk, and increased marrow adipose tissue (MAT) are features of diabetic osteopathy in insulin-deficient subjects. On the other hand, type 2 diabetes (T2DM) is associated with normal or high bone mass, a greater risk of peripheral fractures, and no change in MAT. Therefore, we sought to determine the effect of weight gain on bone turnover in insulin-deficient mice. We evaluated the impact of a 6-week high-fat (HFD) rich in medium chain fatty acids or low-fat diet (LFD) on bone mass and MAT in a streptozotocin (STZ)-induced model using male C57BL/6J mice at 8 weeks of age. Dietary intervention was initiated after diabetes confirmation. At the endpoint, lower non-fasting glucose levels were observed in diabetic mice fed with high fat diet compared to diabetic mice fed the low fat diet (STZ-LFD). Compared to euglycemic controls, the STZ-LFD had marked polydipsia and polyphagia, as well as reduced lean mass, fat mass, and bone parameters. Interestingly, STZ-HFD mice had higher bone mass, namely less cortical bone loss and more trabecular bone than STZ-LFD. Thus, we found that a HFD, rich in medium chain fatty acids, protects against bone loss in a T1DM mouse model. Whether this may also translate to T1DM patients who are overweight or obese in respect to maintenance of bone mass remains to be determined through longitudinal studies. © 2017 Wiley Periodicals, Inc.
Anderson, F; Williams, A; Pannier, L; Pethick, D W; Gardner, G E
2016-06-01
This study assessed the effect of paternal Australian Sheep Breeding Values for post weaning c-site eye muscle depth (PEMD) and fat depth (PFAT), and post weaning weight (PWWT) on the composition of lamb carcasses. Composition was measured using computed tomography scans of 1665 lambs which were progeny of 85 Maternal, 115 Merino and 155 Terminal sires. Reducing sire PFAT decreased carcass fat weight by 4.8% and increased carcass bone by 1.3% per unit of PFAT (range 5.1 mm). Increasing sire PEMD reduced carcass fat weight by 3.8% in Maternal and 2% in Terminal sired lambs per unit of PEMD (range 4.3 and 7.8 mm), with no impact on bone. Increasing sire PWWT reduced carcass fat weight, but only at some experimental locations. Differences in composition varied between sire types with Maternal sired lambs having the most fat and Merino sired lambs the greatest bone weight. Genetic effects on fatness were greater than the environmental or production factor effects, with the converse true of bone. Copyright © 2016 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Studies have demonstrated that obesity induced by high-fat diets increases bone resorption, decreases trabecular bone mass, and reduces bone strength in various animal models. This study investigated whether N-acetylcysteine (NAC), an antioxidant and a glutathione precursor, alters glutathione statu...
Increased physical activity ameliorates high fat diet-induced bone resorption in mice
USDA-ARS?s Scientific Manuscript database
It has been recognized that mechanical stresses associated with physical activity (PA) have beneficial effects on increasing bone mineral density (BMD) and improving bone quality. On the other hand, high fat diet (HFD) and obesity increase bone marrow adiposity leading to increased excretion of pro-...
Shao, Hong Da; Li, Guan Wu; Liu, Yong; Qiu, Yu You; Yao, Jian Hua; Tang, Guang Yu
2015-09-01
The fat and bone connection is complicated, and the effect of adipose tissue on hip bone strength remains unclear. The aim of this study was to clarify the relative contribution of body fat accumulation and fat distribution to the determination of proximal femur strength in healthy postmenopausal Chinese women. This cross-sectional study enrolled 528 healthy postmenopausal women without medication history or known diseases. Total lean mass (LM), appendicular LM (ALM), percentage of lean mass (PLM), total fat mass (FM), appendicular FM (AFM), percentage of body fat (PBF), android and gynoid fat amount, android-to-gynoid fat ratio (AOI), bone mineral density (BMD), and proximal femur geometry were measured by dual energy X-ray absorptiometry. Hip structure analysis was used to compute some variables as geometric strength-related parameters by analyzing the images of the hip generated from DXA scans. Correlation analyses among anthropometrics, variables of body composition and bone mass, and geometric indices of hip bone strength were performed with stepwise linear regression analyses as well as Pearson's correlation analysis. In univariate analysis, there were significantly inverse correlations between age, years since menopause (YSM), hip BMD, and hip geometric parameters. Bone data were positively related to height, body weight, LM, ALM, FM, AFM, and PBF but negatively related to AOI and amount of android fat (all P < 0.05). AFM and AOI were significantly related to most anthropometric parameters. AFM was positively associated with height, body weight, and BMI. AFM was negatively associated with age and YSM. AOI was negatively associated with height, body weight, and BMI. AOI positively associated with age and YSM. LM, ALM, and FM had a positive relationship with anthropometric parameters (P < 0.05 for all). PLM had a negative relationship with those parameters. The correlation between LM, ALM, FM, PLM, ALM, age, and YSM was not significant. In multivariate linear regression analysis, the hip bone strength was observed to have a consistent and unchanged positive association with AFM and a negative association with AOI, whereas its association with other variables of body composition was not significant after adjusting for age, years since menopause, height, body weight, and BMI. AFM may be a positively protective effect for hip bone strength while AOI, rather than android fat, shows a strong negative association with hip bone strength after making an adjustment for confounders (age, YSM, height, body weight, and BMI) in healthy postmenopausal Chinese women. Rational weight control and AOI reduction during menopause may have vital clinical significance in decreasing postmenopausal osteoporosis.
Post traumatic Fat Embolism in Common Femoral Vein on CT.
Healy, N; Billington, K; Sheehy, N
2015-01-01
Fat embolism syndrome usually occurs following trauma where fat globules from long bone fractures produce pulmonary, cerebral or cutaneous effects. This case illustrates the presence of macroscopic fat in the right common femoral vein secondary to a long bone fracture. This finding is rare but should be looked for on cross-sectional imaging to allow early, aggressive treatment of fat embolism syndrome.
Griffith, James F; Yeung, David K W; Ahuja, Anil T; Choy, Carol W Y; Mei, Wong Yin; Lam, Sherlock S L; Lam, T P; Chen, Zhen-Yu; Leung, Ping C
2009-06-01
Osteoporosis is associated with an increase in marrow fat. Fats, particularly polyunsaturated fats, either in co-cultures or diet, have been shown to significantly influence bone remodeling. Whether the increase in marrow fat seen in osteoporosis is also associated with a change in fatty acid composition is not known. This study was undertaken to investigate the fatty acid composition in subjects of varying bone mineral density (BMD). Samples of marrow fat and subcutaneous fat from 126 subjects (98 females, 34 males, mean age 69.7+/-10.5 years) undergoing orthopedic surgery were analyzed for fatty acid composition by gas chromatography. These results were correlated with BMD assessed by DXA. A total of 22 fatty acids were identified in marrow and subcutaneous fat. Significant differences in fatty acid composition existed between marrow and subcutaneous fat as well as between marrow fat samples obtained from the proximal femur and proximal tibia. Other than cis-7-hexadecenoic acid [C16:1 (n=9)] and docosanoic acid [C22:0], no difference in marrow fatty acid composition was evident between subject groups of varying BMD (normal, low bone mass, and osteoporosis). In conclusion, there exists a wide range of individual fatty acids in marrow fat. Marrow fatty acid composition differs from that of subcutaneous fat and varies between predominantly erythropoetic and fatty marrow sites. Other than cis-7-hexadecenoic acid [C16:1 (n=9)] and docosanoic acid [C22:0], no difference in marrow fatty acid composition was evident between subjects of varying BMD.
Murden, David; Hunnam, Jaimie; De Groef, Bert; Rawlin, Grant; McCowan, Christina
2017-01-01
The use of bone marrow fat percentage has been recommended in assessing body condition at the time of death in wild and domestic ruminants, but few studies have looked at the effects of time and exposure on animal bone marrow. We investigated the utility of bone marrow fat extraction as a tool for establishing antemortem body condition in postmortem specimens from sheep and cattle, particularly after exposure to high heat, and compared different techniques of fat extraction for this purpose. Femora were collected from healthy and "skinny" sheep and cattle. The bones were either frozen or subjected to 40°C heat; heated bones were either wrapped in plastic to minimize desiccation or were left unwrapped. Marrow fat percentage was determined at different time intervals by oven-drying, or by solvent extraction using hexane in manual equipment or a Soxhlet apparatus. Extraction was performed, where possible, on both wet and dried tissue. Multiple samples were tested from each bone. Bone marrow fat analysis using a manual, hexane-based extraction technique was found to be a moderately sensitive method of assessing antemortem body condition of cattle up to 6 d after death. Multiple replicates should be analyzed where possible. Samples from "skinny" sheep showed a different response to heat from those of "healthy" sheep; "skinny" samples were so reduced in quantity by day 6 (the first sampling day) that no individual testing could be performed. Further work is required to understand the response of sheep marrow.
Cardoso, Letícia Monteiro da Fonseca; Pimenta, Nina Da Matta Alvarez; Fiochi, Raiza Da Silva Ferreira; Mota, Bruna Ferreira Mota; Monnerat, Juliana Arruda de Souza; Teixeira, Cristiane Correia; Ramalho, Renata Beatriz Da Rocha; Maldronato, Isabelle Waleska; Dolisnky, Manuela; Boaventura, Gilson Teles; Blondet, Vilma; Barroso, Sergio Girão; Costa, Carlos Alberto Soares da; Rocha, Gabrielle De Souza
2017-10-27
intake of diets with high saturated fat may produce deleterious effects on bone mineralization. Lifestyle changes help reduce the bone loss observed in osteoporosis. Resveratrol, present in grape juice and red wine, has osteogenic and osteoinductive effects, being potentially beneficial for bone health. to evaluate the effects of red grape juice, red wine and resveratrol consumption on bone parameters in Wistar rats submitted to a high-fat diet and physical training. female Wistar rats, with 90 days of age, were divided into five groups and followed up for 60 days: a) control group; b) high-fat group; c) grape juice group; d) red wine group; and e) resveratrol group. The different groups of animals performed a physical training protocol. Animal's weight and consumption were monitored weekly. After 60 days, femoral dimensions, bone mineral density (BMD) and bone mineral content (BMC) were evaluated. there was no difference in body mass; however, all groups consuming the high-fat diet had higher consumption (p < 0.05). RWG presented a greater distance between the epiphyses, femoral mass and BMC (p < 0.05). RWG and RG presented greater mean diaphysis point width and BMD (p < 0.05). the results suggest that the bioactive compounds present in red wine and resveratrol solution together with regular exercise were able to promote beneficial effects on bone health, even when associated with a high saturated fat diet.
Yan, Lin; Graef, George L; Nielsen, Forrest H; Johnson, LuAnn K; Cao, Jay
2015-06-01
Physical activity and soy protein isolate (SPI) augmentation have been reported to be beneficial for bone health. We hypothesized that combining voluntary running and SPI intake would alleviate detrimental changes in bone induced by a high-fat diet. A 2 × 2 × 2 experiment was designed with diets containing 16% or 45% of energy as corn oil and 20% SPI or casein fed to sedentary or running male C57BL/6 mice for 14 weeks. Distal femurs were assessed for microstructural changes. The high-fat diet significantly decreased trabecular number (Tb.N) and bone mineral density (BMD) and increased trabecular separation (Tb.Sp). Soy protein instead of casein, regardless of fat content, in the diet significantly increased bone volume fraction, Tb.N, connectivity density, and BMD and decreased Tb.Sp. Voluntary running, regardless of fat content, significantly decreased bone volume fraction, Tb.N, connectivity density, and BMD and increased Tb.Sp. The high-fat diet significantly decreased osteocalcin and increased tartrate-resistant acid phosphatase 5b (TRAP 5b) concentrations in plasma. Plasma concentrations of osteocalcin were increased by both SPI and running. Running alleviated the increase in TRAP 5b induced by the high-fat diet. These findings demonstrate that a high-fat diet is deleterious, and SPI is beneficial to trabecular bone properties. The deleterious effect of voluntary running on trabecular structural characteristics indicates that there may be a maximal threshold of running beyond which beneficial effects cease and detrimental effects occur. Increases in plasma osteocalcin and decreases in plasma TRAP 5b in running mice suggest that a compensatory response occurs to counteract the detrimental effects of excessive running. Published by Elsevier Inc.
Cao, Jay J; Gregoire, Brian R; Shen, Chwan-Li
2017-10-01
Background: Chronic inflammation is associated with increased bone resorption and is linked to osteopenia, or low bone mass. Obesity is also associated with low-grade chronic upregulation of inflammatory cytokines. Objective: This study investigated the effect of high-fat (HF) diet-induced obesity on bone structure changes in growing mice with existing systemic chronic inflammation induced by low-dose, slow-release lipopolysaccharide (LPS). Methods: Forty-eight 6-wk-old female C57BL/6 mice were randomly assigned to 4 treatment groups ( n = 12/group) in a 2 × 2 factorial design-control (placebo) or LPS treatment (1.5 μ g/d)-and consumed either a normal-fat (NF, 10% of energy as fat) or an HF (45% of energy as fat) diet ad libitum for 13 wk. Bone structure, serum biomarkers of bone turnover, and osteoclast differentiation were measured. Results: No alterations were observed in final body weights, fat mass, or lean mass in response to LPS treatment. LPS treatment increased serum concentration of tartrate-resistant acid phosphatase (TRAP, a bone resorption marker) and bone marrow osteoclast differentiation and decreased femoral and lumbar vertebral bone volume (BV):total volume (TV) by 25% and 24%, respectively, compared with the placebo. Mice fed the HF diet had greater body weight at the end of the study ( P < 0.01) due to increased fat mass ( P < 0.01) than did mice fed the NF diet. The HF diet increased serum TRAP concentration, bone marrow osteoclast differentiation, and expression of tumor necrosis factor α, interleukin 1β and interleukin 6 in adipose tissue. Compared with the NF diet, the HF diet decreased BV:TV by 10% and 8% at femur and lumbar vertebrae, respectively, and the HF diet was detrimental to femoral and lumbar vertebral bone structure with decreased trabecular number and increased trabecular separation and structure model index. Conclusion: Results suggest that HF diets and systemic chronic inflammation have independent negative effects on bone structure in mice. © 2017 American Society for Nutrition.
Morari, Joseane; Anhe, Gabriel F; Nascimento, Lucas F; de Moura, Rodrigo F; Razolli, Daniela; Solon, Carina; Guadagnini, Dioze; Souza, Gabriela; Mattos, Alexandre H; Tobar, Natalia; Ramos, Celso D; Pascoal, Vinicius D; Saad, Mario J; Lopes-Cendes, Iscia; Moraes, Juliana C; Velloso, Licio A
2014-11-01
Hypothalamic inflammation is a common feature of experimental obesity. Dietary fats are important triggers of this process, inducing the activation of toll-like receptor-4 (TLR4) signaling and endoplasmic reticulum stress. Microglia cells, which are the cellular components of the innate immune system in the brain, are expected to play a role in the early activation of diet-induced hypothalamic inflammation. Here, we use bone marrow transplants to generate mice chimeras that express a functional TLR4 in the entire body except in bone marrow-derived cells or only in bone marrow-derived cells. We show that a functional TLR4 in bone marrow-derived cells is required for the complete expression of the diet-induced obese phenotype and for the perpetuation of inflammation in the hypothalamus. In an obesity-prone mouse strain, the chemokine CX3CL1 (fractalkine) is rapidly induced in the neurons of the hypothalamus after the introduction of a high-fat diet. The inhibition of hypothalamic fractalkine reduces diet-induced hypothalamic inflammation and the recruitment of bone marrow-derived monocytic cells to the hypothalamus; in addition, this inhibition reduces obesity and protects against diet-induced glucose intolerance. Thus, fractalkine is an important player in the early induction of diet-induced hypothalamic inflammation, and its inhibition impairs the induction of the obese and glucose intolerance phenotypes. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
Relationship of obesity with osteoporosis
Zhao, Lan-Juan; Liu, Yong-Jun; Liu, Peng-Yuan; Hamilton, James; Recker, Robert R.; Deng, Hong-Wen
2007-01-01
Context The relationship between obesity and osteoporosis has been widely studied, and epidemiological evidence shows that obesity is correlated with increased bone mass. Previous analyses, however, did not control for the mechanical loading effects of total body weight on bone mass and may have generated a confounded or even biased relationship between obesity and osteoporosis. Objective To re-evaluate the relationship between obesity and osteoporosis by accounting for the mechanical loading effects of total body weight on bone mass. Methods We measured whole body fat mass, lean mass, percentage fat mass (PFM), body mass index (BMI), and bone mass in two large samples of different ethnicity: 1,988 unrelated Chinese subjects and 4,489 Caucasian subjects from 512 pedigrees. We first evaluated the Pearson correlations among different phenotypes. We then dissected the phenotypic correlations into genetic and environmental components, with bone mass unadjusted, or adjusted, for body weight. This allowed us to compare the results with and without controlling for mechanical loading effects of body weight on bone mass. Results In both Chinese and Caucasians, when the mechanical loading effect of body weight on bone mass was adjusted for, the phenotypic correlation (including its genetic and environmental components) between fat mass (or PFM) and bone mass was negative. Further multivariate analyses in subjects stratified by body weight confirmed the inverse relationship between bone mass and fat mass, after mechanical loading effects due to total body weight was controlled. Conclusions Increasing fat mass may not have a beneficial effect on bone mass. PMID:17299077
Why does starvation make bones fat?
Devlin, Maureen J.
2011-01-01
Body fat, or adipose tissue, is a crucial energetic buffer against starvation in humans and other mammals, and reserves of white adipose tissue (WAT) rise and fall in parallel with food intake. Much less is known about the function of bone marrow adipose tissue (BMAT), which are fat cells found in bone marrow. BMAT mass actually increases during starvation, even as other fat depots are being mobilized for energy. Here I review the possible reasons for this poorly understood phenomenon. Is BMAT a passive filler that occupies spaces left by dying bone cells, a pathological consequence of suppressed bone formation, or potentially an adaptation for surviving starvation? To evaluate these possibilities, here I review what is known about the effects of starvation on the body, particularly the skeleton, and the mechanisms involved in storing and metabolizing BMAT during negative energy balance. PMID:21793093
Why does starvation make bones fat?
Devlin, Maureen J
2011-01-01
Body fat, or adipose tissue, is a crucial energetic buffer against starvation in humans and other mammals, and reserves of white adipose tissue (WAT) rise and fall in parallel with food intake. Much less is known about the function of bone marrow adipose tissue (BMAT), which are fat cells found in bone marrow. BMAT mass actually increases during starvation, even as other fat depots are being mobilized for energy. This review considers several possible reasons for this poorly understood phenomenon. Is BMAT a passive filler that occupies spaces left by dying bone cells, a pathological consequence of suppressed bone formation, or potentially an adaptation for surviving starvation? These possibilities are evaluated in terms of the effects of starvation on the body, particularly the skeleton, and the mechanisms involved in storing and metabolizing BMAT during negative energy balance. Copyright © 2011 Wiley-Liss, Inc.
[Severe fat embolism in perioperative abdominal liposuction and fat grafting].
de Lima E Souza, Rodrigo; Apgaua, Bruno Tavares; Milhomens, João Daniel; Albuquerque, Francisco Tadeu Motta; Carneiro, Luiz Antônio; Mendes, Márcio Henrique; Garcia, Tiago Carvalho; Paiva, Clerisson; Ladeia, Felipe; Jeunon, Deiler Célio
2016-01-01
Fat embolism syndrome (FES) may occur in patients suffering from multiple trauma (long bone fractures) or plastic surgery (liposuction), compromising the circulatory, respiratory and/or central nervous systems. This report shows the evolution of severe FES after liposuction and fat grafting. SSS, 42 years old, ASA 1, no risk factors for thrombosis, candidate for abdominal liposuction and breast implant prosthesis. Subjected to balanced general anesthesia with basic monitoring and controlled ventilation. After 45minutes of procedure, there was a sudden and gradual decrease of capnometry, severe hypoxemia and hypotension. The patient was immediately monitored for MAP and central catheter, treated with vasopressors, inotropes, and crystalloid infusion, stabilizing her condition. Arterial blood sample showed pH = 7.21; PCO2 = 51mmHg; PO2 = 52mmHg; BE = -8; HCO3 = 18 mEq/L, and lactate = 6.0 mmol/L. Transthoracic echocardiogram showed PASP = 55mmHg, hypocontractile VD and LVEF = 60%. Diagnosis of pulmonary embolism. After 24h of intensive treatment, the patient developed anisocoria and coma (glasgow coma scale = 3). A brain CT was performed which showed severe cerebral hemispheric ischemia with signs of fat emboli in right middle cerebral artery; transesophageal echocardiography showed a patent foramen ovale. Finally, after 72h of evolution, the patient progressed to brain death. FES usually occurs in young people. Treatment is based mainly on the infusion of fluids and vasoactive drugs, mechanical ventilation, and triggering factor correction (early fixation of fractures or suspension of liposuction). The multiorgânico involvement indicates a worse prognosis. Copyright © 2014 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.
Structural (CT) and functional imaging (PET/SPECT) for the investigation of dolphin bioacoustics
NASA Astrophysics Data System (ADS)
Houser, Dorian S.; Finneran, James J.; Mattrey, Robert; Hoh, Carl; Ridgway, Sam
2003-10-01
A combination of imaging modalities was used to address physiological and anatomical questions relevant to dolphin bioacoustics. Three dolphins (Tursiops truncatus) were scanned with CT to investigate in vivo dolphin cranial anatomy. One dolphin underwent SPECT and PET scanning to investigate blood flow and metabolic activity of the cranial tissues. Air spaces were mostly contiguous and covered the periotic bone and auditory bulla dorsally and medially. Cranial air was compartmentalized by the nasal plug and constriction of the palatopharyngeus muscle. Blood flow, determined from SPECT imaging of 99Tc-bicisate distribution, was greatest in the brain, melon, and posterior fats of the lower jaw. Metabolic activity of tissues, assessed by monitoring the uptake of 18F-deoxyglucose via PET, indicated that melon and jaw fats were metabolically inert compared to the brain. Nasal cavity and sinus air volume that is reduced during diving may be replenished with lung air via the palatopharyngeus and Eustachian tube. Air covering the bulla may protect the ears from outgoing echolocation pulses and contribute to spectral and time of arrival cues. Blood flow to the melon and lower jaw fats may serve to either regulate the temperature of acoustic lipids or act as a site of counter-current heat exchange.
In vitro and in vivo MR evaluation of internal gradient to assess trabecular bone density
NASA Astrophysics Data System (ADS)
De Santis, S.; Rebuzzi, M.; Di Pietro, G.; Fasano, F.; Maraviglia, B.; Capuani, S.
2010-10-01
Here we propose a new magnetic resonance (MR) strategy based on the evaluation of internal gradient (Gi) to assess the trabecular bone (TB) density in spongy bone. Spongy bone is a porous system characterized by a solid trabecular network immersed in bone marrow and characterized by a different relative percentage of water and fats. Using a 9.4 T MR micro-imaging system, we first evaluated the relative water and fat Gi as extracted from the Spin-Echo decay function in vitro of femoral head samples from calves. Indeed, the differential effects of fat and water diffusion result in different types of Gi behavior. Using a clinical MR 3T scanner, we then investigated in vivo the calcanei of individuals characterized by different known TB densities. We demonstrate, on these samples, that water is more prevalent in the boundary zone, while fats are rearranged primarily in the central zone of each pore. In vitro experiments showed that water Gi magnitude from the samples was directly proportional to their TB density. Similar behavior was also observed in the clinical measures. Conversely, fat Gi did not provide any information on spongy-bone density. Our results suggest that water Gi may be a reliable marker to assess the status of spongy bone.
MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation.
Li, Chang-Jun; Cheng, Peng; Liang, Meng-Ke; Chen, Yu-Si; Lu, Qiong; Wang, Jin-Yu; Xia, Zhu-Ying; Zhou, Hou-De; Cao, Xu; Xie, Hui; Liao, Er-Yuan; Luo, Xiang-Hang
2015-04-01
Bone marrow mesenchymal stem cells (BMSCs) exhibit an age-dependent reduction in osteogenesis that is accompanied by an increased propensity toward adipocyte differentiation. This switch increases adipocyte numbers and decreases the number of osteoblasts, contributing to age-related bone loss. Here, we found that the level of microRNA-188 (miR-188) is markedly higher in BMSCs from aged compared with young mice and humans. Compared with control mice, animals lacking miR-188 showed a substantial reduction of age-associated bone loss and fat accumulation in bone marrow. Conversely, mice with transgenic overexpression of miR-188 in osterix+ osteoprogenitors had greater age-associated bone loss and fat accumulation in bone marrow relative to WT mice. Moreover, using an aptamer delivery system, we found that BMSC-specific overexpression of miR-188 in mice reduced bone formation and increased bone marrow fat accumulation. We identified histone deacetylase 9 (HDAC9) and RPTOR-independent companion of MTOR complex 2 (RICTOR) as the direct targets of miR-188. Notably, BMSC-specific inhibition of miR-188 by intra-bone marrow injection of aptamer-antagomiR-188 increased bone formation and decreased bone marrow fat accumulation in aged mice. Together, our results indicate that miR-188 is a key regulator of the age-related switch between osteogenesis and adipogenesis of BMSCs and may represent a potential therapeutic target for age-related bone loss.
[Forensic analysis of death caused by fat embolism: A study of 20 autopsy cases].
Zhou, Lan; Mu, Jiao; Dong, Hong-Mei; Zhang, Ji
2013-12-01
To analyze the general and forensic pathological characteristics of death due to fat embolism syndrome (FES) and to provide reference data for forensic identification. Twenty autopsy cases due to FES were selected from the forensic center of a medical college from 1999 to 2012. The general and forensic pathological characteristics such as the ways and types of injuries, clinical manifestation and the pathological changes were summarized. Fat embolism mainly occurred after long bone fracture or a large area of soft tissue injury with the majority of cases being fat embolism of lung and occasional cases being combined embolisms of lung and brain as well. The onset of symptoms appeared shortly after the injury or surgery. Lipid droplets could be observed within small pulmonary vessels and verified by special staining. There are particular characteristics in death due to FES in concern with types of injuries, onset of symptoms and pathological findings. In order to find out the direct evidence of FES, special staining (oil red O staining) can be used in the forensic identification.
Control of bone and fat mass by oxytocin.
Amri, Ez-Zoubir; Pisani, Didier F
2016-11-01
Osteoporosis and overweight/obesity constitute major worldwide public health burdens. Aging is associated with a decrease in hormonal secretion, lean mass and bone mass, and an increase in fat accumulation. It is established that both obesity and osteoporosis are affected by genetic and environmental factors, bone remodeling and adiposity are both regulated through the hypothalamus and sympathetic nervous system. Oxytocin (OT), belongs to the pituitary hormone family and regulates the function of peripheral target organs, its circulating levels decreased with age. Nowadays, it is well established that OT plays an important role in the control of bone and fat mass and their metabolism. Of note, OT and oxytocin receptor knock out mice develop bone defects and late-onset obesity. Thus OT emerges as a promising molecule in the treatment of osteoporosis and obesity as well as associated metabolic disorders such as type 2 diabetes and cardiovascular diseases. In this review, we will discuss findings regarding the OT effects on bone and fat mass.
Adiposity and TV viewing are related to less bone accrual in young children.
Wosje, Karen S; Khoury, Philip R; Claytor, Randal P; Copeland, Kristen A; Kalkwarf, Heidi J; Daniels, Stephen R
2009-01-01
To examine the relation between baseline fat mass and gain in bone area and bone mass in preschoolers studied prospectively for 4 years, with a focus on the role of physical activity and TV viewing. Children were part of a longitudinal study in which measures of fat, lean and bone mass, height, weight, activity, and diet were taken every 4 months from ages 3 to 7 years. Activity was measured by accelerometer and TV viewing by parent checklist. We included 214 children with total body dual energy x-ray absorptiometry (Hologic 4500A) scans at ages 3.5 and 7 years. Higher baseline fat mass was associated with smaller increases in bone area and bone mass over the next 3.5 years (P < .001). More TV viewing was related to smaller gains in bone area and bone mass accounting for race, sex, and height. Activity by accelerometer was not associated with bone gains. Adiposity and TV viewing are related to less bone accrual in preschoolers.
Bone marrow fat: linking adipocyte-induced inflammation with skeletal metastases
Hardaway, Aimalie L.; Herroon, Mackenzie K.; Rajagurubandara, Erandi
2014-01-01
Adipocytes are important but underappreciated components of bone marrow microenvironment, and their numbers greatly increase with age, obesity, and associated metabolic pathologies. Age and obesity are also significant risk factors for development of metastatic prostate cancer. Adipocytes are metabolically active cells that secrete adipokines, growth factors, and inflammatory mediators; influence behavior and function of neighboring cells; and have a potential to disturb local milleu and dysregulate normal bone homeostasis. Increased marrow adiposity has been linked to bone marrow inflammation and osteoporosis of the bone, but its effects on growth and progression of prostate tumors that have metastasized to the skeleton are currently not known. This review focuses on fat-bone relationship in a context of normal bone homeostasis and metastatic tumor growth in bone. We discuss effects of marrow fat cells on bone metabolism, hematopoiesis, and inflammation. Special attention is given to CCL2- and COX-2-driven pathways and their potential as therapeutic targets for bone metastatic disease. PMID:24398857
Yu, N Y; Wolfson, T; Middleton, M S; Hamilton, G; Gamst, A; Angeles, J E; Schwimmer, J B; Sirlin, C B
2017-05-01
To investigate the relationship between bone marrow fat content and hepatic fat content in children with known or suspected non-alcoholic fatty liver disease (NAFLD). This was an institutional review board-approved, Health Insurance Portability and Accountability Act (HIPAA)-compliant, cross-sectional, prospective analysis of data collected between October 2010 to March 2013 in 125 children with known or suspected NAFLD. Written informed consent was obtained for same-day research magnetic resonance imaging (MRI) of the lumbar spine, liver, and abdominal adiposity. Lumbar spine bone marrow proton density fat fraction (PDFF) and hepatic PDFF were estimated using complex-based MRI (C-MRI) techniques and magnitude-based MRI (M-MRI), respectively. Visceral adipose tissue (VAT) and subcutaneous adipose tissue (SCAT) were quantified using high-resolution MRI. All images were acquired by two MRI technologists. Hepatic M-MRI images were analysed by an image analyst; all other images were analysed by a single investigator. The relationship between lumbar spine bone marrow PDFF and hepatic PDFF was assessed with and without adjusting for the presence of covariates using correlation and regression analysis. Lumbar spine bone marrow PDFF was positively associated with hepatic PDFF in children with known or suspected NAFLD prior to adjusting for covariates (r=0.33, p=0.0002). Lumbar spine bone marrow PDFF was positively associated with hepatic PDFF in children with known or suspected NAFLD (r=0.24, p=0.0079) after adjusting for age, sex, body mass index z-score, VAT, and SCAT in a multivariable regression analysis. Bone marrow fat content is positively associated with hepatic fat content in children with known or suspected NAFLD. Further research is needed to confirm these results and understand their clinical and biological implications. Copyright © 2016 The Royal College of Radiologists. All rights reserved.
Maternal Perinatal Diet Induces Developmental Programming of Bone Architecture
Devlin, MJ; Grasemann, C; Cloutier, AM; Louis, L; Alm, C; Palmert, MR; Bouxsein, ML
2013-01-01
Maternal high fat diet can alter offspring metabolism via perinatal developmental programming. This study tests the hypothesis that maternal high fat diet also induces perinatal programming of offspring bone mass and strength. We compared skeletal acquisition in pups from C57Bl/6J mice fed high fat or normal diet from preconception through lactation. Three-week-old male and female pups from high fat (HF-N) and normal mothers (N-N) were weaned onto normal diet. Outcomes at 14 and 26 wks of age included body mass, body composition, whole body bone mineral content via pDXA, femoral cortical and trabecular architecture via μCT, and glucose tolerance. Female HF-N had normal body mass and glucose tolerance, with lower %body fat but higher serum leptin at 14 wks vs. N-N (p<0.05 for both). Whole body bone mineral content was 12% lower at 14 wks and 5% lower at 26 wks, but trabecular bone volume fraction was 20% higher at 14 wks in female HF-N vs. N-N (p<0.05 for all). Male HF-N had normal body mass and mildly impaired glucose tolerance, with lower %body fat at 14 wks and lower serum leptin at 26 wks vs. N-N (p<0.05 for both). Serum insulin was higher at 14 wks and lower at 26 wks in HF-N vs. N-N (p<0.05). Trabecular BV/TV was 34% higher and cortical bone area was 6% higher at 14 wks vs. N-N (p<0.05 for both). These data suggest maternal high fat diet has complex effects on offspring bone, supporting the hypothesis that maternal diet alters postnatal skeletal homeostasis. PMID:23503967
Body Composition Predicts Growth in Infants and Toddlers With Chronic Liver Disease.
Hurtado-López, Erika F; Vásquez-Garibay, Edgar M; Trujillo, Xóchitl; Larrosa-Haro, Alfredo
2017-12-01
This cross-sectional study was conducted on 15 infants and toddlers with chronic liver disease to validate arm anthropometry as an accurate measure of body composition (BC) compared to dual-energy x-ray absorptiometry and to predict growth from BC. The z score means of the anthropometric indicators were <-2 standard deviation, except for body fat index and subscapular skinfold, which were between -2 and +2 standard deviation. Fat mass was predicted by arm adiposity indicators and fat-free mass by arm muscle area. Bone mineral content explained 87% of variation in length. Two multiple regression models predicted length: 1 with fat mass plus fat-free mass; and the second with fat mass and bone mineral content. These observations suggest that arm anthropometry is a useful tool to estimate BC and the nutritional status in infants and toddlers with chronic liver disease. Length and head circumference can be predicted by fat mass, fat-free mass, and bone mineral content.
Myostatin--the holy grail for muscle, bone, and fat?
Buehring, B; Binkley, N
2013-12-01
Myostatin, a member of the transforming growth factor beta (TGF-β) superfamily, was first described in 1997. Since then, myostatin has gained growing attention because of the discovery that myostatin inhibition leads to muscle mass accrual. Myostatin not only plays a key role in muscle homeostasis, but also affects fat and bone. This review will focus on the impact of myostatin and its inhibition on muscle mass/function, adipose tissue and bone density/geometry in humans. Although existing data are sparse, myostatin inhibition leads to increased lean mass and 1 study found a decrease in fat mass and increase in bone formation. In addition, myostatin levels are increased in sarcopenia, cachexia and bed rest whereas they are increased after resistance training, suggesting physiological regulatory of myostatin. Increased myostatin levels have also been found in obesity and levels decrease after weight loss from caloric restriction. Knowledge on the relationship of myostatin with bone is largely based on animal data where elevated myostatin levels lead to decreased BMD and myostatin inhibition improved BMD. In summary, myostatin appears to be a key factor in the integrated physiology of muscle, fat, and bone. It is unclear whether myostatin directly affects fat and bone, or indirectly via muscle. Whether via direct or indirect effects, myostatin inhibition appears to increase muscle and bone mass and decrease fat tissue-a combination that truly appears to be a holy grail. However, at this time, human data for both efficacy and safety are extremely limited. Moreover, whether increased muscle mass also leads to improved function remains to be determined. Ultimately potential beneficial effects of myostatin inhibition will need to be determined based on hard outcomes such as falls and fractures.
Protection of brain and pancreas from high-fat diet: effects of catechin and caffeine.
Unno, Keiko; Yamamoto, Hiroyuki; Maeda, Ken-Ichi; Takabayashi, Fumiyo; Yoshida, Hirotoshi; Kikunaga, Naomi; Takamori, Nina; Asahina, Shunsuke; Iguchi, Kazuaki; Sayama, Kazutoshi; Hoshino, Minoru
2009-02-16
To investigate the effect of a high-fat diet on brain and pancreas functions, we used SAMP10 mice that have characteristics of brain atrophy and cognitive dysfunction with aging. Simultaneously, we investigated the effect of green tea catechin consumption on high-fat diet feeding, because green tea catechin has been reported to improve brain atrophy, brain dysfunction and obesity. The body weight of mice fed a high-fat diet from 2 to 12 months was higher than that of the control, although the calorie intake was not. The high-fat diet also increased insulin secretion; however, the hypersecretion of insulin and obesity were suppressed when mice were fed a high-fat diet with green tea catechin and caffeine. Furthermore, brain atrophy was suppressed and the working memory, tested using Y-maze, improved in mice fed a high-fat diet containing green tea catechin and caffeine. The secretion of insulin might affect both obesity and brain function. A strong correlation was found between working memory and insulin release in mice fed a high-fat diet with green tea catechin and/or caffeine. The results indicate the protective effect of green tea catechin and caffeine on the functions of brain and pancreas in mice fed a high-fat diet.
Iwaniec, Urszula T; Turner, Russell T
2013-03-01
A reciprocal association between bone marrow fat and bone mass has been reported in ovariectomized rodents, suggesting that bone marrow adipogenesis has a negative effect on bone growth and turnover balance. Mice with loss of function mutations in kit receptor (kit(W/W-v)) have no bone marrow adipocytes in tibia or lumbar vertebra. We therefore tested the hypothesis that marrow fat contributes to the development of osteopenia by comparing the skeletal response to ovariectomy (ovx) in growing wild type (WT) and bone marrow adipocyte-deficient kit(W/W-v) mice. Mice were ovx at 4 weeks of age and sacrificed 4 or 10 weeks post-surgery. Body composition was measured at necropsy by dual-energy X-ray absorptiometry. Cortical (tibia) and cancellous (tibia and lumbar vertebra) bone architecture were evaluated by microcomputed tomography. Bone marrow adipocyte size and density, osteoblast- and osteoclast-lined bone perimeters, and bone formation were determined by histomorphometry. Ovx resulted in an increase in total body fat mass at 10 weeks post-ovx in both genotypes, but the response was attenuated in the in kit(W/W-v) mice. Adipocytes were present in bone marrow of tibia and lumbar vertebra in WT mice and bone marrow adiposity increased following ovx. In contrast, marrow adipocytes were not detected in either intact or ovx kit(W/W-v) mice. However, ovx in WT and kit(W/W-v) mice resulted in statistically indistinguishable changes in cortical and cancellous bone mass, cortical and cancellous bone formation rate, and cancellous osteoblast and osteoclast-lined bone perimeters. In conclusion, our findings do not support a causal role for increased bone marrow fat as a mediator of ovx-induced osteopenia in mice. Copyright © 2012 Elsevier Inc. All rights reserved.
MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation
Li, Chang-Jun; Cheng, Peng; Liang, Meng-Ke; Chen, Yu-Si; Lu, Qiong; Wang, Jin-Yu; Xia, Zhu-Ying; Zhou, Hou-De; Cao, Xu; Xie, Hui; Liao, Er-Yuan; Luo, Xiang-Hang
2015-01-01
Bone marrow mesenchymal stem cells (BMSCs) exhibit an age-dependent reduction in osteogenesis that is accompanied by an increased propensity toward adipocyte differentiation. This switch increases adipocyte numbers and decreases the number of osteoblasts, contributing to age-related bone loss. Here, we found that the level of microRNA-188 (miR-188) is markedly higher in BMSCs from aged compared with young mice and humans. Compared with control mice, animals lacking miR-188 showed a substantial reduction of age-associated bone loss and fat accumulation in bone marrow. Conversely, mice with transgenic overexpression of miR-188 in osterix+ osteoprogenitors had greater age-associated bone loss and fat accumulation in bone marrow relative to WT mice. Moreover, using an aptamer delivery system, we found that BMSC-specific overexpression of miR-188 in mice reduced bone formation and increased bone marrow fat accumulation. We identified histone deacetylase 9 (HDAC9) and RPTOR-independent companion of MTOR complex 2 (RICTOR) as the direct targets of miR-188. Notably, BMSC-specific inhibition of miR-188 by intra–bone marrow injection of aptamer-antagomiR-188 increased bone formation and decreased bone marrow fat accumulation in aged mice. Together, our results indicate that miR-188 is a key regulator of the age-related switch between osteogenesis and adipogenesis of BMSCs and may represent a potential therapeutic target for age-related bone loss. PMID:25751060
USDA-ARS?s Scientific Manuscript database
Background: Inflammation is associated with increased bone resorption; the role of inflammation in postprandial bone turnover has not been explored. Consumption of milk fat globule membrane (MFGM) reduces inflammation in animal models. This study aimed to measure postprandial changes in bone turnov...
USDA-ARS?s Scientific Manuscript database
This study determined the effects of a high-fat diet and plasminogen activator inhibitor-1 deficiency (PAI-1-/-) on bone structure in mice bearing Lewis lung carcinoma (LLC) in lungs. Reduction in bone volume fraction (BV/TV) by 22% and 21%, trabecular number (Tb.N) by 8% and 4% and bone mineral de...
USDA-ARS?s Scientific Manuscript database
Chronic consumption by experimental animals of a typical Western diet high in saturated fats and cholesterol during postnatal life has been demonstrated to impair skeletal development. However, the underlying mechanism by which high fat, energy dense diets affect bone-forming cell phenotypes is poor...
A high-fat diet can affect bone healing in growing rats.
Yamanaka, Jéssica Suzuki; Yanagihara, Gabriela Rezende; Carlos, Bruna Leonel; Ramos, Júnia; Brancaleon, Brígida Batista; Macedo, Ana Paula; Issa, João Paulo Mardegan; Shimano, Antônio Carlos
2018-05-01
A high-fat diet (HFD) can have a negative effect on bone quality in young and old people. Although bone healing in children is normally efficient, there is no evidence that children who have a diet rich in fat have compromised bone fracture regeneration compared with children with recommended dietary fat levels. The purpose of the present study was to evaluate the effects of an HFD on bone healing in growing female rats. Twenty-six postweaning female Wistar rats were divided into two groups (13 animals per group): a standard diet (SD) group and an HFD (with 60% of energy from fat) group. The rats received the assigned diets for 5 weeks, and in the third week they were submitted to an osteotomy procedure of the left tibia. Body mass and feed intake were recorded during the experiment. One day before euthanasia, an insulin tolerance test was performed. After euthanasia, the tibiae were removed and analyzed by densitometry, mechanical testing, histomorphometry, stereology and immunohistochemistry. An HFD caused an adaptive response to maintain energetic balance by decreasing feed intake and causing insulin insensitivity. There was no change in bone mineral density, collagen amount and immunostaining for bone formation, but maximal load and stiffness were decreased in the HFD group. In addition, bone volume had a tendency to be higher in the SD group than in the HFD group. Compared with rats receiving an SD, growing rats receiving an HFD for 5 weeks had similar bone mineral density but altered mechanical properties at the osteotomy defect site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yee, S; Wloch, J; Pirkola, M
Purpose: Quantitative fat-water segmentation is important not only because of the clinical utility of fat-suppressed MRI images in better detecting lesions of clinical significance (in the midst of bright fat signal) but also because of the possible physical need, in which CT-like images based on the materials’ photon attenuation properties may have to be generated from MR images; particularly, as in the case of MR-only radiation oncology environment to obtain radiation dose calculation or as in the case of hybrid PET/MR modality to obtain attenuation correction map for the quantitative PET reconstruction. The majority of such fat-water quantitative segmentations havemore » been performed by utilizing the Dixon’s method and its variations, which have to enforce the proper settings (often predefined) of echo time (TE) in the pulse sequences. Therefore, such methods have been unable to be directly combined with those ultrashort TE (UTE) sequences that, taking the advantage of very low TE values (∼ 10’s microsecond), might be beneficial to directly detect bones. Recently, an RF pulse-based method (http://dx.doi.org/10.1016/j.mri.2015.11.006), termed as PROD pulse method, was introduced as a method of quantitative fat-water segmentation that does not have to depend on predefined TE settings. Here, the clinical feasibility of this method is verified in brain tumor patients by combining the PROD pulse with several sequences. Methods: In a clinical 3T MRI, the PROD pulse was combined with turbo spin echo (e.g. TR=1500, TE=16 or 60, ETL=15) or turbo field echo (e.g. TR=5.6, TE=2.8, ETL=12) sequences without specifying TE values. Results: The fat-water segmentation was possible without having to set specific TE values. Conclusion: The PROD pulse method is clinically feasible. Although not yet combined with UTE sequences in our laboratory, the method is potentially compatible with UTE sequences, and thus, might be useful to directly segment fat, water, bone and air.« less
Lau, Beatrice Y; Fajardo, Val Andrew; McMeekin, Lauren; Sacco, Sandra M; Ward, Wendy E; Roy, Brian D; Peters, Sandra J; Leblanc, Paul J
2010-10-01
Previous studies have suggested that high-fat diets adversely affect bone development. However, these studies included other dietary manipulations, including low calcium, folic acid, and fibre, and (or) high sucrose or cholesterol, and did not directly compare several common sources of dietary fat. Thus, the overall objective of this study was to investigate the effect of high-fat diets that differ in fat quality, representing diets high in saturated fatty acids (SFA), n-3 polyunsaturated fatty acids (PUFA), or n-6 PUFA, on femur bone mineral density (BMD), strength, and fatty acid composition. Forty-day-old male Sprague-Dawley rats were maintained for 65 days on high-fat diets (20% by weight), containing coconut oil (SFA; n = 10), flaxseed oil (n-3 PUFA; n = 10), or safflower oil (n-6 PUFA; n = 11). Chow-fed rats (n = 10), at 105 days of age, were included to represent animals on a control diet. Rats fed high-fat diets had higher body weights than the chow-fed rats (p < 0.001). Among all high-fat groups, there were no differences in femur BMD (p > 0.05) or biomechanical strength properties (p > 0.05). Femurs of groups fed either the high n-3 or high n-6 PUFA diets were stronger (as measured by peak load) than those of the chow-fed group, after adjustment for significant differences in body weight (p = 0.001). As expected, the femur fatty acid profile reflected the fatty acid composition of the diet consumed. These results suggest that high-fat diets, containing high levels of PUFA in the form of flaxseed or safflower oil, have a positive effect on bone strength when fed to male rats 6 to 15 weeks of age.
Huang, Tao; Liu, Huijuan; Zhao, Wei; Li, Ji; Wang, Youfa
2015-01-01
Scope Dietary fat correlates with bone mineral density (BMD). We tested the association between fat intake and BMD, and tested if fat intake modified the degree of genetic influence on BMD and bone speed of sound (SOS). Methods and results We included 622 twins aged 7–15 y from South China. Data on anthropometry, dietary intake, BMD, and SOS were collected. Quantitative genetic analyses of structural equation models were fit using the Mx statistical package. The within-pair intra-class correlations (ICC) for BMD in DZ twins were nearly half of that for MZ twins (ICC=0.39 vs 0.70). The heritability of BMD and SOS were 71% and 79%. Phenotypic correlation between fat intake and SOS was significant (r=−0.19, p=0.04). SOS was negatively correlated with fat intake in boys (r=−0.11, p=0.05), but not in girls. Full Cholesky decomposition models showed SOS has a strong genetic correlation with fat intake (rA =−0.88, 95% CI=−0.94, 0.01); the environmental correlation between fat intake and SOS was weak (rE =−0.04, 95% CI=−0.20, 0.13). Fat intake modified the additive genetic effects on BMD. Conclusion Genetic factors explained 71% and 79% of individual variance in BMD and SOS, respectively. Low fat intake counteracts genetic predisposition to low BMD. PMID:25546604
Aparicio, Gustavo; Soler, Isabel; López-Durán, Luis
2014-04-14
Fat embolism syndrome is a potentially fatal complication of long bone fractures. It is usually seen in the context of polytrauma or a femoral fracture. There are few reports of fat embolism syndrome occurring after isolated long bone fractures other than those of the femur. We describe a case of fat embolism syndrome in a 33-year-old Caucasian man. He was being seen for an isolated Gustilo's grade II open tibial fracture. He was deemed clinically stable, so we proceeded to treat the fracture with intramedullary reamed nailing. He developed fat embolism syndrome intraoperatively and was treated successfully. This case caused us to question the use of injury severity scoring for isolated long bone fractures. It suggests that parameters that have been described in the literature other than that the patient is apparently clinically stable should be used to establish the best time for nailing a long bone fracture, thereby improving patient safety.
2014-01-01
Background Fat embolism syndrome is a potentially fatal complication of long bone fractures. It is usually seen in the context of polytrauma or a femoral fracture. There are few reports of fat embolism syndrome occurring after isolated long bone fractures other than those of the femur. Case presentation We describe a case of fat embolism syndrome in a 33-year-old Caucasian man. He was being seen for an isolated Gustilo’s grade II open tibial fracture. He was deemed clinically stable, so we proceeded to treat the fracture with intramedullary reamed nailing. He developed fat embolism syndrome intraoperatively and was treated successfully. Conclusion This case caused us to question the use of injury severity scoring for isolated long bone fractures. It suggests that parameters that have been described in the literature other than that the patient is apparently clinically stable should be used to establish the best time for nailing a long bone fracture, thereby improving patient safety. PMID:24731759
Sioen, Isabelle; Mouratidou, Theodora; Herrmann, Diana; De Henauw, Stefaan; Kaufman, Jean-Marc; Molnár, Dénes; Moreno, Luis A; Marild, Staffan; Barba, Gianvincenzo; Siani, Alfonso; Gianfagna, Francesco; Tornaritis, Michael; Veidebaum, Toomas; Ahrens, Wolfgang
2012-10-01
The aim of this study was to investigate the relationship between markers of body fat and bone status assessed as calcaneal bone stiffness in a large sample of European healthy pre- and primary school children. Participants were 7,447 children from the IDEFICS study (spread over eight different European countries), age 6.1 ± 1.8 years (range 2.1-9.9), 50.5 % boys. Anthropometric measurements (weight, height, bioelectrical impedance, waist and hip circumference, and tricipital and subscapular skinfold thickness) as well as quantitative ultrasonographic measurements to determine calcaneal stiffness index (SI) were performed. Partial correlation analysis, linear regression analysis, and ANCOVA were stratified by sex and age group: preschool boys (n = 1,699) and girls (n = 1,599) and primary school boys (n = 2,062) and girls (n = 2,087). In the overall study population, the average calcaneal SI was equal to 80.2 ± 14.0, ranging 42.4-153. The results showed that preschool children with higher body fat had lower calcaneal SI (significant correlation coefficients between -0.05 and -0.20), while primary school children with higher body fat had higher calcaneal SI (significant correlation coefficients between 0.05 and 0.13). After adjusting for fat-free mass, both preschool and primary school children showed an inverse relationship between body fat and calcaneal stiffness. To conclude, body fat is negatively associated with calcaneal bone stiffness in children after adjustment for fat-free mass. Fat-free mass may confound the association in primary school children but not in preschool children. Muscle mass may therefore be an important determinant of bone stiffness.
L Newton, Anna; J Hanks, Lynae; Davis, Michelle; Casazza, Krista
2013-01-01
Investigation of the physiologic relevance of bone marrow adipose tissue (BMAT) during growth may promote understanding of the bone-fat axis and confluence with metabolic factors. The objective of this pilot investigation was two-fold: (1) to evaluate the relationships among total body fat, bone mineral content (BMC) and femoral BMAT during childhood and underlying metabolic determinants and (2) to determine if the relationships differ by race. Participants included white and non-Hispanic black girls (n=59) ages 4–10 years. Femoral BMAT volume was measured by magnetic resonance imaging, BMC and body fat by dual-energy X-ray absorptiometry. Metabolic parameters were assessed in the fasted state. Total fat and BMC were positively associated with BMAT; however, simultaneous inclusion of BMC and body fat in the statistical model attenuated the association between BMC and BMAT. Differences in BMAT volume were observed, non-Hispanic black girls exhibiting marginally greater BMAT at age eight (P=0.05) and white girls exhibiting greater BMAT at age ten (P<0.001). Metabolic parameters conferred differential impact by race, such that, a positive association for BMAT and leptin (P=0.02) and adiponectin (P=0.002) in white girls while BMAT and insulin were inversely related in non-Hispanic black girls (P=0.008). Our findings revealed a positive relationship between BMAT, body fat and BMC, although body fat, respective to leptin, contributed partly to the relationship between BMAT and BMC. Despite large differences in total fat between non-Hispanic black and white, the relationship between BMAT and BMC was similar to white girls. However, this relationship appeared to be impacted through different mechanisms according to race. PMID:23951544
L Newton, Anna; J Hanks, Lynae; Davis, Michelle; Casazza, Krista
2013-01-01
Investigation of the physiologic relevance of bone marrow adipose tissue (BMAT) during growth may promote understanding of the bone-fat axis and confluence with metabolic factors. The objective of this pilot investigation was two-fold: (1) to evaluate the relationships among total body fat, bone mineral content (BMC) and femoral BMAT during childhood and underlying metabolic determinants and (2) to determine if the relationships differ by race. Participants included white and non-Hispanic black girls (n=59) ages 4-10 years. Femoral BMAT volume was measured by magnetic resonance imaging, BMC and body fat by dual-energy X-ray absorptiometry. Metabolic parameters were assessed in the fasted state. Total fat and BMC were positively associated with BMAT; however, simultaneous inclusion of BMC and body fat in the statistical model attenuated the association between BMC and BMAT. Differences in BMAT volume were observed, non-Hispanic black girls exhibiting marginally greater BMAT at age eight (P=0.05) and white girls exhibiting greater BMAT at age ten (P<0.001). Metabolic parameters conferred differential impact by race, such that, a positive association for BMAT and leptin (P=0.02) and adiponectin (P=0.002) in white girls while BMAT and insulin were inversely related in non-Hispanic black girls (P=0.008). Our findings revealed a positive relationship between BMAT, body fat and BMC, although body fat, respective to leptin, contributed partly to the relationship between BMAT and BMC. Despite large differences in total fat between non-Hispanic black and white, the relationship between BMAT and BMC was similar to white girls. However, this relationship appeared to be impacted through different mechanisms according to race.
Adiposity and TV viewing are related to less bone accrual in young children
Wosje, Karen S.; Khoury, Philip R.; Claytor, Randal P.; Copeland, Kristen A.; Kalkwarf, Heidi J.; Daniels, Stephen R.
2008-01-01
Objective To examine the relation between baseline fat mass and gain in bone area and bone mass in preschoolers studied prospectively for 4 y, with a focus on the role of physical activity and TV viewing. Study design Children were part of a longitudinal study in which measures of fat, lean and bone mass, height, weight, activity, and diet were taken every 4 months from ages 3 to 7 y. Activity was measured by accelerometer, and TV viewing by parent checklist. We included 214 children with total body dual energy x-ray absorptiometry (Hologic 4500A) scans at ages 3.5 and 7 y. Results Higher baseline fat mass was associated with smaller increases in bone area and bone mass over the next 3.5 y (p<0.001). More TV viewing was related to smaller gains in bone area and bone mass accounting for race, sex, and height. Activity by accelerometer was not associated with bone gains. Conclusions Adiposity and TV viewing are related to less bone accrual in preschoolers. PMID:18692201
Macfarlane, Duncan J; Chan, Natalie T-Y; Tse, Michael A; Joe, Glen M
2016-01-01
We aimed to assess the agreement of a commercially available bioelectrical impedance analysis (BIA) device in measuring changes in fat, lean and bone mass over a 10-week lifestyle intervention, with dual energy X-ray absorptiometry (DXA) as reference. A sample of 136 volunteers (18-66 years) underwent a physical activity intervention to enhance lean mass and reduce fat mass. BIA (Tanita BC545) and DXA (Hologic Explorer) measures of whole-body composition were taken at baseline and at the end of the intervention. After an average of 74 ± 18 days intervention, DXA showed significant changes in 2 of 3 outcome variables: reduced fat mass of 0.802 ± 1.092 kg (P < 0.001), increased lean mass of 0.477 ± 0.966 kg (P < 0.001); minor non-significant increase of 0.007 ± 0.041 kg of bone mass (P = 0.052). The respective changes in BIA measures were a significant reduction of 0.486 ± 1.539 kg fat (P < 0.001), but non-significant increases of 0.084 ± 1.201 kg lean mass (P = 0.425), and 0.014 ± 0.091 kg bone (P = 0.074). Significant, but moderately weak, correlations were seen in absolute mass changes between DXA and BIA: 0.511 (fat), 0.362 (lean) and 0.172 (bone). Compared to DXA, BIA demonstrated mediocre agreement to changes in fat mass, but poor agreement to lean mass changes. BIA significantly underestimated the magnitude of changes in fat and lean mass compared to DXA.
Aoki, Takatoshi; Yamaguchi, Shinpei; Kinoshita, Shunsuke; Hayashida, Yoshiko; Korogi, Yukunori
2016-09-01
To determine the reproducibility of the quantitative chemical shift-based water-fat separation method with a multiecho gradient echo sequence [iteraterative decomposition of water and fat with echo asymmetry and least-squares estimation quantitation sequence (IDEAL-IQ)] for assessing bone marrow fat fraction (FF); to evaluate variation of FF at different bone sites; and to investigate its association with age and menopause. 31 consecutive females who underwent pelvic iterative decomposition of water and fat with echo asymmetry and least-squares estimation at 3-T MRI were included in this study. Quantitative FF using IDEAL-IQ of four bone sites were analyzed. The coefficients of variance (CV) on each site were evaluated repeatedly 10 times to assess the reproducibility. Correlations between FF and age were evaluated on each site, and the FFs between pre- and post-menopausal groups were compared. The CV in the quantification of marrow FF ranged from 0.69% to 1.70%. A statistically significant correlation was established between the FF and the age in lumbar vertebral body, ilium and intertrochanteric region of the femur (p < 0.001). The average FF of post-menopausal females was significantly higher than that of pre-menopausal females in these sites (p < 0.05). In the greater trochanter of the femur, there was no significant correlation between FF and age. In vivo IDEAL-IQ would provide reliable quantification of bone marrow fat. IDEAL-IQ is simple to perform in a short time and may be practical for providing information on bone quality in clinical settings.
NASA Astrophysics Data System (ADS)
Salas-Ramirez, Maikol; Tran-Gia, Johannes; Kesenheimer, Christian; Weng, Andreas Max; Kosmala, Aleksander; Heidemeier, Anke; Köstler, Herbert; Lassmann, Michael
2018-01-01
Absorbed dose to active bone marrow is a predictor of hematological toxicity in molecular radiotherapy. Due to the complex composition of bone marrow tissue, the necessity to improve the personalized dosimetry has led to the application of non-conventional imaging methods in nuclear medicine. The aim of this study is to apply magnetic resonance imaging (MRI) for quantification of the fat fraction in lumbar vertebrae and to analyze its implications for bone marrow dosimetry. First, a highly accelerated two-point Dixon MRI sequence for fat-water separation was validated in a 3T system against the magnetic resonance spectroscopy (MRS) gold standard. The validation was performed in a fat-water phantom composed of 11 vials with different fat fractions between 0% and 100%, and subsequently repeated in the lumbar vertebrae of three healthy volunteers. Finally, a retrospective study was performed by analyzing the fat fraction in five lumbar vertebrae of 44 patients scanned with the two-point Dixon sequence. The two-point Dixon phantom acquisition showed a good agreement (maximum difference = 2.9%) between the nominal fat fraction and MRS. In the volunteers, a statistical analysis showed a non-significant difference (p = 0.19) between MRI and MRS. In the patients, gender-specific linear fits for female and male data indicated that the age-dependent marrow conversion (red → yellow marrow) is slower in males (0.3% per year) than in females (0.5% per year). Lastly, the fat fraction values showed a considerable variability in patients of similar ages and the same gender. Two-point Dixon MRI enables a non-invasive and spatially resolved quantification of the fat fraction in bone marrow. Our study provides important evidence on the differences in marrow conversion between females and males. In addition, differences were observed in the cellularity values of the International Commission on Radiological Protection (ICRP) reference man (0.7) and the median values obtained in our patient group. These observations lead to the conclusion that the fat fraction in bone marrow should be considered as a patient-specific variable in clinical dosimetry procedures.
Salas-Ramirez, Maikol; Tran-Gia, Johannes; Kesenheimer, Christian; Weng, Andreas Max; Kosmala, Aleksander; Heidemeier, Anke; Köstler, Herbert; Lassmann, Michael
2018-01-16
Absorbed dose to active bone marrow is a predictor of hematological toxicity in molecular radiotherapy. Due to the complex composition of bone marrow tissue, the necessity to improve the personalized dosimetry has led to the application of non-conventional imaging methods in nuclear medicine. The aim of this study is to apply magnetic resonance imaging (MRI) for quantification of the fat fraction in lumbar vertebrae and to analyze its implications for bone marrow dosimetry. First, a highly accelerated two-point Dixon MRI sequence for fat-water separation was validated in a 3T system against the magnetic resonance spectroscopy (MRS) gold standard. The validation was performed in a fat-water phantom composed of 11 vials with different fat fractions between 0% and 100%, and subsequently repeated in the lumbar vertebrae of three healthy volunteers. Finally, a retrospective study was performed by analyzing the fat fraction in five lumbar vertebrae of 44 patients scanned with the two-point Dixon sequence. The two-point Dixon phantom acquisition showed a good agreement (maximum difference = 2.9%) between the nominal fat fraction and MRS. In the volunteers, a statistical analysis showed a non-significant difference (p = 0.19) between MRI and MRS. In the patients, gender-specific linear fits for female and male data indicated that the age-dependent marrow conversion (red → yellow marrow) is slower in males (0.3% per year) than in females (0.5% per year). Lastly, the fat fraction values showed a considerable variability in patients of similar ages and the same gender. Two-point Dixon MRI enables a non-invasive and spatially resolved quantification of the fat fraction in bone marrow. Our study provides important evidence on the differences in marrow conversion between females and males. In addition, differences were observed in the cellularity values of the International Commission on Radiological Protection (ICRP) reference man (0.7) and the median values obtained in our patient group. These observations lead to the conclusion that the fat fraction in bone marrow should be considered as a patient-specific variable in clinical dosimetry procedures.
Dimov, Alexey V; Liu, Zhe; Spincemaille, Pascal; Prince, Martin R; Du, Jiang; Wang, Yi
2018-01-01
To develop quantitative susceptibility mapping (QSM) of bone using an ultrashort echo time (UTE) gradient echo (GRE) sequence for signal acquisition and a bone-specific effective transverse relaxation rate ( R2*) to model water-fat MR signals for field mapping. Three-dimensional radial UTE data (echo times ≥ 40 μs) was acquired on a 3 Tesla scanner and fitted with a bone-specific signal model to map the chemical species and susceptibility field. Experiments were performed ex vivo on a porcine hoof and in vivo on healthy human subjects (n = 7). For water-fat separation, a bone-specific model assigning R2* decay mostly to water was compared with the standard models that assigned the same decay for both fat and water. In the ex vivo experiment, bone QSM was correlated with CT. Compared with standard models, the bone-specific R2* method significantly reduced errors in the fat fraction within the cortical bone in all tested data sets, leading to reduced artifacts in QSM. Good correlation was found between bone CT and QSM values in the porcine hoof (R 2 = 0.77). Bone QSM was successfully generated in all subjects. The QSM of bone is feasible using UTE with a conventional echo time GRE acquisition and a bone-specific R2* signal model. Magn Reson Med 79:121-128, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Sobol, Monika; Raj, Stanisława; Skiba, Grzegorz
2018-05-01
Consumption of a high-fat diet, rich in SFA, causes deterioration of bone properties. Some studies suggest that feeding inulin to animals may increase mineral absorption and positively affect bone quality; however, these studies have been carried out only on rodents fed a standard diet. The primary objective of this study was to determine the effect of inulin on bone health of pigs (using it as an animal model for humans) fed a high-fat diet rich in SFA, having an unbalanced ratio of lysine:metabolisable energy. It was hypothesised that inulin reduces the negative effects of such a diet on bone health. At 50 d of age, twenty-one pigs were randomly allotted to three groups: the control (C) group fed a standard diet, and two experimental (T and TI) groups fed a high-fat diet rich in SFA. Moreover, TI pigs consumed an extra inulin supply (7 % of daily feed intake). After 10 weeks, whole-body bone mineral content (P=0·0054) and bone mineral density (P=0·0322) were higher in pigs of groups TI and C compared with those of group T. Femur bone mineral density was highest in pigs in group C, lower in group TI and lowest in group T (P=0·001). Femurs of pigs in groups TI and C had similar, but higher, maximum strength compared with femurs of pigs in group T (P=0·0082). In conclusion, consumption of a high-fat diet rich in SFA adversely affected bone health, but inulin supplementation in such a diet diminishes this negative effect.
Verma, Poonam; Bansal, Himanshu; Agrawal, Anupama; Leon, Jerry; Sundell, I Birgitta; Koka, Prasad S
Human mesenchymal stem cells from bone marrow (hMSCs) have broad therapeutic potential. These cells can be are readily isolated from bone marrow by their property to adhere to tissue culture treated culture wares. However, the proliferation rates and other properties of the cells gradually change during expansion. This study aims to validate the protocol of isolation and differentiation of hMSCs from bone marrow for therapeutic applications. Sixty ml of bone marrow was extracted from 5 patients and MSCs were isolated. These were characterized by Flow Cytometry, CFU assay and were differentiated into bone, fat cells and neurocytes. The cells were having healthy morphology. These were positive for the markers CD105, CD90 and CD73 and negative for CD45, CD34 and HLA-DR. The cells could differentiate into fat, bone and neural cells. MSCs from the bone marrow were isolated and differentiated. These cells were morphologically healthy and passed CFU assay. The cells exhibited differentiation potential into bone, fat and neural tissue. These cells can be used in therapeutic applications.
Influence on bone metabolism of dietary trace elements, protein, fat, carbohydrates, and vitamins.
Sarazin, M; Alexandre, C; Thomas, T
2000-01-01
Osteoporosis is a multifactorial disease driven primarily by the genetic factors that control bone metabolism. Among environmental factors, diet may play a key role, affording a target for low-cost intervention. Calcium and vitamin D are well known to affect bone metabolism. Other nutrients may influence bone mass changes; for instance, a number of trace elements and vitamins other than vitamin D are essential to many of the steps of bone metabolism. A wide variety of foods provide these nutrients, and in industrialized countries deficiencies are more often due to idiosyncratic eating habits than to cultural influences. Both culture and vogue influence the amount of carbohydrate, fat, and protein in the typical diet. In children, the current trend is to reduce protein and to increase carbohydrate and fat. Data from epidemiological and animal studies suggest that this may adversely affect bone mass and the fracture risk.
Roles of leptin in bone metabolism and bone diseases.
Chen, Xu Xu; Yang, Tianfu
2015-09-01
Adipose tissue has been more accepted as an active contributor to whole body homeostasis, rather than just a fat depot, since leptin, a 16 kDa protein, was discovered as the product of the obese gene in 1994. With more and more studies conducted on this hormone, it has been shown that there is a close relationship between adipose tissue and bone, which have important effects on each other. Bone is the source of many hormones, such as osteocalcin, that can affect energy metabolism and then the anabolism or catabolism of fat tissue. In contrast, the adipose tissue synthesizes and releases a series of adipokines, which are involved in bone metabolism through direct or indirect effects on bone formation and resorption. Interestingly, leptin, one of the most important cytokines derived from fat tissue, seems to account for the largest part of effects on bone, through direct or indirect involvement in bone remodeling and by playing a significant role in many bone diseases, such as osteoporosis, osteoarthritis, rheumatic arthritis, bone tumors and even fractures. In this review, we will discuss the progress in leptin research, particularly focusing on the roles of leptin in bone diseases.
A High-Saturated-Fat, High-Sucrose Diet Aggravates Bone Loss in Ovariectomized Female Rats.
Dong, Xiao-Li; Li, Chun-Mei; Cao, Si-Si; Zhou, Li-Ping; Wong, Man-Sau
2016-06-01
Estrogen deficiency in women and high-saturated fat, high-sucrose (HFS) diets have both been recognized as risk factors for metabolic syndrome. Studies on the combined actions of these 2 detrimental factors on the bone in females are limited. We sought to determine the interactive actions of estrogen deficiency and an HFS diet on bone properties and to investigate the underlying mechanisms. Six-month-old Sprague Dawley sham or ovariectomized (OVX) rats were pair fed the same amount of either a low-saturated-fat, low-sucrose (LFS) diet (13% fat calories; 15% sucrose calories) or an HFS diet (42% fat calories; 30% sucrose calories) for 12 wk. Blood, liver, and bone were collected for correspondent parameters measurement. Ovariectomy decreased bone mineral density in the tibia head (TH) by 62% and the femoral end (FE) by 49% (P < 0.0001). The HFS diet aggravated bone loss in OVX rats by an additional 41% in the TH and 37% in the FE (P < 0.05). Bone loss in the HFS-OVX rats was accompanied by increased urinary deoxypyridinoline concentrations by 28% (P < 0.05). The HFS diet induced cathepsin K by 145% but reduced osteoprotegerin mRNA expression at the FE of the HFS-sham rats by 71% (P < 0.05). Ovariectomy significantly increased peroxisome proliferator-activated receptor γ mRNA expression by 136% and 170% at the FE of the LFS- and HFS-OVX rats, respectively (P < 0.05). The HFS diet aggravated ovariectomy-induced lipid deposition and oxidative stress (OS) in rat livers (P < 0.05). Trabecular bone mineral density at the FE was negatively correlated with rat liver malondialdehyde concentrations (R(2) = 0.39; P < 0.01). The detrimental actions of the HFS diet and ovariectomy on bone properties in rats occurred mainly in cancellous bones and were characterized by a high degree of bone resorption and alterations in OS. © 2016 American Society for Nutrition.
Autopsy diagnosis of fat embolism syndrome.
Miller, Peter; Prahlow, Joseph A
2011-09-01
The fat embolism syndrome (FES) is considered a clinical diagnosis. It typically occurs within several days following major traumatic injury, usually involving fractures of the pelvis and/or lower extremities. Fat embolism syndrome is characterized by the onset of respiratory, neurological, cutaneous, and hematologic manifestations and is thought to be related to intravascular embolization of fat, presumably arising from within the fractured bone marrow space. In its most severe form, FES can be lethal. The presence of fat emboli within the microvasculature of the lungs, brain, and sometimes other organs verifies the clinical impression of FES. Despite its relatively well-known clinical characterization, debate exists within the clinical literature regarding the most appropriate diagnostic criteria for FES. Given this fact, along with the fact that FES is a clinical diagnosis, it is not surprising that forensic pathologists may be somewhat reluctant to make a postmortem diagnosis of FES, especially in cases where insufficient clinical information is available. A case of fatal FES is presented in which rapid clinical deterioration occurred, followed by death, such that a clinical diagnosis of FES was never rendered. We propose that, given the correct circumstances, clinical scenario, and autopsy findings, it is appropriate and acceptable to make a postmortem diagnosis of FES. A multitiered approach to the postmortem diagnosis of FES is presented.
Jamieson, Jennifer A; Ryz, Natasha R; Taylor, Carla G; Weiler, Hope A
2008-08-01
New strategies to improve Ca absorption and bone health are needed to address the current state of osteoporosis prevention and management. Inulin-type fructans have shown great promise as a dietary intervention strategy, but have not yet been tested in a young female model. Our objective was to investigate the effect of long chain (LC) inulin on bone mineralization and density in growing, female rats, as well as the quality of growth. Weanling Sprague-Dawley rats were assigned to inulin or cellulose treatments for either 4 or 8 weeks. Growth was measured weekly and quality of growth assessed using fat pad weights and dual-energy X-ray absorptiometry (DXA). Whole body (WB) and selected regions were analysed for bone mineral density (BMD) and body composition by DXA. Serum markers of bone turnover were assessed by enzyme-linked immunosorbent assays. Ca and P concentrations were determined in excised femurs by inductively coupled plasma spectrometry. Feeding inulin resulted in 4 % higher femoral weight (adjusted for body weight) and 6 % less feed intake. Inulin did not affect WB or regional BMD, but was associated with a 28 % lower parametrial fat pad mass, 21 % less WB fat mass and 5 % less WB mass. In summary, LC-inulin lowered body fat mass, without consequence to bone density in growing female rats.
microRNAs as regulators of adipogenic differentiation of mesenchymal stem cells.
Hamam, Dana; Ali, Dalia; Kassem, Moustapha; Aldahmash, Abdullah; Alajez, Nehad M
2015-02-15
microRNAs (miRNAs) constitute complex regulatory network, fine tuning the expression of a myriad of genes involved in different biological and physiological processes, including stem cell differentiation. Mesenchymal stem cells (MSCs) are multipotent stem cells present in the bone marrow stroma, and the stroma of many other tissues, and can give rise to a number of mesoderm-type cells including adipocytes and osteoblasts, which form medullary fat and bone tissues, respectively. The role of bone marrow fat in bone mass homeostasis is an area of intensive investigation with the aim of developing novel approaches for enhancing osteoblastic bone formation through inhibition of bone marrow fat formation. A number of recent studies have reported several miRNAs that enhance or inhibit adipogenic differentiation of MSCs and with potential use in microRNA-based therapy to regulate adipogenesis in the context of treating bone diseases and metabolic disorders. The current review focuses on miRNAs and their role in regulating adipogenic differentiation of MSCs.
Schaffer, Joseph Christopher; Adib, Farshad; Cui, Quanjun
2014-06-01
Osteonecrosis (ON) of the femoral head, without timely intervention, often progresses to debilitating hip arthritis. Core decompression (CD) with bone grafting was used to treat patients with early-stage ON. In 3 cases, intraoperative oxygen saturation, end-tidal carbon dioxide fluctuations, and/or vital sign fluctuations were observed during insertion of the graft, a mixture of bone marrow and demineralized bone matrix. In 1 case, continued postoperative pulmonary symptoms required admission to intensive care. In this article, we describe these cases and provide supporting evidence that they were caused by fat emboli secondary to forceful insertion of bone graft. We review the literature and present complications data. Although no cases of fat emboli were reported as complications of any CD series with or without bone grafting, CD augmented with bone graft may carry risks not seen before in CD alone. Care should be taken to avoid these complications, possibly through technique modification.
Zheng, Weili; Kim, Joshua P; Kadbi, Mo; Movsas, Benjamin; Chetty, Indrin J; Glide-Hurst, Carri K
2015-11-01
To incorporate a novel imaging sequence for robust air and tissue segmentation using ultrashort echo time (UTE) phase images and to implement an innovative synthetic CT (synCT) solution as a first step toward MR-only radiation therapy treatment planning for brain cancer. Ten brain cancer patients were scanned with a UTE/Dixon sequence and other clinical sequences on a 1.0 T open magnet with simulation capabilities. Bone-enhanced images were generated from a weighted combination of water/fat maps derived from Dixon images and inverted UTE images. Automated air segmentation was performed using unwrapped UTE phase maps. Segmentation accuracy was assessed by calculating segmentation errors (true-positive rate, false-positive rate, and Dice similarity indices using CT simulation (CT-SIM) as ground truth. The synCTs were generated using a voxel-based, weighted summation method incorporating T2, fluid attenuated inversion recovery (FLAIR), UTE1, and bone-enhanced images. Mean absolute error (MAE) characterized Hounsfield unit (HU) differences between synCT and CT-SIM. A dosimetry study was conducted, and differences were quantified using γ-analysis and dose-volume histogram analysis. On average, true-positive rate and false-positive rate for the CT and MR-derived air masks were 80.8% ± 5.5% and 25.7% ± 6.9%, respectively. Dice similarity indices values were 0.78 ± 0.04 (range, 0.70-0.83). Full field of view MAE between synCT and CT-SIM was 147.5 ± 8.3 HU (range, 138.3-166.2 HU), with the largest errors occurring at bone-air interfaces (MAE 422.5 ± 33.4 HU for bone and 294.53 ± 90.56 HU for air). Gamma analysis revealed pass rates of 99.4% ± 0.04%, with acceptable treatment plan quality for the cohort. A hybrid MRI phase/magnitude UTE image processing technique was introduced that significantly improved bone and air contrast in MRI. Segmented air masks and bone-enhanced images were integrated into our synCT pipeline for brain, and results agreed well with clinical CTs, thereby supporting MR-only radiation therapy treatment planning in the brain. Copyright © 2015 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Epidemiological studies show that maternal obesity during intrauterine and early postnatal life increases the risk of low bone mass and fracture later in life. Here, we show that bone development is inhibited in GED 18.5 embryos from rat dams made obese by feeding a high fat diet (HFD). Moreover, fe...
Selvi, Subramanian Kalaivani; Kar, Rakhee; Vadivelan, Mehalingam; Subrahmanyam, Dharanipragada Krishna Suri
2012-01-01
Bone marrow fat embolism usually occurs following multiple bone fractures, intraosseous surgical procedures, following vigorous cardiac resuscitation, ecclampsia, sickle cell anemia, malignancies, etc. We present a case of 70-year-old male who presented with fever, cough with expectoration, respiratory distress, altered sensorium, hypotension and thrombocytopenia, and diagnosed to have dengue shock syndrome and expired within 1 day of admission. Postmortem lung biopsy revealed bone marrow fat embolism.
Effects of Gymnastics Activities on Bone Accrual during Growth: A Systematic Review.
Jürimäe, Jaak; Gruodyte-Raciene, Rita; Baxter-Jones, Adam D G
2018-06-01
The amount of bone gained during childhood and adolescence impacts greatly on lifetime skeletal health. The purpose of this review is to summarize current evidence of the effects of gymnastics activities on bone mineral accrual during growth and to describe possible factors that influence bone mineral gains. The PubMed and SportDiscus databases were searched, and a total of 24 articles met the selection criteria and were included in this review. Artistic and rhythmic gymnasts presented higher bone mineral density and content values compared to untrained controls, despite possible negative effects associated with hormonal levels, dietary restrictions and body fat. The results suggest that gymnasts had similar bone turnover values compared to untrained controls. High-intensity mechanical loading of gymnastics activity appears to increase bone development and counterbalance negative effects, such as later pubertal development, lower body fat mass and lower hormone levels. In conclusion, gymnasts present higher bone mineral values in comparison with untrained controls. The osteogenic effect of gymnastics athletic activity has a positive influence on bone mineral accrual and overcomes the possible negative influence of high athletic activity that may cause negative energy balance and low body fat mass which are associated with lower bone accrual.
Traumatic Extra-capsular and Intra-capsular Floating Fat: Fat-fluid Levels of the Knee Revisited
Davis, Derik L; Vachhani, Prasann
2015-01-01
Floating fat is a sign of acute bone injury at the knee following trauma. The goal of this article is to review the etiology, patterns, and mimickers of extra-capsular and intra-capsular floating fat, with the major emphasis on knee trauma in the acute setting. We will discuss the spectrum of multimodal imaging findings for rare presentations of extra-capsular floating fat, and contrast these with common and atypical forms of intra-capsular lipohemarthrosis, as an aid to the assessment of acute bone trauma at the knee. PMID:26713176
Bone Marrow Adipose Tissue: To Be or Not To Be a Typical Adipose Tissue?
Hardouin, Pierre; Rharass, Tareck; Lucas, Stéphanie
2016-01-01
Bone marrow adipose tissue (BMAT) emerges as a distinct fat depot whose importance has been proved in the bone-fat interaction. Indeed, it is well recognized that adipokines and free fatty acids released by adipocytes can directly or indirectly interfere with cells of bone remodeling or hematopoiesis. In pathological states, such as osteoporosis, each of adipose tissues - subcutaneous white adipose tissue (WAT), visceral WAT, brown adipose tissue (BAT), and BMAT - is differently associated with bone mineral density (BMD) variations. However, compared with the other fat depots, BMAT displays striking features that makes it a substantial actor in bone alterations. BMAT quantity is well associated with BMD loss in aging, menopause, and other metabolic conditions, such as anorexia nervosa. Consequently, BMAT is sensed as a relevant marker of a compromised bone integrity. However, analyses of BMAT development in metabolic diseases (obesity and diabetes) are scarce and should be, thus, more systematically addressed to better apprehend the bone modifications in that pathophysiological contexts. Moreover, bone marrow (BM) adipogenesis occurs throughout the whole life at different rates. Following an ordered spatiotemporal expansion, BMAT has turned to be a heterogeneous fat depot whose adipocytes diverge in their phenotype and their response to stimuli according to their location in bone and BM. In vitro, in vivo, and clinical studies point to a detrimental role of BM adipocytes (BMAs) throughout the release of paracrine factors that modulate osteoblast and/or osteoclast formation and function. However, the anatomical dissemination and the difficulties to access BMAs still hamper our understanding of the relative contribution of BMAT secretions compared with those of peripheral adipose tissues. A further characterization of the phenotype and the functional regulation of BMAs are ever more required. Based on currently available data and comparison with other fat tissues, this review addresses the originality of the BMAT with regard to its development, anatomy, metabolic properties, and response to physiological cues.
Patsch, Janina M; Li, Xiaojuan; Baum, Thomas; Yap, Samuel P; Karampinos, Dimitrios C; Schwartz, Ann V; Link, Thomas M
2013-08-01
The goal of this magnetic resonance (MR) imaging study was to quantify vertebral bone marrow fat content and composition in diabetic and nondiabetic postmenopausal women with fragility fractures and to compare them with nonfracture controls with and without type 2 diabetes mellitus. Sixty-nine postmenopausal women (mean age 63 ± 5 years) were recruited. Thirty-six patients (47.8%) had spinal and/or peripheral fragility fractures. Seventeen fracture patients were diabetic. Thirty-three women (52.2%) were nonfracture controls. Sixteen women were diabetic nonfracture controls. To quantify vertebral bone marrow fat content and composition, patients underwent MR spectroscopy (MRS) of the lumbar spine at 3 Tesla. Bone mineral density (BMD) was determined by dual-energy X-ray absorptiometry (DXA) of the hip and lumbar spine (LS) and quantitative computed tomography (QCT) of the LS. To evaluate associations of vertebral marrow fat content and composition with spinal and/or peripheral fragility fractures and diabetes, we used linear regression models adjusted for age, race, and spine volumetric bone mineral density (vBMD) by QCT. At the LS, nondiabetic and diabetic fracture patients had lower vBMD than controls and diabetics without fractures (p = 0.018; p = 0.005). However, areal bone mineral density (aBMD) by DXA did not differ between fracture and nonfracture patients. After adjustment for age, race, and spinal vBMD, the prevalence of fragility fractures was associated with -1.7% lower unsaturation levels (confidence interval [CI] -2.8% to -0.5%, p = 0.005) and +2.9% higher saturation levels (CI 0.5% to 5.3%, p = 0.017). Diabetes was associated with -1.3% (CI -2.3% to -0.2%, p = 0.018) lower unsaturation and +3.3% (CI 1.1% to 5.4%, p = 0.004) higher saturation levels. Diabetics with fractures had the lowest marrow unsaturation and highest saturation. There were no associations of marrow fat content with diabetes or fracture. Our results suggest that altered bone marrow fat composition is linked with fragility fractures and diabetes. MRS of spinal bone marrow fat may therefore serve as a novel tool for BMD-independent fracture risk assessment. Copyright © 2013 American Society for Bone and Mineral Research.
Feder, David; Koch, Miriam Eva; Palmieri, Beniamino; Fonseca, Fernando Luiz Affonso; Carvalho, Alzira Alves de Siqueira
2017-01-01
Duchenne muscular dystrophy is the most frequent lethal genetic disease. Several clinical trials have established both the beneficial effect of steroids in Duchenne muscular dystrophy and the well-known risk of side effects associated with their daily use. For many years it has been known that steroids associated with ambulation loss lead to obesity and also damage the bone structure resulting in the bone density reduction and increased incidence of bone fractures and fat embolism syndrome, an underdiagnosed complication after fractures. Fat embolism syndrome is characterized by consciousness disturbance, respiratory failure and skin rashes. The use of steroids in Duchenne muscular dystrophy may result in vertebral fractures, even without previous trauma. Approximately 25% of patients with Duchenne muscular dystrophy have a long bone fracture, and 1% to 22% of fractures have a chance to develop fat embolism syndrome. As the patients with Duchenne muscular dystrophy have progressive cardiac and respiratory muscle dysfunction, the fat embolism may be unnoticed clinically and may result in increased risk of death and major complications. Different treatments and prevention measures of fat embolism have been proposed; however, so far, there is no efficient therapy. The prevention, early diagnosis and adequate symptomatic treatment are of paramount importance. The fat embolism syndrome should always be considered in patients with Duchenne muscular dystrophy presenting with fractures, or an unexplained and sudden worsening of respiratory and cardiac symptoms.
Feder, David; Koch, Miriam Eva; Palmieri, Beniamino; Fonseca, Fernando Luiz Affonso; Carvalho, Alzira Alves de Siqueira
2017-01-01
Duchenne muscular dystrophy is the most frequent lethal genetic disease. Several clinical trials have established both the beneficial effect of steroids in Duchenne muscular dystrophy and the well-known risk of side effects associated with their daily use. For many years it has been known that steroids associated with ambulation loss lead to obesity and also damage the bone structure resulting in the bone density reduction and increased incidence of bone fractures and fat embolism syndrome, an underdiagnosed complication after fractures. Fat embolism syndrome is characterized by consciousness disturbance, respiratory failure and skin rashes. The use of steroids in Duchenne muscular dystrophy may result in vertebral fractures, even without previous trauma. Approximately 25% of patients with Duchenne muscular dystrophy have a long bone fracture, and 1% to 22% of fractures have a chance to develop fat embolism syndrome. As the patients with Duchenne muscular dystrophy have progressive cardiac and respiratory muscle dysfunction, the fat embolism may be unnoticed clinically and may result in increased risk of death and major complications. Different treatments and prevention measures of fat embolism have been proposed; however, so far, there is no efficient therapy. The prevention, early diagnosis and adequate symptomatic treatment are of paramount importance. The fat embolism syndrome should always be considered in patients with Duchenne muscular dystrophy presenting with fractures, or an unexplained and sudden worsening of respiratory and cardiac symptoms. PMID:29066903
USDA-ARS?s Scientific Manuscript database
Bone can be adversely affected by obesity and cancer-associated complications including wasting. The objective of this study was to determine whether a high-fat diet and a deficiency in monocyte chemotactic protein-1 (MCP-1) altered bone structural defects found in male C57BL/6 mice with Lewis lung...
Ortinau, Laura C; Linden, Melissa A; Dirkes, Rebecca; Rector, R Scott; Hinton, Pamela S
2017-12-01
Obesity and type 2 diabetes (T2D) increase fracture risk; however, the association between obesity/T2D may be confounded by consumption of a diet high in fat, sucrose, and cholesterol (HFSC). The study objective was to determine the main and interactive effects of obesity/T2D and a HFSC diet on bone outcomes using hyperphagic Otuska Long Evans Tokushima Fatty (OLETF) rats and normophagic Long Evans Tokushima Otsuka (LETO) controls. At 8weeks of age, male OLETF and LETO rats were randomized to either a control (CON, 10 en% from fat as soybean oil) or HFSC (45 en% from fat as soybean oil/lard, 17 en% sucrose, and 1wt%) diet, resulting in four treatment groups. At 32weeks, total body bone mineral content (BMC) and density (BMD) and body composition were measured by dual-energy X-ray absorptiometry, followed by euthanasia and collection of blood and tibiae. Bone turnover markers and sclerostin were measured using ELISA. Trabecular microarchitecture of the proximal tibia and geometry of the tibia mid-diaphysis were measured using microcomputed tomography; whole-bone and tissue-level biomechanical properties were evaluated using torsional loading of the tibia. Two-factor ANOVA was used to determine main and interactive effects of diet (CON vs. HFSC) and obesity/T2D (OLETF vs. LETO) on bone outcomes. Hyperphagic OLEFT rats had greater final body mass, body fat, and fasting glucose than normophagic LETO, with no effect of diet. Total body BMC and serum markers of bone formation were decreased, and bone resorption and sclerostin were increased in obese/T2D OLETF rats. Trabecular bone volume and microarchitecture were adversely affected by obesity/T2D, but not diet. Whole-bone and tissue-level biomechanical properties of the tibia were not affected by obesity/T2D; the HFSC diet improved biomechanical properties only in LETO rats. Obesity/T2D, regardless of diet, negatively impacted the balance between bone formation and resorption and trabecular bone volume and microarchitecture in OLETF rats. Copyright © 2017 Elsevier Inc. All rights reserved.
Takada, Meri; Chiba, Shoetsu; Nagai, Tomonori; Takeshita, Hiroshi; Kanno, Sanae; Ikawa, Toru; Sakamoto, Kana; Sagi, Morihisa; Ichiba, Kazue; Mukai, Toshiji
2015-09-01
Fat embolism syndrome (FES) is a common complication of long bone fractures. FES is rare but with significant morbidity and occasional fatalities. Studies of animal models of FES are numerous; however, few studies compare inflammatory reactions in multiple organs. The present study investigated the effect of neutral fat and fatty acids, which cause changes in multiple organs and induce FES. Using rats we evaluated the ratio of lung-to-body weight and conducted histological analyses and quantitative analysis of inflammatory cytokine mRNAs in the lungs following intravenous administration of neutral fat or fatty acids. Neutral fat increased the ratio of lung-to-body weight, and neutral fat formed emboli in lung capillaries. The levels of interleukin-1 beta (IL-1β), IL-6 and tumor necrosis factor-alpha (TNF-α) in the lungs increased after injection of neutral fat and oleic acid. Analysis of the histologic changes revealed that the highest numbers of fat droplets, occluding the capillaries of the lungs, kidney, heart, and brain formed 12h after the injection of neutral fat and fat droplets gradually diminished 48h later. Fat droplets were not detected in any organs after the injection of oleic acid. IL-1β and TNF-α levels in the lungs were elevated 9-24h after the injection of neutral fat, although IL-6 levels peaked at 6h. After injection of oleic acid, peak levels of IL-1β, IL-6, and TNF-α were detected at 6h, and IL-6 again increased in all organs and plasma at 15h. Neutral fat, but not fatty acids, formed emboli in the capillaries of multiple organs. These findings suggest that neutral fat increased inflammatory cytokine levels by forming emboli in organ capillaries, particularly in the lungs, while oleic acid augmented inflammatory cytokine levels by stimulating endothelial cells of multiple organs. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Ren, Huixia; Yang, Zhen; Luo, Chuanming; Zeng, Haitao; Li, Peng; Kang, Jing X; Wan, Jian-Bo; He, Chengwei; Su, Huanxing
2017-07-01
Currently no effective therapies are available for the treatment of traumatic brain injury (TBI). Early intervention that specifically provides neuroprotection is of most importance which profoundly influences the outcome of TBI. In the present study, we adopted a closed-skull mild TBI model to investigate potential roles of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) in protecting against TBI. Using two-photon laser scanning microscopy (2PLSM), parenchymal cell death and reactive oxidative species (ROS) expression were directly observed and recorded after TBI through a thinned skull bone window. Fat-1 mice with high endogenous ω-3 PUFAs significantly inhibited ROS expression and attenuated parenchymal cell death after compression injury during the early injury phase. Elevated generation of glutathione (GSH) and neuroprotectin D1 (NPD1) in the parenchyma of fat-1 mice could be the contributor to the beneficial role of ω-3 PUFAs in TBI. The results of the study suggest that ω-3 PUFAs is an effective neuroprotectant as an early pharmacological intervention for TBI and the information derived from this study may help guide dietary advice for those who are susceptible to repetitive mild TBI.
USDA-ARS?s Scientific Manuscript database
Our objective was to characterize growth, fat mass (FM), fat free mass (FFM), and bone mineral content (BMC) longitudinally in breast-fed (BF), cow's milk formula-fed (CMF), or soy formula-fed (SF) healthy infants during the first year of life. Infants were assessed at ages 3, 6, 9, and 12 mo. Growt...
Mateo, R.; Beyer, W.N.; Spann, J.W.; Hoffman, D.J.
2003-01-01
The increase of n-6 polyunsaturated fatty acids (PUFA) in animal tissues has been proposed as a mechanism of lead (Pb) poisoning through lipid peroxidation or altered eicosanoids metabolism. We have studied fatty acid (FA) composition in liver and brain of mallards (Anas platyrhynchos) feeding for 3 weeks on diets containing combinations of low or high levels of vitamin E (20 or 200 UI/kg) and Pb (0 or 2 g/kg). Saturated FA, n-6 PUFA and total concentrations of FA were higher in livers of Pb-exposed mallards, but not in their brains. The percentage of n-6 PUFA in liver and brain was slightly higher in Pb-exposed mallards. The increase of n-6 PUFA in liver was associated with decreased triglycerides and increased cholesterol in plasma, thus could be in part attributed to feed refusal and fat mobilization. The hepatic ratios between adrenic acid (22:4 n-6) and arachidonic acid (20:4 n-6) or between adrenic acid and linoleic acid (18:2 n-6) were higher in Pb exposed birds, supporting the existing hypothesis of increased fatty acid elongation by Pb. Among the possible consequences of increased n-6 PUFA concentration in tissues, we found increased lipid peroxidation in liver without important histopathological changes, and decreased plasma alkaline phosphatase activity that may reflect altered bone metabolism in birds.
Normal spinal bone marrow in adults: dynamic gadolinium-enhanced MR imaging.
Montazel, Jean-Luc; Divine, Marine; Lepage, Eric; Kobeiter, Hicham; Breil, Stephane; Rahmouni, Alain
2003-12-01
To determine the patterns of dynamic enhancement of normal spinal bone marrow in adults at gadolinium-enhanced magnetic resonance (MR) imaging and the changes that occur with aging. Dynamic contrast material-enhanced MR imaging of the thoracolumbar spine was performed in 71 patients. The maximum percentage of enhancement (Emax), enhancement slope, and enhancement washout were determined from bone marrow enhancement time curves (ETCs). The bone marrow signal intensity on T1-weighted spin-echo MR images was qualitatively classified into three grade categories. Quantitative ETC values were correlated with patient age and bone marrow fat content grade. Statistical analysis included mean t test comparison, analysis of variance, and regression analysis of the correlations between age and quantitative MR parameters. Emax, slope, and washout varied widely among the patients. Emax values were obtained within 1 minute after contrast material injection and ranged from 0% to 430%. Emax values were significantly higher in patients younger than 40 years than in those aged 40 years or older (P <.001). These values decreased with increasing age in a logarithmic relationship (r = 0.71). Emax values decreased as fat content increased, but some overlap among the fat content grades was noted. Analysis of variance revealed that Emax was significantly related to age (younger than 40 years vs 40 years or older) (P <.001) and fat content grade (P <.001) but not significantly related to sex. Dynamic contrast-enhanced MR imaging patterns of normal spinal bone marrow are dependent mainly on patient age and fat content.
Ecklund, Kirsten; Vajapeyam, Sridhar; Mulkern, Robert V; Feldman, Henry A; O'Donnell, Jennifer M; DiVasta, Amy D; Gordon, Catherine M
2017-07-01
Adolescents and women with anorexia nervosa have increased bone marrow fat and decreased bone formation, at least in part due to hormonal changes leading to preferential stem cell differentiation to adipocytes over osteoblasts. The purpose of this study was to evaluate marrow fat content and correlate with age and disease severity using knee MRI with T1 relaxometry (T1-R) and MR spectroscopy (MRS) in 70 adolescents with anorexia nervosa. We enrolled 70 girls with anorexia nervosa who underwent 3-T knee MRI with coronal T1-W images, T1-R and single-voxel proton MRS at 30 and 60 ms TE. Metaphyses were scored visually on the T1-W images for red marrow. Visual T1 score, T1 relaxometry values, MRS lipid indices and fat fractions were analyzed by regression on age, body mass index (BMI) and bone mineral density (BMD) as disease severity markers. MRS measures included unsaturated fat index, T2 water, unsaturated and saturated fat fractions. All red marrow measures declined significantly with age. T1-R values were associated negatively with BMI and BMD for girls ≤16 years (P=0.03 and P=0.002, respectively) and positively for those≥17 years (P=0.05 and P=0.003, respectively). MRS identified a strong inverse association between T2 water and saturated fat fraction from 60 ms TE data (r=-0.85, P<0.0001). There was no association between unsaturated fat index and BMI or BMD. The association between T1 and BMI and BMD among older girls suggests more marrow fat in those with severe anorexia nervosa. In contrast, the physiological association between marrow fat content and age remained dominant in younger patients. The strong association between T2 water and saturated fat may relate to the restricted mobility of water with increasing marrow fat.
Dhar, Dinesh
2012-12-01
Nearly all patients following fractures of bones develop sub-clinical form of fat embolism but the classical form of fat embolism syndrome (FES) presents with triad of respiratory, neurologic and dermal manifestations. Non-traumatic conditions can also have fat embolism, but the incidence is very low. The diagnosis is mainly clinical supported by laboratory and radiological finding. Treatment is mainly supportive with early stabilization of fractured bones. In most cases, prognosis is good if the condition is detected and treated early. High index of suspicion in polytrauma patient is the key to early diagnosis of this condition. This report describes two cases of FES, the second case being fulminant fat embolism with added mortality.
Wang, Yang; Dellatore, Peter; Douard, Veronique; Qin, Ling; Watford, Malcolm; Ferraris, Ronaldo P; Lin, Tiao; Shapses, Sue A
2016-07-01
Diet induced obesity has been shown to reduce bone mineral density (BMD) and Ca absorption. However, previous experiments have not examined the effect of high fat diet (HFD) in the absence of obesity or addressed the type of dietary fatty acids. The primary objective of this study was to determine the effects of different types of high fat feeding, without obesity, on fractional calcium absorption (FCA) and bone health. It was hypothesized that dietary fat would increase FCA and reduce BMD. Mature 8-month-old female C57BL/6J mice were fed one of three diets: a HFD (45% fat) enriched either with monounsaturated fatty acids (MUFAs) or with saturated fatty acids (SFAs), and a normal fat diet (NFD; 10% fat). Food consumption was controlled to achieve a similar body weight gain in all groups. After 8wk, total body bone mineral content and BMD as well as femur total and cortical volumetric BMD were lower in SFA compared with NFD groups (P<.05). In contrast, femoral trabecular bone was not affected by the SFAs, whereas MUFAs increased trabecular volume fraction and thickness. The rise over time in FCA was greater in mice fed HFD than NFD and final FCA was higher with HFD (P<.05). Intestinal calbindin-D9k gene and hepatic cytochrome P450 2r1 protein levels were higher with the MUFA than the NFD diet (P<.05). In conclusion, HFDs elevated FCA overtime; however, an adverse effect of HFD on bone was only observed in the SFA group, while MUFAs show neutral or beneficial effects. Copyright © 2016 Elsevier Inc. All rights reserved.
Bone Marrow Adipose Tissue: To Be or Not To Be a Typical Adipose Tissue?
Hardouin, Pierre; Rharass, Tareck; Lucas, Stéphanie
2016-01-01
Bone marrow adipose tissue (BMAT) emerges as a distinct fat depot whose importance has been proved in the bone–fat interaction. Indeed, it is well recognized that adipokines and free fatty acids released by adipocytes can directly or indirectly interfere with cells of bone remodeling or hematopoiesis. In pathological states, such as osteoporosis, each of adipose tissues – subcutaneous white adipose tissue (WAT), visceral WAT, brown adipose tissue (BAT), and BMAT – is differently associated with bone mineral density (BMD) variations. However, compared with the other fat depots, BMAT displays striking features that makes it a substantial actor in bone alterations. BMAT quantity is well associated with BMD loss in aging, menopause, and other metabolic conditions, such as anorexia nervosa. Consequently, BMAT is sensed as a relevant marker of a compromised bone integrity. However, analyses of BMAT development in metabolic diseases (obesity and diabetes) are scarce and should be, thus, more systematically addressed to better apprehend the bone modifications in that pathophysiological contexts. Moreover, bone marrow (BM) adipogenesis occurs throughout the whole life at different rates. Following an ordered spatiotemporal expansion, BMAT has turned to be a heterogeneous fat depot whose adipocytes diverge in their phenotype and their response to stimuli according to their location in bone and BM. In vitro, in vivo, and clinical studies point to a detrimental role of BM adipocytes (BMAs) throughout the release of paracrine factors that modulate osteoblast and/or osteoclast formation and function. However, the anatomical dissemination and the difficulties to access BMAs still hamper our understanding of the relative contribution of BMAT secretions compared with those of peripheral adipose tissues. A further characterization of the phenotype and the functional regulation of BMAs are ever more required. Based on currently available data and comparison with other fat tissues, this review addresses the originality of the BMAT with regard to its development, anatomy, metabolic properties, and response to physiological cues. PMID:27445987
2016-10-01
are that any treatment or environmental factor that leads to bone loss (e.g., glucocorticoids, GnRH inhibitors, radiation, fracture , osteoporosis...recurrence and mortality. Previous cell culture and clinical studies have demonstrated that peripheral adipose ( fat ) tissue promotes cancer growth, yet the...contribution of increased MAT on metastatic tumor growth in bone is currently unknown. MAT, which is a historically understudied fat depot, accounts
The emerging role of bone marrow adipose tissue in bone health and dysfunction.
Ambrosi, Thomas H; Schulz, Tim J
2017-12-01
Replacement of red hematopoietic bone marrow with yellow adipocyte-rich marrow is a conserved physiological process among mammals. The extent of this conversion is influenced by a wide array of pathological and non-pathological conditions. Of particular interest is the observation that some marrow adipocyte-inducing factors seem to oppose each other, for instance obesity and caloric restriction. Intriguingly, several important molecular characteristics of bone marrow adipose tissue (BMAT) are distinct from the classical depots of white and brown fat tissue. This depot of fat has recently emerged as an active part of the bone marrow niche that exerts paracrine and endocrine functions thereby controlling osteogenesis and hematopoiesis. While some functions of BMAT may be beneficial for metabolic adaptation and bone homeostasis, respectively, most findings assign bone fat a detrimental role during regenerative processes, such as hematopoiesis and osteogenesis. Thus, an improved understanding of the biological mechanisms leading to formation of BMAT, its molecular characteristics, and its physiological role in the bone marrow niche is warranted. Here we review the current understanding of BMAT biology and its potential implications for health and the development of pathological conditions.
Hur, S J; Lee, S J; Kim, D H; Chun, S C; Lee, S K
2013-12-01
This study investigated the effects of onion (Allium cepa, L.) extract on the antioxidant activity of lipids in low-and high-fat-fed mouse brain lipids and its structural change during in vitro human digestion. The onion extracts were passed through an in vitro human digestion model that simulated the composition of the mouth, stomach, and small intestine juice. The brain lipids were collected from low- and high-fat-fed mouse brain and then incubated with the in vitro-digested onion extracts to determine the lipid oxidation. The results confirmed that the main phenolics of onion extract were kaempferol, myricetin, quercetin, and quercitrin. The quercetin content increased with digestion of the onion extract. Antioxidant activity was strongly influenced by in vitro human digestion of both onion extract and quercetin standard. After digestion by the small intestine, the antioxidant activity values were dramatically increased, whereas the antioxidant activity was less influenced by digestion in the stomach for both onion extract and quercetin standard. The inhibitory effect of lipid oxidation of onion extract in mouse brain lipids increased after digestion in the stomach. The inhibitory effect of lipid oxidation of onion extract was higher in the high-fat-fed mouse brain lipids than that in the low-fat-fed mouse brain lipids. The major study finding is that the antioxidative effect of onion extract may be higher in high-fat-fed mouse brain lipids than that in low-fat-fed mouse brain lipids. Thus, dietary onion may have important applications as a natural antioxidant agent in a high-fat diet.
Jeong, Seong Han; Lee, Jeong A; Kim, Jin A; Lee, Mun Woo; Chae, Hee Bok; Choi, Won Jun; Shin, Hyoung Shik; Lee, Ki Hyeong; Youn, Sei Jin; Koong, Sung Soo; Park, Seon Mee
1999-01-01
Objectives The aim of this study was to evaluate changes of body composition in cirrhotic patients. Dual energy x-ray absorptiometry (DEXA) and anthropometry were used, and the values obtained were compared. Methods Mid-arm fat and muscle areas were calculated by anthropometry in 66 cirrhotic patients and 94 healthy controls. In 37 of the cirrhotic patients and 39 of the controls, fat mass, lean soft tissue mass and bone mineral contents were measured with DEXA. Results The number of cirrhotic patients with measured values below the fifth percentile of normal controls was 21 (31.8%) by mid-arm fat area, six (9.1%) by mid-arm muscle area, 15 (40.5%) by fat mass and 0 (0%) by lean soft tissue mass. The fat mass in cirrhotic patients was less than in controls, whereas lean soft tissue mass and bone mineral content were not different. Fat depletion was severe in Child-class C patients and with severe ascites. Mid-arm fat area and fat mass showed close correlation (r = 0.85, p<0.01), but mid-arm muscle area and lean soft tissue mass showed poor correlation (r = 0.32, p<0.05). Conclusion Cirrhotic patients showed lower fat component, with preserved lean soft tissue mass and bone mineral content. In clinical practice, the measurement of mid-arm fat area was useful for the assessment of fat mass. PMID:10461427
Peptidomics of Cpefat/fat mouse brain regions: Implications for neuropeptide processing
Zhang, Xin; Che, Fa-Yun; Berezniuk, Iryna; Sonmez, Kemal; Toll, Lawrence; Fricker, Lloyd D.
2009-01-01
SUMMARY Quantitative peptidomics was used to compare levels of peptides in wild type and Cpefat/fat mice, which lack carboxypeptidase E (CPE) activity due to a point mutation. Six different brain regions were analyzed: amygdala, hippocampus, hypothalamus, prefrontal cortex, striatum, and thalamus. Altogether, 111 neuropeptides or other peptides derived from secretory pathway proteins were identified in wild type mouse brain extracts by tandem mass spectrometry, and another 47 peptides were tentatively identified based on mass and other criteria. Most secretory pathway peptides were much lower in Cpefat/fat mouse brain, relative to wild type mouse brain, indicating that CPE plays a major role in their biosynthesis. Other peptides were only partially reduced in the Cpefat/fat mice, indicating that another enzyme (presumably carboxypeptidase D) contributes to their biosynthesis. Approximately 10% of the secretory pathway peptides were present in the Cpefat/fat mouse brain at levels similar to those in wild type mouse brain. Many peptides were greatly elevated in the Cpefat/fat mice; these peptide processing intermediates with C-terminal Lys and/or Arg were generally not detectable in wild type mice. Taken together, these results indicate that CPE contributes, either directly or indirectly, to the production of the majority of neuropeptides. PMID:19014391
Correlates of increased lean muscle mass in women with polycystic ovary syndrome.
Carmina, E; Guastella, E; Longo, R A; Rini, G B; Lobo, R A
2009-10-01
Muscle mass plays an important role in determining cardiovascular and metabolic risks in polycystic ovary syndrome (PCOS). In addition, whether lean mass influences carotid intima-media thickness (IMT) in PCOS has not been assessed. Prospective investigation. Ninety-five women with PCOS were age- and weight-matched to 90 ovulatory controls. All women had dual X-ray absorptiometry for lean, fat and bone mass, and bone mass density (BMD). Serum testosterone, sex hormone-binding globulin, insulin, and glucose and carotid IMT were determined. Free androgen index (FAI) and insulin resistance (by QUICKI) were calculated. In PCOS, waist circumference and insulin were higher and QUICKI lower than in controls (P<0.01). Trunk fat mass, % trunk fat, and lean mass were higher in PCOS compared to controls (P<0.01), while total bone mass and BMD were similar. IMT was increased in PCOS (P<0.01) but only 15% of PCOS patients had abnormal (> or = 0.9 mm) values. Lean mass correlated with fat parameters, insulin, QUICKI, and FAI, but not with total testosterone; and after adjustments for insulin and QUICKI, lean mass still correlated with fat mass (P<0.01) but not FAI. Lean mass correlated with IMT (P<0.01), but this was dependent on insulin. However, excluding those patients with abnormal IMT values, IMT correlated with lean mass independently of insulin. Bone mass correlated with lean and fat mass, but not with insulin or androgen. PCOS patients with 'pathological' IMT values had higher % trunk fat, lean mass, and insulin, lower QUICKI, and higher testosterone and FAI compared with those with normal IMT. Lean mass is increased in PCOS, while bone mass is similar to that of matched controls. The major correlates of lean mass are fat mass and insulin but not androgen. Lean mass also correlated with IMT, and although influenced by insulin, small changes in IMT may partially reflect changes in muscle mass, while clearly abnormal values relate to more severe abnormalities of PCOS.
Hirasawa, Hideyuki; Tanaka, Shinya; Sakai, Akinori; Tsutsui, Masato; Shimokawa, Hiroaki; Miyata, Hironori; Moriwaki, Sawako; Niida, Shumpei; Ito, Masako; Nakamura, Toshitaka
2007-07-01
Osteoblast apoptosis increased in the tibias of apoE(-/-) mice fed with a high-fat diet, decreasing bone formation. The expression of p53 mRNA in marrow adherent cells increased. LDL or oxidized LDL increased apoptosis in the calvarial cells of apoE(-/-) mice. The increase in p53-mediated apoptosis is apparently related to a high-fat diet-induced osteopenia in apoE(-/-) mice. The effects of high-fat loading and the apolipoprotein E (apoE) gene on bones have not been elucidated. We hypothesized that apoE gene deficiency (apoE(-/-)) modulates the effects of high-fat loading on bones. We assessed this hypothesis using wildtype (WT) and apoE(-/-) mice fed a standard (WTS and ApoES groups) or a high-fat diet (WTHf and ApoEHf groups). The concentration of serum lipid levels and bone chemical markers were measured. Histomorphometry of the femurs was performed using microCT and a microscope. Bone marrow adherent cells from the femurs were used for colony-forming unit (CFU)-fibroblastic (CFU-f) assay and mRNA expressions analysis. The apoptotic cells in the tibias were counted. TUNEL fluorescein assay and Western analysis were performed in cultures of calvarial cells by the addition of low-density lipoprotein (LDL) or oxidized LDL. In the ApoEHf group, the values of cortical bone volume and trabecular and endocortical bone formation of the femurs decreased, and urinary deoxypyridinoline increased. Subsequent analysis revealed that the number of apoptotic cells in the tibias of the ApoES group increased, and more so in the ApoEHf group. The ratio of alkaline phosphatase-positive CFU-f to total CFU-f was decreased in the ApoEHf group. p53 mRNA expression in adherent cells of the apoE(-/-) mice increased and had a significantly strong positive correlation with serum LDL. TUNEL fluorescein assay of osteoblastic cells revealed an increase of apoptotic cells in the apoE(-/-) mice. The number of apoptotic cells in the apoE(-/-) mice increased with the addition of 100 microg/ml LDL or oxidized LDL. The p53 protein expression in apoE(-/-) cells exposed to 100 microg/ml LDL or oxidized LDL increased. We concluded that apoE gene deficiency enhances the reduction of bone formation induced by a high-fat diet through the stimulation of p53-mediated apoptosis in osteoblastic cells.
Pomeroy, Emma; Macintosh, Alison; Wells, Jonathan C K; Cole, Tim J; Stock, Jay T
2018-05-01
Estimating body mass from skeletal dimensions is widely practiced, but methods for estimating its components (lean and fat mass) are poorly developed. The ability to estimate these characteristics would offer new insights into the evolution of body composition and its variation relative to past and present health. This study investigates the potential of long bone cross-sectional properties as predictors of body, lean, and fat mass. Humerus, femur and tibia midshaft cross-sectional properties were measured by peripheral quantitative computed tomography in sample of young adult women (n = 105) characterized by a range of activity levels. Body composition was estimated from bioimpedance analysis. Lean mass correlated most strongly with both upper and lower limb bone properties (r values up to 0.74), while fat mass showed weak correlations (r ≤ 0.29). Estimation equations generated from tibial midshaft properties indicated that lean mass could be estimated relatively reliably, with some improvement using logged data and including bone length in the models (minimum standard error of estimate = 8.9%). Body mass prediction was less reliable and fat mass only poorly predicted (standard errors of estimate ≥11.9% and >33%, respectively). Lean mass can be predicted more reliably than body mass from limb bone cross-sectional properties. The results highlight the potential for studying evolutionary trends in lean mass from skeletal remains, and have implications for understanding the relationship between bone morphology and body mass or composition. © 2018 The Authors. American Journal of Physical Anthropology Published by Wiley Periodicals, Inc.
Kwiatt, Michael E.; Seamon, Mark J.
2013-01-01
Fat embolism syndrome (FES) is an ill-defined clinical entity that arises from the systemic manifestations of fat emboli within the microcirculation. Embolized fat within capillary beds cause direct tissue damage as well as induce a systemic inflammatory response resulting in pulmonary, cutaneous, neurological, and retinal symptoms. This is most commonly seen following orthopedic trauma; however, patients with many clinical conditions including bone marrow transplant, pancreatitis, and following liposuction. No definitive diagnostic criteria or tests have been developed, making the diagnosis of FES difficult. While treatment for FES is largely supportive, early operative fixation of long bone fractures decreases the likelihood of a patient developing FES. PMID:23724388
Kwiatt, Michael E; Seamon, Mark J
2013-01-01
Fat embolism syndrome (FES) is an ill-defined clinical entity that arises from the systemic manifestations of fat emboli within the microcirculation. Embolized fat within capillary beds cause direct tissue damage as well as induce a systemic inflammatory response resulting in pulmonary, cutaneous, neurological, and retinal symptoms. This is most commonly seen following orthopedic trauma; however, patients with many clinical conditions including bone marrow transplant, pancreatitis, and following liposuction. No definitive diagnostic criteria or tests have been developed, making the diagnosis of FES difficult. While treatment for FES is largely supportive, early operative fixation of long bone fractures decreases the likelihood of a patient developing FES.
Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank.
Alfaro-Almagro, Fidel; Jenkinson, Mark; Bangerter, Neal K; Andersson, Jesper L R; Griffanti, Ludovica; Douaud, Gwenaëlle; Sotiropoulos, Stamatios N; Jbabdi, Saad; Hernandez-Fernandez, Moises; Vallee, Emmanuel; Vidaurre, Diego; Webster, Matthew; McCarthy, Paul; Rorden, Christopher; Daducci, Alessandro; Alexander, Daniel C; Zhang, Hui; Dragonu, Iulius; Matthews, Paul M; Miller, Karla L; Smith, Stephen M
2018-02-01
UK Biobank is a large-scale prospective epidemiological study with all data accessible to researchers worldwide. It is currently in the process of bringing back 100,000 of the original participants for brain, heart and body MRI, carotid ultrasound and low-dose bone/fat x-ray. The brain imaging component covers 6 modalities (T1, T2 FLAIR, susceptibility weighted MRI, Resting fMRI, Task fMRI and Diffusion MRI). Raw and processed data from the first 10,000 imaged subjects has recently been released for general research access. To help convert this data into useful summary information we have developed an automated processing and QC (Quality Control) pipeline that is available for use by other researchers. In this paper we describe the pipeline in detail, following a brief overview of UK Biobank brain imaging and the acquisition protocol. We also describe several quantitative investigations carried out as part of the development of both the imaging protocol and the processing pipeline. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Effects of obesity on bone metabolism.
Cao, Jay J
2011-06-15
Obesity is traditionally viewed to be beneficial to bone health because of well-established positive effect of mechanical loading conferred by body weight on bone formation, despite being a risk factor for many other chronic health disorders. Although body mass has a positive effect on bone formation, whether the mass derived from an obesity condition or excessive fat accumulation is beneficial to bone remains controversial. The underline pathophysiological relationship between obesity and bone is complex and continues to be an active research area. Recent data from epidemiological and animal studies strongly support that fat accumulation is detrimental to bone mass. To our knowledge, obesity possibly affects bone metabolism through several mechanisms. Because both adipocytes and osteoblasts are derived from a common multipotential mesenchymal stem cell, obesity may increase adipocyte differentiation and fat accumulation while decrease osteoblast differentiation and bone formation. Obesity is associated with chronic inflammation. The increased circulating and tissue proinflammatory cytokines in obesity may promote osteoclast activity and bone resorption through modifying the receptor activator of NF-κB (RANK)/RANK ligand/osteoprotegerin pathway. Furthermore, the excessive secretion of leptin and/or decreased production of adiponectin by adipocytes in obesity may either directly affect bone formation or indirectly affect bone resorption through up-regulated proinflammatory cytokine production. Finally, high-fat intake may interfere with intestinal calcium absorption and therefore decrease calcium availability for bone formation. Unraveling the relationship between fat and bone metabolism at molecular level may help us to develop therapeutic agents to prevent or treat both obesity and osteoporosis. Obesity, defined as having a body mass index ≥ 30 kg/m2, is a condition in which excessive body fat accumulates to a degree that adversely affects health. The rates of obesity rates have doubled since 1980 and as of 2007, 33% of men and 35% of women in the US are obese. Obesity is positively associated to many chronic disorders such as hypertension, dyslipidemia, type 2 diabetes mellitus, coronary heart disease, and certain cancers. It is estimated that the direct medical cost associated with obesity in the United States is ~$100 billion per year.Bone mass and strength decrease during adulthood, especially in women after menopause. These changes can culminate in osteoporosis, a disease characterized by low bone mass and microarchitectural deterioration resulting in increased bone fracture risk. It is estimated that there are about 10 million Americans over the age of 50 who have osteoporosis while another 34 million people are at risk of developing the disease. In 2001, osteoporosis alone accounted for some $17 billion in direct annual healthcare expenditure. Several lines of evidence suggest that obesity and bone metabolism are interrelated. First, both osteoblasts (bone forming cells) and adipocytes (energy storing cells) are derived from a common mesenchymal stem cell and agents inhibiting adipogenesis stimulated osteoblast differentiation and vice versa, those inhibiting osteoblastogenesis increased adipogenesis. Second, decreased bone marrow osteoblastogenesis with aging is usually accompanied with increased marrow adipogenesis. Third, chronic use of steroid hormone, such as glucocorticoid, results in obesity accompanied by rapid bone loss. Fourth, both obesity and osteoporosis are associated with elevated oxidative stress and increased production of proinflammatory cytokines. At present, the mechanisms for the effects of obesity on bone metabolism are not well defined and will be the focus of this review.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Weili; Kim, Joshua P.; Kadbi, Mo
2015-11-01
Purpose: To incorporate a novel imaging sequence for robust air and tissue segmentation using ultrashort echo time (UTE) phase images and to implement an innovative synthetic CT (synCT) solution as a first step toward MR-only radiation therapy treatment planning for brain cancer. Methods and Materials: Ten brain cancer patients were scanned with a UTE/Dixon sequence and other clinical sequences on a 1.0 T open magnet with simulation capabilities. Bone-enhanced images were generated from a weighted combination of water/fat maps derived from Dixon images and inverted UTE images. Automated air segmentation was performed using unwrapped UTE phase maps. Segmentation accuracy was assessedmore » by calculating segmentation errors (true-positive rate, false-positive rate, and Dice similarity indices using CT simulation (CT-SIM) as ground truth. The synCTs were generated using a voxel-based, weighted summation method incorporating T2, fluid attenuated inversion recovery (FLAIR), UTE1, and bone-enhanced images. Mean absolute error (MAE) characterized Hounsfield unit (HU) differences between synCT and CT-SIM. A dosimetry study was conducted, and differences were quantified using γ-analysis and dose-volume histogram analysis. Results: On average, true-positive rate and false-positive rate for the CT and MR-derived air masks were 80.8% ± 5.5% and 25.7% ± 6.9%, respectively. Dice similarity indices values were 0.78 ± 0.04 (range, 0.70-0.83). Full field of view MAE between synCT and CT-SIM was 147.5 ± 8.3 HU (range, 138.3-166.2 HU), with the largest errors occurring at bone–air interfaces (MAE 422.5 ± 33.4 HU for bone and 294.53 ± 90.56 HU for air). Gamma analysis revealed pass rates of 99.4% ± 0.04%, with acceptable treatment plan quality for the cohort. Conclusions: A hybrid MRI phase/magnitude UTE image processing technique was introduced that significantly improved bone and air contrast in MRI. Segmented air masks and bone-enhanced images were integrated into our synCT pipeline for brain, and results agreed well with clinical CTs, thereby supporting MR-only radiation therapy treatment planning in the brain.« less
Technical Note: Deep learning based MRAC using rapid ultra-short echo time imaging.
Jang, Hyungseok; Liu, Fang; Zhao, Gengyan; Bradshaw, Tyler; McMillan, Alan B
2018-05-15
In this study, we explore the feasibility of a novel framework for MR-based attenuation correction for PET/MR imaging based on deep learning via convolutional neural networks, which enables fully automated and robust estimation of a pseudo CT image based on ultrashort echo time (UTE), fat, and water images obtained by a rapid MR acquisition. MR images for MRAC are acquired using dual echo ramped hybrid encoding (dRHE), where both UTE and out-of-phase echo images are obtained within a short single acquisition (35 sec). Tissue labeling of air, soft tissue, and bone in the UTE image is accomplished via a deep learning network that was pre-trained with T1-weighted MR images. UTE images are used as input to the network, which was trained using labels derived from co-registered CT images. The tissue labels estimated by deep learning are refined by a conditional random field based correction. The soft tissue labels are further separated into fat and water components using the two-point Dixon method. The estimated bone, air, fat, and water images are then assigned appropriate Hounsfield units, resulting in a pseudo CT image for PET attenuation correction. To evaluate the proposed MRAC method, PET/MR imaging of the head was performed on 8 human subjects, where Dice similarity coefficients of the estimated tissue labels and relative PET errors were evaluated through comparison to a registered CT image. Dice coefficients for air (within the head), soft tissue, and bone labels were 0.76±0.03, 0.96±0.006, and 0.88±0.01. In PET quantification, the proposed MRAC method produced relative PET errors less than 1% within most brain regions. The proposed MRAC method utilizing deep learning with transfer learning and an efficient dRHE acquisition enables reliable PET quantification with accurate and rapid pseudo CT generation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peña, Jaime A.; Damm, Timo; Bastgen, Jan
Purpose: Accurate noninvasive assessment of vertebral bone marrow fat fraction is important for diagnostic assessment of a variety of disorders and therapies known to affect marrow composition. Moreover, it provides a means to correct fat-induced bias of single energy quantitative computed tomography (QCT) based bone mineral density (BMD) measurements. The authors developed new segmentation and calibration methods to obtain quantitative surrogate measures of marrow-fat density in the axial skeleton. Methods: The authors developed and tested two high resolution-QCT (HR-QCT) based methods which permit segmentation of bone voids in between trabeculae hypothesizing that they are representative of bone marrow space. Themore » methods permit calculation of marrow content in units of mineral equivalent marrow density (MeMD). The first method is based on global thresholding and peeling (GTP) to define a volume of interest away from the transition between trabecular bone and marrow. The second method, morphological filtering (MF), uses spherical elements of different radii (0.1–1.2 mm) and automatically places them in between trabeculae to identify regions with large trabecular interspace, the bone-void space. To determine their performance, data were compared ex vivo to high-resolution peripheral CT (HR-pQCT) images as the gold-standard. The performance of the methods was tested on a set of excised human vertebrae with intact bone marrow tissue representative of an elderly population with low BMD. Results: 86% (GTP) and 87% (MF) of the voxels identified as true marrow space on HR-pQCT images were correctly identified on HR-QCT images and thus these volumes of interest can be considered to be representative of true marrow space. Within this volume, MeMD was estimated with residual errors of 4.8 mg/cm{sup 3} corresponding to accuracy errors in fat fraction on the order of 5% both for GTP and MF methods. Conclusions: The GTP and MF methods on HR-QCT images permit noninvasive localization and densitometric assessment of marrow fat with residual accuracy errors sufficient to study disorders and therapies known to affect bone marrow composition. Additionally, the methods can be used to correct BMD for fat induced bias. Application and testing in vivo and in longitudinal studies are warranted to determine the clinical performance and value of these methods.« less
Li, Xiaojuan; Shet, Keerthi; Xu, Kaipin; Rodríguez, Juan Pablo; Pino, Ana María; Kurhanewicz, John; Schwartz, Ann; Rosen, Clifford J
2017-12-01
There are increasing evidences suggesting bone marrow adiposity tissue (MAT) plays a critical role in affecting both bone quantity and quality. However, very limited studies that have investigated the association between the composition of MAT and bone mineral density (BMD). The goal of this study was to quantify MAT unsaturation profile of marrow samples from post-menopausal women using ex vivo high-resolution magic angle spinning (HRMAS) proton nuclear magnetic resonance ( 1 H NMR) spectroscopy, and to investigate the relationship between MAT composition and BMD. Bone marrow samples were obtained by iliac crest aspiration during surgical procedures from 24 postmenopausal women (65-89years) who had hip surgery due to bone fracture or arthroplasty. Marrow fat composition parameters, in particular, unsaturation level (UL), mono-unsaturation level (MUL) and saturation level (SL), were quantified using HRMAS 1 H NMR spectroscopy. The patients were classified into three groups based on the DXA BMD T-scores: controls, osteopenia and osteoporosis. Marrow fat composition was compared between these three groups as well as between subjects with and without factures using ANOCOVA, adjusted for age. Subjects with lower BMD (n=17) had significantly lower MUL (P=0.003) and UL (P=0.039), and significantly higher SL (P=0.039) compared to controls (n=7). When separating lower BMD into osteopenia (n=9) and osteoporosis (n=8) groups, subjects with osteopenia had significantly lower MUL (P=0.002) and UL (P=0.010), and significantly higher SL (P=0.010) compared to healthy controls. No significant difference was observed between subjects with osteopenia and osteoporosis. Using HRMAS 1 H NMR, significantly lower unsaturation and significantly higher saturation levels were observed in the marrow fat of subjects with lower BMD. HRMAS 1 H NMR was shown to be a powerful tool for identifying novel MR markers of marrow fat composition that are associated with bone quality and potentially fracture, and other bone pathologies and changes after treatment. A better understanding of the relationship between bone marrow composition and bone quality in humans may identify novel treatment targets, and provide guidance on novel interventions and therapeutic strategies for bone preservation. Copyright © 2017 Elsevier Inc. All rights reserved.
Aslam, Muhammad Nadeem; Kreider, Jaclynn M.; Paruchuri, Tejaswi; Bhagavathula, Narasimharao; DaSilva, Marissa; Zernicke, Ronald F.; Goldstein, Steven A.; Varani, James
2010-01-01
The purpose of this study was to determine whether a mineral-rich extract derived from the red marine algae Lithothamnion calcareum could be used as a dietary supplement for prevention of bone mineral loss. Sixty C57BL/6 mice were divided into three groups based on diet: the first group received a high-fat Western-style diet (HFWD), the second group was fed the same HFWD along with the mineral-rich extract included as a dietary supplement, and the third group was used as a control and was fed a low-fat rodent chow diet (AIN76A). Mice were maintained on the respective diets for 15 months. Then, long bones (femora and tibiae) from both males and females were analyzed by three-dimensional micro-computed tomography (micro-CT) and (bones from female mice) concomitantly assessed in bone strength studies. Tartrate-resistant acid phosphatase (TRAP), osteocalcin, and N-terminal peptide of type I procollagen (PINP) were assessed in plasma samples obtained from female mice at the time of sacrifice. To summarize, female mice on the HFWD had reduced bone mineralization and reduced bone strength relative to female mice on the low-fat chow diet. The bone defects in female mice on the HFWD were overcome in the presence of the mineral-rich supplement. In fact, female mice receiving the mineral-rich supplement in the HFWD had better bone structure/function than did female mice on the low-fat chow diet. Female mice on the mineral-supplemented HFWD had higher plasma levels of TRAP than mice of the other groups. There were no differences in the other two markers. Male mice showed little diet-specific differences by micro-CT. PMID:20180099
The "starfield" pattern of cerebral fat embolism from bone marrow necrosis in sickle cell crisis.
Dhakal, Laxmi P; Bourgeois, Kirk; Barrett, Kevin M; Freeman, William D
2015-04-01
Sickle cell disease may manifest with cerebrovascular and systemic complications. Sickle crisis that results in avascular necrosis of long bones with resultant cerebral fat embolism syndrome is rare and has a characteristic "starfield" pattern on MRI. This "starfield" MRI pattern should raise suspicion for sickle cell crisis in patients without a known history of the disease, which can lead to earlier sickle cell red blood cell exchange transfusion and treatment. We present a case of a male who presented emergently with acute seizure, coma with a characteristic MRI pattern, which lead to the diagnosis of avascular bone marrow necrosis and cerebral fat embolism syndrome from sickle cell crisis.
Migliaccio, Silvia; Greco, Emanuela A; Wannenes, Francesca; Donini, Lorenzo M; Lenzi, Andrea
2014-01-01
The belief that obesity is protective against osteoporosis has recently been revised. In fact, the latest epidemiologic and clinical studies show that a high level of fat mass, but also reduced muscle mass, might be a risk factor for osteoporosis and fragility fractures. Furthermore, increasing evidence seems to indicate that different components such as myokines, adipokines and growth factors, released by both fat and muscle tissues, could play a key role in the regulation of skeletal health and in low bone mineral density and, thus, in osteoporosis development. This review considers old and recent data in the literature to further evaluate the relationship between fat, bone and muscle tissue.
USDA-ARS?s Scientific Manuscript database
Chronic consumption by experimental animals of a typical Western diet high in saturated fats and cholesterol during postnatal life has been demonstrated to impair skeletal development. However, underlying mechanism by which high fat, energy dense diets affect bone forming cell phenotypes is poorly u...
Loh, Nellie Y; Neville, Matt J; Marinou, Kyriakoula; Hardcastle, Sarah A; Fielding, Barbara A; Duncan, Emma L; McCarthy, Mark I; Tobias, Jonathan H; Gregson, Celia L; Karpe, Fredrik; Christodoulides, Constantinos
2015-02-03
Common variants in WNT pathway genes have been associated with bone mass and fat distribution, the latter predicting diabetes and cardiovascular disease risk. Rare mutations in the WNT co-receptors LRP5 and LRP6 are similarly associated with bone and cardiometabolic disorders. We investigated the role of LRP5 in human adipose tissue. Subjects with gain-of-function LRP5 mutations and high bone mass had enhanced lower-body fat accumulation. Reciprocally, a low bone mineral density-associated common LRP5 allele correlated with increased abdominal adiposity. Ex vivo LRP5 expression was higher in abdominal versus gluteal adipocyte progenitors. Equivalent knockdown of LRP5 in both progenitor types dose-dependently impaired β-catenin signaling and led to distinct biological outcomes: diminished gluteal and enhanced abdominal adipogenesis. These data highlight how depot differences in WNT/β-catenin pathway activity modulate human fat distribution via effects on adipocyte progenitor biology. They also identify LRP5 as a potential pharmacologic target for the treatment of cardiometabolic disorders. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Loh, Nellie Y.; Neville, Matt J.; Marinou, Kyriakoula; Hardcastle, Sarah A.; Fielding, Barbara A.; Duncan, Emma L.; McCarthy, Mark I.; Tobias, Jonathan H.; Gregson, Celia L.; Karpe, Fredrik; Christodoulides, Constantinos
2015-01-01
Summary Common variants in WNT pathway genes have been associated with bone mass and fat distribution, the latter predicting diabetes and cardiovascular disease risk. Rare mutations in the WNT co-receptors LRP5 and LRP6 are similarly associated with bone and cardiometabolic disorders. We investigated the role of LRP5 in human adipose tissue. Subjects with gain-of-function LRP5 mutations and high bone mass had enhanced lower-body fat accumulation. Reciprocally, a low bone mineral density-associated common LRP5 allele correlated with increased abdominal adiposity. Ex vivo LRP5 expression was higher in abdominal versus gluteal adipocyte progenitors. Equivalent knockdown of LRP5 in both progenitor types dose-dependently impaired β-catenin signaling and led to distinct biological outcomes: diminished gluteal and enhanced abdominal adipogenesis. These data highlight how depot differences in WNT/β-catenin pathway activity modulate human fat distribution via effects on adipocyte progenitor biology. They also identify LRP5 as a potential pharmacologic target for the treatment of cardiometabolic disorders. PMID:25651180
2013-06-01
transplanted into the mammary fat pad of NUDE mice to establish tumorigenicity in vivo. At 3 months post- injection , micrometastases to the lung, liver...E-cadherin, nuclear β catenin and fibronectin but were negative for ERα and vimentin. The injection of bone marrow isolated from mice previously... injected with tumorspheres into the mammary fat pad, resulted in large tumor formation in the mammary fat pad 2 months post- injection . The tumors
The Roles of the Bone Marrow Microenvironment in Controlling Tumor Dormancy
2016-10-01
into the mammary fat pads of mice. The treatment of animals with scaffolds had no significant effect on primary tumor growth. However, extensive...chips [6e9] or marrow [10] are used and implanted subcutaneously: þ1 617 627 3231. an). f Biomedical Engineering, 4or in the mammary fat pad. While human...5thmammary fat pad using a Hamilton syringe equipped with a 22-gauge needle. To manipulate the microenvironment of the tissue-engineered bone, osmotic
Cavallazzi, Rodrigo; Cavallazzi, Antonio César
2008-01-01
To analyze the available evidence regarding the effect that corticosteroids have on the prevention of fat embolism syndrome after long bone fracture of the lower limbs or pelvic fracture. In March of 2007, we performed a search of various electronic databases, including Medline, the Excerpta Medica database, the Cochrane Library, the Latin American and Caribbean Health Sciences Literature database and the Scientific Electronic Library Online. We selected randomized controlled trials that compared the effect of corticosteroids with that of placebo (or standard care) on the prevention of fat embolism syndrome after long bone fracture of the lower limbs or pelvic fracture. References from the studies included were also reviewed. Six studies were included. The pooled relative risk for developing fat embolism syndrome was 0.16 (95% CI: 0.08-0.35) in the corticosteroid group as compared with the control group. The pooled relative risk for developing hypoxemia was 0.34 (95% CI: 0.19-0.59) in the corticosteroid group as compared with the control group. The analysis of evidence showed that corticosteroids decrease the risk of developing fat embolism syndrome and hypoxemia after long bone fracture of the lower limbs.
Yu, Jin-bo; Ke, Yao-hua; He, Jin-wei; Zhang, Hao; Hu, Wei-wei; Hu, Yun-qiu; Li, Miao; Liu, Yu-juan; Gu, Jie-mei; Fu, Wen-zhen; Gao, Gao; Yue, Hua; Xiao, Wen-jin; Zhang, Zhen-lin
2010-11-01
To investigate the effect of low-density lipoprotein receptor-related protein 5 (LRP5) gene polymorphisms on bone and obesity phenotypes in young Chinese men. A total of 1244 subjects from 411 Chinese nuclear families were genotyped by using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique at the Q89R, N740N, and A1330V sites in the LRP5 gene. Bone mineral density (BMD) in the lumbar spine and the hip, total fat mass and total lean mass were measured using dual-energy X-ray absorptiometry. The association between LRP5 gene polymorphisms and peak BMD, body mass index (BMI), total fat mass, total lean mass and percentage of fat mass was assessed using a quantitative transmission disequilibrium test (QTDT). No significant within-family associations were found between genotypes or haplotypes of the LRP5 gene and peak BMD, BMI, total fat mass, total lean mass and percentage of fat mass. The 1000 permutations that were subsequently simulated were in agreement with these within-family association results. Our results suggest that common polymorphic variations of the LRP5 gene do not influence peak bone mass acquisition and obesity phenotypes in young Chinese men.
Effect of puberty on body composition.
Loomba-Albrecht, Lindsey A; Styne, Dennis M
2009-02-01
Here we examine the effect of puberty on components of human body composition, including adiposity (total body fat, percentage body fat and fat distribution), lean body mass and bone mineral content and density. New methods and longitudinal studies have expended our knowledge of these remarkable changes. Human differences in adiposity, fat free mass and bone mass reflect differences in endocrine status (particularly with respect to estrogens, androgens, growth hormone and IGF-1), genetic factors, ethnicity and the environment. During puberty, males gain greater amounts of fat free mass and skeletal mass, whereas females acquire significantly more fat mass. Both genders reach peak bone accretion during the pubertal years, though males develop a greater skeletal mass. Body proportions and fat distribution change during the pubertal years as well, with males assuming a more android body shape and females assuming a more gynecoid shape. Pubertal body composition may predict adult body composition and affects both pubertal timing and future health. Sexual dimorphism exists to a small degree at birth, but striking differences develop during the pubertal years. The development of this dimorphism in body composition is largely regulated by endocrine factors, with critical roles played by growth hormone and gonadal steroids. It is important for clinicians and researchers to know the normal changes in order to address pathologic findings in disease states.
Association of adiposity indices with bone density and bone turnover in the Chinese population.
Wang, J; Yan, D; Hou, X; Chen, P; Sun, Q; Bao, Y; Hu, C; Zhang, Z; Jia, W
2017-09-01
Associations of adiposity indices with bone mineral density (BMD) and bone turnover markers were evaluated in Chinese participants. Body mass index, fat mass, and lean mass are positively related to BMD in both genders. Subcutaneous fat area was proved to be negatively associated with BMD and positively correlated with osteocalcin in postmenopausal females. Obesity is highly associated with osteoporosis, but the effect of adipose tissue on bone is contradictory. Our study aimed to assess the associations of adiposity indices with bone mineral density (BMD) and bone turnover markers (BTMs) in the Chinese population. Our study recruited 5215 participants from the Shanghai area, evaluated related anthropometric and biochemical traits in all participants, tested serum BTMs, calculated fat distribution using magnetic resonance imaging (MRI) images and image analysis software, and tested BMD with dual-energy X-ray absorptiometry. When controlled for age, all adiposity indices were positively correlated with BMD of all sites for both genders. As for the stepwise regression analysis, body mass index (BMI), fat mass, and lean mass were protective for BMD in both genders. However, subcutaneous fat area (SFA) was detrimental for BMD of the L1-4 and femoral neck (β ± SE -0.0742 ± 0.0174; p = 2.11E-05; β ± SE -0.0612 ± 0.0147; p = 3.07E-05). Adiposity indices showed a negative correlation with BTMs adjusting for age, especially with osteocalcin. In the stepwise regression analysis, fat mass was negatively correlated with osteocalcin (β ± SE -8.8712 ± 1.4902; p = 4.17E-09) and lean mass showed a negative correlation with N-terminal procollagen of type I collagen (PINP) for males (β ± SE -0.3169 ± 0.0917; p = 0.0006). In females, BMI and visceral fat area (VFA) were all negatively associated with osteocalcin (β ± SE -0.4423 ± 0.0663; p = 2.85E-11; β ± SE -7.1982 ± 1.1094; p = 9.95E-11), while SFA showed a positive correlation with osteocalcin (β ± SE: 5.5993 ± 1.1753; p = 1.98E-06). BMI, fat mass, and lean mass are proved to be beneficial for BMD in both males and postmenopausal females. SFA is negatively associated with BMD and positively correlated with osteocalcin in postmenopausal females.
Unloading-induced bone loss was suppressed in gold-thioglucose treated mice.
Hino, K; Nifuji, A; Morinobu, M; Tsuji, K; Ezura, Y; Nakashima, K; Yamamoto, H; Noda, M
2006-10-15
Loss of mechanical stress causes bone loss. However, the mechanisms underlying the unloading-induced bone loss are largely unknown. Here, we examined the effects of gold-thioglucose (GTG) treatment, which destroys ventromedial hypothalamus (VMH), on unloading-induced bone loss. Unloading reduced bone volume in control (saline-treated) mice. Treatment with GTG-reduced bone mass and in these GTG-treated mice, unloading-induced reduction in bone mass levels was not observed. Unloading reduced the levels of bone formation rate (BFR) and mineral apposition rate (MAR). GTG treatment also reduced these parameters and under this condition, unloading did not further reduce the levels of BFR and MAR. Unloading increased the levels of osteoclast number (Oc.N/BS) and osteoclast surface (Oc.S/BS). GTG treatment did not alter the basal levels of these bone resorption parameters. In contrast to control, GTG treatment suppressed unloading-induced increase in the levels of Oc.N/BS and Oc.S/BS. Unloading reduced the levels of mRNA expression of the genes encoding osteocalcin, type I collagen and Cbfa1 in bone. In contrast, GTG treatment suppressed such unloading-induced reduction of mRNA expression. Unloading also enhanced the levels of fat mass in bone marrow and mRNA expression of the genes encoding PPARgamma2, C/EBPalpha, and C/EBPbeta in bone. In GTG-treated mice, unloading did not increase fat mass and the levels of fat-related mRNA expression. These results indicated that GTG treatment suppressed unloading-induced alteration in bone loss. 2006 Wiley-Liss, Inc.
Omega-3 Fatty Acids Attenuate Brain Alterations in High-Fat Diet-Induced Obesity Model.
de Mello, Aline Haas; Schraiber, Rosiane de Bona; Goldim, Mariana Pereira de Souza; Garcez, Michelle Lima; Gomes, Maria Luiza; de Bem Silveira, Gustavo; Zaccaron, Rubya Pereira; Schuck, Patrícia Fernanda; Budni, Josiane; Silveira, Paulo Cesar Lock; Petronilho, Fabricia; Rezin, Gislaine Tezza
2018-05-04
This study evaluated the effects of omega-3 on inflammation, oxidative stress, and energy metabolism parameters in the brain of mice subjected to high-fat diet-induced obesity model. Body weight and visceral fat weight were evaluated as well. Male Swiss mice were divided into control (purified low-fat diet) and obese (purified high-fat diet). After 6 weeks, the groups were divided into control + saline, control + omega-3, obese + saline, and obese + OMEGA-3. Fish oil (400 mg/kg/day) or saline solution was administrated orally, during 4 weeks. When the experiment completed 10 weeks, the animals were euthanized and the brain and visceral fat were removed. The brain structures (hypothalamus, hippocampus, prefrontal cortex, and striatum) were isolated. Treatment with omega-3 had no effect on body weight, but reduced the visceral fat. Obese animals showed increased inflammation, increased oxidative damage, decreased antioxidant enzymes activity and levels, changes in the Krebs cycle enzyme activities, and inhibition of mitochondrial respiratory chain complexes in the brain structures. Omega-3 treatment partially reversed the changes in the inflammatory and in the oxidative damage parameters and attenuated the alterations in the antioxidant defense and in the energy metabolism (Krebs cycle and mitochondrial respiratory chain). Omega-3 had a beneficial effect on the brain of obese animals, as it partially reversed the changes caused by the consumption of a high-fat diet and consequent obesity. Our results support studies that indicate omega-3 may contribute to obesity treatment.
Ikegami, Hiroko; Kawawa, Rie; Ichi, Ikuyo; Ishikawa, Tomoko; Koike, Taisuke; Aoki, Yoshinori; Fujiwara, Yoko
2017-10-01
Background: Animal studies on the effects of vitamin E on bone health have yielded conflicting and inconclusive results, and to our knowledge, no studies have addressed the effect of vitamin E on bone in animals consuming a high-fat diet (HFD). Objective: This study aimed to evaluate the effect of excessive vitamin E on bone metabolism in normal male mice and ovariectomized female mice fed a normal diet (ND) or HFD. Methods: In the first 2 experiments, 7-wk-old male mice were fed an ND (16% energy from fat) containing 75 (control), 0 (vitamin E-free), or 1000 (high vitamin E) mg vitamin E/kg (experiment 1) or an HFD (46% energy from fat) containing 0, 200, 500, or 1000 mg vitamin E/kg (experiment 2) for 18 wk. In the third experiment, 7-wk-old sham-operated or ovariectomized female mice were fed the ND (75 mg vitamin E/kg) or HFD containing 0 or 1000 mg vitamin E/kg for 8 wk. At the end of the feeding period, blood and femurs were collected to measure bone turnover markers and analyze histology and microcomputed tomography. Results: In experiments 1 and 2, vitamin E intake had no effect on plasma alkaline phosphatase (ALP), tartrate-resistant acid phosphatase (TRAP) activity, or bone formation, resorption, or volume in femurs in mice fed the ND or HFDs. In experiment 3, bone volume was significantly reduced (85%) in ovariectomized mice compared with that in sham-operated mice ( P < 0.05), but it did not differ among mice fed the 3 diets. Plasma ALP and TRAP activities and bone formation and resorption in femur were similar among ovariectomized mice fed the HFD containing 0 or 1000 mg vitamin E/kg. Conclusions: The results suggest that excess vitamin E intake does not cause bone loss in normal male mice or in ovariectomized or sham-operated female mice, regardless of dietary fat content. © 2017 American Society for Nutrition.
Bone marrow fat accumulation accelerated by high fat diet is suppressed by exercise
Styner, Maya; Thompson, William R.; Galior, Kornelia; Uzer, Gunes; Wu, Xin; Kadari, Sanjay; Case, Natasha; Xie, Zhihui; Sen, Buer; Romaine, Andrew; Pagnotti, Gabriel M.; Rubin, Clinton T.; Styner, Martin A.; Horowitz, Mark C.; Rubin, Janet
2014-01-01
Marrow adipose tissue (MAT), associated with skeletal fragility and hematologic insufficiency, remains poorly understood and difficult to quantify. We tested the response of MAT to high fat diet (HFD) and exercise using a novel volumetric analysis, and compared it to measures of bone quantity. We hypothesized that HFD would increase MAT and diminish bone quantity, while exercise would slow MAT acquisition and promote bone formation. Eight week-old female C57BL/6 mice were fed a regular (RD) or HFD, and exercise groups were provided voluntary access to running wheels (RD-E, HFD-E). Femoral MAT was assessed by μCT (lipid binder osmium) using a semi-automated approach employing rigid co-alignment, regional bone masks and was normalized for total femoral volume (TV) of the bone compartment. MAT was 2.6-fold higher in HFD relative to RD mice. Exercise suppressed MAT in RD-E mice by more than half compared with RD. Running similarly inhibited MAT acquisition in HFD mice. Exercise significantly increased bone quantity in both diet groups. Thus, HFD caused significant accumulation of MAT; importantly running exercise limited MAT acquisition while promoting bone formation during both diets. That MAT is exquisitely responsive to diet and exercise, and its regulation by exercise appears to be inversely proportional to effects on exercise induced bone formation, is relevant for an aging and sedentary population. PMID:24709686
A high-fat diet induces bone loss in mice lacking the Alox5 gene.
Le, Phuong; Kawai, Masanobu; Bornstein, Sheila; DeMambro, Victoria E; Horowitz, Mark C; Rosen, Clifford J
2012-01-01
5-Lipoxygenase catalyzes leukotriene generation from arachidonic acid. The gene that encodes 5-lipoxygenase, Alox5, has been identified in genome-wide association and mouse Quantitative Trait Locus studies as a candidate gene for obesity and low bone mass. Thus, we tested the hypothesis that Alox5(-/-) mice would exhibit metabolic and skeletal changes when challenged by a high-fat diet (HFD). On a regular diet, Alox5(-/-) mice did not differ in total body weight, percent fat mass, or bone mineral density compared with wild-type (WT) controls (P < 0.05). However, when placed on a HFD, Alox5(-/-) gained more fat mass and lost greater areal bone mass vs. WT (P < 0.05). Microarchitectural analyses revealed that on a HFD, WT showed increases in cortical area (P < 0.01) and trabecular thickness (P < 0.01), whereas Alox5(-/-) showed no change in cortical parameters but a decrease in trabecular number (P < 0.05) and bone volume fraction compared with WT controls (P < 0.05). By histomorphometry, a HFD did not change bone formation rates of either strain but produced an increase in osteoclast number per bone perimeter in Alox5(-/-) mice (P < 0.03). In vitro, osteoclastogenesis of marrow stromal cells was enhanced in mutant but not WT mice fed a HFD. Gene expression for Rankl, Pparg, and Cox-2 was greater in the femur of Alox5(-/-) than WT mice on a HFD (P < 0.01), but these increases were suppressed in the Alox5(-/-) mice after 8 wk of treatment with celecoxib, a cyclooxygenase-2 inhibitor. In sum, there is a strong gene by environmental interaction for bone mass when mice lacking the Alox5 gene are fed a HFD.
The “Starfield” Pattern of Cerebral Fat Embolism From Bone Marrow Necrosis in Sickle Cell Crisis
Dhakal, Laxmi P.; Bourgeois, Kirk; Barrett, Kevin M.
2015-01-01
Sickle cell disease may manifest with cerebrovascular and systemic complications. Sickle crisis that results in avascular necrosis of long bones with resultant cerebral fat embolism syndrome is rare and has a characteristic “starfield” pattern on MRI. This “starfield” MRI pattern should raise suspicion for sickle cell crisis in patients without a known history of the disease, which can lead to earlier sickle cell red blood cell exchange transfusion and treatment. We present a case of a male who presented emergently with acute seizure, coma with a characteristic MRI pattern, which lead to the diagnosis of avascular bone marrow necrosis and cerebral fat embolism syndrome from sickle cell crisis PMID:25829988
Being fat and smart: A comparative analysis of the fat-brain trade-off in mammals.
Heldstab, Sandra A; van Schaik, Carel P; Isler, Karin
2016-11-01
Humans stand out among non-aquatic mammals by having both an extremely large brain and a relatively large amount of body fat. To understand the evolution of this human peculiarity we report a phylogenetic comparative study of 120 mammalian species, including 30 primates, using seasonal variation in adult body mass as a proxy of the tendency to store fat. Species that rely on storing fat to survive lean periods are expected to be less active because of higher costs of locomotion and have increased predation risk due to reduced agility. Because a fat-storage strategy reduces the net cognitive benefit of a large brain without reducing its cost, such species should be less likely to evolve a larger brain than non-fat-storing species. We therefore predict that the two strategies to buffer food shortages (storing body fat and cognitive flexibility) are compensatory, and therefore predict negative co-evolution between relative brain size and seasonal variation in body mass. This trade-off is expected to be stronger in predominantly arboreal species than in more terrestrial ones, as the cost of transporting additional adipose depots is higher for climbing than for horizontal locomotion. We did, indeed, find a significant negative correlation between brain size and coefficient of variation (CV) in body mass in both sexes for the subsample of arboreal species, both in all mammals and within primates. In predominantly terrestrial species, in contrast, this correlation was not significant. We therefore suggest that the adoption of habitually terrestrial locomotor habits, accompanied by a reduced reliance on climbing, has allowed for a primate of our body size the unique human combination of unusually large brains and unusually large adipose depots. Copyright © 2016 Elsevier Ltd. All rights reserved.
Novel Insights into the Relationship between Diabetes and Osteoporosis
de Paula, Francisco J. A.; Horowitz, Mark C.; Rosen, Clifford J.
2012-01-01
Only three decades ago adipose tissue was considered inert with little relationship to insulin resistance. Similarly bone has long been thought purely in its structural context. In the last decade, emerging evidence has revealed important endocrine roles for both bone and adipose tissue. The interaction between these two tissues is remarkable. Bone marrow mesenchymal stem cells give rise to both osteoblasts and adipocytes. Leptin and adiponectin, two adipokines secreted by fat tissue, control energy homeostasis, but also have complex actions on the skeleton. In turn, the activities of bone cells are not limited to their bone remodeling activities, but also to modulation of adipose sensitivity and insulin secretion. This review will discuss these new insights linking bone remodeling to the control of fat metabolism and the association between diabetes mellitus and osteoporosis. PMID:20938995
High-fat/high-sucrose diet results in higher bone mass in aged rats.
Minematsu, Akira; Nishii, Yasue; Sakata, Susumu
2018-06-01
Intake of high-fat/high-sucrose (HFS) diet or high fat diet influences bone metabolism in young rodents, but its effects on bone properties of aged rodents still remain unclear. This study aimed to examine the effects of HFS diet intake on trabecular bone architecture (TBA) and cortical bone geometry (CBG) in aged rats. Fifteen male Wistar rats over 1 year were randomly divided into two groups. One group was fed a standard laboratory diet (SLD) and the other group was fed a HFS diet for six months. The femur/tibia, obtained from both groups at the end of experimental period, were scanned by micro-computed tomography for TBA/CBG analyses. Serum biochemical analyses were also conducted. Body weight was significantly higher in the HFS group than in the SLD group. In both femur and tibia, the HFS group showed higher trabecular/cortical bone mass in reference to bone mineral content, volume bone mineral density and TBA/CBG parameters compared with the SLD group. In addition, serum calcium, inorganic phosphorus, total protein, triacylglycerol, HDL and TRACP-5b levels were significantly higher in the HFS group than in the SLD group. There were good correlations between body weight and bone parameters in the femur and tibia. These results suggest that HFS diet intake results in higher bone mass in aged rats. Such effects of HFS diet intake might have been induced by increased body weight.
Zillikens, M Carola; Uitterlinden, André G; van Leeuwen, Johannes P T M; Berends, Anne L; Henneman, Peter; van Dijk, Ko Willems; Oostra, Ben A; van Duijn, Cornelia M; Pols, Huibert A P; Rivadeneira, Fernando
2010-02-01
Despite the positive association between body mass index (BMI) and bone mineral density (BMD) and content (BMC), the role of fat distribution in BMD/BMC remains unclear. We examined relationships between BMD/BMC and various measurements of fat distribution and studied the role of BMI, insulin, and adiponectin in these relations. Using a cross-sectional investigation of 2631 participants from the Erasmus Rucphen Family study, we studied associations between BMD (using dual-energy X-ray absorptiometry (DXA]) at the hip, lumbar spine, total body (BMD and BMC), and fat distribution by the waist-to-hip ratio (WHR), waist-to-thigh ratio (WTR), and DXA-based trunk-to-leg fat ratio and android-to-gynoid fat ratio. Analyses were stratified by gender and median age (48.0 years in women and 49.2 years in men) and were performed with and without adjustment for BMI, fasting insulin, and adiponectin. Using linear regression (adjusting for age, height, smoking, and use of alcohol), most relationships between fat distribution and BMD and BMC were positive, except for WTR. After BMI adjustment, most correlations were negative except for trunk-to-leg fat ratio in both genders. No consistent influence of age or menopausal status was found. Insulin and adiponectin levels did not explain either positive or negative associations. In conclusion, positive associations between android fat distribution and BMD/BMC are explained by higher BMI but not by higher insulin and/or lower adiponectin levels. Inverse associations after adjustment for BMI suggest that android fat deposition as measured by the WHR, WTR, and DXA-based android-to-gynoid fat ratio is not beneficial and possibly even deleterious for bone.
NASA Astrophysics Data System (ADS)
Khateri, Parisa; Rad, Hamidreza Saligheh; Jafari, Amir Homayoun; Ay, Mohammad Reza
2014-01-01
Quantitative PET image reconstruction requires an accurate map of attenuation coefficients of the tissue under investigation at 511 keV (μ-map), and in order to correct the emission data for attenuation. The use of MRI-based attenuation correction (MRAC) has recently received lots of attention in the scientific literature. One of the major difficulties facing MRAC has been observed in the areas where bone and air collide, e.g. ethmoidal sinuses in the head area. Bone is intrinsically not detectable by conventional MRI, making it difficult to distinguish air from bone. Therefore, development of more versatile MR sequences to label the bone structure, e.g. ultra-short echo-time (UTE) sequences, certainly plays a significant role in novel methodological developments. However, long acquisition time and complexity of UTE sequences limit its clinical applications. To overcome this problem, we developed a novel combination of Short-TE (ShTE) pulse sequence to detect bone signal with a 2-point Dixon technique for water-fat discrimination, along with a robust image segmentation method based on fuzzy clustering C-means (FCM) to segment the head area into four classes of air, bone, soft tissue and adipose tissue. The imaging protocol was set on a clinical 3 T Tim Trio and also 1.5 T Avanto (Siemens Medical Solution, Erlangen, Germany) employing a triple echo time pulse sequence in the head area. The acquisition parameters were as follows: TE1/TE2/TE3=0.98/4.925/6.155 ms, TR=8 ms, FA=25 on the 3 T system, and TE1/TE2/TE3=1.1/2.38/4.76 ms, TR=16 ms, FA=18 for the 1.5 T system. The second and third echo-times belonged to the Dixon decomposition to distinguish soft and adipose tissues. To quantify accuracy, sensitivity and specificity of the bone segmentation algorithm, resulting classes of MR-based segmented bone were compared with the manual segmented one by our expert neuro-radiologist. Results for both 3 T and 1.5 T systems show that bone segmentation applied in several slices yields average accuracy, sensitivity and specificity higher than 90%. Results indicate that FCM is an appropriate technique for tissue classification in the sinusoidal area where there is air-bone interface. Furthermore, using Dixon method, fat and brain tissues were successfully separated.
Obesity is a concern for bone health with aging.
Shapses, Sue A; Pop, L Claudia; Wang, Yang
2017-03-01
Accumulating evidence supports a complex relationship between adiposity and osteoporosis in overweight/obese individuals, with local interactions and endocrine regulation by adipose tissue on bone metabolism and fracture risk in elderly populations. This review was conducted to summarize existing evidence to test the hypothesis that obesity is a risk factor for bone health in aging individuals. Mechanisms by which obesity adversely affects bone health are believed to be multiple, such as an alteration of bone-regulating hormones, inflammation, oxidative stress, the endocannabinoid system, that affect bone cell metabolism are discussed. In addition, evidence on the effect of fat mass and distribution on bone mass and quality is reviewed together with findings relating energy and fat intake with bone health. In summary, studies indicate that the positive effects of body weight on bone mineral density cannot counteract the detrimental effects of obesity on bone quality. However, the exact mechanism underlying bone deterioration in the obese is not clear yet and further research is required to elucidate the effect of adipose depots on bone and fracture risk in the obese population. Copyright © 2017 Elsevier Inc. All rights reserved.
Obesity is a concern for bone health with aging
Shapses, Sue A.; Pop, L. Claudia; Wang, Yang
2017-01-01
Accumulating evidence supports a complex relationship between adiposity and osteoporosis in overweight/obese individuals, with local interactions and endocrine regulation by adipose tissue on bone metabolism and fracture risk in elderly populations. This review was conducted to summarize existing evidence to test the hypothesis that obesity is a risk factor for bone health in aging individuals. Mechanisms by which obesity adversely affects bone health are believed to be multiple, such as an alteration of bone-regulating hormones, inflammation, oxidative stress, the endocannabinoid system, that affect bone cell metabolism are discussed. In addition, evidence on the effect of fat mass and distribution on bone mass and quality is reviewed together with findings relating energy and fat intake with bone health. In summary, studies indicate that the positive effects of body weight on bone mineral density cannot counteract the detrimental effects of obesity on bone quality. However, the exact mechanism underlying bone deterioration in the obese is not clear yet and further research is required to elucidate the effect of adipose depots on bone and fracture risk in the obese population. PMID:28385284
Alcohol consumption and body composition in a population-based sample of elderly Australian men.
Coulson, Carolyn E; Williams, Lana J; Brennan, Sharon L; Berk, Michael; Kotowicz, Mark A; Lubman, Dan I; Pasco, Julie A
2013-05-01
Alcohol is calorie dense, and impacts activity, appetite and lipid processing. The aim of this study was to therefore investigate the association between alcohol consumption and components of body composition including bone, fat and lean tissue. Participants were recruited from a randomly selected, population-based sample of 534 men aged 65 years and older enrolled in the Geelong Osteoporosis Study. Alcohol intake was ascertained using a food frequency questionnaire and the sample categorised as non-drinkers or alcohol users who consumed ≤2, 3-4 or ≥5 standard drinks on a usual drinking day. Bone mineral density (BMD), lean body mass and body fat mass were measured using dual energy X-ray absorptiometry; overall adiposity (%body fat), central adiposity (%truncal fat) and body mass index (BMI) were calculated. Bone quality was determined by quantitative heel ultrasound (QUS). There were 90 current non-drinkers (16.9 %), 266 (49.8 %) consumed 1-2 drinks/day, 104 (19.5 %) 3-4 drinks/day and 74 (13.8 %) ≥5 drinks/day. Those consuming ≥5 drinks/day had greater BMI (+4.8 %), fat mass index (+20.1 %), waist circumference (+5.0 %), %body fat (+15.2 %) and proportion of trunk fat (+5.3 %) and lower lean mass (-5.0 %) than non-drinkers after adjustment for demographic and lifestyle factors. Furthermore, they were more likely to be obese than non-drinkers according to criteria based on BMI (OR = 2.83, 95 %CI 1.10-7.29) or waist circumference (OR = 3.36, 95 %CI 1.32-8.54). There was an inverse relationship between alcohol consumption and QUS parameters and BMD at the mid forearm site; no differences were detected for BMD at other skeletal sites. Higher alcohol intake was associated with greater total and central adiposity and reduced bone quality.
Association between fat mass, lean mass, and bone loss: the Dubbo Osteoporosis Epidemiology Study.
Yang, S; Center, J R; Eisman, J A; Nguyen, T V
2015-04-01
Lower body fat mass is a risk factor for bone loss at lumbar spine in postmenopausal women, but not in men. Body lean mass and fat mass were not associated with femoral neck bone loss in either gender. Bone density and body mass are closely associated. Whole body lean mass (LM) and fat mass (FM) together account for approximately 95 % of body mass. Bone loss is associated with loss of body mass but which of the components of body mass (FM or LM) is related to bone loss is not well understood. Therefore, in this study, we sought to assess whether baseline FM or LM has predictive value for future relative rate of bone mineral density (BMD) changes (%/year). The present population-based cohort study was part of the ongoing Dubbo Osteoporosis Epidemiology Study (DOES). BMD, FM, and LM were measured with dual energy X-ray absorptiometry (GE-LUNAR Corp, Madison, WI). BMD measurements were taken in approximately every 2 years between 2000 and 2010. We only included the participants with at least two BMD measurements at the femoral neck and lumbar spine. In total, 717 individuals (204 men and 513 women) aged 50 years or older were studied. Rate of bone loss at femoral neck and lumbar spine was faster in women than in men (all P < 0.01). In bivariable regression analysis, each 5 kg greater FM in women was associated with 0.4 %/year (P = 0.003) lower bone loss at lumbar spine. This magnitude of association remained virtually unchanged after adjusting for LM and/or other covariates (P = 0.03). After adjusting for covariates, variation of FM accounted for ∼1.5 % total variation in lumbar spine bone loss. However, there was no significant association between FM and change in femoral neck BMD in either men or women. Lower FM was an independent but modest risk factor for greater bone loss at the lumbar spine in women but not in men. If further studies confirm our findings, FM can help predict lumbar spine bone loss in women.
Campos, Raquel Munhoz da Silveira; Masquio, Deborah Cristina Landi; Corgosinho, Flávia Campos; Carvalho-Ferreira, Joana Pereira de; Molin Netto, Bárbara Dal; Clemente, Ana Paula Grotti; Tock, Lian; Tufik, Sergio; Mello, Marco Túlio de; Dâmaso, Ana Raimunda
2018-05-17
Obesity is a multifactorial disease characterized by the presence of the pro-inflammatory state associated with the development of many comorbidities, including bone turnover marker alterations. This study aimed to investigate the role of the inflammatory state on bone turnover markers in obese adolescents undergoing interdisciplinary weight loss treatment for one year. Thirty four post-pubescent obese adolescents with primary obesity, a body mass index (BMI) greater than > 95th percentile of the CDC reference growth charts, participated in the present investigation. Measurements of body composition, bone turnover markers, inflammatory biomarkers and visceral and subcutaneous fat were taken. Adolescents were submitted to one year of interdisciplinary treatment (clinical approach, physical exercise, physiotherapy intervention, nutritional and psychological counseling). Reduction in body mass, body fat mass, visceral and subcutaneous fat, as well as, an increase in the body lean mass and bone mineral content was observed. An improvement in inflammatory markers was seen with an increase in adiponectin, adiponectin/leptin ratio and inteleukin-15. Moreover, a positive correlation between the adiponectin/leptin ratio and osteocalcin was demonstrated. Further, both lean and body fat mass were predictors of osteocalcin. Negative associations between leptin with osteocalcin, adiponectin with Beta CTX-collagen, and visceral fat with adiponectin were observed. It is possible to conclude that the inflammatory state can negatively influence the bone turnover markers in obese adolescents. In addition, the interdisciplinary weight loss treatment improved the inflammatory state and body composition in obese adolescents. Therefore, the present findings should be considered in clinical practice.
Sinclair, Sarina S Kay; Horton, C Olsen; Jeray, Kyle J; Tanner, Stephanie L; Burgl, Karen J L
2015-01-01
Mesenchymal stem cells (MSCs) are of therapeutic interest to clinicians and researchers, as they have been shown to augment the osteogenic properties of bone grafts. MSCs are known to be prevalent in bone marrow, but are still limited in numbers. Hence, additional sources of MSCs are beneficial to increasing grafting potential. Aspirate material collected using the Reamer/Irrigator/Aspirator (RIA) device (Synthes; Paoli, PA) during reaming of the femoral shaft consists of three main components: bone fragments, liquid flow-through, and a fat layer. Currently, only the bone and liquid layers have been examined for osteoinductive elements, and the bone fragments are exclusively used as autologous bone graft. In the present study, a method to promote cellular outgrowth, tapping proliferative capacity from the previously discarded fatty layer of RIA aspirate, is described. Proliferating cells were successfully isolated from the bone and fatty layers of a consenting patient and found to be viable after liquid nitrogen storage. The osteogenic differentiation potential of the cells isolated from the fat and bone layers was assessed. Cells from both layers of the aspirate expressed statistically significant levels (p < 0.05) of the bone cell marker alkaline phosphatase compared to the control cells, suggesting differentiation along the osteoblastic pathway. Results from this pilot study indicate that the traditionally discarded fatty element of RIA aspirate may be a source of MSCs with bone-forming capabilities and the described isolation technique is effective. Combining the aspirate fatty and bony elements may enhance the clinical success of the RIA autograft.
USDA-ARS?s Scientific Manuscript database
We investigated the effects of diet (AIN93G or high-fat), physical activity (sedentary or voluntary running) and protein source (casein or soy protein isolate) and their interactions on bone microstructural changes in distal femurs in male C57BL/6 mice by using micro-computed tomography. After 14 w...
Duran, I; Martakis, K; Hamacher, S; Stark, C; Semler, O; Schoenau, E
2018-05-01
The aim was to describe the effect of age, gender, height, different stages of human life, and body fat on the functional muscle-bone unit. All these factors had a significant effect on the functional muscle-bone unit and should be addressed when assessing functional muscle-bone unit in children and adults. For the clinical evaluation of the functional muscle-bone unit, it was proposed to evaluate the adaptation of the bone to the acting forces. A frequently used parameter for this is the total body less head bone mineral content (TBLH-BMC) determined by dual-energy X-ray absorptiometry (DXA) in relation to the lean body mass (LBM by DXA). LBM correlates highly with muscle mass. Therefore, LBM is a surrogate parameter for the muscular forces acting in everyday life. The aim of the study was to describe the effect of age and gender on the TBLH-BMC for LBM and to evaluate the impact of other factors, such as height, different stages of human life, and of body fat. As part of the National Health and Nutrition Examination Survey (NHANES) study, between the years 1999-2006 whole-body DXA scans on randomly selected Americans from 8 years of age were carried out. From all eligible DXA scans (1999-2004), three major US ethnic groups were evaluated (non-Hispanic Whites, non-Hispanic Blacks, and Mexican Americans) for further statistical analysis. For the statistical analysis, the DXA scans of 8190 non-Hispanic White children and adults (3903 female), of 4931 non-Hispanic Black children and adults (2250 female) and 5421 of Mexican-American children and adults (2424 female) were eligible. Age, gender, body height, and especially body fat had a significant effect on the functional muscle-bone unit. When assessing TBLH-BMC for LBM in children and adults, the effects of age, gender, body fat, and body height should be addressed. These effects were analyzed for the first time in such a large cohort.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Kuan-Hao; Hu, Lingzhi; Traughber, Melanie
Purpose: MR-based pseudo-CT has an important role in MR-based radiation therapy planning and PET attenuation correction. The purpose of this study is to establish a clinically feasible approach, including image acquisition, correction, and CT formation, for pseudo-CT generation of the brain using a single-acquisition, undersampled ultrashort echo time (UTE)-mDixon pulse sequence. Methods: Nine patients were recruited for this study. For each patient, a 190-s, undersampled, single acquisition UTE-mDixon sequence of the brain was acquired (TE = 0.1, 1.5, and 2.8 ms). A novel method of retrospective trajectory correction of the free induction decay (FID) signal was performed based on point-spreadmore » functions of three external MR markers. Two-point Dixon images were reconstructed using the first and second echo data (TE = 1.5 and 2.8 ms). R2{sup ∗} images (1/T2{sup ∗}) were then estimated and were used to provide bone information. Three image features, i.e., Dixon-fat, Dixon-water, and R2{sup ∗}, were used for unsupervised clustering. Five tissue clusters, i.e., air, brain, fat, fluid, and bone, were estimated using the fuzzy c-means (FCM) algorithm. A two-step, automatic tissue-assignment approach was proposed and designed according to the prior information of the given feature space. Pseudo-CTs were generated by a voxelwise linear combination of the membership functions of the FCM. A low-dose CT was acquired for each patient and was used as the gold standard for comparison. Results: The contrast and sharpness of the FID images were improved after trajectory correction was applied. The mean of the estimated trajectory delay was 0.774 μs (max: 1.350 μs; min: 0.180 μs). The FCM-estimated centroids of different tissue types showed a distinguishable pattern for different tissues, and significant differences were found between the centroid locations of different tissue types. Pseudo-CT can provide additional skull detail and has low bias and absolute error of estimated CT numbers of voxels (−22 ± 29 HU and 130 ± 16 HU) when compared to low-dose CT. Conclusions: The MR features generated by the proposed acquisition, correction, and processing methods may provide representative clustering information and could thus be used for clinical pseudo-CT generation.« less
Genzer, Yoni; Dadon, Maayan; Burg, Chen; Chapnik, Nava; Froy, Oren
2016-07-15
Brain-derived neurotrophic factor (BDNF) is the most abundant neurotrophin in the brain and its decreased levels are associated with the development of obesity and neurodegeneration. Our aim was to test the effect of dietary fat, its timing and the circadian clock on the expression of BDNF and associated signaling pathways in mouse brain and liver. Bdnf mRNA oscillated robustly in brain and liver, but with a 12-h shift between the tissues. Brain and liver Bdnf mRNA showed a 12-h phase shift when fed ketogenic diet (KD) compared with high-fat diet (HFD) or low-fat diet (LFD). Brain or liver Bdnf mRNA did not show the typical phase advance usually seen under time-restricted feeding (RF). Clock knockdown in HT-4 hippocampal neurons led to 86% up-regulation of Bdnf mRNA, whereas it led to 60% down-regulation in AML-12 hepatocytes. Dietary fat in mice or cultured hepatocytes and hippocampal neurons led to increased Bdnf mRNA expression. At the protein level, HFD increased the ratio of the mature BDNF protein (mBDNF) to its precursor (proBDNF). In the liver, RF under LFD or HFD reduced the mBDNF/proBDNF ratio. In the brain, the two signaling pathways related to BDNF, mTOR and AMPK, showed reduced and increased levels, respectively, under timed HFD. In the liver, the reverse was achieved. In summary, Bdnf expression is mediated by the circadian clock and dietary fat. Although RF does not affect its expression phase, in the brain, when combined with high-fat diet, it leads to a unique metabolic state in which AMPK is activated, mTOR is down-regulated and the levels of mBDNF are high. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Effects of Gymnastics Activities on Bone Accrual during Growth: A Systematic Review
Jürimäe, Jaak; Gruodyte-Raciene, Rita; Baxter-Jones, Adam D. G.
2018-01-01
The amount of bone gained during childhood and adolescence impacts greatly on lifetime skeletal health. The purpose of this review is to summarize current evidence of the effects of gymnastics activities on bone mineral accrual during growth and to describe possible factors that influence bone mineral gains. The PubMed and SportDiscus databases were searched, and a total of 24 articles met the selection criteria and were included in this review. Artistic and rhythmic gymnasts presented higher bone mineral density and content values compared to untrained controls, despite possible negative effects associated with hormonal levels, dietary restrictions and body fat. The results suggest that gymnasts had similar bone turnover values compared to untrained controls. High-intensity mechanical loading of gymnastics activity appears to increase bone development and counterbalance negative effects, such as later pubertal development, lower body fat mass and lower hormone levels. In conclusion, gymnasts present higher bone mineral values in comparison with untrained controls. The osteogenic effect of gymnastics athletic activity has a positive influence on bone mineral accrual and overcomes the possible negative influence of high athletic activity that may cause negative energy balance and low body fat mass which are associated with lower bone accrual. Key points Children and adolescent gymnasts present higher bone mineral density and content values compared to untrained controls, despite a variety of possible negative factors. Gymnastics activity with high-impact mechanical loading appears to be especially osteogenic to achieve maximum possible peak bone accrual during growth and maturation. Skeletal benefits of gymnastics activity in childhood are maintained for several years after retirement from gymnastics trainings in young adulthood. PMID:29769826
Chaplin, Alice; Palou, Andreu; Serra, Francisca
2015-12-01
The potential of conjugated linoleic acids (CLA) and calcium in weight management in animal models and human studies has been outlined, as well as their use to prevent bone loss at critical stages. In addition, it has been suggested that bone remodeling and energy metabolism are regulated by shared pathways and involve common hormones such as leptin. We have previously shown that supplementation with CLA and calcium in adult obese mice decreases body weight and body fat. The aim of the present study was to assess the effects of these two compounds on bone and energy metabolism markers on bone. Mice (C57BL/6J) were divided into five groups according to diet and treatment (up to 56 days): control (C), high-fat diet (HF), HF+CLA (CLA), HF+calcium (Ca) and HF with both compounds (CLA+Ca). At the end of treatment, bone formation markers were determined in plasma and expression of selected bone and energy markers was determined in tibia by quantitative polymerase chain reaction. Results show that CLA was associated with decreased tibia weight and minor impact on bone markers, whereas calcium, either alone or co-supplemented with CLA, maintained bone weight and promoted the expression of bone formation genes such as bone gamma-carboxyglutamate protein 2 (Bglap2) and collagen Iα1 (Col1a1). Furthermore, it had a significant effect on key players in energy metabolism, in particular leptin and adiponectin tibia receptors. Overall, in addition to the weight loss promoting properties of calcium, on its own or co-supplemented with CLA, our results support beneficial effects on bone metabolism in mice. Copyright © 2015. Published by Elsevier Inc.
Alsahli, Ahmad; Kiefhaber, Kathryn; Gold, Tziporah; Muluke, Munira; Jiang, Hongfeng; Cremers, Serge; Schulze-Späte, Ulrike
2016-05-01
Obesity and impaired lipid metabolism increase circulating and local fatty acid (FA) levels. Our previous studies showed that a high high-saturated -fat diet induced greater bone loss in mice than a high high-unsaturated-fat diet due to increased osteoclast numbers and activity. The impact of elevated FA levels on osteoblasts is not yet clear. We induced obesity in 4 week old male mice using a palmitic acid (PA)- or oleic acid (OA)-enriched high fat high-fat diet (HFD) (20 % of calories from FA), and compared them to mice on a normal (R) caloric diet (10 % of calories from FA). We collected serum to determine FA and bone metabolism marker levels. Primary osteoblasts were isolated; cultured in PA, OA, or control (C) medium; and assessed for mineralization activity, gene expression, and ceramide levels. Obese animals in the PA and OA groups had significantly lower serum levels of bone formation markers P1NP and OC compared to normal weight animals (*p < 0.001), with the lowest marker levels in animals on an PA-enriched HFD (*p < 0.001). Accordingly, elevated levels of PA significantly reduced osteoblast mineralization activity in vitro (*p < 0.05). Elevated PA intake significantly increased C16 ceramide accumulation. This accumulation was preventable through inhibition of SPT2 (serine palmitoyl transferase 2) using myriocin. Elevated levels of PA reduce osteoblast function in vitro and bone formation markers in vivo. Our findings suggest that saturated PA can compromise bone health by affecting osteoblasts, and identify a potential mechanism through which obesity promotes bone loss.
Farr, Joshua N.; Laudermilk, Monica J.; Lee, Vinson R.; Blew, Robert M.; Stump, Craig; Houtkooper, Linda; Lohman, Timothy G.; Going, Scott B.
2015-01-01
Summary Longitudinal relationships between adiposity (total body and central) and bone development were assessed in young girls. Total body and android fat masses were positively associated with bone strength and density parameters of the femur and tibia. These results suggest adiposity may have site-specific stimulating effects on the developing bone. Introduction Childhood obesity may impair bone development, but the relationships between adiposity and bone remain unclear. Failure to account for fat pattern may explain the conflicting results. Purpose Longitudinal associations of total body fat mass (TBFM) and android fat mass (AFM) with 2-year changes in weight-bearing bone parameters were examined in 260 girls aged 8–13 years at baseline. Peripheral quantitative computed tomography was used to measure bone strength index (BSI, square milligrams per quartic millimeter), strength–strain index (SSI, cubic millimeters), and volumetric bone mineral density (vBMD, milligrams per cubic centimeter) at distal metaphyseal and diaphyseal regions of the femur and tibia. TBFM and AFM were assessed by dual-energy x-ray absorptiometry. Results Baseline TBFM and AFM were positively associated with the change in femur BSI (r =0.20, r =0.17, respectively) and femur trabecular vBMD (r =0.19, r =0.19, respectively). Similarly, positive associations were found between TBFM and change in tibia BSI and SSI (r =0.16, r =0.15, respectively), and femur total and trabecular vBMD (r =0.12, r =0.14, respectively). Analysis of covariance showed that girls in the middle thirds of AFM had significantly lower femur trabecular vBMD and significantly higher tibia cortical vBMD than girls in the highest thirds of AFM. All results were significant at p <0.05. Conclusions Whereas baseline levels of TBFM and AFM are positive predictors of bone strength and density at the femur and tibia, higher levels of AFM above a certain level may impair cortical vBMD growth at weight-bearing sites. Future studies in obese children will be needed to test this possibility. NIH/NICHD #HD-050775. PMID:24113839
Fabp1 gene ablation inhibits high-fat diet-induced increase in brain endocannabinoids.
Martin, Gregory G; Landrock, Danilo; Chung, Sarah; Dangott, Lawrence J; Seeger, Drew R; Murphy, Eric J; Golovko, Mikhail Y; Kier, Ann B; Schroeder, Friedhelm
2017-01-01
The endocannabinoid system shifts energy balance toward storage and fat accumulation, especially in the context of diet-induced obesity. Relatively little is known about factors outside the central nervous system that may mediate the effect of high-fat diet (HFD) on brain endocannabinoid levels. One candidate is the liver fatty acid binding protein (FABP1), a cytosolic protein highly prevalent in liver, but not detected in brain, which facilitates hepatic clearance of fatty acids. The impact of Fabp1 gene ablation (LKO) on the effect of high-fat diet (HFD) on brain and plasma endocannabinoid levels was examined and data expressed for each parameter as the ratio of high-fat diet/control diet. In male wild-type mice, HFD markedly increased brain N-acylethanolamides, but not 2-monoacylglycerols. LKO blocked these effects of HFD in male mice. In female wild-type mice, HFD slightly decreased or did not alter these endocannabinoids as compared with male wild type. LKO did not block the HFD effects in female mice. The HFD-induced increase in brain arachidonic acid-derived arachidonoylethanolamide in males correlated with increased brain-free and total arachidonic acid. The ability of LKO to block the HFD-induced increase in brain arachidonoylethanolamide correlated with reduced ability of HFD to increase brain-free and total arachidonic acid in males. In females, brain-free and total arachidonic acid levels were much less affected by either HFD or LKO in the context of HFD. These data showed that LKO markedly diminished the impact of HFD on brain endocannabinoid levels, especially in male mice. © 2016 International Society for Neurochemistry.
Prior Consumption of a Fat Meal in Healthy Adults Modulates the Brain's Response to Fat.
Eldeghaidy, Sally; Marciani, Luca; Hort, Joanne; Hollowood, Tracey; Singh, Gulzar; Bush, Debbie; Foster, Tim; Taylor, Andy J; Busch, Johanneke; Spiller, Robin C; Gowland, Penny A; Francis, Susan T
2016-11-01
The consumption of fat is regulated by reward and homeostatic pathways, but no studies to our knowledge have examined the role of high-fat meal (HFM) intake on subsequent brain activation to oral stimuli. We evaluated how prior consumption of an HFM or water load (WL) modulates reward, homeostatic, and taste brain responses to the subsequent delivery of oral fat. A randomized 2-way crossover design spaced 1 wk apart was used to compare the prior consumption of a 250-mL HFM (520 kcal) [rapeseed oil (440 kcal), emulsifier, sucrose, flavor cocktail] or noncaloric WL on brain activation to the delivery of repeated trials of a flavored no-fat control stimulus (CS) or flavored fat stimulus (FS) in 17 healthy adults (11 men) aged 25 ± 2 y and with a body mass index (in kg/m 2 ) of 22.4 ± 0.8. We tested differences in brain activation to the CS and FS and baseline cerebral blood flow (CBF) after the HFM and WL. We also tested correlations between an individual's plasma cholecystokinin (CCK) concentration after the HFM and blood oxygenation level-dependent (BOLD) activation of brain regions. Compared to the WL, consuming the HFM led to decreased anterior insula taste activation in response to both the CS (36.3%; P < 0.05) and FS (26.5%; P < 0.05). The HFM caused reduced amygdala activation (25.1%; P < 0.01) in response to the FS compared to the CS (fat-related satiety). Baseline CBF significantly reduced in taste (insula: 5.7%; P < 0.01), homeostatic (hypothalamus: 9.2%, P < 0.01; thalamus: 5.1%, P < 0.05), and reward areas (striatum: 9.2%; P < 0.01) after the HFM. An individual's plasma CCK concentration correlated negatively with brain activation in taste and oral somatosensory (ρ = -0.39; P < 0.05) and reward areas (ρ = -0.36; P < 0.05). Our results in healthy adults show that an HFM suppresses BOLD activation in taste and reward areas compared to a WL. This understanding will help inform the reformulation of reduced-fat foods that mimic the brain's response to high-fat counterparts and guide future interventions to reduce obesity.
Intersection between metabolic dysfunction, high fat diet consumption, and brain aging.
Uranga, Romina M; Bruce-Keller, Annadora J; Morrison, Christopher D; Fernandez-Kim, Sun Ok; Ebenezer, Philip J; Zhang, Le; Dasuri, Kalavathi; Keller, Jeffrey N
2010-07-01
Deleterious neurochemical, structural, and behavioral alterations are a seemingly unavoidable aspect of brain aging. However, the basis for these alterations, as well as the basis for the tremendous variability in regards to the degree to which these aspects are altered in aging individuals, remains to be elucidated. An increasing number of individuals regularly consume a diet high in fat, with high-fat diet consumption known to be sufficient to promote metabolic dysfunction, although the links between high-fat diet consumption and aging are only now beginning to be elucidated. In this review we discuss the potential role for age-related metabolic disturbances serving as an important basis for deleterious perturbations in the aging brain. These data not only have important implications for understanding the basis of brain aging, but also may be important to the development of therapeutic interventions which promote successful brain aging.
USDA-ARS?s Scientific Manuscript database
Few studies have examined the effects of diet on the dynamics of injury progression or on alcohol-induced bone loss. In the current study, 300 g male Sprague-Dawley rats (N = 10/group) were treated with alcohol containing liquid diets via a stomach tube. Dietary fat content was either 5% (high carbo...
1977-09-30
90F ork Unit No. 76/24 (FY76, 0) An Investination of the Effect of Supplemental Oxygen on Chemically Induced Fat Embolization ...accepted as criteria for determination of the presence of fat embolism syndrome. In this study laboratory parameters and lung scans are obtained for a 5...91 Work Unit No. 76/31 (FY76, 0) Early Detection of Fatiaue Fracture by Bone Scannina with Tc-99 Bone Scan Agents
Li, Shihong; Chang, Eric Y.; Bae, Won C.; Chung, Christine B.; Hua, Yanqing; Zhou, Yi; Du, Jiang
2014-01-01
Purpose: The purpose of this study was to investigate the effect of excitation, fat saturation, long T2 saturation, and adiabatic inversion pulses on ultrashort echo time (UTE) imaging with bicomponent analysis of bound and free water in cortical bone for potential applications in osteoporosis. Methods: Six bovine cortical bones and six human tibial midshaft samples were harvested for this study. Each bone sample was imaged with eight sequences using 2D UTE imaging at 3T with half and hard excitation pulses, without and with fat saturation, long T2 saturation, and adiabatic inversion recovery (IR) preparation pulses. Single- and bicomponent signal models were utilized to calculate the T2*s and/or relative fractions of short and long T2*s. Results: For all bone samples UTE T2* signal decay showed bicomponent behavior. A higher short T2* fraction was observed on UTE images with hard pulse excitation compared with half pulse excitation (75.6% vs 68.8% in bovine bone, 79.9% vs 73.2% in human bone). Fat saturation pulses slightly reduced the short T2* fraction relative to regular UTE sequences (5.0% and 2.0% reduction, respectively, with half and hard excitation pulses for bovine bone, 6.3% and 8.2% reduction, respectively, with half and hard excitation pulses for human bone). Long T2 saturation pulses significantly reduced the long T2* fraction relative to regular UTE sequence (18.9% and 17.2% reduction, respectively, with half and hard excitation pulses for bovine bone, 26.4% and 27.7% reduction, respectively, with half and hard excitation pulses for human bone). With IR-UTE preparation the long T2* components were significantly reduced relative to regular UTE sequence (75.3% and 66.4% reduction, respectively, with half and hard excitation pulses for bovine bone, 87.7% and 90.3% reduction, respectively, with half and hard excitation pulses for human bone). Conclusions: Bound and free water T2*s and relative fractions can be assessed using UTE bicomponent analysis. Long T2* components are affected more by long T2 saturation and IR pulses, and short T2* components are affected more by fat saturation pulses. PMID:24506644
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Shihong; Department of Radiology, Hua Dong Hospital, Fudan University, Shanghai 200040; Yancheng Medical College, Jiangsu
Purpose: The purpose of this study was to investigate the effect of excitation, fat saturation, long T2 saturation, and adiabatic inversion pulses on ultrashort echo time (UTE) imaging with bicomponent analysis of bound and free water in cortical bone for potential applications in osteoporosis. Methods: Six bovine cortical bones and six human tibial midshaft samples were harvested for this study. Each bone sample was imaged with eight sequences using 2D UTE imaging at 3T with half and hard excitation pulses, without and with fat saturation, long T2 saturation, and adiabatic inversion recovery (IR) preparation pulses. Single- and bicomponent signal modelsmore » were utilized to calculate the T2{sup *}s and/or relative fractions of short and long T2{sup *}s. Results: For all bone samples UTE T2{sup *} signal decay showed bicomponent behavior. A higher short T2{sup *} fraction was observed on UTE images with hard pulse excitation compared with half pulse excitation (75.6% vs 68.8% in bovine bone, 79.9% vs 73.2% in human bone). Fat saturation pulses slightly reduced the short T2{sup *} fraction relative to regular UTE sequences (5.0% and 2.0% reduction, respectively, with half and hard excitation pulses for bovine bone, 6.3% and 8.2% reduction, respectively, with half and hard excitation pulses for human bone). Long T2 saturation pulses significantly reduced the long T2{sup *} fraction relative to regular UTE sequence (18.9% and 17.2% reduction, respectively, with half and hard excitation pulses for bovine bone, 26.4% and 27.7% reduction, respectively, with half and hard excitation pulses for human bone). With IR-UTE preparation the long T2{sup *} components were significantly reduced relative to regular UTE sequence (75.3% and 66.4% reduction, respectively, with half and hard excitation pulses for bovine bone, 87.7% and 90.3% reduction, respectively, with half and hard excitation pulses for human bone). Conclusions: Bound and free water T2{sup *}s and relative fractions can be assessed using UTE bicomponent analysis. Long T2{sup *} components are affected more by long T2 saturation and IR pulses, and short T2{sup *} components are affected more by fat saturation pulses.« less
Novel Therapy for Bone Regeneration in Large Segmental Defects
2016-10-01
reamed and nonreamed intrame- dullary nailing on fracture healing. Clin Orthop Relat Res. 1998;355(Suppl):S230–8. 37. Pape HC, Giannoudis PV. Fat embolism ...extension period (Year 4). 15. SUBJECT TERMS Bone healing, bone morphogenetic protein (BMP), thrombopoietin (TPO), therapy, fracture healing, bone...Bone healing, bone morphogenetic protein (BMP), thrombopoietin (TPO), therapy, fracture healing, bone regeneration, minipig, pig 3. OVERALL PROJECT
Evaluation of cranial bone transport distraction with and without adipose grafting.
Koch, Felix P; Yuhasz, Mikell M; Travieso, Rob; Wong, Kenneth; Clune, James; Zhuang, Zhen W; Van Houten, Joshua; Steinbacher, Derek M
2014-05-01
Transport distraction osteogenesis (DO) can be used to autologously reconstitute calvarial defects. The purpose of this study is to histomorphologically interrogate osteogenic formation during cranial transport distraction using a novel device. We also evaluate the effect of fat grafting on the regenerate and soft-tissue stability during distraction. This study was approved by Yale IACUC. Ten male New Zealand white rabbits (3 mo; 3.5 kg) were used (8 treatment, 2 control). A 16 × 16 mm defect was created abutted by a 10 × 16 mm transport disc. The device was fixated anterioposteriorly. Four animals were fat-grafted using 2 mL of subdermal intrascapular fat deposited along the distraction site. Latency (1 d), active distraction (12-14 d) (1.5 mm/d), and consolidation (4 wk) followed. Calcein and xylene orange fluorochromes were injected subcutaneously during and post-distraction to mark sites of bone formation. Following sacrifice, osteogenesis was assessed using microCT, histology, and fluorescence. Treatment animals demonstrated regenerate bone between distracted segments on microCT. MicroCT analysis of non-fat-grafted and fat-grafted animals revealed a mean density of 2271.95 mgHA/ccm and 2254.27 mgHA/ccm (P = 0.967), respectively, and defect bone versus total volume (BV/TV) of 0.0999 and 0.0766 (P = 0.5979), respectively. Controls had minimal reossification. Histologically, mean densities measured 43.63% and 8.19%, respectively. Fluorescence revealed ossification from the callus as well as from dura and periosteum in the cranial defect. Transport distraction is effective to reconstruct critically sized rabbit calvarial defects. Regenerate bone arises predominantly from the callus with contribution from surrounding dura and periosteum. Adipose grafting is well tolerated but does not enhance osseous regeneration.
Jeddi, Marjan; Dabbaghmanesh, Mohammad Hossein; Ranjbar Omrani, Gholamhossein; Ayatollahi, Sayed Mohammad Taghi; Bagheri, Zahra; Bakhshayeshkaram, Marzieh
2015-07-01
Body weight is made up of lean and fat mass and both are involved in growth and development. Impression of these two components in bone density accrual has been controversial. The aim of this study was to evaluate the relationship between fat and lean mass and bone density in Iranian children and adolescents. A cross-sectional study was performed on 472 subjects (235 girls, 237 boys) aged 9-18 years old in Fars Province. The participants' weight, height, waist circumference, stage of puberty, and level of physical activity were recorded. Bone Mineral Content (BMC), Bone Mineral Density (BMD), total body fat and lean mass were measured using dual-energy X-ray absorptiometry. Results showed that 12.2% of boys and 12.3% of girls were overweight and 5.5% of boys and 4.7% of girls were obese. Obese individuals had greater total body BMD (0.96 ± 0.11) than normal-weight ones (0.86 ± 0.11) (P < 0.001). We found the greatest correlation between total body BMD and total body lean mass (R = 0.78. P < 0.001) and the least correlation with total body fat percentage (R = 0.03, P = 0.44). Total lean mass in more active boys was 38.1 ± 10.9 and in less active boys was 32.3 ± 11.0 (P < 0.001). The results of multiple regression analysis showed that age and total body lean mass were independent factors of BMD in growing children and adolescents. These findings suggest that lean mass was the most important predictor of BMD in both genders. Physical activity appears to positively impact on lean mass and needs to be considered in physical education and health-enhancing programs in Iranian school children.
Yarrow, Joshua F.; Toklu, Hale Z.; Balaez, Alex; Phillips, Ean G.; Otzel, Dana M.; Chen, Cong; Wronski, Thomas J.; Aguirre, J. Ignacio; Sakarya, Yasemin; Tümer, Nihal; Scarpace, Philip J.
2016-01-01
Dietary-induced obesity (DIO) resulting from high-fat (HF) or high-sugar diets produces a host of deleterious metabolic consequences including adverse bone development. We compared the effects of feeding standard rodent chow (Control), a 30% moderately HF (starch-based/sugar-free) diet, or a combined 30%/40% HF/high-fructose (HF/F) diet for 12 weeks on cancellous/cortical bone development in male Sprague-Dawley rats aged 8 weeks. Both HF feeding regimens reduced the lean/fat mass ratio, elevated circulating leptin, and reduced serum total antioxidant capacity (tAOC) when compared with Controls. Distal femur cancellous bone mineral density (BMD) was 23–34% lower in both HF groups (p<0.001) and was characterized by lower cancellous bone volume (BV/TV, p<0.01), lower trabecular number (Tb.N, p<0.001), and increased trabecular separation versus Controls (p<0.001). Cancellous BMD, BV/TV, and Tb.N were negatively associated with leptin and positively associated with tAOC at the distal femur. Similar cancellous bone deficits were observed at the proximal tibia, along with increased bone marrow adipocyte density (p<0.05), which was negatively associated with BV/TV and Tb.N. HF/F animals also exhibited lower osteoblast surface and reduced circulating osteocalcin (p<0.05). Cortical thickness (p<0.01) and tissue mineral density (p<0.05) were higher in both HF-fed groups versus Controls, while whole bone biomechanical characteristics were not different among groups. These results demonstrate that “westernized” HF diets worsen cancellous, but not cortical, bone parameters in skeletally-immature male rats and that fructose incorporation into HF diets does not exacerbate bone loss. In addition, they suggest that leptin and/or oxidative stress may influence DIO-induced alterations in adolescent bone development. PMID:26855373
Yarrow, Joshua F; Toklu, Hale Z; Balaez, Alex; Phillips, Ean G; Otzel, Dana M; Chen, Cong; Wronski, Thomas J; Aguirre, J Ignacio; Sakarya, Yasemin; Tümer, Nihal; Scarpace, Philip J
2016-04-01
Dietary-induced obesity (DIO) resulting from high-fat (HF) or high-sugar diets produces a host of deleterious metabolic consequences including adverse bone development. We compared the effects of feeding standard rodent chow (Control), a 30% moderately HF (starch-based/sugar-free) diet, or a combined 30%/40% HF/high-fructose (HF/F) diet for 12weeks on cancellous/cortical bone development in male Sprague-Dawley rats aged 8weeks. Both HF feeding regimens reduced the lean/fat mass ratio, elevated circulating leptin, and reduced serum total antioxidant capacity (tAOC) when compared with Controls. Distal femur cancellous bone mineral density (BMD) was 23-34% lower in both HF groups (p<0.001) and was characterized by lower cancellous bone volume (BV/TV, p<0.01), lower trabecular number (Tb.N, p<0.001), and increased trabecular separation versus Controls (p<0.001). Cancellous BMD, BV/TV, and Tb.N were negatively associated with leptin and positively associated with tAOC at the distal femur. Similar cancellous bone deficits were observed at the proximal tibia, along with increased bone marrow adipocyte density (p<0.05), which was negatively associated with BV/TV and Tb.N. HF/F animals also exhibited lower osteoblast surface and reduced circulating osteocalcin (p<0.05). Cortical thickness (p<0.01) and tissue mineral density (p<0.05) were higher in both HF-fed groups versus Controls, while whole bone biomechanical characteristics were not different among groups. These results demonstrate that "westernized" HF diets worsen cancellous, but not cortical, bone parameters in skeletally-immature male rats and that fructose incorporation into HF diets does not exacerbate bone loss. In addition, they suggest that leptin and/or oxidative stress may influence DIO-induced alterations in adolescent bone development. Published by Elsevier Inc.
Drennan, M J; McGee, M; Keane, M G
2008-05-01
The objective was to determine the relationship of muscular and skeletal scores taken on the live animal and carcass conformation and fat scores with carcass composition and value. Bulls (n = 48) and heifers (n = 37) of 0.75 to 1.0 late-maturing breed genotypes slaughtered at 16 and 20 months of age, respectively, were used. At 8 months of age (weaning) and immediately pre-slaughter, visual muscular scores were recorded for each animal and additionally skeletal scores were recorded pre-slaughter. Carcass weight, kidney and channel fat weight, carcass conformation and fat scores, fat depth over the longissimus dorsi muscle at the 12th (bulls) or 10th (heifers) rib and carcass length were recorded post-slaughter. Each carcass was subsequently dissected into meat, fat and bone using a commercial dissection procedure. Muscular scores taken pre-slaughter showed positive correlations with killing-out rate (r ≈ 0.65), carcass meat proportion (r ≈ 0.60), value (r ≈ 0.55) and conformation score (r ≈ 0.70), and negative correlations with carcass bone (r ≈ -0.60) and fat (r ≈ -0.4) proportions. Corresponding correlations with muscular scores at weaning were lower. Correlations of skeletal scores taken pre-slaughter, carcass length and carcass weight with killing-out rate and the various carcass traits were mainly not significant. Carcass fat depth and kidney and channel fat weight were negatively correlated with carcass meat proportion and value, and positively correlated with fat proportion. Correlations of carcass conformation score were positive (r = 0.50 to 0.68) with killing-out rate, carcass meat proportion and carcass value and negative with bone (r ≈ -0.56) and fat (r ≈ -0.40) proportions. Corresponding correlations with carcass fat score were mainly negative except for carcass fat proportion (r ≈ 0.79). A one-unit (scale 1 to 15) increase in carcass conformation score increased carcass meat proportion by 8.9 and 8.1 g/kg, decreased fat proportion by 4.0 and 2.9 g/kg and decreased bone proportion by 4.9 and 5.2 g/kg in bulls and heifers, respectively. Corresponding values per unit increase in carcass fat score were -11.9 and -9.7 g/kg, 12.4 and 9.9 g/kg, and -0.5 and -0.2 g/kg. Carcass conformation and fat scores explained 0.70 and 0.55 of the total variation in meat yield for bulls and heifers, respectively. It is concluded that live animal muscular scores, and carcass conformation and fat scores, are useful indicators of carcass meat proportion and value.
Dimitroulis, G; Slavin, J; Morrison, W
2011-02-01
The histological fate of abdominal dermis-fat grafts implanted into the temporomandibular joint (TMJ) following condylectomy was studied. 21 rabbits underwent left TMJ discectomies and condylectomies; 6 were controls (Group A; no graft used); 15 (Group B) had autogenous abdominal grafts transplanted into the left TMJ. Animals were killed after 4, 12 and 20 weeks. Specimens of the TMJ were histologically and histomorphometrically evaluated. At 4 weeks, fat necrosis was clear in all specimens. The dermis component survived and formed cysts with no necrosis. By 12 weeks, viable fat deposits appeared with no evidence of necrotic fat. At 20 weeks, large amounts of viable fat were present in Group B specimens. Group A had no fat, although the missing condyles regenerated. In the presence of viable fat, Group B showed little condyle regeneration 20 weeks after condylectomy. Non-vascularised fat grafts do not survive transplantation, but stimulate neoadipogenesis. The fate of the dermis component of the graft is independent of the fat component. Fat in the joint space disrupts the regeneration of a new condylar head. Neoadipogensis inhibits growth of new bone and cartilage. This has clinical implications for TMJ ankylosis management and preventing heterotopic bone formation around prosthetic joints. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.
Conroy, S B; Drennan, M J; Kenny, D A; McGee, M
2009-11-01
This study examined the relationship of muscular and skeletal scores and ultrasound measurements in the live animal, and carcass conformation and fat scores with carcass composition and value using 336 steers, slaughtered at 2 years of age. Live animal scores and measurements were recorded at 8 to 12 months of age and pre-slaughter. Following slaughter, each carcass was classified for conformation and fatness and the right side dissected into meat, fat and bone. Carcass conformation scores and fat scores were both measured on a continuous 15-point scale and ranged from 2.0 to 12.0 and from 2.8 to 13.3, respectively. Pre-slaughter muscular scores showed positive correlations (P < 0.001) ranging from 0.31 to 0.86 with carcass meat proportion, proportion of high-value cuts in the carcass, conformation score and carcass value, significant negative correlations with carcass fat (r = -0.13) and bone (r = -0.81) proportions, and generally low non-significant relationships with the proportion of high-value cuts in meat and carcass fat score. Pre-slaughter ultrasound muscle depth and carcass conformation score showed similar correlations with carcass traits to those using the pre-slaughter muscular scoring procedure. Pre-slaughter ultrasound fat depth showed positive correlations (P < 0.001) with carcass fat proportion (r = 0.59) and fat score (r = 0.63), and significant negative correlations (-0.23 to -0.50) with carcass meat and bone proportions, high-value cuts in the carcass and in meat, and carcass value. Pre-slaughter skeletal scores generally showed poor correlations ranging from -0.38 to 0.52 with the various carcass traits. Corresponding correlations (-0.26 to 0.44) involving records collected at 8 to 12 months of age were lower than those using pre-slaughter records. A one-unit increase in carcass conformation score increased carcass meat proportion and value by 11.2 g/kg and 5.6 cents/kg, respectively. Corresponding values for fat score were -8.2 g/kg and -5.1 cents/kg. In conclusion, both pre-slaughter live animal scores/measurements and carcass classification scores, explained an appreciable amount of the total variation in carcass meat, fat and bone proportions and carcass value, and a moderate amount of the variation in proportion of high-value meat cuts in the carcass.
Extreme obesity reduces bone mineral density: complementary evidence from mice and women.
Núñez, Nomelí P; Carpenter, Catherine L; Perkins, Susan N; Berrigan, David; Jaque, S Victoria; Ingles, Sue Ann; Bernstein, Leslie; Forman, Michele R; Barrett, J Carl; Hursting, Stephen D
2007-08-01
To evaluate the effects of body adiposity on bone mineral density in the presence and absence of ovarian hormones in female mice and postmenopausal women. We assessed percentage body fat, serum leptin levels, and bone mineral density in ovariectomized and non-ovariectomized C57BL/6 female mice that had been fed various calorically dense diets to induce body weight profiles ranging from lean to very obese. Additionally, we assessed percentage body fat and whole body bone mineral density in 37 overweight and extremely obese postmenopausal women from the Women's Contraceptive and Reproductive Experiences study. In mice, higher levels of body adiposity (>40% body fat) were associated with lower bone mineral density in ovariectomized C57BL/6 female mice. A similar trend was observed in a small sample of postmenopausal women. The complementary studies in mice and women suggest that extreme obesity in postmenopausal women may be associated with reduced bone mineral density. Thus, extreme obesity (BMI > 40 kg/m2) may increase the risk for osteopenia and osteoporosis. Given the obesity epidemic in the U.S. and in many other countries, and, in particular, the rising number of extremely obese adult women, increased attention should be drawn to the significant and interrelated public health issues of obesity and osteoporosis.
Kelly, Owen J; Gilman, Jennifer C; Kim, Youjin; Ilich, Jasminka Z
2017-01-01
Osteosarcopenic obesity, the combined deterioration of bone, muscle and fat tissues, could become the ultimate trajectory of aging. Aging stem cells are deregulated by low-grade chronic inflammation and possibly by diet. The metabolic shift of stem cells towards adipogenesis results in osteo obesity, sarco obesity and obesity. Macronutrients have numerous physiological functions but are regarded mainly for their energy contribution. Currently, no nutritional causes or treatment/prevention guidelines exist for osteosarcopenic obesity. The aim of this review is to assemble the evidence to elucidate if the macronutrient composition of the Western diet has an effect on the development of osteosarcopenic obesity. In view of the role of brain in locomotion a section examining the macronutrients as possible modulators of brain functioning was included. An extensive literature search of PubMed and Medline was conducted for human data using combinations and synonyms of osteoporosis, sarcopenia and obesity, and energy, carbohydrate, protein and lipid, and brain. US National Health and Nutrition Examination Survey (NHANES) food intake data from 2002-2012 were obtained and transposed to Microsoft Excel for analysis. NHANES data showed that energy imbalances in aging, excess high glycemic carbohydrate, lower protein intakes and low long chain polyunsaturated fat intakes may contribute to osteosarcopenic obesity. 135 articles were included in the review. Early humans probably consumed a diet closer to what the human body was designed for; however, we do not know the ideal energy and macronutrient proportions for optimal health or for preventing/treating aging and osteosarcopenic obesity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Nuclear Physics in a biological context
NASA Astrophysics Data System (ADS)
Discher, Dennis
2012-02-01
A solid tissue can be soft like fat or brain, stiff like striated muscle and heart, or rigid like bone -- and of course every cell has a nucleus that contributes in some way small or large to tissue mechanics. Indeed, nuclei generally exhibit rheology and plasticity that reflects both the chromatin and the nuclear envelope proteins called lamins, all of which change in differentiation. Profiling of tissue nuclei shows that the nuclear intermediate filament protein Lamin-A/C varies over 30-fold between adult tissues and scales strongly with micro-elasticity of tissue, while other nuclear envelope components such as Lamin-B exhibit small variations. Lamin-A/C has been implicated in aging syndromes that affect muscle and fat but not brain, and we find nuclei in brain-derived cells are indeed dominated by Lamin-B and are much softer than nuclei derived from muscle cells with predominantly Lamin-A/C. In vitro, matrix elasticity can affect expression of nuclear envelope components in adult stem cells, and major changes in Lamin-A/C are indeed shown to direct lineage with lower levels favoring soft tissue and higher levels promoting rigid tissue lineage. Further molecular studies provide evidence that the nucleus transduces physical stress. References: (1) J.D. Pajerowski, K.N. Dahl, F.L. Zhong, P.J. Sammak, and D.E. Discher. Physical plasticity of the nucleus in stem cell differentiation. PNAS 104: 15619-15624 (2007). (2) A. Buxboim, I. Ivanova, and D.E. Discher. Matrix Elasticity, Cytoskeletal Forces, and Physics of the Nucleus: how deeply do cells `feel' outside and in? Journal of Cell Science 123: 297-308 (2010).
Bonvillani, A; Peña, F; de Gea, G; Gómez, G; Petryna, A; Perea, J
2010-11-01
Thirty males and thirty females suckling Criollo Cordobes kid goats of approximately 60 to 90 days old were used in this study. Kids were slaughtered at <9.5 kg, >9.5<11 kg and >11 kg of empty body weight. The carcasses showed a medium conformation index. The meat and fat colour, and internal subcutaneous fatness were mainly scored as either pink, cream, slight and low-medium, respectively. The shoulder comprised 66-67% muscle, 24-27% bone and 4-6% fat. The slaughter weight had significant effects on the following characteristics: dressing yield, carcass measures and indices, subcutaneous fatness, meat colour, and muscle/fat ratio. The effect of gender was smaller: the female kids presented the highest fatness values for all parameters studied. Also, these animals displayed the lowest percentage of joints of extra class. The meat of female kids contained significantly less muscle and bone and a higher proportion of fat than that of male kids. The allometric analysis displays an early growth in the carcass measures and indices, fifth quarter, joints and bone proportion of shoulder. Internal and dissectible fats show a late growth. Principal component (PC) analysis was performed to study the relationship between carcass quality variables. The six first PC's explained about 85% of the total variability. The weight and yield of the carcasses were more effective to define the first PC. The projection of the carcass quality data in the first two PC's allowed distinguishing between carcass weight and carcass conformation groups, but not between gender and fatness. Copyright © 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.
Ramprasath, Vanu Ramkumar; Jones, Peter J H
2016-01-01
The objective was to determine safety and efficacy of health supplements "Beyond Tangy Tangerine," a multivitamin/mineral complex and combination of multivitamin/mineral complex, "Osteofx," a bone healthy supplement and "Ultimate Essential Fatty Acids" in Sprague Dawley rats consuming high-fat diets. Initially a pilot study was conducted which confirmed palatability and acceptability of supplements. In a second study, rats (n = 15/group) were randomized to Control; Multivitamin/mineral complex (2 g/kg BW) or Combination (2 g Multivitamin/mineral complex, 1.5 g Bone healthy supplement and 0.34 g Essential fatty acids/kg BW). No differences were observed in BW change, feed intake, organ weights or bone mineral composition with supplementations compared to control. Multivitamin/mineral complex supplementation decreased abdominal white adipose tissue weights (WAT) (p = .005), total (p = .033) and fat mass (p = .040), plasma IL-6 (p = .016) and ALKP (p = .038) and elevated plasma calcium (p < .001), phosphorus (p = .038), total protein (p = .002), albumin (p = .014) and globulin (p = .018), compared to control. Similarly, combination supplementation reduced WAT (p < .001), total (p = .023) and fat mass (p = .045), plasma triglycerides (p = .018), IL-6 (p = .002) and ALKP (p < .001) with increases in plasma calcium (p = .031), phosphorus (p < .001) compared to control. Results indicate that consuming either supplement can be considered safe and improves overall health by reducing inflammation, abdominal fat mass and plasma triglycerides, as well as promote bone health.
A High-Fat Diet Induces Bone Loss in Mice Lacking the Alox5 Gene
Le, Phuong; Kawai, Masanobu; Bornstein, Sheila; DeMambro, Victoria E.; Horowitz, Mark C.
2012-01-01
5-Lipoxygenase catalyzes leukotriene generation from arachidonic acid. The gene that encodes 5-lipoxygenase, Alox5, has been identified in genome-wide association and mouse Quantitative Trait Locus studies as a candidate gene for obesity and low bone mass. Thus, we tested the hypothesis that Alox5−/− mice would exhibit metabolic and skeletal changes when challenged by a high-fat diet (HFD). On a regular diet, Alox5−/− mice did not differ in total body weight, percent fat mass, or bone mineral density compared with wild-type (WT) controls (P < 0.05). However, when placed on a HFD, Alox5−/− gained more fat mass and lost greater areal bone mass vs. WT (P < 0.05). Microarchitectural analyses revealed that on a HFD, WT showed increases in cortical area (P < 0.01) and trabecular thickness (P < 0.01), whereas Alox5−/− showed no change in cortical parameters but a decrease in trabecular number (P < 0.05) and bone volume fraction compared with WT controls (P < 0.05). By histomorphometry, a HFD did not change bone formation rates of either strain but produced an increase in osteoclast number per bone perimeter in Alox5−/− mice (P < 0.03). In vitro, osteoclastogenesis of marrow stromal cells was enhanced in mutant but not WT mice fed a HFD. Gene expression for Rankl, Pparg, and Cox-2 was greater in the femur of Alox5−/− than WT mice on a HFD (P < 0.01), but these increases were suppressed in the Alox5−/− mice after 8 wk of treatment with celecoxib, a cyclooxygenase-2 inhibitor. In sum, there is a strong gene by environmental interaction for bone mass when mice lacking the Alox5 gene are fed a HFD. PMID:22128029
The Impact of Fat and Obesity on Bone Microarchitecture and Strength in Children
Farr, Joshua N.; Dimitri, Paul
2016-01-01
A complex interplay of genetic, environmental, hormonal, and behavioral factors affect skeletal development, several of which are associated with childhood fractures. Given the rise in obesity worldwide, it is of particular concern that excess fat accumulation during childhood appears to be a risk factor for fractures. Plausible explanations for this higher fracture risk include a greater propensity for falls, greater force generation upon fall impact, unhealthy lifestyle habits, and excessive adipose tissue that may have direct or indirect detrimental effects on skeletal development. To date, there remains little resolution or agreement about the impact of obesity and adiposity on skeletal development as well as the mechanisms underpinning these changes. Limitations of imaging modalities, short duration of follow-up in longitudinal studies, and differences among cohorts examined may all contribute to conflicting results. Nonetheless, a linear relationship between increasing adiposity and skeletal development seems unlikely. Fat mass may confer advantages to the developing cortical and trabecular bone compartments, provided that gains in fat mass are not excessive. However, when fat mass accumulation reaches excessive levels, unfavorable metabolic changes may impede skeletal development. Mechanisms underpinning these changes may relate to changes in the hormonal milieu, with adipokines potentially playing a central role, but again findings have been confounding. Changes in the relationship between fat and bone also appear to be age and sex dependent. Clearly, more work is needed to better understand the controversial impact of fat and obesity on skeletal development and fracture risk during childhood. PMID:28013362
The Impact of Fat and Obesity on Bone Microarchitecture and Strength in Children.
Farr, Joshua N; Dimitri, Paul
2017-05-01
A complex interplay of genetic, environmental, hormonal, and behavioral factors affect skeletal development, several of which are associated with childhood fractures. Given the rise in obesity worldwide, it is of particular concern that excess fat accumulation during childhood appears to be a risk factor for fractures. Plausible explanations for this higher fracture risk include a greater propensity for falls, greater force generation upon fall impact, unhealthy lifestyle habits, and excessive adipose tissue that may have direct or indirect detrimental effects on skeletal development. To date, there remains little resolution or agreement about the impact of obesity and adiposity on skeletal development as well as the mechanisms underpinning these changes. Limitations of imaging modalities, short duration of follow-up in longitudinal studies, and differences among cohorts examined may all contribute to conflicting results. Nonetheless, a linear relationship between increasing adiposity and skeletal development seems unlikely. Fat mass may confer advantages to the developing cortical and trabecular bone compartments, provided that gains in fat mass are not excessive. However, when fat mass accumulation reaches excessive levels, unfavorable metabolic changes may impede skeletal development. Mechanisms underpinning these changes may relate to changes in the hormonal milieu, with adipokines potentially playing a central role, but again findings have been confounding. Changes in the relationship between fat and bone also appear to be age and sex dependent. Clearly, more work is needed to better understand the controversial impact of fat and obesity on skeletal development and fracture risk during childhood.
USDA-ARS?s Scientific Manuscript database
The relationship of obesity to skeletal development is unclear. We utilized total enteral nutrition to feed high and low fat diets (HFD and LFD) to rats for 4 wks to produce obesity. Weight gain was matched but fat mass, serum leptin and NEFA were increased by HFD (P < 0.05). HFD lowered total bone ...
Dalskov, S; Ritz, C; Larnkjær, A; Damsgaard, C T; Petersen, R A; Sørensen, L B; Ong, K K; Astrup, A; Michaelsen, K F; Mølgaard, C
2016-04-01
We examined fat-independent associations of hormones with height and whole-body bone size and mineral content in 633 school children. IGF-1 and osteocalcin predict growth in height, while fat, osteocalcin, and in girls also, IGF-1 predict growth in bone size. Leptin and ghrelin are inversely associated with bone size in girls. Obesity causes larger bone size and bone mass, but the role of hormones in this up-regulation of bone in obesity is not well elucidated. We examined longitudinal associations between baseline body fat mass (FM), and fat-independent fasting levels of ghrelin, adiponectin, leptin, insulin, insulin-like growth factor-I (IGF-1), osteocalcin, and intact parathyroid hormone, and subsequent changes in height and in whole-body height-adjusted bone area "BAheight" and size-adjusted bone mineral content "BMCsize" in 8- to 11-year-olds. Analyses were carried out separately for boys (n = 325) and girls (n = 308) including data from baseline, 3 and 6 months from OPUS School Meal Study. In both sexes: gain in BAheight was positively associated with baseline FM (≥2.05 cm(2)/kg, both p ≤ 0.003). Furthermore, gain in height was positively associated with baseline IGF-1 (≥0.02 cm/ng/ml, p = 0.001) and osteocalcin (≥0.13 cm/ng/ml, p ≤ 0.009); and gain in BAheight was positively associated with baseline osteocalcin (≥0.35 cm(2)/ng/ml, p ≤ 0.019). In girls only, gain in BAheight was also positively associated with baseline IGF-1 (0.06 cm(2)/ng/ml, p = 0.017) and inversely associated with both baseline ghrelin (-0.01 cm(2)/pg/ml, p = 0.001) and leptin (-1.21 cm(2)/μg/ml, p = 0.005). In boys, gain in BMCsize was positively associated with osteocalcin (0.18 g/ng/ml, p = 0.030). This large longitudinal study suggests that in 8- to 11-year-old children, IGF-1 and osteocalcin predict growth in height, while FM, osteocalcin, and in girls also, IGF-1 predict growth in BAheight. Fat-independent inverse associations of leptin and ghrelin with BAheight in girls' are contrary to proposed growth-stimulating effects of leptin. Osteocalcin in boys predicts gain in BMCsize.
Dieckmeyer, Michael; Ruschke, Stefan; Eggers, Holger; Kooijman, Hendrik; Rummeny, Ernst J; Kirschke, Jan S; Baum, Thomas; Karampinos, Dimitrios C
2017-10-01
To remove the confounding effect of unsuppressed fat on the imaging-based apparent diffusion coefficient (ADC) of the vertebral bone marrow water component when using spectrally selective fat suppression and to compare and validate the proposed quantification strategy against diffusion-weighted magnetic resonance spectroscopy (DW-MRS). Twelve subjects underwent diffusion-weighted imaging (DWI) and DW-MRS of the vertebral bone marrow. A theoretical model was developed to take into account and correct the effects of residual fat on ADC, incorporating additional measurements for proton density fat fraction (PDFF) and water T 2 (T 2w ). Uncorrected and corrected DWI-based ADC was compared with DW-MRS-based ADC using the Bland-Altman method. There was a systematic bias equal to 0.118 ± 0.116 × 10 -3 mm 2 /s between DWI and DW-MRS when no correction was performed. Taking into account measured PDFF and constant T 2w reduced the bias to 0.006 ± 0.128 × 10 -3 mm 2 /s. Using the proposed approach with both individually measured PDFF and T 2w reduced both the bias and the limits of agreement between DWI and DW-MRS (0.018 ± 0.065 × 10 -3 mm 2 /s). By taking into account the presence of residual fat in a modified signal model that incorporates additional individual measurements of PDFF and T 2w , good agreement of imaging-based ADC with MRS-based ADC can be achieved in vertebral bone marrow. Magn Reson Med 78:1432-1441, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Isolation of Precursor Cells from Waste Solid Fat Tissue
NASA Technical Reports Server (NTRS)
Byerly, Diane; Sognier, Marguerite A.
2009-01-01
A process for isolating tissue-specific progenitor cells exploits solid fat tissue obtained as waste from such elective surgical procedures as abdominoplasties (tummy tucks) and breast reductions. Until now, a painful and risky process of aspiration of bone marrow has been used to obtain a limited number of tissue- specific progenitor cells. The present process yields more tissue-specific progenitor cells and involves much less pain and risk for the patient. This process includes separation of fat from skin, mincing of the fat into small pieces, and forcing a fat saline mixture through a sieve. The mixture is then digested with collagenase type I in an incubator. After centrifugation tissue-specific progenitor cells are recovered and placed in a tissue-culture medium in flasks or Petri dishes. The tissue-specific progenitor cells can be used for such purposes as (1) generating three-dimensional tissue equivalent models for studying bone loss and muscle atrophy (among other deficiencies) and, ultimately, (2) generating replacements for tissues lost by the fat donor because of injury or disease.
[Traumatic fat embolism syndrome: a case report].
Ozyurt, Yaman; Erkal, Hakan; Ozay, Kemal; Arikan, Zuhal
2006-07-01
Fat embolism syndrome (FES) is a known complication of traumatology, especially in long bone fractures. Fat embolic events are most often clinically insignificant and difficult to recognize since clinical manifestations are varied and there is no routine laboratory or radiographic diagnostic tool. Classically, FES presents with the triad of pulmonary distress, mental status changes, and petechial rash 24 to 48 hours after long-bone fracture. We report the intensive care management of a 16-year-old female patient who developed traumatic fat embolism syndrome. Traumatic fat embolism was diagnosed, based on suggestive clinical manifestations, radiographic and laboratory findings and confirmed by the demonstration of arterial hypoxemia in the absence of other disorders. Admission to the intensive care unit, mechanical ventilatory support with positive end-expiratory pressure and supportive therapy leaded to the patient's improvement and she was discharged with planned open reduction and internal fixation.
Deuchi, K; Kanauchi, O; Shizukuishi, M; Kobayashi, E
1995-07-01
We investigated the effects of continuous and massive intake of chitosan with sodium ascorbate (AsN) on the mineral and the fat-soluble vitamin status in male Sprague-Dawley rats fed on a high-fat diet. The apparent fat digestibility in the chitosan-receiving group was significantly lower than that in the cellulose- or glucosamine-receiving group. Chitosan feeding for 2 weeks caused a decrease in mineral absorption and bone mineral content, and it was necessary to administer twice the amount of Ca in the AIN-76 formula, which was supplemented with AsN, to prevent such a decrease in the bone mineral content. Moreover, the ingestion of chitosan along with AsN led to a marked and rapid decrease in the serum vitamin E level, while such a loss in vitamin E was not observed for rats given glucosamine monomer instead of chitosan.
Wang, Chun-Hao; Chang, Peng-Yuan; Wu, Jau-Ching; Tu, Tsung-Hsi; Wu, Ching-Lan; Huang, Wen-Cheng; Cheng, Henrich
2016-06-01
Odontoid fracture is not uncommon and surgical treatment that uses posterior screw/rod fixation is an acceptable option. This is the first report of delayed hydrocephalus due to subarachnoid fat migration as a complication of posterior atlanto-axial (AA) fixation. A 27-year-old man underwent posterior C1 lateral mass and C2 pedicle screw fixation for a recent Anderson-D'Alonzo type 2 odontoid fracture. Autologous bone graft was wired for onlay fusion. The surgery was smooth, except that there was an incidental durotomy intraoperatively. The patient had significant relief of his neck pain, although computed tomography (CT) demonstrated a medial breach of the left C1 screw postoperation; however, he gradually developed headache and dizziness after discharge. Five weeks after operation, magnetic resonance imaging demonstrated a large pseudo-meningocele at the surgical site, which was managed conservatively. Nine weeks after the AA fixation, the patient was sent to the emergency department for altered consciousness. A brain CT demonstrated hydrocephalus and multiple fat emboli in the subarachnoid and intraventricular space. A ventriculoperitoneal shunt was inserted to manage the hydrocephalus and pseudo-meningocele. The patient recovered well and was followed up to 13 months after operation. To date, this was the first report of delayed hydrocephalus caused by fat embolism after AA fixation surgery. Incidental durotomy in posterior AA fixation may predispose the patient to a serious complication of fat-cerebrospinal fluid embolism and subsequent hydrocephalus. There should be a heightened awareness for such a complication. Both CT and magnetic resonance imaging are useful for the diagnosis of subarachnoid fat droplets. Copyright © 2016 Elsevier Inc. All rights reserved.
AMS studies of the long-term turnover of 14C-labelled fat in man
NASA Astrophysics Data System (ADS)
Gunnarsson, M.; Mattsson, S.; Stenström, K.; Leide-Svegborn, S.; Erlandsson, B.; Faarinen, M.; Hellborg, R.; Kiisk, M.; Nilsson, L.-E.; Nosslin, B.; Persson, P.; Skog, G.; Åberg, M.
2000-10-01
To estimate the biokinetics of 14C-labelled fatty acids and the associated radiation absorbed dose to man, long-term retention of 14C from oral intake of glycerol tri[1- 14C]oleate (triolein) has been studied using accelerator mass spectrometry (AMS). As a complement to earlier reported data for three individuals, we present here results for one person from measurements up to 4.6 yr after administration, now also including 14C-levels in fat, muscle and bone. In this subject, a total of 44% of the administered activity was recovered in the exhaled air. Fasting increased the exhalation of 14C. The "excess" 14CO2 due to fasting had a half-life of about 400 d. AMS measurements on fat, muscle and bone biopsies taken from the same subject 4.5 yr after ingestion indicated that a small fraction of the administered activity was still present in fat. Also, bone tissue had a higher 14C specific activity than the current environmental level. No significantly increased level was found in the muscle sample.
Wagner, Ginger; Kindrick, Shirley; Hertzler, Steven; DiSilvestro, Robert A
2007-10-01
This study examined the effects of calcium intake on body weight, body fat, and markers of bone turnover in pre-menopausal adult women undergoing a 12 week weight loss program of diet and exercise. Subjects were prescribed a 12 week diet with a 500 Kcal restriction containing about 750 mg calcium/day, exercised 3 times/week, and were given either placebo capsules, capsules of calcium lactate or calcium phosphate (daily dose about 800 mg calcium), or low fat milk (daily dose about 800 mg calcium). Subjects completed and returned daily diet diaries weekly. Daily calcium intake in mg from diet records + supplement assignment was: 788 +/- 175 (placebo), 1698 +/- 210 (Ca lactate), 1566 +/- 250 (Ca phosphate), 1514 +/- 225 (milk)(no significant differences among the calcium and milk groups). Each group had statistically significant changes in body weight (p < 0.01), but there were no significant differences among groups for the weight loss: 5.8 +/- 0.8 kg (placebo), 4.1 +/- 0.7 kg (Ca lactate), 5.4 +/- 1.3 kg (Ca phosphate), 4.2 +/- 0.8 kg (milk). Body fat was changed significantly in each group (p < 0.01), with milk group showing a little less change than the other groups. Serum bone specific alkaline phophatase activity, a bone synthesis marker, increased similarly in all groups (p < 0.001 within groups, no significance for changes among groups). In contrast, the Ca lactate group, but not other groups, had a drop in urine values for alpha helical peptide, a bone resorption marker (p < 0.05). For the conditions of this study, increased calcium intake, by supplement or milk, did not enhance loss of body weight or fat, though calcium lactate supplementation lowered values for a marker of bone degradation.
Hankir, Mohammed K; Patt, Marianne; Patt, Jörg T W; Becker, Georg A; Rullmann, Michael; Kranz, Mathias; Deuther-Conrad, Winnie; Schischke, Kristin; Seyfried, Florian; Brust, Peter; Hesse, Swen; Sabri, Osama; Krügel, Ute; Fenske, Wiebke K
2016-01-01
Brain μ-opioid receptors (MORs) stimulate high-fat (HF) feeding and have been implicated in the distinct long term outcomes on body weight of bariatric surgery and dieting. Whether alterations in fat appetite specifically following these disparate weight loss interventions relate to changes in brain MOR signaling is unknown. To address this issue, diet-induced obese male rats underwent either Roux-en-Y gastric bypass (RYGB) or sham surgeries. Postoperatively, animals were placed on a two-choice diet consisting of low-fat (LF) and HF food and sham-operated rats were further split into ad libitum fed (Sham-LF/HF) and body weight-matched (Sham-BWM) to RYGB groups. An additional set of sham-operated rats always only on a LF diet (Sham-LF) served as lean controls, making four experimental groups in total. Corresponding to a stage of weight loss maintenance for RYGB rats, two-bottle fat preference tests in conjunction with small-animal positron emission tomography (PET) imaging studies with the selective MOR radioligand [ 11 C]carfentanil were performed. Brains were subsequently collected and MOR protein levels in the hypothalamus, striatum, prefrontal cortex and orbitofrontal cortex were analyzed by Western Blot. We found that only the RYGB group presented with intervention-specific changes: having markedly suppressed intake and preference for high concentration fat emulsions, a widespread reduction in [ 11 C]carfentanil binding potential (reflecting MOR availability) in various brain regions, and a downregulation of striatal and prefrontal MOR protein levels compared to the remaining groups. These findings suggest that the suppressed fat appetite caused by RYGB surgery is due to reduced brain MOR signaling, which may contribute to sustained weight loss unlike the case for dieting.
Hankir, Mohammed K.; Patt, Marianne; Patt, Jörg T. W.; Becker, Georg A.; Rullmann, Michael; Kranz, Mathias; Deuther-Conrad, Winnie; Schischke, Kristin; Seyfried, Florian; Brust, Peter; Hesse, Swen; Sabri, Osama; Krügel, Ute; Fenske, Wiebke K.
2017-01-01
Brain μ-opioid receptors (MORs) stimulate high-fat (HF) feeding and have been implicated in the distinct long term outcomes on body weight of bariatric surgery and dieting. Whether alterations in fat appetite specifically following these disparate weight loss interventions relate to changes in brain MOR signaling is unknown. To address this issue, diet-induced obese male rats underwent either Roux-en-Y gastric bypass (RYGB) or sham surgeries. Postoperatively, animals were placed on a two-choice diet consisting of low-fat (LF) and HF food and sham-operated rats were further split into ad libitum fed (Sham-LF/HF) and body weight-matched (Sham-BWM) to RYGB groups. An additional set of sham-operated rats always only on a LF diet (Sham-LF) served as lean controls, making four experimental groups in total. Corresponding to a stage of weight loss maintenance for RYGB rats, two-bottle fat preference tests in conjunction with small-animal positron emission tomography (PET) imaging studies with the selective MOR radioligand [11C]carfentanil were performed. Brains were subsequently collected and MOR protein levels in the hypothalamus, striatum, prefrontal cortex and orbitofrontal cortex were analyzed by Western Blot. We found that only the RYGB group presented with intervention-specific changes: having markedly suppressed intake and preference for high concentration fat emulsions, a widespread reduction in [11C]carfentanil binding potential (reflecting MOR availability) in various brain regions, and a downregulation of striatal and prefrontal MOR protein levels compared to the remaining groups. These findings suggest that the suppressed fat appetite caused by RYGB surgery is due to reduced brain MOR signaling, which may contribute to sustained weight loss unlike the case for dieting. PMID:28133443
Grape seed and skin extract prevents high-fat diet-induced brain lipotoxicity in rat.
Charradi, Kamel; Elkahoui, Salem; Karkouch, Ines; Limam, Ferid; Hassine, Fethy Ben; Aouani, Ezzedine
2012-09-01
Obesity is related to an elevated risk of dementia and the physiologic mechanisms whereby fat adversely affects the brain are poorly understood. The present investigation analyzed the effect of a high fat diet (HFD) on brain steatosis and oxidative stress and the intracellular mediators involved in signal transduction, as well as the protection offered by grape seed and skin extract (GSSE). HFD induced ectopic deposition of cholesterol and phospholipid but not triglyceride. Moreover brain lipotoxicity is linked to an oxidative stress characterized by increased lipoperoxidation and carbonylation, inhibition of glutathione peroxidase and superoxide dismutase activities, depletion of manganese and a concomitant increase in ionizable calcium and acetylcholinesterase activity. Importantly GSSE alleviated all the deleterious effects of HFD treatment. Altogether our data indicated that HFD could find some potential application in the treatment of manganism and that GSSE should be used as a safe anti-lipotoxic agent in the prevention and treatment of fat-induced brain injury.
USDA-ARS?s Scientific Manuscript database
Introduction: Body mass has a positive effect on bone mineral density and the strength. Whether mass derived from an obesity condition is beneficial to bone has not been established; neither have the mechanism by which obesity affects bone metabolism. The aim of this study was to examine the effects...
Montalvany-Antonucci, C C; Zicker, M C; Macari, S; Pereira, T S F; Diniz, I M A; Andrade, I; Ferreira, A V M; Silva, T A
2018-02-01
The impact of high-refined carbohydrate (HC) diet on fat accumulation, adipokines secretion and systemic inflammation is well described. However, it remains unclear whether these processes affect bone remodeling. To investigate the effects of HC diet in the alveolar bone and femur parameters. BalbC mice were fed with conventional chow or HC diet for 12 weeks. After experimental time maxillae, femur, blood and white adipose tissue samples were collected. The animals feed with HC diet exhibited considerable increase of adiposity index and adipose tissue levels of TNF-α, IL-6, IL-10, IL-1β, TGF-β and leptin. Microtomography analysis of maxillary bone revealed horizontal alveolar bone loss and disruption of trabecular bone in mice feed with HC diet. These deleterious effects were correlated with a disturbance in bone cells and an augmented expression of Rankl/Opg ratio. Consistently, similar effects were observed in femurs, which also exhibited a reduction in bone maximum load and stiffness. Our data indicates that HC diet consumption disrupts bone remodeling process, favoring bone loss. Underlying mechanisms relies on fat tissue accumulation and also in systemic and local inflammation. Copyright © 2017 Elsevier Ltd. All rights reserved.
The interrelationship between bone and fat: from cellular see-saw to endocrine reciprocity.
Sadie-Van Gijsen, H; Crowther, N J; Hough, F S; Ferris, W F
2013-07-01
The number of mature osteoblasts and marrow adipocytes in bone is influenced by the differentiation of the common mesenchymal progenitor cell towards one phenotype and away from the other. Consequently, factors which promote adipogenesis not only lead to fatty marrow but also inhibit osteoblastogenesis, resulting in decreased osteoblast numbers, diminished bone formation and, potentially, inadequate bone mass and osteoporosis. In addition to osteoblast and bone adipocyte numbers being influenced by this skewing of progenitor cell differentiation towards one phenotype, mature osteoblasts and adipocytes secrete factors which may evoke changes in the cell fate and function of each other. This review examines the endogenous factors, such as PPAR-γ2, Wnt, IGF-1, GH, FGF-2, oestrogen, the GP130 signalling cytokines, vitamin D and glucocorticoids, which regulate the selection between osteoblastogenesis and adipogenesis and the interrelationship between fat and bone. The role of adipokines on bone, such as adiponectin and leptin, as well as adipose-derived oestrogen, is reviewed and the role of bone as an energy regulating endocrine organ is discussed.
Peripheral-specific y2 receptor knockdown protects mice from high-fat diet-induced obesity.
Shi, Yan-Chuan; Lin, Shu; Castillo, Lesley; Aljanova, Aygul; Enriquez, Ronaldo F; Nguyen, Amy D; Baldock, Paul A; Zhang, Lei; Bijker, Martijn S; Macia, Laurence; Yulyaningsih, Ernie; Zhang, Hui; Lau, Jackie; Sainsbury, Amanda; Herzog, Herbert
2011-11-01
Y2 receptors, particularly those in the brain, have been implicated in neuropeptide Y (NPY)-mediated effects on energy homeostasis and bone mass. Recent evidence also indicates a role for Y2 receptors in peripheral tissues in this process by promoting adipose tissue accretion; however their effects on energy balance remain unclear. Here, we show that adult-onset conditional knockdown of Y2 receptors predominantly in peripheral tissues results in protection against diet-induced obesity accompanied by significantly reduced weight gain, marked reduction in adiposity and improvements in glucose tolerance without any adverse effect on lean mass or bone. These changes occur in association with significant increases in energy expenditure, respiratory exchange ratio, and physical activity and despite concurrent hyperphagia. On a chow diet, knockdown of peripheral Y2 receptors results in increased respiratory exchange ratio and physical activity with no effect on lean or bone mass, but decreases energy expenditure without effecting body weight or food intake. These results suggest that peripheral Y2 receptor signaling is critical in the regulation of oxidative fuel selection and physical activity and protects against the diet-induced obesity. The lack of effects on bone mass seen in this model further indicates that bone mass is primarily controlled by non-peripheral Y2 receptors. This study provides evidence that novel drugs that target peripheral rather than central Y2 receptors could provide benefits for the treatment of obesity and glucose intolerance without adverse effects on lean and bone mass, with the additional benefit of avoiding side effects often associated with pharmaceuticals that act on the central nervous system.
Altered thermogenesis and impaired bone remodeling in Misty mice
Motyl, Katherine J; Bishop, Kathleen A; DeMambro, Victoria E; Bornstein, Sheila A; Le, Phuong; Kawai, Masanobu; Lotinun, Sutada; Horowitz, Mark C; Baron, Roland; Bouxsein, Mary L; Rosen, Clifford J
2013-01-01
Fat mass may be modulated by the number of brown-like adipocytes in white adipose tissue (WAT) in humans and rodents. Bone remodeling is dependent on systemic energy metabolism and, with age, bone remodeling becomes uncoupled and brown adipose tissue (BAT) function declines. To test the interaction between BAT and bone, we employed Misty (m/m) mice, which were reported be deficient in BAT. We found that Misty mice have accelerated age-related trabecular bone loss and impaired brown fat function (including reduced temperature, lower expression of Pgc1a and less sympathetic innervation compared to wildtype (+/+)). Despite reduced BAT function, Misty mice had normal core body temperature, suggesting heat is produced from other sources. Indeed, upon acute cold exposure (4°C for 6 hr), inguinal WAT from Misty mice compensated for BAT dysfunction by increasing expression of Acadl, Pgc1a, Dio2 and other thermogenic genes. Interestingly, acute cold exposure also decreased Runx2 and increased Rankl expression in Misty bone, but only Runx2 was decreased in wildtype. Browning of WAT is under the control of the sympathetic nervous system (SNS) and, if present at room temperature, could impact bone metabolism. To test whether SNS activity could be responsible for accelerated trabecular bone loss, we treated wildtype and Misty mice with the β-blocker, propranolol. As predicted, propranolol slowed trabecular BV/TV loss in the distal femur of Misty mice without affecting wildtype. Finally, the Misty mutation (a truncation of DOCK7) also has a significant cell-autonomous role. We found DOCK7 expression in whole bone and osteoblasts. Primary osteoblast differentiation from Misty calvaria was impaired, demonstrating a novel role for DOCK7 in bone remodeling. Despite the multifaceted effects of the Misty mutation, we have shown that impaired brown fat function leads to altered SNS activity and bone loss, and for the first time that cold exposure negatively affects bone remodeling. PMID:23553822
Sanguinetti, Elena; Liistro, Tiziana; Mainardi, Marco; Pardini, Silvia; Salvadori, Piero A; Vannucci, Alessandro; Burchielli, Silvia; Iozzo, Patricia
2016-04-01
Maternal obesity negatively affects fetal development. Abnormalities in brain glucose metabolism are predictive of metabolic-cognitive disorders. We studied the offspring (aged 0, 1, 6, 12 months) of minipigs fed a normal vs high-fat diet (HFD), by positron emission tomography (PET) to measure brain glucose metabolism, and ex vivo assessments of brain insulin receptors (IRβ) and GLUT4. At birth, brain glucose metabolism and IRβ were twice as high in the offspring of HFD-fed than control mothers. During infancy and youth, brain glucose uptake, GLUT4 and IRβ increased in the offspring of control mothers and decreased in those of HFD-fed mothers, leading to a 40-85% difference (p < 0.05), and severe glycogen depletion, lasting until adulthood. Maternal high-fat feeding leads to brain glucose overexposure during fetal development, followed by long-lasting depression in brain glucose metabolism in minipigs. These features may predispose the offspring to develop metabolic-neurodegenerative diseases.
Chen, Po-Wen; Lin, Chang; Chen, Chung-De; Chen, Wen-Ying; Mao, Frank Chiahung
2013-04-01
Glucocorticoids (GCs) are often prescribed in clinics but many adverse effects are also attributed to GCs. It is important to determine the role of GCs in the development of those adverse effects. Here, we investigated the impact of GCs on trivalent chromium (Cr) distribution in animals. Cr has been proposed to be important for proper insulin sensitivity, and deficits may lead to disruption of metabolism. For comparison, the effect of a high-fat diet on Cr modulation was also evaluated. C57BL/6JNarl mice were fed regular or high-fat diets for 12 weeks and further grouped for treatment with prednisolone or saline. Cr levels in tissues were determined 12 h after the treatments. Interestingly, prednisolone treatment led to significantly reduced Cr levels in fat tissue in mice fed regular diets; compared to the high-fat diet alone, prednisolone plus the high-fat diet led to a further reduction in Cr levels in the liver, muscle, and fat. Notably, a single dose of prednisolone was linked with elevated Cr levels in the thigh bones of mice fed by either regular or high-fat diets. In conclusion, this report has provided evidence that prednisolone in combination with a high-fat diet effects modulation of Cr levels in selected tissues.
Body composition and bone mineral density of collegiate American football players
Turnagöl, Hüseyin Hüsrev
2016-01-01
Abstract The aim of this study was to compare whole and segmental body composition and bone mineral density of collegiate American football players by playing positions. Forty collegiate American football players voluntarily participated in this study. Participants were categorized by playing positions into one of five categories i.e., defensive linemen, offensive linemen, defensive secondary players, offensive secondary players and receivers. Whole body composition and bone mineral density were measured by dual x-ray absorptiometry. Offensive and defensive linemen had higher body mass, a body mass index, lean mass and a fat mass index compared to the remaining three positions and a higher lean mass index compared to offensive secondary players and receivers. Offensive linemen had a higher body fat percentage and lower values of upper to lower lean mass than offensive and defensive secondary players and receivers, and higher total mass to the lean mass ratio and fat mass to the lean mass ratio compared to the other players. Offensive linemen had a higher fat mass index and fat mass to the lean mass ratio than defensive linemen. However, in all other measures they were similar. Offensive and defensive secondary players and receivers were similar with respect to the measured variables. Bone mineral density of the players was within the normal range and no difference in lean mass was observed between the legs. In conclusion, findings of this study showed that the total and segmental body composition profile of collegiate American football players reflected the demands of particular playing positions. PMID:28149373
Sato, Kazuya; Feng, Xingmin; Chen, Jichun; Li, Jungang; Muranski, Pawel; Desierto, Marie J.; Keyvanfar, Keyvan; Malide, Daniela; Kajigaya, Sachiko; Young, Neal S.
2016-01-01
Acquired aplastic anemia is an immune-mediated disease, in which T cells target hematopoietic cells; at presentation, the bone marrow is replaced by fat. It was reported that bone marrow adipocytes were negative regulators of hematopoietic microenvironment. To examine the role of adipocytes in bone marrow failure, we investigated peroxisomal proliferator-activated receptor gamma, a key transcription factor in adipogenesis, utilizing an antagonist of this factor called bisphenol-A-diglycidyl-ether. While bisphenol-A-diglycidyl-ether inhibited adipogenesis as expected, it also suppressed T cell infiltration of bone marrow, reduced plasma inflammatory cytokines, decreased expression of multiple inflammasome genes, and ameliorated marrow failure. In vitro, bisphenol-A-diglycidyl-ether suppressed activation and proliferation, and reduced phospholipase C gamma 1 and nuclear factor of activated T-cells 1 expression, as well as inhibiting calcium flux in T cells. The in vivo effect of bisphenol-A-diglycidyl-ether on T cells was confirmed in a second immune-mediated bone marrow failure model, using different strains and non-major histocompatibility antigen mismatched: bisphenol-A-diglycidyl-ether ameliorated marrow failure by inhibition of T cell infiltration of bone marrow. Our data indicate that peroxisomal proliferator-activated receptor gamma antagonists may attenuate murine immune-mediated bone marrow failure, at least in part, by suppression of T cell activation, which might hold implications in the application of peroxisomal proliferator-activated receptor gamma antagonists in immune-mediated pathophysiologies, both in the laboratory and in the clinic. Genetically “fatless” mice developed bone marrow failure with accumulation of marrow adipocytes in our model, even in the absence of body fat, suggesting different mechanisms of systematic and marrow adipogenesis and physiologic versus pathophysiologic fat accumulation. PMID:26589913
Huang, He; Feng, Shaoqing; Zhang, Wenjie; Li, Wei; Xu, Peng; Wang, Xiangsheng; Ai, Ai
2017-01-01
Autologous fat grafting is a promising surgical technique for soft tissue augmentation, reconstruction and rejuvenation. However, it is limited by the low survival rate of the transplanted fat, due to the slow revascularization of such grafts. Previous studies have demonstrated that bone marrow mesenchymal stem cell-derived extracellular vesicles (BMSC-EVs) are proangiogenic. The present study aimed to investigate whether BMSC-EVs could improve the survival of transplanted fat grafts. Extracellular vesicles were isolated from the supernatant of cultured rat bone marrow mesenchymal stem cells, and characterized by flow cytometry and scanning electron microscopy. Their proangiogenic potential was measured in vitro using tube formation and cell migration assays. Subsequently, human fat tissue grafts, alongside various concentrations of BMSC-EVs, were subcutaneously injected into nude mice. A total of 12 weeks following transplantation, the mice were sacrificed and the grafts were harvested. The grafts from the experimental group had a higher survival rate and an increased number of vessels compared with grafts from the control group, as demonstrated by tissue volume, weight and histological analyses. Reverse transcription-quantitative polymerase chain reaction analysis indicated that the expression levels of proangiogenic factors were increased in the experimental group compared with in the control group, thus suggesting that BMSC-EVs may promote neovascularization by stimulating the secretion of proangiogenic factors. The present study is the first, to the best of our knowledge, to demonstrate that supplementation of fat grafts with BMSC-EVs improves the long-term retention and quality of transplanted fat. PMID:28713978
Rapid Link of Innate Immune Signal to Adaptive Immunity by Brain–Fat Axis
Kim, Min Soo; Yan, Jingqi; Wu, Wenhe; Zhang, Guo; Zhang, Yalin; Cai, Dongsheng
2015-01-01
Innate immunity signals induced by pathogen/damage-associated molecular patterns are essential for adaptive immune responses, but it is unclear if the brain plays a role in this process. Here we show that while tumor necrosis factor (TNF) quickly increased in the brain of mice following bacterial infection, intra-brain TNF delivery mimicked bacterial infection to rapidly increase peripheral lymphocytes, especially in the spleen and fat. Multiple mouse models revealed that hypothalamic responses to TNF were accountable for this increase of peripheral lymphocytes in response to bacterial infection. Finally, hypothalamic induction of lipolysis was found to mediate the brain's action in promoting this increase in peripheral adaptive immune response. Thus, the brain-fat axis is important for rapidly linking innate immunity to adaptive immunity. PMID:25848866
Gelman, Julia S.; Sironi, Juan; Castro, Leandro M.; Ferro, Emer S.; Fricker, Lloyd D.
2010-01-01
Many hemoglobin-derived peptides are present in mouse brain, and several of these have bioactive properties including the hemopressins, a related series of peptides that bind to cannabinoid CB1 receptors. Although hemoglobin is a major component of red blood cells, it is also present in neurons and glia. To examine whether the hemoglobin-derived peptides in brain are similar to those present in blood and heart, we used a peptidomics approach involving mass spectrometry. Many hemoglobin-derived peptides are found only in brain and not in blood, whereas all hemoglobin-derived peptides found in heart were also seen in blood. Thus, it is likely that the majority of the hemoglobin-derived peptides detected in brain are produced from brain hemoglobin and not erythrocytes. We also examined if the hemopressins and other major hemoglobin-derived peptides were regulated in the Cpefat/fat mouse; previously these mice were reported to have elevated levels of several hemoglobin-derived peptides. Many, but not all of the hemoglobin-derived peptides were elevated in several brain regions of the Cpefat/fat mouse. Taken together, these findings suggest that the post-translational processing of alpha and beta hemoglobin into the hemopressins, as well as other peptides, is upregulated in some but not all Cpefat/fat mouse brain regions. PMID:20202081
Raider, Kayla; Ma, Delin; Harris, Janna L; Fuentes, Isabella; Rogers, Robert S; Wheatley, Joshua L; Geiger, Paige C; Yeh, Hung-Wen; Choi, In-Young; Brooks, William M; Stanford, John A
2016-07-01
Diet-induced obesity and associated metabolic effects can lead to neurological dysfunction and increase the risk of developing Alzheimer's disease (AD) and Parkinson's disease (PD). Despite these risks, the effects of a high-fat diet on the central nervous system are not well understood. To better understand the mechanisms underlying the effects of high fat consumption on brain regions affected by AD and PD, we used proton magnetic resonance spectroscopy ((1)H-MRS) to measure neurochemicals in the hippocampus and striatum of rats fed a high fat diet vs. normal low fat chow. We detected lower concentrations of total creatine (tCr) and a lower glutamate-to-glutamine ratio in the hippocampus of high fat rats. Additional effects observed in the hippocampus of high fat rats included higher N-acetylaspartylglutamic acid (NAAG), and lower myo-inositol (mIns) and serine (Ser) concentrations. Post-mortem tissue analyses revealed lower phosphorylated AMP-activated protein kinase (pAMPK) in the striatum but not in the hippocampus of high fat rats. Hippocampal pAMPK levels correlated significantly with tCr, aspartate (Asp), phosphoethanolamine (PE), and taurine (Tau), indicating beneficial effects of AMPK activation on brain metabolic and energetic function, membrane turnover, and edema. A negative correlation between pAMPK and glucose (Glc) indicates a detrimental effect of brain Glc on cellular energy response. Overall, these changes indicate alterations in neurotransmission and in metabolic and bioenergetic function in the hippocampus and in the striatum of rats fed a high fat diet. Copyright © 2016 Elsevier Ltd. All rights reserved.
Marrow changes in anorexia nervosa masking the presence of stress fractures on MR imaging.
Tins, Bernhard; Cassar-Pullicino, Victor
2006-11-01
Patients with anorexia nervosa (AN) usually have abnormal bone and bone marrow metabolism resulting in osteopenia and serous bone marrow change. There is an increased risk of stress/insufficiency fractures and these can be the first presentation of AN. This case report describes a patient with previously undiagnosed AN who presented with foot pain. The serous bone marrow changes of AN were found to mask the MR imaging features of stress fractures, as both had low T1w and high T2w and STIR signal intensities. Contrast enhancement was not helpful but actually masked fractures. Scintigraphy was helpful. The radiologist might be the first clinician to raise the possibility of AN and should be aware of the difficulties in diagnosing stress fractures in bones with underlying serous bone marrow change. In this severe case of AN even the heel fat pad and the fat pad in Kager's triangle had undergone serous change.
Novel Therapy for Bone Regeneration in Large Segmental Defects
2017-12-01
on fracture healing. Clin Orthop Relat Res. 1998;355(Suppl):S230–8. 37. Pape HC, Giannoudis PV. Fat embolism and IM nailing. Injury. 2006;37(Suppl 4...BMP), thrombopoietin (TPO), therapy, fracture healing, bone regeneration, minipig, pig 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT...2, TPO, or saline control. 2. KEYWORDS: Bone healing, bone morphogenetic protein (BMP), thrombopoietin (TPO), therapy, fracture healing, bone
Freitas, P M S S; Garcia Rosa, M L; Gomes, A M; Wahrlich, V; Di Luca, D G; da Cruz Filho, R A; da Silva Correia, D M; Faria, C A; Yokoo, E M
2016-04-01
This cross-sectional study involves randomly selected men aged 50 to 99 years and postmenopausal women. Either central fat mass or peripheral fat mass were associated to osteoporosis or osteopenia independently from fat-free body mass and other confounding factors. Obesity and osteoporosis are public health problems that probably share common pathophysiological mechanisms. The question if body fat mass, central or peripheral, is protective or harmful for osteoporosis or osteopenia is not completely resolved. This study aims to investigate the association between osteoporosis or osteopenia, and fat body mass (central and peripheral) independently from fat-free body mass, in men aged 50 to 99 years old and postmenopausal women randomly selected in the community. This is a cross-sectional investigation with a random sample of registered population in Niterói Family Doctor Program (FDP), State of Rio de Janeiro, Brazil. Bone mineral density (BMD) and fat-free mass were assessed by dual X-ray absorptiometry (DXA). There was statistically significant bivariate association between bone loss with gender, age, skin color, alcohol consumption at risk dose, use of thiazide, fat-free body mass, and fat body mass (central and peripheral). In the multiple analysis of fat-free body mass, central and peripheral fat body mass showed an independent and protective effect on the presence of osteoporosis or osteopenia (p value <0.001). Since both obesity and osteoporosis are public health problems worldwide, strategies aimed at preventing both conditions should be encouraged during aging.
Pansini, Vittorio; Monnet, Aurélien; Salleron, Julia; Hardouin, Pierre; Cortet, Bernard; Cotten, Anne
2014-02-01
To evaluate in a healthy population normal spectroscopic fat content (FC) values of the hip bone marrow and to assess the influence of age and sex on bone marrow conversion. Eighty volunteers (40 men; 40 women; ages: 20-60 years; divided into four consecutive groups) underwent acetabulum, femoral head, femoral neck, greater trochanter, and diaphysis localized (1) H MR spectroscopy. FC values of each anatomical site were obtained according to the following formula: Fat content = CH2 /(CH2 + Water)*100. To assess bone marrow conversion, a spectroscopic conversion index (SCI) was calculated as FC neck/FC greater trochanter. FC values showed a gradient as follows: greater trochanter > femoral head > femoral neck > diaphysis > acetabulum in every age group both in men and in women. SCI increased with age both in men and women, showing lower values in women for every age group. We obtained normal spectroscopic FC values from different areas of the hip, according to age and sex. These values may be used as reference values to evaluate, by the means of (1) H MR spectroscopy, pathological conditions affecting hip bone marrow. Copyright © 2013 Wiley Periodicals, Inc.
Du, Qin; Martin, Jean-Charles; Agnani, Genevieve; Pages, Nicole; Leruyet, Pascale; Carayon, Pierre; Delplanque, Bernadette
2012-12-01
Achieving an appropriate docosahexaenoic acid (DHA) status in the neonatal brain is an important goal of neonatal nutrition. We evaluated how different dietary fat matrices improved DHA content in the brains of both male and female rats. Forty rats of each gender were born from dams fed over gestation and lactation with a low α-linolenic acid (ALA) diet (0.4% of fatty acids) and subjected for 6 weeks after weaning to a palm oil blend-based diet (10% by weight) that provided either 1.5% ALA or 1.5% ALA and 0.12% DHA with 0.4% arachidonic acid or to an anhydrous dairy fat blend that provided 1.5% or 2.3% ALA. Fatty acids in the plasma, red blood cells (RBCs) and whole brain were determined by gas chromatography. The 1.5% ALA dairy fat was superior to both the 1.5% ALA palm oil blends for increasing brain DHA (14.4% increase, P<.05), and the 2.3% ALA dairy blend exhibited a further increase that could be ascribed to both an ALA increase and n-6/n-3 ratio decrease. Females had significantly higher brain DHA due to a gender-to-diet interaction, with dairy fats attenuating the gender effect. Brain DHA was predicted with a better accuracy by some plasma and RBC fatty acids when used in combination (R(2) of 0.6) than when used individually (R(2)=0.47 for RBC n-3 docosapentaenoic acid at best). In conclusion, dairy fat blends enriched with ALA appear to be an interesting strategy for achieving optimal DHA levels in the brain of postweaning rats. Human applications are worth considering. Copyright © 2012 Elsevier Inc. All rights reserved.
Chupeerach, Chaowanee; Tungtrongchitr, Anchalee; Phonrat, Benjaluck; Schweigert, Florian J; Tungtrongchitr, Rungsunn; Preutthipan, Sangchai
2012-02-01
To investigate the genetic markers for osteoporosis bone mineral density by the genotyping of rs7041, rs4588 and rs1352845 in the DBP gene with either bone mineral density or serum 25-hydroxycholecalciferol, retinol and α-tocopherol, among 365 postmenopausal Thai women. The DBP genotypes were analyzed by a PCR restriction fragment-length polymorphism method. Serum 25-hydroxycholecalciferol was assessed using a commercial chemiluminescent immunoassay. Serum retinol and α-tocopherol were measured by reverse-phase high-performance liquid chromatography. After adjustment for age >50 years, elder Thai subjects with low BMI (≤25 kg/m(2)) and carrying the rs4588 CC genotype had a higher risk of radial bone mineral density osteoporosis (odds ratio: 6.29; p = 0.048). The rs1352845 genotype also had a statistical association with total hip bone mineral density; however, it disappeared after adjustment for age and BMI. No association was found in fat-soluble vitamins with bone mineral density. DBP genotypes may influence the osteoporosis bone mineral density in postmenopausal Thai women.
USDA-ARS?s Scientific Manuscript database
Insulin resistance leads to memory impairment. Cinnamon (CN) improves whole body insulin resistance but its effects in the brain are not known. Changes in behavior, insulin signaling, and Alzheimer-associated gene expression in the brain were measured in male Wistar rats fed a high fat/high fructose...
Chronic intermittent fasting improves cognitive functions and brain structures in mice.
Li, Liaoliao; Wang, Zhi; Zuo, Zhiyi
2013-01-01
Obesity is a major health issue. Obesity started from teenagers has become a major health concern in recent years. Intermittent fasting increases the life span. However, it is not known whether obesity and intermittent fasting affect brain functions and structures before brain aging. Here, we subjected 7-week old CD-1 wild type male mice to intermittent (alternate-day) fasting or high fat diet (45% caloric supplied by fat) for 11 months. Mice on intermittent fasting had better learning and memory assessed by the Barnes maze and fear conditioning, thicker CA1 pyramidal cell layer, higher expression of drebrin, a dendritic protein, and lower oxidative stress than mice that had free access to regular diet (control mice). Mice fed with high fat diet was obese and with hyperlipidemia. They also had poorer exercise tolerance. However, these obese mice did not present significant learning and memory impairment or changes in brain structures or oxidative stress compared with control mice. These results suggest that intermittent fasting improves brain functions and structures and that high fat diet feeding started early in life does not cause significant changes in brain functions and structures in obese middle-aged animals.
Chronic Intermittent Fasting Improves Cognitive Functions and Brain Structures in Mice
Li, Liaoliao; Wang, Zhi; Zuo, Zhiyi
2013-01-01
Obesity is a major health issue. Obesity started from teenagers has become a major health concern in recent years. Intermittent fasting increases the life span. However, it is not known whether obesity and intermittent fasting affect brain functions and structures before brain aging. Here, we subjected 7-week old CD-1 wild type male mice to intermittent (alternate-day) fasting or high fat diet (45% caloric supplied by fat) for 11 months. Mice on intermittent fasting had better learning and memory assessed by the Barnes maze and fear conditioning, thicker CA1 pyramidal cell layer, higher expression of drebrin, a dendritic protein, and lower oxidative stress than mice that had free access to regular diet (control mice). Mice fed with high fat diet was obese and with hyperlipidemia. They also had poorer exercise tolerance. However, these obese mice did not present significant learning and memory impairment or changes in brain structures or oxidative stress compared with control mice. These results suggest that intermittent fasting improves brain functions and structures and that high fat diet feeding started early in life does not cause significant changes in brain functions and structures in obese middle-aged animals. PMID:23755298
Transplantation of autologous bone marrow-derived mesenchymal stem cells for traumatic brain injury☆
Jiang, Jindou; Bu, Xingyao; Liu, Meng; Cheng, Peixun
2012-01-01
Results from the present study demonstrated that transplantation of autologous bone marrow-derived mesenchymal stem cells into the lesion site in rat brain significantly ameliorated brain tissue pathological changes and brain edema, attenuated glial cell proliferation, and increased brain-derived neurotrophic factor expression. In addition, the number of cells double-labeled for 5-bromodeoxyuridine/glial fibrillary acidic protein and cells expressing nestin increased. Finally, blood vessels were newly generated, and the rats exhibited improved motor and cognitive functions. These results suggested that transplantation of autologous bone marrow-derived mesenchymal stem cells promoted brain remodeling and improved neurological functions following traumatic brain injury. PMID:25806058
Prior Consumption of a Fat Meal in Healthy Adults Modulates the Brain’s Response to Fat123
Eldeghaidy, Sally; Hort, Joanne; Hollowood, Tracey; Singh, Gulzar; Bush, Debbie; Foster, Tim; Taylor, Andy J; Busch, Johanneke; Spiller, Robin C
2016-01-01
Background: The consumption of fat is regulated by reward and homeostatic pathways, but no studies to our knowledge have examined the role of high-fat meal (HFM) intake on subsequent brain activation to oral stimuli. Objective: We evaluated how prior consumption of an HFM or water load (WL) modulates reward, homeostatic, and taste brain responses to the subsequent delivery of oral fat. Methods: A randomized 2-way crossover design spaced 1 wk apart was used to compare the prior consumption of a 250-mL HFM (520 kcal) [rapeseed oil (440 kcal), emulsifier, sucrose, flavor cocktail] or noncaloric WL on brain activation to the delivery of repeated trials of a flavored no-fat control stimulus (CS) or flavored fat stimulus (FS) in 17 healthy adults (11 men) aged 25 ± 2 y and with a body mass index (in kg/m2) of 22.4 ± 0.8. We tested differences in brain activation to the CS and FS and baseline cerebral blood flow (CBF) after the HFM and WL. We also tested correlations between an individual’s plasma cholecystokinin (CCK) concentration after the HFM and blood oxygenation level–dependent (BOLD) activation of brain regions. Results: Compared to the WL, consuming the HFM led to decreased anterior insula taste activation in response to both the CS (36.3%; P < 0.05) and FS (26.5%; P < 0.05). The HFM caused reduced amygdala activation (25.1%; P < 0.01) in response to the FS compared to the CS (fat-related satiety). Baseline CBF significantly reduced in taste (insula: 5.7%; P < 0.01), homeostatic (hypothalamus: 9.2%, P < 0.01; thalamus: 5.1%, P < 0.05), and reward areas (striatum: 9.2%; P < 0.01) after the HFM. An individual’s plasma CCK concentration correlated negatively with brain activation in taste and oral somatosensory (ρ = −0.39; P < 0.05) and reward areas (ρ = −0.36; P < 0.05). Conclusions: Our results in healthy adults show that an HFM suppresses BOLD activation in taste and reward areas compared to a WL. This understanding will help inform the reformulation of reduced-fat foods that mimic the brain’s response to high-fat counterparts and guide future interventions to reduce obesity. PMID:27655761
X-rays are a type of radiation called electromagnetic waves. X-ray imaging creates pictures of the inside of ... different amounts of radiation. Calcium in bones absorbs x-rays the most, so bones look white. Fat ...
Altered thermogenesis and impaired bone remodeling in Misty mice.
Motyl, Katherine J; Bishop, Kathleen A; DeMambro, Victoria E; Bornstein, Sheila A; Le, Phuong; Kawai, Masanobu; Lotinun, Sutada; Horowitz, Mark C; Baron, Roland; Bouxsein, Mary L; Rosen, Clifford J
2013-09-01
Fat mass may be modulated by the number of brown-like adipocytes in white adipose tissue (WAT) in humans and rodents. Bone remodeling is dependent on systemic energy metabolism and, with age, bone remodeling becomes uncoupled and brown adipose tissue (BAT) function declines. To test the interaction between BAT and bone, we employed Misty (m/m) mice, which were reported be deficient in BAT. We found that Misty mice have accelerated age-related trabecular bone loss and impaired brown fat function (including reduced temperature, lower expression of Pgc1a, and less sympathetic innervation compared to wild-type (+/ +)). Despite reduced BAT function, Misty mice had normal core body temperature, suggesting heat is produced from other sources. Indeed, upon acute cold exposure (4°C for 6 hours), inguinal WAT from Misty mice compensated for BAT dysfunction by increasing expression of Acadl, Pgc1a, Dio2, and other thermogenic genes. Interestingly, acute cold exposure also decreased Runx2 and increased Rankl expression in Misty bone, but only Runx2 was decreased in wild-type. Browning of WAT is under the control of the sympathetic nervous system (SNS) and, if present at room temperature, could impact bone metabolism. To test whether SNS activity could be responsible for accelerated trabecular bone loss, we treated wild-type and Misty mice with the β-blocker, propranolol. As predicted, propranolol slowed trabecular bone volume/total volume (BV/TV) loss in the distal femur of Misty mice without affecting wild-type. Finally, the Misty mutation (a truncation of DOCK7) also has a significant cell-autonomous role. We found DOCK7 expression in whole bone and osteoblasts. Primary osteoblast differentiation from Misty calvaria was impaired, demonstrating a novel role for DOCK7 in bone remodeling. Despite the multifaceted effects of the Misty mutation, we have shown that impaired brown fat function leads to altered SNS activity and bone loss, and for the first time that cold exposure negatively affects bone remodeling. Copyright © 2013 American Society for Bone and Mineral Research.
Monounsaturated fatty acids-rich diets in hypercholesterolemic-growing rats.
Macri, Elisa V; Lifshitz, Fima; Alsina, Estefania; Juiz, Natalia; Zago, Valeria; Lezón, Christian; Rodriguez, Patricia N; Schreier, Laura; Boyer, Patricia M; Friedman, Silvia M
2015-01-01
The effects of replacing dietary saturated fat by different monounsaturated fatty acid (ω-9MUFA) sources on serum lipids, body fat and bone in growing hypercholesterolemic rats were studied. Rats received one of the six different diets: AIN-93G (control, C); extra virgin olive oil (OO) + C; high-oleic sunflower oil (HOSO) + C or atherogenic diet (AT) for 8 weeks; the remaining two groups received AT for 3 weeks and then, the saturated fat was replaced by an oil mixture of soybean oil added with OO or HOSO for 5 weeks. Rats consuming MUFA-rich diets showed the highest body fat, hepatic index and epididymal, intestinal and perirenal fat, and triglycerides. T-chol and non-HDL-chol were increased in HOSO rats but decreased in OO rats. Bone mineral content and density were higher in both OO and HOSO groups than in AT rats. This study casts caution to the generalization of the benefits of MUFA for the treatment of hypercholesterolemia.
Ko, Byoung-Seob; Lee, Hye Won; Kim, Da Sol; Kang, Suna; Ryuk, Jin Ah; Park, Sunmin
2014-08-08
Prickly pear cactus grown in Korea (Opuntia ficus-indica Mill, KC) and Buchema (Dioscorea nipponica Makino, B) have been traditionally used in East Asia and South America to treat various metabolic diseases. The aim of the present study was to determine whether the extracts of KC, B, and KC+B can prevent the impairments of energy, glucose, lipid and bone homeostasis in estrogen-deficient ovariectomized (OVX) rats and to explore their mechanisms. OVX rats were divided into 4 groups and fed high fat diets supplemented with either 3% dextrin (control), 3% KC, 3% B or 1.5% KC+1.5% B. Sham rats were fed 3% dextrin. After 12 weeks of diet consumption, energy, lipid, glucose and bone metabolisms were analyzed and Wnt signaling in the femur and hepatic signaling were determined. OVX impaired energy, glucose and lipid metabolism and decreased uterine and bone masses. B and KC+B prevented the decrease in energy expenditure, especially from fat oxidation, in OVX rats, but did not affect food intake. KC+B and B reduced body weight and visceral fat levels, as compared to the OVX-control, by decreasing fat synthesis and inhibiting FAS and SREBP-1c expression. KC+B and B prevented the increases in serum lipid levels and insulin resistance by improving hepatic insulin signaling (pIRS→pAkt→pGSK-3β). KC and KC+B also prevented decreases in bone mineral density (BMD) in the femur and lumbar spine in OVX rats. This was related to decreased expressions of bone turnover markers such as serum osteocalcin, alkaline phosphatase (ALP) and bone-specific ALP levels, and increased serum P levels. KC and KC+B upregulated low-density lipoprotein receptor-related protein 5 and β-catenin in OVX rats, but suppressed the expression of dickkopf-related protein 1. B alone improved energy, lipid and glucose homeostasis, but not bone loss, whereas KC alone enhanced BMD, but not energy, lipid or glucose homeostasis. KC+B synergistically attenuated impairments of bone, energy, lipid and glucose metabolism by OVX, suggesting potential efficacy of the combination for alleviating menopausal symptoms. Copyright © 2014. Published by Elsevier Ireland Ltd.
Vitamin D and nutritional status are related to bone fractures in alcoholics.
González-Reimers, Emilio; Alvisa-Negrín, Julio; Santolaria-Fernández, Francisco; Candelaria Martín-González, M; Hernández-Betancor, Iván; Fernández-Rodríguez, Camino M; Viña-Rodríguez, J; González-Díaz, Antonieta
2011-01-01
Bone fractures are common in alcoholics. To analyse which factors (ethanol consumption; liver function impairment; bone densitometry; hormone changes; nutritional status, and disrupted social links and altered eating habits) are related to bone fractures in 90 alcoholic men admitted to our hospitalization unit because of organic problems. Bone homoeostasis-related hormones were measured in patients and age- and sex-matched controls. Whole-body densitometry was performed by a Hologic QDR-2000 (Waltham, MA, USA) densitometer, recording bone mineral density (BMD) and fat and lean mass; nutritional status and liver function were assessed. The presence of prevalent fractures was assessed by anamnesis and chest X-ray film. Forty-nine patients presented at least one fracture. We failed to find differences between patients with and without fractures regarding BMD parameters. Differences regarding fat mass were absent, but lean mass was lower among patients with bone fracture. The presence of fracture was significantly associated with impaired subjective nutritional evaluation (χ² = 5.79, P = 0.016), lower vitamin D levels (Z = 2.98, P = 0.003) and irregular eating habits (χ² = 5.32, P = 0.02). Reduced lean mass and fat mass, and altered eating habits were more prevalent among patients with only rib fractures (n = 36) than in patients with multiple fractures and/or fractures affecting other bones (n = 13). These last were more closely related to decompensated liver disease. Serum vitamin D levels showed a significant relationship with handgrip strength (ρ = 0.26, P = 0.023) and lean mass at different parts of the body, but not with fat mass. By logistic regression analysis, only vitamin D and subjective nutritional evaluation were significantly, independently related with fractures. Prevalent fractures are common among heavy alcoholics. Their presence is related more closely to nutritional status, lean mass and vitamin D levels than to BMD. Lean mass is more reduced, nutritional status is more impaired and there is a trend to more altered eating habits among patients with rib fractures, whereas multiple fractures depend more heavily on advanced liver disease.
Maksymowych, Walter P; Wichuk, Stephanie; Chiowchanwisawakit, Praveena; Lambert, Robert G; Pedersen, Susanne J
2014-11-01
Fat metaplasia in bone marrow on T1-weighted magnetic resonance imaging (MRI) scans may develop after resolution of inflammation in patients with ankylosing spondylitis (AS) and may predict new bone formation in the spine. Similar tissue, termed backfill, may also fill areas of excavated bone in the sacroiliac (SI) joints and may reflect resolution of inflammation and tissue repair at sites of erosions. The purpose of this study was to test our hypothesis that SI joint ankylosis develops following repair of erosions and that tissue characterized by fat metaplasia is a key intermediary step in this pathway. We used the Spondyloarthritis Research Consortium of Canada (SPARCC) SI structural lesion score (SSS) method to assess fat metaplasia, erosions, backfill, and ankylosis on MRIs of the SI joints in 147 patients with AS monitored for 2 years. Univariate and multivariate regression analyses focused first on identifying significant MRI predictors of new backfill and fat metaplasia. We then assessed the role of backfill and fat metaplasia in the development of new ankylosis. All analyses were adjusted for demographic features, treatment, and baseline and 2-year change in SSS values for parameters of inflammation and MRI structural lesions. Resolution of inflammation and reduction of erosions were each independently associated with the development of new backfill and fat metaplasia at 2 years on multivariate analyses. Multivariate regression analysis that included demographic features, baseline and 2-year change in parameters of inflammation and MRI structural lesion showed that reduction in erosions (P = 0.0005) and increase in fat metaplasia (P = 0.002) at 2 years was each independently associated with the development of new ankylosis. Our data support a disease model whereby ankylosis develops following repair of erosions, and fat metaplasia and backfill are key intermediary steps in this pathway. Copyright © 2014 by the American College of Rheumatology.
New data on harmful effects of trans-fatty acids.
Ginter, E; Simko, V
2016-01-01
Various margarines containing trans-fatty acids were marketed as being healthier because of the absence of cholesterol, suggesting to use margarine instead of butter. Fifteen years ago, research documented the grave health risk of trans-fats (T-fat). US FDA in 2015 finalized its decision that T-fat is not safe and set a three-year time limit for complete removal of T-fat from all foods. The greatest danger from T-fat lies in its capacity to distort the cell membranes. The primary health risk identified for T-fat consumption is an elevated risk of coronary heart disease. T-fats have an adverse effect on the brain and nervous system. T-fat from the diet is incorporated into brain cell membranes and alter the ability of neurons to communicate. This can diminish mental performance. Relationship between T-fat intake and depression risk was observed. There is growing evidence for a possible role of T-fat in the development of Alzheimer´s disease and cognitive decline with age.
Bone mineral density and body composition of the United States Olympic women's field hockey team
Sparling, P. B.; Snow, T. K.; Rosskopf, L. B.; O'Donnell, E. M.; Freedson, P. S.; Byrnes, W. C.
1998-01-01
OBJECTIVE: To evaluate total bone mineral density (BMD) and body composition (% fat) in world class women field hockey players, members of the 1996 United States Olympic team. METHODS: Whole body BMD (g/cm2) and relative body fatness (% fat) were assessed by dual energy x ray absorptiometry using a Lunar DPX-L unit with software version 1.3z. Body composition was also estimated by hydrostatic weighing and the sum of seven skinfolds. Results: Mean (SD) BMD was 1.253 (0.048) g/cm2 which is 113.2 (4.0)% of age and weight adjusted norms. Estimates of body composition from the three methods were similar (statistically non- significant): 16.1 (4.4)% fat from dual energy x ray absorptiometry, 17.6 (3.2)% from hydrostatic weighing, and 16.9 (2.6)% from the sum of seven skinfolds. Mean fat free mass was approximately 50 kg. CONCLUSIONS: The mean whole body BMD value for members of the 1996 United States Olympic women's field hockey team is one of the highest reported for any women's sports team. Moreover, the mean fat free mass per unit height was quite high and % fat was low. In this group of world class sportswomen, low % fat was not associated with low BMD. PMID:9865404
2015-10-01
resulting from estrogen (E2) deprivation therapy. [20% complete] Percent Fat 0 2 4 6 8 -20 0 20 40 Weeks post-surgery OVX SHAM **p = 0.0050 by 2-way...increased body fat percentage as assessed by DXA, B. decreased bone mineral density (BMD) as assessed by DXA, and C. reduced forelimb grip strength in...e.g., glucocorticoids, GnRH inhibitors, radiation, fracture , osteoporosis, etc.) could increase the homing of dormant disseminated cancer cells to
Novel Therapy for Bone Regeneration in Large Segmental Defects
2016-10-01
Giannoudis PV. Fat embolism and IM nailing. Injury. 2006;37(Suppl 4):S1–2. 38. Wenda K, Ritter G, Degreif J, Rudigier J. Pathogenesis of pul- monary... fracture healing, bone regeneration, minipig, pig 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF...saline control. 2. KEYWORDS: Bone healing, bone morphogenetic protein (BMP), thrombopoietin (TPO), therapy, fracture healing, bone regeneration, minipig
Lintsi, Mart; Kaarma, Helje
2003-12-01
An anthropometric study of 552 Tartu city and Tartu county recruits aged 17 years was carried out. Height and weight, 33 anthropometric measurements and 12 skinfolds were measured. Body fat percentage was assessed by Omron BF 300 hand-held segmental body fat analyzer. From anthropometric measurements bone mass was derived by the Drink-water et al. (1986) equation, and total skeletal muscle mass by the Lee et al. (2000) equation. The data were systematized into five height-weight SD-classes. There were 3 classes with harmony between height and weight class: 1--small (small height and small weight), 2--medium (medium height and medium weight), 3--large (large height and large weight), 4--weight class dominating (pyknomorphic) and 5--height class dominating (leptomorphic). It was revealed that in classes 1, 2 and 3 the height and weight increase corresponded to the increase in all heights, breadths and depths, circumferences, skinfolds, body fat, muscle and bone mass. In class 4 circumferences, skinfolds, body fat and muscle mass were bigger. In class 5 all heights and the relative bone mass were bigger. The present investigation confirms the hypothesis that the five height-weight class system is applicable to seventeen-year-old recruits.
Kouda, Katsuyasu; Ohara, Kumiko; Fujita, Yuki; Nakamura, Harunobu; Tachiki, Takahiro; Iki, Masayuki
2018-02-02
Leptin regulates bone cell differentiation and functions via direct and indirect actions in experimental settings. Epidemiologically, however, the impact of leptin on the regulation of bone metabolism remains unclear. While some studies have reported a positive relationship between leptin and bone mineral parameters, other studies found an inverse or no association. We analyzed data from a population-based follow-up survey of community-dwelling children in Hamamatsu, Japan, to investigate relationships between leptin levels and bone mineral parameters. Multiple regression analysis was performed. Multicollinearity was quantified using the variance infiltration factor (VIF). Among 408 children who participated in the baseline survey (at age 11.2 years), 254 (121 boys and 133 girls) completed the follow-up survey (at age 14.2 years). Leptin levels were strongly related to fat mass (r = 0.87 in boys, r = 0.80 in girls). Leptin levels at baseline were significantly (P < 0.05) positively related to total body less head (TBLH) areal bone mineral density (aBMD) at follow-up in girls (standardized partial regression coefficient: β = 0.302, VIF = 2.246), after adjusting for body fat percentage (%). On the other hand, leptin levels were inversely related to TBLH aBMD in boys (β = - 0.395, VIF = 4.116), after adjusting for body fat mass (kg). Positive relationships between leptin levels and bone mineral parameters were observed with VIF values < 4.0, whereas inverse relationships were observed with VIF values ≥ 4.0. These findings suggest that positive relationships between leptin levels and bone mineral parameters are weak, or not always observed, due to statistical problems (i.e., multicollinearity) and other factors derived from adipose tissue.
Pliss, Lioudmila; Jatania, Urvi; Patel, Mulchand S
2016-06-01
Pyruvate dehydrogenase complex (PDC) deficiency is a major inborn error of oxidative metabolism of pyruvate in the mitochondria causing congenital lactic acidosis and primarily structural and functional abnormalities of the central nervous system. To provide an alternate source of acetyl-CoA derived from ketone bodies to the developing brain, a formula high in fat content is widely employed as a treatment. In the present study we investigated efficacy of a high-fat diet given to mothers during pregnancy and lactation on lessening of the impact of PDC deficiency on brain development in PDC-deficient female progeny. A murine model of systemic PDC deficiency by interrupting the X-linked Pdha1 gene was employed in this study. Maternal consumption of a high-fat diet during pregnancy and lactation had no effect on number of live-birth, body growth, tissue PDC activity levels, as well as the in vitro rates of glucose oxidation and fatty acid biosynthesis by the developing brain of PDC-deficient female offspring during the postnatal age 35 days, as compared to the PDC-deficient progeny born to dams on a chow diet. Interestingly, brain weight was normalized in PDC-deficient progeny of high fat-fed mothers with improvement in impairment in brain structure deficit whereas brain weight was significantly decreased and was associated with greater cerebral structural defects in progeny of chow-fed mothers as compared to control progeny of mothers fed either a chow or high fat diet. The findings provide for the first time experimental support for beneficial effects of a ketogenic diet during the prenatal and early postnatal periods on the brain development of PDC-deficient mammalian progeny.
Sharma, Anjali; Tian, Fang; Yin, Michael T; Keller, Marla J; Cohen, Mardge; Tien, Phyllis C
2012-12-01
To understand how regional body composition affects bone mineral density (BMD) in HIV-infected and HIV-uninfected women. Dual energy x-ray absorptiometry was used to measure regional lean and fat mass and BMD at lumbar spine (LS), total hip (TH), and femoral neck (FN) in 318 HIV-infected and 122 HIV-uninfected Women's Interagency HIV Study participants at baseline and 2 and 5 years later. Total lean and fat mass were measured using bioimpedance analysis. Multivariate marginal linear regression models assessed the association of HIV status and body composition on BMD change. Compared with HIV-uninfected women, HIV-infected women were older (44 vs. 37 years), more likely to be Hepatitis C virus-infected (32% vs. 14%), and postmenopausal (26% vs. 3%) and had lower baseline total fat mass, trunk fat, and leg fat. In multivariate models, increased total lean mass was independently associated with increased BMD at LS, TH, and FN, and total fat mass was associated with increased BMD at TH and FN (all P < 0.05). When total fat was replaced in multivariate models with trunk fat and leg fat, increased trunk fat (and not leg fat) was associated with increased TH and FN BMD (P < 0.001). Total fat and lean mass are strong independent predictors of TH and FN BMD, and lean mass was associated with greater LS BMD. Regardless of HIV status, greater trunk fat (and not leg fat) was associated with increased TH and FN BMD, suggesting that weight-bearing fat may be a more important predictor of BMD in the hip.
USDA-ARS?s Scientific Manuscript database
Obesity is associated with chronic up-regulation of inflammatory cytokines which stimulate osteoclast activity and bone resorption. Osteopenia or low bone mass is observed in a variety of physiological conditions with chronic inflammation including aging and post-menopause with estrogen deficiency. ...
Quantitative MRI and spectroscopy of bone marrow
Ruschke, Stefan; Dieckmeyer, Michael; Diefenbach, Maximilian; Franz, Daniela; Gersing, Alexandra S.; Krug, Roland; Baum, Thomas
2017-01-01
Bone marrow is one of the largest organs in the human body, enclosing adipocytes, hematopoietic stem cells, which are responsible for blood cell production, and mesenchymal stem cells, which are responsible for the production of adipocytes and bone cells. Magnetic resonance imaging (MRI) is the ideal imaging modality to monitor bone marrow changes in healthy and pathological states, thanks to its inherent rich soft‐tissue contrast. Quantitative bone marrow MRI and magnetic resonance spectroscopy (MRS) techniques have been also developed in order to quantify changes in bone marrow water–fat composition, cellularity and perfusion in different pathologies, and to assist in understanding the role of bone marrow in the pathophysiology of systemic diseases (e.g. osteoporosis). The present review summarizes a large selection of studies published until March 2017 in proton‐based quantitative MRI and MRS of bone marrow. Some basic knowledge about bone marrow anatomy and physiology is first reviewed. The most important technical aspects of quantitative MR methods measuring bone marrow water–fat composition, fatty acid composition, perfusion, and diffusion are then described. Finally, previous MR studies are reviewed on the application of quantitative MR techniques in both healthy aging and diseased bone marrow affected by osteoporosis, fractures, metabolic diseases, multiple myeloma, and bone metastases. Level of Evidence: 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:332–353. PMID:28570033
Cosmos 1129 - Spaceflight and bone changes
NASA Technical Reports Server (NTRS)
Wronski, T. J.; Morey-Holton, E.; Jee, W. S. S.
1980-01-01
Male Wistar rats were placed in orbit for an 18.5 day period aboard the Soviet Cosmos 1129 biological satellite. The skeletal changes which occurred during spaceflight were determined to be a reduced rate of periosteal bone formation in the tibial and humeral diaphyses, and a decreased trabecular bone volume and an increased fat content of the bone marrow in the proximal tibial metaphysis.
Frank, Laura L; McCarthy, Mary S
2016-05-01
To examine the difference in bone health and body composition via blood biomarkers, bone mineral density, anthropometrics and dietary intake following deployment to Afghanistan among soldiers randomized to receive telehealth coaching promoting nutrition and exercise. This was a prospective, longitudinal, cluster-randomized, controlled trial with repeated measures in 234 soldiers. Measures included heel bone scan for bone mineral density, blood biomarkers for bone formation, resorption, and turnover, body composition via Futrex, resting metabolic rate via MedGem, physical activity using the Baecke Habitual Physical Activity Questionnaire, and dietary intake obtained from the Block Food Frequency Questionnaire. There were significant increases in body fat (p = 0.00035), osteocalcin (0.0152), and sports index (p = 0.0152) for the telehealth group. No other statistically significant differences were observed between groups. Vitamin D intake among soldiers was ≤ 35% of the suggested Dietary Reference Intakes for age. A 9-month deployment to Afghanistan increased body fat, bone turnover, and physical activity among soldiers randomized to receive telehealth strategies to build bone with nutrition and exercise. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.
Hypercholesterolemia Promotes an Osteoporotic Phenotype
Pelton, Kristine; Krieder, Jaclynn; Joiner, Danese; Freeman, Michael R.; Goldstein, Steven A.; Solomon, Keith R.
2013-01-01
A role for hypercholesterolemia in the development of osteoporosis has been suggested in published reports. However, few studies contain direct evidence of a role for maintenance of cholesterol homeostasis in bone health. Using isocaloric high-fat/high-cholesterol and low-fat/no-cholesterol diets in a 4-month feeding study combined with micro computed tomography analysis, we demonstrated in two different mouse strains that mice with hypercholesterolemia lose cortical and trabecular bone in the femurs and vertebrae (bone mineral density was decreased on average by ≈90 mg/mL in the cortical vertebrae in one strain) and cortical bone in the calvariae (bone mineral density was decreased on average by ≈60 mg/mL in one strain). Mechanical testing of the femurs demonstrated that loss of bone in the mice with hypercholesterolemia caused changes in the mechanical properties of the bone including loss of failure load (failure load was decreased by ≈10 N in one strain) and energy to failure. Serologic and histomorphologic analyses suggested that hypercholesterolemia promotes osteoclastogenesis. These studies support a role for hypercholesterolemia in the development of osteoporosis and provide a model with which to test intervention strategies to reduce the effects of hypercholesterolemia on bone health. PMID:22770664
[Case report: fat embolism syndrome--grave handicap after traumatic long-bones fractures].
Blazek, M; Havel, E; Cerman, J; Bĕlobrádková, E; Dĕdek, T; Pocepcov, I
2009-11-01
Embolism of fat and bone marrow tissue is quite often due to bone fractures but it is seldom with signs of systemic involvement as a fat embolism syndrome. The main forming factor is late stabilization of fractures and hypovolemia too. Clinical image of fat embolism syndrome results from lung and systemic microembolism which leads to activation of inflammatory and thrombogenic cascades. We present a case report of a 24-year-old male after bike accident in low speed suffering from isolated thighbone fracture--osteosynthesis was applied in 6 hours after injury. The very first day the organ failure and coma with negative CT occurred, then ARDS, petechiae into the skin of chest and conjunctiva, also embolic closure of a. centralis retinae. Treatment interventions included anticoagulation, steroids, artificial ventilation for 17 days. After 3 weeks from injury he was still unconscious (with GCS 10) so that we tried a hyperbaric oxygen therapy. The patient regained consciousness after 3 months after injury. One year later he is able to walk alone, he has no visual failure, but he is still quadruspastic although able to manipulate with a mobile phone. We discuss diagnostic criteria and treatment. We also point out need of volumetherapy in prevention of fat embolism syndrome--this was underrated here because of primary missed out diagnose of co-existing tibia fracture at the same time (this was stabilised 18 hours after injury).
Corwin, Rebecca L; Hartman, Terryl J; Maczuga, Steven A; Graubard, Barry I
2006-01-01
Mounting evidence indicates that the amount and type of fat in the diet can have important effects on bone health. Most of this evidence is derived from animal studies. Of the few human studies that have been conducted, relatively small numbers of subjects and/or primarily female subjects were included. The present study assessed the relation of dietary fat to hip bone mineral density (BMD) in men and women using NHANES III data (n = 14,850). Multivariate models using SAS-callable SUDAAN were used to adjust for the sampling scheme. Models were adjusted for age, sex, weight, height, race, total energy and calcium intakes, smoking, and weight-bearing exercise. Data from women were further adjusted for use of hormone replacement therapy. Including dietary protein, vitamin C, and beta-carotene in the model did not influence the outcome. Analysis of covariance was used to generate mean BMD by quintile of total and saturated fat intake for 4 sex/age groups. Saturated fat intake was negatively associated with BMD at several hip sites. The greatest effects were seen among men < 50 y old (linear trend P = 0.004 for the femoral neck). For the femoral neck, adjusted mean BMD was 4.3% less among men with the highest compared with the lowest quintile of saturated fat intake (BMD, 95% CI: highest quintile: 0.922 g/cm2, 0.909-0.935; lowest quintile: 0.963 g/cm2, 95% CI: 0.950-0.976). These data indicate that BMD is negatively associated with saturated fat intake, and that men may be particularly vulnerable to these effects.
Bosch, Tyler A; Carbuhn, Aaron; Stanforth, Philip R; Oliver, Jonathan M; Keller, Kathryn A; Dengel, Donald R
2017-03-08
The purpose of the present study was to generate normative data for total and regional body composition in Division 1 collegiate football players using dual-energy X-ray absorptiometry (DXA) and examine positional differences in total and regional measurements. Data was used from the Consortium of College Athlete Research (C-CAR) group. Four hundred-sixty-seven players were included in this study. Height, weight, total and regional fat mass, lean mass and bone mineral density were measured in each athlete in the preseason (June-August). Players were categorized by their offensive or defensive position for comparisons. Linemen tended to have the higher fat and lean mass measures (p<0.05 for all) compared to other positions. Positions that mirror each other (ex. Linemen) had similar body composition and body ratios. All positions were classified as overweight or obese based on BMI (>25 kg/m), yet other than offensive and defensive linemen, all positions had healthy percent body fat (13-20%) and low visceral fat mass (<500 g). The data presented here provide normative positional data for total and regional fat mass, lean mass, and bone density in Division 1 collegiate football players. Player position had a significant effect on body composition measures and is likely associated with on-field positional requirements. From a player health perspective, even though all positions had relatively high BMI values, the majority of positions had relatively low body fat and visceral fat, which is important for the health of players during and after their playing career. The increased accuracy and reliability of DXA provides greater information regarding positional differences in college football players compared to other methods.
Selfridge, J. Eva; Wilkins, Heather M.; Lezi, E; Carl, Steven M.; Koppel, Scott; Funk, Eric; Fields, Timothy; Lu, Jianghua; Tang, Ee Phie; Slawson, Chad; Wang, WenFang; Zhu, Hao; Swerdlow, Russell H.
2014-01-01
Diet composition may affect energy metabolism in a tissue-specific manner. Using C57Bl/6J mice, we tested the effect of ketosis-inducing and non-inducing high fat diets on genes relevant to brain bioenergetic infrastructures, and on proteins that constitute and regulate that infrastructure. At the end of a one-month study period the two high fat diets appeared to differentially affect peripheral insulin signaling, but brain insulin signaling was not obviously altered. Some bioenergetic infrastructure parameters were similarly impacted by both high fat diets, while other parameters were only impacted by the ketogenic diet. For both diets, mRNA levels for CREB, PGC1α, and NRF2 increased while NRF1, TFAM, and COX4I1 mRNA levels decreased. PGC1β mRNA increased and TNFα mRNA decreased only with the ketogenic diet. Brain mtDNA levels fell in both the ketogenic and non-ketogenic high fat diet groups, although TOMM20 and COX4I1 protein levels were maintained, and mRNA and protein levels of the mtDNA-encoded COX2 subunit were also preserved. Overall, the pattern of changes observed in mice fed ketogenic and non-ketogenic high fat diets over a one month time period suggests these interventions enhance some aspects of the brain’s aerobic infrastructure, and may enhance mtDNA transcription efficiency. Further studies to determine which diet effects are due to changes in brain ketone body levels, fatty acid levels, glucose levels, altered brain insulin signaling, or other factors such as adipose tissue-associated hormones are indicated. PMID:25104046
Puig, Kendra L.; Floden, Angela M.; Adhikari, Ramchandra; Golovko, Mikhail Y.; Combs, Colin K.
2012-01-01
Background Middle age obesity is recognized as a risk factor for Alzheimer's disease (AD) although a mechanistic linkage remains unclear. Based upon the fact that obese adipose tissue and AD brains are both areas of proinflammatory change, a possible common event is chronic inflammation. Since an autosomal dominant form of AD is associated with mutations in the gene coding for the ubiquitously expressed transmembrane protein, amyloid precursor protein (APP) and recent evidence demonstrates increased APP levels in adipose tissue during obesity it is feasible that APP serves some function in both disease conditions. Methodology/Principal Findings To determine whether diet-induced obesity produced proinflammatory changes and altered APP expression in brain versus adipose tissue, 6 week old C57BL6/J mice were maintained on a control or high fat diet for 22 weeks. Protein levels and cell-specific APP expression along with markers of inflammation and immune cell activation were compared between hippocampus, abdominal subcutaneous fat and visceral pericardial fat. APP stimulation-dependent changes in macrophage and adipocyte culture phenotype were examined for comparison to the in vivo changes. Conclusions/Significance Adipose tissue and brain from high fat diet fed animals demonstrated increased TNF-α and microglial and macrophage activation. Both brains and adipose tissue also had elevated APP levels localizing to neurons and macrophage/adipocytes, respectively. APP agonist antibody stimulation of macrophage cultures increased specific cytokine secretion with no obvious effects on adipocyte culture phenotype. These data support the hypothesis that high fat diet-dependent obesity results in concomitant pro-inflammatory changes in brain and adipose tissue that is characterized, in part, by increased levels of APP that may be contributing specifically to inflammatory changes that occur. PMID:22276186
Marečková, Klára; Chakravarty, M Mallar; Huang, Mei; Lawrence, Claire; Leonard, Gabriel; Perron, Michel; Pike, Bruce G; Richer, Louis; Veillette, Suzanne; Pausova, Zdenka; Paus, Tomáš
2013-10-01
In our previous work, we described facial features associated with a successful recognition of the sex of the face (Marečková et al., 2011). These features were based on landmarks placed on the surface of faces reconstructed from magnetic resonance (MR) images; their position was therefore influenced by both soft tissue (fat and muscle) and bone structure of the skull. Here, we ask whether bone structure has dissociable influences on observers' identification of the sex of the face. To answer this question, we used a novel method of studying skull morphology using MR images and explored the relationship between skull features, facial features, and sex recognition in a large sample of adolescents (n=876; including 475 adolescents from our original report). To determine whether skull features mediate the relationship between facial features and identification accuracy, we performed mediation analysis using bootstrapping. In males, skull features mediated fully the relationship between facial features and sex judgments. In females, the skull mediated this relationship only after adjusting facial features for the amount of body fat (estimated with bioimpedance). While body fat had a very slight positive influence on correct sex judgments about male faces, there was a robust negative influence of body fat on the correct sex judgments about female faces. Overall, these results suggest that craniofacial bone structure is essential for correct sex judgments about a male face. In females, body fat influences negatively the accuracy of sex judgments, and craniofacial bone structure alone cannot explain the relationship between facial features and identification of a face as female. Copyright © 2013 Elsevier Inc. All rights reserved.
Anti-climacterium effects of pomegranate concentrated solutions in ovariectomized ddY mice
Kang, Su Jin; Choi, Beom Rak; Kim, Seung Hee; Yi, Hae Yeon; Park, Hye Rim; Song, Chang Hyun; Ku, Sae Kwang; Lee, Young Joon
2017-01-01
In the present study, the complex anti-climacterium potential of standardized pomegranate concentrated solution (PCS) was investigated using bilateral ovariectomy (OVX) female ddY mice. Changes in body weight and gain during experimental periods, food consumption, serum estradiol levels, total body and abdominal fat densities, abdominal fat pads, and uterus weights were observed, along with the histopathology of abdominal fat pads and uterus for anti-obesity and estrogenic effects. In addition, liver weights, serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) levels, and histopathological inspections were performed to explore the hepato-protective effects. Serum total cholesterol (TC), low density lipoprotein (LDL), high density lipoprotein, and triglyceride (TG) levels were monitored for hypolipidemic effects with total body and femur mean bone mineral density (BMD), right femur wet, dry and ash weights, strength, serum osteocalcin, bone-specific alkaline phosphatase (bALP) contents, and histological and histomorphometrical analyses for anti-osteoporosis activity. As a result of OVX, notable increases in body weight and gains, food consumption, abdominal fat mass densities, weights of abdominal fat pads deposited in the abdominal cavity, and serum AST, ALT, TC, LDL, TG, and osteocalcin levels were observed, along with decreases in the uterus, liver, and femur weights, mean total body and femur BMD, femur strength, serum bALP, and estradiol levels. In addition, marked hypertrophic alterations in adipocytes located in the deposited abdominal fat pads, liver steatosis, uterine disused atrophic changes, and decreases in bone mass and structures of the femur were also observed in OVX control mice with significant increases in bone resorption markers based on histopathological and histomorphometrical analysis. However, these estrogen-deficient climacterium symptoms were significantly (P<0.05 or P<0.01) inhibited after 84 days of continuous treatment with estradiol and PCS (1, 2 and 4 ml/kg), respectively. The present results suggested that PCS was able to effectively inhibit or refine the climacterium symptoms, including obesity, hyperlipidemia, hepatic steatosis, and osteoporosis, induced by OVX in ddY mice. PMID:28413464
SU-E-T-283: Dose Perturbations Near Heterogeneity Junctions for Modulated-Scanning Protons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Y; Li, Y; Sheng, Y
2015-06-15
Purpose: To compare calculated and measured doses near heterogeneity junctions of tissue-substitute materials for modulated-scanning protons. Methods: Three heterogeneous phantoms were configured using slabs of various plastics to simulate lung, fat, soft-tissue (polystyrene), and bone with known relative linear stopping powers (RLSPs). Each phantom consisted of soft-tissue and a single heterogeneity of a 5 or 10 cm thickness of a non-soft-tissue material. CT images were loaded into a Syngo treatment planning system and each material contoured and assigned its RLSP. Planning target volumes (PTVs) were drawn such that a beam would partially traverse the heterogeneity and partially only soft-tissue. Lateralmore » profiles were measured using EDR2 films at a minimum of six depths between the phantom surface and the depth corresponding to the beam range. Absolute doses were measured inside and distal to the PTV in all phantoms using either a parallel plate or thimble chamber. Additional dose measurements were made between two lung slabs. Results: Profiles measured by film generally agreed with calculations except for depths distal to lung and fat junctions. Measured lateral penumbras for depths at the distal junction of lung were found to be wider than calculated ones. Compared with calculated doses, measured doses in the PTVs were 5.19% and 2.51% lower for lung and fat respectively but for bone were 0.2% higher. Measured doses for depths distal to the PTV were up to 29.65% and 10.58% higher for lung and fat, respectively but 6.30% lower for bone. Conclusion: The low measured doses in the PTVs for lung and fat might be due to underestimation of lateral scattering of protons. The higher measured doses distal to the PTV for the lung and fat are a Result of a shortened calculated beam range whereas the higher dose distal to the bone junction is within uncertainties.« less
Maternal Flaxseed Oil During Lactation Enhances Bone Development in Male Rat Pups.
Pereira, Aline D'Avila; Ribeiro, Danielle Cavalcante; de Santana, Fernanda Carvalho; de Sousa Dos Santos, Aline; Mancini-Filho, Jorge; do Nascimento-Saba, Celly Cristina Alves; Velarde, Luis Guillermo Coca; da Costa, Carlos Alberto Soares; Boaventura, Gilson Teles
2016-08-01
Flaxseed oil is an alpha linolenic acid source important in the growth and body development stage; furthermore, this acid acts on adipose tissue and bone health. The aim of this study was to evaluate body composition, fatty acid composition, hormone profile, retroperitoneal adipocyte area and femur structure of pups at weaning, whose mothers were fed a diet containing flaxseed oil during lactation. After birth, pups were randomly assigned: control (C, n = 12) and flaxseed oil (FO, n = 12), rats whose mothers were treated with diet containing soybean or flaxseed oil. At 21 days, the pups were weaned and body mass, length, body composition, biochemical parameter, leptin, osteoprotegerin, osteocalcin, fatty acids composition, intra-abdominal fat mass and femur structure were analyzed. FO showed (p < 0.05): higher body mass (+12 %) and length (+9 %); body fat mass (g, +45 %); bone mineral density (+8 %), bone mineral content (+55 %) and bone area (+35 %), osteocalcin (+173 %) and osteoprotegerin (+183 %). Arachidonic acid was lower (p < 0.0001), alpha-linolenic and eicosapentaenoic were higher (p < 0.0001). Intra-abdominal fat mass was higher (+25 %), however, the retroperitoneal adipocytes area was lower (-44 %). Femur mass (+10 %), distance between epiphyses (+4 %) and bone mineral density (+13 %) were higher. The study demonstrates that adequate flaxseed oil content during a lactation diet plays an important role in the development of pups.
Osteoporosis and body composition.
Crepaldi, G; Romanato, G; Tonin, P; Maggi, S
2007-01-01
The Epidemiologic Study on the Prevalence of Osteoporosis in Italy showed that the prevalence of osteoporosis among women and men aged 60 yr and over is 22.8% and 14.5%, respectively, giving rise to about 80,000 new fractures a yr. Sarcopenia is considered to be one of the main features of the aging process. It is characterized by a reduction in muscle mass and muscle strength, and affects women more than men. It is associated with a increased risk of fractures consequent upon a greater predisposition to falls, but also to the lack of bone remodeling due to reduced muscle mechanical strength. Muscle strength determines quality bone modifications such as density, strength, and microarchitecture. Variations in the ratios of cortical and muscle areas give rise to various types of osteoporosis, with different risks of fracture. Bone mineral density increases with body fat mass, and obesity has a protective effect against osteoporosis. This protective effect is explained by a combination of hormonal (peripheral aromatization of androgens to estrogens in adipose tissue) and mechanical factors (on weight-bearing bone sites), but the hormone leptin also probably mediates fat and bone mass. Serum leptin levels are closely related to body fat mass, and some findings suggest the peripheral effect of leptin, which exerts estrogenic effects, enhancing osteoblastic differentiation and inhibiting late adipocytic differentiation. The overall effect of leptin on bone results from a balance between negative central effects and positive direct peripheral effects, according to serum leptin levels.
Differences in trabecular bone of leptin-deficient ob/ob mice in response to biomechanical loading.
Heep, Hansjoerg; Wedemeyer, Christian; Wegner, Alexander; Hofmeister, Sebastian; von Knoch, Marius
2008-06-15
It is known that bone mineral density (BMD) and the strength of bone is predicted by body mass. Fat mass is a significant predictor of bone mineral density which correlates with body weight. This suggests that body fat regulates bone metabolism first by means of hormonal factors and second that the effects of muscle and loading are signaling factors in mechanotransduction. Leptin, a peptide hormone produced predominantly by white fat cells, is one of these hormonal factors. The aim of this study was to investigate and measure by micro-CT the different effects of weight-bearing on trabecular bone formation in mice without the stimulation of leptin. Animals with an ad-libitum-diet (Group A) were found to increase body weight significantly at the age of six weeks in comparison with lean mice (Group B). From this point on, the difference increased constantly. At the age of twenty weeks the obese mice were almost twice as heavy as the lean mice. Significant statistical differences are shown between the two groups for body weight and bone mineral density. Examination of trabecular bone (BV/TV, trabecular number (Tb.N.), trabecular thickness (Tb.Th.)) revealed that the only statistically significant difference between the two groups was the Tb.N. for the proximal femur. High weight-bearing insignificantly improved all trabecular bone parameters in the obese mice. Compared with the control-diet Group B, the BV/TV and Tb.N. were slightly higher in the controlled-diet Group A, but not the Tb.Th.. However, correlation was found between Tb.N. and BMD on the one hand and body weight on the other hand. biomechanical loading led to decreased bone mineral density by a decrease in the number of trabeculae. Trabecular thickness was not increased by biomechanical loading in growing mice. Decreased body weight in leptin-deficient mice protects against bone loss. This finding is consistent with the principle of light-weight construction of bone. Differences in cortical and trabecular bone will be examined in later studies. It is not possible to conclude that these results also apply to human beings.
Gautam, Jyoti; Choudhary, Dharmendra; Khedgikar, Vikram; Kushwaha, Priyanka; Singh, Ravi Shankar; Singh, Divya; Tiwari, Swasti; Trivedi, Ritu
2014-05-28
The relationship between fat and bone mass at distinct trabecular and cortical skeletal compartments in a high-fat diet (HFD) model was studied. For this, C57BL/6 mice were assigned to four groups of eight animals each. Two groups, each of males and females, received a standard chow diet while the remaining other two groups received the HFD for a period of 10 weeks. Male mice on the HFD were heavier and gained more weight (15·8 %; P< 0·05) v. those on the control diet or when compared with the female rats fed the HFD. We observed an increased lipid profile in both males and females, with significantly higher lipid levels (about 20-25 %; P< 0·01) in males. However, glucose intolerance was more pronounced in females than males on the HFD (about 30 %; P< 0·05). The micro-architectural assessment of bones showed that compared with female mice on the HFD, male mice on the HFD showed more deterioration at the trabecular region. This was corroborated by plasma osteocalcin and carboxy-terminal collagen crosslinks (CTx) levels confirming greater loss in males (about 20 %; P< 0·01). In both sexes cortical bone parameters and strength remained unchanged after 10 weeks of HFD treatment. The direct effect of the HFD on bone at the messenger RNA level in progenitor cells isolated from femoral bone marrow was a significantly increased expression of adipogenic marker genes v. osteogenic genes. Overall, the present data indicate that obesity induced by a HFD aggravates bone loss in the cancellous bone compartment, with a greater loss in males than females, although 10 weeks of HFD treatment did not alter cortical bone mass and strength in both males and females.
Hyperacute cerebral fat embolism in a patient with femoral shaft fracture.
Chen, Po-Chuan; Hsu, Chin-Wang; Liao, Wen-I; Chen, Yu-Long; Ho, Cheng-Hsuan; Tsai, Shih-Hung
2013-09-01
Fat embolism syndrome is a potentially fatal complication and occurs most commonly after long bone fracture. In patients who sustained severe trauma, both cerebral fat embolism(CFE) and diffuse axonal injury (DAI) could be the cause of altered consciousness in the absence of marked intracranial lesions in cranial computed tomography. However, distinguishing CFE and DAI can be difficult clinically. Generally, DAI develops immediately after the insult, whereas CFE occurs 48 to 72 hours after the trauma and even after internal fixation for the fractures. Fat embolism syndrome develops within an average of 48.5 hours after long bone fracture [1] but has never been reported to occur in less than 2 hours. Here, we present a patient who developed hyperacute CFE and eventually had poor neurological outcome, in contrast to previous reports stating that CFE usually has a long latent period and favorable outcomes.
Clark, R R; Kuta, J M; Sullivan, J C
1993-04-01
The purpose of this study was to compare the prediction of percent body fat (%FAT) by dual energy x-ray absorptiometry (DXA), skinfolds (SF), and hydrostatic weighing (HW) in adult males. Subjects were 35 adult male Caucasians (mean +/- SD; age: 39.1 +/- 14.0 yr, height: 180.6 +/- 5.3 cm, weight: 81.0 +/- 11.1 kg). %FAT, determined by HW with residual volume determined via O2 dilution, served as the criterion. DXA %FAT was determined by the Norland XR-26 (XR-26) bone densitometer and by the SF equations of Jackson and Pollock (JP) (1978), and Lohman (LOH) (1981). Criterion referenced validation included analyzing mean (+/- SD) %FAT values using a one-way ANOVA for significance, comparison of mean differences (MD), correlations (r), standard error of estimates (SEE), and total errors (TE). Significant differences were found between means of each method. The r (0.91) and SEE (3.0 %FAT) for DXA compare favorably with the established SF methods of JP and LOH for predicting %FAT; however, DXA demonstrated the largest MD (3.9 %FAT) and TE (5.2 %FAT). Regression analysis yields HW = 0.79* DXA + 0.56. The results do not support earlier research that found no significant difference between HW and DXA %FAT in males. The study suggests the density of the fat-free body (DFFB) is not constant, and that the variation in bone mineral content affects the DFFB, which contributes to the differences between DXA and HW %FAT. We recommend further research to identify inconsistencies between manufacturers of DXA equipment in prediction of %FAT in males.
Blain, H; Carrière, I; Favier, F; Jeandel, C; Papoz, L
2004-07-01
Few studies have evaluated risk factors for bone loss in elderly women. We examined risk factors associated with a 5-year longitudinal change in bone mineral density (BMD) at the hip in healthy women aged 75 years and older. The BMD of 276 women from the French EPIDOS (Epidémiologie des Osteoporoses) study was assessed in Montpellier from 1992 to 1993 and again from 1997 to 1998. BMD was measured at the femoral neck, trochanter, and Ward's area using the same Lunar densitometer. We examined the relationship between clinical and behavioral factors at baseline and their variations during follow-up, with percentage BMD change adjusted for baseline BMD. Depending on the femur subregion studied, a significant decrease in BMD (exceeding the least significant difference, i.e., > 2.8 CV) was observed in 36.2% to 51.1% of women. Multivariate analysis showed that both postmenopausal weight change before baseline and baseline percentage of fat mass were positively correlated with BMD change at the Ward's triangle and the trochanter. Yearly absolute and relative weight changes over the follow-up period were significantly associated with change of trochanter and femoral neck BMD. Our results show that maintenance of body weight throughout the postmenopause period and body fat mass play protective roles against bone loss at the proximal femur in women aged 75 years and older and suggest the value in including assessment of weight change throughout postmenopause and percentage body fat mass in screening programs for elderly women who are at higher risk of accelerated bone loss.
SU-F-303-12: Implementation of MR-Only Simulation for Brain Cancer: A Virtual Clinical Trial
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glide-Hurst, C; Zheng, W; Kim, J
2015-06-15
Purpose: To perform a retrospective virtual clinical trial using an MR-only workflow for a variety of brain cancer cases by incorporating novel imaging sequences, tissue segmentation using phase images, and an innovative synthetic CT (synCT) solution. Methods: Ten patients (16 lesions) were evaluated using a 1.0T MR-SIM including UTE-DIXON imaging (TE = 0.144/3.4/6.9ms). Bone-enhanced images were generated from DIXON-water/fat and inverted UTE. Automated air segmentation was performed using unwrapped UTE phase maps. Segmentation accuracy was assessed by calculating intersection and Dice similarity coefficients (DSC) using CT-SIM as ground truth. SynCTs were generated using voxel-based weighted summation incorporating T2, FLAIR, UTE1,more » and bone-enhanced images. Mean absolute error (MAE) characterized HU differences between synCT and CT-SIM. Dose was recalculated on synCTs; differences were quantified using planar gamma analysis (2%/2 mm dose difference/distance to agreement) at isocenter. Digitally reconstructed radiographs (DRRs) were compared. Results: On average, air maps intersected 80.8 ±5.5% (range: 71.8–88.8%) between MR-SIM and CT-SIM yielding DSCs of 0.78 ± 0.04 (range: 0.70–0.83). Whole-brain MAE between synCT and CT-SIM was 160.7±8.8 HU, with the largest uncertainty arising from bone (MAE = 423.3±33.2 HU). Gamma analysis revealed pass rates of 99.4 ± 0.04% between synCT and CT-SIM for the cohort. Dose volume histogram analysis revealed that synCT tended to yield slightly higher doses. Organs at risk such as the chiasm and optic nerves were most sensitive due to their proximities to air/bone interfaces. DRRs generated via synCT and CT-SIM were within clinical tolerances. Conclusion: Our approach for MR-only simulation for brain cancer treatment planning yielded clinically acceptable results relative to the CT-based benchmark. While slight dose differences were observed, reoptimization of treatment plans and improved image registration can address this limitation. Future work will incorporate automated registration between setup images (cone-beam CT and kilovoltage images) for synCT and CT-SIM. Submitting institution holds research agreements with Philips HealthCare, Best, Netherlands and Varian Medical Systems, Palo Alto, CA. Research partially sponsored via an Internal Mentored Research Grant.« less
Cerebral fat embolism after bilateral total knee replacement arthroplasty -A case report-
Chang, Ri-Na; Lee, Heeseung; Baik, Hee-Jung; Chung, Rack Kyung; Kim, Chi Hyo; Hwang, Tae-Hu
2010-01-01
Fat embolism syndrome is a rare and potentially lethal complication most commonly seen in long bone fractures and intramedullary manipulation. The clinical triad of fat embolism syndrome consists of mental confusion, respiratory distress, and petechiae. This study reports a case of cerebral fat embolism syndrome following elective bilateral total knee replacement. After an uneventful anesthesia and initial recovery, the patient developed neurologic symptoms nine hours postoperatively. PMID:21286442
Novel Therapy for Bone Regeneration in Large Segmental Defects
2017-12-01
healing. Clin Orthop Relat Res. 1998;355(Suppl):S230–8. 37. Pape HC, Giannoudis PV. Fat embolism and IM nailing. Injury. 2006;37(Suppl 4):S1–2. 38. Wenda...mechanisms to elicit bone healing. 15. SUBJECT TERMS Bone healing, bone morphogenetic protein (BMP), thrombopoietin (TPO), therapy, fracture healing...thrombopoietin (TPO), therapy, fracture healing, bone regeneration, minipig, pig 3. OVERALL PROJECT SUMMARY: Project start date 30/09/2013 Project end
Atrx deficiency induces telomere dysfunction, endocrine defects, and reduced life span
Watson, L. Ashley; Solomon, Lauren A.; Li, Jennifer Ruizhe; Jiang, Yan; Edwards, Matthew; Shin-ya, Kazuo; Beier, Frank; Bérubé, Nathalie G.
2013-01-01
Human ATRX mutations are associated with cognitive deficits, developmental abnormalities, and cancer. We show that the Atrx-null embryonic mouse brain accumulates replicative damage at telomeres and pericentromeric heterochromatin, which is exacerbated by loss of p53 and linked to ATM activation. ATRX-deficient neuroprogenitors exhibited higher incidence of telomere fusions and increased sensitivity to replication stress–inducing drugs. Treatment of Atrx-null neuroprogenitors with the G-quadruplex (G4) ligand telomestatin increased DNA damage, indicating that ATRX likely aids in the replication of telomeric G4-DNA structures. Unexpectedly, mutant mice displayed reduced growth, shortened life span, lordokyphosis, cataracts, heart enlargement, and hypoglycemia, as well as reduction of mineral bone density, trabecular bone content, and subcutaneous fat. We show that a subset of these defects can be attributed to loss of ATRX in the embryonic anterior pituitary that resulted in low circulating levels of thyroxine and IGF-1. Our findings suggest that loss of ATRX increases DNA damage locally in the forebrain and anterior pituitary and causes tissue attrition and other systemic defects similar to those seen in aging. PMID:23563309
Bodybuilders' body composition: effect of nandrolone decanoate.
van Marken Lichtenbelt, Wouter D; Hartgens, Fred; Vollaard, Niels B J; Ebbing, Spike; Kuipers, Harm
2004-03-01
The use of androgenic-anabolic steroids (AAS) among bodybuilders to increase muscle mass is widespread. Nandrolone decanoate (ND) is one of the most popular misused AAS, although the effects on body composition are equivocal. Therefore, the purpose of this study was to determine the effect of ND on body composition in male bodybuilders, with special reference to muscle mass alterations. Using a randomized "double-blind" "placebo-controlled" design, 16 experienced male bodybuilders (age: 19-44 yr) either received ND (200 mg.wk(-1), intramuscularly) or placebo for 8 wk. Body composition was assessed using the four-component model, combining results from underwater weighing, dual-energy x-ray absorptiometry (DXA), and deuterium dilution. Total bone mineral content and density were measured using DXA. Water compartments (extracellular water [ECW] and intracellular water [ICW]) were determined using deuterium dilution and bromide dilution. ND administration resulted in significant increments of body mass (+2.2 kg), fat-free mass (FFM: +2.6 kg), and total body water (+1.4 kg). No significant changes in fat mass, percentage fat, ECW, ICW, ECW/ICW ratio, hydration of the FFM, and on bone mineral measurements were observed. The results show that the administration of 200 mg.wk(-1) of ND (intramuscularly) for 8 wk significantly increased body mass and FFM, whereas fat mass, bone mineral content, bone mineral density, and the hydration of the FFM remained unaffected. These data indicate that the changes can be attributed to an increase of muscle mass.
Animal model of cochlear third window in the scala vestibuli or scala tympani.
Attias, Joseph; Preis, Michal; Shemesh, Rafi; Hadar, Tuvia; Nageris, Ben I
2010-08-01
The auditory impact of a cochlear third window differs by its location in the scala vestibuli or scala tympani. Pathologic third window has been investigated primarily in the vestibular apparatus of animals and humans. Dehiscence of the superior semicircular canal is the clinical model. Fat sand rats (n = 11) have a unique inner-ear anatomy that allows easy surgical access. A window was drilled in the bony labyrinth over the scala vestibuli in 1 group (12 ears) and over the scala tympani in another (7 ears) while preserving the membranous labyrinth. Auditory brain stem responses to high- and low-frequency stimuli delivered by air and bone conduction were recorded before and after the procedure. Scala vestibuli group: preoperative air-conduction thresholds to clicks and tone-bursts averaged 8.3 and 9.6 dB, respectively, and bone-conduction thresholds, 4.6 and 3.3 dB, respectively; after fenestration, air-conduction thresholds averaged 40.4 and 41.8 dB, respectively, and bone-conduction thresholds, -1 and 5.6 dB, respectively. Scala tympani group: preoperative air-conduction thresholds to clicks and tone-bursts averaged 8.6 dB each, and bone-conduction thresholds, 7.9 dB and 7.1 dB, respectively; after fenestration, air-conduction thresholds averaged 11.4 and 9.3 dB, respectively, and bone-conduction thresholds, 9.3 and 4.2 dB, respectively. The changes in air- (p = 0.0001) and bone-conduction (p = 0.04) thresholds were statistically significant only in the scala vestibuli group. The presence of a cochlear third window over the scala vestibuli, but not over the scala tympani, causes a significant increase in air-conduction auditory thresholds. These results agree with the theoretic model and clinical findings and contribute to our understanding of vestibular dehiscence.
Marrow Adipose Tissue Expansion Coincides with Insulin Resistance in MAGP1-Deficient Mice
Walji, Tezin A.; Turecamo, Sarah E.; Sanchez, Alejandro Coca; Anthony, Bryan A.; Abou-Ezzi, Grazia; Scheller, Erica L.; Link, Daniel C.; Mecham, Robert P.; Craft, Clarissa S.
2016-01-01
Marrow adipose tissue (MAT) is an endocrine organ with the potential to influence skeletal remodeling and hematopoiesis. Pathologic MAT expansion has been studied in the context of severe metabolic challenge, including caloric restriction, high fat diet feeding, and leptin deficiency. However, the rapid change in peripheral fat and glucose metabolism associated with these models impedes our ability to examine which metabolic parameters precede or coincide with MAT expansion. Microfibril-associated glycoprotein-1 (MAGP1) is a matricellular protein that influences cellular processes by tethering signaling molecules to extracellular matrix structures. MAGP1-deficient (Mfap2−/−) mice display a progressive excess adiposity phenotype, which precedes insulin resistance and occurs without changes in caloric intake or ambulation. Mfap2−/− mice were, therefore, used as a model to associate parameters of metabolic disease, bone remodeling, and hematopoiesis with MAT expansion. Marrow adiposity was normal in Mfap2−/− mice until 6 months of age; however, by 10 months, marrow fat volume had increased fivefold relative to wild-type control at the same age. Increased gonadal fat pad mass and hyperglycemia were detectable in Mfap2−/− mice by 2 months, but peaked by 6 months. The development of insulin resistance coincided with MAT expansion. Longitudinal characterization of bone mass demonstrated a disconnection in MAT volume and bone volume. Specifically, Mfap2−/− mice had reduced trabecular bone volume by 2 months, but this phenotype did not progress with age or MAT expansion. Interestingly, MAT expansion in the 10-month-old Mfap2−/− mice was associated with modest alterations in basal hematopoiesis, including a shift from granulopoiesis to B lymphopoiesis. Together, these findings indicate MAT expansion is coincident with insulin resistance, but not excess peripheral adiposity or hyperglycemia in Mfap2−/− mice; and substantial MAT accumulation does not necessitate a proportional decrease in either bone mass or bone marrow cellularity. PMID:27445989
Kim, Kyong-Chol; Shin, Dong-Hyuk; Lee, Sei-Young; Im, Jee-Aee; Lee, Duk-Chul
2010-11-01
The traditional belief that obesity is protective against osteoporosis has been questioned. Recent epidemiologic studies show that body fat itself may be a risk factor for osteoporosis and bone fractures. Accumulating evidence suggests that metabolic syndrome and the individual components of metabolic syndrome such as hypertension, increased triglycerides, and reduced high-density lipoprotein cholesterol are also risk factors for low bone mineral density. Using a cross sectional study design, we evaluated the associations between obesity or metabolic syndrome and bone mineral density (BMD) or vertebral fracture. A total of 907 postmenopausal healthy female subjects, aged 60-79 years, were recruited from woman hospitals in Seoul, South Korea. BMD, vetebral fracture, bone markers, and body composition including body weight, body mass index (BMI), percentage body fat, and waist circumference were measured. After adjusting for age, smoking status, alcohol consumption, total calcium intake, and total energy intake, waist circumference was negatively related to BMD of all sites (lumbar BMD p = 0.037, all sites of femur BMD p < 0.001) whereas body weight was still positively related to BMD of all sites (p < 0.001). Percentage body fat and waist circumference were much higher in the fracture group than the non-fracture group (p = 0.0383, 0.082 respectively). Serum glucose levels were positively correlated to lumbar BMD (p = 0.016), femoral neck BMD (p = 0.0335), and femoral trochanter BMD (p = 0.0082). Serum high density lipoprotein cholesterol (HDLC) was positively related to femoral trochanter BMD (p = 0.0366) and was lower in the control group than the fracture group (p = 0.011). In contrast to the effect favorable body weight on bone mineral density, high percentage body fat and waist circumference are related to low BMD and a vertebral fracture. Some components of metabolic syndrome were related to BMD and a vertebral fracture.
Zilg, Brita; Råsten-Almqvist, Petra
2017-09-01
Fat embolism is an incidental finding in cases of long bone fractures or other trauma, but it is also associated with liposuction and autologous fat transfer, a procedure where fat from liposuction is injected back into the same patient's face, breast, buttocks or penis. We here present a case of sudden death by fat embolism in a healthy young male, caused by a simple penis enlargement procedure, in which fat was injected into the penis shaft. We suggest that the risk of fat embolization might be higher when pretraumatized tissue is subjected to fat injection, like in this case, where a penis elongation was performed before the fat injection. © 2017 American Academy of Forensic Sciences.
Chang, Gregory; Deniz, Cem M; Honig, Stephen; Egol, Kenneth; Regatte, Ravinder R; Zhu, Yudong; Sodickson, Daniel K; Brown, Ryan
2014-06-01
To demonstrate the feasibility of performing bone microarchitecture, high-resolution cartilage, and clinical imaging of the hip at 7T. This study had Institutional Review Board approval. Using an 8-channel coil constructed in-house, we imaged the hips of 15 subjects on a 7T magnetic resonance imaging (MRI) scanner. We applied: 1) a T1-weighted 3D fast low angle shot (3D FLASH) sequence (0.23 × 0.23 × 1-1.5 mm(3) ) for bone microarchitecture imaging; 2) T1-weighted 3D FLASH (water excitation) and volumetric interpolated breath-hold examination (VIBE) sequences (0.23 × 0.23 × 1.5 mm(3) ) with saturation or inversion recovery-based fat suppression for cartilage imaging; 3) 2D intermediate-weighted fast spin-echo (FSE) sequences without and with fat saturation (0.27 × 0.27 × 2 mm) for clinical imaging. Bone microarchitecture images allowed visualization of individual trabeculae within the proximal femur. Cartilage was well visualized and fat was well suppressed on FLASH and VIBE sequences. FSE sequences allowed visualization of cartilage, the labrum (including cartilage and labral pathology), joint capsule, and tendons. This is the first study to demonstrate the feasibility of performing a clinically comprehensive hip MRI protocol at 7T, including high-resolution imaging of bone microarchitecture and cartilage, as well as clinical imaging. Copyright © 2013 Wiley Periodicals, Inc.
Otilingam, Poorni G; Gatz, Margaret; Tello, Elizabeth; Escobar, Antonio Jose; Goldstein, Aviva; Torres, Mina; Varma, Rohit
2015-02-01
The goal of this research was to evaluate nutrition education targeting Latinas, a group at particular risk of obesity and diabetes, which predict to later life cardiovascular disease and dementia. Culturally tailored, theory-based nutrition education was provided to Mexican origin Latinas aged 48 to 84. The randomized design compared participants in workshops incorporating the connection between dietary fat and brain health, participants in workshops focusing only on dietary fat and heart health, a waitlist control group, and a posttest only control group. Among those assigned to either intervention, there was statistically significant gain in health literacy, knowledge about dietary fat, and behaviors to reduce dietary fat compared with waitlist control. There was no difference in outcomes between those given the module about diet and brain health and those not provided that module. A program to encourage dietary fat modification in Latinas proved feasible and modestly effective. © The Author(s) 2014.
Otilingam, Poorni G.; Gatz, Margaret; Tello, Elizabeth; Escobar, Antonio Jose; Goldstein, Aviva; Torres, Mina; Varma, Rohit
2015-01-01
Objectives The goal of this research was to evaluate nutrition education targeting Latinas, a group at particular risk of obesity and diabetes, which predict to later life cardiovascular disease and dementia. Methods Culturally tailored, theory-based nutrition education was provided to Mexican origin Latinas aged 48 to 84. The randomized design compared participants in workshops incorporating the connection between dietary fat and brain health, participants in workshops focusing only on dietary fat and heart health, a waitlist control group, and a posttest only control group. Results Among those assigned to either intervention, there was statistically significant gain in health literacy, knowledge about dietary fat, and behaviors to reduce dietary fat compared to waitlist control. There was no difference in outcomes between those given the module about diet and brain health and those not provided that module. Discussion A program to encourage dietary fat modification in Latinas proved feasible and modestly effective. PMID:25231884
Hind, Karen; Gannon, Lisa; Brightmore, Amy; Beck, Belinda
2015-01-01
Recent reports indicate that bone strength is not proportional to body weight in obese populations. Elite rugby players have a similar body mass index (BMI) to obese individuals but differ markedly with low body fat, high lean mass, and frequent skeletal exposure to loading through weight-bearing exercise. The purpose of this study was to determine relationships between body weight, composition, and bone strength in male rugby players characterized by high BMI and high lean mass. Fifty-two elite male rugby players and 32 nonathletic, age-matched controls differing in BMI (30.2 ± 3.2 vs 24.1 ± 2.1 kg/m²; p = 0.02) received 1 total body and one total hip dual-energy X-ray absorptiometry scan. Hip structural analysis of the proximal femur was used to determine bone mineral density (BMD) and cross-sectional bone geometry. Multiple linear regression was computed to identify independent variables associated with total hip and femoral neck BMD and hip structural analysis-derived bone geometry parameters. Analysis of covariance was used to explore differences between groups. Further comparisons between groups were performed after normalizing parameters to body weight and to lean mass. There was a trend for a positive fat-bone relationship in rugby players, and a negative relationship in controls, although neither reached statistical significance. Correlations with lean mass were stronger for bone geometry (r(2): 0.408-0.520) than for BMD (r(2): 0.267-0.293). Relative to body weight, BMD was 6.7% lower in rugby players than controls (p < 0.05). Rugby players were heavier than controls, with greater lean mass and BMD (p < 0.01). Relative to lean mass, BMD was 10%-14.3% lower in rugby players (p < 0.001). All bone geometry measures except cross-sectional area were proportional to body weight and lean mass. To conclude, BMD in elite rugby players was reduced in proportion to body weight and lean mass. However, their superior bone geometry suggests that overall bone strength may be adequate for loading demands. Fat-bone interactions in athletes engaged in high-impact sports require further exploration. Copyright © 2015. Published by Elsevier Inc.
KNEE-JOINT LOADING IN KNEE OSTEOARTHRITIS: INFLUENCE OF ABDOMINAL AND THIGH FAT
Messier, Stephen P.; Beavers, Daniel P.; Loeser, Richard F.; Carr, J. Jeffery; Khajanchi, Shubham; Legault, Claudine; Nicklas, Barbara J.; Hunter, David J.; DeVita, Paul
2014-01-01
Purpose Using three separate models that included total body mass, total lean and total fat mass, and abdominal and thigh fat as independent measures, we determined their association with knee-joint loads in older overweight and obese adults with knee osteoarthritis (OA). Methods Fat depots were quantified using computed tomography and total lean and fat mass determined with dual energy x-ray absorptiometry in 176 adults (age = 66.3 yr., BMI = 33.5 kg·m−2) with radiographic knee OA. Knee moments and joint bone-on-bone forces were calculated using gait analysis and musculoskeletal modeling. Results Higher total body mass was significantly associated (p ≤ 0.0001) with greater knee compressive and shear forces, compressive and shear impulses (p < 0.0001), patellofemoral forces (p< 0.006), and knee extensor moments (p = 0.003). Regression analysis with total lean and total fat mass as independent variables revealed significant positive associations of total fat mass with knee compressive (p = 0.0001), shear (p < 0.001), and patellofemoral forces (p = 0.01) and knee extension moment (p = 0.008). Gastrocnemius and quadriceps forces were positively associated with total fat mass. Total lean mass was associated with knee compressive force (p = 0.002). A regression model that included total thigh and total abdominal fat found both were significantly associated with knee compressive and shear forces (p ≤ 0.04). Thigh fat was associated with the knee abduction (p = 0.03) and knee extension moment (p = 0.02). Conclusions Thigh fat, consisting predominately of subcutaneous fat, had similar significant associations with knee joint forces as abdominal fat despite its much smaller volume and could be an important therapeutic target for people with knee OA. PMID:25133996
Knee joint loading in knee osteoarthritis: influence of abdominal and thigh fat.
Messier, Stephen P; Beavers, Daniel P; Loeser, Richard F; Carr, J Jeffery; Khajanchi, Shubham; Legault, Claudine; Nicklas, Barbara J; Hunter, David J; Devita, Paul
2014-09-01
Using three separate models that included total body mass, total lean and total fat mass, and abdominal and thigh fat as independent measures, we determined their association with knee joint loads in older overweight and obese adults with knee osteoarthritis (OA). Fat depots were quantified using computed tomography, and total lean and fat mass were determined with dual energy x-ray absorptiometry in 176 adults (age, 66.3 yr; body mass index, 33.5 kg·m) with radiographic knee OA. Knee moments and joint bone-on-bone forces were calculated using gait analysis and musculoskeletal modeling. Higher total body mass was significantly associated (P ≤ 0.0001) with greater knee compressive and shear forces, compressive and shear impulses (P < 0.0001), patellofemoral forces (P < 0.006), and knee extensor moments (P = 0.003). Regression analysis with total lean and total fat mass as independent variables revealed significant positive associations of total fat mass with knee compressive (P = 0.0001), shear (P < 0.001), and patellofemoral forces (P = 0.01) and knee extension moment (P = 0.008). Gastrocnemius and quadriceps forces were positively associated with total fat mass. Total lean mass was associated with knee compressive force (P = 0.002). A regression model that included total thigh and total abdominal fat found that both were significantly associated with knee compressive and shear forces (P ≤ 0.04). Thigh fat was associated with knee abduction (P = 0.03) and knee extension moment (P = 0.02). Thigh fat, consisting predominately of subcutaneous fat, had similar significant associations with knee joint forces as abdominal fat despite its much smaller volume and could be an important therapeutic target for people with knee OA.
Trauma Patient with Fat Embolism Detected on Computed Tomography.
Sousa, Isabel; Janeiro, João; Campos, Paula; Távora, Isabel
2017-01-31
Fat embolism is frequent following fractures of long bones, however the development of the clinical syndrome of fat embolism (characterized by progressive respiratory distress, mental status depression and petechial rash) is rare, but relevant because of its potential severity. We report a case of a trauma patient with multiple fractures of the right lower limb in whom an emergency computed tomography scan showed fat emboli within the lumen of the homolateral common femoral vein. The imaging detection of macroscopic fat emboli should alert the clinician to the potential for subsequent fat embolism syndrome.
Ruiz, M; Sarriés, M V; Beriain, M J; Crecente, S; Domínguez, R; Lorenzo, J M
2018-05-01
In order to improve foal carcass quality, it is necessary in particular to improve the carcass dressing percentage and tissue composition. Thus, it is important to establish relationships between grading systems and these parameters. This research was conducted to study the effect of slaughter age (13 v. 26 months) and finishing feed (standard v. linseed feed) on carcass characteristics such as subcutaneous fat colour plus classification of foals for the degree of fatness and conformation. For this study, 46 foals of crossbred genotype (Galician Mountain×Burguete) were used. Finishing feed did not affect any parameter, whereas slaughter age influenced all parameters (P<0.05). The oldest foals had higher carcass measurements, 13% more of meat, 4% more of bone, 12% more of fat, and 4% and 9% bigger fore- and hindquarter, respectively. Consequently, bigger valuable prime cuts were obtained. Nevertheless, the meat : bone ratio was very similar for both 13- and 26-month-old foals (2.88). Most of 26-month-old foals were classified in 'E' (Extra) and '5' (Complete fat cover) categories of conformation and degree of fatness. Most of the carcasses showed subcutaneous fat described as yellowish-white irrespective of age or diet. A regression model found that conformation (36%) and degree of fatness (33%) in live animals was positively linked with carcass tissue composition. It is therefore suggested that producers aim for older slaughter ages than 13 months and that the foal meat industry establishes grading systems to predict carcass quality. Further studies should be necessary to find the optimal slaughter age to obtain carcasses in the best categories of degree of fatness and conformation. New studies should be recommended to improve the meat : bone ratio of foal carcasses as it estimates the aptitude for meat production.
Silva, Douglas Fini; Carmona, César Vanderlei; Calderan, Thiago Rodrigues Araújo; Fraga, Gustavo Pereira; Nascimento, Bartolomeu; Rizoli, Sandro
2013-01-01
The "Evidence-based Telemedicine - Trauma & Acute Care Surgery" (EBT-TACS) Journal Club conducted a critical review of the literature and selected three recent studies on the use of corticosteroids for the prophylaxis of fat embolism syndrome. The review focused on the potential role of corticosteroids administration to patients admitted to the intensive care unit (ICU) at risk of developing post-traumatic fat embolism. The first study was prospective and aimed at identifying reliable predictors, which occurred early and were associated with the onset of fat embolism syndrome in trauma patients. The second manuscript was a literature review of the role of corticosteroids as a prophylactic measure for fat embolism syndrome (FES). The last manuscript was a meta-analysis on the potential for corticosteroids to prophylactically reduce the risk of fat embolism syndrome in patients with long bone fractures. The main conclusions and recommendations reached were that traumatized patients should be monitored with non-invasive pulse oximetry and lactate levels since these factors may predict the development of FES, and that there is not enough evidence to recommend the use of steroids for the prophylaxis of this syndrome.
The Relationship of Fat Distribution and Insulin Resistance with Lumbar Spine Bone Mass in Women
de Paula, Francisco J. A.; de Araújo, Iana M.; Carvalho, Adriana L.; Elias, Jorge; Salmon, Carlos E. G.; Nogueira-Barbosa, Marcello H.
2015-01-01
Bone marrow harbors a significant amount of body adipose tissue (BMAT). While BMAT might be a source of energy for bone modeling and remodeling, its increment can also represent impairment of osteoblast differentiation. The relationship between BMAT, bone mass and insulin sensitivity is only partially understood and seems to depend on the circumstances. The present study was designed to assess the association of BMAT with bone mineral density in the lumbar spine as well as with visceral adipose tissue, intrahepatic lipids, HOMA-IR, and serum levels of insulin and glucose. This cross-sectional clinical investigation included 31 non-diabetic women, but 11 had a pre-diabetes status. Dual X-ray energy absorptiometry was used to measure bone mineral density and magnetic resonance imaging was used to assess fat deposition in BMAT, visceral adipose tissue and liver. Our results suggest that in non-diabetic, there is an inverse relationship between bone mineral density in lumbar spine and BMAT and a trend persists after adjustment for weight, age, BMI and height. While there is a positive association between visceral adipose tissue and intrahepatic lipids with serum insulin levels, there is no association between BMAT and serum levels of insulin. Conversely, a positive relationship was observed between BMAT and serum glucose levels, whereas this association was not observed with other fat deposits. These relationships did not apply after adjustment for body weight, BMI, height and age. The present study shows that in a group of predominantly non-obese women the association between insulin resistance and BMAT is not an early event, as occurs with visceral adipose tissue and intrahepatic lipids. On the other hand, BMAT has a negative relationship with bone mineral density. Taken together, the results support the view that bone has a complex and non-linear relationship with energy metabolism. PMID:26067489
The Relationship of Fat Distribution and Insulin Resistance with Lumbar Spine Bone Mass in Women.
de Paula, Francisco J A; de Araújo, Iana M; Carvalho, Adriana L; Elias, Jorge; Salmon, Carlos E G; Nogueira-Barbosa, Marcello H
2015-01-01
Bone marrow harbors a significant amount of body adipose tissue (BMAT). While BMAT might be a source of energy for bone modeling and remodeling, its increment can also represent impairment of osteoblast differentiation. The relationship between BMAT, bone mass and insulin sensitivity is only partially understood and seems to depend on the circumstances. The present study was designed to assess the association of BMAT with bone mineral density in the lumbar spine as well as with visceral adipose tissue, intrahepatic lipids, HOMA-IR, and serum levels of insulin and glucose. This cross-sectional clinical investigation included 31 non-diabetic women, but 11 had a pre-diabetes status. Dual X-ray energy absorptiometry was used to measure bone mineral density and magnetic resonance imaging was used to assess fat deposition in BMAT, visceral adipose tissue and liver. Our results suggest that in non-diabetic, there is an inverse relationship between bone mineral density in lumbar spine and BMAT and a trend persists after adjustment for weight, age, BMI and height. While there is a positive association between visceral adipose tissue and intrahepatic lipids with serum insulin levels, there is no association between BMAT and serum levels of insulin. Conversely, a positive relationship was observed between BMAT and serum glucose levels, whereas this association was not observed with other fat deposits. These relationships did not apply after adjustment for body weight, BMI, height and age. The present study shows that in a group of predominantly non-obese women the association between insulin resistance and BMAT is not an early event, as occurs with visceral adipose tissue and intrahepatic lipids. On the other hand, BMAT has a negative relationship with bone mineral density. Taken together, the results support the view that bone has a complex and non-linear relationship with energy metabolism.
Charoenphandhu, Narattaphol; Suntornsaratoon, Panan; Sa-Nguanmoo, Piangkwan; Tanajak, Pongpan; Teerapornpuntakit, Jarinthorn; Aeimlapa, Ratchaneevan; Chattipakorn, Nipon; Chattipakorn, Siriporn
2018-02-02
Obese insulin resistance and type 2 diabetes mellitus profoundly impair bone mechanical properties and bone quality. However, because several antidiabetes drugs, especially thiazolidinediones, further aggravate bone loss in individuals with diabetes, diabetic osteopathy should not be treated by using simply any glucose-lowering agents. Recently, incretins have been reported to affect osteoblast function positively. The present study aimed to investigate the effects of vildagliptin, an inhibitor of dipeptidyl peptidase-4, on bone of rats with high-fat-diet-induced prediabetes. Male rats were fed a high-fat diet for 12 weeks to induce obese insulin resistance and then treated with vildagliptin for 4 weeks. The effects of the drug on bone were determined by microcomputed tomography and bone histomorphometry. Vildagliptin markedly improved insulin resistance in these obese insulin-resistant rats. It also significantly increased volumetric bone mineral density. Specifically, vildagliptin-treated obese insulin-resistant rats exhibited higher trabecular volumetric bone mineral density than vehicle-treated obese insulin-resistant rats, whereas cortical volumetric bone mineral density, cortical thickness and area were not changed. Bone histomorphometric analysis in a trabecular-rich area (i.e. tibial metaphysis) revealed greater trabecular bone volume and number and less trabecular separation without change in trabecular thickness, osteocyte lacunar area or cortical thickness in the vildagliptin-treated group. Vildagliptin had a beneficial effect on the bone of obese insulin-resistant rats with prediabetes, particularly at the trabecular site. Such benefit probably results from enhanced bone formation rather than from suppressed bone resorption. Copyright © 2018 Diabetes Canada. Published by Elsevier Inc. All rights reserved.
Tsai, I-Tzun; Hsu, Chin-Jung; Chen, Ying-Hao; Fong, Yi-Chin; Hsu, Horng-Chaung; Tsai, Chun-Hao
2010-08-01
Fat embolism syndrome (FES) is a potentially fatal complication of long bone fractures. There have been no reports of FES in long bone fractures in this decade in Taiwan. The purpose of this study was to review the FES experiences in a tertiary referral center between January 1997 and February 2008. Between January 1997 and February 2008, 13 patients with long bone fractures with documented FES in our institution were reviewed. FES was diagnosed clinically by at least 2 major criteria or 1 major with at least 4 minor signs of Gurd's criteria. The incidences of FES, less than those reported in the literature, were 0.15% in fracture of the tibia, 0.78% in fracture of the femur and 2.4% in multiple fractures. The mortality rate of FES, similar to other available results, was about 7.7%. All cases were less than 35 years old, except for 1 70-year-old male. Fat embolism occurred within an average of 48.5 hours after long bone fracture. Eleven presented with sudden drop in hemoglobin level, dropping 4.2 g/dL on average. Nine presented with thrombocytopenia, and 10 presented with sudden drop in platelet count, dropping 140,000/dL on average. Two had cerebral sequelae without recovery at the last 48-month follow-up. This 12-year interval retrospective study revealed modern epidemiologic results for FES in long bone fracture. Compared with the available literature in the recent decade, the incidence of FES in long bone fracture in our institution is less and the mortality rate is similar. Copyright 2010 Elsevier. Published by Elsevier B.V. All rights reserved.
Takasu, Miyuki; Kaichi, Yoko; Tani, Chihiro; Date, Shuji; Akiyama, Yuji; Kuroda, Yoshiaki; Sakai, Akira; Awai, Kazuo
2015-01-01
Introduction To evaluate the effectiveness of iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) magnetic resonance imaging (MRI) to discriminate between symptomatic and asymptomatic myeloma in lumbar bone marrow without visible focal lesions. Materials and Methods The lumbar spine was examined with 3-T MRI in 11 patients with asymptomatic myeloma and 24 patients with symptomatic myeloma. The fat-signal fraction was calculated from the ratio of the signal intensity in the fat image divided by the signal intensity of the corresponding ROI in the in-phase IDEAL image. The t test was used to compare the asymptomatic and symptomatic groups. ROC curves were constructed to determine the ability of variables to discriminate between symptomatic and asymptomatic myeloma. Results Univariate analysis showed that β2-microglobulin and bone marrow plasma cell percent (BMPC%) were significantly higher and fat-signal fraction was significantly lower with symptomatic myeloma than with asymptomatic myeloma. Areas under the curve were 0.847 for β2;-microglobulin, 0.834 for fat-signal fraction, and 0.759 for BMPC%. Conclusion The fat-signal fraction as a biomarker for multiple myeloma enables discrimination of symptomatic myeloma from asymptomatic myeloma. The fat-signal fraction offers superior sensitivity and specificity to BMPC% of biopsy specimens. PMID:25706753
Role of susceptibility-weighted imaging in demonstration of cerebral fat embolism
Yeap, Pheyming; Kanodia, Avinash Kumar; Main, Gavin; Yong, Aiwain
2015-01-01
Cerebral fat embolism (CFE) is a rare but potentially lethal complication of long bone fractures. Many cases of CFE occur as subclinical events and remain undiagnosed. We report a case of a 22-year-old man, with multiple long bone fractures from a road traffic accident, who subsequently developed hypoxia, neurological abnormality and petechial rash. CT of the head was normal. MRI of the head confirmed the diagnosis with lesions markedly conspicuous and most widespread on susceptibility-weighted imaging as compared to all other sequences including diffusion-weighted imaging. PMID:25572601
Adiposity is associated with structural properties of the adolescent brain.
Schwartz, Deborah H; Dickie, Erin; Pangelinan, Melissa M; Leonard, Gabriel; Perron, Michel; Pike, G Bruce; Richer, Louis; Veillette, Suzanne; Pausova, Zdenka; Paus, Tomáš
2014-12-01
Obesity, a major risk factor for cardiometabolic disease, is associated with variations in a number of structural properties in the adult brain, as assessed with magnetic resonance imaging (MRI). In this study, we investigated the cross-sectional relationship between visceral fat (VF), total body fat (TBF) and three MRI parameters in the brains of typically developing adolescents: (i) T1-weighted (T1W) signal intensity; (ii) T1W signal contrast between white matter (WM) and gray matter (GM); and (iii) magnetization transfer ratio (MTR). In a community-based sample of 970 adolescents (12-18 years old, 466 males), VF was quantified using MRI, and total body fat was measured using a multifrequency bioimpedance. T1W images of the brain were used to determine signal intensity in lobar GM and WM, as well as WM:GM signal contrast. A magnetization transfer (MT) sequence of MT(ON) and MT(OFF) was used to obtain MTR in GM and WM. We found that both larger volumes of VF and more TBF were independently associated with higher signal intensity in WM and higher WM:GM signal contrast, as well as higher MTR in both GM and WM. These relationships were independent of a number of potential confounders, including age, sex, puberty stage, household income and height. Our results suggest that both visceral fat and fat deposited elsewhere in the body are associated independently with structural properties of the adolescent brain. We speculate that these relationships suggest the presence of adiposity-related variations in phospholipid composition of brain lipids. Copyright © 2014. Published by Elsevier Inc.
Effects of high-fat diet exposure on learning & memory.
Cordner, Zachary A; Tamashiro, Kellie L K
2015-12-01
The associations between consumption of a high-fat or 'Western' diet and metabolic disorders such as obesity, diabetes, and cardiovascular disease have long been recognized and a great deal of evidence now suggests that diets high in fat can also have a profound impact on the brain, behavior, and cognition. Here, we will review the techniques most often used to assess learning and memory in rodent models and discuss findings from studies assessing the cognitive effects of high-fat diet consumption. The review will then consider potential underlying mechanisms in the brain and conclude by reviewing emerging literature suggesting that maternal consumption of a high-fat diet may have effects on the learning and memory of offspring. Copyright © 2015 Elsevier Inc. All rights reserved.
Takagi, Satoshi; Nagase, Hiroyuki; Hayashi, Tatsuya; Kita, Tamotsu; Hayashi, Katsumi; Sanada, Shigeru; Koike, Masayuki
2014-01-01
The hybrid convolution kernel technique for computed tomography (CT) is known to enable the depiction of an image set using different window settings. Our purpose was to decrease the number of artifacts in the hybrid convolution kernel technique for head CT and to determine whether our improved combined multi-kernel head CT images enabled diagnosis as a substitute for both brain (low-pass kernel-reconstructed) and bone (high-pass kernel-reconstructed) images. Forty-four patients with nondisplaced skull fractures were included. Our improved multi-kernel images were generated so that pixels of >100 Hounsfield unit in both brain and bone images were composed of CT values of bone images and other pixels were composed of CT values of brain images. Three radiologists compared the improved multi-kernel images with bone images. The improved multi-kernel images and brain images were identically displayed on the brain window settings. All three radiologists agreed that the improved multi-kernel images on the bone window settings were sufficient for diagnosing skull fractures in all patients. This improved multi-kernel technique has a simple algorithm and is practical for clinical use. Thus, simplified head CT examinations and fewer images that need to be stored can be expected.
Leffa, Daniela Dimer; da Silva, Juliana; Daumann, Francine; Dajori, Ana Luiza Formentin; Longaretti, Luiza Martins; Damiani, Adriani Paganini; de Lira, Fabio; Campos, Fernanda; Ferraz, Alexandre de Barros Falcão; Côrrea, Dione Silva; de Andrade, Vanessa Moraes
2014-12-01
Acerola contains high levels of vitamin C and rutin and shows the corresponding antioxidant properties. Oxidative stress on the other hand is an important factor in the development of obesity. In this study, we investigated the biochemical and antigenotoxic effects of acerola juice in different stages of maturity (unripe, ripe and industrial) and its main pharmacologically active components vitamin C and rutin, when given as food supplements to obese mice. Initial HPLC analyses confirmed that all types of acerola juice contained high levels of vitamin C and rutin. DPPH tests quantified the antioxidant properties of these juices and revealed higher antioxidant potentials compared to pure vitamin C and rutin. In an animal test series, groups of male mice were fed on a standard (STA) or a cafeteria (CAF) diet for 13 weeks. The latter consisted of a variety of supermarket products, rich in sugar and fat. This CAF diet increased the feed efficiency, but also induced glucose intolerance and DNA damage, which was established by comet assays and micronucleus tests. Subsequently, CAF mice were given additional diet supplements (acerola juice, vitamin C or rutin) for one month and the effects on bone marrow, peripheral blood, liver, kidney, and brain were examined. The results indicated that food supplementation with ripe or industrial acerola juice led to a partial reversal of the diet-induced DNA damage in the blood, kidney, liver and bone marrow. For unripe acerola juice food supplementation, beneficial effects were observed in blood, kidney and bone marrow. Food supplementation with vitamin C led to decreased DNA damage in kidney and liver, whereas rutin supplementation led to decreased DNA damage in all tissue samples observed. These results suggest that acerola juice helps to reduce oxidative stress and may decrease genotoxicity under obesogenic conditions. Copyright © 2014 Elsevier B.V. All rights reserved.
Yusuf, A L; Goh, Y M; Samsudin, A A; Alimon, A R; Sazili, A Q
2014-04-01
The study was conducted to determine the effect of feeding diets containing Andrographis paniculata leaves (APL), whole Andrographis paniculata plant (APWP) and a control without Andrographis paniculata (AP0), on growth performance, carcass characteristics and meat yield of 24 intact Boer bucks. The results obtained indicated that inclusion of Andrographis paniculata significantly improved feed intake, weight gain, feed efficiency and live weight. The ratios of carcass to fat, lean to bone, lean to fat, and composition of meat were also improved. In addition, there were significant differences (p<0.05) between the dietary treatments in dressing percentage and chilling loss. Goats fed on AP0 (control) had significantly higher proportions of fat and bone, as well as thicker back fat than the supplemented animals (APL and APWP). Higher gut fill in animals fed Andrographis paniculata suggested slow rate of digestion, which could have improved utilization and absorption of nutrients by the animals. Goats fed Andrographis paniculata also produced higher meat yield and relatively lower fat contents (p<0.05).
Yusuf, A. L.; Goh, Y. M.; Samsudin, A. A.; Alimon, A. R.; Sazili, A. Q.
2014-01-01
The study was conducted to determine the effect of feeding diets containing Andrographis paniculata leaves (APL), whole Andrographis paniculata plant (APWP) and a control without Andrographis paniculata (AP0), on growth performance, carcass characteristics and meat yield of 24 intact Boer bucks. The results obtained indicated that inclusion of Andrographis paniculata significantly improved feed intake, weight gain, feed efficiency and live weight. The ratios of carcass to fat, lean to bone, lean to fat, and composition of meat were also improved. In addition, there were significant differences (p<0.05) between the dietary treatments in dressing percentage and chilling loss. Goats fed on AP0 (control) had significantly higher proportions of fat and bone, as well as thicker back fat than the supplemented animals (APL and APWP). Higher gut fill in animals fed Andrographis paniculata suggested slow rate of digestion, which could have improved utilization and absorption of nutrients by the animals. Goats fed Andrographis paniculata also produced higher meat yield and relatively lower fat contents (p<0.05). PMID:25049980
Body weight homeostat that regulates fat mass independently of leptin in rats and mice
Jansson, John-Olov; Hägg, Daniel A.; Schéle, Erik; Dickson, Suzanne L.; Anesten, Fredrik; Bake, Tina; Montelius, Mikael; Bellman, Jakob; Johansson, Maria E.; Cone, Roger D.; Drucker, Daniel J.; Wu, Jianyao; Aleksic, Biljana; Törnqvist, Anna E.; Sjögren, Klara; Gustafsson, Jan-Åke; Windahl, Sara H.; Ohlsson, Claes
2018-01-01
Subjects spending much time sitting have increased risk of obesity but the mechanism for the antiobesity effect of standing is unknown. We hypothesized that there is a homeostatic regulation of body weight. We demonstrate that increased loading of rodents, achieved using capsules with different weights implanted in the abdomen or s.c. on the back, reversibly decreases the biological body weight via reduced food intake. Importantly, loading relieves diet-induced obesity and improves glucose tolerance. The identified homeostat for body weight regulates body fat mass independently of fat-derived leptin, revealing two independent negative feedback systems for fat mass regulation. It is known that osteocytes can sense changes in bone strain. In this study, the body weight-reducing effect of increased loading was lost in mice depleted of osteocytes. We propose that increased body weight activates a sensor dependent on osteocytes of the weight-bearing bones. This induces an afferent signal, which reduces body weight. These findings demonstrate a leptin-independent body weight homeostat (“gravitostat”) that regulates fat mass. PMID:29279372
Central genes, pathways and modules that regulate bone mass.
Quiros-Gonzalez, Isabel; Yadav, Vijay K
2014-11-01
Bones are structures that give the shape and defined features to vertebrates, protect several soft organs and perform multiple endocrine influences on other organs. To achieve these functions bones are first modeled early during life and then constantly remodeled throughout life. The process of bone (re)modeling happens simultaneously at multitude of locations in the skeleton and ensures that vertebrates have a mechanically strong yet a flexible skeleton to the most part of their life. Given the extent of its occurrence in the body, bone remodeling is a highly energy demanding process and is co-ordinated with other physiological processes as diverse as energy metabolism, sleep-wake cycle and reproduction. Neuronal circuits in the brain play a very important role in the coordination of bone remodeling with other organ system functions, and perform this function in sync with environmental and peripheral hormonal cues. In this review, we will focus on the roles of hormonal signals and neural circuits that originate in, or impinge on, the brain in the regulation of bone mass. We will provide herein an updated view of how advances in molecular genetics have refined the neural circuits involved in the regulation of bone mass, from the whole brain level to the specific neuronal populations and their neurotransmitters. This will help to understand the mechanisms whereby vertebrate brain regulates bone mass by fine-tuning metabolic signals that originate in the brain or elsewhere in the body. Copyright © 2014 Elsevier Inc. All rights reserved.
Yamato, Maya; Ketten, Darlene R; Arruda, Julie; Cramer, Scott; Moore, Kathleen
2012-01-01
Cetaceans possess highly derived auditory systems adapted for underwater hearing. Odontoceti (toothed whales) are thought to receive sound through specialized fat bodies that contact the tympanoperiotic complex, the bones housing the middle and inner ears. However, sound reception pathways remain unknown in Mysticeti (baleen whales), which have very different cranial anatomies compared to odontocetes. Here, we report a potential fatty sound reception pathway in the minke whale (Balaenoptera acutorostrata), a mysticete of the balaenopterid family. The cephalic anatomy of seven minke whales was investigated using computerized tomography and magnetic resonance imaging, verified through dissections. Findings include a large, well-formed fat body lateral, dorsal, and posterior to the mandibular ramus and lateral to the tympanoperiotic complex. This fat body inserts into the tympanoperiotic complex at the lateral aperture between the tympanic and periotic bones and is in contact with the ossicles. There is also a second, smaller body of fat found within the tympanic bone, which contacts the ossicles as well. This is the first analysis of these fatty tissues' association with the auditory structures in a mysticete, providing anatomical evidence that fatty sound reception pathways may not be a unique feature of odontocete cetaceans. Anat Rec, 2012. © 2012 Wiley Periodicals, Inc. PMID:22488847
Van Caenegem, E; Wierckx, K; Taes, Y; Schreiner, T; Vandewalle, S; Toye, K; Kaufman, J-M; T'Sjoen, G
2015-01-01
Although trans women before the start of hormonal therapy have a less bone and muscle mass compared with control men, their bone mass and geometry are preserved during the first 2 years of hormonal therapy, despite of substantial muscle loss, illustrating the major role of estrogen in the male skeleton. The aim of this study is to examine the evolution of areal and volumetric bone density, geometry, and turnover in trans women undergoing sex steroid changes, during the first 2 years of hormonal therapy. In a prospective observational study, we examined 49 trans women (male-to-female) before and after 1 and 2 years of cross-sex hormonal therapy (CSH) in comparison with 49 age-matched control men measuring grip strength (hand dynamometer), areal bone mineral density (aBMD), and total body fat and lean mass using dual X-ray absorptiometry (DXA), bone geometry and volumetric bone mineral density, regional fat, and muscle area at the forearm and calf using peripheral quantitative computed tomography. Standardized treatment regimens were used with oral estradiol valerate, 4 mg daily (or transdermal 17-β estradiol 100 μg/24 h for patients >45 years old), both combined with oral cyproterone acetate 50 mg daily. Prior to CSH, trans women had lower aBMD at all measured sites (all p < 0.001), smaller cortical bone size (all p < 0.05), and lower muscle mass and strength and lean body mass (all p < 0.05) compared with control men. During CSH, muscle mass and strength decreased and all measures of fat mass increased (all p < 0.001). The aBMD increased at the femoral neck, radius, lumbar spine, and total body; cortical and trabecular bone remained stable and bone turnover markers decreased (all p < 0.05). Although trans women, before CSH, have a lower aBMD and cortical bone size compared with control men, their skeletal status is well preserved during CSH treatment, despite of substantial muscle loss.
Brusnahan, S.K.; McGuire, T.R.; Jackson, J.D.; Lane, J.T.; Garvin, K.L.; O’Kane, B.J.; Berger, A.M.; Tuljapurkar, S.R.; Kessinger, M.A.; Sharp, J.G.
2010-01-01
Hematological deficiencies increase with aging leading to anemias, reduced hematopoietic stress responses and myelodysplasias. This study tested the hypothesis that side population hematopoietic stem cells (SP-HSC) would decrease with aging, correlating with IGF-1 and IL-6 levels and increases in bone marrow fat. Marrow was obtained from the femoral head and trochanteric region of the femur at surgery for total hip replacement (N = 100). Whole trabecular marrow samples were ground in a sterile mortar and pestle and cellularity and fat content determined. Marrow and blood mononuclear cells were stained with Hoechst dye and the SP-HSC profiles acquired. Marrow stromal cells (MSC) were enumerated flow cytometrically employing the Stro-1 antibody, and clonally in the colony forming unit fibroblast (CFU-F) assay. Plasma levels of IGF-1 (ng/ml) and IL-6 (pg/ml) were measured by ELISA. SP-HSC in blood and bone marrow decreased with age but the quality of the surviving stem cells increased. MSC decreased non-significantly. IGF-1 levels (mean = 30.7, SEM = 2) decreased and IL-6 levels (mean = 4.4, SEM = 1) increased with age as did marrow fat (mean = 1.2 mm fat/g, SEM = 0.04). There were no significant correlations between cytokine levels or fat and SP-HSC numbers. Stem cells appear to be progressively lost with aging and only the highest quality stem cells survive. PMID:21035480
Body composition and bone mineral density of national football league players.
Dengel, Donald R; Bosch, Tyler A; Burruss, T Pepper; Fielding, Kurt A; Engel, Bryan E; Weir, Nate L; Weston, Todd D
2014-01-01
The purpose of the present study was to examine the body composition of National Football League (NFL) players before the start of the regular season. Four hundred eleven NFL players were measured for height, weight and lean, fat, and bone mass using dual-energy x-ray absorptiometry (DXA). Subjects were categorized by their offensive or defensive position for comparison. On average, positions that mirror each other (i.e., offensive lineman [OL] vs. defensive lineman [DL]) have very similar body composition. Although OL had more fat mass than DL, they were similar in total and upper and lower lean mass. Linebackers (LB) and running backs (RB) were similar for all measures of fat and lean mass. Tight ends were unique in that they were similar to RB and LB on measures of fat mass; however, they had greater lean mass than both RB and LB and upper-body lean mass that was similar to OL. Quarterbacks and punters/kickers were similar in fat and lean masses. All positions had normal levels of bone mineral density. The DXA allowed us to measure differences in lean mass between arms and legs for symmetry assessments. Although most individuals had similar totals of lean mass in each leg and or arms, there were outliers who may be at risk for injury. The data presented demonstrate not only differences in total body composition, but also show regional body composition differences that may provide positional templates.
Igfbp2 Deletion in Ovariectomized Mice Enhances Energy Expenditure but Accelerates Bone Loss.
DeMambro, Victoria E; Le, Phuong T; Guntur, Anyonya R; Maridas, David E; Canalis, Ernesto; Nagano, Kenichi; Baron, Roland; Clemmons, David R; Rosen, Clifford J
2015-11-01
Previously, we reported sexually dimorphic bone mass and body composition phenotypes in Igfbp2(-/-) mice (-/-), where male mice exhibited decreased bone and increased fat mass, whereas female mice displayed increased bone but no changes in fat mass. To investigate the interaction between IGF-binding protein (IGFBP)-2 and estrogen, we subjected Igfbp2 -/- and +/+ female mice to ovariectomy (OVX) or sham surgery at 8 weeks of age. At 20 weeks of age, mice underwent metabolic cage analysis and insulin tolerance tests before killing. At harvest, femurs were collected for microcomputed tomography, serum for protein levels, brown adipose tissue (BAT) and inguinal white adipose tissue (IWAT) adipose depots for histology, gene expression, and mitochondrial respiration analysis of whole tissue. In +/+ mice, serum IGFBP-2 dropped 30% with OVX. In the absence of IGFBP-2, OVX had no effect on preformed BAT; however, there was significant "browning" of the IWAT depot coinciding with less weight gain, increased insulin sensitivity, lower intraabdominal fat, and increased bone loss due to higher resorption and lower formation. Likewise, after OVX, energy expenditure, physical activity and BAT mitochondrial respiration were decreased less in the OVX-/- compared with OVX+/+. Mitochondrial respiration of IWAT was reduced in OVX+/+ yet remained unchanged in OVX-/- mice. These changes were associated with significant increases in Fgf21 and Foxc2 expression, 2 proteins known for their insulin sensitizing and browning of WAT effects. We conclude that estrogen deficiency has a profound effect on body and bone composition in the absence of IGFBP-2 and may be related to changes in fibroblast growth factor 21.
USDA-ARS?s Scientific Manuscript database
Excessive adiposity induced by a high-fat diet is detrimental to bone structure and strength in various animal models. This study investigated whether exercise or anti-oxidant supplementation with vitamin C and E during exercise counteracts bone structure deterioration at different skeletal sites an...
USDA-ARS?s Scientific Manuscript database
Bone is adversely affected by metastasis and metastasis-associated complications. Obesity is a risk factor for both bone and cancer. Adipose tissue is an endocrine organ that produces pro-inflammatory adipokines, such as monocyte chemotactic protein-1 (MCP-1), that contribute to obesity and obesit...
Movassagh, Elham Z; Baxter-Jones, Adam D G; Kontulainen, Saija; Whiting, Susan; Szafron, Michael; Vatanparast, Hassan
2018-02-28
The amount of bone accrued during adolescence is an important determinant of later osteoporosis risk. Little is known about the influence of dietary patterns (DPs) on the bone during adolescence and their potential long-term implications into adulthood. We examined the role of adolescent DPs on adolescent and young adult bone and change in DPs from adolescence to young adulthood. We recruited participants from the Saskatchewan Pediatric Bone Mineral Accrual Study (1991-2011). Data from 125 participants (53 females) for adolescent analysis (age 12.7 ± 2 years) and 115 participants (51 females) for adult analysis (age 28.2 ± 3 years) were included. Bone mineral content (BMC) and areal bone mineral density (aBMD) of total body (TB), femoral neck (FN) and lumbar spine (LS) were measured using dual-energy X-ray absorptiometry. Adolescent dietary intake data from multiple 24-h recalls were summarized into 25 food group intakes and were used in the principal component analysis to derive DPs during adolescence. Associations between adolescent DPs and adolescent or adult BMC/BMD were analyzed using multiple linear regression and multivariate analysis of covariance while adjusting for sex, age, the age of peak height velocity, height, weight, physical activity and total energy intake. Generalized estimating equations were used for tracking DPs. We derived five DPs including "Vegetarian-style", "Western-like", "High-fat, high-protein", "Mixed" and "Snack" DPs. The "Vegetarian-style" DP was a positive independent predictor of adolescent TBBMC, and adult TBBMC, TBaBMD (P < 0.05). Mean adolescent TBaBMD and young adult TBBMC, TBaBMD, FNBMC and FNaBMD were 5%, 8.5%, 6%, 10.6% and 9% higher, respectively, in third quartile of "Vegetarian-style" DP compared to first quartile (P < 0.05). We found a moderate tracking (0.47-0.63, P < 0.001) in DP scores at individual levels from adolescence to adulthood. There were an upward trend in adherence to "Vegetarian-style" DP and an downward trend in adherence to "High-fat, high-protein" DP from adolescence to young adulthood (P < 0.01). A "Vegetarian-style" DP rich in dark green vegetables, eggs, non-refined grains, 100% fruit juice, legumes/nuts/seeds, added fats, fruits and low-fat milk during adolescence is positively associated with bone health.
Atypical presentation of fat embolism syndrome after gunshot wound to the foot.
Kralovec, Michael E; Houdek, Matthew T; Martin, John R; Morrey, Mark E; Cross, William W
2015-03-01
A 42-year-old man sustained a gunshot wound to the foot, which caused multiple fractures of the tarsal bones. Over the course of 6 hours, he became obtunded and began to experience respiratory compromise and neurologic symptoms. On magnetic resonance imaging, he was found to have innumerable tiny infarcts consistent with fat embolism syndrome. He was placed in a spanning external fixator. The patient remained in a coma for 6 weeks after injury but gradually regained function. Fat embolism syndrome is classically described as resulting from injury to the diaphysis of a long bone, but it can occur secondary to trauma of the foot. Neurovascular status must be continually evaluated in the setting of any bony trauma, and index of suspicion should remain high when neurologic deficits are encountered.
Effects of weight at slaughter and sex on the carcass characteristics of Florida suckling kids.
Peña, Francisco; Perea, J; García, A; Acero, R
2007-03-01
The effect of slaughter weight and sex on some carcass traits of suckling kids of the Florida breed was evaluated. A total of 60 kids (30 male and 30 female), fed exclusively on milk replacers, were slaughtered at 7-8kg (group 1), 10-11kg (group 2) or 14-15kg (group 3) of liveweight (mean weights of 7.6kg, 10.8kg and 14.4kg, respectively). Higher slaughter weights decreased the percentage of subproducts (blood, skin, head, feet) and internal organs (lungs+traquea, heart, liver, spleen, thymus) but significantly increased the percentage of intestine and fat depots (omental fat and mesenteric fat). Higher slaughter weights also increased carcass measures (L 40.5 vs 49.1; F 22.5 vs 25.9; G 10.4 vs 14.2; Wr 10.1 vs 13.9; Wth 8.0 vs 10.5; Th 16.5 vs 199; B 32.3 vs 42.4; PT 41.5 vs 50.8), compactness carcass index (96.6 vs 152.3) and compactness leg index (27.5 vs 44.1). Sex only significantly affected the percentages of feet, internal organs, omental fat, measure L, carcass compactness index and hind limb compactness index. The meat colour and fat colour were mainly scored as pale and white respectively in the carcasses of the lightest animals, whereas heavier kids were scored as pink and cream. Slaughter weight also influenced significantly the carcass fatness (score 1 in lightest kids and 2 or 3 in heavier ones). There were no significant (p>0.05) differences between slaughter weight group and sex in dressing percentages. Percentages corresponding to the long leg, back and neck (30-33%, 18-19% and 8-10%, respectively) decreased when the slaughter weight increased, whereas the ribs (23-25%) and the flank (10-11%) increased slightly. The carcasses comprised 57-58% muscle, 22-25% bone, 5-6% subcutaneous fat and 9-12% intermuscular fat. The percentage muscle stayed the same with increasing slaughter weight, whereas the bone decreased and the fat increased. The carcasses of the heavier females contained less lean and more fat than the males. The bone percentage was significantly (p<0.05) lower in the females and the carcass fat percentage was significantly (p<0.05) higher than in the males.
Epidemiological studies indicate that a sedentary lifestyle along with consumption of high-fat diets contributes to increased incidence of obesity and related metabolic disorders. These disorders during pregnancy may make offspring more susceptible to air pollutants. The brain is...
Cadenas-Sánchez, Cristina; Mora-González, José; Migueles, Jairo H; Martín-Matillas, Miguel; Gómez-Vida, José; Escolano-Margarit, María Victoria; Maldonado, José; Enriquez, Gala María; Pastor-Villaescusa, Belén; de Teresa, Carlos; Navarrete, Socorro; Lozano, Rosa María; de Dios Beas-Jiménez, Juan; Estévez-López, Fernando; Mena-Molina, Alejandra; Heras, María José; Chillón, Palma; Campoy, Cristina; Muñoz-Hernández, Victoria; Martínez-Ávila, Wendy Daniela; Merchan, María Elisa; Perales, José C; Gil, Ángel; Verdejo-García, Antonio; Aguilera, Concepción M; Ruiz, Jonatan R; Labayen, Idoia; Catena, Andrés; Ortega, Francisco B
2016-03-01
The new and recent advances in neuroelectric and neuroimaging technologies provide a new era for further exploring and understanding how brain and cognition function can be stimulated by environmental factors, such as exercise, and particularly to study whether physical exercise influences brain development in early ages. The present study, namely the ActiveBrains project, aims to examine the effects of a physical exercise programme on brain and cognition, as well as on selected physical and mental health outcomes in overweight/obese children. A total of 100 participants aged 8 to 11 years are randomized into an exercise group (N=50) or a control group (N=50). The intervention lasts 20-weeks, with 3-5 sessions per week of 90 min each, and is mainly focused on high-intensity aerobic exercise yet also includes muscle-strengthening exercises. The extent to what the intervention effect remains 8-months after the exercise programme finishes is also studied in a subsample. Brain structure and function and cognitive performance are assessed using structural and functional magnetic resonance imaging and electroencephalographic recordings. Secondary outcomes include physical health outcomes (e.g. physical fitness, body fatness, bone mass and lipid-metabolic factors) and mental health outcomes (e.g. chronic stress indicators and overall behavioural and personality measurements such as anxiety or depression). This project will substantially contribute to the existing knowledge and will have an impact on societies, since early stimulation of brain development might have long lasting consequences on cognitive performance, academic achievement and in the prevention of behavioural problems and the promotion of psychological adjustment and mental health. Clinical trials. Gov identifier: NCT02295072. Copyright © 2016 Elsevier Inc. All rights reserved.
1980-06-01
fat embolism after long bone fractures . Studies have never clearly resolved the issue over origin of the fat and some believe it is tissue embolism ...C., Hudson, T. L., Irvin, R. W., Kelly, T. and Hardaway, R. M.: Inapparent hypoxemia in casualties with wounded limbs: pulmonary fat embolism ? Ann...J. Surg. Res. 9:685, 1969. 9. Collins, J. A. and Caldwell, M. C.: The relationship of depot fat embolism to pulmonary structure and function in
Musculoskeletal phenotype through the life course: the role of nutrition.
Ward, Kate
2012-02-01
This review considers the definition of a healthy bone phenotype through the life course and the modulating effects of muscle function and nutrition. In particular, it will emphasise that optimal bone strength (and how that is regulated) is more important than simple measures of bone mass. The forces imposed on bone by muscle loading are the primary determinants of musculoskeletal health. Any factor that changes muscle loading on the bone, or the response of bone to loading results in alterations of bone strength. Advances in technology have enhanced the understanding of a healthy bone phenotype in different skeletal compartments. Multiple components of muscle strength can also be quantified. The critical evaluation of emerging technologies for assessment of bone and muscle phenotype is vital. Populations with low and moderate/high daily Ca intakes and/or different vitamin D status illustrate the importance of nutrition in determining musculoskeletal phenotype. Changes in mass and architecture maintain strength despite low Ca intake or vitamin D status. There is a complex interaction between body fat and bone which, in addition to protein intake, is emerging as a key area of research. Muscle and bone should be considered as an integrative unit; the role of body fat requires definition. There remains a lack of longitudinal evidence to understand how nutrition and lifestyle define musculoskeletal health. In conclusion, a life-course approach is required to understand the definition of healthy skeletal phenotype in different populations and at different stages of life.
Han, Guiyuan; Chen, Yu-Ming; Huang, Hua; Chen, Zhanyong; Jing, Lipeng; Xiao, Su-Mei
2017-04-24
This study investigated the relationships of fat mass (FM) and lean mass (LM) with estimated hip bone strength in Chinese men aged 50-80 years (median value: 62.0 years). A cross-sectional study including 889 men was conducted in Guangzhou, China. Body composition and hip bone parameters were generated by dual-energy X-ray absorptiometry (DXA). The relationships of the LM index (LMI) and the FM index (FMI) with bone phenotypes were detected by generalised additive models and multiple linear regression. The associations between the FMI and the bone variables in LMI tertiles were further analysed. The FMI possessed a linear relationship with greater estimated hip bone strength after adjustment for the potential confounders ( p < 0.05). Linear relationships were also observed for the LMI with most bone phenotypes, except for the cross-sectional area ( p < 0.05). The contribution of the LMI (4.0%-12.8%) was greater than that of the FMI (2.0%-5.7%). The associations between the FMI and bone phenotypes became weaker after controlling for LMI. Further analyses showed that estimated bone strength ascended with FMI in the lowest LMI tertile ( p < 0.05), but not in the subgroups with a higher LMI. This study suggested that LM played a critical role in bone health in middle-aged and elderly Chinese men, and that the maintenance of adequate FM could help to promote bone acquisition in relatively thin men.
Misan, Vanessa; Estato, Vanessa; de Velasco, Patricia Coelho; Spreafico, Flavia Brasil; Magri, Tatiana; Dos Santos, Raísa Magno de Araújo Ramos; Fragoso, Thaiza; Souza, Amanda S; Boldarine, Valter Tadeu; Bonomo, Isabela T; Sardinha, Fátima L C; Oyama, Lila M; Tibiriçá, Eduardo; Tavares do Carmo, Maria das Graças
2015-08-07
We investigated whether maternal intake of normolipidic diets with distinct fatty acid (FA) compositions alters the lipidic profile and influences the inflammatory status of the adult offsprings׳ brains. C57BL/6 female mice during pregnancy and lactation received diets containing either soybean oil (CG), partially hydrogenated vegetable fat rich in trans-fatty acids (TG), palm oil (PG), or interesterified fat (IG). After weaning, male offspring from all groups received control diet. The FA profile was measured in the offspring׳s brains at post-natal days 21 and 90. Brain functional capillary density as well as leukocyte-endothelial interactions in the cerebral post-capillary venules was assessed by intravital fluorescence microscopy at post-natal day 90. Inflammation signaling was evaluated through toll-like receptor 4 (TLR4) content in brain of the adult offspring. In the 21-day old offspring, the brains of the TG showed higher levels of trans FA and reduced levels of linoleic acid (LA) and total n-6 polyunsaturated fatty acids (PUFA). At post-natal day 90, TG and IG groups showed reduced levels of eicosapentaenoic acid (EPA) and total n-3 PUFA tended to be lower compared to CG. The offspring׳s brains exhibited an altered microcirculation with increased leukocyte rolling in groups TG, PG and IG and in TG group increased leukocyte adhesion. The TLR4 content of TG, IG and PG groups only tended to increase (23%; 20% and 35%, respectively). Maternal consumption of trans FA, palm oil or interesterified fat during pregnancy and lactation can trigger the initial steps of inflammatory pathways in the brain of offspring in adulthood. Copyright © 2015 Elsevier B.V. All rights reserved.
High dietary fat and cholesterol exacerbates chronic vitamin C deficiency in guinea pigs.
Frikke-Schmidt, Henriette; Tveden-Nyborg, Pernille; Birck, Malene Muusfeldt; Lykkesfeldt, Jens
2011-01-01
Vitamin C deficiency - or hypovitaminosis C defined as a plasma concentration below 23 μm - is estimated to affect hundreds of millions of people in the Western world, in particular subpopulations of low socio-economic status that tend to eat diets of poor nutritional value. Recent studies by us have shown that vitamin C deficiency may result in impaired brain development. Thus, the aim of the present study was to investigate if a poor diet high in fat and cholesterol affects the vitamin C status of guinea pigs kept on either sufficient or deficient levels of dietary ascorbate (Asc) for up to 6 months with particular emphasis on the brain. The present results show that a high-fat and cholesterol diet significantly decreased the vitamin C concentrations in the brain, irrespective of the vitamin C status of the animal (P < 0·001). The brain Asc oxidation ratio only depended on vitamin C status (P < 0·0001) and not on the dietary lipid content. In plasma, the levels of Asc significantly decreased when vitamin C in the diet was low or when the fat/cholesterol content was high (P < 0·0001 for both). The Asc oxidation ratio increased both with low vitamin C and with high fat and cholesterol content (P < 0·0001 for both). We show here for the first time that vitamin C homoeostasis of brain is affected by a diet rich in fat and cholesterol. The present findings suggest that this type of diet increases the turnover of Asc; hence, individuals consuming high-lipid diets may be at increased risk of vitamin C deficiency.
Long-chain polyunsaturated fatty acids may mutually benefit both obesity and osteoporosis.
Kelly, Owen J; Gilman, Jennifer C; Kim, Youjin; Ilich, Jasminka Z
2013-07-01
The overconsumption of n-6 polyunsaturated fatty acids (PUFA), resulting in a high ratio of n-6 to n-3 PUFA, may contribute to the increased pathogenesis of obesity and osteoporosis by promoting low-grade chronic inflammation (LGCI). As evidence suggests, both obesity and osteoporosis are linked on a cellular and systemic basis. This review will analyze if a relationship exists between LGCI, fat, bone, and n-3 PUFA. During the life cycle, inflammation increases, fat mass accumulates, and bone mass declines, thus suggesting that a connection exists. This review will begin by examining how the current American diet and dietary guidelines may fall short of providing an anti-inflammatory dose of the n-3 PUFA eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). It will then define LGCI and outline the evidence for a relationship between fat and bone. Inflammation as it pertains to obesity and osteoporosis and how EPA and DHA can alleviate the associated inflammation will be discussed, followed by some preliminary evidence to show how mesenchymal stem cell (MSC) lineage commitment may be altered by inflammation to favor adipogenesis. Our hypothesis is that n-3 PUFA positively influence obesity and osteoporosis by reducing LGCI, ultimately leading to a beneficial shift in MSC lineage commitment. This hypothesis essentially relates the need for more focused research in several areas such as determining age and lifestyle factors that promote the shift in MSC commitment and if current intakes of EPA and DHA are optimal for fat and bone. Copyright © 2013 Elsevier Inc. All rights reserved.
Brain to bone: What is the contribution of the brain to skeletal homeostasis?
Idelevich, Anna; Baron, Roland
2018-05-16
The brain, which governs most, if not all, physiological functions in the body, from the complexities of cognition, learning and memory, to the regulation of basal body temperature, heart rate and breathing, has long been known to affect skeletal health. In particular, the hypothalamus - located at the base of the brain in close proximity to the medial eminence, where the blood-brain-barrier is not as tight as in other regions of the brain but rather "leaky", due to fenestrated capillaries - is exposed to a variety of circulating body cues, such as nutrients (glucose, fatty acids, amino acids), and hormones (insulin, glucagon, leptin, adiponectin) [1-3].Information collected from the body via these peripheral cues is integrated by hypothalamic sensing neurons and glial cells [4-7], which express receptors for these nutrients and hormones, transforming these cues into physiological outputs. Interestingly, many of the same molecules, including leptin, adiponectin and insulin, regulate both energy and skeletal homeostasis. Moreover, they act on a common set of hypothalamic nuclei and their residing neurons, activating endocrine and neuronal systems, which ultimately fine-tune the body to new physiological states. This review will focus exclusively on the brain-to-bone pathway, highlighting the most important anatomical sites within the brain, which are known to affect bone, but not covering the input pathways and molecules informing the brain of the energy and bone metabolic status, covered elsewhere [8-10]. The discussion in each section will present side by side the metabolic and bone-related functions of hypothalamic nuclei, in an attempt to answer some of the long-standing questions of whether energy is affected by bone remodeling and homeostasis and vice versa. Copyright © 2018 Elsevier Inc. All rights reserved.
Feng, Wei; Liu, Bo; Liu, Di; Hasegawa, Tomoka; Wang, Wei; Han, Xiuchun; Cui, Jian; Yimin; Oda, Kimimitsu; Amizuka, Norio; Li, Minqi
2015-01-01
In this study, we aimed to evaluate the influence of diet-induced obesity on IL-6 deficiency-induced bone remodeling abnormality. Seven-week-old IL-6-/- mice and their wild type (WT) littermates were fed a standard diet (SD) or high-fat diet (HFD) for 25 weeks. Lipid formation and bone metabolism in mice tibiae were investigated by histochemical analysis. Both IL-6-/- and WT mice fed the HFD showed notable body weight gain, thickened cortical bones, and adipose accumulation in the bone marrow. Notably, the HFD normalized the bone phenotype of IL-6-/- mice to that of their WT counterpart, as characterized by a decrease in bone mass and the presence of an obliquely arranged, plate-like morphology in the trabecular bone. Alkaline phosphatase and osteocalcin expressions were attenuated in both genotypes after HFD feeding, especially for the IL-6-/- mice. Meanwhile, tartrate-resistant acid phosphatase staining was inhibited, osteoclast apoptosis rate down-regulated (revealed by TUNEL assay), and the proportion of cathepsin K (CK)-positive osteoclasts significantly increased in IL-6-/- mice on a HFD as compared with IL-6-/- mice on standard chow. Our results demonstrate that HFD-induced obesity reverses IL-6 deficiency-associated bone metabolic disorders by suppressing osteoblast activity, upregulating osteoclastic activity, and inhibiting osteoclast apoptosis. PMID:26416243
9 CFR 381.157 - Canned boned poultry and baby or geriatric food.
Code of Federal Regulations, 2013 CFR
2013-01-01
... meat and may contain skin and fat not in excess of natural whole carcass proportions. Gelatin... substance shall be included in the name of the product, e.g., “Boned Chicken with Broth—Gelatin Added.” (b...
9 CFR 381.157 - Canned boned poultry and baby or geriatric food.
Code of Federal Regulations, 2014 CFR
2014-01-01
... meat and may contain skin and fat not in excess of natural whole carcass proportions. Gelatin... substance shall be included in the name of the product, e.g., “Boned Chicken with Broth—Gelatin Added.” (b...
9 CFR 381.157 - Canned boned poultry and baby or geriatric food.
Code of Federal Regulations, 2012 CFR
2012-01-01
... meat and may contain skin and fat not in excess of natural whole carcass proportions. Gelatin... substance shall be included in the name of the product, e.g., “Boned Chicken with Broth—Gelatin Added.” (b...
Aging human body: changes in bone, muscle and body fat with consequent changes in nutrient intake.
JafariNasabian, Pegah; Inglis, Julia E; Reilly, Wendimere; Kelly, Owen J; Ilich, Jasminka Z
2017-07-01
Aging affects almost all physiological processes, but changes in body composition and body phenotype are most observable. In this review, we focus on these changes, including loss of bone and muscle and increase in body fat or redistribution of the latter, possibly leading to osteosarcopenic obesity syndrome. We also address low-grade chronic inflammation, prevalent in aging adults and a cause of many disorders including those associated with body composition. Changes in dietary intake and nutritional requirements of older individuals, that all may lead to some disturbances on tissue and organ levels, are discussed as well. Finally, we discuss the hormonal changes in the aging body, considering each of the tissues, bone, muscle and fat as separate endocrine organs, but yet in the continuous interface and communication with each other. Although there are still many unanswered questions in this field, this review will enable the readers to better understand the aging human body and measures needing to be implemented toward reducing impaired health and disability in older individuals. © 2017 Society for Endocrinology.
Adipokines, adiposity, and bone marrow adipocytes: Dangerous accomplices in multiple myeloma.
Morris, Emma V; Edwards, Claire M
2018-06-26
Obesity has become a global epidemic influencing the establishment and progression of a wide range of diseases, such as diabetes, cardiovascular disease, and cancer. In 2016, International Agency for Research on Cancer reported that obesity is now associated with 13 different cancers, one of which is multiple myeloma (MM), a destructive cancer of plasma cells that predominantly reside in the bone marrow. Obesity is the accumulation of excess body fat, which causes metabolic, endocrine, immunologic, and inflammatory-like changes. Obesity is usually associated with an increase in visceral and/or subcutaneous fat; however, an additional fat depot that also responds to diet-induced changes is bone marrow adipose tissue (BMAT). There have been several studies over the past few decades that have identified BMAT as a key driver in MM progression. Adipocytes secrete numerous adipokines, such as leptin, adiponectin, resistin, adipsin, and visfatin, which when secreted at normal controlled levels have protective properties. However, in obesity these levels of secretion change, coupled with an increase in adipocyte number and size causing a profound and lasting effect on the bone microenvironment, contributing to MM cell growth, survival, and migration as well as potentially fueling bone destruction. Obesity is a modifiable risk factor making it an attractive option for targeted therapy. This review discusses the link between obesity, monoclonal gammopathy of undetermined significance (a benign condition that precedes MM), and myeloma, and the contribution of key adipokines to disease establishment and progression. © 2018 Wiley Periodicals, Inc.
Gautam, Jyoti; Khedgikar, Vikram; Kushwaha, Priyanka; Choudhary, Dharmendra; Nagar, Geet Kumar; Dev, Kapil; Dixit, Preety; Singh, Divya; Maurya, Rakesh; Trivedi, Ritu
2017-03-01
Balance between adipocyte and osteoblast differentiation is the key link of disease progression in obesity and osteoporosis. We have previously reported that formononetin (FNT), an isoflavone extracted from Butea monosperma, stimulates osteoblast formation and protects against postmenopausal bone loss. The inverse relationship between osteoblasts and adipocytes prompted us to analyse the effect of FNT on adipogenesis and in vivo bone loss, triggered by high-fat diet (HFD)-induced obesity. The anti-obesity effect and mechanism of action of FNT was determined in 3T3-L1 cells and HFD-induced obese male mice. Our findings show that FNT suppresses the adipogenic differentiation of 3T3-L1 fibroblasts, through down-regulation of key adipogenic markers such as PPARγ, CCAAT/enhancer-binding protein alpha (C/EBPα) and sterol regulatory element-binding protein (SREBP) and inhibits intracellular TAG accumulation. Increased intracellular reactive oxygen species levels and AMP-activated protein kinase (AMPK) activation accompanied by stabilisation of β-catenin were attributed to the anti-adipogenic action of FNT. In vivo, 12 weeks of FNT treatment inhibited the development of obesity in mice by attenuating HFD-induced body weight gain and visceral fat accumulation. The anti-obesity effect of FNT results from increased energy expenditure. FNT also protects against HFD-induced dyslipidaemia and rescues deterioration of trabecular bone volume by increasing bone formation and decreasing bone resorbtion caused by HFD. FNT's rescuing action against obesity-induced osteoporosis commenced at the level of progenitors, as bone marrow progenitor cells, obtained from the HFD mice group supplemented with FNT, showed increased osteogenic and decreased adipogenic potentials. Our findings suggest that FNT inhibits adipogenesis through AMPK/β-catenin signal transduction pathways and protects against HFD-induced obesity and bone loss.
de Jonge, Ester Al; Kiefte-de Jong, Jessica C; Hofman, Albert; Uitterlinden, André G; Kieboom, Brenda Ct; Voortman, Trudy; Franco, Oscar H; Rivadeneira, Fernando
2017-01-01
Evidence on the association between dietary patterns, measures of hip bone geometry, and subsequent fracture risk are scarce. The objective of this study was to evaluate whether dietary patterns that explain most variation in bone mineral density (BMD) and hip bone geometry are associated with fracture risk. We included 4028 subjects aged ≥55 y from the Rotterdam study. Intake of 28 food groups was assessed with the use of food-frequency questionnaires. BMD, bone width, section modulus (SM; reflecting bending strength) and cortical buckling ratio (BR; reflecting bone instability) were measured with the use of dual-energy X-ray absorptiometry. BMD and geometry-specific dietary patterns were identified with the use of reduced rank regression. Fracture data were reported by general practitioners (median follow-up 14.8 y). We identified 4 dietary patterns. Of the 4, we named 2 patterns "fruit, vegetables, and dairy" and "sweets, animal fat, and low meat," respectively. These 2 patterns were used for further analysis. Independently of confounders, adherence to the fruit, vegetables, and dairy pattern was associated with high BMD, high SM, low BR, and low risk of fractures [HR (95% CI) for osteoporotic fractures: 0.90 (0.83, 0.96); for hip fractures: 0.85 (0.81, 0.89) per z score of dietary pattern adherence]. Adherence to the sweets, animal fat, and low meat pattern was associated with high bone width, high SM, high BR, and high risk of fractures [HR (95% CI) for osteoporotic fractures: 1.08 (1.00, 1.06); for hip fractures: 1.06 (1.02, 1.12) per z score]. The fruit, vegetables, and dairy pattern might be associated with lower fracture risk because of high BMD, high bending strength, and more stable bones. The sweets, animal fat, and low meat pattern might be associated with higher fracture risk because of widened, unstable bones, independently of BMD. Dietary recommendations associated with bone geometry in addition to BMD might influence risk of fractures. © 2017 American Society for Nutrition.
Rogers, Tara S; Demmer, Elieke; Rivera, Nancy; Gertz, Erik R; German, J Bruce; Smilowitz, Jennifer T; Zivkovic, Angela M; Van Loan, Marta D
2017-01-01
Inflammation is associated with increased bone resorption; the role of inflammation in postprandial bone turnover has not been explored. Consumption of milk fat globule membrane (MFGM) reduces inflammation in animal models. This study aimed to measure postprandial changes in bone turnover after intake of high saturated fat test meals, with- and without the anti-inflammatory ingredient MFGM. Subjects ( n = 36 adults) were obese (BMI 30-39.9 kg/m 2 ) or overweight (BMI 25-29.9 kg/m 2 ) with two traits of Metabolic Syndrome. Subjects consumed a different test meal on four occasions at random; blood draws were taken at baseline and 1, 3, and 6 h postprandial. Test meals included whipping cream (WC), WC + MFGM, palm oil (PO) and PO + MFGM. Biomarkers of bone turnover and inflammation were analyzed from all four time points. Test meal (treatment) by time interactions were significant for bone resorption marker C-telopeptide of type 1 collagen (CTX) ( p < 0.0001) and inflammatory marker interleukin 10 (IL-10) ( p = 0.012). Significant differences in overall postprandial response among test meals were found for CTX and soluble intercellular adhesion molecule (sICAM), with the greatest overall postprandial suppression of CTX occurring in meals containing MFGM. However, test meal by MFGM interactions were non- significant for bone and inflammatory markers. Correlations between CTX and inflammatory markers were non-significant. This exploratory analysis advances the study of postprandial suppression of bone turnover by demonstrating differing effects of high SFA meals that contained MFGM; however MFGM alone did not directly moderate the difference in postprandial CTX response among test meals in this analysis. These observations may be useful for identifying foods and ingredients which maximize the suppression of bone resorption, and for generating hypotheses to test in future studies examining the role of inflammation in postprandial bone turnover. Clinicaltrials.gov NCT01811329. Registered 11 March 2013.
Määttä, M.; Macdonald, H. M.; Mulpuri, K.
2016-01-01
Summary Forearm fractures are common during growth. We studied bone strength in youth with a recent forearm fracture. In girls, suboptimal bone strength was associated with fractures. In boys, poor balance and physical inactivity may lead to fractures. Prospective studies will confirm these relationships and identify targets for prevention strategies. Introduction The etiology of pediatric forearm fractures is unclear. Thus, we examined distal radius bone strength, microstructure, and density in children and adolescents with a recent low- or moderate-energy forearm fracture and those without forearm fractures. Methods We assessed the non-dominant (controls) and non-fractured (cases) distal radius (7 % site) using high-resolution peripheral quantitative computed tomography (HR-pQCT) (Scanco Medical AG) in 270 participants (girls: cases n=47, controls n=61 and boys: cases n=88, controls n=74) aged 8–16 years. We assessed standard anthropometry, maturity, body composition (dual energy X-ray absorptiometry (DXA), Hologic QDR 4500 W) physical activity, and balance. We fit sex-specific logistic regression models for each bone outcome adjusting for maturity, ethnicity, height, and percent body fat. Results In girls, impaired bone strength (failure load, ultimate stress) and a high load-to-strength ratio were associated with low-energy fractures (odds ratios (OR) 2.8–4.3). Low total bone mineral density (Tt.BMD), bone volume ratio, trabecular thickness, and cortical BMD and thickness were also associated with low-energy fractures (ORs 2.0–7.0). In boys, low Tt.BMD, but not bone strength, was associated with low-energy fractures (OR=1.8). Boys with low-energy fractures had poor balance and higher percent body fat compared with controls (p<0.05). Boys with fractures (both types) were less active than controls (p<0.05). Conclusions Forearm fracture etiology appears to be sex-specific. In girls, deficits in bone strength are associated with fractures. In boys, a combination of poor balance, excess body fat, and low physical activity may lead to fractures. Prospective studies are needed to confirm these relationships and clarify targets for prevention strategies. PMID:25572041
Svet-Moldavskaya, I A; Zinzar, S N; Svet-Moldavsky, G J; Arlin, Z; Vergara, C; Koziner, B; Clarkson, B D; Holland, J F
1983-08-01
Normal human sera induce the formation of fat-containing cells (FCC) in human bone marrow cultures. A nearly complete monolayer of FCC is formed after 7-14 days of cultivation with 20% human sera in the medium. FCC-inducing activity (FCCIA) is nondialyzable through 14,900-dalton cutoff membrane and is stable at 56 degrees C for 30 min. Abundant FCCIA was found in 83% of normal human sera but in only 20% of sera from untreated patients with different hemopoietic disorders and in 32% of treated leukemic patients. It is suggested that FCCIA may be involved in regulation of the bone marrow microenvironment an that it varies in normal individuals and in patients with different diseases.
Pulmonary fat embolism after reamed and unreamed nailing of femoral fractures.
Högel, F; Gerlach, U V; Südkamp, N P; Müller, C A
2010-12-01
To determine whether reamed or unreamed intramedullary nailing of femoral fractures results in higher incidence of pulmonary fat embolism, three different methods of intramedullary nailing were compared in sheep. To analyze the presence of bone marrow fat embolism in pulmonary arteries, histological evaluation was undertaken using a quantitative computer-assisted measurement system. In this experimental model of 27 female Swiss alpine sheep, an osteotomy of the proximal femur was conducted in each animal. Then, the animals were divided into three groups according to the method of treatment: two different reamed intramedullary nailing techniques and an unreamed nailing technique were used. In the first group "ER" (experimental reamer; n=9), the nail was inserted after reaming with an experimental reamer; in the second group "CR" (conventional reamer; n=7), the intramedullary nail was inserted after reaming with the conventional AO-reamer. In the third group "UN" (unreamed; n=8) unreamed nailing was performed. During the operation procedure intramedullary pressure was measured in the distal fragment. After sacrificing the animals, quantitative histological analyses of bone marrow fat embolism in pulmonary arteries were done using osmium tetroxide fixation and staining of the fat. The measurement of intramedullary pressure showed significantly lower values for reamed nailing than for the unreamed technique. The quantitative histological evaluation of lung vessels concerning bone marrow fat embolism revealed a statistically significant difference between reamed and unreamed insertion of the nail: 7.77%±6.93 (ER) and 6.66%±5.61 (CR) vs. 16.25%±10.05 (UN) (p<0.05) of the assessed lung vessels were filled with fat emboli. However, no difference was found between the traditional and experimental reamer. Intramedullary nailing after reaming is a safe procedure with low systemic embolisation when compared to the unreamed insertion of the nail. Copyright © 2010 Elsevier Ltd. All rights reserved.
Kęska, Anna; Lutosławska, Grażyna; Bertrandt, Jerzy; Sobczak, Małgorzata
2018-03-14
Data concerning the relationship between body fat and BMD are equivocal since both positive and negative effects have been noted. Recently, the index of fat mass (IFM) representing subjects with different body fat and similar lean mass and index of lean mass (ILM) representing subjects with different lean body mass and similar body fat, have been used to evaluate body composition effect on BMD in middle-aged women. This study aimed at determination of ILM and IFM association with BMD in young men and women. A total of 212 university students of Public Health (125 women and 87 men) participated in the study. Body composition was determined by the bioelectrical impedance method (BIA) using BC 418 MA equipment (Tanita Co., Japan). Fat mass and fat free mass were used to calculate ILM and IFM. Bone mineral density was measured on the wrist of the non-dominant hand using the DEXA method and EXA 3000 equipment (HFS Ltd., Korea). BMD was evaluated using Z-score, with values lower than -2.0 indicating inadequate BMD for subject chronological age. Exclusively in women, IFM was markedly and positively correlated with Z-score (r=0.366, P<0.001). In both genders, a significant relationship was found between ILM and Z-scores (r=0.420; p<0.001 and r=0.220; p<0.02 in men and women, respectively). Women with lower than median IFM but similar ILM, were characterized by significantly lower Z-scores vs. women with higher IFM (-1.016 vs. -0.512; p<0.001). Irrespective of gender, participants with higher ILM but similar IFM, were characterized by markedly higher Z-score vs. their counterparts with low ILM. The use of IFM and ILM in the present study, allowed the observation that in young adults lean body mass was associated with BMD, regardless of gender, while fat mass is significant for bone mineral density only in women.
Sharma, Sandeep; Zhuang, Yumei; Gomez-Pinilla, Fernando
2012-01-01
To assess how the shift from a healthy diet rich in omega-3 fatty acids to a diet rich in saturated fatty acid affects the substrates for brain plasticity and function, we used pregnant rats fed with omega-3 supplemented diet from their 2nd day of gestation period as well as their male pups for 12 weeks. Afterwards, the animals were randomly assigned to either a group fed on the same diet or a group fed on a high-fat diet (HFD) rich in saturated fats for 3 weeks. We found that the HFD increased vulnerability for anxiety-like behavior, and that these modifications harmonized with changes in the anxiety-related NPY1 receptor and the reduced levels of BDNF, and its signalling receptor pTrkB, as well as the CREB protein. Brain DHA contents were significantly associated with the levels of anxiety-like behavior in these rats. PMID:22666534
Frommelt, Lena; Bielohuby, Maximilian; Stoehr, Barbara J M; Menhofer, Dominik; Bidlingmaier, Martin; Kienzle, Ellen
2014-01-01
Ketogenic low-carbohydrate, high-fat (LCHF) diets reduce growth and bone mineral density in children with epilepsy and in rats. Part of this effect might be due to a reduced availability of calcium in high-fat diets. The aim of this study was to determine mineral digestibility by total collection method in LCHF diets compared with a chow diet and a standard high-fat diet (HFD, high in fat and carbohydrates). Twelve-wk-old male Wistar rats were pair-fed isoenergetic amounts of either six different LCHF diets based on tallow and casein (crude fat 75%-50%, crude protein 10%-35%), with chow or with a HFD diet. Mineral-to-energy ratio was matched in all diets. Circulating parathyroid hormone was measured by immunoassay. The apparent digestibility of calcium was reduced in all HFDs (high-fat diets, LCHF diets and the HFD diet) by at least 30% compared with the chow diet (P < 0.001). Fecal calcium excretion correlated positively with fecal fat excretion, presumably because of formation of calcium soaps. Apparent digestibility of phosphorous was higher in all HFDs. This resulted in a decrease of the ratio of apparently digested calcium to apparently digested phosphorous in all HFDs below a ratio of 1:1. Plasma parathyroid hormone was not affected by any diet. The alteration of apparent calcium and phosphorus digestibility may affect the impact of HFDs on bone metabolism. Copyright © 2014 Elsevier Inc. All rights reserved.
Lee, Sang Gil; Kim, Bohkyung; Soung, Do Yu; Vance, Terrence; Lee, Jong Suk; Lee, Ji-Young; Koo, Sung I; Kim, Dae-Ok; Drissi, Hicham; Chun, Ock K
2015-04-01
Berry consumption can prevent bone loss. However, the effects of different berries with distinct anthocyanin composition have not been thoroughly examined. The present study compared the effects of blueberry, blackberry, and black currant on bone health using a mouse model of diet-induced obesity. To investigate the effect of different berry supplements against a high-fat (HF) diet in vivo, 40 HF diet-induced obese (DIO) C57BL mice were assigned into four groups and fed a HF diet (35% w/w) with or without berry supplementation for 12 weeks (n=10). We measured adipose tissue mass (epididymal and retroperitoneal), plasma antioxidant, bone-related biomarkers, femur bone mineral density (BMD), and bone mineral content (proximal and distal). Adipose masses were negatively correlated with proximal BMD, but positively associated with plasma superoxide dismutase (SOD) concentrations (P<.001). Berry supplementation did not change the plasma ferric reducing antioxidant power, SOD, and insulin-like growth factor-1. However, the black currant group exhibited greater plasma alkaline phosphatase compared with the control group (P<.05). BMD in the distal epiphysis was significantly different between the blueberry and blackberry group (P<.05). However, berry supplementation did not affect bone mass compared with control. The present study demonstrates a negative relationship between fat mass and bone mass. In addition, our findings suggest that the anthocyanin composition of berries will affect bone turnover, warranting further research to investigate the underlying mechanisms.
Adiponectin and osteocalcin: relation to insulin sensitivity.
Zhang, Yanjun; Zhou, Peng; Kimondo, Julia Wanjiru
2012-10-01
Obesity and osteoporosis have grave consequences for human health, quality of life, and even the efficiency of the labor force. Interestingly, these diseases share several features including a genetic predisposition and a common progenitor cell. Recent findings show that high adipocyte count in bone marrow is directly related to bone loss, as fat cells replace osteoblasts resulting in reduced bone mineral density and increased propensity towards osteoporosis. This close relationship has a positive aspect, whereby higher osteocalcin levels results in increased adiponectin production while the presence of adiponectin influences osteoblast proliferation and differentiation in a positive way. We focus on how osteoblasts and adipocytes affect each other and ultimately insulin resistance through the hormones they produce. This approach to whole animal physiology is the main stay of Alternative Medicine. It is assumed that the body is linked together intricately, and treating one is equal to treating the whole body. As we go further into bone and adipocytes physiology, it is evident that these organs affect each other. Therefore, elucidation on the actions of fat on bone and vice versa will unravel the complex mechanism of insulin resistance.
Role of susceptibility-weighted imaging in demonstration of cerebral fat embolism.
Yeap, Pheyming; Kanodia, Avinash Kumar; Main, Gavin; Yong, Aiwain
2015-01-08
Cerebral fat embolism (CFE) is a rare but potentially lethal complication of long bone fractures. Many cases of CFE occur as subclinical events and remain undiagnosed. We report a case of a 22-year-old man, with multiple long bone fractures from a road traffic accident, who subsequently developed hypoxia, neurological abnormality and petechial rash. CT of the head was normal. MRI of the head confirmed the diagnosis with lesions markedly conspicuous and most widespread on susceptibility-weighted imaging as compared to all other sequences including diffusion-weighted imaging. 2015 BMJ Publishing Group Ltd.
Fatal fat embolism in isolated vertebral compression fracture
Saldanha, Vilas; Balasubramanian, Manjula; Handal, John
2010-01-01
Fat embolism after long bone and pelvic fractures as well as orthopedic interventions is a well-documented phenomenon, but it is highly unusual after isolated vertebral fractures. We report a case of fatal fat embolism in a 78-year-old man after an isolated vertebral compression fracture with no related orthopedic intervention. A high index of suspicion is necessary for early diagnosis and successfully treating this unusual complication. PMID:20229119
Eight Annual Conference on Shock
1985-11-01
D.H. WISNER, J.A. SIUJRI, H.-J. Oestern Dept. of Trauma Surgery, Hannover Medical School, Germany The role of fat embolism syndrome on the development...discussed. Our goal was to elucidate the interactions between a fracture -like bone marrow fat intravasation and a standardized endotoxemia We performed...Supported by NIH GM 32288.) 16 INCREASED OXIDATION OF FAT AND KETONES BY MITOCHONDRIA IN HYPERDYNAMIC SEPSIS. L. Mela-Riker, L. Erwin, D. Bartos, F
Fatal fat embolism in isolated vertebral compression fracture.
Lastra, Ricardo R; Saldanha, Vilas; Balasubramanian, Manjula; Handal, John
2010-07-01
Fat embolism after long bone and pelvic fractures as well as orthopedic interventions is a well-documented phenomenon, but it is highly unusual after isolated vertebral fractures. We report a case of fatal fat embolism in a 78-year-old man after an isolated vertebral compression fracture with no related orthopedic intervention. A high index of suspicion is necessary for early diagnosis and successfully treating this unusual complication.
Singh, Lakshman; Brennan, Tracy A.; Russell, Elizabeth; Kim, Jung-Hoon; Chen, Qijun; Johnson, F. Brad; Pignolo, Robert J.
2016-01-01
Bone marrow derived mesenchymal progenitor cells (MPCs) play an important role in bone homeostasis. Age-related changes occur in bone resulting in a decrease in bone density and a relative increase in adipocity. Although in vitro studies suggest the existence of an age-related lineage switch between osteogenic and adipogenic fates, stem cell and microenvironmental contributions to this process have not been elucidated in vivo. In order to study the effects of MPC and microenvironmental aging on functional engraftment and lineage switching, transplantation studies were performed under non-myeloablative conditions in old recipients, with donor MPCs derived from young and old green fluorescent protein (GFP) transgenic mice. Robust engraftment by young MPCs or their progeny was observed in the marrow, bone-lining region and in the matrix of young recipients; however, significantly lower engraftment was seen at the same sites in old recipients transplanted with old MPCs. Differentiation of transplanted MPCs strongly favored adipogenesis over osteogenesis in old recipients irrespective of MPC donor age, suggesting that microenvironmental alterations that occur with in vivo aging are predominately responsible for MPC lineage switching. These data indicate that aging alters bone-fat reciprocity and differentiation of mesenchymal progenitors toward an adipogenic fate. PMID:26805026
Singh, Lakshman; Brennan, Tracy A; Russell, Elizabeth; Kim, Jung-Hoon; Chen, Qijun; Brad Johnson, F; Pignolo, Robert J
2016-04-01
Bone marrow derived mesenchymal progenitor cells (MPCs) play an important role in bone homeostasis. Age-related changes occur in bone resulting in a decrease in bone density and a relative increase in adipocity. Although in vitro studies suggest the existence of an age-related lineage switch between osteogenic and adipogenic fates, stem cell and microenvironmental contributions to this process have not been elucidated in vivo. In order to study the effects of MPC and microenvironmental aging on functional engraftment and lineage switching, transplantation studies were performed under non-myeloablative conditions in old recipients, with donor MPCs derived from young and old green fluorescent protein (GFP) transgenic mice. Robust engraftment by young MPCs or their progeny was observed in the marrow, bone-lining region and in the matrix of young recipients; however, significantly lower engraftment was seen at the same sites in old recipients transplanted with old MPCs. Differentiation of transplanted MPCs strongly favored adipogenesis over osteogenesis in old recipients irrespective of MPC donor age, suggesting that microenvironmental alterations that occur with in vivo aging are predominately responsible for MPC lineage switching. These data indicate that aging alters bone-fat reciprocity and differentiation of mesenchymal progenitors towards an adipogenic fate. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Spector, E.; LeBlanc, A.; Shackelford, L.
1995-01-01
This study reports on the short-term in vivo precision and absolute measurements of three combinations of whole-body scan modes and analysis software using a Hologic QDR 2000 dual-energy X-ray densitometer. A group of 21 normal, healthy volunteers (11 male and 10 female) were scanned six times, receiving one pencil-beam and one array whole-body scan on three occasions approximately 1 week apart. The following combinations of scan modes and analysis software were used: pencil-beam scans analyzed with Hologic's standard whole-body software (PB scans); the same pencil-beam analyzed with Hologic's newer "enhanced" software (EPB scans); and array scans analyzed with the enhanced software (EA scans). Precision values (% coefficient of variation, %CV) were calculated for whole-body and regional bone mineral content (BMC), bone mineral density (BMD), fat mass, lean mass, %fat and total mass. In general, there was no significant difference among the three scan types with respect to short-term precision of BMD and only slight differences in the precision of BMC. Precision of BMC and BMD for all three scan types was excellent: < 1% CV for whole-body values, with most regional values in the 1%-2% range. Pencil-beam scans demonstrated significantly better soft tissue precision than did array scans. Precision errors for whole-body lean mass were: 0.9% (PB), 1.1% (EPB) and 1.9% (EA). Precision errors for whole-body fat mass were: 1.7% (PB), 2.4% (EPB) and 5.6% (EA). EPB precision errors were slightly higher than PB precision errors for lean, fat and %fat measurements of all regions except the head, although these differences were significant only for the fat and % fat of the arms and legs. In addition EPB precision values exhibited greater individual variability than PB precision values. Finally, absolute values of bone and soft tissue were compared among the three combinations of scan and analysis modes. BMC, BMD, fat mass, %fat and lean mass were significantly different between PB scans and either of the EPB or EA scans. Differences were as large as 20%-25% for certain regional fat and BMD measurements. Additional work may be needed to examine the relative accuracy of the scan mode/software combinations and to identify reasons for the differences in soft tissue precision with the array whole-body scan mode.
Costa, André Nathan; Mendes, Daniel Melo; Toufen, Carlos; Arrunátegui, Gino; Caruso, Pedro; de Carvalho, Carlos Roberto Ribeiro
2008-08-01
Fat embolism is defined as mechanical blockage of the vascular lumen by circulating fat globules. Although it primarily affects the lungs, it can also affect the central nervous system, retina, and skin. Fat embolism syndrome is a dysfunction of these organs caused by fat emboli. The most common causes of fat embolism and fat embolism syndrome are long bone fractures, although there are reports of its occurrence after cosmetic procedures. The diagnosis is made clinically, and treatment is still restricted to support measures. We report the case of a female patient who developed adult respiratory distress syndrome due to fat embolism in the postoperative period following liposuction and fat grafting. In this case, the patient responded well to alveolar recruitment maneuvers and protective mechanical ventilation. In addition, we present an epidemiological and pathophysiological analysis of fat embolism syndrome after cosmetic procedures.
Igfbp2 Deletion in Ovariectomized Mice Enhances Energy Expenditure but Accelerates Bone Loss
DeMambro, Victoria E.; Le, Phuong T.; Guntur, Anyonya R.; Maridas, David E.; Canalis, Ernesto; Nagano, Kenichi; Baron, Roland; Clemmons, David R.
2015-01-01
Previously, we reported sexually dimorphic bone mass and body composition phenotypes in Igfbp2−/− mice (−/−), where male mice exhibited decreased bone and increased fat mass, whereas female mice displayed increased bone but no changes in fat mass. To investigate the interaction between IGF-binding protein (IGFBP)-2 and estrogen, we subjected Igfbp2 −/− and +/+ female mice to ovariectomy (OVX) or sham surgery at 8 weeks of age. At 20 weeks of age, mice underwent metabolic cage analysis and insulin tolerance tests before killing. At harvest, femurs were collected for microcomputed tomography, serum for protein levels, brown adipose tissue (BAT) and inguinal white adipose tissue (IWAT) adipose depots for histology, gene expression, and mitochondrial respiration analysis of whole tissue. In +/+ mice, serum IGFBP-2 dropped 30% with OVX. In the absence of IGFBP-2, OVX had no effect on preformed BAT; however, there was significant “browning” of the IWAT depot coinciding with less weight gain, increased insulin sensitivity, lower intraabdominal fat, and increased bone loss due to higher resorption and lower formation. Likewise, after OVX, energy expenditure, physical activity and BAT mitochondrial respiration were decreased less in the OVX−/− compared with OVX+/+. Mitochondrial respiration of IWAT was reduced in OVX+/+ yet remained unchanged in OVX−/− mice. These changes were associated with significant increases in Fgf21 and Foxc2 expression, 2 proteins known for their insulin sensitizing and browning of WAT effects. We conclude that estrogen deficiency has a profound effect on body and bone composition in the absence of IGFBP-2 and may be related to changes in fibroblast growth factor 21. PMID:26230658
Forero-Bogotá, Mónica Adriana; Ojeda-Pardo, Mónica Liliana; García-Hermoso, Antonio; Correa-Bautista, Jorge Enrique; González-Jiménez, Emilio; Schmidt-RíoValle, Jacqueline; Navarro-Pérez, Carmen Flores; Gracia-Marco, Luis; Vlachopoulos, Dimitris; Martínez-Torres, Javier; Ramírez-Vélez, Robinson
2017-01-01
The objective of the present study is to investigate the relationships between body composition, nutritional profile, muscular fitness (MF) and bone health in a sample of children and adolescents from Colombia. Participants included 1118 children and adolescents (54.6% girls). Calcaneal broadband ultrasound attenuation (c-BUA) was obtained as a marker of bone health. Body composition (fat mass and lean mass) was assessed using bioelectrical impedance analysis. Furthermore height, weight, waist circumference and Tanner stage were measured and body mass index (BMI) was calculated. Standing long-jump (SLJ) and isometric handgrip dynamometry were used respectively as indicators of lower and upper body muscular fitness. A muscular index score was also computed by summing up the standardised values of both SLJ and handgrip strength. Dietary intake and degree of adherence to the Mediterranean diet were assessed by a 7-day recall questionnaire for food frequency and the Kidmed questionnaire. Poor bone health was considered using a z-score cut off of ≤−1.5 standard deviation. Once the results were adjusted for age and Tanner stage, the predisposing factors of having a c-BUA z-score ≤−1.5 standard deviation included being underweight or obese, having an unhealthy lean mass, having an unhealthy fat mass, SLJ performance, handgrip performance, and unhealthy muscular index score. In conclusion, body composition (fat mass and lean body mass) and MF both influenced bone health in a sample of children and adolescents from Colombia. Thus promoting strength adaptation and preservation in Colombian youth will help to improve bone health, an important protective factor against osteoporosis in later life. PMID:28165360
Maternal perinatal diet induces developmental programming of bone architecture.
Devlin, M J; Grasemann, C; Cloutier, A M; Louis, L; Alm, C; Palmert, M R; Bouxsein, M L
2013-04-01
Maternal high-fat (HF) diet can alter offspring metabolism via perinatal developmental programming. This study tests the hypothesis that maternal HF diet also induces perinatal programming of offspring bone mass and strength. We compared skeletal acquisition in pups from C57Bl/6J mice fed HF or normal diet from preconception through lactation. Three-week-old male and female pups from HF (HF-N) and normal mothers (N-N) were weaned onto normal diet. Outcomes at 14 and 26 weeks of age included body mass, body composition, whole-body bone mineral content (WBBMC) via peripheral dual-energy X-ray absorptiometry, femoral cortical and trabecular architecture via microcomputed tomography, and glucose tolerance. Female HF-N had normal body mass and glucose tolerance, with lower body fat (%) but higher serum leptin at 14 weeks vs. N-N (P<0.05 for both). WBBMC was 12% lower at 14 weeks and 5% lower at 26 weeks, but trabecular bone volume fraction was 20% higher at 14 weeks in female HF-N vs. N-N (P<0.05 for all). Male HF-N had normal body mass and mildly impaired glucose tolerance, with lower body fat (%) at 14 weeks and lower serum leptin at 26 weeks vs. N-N (P<0.05 for both). Serum insulin was higher at 14 weeks and lower at 26 weeks in HF-N vs. N-N (P<0.05). Trabecular BV/TV was 34% higher and cortical bone area was 6% higher at 14 weeks vs. N-N (P<0.05 for both). These data suggest that maternal HF diet has complex effects on offspring bone, supporting the hypothesis that maternal diet alters postnatal skeletal homeostasis.
The effect of body composition and BMI on 25(OH)D response in vitamin D-supplemented athletes
CASSITY, EVAN P.; REDZIC, MAJA; TEAGER, CASSIDY R.; THOMAS, D. TRAVIS
2016-01-01
Fat mass is inversely associated with vitamin D status, and athletes with the most adipose tissue may have the greatest risk for insufficient (25(OH)D 20–32 ng mL−1) or deficient (25(OH)D < 20 ng ml−1) status. The effects of fat and lean mass on 25 (OH)D change in response to vitamin D supplementation have yet to be elucidated in athletes. In addition, vitamin D has a known role in bone health yet a link between short-term changes in 25(OH)D and bone turnover in indoor athletes have not yet been described. Thirty-two collegiate swimmers and divers (19 male, 13 female; 19 (1) years) participated in a 6-month randomized controlled trial and consumed either 4000 IU d−1 of vitamin D3 (n = 19) or placebo (PLA; n = 13). Anthropometry and blood collection of 25(OH)D, bone-specific alkaline phosphatase (B-ALP) and N-terminal telopeptide (NTx) occurred at three time points. Dual-energy X-ray absorptiometry measured body composition analysis at baseline and endpoint. In the vitamin D group, BMI was negatively correlated with 6-month 25(OH)D change (R =−0.496; P = .03) and a stronger predictor of 25(OH)D change (P = .04) than ultraviolet B exposure and fat mass change.Athletes in the high bone turnover group showed significantly greater losses of 25(OH)D over 6-months compared to athletes in the low bone turnover group (P = .03). These results suggest athletes within the normal BMI category experience a diminished response to 4000 IU d−1 of vitamin D3 supplementation, and periods of high bone turnover may be an additional risk factor for developing compromised vitamin D status in athletes. PMID:26698109
Forero-Bogotá, Mónica Adriana; Ojeda-Pardo, Mónica Liliana; García-Hermoso, Antonio; Correa-Bautista, Jorge Enrique; González-Jiménez, Emilio; Schmidt-RíoValle, Jacqueline; Navarro-Pérez, Carmen Flores; Gracia-Marco, Luis; Vlachopoulos, Dimitris; Martínez-Torres, Javier; Ramírez-Vélez, Robinson
2017-02-03
The objective of the present study is to investigate the relationships between body composition, nutritional profile, muscular fitness (MF) and bone health in a sample of children and adolescents from Colombia. Participants included 1118 children and adolescents (54.6% girls). Calcaneal broadband ultrasound attenuation (c-BUA) was obtained as a marker of bone health. Body composition (fat mass and lean mass) was assessed using bioelectrical impedance analysis. Furthermore height, weight, waist circumference and Tanner stage were measured and body mass index (BMI) was calculated. Standing long-jump (SLJ) and isometric handgrip dynamometry were used respectively as indicators of lower and upper body muscular fitness. A muscular index score was also computed by summing up the standardised values of both SLJ and handgrip strength. Dietary intake and degree of adherence to the Mediterranean diet were assessed by a 7-day recall questionnaire for food frequency and the Kidmed questionnaire. Poor bone health was considered using a z -score cut off of ≤-1.5 standard deviation. Once the results were adjusted for age and Tanner stage, the predisposing factors of having a c-BUA z-score ≤-1.5 standard deviation included being underweight or obese, having an unhealthy lean mass, having an unhealthy fat mass, SLJ performance, handgrip performance, and unhealthy muscular index score. In conclusion, body composition (fat mass and lean body mass) and MF both influenced bone health in a sample of children and adolescents from Colombia. Thus promoting strength adaptation and preservation in Colombian youth will help to improve bone health, an important protective factor against osteoporosis in later life.
Androgens in Women with Anorexia Nervosa and Normal-Weight Women with Hypothalamic Amenorrhea
Miller, K. K.; Lawson, E. A.; Mathur, V.; Wexler, T. L.; Meenaghan, E.; Misra, M.; Herzog, D. B.; Klibanski, A.
2011-01-01
Context Anorexia nervosa and normal-weight hypothalamic amenorrhea are characterized by hypogonadism and hypercortisolemia. However, it is not known whether these endocrine abnormalities result in reductions in adrenal and/or ovarian androgens or androgen precursors in such women, nor is it known whether relative androgen deficiency contributes to abnormalities in bone density and body composition in this population. Objective Our objective was to determine whether endogenous androgen and dehydroepiandrosterone sulfate (DHEAS) levels: 1) are reduced in women with anorexia nervosa and normal-weight hypothalamic amenorrhea, 2) are reduced further by oral contraceptives in women with anorexia nervosa, and 3) are predictors of weight, body composition, or bone density in such women. Design and Setting We conducted a cross-sectional study at a general clinical research center. Study Participants A total of 217 women were studied: 137 women with anorexia nervosa not receiving oral contraceptives, 32 women with anorexia nervosa receiving oral contraceptives, 21 normal-weight women with hypothalamic amenorrhea, and 27 healthy eumenorrheic controls. Main Outcome Measures Testosterone, free testosterone, DHEAS, bone density, fat-free mass, and fat mass were assessed. Results Endogenous total and free testosterone, but not DHEAS, were lower in women with anorexia nervosa than in controls. More marked reductions in both free testosterone and DHEAS were observed in women with anorexia nervosa receiving oral contraceptives. In contrast, normal-weight women with hypothalamic amenorrhea had normal androgen and DHEAS levels. Lower free testosterone, total testosterone, and DHEAS levels predicted lower bone density at most skeletal sites measured, and free testosterone was positively associated with fat-free mass. Conclusions Androgen levels are low, appear to be even further reduced by oral contraceptive use, and are predictors of bone density and fat-free mass in women with anorexia nervosa. Interventional studies are needed to confirm these findings and determine whether oral contraceptive use, mediated by reductions in endogenous androgen levels, is deleterious to skeletal health in such women. PMID:17284620
Androgens in women with anorexia nervosa and normal-weight women with hypothalamic amenorrhea.
Miller, K K; Lawson, E A; Mathur, V; Wexler, T L; Meenaghan, E; Misra, M; Herzog, D B; Klibanski, A
2007-04-01
Anorexia nervosa and normal-weight hypothalamic amenorrhea are characterized by hypogonadism and hypercortisolemia. However, it is not known whether these endocrine abnormalities result in reductions in adrenal and/ or ovarian androgens or androgen precursors in such women, nor is it known whether relative androgen deficiency contributes to abnormalities in bone density and body composition in this population. Our objective was to determine whether endogenous androgen and dehydroepiandrosterone sulfate (DHEAS) levels: 1) are reduced in women with anorexia nervosa and normal-weight hypothalamic amenorrhea, 2) are reduced further by oral contraceptives in women with anorexia nervosa, and 3) are predictors of weight, body composition, or bone density in such women. We conducted a cross-sectional study at a general clinical research center. A total of 217 women were studied: 137 women with anorexia nervosa not receiving oral contraceptives, 32 women with anorexia nervosa receiving oral contraceptives, 21 normal-weight women with hypothalamic amenorrhea, and 27 healthy eumenorrheic controls. Testosterone, free testosterone, DHEAS, bone density, fat-free mass, and fat mass were assessed. Endogenous total and free testosterone, but not DHEAS, were lower in women with anorexia nervosa than in controls. More marked reductions in both free testosterone and DHEAS were observed in women with anorexia nervosa receiving oral contraceptives. In contrast, normal-weight women with hypothalamic amenorrhea had normal androgen and DHEAS levels. Lower free testosterone, total testosterone, and DHEAS levels predicted lower bone density at most skeletal sites measured, and free testosterone was positively associated with fat-free mass. Androgen levels are low, appear to be even further reduced by oral contraceptive use, and are predictors of bone density and fat-free mass in women with anorexia nervosa. Interventional studies are needed to confirm these findings and determine whether oral contraceptive use, mediated by reductions in endogenous androgen levels, is deleterious to skeletal health in such women.
Edwards, Mark H; Ward, Kate A; Ntani, Georgia; Parsons, Camille; Thompson, Jennifer; Sayer, Avan A; Dennison, Elaine M; Cooper, Cyrus
2015-12-01
Understanding the effects of muscle and fat on bone is increasingly important in the optimisation of bone health. We explored relationships between bone microarchitecture and body composition in older men and women from the Hertfordshire Cohort Study. 175 men and 167 women aged 72-81 years were studied. High resolution peripheral quantitative computed tomography (HRpQCT) images (voxel size 82 μm) were acquired from the non-dominant distal radius and tibia with a Scanco XtremeCT scanner. Standard morphological analysis was performed for assessment of macrostructure, densitometry, cortical porosity and trabecular microarchitecture. Body composition was assessed using dual energy X-ray absorptiometry (DXA) (Lunar Prodigy Advanced). Lean mass index (LMI) was calculated as lean mass divided by height squared and fat mass index (FMI) as fat mass divided by height squared. The mean (standard deviation) age in men and women was 76 (3) years. In univariate analyses, tibial cortical area (p<0.01), cortical thickness (p<0.05) and trabecular number (p<0.01) were positively associated with LMI and FMI in both men and women. After mutual adjustment, relationships between cortical area and thickness were only maintained with LMI [tibial cortical area, β (95% confidence interval (CI)): men 6.99 (3.97,10.01), women 3.59 (1.81,5.38)] whereas trabecular number and density were associated with FMI. Interactions by sex were found, including for the relationships of LMI with cortical area and FMI with trabecular area in both the radius and tibia (p<0.05). In conclusion, LMI and FMI appeared to show independent relationships with bone microarchitecture. Further studies are required to confirm the direction of causality and explore the mechanisms underlying these tissue-specific associations. Copyright © 2015 Elsevier Inc. All rights reserved.
Watson, Laura P E; Venables, Michelle C; Murgatroyd, Peter R
We describe a study to assess the precision of the GE Lunar iDXA and the agreement between the iDXA and GE Lunar Prodigy densitometers for the measurement of regional- and total-body bone and body composition in normal to obese healthy adults. We compare the whole-body fat mass by dual-energy X-ray absorptiometry (DXA) to measurements by a 4-component (4-C) model. Sixty-nine participants, aged 37 ± 12 yr, with a body mass index of 26.2 ± 5.1 kg/cm 2 , were measured once on the Prodigy and twice on the iDXA. The 4-C model estimated fat mass from body mass, total body water by deuterium dilution, body volume by air displacement plethysmography, and bone mass by DXA. Agreements between measurements made on the 2 instruments and by the 4-C model were analyzed by Bland-Altman and linear regression analyses. Where appropriate, translational cross-calibration equations were derived. Differences between DXA software versions were investigated. iDXA precision was less than 2% of the measured value for all regional- and whole-body bone and body composition measurements with the exception of arm fat mass (2.28%). We found significant differences between iDXA and Prodigy (p < 0.05) whole-body and regional bone, fat mass (FM), and lean mass, with the exception of hip bone mass, area and density, and spine area. Compared to iDXA, Prodigy overestimated FM and underestimated lean mass. However, compared to 4-C, iDXA showed a smaller bias and narrower limits of agreement than Prodigy. No significant differences between software versions in FM estimations existed. Our results demonstrate excellent iDXA precision. However, significant differences exist between the 2 GE Lunar instruments, Prodigy and iDXA measurement values. A divergence from the reference 4-C observations remains in FM estimations made by DXA even following the recent advances in technology. Further studies are particularly warranted in individuals with large FM contents. Copyright © 2017. Published by Elsevier Inc.
Fernández-Torre, José L; Burgueño, Paula; Ballesteros, María A; Hernández-Hernández, Miguel A; Villagrá-Terán, Nuria; de Lucas, Enrique Marco
2015-08-01
Fat embolism syndrome (FES) is a rare complication of long-bone fractures and joint reconstruction surgery. To the best of our knowledge, we describe the clinical, electrophysiological, neuroimaging, and neuropathological features of the first case of super-refractory nonconvulsive status epilepticus (sr-NCSE) secondary to fat embolism. An 82-year-old woman was transferred to our intensive care unit because of a sudden decrease of consciousness level, right hemiparesis, and acute respiratory failure in the early postoperative period of knee prosthesis surgery. Brain computed tomography (TC) including angio-CT and CT perfusion was normal. An urgent video-electroencephalography (v-EEG) evaluation showed continuous sharp-and slow-wave at 2.0-2.5 Hz in keeping with the diagnosis of generalized NCSE. Epileptiform discharges ceased after the administration of 5mg of intravenous diazepam, and background activity constituted by diffuse theta waves was observed without clinical improvement. Treatment with levetiracetam (1000 mg/day) and sedation with propofol and midazolam were initiated. Moreover, continuous v-EEG monitoring was also started. Despite antiepileptic therapy, epileptiform activity recurred after the interruption of profound sedation, and valproate and lacosamide were added during the ensuing days. Magnetic resonance imaging (MRI) disclosed small scattered foci of acute ischemic infarcts and diffuse petechiae involving the basal ganglia and pons and centrum semiovale in keeping with fat embolism. Super-refractory nonconvulsive status epilepticus remained without control for 2 weeks. Finally, the patient died. The clinical autopsy revealed a bilateral lung fat embolism associated with a hemorrhagic infarction in the left lower lobe. Fatty lesions were also seen in the intestine and pancreas. Scattered microscopic cerebral infarcts associated with fat emboli in the capillaries were noticed, affecting both supra- and infratentorial structures. In addition, occasional focal areas of ischemic injury showing filiform neurons with reactive astrocytic gliosis background consistent with acute lesions were observed in CA3. Fat embolism should be considered a potential cause of sr-NCSE. This article is part of a Special Issue entitled "Status Epilepticus". Copyright © 2015 Elsevier Inc. All rights reserved.
Villa, Christopher R.; Chen, Jianmin; Wen, Bijun; Sacco, Sandra M.; Taibi, Amel; Ward, Wendy E.; Comelli, Elena M.
2016-01-01
Obesity is associated with systemic inflammation and impaired bone health. Vitamin D regulates bone metabolism, and has anti-inflammatory properties and epigenetic effects. We showed that exposure to high dietary vitamin D during pregnancy and lactation beneficially programs serum concentration of lipopolysaccharide (LPS) and bone structure in male offspring fed an obesogenic diet. Here we assessed if this effect is also apparent in females. C57BL/6J dams were fed AIN93G diet with high (5000 IU/kg diet) or low (25 IU/kg diet) vitamin D during pregnancy and lactation. Post-weaning, female offspring remained on their respective vitamin D level or were switched and fed a high fat and sucrose diet (44.2% fat, 19.8% sucrose) until age seven months when glucose response, adiposity, serum LPS, and bone mineral, trabecular and cortical structure, and biomechanical strength properties of femur and vertebra were assessed. There was no evidence for a programming effect of vitamin D for any outcomes. However, females exposed to a high vitamin D diet post-weaning had higher bone mineral content (p = 0.037) and density (p = 0.015) of lumbar vertebra. This post-weaning benefit suggests that in females, bone mineral accrual but not bone structure is compromised with low vitamin D status in utero until weaning in an obesogenic context. PMID:27792161
Cunnane, Stephen C; Crawford, Michael A
2014-12-01
The human brain confronts two major challenges during its development: (i) meeting a very high energy requirement, and (ii) reliably accessing an adequate dietary source of specific brain selective nutrients needed for its structure and function. Implicitly, these energetic and nutritional constraints to normal brain development today would also have been constraints on human brain evolution. The energetic constraint was solved in large measure by the evolution in hominins of a unique and significant layer of body fat on the fetus starting during the third trimester of gestation. By providing fatty acids for ketone production that are needed as brain fuel, this fat layer supports the brain's high energy needs well into childhood. This fat layer also contains an important reserve of the brain selective omega-3 fatty acid, docosahexaenoic acid (DHA), not available in other primates. Foremost amongst the brain selective minerals are iodine and iron, with zinc, copper and selenium also being important. A shore-based diet, i.e., fish, molluscs, crustaceans, frogs, bird's eggs and aquatic plants, provides the richest known dietary sources of brain selective nutrients. Regular access to these foods by the early hominin lineage that evolved into humans would therefore have helped free the nutritional constraint on primate brain development and function. Inadequate dietary supply of brain selective nutrients still has a deleterious impact on human brain development on a global scale today, demonstrating the brain's ongoing vulnerability. The core of the shore-based paradigm of human brain evolution proposes that sustained access by certain groups of early Homo to freshwater and marine food resources would have helped surmount both the nutritional as well as the energetic constraints on mammalian brain development. Copyright © 2014 Elsevier Ltd. All rights reserved.
An autopsy case of non-traumatic fat embolism syndrome.
Sakashita, Mai; Sakashita, Shingo; Sakata, Akiko; Uesugi, Noriko; Ishige, Kazunori; Hyodo, Ichinosuke; Noguchi, Masayuki
2017-09-01
Fat embolism syndrome (FES) occurs after long bone fractures and the symptoms appear 24-72 h after the initial trauma. Fat emboli can affect both the pulmonary and systemic circulation. Apart from the most common type of FES that originates from bone fracture, non-traumatic FES has been also reported. We have experienced an autopsy case of non-traumatic FES. An 81-year-old man with hepatocellular carcinoma associated with alcoholic liver cirrhosis suddenly lost consciousness before transcatheter arterial chemoembolization treatment for his disease and died 5 h after the episode. At autopsy, numerous fat droplets were detected in the alveolar capillaries of the lung and glomerular capillaries of the kidney. Lipid analysis of lung autopsy specimens by thin-layer chromatography showed that the emboli were composed mainly of tristearin. Free fatty acids (FFA) has been considered to be the main component of fat emboli and can be a cause of acute respiratory distress syndrome (ARDS). However, in the present case, the lung specimen contained tristearin and ARDS did not occur. This is the first report of non-traumatic FES in which lipid analysis of human autopsy specimens has been conducted. © 2017 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.
Maas, M; Akkerman, E M; Venema, H W; Stoker, J; Den Heeten, G J
2001-01-01
The purpose of this work was to explore the reproducibility of fat-fraction measurements using Dixon quantitative chemical shift imaging (QCSI) in the lumbar spine (L3, L4, and L5) of healthy volunteers. Sixteen healthy volunteers were examined at 1.5 T two times to obtain a repeated measurement in the same slice and a third time in three parallel slices. Single slice, two point Dixon SE (TR/TE 2,500/22.3) sequences were used, from which fat-fraction images were calculated. The fat-fraction results are presented as averages over regions of interest, which were derived from the contours of the vertebrae. Reproducibility measures related to repeated measurements on different days, slice position, and contour drawing were calculated. The mean fat fraction was 0.37 (SD 0.08). The SD due to repeated measurement was small (sigmaR = 0.013-0.032), almost all of which can be explained by slice-(re)-positioning errors. When used to evaluate the same person longitudinally in time, Dixon QCSI fat-fraction measurement has an excellent reproducibility. It is a powerful noninvasive tool in the evaluation of bone marrow composition.
Bhatta, Anil; Sangani, Rajnikumar; Kolhe, Ravindra; Toque, Haroldo A.; Cain, Michael; Wong, Abby; Howie, Nicole; Shinde, Rahul; Elsalanty, Mohammed; Yao, Lin; Chutkan, Norman; Hunter, Monty; Caldwell, Ruth B.; Isales, Carlos; Caldwell, R. William; Fulzele, Sadanand
2016-01-01
A balanced diet is crucial for healthy development and prevention of musculoskeletal related diseases. Diets high in fat content are known to cause obesity, diabetes and a number of other disease states. Our group and others have previously reported that activity of the urea cycle enzyme arginase is involved in diabetes-induced dysregulation of vascular function due to decreases in nitric oxide formation. We hypothesized that diabetes may also elevate arginase activity in bone and bone marrow, which could lead to bone-related complications. To test this we determined the effects of diabetes on expression and activity of arginase, in bone and bone marrow stromal cells (BMSCs). We demonstrated that arginase 1 is abundantly present in the bone and BMSCs. We also demonstrated that arginase activity and expression in bone and bone marrow is up-regulated in models of diabetes induced by HFHS diet and streptozotocin (STZ). HFHS diet down-regulated expression of healthy bone metabolism markers (BMP2, COL-1, ALP, and RUNX2) and reduced bone mineral density, bone volume and trabecular thickness. However, treatment with an arginase inhibitor (ABH) prevented these bone-related complications of diabetes. In-vitro study of BMSCs showed that high glucose treatment increased arginase activity and decreased nitric oxide production. These effects were reversed by treatment with an arginase inhibitor (ABH). Our study provides evidence that deregulation of L-arginine metabolism plays a vital role in HFHS diet-induced diabetic complications and that these complications can be prevented by treatment with arginase inhibitors. The modulation of L-arginine metabolism in disease could offer a novel therapeutic approach for osteoporosis and other musculoskeletal related diseases. PMID:26704078
Formation of ectopic osteogenesis in weightlessness
NASA Technical Reports Server (NTRS)
1977-01-01
An ectopic osteogenesis experiment aboard the Cosmos-936 biosatellite is described. Decalcified, lyophilized femur and tibia were implanted under the fascia or in the anterior wall of the abdomen in rats. Bone formation before and after the tests is described and illustrated. The extent of formation of ectopic bone in weightlessness did not differ significantly from that in the ground controls, but the bone marrow of the ectopic bone of the flight rats consisted exclusively of fat cells. The deficit of support-muscle loading was considered to cause the disturbance in skeletal bone tissue development.
NASA Astrophysics Data System (ADS)
Zbijewski, W.; Sisniega, A.; Stayman, J. W.; Thawait, G.; Packard, N.; Yorkston, J.; Demehri, S.; Fritz, J.; Siewerdsen, J. H.
2015-03-01
Purpose: Arthritis and bone trauma are often accompanied by bone marrow edema (BME). BME is challenging to detect in CT due to the overlaying trabecular structure but can be visualized using dual-energy (DE) techniques to discriminate water and fat. We investigate the feasibility of DE imaging of BME on a dedicated flat-panel detector (FPD) extremities cone-beam CT (CBCT) with a unique x-ray tube with three longitudinally mounted sources. Methods: Simulations involved a digital BME knee phantom imaged with a 60 kVp low-energy beam (LE) and 105 kVp high-energy beam (HE) (+0.25 mm Ag filter). Experiments were also performed on a test-bench with a Varian 4030CB FPD using the same beam energies as the simulation study. A three-source configuration was implemented with x-ray sources distributed along the longitudinal axis and DE CBCT acquisition in which the superior and inferior sources operate at HE (and collect half of the projection angles each) and the central source operates at LE. Three-source DE CBCT was compared to a double-scan, single-source orbit. Experiments were performed with a wrist phantom containing a 50 mg/ml densitometry insert submerged in alcohol (simulating fat) with drilled trabeculae down to ~1 mm to emulate the trabecular matrix. Reconstruction-based three-material decomposition of fat, soft tissue, and bone was performed. Results: For a low-dose scan (36 mAs in the HE and LE data), DE CBCT achieved combined accuracy of ~0.80 for a pattern of BME spherical lesions ranging 2.5 - 10 mm diameter in the knee phantom. The accuracy increased to ~0.90 for a 360 mAs scan. Excellent DE discrimination of the base materials was achieved in the experiments. Approximately 80% of the alcohol (fat) voxels in the trabecular phantom was properly identified both for single and 3-source acquisitions, indicating the ability to detect edemous tissue (water-equivalent plastic in the body of the densitometry insert) from the fat inside the trabecular matrix (emulating normal trabecular bone with significant fraction of yellow marrow). Conclusion: Detection of BME and quantification of water and fat content were achieved in extremities DE CBCT with a longitudinal configuration of sources providing DE imaging in a single gantry rotation. The findings support the development of DE imaging capability for CBCT of the extremities in areas conventionally in the domain of MRI.
Zbijewski, W.; Sisniega, A.; Stayman, J. W.; Thawait, G.; Packard, N.; Yorkston, J.; Demehri, S.; Fritz, J.; Siewerdsen, J. H.
2015-01-01
Purpose Arthritis and bone trauma are often accompanied by bone marrow edema (BME). BME is challenging to detect in CT due to the overlaying trabecular structure but can be visualized using dual-energy (DE) techniques to discriminate water and fat. We investigate the feasibility of DE imaging of BME on a dedicated flat-panel detector (FPD) extremities cone-beam CT (CBCT) with a unique x-ray tube with three longitudinally mounted sources. Methods Simulations involved a digital BME knee phantom imaged with a 60 kVp low-energy beam (LE) and 105 kVp high-energy beam (HE) (+0.25 mm Ag filter). Experiments were also performed on a test-bench with a Varian 4030CB FPD using the same beam energies as the simulation study. A three-source configuration was implemented with x-ray sources distributed along the longitudinal axis and DE CBCT acquisition in which the superior and inferior sources operate at HE (and collect half of the projection angles each) and the central source operates at LE. Three-source DE CBCT was compared to a double-scan, single-source orbit. Experiments were performed with a wrist phantom containing a 50 mg/ml densitometry insert submerged in alcohol (simulating fat) with drilled trabeculae down to ~1 mm to emulate the trabecular matrix. Reconstruction-based three-material decomposition of fat, soft tissue, and bone was performed. Results For a low-dose scan (36 mAs in the HE and LE data), DE CBCT achieved combined accuracy of ~0.80 for a pattern of BME spherical lesions ranging 2.5 – 10 mm diameter in the knee phantom. The accuracy increased to ~0.90 for a 360 mAs scan. Excellent DE discrimination of the base materials was achieved in the experiments. Approximately 80% of the alcohol (fat) voxels in the trabecular phantom was properly identified both for single and 3-source acquisitions, indicating the ability to detect edemous tissue (water-equivalent plastic in the body of the densitometry insert) from the fat inside the trabecular matrix (emulating normal trabecular bone with significant fraction of yellow marrow). Conclusion Detection of BME and quantification of water and fat content were achieved in extremities DE CBCT with a longitudinal configuration of sources providing DE imaging in a single gantry rotation. The findings support the development of DE imaging capability for CBCT of the extremities in areas conventionally in the domain of MRI. PMID:26045631
Zbijewski, W; Sisniega, A; Stayman, J W; Thawait, G; Packard, N; Yorkston, J; Demehri, S; Fritz, J; Siewerdsen, J H
2015-02-21
Arthritis and bone trauma are often accompanied by bone marrow edema (BME). BME is challenging to detect in CT due to the overlaying trabecular structure but can be visualized using dual-energy (DE) techniques to discriminate water and fat. We investigate the feasibility of DE imaging of BME on a dedicated flat-panel detector (FPD) extremities cone-beam CT (CBCT) with a unique x-ray tube with three longitudinally mounted sources. Simulations involved a digital BME knee phantom imaged with a 60 kVp low-energy beam (LE) and 105 kVp high-energy beam (HE) (+0.25 mm Ag filter). Experiments were also performed on a test-bench with a Varian 4030CB FPD using the same beam energies as the simulation study. A three-source configuration was implemented with x-ray sources distributed along the longitudinal axis and DE CBCT acquisition in which the superior and inferior sources operate at HE (and collect half of the projection angles each) and the central source operates at LE. Three-source DE CBCT was compared to a double-scan, single-source orbit. Experiments were performed with a wrist phantom containing a 50 mg/ml densitometry insert submerged in alcohol (simulating fat) with drilled trabeculae down to ~1 mm to emulate the trabecular matrix. Reconstruction-based three-material decomposition of fat, soft tissue, and bone was performed. For a low-dose scan (36 mAs in the HE and LE data), DE CBCT achieved combined accuracy of ~0.80 for a pattern of BME spherical lesions ranging 2.5 - 10 mm diameter in the knee phantom. The accuracy increased to ~0.90 for a 360 mAs scan. Excellent DE discrimination of the base materials was achieved in the experiments. Approximately 80% of the alcohol (fat) voxels in the trabecular phantom was properly identified both for single and 3-source acquisitions, indicating the ability to detect edemous tissue (water-equivalent plastic in the body of the densitometry insert) from the fat inside the trabecular matrix (emulating normal trabecular bone with significant fraction of yellow marrow). Detection of BME and quantification of water and fat content were achieved in extremities DE CBCT with a longitudinal configuration of sources providing DE imaging in a single gantry rotation. The findings support the development of DE imaging capability for CBCT of the extremities in areas conventionally in the domain of MRI.
Osteoporosis and gait and balance disturbances in older sarcopenic obese New Zealanders.
Waters, D L; Hale, L; Grant, A M; Herbison, P; Goulding, A
2010-02-01
Bone, muscle, and fat may affect gait and balance in older adults. Osteoporosis was prevalent in low muscle mass participants and related to gait and balance deficits. Low muscle combined with high fat mass had more functional deficits and poorer bone health, which has implications for falls risk and fractures. Decreasing bone density and muscle mass and increasing fat mass may act synergistically to affect gait and balance in older adults. One hundred eighty-three older adults (age 72.7 +/- 6 years, range 56-93; body mass index 28.2 +/- 4.9, range 16.6-46.0) were recruited from a New Zealand falls prevention intervention trial. Total and appendicular skeletal muscle mass (ASM), percent fat, and bone mineralization were assessed by dual energy X-ray absorptiometry and used to characterize normal lean (NL, n = 51), sarcopenic (SS, n = 18), sarcopenic obese (SO, n = 29), and obese (OO, n = 85) phenotypes. Functional performance was assessed using timed up and go, chair stand, single leg stand, and step test. Regression models were adjusted for age, sex, medications, and physical activity. Femoral neck osteoporosis was present in 22% SS, 17% SO, 12% NL, and 7% OO. Femoral neck osteoporosis with low ASM predicted poor chair stand performance (beta -3.3, standard error 1.6, p = 0.04). SO scored lowest on the chair stand (p = 0.03) and step test (p = 0.03). Higher ASM predicted faster timed up and go performance (p = 0.001). Osteoporosis was prevalent in low ASM groups (SS and SO) and related to gait and balance deficits, particularly in the SO. This has implications for falls risk, fractures, and interventions.
Aronia melanocarpa Treatment and Antioxidant Status in Selected Tissues in Wistar Rats
Krośniak, Mirosław; Sanocka, Ilona; Bartoń, Henryk; Hebda, Tomasz; Francik, Sławomir
2014-01-01
Aronia juice is considered to be a source of compounds with high antioxidative potential. We conducted a study on the impact of compounds in the Aronia juice on oxidative stress in plasma and brain tissues. The influence of Aronia juice on oxidative stress parameters was tested with the use of a model with a high content of fructose and nonsaturated fats. Therefore, the activity of enzymatic (catalase, CAT, and paraoxonase, PON) and nonenzymatic (thiol groups, SH, and protein carbonyl groups, PCG) oxidative stress markers, which indicate changes in the carbohydrate and protein profiles, was marked in brain tissue homogenates. Adding Aronia caused statistically significant increase in the CAT activity in plasma in all tested diets, while the PON activity showed a statistically significant increase only in case of high fat diet. In animals fed with Aronia juice supplemented with carbohydrates or fat, statistically significant increase in the PON activity and the decrease in the CAT activity in brain tissue were observed. In case of the high fat diet, an increase in the number of SH groups and a decrease in the number of PCG groups in brain tissue were observed. PMID:25057488
Aronia melanocarpa treatment and antioxidant status in selected tissues in Wistar rats.
Francik, Renata; Krośniak, Mirosław; Sanocka, Ilona; Bartoń, Henryk; Hebda, Tomasz; Francik, Sławomir
2014-01-01
Aronia juice is considered to be a source of compounds with high antioxidative potential. We conducted a study on the impact of compounds in the Aronia juice on oxidative stress in plasma and brain tissues. The influence of Aronia juice on oxidative stress parameters was tested with the use of a model with a high content of fructose and nonsaturated fats. Therefore, the activity of enzymatic (catalase, CAT, and paraoxonase, PON) and nonenzymatic (thiol groups, SH, and protein carbonyl groups, PCG) oxidative stress markers, which indicate changes in the carbohydrate and protein profiles, was marked in brain tissue homogenates. Adding Aronia caused statistically significant increase in the CAT activity in plasma in all tested diets, while the PON activity showed a statistically significant increase only in case of high fat diet. In animals fed with Aronia juice supplemented with carbohydrates or fat, statistically significant increase in the PON activity and the decrease in the CAT activity in brain tissue were observed. In case of the high fat diet, an increase in the number of SH groups and a decrease in the number of PCG groups in brain tissue were observed.
Centi, Amanda J; Booth, Sarah L; Gundberg, Caren M; Saltzman, Edward; Nicklas, Barbara; Shea, M Kyla
2015-12-01
Osteocalcin (OC) is a vitamin K-dependent bone protein used as a marker of bone formation. Mouse models have demonstrated a role for the uncarboxylated form of OC (ucOC) in energy metabolism, including energy expenditure and adiposity, but human data are equivocal. The purpose of this study was to determine the associations between changes in measures of OC and changes in body weight and percent body fat in obese, but otherwise healthy post-menopausal women undergoing a 20-week weight loss program. All participants received supplemental vitamins K and D and calcium. Body weight and body fat percentage (%BF) were assessed before and after the intervention. Serum OC [(total (tOC), ucOC, percent uncarboxylated (%ucOC)], and procollagen type 1N-terminal propeptide (P1NP; a measure of bone formation) were measured. Women lost an average of 10.9 ± 3.9 kg and 4 %BF. Serum concentrations of tOC, ucOC, %ucOC, and P1NP did not significantly change over the twenty-week intervention, nor were these measures associated with changes in weight (all p > 0.27) or %BF (all p > 0.54). Our data do not support an association between any serum measure of OC and weight or %BF loss in post-menopausal women supplemented with nutrients implicated in bone health.
Kim, Christopher S.; Hayman, James A.; Billi, John E.; Lash, Kathy; Lawrence, Theodore S.
2007-01-01
Purpose Patients with bone and brain metastases are among the most symptomatic nonemergency patients treated by radiation oncologists. Treatment should begin as soon as possible after the request is generated. We tested the hypothesis that the operational improvement method based on lean thinking could help streamline the treatment of our patients referred for bone and brain metastases. Methods University of Michigan Health System has adopted lean thinking as a consistent approach to quality and process improvement. We applied the principles and tools of lean thinking, especially value as defined by the customer, value stream mapping processes, and one piece flow, to improve the process of delivering care to patients referred for bone or brain metastases. Results and Conclusion The initial evaluation of the process revealed that it was rather chaotic and highly variable. Implementation of the lean thinking principles permitted us to improve the process by cutting the number of individual steps to begin treatment from 27 to 16 and minimize variability by applying standardization. After an initial learning period, the percentage of new patients with brain or bone metastases receiving consultation, simulation, and treatment within the same day rose from 43% to nearly 95%. By implementing the ideas of lean thinking, we improved the delivery of clinical care for our patients with bone or brain metastases. We believe these principles can be applied to much of the care administered throughout our and other health care delivery areas. PMID:20859409
Kim, Christopher S; Hayman, James A; Billi, John E; Lash, Kathy; Lawrence, Theodore S
2007-07-01
Patients with bone and brain metastases are among the most symptomatic nonemergency patients treated by radiation oncologists. Treatment should begin as soon as possible after the request is generated. We tested the hypothesis that the operational improvement method based on lean thinking could help streamline the treatment of our patients referred for bone and brain metastases. University of Michigan Health System has adopted lean thinking as a consistent approach to quality and process improvement. We applied the principles and tools of lean thinking, especially value as defined by the customer, value stream mapping processes, and one piece flow, to improve the process of delivering care to patients referred for bone or brain metastases. The initial evaluation of the process revealed that it was rather chaotic and highly variable. Implementation of the lean thinking principles permitted us to improve the process by cutting the number of individual steps to begin treatment from 27 to 16 and minimize variability by applying standardization. After an initial learning period, the percentage of new patients with brain or bone metastases receiving consultation, simulation, and treatment within the same day rose from 43% to nearly 95%. By implementing the ideas of lean thinking, we improved the delivery of clinical care for our patients with bone or brain metastases. We believe these principles can be applied to much of the care administered throughout our and other health care delivery areas.
Intracranial volume, cranial thickness, and hyperostosis frontalis interna in the elderly.
May, Hila; Mali, Yael; Dar, Gali; Abbas, Janan; Hershkovitz, Israel; Peled, Nathan
2012-01-01
According to the "brain reserve hypothesis," a larger premorbid brain protects against the development of dementia. The aim of this study was to reveal a possible pathophysiology of brain degenerative diseases by studying intracranial bone lesions that act to reduce intracranial volume (ICV), such as hyperostosis frontalis interna (HFI). Three hundred and eighty postmenopausal females (aged 60+) who had undergone a head computerized tomography scan (Brilliance 64, Philips Healthcare, Cleveland, OH) at the Carmel Medical Center, Haifa, Israel, before the study were included. The subjects were divided into four groups according to their degree of HFI. Six measurements of the skull and brain were taken. As HFI becomes more severe, the cranial bone thickness and cranial bone volume increase. This process is accompanied by a decrease in ICV. In none of the HFI groups studied there was a significant association between ICV and cranial bone thickness. The inter-relationships between the various thickness parameters are not disturbed by the degree of HFI. HFI is accompanied by an increase in thickness of all calvarial bones and reduced ICV. In addition, the thickening process initiated by HFI is synchronized among the calvarial bones. Presence of HFI suggests a decrease in brain volume and has a major clinical significance as it may indicate the beginning of degenerative processes of the brain. In addition, as females age, their skulls tend to develop more robust characteristics. Copyright © 2012 Wiley Periodicals, Inc.
Controversies surrounding high-protein diet intake: satiating effect and kidney and bone health.
Cuenca-Sánchez, Marta; Navas-Carrillo, Diana; Orenes-Piñero, Esteban
2015-05-01
Long-term consumption of a high-protein diet could be linked with metabolic and clinical problems, such as loss of bone mass and renal dysfunction. However, although it is well accepted that a high-protein diet may be detrimental to individuals with existing kidney dysfunction, there is little evidence that high protein intake is dangerous for healthy individuals. High-protein meals and foods are thought to have a greater satiating effect than high-carbohydrate or high-fat meals. The effect of high-protein diets on the modulation of satiety involves multiple metabolic pathways. Protein intake induces complex signals, with peptide hormones being released from the gastrointestinal tract and blood amino acids and derived metabolites being released in the blood. Protein intake also stimulates metabolic hormones that communicate information about energy status to the brain. Long-term ingestion of high amounts of protein seems to decrease food intake, body weight, and body adiposity in many well-documented studies. The aim of this article is to provide an extensive overview of the efficacy of high protein consumption in weight loss and maintenance, as well as the potential consequences in human health of long-term intake. © 2015 American Society for Nutrition.
Controversies Surrounding High-Protein Diet Intake: Satiating Effect and Kidney and Bone Health12
Cuenca-Sánchez, Marta; Navas-Carrillo, Diana; Orenes-Piñero, Esteban
2015-01-01
Long-term consumption of a high-protein diet could be linked with metabolic and clinical problems, such as loss of bone mass and renal dysfunction. However, although it is well accepted that a high-protein diet may be detrimental to individuals with existing kidney dysfunction, there is little evidence that high protein intake is dangerous for healthy individuals. High-protein meals and foods are thought to have a greater satiating effect than high-carbohydrate or high-fat meals. The effect of high-protein diets on the modulation of satiety involves multiple metabolic pathways. Protein intake induces complex signals, with peptide hormones being released from the gastrointestinal tract and blood amino acids and derived metabolites being released in the blood. Protein intake also stimulates metabolic hormones that communicate information about energy status to the brain. Long-term ingestion of high amounts of protein seems to decrease food intake, body weight, and body adiposity in many well-documented studies. The aim of this article is to provide an extensive overview of the efficacy of high protein consumption in weight loss and maintenance, as well as the potential consequences in human health of long-term intake. PMID:25979491
Sañudo, C; Alfonso, M; Sánchez, A; Delfa, R; Teixeira, A
2000-09-01
Ninety commercial lamb carcasses were analysed according to the four different fat classes in the light lamb European classification system. Shoulder fat increased 3%, muscle decreased 2% and bone decreased 1% for each class increase. No significant differences were found among fat classes regarding pH, WHC, cooking losses, juiciness, myoglobin content, meat colour measured immediately after cutting (L*, a*, b*), odour intensity or flavour quality. Some differences were found in colour evolution through ageing. Shear force decreased and tenderness and flavour intensity increased with fat class but this effect was only significant in the leanest animals.
Friedl, Gerald; Windhager, Reinhard; Schmidt, Helena; Aigner, Reingard
2009-08-01
While the importance of physical factors in the maintenance and regeneration of bone tissue has been recognized for many years and the mechano-sensitivity of bone cells is well established, there is increasing evidence that body fat constitutes an independent risk factor for complications in bone fracture healing and aseptic loosening of implants. Although mechanical causes have been widely suggested, we hypothesized that the osteogenic mechano-response of human mesenchymal stem cells (hMSCs) may be altered in obese patients. We determined the phenotypic and genotypic response of undifferentiated hMSCs of 10 donors to cyclic tensile strain (CTS) under controlled in vitro conditions and analyzed the potential relationship relevant to the donor's anthropomorphometric and biochemical parameters related to donor's fat and bone metabolism. The osteogenic marker genes were all statistically significantly upregulated by CTS, which was accompanied by a significant increase in cell-based ALP activity. Linear correlation analysis revealed that there was a significant correlation between phenotypic CTS response and the body mass index of the donor (r = -0.91, p < 0.001) and phenotypic CTS response was also significantly related to leptin levels (r = -0.68) and estradiol levels (r = 0.67) within the bone marrow microenvironment of the donor. Such an upstream imprinting process mediated by factors tightly related to the donor's fat metabolism, which hampers the mechanosensitivity of hMSCs in obese patients, may be of pathogenetic relevance for the complications associated with obesity that are seen in orthopedic surgery.
Diet, weight, cytokines and bone health in postmenopausal women.
Gunn, C A; Weber, J L; Kruger, M C
2014-05-01
To investigate diet and nutrition-related factors associated with bone loss in a group of postmenopausal (PM) women. Nutritional intake, inflammatory markers and body composition (weight, body mass index, fat/lean mass) were analysed for associations with bone mineral density (BMD). A cross sectional study examining correlations between BMD (Duel-energy X ray absorptiometry; (DXA) and dietary intake (3-day diaries), body composition and plasma bone and inflammatory markers: C-terminal telopeptide of type I collagen (CTX) and procollagen type I N propeptide (P1NP), C- reactive protein (CRP), interleukin 6 and 10 (IL-6, IL-10), tumour necrosis factor (TNF) and osteoprotegerin (OPG). Community dwelling women from the Auckland, Hawke's Bay and Manawatu regions in New Zealand. 142 healthy, PM women aged 50-70 years. OPG (per kilogram fat mass) was increased in women with osteoporosis (p<0.001) compared to groups classified with normal BMD and osteopenia. Protein, vitamin B12, zinc, potassium and dairy intake were all positively correlated with higher BMD while dairy and potassium intakes also inversely correlated with CTX. Body composition (weight, BMI and fat/lean mass) had strong positive associations with BMD. Multiple regression analysis showed body weight, potassium and dairy intake were predictors of increased BMD in PM women and explained 39% (r2=0.39, p< 0.003) of variance. BMD was negatively correlated with OPG and positively with weight, dairy and potassium intake. This study highlights the importance of maintaining adequate body weight and emphasising dairy and potassium predominantly sourced from fruit/vegetables to reduce bone loss at midlife.
Grinspoon, S K; Friedman, A J; Miller, K K; Lippman, J; Olson, W H; Warren, M P
2003-08-01
This multicenter, double-blind, placebo-controlled, randomized study of 45 patients evaluated the short-term effects of an oral contraceptive [Ortho Tri-Cyclen, 180-250 micro g of norgestimate (NGM) and 35 microg of ethinyl estradiol (EE)] on biochemical markers of bone resorption, formation, and osteoprotegerin in young women (mean age +/- SD, 26.5 +/- 6.3 yr) with hypothalamic amenorrhea and osteopenia. Body fat, endocrine, and cognitive function were evaluated as secondary endpoints. Biomarkers of bone metabolism were measured at baseline and after three cycles of NGM/EE or placebo. There were significant decreases in mean values of N-telopeptide [mean (SD), -13.4 (13.4) vs. 1.2 (23.8) nmol bone collagen equivalents (BCE)/mmol creatinine (Cr); P = 0.001] and deoxypyridinoline [-1.2 (2.9) vs. -0.5 (1.5) nmol deoxypyridinoline/mmol Cr; P = 0.021] as well as significant decreases in bone specific alkaline phosphatase [-5.1 (3.5) vs. 0.4 (3.1) ng/ml; P < 0.001], osteocalcin [-5.9 (3.6) vs. -2.9 (3.7); P = 0.016], and procollagen of type I propeptide [-35.2 (44.6) vs. -0.2 (30.0) ng/ml; P = 0.025], but not osteoprotegerin [0.39 (1.46) vs. -0.2 (0.49) pmol/liter; P = 0.397] in the NGM/EE vs. placebo group. There were no significant differences between groups with respect to changes in cognitive function, mood, body weight, body mass index, body fat, percentage of body fat, and all endocrine levels except FSH, [-3.7 (3.8) vs. -0.6 (2.1) IU/liter; P < 0.001, NGM/EE vs. placebo]. No serious adverse events were reported in either group. These results suggest that NGM/EE decreases bone turnover in osteopenic premenopausal women with hypothalamic amenorrhea. Further studies are needed to determine whether estrogen will increase bone density in this population.
Andersen, Birgitte; Straarup, Ellen M; Heppner, Kristy M; Takahashi, Diana L; Raffaele, Virginia; Dissen, Gregory A; Lewandowski, Katherine; Bödvarsdottir, Thóra B; Raun, Kirsten; Grove, Kevin L; Kievit, Paul
2018-06-11
Administration of FGF21 and FGF21 analogues reduce body weight; improve insulin sensitivity and dyslipidemia in animal models of obesity and in short term clinical trials. However potential adverse effects identified in mice have raised concerns for the development of FGF21 therapeutics. Therefore, this study was designed to address the actions of FGF21 on body weight, glucose and lipid metabolism and importantly its effects on bone mineral density (BMD), bone markers, and plasma cortisol in high-fat fed obese rhesus macaque monkeys. Obese non-diabetic rhesus macaque monkeys (five males and five ovariectomized (OVX) females) were maintained on a high-fat diet and treated for 12 weeks with escalating doses of FGF21. Food intake was assessed daily and body weight weekly. Bone mineral content (BMC) and BMD were measured by DEXA scanning prior to the study and on several occasions throughout the treatment period as well as during washout. Plasma glucose, glucose tolerance, insulin, lipids, cortisol, and bone markers were likewise measured throughout the study. On average, FGF21 decreased body weight by 17.6 ± 1.6% after 12 weeks of treatment. No significant effect on food intake was observed. No change in BMC or BMD was observed, while a 2-fold increase in CTX-1, a marker of bone resorption, was seen. Overall glucose tolerance was improved with a small but significant decrease in HbA 1C . Furthermore, FGF21 reduced concentrations of plasma triglycerides and very low density lipoprotein cholesterol. No adverse changes in clinical chemistry markers were demonstrated, and no alterations in plasma cortisol were observed during the study. In conclusion, FGF21 reduced body weight in obese rhesus macaque monkeys without reducing food intake. Furthermore, FGF21 had beneficial effects on body composition, insulin sensitivity, and plasma triglycerides. No adverse effects on bone density or plasma cortisol were observed after 12 weeks of treatment.
The Impact of Sweat Calcium Loss on Bone Health in Soldiers: A Pilot Study
2013-02-06
correlated to total calories, carbohydrate, fat , and protein intake. For Group 1 (Medical) overall diet did not have an impact on bone density. For Group...baseline heel bone density for this group we do not know if the diet , high in calories, protein, and carbohydrates, with adequate amounts of calcium...FH. (2010). Acid diet ( high -meat protein) effects on calcium metabolism and bone health. Curr Opin Clin Nutr Metab Care, 13(6):698-702. Cizza, G
Guo, Yubo; Wang, Lili; Ma, Rufeng; Mu, Qianqian; Yu, Na; Zhang, Yi; Tang, Yuqing; Li, Yu; Jiang, Guangjian; Zhao, Dandan; Mo, Fangfang; Gao, Sihua; Yang, Meijuan; Kan, Feifei; Ma, Qun; Fu, Min; Zhang, Dongwei
2016-03-01
To assess the beneficial effects of JiangTang XiaoKe (JTXK) granule on the bone metabolism in high fat diet (HFD) fed KK-Ay diabetic mice. The KK-Ay mice were used as a diabetic model, while C57BL/6 mice were utilized as the non-diabetic control. The left tibia was used for determining bone mineral density (BMD) and bone ash coefficient. The HE and alizarin red S staining of femur were employed to evaluate bone pathology and calcium deposition. The expressions of alkaline phosphatase (ALP), insulin growth factor 1 (IGF-1) and cathepsin K were assessed by western blotting and immunohistochemical staining. JTXK granule significantly improved the bone ash coefficient, the distribution of trabecular bone and the calcification nodules deposition in KK-Ay mice with diabetes. IGF-1 and ALP expressions were significantly decreased, and cathepsin K expression was dramatically increased in the HFD fed KK-Ay diabetic model mice, which can be reversed by JTXK granule treatment. JTXK granule at medium or high dosage was more efficient in improving diabetic bone quality when compared with that in mice with a low dosage. However, the BMD values in each group of KK-Ay diabetic mice were not significantly different. We demonstrate that cathepsin K expression is increased in KK-Ay diabetic mouse model. JTXK granule treatment inhibits osteoclastic bone resorption and promotes the new bone formation by decreasing cathepsin K activity and increasing IGF-1 and ALP levels. These changes may contribute to the increase of bone strength and thus reducing the risk of bone fractures. Copyright © 2016 Elsevier Inc. All rights reserved.
How does bone quality differ between healthy-weight and overweight adolescents and young adults?
Hoy, Christa L; Macdonald, Heather M; McKay, Heather A
2013-04-01
Overweight youth have greater bone mass than their healthy-weight peers but sustain more fractures. However, it is unclear whether and how excess body fat influences bone quality in youth. We determined whether overweight status correlated with three-dimensional aspects of bone quality influencing bone strength in adolescent and young adult females and males. We categorized males (n=103; mean age, 17 years) and females (n=85; mean age, 18 years) into healthy-weight and overweight groups. We measured lean mass (LM) and fat mass (FM) with dual-energy x-ray absorptiometry (DXA). We used high-resolution peripheral quantitative CT to assess the distal radius (7% site) and distal tibia (8% site). Bone quality measures included total bone mineral density (Tt.BMD), total area (Tt.Ar), trabecular bone volume fraction (BV/TV), trabecular number (Tb.N), separation (Tb.Sp), and thickness (Tb.Th). We used multiple regression to compare bone quality between healthy-weight and overweight adolescents adjusting for age, ethnicity, limb length, LM, and FM. Overweight males had higher (10%-21%) Tt.BMD, BV/TV, and Tb.N and lower Tb.Sp at the tibia and lower Tt.Ar at the radius than healthy-weight males. No differences were observed between overweight and healthy-weight females. LM attenuated the differences in bone quality between groups in males while FM negatively predicted Tt.BMD, BV/TV, Tb.N, and Tb.Th. Our data suggest overweight males have enhanced bone quality compared with healthy-weight males; however, when group differences are interpreted in the context of the mechanostat theory, it appears bone quality of overweight adolescents adapts to LM and not to greater FM.
Saki, Forough; Ranjbar Omrani, Gholamhossein; Jeddi, Marjan; Bakhshaieshkaram, Marzie; Dabbaghmanesh, Mohammad Hossein
2017-01-01
Background Improving peak bone mass and bone strength in the first years of life and enhancing it during young adulthood could prevent osteoporosis and fractures in the last years of life. We evaluated the prevalence of low bone mass in the lumbar and femoral neck and its associated factors in southern Iranian children. Methods This is a cross-sectional study on healthy Iranian children aged 9 - 18 years old during 2011 - 2012. Dual energy X-ray absorptiometry (DEXA) was used for measuring bone mineral density (BMD). BMD Z-score ≤ -2 was considered as low. Anthropometric data, physical activity, sun exposure, puberty, and mineral biochemical parameters were assessed. Data were analyzed using SPSS v.15. Results 477 normal children, including 236 (49.5%) girls and 241 (50.5%) boys, aged 13.8 ± 2.7 years were enrolled. Prevalence of low bone mass (LBM) in the femoral and lumbar region was 10.7% and 18.7%, respectively. The prevalence of LBM in femur of girls is twice more than boys. Fat mass index, BMI Z-score, and physical activity were associated with lumbar low bone mass. BMI Z-score and physical activity were associated with femoral low bone mass. Conclusions High prevalence of low bone mineral density in children 9 to 18 years in south of the country is concerned and is needed to plan for prevention and treatment. BMI-Z score, fat mass index, and physical activity were the 3 most important preventive factors in developing low bone mass in children. PMID:29344033
[Effect of Acupuncture Therapy on Body Compositions in Patients with Obesity].
Zhang, Hui-Min; Wu, Xue-Liang; Jiang, Chao; Shi, Rong-Xing
2017-04-25
To observe the clinical effectiveness of acupuncture intervention in weight reduction by modulating body compositions in obesity patients. A total of 71 obesity patients during weight-loss procedure were allocated to acupuncture+nutrition-consultation group ( n =40) and simple nutrition-consultation group ( n =31). The patients of the acupuncture +nutrition-consultation group were treated by acupuncture stimulation of Zhongwan (CV 12), Xiawan (CV 10), Tianshu (ST 25), Wailing (ST 26), Qihai (CV 6), Guanyuan (CV 4), etc. for 30 min, once every other day, 3 times per week, 12 times altogether, and also given with weekly nutrition consultation (including subjective query, objective measurement, analysis, program for nutrition support) at the same time. The patients of the simple nutrition-consultation group were treated by only weekly nutrition consultation for 4 weeks. Before and after the treatment, the patients' body weight, body mass index (BMI), fat mass, percentage of body fat, muscle mass, protein quality, water quality and bone mass were measured by using a composition analyzer. After 4 weeks' treatment, the body mass, BMI, fat mass and fat percentage in both acupuncture+nutrition-consultation and simple nutrition-consultation groups were significantly decreased ( P <0.01), while the weight levels of muscle, protein, bone and water content had no apparent changes ( P >0.05). The therapeutic effect of acupuncture+nutrition-consultation group was markedly superior to that of the simple nutrition-consultation group in increasing the improved degrees of body weight, BMI, fat mass and fat percentage ( P <0.01). Acupuncture plus nutrition consultation is effective in reducing body mass, fat mass and percentage of body fat in obesity patients.
Tuljapurkar, Sonal R; McGuire, Timothy R; Brusnahan, Susan K; Jackson, John D; Garvin, Kevin L; Kessinger, Margaret A; Lane, Judy T; O' Kane, Barbara J; Sharp, John G
2011-01-01
Hematological deficiencies increase with aging, including anemias, reduced responses to hematopoietic stress and myelodysplasias. This investigation tested the hypothesis that increased bone marrow (BM) fat content in humans with age was associated with decreased numbers of side population (SP) hematopoietic stem cells, and this decrease correlated with changes in cytokine levels. BM was obtained from the femoral head and trochanteric region of the femur removed at surgery for total hip replacement (N = 100 subjects). In addition, BM from cadavers (N = 36), with no evidence of hip disease, was evaluated for fat content. Whole trabecular marrow samples were ground in a sterile mortar and pestle, and cellularity and lipid content determined. Marrow cells were stained with Hoechst dye and SP profiles were acquired. Plasma levels of insulin-like growth factor (IGF)-1, stromal-derived factor (SDF)-1 and interleukin (IL)-6 were measured using ELISA. Fat content in the BM of human subjects and cadavers increased with age. The numbers of SP stem cells in BM as well as plasma IGF-1 and SDF-1 levels decreased in correlation with increased BM fat. IL-6 had no relationship to changes in marrow fat. These data suggest that increased BM fat may be associated with a decreased number of SP stem cells and IGF-1 and SDF-1 levels with aging. These data further raise a more general question as to the role of adipose cells in the regulation of tissue stem cells. PMID:21923862
Magnetic resonance imaging in stress fractures and shin splints.
Aoki, Yoshimitsu; Yasuda, Kazunori; Tohyama, Harukazu; Ito, Hirokazu; Minami, Akio
2004-04-01
The purpose of the current study was to determine whether stress fractures and shin splints could be discriminated with MRI in the early phase. Twenty-two athletes, who had pain in the middle or distal part of their leg during or after sports activity, were evaluated with radiographs and MRI scans. Stress fractures were diagnosed when consecutive radiographs showed local periosteal reaction or a fracture line, and shin splints were diagnosed in all the other cases. In all eight patients with stress fractures, an abnormally wide high signal in the localized bone marrow was the most detectable in the coronal fat-suppressed MRI scan. In 11 patients with shin splints, the coronal fat-suppressed MRI scans showed a linear abnormally high signal along the medial posterior surface of the tibia, and in seven patients with shin splints, the MRI scans showed a linear abnormally high signal along the medial bone marrow. No MRI scans of shin splints showed an abnormally wide high signal in the bone marrow as observed on MRI scans of stress fractures. This study showed that fat-suppressed MRI is useful for discrimination between stress fracture and shin splints before radiographs show a detectable periosteal reaction in the tibia.
Contributions of lean mass and fat mass to bone mineral density: a study in postmenopausal women.
Ho-Pham, Lan T; Nguyen, Nguyen D; Lai, Thai Q; Nguyen, Tuan V
2010-03-26
The relative contribution of lean and fat to the determination of bone mineral density (BMD) in postmenopausal women is a contentious issue. The present study was undertaken to test the hypothesis that lean mass is a better determinant of BMD than fat mass. This cross-sectional study involved 210 postmenopausal women of Vietnamese background, aged between 50 and 85 years, who were randomly sampled from various districts in Ho Chi Minh City (Vietnam). Whole body scans, femoral neck, and lumbar spine BMD were measured by DXA (QDR 4500, Hologic Inc., Waltham, MA). Lean mass (LM) and fat mass (FM) were derived from the whole body scan. Furthermore, lean mass index (LMi) and fat mass index (FMi) were calculated as ratio of LM or FM to body height in metre squared (m2). In multiple linear regression analysis, both LM and FM were independent and significant predictors of BMD at the spine and femoral neck. Age, lean mass and fat mass collectively explained 33% variance of lumbar spine and 38% variance of femoral neck BMD. Replacing LM and FM by LMi and LMi did not alter the result. In both analyses, the influence of LM or LMi was greater than FM and FMi. Simulation analysis suggested that a study with 1000 individuals has a 78% chance of finding the significant effects of both LM and FM, and a 22% chance of finding LM alone significant, and zero chance of finding the effect of fat mass alone. These data suggest that both lean mass and fat mass are important determinants of BMD. For a given body size -- measured either by lean mass or height --women with greater fat mass have greater BMD.
Shen, Wei; Strohmayer, Erika; Post, Kalmon D.; Freda, Pamela U.
2012-01-01
Context: Cushing's Disease (CD) alters fat distribution, muscle mass, adipokine profile, and cardiovascular risk factors. It is not known whether remission entirely reverses these changes. Objectives: Our objective was to determine whether the adverse body composition and cardiovascular risk profile in CD change after remission. Design, Setting, and Patients: Fourteen CD patients were studied prospectively: before surgery (active disease) and again postoperatively 6 months after discontinuing oral glucocorticoids (remission). Whole-body magnetic resonance imaging was used to examine lean and fat tissue distributions. Outcome Measures: Body composition (skeletal muscle and fat in the visceral, bone marrow, sc, and inter-muscular compartments) and cardiovascular risk factors (serum insulin, glucose, leptin, high-molecular-weight adiponectin, C-reactive protein, and lipid profile) were measured in active CD and remission (mean 20 months after surgery). Results: Remission decreased visceral, pelvic bone marrow, sc (including trunk and limb sc), and total fat; waist circumference; and weight (P < 0.05). Remission altered fat distribution, resulting in decreased visceral/total fat (P = 0.04) and visceral fat/skeletal muscle ratios (P = 0.006). Remission decreased the absolute muscle mass (P = 0.015). Cardiovascular risk factors changed: insulin resistance, leptin, and total cholesterol decreased (P < 0.05), but adiponectin, C-reactive protein, and other lipid measures did not change. Conclusions: CD remission reduced nearly all fat depots and reverted fat to a distribution more consistent with favorable cardiovascular risk but decreased skeletal muscle. Remission improved some but not all cardiovascular risk markers. Remission from CD dramatically improves body composition abnormalities but may still be associated with persistent cardiovascular risk. PMID:22419708
Salmaso, Franciany Viana; Vigário, Patrícia dos Santos; Mendonça, Laura Maria Carvalho de; Madeira, Miguel; Vieira Netto, Leonardo; Guimarães, Marcela Rodrigues Moreira; Farias, Maria Lucia Fleiuss de
2014-04-01
To evaluate relationships between nutritional status, sarcopenia and osteoporosis in older women. We studied 44 women, 67-94 years, by mini-nutritional assessment (MAN), glomerular filtration corr. 1.73 m(2), body mass index (BMI), arm circumference and calf (CP and CB), bone mineral density and body composition, DXA (fat mass MG; lean MM). We gauge sarcopenia: IMM MM = MSS + MIS/height(2). We used the Pearson correlation coefficient, p < 0.05 as significant. MNA and IMM were positively correlated with BMI, CP, CB and MG. Age influenced negatively FG corr., BMI, FM, IMM and CP. Fourteen had a history of osteoporotic fractures. The lowest T-score was directly related to MAN and MG. CONCLUSIONS The aging caused the decline of FG, fat mass and muscle; the calf circumference, and brachial reflected nutritional status and body composition; and major influences on BMD were nutritional status and fat mass.
Keratin 13 expression reprograms bone and brain metastases of human prostate cancer cells.
Li, Qinlong; Yin, Lijuan; Jones, Lawrence W; Chu, Gina C-Y; Wu, Jason B-Y; Huang, Jen-Ming; Li, Quanlin; You, Sungyong; Kim, Jayoung; Lu, Yi-Tsung; Mrdenovic, Stefan; Wang, Ruoxiang; Freeman, Michael R; Garraway, Isla; Lewis, Michael S; Chung, Leland W K; Zhau, Haiyen E
2016-12-20
Lethal progression of prostate cancer metastasis can be improved by developing animal models that recapitulate the clinical conditions. We report here that cytokeratin 13 (KRT13), an intermediate filament protein, plays a directive role in prostate cancer bone, brain, and soft tissue metastases. KRT13 expression was elevated in bone, brain, and soft tissue metastatic prostate cancer cell lines and in primary and metastatic clinical prostate, lung, and breast cancer specimens. When KRT13 expression was determined at a single cell level in primary tumor tissues of 44 prostate cancer cases, KRT13 level predicted bone metastasis and the overall survival of prostate cancer patients. Genetically enforced KRT13 expression in human prostate cancer cell lines drove metastases toward mouse bone, brain and soft tissues through a RANKL-independent mechanism, as KRT13 altered the expression of genes associated with EMT, stemness, neuroendocrine/neuromimicry, osteomimicry, development, and extracellular matrices, but not receptor activator NF-κB ligand (RANKL) signaling networks in prostate cancer cells. Our results suggest new inhibitors targeting RANKL-independent pathways should be developed for the treatment of prostate cancer bone and soft tissue metastases.
Delayed coma in head injury: consider cerebral fat embolism.
Metting, Zwany; Rödiger, Lars A; Regtien, Joost G; van der Naalt, Joukje
2009-09-01
To describe a case of a young man with delayed coma after mild head injury, suggestive of cerebral fat embolism (CFE). To underline the value of MR imaging in the differential diagnosis of secondary deterioration in mild head injury. A 21-year-old man admitted with mild head injury after a fall with facial fractures and long bone fractures. He was admitted to the intensive care unit and was mechanically ventilated. Weaning was not possible because of desaturations and pulmonary congestion. Low platelet count and anaemia developed. On several time points during his admission cerebral imaging data were obtained. Non-contrast CT on admission was normal while follow-up MRI showed extensive white matter abnormalities. These imaging abnormalities combined with the clinical presentation suggests cerebral fat embolism (CFE) as the most likely cause of secondary deterioration in our patient. In head injured patients with long bone fractures one should consider cerebral fat embolism. When the classical clinical syndrome is not present, MR imaging is warranted for diagnosis and to exclude other causes of secondary deterioration.
Lorenzen, C L; Griffin, D B; Dockerty, T R; Walter, J P; Johnson, H K; Savell, J W
1996-01-01
Boxed pork was obtained to represent four different purchase specifications (different anatomical separation locations and[or] external fat trim levels) common in the pork industry to conduct a study of retail yields and labor requirements. Bone-in loins (n = 180), boneless loins (n = 94), and Boston butts (n = 148) were assigned randomly to fabrication styles within subprimals. When comparing cutting styles within subprimals, it was evident that cutting style affected percentage of retail yield and cutting time. When more bone-in cuts were prepared from bone-in loin subprimals, retail yields ranged from 92.80 +/- .61 to 95.28 +/- .45%, and processing times ranged from 222.57 +/- 10.13 to 318.99 +/- 7.85 s, from the four suppliers. When more boneless cuts were prepared from bone-in loin subprimals, retail yields ranged from 71.12 +/- 1.10 to 77.92 +/- .77% and processing times ranged from 453.49 +/- 8.95 to 631.09 +/- 15.04 s from the different loins. Comparing boneless to bone-in cuts from bone-in loins resulted in lower yields and required greater processing times. Significant variations in yields and times were found within cutting styles. These differences seemed to have been the result of variation in supplier fat trim level and anatomical separation (primarily scribe length).
Continuous pulse oximeter monitoring for inapparent hypoxemia after long bone fractures.
Wong, Margaret Wan Nar; Tsui, Hon For; Yung, Shu Heng; Chan, Kai Ming; Cheng, Jack Chun Yiu
2004-02-01
Continuous pulse oximeter monitoring (CPOM) and daily intermittent arterial blood gas (ABG) were used to define the incidence, pattern, and severity of inapparent hypoxemia after long bone fractures. Twenty long bone fracture patients and 19 normal control patients were studied. CPOM, daily ABG, hypoxic symptoms, and features of fat embolism syndrome were monitored for 72 hours after fractures and after surgical interventions. CPOM trend curves showed that all fracture patients except one had recurrent desaturations below 90% Sao2 of varying duration and depth. The lowest Sao2 was down to 60% and the longest episode lasted for 1.47 hours. ABG analysis could not show the recurrent phenomena and never detected the corresponding desaturation episodes. Long bone fracture patients had more desaturation episodes, longer total desaturation duration, and larger total area under desaturation curves in both the postfracture and postoperative periods (p < 0.05). The mean Sao2 was significantly lower in the postfracture period. Although most patients remained asymptomatic and recovered spontaneously, two required transient oxygen therapy and one progressed to fat embolism syndrome. Inapparent hypoxia with profound desaturation is common after long bone fractures. CPOM of all patients admitted with long bone fractures is recommended for early detection. In patients who develop inapparent hypoxia, additional pulmonary insult should be avoided or undertaken with care and well timed.
Fefelova, V V; Fefelova, Yu A; Koloskova, T P; Kazakova, T V; Sergeeva, E Yu
2016-01-01
211 practically healthy girls, the students of Krasnoyarsk Medical University in the ages of 16 to 20 years, have been examined. We determined their somatotypes (euriplastic, athletic, subathletic and stenoplastic) and body composition (fat, muscle, bone component). Actual nutrition in these subjects was studied by the method. of 24-hour nutrition recall involving foodstuffs models. Energy consumption in cohorts with different somatotypes did not differ from one another and ranged from 1880 to 2115 kilocalories per day, that corresponded to normal physiological needs in women of this age with the coefficient of physical activity as 1.4 (students). Only the intake of fat (% of calories) exceeded the performance standards. As for macronutrients, the majority of indicators of nutrient intake did not differ significantly among girls with different somatotype, except for fat intake in girls with athletic and stenoplastic somatotypes (p<0.034) and carbohydrate consumption in the objects with euriplastic and subathletic somatotypes (p<0.046). The most significant of the findings is the absence of veracious differences in daily energy consumption between the cohorts with different somatotypes with statistically considerable, differences in both overall dimensions (body mass and length) and the ratios between fat, muscle and bone as somatic components. In general, macronutrient consumption did not show any differences as well. Thus, apart from the energy and macronutrient consumption, definite meaning within the process of the formation of body composition can belong to the characteristics of the changes following nutrition load on lipoid spectrum of blood serum as well 'as the peculiarities of the distribution of substrate flow among cell metabolic paths, appropriate of definite somatotypes.
Dela Cruz, Julie A D; Coke, Tricia; Bodnar, Richard J
2016-08-24
This study uses cellular c-fos activation to assess effects of novel ingestion of fat and sugar on brain dopamine (DA) pathways in rats. Intakes of sugars and fats are mediated by their innate attractions as well as learned preferences. Brain dopamine, especially meso-limbic and meso-cortical projections from the ventral tegmental area (VTA), has been implicated in both of these unlearned and learned responses. The concept of distributed brain networks, wherein several sites and transmitter/peptide systems interact, has been proposed to mediate palatable food intake, but there is limited evidence empirically demonstrating such actions. Thus, sugar intake elicits DA release and increases c-fos-like immunoreactivity (FLI) from individual VTA DA projection zones including the nucleus accumbens (NAC), amygdala (AMY) and medial prefrontal cortex (mPFC) as well as the dorsal striatum. Further, central administration of selective DA receptor antagonists into these sites differentially reduce acquisition and expression of conditioned flavor preferences elicited by sugars or fats. One approach by which to determine whether these sites interacted as a distributed brain network in response to sugar or fat intake would be to simultaneous evaluate whether the VTA and its major mesotelencephalic DA projection zones (prelimbic and infralimbic mPFC, core and shell of the NAc, basolateral and central-cortico-medial AMY) as well as the dorsal striatum would display coordinated and simultaneous FLI activation after oral, unconditioned intake of corn oil (3.5%), glucose (8%), fructose (8%) and saccharin (0.2%) solutions. This approach is a successful first step in identifying the feasibility of using cellular c-fos activation simultaneously across relevant brain sites to study reward-related learning in ingestion of palatable food in rodents.
Sherk, Vanessa D; Bemben, Michael G; Bemben, Debra A
2010-09-01
The nature of muscular contractions and episodes of impact loading during technical rock climbing are often varied and complex, and the resulting effects on bone health are unclear. The purpose of this study was to compare total body, lumbar spine, proximal femur, and forearm areal bone mineral density (aBMD) and tibia and forearm bone quality in male rock climbers (RC) (n = 15), resistance trained men (RT) (n = 16), and untrained male controls (CTR) (n = 16). Total body, anteroposterior (AP) lumbar spine, proximal femur, and forearm aBMD and body composition were measured using dual-energy X-ray absorptiometry (DXA) (Lunar Prodigy, v. 10.50.086; GE Healthcare, Waukesha, Wisconsin, U.S.A.). Volumetric BMD (vBMD), bone content, bone area, and muscle cross-sectional area (MCSA) of the tibia and forearm were measured using pQCT (peripheral quantitative computed tomography; Stratec XCT 3000, Pforzheim, Germany). No significant group differences were seen in bone-free lean body mass. CTR had significantly (p < 0.05) greater body fat % than RC and RT and significantly (p < 0.05) greater fat mass than RC. Lumbar spine and femoral neck aBMD were significantly (p < 0.05) greater in RT compared to both RC and CTR. RC had significantly (p < 0.05) lower aBMD at the 33% radius site than CTR. Forearm MCSA was significantly (p < 0.05) lower in CTR than in the other groups. No significant differences were seen between groups for vBMD or bone area of the tibia and forearm. In conclusion, resistance-trained men had higher bone density at the central skeletal sites than rock climbers; however, bone quality variables of the peripheral limbs were similar in rock climber and resistance-trained groups.
Sakai, Akinori
2011-04-01
We developed a voluntarily climbing animal model to investigate the effect of skeletal loading on bone tissue. At the cross section of the mid-femur, climbing exercise increases outer diameter and area of cortical bone. The mechanical strength of the femur is increased. This change of cortical volume and structure is more marked in anti-gravity exercise, such as climbing and jumping, than aerobic exercise. At the bone marrow area, climbing exercise increases trabecular bone volume and osteoblast number, while it decreases fat volume and adipocyte number. Skeletal loading promotes differentiation from mesenchymal stem cells to osteoblasts and suppresses that to adipocytes by facilitating the signal through PTH÷PTHrP receptor.
Zhou, Hui; Chen, Yuling; Zhuo, Yong; Lv, Gang; Lin, Yan; Feng, Bin; Fang, Zhengfeng; Che, Lianqiang; Li, Jian; Xu, Shengyu; Wu, De
2017-03-01
Twenty primiparous sows were allocated to two treatments to evaluate the effects of maternal 25-hydroxycholecalciferol (25OHD 3 ) supplementation during gestation and lactation on milk quality and serum bone status markers of sows and bone quality of piglets. Immediately after mating, sows were randomly allotted to one of two diets supplemented with 50 µg/kg 25OHD 3 or basal diets without 25OHD 3 . Blood and milk samples were obtained. At birth and weaning, 10 piglets from each treatment were killed for bone quality analysis. 25OHD 3 -fed sows provided one more piglet at farrowing and 1.17 more piglets at weaning than sows fed basal diets. The contents of solids not-fat, protein, fat or lactose were increased in milk from days 7 and 14 of lactation in 25OHD 3 -supplemented sows and 25OHD 3 concentrations in milk were increased by dietary 25OHD 3 supplementation. Dietary 25OHD 3 supplementation increased serum alkaline phosphatase activity but had no effect on serum tartrate-resistant acid phosphatase activity of sows. Maternal 25OHD 3 supplementation improved bone strength, density and ash content of newborn piglets rather than those of weaning piglets. In conclusion, 25OHD 3 supplementation in maternal diets improved reproductive performance, milk quality and bone status of sows as well as bone quality of newborn piglets. © 2016 Japanese Society of Animal Science.
Govindarajan, Parameswari; Schlewitz, Gudrun; Schliefke, Nathalie; Weisweiler, David; Alt, Volker; Thormann, Ulrich; Lips, Katrin Susanne; Wenisch, Sabine; Langheinrich, Alexander C.; Zahner, Daniel; Hemdan, Nasr Y.; Böcker, Wolfgang; Schnettler, Reinhard; Heiss, Christian
2013-01-01
Background Osteoporosis is a multi-factorial, chronic, skeletal disease highly prevalent in post-menopausal women and is influenced by hormonal and dietary factors. Because animal models are imperative for disease diagnostics, the present study establishes and evaluates enhanced osteoporosis obtained through combined ovariectomy and deficient diet by DEXA (dual-energy X-ray absorptiometry) for a prolonged time period. Material/Methods Sprague-Dawley rats were randomly divided into sham (laparotomized) and OVX-diet (ovariectomized and fed with deficient diet) groups. Different skeletal sites were scanned by DEXA at the following time points: M0 (baseline), M12 (12 months post-surgery), and M14 (14 months post-surgery). Parameters analyzed included BMD (bone mineral density), BMC (bone mineral content), bone area, and fat (%). Regression analysis was performed to determine the interrelationships between BMC, BMD, and bone area from M0 to M14. Results BMD and BMC were significantly lower in OVX-diet rats at M12 and M14 compared to sham rats. The Z-scores were below −5 in OVX-diet rats at M12, but still decreased at M14 in OVX-diet rats. Bone area and percent fat were significantly lower in OVX-diet rats at M14 compared to sham rats. The regression coefficients for BMD vs. bone area, BMC vs. bone area, and BMC vs. BMD of OVX-diet rats increased with time. This is explained by differential percent change in BMD, BMC, and bone area with respect to time and disease progression. Conclusions Combined ovariectomy and deficient diet in rats caused significant reduction of BMD, BMC, and bone area, with nearly 40% bone loss after 14 months, indicating the development of severe osteoporosis. An increasing regression coefficient of BMD vs. bone area with disease progression emphasizes bone area as an important parameter, along with BMD and BMC, for prediction of fracture risk. PMID:23446183
Govindarajan, Parameswari; Schlewitz, Gudrun; Schliefke, Nathalie; Weisweiler, David; Alt, Volker; Thormann, Ulrich; Lips, Katrin Susanne; Wenisch, Sabine; Langheinrich, Alexander C; Zahner, Daniel; Hemdan, Nasr Y; Böcker, Wolfgang; Schnettler, Reinhard; Heiss, Christian
2013-02-28
Osteoporosis is a multi-factorial, chronic, skeletal disease highly prevalent in post-menopausal women and is influenced by hormonal and dietary factors. Because animal models are imperative for disease diagnostics, the present study establishes and evaluates enhanced osteoporosis obtained through combined ovariectomy and deficient diet by DEXA (dual-energy X-ray absorptiometry) for a prolonged time period. Sprague-Dawley rats were randomly divided into sham (laparotomized) and OVX-diet (ovariectomized and fed with deficient diet) groups. Different skeletal sites were scanned by DEXA at the following time points: M0 (baseline), M12 (12 months post-surgery), and M14 (14 months post-surgery). Parameters analyzed included BMD (bone mineral density), BMC (bone mineral content), bone area, and fat (%). Regression analysis was performed to determine the interrelationships between BMC, BMD, and bone area from M0 to M14. BMD and BMC were significantly lower in OVX-diet rats at M12 and M14 compared to sham rats. The Z-scores were below -5 in OVX-diet rats at M12, but still decreased at M14 in OVX-diet rats. Bone area and percent fat were significantly lower in OVX-diet rats at M14 compared to sham rats. The regression coefficients for BMD vs. bone area, BMC vs. bone area, and BMC vs. BMD of OVX-diet rats increased with time. This is explained by differential percent change in BMD, BMC, and bone area with respect to time and disease progression. Combined ovariectomy and deficient diet in rats caused significant reduction of BMD, BMC, and bone area, with nearly 40% bone loss after 14 months, indicating the development of severe osteoporosis. An increasing regression coefficient of BMD vs. bone area with disease progression emphasizes bone area as an important parameter, along with BMD and BMC, for prediction of fracture risk.
Liu, Xi-Ming; Huang, Jin-Cheng; Wang, Guo-Dong; Lan, Sheng-Hui; Wang, Hua-Song; Pan, Chang-Wu; Zhang, Ji-Ping; Cai, Xian-Hua
2014-01-01
This study aims to investigate the clinical efficacy of Dextran 40 plus dexamethasone on the prevention of fat embolism syndrome (FES) in high-risk patients with long bone shaft fractures. According to the different preventive medication, a total of 1837 cases of long bone shaft fracture patients with injury severity score (ISS) > 16 were divided into four groups: dextran plus dexamethasone group, dextran group, dexamethasone group and control group. The morbidity and mortality of FES in each group were analyzed with pairwise comparison analysis. There were totally 17 cases of FES and 1 case died. The morbidity of FES was 0.33% in dextran plus dexamethasone group and significantly lowers than that of other groups (P < 0.05). There was no significant difference among other groups (P > 0.05). Conclusion from our data is dextran 40 plus dexamethasone can effectively prevent long bone shaft fractures occurring in high-risk patients with FES.
The use of dual-energy X-ray absorptiometry to estimate the dissected composition of lamb carcasses.
Mercier, J; Pomar, C; Marcoux, M; Goulet, F; Thériault, M; Castonguay, F W
2006-06-01
A total of 140 male and female Dorset and Suffolk lambs were slaughtered according to four live weight classes (36-39kg, 41-44kg, 46-49kg and 51-54kg). Total tissue, fat and lean masses, and bone mineral content measured by dual-energy X-ray absorptiometry (DXA) were used to predict dissected tissue weights. The DXA total weights accurately predict half-carcasses and primal cuts weights (shoulder, leg, loin and flank) (R(2)>0.99, CVe<1.3%). The prediction of the half-carcass dissected fat percentage is weaker (R(2)=0.77, CVe=10.4%). Fatness prediction accuracy is equivalent for the shoulder, leg and loin (R(2) between 0.68 and 0.78, CVe between 10% and 13%). The R(2) obtained when predicting dissected lean content from DXA variables is 0.93 for the half-carcass and higher than 0.83 for all cuts other than flank (CVe are between 3.5% and 6.5%, except for the flank, which is 9.1%). The prediction of bone weight using the bone mineral content is not very accurate for the half-carcass, shoulder and leg (R(2): 0.48, 0.47 and 0.43; CVe: 10.2%, 12.0% and 11.6%, respectively). The situation improves, however, for the loin (R(2)=0.70, CVe=10.7%). In conclusion, DXA is an effective technology for predicting total weight and the amount of lean and fat in lamb carcasses and their primal cuts.
Differential Brain Activation in Anorexia Nervosa to Fat and Thin Words During a Stroop Task
Redgrave, Graham W.; Bakker, Arnold; Bello, Nicholas T.; Caffo, Brian S.; Coughlin, Janelle W.; Guarda, Angela S.; McEntee, Julie E.; Pekar, James J.; Reinblatt, Shauna P.; Verduzco, Guillermo; Moran, Timothy H.
2010-01-01
We measured brain activation in six anorexia nervosa patients and six healthy controls performing a novel emotional Stroop task using Fat, Thin, and Neutral words, and words made of XXXXs. Reaction times increased in the patient group in Thin and Fat conditions. In the Thin-XXXX contrast, patients showed greater activation than controls at the junction of left insula, frontal and temporal lobes and in left middle and medial frontal gyri. In the Fat-XXXX contrast, controls showed greater activation in left dorsolateral prefrontal cortex and right parietal areas. Mechanisms underlying attentional bias in anorexia nervosa likely differ under conditions of positive and negative valence. This paradigm is a promising tool to examine neural mediation of emotional response in anorexia nervosa. PMID:18628661
Relative ability of fat and sugar tastes to activate reward, gustatory, and somatosensory regions.
Stice, Eric; Burger, Kyle S; Yokum, Sonja
2013-12-01
Although the intake of high-fat and high-sugar food activates mesolimbic reward, gustatory, and oral somatosensory brain regions, contributing to overeating, few studies have examined the relative role of fat and sugar in the activation of these brain regions, which would inform policy, prevention, and treatment interventions designed to reduce obesity. We evaluated the effect of a high-fat or high-sugar equicaloric chocolate milkshake and increasing fat or sugar milkshake content on the activation of these regions. Functional magnetic resonance imaging was used to assess the neural response to the intake of high-fat/high-sugar, high-fat/low-sugar, low-fat/high-sugar, and low-fat/low-sugar chocolate milkshakes and a tasteless solution in 106 lean adolescents (mean ± SD age = 15.00 ± 0.88 y). Analyses contrasted the activation to the various milkshakes. High-fat compared with high-sugar equicaloric milkshakes caused greater activation in the bilateral caudate, postcentral gyrus, hippocampus, and inferior frontal gyrus. High-sugar compared with high-fat equicaloric milkshakes caused greater activation in the bilateral insula extending into the putamen, the Rolandic operculum, and thalamus, which produced large activation regions. Increasing sugar in low-fat milkshakes caused greater activation in the bilateral insula and Rolandic operculum; increasing fat content did not elicit greater activation in any region. Fat caused greater activation of the caudate and oral somatosensory regions than did sugar, sugar caused greater activation in the putamen and gustatory regions than did fat, increasing sugar caused greater activity in gustatory regions, and increasing fat did not affect the activation. Results imply that sugar more effectively recruits reward and gustatory regions, suggesting that policy, prevention, and treatment interventions should prioritize reductions in sugar intake. This trial was registered at clinicaltrials.gov as DK092468.
Fat embolism due to bilateral femoral fracture: a case report
Porpodis, Konstantinos; Karanikas, Michael; Zarogoulidis, Paul; Konoglou, Maria; Domvri, Kalliopi; Mitrakas, Alexandros; Boglou, Panagiotis; Bakali, Stamatia; Iordanidis, Alkis; Zervas, Vasilis; Courcoutsakis, Nikolaos; Katsikogiannis, Nikolaos; Zarogoulidis, Konstantinos
2012-01-01
Fat embolism syndrome is usually associated with surgery for large bone fractures. Symptoms usually occur within 36 hours of hospitalization after traumatic injury. We present a case with fat embolism syndrome due to femur fracture. Prompt supportive treatment of the patient’s respiratory system and additional pharmaceutical treatment provided the positive clinical outcome. There is no specific therapy for fat embolism syndrome; prevention, early diagnosis, and adequate symptomatic treatment are very important. Most of the studies in the last 20 years have shown that the incidence of fat embolism syndrome is reduced by early stabilization of the fractures and the risk is even further decreased with surgical correction rather than conservative management. PMID:22287848
Fat embolism due to bilateral femoral fracture: a case report.
Porpodis, Konstantinos; Karanikas, Michael; Zarogoulidis, Paul; Konoglou, Maria; Domvri, Kalliopi; Mitrakas, Alexandros; Boglou, Panagiotis; Bakali, Stamatia; Iordanidis, Alkis; Zervas, Vasilis; Courcoutsakis, Nikolaos; Katsikogiannis, Nikolaos; Zarogoulidis, Konstantinos
2012-01-01
Fat embolism syndrome is usually associated with surgery for large bone fractures. Symptoms usually occur within 36 hours of hospitalization after traumatic injury. We present a case with fat embolism syndrome due to femur fracture. Prompt supportive treatment of the patient's respiratory system and additional pharmaceutical treatment provided the positive clinical outcome. There is no specific therapy for fat embolism syndrome; prevention, early diagnosis, and adequate symptomatic treatment are very important. Most of the studies in the last 20 years have shown that the incidence of fat embolism syndrome is reduced by early stabilization of the fractures and the risk is even further decreased with surgical correction rather than conservative management.
Prediction of Carcass Composition Using Carcass Grading Traits in Hanwoo Steers.
Lee, Jooyoung; Won, Seunggun; Lee, Jeongkoo; Kim, Jongbok
2016-09-01
The prediction of carcass composition in Hanwoo steers is very important for value-based marketing, and the improvement of prediction accuracy and precision can be achieved through the analyses of independent variables using a prediction equation with a sufficient dataset. The present study was conducted to develop a prediction equation for Hanwoo carcass composition for which data was collected from 7,907 Hanwoo steers raised at a private farm in Gangwon Province, South Korea, and slaughtered in the period between January 2009 and September 2014. Carcass traits such as carcass weight (CWT), back fat thickness (BFT), eye-muscle area (EMA), and marbling score (MAR) were used as independent variables for the development of a prediction equation for carcass composition, such as retail cut weight and percentage (RC, and %RC, respectively), trimmed fat weight and percentage (FAT, and %FAT, respectively), and separated bone weight and percentage (BONE, and %BONE), and its feasibility for practical use was evaluated using the estimated retail yield percentage (ELP) currently used in Korea. The equations were functions of all the variables, and the significance was estimated via stepwise regression analyses. Further, the model equations were verified by means of the residual standard deviation and the coefficient of determination (R(2)) between the predicted and observed values. As the results of stepwise analyses, CWT was the most important single variable in the equation for RC and FAT, and BFT was the most important variable for the equation of %RC and %FAT. The precision and accuracy of three variable equation consisting CWT, BFT, and EMA were very similar to those of four variable equation that included all for independent variables (CWT, BFT, EMA, and MAR) in RC and FAT, while the three variable equations provided a more accurate prediction for %RC. Consequently, the three-variable equation might be more appropriate for practical use than the four-variable equation based on its easy and cost-effective measurement. However, a relatively high average difference for the ELP in absolute value implies a revision of the official equation may be required, although the current official equation for predicting RC with three variables is still valid.
Fat transfer and fatal macroembolization.
Astarita, Denis C; Scheinin, Lisa A; Sathyavagiswaran, Lakshmanan
2015-03-01
Fat embolism is usually associated with long bone fractures or other trauma. The diagnosis is usually clinical, and in most cases, emboli are not fatal and not usually seen on gross examination. At the Los Angeles County Coroner's Office, we autopsied the victim of fatal macroscopic fat embolization to the lungs. The patient died during buttock enhancement surgery when fat from liposuction was injected into her buttocks. Fat embolism from liposuction and fat injection is reportedly rare, and macroscopic embolization is rarer still. Varicose veins can occur in the area of the sciatic notch and are known to cause painful sciatica symptoms. We suggest them as a potential conduit for macroscopic fat to reach the lungs. Simple pre-operative questioning for sciatica symptoms and possible radiologic study to rule out sciatic varices seem prudent before undertaking buttock-enhancing surgery. Careful fat injection with pre-aspiration is always advised. © 2015 American Academy of Forensic Sciences.
Novel Therapy for Bone Regeneration in Large Segmental Defects
2017-12-01
HC, Giannoudis PV. Fat embolism and IM nailing. Injury. 2006;37(Suppl 4):S1–2. 38. Wenda K, Ritter G, Degreif J, Rudigier J. Pathogenesis of pul...morphogenetic protein (BMP), thrombopoietin (TPO), therapy, fracture healing, bone regeneration, minipig, pig 16. SECURITY CLASSIFICATION OF: 17... fracture healing, bone regeneration, minipig, pig 3. OVERALL PROJECT SUMMARY: Project start date 30/09/2013 Project end date 29/09/2017 (with 1 year NCE
Cognitive outcome of cerebral fat embolism.
Manousakis, Georgios; Han, Dong Y; Backonja, Miroslav
2012-11-01
Cerebral fat embolism is an uncommon but serious complication of long-bone fracture. We report a young adult patient who sustained fat embolism after a femoral fracture. He developed stupor and coma within 24 hours from his injury. His acute recovery was characterized by marked frontal dysfunction. A comprehensive neuropsychological evaluation 4 months later revealed overall normal cognitive function, except for mild residual frontal dysfunction and weakness of verbal memory. Copyright © 2012 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Piezosurgery prevents brain tissue damage: an experimental study on a new rat model.
Pavlíková, G; Foltán, R; Burian, M; Horká, E; Adámek, S; Hejčl, A; Hanzelka, T; Sedý, J
2011-08-01
Piezosurgery is a promising meticulous system for bone cutting, based on ultrasound microvibrations. It is thought that the impact of piezosurgery on the integrity of soft tissue is generally low, but it has not been examined critically. The authors undertook an experimental study to evaluate the brain tissue response to skull bone removal using piezosurgery compared with a conventional drilling method. In Wistar male rats, a circular bone window was drilled to the parietal bone using piezosurgery on one side and a conventional bone drill on the other side. The behavioural performance of animals was evaluated using the motor BBB test and sensory plantar test. The brains of animals were evaluated by magnetic resonance imaging (MRI) and histology. The results of MRI showed significantly increased depth and width of the brain lesion in the region of conventional drilling compared with the region where piezosurgery was used. Cresylviolet and NF 160 staining confirmed these findings. There was no significant difference in any of the behavioural tests between the two groups. In conclusion, piezosurgery is a safe method for the performance of osteotomy in close relation to soft tissue, including an extremely injury-sensitive tissue such as brain. Copyright © 2011 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Kim, Min Jung; Park, Jong-Heum; Kwon, Dae Young; Yang, Hye Jeong; Kim, Da Sol; Kang, Suna; Shin, Bae Keun; Moon, Na Rang; Song, Beom-Seok; Kim, Jae-Hun; Park, Sunmin
2015-04-01
Since Korean mistletoe (Viscum album) has been used for alleviating metabolic diseases, it may also prevent the impairment of energy, glucose, lipid, and bone metabolisms in an estrogen-deficient animal model. We determined that long-term consumption of Korean mistletoe water extract (KME) can alleviate menopausal symptoms such as hot flush, increased abdominal fat mass, dyslipidemia, hyperglycemia, and decreased bone mineral density in ovariectomized (OVX) rats fed a high-fat diet, and explored the mechanisms of the effects. OVX rats were divided into four groups and fed high-fat diets supplemented with either 0.6% dextrin (control), 0.2% lyophilized KME + 0.4% dextrin (KME-L), or 0.6% lyophilized KME (KME-H). Sham rats were fed with the high-fat diets with 0.6% dextrin as a normal-control without estrogen deficiency. After eight weeks, OVX rats exhibited impaired energy, glucose and lipid metabolism, and decreased uterine and bone masses. KME-L did not alleviate energy dysfunction. However, KME-H lowered serum levels of total-, LDL-cholesterol, and triglycerides and elevated serum HDL-cholesterol levels in OVX rats with dyslipidemia, to similar levels as normal-control rats. Furthermore, KME-H improved HOMA-IR, an indicator of insulin resistance, in OVX rats. Surprisingly, KME-H fed rats had greater lean mass in the abdomen and leg without differences in fat mass but neither dosage of KME altered bone mineral density in the lumbar spine and femur. The increased lean mass was related to greater phosphorylation of mTOR and eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) in the quadriceps muscles. Hepatic triglyceride contents were lowered with KME-H in OVX rats by increasing carnitine palmitoyltransferase-1 (CPT-1) expression and decreasing fatty acid synthase (FAS) and sterol regulatory element-binding protein-1c (SREBP-1c) expression. In conclusion, KME may be useful for preventing some menopausal symptoms such as hot flushes, dyslipidemia, hepatic steatosis, and loss of muscle mass in post-menopausal women. © 2014 by the Society for Experimental Biology and Medicine.
Kim, Min Jung; Park, Jong-Heum; Kwon, Dae Young; Yang, Hye Jeong; Kim, Da Sol; Kang, Suna; Shin, Bae Keun; Moon, Na Rang; Song, Beom-Seok; Kim, Jae-Hun
2015-01-01
Since Korean mistletoe (Viscum album) has been used for alleviating metabolic diseases, it may also prevent the impairment of energy, glucose, lipid, and bone metabolisms in an estrogen-deficient animal model. We determined that long-term consumption of Korean mistletoe water extract (KME) can alleviate menopausal symptoms such as hot flush, increased abdominal fat mass, dyslipidemia, hyperglycemia, and decreased bone mineral density in ovariectomized (OVX) rats fed a high-fat diet, and explored the mechanisms of the effects. OVX rats were divided into four groups and fed high-fat diets supplemented with either 0.6% dextrin (control), 0.2% lyophilized KME + 0.4% dextrin (KME-L), or 0.6% lyophilized KME (KME-H). Sham rats were fed with the high-fat diets with 0.6% dextrin as a normal-control without estrogen deficiency. After eight weeks, OVX rats exhibited impaired energy, glucose and lipid metabolism, and decreased uterine and bone masses. KME-L did not alleviate energy dysfunction. However, KME-H lowered serum levels of total-, LDL-cholesterol, and triglycerides and elevated serum HDL-cholesterol levels in OVX rats with dyslipidemia, to similar levels as normal-control rats. Furthermore, KME-H improved HOMA-IR, an indicator of insulin resistance, in OVX rats. Surprisingly, KME-H fed rats had greater lean mass in the abdomen and leg without differences in fat mass but neither dosage of KME altered bone mineral density in the lumbar spine and femur. The increased lean mass was related to greater phosphorylation of mTOR and eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) in the quadriceps muscles. Hepatic triglyceride contents were lowered with KME-H in OVX rats by increasing carnitine palmitoyltransferase-1 (CPT-1) expression and decreasing fatty acid synthase (FAS) and sterol regulatory element-binding protein-1c (SREBP-1c) expression. In conclusion, KME may be useful for preventing some menopausal symptoms such as hot flushes, dyslipidemia, hepatic steatosis, and loss of muscle mass in post-menopausal women. PMID:25258426
Canine body composition quantification using 3 tesla fat-water MRI.
Gifford, Aliya; Kullberg, Joel; Berglund, Johan; Malmberg, Filip; Coate, Katie C; Williams, Phillip E; Cherrington, Alan D; Avison, Malcolm J; Welch, E Brian
2014-02-01
To test the hypothesis that a whole-body fat-water MRI (FWMRI) protocol acquired at 3 Tesla combined with semi-automated image analysis techniques enables precise volume and mass quantification of adipose, lean, and bone tissue depots that agree with static scale mass and scale mass changes in the context of a longitudinal study of large-breed dogs placed on an obesogenic high-fat, high-fructose diet. Six healthy adult male dogs were scanned twice, at weeks 0 (baseline) and 4, of the dietary regiment. FWMRI-derived volumes of adipose tissue (total, visceral, and subcutaneous), lean tissue, and cortical bone were quantified using a semi-automated approach. Volumes were converted to masses using published tissue densities. FWMRI-derived total mass corresponds with scale mass with a concordance correlation coefficient of 0.931 (95% confidence interval = [0.813, 0.975]), and slope and intercept values of 1.12 and -2.23 kg, respectively. Visceral, subcutaneous and total adipose tissue masses increased significantly from weeks 0 to 4, while neither cortical bone nor lean tissue masses changed significantly. This is evidenced by a mean percent change of 70.2% for visceral, 67.0% for subcutaneous, and 67.1% for total adipose tissue. FWMRI can precisely quantify and map body composition with respect to adipose, lean, and bone tissue depots. The described approach provides a valuable tool to examine the role of distinct tissue depots in an established animal model of human metabolic disease. Copyright © 2013 Wiley Periodicals, Inc.
Resistin polymorphisms are associated with muscle, bone, and fat phenotypes in white men and women.
Pistilli, Emidio E; Gordish-Dressman, Heather; Seip, Richard L; Devaney, Joseph M; Thompson, Paul D; Price, Thomas B; Angelopoulos, Theodore J; Clarkson, Priscilla M; Moyna, Niall M; Pescatello, Linda S; Visich, Paul S; Zoeller, Robert F; Hoffman, Eric P; Gordon, Paul M
2007-02-01
The biological function of resistin (RST) is unknown, although it may have roles in obesity, diabetes, and insulin resistance. The objective of this study was to examine the effects of single nucleotide polymorphisms (SNPs) in the human RST gene on muscle, bone, and adipose tissue phenotypes and in response to resistance training (RT). Subjects were white and consisted of strength (n = 482) and size (n = 409) cohorts who had not performed RT in the previous year. Subjects completed 12 weeks of structured, unilateral upper arm RT aimed at increasing the size and strength of the non-dominant arm, using their dominant arm as an untrained control. Strength measurements were taken pre- and post-12-week RT and consisted of elbow flexor isometric strength and one-repetition maximum during a biceps curl using free weights. Whole muscle, subcutaneous fat, and cortical bone volumes were measured by magnetic resonance imaging. Six RST SNPs were identified. Analysis of covariance was used to test for effects of the SNPs on pre- and post-muscle strength and whole muscle, fat, and bone volumes independent of gender, age, and body weight. Five RST SNPs (-537 A>C, -420 C>G, 398 C>T, 540 G>A, 980 C>G) were associated with measured phenotypes among subjects when stratified by BMI (<25, >/ or = 25 kg/m(2)). Several gender-specific associations were observed between RST SNPs and phenotypes among individuals with a BMI > or = 25. Conversely, only two associations were observed among individuals with a BMI < 25. These data support previous identified associations of RST with adipose tissue and demonstrate additional associations with bone and skeletal muscle that warrant further investigation.
Kim, Kyong-Chol; Chun, Hyejin; Lai, ChaoQiang; Parnell, Laurence D; Jang, Yangsoo; Lee, Jongho; Ordovas, Jose M
2015-03-01
Contrary to the traditional belief that obesity acts as a protective factor for bone, recent epidemiologic studies have shown that body fat might be a risk factor for osteoporosis and bone fracture. Accordingly, we evaluated the association between the phenotypes of osteoporosis or vertebral fracture and variants of obesity-related genes, peroxisome proliferator-activated receptor-gamma (PPARG), runt-related transcription factor 2 (RUNX2), leptin receptor (LEPR), and adiponectin (ADIPOQ). In total, 907 postmenopausal healthy women, aged 60-79 years, were included in this study. BMD and biomarkers of bone health and adiposity were measured. We genotyped for four single nucleotide polymorphisms (SNPs) from four genes (PPARG, RUNX2, LEPR, ADIPOQ). A general linear model for continuous dependent variables and a logistic regression model for categorical dependent variables were used to analyze the statistical differences among genotype groups. Compared with the TT subjects at rs7771980 in RUNX2, C-carrier (TC + CC) subjects had a lower vertebral fracture risk after adjusting for age, smoking, alcohol, total calorie intake, total energy expenditure, total calcium intake, total fat intake, weight, body fat. Odds ratio (OR) and 95% interval (CI) for the vertebral fracture risk was 0.55 (95% CI 0.32-0.94). After adjusting for multiple variables, the prevalence of vertebral fracture was highest in GG subjects at rs1501299 in ADIPOQ (p = 0.0473). A high calcium intake (>1000 mg/day) contributed to a high bone mineral density (BMD) in GT + TT subjects at rs1501299 in ADIPOQ (p for interaction = 0.0295). Even if the mechanisms between obesity-related genes and bone health are not fully established, the results of our study revealed the association of certain SNPs from obesity-related genes with BMD or vertebral fracture risk in postmenopausal Korean women.
Petrizzo, John; DiMenna, Frederick J; Martins, Kimberly; Wygand, John; Otto, Robert M
2017-12-01
To achieve the criterion appearance before competing in a physique competition, athletes undergo preparatory regimens involving high-volume intense resistance and aerobic exercise with hypocaloric energy intake. As the popularity of "drug-free" competition increases, more athletes are facing this challenge without the recuperative advantage provided by performance-enhancing drugs. Consequently, the likelihood of loss of lean body and/or bone mass is increased. The purpose of this investigation was to monitor changes in body composition for a 29-year-old self-proclaimed drug-free female figure competitor during a 32-week preparatory regimen comprising high-volume resistance and aerobic exercise with hypocaloric energy intake. We used dual-energy x-ray absorptiometry (DXA) to evaluate regional fat and bone mineral density. During the initial 22 weeks, the subject reduced energy intake and engaged in resistance (4-5 sessions/week) and aerobic (3 sessions/week) training. During the final 10 weeks, the subject increased exercise frequency to 6 (resistance) and 4 (aerobic) sessions/week while ingesting 1130-1380 kcal/day. During this 10-week period, she consumed a high quantity of protein (~55% of energy intake) and nutritional supplements. During the 32 weeks, body mass and fat mass decreased by 12% and 55%, respectively. Conversely, lean body mass increased by 1.5%, an amount that exceeded the coefficient of variation associated with DXA-derived measurement. Total bone mineral density was unchanged throughout. In summary, in preparation for a figure competition, a self-proclaimed drug-free female achieved the low body-fat percentage required for success in competition without losing lean mass or bone density by following a 32-week preparatory exercise and nutritional regimen.
Matsumoto, Hideyuki; Hamaguchi, Hirotoshi; Nakayama, Takahiro; Oda, Tetsuya; Ikagawa, Takashi; Imafuku, Ichiro
2008-02-01
On plain brain computed tomography (CT), it is difficult to evaluate stenosis of internal carotid artery (ICA) because ICA is surrounded by structures, even though we can observe calcification of carotid siphon in some patients by using bone condition. However the pathologic significance has not been well known. We studied the pathologic significance of carotid siphon calcification observed on bone condition of brain CT. A total of 112 patients who were diagnosed or suspected as cerebrovascular diseases were registered. We classified the calcification into four levels (none, mild, moderate, severe) based on the degree of calcification. Then we compared it with the degree of stenosis of carotid siphon seen on brain magnetic resonance angiography (MRA) and with max intima-medial thickness (IMT) from common carotid artery (CCA) to ICA on carotid ultrasonography. The mean +/- standard deviation of max IMT to none, mild, moderate and severe in the degree of calcification were 1.03 +/- 0.64 (0.4-2.8), 1.65 +/- 0.83 (0.5-4.1), 2.03 +/- 0.83 (0.8-4.1) and 2.81 +/- 1.15 (0.7-6.5) mm, respectively. The calcification on brain CT significantly correlated with the degree of stenosis on brain MRA and with max IMT on carotid ultrasonography. The calcification of carotid siphon on bone condition of brain CT correlated with stenosis of the same portion and atherosclerosis of CCA bifurcation. Recently, on DICOM viewer, clinicians can convert plain condition into bone condition on brain CT due to popularization of PACS. We should pay attention to calcification of carotid siphon in patients with ischemic cerebrovascular diseases because we can estimate the atherosclerosis of both carotid siphon and CCA bifurcation easily and immediately.
NASA Astrophysics Data System (ADS)
Ladefoged, Claes N.; Benoit, Didier; Law, Ian; Holm, Søren; Kjær, Andreas; Højgaard, Liselotte; Hansen, Adam E.; Andersen, Flemming L.
2015-10-01
The reconstruction of PET brain data in a PET/MR hybrid scanner is challenging in the absence of transmission sources, where MR images are used for MR-based attenuation correction (MR-AC). The main challenge of MR-AC is to separate bone and air, as neither have a signal in traditional MR images, and to assign the correct linear attenuation coefficient to bone. The ultra-short echo time (UTE) MR sequence was proposed as a basis for MR-AC as this sequence shows a small signal in bone. The purpose of this study was to develop a new clinically feasible MR-AC method with patient specific continuous-valued linear attenuation coefficients in bone that provides accurate reconstructed PET image data. A total of 164 [18F]FDG PET/MR patients were included in this study, of which 10 were used for training. MR-AC was based on either standard CT (reference), UTE or our method (RESOLUTE). The reconstructed PET images were evaluated in the whole brain, as well as regionally in the brain using a ROI-based analysis. Our method segments air, brain, cerebral spinal fluid, and soft tissue voxels on the unprocessed UTE TE images, and uses a mapping of R2* values to CT Hounsfield Units (HU) to measure the density in bone voxels. The average error of our method in the brain was 0.1% and less than 1.2% in any region of the brain. On average 95% of the brain was within ±10% of PETCT, compared to 72% when using UTE. The proposed method is clinically feasible, reducing both the global and local errors on the reconstructed PET images, as well as limiting the number and extent of the outliers.
Vitamin D status in young women and its relationship to body fat, final height and peak bone mass
USDA-ARS?s Scientific Manuscript database
Vitamin D insufficiency has now reached epidemic proportion and has been linked to low bone mineral density (BMD), increased risk of fracture and obesity in adults. However, this relationship has not been well characterized in adolescents and young adults. We examined the relationship between seru...
Vitamin D Status and Its Relationship to Body Fat, Final Height, and Peak Bone Mass in Young Women
USDA-ARS?s Scientific Manuscript database
Vitamin D insufficiency has now reached epidemic proportion and has been linked to low bone mineral density (BMD), increased risk of fracture and obesity in adults. However, this relationship has not been well characterized in adolescents and young adults. We examined the relationship between seru...
Charoenphandhu, Narattaphol; Suntornsaratoon, Panan; Krishnamra, Nateetip; Sa-Nguanmoo, Piangkwan; Tanajak, Pongpun; Wang, Xiaojie; Liang, Guang; Li, Xiaokun; Jiang, Chao; Chattipakorn, Nipon; Chattipakorn, Siriporn
2017-03-01
Fibroblast growth factor (FGF)-21 is a potent endocrine factor that improves insulin resistance and obesity-associated metabolic disorders. However, concomitant activation of peroxisome proliferator-activated receptor-γ by FGF-21 makes bone susceptible to osteopenia and fragility fracture. Since an increase in body weight often induced adaptive change in bone by making it resistant to fracture, it was unclear whether FGF-21 would still induce bone defects in overweight rats. Therefore, the present study aimed to investigate bone microstructure and its mechanical properties in high fat diet (HF)-fed rats treated with 0.1 mg/kg/day FGF-21. Eighteen male rats were divided into two groups to receive either a normal diet or HF for 12 weeks. HF rats were then divided into two subgroups to receive either vehicle or FGF-21 for 4 weeks. The results showed that HF led to obesity, dyslipidemia and insulin resistance, as indicated by hyperinsulinemia with euglycemia. In HF rats, there was an increase in tibial yield displacement (an indicator of ability to be deformed without losing toughness, as determined by 3-point bending) without changes in tibial trabecular volumetric bone mineral density (vBMD) or cortical bone parameters, e.g., cortical thickness and bone area. FGF-21 treatment strongly improved the metabolic parameters and increased insulin sensitivity in HF rats. However, FGF-21-treated HF rats showed lower yield displacement, trabecular vBMD, trabecular bone volume, trabecular thickness, and osteoblast surface compared with vehicle-treated HF rats. These findings suggest that, despite being a potent antagonist of insulin resistance and visceral fat accumulation, FGF-21 is associated with bone defects in HF rats.
Low-carbohydrate, high-fat diets have sex-specific effects on bone health in rats.
Zengin, Ayse; Kropp, Benedikt; Chevalier, Yan; Junnila, Riia; Sustarsic, Elahu; Herbach, Nadja; Fanelli, Flaminia; Mezzullo, Marco; Milz, Stefan; Bidlingmaier, Martin; Bielohuby, Maximilian
2016-10-01
Studies in humans suggest that consumption of low-carbohydrate, high-fat diets (LC-HF) could be detrimental for growth and bone health. In young male rats, LC-HF diets negatively affect bone health by impairing the growth hormone/insulin-like growth factor axis (GH/IGF axis), while the effects in female rats remain unknown. Therefore, we investigated whether sex-specific effects of LC-HF diets on bone health exist. Twelve-week-old male and female Wistar rats were isoenergetically pair-fed either a control diet (CD), "Atkins-style" protein-matched diet (LC-HF-1), or ketogenic low-protein diet (LC-HF-2) for 4 weeks. In females, microcomputed tomography and histomorphometry analyses were performed on the distal femur. Sex hormones were analysed with liquid chromatography-tandem mass spectrometry, and endocrine parameters including GH and IGF-I were measured by immunoassay. Trabecular bone volume, serum IGF-I and the bone formation marker P1NP were lower in male rats fed both LC-HF diets versus CD. LC-HF diets did not impair bone health in female rats, with no change in trabecular or cortical bone volume nor in serum markers of bone turnover between CD versus both LC-HF diet groups. Pituitary GH secretion was lower in female rats fed LC-HF diet, with no difference in circulating IGF-I. Circulating sex hormone concentrations remained unchanged in male and female rats fed LC-HF diets. A 4-week consumption of LC-HF diets has sex-specific effects on bone health-with no effects in adult female rats yet negative effects in adult male rats. This response seems to be driven by a sex-specific effect of LC-HF diets on the GH/IGF system.
Charradi, Kamel; Mahmoudi, Mohamed; Bedhiafi, Takwa; Kadri, Safwen; Elkahoui, Salem; Limam, Ferid; Aouani, Ezzedine
2017-03-01
It is unknown whether gender has an impact on brain injury in obesity, and, if so, whether treatment with grape seed and skin flour could exert a protective effect. Both male and female rats were fed a standard diet (SD) or a high fat diet (HFD) during eight weeks and treated with high dosage grape seed and skin flour (GSSF). Fat-induced oxidative stress was evaluated into the brain with a special emphasis on transition metals determination. HFD induced male-cholesterol overload (+78.12%) and an oxidative stress status characterized by increased lipoperoxidation (+68.97%), carbonylation (+40.28%), decreased antioxidant enzyme activities as glutathione peroxidase (-61.07%) and manganese-superoxide dismutase (-35.47%) but not catalase. Additionally HFD depleted the brain from manganese (-71.31%) and dropped glutamine synthetase activity (-36.16%), without affecting copper nor iron nor their associated enzymes. HFD also altered intracellular mediators as superoxide anion (+36.12%), calcium (+44.41%) and also calpain (+76.54%) a calcium dependent protease. Importantly all these alterations were detected exclusively in male brain and were efficiently corrected upon GSSF treatment. In conclusion, GSSF has the potential to alleviate the deleterious lipotoxic effect of HFD treatment that occurred in male brain and perhaps in post-menauposal female brain. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Shin, Hyehyung; Liu, Pei-Yang; Panton, Lynn B; Ilich, Jasminka Z
2014-01-01
Diminished physical performance can be detrimental among the older adults, causing falls and subsequent fractures, loss of independence, and increased morbidity and mortality rates. Therefore, it is important to maintain functional ability from the early onset of aging. The purpose of this study was to investigate the relationship between physical performance measures and body composition (bone, fat, and lean mass) in healthy, overweight and obese, early postmenopausal white women. A total of 97 participants aged 56.0 (4.4) years (mean (SD)) with body mass index of 31.0 (4.6) kg/m(2) were included. Weight and height were recorded and 3 days of dietary records and physical activity were collected. Dual-energy x-ray absorptiometry measurements for body composition and bone mineral density were performed. Fasting blood samples were used for serum 25-hydroxy vitamin D (25OHD) analysis. Measures of physical performance included handgrip strength, 8-meter walking speed, one-leg-stance time, 8-foot Timed Get-Up-and-Go Test, and chair sit-to-stand test. Results showed that higher lean mass was related to better physical performance on items assessing body strength, including handgrip (r ranged from 0.22 to 0.25, P < .05) while higher body fat was related to the poorer physical performance in each of the assessed measures. Bone mineral density of the forearm was positively related to the handgrip strength (r = 0.207, P < .05). In regression analyses (controlled for age, weight, height, serum 25OHD status, calcium intake, physical activity, and smoking), fat mass of the lower extremities was inversely related to walking speed, one-leg-stance time, and Get-Up-and-Go measures, all crucial for mobility (r(2) = 0.13-0.23, P < .05). Overall, higher fat and lower lean mass was related to poorer physical performance, while forearm bone mineral density was related to the handgrip strength only. Further investigation may be beneficial for a better understanding of how body composition may prevent decline in physical performance among overweight/obese, mid-age, and older women.
Chiplonkar, Shashi; Kajale, Neha; Ekbote, Veena; Mandlik, Rubina; Parthasarathy, Lavanya; Borade, Ashwin; Patel, Pinal; Patel, Prerna; Khadilkar, Vaman; Khadilkar, Anuradha
2017-12-15
To create gender-specific percentile curves for percent body fat (%BF) by Bio electrical Impedance Analysis (BIA) for screening adiposity and risk of hypertension in Indian children and generate reference curves for percent fat-free mass (%FFM), muscle mass (%LM) and bone mineral content (BMC) by using bioelectrical impedance. Secondary analysis of data from previous multicenter cross-sectional studies. Private schools from five regions of India. A random sample of 3850 healthy school children (2067 boys) (5-17 yr) from private schools in five major Indian cities. Anthropometry, blood pressure (BP) and body composition were measured by bioelectrical impedance. Reference curves were generated by the LMS method. %BF, %FFM, %LM, BMC and BP. Median %BF increased by 6% from 5 to 13 years of age and declined (around 2%) up to 17 years in boys. In girls, %BF increased by 8% from 5 to 14 years and thereafter declined by 3%. Based upon the risk of hypertension, the new cut-offs of 75th and 85th percentile of %BF were proposed for detecting over fatness and excess fatness in children. Median %FFM was 90% at 5 yrs and decreased till 12 years, and then showed a slight increase to 84% at 17 yrs in boys. In girls, it was 86% at 5 yrs and decreased till 15 yrs, and plateaued at 71.8% at 17 yrs. Reference curves for percent body fat for Indian children would be useful to screen children for health risk in clinical set up.
Correlation of fat embolism severity and subcutaneous fatty tissue crushing and bone fractures.
Bolliger, Stephan Andreas; Muehlematter, Karin; Thali, Michael Josef; Ampanozi, Garyfalia
2011-05-01
Pulmonary fat embolism (PFE) is frequently encountered in blunt trauma. The clinical manifestation ranges from no impairment in light cases to death due to right-sided heart failure or hypoxaemia in severe cases. Occasionally, pulmonary fat embolism can give rise to a fat embolism syndrome (FES), which is marked by multiorgan failure, respiratory disorders, petechiae and often death. It is well known that fractures of long bones can lead to PFE. Several authors have argued that PFE can arise due to mere soft tissue injury in the absence of fractures, a claim other authors disagree upon. In this study, we retrospectively examined 50 victims of blunt trauma with regard to grade and extent of fractures and crushing of subcutaneous fatty tissue and presence and severity of PFE. Our results indicate that PFE can arise due to mere crushing of subcutaneous fat and that the fracture grade correlated well with PFE severity (p = 0.011). The correlation between PFE and the fracture severity (body regions affected by fractures and fracture grade) showed a lesser significant correlation (p = 0.170). The survival time (p = 0.567), the amount of body regions affected by fat crushing (p = 0.336) and the fat crush grade (p = 0.485) did not correlate with the PFE grade, nor did the amount of body regions affected by fractures. These results may have clinical implications for the assessment of a possible FES development, as, if the risk of a PFE is known, preventive steps can be taken.
Tuljapurkar, Sonal R; McGuire, Timothy R; Brusnahan, Susan K; Jackson, John D; Garvin, Kevin L; Kessinger, Margaret A; Lane, Judy T; O' Kane, Barbara J; Sharp, John G
2011-11-01
Hematological deficiencies increase with aging, including anemias, reduced responses to hematopoietic stress and myelodysplasias. This investigation tested the hypothesis that increased bone marrow (BM) fat content in humans with age was associated with decreased numbers of side population (SP) hematopoietic stem cells, and this decrease correlated with changes in cytokine levels. BM was obtained from the femoral head and trochanteric region of the femur removed at surgery for total hip replacement (N = 100 subjects). In addition, BM from cadavers (N = 36), with no evidence of hip disease, was evaluated for fat content. Whole trabecular marrow samples were ground in a sterile mortar and pestle, and cellularity and lipid content determined. Marrow cells were stained with Hoechst dye and SP profiles were acquired. Plasma levels of insulin-like growth factor (IGF)-1, stromal-derived factor (SDF)-1 and interleukin (IL)-6 were measured using ELISA. Fat content in the BM of human subjects and cadavers increased with age. The numbers of SP stem cells in BM as well as plasma IGF-1 and SDF-1 levels decreased in correlation with increased BM fat. IL-6 had no relationship to changes in marrow fat. These data suggest that increased BM fat may be associated with a decreased number of SP stem cells and IGF-1 and SDF-1 levels with aging. These data further raise a more general question as to the role of adipose cells in the regulation of tissue stem cells. © 2011 The Authors. Journal of Anatomy © 2011 Anatomical Society of Great Britain and Ireland.
Dytfeld, Joanna; Ignaszak-Szczepaniak, Magdalena; Gowin, Ewelina; Michalak, Michał; Horst-Sikorska, Wanda
2011-01-01
Despite known positive association between body mass and bone mineral density (BMD), relative contribution of fat and lean tissue to BMD remains under debate. We aimed at investigating the effect of selected anthropometric parameters, including fat content and lean body mass (LBM) on BMD in postmenopausal, osteoporotic women with body mass index (BMI) > 20 kg/m(2). The study involved 92 never-treated women (mean age 69.5 ± 7.3). L1-L4 and femoral neck (FN) BMD were measured by dual energy X-ray absorptiometry (DEXA). Absolute (kg) and relative (%) fat and LBM were assessed by means of electric bioimpedance method. We showed both FN and L1-L4 BMD were positively correlated with body mass, waist circumference (WC), hip circumference (HC) and LBM (kg). Fat content correlated with FN BMD (r = 0.36, p < 0.001). Regression analysis revealed the only predictor of L1-L4 BMD was LBM (R(2) = 0.18, p < 0.05), for FN--both LBM and fat (R(2) = 0.18, p < 0.05 and p < 0.001, respectively). Of the women, 44.5% were overweight, 18.4% obese. Obese women displayed the highest BMD. Both L1-L4 and FN BMD were higher in women with WC > 80 cm. In postmenopausal osteoporotic women with BMI > 20 kg/m(2) both fat and lean tissue might contribute to BMD. Positive association between body mass and BMD does not make obesity and osteoporosis mutually exclusive. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Achiou, Zahra; Toumi, Hechmi; Touvier, Jérome; Boudenot, Arnaud; Uzbekov, Rustem; Ominsky, Michael S; Pallu, Stéphane; Lespessailles, Eric
2015-12-01
Glucocorticoids have a beneficial anti-inflammatory and immunosuppressive effect, but their use is associated with decreased bone formation, bone mass and bone quality, resulting in an elevated fracture risk. Exercise and sclerostin antibody (Scl-Ab) administration have both been shown to increase bone formation and bone mass, therefore the ability of these treatments to inhibit glucocorticoid-induced osteopenia alone or in combination were assessed in a rodent model. Adult (4 months-old) male Wistar rats were allocated to a control group (C) or one of 4 groups injected subcutaneously with methylprednisolone (5mg/kg/day, 5 days/week). Methylprednisolone treated rats were injected subcutaneously 2 days/week with vehicle (M) or Scl-Ab-VI (M+S: 25mg/kg/day) and were submitted or not to treadmill interval training exercise (1h/day, 5 days/week) for 9 weeks (M+E, M+E+S). Methylprednisolone treatment increased % fat mass and % apoptotic osteocytes, reduced whole body and femoral bone mineral content (BMC), reduced femoral bone mineral density (BMD) and osteocyte lacunae occupancy. This effect was associated with lower trabecular bone volume (BV/TV) at the distal femur. Exercise increased BV/TV, osteocyte lacunae occupancy, while reducing fat mass, the bone resorption marker NTx, and osteocyte apoptosis. Exercise did not affect BMC or cortical microarchitectural parameters. Scl-Ab increased the bone formation marker osteocalcin and prevented the deleterious effects of M on bone mass, further increasing BMC, BMD and BV/TV to levels above the C group. Scl-Ab increased femoral cortical bone parameters at distal part and midshaft. Scl-Ab prevented the decrease in osteocyte lacunae occupancy and the increase in osteocyte apoptosis induced by M. The addition of exercise to Scl-Ab treatment did not result in additional improvements in bone mass or bone strength parameters. These data suggest that although our exercise regimen did prevent some of the bone deleterious effects of glucocorticoid treatment, particularly in trabecular bone volume and osteocyte apoptosis, Scl-Ab treatment resulted in marked improvements in bone mass across the skeleton and in osteocyte viability, resulting in decreased bone fragility. Copyright © 2015 Elsevier Inc. All rights reserved.
Osteosarcopenic obesity in women: impact, prevalence, and management challenges
JafariNasabian, Pegah; Inglis, Julia E; Kelly, Owen J; Ilich, Jasminka Z
2017-01-01
Osteosarcopenic obesity syndrome (OSO) has recently been identified as a condition encompassing osteopenia/osteoporosis, sarcopenia and obesity. OSO is especially deleterious in older adults (even if they are not obese by conventional measures), due to age-related redistribution of fat and its infiltration into bone and muscle. Osteoporosis and bone fractures in elderly increase the risk of sarcopenia, which, through decreased mobility, increases the risk of more falls and fractures, creating a vicious cycle. Obesity plays a dual role: to a certain extent, it promotes bone and muscle gains through mechanical loading; in contrast, increased adiposity is also a source of pro-inflammatory cytokines and other endocrine factors that impair bone and muscle. As the elderly population increases, changes in lifestyle to delay the onset of OSO, or prevent OSO, are warranted. Among these changes, dietary patterns and physical activity modifications are the first ones to be implemented. The typical Western diet (and lifestyle) promotes several chronic diseases including OSO, by facilitating a pro-inflammatory state, largely via the imbalance in omega-6/omega-3 fatty acid ratio and low-fiber and high-processed food consumption. Nutritional modifications to prevent and/or alleviate the OSO syndrome include adequate intake of protein, calcium, magnesium and vitamin D and increasing consumptions of foods containing omega-3 polyunsaturated fatty acids and fiber. Certain types of physical activity, often decreased in overweight/obese women and in elderly, might preserve bone and muscle, as well as help in reducing body fat accrual and fat infiltration. Habitual daily activities and some alternative modes of exercise may be more appropriate for older adults and play a crucial role in preventing bone and muscle loss and maintaining optimal weight. In conclusion, older adults who suffer from OSO syndrome may benefit from combined efforts to improve diet and physical activity, and such recommendations should be fostered as part of public health programs. PMID:28144165
Osteosarcopenic obesity in women: impact, prevalence, and management challenges.
JafariNasabian, Pegah; Inglis, Julia E; Kelly, Owen J; Ilich, Jasminka Z
2017-01-01
Osteosarcopenic obesity syndrome (OSO) has recently been identified as a condition encompassing osteopenia/osteoporosis, sarcopenia and obesity. OSO is especially deleterious in older adults (even if they are not obese by conventional measures), due to age-related redistribution of fat and its infiltration into bone and muscle. Osteoporosis and bone fractures in elderly increase the risk of sarcopenia, which, through decreased mobility, increases the risk of more falls and fractures, creating a vicious cycle. Obesity plays a dual role: to a certain extent, it promotes bone and muscle gains through mechanical loading; in contrast, increased adiposity is also a source of pro-inflammatory cytokines and other endocrine factors that impair bone and muscle. As the elderly population increases, changes in lifestyle to delay the onset of OSO, or prevent OSO, are warranted. Among these changes, dietary patterns and physical activity modifications are the first ones to be implemented. The typical Western diet (and lifestyle) promotes several chronic diseases including OSO, by facilitating a pro-inflammatory state, largely via the imbalance in omega-6/omega-3 fatty acid ratio and low-fiber and high-processed food consumption. Nutritional modifications to prevent and/or alleviate the OSO syndrome include adequate intake of protein, calcium, magnesium and vitamin D and increasing consumptions of foods containing omega-3 polyunsaturated fatty acids and fiber. Certain types of physical activity, often decreased in overweight/obese women and in elderly, might preserve bone and muscle, as well as help in reducing body fat accrual and fat infiltration. Habitual daily activities and some alternative modes of exercise may be more appropriate for older adults and play a crucial role in preventing bone and muscle loss and maintaining optimal weight. In conclusion, older adults who suffer from OSO syndrome may benefit from combined efforts to improve diet and physical activity, and such recommendations should be fostered as part of public health programs.
Nieves, Jeri W; Melsop, Kathryn; Curtis, Meredith; Kelsey, Jennifer L; Bachrach, Laura K; Greendale, Gail; Sowers, Mary Fran; Sainani, Kristin L
2010-08-01
To identify nutrients, foods, and dietary patterns associated with stress fracture risk and changes in bone density among young female distance runners. Two-year, prospective cohort study. Observational data were collected in the course of a multicenter randomized trial of the effect of oral contraceptives on bone health. One hundred and twenty-five female competitive distance runners ages 18-26 years. Dietary variables were assessed with a food frequency questionnaire. Bone mineral density and content (BMD/BMC) of the spine, hip, and total body were measured annually by dual x-ray absorptiometry (DEXA). Stress fractures were recorded on monthly calendars, and had to be confirmed by radiograph, bone scan, or magnetic resonance imaging. Seventeen participants had at least one stress fracture during follow-up. Higher intakes of calcium, skim milk, and dairy products were associated with lower rates of stress fracture. Each additional cup of skim milk consumed per day was associated with a 62% reduction in stress fracture incidence (P < .05); and a dietary pattern of high dairy and low fat intake was associated with a 68% reduction (P < .05). Higher intakes of skim milk, dairy foods, calcium, animal protein, and potassium were associated with significant (P < .05) gains in whole-body BMD and BMC. Higher intakes of calcium, vitamin D, skim milk, dairy foods, potassium, and a dietary pattern of high dairy and low fat were associated with significant gains in hip BMD. In young female runners, low-fat dairy products and the major nutrients in milk (calcium, vitamin D, and protein) were associated with greater bone gains and a lower stress fracture rate. Potassium intake was also associated with greater gains in hip and whole-body BMD. Copyright © 2010 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
Travison, T G; Chiu, G R; McKinlay, J B; Araujo, A B
2011-10-01
The relative importance of various contributors to racial/ethnic variation in BMC/BMD is not established. Using population-based data, we determined that body composition differences (specifically skeletal muscle and fat mass) are among the strongest contributors to these variations. Racial/ethnic variation in fracture risk is well documented, but the mechanisms by which such heterogeneity arises are poorly understood. We analyzed data from black, Hispanic, and white men enrolled in the Boston Area Community Health/Bone (BACH/Bone) Survey to determine the contributions of risk factors to racial/ethnic differences in bone mineral content (BMC) and density (BMD). In a population-based study, BMC, BMD, and body composition were ascertained by DXA. Socioeconomic status, health history, and dietary intake were obtained via interview. Hormones and markers of bone turnover were obtained from non-fasting blood samples. Multivariate analyses measured percentage reductions in estimated racial/ethnic differences in BMC/BMD, accompanying the successive removal of covariates from linear regression models. Black men demonstrated greater BMC than their Hispanic and white counterparts. At the femoral neck, adjustment for covariables was sufficient to reduce these differences by 46% and 35%, respectively. While absolute differences in BMC were smaller at the distal radius than femoral neck, the proportionate reductions in racial/ethnic differences after covariable adjustment were comparable or greater. Multivariate models provided evidence that lean and fat mass, serum 25(OH)D, osteocalcin, estradiol, and aspects of socioeconomic status influence the magnitude of racial/ethnic differences in BMC, with lean and fat mass providing the strongest effects. Results for BMD were similar, but typically of lesser magnitude and statistical significance. These cross-sectional analyses demonstrate that much of the racial/ethnic heterogeneity in measures of bone mass and density can be accounted for through variation in body composition, diet, and socio-demographic factors.
Associations of components of sarcopenic obesity with bone health and balance in older adults.
Scott, David; Shore-Lorenti, Catherine; McMillan, Lachlan; Mesinovic, Jakub; Clark, Ross A; Hayes, Alan; Sanders, Kerrie M; Duque, Gustavo; Ebeling, Peter R
To determine characteristics of sarcopenic obesity that are independently associated with bone health and balance in older adults. Cross-sectional study of 168 community-dwelling older adults (mean age 67.7 ± 8.4 years; 55% women). Appendicular lean mass (ALM), whole-body areal BMD (aBMD) and body fat percentage were assessed by dual-energy X-ray absorptiometry. Peripheral quantitative computed tomography assessed muscle density and cortical volumetric BMD (vBMD), area, thickness, and strength-strain index (SSI) at 66% tibial length. Hand grip strength (dynamometry) and balance path length (computerised posturography) were assessed. Obesity was defined as high body fat percentage. Greater lower-leg muscle density was associated with lower balance path length in men (r = -0.36; P < .01) and women (r = -0.40; P = < .01). Obese participants by body fat percentage did not differ to non-obese on bone indices, although a trend towards lower cortical vBMD was observed in obese compared with non-obese men (1041.4 ± 39.8 vs 1058.8 ± 36.1 mg/cm 3 ; P = .051). In multivariable models, ALM was positively associated with all bone parameters in obese women, and with whole-body aBMD, proximal tibial cortical area and SSI in non-obese women, and both non-obese and obese men (all P < .05). Lower-leg muscle density was also positively associated with cortical vBMD (B = 2.91; 95% CI 0.02, 5.80) and area (2.70; 0.06, 5.33) in obese women. Amongst components of sarcopenic obesity, higher ALM is a consistent independent predictor of better bone health. Low muscle density may also compromise bone health and balance. Interventions which improve muscle mass and composition may lower fracture risk in sarcopenic obesity. Copyright © 2017 Elsevier B.V. All rights reserved.
Cladière-Nassif, V; Bourdet, C; Audard, V; Babinet, A; Anract, P; Biau, D
2017-09-01
Resection of the proximal humerus for the primary malignant bone tumour sometimes requires en bloc resection of the deltoid. However, there is no information in the literature which helps a surgeon decide whether to preserve the deltoid or not. The aim of this study was to determine whether retaining the deltoid at the time of resection would increase the rate of local recurrence. We also sought to identify the variables that persuade expert surgeons to choose a deltoid sparing rather than deltoid resecting procedure. We reviewed 45 patients who had undergone resection of a primary malignant tumour of the proximal humerus. There were 29 in the deltoid sparing group and 16 in the deltoid resecting group. Imaging studies were reviewed to assess tumour extension and soft-tissue involvement. The presence of a fat rim separating the tumour from the deltoid on MRI was particularly noted. The cumulative probability of local recurrence was calculated in a competing risk scenario. There was no significant difference (adjusted p = 0.89) in the cumulative probability of local recurrence between the deltoid sparing (7%, 95% confidence interval (CI) 1 to 20) and the deltoid resecting group (26%, 95% CI 8 to 50). Patients were more likely to be selected for a deltoid sparing procedure if they presented with a small tumour (p = 0.0064) with less bone involvement (p = 0.032) and a continuous fat rim on MRI (p = 0.002) and if the axillary nerve could be identified (p = 0.037). A deltoid sparing procedure can provide good local control after resection of the proximal humerus for a primary malignant bone tumour. A smaller tumour, the presence of a continuous fat rim and the identification of the axillary nerve on pre-operative MRI will persuade surgeons to opt for a deltoid resecting procedure. Cite this article: Bone Joint J 2017;99-B:1244-9. ©2017 The British Editorial Society of Bone & Joint Surgery.
Michalek, Joel E; Preuss, Harry G; Croft, Harry A; Keith, Patti L; Keith, Samuel C; Dapilmoto, Monika; Perricone, Nicholas V; Leckie, Robert B; Kaats, Gilbert R
2011-04-14
The US Surgeon General's Report on Bone Health suggests America's bone-health is in jeopardy and issued a "call to action" to develop bone-health plans that: (1) improve nutrition, (2) increase health literacy and, (3) increase physical activity. This study is a response to this call to action. After signing an informed consent, 158 adults agreed to follow an open-label bone-health plan for six months after taking a DXA test of bone density, a 43-chemistry blood test panel and a quality of life inventory (AlgaeCal 1). Two weeks after the last subject completed, a second group of 58 was enrolled and followed the identical plan, but with a different bone-health supplement (AlgaeCal 2). There were no significant differences between the two groups in baseline bone mineral density (BMD) or in variables related to BMD (age, sex, weight, percent body fat, fat mass, or fat-free mass). In both groups, no significant differences in BMD or related variables were found between volunteers and non-volunteers or between those who completed per protocol and those who were lost to attrition.Both groups experienced a significant positive mean annualized percent change (MAPC) in BMD compared to expectation [AlgaeCal 1: 1.15%, p = 0.001; AlgaeCal 2: 2.79%, p = 0.001]. Both groups experienced a positive MAPC compared to baseline, but only AlgaeCal 2 experienced a significant change [AlgaeCal 1: 0.48%, p = 0.14; AlgaeCal 2: 2.18%, p < 0.001]. The MAPC in AlgaeCal 2 was significantly greater than that in AlgaeCal 1 (p = 0.005). The MAPC contrast between compliant and partially compliant subjects was significant for both plans (p = 0.001 and p = 0.003 respectively). No clinically significant changes in a 43-panel blood chemistry test were found nor were there any changes in self-reported quality of life in either group. Following The Plan for six months with either version of the bone health supplement was associated with significant increases in BMD as compared to expected and, in AlgaeCal 2, the increase from baseline was significantly greater than the increase from baseline in AlgaeCal 1. Increased compliance was associated with greater increases in BMD in both groups. No adverse effects were reported in either group. ClinicalTrials.gov NCT01114685.
Wang, Xian; Wu, Min; Zhou, Xing; Liu, Hengdeng; Zhang, Yongchao; Wang, Haiping
2018-05-31
Autologous fat injection is a procedure aimed at eliminating grave defects in the skin surface by subcutaneous injection of the patient's fatty tissue. Fat embolism is a rare but severe complication of this procedure, especially cerebral infarction. It is first reported by Thaunat in 2004. were presented to the hospital with sudden unconsciousness and left limb weakness in 24 hours after facial fat injection. Brain computed tomography and magnetic resonance imaging were performed immediately after admission. Frontal temporoparietal decompressive craniectomy plus multiple treatments scheduled for patients. Pictures and videos were taken during follow-up. Figures are edited with Adobe Photograph CS6. Patients were diagnosed with extensive cerebral infarction of the right hemisphere through the middle cerebral artery or facial-intracranial branches. Routine cosmetic procedures of facial fat injections could cause devastating and even fatal complications to patients. The small volume of fat grafts can be inserted through the internal carotid artery or go through the communicating branches between the facial artery and the intracranial artery into the brain.
On how whales avoid decompression sickness and why they sometimes strand.
Blix, Arnoldus Schytte; Walløe, Lars; Messelt, Edward B
2013-09-15
Whales are unique in that the supply of blood to the brain is not by the internal carotid arteries, but by way of thoracic and intra-vertebral arterial retia. We found in the harbor porpoise (Phocoena phocoena) that these retia split up into smaller anastomosing vessels and thin-walled sinusoid structures that are embedded in fat. The solubility of nitrogen is at least six times larger in fat than in water, and we suggest that nitrogen in supersaturated blood will be absorbed in the fat, by diffusion, during the very slow passage of the blood through the arterial retia. Formation of nitrogen bubbles that may reach the brain is thereby avoided. We also suggest that mass stranding of whales may be due to disturbances to their normal dive profiles, resulting in extra release of nitrogen that may overburden the nitrogen 'trap' and allow bubbles to reach the brain and cause abnormal behavior.
Paradoxical Cerebral Fat Embolism in Revision Hip Surgery
Piuzzi, Nicolás S.; Zanotti, Gerardo; Comba, Fernando M.; Buttaro, Martin A.; Piccaluga, Francisco
2014-01-01
The incidence of clinical fat embolism syndrome (FES) is low (<1%) whilst fat embolism (FE) of marrow fat appears to occur more often (Mellor and Soni (2001)). Paradoxical brain FE may occur in patients undergoing hip orthopedic surgery who have an undocumented patent foramen ovale (PFO). We report a case of an eighty-year-old male patient, who underwent a scheduled revision hip surgery suffering a paradoxical cerebral FE. PMID:25184065
Growth, body composition, and bone density following pediatric liver transplantation.
Sheikh, Amin; Cundy, Tim; Evans, Helen Maria
2018-04-24
Patients transplanted for cholestatic liver disease are often significantly fat-soluble vitamin deficient and malnourished pretransplant, with significant corticosteroid exposure post-transplant, with increasing evidence of obesity and metabolic syndrome post-LT. Our study aimed to assess growth, body composition, and BMD in patients post-pediatric LT. Body composition and bone densitometry scans were performed on 21 patients. Pre- and post-transplant anthropometric data were analyzed. Bone health was assessed using serum ALP, calcium, phosphate, and procollagen-1-N-peptide levels. Median ages at transplant and at this assessment were 2.7 and 10.6 years, respectively. Physiological markers of bone health, median z-scores for total body, and lumbar spine aBMD were normal. Bone area was normal for height and BMAD at L3 was normal for age, indicating, respectively, normal cortical and trabecular bone accrual. Median z-scores for weight, height, and BMI were 0.6, -0.9, 1.8 and 0.6, 0.1, 0.8 pre- and post-transplant, respectively. Total body fat percentages measured on 21 body composition scans revealed 2 underweight, 7 normal, 6 overweight, and 6 obese. Bone mass is preserved following pediatric LT with good catch-up height. About 52% of patients were either overweight/obese post-transplant, potentially placing them at an increased risk of metabolic syndrome and its sequelae in later life. BMI alone is a poor indicator of nutritional status post-transplant. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Association of ACTN3 polymorphisms with BMD, and physical fitness of elderly women.
Min, Seok-Ki; Lim, Seung-Taek; Kim, Chang-Sun
2016-10-01
[Purpose] Association of ACTN3 polymorphism with bone mineral density and the physical fitness of elderly women is still unclear. Therefore, this study investigated the association between ACTN3 genotype and bone mineral density, and the physical fitness of elderly women. [Subjects and Methods] Sixty-eight elderly women (67.38 ± 3.68 years) were recruited at a Seongbuk-Gu (Seoul, Korea) Medical Service Public Health Center. Measurements of physical fitness included muscle strength, muscle endurance, flexibility, agility, balance and VO 2 max. Bone mineral density (BMD), upper limb muscle mass, lower limb muscle mass, percent body fat and body fat mass for the entire body were measured by dual-energy X-ray absorptiometry and an analyzer. Genotyping for the ACTN3 R577X (rs1815739) polymorphism was performed using the TaqMan approach. [Results] ACTN3 gene distribution of subjects were in the Hardy-Weinberg equilibrium (p=0.694). The relative bone mineral density trunk, pelvis and spine differed significantly among the ACTN3 genotypes. There were no significant differences among bone mineral densities of the head, arms, legs, ribs and total, but the RR genotype tended to be higher than other genotypes. Physical fitness was not significantly different among the ACTN3 genotypes. [Conclusion] These results suggest that ACTN3 gene polymorphisms could be used as one of the genetic determinants of bone mass in elderly women, and in particular, they indicate that individuals with the RR genotype have higher BMD and bone mineral composition.
1996-04-01
Amniotic fluid Debris?* Young women Long bone fracture Fat * Any age Chronic intravenous drug users Talc* Any age Disseminated intravascular coagulapathy...maximal stress at which bone fracture occurs. This study demonstrated the usefulness of finite Results from centrifuge experiments element analysis for...Vine Street M/S 455 Philadelphia, PA 19102-1192, USA SUMMARY Exposure to Impact Acceleration (15). In these reports, fracture of the bones, dislocation
Polysaccharides of Trametes versicolor Improve Bone Properties in Diabetic Rats.
Chen, Chung-Hwan; Kang, Lin; Lo, Hui-Chen; Hsu, Tai-Hao; Lin, Fang-Yi; Lin, Yi-Shan; Wang, Zai-Jie; Chen, Shih-Tse; Shen, Chwan-Li
2015-10-28
This study investigates the effects of Trametes versicolor (L.:Fr.) Pilát (TVP, also known as Yunzhi) on bone properties in diabetic rats. Forty-five male Wistar rats (8 weeks old) were fed either a chow diet (control) or a high-fat diet throughout the study period of 28 days. Animals in the high-fat-diet group were injected with nicotinamide and streptozotocin to induce diabetes mellitus (DM). The DM rats were divided into a group receiving distilled water (vehicle) and another group receiving TVP at 0.1 g/kg weight by gavage. Relative to the vehicle group, TVP gavage lowered postprandial blood sugar (225 ± 18 mg/dL for TVP vs 292 ± 15 mg/dL for vehicle, p < 0.001) on day 26. Compared to the vehicle group, TVP mitigated DM-induced bone deterioration as determined by increasing bone volume of proximal tibia (22.8 ± 1.4% for TVP vs 16.8 ± 1.3% for vehicle, p = 0.003), trabecular number (p = 0.011), and femoral bone strength (11% in maximal load, 22% in stiffness, 14% in modulus, p < 0.001), and by reducing loss of femoral cortical porosity by 25% (p < 0.001). Our study demonstrates the protective effect of TVP on bone properties was mediated through, in part, the improvement of hyperglycemic control in DM animals.
Glucocorticoid-Induced Avascular Bone Necrosis: Diagnosis and Management
Chan, KL; Mok, CC
2012-01-01
Glucocorticoid use is one of the most important causes of avascular bone necrosis (AVN). The pathogenesis of glucocorticoid-induced AVN is not fully understood but postulated mechanisms include fat hypertrophy, fat emboli and intravascular coagulation that cause impedance of blood supply to the bones. Data regarding the relationship between AVN and dosage, route of administration and treatment duration of glucocorticoids are conflicting, with some studies demonstrating the cumulative dose of glucocorticoid being the most important determining factor. Early recognition of this complication is essential as the prognosis is affected by the stage of the disease. Currently, there is no consensus on whether universal screening of asymptomatic AVN should be performed for long-term glucocorticoid users. A high index of suspicion should be exhibited for bone and joint pain at typical sites. Magnetic resonance imaging (MRI) or bone scintigraphy is more sensitive than plain radiograph for diagnosing early-stage AVN. Conservative management of AVN includes rest and reduction of weight bearing. Minimization of glucocorticoid dose or a complete withdrawal of the drug should be considered if the underlying conditions allow. The efficacy of bisphosphonates in reducing the rate of collapse of femoral head in AVN is controversial. Surgical therapy of AVN includes core decompression, osteotomy, bone grafting and joint replacement. Recent advances in the treatment of AVN include the use of tantalum rod and the development of more wear resistant bearing surface in hip arthroplasty. PMID:23115605
Glucocorticoid-induced avascular bone necrosis: diagnosis and management.
Chan, K L; Mok, C C
2012-01-01
Glucocorticoid use is one of the most important causes of avascular bone necrosis (AVN). The pathogenesis of glucocorticoid-induced AVN is not fully understood but postulated mechanisms include fat hypertrophy, fat emboli and intravascular coagulation that cause impedance of blood supply to the bones. Data regarding the relationship between AVN and dosage, route of administration and treatment duration of glucocorticoids are conflicting, with some studies demonstrating the cumulative dose of glucocorticoid being the most important determining factor. Early recognition of this complication is essential as the prognosis is affected by the stage of the disease. Currently, there is no consensus on whether universal screening of asymptomatic AVN should be performed for long-term glucocorticoid users. A high index of suspicion should be exhibited for bone and joint pain at typical sites. Magnetic resonance imaging (MRI) or bone scintigraphy is more sensitive than plain radiograph for diagnosing early-stage AVN. Conservative management of AVN includes rest and reduction of weight bearing. Minimization of glucocorticoid dose or a complete withdrawal of the drug should be considered if the underlying conditions allow. The efficacy of bisphosphonates in reducing the rate of collapse of femoral head in AVN is controversial. Surgical therapy of AVN includes core decompression, osteotomy, bone grafting and joint replacement. Recent advances in the treatment of AVN include the use of tantalum rod and the development of more wear resistant bearing surface in hip arthroplasty.
Hosny, Iman Abbas; Elghawabi, Hamed Samir; Younan, Wael Bahat Fahmy; Sabbour, Adly Aly; Gobrial, Mona Abdel Messih
2012-04-01
The aim of this study was to assess the impact of caloric restriction diet versus caloric restriction diet combined with aerobic exercises on bone mineral density (BMD) in obese premenopausal women. Forty premenopausal obese women were classified randomly into two groups equal in number. The first group (group A) received caloric restriction diet, while the second (group B) received caloric restriction diet combined with a program of aerobic exercises, over 3 months. The variables measured in this study included age, weight, height, body mass index, fat weight, lean mass, fat percent, basal metabolic rate, and BMD. The comparison between group A and group B showed significantly higher post-treatment lean mass, basal metabolic rate, and BMD in weight-bearing bones (L2-L4 lumbar spine and total hip) in group B compared to group A. In contrast to the BMD of the weight-bearing bones, the BMD of the radius showed significant decrease between the pre- and post-treatment results in groups A and B with no significant differences between the two groups. A greater improvement in the BMD of weight-bearing bones was observed in obese premenopausal women undergoing caloric restriction combined with exercise than in those not undergoing exercise. Anaerobic exercises incorporated into weight loss programs help offset the adverse effects of dietary restriction on bone.
Carrillo, Beatriz; Collado, Paloma; Díaz, Francisca; Chowen, Julie A; Pérez-Izquierdo, Mª Ángeles; Pinos, Helena
2017-07-11
Overnutrition due to a high-fat diet (HFD) can increase the vulnerability of the metabolic system to maladjustments. Estradiol has an inhibitory role on food intake and this hormone has demonstrated to be a crucial organizer during brain development. Our aim was to determine whether increased levels of estradiol in the early postnatal period modulate the alterations in metabolism and brain metabolic circuits produced by overnutrition. Twenty-four male and 24 female Wistar rats were submitted to a HFD (34.9% fat) or a control diet (5% fat) from gestational day 6. From postnatal (P) 6 to P13, both control and HFD groups were administered a s.c. injection of vehicle or estradiol benzoate (0.4 mg/kg), resulting in eight experimental groups (n = 6 in each group). Body weight, food intake and subcutaneous, visceral, and brown fat pads were measured. Agouti-related peptide, neuropeptide Y, orexin, and proopiomelanocortin (POMC) were analyzed by quantitative real-time polymerase chain reaction assay and plasma estradiol levels were measured by ELISA. Males fed a HFD showed an increase in body weight and the amount of visceral and subcutaneous fat, which was coincident with an increase in the number of kilocalories ingested. Neonatal estradiol treatment restored the body weight and subcutaneous fat of HFD males to control levels. Hypothalamic POMC mRNA levels in HFD females were increased with respect to control females. This increase was reverted with estradiol treatment during development. HFD and estradiol treatment have different effects on males and females. Overnutrition affects physiological parameters, such as body weight, visceral, and subcutaneous fat content, in males, while females present alterations in hypothalamic POMC mRNA levels. Hence, the increase in estradiol levels during a period that is critical for the programing of the feeding system can modulate some of the alterations produced by the continuous intake of high-fat content food.
Effects of spaceflight on trabecular bone in rats
NASA Technical Reports Server (NTRS)
Jee, W. S. S.; Wronski, T. J.; Morey, E. R.; Kimmel, D. B.
1983-01-01
Alterations in trabecular bone were observed in growing male Wistar rats after 18.5 days of orbital flight on the COSMOS 1129 biosatellite. Spaceflight induced a decreased mass of mineralized tissue and an increased fat content of the bone marrow in the proximal tibial and humeral metaphyses. The osteoblast population appeared to decline immediately adjacent to the growth cartilage-metaphyseal junction, but osteoclast numbers were unchanged. These results suggested that bone formation may have been inhibited during spaceflight, but resorption remained constant. With the exception of trabecular bone mass in the proximal tibia, the observed skeletal changes returned to normal during a 29-day postflight period.
Okano, Tadashi; Inui, Kentaro; Tada, Masahiro; Sugioka, Yuko; Mamoto, Kenji; Wakitani, Shigeyuki; Koike, Tatsuya; Nakamura, Hiroaki
2017-11-01
Osteoporosis is one of the complications for patients with rheumatoid arthritis (RA). Rheumatoid cachexia, the loss of lean body mass, is another. However, the relationship between decreased lean body mass and reduced bone mineral density (BMD) in patients with RA has not been well studied. This study included 413 participants, comprising 208 patients with RA and 205 age- and sex-matched healthy volunteers. Clinical data, BMD, bone metabolic markers (BMM) and body composition, such as lean body mass and percent fat, were collected. Risk factors for osteoporosis in patients with RA including the relationship BMD and body composition were analyzed. Patients with RA showed low BMD and high BMM compared with controls. Moreover, lean body mass was lower and percent fat was higher in patients with RA. Lean body mass correlated positively and percent fat negatively with BMD. Lean body mass was a positive and disease duration was a negative independent factor for BMD in multivariate statistical analysis. BMD and lean body mass were significantly lower in patients with RA compared to healthy controls. Lean body mass correlated positively with BMD and decreased lean body mass and disease duration affected low BMD in patients with RA. [UMIN Clinical Trials Registry, http://www.umin.ac.jp/ctr/ , UMIN000003876].
Age, gender, and skeletal variation in bone marrow composition: a preliminary study at 3.0 Tesla.
Liney, Gary P; Bernard, Clare P; Manton, David J; Turnbull, Lindsay W; Langton, Chris M
2007-09-01
To evaluate the efficacy of MR Spectroscopy (MRS) at 3.0 Tesla for the assessment of normal bone marrow composition and assess the variation in terms of age, gender, and skeletal site. A total of 16 normal subjects (aged between eight and 57 years) were investigated on a 3.0 Tesla GE Signa system. To investigate axial and peripheral skeleton differences, non-water-suppressed spectra were acquired from single voxels in the calcaneus and lumbar spine. In addition, spectra were acquired at multiple vertebral bodies to assess variation within the lumbar spine. Data was also correlated with bone mineral density (BMD) measured in six subjects using dual-energy X-ray absorptiometry (DXA). Fat content was an order of magnitude greater in the heel compared to the spine. An age-related increase was demonstrated in the spine with values greater in men compared to female subjects. Significant trends in vertebral bodies within the same subjects were also shown, with fat content increasing L5 > L1. Population coefficient of variation (CV) was greater for fat fraction (FF) compared to BMD. Significant normal variations of marrow composition have been demonstrated, which provide important data for the future interpretation of patient investigations. (c) 2007 Wiley-Liss, Inc.
Bone growth and composition in weanling and mature rats exposed to chronic centrifugation
NASA Technical Reports Server (NTRS)
Keil, L. C.; Evans, J. W.
1982-01-01
The primary objective of the study is to determine the effect of continuous exposure to hypergravity on the development and composition of weight-bearing bone. The experimental results are seen to suggest that many, if not all, of the changes observed in bone growth and composition derive from the retarded growth rate of the centrifuged rats. Both centrifuged weanling and mature rats exhibit a significant reduction in femur length and mass. The changes in femur size are more apparent in the weanlings since they are exposed to hypergravity during their most rapid phase of skeletal development. In addition to a slower growth rate, the body mass of the mature and weanling animals is reduced even further by the depletion of body fat. The rapid loss of body fat observed in rats and mice during centrifugation, it is found, can produce a prompt and significant rise in relative femur mass after two weeks of exposure. After adaptation to centrifugation, however, relative femur mass is similar to that of controls at four and eight weeks. At 18 weeks, the centrifuged rats again exhibit an increase in relative femur mass. It is thought that this increase in relative femur mass may be generated by the difference in fat deposition between the 1-G controls and the high-G rats.
CUI, X.; CHEN, J.; ZACHAREK, A.; ROBERTS, C.; SAVANT-BHONSALE, S.; CHOPP, M.
2008-01-01
Neovascularization may contribute to functional recovery after neural injury. Combination treatment of stroke with a nitric oxide donor, DETA-NONOate and bone marrow stromal cells promote functional recovery. However, the mechanisms underlying functional improvement have not been elucidated. In this study, we tested the hypothesis that combination treatment upregulates Angiopoietin1 and its receptor Tie2 in the ischemic brain and bone marrow stromal cells, thereby enhances cerebral neovascularization after stroke. Adult wild type male C57BL/6 mice were intravenously administered PBS, bone marrow stromal cells 5×105, DETA-NONOate 0.4 mg/kg or combination DETA-NONOate with bone marrow stromal cells (n=12/group) after middle cerebral artery occlusion. Combination treatment significantly upregulated Angiopoietin-1/Tie2 and tight junction protein (occludin) expression, and increased the number, diameter and perimeter of blood vessels in the ischemic brain compared with vehicle control (mean ± SE, p<0.05). In vitro, DETA-NONOate significantly increased Angiopoietin-1/Tie2 protein (n=6/group) and Tie2 mRNA (n=3/group) expression in bone marrow stromal cells. DETA-NONOate also significantly increased Angiopoietin-1 protein (n=6/group) and mRNA (n=3/group) expression in mouse brain endothelial cells (p<0.05). Angiopoietin-1 mRNA (n=3/group) was significantly increased in mouse brain endothelial cells treated with DETA-NONOate in combination with bone marrow stromal cells conditioned medium compared with cells treated with bone marrow stromal cells conditioned medium or DETA-NONOate alone. Mouse brain endothelial cell capillary tube-like formation assays (n=6/group) showed that Angiopoietin-1 peptide, the supernatant of bone marrow stromal cells and DETA-NONOate significantly increased capillary tube formation compared to vehicle control. Combination treatment significantly increased capillary tube formation compared with DETA-NONOate treatment alone. Inhibition of Angiopoietin-1 significantly attenuated combination treatment-induced tube formation. Our data indicated that combination treatment of stroke with DETA-NONOate and bone marrow stromal cells promotes neovascularization, which is at least partially mediated by upregulation of the Angiopoietin-1/Tie2 axis. PMID:18691637
Alveolar hemorrhage in a case of fat embolism syndrome: A case report with short systemic review.
Dash, Sananta Kumar; Bansal, Avdesh; Wankhade, Bhushan Sudhakar; Sharma, Rakesh
2013-04-01
Fat embolism and fat embolism syndrome (FES) are well-known complications of long bone fracture and surgery involving manipulation of skeletal elements. Many non-traumatic causes of FES have been suggested but they constitute only a small portion. FES presents with classical symptoms of petechiae, hypoxemia, central nervous system symptoms along with other features such as tachycardia and pyrexia. Diagnosis of FES relies on clinical judgment rather than objective findings such as emboli present in the retinal vessels on fundoscopy, fat globules present in urine and sputum, a sudden inexplicable drop in hematocrit or platelet values, increasing erythrocyte sedimentation rate.
Systemic fat embolism and the patent foramen ovale--a prospective autopsy study.
Nikolić, Slobodan; Zivković, Vladimir; Babić, Dragan; Djonić, Danijela; Djurić, Marija
2012-05-01
A fat embolism is a known and common complication of blunt force injuries, especially pelvic and long bones fractures. The aim of this study was to determine the importance of a patent foramen ovale (PFO) in developing systemic fat embolism (SFE) and eventually fat embolism syndrome (FES) in patients suffering from orthopaedic blunt injuries and consequent lung fat embolism. The sample was divided: 32 subjects with a sealed foramen ovale (SFO), and 20 subjects with a PFO. In our sample, there was no difference in either the incidence of renal fat embolism in subjects with PFO compared to those with SFO (Fisher's exact test 0.228, p=0.154) or in the grade of renal fat embolism (Pearson Chi-square 2.728, p=0.435). However, there was a statistically significant correlation between the grade of lung fat embolism and the number of fractured bones for the whole sample (Spearman's rho 0.271, p=0.052), but no correlation between the grade of lung fat embolism and the ISS or NISS (Pearson correlation 0.048, p=0.736, and 0.108, p=0.445, respectively). In our study, the presence of fat emboli in the kidney, i.e. SFE, could effectively be predicted by the grade of lung fat embolism (the moderate and slight grades of lung fat embolism were better predictors than the massive one: logistic regression - Wald. Coeff.=11.446, p=0.003, Wald. Coeff.=10.553, p=0.001, and Wald. Coeff.=4.128, p=0.042), and less effectively by presence of PFO (Wald. Coeff.=2.850, p=0.091). This study pointed out that lung and SFE are not pure biomechanical events, so the role of a PFO is not crucial in developing a lung fat embolism into a systemic embolism: the fat embolism is more of a biochemical and pathophsyiological event, than a biomechanical one. The appearance of a patent foramen ovale associated with a systemic fat embolism should be less emphasised: maybe arteriovenous shunts and anastomosis between the functional and nutritive, i.e. systemic circulation of lungs play a more important role in developing a SFE than a PFO. Copyright © 2010 Elsevier Ltd. All rights reserved.
Bone metabolism in anorexia nervosa and hypothalamic amenorrhea.
Chou, Sharon H; Mantzoros, Christos
2018-03-01
Anorexia nervosa (AN) and hypothalamic amenorrhea (HA) are states of chronic energy deprivation associated with severely compromised bone health. Poor bone accrual during adolescence followed by increased bone loss results in lifelong low bone density, degraded bone architecture, and higher risk of fractures, despite recovery from AN/HA. Amenorrhea is only one of several compensatory responses to the negative energy balance. Other hypothalamic-pituitary hormones are affected and contribute to bone deficits, including activation of hypothalamic-pituitary-adrenal axis and growth hormone resistance. Adipokines, particularly leptin, provide information on fat/energy stores, and gut hormones play a role in the regulation of appetite and food intake. Alterations in all these hormones influence bone metabolism. Restricted in scope, current pharmacologic approaches to improve bone health have had overall limited success. Copyright © 2017 Elsevier Inc. All rights reserved.
Injectable Reactive Biocomposites For Bone Healing In Critical-Size Rabbit Calvarial Defects
2012-03-29
defects (i.e. be conformable), provide temporary protection to the brain until the bone heals, and enhance tissue regeneration with the delivery of...temporary protection to the brain until the bone heals, and enhance tissue regeneration with the delivery of biologics. In this study, we evaluated the...complex defects (i.e. be conformable), harden to provide temporary protection until tissue remodels (i.e. be settable), and enhance tissue regeneration
Nava-González, Edna J; de la Garza-Casas, Yolanda E; Salazar-Montalvo, Raúl G; Gallegos-Cabriales, Esther C
2013-01-01
women with endometriosis may have a decreased bone mineral density (BMD). Several studies have shown that accumulation of adipose tissue profoundly affects BMD. It has also been documented that excess body fat is associated with risk of developing endometriosis. The aim was to analyze the relationship between BMD, fat mass, and the insulin-glucose axis in women with endometriosis. thirty women with a diagnosis of endometriosis established by surgery were enrolled to participate in an observational prospective study. Anthropometry was performed to determine body mass index, and a dual X-ray densitometry to collect data on body composition and BMD. Glucose and insulin determinations were performed. Women were divided in two groups: with normal weight (n = 18) or overweight (n = 12). For the analysis of the results, we used descriptive statistics and Pearson's test. normal weight/overweight: mean age 32.5/35.2 years; body mass index 21.5/30.2; adiposity index: 27.7 %/36.1 %; fat mass index: 35.4/45.8 %; overweight women showed a significant value with p < 0.05. overweight, high values of adiposity index and fat mass index were related to endometriosis. This could support the hypothesis about a common pathogenesis among endometriosis, osteoporosis, diabetes and obesity.
Kasukawa, Yuji; Baylink, David J.; Guo, Rongqing; Mohan, Subburaman
2010-01-01
We previously found that the magnitude of skeletal deficits caused by GH deficiency varied during different growth periods. To test the hypothesis that the sensitivity to GH is growth period dependent, we treated GH-deficient lit/lit mice with GH (4 mg/kg body weight·d) or vehicle during the prepubertal and pubertal (d 7–34), pubertal (d 23–34), postpubertal (d 42–55), and adult (d 204–217) periods and evaluated GH effects on the musculoskeletal system by dual energy x-ray absorptiometry (DEXA) and peripheral quantitative computed tomography. GH treatment during different periods significantly increased total body bone mineral content, bone mineral density (BMD), bone area, and lean body mass and decreased percentage of fat compared with vehicle; however, the magnitude of change varied markedly depending on the treatment period. For example, the increase in total body BMD was significantly (P < 0.01) greater when GH was administered between d 42–55 (15%) compared with pubertal (8%) or adult (7.7%) periods, whereas the net loss in percentage of body fat was greatest (−56%) when GH was administered between d 204 and 216 and least (−27%) when GH was administered between d 7 and 35. To determine whether GH-induced anabolic effects on the musculoskeletal system are maintained after GH withdrawal, we performed DEXA measurements 3–7 wk after stopping GH treatment. The increases in total body bone mineral content, BMD, and lean body mass, but not the decrease in body fat, were sustained after GH withdrawal. Our findings demonstrate that the sensitivity to GH in target tissues is growth period and tissue type dependent and that continuous GH treatment is necessary to maintain body fat loss but not BMD gain during a 3–7 wk follow-up. PMID:12933669
Central Nervous System Fibrosis Is Associated with Fibrocyte-Like Infiltrates
Aldrich, Amy; Kielian, Tammy
2011-01-01
Fibrotic wall formation is essential for limiting pathogen dissemination during brain abscess development. However, little is known about the regulation of fibrotic processes in the central nervous system (CNS). Most CNS injury responses are associated with hypertrophy of resident astrocytes, a process termed reactive gliosis. Studies of fibrosis outside the CNS have identified two bone marrow–derived cell types, fibrocytes and alternatively activated M2 macrophages, as key mediators of fibrosis. The current study used bone marrow chimeras generated from green fluorescent protein transgenic mice to evaluate the appearance of these cell types and whether bone marrow–derived cells were capable of acquiring fibrotic characteristics during brain abscess development. Immunofluorescence staining revealed partial overlap between green fluorescent protein, α-smooth muscle actin, and procollagen, suggesting that a population of cells forming the brain abscess capsule originate from a bone marrow precursor. In addition, the influx of fibrocyte-like cells into brain abscesses immediately preceded the onset of fibrotic encapsulation. Fibrotic wall formation was also associated with increased numbers of alternatively activated M2 microglia and macrophages. To our knowledge, this is the first study demonstrating that bone marrow–derived infiltrates are capable of expressing fibrotic molecules during CNS inflammation. PMID:22015460
Georgeson, Erin C; Weeks, Benjamin K; McLellan, Chris; Beck, Belinda R
2012-01-01
Objectives To examine the anthropometric characteristics of an Australian National Rugby League team and identify the relationship to type and incidence of injuries sustained during a professional season. It was hypothesised that body composition would not change discernibly across a season and that injury would be negatively related to preseason bone and muscle mass. Design A repeated measure, prospective, observational, cohort study. Setting Griffith University, Gold Coast, Australia. Participants 37 professional male Australian National Rugby League players, 24.3 (3.8) years of age were recruited for preseason 1 testing, of whom 25 were retested preseason 2. Primary and secondary outcome measures Primary outcome measures included biometrics; body composition (bone, muscle and fat mass; dual-energy x-ray absorptiometry; XR800, Norland Medical Systems, Inc); bone geometry and strength (peripheral quantitative CT; XCT 3000, Stratec); calcaneal broadband ultrasound attenuation (BUA; QUS-2, Quidel); diet and physical activity history. Secondary outcome measures included player injuries across a single playing season. Results Lean mass decreased progressively throughout the season (pre=81.45(7.76) kg; post=79.89(6.72) kg; p≤0.05), while whole body (WB) bone mineral density (BMD) increased until mid-season (pre=1.235(0.087) g/cm2; mid=1.296(0.093) g/cm2; p≤0.001) then decreased thereafter (post=1.256(0.100); p≤0.001). Start-of-season WB BMD, fat and lean mass, weight and tibial mass measured at the 38% site predicted bone injury incidence, but no other relationship was observed between body composition and injury. Conclusions Significant anthropometric changes were observed in players across a professional rugby league season, including an overall loss of muscle and an initial increase, followed by a decrease in bone mass. Strong relationships between anthropometry and incidence of injury were not observed. Long-term tracking of large rugby league cohorts is indicated to obtain more injury data in order to examine anthropometric relationships with greater statistical power. PMID:23135539
USDA-ARS?s Scientific Manuscript database
Osteocalcin (OC) is a vitamin K-dependent bone protein used as a marker of bone formation. Mouse models have demonstrated a role for the uncarboxylated form of OC (ucOC) in energy metabolism, including energy expenditure and adiposity, but human data are equivocal. To determine the associations betw...
USDA-ARS?s Scientific Manuscript database
Osteocalcin (OC) is a vitamin K dependent bone protein used as a marker of bone formation. Mouse models have demonstrated a role for the uncarboxylated form of OC (ucOC) in energy metabolism, including energy expenditure and adiposity, but human data are equivocal. To determine the associations betw...
USDA-ARS?s Scientific Manuscript database
Chronic inflammation is linked to osteopenia or low bone mass, observed in a variety of physiological conditions such as aging and post-menopause with estrogen deficiency. Evidence suggests that obesity is also associated with low-grade chronic up-regulation of inflammatory cytokines. This study inv...
USDA-ARS?s Scientific Manuscript database
In both rodents and humans, excessive consumption of diets high in saturated fat and cholesterol during postnatal life is known to result in global energy imbalance, obesity, and insulin resistance. However, the effects of such a "Western diet" (WD) on bone development and remodeling is poorly under...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidtlein, CR; Hwang, S; Veeraraghavan, H
Purpose: This study demonstrates a methodology for tracking changes in metastatic bone disease using trajectories in material basis space in serial dual energy computed tomography (DECT) studies. Methods: This study includes patients with bone metastases from breast cancer that had clinical surveillance CT scans using a General Electric CT750HD in dual energy mode. A radiologist defined regions-of-interested (ROI) for bone metastasis, normal bone, and marrow across the serial DECT scans. Our approach employs a Radon transform to forward-projection the basis images, namely, water and iodine, into sinogram space. This data is then repartitioned into fat/bone and effective density/Z image pairsmore » using assumed energy spectrums for the x-ray energies. This approach both helps remove negative material densities and avoids adding spectrum-hardening artifacts. These new basis data sets were then reconstructed via filtered back-projection to create new material basis pair images. The trajectories of these pairs were then plotted in the new basis space providing a means to both visualize and quantitatively measure changes in the material properties of the tumors. Results: ROI containing radiologist defined metastatic bone disease showed well-defined trajectories in both fat/bone and effective density/Z space. ROI that contained radiologist defined normal bone and marrow did not exhibit any discernible trajectories and were stable from scan to scan. Conclusions: The preliminary results show that changes in material composition and effective density/Z image pairs were seen primarily in metastasis and not in normal tissue. This study indicates that by using routine clinical DECT it may be possible to monitor therapy response of bone metastases because healing or worsening bone metastases change material composition of bone. Additional studies are needed to further validate these results and to test for their correlation with outcome.« less
Dairy fat blend improves brain DHA and neuroplasticity and regulates corticosterone in mice.
Dinel, A L; Rey, C; Bonhomme, C; Le Ruyet, P; Joffre, C; Layé, S
2016-06-01
Mimicking the breast milk lipid composition appears to be necessary for infant formula to cover the brain's needs in n-3 PUFA. In this study, we evaluated the impact of partial replacement of vegetable oil (VL) in infant formula by dairy fat (DL) on docosahexaenoic acid (DHA) brain level, neuroplasticity and corticosterone in mice. Mice were fed with balanced VL or balanced DL diets enriched or not in DHA and arachidonic acid (ARA) from the first day of gestation. Brain DHA level, microglia number, neurogenesis, corticosterone and glucocorticoid receptor expression were measured in the offsprings. DL diet increased DHA and neuroplasticity in the brain of mice at postnatal day (PND) 14 and at adulthood compared to VL. At PND14, ARA and DHA supplementation increased DHA in VL but not in DL mice brain. Importantly, DHA and ARA supplementation further improved neurogenesis and decreased corticosterone level in DL mice at adulthood. In conclusion, dairy lipids improve brain DHA level and neuroplasticity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Brusnahan, S K; McGuire, T R; Jackson, J D; Lane, J T; Garvin, K L; O'Kane, B J; Berger, A M; Tuljapurkar, S R; Kessinger, M A; Sharp, J G
2010-01-01
Hematological deficiencies increase with aging leading to anemias, reduced hematopoietic stress responses and myelodysplasias. This study tested the hypothesis that side population hematopoietic stem cells (SP-HSC) would decrease with aging, correlating with IGF-1 and IL-6 levels and increases in bone marrow fat. Marrow was obtained from the femoral head and trochanteric region of the femur at surgery for total hip replacement (N=100). Whole trabecular marrow samples were ground in a sterile mortar and pestle and cellularity and fat content determined. Marrow and blood mononuclear cells were stained with Hoechst dye and the SP-HSC profiles acquired. Marrow stromal cells (MSC) were enumerated flow cytometrically employing the Stro-1 antibody, and clonally in the colony forming unit fibroblast (CFU-F) assay. Plasma levels of IGF-1 (ng/ml) and IL-6 (pg/ml) were measured by ELISA. SP-HSC in blood and bone marrow decreased with age but the quality of the surviving stem cells increased. MSC decreased non-significantly. IGF-1 levels (mean=30.7, SEM=2) decreased and IL-6 levels (mean=4.4, SEM=1) increased with age as did marrow fat (mean=1.2mmfat/g, SEM=0.04). There were no significant correlations between cytokine levels or fat and SP-HSC numbers. Stem cells appear to be progressively lost with aging and only the highest quality stem cells survive. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Mice overexpressing corticotropin-releasing factor show brain atrophy and motor dysfunctions.
Goebel, Miriam; Fleming, Sheila M; Million, Mulugeta; Stengel, Andreas; Taché, Yvette; Wang, Lixin
2010-03-31
Chronic stress and persistently high glucocorticoid levels can induce brain atrophy. Corticotropin-releasing factor (CRF)-overexpressing (OE) mice are a genetic model of chronic stress with elevated brain CRF and plasma corticosterone levels and Cushing's syndrome. The brain structural alterations in the CRF-OE mice, however, are not well known. We found that adult male and female CRF-OE mice had significantly lower whole brain and cerebellum weights than their wild type (WT) littermates (347.7+/-3.6mg vs. 460.1+/-4.3mg and 36.3+/-0.8mg vs. 50.0+/-1.3mg, respectively) without sex-related difference. The epididymal/parametrial fat mass was significantly higher in CRF-OE mice. The brain weight was inversely correlated to epididymal/parametrial fat weight, but not to body weight. Computerized image analysis system in Nissl-stained brain sections of female mice showed that the anterior cingulate and sensorimotor cortexes of CRF-OE mice were significantly thinner, and the volumes of the hippocampus, hypothalamic paraventricular nucleus and amygdala were significantly reduced compared to WT, while the locus coeruleus showed a non-significant increase. Motor functions determined by beam crossing and gait analysis showed that CRF-OE mice took longer time and more steps to traverse a beam with more errors, and displayed reduced stride length compared to their WT littermates. These data show that CRF-OE mice display brain size reduction associated with alterations of motor coordination and an increase in visceral fat mass providing a novel animal model to study mechanisms involved in brain atrophy under conditions of sustained elevation of brain CRF and circulating glucocorticoid levels. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.
A link between central kynurenine metabolism and bone strength in rats with chronic kidney disease
Pawlak, Krystyna; Oksztulska-Kolanek, Ewa; Domaniewski, Tomasz; Znorko, Beata; Karbowska, Malgorzata; Citkowska, Aleksandra; Rogalska, Joanna; Roszczenko, Alicja; Brzoska, Malgorzata M.; Pawlak, Dariusz
2017-01-01
Background Disturbances in mineral and bone metabolism represent one of the most complex complications of chronic kidney disease (CKD). Serotonin, a monoamine synthesized from tryptophan, may play a potential role in bone metabolism. Brain-derived serotonin exerts a positive effect on the bone structure by limiting bone resorption and enhancing bone formation. Tryptophan is the precursor not only to the serotonin but also and primarily to kynurenine metabolites. The ultimate aim of the present study was to determine the association between central kynurenine metabolism and biomechanical as well as geometrical properties of bone in the experimental model of the early stage of CKD. Methods Thirty-three Wistar rats were randomly divided into two groups (sham-operated and subtotal nephrectomized animals). Three months after surgery, serum samples were obtained for the determination of biochemical parameters, bone turnover biomarkers, and kynurenine pathway metabolites; tibias were collected for bone biomechanical, bone geometrical, and bone mass density analysis; brains were removed and divided into five regions for the determination of kynurenine pathway metabolites. Results Subtotal nephrectomized rats presented higher serum concentrations of creatinine, urea nitrogen, and parathyroid hormone, and developed hypocalcemia. Several biomechanical and geometrical parameters were significantly elevated in rats with experimentally induced CKD. Subtotal nephrectomized rats presented significantly higher kynurenine concentrations and kynurenine/tryptophan ratio and significantly lower tryptophan levels in all studied parts of the brain. Kynurenine in the frontal cortex and tryptophan in the hypothalamus and striatum correlated positively with the main parameters of bone biomechanics and bone geometry. Discussion In addition to the complex mineral, hormone, and metabolite changes, intensified central kynurenine turnover may play an important role in the development of bone changes in the course of CKD. PMID:28439468
Effects of chronic acceleration on body composition
NASA Technical Reports Server (NTRS)
Pitts, G. C.
1982-01-01
Studies of the centrifugation of adult rats showed an unexpected decrease in the mass of fat-free muscle and bone, in spite of the added load induced by centrifugation. It is suggested that the lower but constant fat-free body mass was probably regulated during centrifugation. Rats placed in weightless conditions for 18.5 days gave indirect but strong evidence that the muscle had increased in mass. Other changes in the rats placed in weightless conditions included a smaller fraction of skeletal mineral, a smaller fraction of water in the total fat-free body, and a net shift of fluid from skin to viscera. Adult rats centrifuged throughout the post-weaning growth period exhibited smaller masses of bone and central nervous system (probably attributable to slower growth of the total body), and a larger mass of skin than controls at 1 G. Efforts at simulating the effects of weightlessness or centrifugation on the body composition of rats by regimens at terrestrial gravity were inconclusive.
Resistance training is medicine: effects of strength training on health.
Westcott, Wayne L
2012-01-01
Inactive adults experience a 3% to 8% loss of muscle mass per decade, accompanied by resting metabolic rate reduction and fat accumulation. Ten weeks of resistance training may increase lean weight by 1.4 kg, increase resting metabolic rate by 7%, and reduce fat weight by 1.8 kg. Benefits of resistance training include improved physical performance, movement control, walking speed, functional independence, cognitive abilities, and self-esteem. Resistance training may assist prevention and management of type 2 diabetes by decreasing visceral fat, reducing HbA1c, increasing the density of glucose transporter type 4, and improving insulin sensitivity. Resistance training may enhance cardiovascular health, by reducing resting blood pressure, decreasing low-density lipoprotein cholesterol and triglycerides, and increasing high-density lipoprotein cholesterol. Resistance training may promote bone development, with studies showing 1% to 3% increase in bone mineral density. Resistance training may be effective for reducing low back pain and easing discomfort associated with arthritis and fibromyalgia and has been shown to reverse specific aging factors in skeletal muscle.
Sánchez-Hernández, Diana; Anderson, G Harvey; Poon, Abraham N; Pannia, Emanuela; Cho, Clara E; Huot, Pedro S P; Kubant, Ruslan
2016-10-01
Recent research shows a link between vitamin intake during pregnancy and offspring health. Inadequate intakes of water-soluble vitamins during pregnancy lead to obesity and characteristics of the metabolic syndrome, concurrent with altered developments in food intake regulatory pathways. Few studies, however, have reported on the effects of fat-soluble vitamins (A, D, E, and K) on the development of food intake regulatory pathways. The majority of studies to date have focused on associations between inadequate and high intakes of folic acid and vitamin D and neurocognitive development of the offspring. Hence, the objective of this review is to present an evaluation of the role of maternal vitamins A, D, E, and K in brain development and function of neural pathways that regulate feeding behaviors. PubMed and Google Scholar were searched from 1975 through September, 2016. Most studies supporting a role for fat-soluble vitamins in regulating brain development and associated behaviors have been conducted in animal and cell models, leaving uncertain their relevance to neurocognitive development and function in humans. Nevertheless, although current research on defining the role of maternal fat-soluble vitamins in offspring's brain development is limited, it is sufficient to warrant further investigations on their impact when intake amounts during pregnancy are not only inadequate but also exceed requirements. Copyright © 2016 Elsevier Inc. All rights reserved.
Wang, Lixin; Jacobs, Jonathan P; Lagishetty, Venu; Yuan, Pu-Qing; Wu, Shuping V; Million, Mulugeta; Reeve, Joseph R; Pisegna, Joseph R; Taché, Yvette
2017-10-01
High-protein diet (HPD) curtails obesity and/or fat mass, but it is unknown whether it reverses neuroinflammation or alters glucose levels, CCK sensitivity, and gut microbiome in rats fed a Western diet (WD)-induced obesity (DIO). Male rats fed a WD (high fat and sugar) for 12 wk were switched to a HPD for 6 wk. Body composition, food intake, meal pattern, sensitivity to intraperitoneal CCK-8S, blood glucose, brain signaling, and cecal microbiota were assessed. When compared with a normal diet, WD increased body weight (9.3%) and fat mass (73.4%). CCK-8S (1.8 or 5.2 nmol/kg) did not alter food intake and meal pattern in DIO rats. Switching to a HPD for 6 wk reduced fat mass (15.7%) with a nonsignificantly reduced body weight gain, normalized blood glucose, and decreased feeding after CCK-8S. DIO rats on the WD or switched to a HPD showed comparable microbial diversity. However, in HPD versus WD rats, there was enrichment of 114 operational taxonomic units (OTUs) and depletion of 188 OTUs. Of those, Akkermansia muciniphila (enriched on a HPD), an unclassified Clostridiales, a member of the RF39 order, and a Phascolarctobacterium were significantly associated with fat mass. The WD increased cytokine expression in the hypothalamus and dorsal medulla that was unchanged by switching to HPD. These data indicate that HPD reduces body fat and restores glucose homeostasis and CCK sensitivity, while not modifying brain inflammation. In addition, expansion of cecal Akkermansia muciniphila correlated to fat mass loss may represent a potential peripheral mechanism of HPD beneficial effects.