An Alternative to Impedance Screening: Unoccluded Frontal Bone Conduction Screening.
ERIC Educational Resources Information Center
Square, Regina; And Others
1985-01-01
A bone conduction hearing screening test using frontal bone oscillator placement was compared with pure-tone air-conduction screening and impedance audiometry with 114 preschoolers. Unoccluded frontal bone conduction testing produced screening results not significantly different from results obtained by impedance audiometry. (CL)!
Clinical guideline on bone conduction implants.
Lavilla Martín de Valmaseda, María José; Cavalle Garrido, Laura; Huarte Irujo, Alicia; Núñez Batalla, Faustino; Manrique Rodriguez, Manuel; Ramos Macías, Ángel; de Paula Vernetta, Carlos; Gil-Carcedo Sañudo, Elisa; Lassaleta, Luis; Sánchez-Cuadrado, Isabel; Espinosa Sánchez, Juan Manuel; Batuecas Caletrio, Ángel; Cenjor Español, Carlos
2018-04-13
During the last decade there have been multiple and relevant advances in conduction and mixed hearing loss treatment. These advances and the appearance of new devices have extended the indications for bone-conduction implants. The Scientific Committee of Audiology of the Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello SEORL-CCC (Spanish Society of Otolaryngology and Head and Neck Surgery), together with the Otology and Otoneurology Committees, have undertaken a review of the current state of bone-conduction devices with updated information, to provide a clinical guideline on bone-conduction implants for otorhinolaryngology specialists, health professionals, health authorities and society in general. This clinical guideline on bone-conduction implants contains information on the following: 1) Definition and description of bone-conduction devices; 2) Current and upcoming indications for bone conduction devices: Magnetic resonance compatibility; 3) Organization requirements for a bone-conduction implant programme. The purpose of this guideline is to describe the different bone-conduction implants, their characteristics and their indications, and to provide coordinated instructions for all the above-mentioned agents for decision making within their specific work areas. Copyright © 2018 Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. Publicado por Elsevier España, S.L.U. All rights reserved.
Effect of bone conduction transducer placement on distortion product otoacoustic emissions
NASA Astrophysics Data System (ADS)
Hazelbaker, Julie L.
The purpose of this study was to develop a technique to determine the magnitude of bone conducted sound in the cochlea when stimuli are delivered from three different locations on the head. Distortion product otoacoustic emissions (DPOAE) at 1000 and 2000 Hz were used as tools to determine cochlear response to stimuli introduced via air conduction and bone conduction in three subjects. The bone conduction transducer was moved to three head locations (ipsilateral mastoid, contralateral mastoid and forehead). The intensity of the emissions elicited was compared. The differences in DPOAE magnitude created by varying the location of the bone conduction transducer were compared with behavioral threshold differences with the same transducers at the same locations. It was assumed that results of behavioral measures would provide a prediction of the relationship between air and bone conducted DPOAE. However, in the current study, this was not the case. Behavioral bone conduction threshold data did not predict differences in DPOAE at different bone conduction transducer locations. This was a somewhat surprising result and should be considered further in future studies examining the properties of DPOAE elicited by bone conduction. Additionally, a wide band noise masker was introduced to the non-test ear when bone conducted stimuli were introduced to make DPOAE and behavioral test conditions as similar as possible. No great suppression effects were noted across subjects for either frequency. This was likely due to the shape and intensity of the contralateral masked used.
NASA Astrophysics Data System (ADS)
Borgers, Charlotte; van Wieringen, Astrid; D'hondt, Christiane; Verhaert, Nicolas
2018-05-01
The cochlea is the main contributor in bone conduction perception. Measurements of differential pressure in the cochlea give a good estimation of the cochlear input provided by bone conduction stimulation. Recent studies have proven the feasibility of intracochlear pressure measurements in chinchillas and in human temporal bones to study bone conduction. However, similar measurements in fresh-frozen whole human cadaveric heads could give a more realistic representation of the five different transmission pathways of bone conduction to the cochlea compared to human temporal bones. The aim of our study is to develop and validate a framework for intracochlear pressure measurements to evaluate different aspects of bone conduction in whole human cadaveric heads. A proof of concept describing our experimental setup is provided together with the procedure. Additionally, we also present a method to fix the stapes footplate in order to simulate otosclerosis in human temporal bones. The effectiveness of this method is verified by some preliminary results.
Distribution Characteristics of Air-Bone Gaps – Evidence of Bias in Manual Audiometry
Margolis, Robert H.; Wilson, Richard H.; Popelka, Gerald R.; Eikelboom, Robert H.; Swanepoel, De Wet; Saly, George L.
2015-01-01
Objective Five databases were mined to examine distributions of air-bone gaps obtained by automated and manual audiometry. Differences in distribution characteristics were examined for evidence of influences unrelated to the audibility of test signals. Design The databases provided air- and bone-conduction thresholds that permitted examination of air-bone gap distributions that were free of ceiling and floor effects. Cases with conductive hearing loss were eliminated based on air-bone gaps, tympanometry, and otoscopy, when available. The analysis is based on 2,378,921 threshold determinations from 721,831 subjects from five databases. Results Automated audiometry produced air-bone gaps that were normally distributed suggesting that air- and bone-conduction thresholds are normally distributed. Manual audiometry produced air-bone gaps that were not normally distributed and show evidence of biasing effects of assumptions of expected results. In one database, the form of the distributions showed evidence of inclusion of conductive hearing losses. Conclusions Thresholds obtained by manual audiometry show tester bias effects from assumptions of the patient’s hearing loss characteristics. Tester bias artificially reduces the variance of bone-conduction thresholds and the resulting air-bone gaps. Because the automated method is free of bias from assumptions of expected results, these distributions are hypothesized to reflect the true variability of air- and bone-conduction thresholds and the resulting air-bone gaps. PMID:26627469
Sleifer, Pricila; Didoné, Dayane Domeneghini; Keppeler, Ísis Bicca; Bueno, Claudine Devicari; Riesgo, Rudimar dos Santos
2017-01-01
Introduction The tone-evoked auditory brainstem responses (tone-ABR) enable the differential diagnosis in the evaluation of children until 12 months of age, including those with external and/or middle ear malformations. The use of auditory stimuli with frequency specificity by air and bone conduction allows characterization of hearing profile. Objective The objective of our study was to compare the results obtained in tone-ABR by air and bone conduction in children until 12 months, with agenesis of the external auditory canal. Method The study was cross-sectional, observational, individual, and contemporary. We conducted the research with tone-ABR by air and bone conduction in the frequencies of 500 Hz and 2000 Hz in 32 children, 23 boys, from one to 12 months old, with agenesis of the external auditory canal. Results The tone-ABR thresholds were significantly elevated for air conduction in the frequencies of 500 Hz and 2000 Hz, while the thresholds of bone conduction had normal values in both ears. We found no statistically significant difference between genders and ears for most of the comparisons. Conclusion The thresholds obtained by bone conduction did not alter the thresholds in children with conductive hearing loss. However, the conductive hearing loss alter all thresholds by air conduction. The tone-ABR by bone conduction is an important tool for assessing cochlear integrity in children with agenesis of the external auditory canal under 12 months. PMID:29018492
Carbon nanotube-based bioceramic grafts for electrotherapy of bone.
Mata, D; Horovistiz, A L; Branco, I; Ferro, M; Ferreira, N M; Belmonte, M; Lopes, M A; Silva, R F; Oliveira, F J
2014-01-01
Bone complexity demands the engineering of new scaffolding solutions for its reconstructive surgery. Emerging bone grafts should offer not only mechanical support but also functional properties to explore innovative bone therapies. Following this, ceramic bone grafts of Glass/hydroxyapatite (HA) reinforced with conductive carbon nanotubes (CNTs) - CNT/Glass/HA - were prepared for bone electrotherapy purposes. Computer-aided 3D microstructural reconstructions and TEM analysis of CNT/Glass/HA composites provided details on the CNT 3D network and further correlation to their functional properties. CNTs are arranged as sub-micrometric sized ropes bridging homogenously distributed ellipsoid-shaped agglomerates. This arrangement yielded composites with a percolation threshold of pc=1.5vol.%. At 4.4vol.% of CNTs, thermal and electrical conductivities of 1.5W·m(-1)·K(-1) and 55S·m(-1), respectively, were obtained, matching relevant requisites in electrical stimulation protocols. While the former avoids bone damaging from Joule's heat generation, the latter might allow the confinement of external electrical fields through the conductive material if used for in vivo electrical stimulation. Moreover, the electrically conductive bone grafts have better mechanical properties than those of the natural cortical bone. Overall, these highly conductive materials with controlled size CNT agglomerates might accelerate bone bonding and maximize the delivery of electrical stimulation during electrotherapy practices. © 2013.
An NLRA Transducer for Dual Use Bone Conduction Audio and Haptic Communication. Summary Report
2016-12-30
VIBRANT COMPOSITES INC. 1 A16-019 Phase 1 Summary Report Vibrant Composites Inc. December 30, 2016 I. ABSTRACT A combined transducer capable of bone ...transducer core capable of both precise haptic communication and high fidelity bone conduction audio. The transducer design leverages Micro-Multilayer...head-mounted system. In this Phase I SBIR, Vibrant Composites has delivered functional dual-mode bone conduction and vibrotactile transducer prototypes
Test-retest reliability of auditory brainstem responses to chirp stimuli in newborns.
Cobb, Kensi M; Stuart, Andrew
2014-11-01
The purpose of this study was to examine the test-retest reliability of auditory brainstem responses (ABRs) to air- and bone-conducted chirp stimuli in newborns as a function of intensity. A repeated measures quasi-experimental design was employed. Thirty healthy newborns participated. ABRs were evoked using 60, 45, and 30 dB nHL air-conducted CE-Chirps and 45, 30, and 15 dB nHL bone-conducted CE-Chirps at a rate of 57.7/s. Measures were repeated by a second tester. Statistically significant correlations (p <.0001) and predictive linear relations (p <.0001) were found between testers for wave V latencies and amplitudes to air- and bone-conducted CE-Chirps. There were also no statistically significant differences between testers with wave V latencies and amplitudes to air- and bone-conducted CE-Chirps (p >.05). As expected, significant differences in wave V latencies and amplitudes were seen as a function of stimulus intensity for air- and bone-conducted CE-Chirps (p <.0001). These results suggest that ABRs to air- and bone-conducted CE-Chirps can be reliably repeated in newborns with different testers. The CE-Chirp may be valuable for both screening and diagnostic audiologic assessments of newborns.
Banakis Hartl, Renee M.; Mattingly, Jameson K.; Greene, Nathaniel T.; Jenkins, Herman A.; Cass, Stephen P.; Tollin, Daniel J.
2016-01-01
Hypothesis A cochlear implant electrode within the cochlea contributes to the air-bone gap (ABG) component of postoperative changes in residual hearing after electrode insertion. Background Preservation of residual hearing after cochlear implantation has gained importance as simultaneous electric-acoustic stimulation allows for improved speech outcomes. Postoperative loss of residual hearing has previously been attributed to sensorineural changes; however, presence of increased postoperative air-bone gap remains unexplained and could result in part from altered cochlear mechanics. Here, we sought to investigate changes to these mechanics via intracochlear pressure measurements before and after electrode implantation to quantify the contribution to postoperative air-bone gap. Methods Human cadaveric heads were implanted with titanium fixtures for bone conduction transducers. Velocities of stapes capitulum and cochlear promontory between the two windows were measured using single-axis laser Doppler vibrometry and fiber-optic sensors measured intracochlear pressures in scala vestibuli and tympani for air- and bone-conducted stimuli before and after cochlear implant electrode insertion through the round window. Results Intracochlear pressures revealed only slightly reduced responses to air-conducted stimuli consistent with prior literature. No significant changes were noted to bone-conducted stimuli after implantation. Velocities of the stapes capitulum and the cochlear promontory to both stimuli were stable following electrode placement. Conclusion Presence of a cochlear implant electrode causes alterations in intracochlear sound pressure levels to air, but not bone, conducted stimuli and helps to explain changes in residual hearing noted clinically. These results suggest the possibility of a cochlear conductive component to postoperative changes in hearing sensitivity. PMID:27579835
Bone Conduction Communication: Research Progress and Directions
2017-08-16
ARL-TR-8096 ● AUG 2017 US Army Research Laboratory Bone Conduction Communication: Research Progress and Directions by Maranda...this report when it is no longer needed. Do not return it to the originator. ARL-TR-8096 ● AUG 2017 US Army Research Laboratory...Bone Conduction Communication: Research Progress and Directions by Maranda McBride North Carolina Agricultural and Technical State University
Cobb, Kensi M; Stuart, Andrew
The purpose of the study was to generate normative auditory brainstem response (ABR) wave component peak latency and amplitude values for neonates with air- and bone-conducted CE-Chirps and air-conducted CE-Chirp octave band stimuli (i.e., 500, 1000, 2000, and 4000 Hz). A second objective was to compare neonate ABRs to CE-Chirp stimuli with ABR responses to traditional click and tone burst stimuli with the same stimulus parameters. Participants were 168 healthy neonates. ABRs were obtained to air- and bone-conducted CE-Chirp and click stimuli and air-conducted CE-Chirp octave band and tone burst stimuli. The effects of stimulus level, rate, and polarity were examined with air-conducted CE-Chirps and clicks. The effect of stimulus level was also examined with bone-conducted CE-Chirps and clicks and air-conducted CE-Chirp octave band stimuli. In general, ABR wave V amplitudes to air- and bone-conducted CE-Chirp stimuli were significantly larger (p < 0.05) than those evoked to traditional click and tone burst stimuli. Systematic statistically significant (p < 0.05) wave V latency differences existed between the air- and bone-conducted CE-Chirp and CE-Chirp octave band stimuli relative to traditional click and tone burst stimuli. ABRs to air- and bone-conducted CE-Chirps and CE-Chirp octave band stimuli may be valuable in the assessment of newborn infants. However, the prognostic value of such stimuli needs to be validated.
Auditory Brainstem Response Thresholds to Air- and Bone-Conducted CE-Chirps in Neonates and Adults.
Cobb, Kensi M; Stuart, Andrew
2016-08-01
The purpose of this study was to compare auditory brainstem response (ABR) thresholds to air- and bone-conducted CE-Chirps in neonates and adults. Thirty-two neonates with no physical or neurologic challenges and 20 adults with normal hearing participated. ABRs were acquired with a starting intensity of 30 dB normal hearing level (nHL). The lowest stimulus intensity level at which a wave V was identifiable and replicable was considered the ABR threshold. ABR thresholds to air-conducted CE-Chirps were 9.8 dB nHL for neonates and adults. ABR thresholds to bone-conducted CE-Chirps were 3.8 and 13.8 dB nHL for neonates and adults, respectively. The difference in ABR thresholds to bone-conducted CE-Chirps was significantly different (p < .0001, ηp2 = .45). Adults had significantly larger wave V amplitudes to air- (p < .0001, ηp2 = .50) and bone-conducted (p = .013, ηp2 = .15) CE-Chirps at a stimulus intensity of 30 dB nHL. At the same intensity, adults evidenced significantly shorter wave V latencies (p < .0001, ηp2 = .49) only with air-conducted CE-chirps. The difference in ABR thresholds and wave V latencies to air- and bone-conducted CE-Chirps between neonates and adults may be attributed to a disparity in effective signal delivery to the cochlea.
A piezoelectric bone-conduction bending hearing actuator.
Adamson, R B A; Bance, M; Brown, J A
2010-10-01
A prototype of a novel bone-conduction hearing actuator based on a piezoelectric bending actuator is presented. The device lies flat against the skull which would allow it to form the basis of a subcutaneous bone-anchored hearing aid. The actuator excites bending in bone through a local bending moment rather than the application of a point force as with conventional bone-anchored hearing aids. Through measurements of the cochlear velocity created by the actuator in embalmed human heads, the device is shown to exhibit high efficiency, making it a possible alternative to present-day electromagnetic bone-vibration actuators.
Chordekar, Shai; Kriksunov, Leonid; Kishon-Rabin, Liat; Adelman, Cahtia; Sohmer, Haim
2012-01-01
Auditory sensation can be elicited not only by air conducted (AC) sound or bone conducted (BC) sound, but also by stimulation of soft tissue (STC) sites on the head and neck relatively distant from deeply underlying bone. Tone stimulation by paired combinations of AC with BC (mastoid) and/or with soft tissue conduction produce the same pitch sensation, mutual masking and beats. The present study was designed to determine whether they can also cancel each other. The study was conducted on ten normal hearing subjects. Tones at 2 kHz were presented in paired combinations by AC (insert earphone), by BC (bone vibrator) at the mastoid, and by the same bone vibrator to several STC sites; e.g. the neck, the sterno-cleido-mastoid muscle, the eye, and under the chin, shifting the phases between the pairs. Subjects reported changes in loudness and cancellation. The phase for cancellation differed across subjects. Neck muscle manipulations (changes in head position) led to alterations in the phase at which cancellation was reported. Cancellation was also achieved between pairs of tones to two STC sites. The differing phases for cancellation across subjects and the change in phase accompanying different head positions may be due to the different acoustic impedances of the several tissues in the head and neck. A major component of auditory stimulation by STC may not induce actual skull bone vibrations and may not involve bulk fluid volume displacements. Copyright © 2011 Elsevier B.V. All rights reserved.
Banakis Hartl, Renee M; Mattingly, Jameson K; Greene, Nathaniel T; Jenkins, Herman A; Cass, Stephen P; Tollin, Daniel J
2016-10-01
A cochlear implant electrode within the cochlea contributes to the air-bone gap (ABG) component of postoperative changes in residual hearing after electrode insertion. Preservation of residual hearing after cochlear implantation has gained importance as simultaneous electric-acoustic stimulation allows for improved speech outcomes. Postoperative loss of residual hearing has previously been attributed to sensorineural changes; however, presence of increased postoperative ABG remains unexplained and could result in part from altered cochlear mechanics. Here, we sought to investigate changes to these mechanics via intracochlear pressure measurements before and after electrode implantation to quantify the contribution to postoperative ABG. Human cadaveric heads were implanted with titanium fixtures for bone conduction transducers. Velocities of stapes capitulum and cochlear promontory between the two windows were measured using single-axis laser Doppler vibrometry and fiber-optic sensors measured intracochlear pressures in scala vestibuli and tympani for air- and bone-conducted stimuli before and after cochlear implant electrode insertion through the round window. Intracochlear pressures revealed only slightly reduced responses to air-conducted stimuli consistent with previous literature. No significant changes were noted to bone-conducted stimuli after implantation. Velocities of the stapes capitulum and the cochlear promontory to both stimuli were stable after electrode placement. Presence of a cochlear implant electrode causes alterations in intracochlear sound pressure levels to air, but not bone, conducted stimuli and helps to explain changes in residual hearing noted clinically. These results suggest the possibility of a cochlear conductive component to postoperative changes in hearing sensitivity.
21 CFR 874.3300 - Hearing Aid.
Code of Federal Regulations, 2010 CFR
2010-04-01
... generic type of device includes the air-conduction hearing aid and the bone-conduction hearing aid, but... subpart E of part 807 of this chapter subject to § 874.9. (2) Class II for the bone-conduction hearing aid...
21 CFR 874.3300 - Hearing Aid.
Code of Federal Regulations, 2012 CFR
2012-04-01
... generic type of device includes the air-conduction hearing aid and the bone-conduction hearing aid, but... subpart E of part 807 of this chapter subject to § 874.9. (2) Class II for the bone-conduction hearing aid...
21 CFR 874.3300 - Hearing Aid.
Code of Federal Regulations, 2014 CFR
2014-04-01
... generic type of device includes the air-conduction hearing aid and the bone-conduction hearing aid, but... subpart E of part 807 of this chapter subject to § 874.9. (2) Class II for the bone-conduction hearing aid...
21 CFR 874.3300 - Hearing Aid.
Code of Federal Regulations, 2013 CFR
2013-04-01
... generic type of device includes the air-conduction hearing aid and the bone-conduction hearing aid, but... subpart E of part 807 of this chapter subject to § 874.9. (2) Class II for the bone-conduction hearing aid...
21 CFR 874.3300 - Hearing Aid.
Code of Federal Regulations, 2011 CFR
2011-04-01
... generic type of device includes the air-conduction hearing aid and the bone-conduction hearing aid, but... subpart E of part 807 of this chapter subject to § 874.9. (2) Class II for the bone-conduction hearing aid...
Animal model of cochlear third window in the scala vestibuli or scala tympani.
Attias, Joseph; Preis, Michal; Shemesh, Rafi; Hadar, Tuvia; Nageris, Ben I
2010-08-01
The auditory impact of a cochlear third window differs by its location in the scala vestibuli or scala tympani. Pathologic third window has been investigated primarily in the vestibular apparatus of animals and humans. Dehiscence of the superior semicircular canal is the clinical model. Fat sand rats (n = 11) have a unique inner-ear anatomy that allows easy surgical access. A window was drilled in the bony labyrinth over the scala vestibuli in 1 group (12 ears) and over the scala tympani in another (7 ears) while preserving the membranous labyrinth. Auditory brain stem responses to high- and low-frequency stimuli delivered by air and bone conduction were recorded before and after the procedure. Scala vestibuli group: preoperative air-conduction thresholds to clicks and tone-bursts averaged 8.3 and 9.6 dB, respectively, and bone-conduction thresholds, 4.6 and 3.3 dB, respectively; after fenestration, air-conduction thresholds averaged 40.4 and 41.8 dB, respectively, and bone-conduction thresholds, -1 and 5.6 dB, respectively. Scala tympani group: preoperative air-conduction thresholds to clicks and tone-bursts averaged 8.6 dB each, and bone-conduction thresholds, 7.9 dB and 7.1 dB, respectively; after fenestration, air-conduction thresholds averaged 11.4 and 9.3 dB, respectively, and bone-conduction thresholds, 9.3 and 4.2 dB, respectively. The changes in air- (p = 0.0001) and bone-conduction (p = 0.04) thresholds were statistically significant only in the scala vestibuli group. The presence of a cochlear third window over the scala vestibuli, but not over the scala tympani, causes a significant increase in air-conduction auditory thresholds. These results agree with the theoretic model and clinical findings and contribute to our understanding of vestibular dehiscence.
Auditory Demonstrations for Science, Technology, Engineering, and Mathematics (STEM) Outreach
2015-01-01
were placed on a foam rubber pad. The bone vibrators were not attached to headbands, allowing students to freely experiment with the devices. Soft ...This bookmark is a visual representation of various common sounds that range from soft to very loud, with the corresponding intensity level marked...other pathway is called bone conduction. In bone conducted hearing, sound waves in bone and soft tissue are transmitted directly to the internal ear
Electric reaction arising in bone subjected to mechanical loadings
NASA Astrophysics Data System (ADS)
Murasawa, Go; Cho, Hideo; Ogawa, Kazuma
2006-03-01
The aim of present study is the investigation of the electric reaction arising in bone subjected to mechanical loadings. Firstly, specimen was fabricated from femur of cow, and ultrasonic propagation in bone was measured by ultrasonic technique. Secondary, 4-point bending test was conducted up to fracture, and electric reaction arising in bone was measured during loading. Thirdly, cyclic 4-point bending test was conducted to investigate the effect of applied displacement speed on electric reaction.
Diagnostic pure-tone audiometry in schools: mobile testing without a sound-treated environment.
Swanepoel, De Wet; Maclennan-Smith, Felicity; Hall, James W
2013-01-01
To validate diagnostic pure-tone audiometry in schools without a sound-treated environment using an audiometer that incorporates insert earphones covered by circumaural earcups and real-time environmental noise monitoring. A within-subject repeated measures design was employed to compare air (250 to 8000 Hz) and bone (250 to 4000 Hz) conduction pure-tone thresholds measured in natural school environments with thresholds measured in a sound-treated booth. 149 children (54% female) with an average age of 6.9 yr (SD = 0.6; range = 5-8). Average difference between the booth and natural environment thresholds was 0.0 dB (SD = 3.6) for air conduction and 0.1 dB (SD = 3.1) for bone conduction. Average absolute difference between the booth and natural environment was 2.1 dB (SD = 2.9) for air conduction and 1.6 dB (SD = 2.7) for bone conduction. Almost all air- (96%) and bone-conduction (97%) threshold comparisons between the natural and booth test environments were within 0 to 5 dB. No statistically significant differences between thresholds recorded in the natural and booth environments for air- and bone-conduction audiometry were found (p > 0.01). Diagnostic air- and bone-conduction audiometry in schools, without a sound-treated room, is possible with sufficient earphone attenuation and real-time monitoring of environmental noise. Audiological diagnosis on-site for school screening may address concerns of false-positive referrals and poor follow-up compliance and allow for direct referral to audiological and/or medical intervention. American Academy of Audiology.
Hodgetts, William E; Scollie, Susan D
2017-07-01
To develop an algorithm that prescribes targets for bone conduction frequency response shape, compression, and output limiting, along with a clinical method that ensures accurate transforms between assessment and verification stages of the clinical workflow. Technical report of target generation and validation. We recruited 39 adult users of unilateral percutaneous bone conduction hearing aids with a range of unilateral, bilateral, mixed and conductive hearing losses across the sample. The initial algorithm over-prescribed output compared to the user's own settings in the low frequencies, but provided a good match to user settings in the high frequencies. Corrections to the targets were derived and implemented as a low-frequency cut aimed at improving acceptance of the wearer's own voice during device use. The DSL-BCD prescriptive algorithm is compatible with verification of devices and fine-tuning to target for percutaneous bone conduction hearing devices that can be coupled to a skull simulator. Further study is needed to investigate the appropriateness of this prescriptive algorithm for other input levels, and for other clinical populations including those with single-sided deafness, bilateral devices, children and users of transcutaneous bone conduction hearing aids.
Quality standards for bone conduction implants.
Gavilan, Javier; Adunka, Oliver; Agrawal, Sumit; Atlas, Marcus; Baumgartner, Wolf-Dieter; Brill, Stefan; Bruce, Iain; Buchman, Craig; Caversaccio, Marco; De Bodt, Marc T; Dillon, Meg; Godey, Benoit; Green, Kevin; Gstoettner, Wolfgang; Hagen, Rudolf; Hagr, Abdulrahman; Han, Demin; Kameswaran, Mohan; Karltorp, Eva; Kompis, Martin; Kuzovkov, Vlad; Lassaletta, Luis; Li, Yongxin; Lorens, Artur; Martin, Jane; Manoj, Manikoth; Mertens, Griet; Mlynski, Robert; Mueller, Joachim; O'Driscoll, Martin; Parnes, Lorne; Pulibalathingal, Sasidharan; Radeloff, Andreas; Raine, Christopher H; Rajan, Gunesh; Rajeswaran, Ranjith; Schmutzhard, Joachim; Skarzynski, Henryk; Skarzynski, Piotr; Sprinzl, Georg; Staecker, Hinrich; Stephan, Kurt; Sugarova, Serafima; Tavora, Dayse; Usami, Shin-Ichi; Yanov, Yuri; Zernotti, Mario; Zorowka, Patrick; de Heyning, Paul Van
2015-01-01
Bone conduction implants are useful in patients with conductive and mixed hearing loss for whom conventional surgery or hearing aids are no longer an option. They may also be used in patients affected by single-sided deafness. To establish a consensus on the quality standards required for centers willing to create a bone conduction implant program. To ensure a consistently high level of service and to provide patients with the best possible solution the members of the HEARRING network have established a set of quality standards for bone conduction implants. These standards constitute a realistic minimum attainable by all implant clinics and should be employed alongside current best practice guidelines. Fifteen items are thoroughly analyzed. They include team structure, accommodation and clinical facilities, selection criteria, evaluation process, complete preoperative and surgical information, postoperative fitting and assessment, follow-up, device failure, clinical management, transfer of care and patient complaints.
Effect of excitation direction on cochlear macro-mechanics during bone conduction stimulation
NASA Astrophysics Data System (ADS)
Kamieniecki, Konrad; Tudruj, Sylwester; Piechna, Janusz; Borkowski, Paweł
2018-05-01
In many instances of hearing loss, audiological improvement can be made via direct excitation of a temporal bone (i.e., bone conduction). In order to design better and more efficient devices, the macro-mechanics of the bone conduction hearing pathway must be better understood. Based on previous empirical work, numerical models are useful. In this work, we present results of a time-domain Fluid Structure Interaction model that describes stimulation of the bone conduction pathway. The cochlea was modelled as uncoiled and consisted of an oval window, a round window, a basilar membrane and a helicotrema. In order to monitor pressure waves in the perilymph, the fluid was considered compressible. The excitation, in form of sinusoidal velocity, was applied to the cochlea bony walls. The system was excited in three perpendicular directions: along the basilar membrane, perpendicularly to the membrane and transversely to the membrane. The numerical simulation examined which stimulation direction maximally excited the basilar membrane, the pressure distributions for each excitation direction, and the associated mechanics.
ERIC Educational Resources Information Center
Cone-Wesson, Barbara
1995-01-01
This article discusses the accuracy of bone-conduction auditory brainstem response (BC-ABR) tests to determine the presence and severity of conductive hearing impairment. It provides warnings about technical pitfalls and recommends incorporating BC-ABR protocols for routine clinical use. It concludes that the method allows estimating cochlear…
Historical background of bone conduction hearing devices and bone conduction hearing aids.
Mudry, Albert; Tjellström, Anders
2011-01-01
During the last 20 years, bone-anchored hearing aids (Baha(®)) became a familiar solution in the treatment of some types of hearing loss. The aim of this chapter is to present the different historical steps which have permitted the production of this new bone conduction hearing device. The recognition of bone conduction hearing is old and was known at least in Antiquity. During the Renaissance, Girolamo Cardano demonstrated a method by which sound may be transmitted to the ear by means of a rod or the shaft of a spear held between one's teeth: this was the beginning of teeth stimulators to improve hearing, firstly in connection with a musical instrument and then, in the second part of the 19th century, with the speaker. The development of the carbon microphone at the beginning of the 20th century allowed the construction of the bone conduction vibrator placed on the mastoid area, notably supported by eyeglasses since the 1950s. Confronted by various problems, and notably the loss of part of sound in the soft tissue of the external mastoid, the idea to implant the vibrator into the mastoid bone was developed in Göteborg, and the first Baha was implanted in 1977 by Anders Tjellström. From that date, various improvements allowed the development of the actual Baha. These different steps are presented in this study, supported by original documentation. Copyright © 2011 S. Karger AG, Basel.
Calcium Kinetics During Space Flight
NASA Technical Reports Server (NTRS)
Smith, Scott M.; Wastney, Meryl E.; OBrien, Kimberly O.; Lane, Helen W.
1999-01-01
Bone loss is one of the most detrimental effects of space flight, threatening to limit the duration of human space missions. The ability to understand and counteract this loss will be critical for crew health and safety during and after extended-duration missions. The hypotheses to be tested in this project are that space flight alters calcium homeostasis and bone mineral metabolism, and that calcium homeostasis and bone mineral metabolism will return to baseline within days to weeks of return to Earth. These hypotheses will be evidenced by elevated rates of bone mineral resorption and decreased bone mineral deposition, decreased absorption of dietary calcium, altered calcitropic endocrine profiles, elevated excretion of calcium in urine and feces, and elevated excretion of markers of bone resorption. The second hypothesis will be evidenced by return of indices of calcium homeostasis and bone metabolism to preflight levels within days to weeks of return to Earth. Studies will be conducted on International Space Station astronauts before, during, and after extended-duration flights. Measurements of calcium kinetics, bone mass, and endocrine/biochemical markers of bone and calcium homeostasis will be conducted. Kinetic studies utilizing dual isotope tracer kinetic studies and mathematical modeling techniques will allow for determination of bone calcium deposition, bone calcium resorption, dietary calcium absorption and calcium excretion (both urinary and endogenous fecal excretion). These studies will build upon preliminary work conducted on the Russian Mir space station. The results from this project will be critical for clarifying how microgravity affects bone and calcium homeostasis, and will provide an important control point for assessment of countermeasure efficacy. These results are expected to aid in developing countermeasures for bone loss, both for space crews and for individuals on Earth who have metabolic bone diseases.
Cortical bone drilling: An experimental and numerical study.
Alam, Khurshid; Bahadur, Issam M; Ahmed, Naseer
2014-12-16
Bone drilling is a common surgical procedure in orthopedics, dental and neurosurgeries. In conventional bone drilling process, the surgeon exerts a considerable amount of pressure to penetrate the drill into the bone tissue. Controlled penetration of drill in the bone is necessary for safe and efficient drilling. Development of a validated Finite Element (FE) model of cortical bone drilling. Drilling experiments were conducted on bovine cortical bone. The FE model of the bone drilling was based on mechanical properties obtained from literature data and additionally conducted microindentation tests on the cortical bone. The magnitude of stress in bone was found to decrease exponentially away from the lips of the drill in simulations. Feed rate was found to be the main influential factor affecting the force and torque in the numerical simulations and experiments. The drilling thrust force and torque were found to be unaffected by the drilling speed in numerical simulations. Simulated forces and torques were compared with experimental results for similar drilling conditions and were found in good agreement.CONCLUSIONS: FE schemes may be successfully applied to model complex kinematics of bone drilling process.
Osteoblast hydraulic conductivity is regulated by calcitonin and parathyroid hormone
NASA Technical Reports Server (NTRS)
Hillsley, M. V.; Frangos, J. A.
1996-01-01
It is our hypothesis that osteoblasts play a major role in regulating bone (re)modeling by regulating interstitial fluid (ISF) flow through individual bone compartments. We hypothesize that osteoblasts of the blood-bone membrane lining the bone surfaces are capable of regulating transosseous fluid flow. This regulatory function of the osteoblasts was tested in vitro by culturing a layer of rat calvarial osteoblasts on porous membranes. Such a layer of osteoblasts subjected to 7.3 mm Hg of hydrostatic pressure posed a significant resistance to fluid flow across the cell layer similar in magnitude to the resistance posed by endothelial monolayers in vitro. The hydraulic conductivity, the volumetric fluid flux per unit pressure drop, of the osteoblast layer was altered in response to certain hormones. Hydraulic conductivity decreased approximately 40% in response to 33 nM parathyroid hormone, while it exhibited biphasic behavior in response to calcitonin: increased 40% in response to 100 nM calcitonin and decreased 40% in response to 1000 nM calcitonin. Further, activation of adenylate cyclase by forskolin dramatically increased the hydraulic conductivity, while elevation of intracellular calcium, [Ca2+]i, by the calcium ionophore A23187 initially decreased the hydraulic conductivity at 5 minutes before increasing conductivity by 30 minutes. These results suggest that cyclic adenosine monophosphate (cAMP) and [Ca2+]i may mediate changes in the osteoblast hydraulic conductivity. The increase in hydraulic conductivity in response to 100 nM calcitonin and the decrease in response to PTH suggest that the stimulatory and inhibitory effects on bone formation of calcitonin and parathyroid hormone, respectively, may be due in part to alterations in bone fluid flow.
A finite element model of the human head for auditory bone conduction simulation.
Taschke, Henning; Hudde, Herbert
2006-01-01
In order to investigate the mechanisms of bone conduction, a finite element model of the human head was developed. The most important steps of the modelling process are described. The model was excited by means of percutaneously applied forces in order to get a deeper insight into the way the parts of the peripheral hearing organ and the surrounding tissue vibrate. The analysis is done based on the division of the bone conduction mechanisms into components. The frequency-dependent patterns of vibration of the components are analyzed. Furthermore, the model allows for the calculation of the contribution of each component to the overall bone-conducted sound. The components interact in a complicated way, which strongly depends on the nature of the excitation and the spatial region to which it is applied.
Tate Maltby, Maryanne; Gaszczyk, David
2015-01-01
To re-evaluate the current BSA recommendation that the test ear should be occluded during the bone-conduction procedure at frequencies above 2 kHz to prevent audible air-borne radiation. Pure-tone audiometry was undertaken during routine hearing tests. The audiograms of fifty-two ears met the criteria for the study and were included. Bone conduction at 4 kHz was tested in three different conditions: test ear open/occluded by earplug and occluded by circumaural earphone. Forty-four adults aged 41-77 years with average hearing levels from normal to severe loss. All complied fully with the test procedure. No audiogram had a significant conductive element. There was no significant difference in each of the three test situations. Only two audiograms showed any (5 dB) difference at 4 kHz when bone conduction was retested with the ear occluded. The errors that result in a false air-bone gap at 4 kHz would not appear to be due to air-borne radiation. Failure to occlude the ear canal at 4 kHz, where air-borne radiation is greatest, makes no significant difference to the audiometric results. It is therefore suggested that it is unnecessary to block the test ear during routine pure-tone bone-conduction testing to prevent audible air-borne radiation, and that this should no longer form part of normal clinical practice.
CO2 laser stapedotomy safety: influence of laser energy and time on bone-conduction hearing levels.
Schönfeld, Uwe; Weiming, Hu; Hofmann, Veit M; Jovanovic, Sergije; Albers, Andreas E
2017-12-01
Total laser energy in CO 2 stapedotomy depends on the laser settings and the amount of applications. It is unclear if the amount of total laser energy affects bone-conduction hearing thresholds and if possible effects are temporary or permanent. Alterations of bone-conduction hearing thresholds after single or multiple-shot CO 2 laser stapedotomy were analyzed between 1 and 3 weeks and 1.5-6 months after primary (n = 501) or revision surgeries (n = 153) and correlated to time, laser energy, frequency, surgical technique, and pathology encountered in revision stapedotomy. In both time periods, most patients showed a lower bone-conduction threshold in the four-tone puretone average (PTA) at frequencies of 0.5, 1, 2, and 3 kHz that further improved over time. Between 1 and 3 weeks, the improvement was significant in subgroups with cumulative energies lower 1 J and successful one-shot technique or in revisions without laser application. The remaining subgroups with higher total energies showed significant improvements between 1.5 and 6 months. At 4 and 8 kHz, significant improvements were found during 1.5-6 months after primary and revision surgery independent of the used energy. Repeated CO 2 laser applications showed no impairment in bone-conduction thresholds and can thus be considered as safe. In most patients, significant, yet unexplained, improvements in bone-conduction hearing thresholds were noticed in a time- and energy-related pattern.
NASA Astrophysics Data System (ADS)
Nikolić, Dalibor; Milošević, Žarko; Saveljić, Igor; Filipović, Nenad
2015-12-01
Vibration of the skull causes a hearing sensation. We call it Bone Conduction (BC) sound. There are several investigations about transmission properties of bone conducted sound. The aim of this study was to develop a software tool for easy generation of the finite element (FE) model of the human head with different materials based on human head anatomy and to calculate sound conduction through the head. Developed software tool generates a model in a few steps. The first step is to do segmentation of CT medical images (DICOM) and to generate a surface mesh files (STL). Each STL file presents a different layer of human head with different material properties (brain, CSF, different layers of the skull bone, skin, etc.). The next steps are to make tetrahedral mesh from obtained STL files, to define FE model boundary conditions and to solve FE equations. This tool uses PAK solver, which is the open source software implemented in SIFEM FP7 project, for calculations of the head vibration. Purpose of this tool is to show impact of the bone conduction sound of the head on the hearing system and to estimate matching of obtained results with experimental measurements.
Cochlear pathology in chronic suppurative otitis media.
Walby, A P; Barrera, A; Schuknecht, H F
1983-01-01
Chronic suppurative otitis media (COM) is reported to cause elevation of bone-conduction thresholds either by damage to cochlear sensorineural structures or by alteration in the mechanics of sound transmission in the ear. A retrospective study was made of the medical records of 87 patients with unilateral uncomplicated COM to document that abnormality in bone conduction does exist. In a separate study the cochlear pathology in 12 pairs of temporal bones with unilateral COM was studied by light microscopy. Infected ears showed higher than normal mean bone-conduction thresholds by amounts ranging from 1 dB at 500 Hz to 9.5 dB at 4,000 Hz. The temporal bones showed no greater loss of specialized sensorineural structures in infected ears than in normal control ears. Because there is no evidence that COM caused destruction of hair cells or cochlear neurons, alteration in the mechanics of sound transmission becomes a more plausible explanation for the hearing losses.
Zhou, Guangwei; Schwartz, Lynn Thomas; Gopen, Quinton
2009-02-01
To identify the occurrence of inner ear structural anomalies and conductive hearing loss (CHL) in children with Apert syndrome. Retrospective review. Pediatric tertiary referral center. Twenty pediatric patients with Apert syndrome were found; all patients (38/40 ears) had inner ear anomalies. Computerized tomography of the head/temporal bone, pure-tone (including air and bone conduction) audiometry, and tympanometry. Imaging demonstrating inner ear anomalies, including malformations of the cochlea, dilated vestibule, and/or semicircular canal; audiologic findings of air-bone gap(s). Hearing loss was found in 90% of the patients with Apert syndrome, and 80% of them had CHL. Air-bone gaps were found at all frequencies, with larger gaps at low frequencies. Fifty percent (20/40) of the ears had better than 0 dB hearing level bone conduction thresholds at 250 and/or 500 Hz. Normal middle ear pressure and mobility were found in all ears with intact eardrum. Inner ear anomalies were found in all patients, and 90% of them had bilateral involvement. Most frequently observed inner ear anomalies were dilated vestibule, malformed lateral semicircular canal, and cochlear dysplasia. Children with Apert syndrome may present with significant CHL that cannot be explained by minor middle ear pathologies alone. This conductive loss may be, at least partially, attributed to the inner ear anomalies; however, these structural anomalies are usually not recognized in these patients. Failure to close air-bone gap after surgical intervention may raise the suspicion of inner ear anomalies, and computed tomographic scan of the temporal bone can provide definitive proof.
Bone Loss from High Repetitive High Force Loading is Prevented by Ibuprofen Treatment
Jain, Nisha X.; Barr-Gillespie, Ann E.; Clark, Brian D.; Kietrys, David M.; Wade, Christine K.; Litvin, Judith; Popoff, Steven N.; Barbe, Mary F.
2014-01-01
We examined roles of loading and inflammation on forearm bones in a rat model of upper extremity overuse. Trabecular structure in distal radius and ulna was examined in three groups of young adult rats: 1) 5% food-restricted that underwent an initial training period of 10 min/day for 5 weeks to learn the repetitive task (TRHF); 2) rats that underwent the same training before performing a high repetition high force task, 2 hours/day for 12 weeks (HRHF); and 3) food-restricted only (FRC). Subsets were treated with oral ibuprofen (IBU). TRHF rats had increased trabecular bone volume and numbers, osteoblasts, and serum osteocalcin, indicative of bone adaptation. HRHF rats had constant muscle pulling forces, showed limited signs of bone adaptation, but many signs of bone resorption, including decreased trabecular bone volume and bone mineral density, increased osteoclasts and bone inflammatory cytokines, and reduced median nerve conduction velocity (15%). HRHF+IBU rats showed no trabecular resorptive changes, no increased osteoclasts or bone inflammatory cytokines, no nerve inflammation, preserved nerve conduction, and increased muscle voluntary pulling forces. Ibuprofen treatment preserved trabecular bone quality by reducing osteoclasts and bone inflammatory cytokines, and improving muscle pulling forces on bones as a result of reduced nerve inflammation. PMID:24583543
The floating mass transducer at the round window: direct transmission or bone conduction?
Arnold, Andreas; Kompis, Martin; Candreia, Claudia; Pfiffner, Flurin; Häusler, Rudolf; Stieger, Christof
2010-05-01
The round window placement of a floating mass transducer (FMT) is a new approach for coupling an implantable hearing system to the cochlea. We evaluated the vibration transfer to the cochlear fluids of an FMT placed at the round window (rwFMT) with special attention to the role of bone conduction. A posterior tympanotomy was performed on eleven ears of seven human whole head specimens. Several rwFMT setups were examined using laser Doppler vibrometry measurements at the stapes and the promontory. In three ears, the vibrations of a bone anchored hearing aid (BAHA) and an FMT fixed to the promontory (pFMT) were compared to explore the role of bone conduction. Vibration transmission to the measuring point at the stapes was best when the rwFMT was perpendicularly placed in the round window and underlayed with connective tissue. Fixation of the rwFMT to the round window exhibited significantly lower vibration transmission. Although measurable, bone conduction from the pFMT was much lower than that of the BAHA. Our results suggest that the rwFMT does not act as a small bone anchored hearing aid, but instead, acts as a direct vibratory stimulator of the round window membrane. Copyright (c) 2009 Elsevier B.V. All rights reserved.
Na, Sung Dae; Wei, Qun; Seong, Ki Woong; Cho, Jin Ho; Kim, Myoung Nam
2018-01-01
The conventional methods of speech enhancement, noise reduction, and voice activity detection are based on the suppression of noise or non-speech components of the target air-conduction signals. However, air-conduced speech is hard to differentiate from babble or white noise signals. To overcome this problem, the proposed algorithm uses the bone-conduction speech signals and soft thresholding based on the Shannon entropy principle and cross-correlation of air- and bone-conduction signals. A new algorithm for speech detection and noise reduction is proposed, which makes use of the Shannon entropy principle and cross-correlation with the bone-conduction speech signals to threshold the wavelet packet coefficients of the noisy speech. The proposed method can be get efficient result by objective quality measure that are PESQ, RMSE, Correlation, SNR. Each threshold is generated by the entropy and cross-correlation approaches in the decomposed bands using the wavelet packet decomposition. As a result, the noise is reduced by the proposed method using the MATLAB simulation. To verify the method feasibility, we compared the air- and bone-conduction speech signals and their spectra by the proposed method. As a result, high performance of the proposed method is confirmed, which makes it quite instrumental to future applications in communication devices, noisy environment, construction, and military operations.
ERIC Educational Resources Information Center
Stuart, Andrew; Yang, Edward Y.
1994-01-01
Simultaneous 3- channel recorded auditory brainstem responses (ABR) were obtained from 20 neonates with various high-pass filter settings and low intensity levels. Results support the advocacy of less restrictive high-pass filtering for neonatal and infant ABR screening to air-conducted and bone-conducted clicks. (Author/JDD)
Wiatr, Maciej; Wiatr, Agnieszka; Składzień, Jacek; Stręk, Paweł
2015-08-11
Middle ear surgery aims to eliminate pathology from the middle ear, improve drainage and ventilation of the postoperative cavity, and reconstruct the tympanic membrane and ossicles. The aim of this work is to define the factors that affect ABG (air-bone gap) and bone conduction in the patients operated on due to chronic otitis media. A prospective analysis of patients operated on due to diseases of the middle ear during 2009-2012 was carried out. The cases of patients operated on for the first time due to chronic otitis media were analyzed. The analysis encompassed patients who had undergone middle ear surgery. The patients were divided into several groups taking into account the abnormalities of the middle ear mucous and damage of the ossicular chain observed during otosurgery. A significant hearing improvement was observed in patients with type 2 tympanoplasty in the course of chronic cholesteatoma otitis media and in patients with simple chronic inflammatory process in whom a PORP was used in the reconstruction. Granulation tissue was an unfavorable factor of hearing improvement following tympanoplasty. A significant improvement of bone conduction was observed in the patients with dry perforation without other lesions in the middle ear. The elimination of granulation lesions was a positive factor for the future improvement of the function of the inner ear. The presence of granuloma-related lesions in the middle ear spaces is likely to impede hearing improvement. Damage to the ossicular chain rules out the possibility of bone conduction improvement after surgery. The prognosis on tube-related simple chronic otitis media after myringoplasty, with the preserved continuity of the ossicular chain, consists of closing the ABG and leads to significant improvement of bone conduction.
Issues in modern bone histomorphometry☆
Recker, R.R.; Kimmel, D.B.; Dempster, D.; Weinstein, R.S.; Wronski, T.J.; Burr, D.B.
2012-01-01
This review reports on proceedings of a bone histomorphometry session conducted at the Fortieth International IBMS Sun Valley Skeletal Tissue Biology Workshop held on August 1, 2010. The session was prompted by recent technical problems encountered in conducting histomorphometry on bone biopsies from humans and animals treated with anti-remodeling agents such as bisphosphonates and RANKL antibodies. These agents reduce remodeling substantially, and thus cause problems in calculating bone remodeling dynamics using in vivo fluorochrome labeling. The tissue specimens often contain few or no fluorochrome labels, and thus create statistical and other problems in analyzing variables such as mineral apposition rates, mineralizing surface and bone formation rates. The conference attendees discussed these problems and their resolutions, and the proceedings reported here summarize their discussions and recommendations. PMID:21810491
The influence of the footplate-perilymph interface on postoperative bone conduction.
Arnold, Wolfgang; Ferekidis, Elefterios; Hamann, Karl-Friedrich
2007-01-01
In a prospective study, 165 total stapedectomies and 152 small fenestra stapedotomies were performed by three experienced surgeons between 2001 and 2003. In total stapedectomy, a self-made Schuknecht steel wire connective tissue prosthesis, and in stapedotomy, a 0.6-mm platinum wire Teflon piston was used. The pre- and postoperative bone conduction thresholds were compared at the frequencies 250 Hz, 500 Hz, 1 kHz, 1.5 kHz, 2 kHz, 3 kHz and 4 kHz. The postoperative bone conduction between 250 Hz and 3 kHz was significantly better in the total stapedectomy group than in the stapedotomy group. At 4 kHz, both groups showed a slight decrease in bone conduction but the difference was not statistically significant. Therefore, especially in cases with preoperative moderate sensorineural hearing loss, we recommend total stapedectomy using a Schuknecht steel wire connective tissue prosthesis, which offers a stapes-perilymph interface similar to the normal stapes.
Fabie, L; Guedj, L; Pichaud, Ch; Fabie, M
2002-11-01
We present a new self-drilling self-tapping dental implant that simplifies the operative technique and optimizes osseointegration. The implant, the instrumentation, and the operative technique are described. An experimental study was conducted in a sheep with pathological and histomorphological analysis at three months. A clinical evaluation was also conducted in 18 patients who had 27 implants. The experimental study demonstrated good quality osseointegration, without bone necrosis. Three sectors were identified. Histomorphometric analysis demonstrated that mean bone contact reached 40% on cancellous bone and 65% on cortical bone. In the clinical series, one implant had to be removed due to a problem with gum healing. All the other implants were well tolerated. The advantage of this new technique is the use of the implant as the drilling instrument. Much time is saved. In addition, the bone-implant contact is better since the bone cavity is exactly adapted to the implant. The risk of bone lesion is reduced due to the smaller number of drillings.
Eldecalcitol normalizes bone turnover markers regardless of their pre-treatment levels.
Shiraki, Masataka; Saito, Hitoshi; Matsumoto, Toshio
2012-09-01
Three-year treatment with eldecalcitol has been shown to improve lumbar and total hip bone mineral density (BMD), decrease bone turnover markers, and lower the incidences of vertebral and wrist fractures in patients with osteoporosis more than with treatment with alfacalcidol under vitamin D repletion. The purpose of this study was to determine whether there was a risk of eldecalcitol causing severely suppressed bone turnover in osteoporosis patients with low pre-treatment levels of bone turnover markers. Post-hoc analysis was conducted on the data from a 3-year, randomized, double-blind, active-comparator, clinical trial of eldecalcitol versus alfacalcidol under vitamin D repletion conducted in Japan. Enrolled patients with baseline measurements of bone turnover markers were stratified into tertiles according to their pre-treatment levels of serum bone-specific alkaline phosphatase, serum procollagen type I N-terminal propeptide, or urinary collagen-N-telopeptide. Eldecalcitol treatment rapidly reduced bone turnover markers, and kept them within the normal range. However, in the patients whose baseline values for bone turnover were low, eldecalcitol treatment did not further reduce bone turnover markers during the 3-year treatment period. Further long-term observation may be required to reach the conclusion. CLINICALTRIALS.GOV NUMBER: NCT00144456. Eldecalcitol normalizes, but does not overly suppress, bone turnover regardless of baseline levels of bone turnover markers. Thus, it is unlikely that eldecalcitol treatment will increase the risk of severely suppressed bone turnover and therefore deterioration of bone quality, at least for a treatment duration of 3 years.
Ladha, Komal; Sharma, Ankit; Tiwari, Bhawana; Bukya, Dwaraka N
2017-01-01
The aim of the present article is to review the success of bone augmentation performed as an adjunct to dental implant rehabilitation in patients with diabetes mellitus. A literature review was conducted in PubMed on this topic, which yielded a total of 102 publications. For inclusion, publications had to be human studies, written in English language and should report on the success of bone augmentation as an adjunct to dental implant rehabilitation in diabetic patients. After screening the titles and abstracts, 11 full texts publications were obtained, of which seven were included in the review. These studies provided data on various bone augmentation techniques such as sinus floor elevation (SFE), guided bone regeneration (GBR), and onlay bone grafting. Even though the current review revealed that there are not many studies reporting data relevant to the analyzed topic, the data obtained suggests that; (1) staged GBR technique should be considered more feasible and predictable for bone augmentation, (2) clinicians must take meticulous care when planning and conducting SFE, and (3) block bone augmentation technique should be avoided. PMID:29386810
3D conductive nanocomposite scaffold for bone tissue engineering
Shahini, Aref; Yazdimamaghani, Mostafa; Walker, Kenneth J; Eastman, Margaret A; Hatami-Marbini, Hamed; Smith, Brenda J; Ricci, John L; Madihally, Sundar V; Vashaee, Daryoosh; Tayebi, Lobat
2014-01-01
Bone healing can be significantly expedited by applying electrical stimuli in the injured region. Therefore, a three-dimensional (3D) ceramic conductive tissue engineering scaffold for large bone defects that can locally deliver the electrical stimuli is highly desired. In the present study, 3D conductive scaffolds were prepared by employing a biocompatible conductive polymer, ie, poly(3,4-ethylenedioxythiophene) poly(4-styrene sulfonate) (PEDOT:PSS), in the optimized nanocomposite of gelatin and bioactive glass. For in vitro analysis, adult human mesenchymal stem cells were seeded in the scaffolds. Material characterizations using hydrogen-1 nuclear magnetic resonance, in vitro degradation, as well as thermal and mechanical analysis showed that incorporation of PEDOT:PSS increased the physiochemical stability of the composite, resulting in improved mechanical properties and biodegradation resistance. The outcomes indicate that PEDOT:PSS and polypeptide chains have close interaction, most likely by forming salt bridges between arginine side chains and sulfonate groups. The morphology of the scaffolds and cultured human mesenchymal stem cells were observed and analyzed via scanning electron microscope, micro-computed tomography, and confocal fluorescent microscope. Increasing the concentration of the conductive polymer in the scaffold enhanced the cell viability, indicating the improved microstructure of the scaffolds or boosted electrical signaling among cells. These results show that these conductive scaffolds are not only structurally more favorable for bone tissue engineering, but also can be a step forward in combining the tissue engineering techniques with the method of enhancing the bone healing by electrical stimuli. PMID:24399874
3D conductive nanocomposite scaffold for bone tissue engineering.
Shahini, Aref; Yazdimamaghani, Mostafa; Walker, Kenneth J; Eastman, Margaret A; Hatami-Marbini, Hamed; Smith, Brenda J; Ricci, John L; Madihally, Sundar V; Vashaee, Daryoosh; Tayebi, Lobat
2014-01-01
Bone healing can be significantly expedited by applying electrical stimuli in the injured region. Therefore, a three-dimensional (3D) ceramic conductive tissue engineering scaffold for large bone defects that can locally deliver the electrical stimuli is highly desired. In the present study, 3D conductive scaffolds were prepared by employing a biocompatible conductive polymer, ie, poly(3,4-ethylenedioxythiophene) poly(4-styrene sulfonate) (PEDOT:PSS), in the optimized nanocomposite of gelatin and bioactive glass. For in vitro analysis, adult human mesenchymal stem cells were seeded in the scaffolds. Material characterizations using hydrogen-1 nuclear magnetic resonance, in vitro degradation, as well as thermal and mechanical analysis showed that incorporation of PEDOT:PSS increased the physiochemical stability of the composite, resulting in improved mechanical properties and biodegradation resistance. The outcomes indicate that PEDOT:PSS and polypeptide chains have close interaction, most likely by forming salt bridges between arginine side chains and sulfonate groups. The morphology of the scaffolds and cultured human mesenchymal stem cells were observed and analyzed via scanning electron microscope, micro-computed tomography, and confocal fluorescent microscope. Increasing the concentration of the conductive polymer in the scaffold enhanced the cell viability, indicating the improved microstructure of the scaffolds or boosted electrical signaling among cells. These results show that these conductive scaffolds are not only structurally more favorable for bone tissue engineering, but also can be a step forward in combining the tissue engineering techniques with the method of enhancing the bone healing by electrical stimuli.
Aging and the 4 kHz Air-bone Gap
Nondahl, David M.; Tweed, Ted S.; Cruickshanks, Karen J.; Wiley, Terry L.; Dalton, Dayna S.
2011-01-01
Purpose To assess age- and gender-related patterns in the prevalence and 10-year incidence of 4 kHz air-bone gaps, and associated factors. Method Data were obtained as part of the longitudinal, population-based Epidemiology of Hearing Loss Study. An air-bone gap at 4 kHz was defined as an air-conduction threshold ≥15 dB higher than the bone-conduction threshold in the right ear. Results Among 3,553 participants aged 48 to 92 years at baseline (1993-1995), 3.4% had a 4 kHz air-bone gap in the right ear. The prevalence increased with age. Among the 120 participants with an air-bone gap, 60.0% did not have a flat tympanogram or an air-bone gap at .5 kHz. Ten years later we assessed 2093 participants who did not have a 4 kHz air-bone gap at baseline; 9.2% had developed a 4 kHz air-bone gap in the right ear. The incidence increased with age. Among the 192 participants who had developed an air-bone gap, 60.9% did not have a flat tympanogram or air-bone gaps at other frequencies. Conclusions These results suggest that a finding of a 4 kHz air-bone gap may reflect a combination of aging and other factors and not necessarily exclusively abnormal middle ear function. PMID:22232408
Békésy's contributions to our present understanding of sound conduction to the inner ear.
Puria, Sunil; Rosowski, John J
2012-11-01
In our daily lives we hear airborne sounds that travel primarily through the external and middle ear to the cochlear sensory epithelium. We also hear sounds that travel to the cochlea via a second sound-conduction route, bone conduction. This second pathway is excited by vibrations of the head and body that result from substrate vibrations, direct application of vibrational stimuli to the head or body, or vibrations induced by airborne sound. The sensation of bone-conducted sound is affected by the presence of the external and middle ear, but is not completely dependent upon their function. Measurements of the differential sensitivity of patients to airborne sound and direct vibration of the head are part of the routine battery of clinical tests used to separate conductive and sensorineural hearing losses. Georg von Békésy designed a careful set of experiments and pioneered many measurement techniques on human cadaver temporal bones, in physical models, and in human subjects to elucidate the basic mechanisms of air- and bone-conducted sound. Looking back one marvels at the sheer number of experiments he performed on sound conduction, mostly by himself without the aid of students or research associates. Békésy's work had a profound impact on the field of middle-ear mechanics and bone conduction fifty years ago when he received his Nobel Prize. Today many of Békésy's ideas continue to be investigated and extended, some have been supported by new evidence, some have been refuted, while others remain to be tested. Copyright © 2012 Elsevier B.V. All rights reserved.
[Effect of the middle ear status on the recording of vestibular evoked myogenic potential--VEMP].
Kurzyna, Agnieszka; Hassmann-Poznańska, Elzbieta; Topolska, Małgorzata Maria
2004-01-01
The aim of this study was to assess the effect of age on the recording of air- and bone-conducted vestibular evoked myogenic potential. Forty six young subjects were included in the study, ranging in age from 4 to 18 years. All of them underwent otoscopy, pure tone audiometry, tympanometry and air- and bone-conducted VEMP in response to click. Eighty six ears with normal hearing (pure tone average 20 dB) and type A and C1 tympanogram were studied. There were 2 groups according to age: group I--children aged 4-10 years--52 ears, group II--young subjects aged 11-18 years--34 ears. The threshold, the presence of correct waveform morphology of the response and the latency were evaluated. Above parameters were examined at 95 dB and 100 dB (nHL) air conducted click intensity and 60 dB (nHL) bone conducted click intensity. The age has no significant effect on the percentage of the recording of VEMP and the level of the response threshold with air stimulation, based on the performed studies. However, the age has effect on the prolongation of latency p13 and n23 both with air and bone stimulation. We paid attention to the lower percentage of the recording of bone-conducted VEMP in young subjects aged 11-18 years.
NASA Astrophysics Data System (ADS)
Bowers, Peter; Rosowski, John J.
2018-05-01
An air-conduction circuit model that will serve as the basis for a model of bone-conduction hearing is developed for chinchilla. The lumped-element model is based on the classic Zwislocki model of the human middle ear. Model parameters are fit to various measurements of chinchilla middle-ear transfer functions and impedances. The model is in agreement with studies of the effects of middle-ear cavity holes in experiments that require access to the middle-ear air space.
Drilling of bone: A comprehensive review
Pandey, Rupesh Kumar; Panda, S.S.
2013-01-01
Background Bone fracture treatment usually involves restoring of the fractured parts to their initial position and immobilizing them until the healing takes place. Drilling of bone is common to produce hole for screw insertion to fix the fractured parts for immobilization. Orthopaedic drilling during surgical process causes increase in the bone temperature and forces which can cause osteonecrosis reducing the stability and strength of the fixation. Methods A comprehensive review of all the relevant investigations carried on bone drilling is conducted. The experimental method used, results obtained and the conclusions made by the various researchers are described and compared. Result Review suggests that the further improvement in the area of bone drilling is possible. The systematic review identified several consequential factors (drilling parameters and drill specifications) affecting bone drilling on which there no general agreement among investigators or are not adequately evaluated. These factors are highlighted and use of more advanced methods of drilling is accentuated. The use of more precise experimental set up which resembles the actual situation and the development of automated bone drilling system to minimize human error is addressed. Conclusion In this review, an attempt has been made to systematically organize the research investigations conducted on bone drilling. Methods of treatment of bone fracture, studies on the determination of the threshold for thermal osteonecrosis, studies on the parameters influencing bone drilling and methods of the temperature measurement used are reviewed and the future work for the further improvement of bone drilling process is highlighted. PMID:26403771
Wang, Yu; Cao, Meng; Zhao, Xiangrui; Zhu, Gang; McClean, Colin; Zhao, Yuanyuan; Fan, Yubo
2014-11-01
Heat generated during bone drilling could cause irreversible thermal damage, which can lead to bone necrosis or even osteomyelitis. In this study, vibrational drilling was applied to fresh bovine bones to investigate the cutting heat in comparison with conventional drilling through experimental investigation and finite element analysis (FEA). The influence of vibrational frequency and amplitude on cutting heat generation and conduction were studied. The experimental results showed that, compared with the conventional drilling, vibrational drilling could significantly reduce the cutting temperature in drilling of cortical bone (P<0.05): the cutting temperature tended to decrease with increasing vibrational frequency and amplitude. The FEA results also showed that the vibrational amplitude holds a significant effect on the cutting heat conduction. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
Manning, Candice; Mermagen, Timothy; Scharine, Angelique
2017-06-01
Military personnel are at risk for hearing loss due to noise exposure during deployment (USACHPPM, 2008). Despite mandated use of hearing protection, hearing loss and tinnitus are prevalent due to reluctance to use hearing protection. Bone conduction headsets can offer good speech intelligibility for normal hearing (NH) listeners while allowing the ears to remain open in quiet environments and the use of hearing protection when needed. Those who suffer from tinnitus, the experience of perceiving a sound not produced by an external source, often show degraded speech recognition; however, it is unclear whether this is a result of decreased hearing sensitivity or increased distractibility (Moon et al., 2015). It has been suggested that the vibratory stimulation of a bone conduction headset might ameliorate the effects of tinnitus on speech perception; however, there is currently no research to support or refute this claim (Hoare et al., 2014). Speech recognition of words presented over air conduction and bone conduction headsets was measured for three groups of listeners: NH, sensorineural hearing impaired, and/or tinnitus sufferers. Three levels of speech-to-noise (SNR = 0, -6, -12 dB) were created by embedding speech items in pink noise. Better speech recognition performance was observed with the bone conduction headset regardless of hearing profile, and speech intelligibility was a function of SNR. Discussion will include study limitations and the implications of these findings for those serving in the military. Published by Elsevier B.V.
Brase, Christoph; Schwitulla, Judith; Künzel, Julian; Meusel, Thomas; Iro, Heinrich; Hornung, Joachim
2013-12-01
To compare bone conduction after fiber-enabled CO2 laser perforation of the stapes footplate with conduction after the "one-shot" technique during stapedotomy in patients with otosclerosis. Retrospective clinical study. Tertiary reference center. We evaluated data from 178 patients who had undergone primary stapedotomy for suspected stapedial ankylosis. The stapes footplate was perforated using a fiber-enabled CO2 laser in 89 patients and the "one-shot" technique in the other 89. Only consecutive surgery was considered. Bone conduction thresholds were determined at 0.5, 1, 2, and 4 kHz on the first and third postoperative days in all patients; 172 patients were followed up after 1 month. Audiograms were compared with preoperative bone conduction. The postoperative bone conduction threshold on Day 1 was significantly worse at almost all frequencies. At 0.5 and 2 kHz, it improved within a month and was significantly different from the preoperative value. Bone conduction threshold at 4 kHz showed the greatest deterioration immediately after surgery, improving considerably in 1 month but remaining worse than at baseline. Only at 1 kHz was there no significant immediate hearing loss. Direct comparison of the fiber-enabled CO2 laser and the "one-shot" technique showed no statistically significant differences. Compared with the "one-shot" technique, the fiber-enabled CO2 laser can be used safely in stapes surgery, without great risk to the patient. In our opinion, it has practical advantages, especially in difficult anatomic conditions.
Clinical investigation and mechanism of air-bone gaps in large vestibular aqueduct syndrome.
Merchant, Saumil N; Nakajima, Hideko H; Halpin, Christopher; Nadol, Joseph B; Lee, Daniel J; Innis, William P; Curtin, Hugh; Rosowski, John J
2007-07-01
Patients with large vestibular aqueduct syndrome (LVAS) often demonstrate an air-bone gap at the low frequencies on audiometric testing. The mechanism causing such a gap has not been well elucidated. We investigated middle ear sound transmission in patients with LVAS, and present a hypothesis to explain the air-bone gap. Observations were made on 8 ears from 5 individuals with LVAS. The diagnosis of LVAS was made by computed tomography in all cases. Investigations included standard audiometry and measurements of umbo velocity by laser Doppler vibrometry (LDV) in all cases, as well as tympanometry, acoustic reflex testing, vestibular evoked myogenic potential (VEMP) testing, distortion product otoacoustic emission (DPOAE) testing, and middle ear exploration in some ears. One ear with LVAS had anacusis. The other 7 ears demonstrated air-bone gaps at the low frequencies, with mean gaps of 51 dB at 250 Hz, 31 dB at 500 Hz, and 12 dB at 1,000 Hz. In these 7 ears with air-bone gaps, LDV showed the umbo velocity to be normal or high normal in all 7; tympanometry was normal in all 6 ears tested; acoustic reflexes were present in 3 of the 4 ears tested; VEMP responses were present in all 3 ears tested; DPOAEs were present in 1 of the 2 ears tested, and exploratory tympanotomy in 1 case showed a normal middle ear. The above data suggest that an air-bone gap in LVAS is not due to disease in the middle ear. The data are consistent with the hypothesis that a large vestibular aqueduct introduces a third mobile window into the inner ear, which can produce an air-bone gap by 1) shunting air-conducted sound away from the cochlea, thus elevating air conduction thresholds, and 2) increasing the difference in impedance between the scala vestibuli side and the scala tympani side of the cochlear partition during bone conduction testing, thus improving thresholds for bone-conducted sound. We conclude that LVAS can present with an air-bone gap that can mimic middle ear disease. Diagnostic testing using acoustic reflexes, VEMPs, DPOAEs, and LDV can help to identify a non-middle ear source for such a gap, thereby avoiding negative middle ear exploration. A large vestibular aqueduct may act as a third mobile window in the inner ear, resulting in an air-bone gap at low frequencies.
Histological determination of the human origin from dry bone: a cautionary note for subadults.
Caccia, Giulia; Magli, Francesca; Tagi, Veronica Maria; Porta, Davide Guido Ampelio; Cummaudo, Marco; Márquez-Grant, Nicholas; Cattaneo, Cristina
2016-01-01
Anthropologists are frequently required to confirm or exclude the human origin of skeletal remains; DNA and protein radioimmunoassays are useful in confirming the human origin of bone fragments but are not always successful. Histology may be the solution, but the young subadult structure could create misinterpretation. Histological tests were conducted on femur and skull of 31 human subjects. Each sample was observed focusing on presence or absence of fibrous bone, lamellar bone, radial lamellar bone, plexiform bone, reticular pattern, osteon banding, Haversian bone, primary osteons, secondary osteon and osteon fragments. Samples were divided into five age classes; 1 (<1 year), 2 (1-5 years), 3 (6-10 years), 4 (11-15 years) and 5 (16-20 years). Regarding femurs, class 1 presented the following: 87.5% fibrous bone, 37.5% plexiform bone, 12.5% reticular pattern and 12.5% lamellar bone radially oriented. Class 2 showed 37.5% of fibrous bone, 12.5% of reticular pattern and 37.5% of osteon banding. In the higher age classes, the classical human structures, lamellar bone and osteons were frequently visible, except for one case of reticular pattern, generally considered a distinctive non-human structure. The situation appeared different for the skull, where there was a lack of similar information, both in human and non-human. An analysis of the percentage of lamellar bone and osteons was conducted on femur and skull fragments. A trend of increase of primary osteon number and a decrease of the lamellar bone area has been detected in the femur. The present study has therefore shed some light on further pitfalls in species determination of subadult bone.
Bone Conduction Systems for Full-Face Respirators: Speech Intelligibility Analysis
2014-04-01
Communication Headset Design . International Journal of Industrial Ergonomics 2008a, 38, 1038–1044. McBride, M.; Letowski, T.; Tran, P. Bone Conduction Reception...Disclaimers The findings in this report are not to be construed as an official Department of the Army position unless so designated by other...7 3.3 Study Design
Mallik, Prafulla Kumar; Basu, Bikramjit
2014-03-01
In view of the fact that bone healing can be enhanced due to external electric field application, it is important to assess the influence of the implant conductivity on the bone regeneration in vivo. To address this issue, this study reports the in vivo biocompatibility property of multistage spark plasma sintered hydroxyapatite (HA)-80 wt % calcium titanate (CaTiO3 ) composites and monolithic HA, which have widely different conductivity property (14 orders of magnitude difference). The ability of bone regeneration was assessed by implantation in cylindrical femoral bone defects of rabbit animal model for varying time period of 1, 4, and 12 weeks. The overall assessment of the histology results suggests that the progressive healing of bone defects around HA-80 wt % CaTiO3 is associated with a better efficacy with respect to (w.r.t) early stage neobone formation, which is histomorphometrically around 140% higher than monolithic HA. Overall, this study demonstrates that the in vivo biocompatibility property of HA-80 wt % CaTiO3 with respect to local effects after 12 weeks of implantation is not compromised both qualitatively and quantitatively, and a comparison with control implant (HA) points toward the critical role of electrical conductivity on better early stage bone regeneration. Copyright © 2013 Wiley Periodicals, Inc.
Small, Susan A; Smyth, Aisling; Leon, Griselle
2014-01-01
Few studies have investigated effective masking levels (EMLs) needed to isolate the test ear for bone conduction assessments in infants. The objective of this study was to determine EMLs for 500 and 2000 Hz bone conduction auditory steady state responses (ASSRs) to amplitude (AM)/frequency-modulated (FM) stimuli for infants and adults with normal hearing. Maturational factors that contribute to infant-adult differences in EMLs will also be investigated. The present study and previously published 1000 and 4000 Hz EML data will be compared to investigate EML across four frequencies. These findings will provide a starting point for implementing clinical masking for infant bone conduction testing using physiological measures. Participants were 15 infants (7 to 35 weeks) and 15 adults (21 to 56 years) with normal hearing. Bone-conducted single ASSR stimuli (research MASTER) were 100% AM and 25% FM at 85 and 101 Hz for 500 and 2000 Hz carrier frequencies, respectively. They were presented at 25 and 35 dB HL for 500 Hz and at 35 and 45 dB HL for 2000 Hz for both infants and adults (approximately 10 and 20 dB SL at each frequency for infants). Air-conducted narrowband maskers were presented to both ears simultaneously. Real-ear to coupler differences were measured to account for differences in the sound pressure developed in infant and adult ear canals as a result of ear-canal size. Data analyses were conducted for mean EMLs across frequency (500 to 4000 Hz) and between age groups. Masked and unmasked ASSR amplitudes were compared for 500 and 2000 Hz. Both infants and adults required much more masking (25 to 33 dB) to eliminate responses at 500 compared with 2000 Hz. On average, infants required 16 dB more masking at 500 Hz and similar amounts of masking at 2000 Hz compared with adults. When adjusted for ear-canal size and bone conduction sensitivity, the pattern of results did not change. Across all four frequencies, infants showed a systematic decrease in mean EMLs with an increase in frequency; all pair-wise comparisons were significant except 2000 versus 4000 Hz. Adults showed smaller frequency-dependent changes in EML (only significantly greater for 500 versus 2000 Hz and 4000 Hz). When ear-canal size and bone conduction sensitivity were taken into account, only 500 Hz required more masking than other frequencies in infants; there were no significant frequency-dependent trends for adults, although the greater EMLs at 1000 versus 2000 Hz and 4000 Hz approached significance. Unmasked and masked amplitudes tended to be larger for 2000 Hz but not for 500 Hz when comparing infants with adults. EMLs appropriate for infants for bone conduction ASSRs elicited to AM/FM stimuli are considerably higher at 500 compared with 2000 Hz. Infants also need more masking at 500 Hz compared with adults but the same amount of masking at 2000 Hz. Comparisons across four frequencies reveal a systematic decrease in EML with an increase in frequency in infants, which is not apparent in adults. Recommended EMLs for AM/FM bone-conducted ASSR stimuli presented at 35 dB HL for 500, 1000, 2000, and 4000 Hz, respectively, are: (1) infants: 81, 68, 59, and 45 dB SPL, and (2) adults: 66, 63, 59, and 55 dB SPL.
An animal model in sheep for biocompatibility testing of biomaterials in cancellous bones
Nuss, Katja MR; Auer, Joerg A; Boos, Alois; Rechenberg, Brigitte von
2006-01-01
Background The past years have seen the development of many synthetic bone replacements. To test their biocompatibility and ability for osseointegration, osseoinduction and -conduction requires their placement within bone preferably in an animal experiment of a higher species. Methods A suitable experimental animal model in sheep with drill holes of 8 mm diameter and 13 mm depth within the proximal and distal humerus and femur for testing biocompatibility issues is introduced. Results This present sheep model allows the placing of up to 8 different test materials within one animal and because of the standardization of the bone defect, routine evaluation by means of histomorphometry is easily conducted. This method was used successfully in 66 White Alpine Sheep. When the drill holes were correctly placed no complications such as spontaneous fractures were encountered. Conclusion This experimental animal model serves an excellent basis for testing the biocompatibility of novel biomaterials to be used as bone replacement or new bone formation enhancing materials. PMID:16911787
An animal model in sheep for biocompatibility testing of biomaterials in cancellous bones.
Nuss, Katja M R; Auer, Joerg A; Boos, Alois; von Rechenberg, Brigitte
2006-08-15
The past years have seen the development of many synthetic bone replacements. To test their biocompatibility and ability for osseointegration, osseoinduction and -conduction requires their placement within bone preferably in an animal experiment of a higher species. A suitable experimental animal model in sheep with drill holes of 8 mm diameter and 13 mm depth within the proximal and distal humerus and femur for testing biocompatibility issues is introduced. This present sheep model allows the placing of up to 8 different test materials within one animal and because of the standardization of the bone defect, routine evaluation by means of histomorphometry is easily conducted. This method was used successfully in 66 White Alpine Sheep. When the drill holes were correctly placed no complications such as spontaneous fractures were encountered. This experimental animal model serves an excellent basis for testing the biocompatibility of novel biomaterials to be used as bone replacement or new bone formation enhancing materials.
Hodgetts, William; Scott, Dylan; Maas, Patrick; Westover, Lindsey
2018-03-23
To determine if a newly-designed, forehead-mounted surface microphone would yield equivalent estimates of audibility when compared to audibility measured with a skull simulator for adult bone conduction users. Data was analyzed using a within subjects, repeated measures design. There were two different sensors (skull simulator and surface microphone) measuring the same hearing aid programmed to the same settings for all subjects. We were looking for equivalent results. Twenty-one adult percutaneous bone conduction users (12 females and 9 males) were recruited for this study. Mean age was 54.32 years with a standard deviation of 14.51 years. Nineteen of the subjects had conductive/mixed hearing loss and two had single-sided deafness. To define audibility, we needed to establish two things: (1) in situ-level thresholds at each audiometric frequency in force (skull simulator) and in sound pressure level (SPL; surface microphone). Next, we measured the responses of the preprogrammed test device in force on the skull simulator and in SPL on the surface mic in response to pink noise at three input levels: 55, 65, and 75 dB SPL. The skull simulator responses were converted to real head force responses by means of an individual real head to coupler difference transform. Subtracting the real head force level thresholds from the real head force output of the test aid yielded the audibility for each audiometric frequency for the skull simulator. Subtracting the SPL thresholds from the surface microphone from the SPL output of the test aid yielded the audibility for each audiometric frequency for the surface microphone. The surface microphone was removed and retested to establish the test-retest reliability of the tool. We ran a 2 (sensor) × 3 (input level) × 10 (frequency) mixed analysis of variance to determine if there were any significant main effects and interactions. There was a significant three-way interaction, so we proceeded to explore our planned comparisons. There were 90 planned comparisons of interest, three at each frequency (3 × 10) for the three input levels (30 × 3). Therefore, to minimize a type 1 error associated with multiple comparisons, we adjusted alpha using the Holm-Bonferroni method. There were five comparisons that yielded significant differences between the skull simulator and surface microphone (test and retest) in the estimation of audibility. However, the mean difference in these effects was small at 3.3 dB. Both sensors yielded equivalent results for the majority of comparisons. Models of bone conduction devices that have intact skin cannot be measured with the skull simulator. This study is the first to present and evaluate a new tool for bone conduction verification. The surface microphone is capable of yielding equivalent audibility measurements as the skull simulator for percutaneous bone conduction users at multiple input levels. This device holds potential for measuring other bone conduction devices (Sentio, BoneBridge, Attract, Soft headband devices) that do not have a percutaneous implant.
Customized a Ti6Al4V Bone Plate for Complex Pelvic Fracture by Selective Laser Melting.
Wang, Di; Wang, Yimeng; Wu, Shibiao; Lin, Hui; Yang, Yongqiang; Fan, Shicai; Gu, Cheng; Wang, Jianhua; Song, Changhui
2017-01-04
In pelvic fracture operations, bone plate shaping is challenging and the operation time is long. To address this issue, a customized bone plate was designed and produced using selective laser melting (SLM) technology. The key steps of this study included designing the customized bone plate, metal 3D printing, vacuum heat treatment, surface post-processing, operation rehearsal, and clinical application and evaluation. The joint surface of the bone plate was placed upwards with respect to the build platform to keep it away from the support and to improve the quality of the joint surface. Heat conduction was enhanced by adding a cone-type support beneath the bone plate to prevent low-quality fabrication due to poor heat conductivity of the Ti-6Al-4V powder. The residual stress was eliminated by exposing the SLM-fabricated titanium-alloy bone plate to a vacuum heat treatment. Results indicated that the bone plate has a hardness of HV1 360-HV1 390, an ultimate tensile strength of 1000-1100 MPa, yield strength of 900-950 MPa, and an elongation of 8%-10%. Pre-operative experiments and operation rehearsal were performed using the customized bone plate and the ABC-made pelvic model. Finally, the customized bone plate was clinically applied. The intraoperative C-arm and postoperative X-ray imaging results indicated that the customized bone plate matched well to the damaged pelvis. The customized bone plate fixed the broken bone and guides pelvis restoration while reducing operation time to about two hours. The customized bone plate eliminated the need for preoperative titanium plate pre-bending, thereby greatly reducing surgical wounds and operation time.
Customized a Ti6Al4V Bone Plate for Complex Pelvic Fracture by Selective Laser Melting
Wang, Di; Wang, Yimeng; Wu, Shibiao; Lin, Hui; Yang, Yongqiang; Fan, Shicai; Gu, Cheng; Wang, Jianhua; Song, Changhui
2017-01-01
In pelvic fracture operations, bone plate shaping is challenging and the operation time is long. To address this issue, a customized bone plate was designed and produced using selective laser melting (SLM) technology. The key steps of this study included designing the customized bone plate, metal 3D printing, vacuum heat treatment, surface post-processing, operation rehearsal, and clinical application and evaluation. The joint surface of the bone plate was placed upwards with respect to the build platform to keep it away from the support and to improve the quality of the joint surface. Heat conduction was enhanced by adding a cone-type support beneath the bone plate to prevent low-quality fabrication due to poor heat conductivity of the Ti-6Al-4V powder. The residual stress was eliminated by exposing the SLM-fabricated titanium-alloy bone plate to a vacuum heat treatment. Results indicated that the bone plate has a hardness of HV1 360–HV1 390, an ultimate tensile strength of 1000–1100 MPa, yield strength of 900–950 MPa, and an elongation of 8%–10%. Pre-operative experiments and operation rehearsal were performed using the customized bone plate and the ABC-made pelvic model. Finally, the customized bone plate was clinically applied. The intraoperative C-arm and postoperative X-ray imaging results indicated that the customized bone plate matched well to the damaged pelvis. The customized bone plate fixed the broken bone and guides pelvis restoration while reducing operation time to about two hours. The customized bone plate eliminated the need for preoperative titanium plate pre-bending, thereby greatly reducing surgical wounds and operation time. PMID:28772395
Calcium requirements for Asian children and adolescents.
Lee, Warren Tak Keung; Jiang, Ji
2008-01-01
Calcium is important for bone health. Over the last 15 years, reference calcium intakes in Western countries have been revised upwards for maximizing bone mass at skeletal maturity and for prevention of osteoporotic fractures. Some of these reference figures have also been adopted for use in Asian countries. However, the scientific data based on for revising reference calcium intakes in the West was largely based on Caucasians. Limited human studies relating to calcium requirements and bone mineralization have been conducted in Asians in Asia. In children and adolescents, a trial has confirmed no effects of calcium supplementation on bone gains in adolescent girls after 7 years. A meta-analysis has also revealed that calcium supplementation has little beneficial effects on bone gain. Given that genetic factors, hormonal status, body size, bone structure, diets, physical activity, vitamin D status and adaptation could modify calcium retention and bone integrity, these factors need to be considered collectively to promote bone health in Asian populations. Furthermore, studies to identify indigenous foods rich in calcium and high in bioavailability are needed to widen sources of dietary calcium. Ethnic differences in calcium retention, hormonal status, bone structure, bone mineral accretion and peak bone mass are evident among Asians, Caucasians and Blacks in USA. Hence, reference calcium intakes for Asians are likely to be unique and different from those of Caucasians. More research has to be conducted in Asian populations in order to develop appropriate reference calcium intakes for the region.
Calcium and bone metabolism during space flight
NASA Technical Reports Server (NTRS)
Smith, Scott M.; Heer, Martina
2002-01-01
Weightlessness induces bone loss. Understanding the nature of this loss and developing means to counteract it are significant challenges to potential human exploration missions. This article reviews the existing information from studies of bone and calcium metabolism conducted during space flight. It also highlights areas where nutrition may play a specific role in this bone loss, and where countermeasures may be developed to mitigate that loss.
A cochlear-bone wave can yield a hearing sensation as well as otoacoustic emission
Tchumatchenko, Tatjana; Reichenbach, Tobias
2014-01-01
A hearing sensation arises when the elastic basilar membrane inside the cochlea vibrates. The basilar membrane is typically set into motion through airborne sound that displaces the middle ear and induces a pressure difference across the membrane. A second, alternative pathway exists, however: stimulation of the cochlear bone vibrates the basilar membrane as well. This pathway, referred to as bone conduction, is increasingly used in headphones that bypass the ear canal and the middle ear. Furthermore, otoacoustic emissions, sounds generated inside the cochlea and emitted therefrom, may not involve the usual wave on the basilar membrane, suggesting that additional cochlear structures are involved in their propagation. Here we describe a novel propagation mode within the cochlea that emerges through deformation of the cochlear bone. Through a mathematical and computational approach we demonstrate that this propagation mode can explain bone conduction as well as numerous properties of otoacoustic emissions. PMID:24954736
Understanding an Audiogram. Tipsheet: Serving Students Who Are Hard of Hearing
ERIC Educational Resources Information Center
Johnson, Marni
2009-01-01
The type, degree, and configuration of hearing loss, if one is present, can be determined by reading an audiogram. The type of hearing loss is determined by comparing auditory thresholds obtained using head-phones or insert earphones (air-conduction thresholds) to those obtained using a bone oscillator (bone-conduction thresholds). By itself, the…
NASA Astrophysics Data System (ADS)
Chang, You; Kim, Namkeun; Stenfelt, Stefan
2015-12-01
Bone conduction (BC) is the transmission of sound to the inner ear through the bones of the skull. This type of transmission is used in humans fitted with BC hearing aids as well as to classify between conductive and sensorineural hearing losses. The objective of the present study is to develop a finite-element (FE) model of the human skull based on cryosectional images of a female cadaver head in order to gain better understanding of the sound transmission. Further, the BC behavior was validated in terms of sound transmission against experimental data published in the literature. Results showed the responses of the simulated skull FE model were consistent with the experimentally reported data.
Nonlinear electric reaction arising in dry bone subjected to 4-point bending
NASA Astrophysics Data System (ADS)
Murasawa, Go; Cho, Hideo; Ogawa, Kazuma
2007-04-01
Bone is a smart, self-adaptive and also partly self-repairing tissue. In recent years, many researchers seek to find how to give the effective mechanical stimulation to bone, because it is the predominant loading that determines the bone shape and macroscopic structure. However, the trial of regeneration of bone is still under way. On the other hand, it has been known that electrical potential generates from bone by mechanical stimulation (Yasuda, 1977; Williams, 1982; Starkebaum, 1979; Cochran, 1968; Lanyon, 1977; Salzstein, 1987a,b; Friedenberg, 1966). This is called "stress-generated potential (SGP)". The process of information transfer between "strain" and "cells" is not still clear. But, there is some possibility that SGP has something to do with the process of information transfer. If the electrical potential is more clear under some mechanical loadings, we will be able to regenerate bone artificially and freely. Therefore, it is important to investigate SGP in detail. The aim of present study is to investigate the electric reaction arising in dry bone subjected to mechanical loadings at high amplitude and low frequency strain. Firstly, specimen is fabricated from femur of cow. Next, the speeds of wave propagation in bone are tried to measure by laser ultra sonic technique and wavelet transform, because these have relationship with bone density. Secondary, 4-point bending test is conducted up to fracture. Then, electric reaction arising in bone is measured during loading. Finally, cyclic 4-point bending tests are conducted to investigate the electric reaction arising in bone at low frequency strain.
Ir'ianov, Iu M; Ir'ianova, T Iu
2012-01-01
In the experiment conducted on 30 Wistar rats, the peculiarities of tibial bone defect replacement under conditions of transosseous osteosynthesis and implantation of titanium nickelide mesh structures were studied using the methods of scanning electron microscopy and x-ray electron probe microanalysis. It was demonstrated that implant osseointegration occured 7 days after surgery, and after 30 days the defect was replaced with bone tissue by the type of primary bone wound healing, thus the organotypical remodeling of regenerated bone took place.
Hot-boning enhances cook yield of boneless skinless chicken thighs
USDA-ARS?s Scientific Manuscript database
Three experiments were conducted to evaluate effects of postmortem deboning time on cook yield of boneless skinless chicken thighs. In Experiment 1 (3 replications), chicken thigh meat was separated from bones at 0.45 (hot-bone), 2, and 24 h and trimmed to obtain iliotibialis muscle. The iliotibiali...
ERIC Educational Resources Information Center
Elementary Science Study, Newton, MA.
THIS GUIDE WAS DEVELOPED FOR USE WITH THE ELEMENTARY SCIENCE STUDY UNIT ON "BONES.""BONES" HAS BEEN TAUGHT IN THE FOURTH GRADE AND REQUIRES FROM 10 TO 25 LESSONS, DEPENDING ON THE NUMBER OF ACTIVITIES USED. THE GUIDE DOES NOT PROVIDE DETAILED INSTRUCTION FOR CONDUCTING CLASSES, BUT RATHER SOME POSSIBLE ACTIVITIES, AND LEAVES…
Highly porous scaffolds of PEDOT:PSS for bone tissue engineering.
Guex, Anne Géraldine; Puetzer, Jennifer L; Armgarth, Astrid; Littmann, Elena; Stavrinidou, Eleni; Giannelis, Emmanuel P; Malliaras, George G; Stevens, Molly M
2017-10-15
Conjugated polymers have been increasingly considered for the design of conductive materials in the field of regenerative medicine. However, optimal scaffold properties addressing the complexity of the desired tissue still need to be developed. The focus of this study lies in the development and evaluation of a conductive scaffold for bone tissue engineering. In this study PEDOT:PSS scaffolds were designed and evaluated in vitro using MC3T3-E1 osteogenic precursor cells, and the cells were assessed for distinct differentiation stages and the expression of an osteogenic phenotype. Ice-templated PEDOT:PSS scaffolds presented high pore interconnectivity with a median pore diameter of 53.6±5.9µm and a total pore surface area of 7.72±1.7m 2 ·g -1 . The electrical conductivity, based on I-V curves, was measured to be 140µS·cm -1 with a reduced, but stable conductivity of 6.1µS·cm -1 after 28days in cell culture media. MC3T3-E1 gene expression levels of ALPL, COL1A1 and RUNX2 were significantly enhanced after 4weeks, in line with increased extracellular matrix mineralisation, and osteocalcin deposition. These results demonstrate that a porous material, based purely on PEDOT:PSS, is suitable as a scaffold for bone tissue engineering and thus represents a promising candidate for regenerative medicine. Tissue engineering approaches have been increasingly considered for the repair of non-union fractions, craniofacial reconstruction or large bone defect replacements. The design of complex biomaterials and successful engineering of 3-dimensional tissue constructs is of paramount importance to meet this clinical need. Conductive scaffolds, based on conjugated polymers, present interesting candidates to address the piezoelectric properties of bone tissue and to induce enhanced osteogenesis upon implantation. However, conductive scaffolds have not been investigated in vitro in great measure. To this end, we have developed a highly porous, electrically conductive scaffold based on PEDOT:PSS, and provide evidence that this purely synthetic material is a promising candidate for bone tissue engineering. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Experimental Analysis of the Mechanism of Hearing under Water
Chordekar, Shai; Kishon-Rabin, Liat; Kriksunov, Leonid; Adelman, Cahtia; Sohmer, Haim
2015-01-01
The mechanism of human hearing under water is debated. Some suggest it is by air conduction (AC), others by bone conduction (BC), and others by a combination of AC and BC. A clinical bone vibrator applied to soft tissue sites on the head, neck, and thorax also elicits hearing by a mechanism called soft tissue conduction (STC) or nonosseous BC. The present study was designed to test whether underwater hearing at low intensities is by AC or by osseous BC based on bone vibrations or by nonosseous BC (STC). Thresholds of normal hearing participants to bone vibrator stimulation with their forehead in air were recorded and again when forehead and bone vibrator were under water. A vibrometer detected vibrations of a dry human skull in all similar conditions (in air and under water) but not when water was the intermediary between the sound source and the skull forehead. Therefore, the intensities required to induce vibrations of the dry skull in water were significantly higher than the underwater hearing thresholds of the participants, under conditions when hearing by AC and osseous BC is not likely. The results support the hypothesis that hearing under water at low sound intensities may be attributed to nonosseous BC (STC). PMID:26770975
The Consequences of Modern Military Deployment on Calcium Status and Bone Health
2010-01-01
Army Medical Center (MAMC) in Tacoma, Washington. At MAMC, data on diet , exercise, and bone mineral density were collected before and after...Studies of basketball players and firefighters, for example, found that athletes experienced a significant decrease in bone mass density (BMD) during the...evidence supporting the link between calcium intake and bone health. We conducted a study to help better define the links between diet , environment
Determination of spatially dependent diffusion parameters in bovine bone using Kalman filter.
Shokry, Abdallah; Ståhle, Per; Svensson, Ingrid
2015-11-07
Although many studies have been made for homogenous constant diffusion, bone is an inhomogeneous material. It has been suggested that bone porosity decreases from the inner boundaries to the outer boundaries of the long bones. The diffusivity of substances in the bone matrix is believed to increase as the bone porosity increases. In this study, an experimental set up is used where bovine bone samples, saturated with potassium chloride (KCl), were put into distilled water and the conductivity of the water was followed. Chloride ions in the bone samples escaped out in the water through diffusion and the increase of the conductivity was measured. A one-dimensional, spatially dependent mathematical model describing the diffusion process is used. The diffusion parameters in the model are determined using a Kalman filter technique. The parameters for spatially dependent at endosteal and periosteal surfaces are found to be (12.8 ± 4.7) × 10(-11) and (5 ± 3.5) × 10(-11)m(2)/s respectively. The mathematical model function using the obtained diffusion parameters fits very well with the experimental data with mean square error varies from 0.06 × 10(-6) to 0.183 × 10(-6) (μS/m)(2). Copyright © 2015 Elsevier Ltd. All rights reserved.
Stapedotomy in osteogenesis imperfecta: a prospective study of 32 consecutive cases.
Vincent, Robert; Wegner, Inge; Stegeman, Inge; Grolman, Wilko
2014-12-01
To prospectively evaluate hearing outcomes in patients with osteogenesis imperfecta undergoing primary stapes surgery and to isolate prognostic factors for success. A nonrandomized, open, prospective case series. A tertiary referral center. Twenty-five consecutive patients who underwent 32 primary stapedotomies for osteogenesis imperfecta with evidence of stapes fixation and available postoperative pure-tone audiometry. Primary stapedotomy with vein graft interposition and reconstruction with a regular Teflon piston or bucket handle-type piston. Preoperative and postoperative audiometric evaluation using conventional 4-frequency (0.5, 1, 2, and 4 kHz) audiometry. Air-conduction thresholds, bone-conduction thresholds, and air-bone gap were measured. The overall audiometric results as well as the results of audiometric evaluation at 3 months and at least 1 year after surgery were used. Overall, postoperative air-bone gap closure to within 10 dB was achieved in 88% of cases. Mean (standard deviation) gain in air-conduction threshold was 22 (9.4) dB for the entire case series, and mean (standard deviation) air-bone gap closure was 22 (9.0) dB. Backward multivariate logistic regression showed that a model with preoperative air-bone gap closure and intraoperatively established incus length accurately predicts success after primary stapes surgery. Stapes surgery is a feasible and safe treatment option in patients with osteogenesis imperfecta. Success is associated with preoperative air-bone gap and intraoperatively established incus length.
Dental pulp stem cells for in vivo bone regeneration: a systematic review of literature.
Morad, Golnaz; Kheiri, Lida; Khojasteh, Arash
2013-12-01
This review of literature was aimed to assess in vivo experiments which have evaluated the efficacy of dental pulp stem cells (DPSCs) for bone regeneration. An electronic search of English-language papers was conducted on PubMed database. Studies that assessed the use of DPSCs in bone regeneration in vivo were included and experiments evaluating regeneration of hard tissues other than bone were excluded. The retrieved articles were thoroughly reviewed according to the source of stem cell, cell carrier, the in vivo experimental model, defect type, method of evaluating bone regeneration, and the obtained results. Further assessment of the results was conducted by classifying the studies based on the defect type. Seventeen papers formed the basis of this systematic review. Sixteen out of 17 experiments were performed on animal models with mouse and rat being the most frequently used animal models. Seven out of 17 animal studies, contained subcutaneous pockets on back of the animal for stem cell implantation. In only one study hard tissue formation was not observed. Other types of defects used in the retrieved studies, included cranial defects and mandibular bone defects, in all of which bone formation was reported. When applied in actual bone defects, DPSCs were capable of regenerating bone. Nevertheless, a precise conclusion regarding the efficiency of DPSCs for bone regeneration is yet to be made, considering the limited number of the in vivo experiments and the heterogeneity within their methods. Copyright © 2013 Elsevier Ltd. All rights reserved.
Auditory Brainstem Response Thresholds to Air- and Bone-Conducted CE-Chirps in Neonates and Adults
ERIC Educational Resources Information Center
Cobb, Kensi M.; Stuart, Andrew
2016-01-01
Purpose The purpose of this study was to compare auditory brainstem response (ABR) thresholds to air- and bone-conducted CE-Chirps in neonates and adults. Method Thirty-two neonates with no physical or neurologic challenges and 20 adults with normal hearing participated. ABRs were acquired with a starting intensity of 30 dB normal hearing level…
Clinical Investigation and Mechanism of Air-Bone Gaps in LargeVestibular Aqueduct Syndrome
Merchant, Saumil N.; Nakajima, Hideko H.; Halpin, Christopher; Nadol, Joseph B.; Lee, Daniel J.; Innis, William P.; Curtin, Hugh; Rosowski, John J.
2008-01-01
Objectives Patients with large vestibular aqueduct syndrome (LVAS) often demonstrate an air-bone gap at the low frequencies on audiometric testing. The mechanism causing such a gap has not been well elucidated. We investigated middle ear sound transmission in patients with LVAS, and present a hypothesis to explain the air-bone gap. Methods Observations were made on 8 ears from 5 individuals with LVAS. The diagnosis of LVAS was made by computed tomography in all cases. Investigations included standard audiometry and measurements of umbo velocity by laser Doppler vibrometry (LDV) in all cases, as well as tympanometry, acoustic reflex testing, vestibular evoked myogenic potential (VEMP) testing, distortion product otoacoustic emission (DPOAE) testing, and middle ear exploration in some ears. Results One ear with LVAS had anacusis. The other 7 ears demonstrated air-bone gaps at the low frequencies, with mean gaps of 51 dB at 250 Hz, 31 dB at 500 Hz, and 12 dB at 1,000 Hz. In these 7 ears with air-bone gaps, LDV showed the umbo velocity to be normal or high normal in all 7; tympanometry was normal in all 6 ears tested; acoustic reflexes were present in 3 of the 4 ears tested; VEMP responses were present in all 3 ears tested; DPOAEs were present in 1 of the 2 ears tested, and exploratory tympanotomy in 1 case showed a normal middle ear. The above data suggest that an air-bone gap in LVAS is not due to disease in the middle ear. The data are consistent with the hypothesis that a large vestibular aqueduct introduces a third mobile window into the inner ear, which can produce an air-bone gap by 1) shunting air-conducted sound away from the cochlea, thus elevating air conduction thresholds, and 2) increasing the difference in impedance between the scala vestibuli side and the scala tympani side of the cochlear partition during bone conduction testing, thus improving thresholds for bone-conducted sound. Conclusions We conclude that LVAS can present with an air-bone gap that can mimic middle ear disease. Diagnostic testing using acoustic reflexes, VEMPs, DPOAEs, and LDV can help to identify a non–middle ear source for such a gap, thereby avoiding negative middle ear exploration. A large vestibular aqueduct may act as a third mobile window in the inner ear, resulting in an air-bone gap at low frequencies. PMID:17727085
Bravo-Torres, Sofía; Der-Mussa, Carolina; Fuentes-López, Eduardo
2018-01-01
To describe, in terms of functional gain and word recognition, the audiological results of patients under 18 years of age implanted with the active bone conduction implant, Bonebridge™. Retrospective case studies conducted by reviewing the medical records of patients receiving implants between 2014 and 2016 in the public health sector in Chile. All patients implanted with the Bonebridge were included (N = 15). Individuals who had bilateral conductive hearing loss, secondary to external ear malformations, were considered as candidates. The average hearing threshold one month after switch on was 25.2 dB (95%CI 23.5-26.9). Hearing thresholds between 0.5 and 4 kHz were better when compared with bone conduction hearing aids. Best performance was observed at 4 kHz, where improvements to hearing were observed throughout the adaptation process. There was evidence of a significant increase in the recognition of monosyllables. The Bonebridge implant showed improvements to hearing thresholds and word recognition in paediatric patients with congenital conductive hearing loss.
An experimental study on the application of radionuclide imaging in repair of the bone defect
Zhu, Weimin; Wang, Daping; Zhang, Xiaojun; Lu, Wei; Liu, Jianquan; Peng, Liangquan; Li, Hao; Han, Yun; Zeng, Yanjun
2011-01-01
The aim of our study was to validate the effect of radionuclide imaging in early monitoring of the bone’s reconstruction, the animal model of bone defect was made on the rabbits repaired with HA artificial bone. The ability of bone defect repair was evaluated by using radionuclide bone imaging at 2, 4, 8 and 12 weeks postoperatively. The results indicate that the experimental group stimulated more bone formation than that of the control group. The differences of the bone reconstruction ability were statistically significant (p<0.05). The nano-HA artificial has good bone conduction, and it can be used for the treatment of bone defects. Radionuclide imaging may be an effective and first choice method for the early monitoring of the bone’s reconstruction. PMID:21875418
Fatigue of immature baboon cortical bone.
Keller, T S; Lovin, J D; Spengler, D M; Carter, D R
1985-01-01
Strain-controlled uniaxial fatigue and monotonic tensile tests were conducted on turned femoral cortical bone specimens obtained from baboons at various ages of maturity. Fatigue loading produced a progressive loss in stiffness and an increase in hysteresis prior to failure, indicating that immature primate cortical bone responds to repeated loading in a fashion similar to that previously observed for adult human cortical bone. Bone fatigue resistance under this strain controlled testing decreased during maturation. Maturation was also associated with an increase in bone dry density, ash fraction and elastic modulus. The higher elastic modulus of more mature bone meant that these specimens were subjected to higher stress levels during testing than more immature bone specimens. Anatomical regions along the femoral shaft exhibited differences in strength and fatigue resistance.
Jung, Myung-Ok; Choi, Jung-Seok
2016-01-01
This study was conducted to investigate the effects of mixed bone and brisket meat on the quality characteristics and nutritional components of shank bone extract and rib extract from Hanwoo. The pH values were influenced by the raw bones, mixed bone, brisket meat and their interactions (p<0.05). The salinity, sugar content, turbidity, and essential amino acid values increased significantly with addition of mixed bone and brisket meat. All attributes of sensory evaluation score were the highest in T6 (Rib 500 g + Mixed bone 500 g + Brisket meat 400 g) (p<0.05). The mixed bone significantly increased the saturated fatty acids of shank bone extract (p<0.001). Thus, the addition of mixed bone and brisket meat had a positive effect on the quality and nutritional components in shank and rib extracts of Hanwoo cattle. PMID:27499665
Ghosh, Sanjib Kumar; Biswas, Sudipa; Sharma, Suranjali; Chakraborty, Soumya
2017-06-01
Over the years a number of investigators have analysed the morphology of wormian bones in different population groups across the world. There have been significant variations between findings reported in these studies, and this has prompted researchers to focus on the influence of genetic factors on the morphology of these bones. In the light of the above observation, we considered it justified to conduct anatomical studies on wormian bones in different population groups; hence, we undertook the present study to look into the morphological details of these bones among a population in the eastern part of India. We observed a total of 120 adult dry human skulls of unknown age and sex, and noted the anatomical details of wormian bones when present. It was observed that wormian bones were present in 45 % of skulls, and that 30 % of skulls had more than one wormian bone. We also found that 2.5 % of the skulls had ten or more wormian bones, which is considered as pathognomonic. Maximum incidence (53.33 %) was observed at the lambdoid suture and minimum incidence at the bregma and metopic suture (0.61 % in each case). We noted a high incidence (21.21 %) of Inca bone/lambdoid ossicle, and bilaterally symmetrical wormian bones were present in 12.5 % study skulls. There were statistically significant (P < 0.05) variations between the findings of the present study and values reported in previous studies conducted in other regions of India and different parts of the world. Our observations favour the view that genetic influence primarily determines the morphology of wormian bones.
Bone and Calcium Metabolism During Space Flight
NASA Technical Reports Server (NTRS)
Smith, Scott M.
2004-01-01
Understanding bone loss during space flight is one of the most critical challenges for maintaining astronaut health on space exploration missions. Flight and ground-based studies have been conducted to better understand the nature and mechanisms of weightlessness-induced bone loss, and to identify a means to counteract the loss. Maintenance of bone health requires a balance between bone formation and bone resorption. Early space research identified bone loss as a critical health issue, but could not provide a distinction between the bone formation and breakdown processes. The recent identification of collagen crosslinks as markers of bone resorption has made possible a clear understanding that a decrease in bone resorption is an important effect of space flight, with bone formation being unchanged or only slightly decreased. Calcium regulatory factors have also been studied, in an attempt to understand their role in bone loss. The lack of ultraviolet light exposure and insufficient dietary sources of vitamin D often lead to reduced vitamin D stores on long-duration flights. Serum parathyroid hormone (PTH) concentrations are decreased during flight compared to before flight, although small subject numbers often make this hard to document statistically. As expected, reduced PTH concentrations are accompanied by reduced 1,25-dihydroxyvitamin D concentrations. Calcium kinetic studies during space flight confirm and extend the information gained from biochemical markers of bone metabolism. Calcium kinetic studies demonstrate that bone resorption is increased, bone formation is unchanged or decreased, and dietary calcium absorption is reduced during space flight. Evaluations have also been conducted of countermeasures, including dietary, exercise, and pharmacological treatments. In recent studies, many potential countermeasures show promise at mitigating bone loss in ground-based analogs of weightlessness (e.g., bed rest), but require further ground and flight testing to ensure that the beneficial effects are seen in space flight. As we begin to plan for missions to go back to the Moon, and even off to Mars, many questions are yet to be answered. Maintaining bone is one of the greatest challenges, but with a better understanding of the mechanical processes of bone loss, countermeasures can be designed more efficiently, and the solution (or solutions) may be just over the horizon.
Fukui, Kunihiro; Arimitsu, Naoki; Jikihara, Kenji; Yamamoto, Tetsuya; Yoshida, Hideto
2009-09-15
Waste incineration fly ash and bone powder could be successfully recycled to calcium phosphate hydrogel, a type of fast proton conductor. The electric conductivity of the crystallized hydrogel from them was compared with that from calcium carbonate reagent. It was found that the conductivity of the hydrogel from bone powder is almost equal to that from calcium carbonate reagent, which is higher than that from incineration fly ash. Because the crystallized hydrogel from incineration ash has a lower crystallinity than that from bone powder and calcium carbonate reagent. However, the difference of the conductivity among them can be hardly observed above 100 degrees C. The fuel cell with membrane electrode assembly (MEA) using the calcium phosphate hydrogel membrane prepared from incineration fly ash and bone powder was observed to generate electricity. The performance of fuel cells having the hydrogel membrane obtained from all raw materials increases with the cell temperature, and the fuel cell containing the hydrogel membrane from incineration fly ash has the highest dependence of the fuel cell performance. For this reason, the difference in the cell performance among them can be hardly observed above 120 degrees C. This tendency agrees with the change in the electric conductivity with the temperature. Further, the performance of all fuel cells with the hydrogel membrane is superior to that of the fuel cell with perfluorosulfonic polymer membrane at temperatures greater than approximately 85 degrees C.
Pfiffner, Flurin; Kompis, Martin; Stieger, Christof
2009-10-01
To investigate correlations between preoperative hearing thresholds and postoperative aided thresholds and speech understanding of users of Bone-anchored Hearing Aids (BAHA). Such correlations may be useful to estimate the postoperative outcome with BAHA from preoperative data. Retrospective case review. Tertiary referral center. : Ninety-two adult unilaterally implanted BAHA users in 3 groups: (A) 24 subjects with a unilateral conductive hearing loss, (B) 38 subjects with a bilateral conductive hearing loss, and (C) 30 subjects with single-sided deafness. Preoperative air-conduction and bone-conduction thresholds and 3-month postoperative aided and unaided sound-field thresholds as well as speech understanding using German 2-digit numbers and monosyllabic words were measured and analyzed. Correlation between preoperative air-conduction and bone-conduction thresholds of the better and of the poorer ear and postoperative aided thresholds as well as correlations between gain in sound-field threshold and gain in speech understanding. Aided postoperative sound-field thresholds correlate best with BC threshold of the better ear (correlation coefficients, r2 = 0.237 to 0.419, p = 0.0006 to 0.0064, depending on the group of subjects). Improvements in sound-field threshold correspond to improvements in speech understanding. When estimating expected postoperative aided sound-field thresholds of BAHA users from preoperative hearing thresholds, the BC threshold of the better ear should be used. For the patient groups considered, speech understanding in quiet can be estimated from the improvement in sound-field thresholds.
Otosclerosis: Temporal Bone Pathology.
Quesnel, Alicia M; Ishai, Reuven; McKenna, Michael J
2018-04-01
Otosclerosis is pathologically characterized by abnormal bony remodeling, which includes bone resorption, new bone deposition, and vascular proliferation in the temporal bone. Sensorineural hearing loss in otosclerosis is associated with extension of otosclerosis to the cochlear endosteum and deposition of collagen throughout the spiral ligament. Persistent or recurrent conductive hearing loss after stapedectomy has been associated with incomplete footplate fenestration, poor incus-prosthesis connection, and incus resorption in temporal bone specimens. Human temporal bone pathology has helped to define the role of computed tomography imaging for otosclerosis, confirming that computed tomography is highly sensitive for diagnosis, yet limited in assessing cochlear endosteal involvement. Copyright © 2017 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
We conducted a study to examine how the development of obesity and the associated insulin resistance affect bone structural and material properties, and bone formation and resorption markers in the Otsuka Long-Evans Tokushima Fatty (OLETF) rat model. This was a 36-week study of sedentary, hyperphag...
2004-04-15
Biomedical research offers hope for a variety of medical problems, from diabetes to the replacement of damaged bone and tissues. Bioreactors, which are used to grow cells and tissue cultures, play a major role in such research and production efforts. Cell culturing, such as this bone cell culture, is an important part of biomedical research. The BioDyn payload includes a tissue engineering investigation. The commercial affiliate, Millenium Biologix, Inc., has been conducting bone implant experiments to better understand how synthetic bone can be used to treat bone-related illnesses and bone damaged in accidents. On STS-95, the BioDyn payload will include a bone cell culture aimed to help develop this commercial synthetic bone product. Millenium Biologix, Inc., is exploring the potential for making human bone implantable materials by seeding its proprietary artificial scaffold material with human bone cells. The product of this tissue engineering experiment using the Bioprocessing Modules (BPMs) on STS-95 is space-grown bone implants, which could have potential for dental implants, long bone grafts, and coating for orthopedic implants such as hip replacements.
2004-04-15
Biomedical research offers hope for a variety of medical problems, from diabetes to the replacement of damaged bone and tissues. Bioreactors, which are used to grow cells and tissue cultures, play a major role in such research and production efforts. Cell culturing, such as this bone cell culture, is an important part of biomedical research. The BioDyn payload includes a tissue engineering investigation. The commercial affiliate, Millenium Biologix, Inc. has been conducting bone implant experiments to better understand how synthetic bone can be used to treat bone-related illnesses and bone damaged in accidents. On STS-95, the BioDyn payload will include a bone cell culture aimed to help develop this commercial synthetic bone product. Millenium Biologix, Inc. is exploring the potential for making human bone implantable materials by seeding its proprietary artificial scaffold material with human bone cells. The product of this tissue engineering experiment using the Bioprocessing Modules (BPMs) on STS-95 is space-grown bone implants, which could have potential for dental implants, long bone grafts, and coating for orthopedic implants such as hip replacements.
Utility of 3D printed temporal bones in pre-surgical planning for complex BoneBridge cases.
Mukherjee, Payal; Cheng, Kai; Flanagan, Sean; Greenberg, Simon
2017-08-01
With the advent of single-sided hearing loss increasingly being treated with cochlear implantation, bone conduction implants are reserved for cases of conductive and mixed hearing loss with greater complexity. The BoneBridge (BB, MED-EL, Innsbruck, Austria) is an active fully implantable device with no attenuation of sound energy through soft tissue. However, the floating mass transducer (FMT) part of the device is very bulky, which limits insertion in complicated ears. In this study, 3D printed temporal bones of patients were used to study its utility in preoperative planning on complicated cases. Computed tomography (CT) scans of 16 ears were used to 3D print their temporal bones. Three otologists graded the use of routine preoperative planning provided by MED-EL and that of operating on the 3D printed bone of the patient. Data were collated to assess the advantage and disadvantage of the technology. There was a statistically significant benefit in using 3D printed temporal bones to plan surgery for difficult cases of BoneBridge surgery compared to the current standard. Surgeons preferred to have the printed bones in theatre to plan their drill sites and make the transition of the planning to the patient's operation more precise. 3D printing is an innovative use of technology in the use of preoperative planning for complex ear surgery. Surgical planning can be done on the patient's own anatomy which may help to decrease operating time, reduce cost, increase surgical precision and thus reduce complications.
Strain-controlled fatigue of acrylic bone cement.
Carter, D R; Gates, E I; Harris, W H
1982-09-01
Monotonic tensile tests and tension-compression fatigue tests were conducted of wet acrylic bone cement specimens at 37 degrees C. All testing was conducted in strain control at a strain rate of 0.02/s. Weibull analysis of the tensile tests indicated that monotonic fracture was governed more strongly by strain than stress. The number of cycles to fatigue failure was also more strongly controlled by strain amplitude than stress amplitude. Specimen porosity distribution played a major role in determining the tensile and fatigue strengths. The degree of data scatter suggests that Weibull analysis of fatigue data may be useful in developing design criteria for the surgical use of bone cement.
[Observation of bridging operation by an autogenous incus in the ossiculoplasty].
Li, Hao-zhun; Gong, Shu-sheng
2008-10-01
To study the clinical effects of bridging operation by an autogenous incus in the ossiculoplasty. All the postoperative follow-up data of the 68 patients were analyzed retrospectively, who underwent bridging operation by an autogenous incus in the ossiculoplasty and were followed up for 6-28 months with an average of 19.75 months. The autogenous incus which had been reshaped was implanted between the intact malleus and the intact mobile stapes. The preoperative and postoperative pure tone average (PTA) air-conduction, bone-conduction and air-bone gap on four frequencies (0.5, 1, 2 and 4 kHz) were calculated and analyzed. No postoperative autogenous includes were extruded with only two cases displaced. The pure tone air conduction improved from a preoperative average of (46.69 +/- 18.32) dB to a postoperative average of (30.21 +/- 9.46) dB, while bone conduction improved from a preoperative average of (24.72 +/- 10.63) dB to a postoperative average of (18.15 +/- 8.91) dB, as well as air-bone gap closed from a preoperative average of 21.97 +/- 10.32 dB to a postoperative average of (12.06 +/- 9.46) dB. The success rate (postoperative PTA-ABG < or = 20 dB) occurred in 75% of all the cases. The improvement of the bone conduction occurred in 66% of all the cases, at least with 10 dB occurred in at least two frequencies. Because of low expenses, high convenience in an operation, high stability in effects, very low complications and excellent hearing results for the patients, the bridging operation as stated in the above was worthy of choice. The autogenous incus could be utilized if the defects between the intact, mobile stapes and the intact malleus could be well repaired.
ATOMIC ENERGY COMMISSION PROGRESS REPORT ON BONE RESEARCH , 1960-1961
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1962-10-31
A review of osteoporosis concepts is presented. Activities in an experimental program to study osteoporosis by examining mineral metabolism in bone and by examining bone composition and density are reported. Sr/sup 85/ was administered to seven osteoporotic patients as a tracer for skeletal mineral metabolism. The activity levels in the blood and the excretion rate were measured. From these data the accretion rate and the diffusible component volume were calculated. It was found that the accretion rate was not increased in any case. The size of the diffusible component was normal in six patients and reduced in one. Concurrent experimentsmore » with estrogen administration were conducted. Over-all results indicate that in osteoporosis, the rate of bone accretion is never elevated and an effect of estrogen administration was the decrease of bone resorption rather than stimulation of bone formation. In studies of skeletal metabolism, the kinetics of Sr/sup 85/ metabolism was compared in normal subjects and patients with skeletal disorders. Various aspects of the results are analyzed and it is concluded that values obtained by kinetic studies appear to be quantitative, reproducible, and to correlate with presently established information on alterations of bone metabolism in systemic deseases. In studies of peripheral circulation and bone growth, I/sup 131tagged human serum albumin was injected in animals. The investigation was conducted to determine blood volumne turnover rate in extremities, to correlate changes in this rate with fractures and bone disorders, and to examine the method for use in evaluation of circulation under certain pathological conditions. Data and findings are included. Data are also included on in vitro mobilization of Sr/ sup 85/ during bone formation and bone density studies. (J.R.D.)« less
Development and Characterization of Organic Electronic Scaffolds for Bone Tissue Engineering.
Iandolo, Donata; Ravichandran, Akhilandeshwari; Liu, Xianjie; Wen, Feng; Chan, Jerry K Y; Berggren, Magnus; Teoh, Swee-Hin; Simon, Daniel T
2016-06-01
Bones have been shown to exhibit piezoelectric properties, generating electrical potential upon mechanical deformation and responding to electrical stimulation with the generation of mechanical stress. Thus, the effects of electrical stimulation on bone tissue engineering have been extensively studied. However, in bone regeneration applications, only few studies have focused on the use of electroactive 3D biodegradable scaffolds at the interphase with stem cells. Here a method is described to combine the bone regeneration capabilities of 3D-printed macroporous medical grade polycaprolactone (PCL) scaffolds with the electrical and electrochemical capabilities of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT). PCL scaffolds have been highly effective in vivo as bone regeneration grafts, and PEDOT is a leading material in the field of organic bioelectronics, due to its stability, conformability, and biocompatibility. A protocol is reported for scaffolds functionalization with PEDOT, using vapor-phase polymerization, resulting in a conformal conducting layer. Scaffolds' porosity and mechanical stability, important for in vivo bone regeneration applications, are retained. Human fetal mesenchymal stem cells proliferation is assessed on the functionalized scaffolds, showing the cytocompatibility of the polymeric coating. Altogether, these results show the feasibility of the proposed approach to obtain electroactive scaffolds for electrical stimulation of stem cells for regenerative medicine. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bi, Xiaohong; Grafe, Ingo; Ding, Hao; Flores, Rene; Munivez, Elda; Jiang, Ming Ming; Dawson, Brian; Lee, Brendan; Ambrose, Catherine G
2017-02-01
Osteogenesis imperfecta (OI) is a group of genetic disorders characterized by brittle bones that are prone to fracture. Although previous studies in animal models investigated the mechanical properties and material composition of OI bone, little work has been conducted to statistically correlate these parameters to identify key compositional contributors to the impaired bone mechanical behaviors in OI. Further, although increased TGF-β signaling has been demonstrated as a contributing mechanism to the bone pathology in OI models, the relationship between mechanical properties and bone composition after anti-TGF-β treatment in OI has not been studied. Here, we performed follow-up analyses of femurs collected in an earlier study from OI mice with and without anti-TGF-β treatment from both recessive (Crtap -/- ) and dominant (Col1a2 +/P.G610C ) OI mouse models and WT mice. Mechanical properties were determined using three-point bending tests and evaluated for statistical correlation with molecular composition in bone tissue assessed by Raman spectroscopy. Statistical regression analysis was conducted to determine significant compositional determinants of mechanical integrity. Interestingly, we found differences in the relationships between bone composition and mechanical properties and in the response to anti-TGF-β treatment. Femurs of both OI models exhibited increased brittleness, which was associated with reduced collagen content and carbonate substitution. In the Col1a2 +/P.G610C femurs, reduced hydroxyapatite crystallinity was also found to be associated with increased brittleness, and increased mineral-to-collagen ratio was correlated with increased ultimate strength, elastic modulus, and bone brittleness. In both models of OI, regression analysis demonstrated that collagen content was an important predictor of the increased brittleness. In summary, this work provides new insights into the relationships between bone composition and material properties in models of OI, identifies key bone compositional parameters that correlate with the impaired mechanical integrity of OI bone, and explores the effects of anti-TGF-β treatment on bone-quality parameters in these models. © 2016 American Society for Bone and Mineral Research. © 2016 American Society for Bone and Mineral Research.
[Current treatment situation and progress on bone defect of collapsed tibial plateau fractures].
Luo, Chang-qi; Fang, Yue; Tu, Chong-qi; Yang, Tian-fu
2016-02-01
Characteristics of collapsed tibial plateau fracture determines that the joint surface must remain anatomical reduction,line of force in tibial must exist and internal fixation must be strong. However, while renewing articular surface smoothness, surgeons have a lot of problems in dealing with bone defect under the joint surface. Current materials used for bone defect treatment include three categories: autologous bone, allograft bone and bone substitutes. Some scholars think that autologous bone grafts have a number of drawbacks, such as increasing trauma, prolonged operation time, the limited source, bone area bleeding,continuous pain, local infection and anesthesia,but most scholars believe that the autologous cancellous bone graft is still the golden standard. Allograft bone has the ability of bone conduction, but the existence of immune responses, the possibility of a virus infection, and the limited source of the allograft cannot meet the clinical demands. Likewise, bone substitutes have the problem that osteogenesis does not match with degradation in rates. Clinical doctors can meet the demand of the patient's bone graft according to patient's own situation and economic conditions.
Mackey, Allison R; Hodgetts, William E; Scott, Dylan; Small, Susan A
2016-01-01
Little is known about the maturational changes in the mechanical properties of the skull and how they might contribute to infant-adult differences in bone conduction hearing sensitivity. The objective of this study was to investigate the mechanical impedance of the skin-covered skull for different skull positions and contact forces for groups of infants, young children, and adults. These findings provide a better understanding of how changes in mechanical impedance might contribute to developmental changes in bone conduction hearing, and might provide insight into how fitting and output verification protocols for bone-anchored hearing systems (BAHS) could be adapted for infants and young children. Seventy-seven individuals participated in the study, including 63 infants and children (ages 1 month to 7 years) and 11 adults. Mechanical impedance magnitude for the forehead and temporal bone was collected for contact forces of 2, 4, and 5.4 N using an impedance head, a BAHS transducer, and a specially designed holding device. Mechanical impedance magnitude was determined across frequency using a stepped sine sweep from 100 to 10,000 Hz, and divided into low- and high-frequency sets for analysis. Mechanical impedance magnitude was lowest for the youngest infants and increased throughout maturation in the low frequencies. For high frequencies, the youngest infants had the highest impedance, but only for a temporal bone placement. Impedance increased with increasing contact force for low frequencies for each age group and for both skull positions. The effect of placement was significant for high frequencies for each contact force and for each age group, except for the youngest infants. Our findings show that mechanical impedance properties change systematically up to 7 years old. The significant age-related differences in mechanical impedance suggest that infant-adult differences in bone conduction thresholds may be related, at least in part, to properties of the immature skull and overlying skin and tissues. These results have important implications for fitting the soft band BAHS on infants and young children. For example, verification of output force form a BAHS on a coupler designed with adult values may not be appropriate for infants. This may also hold true for transducer calibration when assessing bone conduction hearing thresholds in infants for different skull locations. The results have two additional clinical implications for fitting soft band BAHSs. First, parents should be counseled to maintain sufficient and consistent tightness so that the output from the BAHS does not change as the child moves around during everyday activities. Second, placement of a BAHS on the forehead versus the temporal bone results in changes in mechanical impedance which may contribute to a decrease in signal level at the cochlea as it has been previously demonstrated that bone conduction thresholds are poorer at the forehead compared with a temporal placement.
Cobb, Kensi M; Stuart, Andrew
The purpose of the study was to examine the differences in auditory brainstem response (ABR) latency and amplitude indices to the CE-Chirp stimuli in neonates versus young adults as a function of stimulus level, rate, polarity, frequency and gender. Participants were 168 healthy neonates and 20 normal-hearing young adults. ABRs were obtained to air- and bone-conducted CE-Chirps and air-conducted CE-Chirp octave band stimuli. The effects of stimulus level, rate, and polarity were examined with air-conducted CE-Chirps. The effect of stimulus level was also examined with bone-conducted CE-Chirps and CE-Chirp octave band stimuli. The effect of gender was examined across all stimulus manipulations. In general, ABR wave V amplitudes were significantly larger (p < 0.0001) and latencies were significantly shorter (p < 0.0001) for adults versus neonates for all air-conducted CE-Chirp stimuli with all stimulus manipulations. For bone-conducted CE-Chirps, infants had significantly shorter wave V latencies than adults at 15 dB nHL and 45 dB nHL (p = 0.02). Adult wave V amplitude was significantly larger for bone-conducted CE-Chirps only at 30 dB nHL (p = 0.02). The effect of gender was not statistically significant across all measures (p > 0.05). Significant differences in ABR latencies and amplitudes exist between newborns and young adults using CE-Chirp stimuli. These differences are consistent with differences to traditional click and tone burst stimuli and reflect maturational differences as a function of age. These findings continue to emphasize the importance of interpreting ABR results using age-based normative data.
Niehaus, Andrew J; Anderson, David E; Samii, Valerie F; Weisbrode, Steven E; Johnson, Jed K; Noon, Mike S; Tomasko, David L; Lannutti, John J
2009-11-01
To determine elution characteristics of bone morphogenetic protein (BMP)-2 from a polycaprolactone coating applied to orthopedic implants and determine effects of this coating on osseointegration. 6 sheep. An in vitro study was conducted to determine BMP-2 elution from polycaprolactone-coated implants. An in vivo study was conducted to determine the effects on osseointegration when the polycaprolactone with BMP-2 coating was applied to bone screws. Osseointegration was assessed via radiography, measurement of peak removal torque and bone mineral density, and histomorphometric analysis. Physiologic response was assessed by measuring serum bone-specific alkaline phosphatase activity and uptake of bone markers. Mean +/- SD elution on day 1 of the in vitro study was 263 +/- 152 pg/d, which then maintained a plateau at 59.8 +/- 29.1 pg/d. Mean peak removal torque for screws coated with polycalprolactone and BMP-2 (0.91 +/- 0.65 dN x m) and screws coated with polycaprolactone alone (0.97 +/- 1.30 dN.m) did not differ significantly from that for the control screws (2.34 +/- 1.62 dN x m). Mean bone mineral densities were 0.535 +/- 0.060 g/cm(2), 0.596 +/- 0.093 g/cm(2), and 0.524 +/- 0.142 g/cm(2) for the polycaprolactone-BMP-2-coated, polycaprolactone-coated, and control screws, respectively, and did not differ significantly among groups. Histologically, bone was in closer apposition to the implant with the control screws than with either of the coated screws. BMP-2 within the polycaprolactone coating did not stimulate osteogenesis. The polycaprolactone coating appeared to cause a barrier effect that prevented formation of new bone. A longer period or use of another carrier polymer may result in increased osseointegration.
NASA Astrophysics Data System (ADS)
Ito, Kazuhito; Nakagawa, Seiji
2015-07-01
A novel hearing aid system utilizing amplitude-modulated bone-conducted ultrasound (AM-BCU) is being developed for use by profoundly deaf people. However, there is a lack of research on the acoustic aspects of AM-BCU hearing. In this study, acoustic fields in the ear canal under AM-BCU stimulation were examined with respect to the self-demodulation effect of amplitude-modulated signal components generated in the ear canal. We found self-demodulated signals with an audible sound pressure level related to the amplitude-modulated signal components of bone-conducted ultrasonic stimulation. In addition, the increases in the self-demodulated signal levels at low frequencies in the ear canal after occluding the ear canal opening, i.e., the positive occlusion effect, indicate the existence of a pathway by which the self-demodulated signals pass through the aural cartilage and soft tissue, and radiate into the ear canal.
Cell Culturing of Cytoskeleton
NASA Technical Reports Server (NTRS)
2004-01-01
Biomedical research offers hope for a variety of medical problems, from diabetes to the replacement of damaged bone and tissues. Bioreactors, which are used to grow cells and tissue cultures, play a major role in such research and production efforts. Cell culturing, such as this bone cell culture, is an important part of biomedical research. The BioDyn payload includes a tissue engineering investigation. The commercial affiliate, Millenium Biologix, Inc., has been conducting bone implant experiments to better understand how synthetic bone can be used to treat bone-related illnesses and bone damaged in accidents. On STS-95, the BioDyn payload will include a bone cell culture aimed to help develop this commercial synthetic bone product. Millenium Biologix, Inc., is exploring the potential for making human bone implantable materials by seeding its proprietary artificial scaffold material with human bone cells. The product of this tissue engineering experiment using the Bioprocessing Modules (BPMs) on STS-95 is space-grown bone implants, which could have potential for dental implants, long bone grafts, and coating for orthopedic implants such as hip replacements.
Cell Culturing of Cytoskeleton
NASA Technical Reports Server (NTRS)
2004-01-01
Biomedical research offers hope for a variety of medical problems, from diabetes to the replacement of damaged bone and tissues. Bioreactors, which are used to grow cells and tissue cultures, play a major role in such research and production efforts. Cell culturing, such as this bone cell culture, is an important part of biomedical research. The BioDyn payload includes a tissue engineering investigation. The commercial affiliate, Millenium Biologix, Inc. has been conducting bone implant experiments to better understand how synthetic bone can be used to treat bone-related illnesses and bone damaged in accidents. On STS-95, the BioDyn payload will include a bone cell culture aimed to help develop this commercial synthetic bone product. Millenium Biologix, Inc. is exploring the potential for making human bone implantable materials by seeding its proprietary artificial scaffold material with human bone cells. The product of this tissue engineering experiment using the Bioprocessing Modules (BPMs) on STS-95 is space-grown bone implants, which could have potential for dental implants, long bone grafts, and coating for orthopedic implants such as hip replacements.
Obesity is a concern for bone health with aging.
Shapses, Sue A; Pop, L Claudia; Wang, Yang
2017-03-01
Accumulating evidence supports a complex relationship between adiposity and osteoporosis in overweight/obese individuals, with local interactions and endocrine regulation by adipose tissue on bone metabolism and fracture risk in elderly populations. This review was conducted to summarize existing evidence to test the hypothesis that obesity is a risk factor for bone health in aging individuals. Mechanisms by which obesity adversely affects bone health are believed to be multiple, such as an alteration of bone-regulating hormones, inflammation, oxidative stress, the endocannabinoid system, that affect bone cell metabolism are discussed. In addition, evidence on the effect of fat mass and distribution on bone mass and quality is reviewed together with findings relating energy and fat intake with bone health. In summary, studies indicate that the positive effects of body weight on bone mineral density cannot counteract the detrimental effects of obesity on bone quality. However, the exact mechanism underlying bone deterioration in the obese is not clear yet and further research is required to elucidate the effect of adipose depots on bone and fracture risk in the obese population. Copyright © 2017 Elsevier Inc. All rights reserved.
Obesity is a concern for bone health with aging
Shapses, Sue A.; Pop, L. Claudia; Wang, Yang
2017-01-01
Accumulating evidence supports a complex relationship between adiposity and osteoporosis in overweight/obese individuals, with local interactions and endocrine regulation by adipose tissue on bone metabolism and fracture risk in elderly populations. This review was conducted to summarize existing evidence to test the hypothesis that obesity is a risk factor for bone health in aging individuals. Mechanisms by which obesity adversely affects bone health are believed to be multiple, such as an alteration of bone-regulating hormones, inflammation, oxidative stress, the endocannabinoid system, that affect bone cell metabolism are discussed. In addition, evidence on the effect of fat mass and distribution on bone mass and quality is reviewed together with findings relating energy and fat intake with bone health. In summary, studies indicate that the positive effects of body weight on bone mineral density cannot counteract the detrimental effects of obesity on bone quality. However, the exact mechanism underlying bone deterioration in the obese is not clear yet and further research is required to elucidate the effect of adipose depots on bone and fracture risk in the obese population. PMID:28385284
Preliminary evaluation of a novel bone-conduction device for single-sided deafness.
Popelka, Gerald R; Derebery, Jennifer; Blevins, Nikolas H; Murray, Michael; Moore, Brian C J; Sweetow, Robert W; Wu, Ben; Katsis, Mina
2010-04-01
A new intraoral bone-conduction device has advantages over existing bone-conduction devices for reducing the auditory deficits associated with single-sided deafness (SSD). Existing bone-conduction devices effectively mitigate auditory deficits from single-sided deafness but have suboptimal microphone locations, limited frequency range, and/or require invasive surgery. A new device has been designed to improve microphone placement (in the ear canal of the deaf ear), provide a wider frequency range, and eliminate surgery by delivering bone-conduction signals to the teeth via a removable oral appliance. Forces applied by the oral appliance were compared with forces typically experienced by the teeth from normal functions such as mastication or from other appliances. Tooth surface changes were measured on extracted teeth, and transducer temperature was measured under typical use conditions. Dynamic operating range, including gain, bandwidth, and maximum output limits, were determined from uncomfortable loudness levels and vibrotactile thresholds, and speech recognition scores were measured using normal-hearing subjects. Auditory performance in noise (Hearing in Noise Test) was measured in a limited sample of SSD subjects. Overall comfort, ease of insertion, and removal and visibility of the oral appliance in comparison with traditional hearing aids were measured using a rating scale. The oral appliance produces forces that are far below those experienced by the teeth from normal functions or conventional dental appliances. The bone-conduction signal level can be adjusted to prevent tactile perception yet provide sufficient gain and output at frequencies from 250 to 12,000 Hz. The device does not damage tooth surfaces nor produce heat, can be inserted and removed easily, and is as comfortable to wear as traditional hearing aids. The new microphone location has advantages for reducing the auditory deficits caused by SSD, including the potential to provide spatial cues introduced by reflections from the pinna, compared with microphone locations for existing devices. A new approach for SSD has been proposed that optimizes microphone location and delivers sound by bone conduction through a removable oral appliance. Measures in the laboratory using normal-hearing subjects indicate that the device provides useful gain and output for SSD patients, is comfortable, does not seem to have detrimental effects on oral function or oral health, and has several advantages over existing devices. Specifically, microphone placement is optimized for reducing the auditory deficit caused by SSD, frequency bandwidth is much greater, and the system does not require surgical placement. Auditory performance in a small sample of SSD subjects indicated a substantial advantage compared with not wearing the device. Future studies will involve performance measures on SSD patients wearing the device for longer periods.
Bone anchored hearing aid: an evidence-based analysis.
2002-01-01
The objective of this health technology policy assessment was to determine the effectiveness and cost-effectiveness of bone-anchored hearing aid (BAHA) in improving the hearing of people with conduction or mixed hearing loss. The (BAHA) is a bone conduction hearing device that includes a titanium fixture permanently implanted into the mastoid bone of the skull and an external percutaneous sound processor. The sound processor is attached to the fixture by means of a skin penetrating abutment. Because the device bypasses the middle ear and directly stimulates the cochlea, it has been recommended for individuals with conduction hearing loss or discharging middle ear infection. The titanium implant is expected to last a lifetime while the external sound processor is expected to last 5 years. The total initial device cost is approximately $5,300 and the external sound processor costs approximately $3,500. REVIEW OF BAHA BY THE MEDICAL ADVISORY SECRETARIAT: The Medical Advisory Secretariat's review is a descriptive synthesis of findings from 36 research articles published between January 1990 and May 2002. No randomized controlled studies were found. The evidence was derived from level 4 case series with relative small sample sizes (ranging from 30-188). The majority of the studies have follow-up periods of eight years or longer. All except one study were based on monaural BAHA implant on the side with the best bone conduction threshold. Level 4 evidence showed that BAHA has been be implanted safely in adults and children with success rates of 90% or higher in most studies. No mortality or life threatening morbidity has been reported. Revision rates for tissue reduction or resiting were generally under 10% for adults but have been reported to be as high as 25% in pediatric studies. Adverse skin reaction around the skin penetration site was the most common complication reported. Most of these conditions were successfully treated with antibiotics, and only 1% to 2% required surgical revision. Less than 1% required removal of the fixture. Other complications included failure to osseointegrate and loss of fixture and/or abutment due to trauma or infection. Studies showed that BAHAs were implanted in people who have conduction or mixed hearing loss, congenital atresia or suppurative otitis media who were not candidates for surgical repair, and who cannot use conventional bone conduction hearing aids. The need for BAHA is not age- related. Objective audiometric measures and subjective patient satisfaction surveys showed that BAHA significantly improved the unaided and aided free field and sound field thresholds as well as speech discrimination in quiet and in noise for former users of conventional bone conduction hearing aids. The outcomes were ambiguous for former users of air conduction hearing aids. BAHA has been shown to reduce the frequency of ear infection and reduce the discharge particularly among patients with suppurative otitis media. Patients have reported that BAHA improved their quality of life. Reported benefits were improved speech intelligibility, better sound comfort, less pressure on the head, less skin irritation, greater cosmetic acceptance and increase in confidence. Main reported shortcomings were wind noise, feedback and difficulty in using the telephone. Experts and the BAHA manufacturer recommended that recipients of a BAHA implant be at least 5 years old. Challenges associated with the implantation of BAHA in pediatric patients include thin bone, soft bone, higher rates of fixture loss due to trauma, psychological problems, and higher revision rates due to rapid bone growth. The overall outcomes are comparable to adult BAHA. The benefits of pediatric BAHA (e.g. on speech development) appear to outweigh the disadvantages. Screening according to strict eligibility criteria, preoperative counselling, close monitoring by a physician with BAHA expertise and on-going follow-up were identified as critical factors for long-term implant survival. Examples of eligibility criteria were provided. No literature on cost-effectiveness of BAHA was found.
Håkansson, Bo; Eeg-Olofsson, Måns; Reinfeldt, Sabine; Stenfelt, Stefan; Granström, Gösta
2008-12-01
Percutaneous bone-anchored hearing aid (BAHA) is an important rehabilitation alternative for patients who have conductive or mixed hearing loss. However, these devices use a percutaneous and bone-anchored implant that has some drawbacks reported. A transcutaneous bone conduction implant system (BCI) is proposed as an alternative to the percutaneous system because it leaves the skin intact. The BCI transmits the signal to a permanently implanted transducer with an induction loop system through the intact skin. The aim of this study was to compare the electroacoustic performance of the BAHA Classic-300 with a full-scale BCI on a cadaver head in a sound field. The BCI comprised the audio processor of the vibrant sound bridge connected to a balanced vibration transducer (balanced electromagnetic separation transducer). Implants with snap abutments were placed in the parietal bone (Classic-300) and 15-mm deep in the temporal bone (BCI). The vibration responses at the ipsilateral and contralateral cochlear promontories were measured with a laser Doppler vibrometer, with the beam aimed through the ear canal. Results show that the BCI produces approximately 5 dB higher maximum output level and has a slightly lower distortion than the Classic-300 at the ipsilateral promontorium at speech frequencies. At the contralateral promontorium, the maximum output level was considerably lower for the BCI than for the Classic-300 except in the 1-2 kHz range, where it was similar. Present results support the proposal that a BCI system can be a realistic alternative to a BAHA.
Targeting Discoidin Domain Receptors in Prostate Cancer
2017-08-01
tumor incidence by bioluminescence. Thus, DDR1 may play a role in the initial seeding of tumor cells within the bone milieu. We are currently...conducting the quantitative analyses of bioluminescence and the histomorphometry analyses and evaluation of effects on bone remodeling. Studies on DDR1...regulation and function in culture cells is ongoing. 15. SUBJECT TERMS Prostate cancer, bone metastases, discoidin domain receptors, kinases
NASA Technical Reports Server (NTRS)
Smith, Scott M.; Wastney, Meryl E.; O'Brien, Kimberly O.; Morukov, Boris V.; Larina, Irina M.; Abrams, Steven A.; Davis-Street, Janis E.; Oganov, Victor; Shackelford, Linda C.
2005-01-01
Bone loss is a current limitation for long-term space exploration. Bone markers, calcitropic hormones, and calcium kinetics of crew members on space missions of 4-6 months were evaluated. Spaceflight-induced bone loss was associated with increased bone resorption and decreased calcium absorption. INTRODUCTION: Bone loss is a significant concern for the health of astronauts on long-duration missions. Defining the time course and mechanism of these changes will aid in developing means to counteract these losses during space flight and will have relevance for other clinical situations that impair weight-bearing activity. MATERIALS AND METHODS: We report here results from two studies conducted during the Shuttle-Mir Science Program. Study 1 was an evaluation of bone and calcium biochemical markers of 13 subjects before and after long-duration (4-6 months) space missions. In study 2, stable calcium isotopes were used to evaluate calcium metabolism in six subjects before, during, and after flight. Relationships between measures of bone turnover, biochemical markers, and calcium kinetics were examined. RESULTS: Pre- and postflight study results confirmed that, after landing, bone resorption was increased, as indicated by increases in urinary calcium (p < 0.05) and collagen cross-links (N-telopeptide, pyridinoline, and deoxypyridinoline were all increased >55% above preflight levels, p < 0.001). Parathyroid hormone and vitamin D metabolites were unchanged at landing. Biochemical markers of bone formation were unchanged at landing, but 2-3 weeks later, both bone-specific alkaline phosphatase and osteocalcin were significantly (p < 0.01) increased above preflight levels. In studies conducted during flight, bone resorption markers were also significantly higher than before flight. The calcium kinetic data also validated that bone resorption was increased during flight compared with preflight values (668 +/- 130 versus 427 +/- 153 mg/day; p < 0.001) and clearly documented that true intestinal calcium absorption was significantly lower during flight compared with preflight values (233 +/- 87 versus 460 +/- 47 mg/day; p < 0.01). Weightlessness had a detrimental effect on the balance in bone turnover such that the daily difference in calcium retention during flight compared with preflight values approached 300 mg/day (-234 +/- 102 versus 63 +/- 75 mg/day; p < 0.01). CONCLUSIONS: These bone marker and calcium kinetic studies indicated that the bone loss that occurs during space flight is a consequence of increased bone resorption and decreased intestinal calcium absorption.
Audiological comparison between two different clips prostheses in stapes surgery.
Potena, M; Portmann, D; Guindi, S
2015-01-01
To compare audiometric results and complications of stapes surgery with two different types of piston prosthesis, the Portmann Clip Piston (Medtronic) (PCP) and the Soft Clip Piston (Kurz) (SCP). Study conducted on 64 patients who underwent primary stapedotomy from 2008 to 2011. We matched for each case of stapedotomy with the PCP (Medtronic Xomed Inc. Portmann Clip Piston Stainless Steel/Fluoroplastic) a case with the SCP (Heinz Kurz GmbH Medizintechnik Soft Piston Clip Titanium). Each group consisted of 32 patients, and patients in both groups were matched with respect to gender, age, bilateral or unilateral otosclerosis, otological symptoms (tinnitus, vertigo or dizziness), family history, operated side and the Portmann grading for otosclerosis. The length of the prosthesis used was reported. Post-operative complications such as tinnitus, vertigo, hearing loss and altered taste were documented. Each patient was subjected to a preoperative and postoperative audiogram (follow-up at the second month after the surgery). We used the Student test for statistical analysis. Statistical significance was set at < 0.01. None of the patients experienced a post-operative hearing loss and none required a later revision surgery. No statistically significant difference was found between the two populations regarding demographic data (age, sex, side, bilaterality, family history, stage and lenght of piston) and hearing level (> 0.01) in the air, bone conduction and air-bone gap (ABG). Postoperative complications did not result to be significantly different between the two groups. Also, both groups showed a significant improvement (< 0.01) in the post-operative air, bone conduction and air-bone gap. There was no statistically significant difference (> 0.01) between the post-operative hearing results (bone conduction, air conduction, air-bone gap) using the two pistons. The mean ABG improvement was respectively 16.63 dB in the SCP group and 20.59 dB in the PCP group. The titanium Soft clip piston (SCP) is a good alternative to the Portmann clip piston (PCP). Nevertheless there are some differences in the surgical fixing of these two pistons in the correct position.
Transalveolar sinus floor lift without bone grafting in atrophic maxilla: A meta-analysis.
Yan, Mingdong; Liu, Ruimin; Bai, Shuting; Wang, Min; Xia, Haibin; Chen, Jiang
2018-01-23
We performed a meta-analysis aimed to assess the clinical results after transalveolar sinus floor lift without bone grafting in the atrophic maxilla. A systematic electronic literature search was conducted in PubMed, Embase and The Cochrane Library, followed by a manual search. Two reviewers independently extracted study data and conducted quality assessments. Ten non-controlled studies including 1484 implants and eight controlled studies (5 RCTs and 3 prospective studies) including 817 implants (451 implants in the non-graft group) were enrolled in this study. The survival rate of implants via the graft-free method was 98% (95%CI 96% to 100%). There was no significant difference in the survival rate between the non-graft group and the graft group (RR: 1.02; p = 0.18). No statistically significant difference in marginal bone loss was detected between the groups at 12 months (0.57, p = 0.07) or 36 months (0.05, p = 0.61). The endo-sinus bone gain in the non-graft group was significantly lower than in the graft group at 12 months (-1.10, p = 0.0001) and 36 months (-0.74, p = 0.02). Hence, the available evidence suggests that predictable results could be acquired through transalveolar sinus floor lift without bone grafting, while there may be a trend toward more endo-sinus bone gain with bone grafts.
Effects of simulated weightlessness on bone mineral metabolism
NASA Technical Reports Server (NTRS)
Globus, R. K.; Bikle, D. D.; Morey-Holton, E.
1984-01-01
It is pointed out that prolonged space flight, bedrest, and immobilization are three factors which can produce a negative calcium balance, osteopenia, and an inhibition of bone formation. It is not known whether the effects of gravity on bone mineral metabolism are mediated by systemic endocrine factors which affect all bones simultaneously, or by local factors which affect each bone individually. The present investigation has the objective to test the relative importance of local vs. systemic factors in regulating the bone mineral response to conditions simulating weightlessness. Experiments were conducted with male Sprague-Dawley rats. The test conditions made it possible to compare the data from weighted and unweighted bones in the same animal. The obtained findings indicate that a decrease in bone mass relative to control value occurs rapidly under conditions which simulate certain aspects of weightlessness. However, this decrease reaches a plateau after 10 days.
Spaceflight-induced Bone Loss: Is there a Risk for Accelerated Osteoporosis after Return?
NASA Technical Reports Server (NTRS)
Sibonga, Jean
2008-01-01
The evidence-to to-date suggests that the rapid rate of site-specific bone loss in space, due to the unbalanced stimulation of bone resorption, may predispose crew members to irreversible changes in bone structure and microarchitecture. No analyses conducted in the postflight period to assess microarchitectural changes. There is no complete analysis of skeletal recovery in the postflight period to evaluate the structural changes that accompany increases in DXA aBMD. Postflight analyses based upon QCT scans performed on limited crew members indicate reductions in hip bone strength and incomplete recovery at 1 year. No recovery of trabecular vBMD after 1 year return (HRP IWG). Time course of bone loss in space unknown.
Tran, Phuong K; Letowski, Tomasz R; McBride, Maranda E
2013-06-01
Speech signals can be converted into electrical audio signals using either conventional air conduction (AC) microphone or a contact bone conduction (BC) microphone. The goal of this study was to investigate the effects of the location of a BC microphone on the intensity and frequency spectrum of the recorded speech. Twelve locations, 11 on the talker's head and 1 on the collar bone, were investigated. The speech sounds were three vowels (/u/, /a/, /i/) and two consonants (/m/, /∫/). The sounds were produced by 12 talkers. Each sound was recorded simultaneously with two BC microphones and an AC microphone. Analyzed spectral data showed that the BC recordings made at the forehead of the talker were the most similar to the AC recordings, whereas the collar bone recordings were most different. Comparison of the spectral data with speech intelligibility data collected in another study revealed a strong negative relationship between BC speech intelligibility and the degree of deviation of the BC speech spectrum from the AC spectrum. In addition, the head locations that resulted in the highest speech intelligibility were associated with the lowest output signals among all tested locations. Implications of these findings for BC communication are discussed.
Understanding the low uptake of bone-anchored hearing aids: a review.
Powell, R; Wearden, A; Pardesi, S M; Green, K
2017-03-01
Bone-anchored hearing aids improve hearing for patients for whom conventional behind-the-ear aids are problematic. However, uptake of bone-anchored hearing aids is low and it is important to understand why this is the case. A narrative review was conducted. Studies examining why people accept or decline bone-anchored hearing aids and satisfaction levels of people with bone-anchored hearing aids were reviewed. Reasons for declining bone-anchored hearing aids included limited perceived benefits, concerns about surgery, aesthetic concerns and treatment cost. No studies providing in-depth analysis of the reasons for declining or accepting bone-anchored hearing aids were identified. Studies of patient satisfaction showed that most participants reported benefits with bone-anchored hearing aids. However, most studies used cross-sectional and/or retrospective designs and only included people with bone-anchored hearing aids. Important avenues for further research are in-depth qualitative research designed to fully understand the decision-making process for bone-anchored hearing aids and rigorous quantitative research comparing satisfaction of people who receive bone-anchored hearing aids with those who receive alternative (or no) treatments.
Surgical and Technical Modalities for Hearing Restoration in Ear Malformations.
Dazert, Stefan; Thomas, Jan Peter; Volkenstein, Stefan
2015-12-01
Malformations of the external and middle ear often go along with an aesthetic and functional handicap. Independent of additional aesthetic procedures, a successful functional hearing restoration leads to a tremendous gain in quality of life for affected patients. The introduction of implantable hearing systems (bone conduction and middle ear devices) offers new therapeutic options in this field. We focus on functional rehabilitation of patients with malformations, either by surgical reconstruction or the use of different implantable hearing devices, depending on the disease itself and the severity of malformation as well as hearing impairment. Patients with an open ear canal and minor malformations are good candidates for surgical hearing restoration of middle ear structures with passive titanium or autologous implants. In cases with complete fibrous or bony atresia of the ear canal, the most promising functional outcome and gain in quality of life can be expected with an active middle ear implant or a bone conduction device combined with a surgical aesthetic rehabilitation in a single or multi-step procedure. Although the surgical procedure for bone conduction devices is straightforward and safe, more sophisticated operations for active middle ear implants (e.g., Vibrant Soundbridge, MED-EL, Innsbruck, Austria) provide an improved speech discrimination in noise and the ability of sound localization compared with bone conduction devices where the stimulation reaches both cochleae. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Changes in bone microstructure and toughness during the healing process of long bones
NASA Astrophysics Data System (ADS)
Ishimoto, T.; Nakano, T.; Umakoshi, Y.; Tabata, Y.
2009-05-01
It is of great importance to understand how bone defects regain the microstructure and mechanical function of bone and how the microstructure affects the mechanical function during the bone healing process. In the present study on long bone defects, we investigated the relationship between the recovery process of fracture toughness and biological apatite (BAp)/collagen (Col) alignment as an index of the bone microstructure to clarify the bone toughening mechanisms. A 5-mm defect introduced in the rabbit ulna was allowed to heal naturally and a three-point bending test was conducted on the regenerated site to assess bone toughness. The bone toughness was quite low at the early stage of bone regeneration but increased during the postoperative period. The change in toughness agreed well with the characteristics of the fracture surface morphology, which reflected the history of the crack propagation. SEM and microbeam X-ray diffraction analyses indicated that the toughness was dominated by the degree and orientation of the preferred BAp/Col alignment, i.e. bundles aligned perpendicular to the crack propagation clearly contributed to the bone toughening owing to extra energy consumption for resistance to crack propagation. In conclusion, regenerated bone improves fracture toughness by reconstructing the preferred BAp/Col alignment along the bone longitudinal axis during the healing process of long bones.
Nanotechnology in the targeted drug delivery for bone diseases and bone regeneration
Gu, Wenyi; Wu, Chengtie; Chen, Jiezhong; Xiao, Yin
2013-01-01
Nanotechnology is a vigorous research area and one of its important applications is in biomedical sciences. Among biomedical applications, targeted drug delivery is one of the most extensively studied subjects. Nanostructured particles and scaffolds have been widely studied for increasing treatment efficacy and specificity of present treatment approaches. Similarly, this technique has been used for treating bone diseases including bone regeneration. In this review, we have summarized and highlighted the recent advancement of nanostructured particles and scaffolds for the treatment of cancer bone metastasis, osteosarcoma, bone infections and inflammatory diseases, osteoarthritis, as well as for bone regeneration. Nanoparticles used to deliver deoxyribonucleic acid and ribonucleic acid molecules to specific bone sites for gene therapies are also included. The investigation of the implications of nanoparticles in bone diseases have just begun, and has already shown some promising potential. Further studies have to be conducted, aimed specifically at assessing targeted delivery and bioactive scaffolds to further improve their efficacy before they can be used clinically. PMID:23836972
Nanotechnology in the targeted drug delivery for bone diseases and bone regeneration.
Gu, Wenyi; Wu, Chengtie; Chen, Jiezhong; Xiao, Yin
2013-01-01
Nanotechnology is a vigorous research area and one of its important applications is in biomedical sciences. Among biomedical applications, targeted drug delivery is one of the most extensively studied subjects. Nanostructured particles and scaffolds have been widely studied for increasing treatment efficacy and specificity of present treatment approaches. Similarly, this technique has been used for treating bone diseases including bone regeneration. In this review, we have summarized and highlighted the recent advancement of nanostructured particles and scaffolds for the treatment of cancer bone metastasis, osteosarcoma, bone infections and inflammatory diseases, osteoarthritis, as well as for bone regeneration. Nanoparticles used to deliver deoxyribonucleic acid and ribonucleic acid molecules to specific bone sites for gene therapies are also included. The investigation of the implications of nanoparticles in bone diseases have just begun, and has already shown some promising potential. Further studies have to be conducted, aimed specifically at assessing targeted delivery and bioactive scaffolds to further improve their efficacy before they can be used clinically.
Characterization of bone microstructure using photoacoustic spectrum analysis
NASA Astrophysics Data System (ADS)
Feng, Ting; Kozloff, Kenneth M.; Xu, Guan; Du, Sidan; Yuan, Jie; Deng, Cheri X.; Wang, Xueding
2015-03-01
Osteoporosis is a progressive bone disease that is characterized by a decrease in bone mass and deterioration in microarchitecture. This study investigates the feasibility of characterizing bone microstructure by analyzing the frequency spectrum of the photoacoustic signals from the bone. Modeling and numerical simulation of photoacoustic signals and their frequency-domain analysis were performed on trabecular bones with different mineral densities. The resulting quasilinear photoacoustic spectra were fit by linear regression, from which spectral parameter slope can be quantified. The modeling demonstrates that, at an optical wavelength of 685 nm, bone specimens with lower mineral densities have higher slope. Preliminary experiment on osteoporosis rat tibia bones with different mineral contents has also been conducted. The finding from the experiment has a good agreement with the modeling, both demonstrating that the frequency-domain analysis of photoacoustic signals can provide objective assessment of bone microstructure and deterioration. Considering that photoacoustic measurement is non-ionizing, non-invasive, and has sufficient penetration in both calcified and noncalcified tissues, this new technology holds unique potential for clinical translation.
NASA Astrophysics Data System (ADS)
Rainarli, E.; E Dewi, K.
2017-04-01
The research conducted by Fister & Panetta shown an optimal control model of bone marrow cells against Cell Cycle Specific chemotherapy drugs. The model used was a bilinear system model. Fister & Panetta research has proved existence, uniqueness, and characteristics of optimal control (the chemotherapy effect). However, by using this model, the amount of bone marrow at the final time could achieve less than 50 percent from the amount of bone marrow before given treatment. This could harm patients because the lack of bone marrow cells made the number of leukocytes declining and patients will experience leukemia. This research would examine the optimal control of a bilinear system that applied to fixed final state. It will be used to determine the length of optimal time in administering chemotherapy and kept bone marrow cells on the allowed level at the same time. Before simulation conducted, this paper shows that the system could be controlled by using a theory of Lie Algebra. Afterward, it shows the characteristics of optimal control. Based on the simulation, it indicates that strong chemotherapy drug given in a short time frame is the most optimal condition to keep bone marrow cells spine on the allowed level but still could put playing an effective treatment. It gives preference of the weight of treatment for keeping bone marrow cells. The result of chemotherapy’s effect (u) is not able to reach the maximum value. On the other words, it needs to make adjustments of medicine’s dosage to satisfy the final treatment condition e.g. the number of bone marrow cells should be at the allowed level.
Sogal, A; Tofe, A J
1999-09-01
Several commercial products are currently available for clinical application as bone graft substitutes. These products can be broadly classified into two categories: synthetic and natural. Bovine bone is a popular source for several of the natural bone substitutes. The availability of bovine derived xenogenic bone substitutes has made it possible to avoid traumatic and expensive secondary surgery to obtain autogenous bone once thought essential for effective bone replacement. While autogenous bone still remains the undisputed "gold standard" in bone grafting, the realization that bone requirement in several clinical applications is as effectively met by xenografts has lead to their widespread use. But the convenience of using xenografts is tempered by the possibility of disease transmission from cattle to humans. The recent incidents of bovine spongiform encephalopathies (BSE) in humans have underscored this likelihood. In this paper, we report a risk analysis performed to assess the possibility of such disease transmission from a commercially available bone graft substitute (BGS) that is popularly used in clinical dentistry. An extensive review of current literature on the status of risk assessment of BSE transmission was conducted, and two risk assessment models were identified as applicable to the present study. Risk assessment models developed by the German Federal Ministry of Health and by the Pharmaceutical Research and Manufacturers Association of America were applied to BGS. Results from the analyses conducted using both models showed that the risk of disease (BSE) transmission from BGS was negligible and could be attributed to the stringent protocols followed in sourcing and processing of the raw bovine bone used in the commercial product. Based on the risk analysis, it is evident that the risk of BSE infection from BGS is several orders of magnitude less than that posed by the risk of death related to, lightning, tornadoes, or similar remote events. However, this low risk can only be maintained as long as an effective and active risk management program is implemented in operations that involve processing xenogenic tissue for human use.
Ntounis, Athanasios; Geurs, Nico; Vassilopoulos, Philip; Reddy, Michael
2015-01-01
The study was conducted to evaluate the effect of mineralized freeze-dried bone allograft (FDBA), alone or in combination with growth factors in extraction sockets, on subjective assessment of bone quality during implant placement. Forty-one patients whose treatment plan involved extraction of anterior or premolar teeth were randomized into four groups: Group 1, collagen plug (control); Group 2, FDBA/β-tricalcium phosphate (β-TCP)/collagen plug; Group 3, FDBA/β-TCP/platelet-rich plasma (PRP)/collagen plug; Group 4, FDBA/β-TCP/recombinant human platelet-derived growth factor BB (rhPDGF-BB)/collagen plug. After 8 weeks of healing, implants were placed. The clinicians assessed bone quality according to the Misch classification. A benchtop calibration exercise test was conducted to evaluate agreement and accuracy of operators in recognizing different bone qualities. Differences were analyzed using one-way analysis of variance (ANOVA) or chi-square tests for continuous and categorical data. Pairwise comparisons were tested using least squares means (LS means). Spearman correlation coefficients were used to evaluate the relationship of bone growth with potential confounders. P < .05 was considered statistically significant. A simple (not weighted) kappa statistic was used to assess the agreement between raters. To assess accuracy in identifying bone quality, a chi-square test was used to compare the percent correct for each rater. The benchtop calibration exercise test demonstrated agreement among clinicians (0.75 and 0.92 between raters 1 and 2 and raters 1 and 3, respectively). Raters were more likely to identify the correct bone quality (P > .05). Inclusion of bone grafting is associated with a shift from D4 quality to D3 quality bone. Inclusion of PRP in bone grafting eliminates the incidence of D4 bone, establishing D3 and D2 quality bone as prevalent (56% vs. 42%, respectively). Inclusion of rhPDGF-BB and β-TCP in combination with the bone grafting has the same effect, although D2 quality is less prevalent. When compared to sockets grafted with FDBA/β-TCP/collagen plug alone, the sockets with growth factors demonstrated fewer residual bone graft particles. (1) Inclusion of bone grafting enhanced bone quality as assessed during implant placement. (2) Overall inclusion of PRP and rhPDGF-BB enhanced subjective bone quality, eliminating incidence of D4 quality in human extraction sockets. (3) The use of PRP or rhPDGF-BB may enhance healing within extraction sockets and decrease the healing time prior to dental implant placement.
van Eekeren, Inge C M; Reilingh, Mikel L; van Dijk, C Niek
2012-10-01
An osteochondral defect (OD) is a lesion involving the articular cartilage and the underlying subchondral bone. ODs of the talus can severely impact on the quality of life of patients, who are usually young and athletic. The primary treatment for ODs that are too small for fixation, consists of arthroscopic debridement and bone marrow stimulation. This article delineates levels of activity, determines times for return to activity and reviews the factors that affect rehabilitation after arthroscopic debridement and bone marrow stimulation of a talar OD. Articles for review were obtained from a search of the MEDLINE database up to January 2012 using the search headings 'osteochondral defects', 'bone marrow stimulation', 'sports/activity', 'rehabilitation', various other related factors and 'talus'. English-, Dutch- and German-language studies were evaluated.The review revealed that there is no consensus in the existing literature about rehabilitation times or return-to-sports activity times, after treatment with bone marrow stimulation of ODs in the talus. Furthermore, scant research has been conducted on these issues. The literature also showed that potential factors that aid rehabilitation could include youth, lower body mass index, smaller OD size, mobilization and treatment with growth factors, platelet-rich plasma, biphosphonates, hyaluronic acid and pulse electromagnetic fields. However, most studies have been conducted in vitro or on animals. We propose a scheme, whereby return-to-sports activity is divided into four phases of increasing intensity: walking, jogging, return to non-contact sports (running without swerving) and return to contact sports (running with swerving and collision). We also recommend that research, conducted on actual sportsmen, of recovery times after treatment of talar ODs is warranted.
Image-Based Macro-Micro Finite Element Models of a Canine Femur with Implant Design Implications
NASA Astrophysics Data System (ADS)
Ghosh, Somnath; Krishnan, Ganapathi; Dyce, Jonathan
2006-06-01
In this paper, a comprehensive model of a bone-cement-implant assembly is developed for a canine cemented femoral prosthesis system. Various steps in this development entail profiling the canine femur contours by computed tomography (CT) scanning, computer aided design (CAD) reconstruction of the canine femur from CT images, CAD modeling of the implant from implant blue prints and CAD modeling of the interface cement. Finite element analysis of the macroscopic assembly is conducted for stress analysis in individual components of the system, accounting for variation in density and material properties in the porous bone material. A sensitivity analysis is conducted with the macroscopic model to investigate the effect of implant design variables on the stress distribution in the assembly. Subsequently, rigorous microstructural analysis of the bone incorporating the morphological intricacies is conducted. Various steps in this development include acquisition of the bone microstructural data from histological serial sectioning, stacking of sections to obtain 3D renderings of void distributions, microstructural characterization and determination of properties and, finally, microstructural stress analysis using a 3D Voronoi cell finite element method. Generation of the simulated microstructure and analysis by the 3D Voronoi cell finite element model provides a new way of modeling complex microstructures and correlating to morphological characteristics. An inverse calculation of the material parameters of bone by combining macroscopic experiments with microstructural characterization and analysis provides a new approach to evaluating properties without having to do experiments at this scale. Finally, the microstructural stresses in the femur are computed using the 3D VCFEM to study the stress distribution at the scale of the bone porosity. Significant difference is observed between the macroscopic stresses and the peak microscopic stresses at different locations.
Applied anatomic site study of palatal anchorage implants using cone beam computed tomography.
Lai, Ren-fa; Zou, Hui; Kong, Wei-dong; Lin, Wei
2010-06-01
The purpose of this study was to conduct quantitative research on bone height and bone mineral density of palatal implant sites for implantation, and to provide reference sites for safe and stable palatal implants. Three-dimensional reformatting images were reconstructed by cone beam computed tomography (CBCT) in 34 patients, aged 18 to 35 years, using EZ Implant software. Bone height was measured at 20 sites of interest on the palate. Bone mineral density was measured at the 10 sites with the highest implantation rate, classified using K-mean cluster analysis based on bone height and bone mineral density. According to the cluster analysis, 10 sites were classified into three clusters. Significant differences in bone height and bone mineral density were detected between these three clusters (P<0.05). The greatest bone height was obtained in cluster 2, followed by cluster 1 and cluster 3. The highest bone mineral density was found in cluster 3, followed by cluster 1 and cluster 2. CBCT plays an important role in pre-surgical treatment planning. CBCT is helpful in identifying safe and stable implantation sites for palatal anchorage.
Calcium metabolism before, during, and after a 3-mo spaceflight: kinetic and biochemical changes
NASA Technical Reports Server (NTRS)
Smith, S. M.; Wastney, M. E.; Morukov, B. V.; Larina, I. M.; Nyquist, L. E.; Abrams, S. A.; Taran, E. N.; Shih, C. Y.; Nillen, J. L.; Davis-Street, J. E.;
1999-01-01
The loss of bone during spaceflight is considered a physiological obstacle for the exploration of other planets. This report of calcium metabolism before, during, and after long-duration spaceflight extends results from Skylab missions in the 1970s. Biochemical and endocrine indexes of calcium and bone metabolism were measured together with calcium absorption, excretion, and bone turnover using stable isotopes. Studies were conducted before, during, and after flight in three male subjects. Subjects varied in physical activity, yet all lost weight during flight. During flight, calcium intake and absorption decreased up to 50%, urinary calcium excretion increased up to 50%, and bone resorption (determined by kinetics or bone markers) increased by over 50%. Osteocalcin and bone-specific alkaline phosphatase, markers of bone formation, increased after flight. Subjects lost approximately 250 mg bone calcium per day during flight and regained bone calcium at a slower rate of approximately 100 mg/day for up to 3 mo after landing. Further studies are required to determine the time course of changes in calcium homeostasis during flight to develop and assess countermeasures against flight-induced bone loss.
Ghonim, Mohamed; Shabana, Yousef; Ashraf, Bassem; Salem, Mohamed
2017-04-01
To discuss the different modalities for managing necrosis of the long process of the incus in revision stapedectomy on the basis of the degree of necrosis and compare the results with those reported in the literature. Thirty-six patients underwent revision stapedectomy with the necrosis of the long process of the incus from 2009 to 2016. The patients were divided into three groups on the basis of the degree of necrosis. For group A (minimal necrosis), augmentation technique with bone cement was performed. For group B (partial necrosis), the cement plug technique was performed. For group C (sever necrosis), malleus relocation with malleovestibulopexy was performed using reshaped necrosed incus. Air and bone conduction thresholds at frequencies of 500-3000 Hz were reviewed pre- and postoperatively using conventional audiometry. The air-bone gap (ABG) and bone conduction thresholds were measured. Postoperative ABG was reduced to <10 dB in 28 cases (77.8%) and <20 dB in all cases (100%). There was no significant change in postoperative bone conduction thresholds. The mean patient follow-up duration was 23 (range, 18-36) months. The cement plug technique was used in 75% of cases. Managing necrosis of the long process of the incus in revision stapedectomy should be considered according to the degree of necrosis. The cement plug technique is considered to be a reasonable option in most cases. Malleus relocation with malleovestibulopexy is an effective alternative to prosthesis.
Rinne revisited: steel versus aluminum tuning forks.
MacKechnie, Cheryl A; Greenberg, Jesse J; Gerkin, Richard C; McCall, Andrew A; Hirsch, Barry E; Durrant, John D; Raz, Yael
2013-12-01
(1) Determine whether tuning fork material (aluminum vs stainless steel) affects Rinne testing in the clinical assessment of conductive hearing loss (CHL). (2) Determine the relative acoustic and mechanical outputs of 512-Hz tuning forks made of aluminum and stainless steel. Prospective, observational. Outpatient otology clinic. Fifty subjects presenting May 2011 to May 2012 with negative or equivocal Rinne in at least 1 ear and same-day audiometry. Rinne test results using aluminum and steel forks were compared and correlated with the audiometric air-bone gap. Bench top measurements using sound-level meter, microphone, and artificial mastoid. Patients with CHL were more likely to produce a negative Rinne test with a steel fork than with an aluminum fork. Logistic regression revealed that the probability of a negative Rinne reached 50% at a 19 dB air-bone gap for stainless steel versus 27 dB with aluminum. Bench top testing revealed that steel forks demonstrate, in effect, more comparable air and bone conduction efficiencies while aluminum forks have relatively lower bone conduction efficiency. We have found that steel tuning forks can detect a lesser air-bone gap compared to aluminum tuning forks. This is substantiated by observations of clear differences in the relative acoustic versus mechanical outputs of steel and aluminum forks, reflecting underlying inevitable differences in acoustic versus mechanical impedances of these devices, and thus efficiency of coupling sound/vibratory energy to the auditory system. These findings have clinical implications for using tuning forks to determine candidacy for stapes surgery.
Automatic Fontanel Extraction from Newborns' CT Images Using Variational Level Set
NASA Astrophysics Data System (ADS)
Kazemi, Kamran; Ghadimi, Sona; Lyaghat, Alireza; Tarighati, Alla; Golshaeyan, Narjes; Abrishami-Moghaddam, Hamid; Grebe, Reinhard; Gondary-Jouet, Catherine; Wallois, Fabrice
A realistic head model is needed for source localization methods used for the study of epilepsy in neonates applying Electroencephalographic (EEG) measurements from the scalp. The earliest models consider the head as a series of concentric spheres, each layer corresponding to a different tissue whose conductivity is assumed to be homogeneous. The results of the source reconstruction depend highly on the electric conductivities of the tissues forming the head.The most used model is constituted of three layers (scalp, skull, and intracranial). Most of the major bones of the neonates’ skull are ossified at birth but can slightly move relative to each other. This is due to the sutures, fibrous membranes that at this stage of development connect the already ossified flat bones of the neurocranium. These weak parts of the neurocranium are called fontanels. Thus it is important to enter the exact geometry of fontaneles and flat bone in a source reconstruction because they show pronounced in conductivity. Computer Tomography (CT) imaging provides an excellent tool for non-invasive investigation of the skull which expresses itself in high contrast to all other tissues while the fontanels only can be identified as absence of bone, gaps in the skull formed by flat bone. Therefore, the aim of this paper is to extract the fontanels from CT images applying a variational level set method. We applied the proposed method to CT-images of five different subjects. The automatically extracted fontanels show good agreement with the manually extracted ones.
Characterization of bone tissue using microstrip antennas.
Barros, Jannayna D; de Oliveira, Jose Josemar; da Silva, Sandro G
2010-01-01
The use of electromagnetic waves in the characterization of biological tissues has been conducted since the nineteenth century after the confirmation that electric and magnetic fields can interact with biological materials. In this paper, electromagnetic waves are used to characterize tissues with different levels of bone mass. In this way, one antenna array on microstrip lines was used. It can be seen that bones with different mass has different behavior in microwave frequencies.
Bone marrow-on-a-chip replicates hematopoietic niche physiology in vitro.
Torisawa, Yu-suke; Spina, Catherine S; Mammoto, Tadanori; Mammoto, Akiko; Weaver, James C; Tat, Tracy; Collins, James J; Ingber, Donald E
2014-06-01
Current in vitro hematopoiesis models fail to demonstrate the cellular diversity and complex functions of living bone marrow; hence, most translational studies relevant to the hematologic system are conducted in live animals. Here we describe a method for fabricating 'bone marrow-on-a-chip' that permits culture of living marrow with a functional hematopoietic niche in vitro by first engineering new bone in vivo, removing it whole and perfusing it with culture medium in a microfluidic device. The engineered bone marrow (eBM) retains hematopoietic stem and progenitor cells in normal in vivo-like proportions for at least 1 week in culture. eBM models organ-level marrow toxicity responses and protective effects of radiation countermeasure drugs, whereas conventional bone marrow culture methods do not. This biomimetic microdevice offers a new approach for analysis of drug responses and toxicities in bone marrow as well as for study of hematopoiesis and hematologic diseases in vitro.
Effects of microgravity on bone and calcium homeostasis
NASA Astrophysics Data System (ADS)
Zérath, E.
Mechanical function is known to be of crucial importance for the maintenance of bone tissue. Gravity on one hand and muscular effort on the other hand are required for normal skeletal structure. It has been shown by numerous experimental studies that loss of total-body calcium, and marked skeletal changes occur in people who have flown in space. However, most of the pertinent investigations have been conducted on animal models, including rats and non-human primates, and a reasonably clear picture of bone response to spaceflight has emerged during the past few years. Osteopenia induced by microgravity was found to be associated with reduction in both cortical and trabecular bone formation, alteration in mineralization patterns, and disorganization of collagen, and non-collagenous protein metabolism. Recently, cell-culture techniques have offered a direct approach of altered gravity effects at the osteoblastic-cell level. But the fundamental mechanisms by which bone and calcium are lost during spaceflight are not yet fully known. Infrequenccy and high financial cost of flights have created the necessity to develop on-Earth models designed to mimic weightlessness effects. Antiorthostatic suspension devices are now commonly used to obtain hindlimb unloading in rats, with skeletal effects similar to those observed after spaceflight. Therefore, actual and ``simulated'' spaceflights, with investigations conducted at whole body and cellular levels, are needed to elucidate pathogeny of bone loss in space, to develop effective countermeasures, and to study recovery processes of bone changes after return to Earth.
Whole bone mechanics and bone quality.
Cole, Jacqueline H; van der Meulen, Marjolein C H
2011-08-01
The skeleton plays a critical structural role in bearing functional loads, and failure to do so results in fracture. As we evaluate new therapeutics and consider treatments to prevent skeletal fractures, understanding the basic mechanics underlying whole bone testing and the key principles and characteristics contributing to the structural strength of a bone is critical. We therefore asked: (1) How are whole bone mechanical tests performed and what are the key outcomes measured? (2) How do the intrinsic characteristics of bone tissue contribute to the mechanical properties of a whole bone? (3) What are the effects of extrinsic characteristics on whole bone mechanical behavior? (4) Do environmental factors affect whole bone mechanical properties? We conducted a PubMed search using specific search terms and limiting our included articles to those related to in vitro testing of whole bones. Basic solid mechanics concepts are summarized in the context of whole bone testing and the determinants of whole bone behavior. Whole bone mechanical tests measure structural stiffness and strength from load-deformation data. Whole bone stiffness and strength are a function of total bone mass and the tissue geometric distribution and material properties. Age, sex, genetics, diet, and activity contribute to bone structural performance and affect the incidence of skeletal fractures. Understanding and preventing skeletal fractures is clinically important. Laboratory tests of whole bone strength are currently the only measures for in vivo fracture prediction. In the future, combined imaging and engineering models may be able to predict whole bone strength noninvasively.
State of the mineral component of rat bone tissue during hypokinesia and the recovery period
NASA Technical Reports Server (NTRS)
Volozhin, A. I.; Stupakov, G. P.; Pavlova, M. N.; Muradov, I. S.
1980-01-01
Experiments were conducted on young growing rats. Hypokinesia lasting from 20 to 200 days caused retarded gain in weight and volume of the femur and delayed development of the cortical layer of the diaphysis. In contrast, the density of the cortical layer of the femoral diaphysis increased due to elevation of the mineral saturation of the bone tissue microstructures. Incorporation of Ca into the bone tissue in hypokinesia had a tendency to reduce. Partial normalization of the bone tissue mineral component occurred during a 20 day recovery period following hypokinesia.
Nganvongpanit, Korakot; Siengdee, Puntita; Buddhachat, Kittisak; Brown, Janine L; Klinhom, Sarisa; Pitakarnnop, Tanita; Angkawanish, Taweepoke; Thitaram, Chatchote
2017-09-01
This study evaluated the morphology and elemental composition of Asian elephant (Elephas maximus) bones (humerus, radius, ulna, femur, tibia, fibula and rib). Computerized tomography was used to image the intraosseous structure, compact bones were processed using histological techniques, and elemental profiling of compact bone was conducted using X-ray fluorescence. There was no clear evidence of an open marrow cavity in any of the bones; rather, dense trabecular bone was found in the bone interior. Compact bone contained double osteons in the radius, tibia and fibula. The osteon structure was comparatively large and similar in all bones, although the lacuna area was greater (P < 0.05) in the femur and ulna. Another finding was that nutrient foramina were clearly present in the humerus, ulna, femur, tibia and rib. Twenty elements were identified in elephant compact bone. Of these, ten differed significantly across the seven bones: Ca, Ti, V, Mn, Fe, Zr, Ag, Cd, Sn and Sb. Of particular interest was the finding of a significantly larger proportion of Fe in the humerus, radius, fibula and ribs, all bones without an open medullary cavity, which is traditionally associated with bone marrow for blood cell production. In conclusion, elephant bones present special characteristics, some of which may be important to hematopoiesis and bone strength for supporting a heavy body weight.
Surprising origin of two carved bones donated to the Buchenwald Memorial Museum.
Gapert, René
2018-03-28
Unidentified bones were donated to the Buchenwald Memorial Museum in Weimar, Germany. The donor thought the bones may have belonged to internees of the concentration camp and had been decoratively carved by camp personnel. Non-destructive forensic anthropological examination was carried out on the bones to identify their possible origin. Comparative human and non-human bones samples were used to determine the provenance of the bones and the anatomical region they may have come from. Literature and internet searches were conducted to trace the origin of the carved motifs on the bones. The bones were determined to belong to the lower limb region of bovids. The carvings were found to correspond with those of existing bone examples found in some museums in the UK. They were traced to German prisoners of war dating to the First World War. An in-depth examination of the donated bones revealed their non-human provenance. It further showed that no link existed between the bones, internees of the concentration camp, and the time of the camp's existence. It was discovered that they belonged to the period 1914-1918 and form an important part of German prisoner of war history in the UK.
Roles of leptin in bone metabolism and bone diseases.
Chen, Xu Xu; Yang, Tianfu
2015-09-01
Adipose tissue has been more accepted as an active contributor to whole body homeostasis, rather than just a fat depot, since leptin, a 16 kDa protein, was discovered as the product of the obese gene in 1994. With more and more studies conducted on this hormone, it has been shown that there is a close relationship between adipose tissue and bone, which have important effects on each other. Bone is the source of many hormones, such as osteocalcin, that can affect energy metabolism and then the anabolism or catabolism of fat tissue. In contrast, the adipose tissue synthesizes and releases a series of adipokines, which are involved in bone metabolism through direct or indirect effects on bone formation and resorption. Interestingly, leptin, one of the most important cytokines derived from fat tissue, seems to account for the largest part of effects on bone, through direct or indirect involvement in bone remodeling and by playing a significant role in many bone diseases, such as osteoporosis, osteoarthritis, rheumatic arthritis, bone tumors and even fractures. In this review, we will discuss the progress in leptin research, particularly focusing on the roles of leptin in bone diseases.
Suppression of Sclerostin and Dickkopf-1 levels in patients with fluorine bone injury.
Wang, Wenpeng; Xu, Jian; Liu, Kejian; Liu, Xiaoli; Li, Changcheng; Cui, Caiyan; Zhang, Yuzeng; Li, Huabing
2013-05-01
Evidence has been accumulating for the role of Sclerostin and Dickkopf-1 as the antagonists of Wnt/β-Catenin signaling pathway, which suppresses bone formation through inhibiting osteoblastic function. To get deep-inside information about the expression of the antagonists in patients with fluorine bone injury, a case-control study was conducted in two counties in Hubei Province. Urinary and serum fluoride were significantly higher in patients with fluorine bone injury than in healthy controls. Additionally, patients with fluorine bone injury had significantly lower serum Sclerostin and Dickkopf-1 levels compared with healthy controls (P<0.001). Serum Sclerostin and Dickkopf-1 levels were significantly correlated with serum fluoride in all studied subjects (n=186). Low Sclerostin and Dickkopf-1 levels were associated with a significantly increased risk of fluorine bone injury. In conclusion, serum Sclerostin and Dickkopf-1 might be used as important markers of bone metabolism change and potential therapeutic targets to treat fluorine bone injury. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Zernicke, R. F.; Li, K.-C.; Salem, G. J.; Vailas, A. C.; Grindeland, R. E.
1990-01-01
An investigation was conducted to generate comparative data on the sensitivity of cortical- and vertebral-bone adaptations in two different rat strains maintained at conditions typical for spaceborne experiments conducted by U.S.A. and USSR. The effects of cage environment, diet, and rat-strain on the cortical (humerus) and vertebral (T7) bones of male Taconic-Sprague-Dawley and Czechoslovakian-Wistar rats were investigated using different flight-simulation cages (one rat/cage for U.S.A.; ten rats/cage for USSR conditions) and fed either U.S.A. or USSR diet. The results showed significant effects of these factors on the humeral and vertebral geometry and mechanical properties, as well as significant interactive effects on the mechanical properties of the humerus.
Serçe, Sibel; Ovayolu, Özlem; Pirbudak, Lütfiye; Ovayolu, Nimet
2018-04-01
Pain is a serious and common problem in bone metastases. For this purpose, complementary and supportive practices are also applied along with medical treatment. This study was conducted for the purpose of evaluating the effect of acupressure on pain in cancer patients with bone metastasis. The study was conducted in a nonrandomized controlled trial with patients who applied to the radiotherapy unit of an oncology hospital. The data of the study were collected by using a questionnaire and the Visual Analog Scale. A total of 8 acupressure sessions, which lasted for approximately 10 minutes each (with warming and acupressure periods), was applied to the intervention group. The data were analyzed by using χ 2 test, paired t test, and Pearson's correlation coefficient. It was determined that the pain mean score of the intervention group was 7.6 ± 1.9 before the acupressure and decreased to 6.8 ± 1.9 after the acupressure and this result was statistically significant. On the other hand, no significant difference was determined in the pain mean score of the control group. Acupressure is applicable for cancer patients with bone metastasis by nursing staff after receiving brief training and may make a difference in relieving pain of the patients. Further well-designed trials should be conducted.
Fluid volume displacement at the oval and round windows with air and bone conduction stimulation.
Stenfelt, Stefan; Hato, Naohito; Goode, Richard L
2004-02-01
The fluids in the cochlea are normally considered incompressible, and the fluid volume displacement of the oval window (OW) and the round window (RW) should be equal and of opposite phase. However, other channels, such as the cochlear and vestibular aqueducts, may affect the fluid flow. To test if the OW and RW fluid flows are equal and of opposite phase, the volume displacement was assessed by multiple point measurement at the windows with a laser Doppler vibrometer. This was done during air conduction (AC) stimulation in seven fresh human temporal bones, and with bone conduction (BC) stimulation in eight temporal bones and one human cadaver head. With AC stimulation, the average volume displacement of the two windows is within 3 dB, and the phase difference is close to 180 degrees for the frequency range 0.1 to 10 kHz. With BC stimulation, the average volume displacement difference between the two windows is greater: below 2 kHz, the volume displacement at the RW is 5 to 15 dB greater than at the OW and above 2 kHz more fluid is displaced at the OW. With BC stimulation, lesions at the OW caused only minor changes of the fluid flow at the RW.
Fluid volume displacement at the oval and round windows with air and bone conduction stimulation
NASA Astrophysics Data System (ADS)
Stenfelt, Stefan; Hato, Naohito; Goode, Richard L.
2004-02-01
The fluids in the cochlea are normally considered incompressible, and the fluid volume displacement of the oval window (OW) and the round window (RW) should be equal and of opposite phase. However, other channels, such as the cochlear and vestibular aqueducts, may affect the fluid flow. To test if the OW and RW fluid flows are equal and of opposite phase, the volume displacement was assessed by multiple point measurement at the windows with a laser Doppler vibrometer. This was done during air conduction (AC) stimulation in seven fresh human temporal bones, and with bone conduction (BC) stimulation in eight temporal bones and one human cadaver head. With AC stimulation, the average volume displacement of the two windows is within 3 dB, and the phase difference is close to 180° for the frequency range 0.1 to 10 kHz. With BC stimulation, the average volume displacement difference between the two windows is greater: below 2 kHz, the volume displacement at the RW is 5 to 15 dB greater than at the OW and above 2 kHz more fluid is displaced at the OW. With BC stimulation, lesions at the OW caused only minor changes of the fluid flow at the RW.
Bone sialoprotein and its transcriptional regulatory mechanism.
Ogata, Y
2008-04-01
Bone sialoprotein is a mineralized tissue-specific noncollagenous protein that is glycosylated, phosphorylated and sulfated. The temporo-spatial deposition of bone sialoprotein into the extracellular matrix of bone, and the ability of bone sialoprotein to nucleate hydroxyapatite crystal formation, indicates a potential role for bone sialoprotein in the initial mineralization of bone, dentin and cementum. Bone sialoprotein is also expressed in breast, lung, thyroid and prostate cancers. We used osteoblast-like cells (rat osteosarcoma cell lines ROS17/2.8 and UMR106, rat stromal bone marrow RBMC-D8 cells and human osteosarcoma Saos2 cells), and breast and prostate cancer cells to investigate the transcriptional regulation of bone sialoprotein. To determine the molecular basis of the transcriptional regulation of the bone sialoprotein gene, we conducted northern hybridization, transient transfection analyses with chimeric constructs of the bone sialoprotein gene promoter linked to a luciferase reporter gene and gel mobility shift assays. Bone sialoprotein transcription is regulated by hormones, growth factors and cytokines through tyrosine kinase, mitogen-activated protein kinase and cAMP-dependent pathways. Microcalcifications are often associated with human mammary lesions, particularly with breast carcinomas. Expression of bone sialoprotein by cancer cells could play a major role in the mineral deposition and in preferred bone homing of breast cancer cells. Bone sialoprotein protects cells from complement-mediated cellular lysis, activates matrix metalloproteinase 2 and has an angiogenic capacity. Therefore, regulation of the bone sialoprotein gene is potentially important in the differentiation of osteoblasts, bone matrix mineralization and tumor metastasis. This review highlights the function and transcriptional regulation of bone sialoprotein.
Zheng, Jiangjiang; Xiao, Yu; Gong, Tianxing; Zhou, Shuxin; Troczynski, Tom; Yang, Quanzu; Bao, Chongyun; Xu, Xiaoming
2015-12-23
The repair of bone defects is still a pressing challenge in clinics. Injectable bone cement is regarded as a promising material to solve this problem because of its special self-setting property. Unfortunately, its poor mechanical conformability, unfavorable osteo-genesis ability and insufficient osteo-inductivity seriously limit its clinical application. In this study, novel experimental calcium phosphate silicate bone cement reinforced by carbon fibers (CCPSC) was fabricated and characterized. First, a compressive strength test and cell culture study were carried out. Then, the material was implanted into the femoral epiphysis of beagle dogs to further assess its osteo-conductivity using a micro-computed tomography scan and histological analysis. In addition, we implanted CCPSC into the beagles' intramuscular pouches to perform an elementary investigation of its osteo-inductivity. The results showed that incorporation of carbon fibers significantly improved its mechanical properties. Meanwhile, CCPSC had better biocompatibility to activate cell adhesion as well as proliferation than poly-methyl methacrylate bone cement based on the cell culture study. Moreover, pronounced biodegradability and improved osteo-conductivity of CCPSC could be observed through the in vivo animal study. Finally, a small amount of osteoid was found at the heterotopic site one month after implantation which indicated potential osteo-inductivity of CCPSC. In conclusion, the novel CCPSC shows promise as a bioactive bone substitute in certain load-bearing circumstances.
Thermal Model to Investigate the Temperature in Bone Grinding for Skull Base Neurosurgery
Zhang, Lihui; Tai, Bruce L.; Wang, Guangjun; Zhang, Kuibang; Sullivan, Stephen; Shih, Albert J.
2013-01-01
This study develops a thermal model utilizing the inverse heat transfer method (IHTM) to investigate the bone grinding temperature created by a spherical diamond tool used for skull base neurosurgery. Bone grinding is a critical procedure in the expanded endonasal approach to remove the cranial bone and access to the skull base tumor via nasal corridor. The heat is generated during grinding and could damage the nerve or coagulate the blood in the carotid artery adjacent to the bone. The finite element analysis is adopted to investigate the grinding-induced bone temperature rise. The heat source distribution is defined by the thermal model, and the temperature distribution is solved using the IHTM with experimental inputs. Grinding experiments were conducted on a bovine cortical bone with embedded thermocouples. Results show significant temperature rise in bone grinding. Using 50°C as the threshold, the thermal injury can propagate about 3 mm in the traverse direction, and 3 mm below the ground surface under the dry grinding condition. The presented methodology demonstrated the capability of being a thermal analysis tool for bone grinding study. PMID:23683875
Bone mineral measurement using dual energy x ray densitometry
NASA Technical Reports Server (NTRS)
Smith, Steven W.
1989-01-01
Bone mineral measurements before and after space missions have shown that weightlessness greatly accelerates bone demineralization. Bone mineral losses as high as 1 to 3 percent per month were reported. Highly precise instrumentation is required to monitor this loss and thereby test the efficacy of treatment. During the last year, a significant improvement was made in Dual-Photon Absorptiometry by replacing the radioactive source with an x ray tube. Advantages of this system include: better precision, lower patient dose, better spacial resolution, and shorter scan times. The high precision and low radiation dose of this technique will allow detection of bone mineral changes of less than 1 percent with measurements conducted directly at the sites of interest. This will allow the required bone mineral studies to be completed in a shorter time with greater confidence.
Bock, Oliver; Börst, Hendrikje; Beller, Gisela; Armbrecht, Gabriele; Degner, Corina; Martus, Peter; Roth, Heinz-Jürgen; Felsenberg, Dieter
2012-01-01
The effect of ibandronate 150 mg/once monthly in the treatment of post-menopausal osteopenia and osteoporosis on bone micro-structure at the distal tibia and radius has not been considered to date. Seventy post-menopausal women with osteoporosis or osteopenia were recruited. All subjects received calcium and vitamin D supplementation and were randomized to either a group which took 150 mg ibandronate oral monthly or a placebo group over a 12-month period. μCT measures of the distal tibia and radius were conducted every three months, with DXA lumbar spine and hip measurements conducted only pre and post and serum markers of bone formation and resorption measured every 6 months. After 12-months no significant impact of ibandronate on the primary outcome measures bone-volume to tissue-volume and trabecular separation at the distal tibia (p≥0.15) was found. Further multiple regression analyses of the primary end-points indicated a significant effect favoring the ibandronate intervention (p=0.045). Analysis of secondary end-points showed greater increases in distal tibia cortical thickness, cortical density and total density (p≤0.043) with ibandronate and no significant effects at the distal radius, but greater increases of hip DXA-BMD and lumbar spine DXA-BMD (p≤0.017). Ibandronate use resulted in a marked reduction in bone turnover (p<0.001). While ibandronate resulted in greater mineralization of bone, this effect differed from one body region to another. There was some impact of ibandronate on bone structure (cortical thickness) at the distal tibia, but not on bone-volume to tissue-volume or trabecular separation. Copyright © 2011 Elsevier Inc. All rights reserved.
Effect of the “protein diet” and bone tissue.
Nascimento da Silva, Zoraide; Azevedo de Jesuz, Vanessa; De Salvo Castro, Eduardo; Soares da Costa, Carlos Alberto; Teles Boaventura, Gilson; Blondet de Azeredo, Vilma
2014-01-01
The aim of this study is to evaluate the effect of the hyperproteic diet consumption on bone tissue. The study was conducted during sixty days. Twenty eight Wistar albinus rats, adults, originated from Laboratory of Experimental Nutrition were divided in four groups: (n = 7); Control 1 (C1), Control 2 (C2), Hyperproteic 1 (HP1) e Hyperproteic 2 (HP2). The C2 and HP2 groups were submitted to 30% of food restriction. The hyperproteic diet was based on the Atkins diet and prepared to simulate the protein diet. At the end of the study the animals were anesthetized to performer bone densitometry analyses by DEXA and blood and tissue collection. Serum and bone minerals analyses were conducted by colorimetric methods in automated equipment. The total bone mineral density (BMD) of the pelvis and the spine of the food restriction groups (HP2 e C2) were lower (p < 0.05) than C1 e HP1 groups. While the femur BMD of the HP2 was lower (p < 0.05) related to others groups. It had been observed reduction (p < 0.05) in the medium point of the width of femur diaphysis and in bone calcium level in the hyperproteic groups (HP1 e HP2). It was observed similar effect on the osteocalcin level, that presented lower (p < 0.05) in the hyperproteic groups. The insulin level was lower only in HP2 and serum calcium of the HP1 and HP2 groups was lower than C1. The protein diet promotes significant bone change on femur and in the hormones levels related to bone synthesis and maintenance of this tissue.
THE MEASUREMENT OF BONE QUALITY USING GRAY LEVEL CO-OCCURRENCE MATRIX TEXTURAL FEATURES.
Shirvaikar, Mukul; Huang, Ning; Dong, Xuanliang Neil
2016-10-01
In this paper, statistical methods for the estimation of bone quality to predict the risk of fracture are reported. Bone mineral density and bone architecture properties are the main contributors of bone quality. Dual-energy X-ray Absorptiometry (DXA) is the traditional clinical measurement technique for bone mineral density, but does not include architectural information to enhance the prediction of bone fragility. Other modalities are not practical due to cost and access considerations. This study investigates statistical parameters based on the Gray Level Co-occurrence Matrix (GLCM) extracted from two-dimensional projection images and explores links with architectural properties and bone mechanics. Data analysis was conducted on Micro-CT images of 13 trabecular bones (with an in-plane spatial resolution of about 50μm). Ground truth data for bone volume fraction (BV/TV), bone strength and modulus were available based on complex 3D analysis and mechanical tests. Correlation between the statistical parameters and biomechanical test results was studied using regression analysis. The results showed Cluster-Shade was strongly correlated with the microarchitecture of the trabecular bone and related to mechanical properties. Once the principle thesis of utilizing second-order statistics is established, it can be extended to other modalities, providing cost and convenience advantages for patients and doctors.
THE MEASUREMENT OF BONE QUALITY USING GRAY LEVEL CO-OCCURRENCE MATRIX TEXTURAL FEATURES
Shirvaikar, Mukul; Huang, Ning; Dong, Xuanliang Neil
2016-01-01
In this paper, statistical methods for the estimation of bone quality to predict the risk of fracture are reported. Bone mineral density and bone architecture properties are the main contributors of bone quality. Dual-energy X-ray Absorptiometry (DXA) is the traditional clinical measurement technique for bone mineral density, but does not include architectural information to enhance the prediction of bone fragility. Other modalities are not practical due to cost and access considerations. This study investigates statistical parameters based on the Gray Level Co-occurrence Matrix (GLCM) extracted from two-dimensional projection images and explores links with architectural properties and bone mechanics. Data analysis was conducted on Micro-CT images of 13 trabecular bones (with an in-plane spatial resolution of about 50μm). Ground truth data for bone volume fraction (BV/TV), bone strength and modulus were available based on complex 3D analysis and mechanical tests. Correlation between the statistical parameters and biomechanical test results was studied using regression analysis. The results showed Cluster-Shade was strongly correlated with the microarchitecture of the trabecular bone and related to mechanical properties. Once the principle thesis of utilizing second-order statistics is established, it can be extended to other modalities, providing cost and convenience advantages for patients and doctors. PMID:28042512
NASA Astrophysics Data System (ADS)
He, Weizhen; Zhu, Yunhao; Feng, Ting; Wang, Huaideng; Yuan, Jie; Xu, Guan; Wang, Xueding; Carson, Paul
2017-03-01
Osteoporosis is a progressive bone disease which is characterized by a decrease in the bone mass and deterioration in bone micro-architecture. In theory, photoacoustic (PA) imaging analysis has potential to obtain the characteristics of the bone effectively. Previous study demonstrated that photoacoustic spectral analysis (PASA) method with the qualified parameter slope could provide an objective assessment of bone microstructure and deterioration. In this study, we tried to compare PASA method with the traditional quantitative ultrasound (QUS) method in osteoporosis assessment. Numerical simulations of both PA and ultrasound (US) signal are performed on computerized tomographic (CT) images of trabecular bone with different bone mineral densities (BMDs). Ex vivo experiments were conducted on porcine femur bone model of different BMDs. We compared the quantified parameter slope and the broadband ultrasound attenuation (BUA) coefficient from the PASA and QUS among different bone models, respectively. Both the simulation and ex vivo experiment results show that bone with low BMD has a higher slope value and lower BUA value. Our result demonstrated that the PASA method has the same efficacy with QUS in bone assessment, considering PA is a non-ionizing, non-invasive technique, PASA method holds potential for clinical diagnosis in osteoporosis and other bone diseases.
Zeitooni, Mehrnaz; Mäki-Torkko, Elina; Stenfelt, Stefan
The purpose of this study is to evaluate binaural hearing ability in adults with normal hearing when bone conduction (BC) stimulation is bilaterally applied at the bone conduction hearing aid (BCHA) implant position as well as at the audiometric position on the mastoid. The results with BC stimulation are compared with bilateral air conduction (AC) stimulation through earphones. Binaural hearing ability is investigated with tests of spatial release from masking and binaural intelligibility level difference using sentence material, binaural masking level difference with tonal chirp stimulation, and precedence effect using noise stimulus. In all tests, results with bilateral BC stimulation at the BCHA position illustrate an ability to extract binaural cues similar to BC stimulation at the mastoid position. The binaural benefit is overall greater with AC stimulation than BC stimulation at both positions. The binaural benefit for BC stimulation at the mastoid and BCHA position is approximately half in terms of decibels compared with AC stimulation in the speech based tests (spatial release from masking and binaural intelligibility level difference). For binaural masking level difference, the binaural benefit for the two BC positions with chirp signal phase inversion is approximately twice the benefit with inverted phase of the noise. The precedence effect results with BC stimulation at the mastoid and BCHA position are similar for low frequency noise stimulation but differ with high-frequency noise stimulation. The results confirm that binaural hearing processing with bilateral BC stimulation at the mastoid position is also present at the BCHA implant position. This indicates the ability for binaural hearing in patients with good cochlear function when using bilateral BCHAs.
Maciel, Alfredo; Presbítero, Gerardo; Piña, Cristina; del Pilar Gutiérrez, María; Guzmán, José; Munguía, Nadia
2015-01-01
A clear understanding of the dependence of mechanical properties of bone remains a task not fully achieved. In order to estimate the mechanical properties in bones for implants, pore cross-section area, calcium content, and apparent density were measured in trabecular bone samples for human implants. Samples of fresh and defatted bone tissue, extracted from one year old bovines, were cut in longitudinal and transversal orientation of the trabeculae. Pore cross-section area was measured with an image analyzer. Compression tests were conducted into rectangular prisms. Elastic modulus presents a linear tendency as a function of pore cross-section area, calcium content and apparent density regardless of the trabecular orientation. The best variable to estimate elastic modulus of trabecular bone for implants was pore cross-section area, and affirmations to consider Nukbone process appropriated for marrow extraction in trabecular bone for implantation purposes are proposed, according to bone mechanical properties. Considering stress-strain curves, defatted bone is stiffer than fresh bone. Number of pores against pore cross-section area present an exponential decay, consistent for all the samples. These graphs also are useful to predict elastic properties of trabecular samples of young bovines for implants.
Kim, Hong Chan; Jang, Chul Ho; Kim, Young Yoon; Seong, Jong Yuap; Kang, Sung Hoon; Cho, Yong Beom
Previous reports indicated that middle ear surgery might partially improve tinnitus after surgery. However, until now, no influencing factor has been determined for tinnitus outcome after middle ear surgery. The purpose of this study was to investigate the association between preoperative air-bone gap and tinnitus outcome after tympanoplasty type I. Seventy-five patients with tinnitus who had more than 6 months of symptoms of chronic otitis media on the ipsilateral side that were refractory to medical treatment were included in this study. All patients were evaluated through otoendoscopy, pure tone/speech audiometer, questionnaire survey using the visual analog scale and the tinnitus handicap inventory for tinnitus symptoms before and 6 months after tympanoplasty. The influence of preoperative bone conduction, preoperative air-bone-gap, and postoperative air-bone-gap on tinnitus outcome after the operation was investigated. The patients were divided into two groups based on preoperative bone conduction of less than 25dB (n=50) or more than 25dB (n=25). The postoperative improvement of tinnitus in both groups showed statistical significance. Patients whose preoperative air-bone-gap was less than 15dB showed no improvement in postoperative tinnitus using the visual analog scale (p=0.889) and the tinnitus handicap inventory (p=0.802). However, patients whose preoperative air-bone-gap was more than 15dB showed statistically significant improvement in postoperative tinnitus using the visual analog scale (p<0.01) and the tinnitus handicap inventory (p=0.016). Postoperative change in tinnitus showed significance compared with preoperative tinnitus using visual analog scale (p=0.006). However, the correlation between reduction in the visual analog scale score and air-bone-gap (p=0.202) or between reduction in tinnitus handicap inventory score and air-bone-gap (p=0.290) was not significant. We suggest that the preoperative air-bone-gap can be a predictor of tinnitus outcome after tympanoplasty in chronic otitis media with tinnitus. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Kresnoadi, Utari; Raharjo, Tika; Rostiny, Rostiny
2018-01-01
Tooth extraction will provoke changes in alveolar bone morphology and dimensions. Postextraction bone resorption can lead to significant problems for restorative dentistry. Therefore, the extracted tooth socket needs to be preserved to reduce alveolar ridge bone resorption. This research aimed to analyze the expression and levels of osteocalcin, collagen 1, and osteoblasts in extracted tooth sockets filled with a combination of mangosteen peel extract and demineralized freeze-dried bovine bone xenograft (DFDBBX). Fifty-six Cavia cobaya , whose lower left incisors had been extracted, were divided into eight groups according to the substance used to fill their sockets on days 7 and 30, Poly ethylene glycol, DFDBBX, mangosteen peel extract, or a combination of mangosteen peel extract and DFDBBX. This research was conducted in several stages; the application of mangosteen peel extract combined with graft material was performed as the form of tooth extraction socket preservation. The C. cobaya rats were subsequently examined by immunohistochemical methods to measure osteocalcin and collagen 1 expressions, whereas histological examination was conducted to calculate the number of osteoblasts in accordance with the duration of the research. On days 7 and 30, the group treated with a combination of DFDBBX and mangosteen peel extract which had the highest expression and levels of osteocalcin, collagen 1, and osteoblasts. The administration of mangosteen peel extract combined with DFDBBX as a means of tooth extraction socket preservation can increase osteocalcin and collagen 1 expression. Consequently, osteoblasts as a means of alveolar bone regeneration will increase in number.
NASA Technical Reports Server (NTRS)
Makuch, Lauren A.
2004-01-01
Humans reach peak bone mass at age 30. After this point, we lose 1 to 2 percent of bone mass each decade. In the microgravity environment of space, astronauts lose bone mass at an accelerated rate of 1 to 2 percent each month. When astronauts travel to Mars, they may be in space for as long as 3 years. During this time, they may lose about half of their bone mass from weight-bearing bones. This loss may be irreversible. The drastic loss in bone that astronauts experience in space makes them much more vulnerable to fractures. In addition, the corresponding removal of calcium from bone results in higher levels of calcium in the blood, which increases the risk of developing kidney stones. Currently, studies are being conducted which investigate factors governing bone adaptation and mechanotransduction. Bone is constantly adapting in response to mechanical stimuli. Increased mechanical loading stimulates bone formation and suppresses bone resorption. Reduction in mechanical loading caused by bedrest, disuse, or microgravity results in decreased bone formation and possibly increased bone resorption. Osteoblasts and osteoclasts are the two main cell types that participate in bone remodeling. Osteoblasts are anabolic (bone-forming) cells and osteoclasts are catabolic (bone-resorbing) cells. In microgravity, the activity of osteoblasts slows down and the activity of osteoclasts may speed up, causing a loss of bone density. Mechanotransduction, the molecular mechanism by which mechanical stimuli are converted to biochemical signals, is not yet understood. Exposure of cells to fluid flow imposes a shear stress on the cells. Several studies have shown that the shear stress that results from fluid flow induces a cellular response similar to that induced by mechanical loading. Thus, fluid flow can be used as an in vitro model to simulate the mechanical stress that bone cells experience in vivo. Previous in vitro studies have shown that fluid flow induces several responses in osteoblasts, including increased proliferation, osteoblastic differentiation, alkaline phosphatase activity, and production of nitric oxide, prostaglandins, and osteopontin. Several proteins have been implicated in osteoblastic mechanotransduction including Bone Morphogenetic Protein-2 (BMP-2), parathyroid hormone, 1,25-dihydroxyvitamin D3 receptor, osteopontin (OPN), osteoprotegerin (OPG), and alkaline phosphatase (AP). We will characterize relative levels of each protein in mineralizing or non-mineralizing MC3T3 osteoblastic cells that have been exposed to fluid flow compared to non-fluid flow using immunofluorescent staining and two- photon laser microscopy as well as western blotting. Because calcium-mediated pathways are important in osteoblastic signaling, we will transfect MC3T3 cells with cameleon probes for Ca2+ containing YFP and CFP. Results will be analyzed using FRET/FLIM to study differential release of intracellular Ca(2+) in response to fluid flow and conditions inducing matrix mineralization. In addition, we plan to conduct several microarray experiments to determine differential gene expression in MC3T3 cells in response to fluid flow and conditions inducing mineralization.
Notched K-wire for low thermal damage bone drilling.
Liu, Yao; Belmont, Barry; Wang, Yiwen; Tai, Bruce; Holmes, James; Shih, Albert
2017-07-01
The Kirschner wire (K-wire) is a common bone drilling tool in orthopedic surgery to affix fractured bone. Significant heat is produced due to both the cutting and the friction between the K-wire and the bone debris during drilling. Such heat can result in high temperatures, leading to osteonecrosis and other secondary injuries. To reduce thermal injury and other high-temperature associated complications, a new K-wire design with three notches along the three-plane trocar tip fabricated using a thin micro-saw tool is studied. These notches evacuate bone debris and reduce the clogging and heat generation during bone drilling. A set of four K-wires, one without notches and three notched, with depths of 0.5, 0.75, and 1mm, are evaluated. Bone drilling experiments conducted on bovine cortical bone show that notched K-wires could effectively decrease the temperature, thrust force, and torque during bone drilling. K-wires with notches 1mm deep reduced the thrust force and torque by approximately 30%, reduced peak temperatures by 43%, and eliminated blackened burn marks in bone. This study demonstrates that a simple modification of the tip of K-wires can effectively reduce bone temperatures during drilling. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
Treatment for unicameral bone cysts in long bones: an evidence based review.
Donaldson, Sandra; Chundamala, Josie; Yandow, Suzanne; Wright, James G
2010-03-20
The purpose of this paper is to perform an evidence based review for treatment of unicameral bone cysts. A search of MEDLINE (1966 to 2009) was conducted and the studies were classified according to levels of evidence. This review includes only comparative Level I-III studies. The systematic review identified 16 studies. There is one level I study, one level II study and the remaining 14 studies are level III. Seven of the sixteen studies had statistically different results: three studies indicated that steroid injection was superior to bone marrow injection or curettage and bone grafting; one study indicated that cannulated screws were superior to steroid injections; one study indicated resection and myoplasty was superior to steroid injection; one study indicated a combination of steroid, demineralized bone matrix and bone marrow aspirate, and curettage and bone grafting were superior to steroid injection; and one study indicated that curettage and bone grafting was superior to non-operative immobilization. Based on one Level I study, including a limited number of individuals, steroid injection seems to be superior to bone marrow injection. As steroid injections have already demonstrated superiority over bone marrow injections in a randomized clinical trial, the next step would be a prospective trial comparing steroid injections with other treatments.
Treatment for unicameral bone cysts in long bones: an evidence based review
Donaldson, Sandra; Chundamala, Josie; Yandow, Suzanne; Wright, James G.
2010-01-01
The purpose of this paper is to perform an evidence based review for treatment of unicameral bone cysts. A search of MEDLINE (1966 to 2009) was conducted and the studies were classified according to levels of evidence. This review includes only comparative Level I-III studies. The systematic review identified 16 studies. There is one level I study, one level II study and the remaining 14 studies are level III. Seven of the sixteen studies had statistically different results: three studies indicated that steroid injection was superior to bone marrow injection or curettage and bone grafting; one study indicated that cannulated screws were superior to steroid injections; one study indicated resection and myoplasty was superior to steroid injection; one study indicated a combination of steroid, demineralized bone matrix and bone marrow aspirate, and curettage and bone grafting were superior to steroid injection; and one study indicated that curettage and bone grafting was superior to non-operative immobilization. Based on one Level I study, including a limited number of individuals, steroid injection seems to be superior to bone marrow injection. As steroid injections have already demonstrated superiority over bone marrow injections in a randomized clinical trial, the next step would be a prospective trial comparing steroid injections with other treatments. PMID:21808696
Multidisciplinary characterization of the long-bone cortex growth patterns through sheep's ontogeny.
Cambra-Moo, Oscar; Nacarino-Meneses, Carmen; Díaz-Güemes, Idoia; Enciso, Silvia; García Gil, Orosia; Llorente Rodríguez, Laura; Rodríguez Barbero, Miguel Ángel; de Aza, Antonio H; González Martín, Armando
2015-07-01
Bone researches have studied extant and extinct taxa extensively trying to disclose a complete view of the complex structural and chemical transformations that model and remodel the macro and microstructure of bone during growth. However, to approach bone growth variations is not an easy task, and many aspects related with histological transformations during ontogeny remain unresolved. In the present study, we conduct a holistic approach using different techniques (polarized microscopy, Raman spectroscopy and X-ray diffraction) to examine the histomorphological and histochemical variations in the cortical bone of sheep specimens from intrauterine to adult stages, using environmentally controlled specimens from the same species. Our results suggest that during sheep bone development, the most important morphological (shape and size) and chemical transformations in the cortical bone occur during the first weeks of life; synchronized but dissimilar variations are established in the forelimb and hind limb cortical bone; and the patterns of bone tissue maturation in both extremities are differentiated in the adult stage. All of these results indicate that standardized histological models are useful not only for evaluating many aspects of normal bone growth but also to understand other important influences on the bones, such as pathologies that remain unknown. Copyright © 2015 Elsevier Inc. All rights reserved.
Bone density among infants of gestational diabetic mothers and macrosomic neonates.
Schushan-Eisen, Irit; Cohen, Mor; Leibovitch, Leah; Maayan-Metzger, Ayala; Strauss, Tzipora
2015-03-01
Decreased bone density has been found among infants of diabetic mothers and among large-for-gestational-age newborns. To evaluate which etiologies (physical or metabolic effect) have the greatest impact on neonatal bone density. A case-control study was conducted that included two study groups: one comprising 20 appropriate-for-gestational-age (AGA) infants of gestational diabetic mothers (IGDM) and matched controls, and the other comprising 20 macrosomic infants (birth weight > 4 kg) and matched controls. Bone density was examined along the tibia bone using quantitative ultrasound that measured speed of sound. Bone density among the group of macrosomic infants was significantly lower than among the control group (2,976 vs. 3,120 m/s respectively, p < 0.005). No differences in bone density were found between infants of diabetic mothers and their controls (3,005 vs. 3,043 m/s respectively, p = 0.286). Low bone density was predicted only by birth weight (for every increase of 100 g) (OR 1.148 [CI 1.014-1.299], p = 0.003). Bone density was found to be low among macrosomic newborn infants, whereas among AGA-IGDM infants bone density was similar to that of the control group. These findings strengthen the hypothesis that reduced fetal movements secondary to fetal macrosomia constitute the mechanism for reduced bone density.
Mingyue, Wang; Ling, Gong; Bei, Xia; Junqing, Cao; Peiqing, Zhou; Jie, Hu
2005-06-01
To objectively evaluate the therapeutic effect and safety of Mixture for Nourishing Kidney and Strengthening Bone. Among 160 cases of osteoporosis under clinical observation, 96 patients in the treatment group were treated with Mixture for Nourishing Kidney and Strengthening Bone, 32 patients in the control group were given Shen Gu Capsule and 32 patients in the blank group were given no drug in half a year. Observation and determination were conducted on bone mineral density (BMD), clinical symptoms, bone gla protein (BGP), pyridinoline (PYD), estradiol (E2), testosterone (T), blood urea nitrogen (BUN), transaminase and routine test on blood and urine. The comprehensive effect in the treatment group was remarkably superior to that in the control group. The safe and reliable Chinese drug can enhance BMD, promote osteogenesis and inhibit bone absorption, hence treating osteoporosis with marked effect.
2012-01-01
Background Bone grafts from bone banks might be mixed with bisphosphonates to inhibit the osteoclastic response. This inhibition prevents the osteoclasts to resorb the allograft bone before new bone has been formed by the osteoblasts, which might prevent instability. Since bisphosphonates may not only inhibit osteoclasts, but also osteoblasts and thus bone formation, we studied different bisphosphonate concentrations combined with allograft bone. We investigated whether locally applied alendronate has an optimum dose with respect to bone resorption and formation. Further, we questioned whether the addition of demineralized bone matrix (DBM), would stimulate bone formation. Finally, we studied the effect of high levels of antibiotics on bone allograft healing, since mixing allograft bone with antibiotics might reduce the infection risk. Methods 25 goats received eight bone conduction chambers in the cortical bone of the proximal medial tibia. Five concentrations of alendronate (0, 0.5 mg/mL, 1 mg/mL, 2 mg/mL, and 10 mg/mL) were tested in combination with allograft bone and supplemented with cefazolin (200 μg/mL). Allograft not supplemented with alendronate and cefazolin served as control. In addition, allograft mixed with demineralized bone matrix, with and without alendronate, was tested. After 12 weeks, graft bone area and new bone area were determined with manual point counting. Results Graft resorption decreased significantly (p < 0.001) with increasing alendronate concentration. The area of new bone in the 1 mg/mL alendronate group was significantly (p = 0.002) higher when compared to the 10 mg/mL group. No differences could be observed between the group without alendronate, but with demineralized bone, and the control groups. Conclusions A dose-response relationship for local application of alendronate has been shown in this study. Most new bone was present at 1 mg/mL alendronate. Local application of cefazolin had no effect on bone remodelling. PMID:22443362
Lim, Fiona M Y; Bobrowski, Adam; Agarwal, Arnav; Silva, Mauricio F
2017-06-01
Despite a limited understanding of the exact mechanism, corticosteroids are commonly employed for pain control in patients with bone metastases. The aim of this review was to evaluate the efficacy of corticosteroid-mediated pain control in patients with bone metastases associated with solid cancers. A literature search was conducted using OVID MEDLINE and Embase databases (from 1946 up to July 19, 2016). Studies involving patients with bone metastases receiving corticosteroids as the primary means of pain control were included. Screening and data extraction were conducted by paired reviewers, with consensus established by discussion, or a third adjudicator. A total of 12 studies were included. Rates of pain relief achieved with corticosteroid use varied from 30 to 70%, but generally reflected moderate pain control. Corticosteroid use significantly reduced the incidence of pain flare alongside radiotherapy, reportedly by almost half of baseline pain severity. Adverse events were not documented consistently across studies, though grade two to three hyperglycemia was noted in approximately 2% of patients by some studies. Recent evidence suggests that short-term corticosteroid use may provide moderate pain and pain flare control with radiotherapy for patients with bone metastases. The risk of developing adverse effects should be carefully considered prior to therapy initiation on a case-by-case basis.
The efficacy of short (6 mm) dental implants with a novel thread design.
Bechara, Soheil; Nimčenko, Tatjana; Kubilius, Ričardas
2017-01-01
To assess efficacy of short (6 mm) implants with a novel macrostructure and thread design placed in a compromised bone situations of edentulous posterior regions of maxilla (3-4 mm of bone height under sinus floor) as compared to results of clinical situations treated with simultaneous maxillary sinus grafting and placement of long (≥10 mm) implants of the same company. Clinical cases of conducted clinical study. Patients with compromised bone height in edentulous posterior regions of maxilla were randomly divided into two groups. Short (6mm length) implant treatment conducted in the test group and simultaneous sinus lift with standard length implant placement treatment in the control group. In general implant stability quotient (ISQ) and marginal bone level (MBL) changes values in both groups were comparable. However, significant negative correlation was found between implant's diameter and MBL changes. Implant's length has little if none impact on initial implant anchorage, especially in greatly compromised residual bone situations. Results have confirmed that implant initial stability mainly depends on implant's macro-design and further its development on implant's micro-design: namely, implant diameter rather than length, tapered shape and improved thread design determines primarily acquired mechanical anchorage, while bioactive surface treatment ensures development of biological stability.
Stem cells in bone diseases: current clinical practice.
Beyth, Shaul; Schroeder, Josh; Liebergall, Meir
2011-01-01
Bone is an obvious candidate tissue for stem cell therapy. This review provides an update of existing stem cell-based clinical treatments for bone pathologies. A systematic computerized literature search was conducted. The following databases were accessed on 10 February 2011: NIH clinical trials database, PubMed, Ovid and Cochrane Reviews. Stem cell therapy offers new options for bone conditions, both acquired and inherited. There is still no agreement on the exact definition of 'mesenchymal stem cells'. Consequently, it is difficult to appreciate the effect of culture expansion and the feasibility of allogeneic transplantation. Based on the sound foundations of pre-clinical research, stem cell-based treatments and protocols have recently emerged. Well-designed prospective clinical trials are needed in order to establish and develop stem cell therapy for bone diseases.
Role of Collagen and Inorganic Components in Electrical Polarizability of Bone
HIRATAI, Rumi; NAKAMURA, Miho; YAMASHITA, Kimihiro
2013-01-01
ABSTRACT Hydroxyapatite (HA) has polarization capability and is able to accumulate electrical storage in bone. Experiments were conducted to measure the polarization capability of rabbit femurs. After preparing and polarizing bone samples using 2% KOH treatment (denoted 2% koh), 2% KOH and baking (2% koh+bake) and decalcification (decalcification) as well as untreated bone (untreated), stored charges were quantitatively determined using thermally stimulated depolarization current (TSDC) measurements. In TSDC spectra, untreated and 2% koh samples showed peaks at 100 and 500°C, while 2% koh+bake showed one peak at 580°C and decalcification one peak around 100°C. These evidences indicated that collagen and inorganic components play a major role in polarization of the bone at different temperature conditions. PMID:24141277
ERIC Educational Resources Information Center
Dunne, Mark; Maklad, Rania; Heaney, Emma
2014-01-01
As a final-year student teacher specialising in primary science, Emma Heaney faced the challenge of having to plan, organise, and conduct a small-scale, classroom-based research project. She had to teach about bones in the final block practice session and thought it would be a good idea to bring in some biological specimens obtained from the local…
USDA-ARS?s Scientific Manuscript database
Objective: To examine the association between sleep patterns (sleep duration and insomnia symptoms) and total and regional bone mineral density (BMD) among older Boston Puerto Rican adults. Materials/Methods: We conducted a cross-sectional study including 750 Puerto Rican adults, aged 47–79 y livi...
Compositos CNTs/bioceramico para a estimulacao eletrica ossea in situ
NASA Astrophysics Data System (ADS)
Mata, Diogo Miguel Rodrigues Marinho da
The present thesis aims to develop a biocompatible and electroconductor bone graft containing carbon nanotubes (CNTs) that allows the in situ regeneration of bone cells by applying pulsed external electrical stimuli. The CNTs were produced by chemical vapor deposition (CVD) by a semi-continuous method with a yield of 500 mg/day. The deposition parameters were optimised to obtain high pure CNTs 99.96% with controlled morphologies, fundamental requisites for the biomedical application under study. The chemical functionalisation of CNTs was also optimised to maximise their processability and biocompatibility. The CNTs were functionalised by the Diels-Alder cycloaddition of 1,3-butadiene. The biological behaviour of the functionalised CNTs was evaluated in vitro with the osteoblastic cells line MG63 and in vivo, by subcutaneous implantation in rats. The materials did not induce an expressed inflammatory response, but the functionalised CNTs showed a superior in vitro and in vivo biocompatibility than the non-functionalised ones. Composites of ceramic matrix, of bioglass (Glass) and hydroxyapatite (HA), reinforced with carbon nanotubes (CNT/Glass/HA) were processed by a wet approach. The incorporation of just 4.4 vol% of CNTs allowed the increase of 10 orders of magnitude of the electrical conductivity of the matrix. In vitro studies with MG63 cells show that the CNT/Glass/HA composites guarantee the adhesion and proliferation of bone cells, and stimulate their phenotype expression, namely the alkaline phosphate (ALP). The interactions between the composite materials and the culture medium (α-MEM), under an applied electrical external field, were studied by scanning vibrating electrode technique. An increase of the culture medium electrical conductivity and the electrical field confinement in the presence of the conductive samples submerged in the medium was demonstrated. The in vitro electrical stimulation of MG63 cells on the conductive composites promotes the increase of the cell metabolic activity and DNA content by 130% and 60%, relatively to the non-stimulated condition, after only 3 days of daily stimulation of 15 μA for 15 min. Moreover, the osteoblastic gene expression for Runx2, osteocalcin (OC) and ALP was enhanced by 80%, 50% and 25%, after 5 days of stimulation. Instead, for dielectric materials, the stimulus delivering was less efficient, giving an equal or lower cellular response than the non-stimulated condition. The proposed electroconductive bone grafts offer exciting possibilities in bone regeneration strategies by delivering in situ electrical stimulus to cells and consequent control of the new bone tissue formation rate. It is expected that conductive smart biomaterials might turn the selective bone electrotherapy of clinical relevance by decreasing the postoperative healing times.
Tactile and bone-conduction auditory brain computer interface for vision and hearing impaired users.
Rutkowski, Tomasz M; Mori, Hiromu
2015-04-15
The paper presents a report on the recently developed BCI alternative for users suffering from impaired vision (lack of focus or eye-movements) or from the so-called "ear-blocking-syndrome" (limited hearing). We report on our recent studies of the extents to which vibrotactile stimuli delivered to the head of a user can serve as a platform for a brain computer interface (BCI) paradigm. In the proposed tactile and bone-conduction auditory BCI novel multiple head positions are used to evoke combined somatosensory and auditory (via the bone conduction effect) P300 brain responses, in order to define a multimodal tactile and bone-conduction auditory brain computer interface (tbcaBCI). In order to further remove EEG interferences and to improve P300 response classification synchrosqueezing transform (SST) is applied. SST outperforms the classical time-frequency analysis methods of the non-linear and non-stationary signals such as EEG. The proposed method is also computationally more effective comparing to the empirical mode decomposition. The SST filtering allows for online EEG preprocessing application which is essential in the case of BCI. Experimental results with healthy BCI-naive users performing online tbcaBCI, validate the paradigm, while the feasibility of the concept is illuminated through information transfer rate case studies. We present a comparison of the proposed SST-based preprocessing method, combined with a logistic regression (LR) classifier, together with classical preprocessing and LDA-based classification BCI techniques. The proposed tbcaBCI paradigm together with data-driven preprocessing methods are a step forward in robust BCI applications research. Copyright © 2014 Elsevier B.V. All rights reserved.
Semicircular Canal Pressure Changes During High-intensity Acoustic Stimulation.
Maxwell, Anne K; Banakis Hartl, Renee M; Greene, Nathaniel T; Benichoux, Victor; Mattingly, Jameson K; Cass, Stephen P; Tollin, Daniel J
2017-08-01
Acoustic stimulation generates measurable sound pressure levels in the semicircular canals. High-intensity acoustic stimuli can cause hearing loss and balance disruptions. To examine the propagation of acoustic stimuli to the vestibular end-organs, we simultaneously measured fluid pressure in the cochlea and semicircular canals during both air- and bone-conducted sound presentation. Five full-cephalic human cadaveric heads were prepared bilaterally with a mastoidectomy and extended facial recess. Vestibular pressures were measured within the superior, lateral, and posterior semicircular canals, and referenced to intracochlear pressure within the scala vestibuli with fiber-optic pressure probes. Pressures were measured concurrently with laser Doppler vibrometry measurements of stapes velocity during stimulation with both air- and bone-conduction. Stimuli were pure tones between 100 Hz and 14 kHz presented with custom closed-field loudspeakers for air-conducted sounds and via commercially available bone-anchored device for bone-conducted sounds. Pressures recorded in the superior, lateral, and posterior semicircular canals in response to sound stimulation were equal to or greater in magnitude than those recorded in the scala vestibuli (up to 20 dB higher). The pressure magnitudes varied across canals in a frequency-dependent manner. High sound pressure levels were recorded in the semicircular canals with sound stimulation, suggesting that similar acoustical energy is transmitted to the semicircular canals and the cochlea. Since these intralabyrinthine pressures exceed intracochlear pressure levels, our results suggest that the vestibular end-organs may also be at risk for injury during exposure to high-intensity acoustic stimuli known to cause trauma in the auditory system.
Animal models for bone tissue engineering and modelling disease
Griffin, Michelle
2018-01-01
ABSTRACT Tissue engineering and its clinical application, regenerative medicine, are instructing multiple approaches to aid in replacing bone loss after defects caused by trauma or cancer. In such cases, bone formation can be guided by engineered biodegradable and nonbiodegradable scaffolds with clearly defined architectural and mechanical properties informed by evidence-based research. With the ever-increasing expansion of bone tissue engineering and the pioneering research conducted to date, preclinical models are becoming a necessity to allow the engineered products to be translated to the clinic. In addition to creating smart bone scaffolds to mitigate bone loss, the field of tissue engineering and regenerative medicine is exploring methods to treat primary and secondary bone malignancies by creating models that mimic the clinical disease manifestation. This Review gives an overview of the preclinical testing in animal models used to evaluate bone regeneration concepts. Immunosuppressed rodent models have shown to be successful in mimicking bone malignancy via the implantation of human-derived cancer cells, whereas large animal models, including pigs, sheep and goats, are being used to provide an insight into bone formation and the effectiveness of scaffolds in induced tibial or femoral defects, providing clinically relevant similarity to human cases. Despite the recent progress, the successful translation of bone regeneration concepts from the bench to the bedside is rooted in the efforts of different research groups to standardise and validate the preclinical models for bone tissue engineering approaches. PMID:29685995
Microfibrous β-TCP/collagen scaffolds mimic woven bone in structure and composition.
Zhang, Shen; Zhang, Xin; Cai, Qing; Wang, Bo; Deng, Xuliang; Yang, Xiaoping
2010-12-01
Woven bone, as the initial form of bone tissue, is always found in developing and repairing bone. It is thought of as a temporary scaffold for the deposition of osteogenic cells and the laying down of lamellar bone. Thus, we hypothesize that a matrix which resembles the architecture and components of woven bone can provide an osteoblastic microenvironment for bone cell growth and new bone formation. In this study, woven-bone-like beta-tricalcium phosphate (β-TCP)/collagen scaffolds were fabricated by sol-gel electrospinning and impregnating methods. Optimization studies on sol-gel synthesis and electrospinning process were conducted respectively to prepare pure β-TCP fibers with dimensions close to mineralized collagen fibrils in woven bone. The collagen-coating layer prepared by impregnation had an adhesive role that held the β-TCP fibers together, and resulted in rapid degradation and matrix mineralization in in vitro tests. MG63 osteoblast-like cells seeded on the resultant scaffolds showed three-dimensional (3D) morphologies, and merged into multicellular layers after 7 days culture. Cytotoxicity test further revealed that extracts from the resultant scaffolds could promote the proliferation of MG63 cells. Therefore, the woven-bone-like matrix that we constructed favored the attachment and proliferation of MG63 cells in three dimensions. It has great potential ability to shorten the time of formation of new bone.
Is Bone Tissue Really Affected by Swimming? A Systematic Review
Gómez-Bruton, Alejandro; Gónzalez-Agüero, Alejandro; Gómez-Cabello, Alba; Casajús, José A.; Vicente-Rodríguez, Germán
2013-01-01
Background Swimming, a sport practiced in hypogravity, has sometimes been associated with decreased bone mass. Aim This systematic review aims to summarize and update present knowledge about the effects of swimming on bone mass, structure and metabolism in order to ascertain the effects of this sport on bone tissue. Methods A literature search was conducted up to April 2013. A total of 64 studies focusing on swimmers bone mass, structure and metabolism met the inclusion criteria and were included in the review. Results It has been generally observed that swimmers present lower bone mineral density than athletes who practise high impact sports and similar values when compared to sedentary controls. However, swimmers have a higher bone turnover than controls resulting in a different structure which in turn results in higher resistance to fracture indexes. Nevertheless, swimming may become highly beneficial regarding bone mass in later stages of life. Conclusion Swimming does not seem to negatively affect bone mass, although it may not be one of the best sports to be practised in order to increase this parameter, due to the hypogravity and lack of impact characteristic of this sport. Most of the studies included in this review showed similar bone mineral density values in swimmers and sedentary controls. However, swimmers present a higher bone turnover than sedentary controls that may result in a stronger structure and consequently in a stronger bone. PMID:23950908
Low Bone Density and Bisphosphonate Use and the Risk of Kidney Stones.
Prochaska, Megan; Taylor, Eric; Vaidya, Anand; Curhan, Gary
2017-08-07
Previous studies have demonstrated lower bone density in patients with kidney stones, but no longitudinal studies have evaluated kidney stone risk in individuals with low bone density. Small studies with short follow-up reported reduced 24-hour urine calcium excretion with bisphosphonate use. We examined history of low bone density and bisphosphonate use and the risk of incident kidney stone as well as the association with 24-hour calcium excretion. We conducted a prospective analysis of 96,092 women in the Nurses' Health Study II. We used Cox proportional hazards models to adjust for age, body mass index, thiazide use, fluid intake, supplemental calcium use, and dietary factors. We also conducted a cross-sectional analysis of 2294 participants using multivariable linear regression to compare 24-hour urinary calcium excretion between participants with and without a history of low bone density, and among 458 participants with low bone density, with and without bisphosphonate use. We identified 2564 incident stones during 1,179,860 person-years of follow-up. The multivariable adjusted relative risk for an incident kidney stone for participants with history of low bone density compared with participants without was 1.39 (95% confidence interval [95% CI], 1.20 to 1.62). Among participants with low bone density, the multivariable adjusted relative risk for an incident kidney stone for bisphosphonate users was 0.68 (95% CI, 0.48 to 0.98). In the cross-sectional analysis of 24-hour urine calcium excretion, the multivariable adjusted mean difference in 24-hour calcium was 10 mg/d (95% CI, 1 to 19) higher for participants with history of low bone density. However, among participants with history of low bone density, there was no association between bisphosphonate use and 24-hour calcium with multivariable adjusted mean difference in 24-hour calcium of -2 mg/d (95% CI, -25 to 20). Low bone density is an independent risk factor for incident kidney stone and is associated with higher 24-hour urine calcium excretion. Among participants with low bone density, bisphosphonate use was associated with lower risk of incident kidney stone but was not independently associated with 24-hour urine calcium excretion. Copyright © 2017 by the American Society of Nephrology.
Serum leptin is correlated to high turnover in osteoporosis.
Hipmair, Gunter; Böhler, Nikolaus; Maschek, Wilma; Soriguer, Federico; Rojo-Martínez, Gemma; Schimetta, Wolfgang; Pichler, Robert
2010-01-01
Clinical data have suggested that obesity protects against osteoporosis. Leptin, mainly secreted by white adipose tissue, might be involved by mediating an effect on bone metabolism. This study was conducted to investigate a possible relationship of leptin and bone turn-over in postmenopausal women with osteoporosis. We measured bone mineral density (BMD), serum leptin levels and markers of bone metabolism, including osteocalcin and cross-laps in 44 patients with osteoporosis. The main group consisted of 32 postmenopausal women. Mean serum leptin was 13.1 microg/L and showed no statistically significant difference to the levels measured in a collective of normal persons adjusted for age and BMI. When related to serum cross-laps as markers of bone resorption, a positive correlation (p<0.05) was observed, whereas no correlation with osteocalcin could be seen. A dual control of bone formation by leptin is assumed: This involves local mechanisms acting on osteoblasts and a central inhibitory effect on bone metabolism via a hypothalamic relay. Our data indicate that the net effect of circulating leptin may cause bone loss and is significantly related to high-turnover serum bone markers, at least in postmenopausal women with osteoporosis.
Thermal model to investigate the temperature in bone grinding for skull base neurosurgery.
Zhang, Lihui; Tai, Bruce L; Wang, Guangjun; Zhang, Kuibang; Sullivan, Stephen; Shih, Albert J
2013-10-01
This study develops a thermal model utilizing the inverse heat transfer method (IHTM) to investigate the bone grinding temperature created by a spherical diamond tool used for skull base neurosurgery. Bone grinding is a critical procedure in the expanded endonasal approach to remove the cranial bone and access to the skull base tumor via nasal corridor. The heat is generated during grinding and could damage the nerve or coagulate the blood in the carotid artery adjacent to the bone. The finite element analysis is adopted to investigate the grinding-induced bone temperature rise. The heat source distribution is defined by the thermal model, and the temperature distribution is solved using the IHTM with experimental inputs. Grinding experiments were conducted on a bovine cortical bone with embedded thermocouples. Results show significant temperature rise in bone grinding. Using 50°C as the threshold, the thermal injury can propagate about 3mm in the traverse direction, and 3mm below the ground surface under the dry grinding condition. The presented methodology demonstrated the capability of being a thermal analysis tool for bone grinding study. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.
Agterberg, Martijn J H; Frenzel, Henning; Wollenberg, Barbara; Somers, Thomas; Cremers, Cor W R J; Snik, Ad F M
2014-01-01
There is no consensus on treatment of patients with congenital unilateral aural atresia. Currently, 3 intervention options are available, namely, surgical reconstruction, application of a bone-conduction device (BCD), or application of a middle ear implant. The present study aims to compare the BCD with the application of a middle ear implant. We hypothesized that cross-hearing (stimulating the cochlea by means of bone conduction contralateral to the implanted side) would cause BCD users to have difficulty performing localization tasks. Audiologic data of 4 adult patients with a middle ear implant coupled directly to the cochlea were compared with data of 4 adult patients fitted with an osseointegrated BCD. All patients were fitted during adulthood. The emphasis of this study is on directional hearing. The middle ear implant and the BCD improved sound localization of patients with congenital unilateral aural atresia. Unaided scores demonstrate a large variation. Our results demonstrate that there was no advantage of the middle ear implant over the BCD for directional hearing in patients who had no amplification in childhood. The BCD users had the best bandwidth.
Cochlear third window in the scala vestibuli: an animal model.
Preis, Michal; Attias, Joseph; Hadar, Tuvia; Nageris, Ben I
2009-08-01
Pathologic third window has been investigated in both animals and humans, with a third window located in the vestibular apparatus, specifically, dehiscence of the superior semicircular canal, serving as the clinical model. The present study sought to examine the effect of a cochlear third window in the scala vestibuli on the auditory thresholds in fat sand rats that have a unique anatomy of the inner ear that allows for easy surgical access. The experiment included 7 healthy 6-month-old fat sand rats (a total of 10 ears). A pathologic third window was induced by drilling a hole in the bony labyrinth over the scala vestibuli, with preservation of the membranous labyrinth. Auditory brainstem responses to high- and low-frequency acoustic stimuli delivered via air and bone conduction were recorded before and after the procedure. In the preoperative auditory brainstem response recordings, air-conduction thresholds (ACTs) to clicks and tone bursts averaged 9 and 10 dB, respectively, and bone-conduction thresholds averaged 4.5 and 2.9 dB, respectively. Postfenestration ACTs averaged 41 and 42.2 dB, and bone-conduction thresholds averaged 1.1 and 4.3 dB. The change in ACT was statistically significant (p < 0.01). The presence of a cochlear third window in the scala vestibuli affects auditory thresholds by causing a decrease in sensitivity to air-conducted sound stimuli. These findings agree with the theoretical model and clinical findings.
O'Connor, Eibhlís M; Grealy, Geraldine; McCarthy, Jane; Desmond, Alan; Craig, Orla; Shanahan, Fergus; Cashman, Kevin D
2014-10-14
Although epidemiological findings support a role for vitamin K status in the improvement of bone indices in adult patients with Crohn's disease (CD), this needs to be confirmed in double-blind, randomised controlled trials (RCT) with phylloquinone (vitamin K1). By conducting two RCT, the present study aimed to first establish whether supplementation with 1000 μg of phylloquinone daily near-maximally suppresses the percentage of undercarboxylated osteocalcin in serum (%ucOC; marker of vitamin K status) in adult patients with CD currently in remission as it does in healthy adults and second determine the effect of supplementation with phylloquinone at this dose for 12 months on the indices of bone turnover and bone mass. The initial dose-ranging RCT was conducted in adult patients with CD (n 10 per group) using 0 (placebo), 1000 or 2000 μg of phylloquinone daily for 2 weeks. In the main RCT, the effect of placebo v. 1000 μg vitamin K/d (both co-administered with Ca (500 mg/d) and vitamin D3 (10 μg/d)) for 12 months (n 43 per group) on the biochemical indices of bone turnover (determined by enzyme immunoassay) and bone mass (determined by dual-energy X-ray absorptiometry) were investigated. At baseline, the mean %ucOC was 47 %, and this was suppressed upon supplementation with 1000 μg of phylloquinone daily ( - 81 %; P< 0·01) and not suppressed further by 2000 μg of phylloquinone daily. Compared with the placebo, supplementation with 1000 μg of phylloquinone daily for 12 months had no significant effect (P>0·1) on bone turnover markers or on the bone mass of the lumbar spine or femur, but modestly increased (P< 0·05) the bone mass of the total radius. Despite near maximal suppression of serum %ucOC, supplementation with 1000 μg of phylloquinone daily (with Ca and vitamin D3) had no effect on the indices of bone health in adult CD patients with likely vitamin K insufficiency.
Chordekar, Shai; Perez, Ronen; Adelman, Cahtia; Sohmer, Haim; Kishon-Rabin, Liat
2018-04-03
Hearing can be elicited in response to bone as well as soft-tissue stimulation. However, the underlying mechanism of soft-tissue stimulation is under debate. It has been hypothesized that if skull vibrations were the underlying mechanism of hearing in response to soft-tissue stimulation, then skull vibrations would be associated with hearing thresholds. However, if skull vibrations were not associated with hearing thresholds, an alternative mechanism is involved. In the present study, both skull vibrations and hearing thresholds were assessed in the same participants in response to bone (mastoid) and soft-tissue (neck) stimulation. The experimental group included five hearing-impaired adults in whom a bone-anchored hearing aid was implanted due to conductive or mixed hearing loss. Because the implant is exposed above the skin and has become an integral part of the temporal bone, vibration of the implant represented skull vibrations. To ensure that middle-ear pathologies of the experimental group did not affect overall results, hearing thresholds were also obtained in 10 participants with normal hearing in response to stimulation at the same sites. We found that the magnitude of the bone vibrations initiated by the stimulation at the two sites (neck and mastoid) detected by the laser Doppler vibrometer on the bone-anchored implant were linearly related to stimulus intensity. It was therefore possible to extrapolate the vibration magnitudes at low-intensity stimulation, where poor signal-to-noise ratio limited actual recordings. It was found that the vibration magnitude differences (between soft-tissue and bone stimulation) were not different than the hearing threshold differences at the tested frequencies. Results of the present study suggest that bone vibration magnitude differences can adequately explain hearing threshold differences and are likely to be responsible for the hearing sensation. Thus, the present results support the idea that bone and soft-tissue conduction could share the same underlying mechanism, namely the induction of bone vibrations. Studies with the present methodology should be continued in future work in order to obtain further insight into the underlying mechanism of activation of the hearing system. Copyright © 2018 Elsevier B.V. All rights reserved.
Wang, Yingxu; Mori, Ryuji; Ozoe, Nobuaki; Nakai, Takahisa; Uchio, Yuji
2009-11-01
Screws with strong pull-out strength have been sought for the treatment of cancellous bone. We hypothesized that an obliquely angled screw thread has advantages over conventional vertical thread with a minimal proximal half angle. Metal and bone screws were made of stainless steel and porcine cortical bone. Their proximal half angle was set at 0 degrees , 30 degrees , or 60 degrees . The screws were inserted into porcine cancellous bone. At 0 degrees , the thread faced the recipient bone vertically. Pullout tests at a rate of 30 mm/min (n=40, each screw type) and microcomputed tomography (n=6) were conducted. The pull-out strength of the screws was maximal at 30 degrees ; 348.8 (SD, 44.1)N with metal and 326.6 (39.4)N with bone. It was intermediate at 0 degrees ; 301.9 (35.9)N with metal and 278.2 (30.6)N with bone. It was minimal at 60 degrees; 126.5 (39.0)N with metal and 174.8 (29.7)N with bone. Cancellous bone was damaged between the threads at 30 degrees , while intact cancellous bone was preserved between the threads at 0 degrees. A proximal half angle of around 30 degrees is appropriate because the pullout force is applied to the recipient bone evenly. Commercial cancellous screws can be improved by changing the thread shape to minimize the damage to recipient bone.
Yao, Shaomian; Prpic, Veronica; Pan, Fenghui; Wise, Gary E.
2011-01-01
The dental follicle appears to regulate both the alveolar bone resorption and bone formation needed for tooth eruption. Tumor necrosis factor-alpha ( TNF-α) gene expression is maximally upregulated at postnatal day 9 in the rat dental follicle of the 1st mandibular molar, a time that correlates with rapid bone growth at the base of the tooth crypt, as well as a minor burst of osteoclastogenesis. TNF-α expression is correlated with the expression of bone morphogenetic protein-2 (BMP-2), a molecule expressed in the dental follicle that can promote bone formation. Because BMP-2 signaling may be augmented by bone morphogenetic protein-3 (BMP-3), it was the objective of this study to determine 1) if the dental follicle expresses BMP-3 and 2) if TNF-α stimulates the dental follicle cells to express BMP-2 and BMP-3. Dental follicles were collected from different postnatal ages of rat pups. Dental follicle cells were incubated with TNF-α to study its dosage and time-course effects on gene expression of BMP-2 and BMP-3, as determined by real-time RT-PCR. Next, immunostaining was conducted to confirm if the protein was synthesized and ELISA of the conditioned medium was conducted to determine if BMP-2 was secreted. We found that BMP-3 expression is correlated with the expression of TNF-α in the dental follicle and TNF-α significantly increased BMP-2 and BMP-3 expression in vitro. Immunostaining and ELISA showed that BMP-2 and BMP-3 were synthesized and secreted. This study suggests that TNF-α can upregulate the expression of bone formation genes that may be needed for tooth eruption. PMID:20067418
Hearing and Mortality Outcomes following Temporal Bone Fractures.
Honeybrook, Adam; Patki, Aniruddha; Chapurin, Nikita; Woodard, Charles
2017-12-01
The aim of this article is to determine hearing and mortality outcomes following temporal bone fractures. Retrospective chart review was performed of 152 patients diagnosed with a temporal bone fracture presenting to the emergency room at a tertiary care referral center over a 10-year period. Utilizing Patients' previously obtained temporal bone computed tomographic scans and audiograms, fractures were classified based on several classification schemes. Correlations between fracture patterns, mortality, and hearing outcomes were analyzed using χ 2 tests. Ossicular chain disruption was seen in 11.8% of patients, and otic capsule violation was seen in 5.9%; 22.7% of patients presented for audiologic follow-up. Seventeen patients with conductive hearing loss had air-bone gaps of 26 ± 7.5 dB (500 Hz), 27 ± 6.8 dB (1,000 Hz), 18 ± 6.2 dB (2,000 Hz), and 32 ± 7.7 dB (4,000 Hz). Two cases of profound sensorineural hearing loss were associated with otic capsule violation. No fracture classification scheme was predictive of hearing loss, although longitudinal fractures were statistically associated with ossicular chain disruption ( p < 0.01). Temporal bone fractures in patients older than 60 years carried a relative risk of death of 3.15 compared with those younger than 60 years. The average magnitude of conductive hearing loss resulting from temporal bone fracture ranged from 18 to 32 dB in this cohort. Classification of fracture type was not predictive of hearing loss, despite the statistical association between ossicular chain disruption and longitudinal fractures. This finding may be due to the low follow-up rates of this patient population. Physicians should make a concerted effort to ensure that audiological monitoring is executed to prevent and manage long-term hearing impairment.
Ogata, Makiko; Ide, Risa; Takizawa, Miho; Tanaka, Mizuho; Tetsuo, Tamaki; Sato, Asako; Iwasaki, Naoko; Uchigata, Yasuko
2015-01-01
Diabetes is a risk factor for osteoporosis, and glycemic control is critical during osteoporosis treatment in patients with type 2 diabetes (T2D). However, diabetic therapies have potentially adverse effects on bone metabolism. Additionally, biomarkers for bone metabolism are directly affected by drug therapies for osteoporosis. This study examined resting energy expenditure (REE) and respiratory quotient (RQ) as indices of bone metabolism in postmenopausal Japanese women with T2D. Forty-six postmenopausal Japanese women with T2D were examined. Procollagen type 1 N-terminal propeptide (P1NP, a fasting serum bone formation marker) and carboxy-terminal collagen cross-links-1 (CTX-1, a resorption marker) were evaluated, along with intact parathyroid hormone, 25-hydroxyvitamin D (25[OH]D), urine microalbumin, motor nerve conduction velocity, sensory nerve conduction velocity, R-R interval, body composition, REE, RQ, and bone mineral density at the nondominant distal radius. The mean T-score was low with high variance (-1.7 ± 1.6), and 18 patients (39%) met the criteria for osteoporosis. REE was positively correlated with body mass index (β = 0.517; r(2) = 0.250), serum calcium (β = 0.624; r(2) = 0.200), glycated hemoglobin A1C for the previous 6 mo (β = 0.395; r(2) = 0.137), and the serum P1NP/CTX-1 ratio (β = 0.380; r(2) = 0.144). RQ was positively correlated with serum 25(OH)D (β = 0.387; r(2) = 0.131). The basal metabolic rate and diabetic pathophysiology are interrelated with bone turnover. Copyright © 2015 Elsevier Inc. All rights reserved.
In vivo study of magnesium plate and screw degradation and bone fracture healing.
Chaya, Amy; Yoshizawa, Sayuri; Verdelis, Kostas; Myers, Nicole; Costello, Bernard J; Chou, Da-Tren; Pal, Siladitya; Maiti, Spandan; Kumta, Prashant N; Sfeir, Charles
2015-05-01
Each year, millions of Americans suffer bone fractures, often requiring internal fixation. Current devices, like plates and screws, are made with permanent metals or resorbable polymers. Permanent metals provide strength and biocompatibility, but cause long-term complications and may require removal. Resorbable polymers reduce long-term complications, but are unsuitable for many load-bearing applications. To mitigate complications, degradable magnesium (Mg) alloys are being developed for craniofacial and orthopedic applications. Their combination of strength and degradation make them ideal for bone fixation. Previously, we conducted a pilot study comparing Mg and titanium devices with a rabbit ulna fracture model. We observed Mg device degradation, with uninhibited healing. Interestingly, we observed bone formation around degrading Mg, but not titanium, devices. These results highlighted the potential for these fixation devices. To better assess their efficacy, we conducted a more thorough study assessing 99.9% Mg devices in a similar rabbit ulna fracture model. Device degradation, fracture healing, and bone formation were evaluated using microcomputed tomography, histology and biomechanical tests. We observed device degradation throughout, and calculated a corrosion rate of 0.40±0.04mm/year after 8 weeks. In addition, we observed fracture healing by 8 weeks, and maturation after 16 weeks. In accordance with our pilot study, we observed bone formation surrounding Mg devices, with complete overgrowth by 16 weeks. Bend tests revealed no difference in flexural load of healed ulnae with Mg devices compared to intact ulnae. These data suggest that Mg devices provide stabilization to facilitate healing, while degrading and stimulating new bone formation. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Xu, L; Chen, F M; Wang, L; Zhang, P X; Jiang, X R
2016-04-18
To evaluate the meaning and value of high-frequency ultrasound in the diagnosis of carpal tunnel syndrome (CTS). In this study, 48 patients (unilateral hand) with CTS were analyzed. The thickness of transverse carpal ligaments at the pisiform bone was measured using high-frequency ultrasound. Open carpal tunnel release procedure was performed in the 48 CTS patients, and the thickness of transverse carpal ligaments at the hamate hook bone measured using vernier caliper under direct vision. The accuracy of thickness of transverse carpal ligaments was evaluated using high-frequency ultrasound. high-frequency ultrasound measurement of thickness of transverse carpal ligaments at the hamate hook bone and pisiform bone, and determination of the diagnostic threshold measurement index using receiver operating characteristic (ROC) curve, sensitivity and specificity were performed and the correlation between the thickness of transverse carpal ligaments and nerve conduction study (NCS) analyzed. The thickness of transverse carpal ligaments in the CTS patients were (0.42±0.08) cm (high-frequency ultrasound) and (0.41±0.06) cm (operation) at hamate hook bone, and there was no significant difference between the two ways (t=0.672, P>0.05). The optimal cut-off value of the transverse carpal ligaments at hamate hook bone was 0.385 cm, the sensitivity 0.775, and the specificity 0.788. The optimal cut-off value of the transverse carpal ligaments at the pisiform bone was 0.315 cm, the sensitivity 0.950, and the specificity 1.000. The transverse carpal ligaments thickness and wrist-index finger sensory nerve conduction velocity (SCV), wrist-middle finger SCV showed a negative correlation. High frequency ultrasound measurements of thickness of transverse carpal ligaments is a valuable method for the diagnosis of CTS.
Carnevale, Claudio; Til-Pérez, Guillermo; Arancibia-Tagle, Diego J; Tomás-Barberán, Manuel D; Sarría-Echegaray, Pedro L
2018-05-18
The active transcutaneous bone conduction implant Bonebridge ® , is indicated for patients affected by bilateral conductive/mixed hearing loss or unilateral sensorineural hearing loss, showing hearing outcomes similar to other percutaneous bone conduction implants, but with a lower rate of complications. The aim of this study was to analyze the hearing outcomes in a series of 26 patients affected by conductive or mixed hearing loss and treated with Bonebridge ® . 26 of 30 patients implanted with Bonebridge ® between October 2012 and May 2017, were included in the study. We compared the air conduction thresholds at the frequencies 500, 1000, 2000, 3000, 4000Hz, the SRT50% and the percentage of correct answers at an intensity of 50dB with and without the implant. "Pure tone average" with the implant was 34.91dB showing an average gain of 33.46dB. Average SRT 50% with the implant was 34.33dB, whereas before the surgery no patient achieved 50% of correct answers at a sound intensity of 50dB. The percentage of correct answers at 50dB changed from 11% without the implant to 85% with it. We only observed one complication consisting of an extrusion of the implant in a patient with a history of 2 previous rhytidectomies. The hearing outcomes obtained in our study are similar to those published in the literature. Bonebridge ® represents an excellent alternative in the treatment of conductive or mixed hearing loss, and with a lower rate of complications. Copyright © 2018 Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. Publicado por Elsevier España, S.L.U. All rights reserved.
Mahdi, Parvane; Amali, Amin; Pourbakht, Akram; Karimi Yazdi, Alireza; Bassam, Ali
2013-06-01
Vestibular evoked myogenic potential (VEMP) has recently been broadly studied in vestibular disorders. As it is evoked by loud sound stimulation, even mild conductive hearing loss may affect VEMP results. Bone-conducted (BC) stimulus is an alternative stimulation for evoking this response. This study aims to assess the characteristics of BC-VEMP in different groups of patients. We performed a cross sectional analysis on 20 healthy volunteers with normal pure-tone audiometry as a control group; and on a group of patients consisted of 20 participants with conductive hearing loss, five with bilateral sensorineural hearing loss and four with vestibular schawannoma. AC and BC-VEMP were performed in all participants. In control group the VEMP responses to both kinds of stimuli had an acceptable morphology and consisted of p13 and n23 waves. Latency value of these main components in each type of stimulus was not significantly different (P>0.05). However, the mean amplitude was larger in BC modality than AC stimulation (P=0.025). In the group with conductive hearing loss, the VEMP response was absent in fifteen (46.87%) of the 32 ears using the AC method, whereas all (100%) displayed positive elicitability of VEMP by BC method. Normal VEMP responses in both stimuli were evoked in all patients with sensorineural hearing loss. In patients with unilateral vestibular schwannomas (VS), 2 (50.00%) had neither AC-VEMP nor BC-VEMP. Auditory stimuli delivered by bone conduction can evoke VEMP response. These responses are of vestibular origin and can be used in vestibular evaluation of patients with conductive hearing loss.
Mahdi, Parvane; Amali, Amin; Pourbakht, Akram; Karimi Yazdi, Alireza; Bassam, Ali
2013-01-01
Introduction: Vestibular evoked myogenic potential (VEMP) has recently been broadly studied in vestibular disorders. As it is evoked by loud sound stimulation, even mild conductive hearing loss may affect VEMP results. Bone-conducted (BC) stimulus is an alternative stimulation for evoking this response. This study aims to assess the characteristics of BC-VEMP in different groups of patients. Materials and Methods: We performed a cross sectional analysis on 20 healthy volunteers with normal pure-tone audiometry as a control group; and on a group of patients consisted of 20 participants with conductive hearing loss, five with bilateral sensorineural hearing loss and four with vestibular schawannoma. AC and BC-VEMP were performed in all participants. Results: In control group the VEMP responses to both kinds of stimuli had an acceptable morphology and consisted of p13 and n23 waves. Latency value of these main components in each type of stimulus was not significantly different (P>0.05). However, the mean amplitude was larger in BC modality than AC stimulation (P=0.025). In the group with conductive hearing loss, the VEMP response was absent in fifteen (46.87%) of the 32 ears using the AC method, whereas all (100%) displayed positive elicitability of VEMP by BC method. Normal VEMP responses in both stimuli were evoked in all patients with sensorineural hearing loss. In patients with unilateral vestibular schwannomas (VS), 2 (50.00%) had neither AC-VEMP nor BC-VEMP. Conclusion: Auditory stimuli delivered by bone conduction can evoke VEMP response. These responses are of vestibular origin and can be used in vestibular evaluation of patients with conductive hearing loss. PMID:24303434
Qi, Xin; Liu, Yang; Ding, Zhen-yu; Cao, Jia-qing; Huang, Jing-huan; Zhang, Jie-yuan; Jia, Wei-tao; Wang, Jing; Liu, Chang-sheng; Li, Xiao-lin
2017-01-01
In bone remodeling, osteogenesis is closely coupled to angiogenesis. Bone tissue engineering using multifunctional bioactive materials is a promising technique which has the ability to simultaneously stimulate osteogenesis and angiogenesis for repair of bone defects. We developed mesoporous bioactive glass (MBG)-doped poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) composite scaffolds as delivery vehicle. Two bioactive molecules, dimethyloxalylglycine (DMOG), a small-molecule angiogenic drug, and recombinant human bone morphogenetic protein-2 (rhBMP-2), an osteoinductive growth factor, were co-incorporated into the scaffold. The synergistic effects of DMOG and rhBMP-2 released in the composite scaffolds on osteogenic and angiogenic differentiation of hBMSCs were investigated using real-time quantitative polymerase chain reaction and western blotting. Moreover, in vivo studies were conducted to observe bone regeneration and vascular formation of critical-sized bone defects in rats using micro-computed tomography, histological analyses, Microfil® perfusion, fluorescence labeling, and immunohistochemical analysis. The results showed that DMOG and rhBMP-2 released in the MBG-PHBHHx scaffolds did exert synergistic effects on the osteogenic and angiogenic differentiation of hBMSCs. Moreover, DMOG and rhBMP-2 produced significant increases in newly-formed bone and neovascularization of calvarial bone defects in rats. It is concluded that the co-delivery strategy of both rhBMP-2 and DMOG can significantly improve the critical-sized bone regeneration. PMID:28230059
Tamimi, Faleh; Torres, Jesus; Al-Abedalla, Khadijeh; Lopez-Cabarcos, Enrique; Alkhraisat, Mohammad H; Bassett, David C; Gbureck, Uwe; Barralet, Jake E
2014-07-01
Onlay grafts made of monolithic microporous monetite bioresorbable bioceramics have the capacity to conduct bone augmentation. However, there is heterogeneity in the graft behaviour in vivo that seems to correlate with the host anatomy. In this study, we sought to investigate the metabolic activity of the regenerated bone in monolithic monetite onlays by using positron emission tomography-computed tomography (PET-CT) in rats. This information was used to optimize the design of monetite onlays with different macroporous architecture that were then fabricated using a 3D-printing technique. In vivo, bone augmentation was attempted with these customized onlays in rabbits. PET-CT findings demonstrated that bone metabolism in the calvarial bone showed higher activity in the inferior and lateral areas of the onlays. Histological observations revealed higher bone volume (up to 47%), less heterogeneity and more implant osseointegration (up to 38%) in the augmented bone with the customized monetite onlays. Our results demonstrated for the first time that it is possible to achieve osseointegration of dental implants in bone augmented with 3D-printed synthetic onlays. It was also observed that designing the macropore geometry according to the bone metabolic activity was a key parameter in increasing the volume of bone augmented within monetite onlays. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Qi, Xin; Liu, Yang; Ding, Zhen-Yu; Cao, Jia-Qing; Huang, Jing-Huan; Zhang, Jie-Yuan; Jia, Wei-Tao; Wang, Jing; Liu, Chang-Sheng; Li, Xiao-Lin
2017-02-01
In bone remodeling, osteogenesis is closely coupled to angiogenesis. Bone tissue engineering using multifunctional bioactive materials is a promising technique which has the ability to simultaneously stimulate osteogenesis and angiogenesis for repair of bone defects. We developed mesoporous bioactive glass (MBG)-doped poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) composite scaffolds as delivery vehicle. Two bioactive molecules, dimethyloxalylglycine (DMOG), a small-molecule angiogenic drug, and recombinant human bone morphogenetic protein-2 (rhBMP-2), an osteoinductive growth factor, were co-incorporated into the scaffold. The synergistic effects of DMOG and rhBMP-2 released in the composite scaffolds on osteogenic and angiogenic differentiation of hBMSCs were investigated using real-time quantitative polymerase chain reaction and western blotting. Moreover, in vivo studies were conducted to observe bone regeneration and vascular formation of critical-sized bone defects in rats using micro-computed tomography, histological analyses, Microfil® perfusion, fluorescence labeling, and immunohistochemical analysis. The results showed that DMOG and rhBMP-2 released in the MBG-PHBHHx scaffolds did exert synergistic effects on the osteogenic and angiogenic differentiation of hBMSCs. Moreover, DMOG and rhBMP-2 produced significant increases in newly-formed bone and neovascularization of calvarial bone defects in rats. It is concluded that the co-delivery strategy of both rhBMP-2 and DMOG can significantly improve the critical-sized bone regeneration.
The method of selection of leukocytes in images of preparations of peripheral blood and bone marrow
NASA Astrophysics Data System (ADS)
Zakharenko, Y. V.; Nikitaev, V. G.; Polyakov, E. V.; Seldyukov, S. O.
2017-01-01
Study of the segmentation method on the basis of histogram analysis for the selection of leukocytes in the images of blood and bone marrow in the diagnosis of acute leukemia was conducted in this paper. Method of filtering was offered to eliminate the artifacts, resulting from the selection of leukocytes.
Detection of leukemia using electromagnetic waves
NASA Astrophysics Data System (ADS)
Colton, David L.; Monk, Peter
1995-10-01
The presence of leukemia in bone marrow causes an increase in the electric permittivity and a decrease in the conductivity of the marrow. This suggests the possibility of detecting leukemia by electromagnetic imaging. We show how this can be done for the case of an absorbing host medium (i.e. water) and provide numerical experiments using synthetic data for detecting proliferated tissue at localized portions of the bone marrow. We do not assume that the refractive index of the fat, bone, and muscle are known but will instead recover these values as part of the imaging process.
Severo, Antônio Lourenço; Lemos, Marcelo Barreto; Lech, Osvandré Luiz Canfield; Barreto Filho, Danilo; Strack, Daniel Paulo; Candido, Larissa Knapp
2017-01-01
Scaphoid fractures are the most common fractures of the carpal bones, corresponding to 60%. Of these, 10% progress to nonunion; moreover, 3% can present necrosis of the proximal pole. There are various methods of treatment using vascularized and non-vascularized bone grafts. To evaluate and compare the rate of scaphoid consolidation with necrosis of the proximal pole using different surgical techniques. The authors conducted a review of the literature using the following databases: PubMed and BIREME/LILACS, where 13 case series were selected (ten with use of vascularized bone grafts and three of non-vascularized bone grafts), according to inclusion and exclusion criteria. In most cases VBGs were used, especially those based on the 1,2 intercompartmental supraretinacular artery, due to greater reproducibility in performing the surgical technique.
Application of X-ray synchrotron microscopy instrumentation in biology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gasperini, F. M.; Pereira, G. R.; Granjeiro, J. M.
2011-07-01
X-ray micro-fluorescence imaging technique has been used as a significant tool in order to investigate minerals contents in some kinds of materials. The aim of this study was to evaluate the elemental distribution of calcium and zinc in bone substitute materials (nano-hydroxyapatite spheres) and cortical bones through X-Ray Micro-fluorescence analysis with the increment of Synchrotron Radiation in order to evaluate the characteristics of the newly formed bone and its interface, the preexisting bone and biomaterials by the arrangement of collagen fibers and its birefringence. The elemental mapping was carried out at Brazilian Synchrotron Light Laboratory, Campinas - Sao Paulo, Brazilmore » working at D09-XRF beam line. Based on this study, the results suggest that hydroxyapatite-based biomaterials are biocompatible, promote osteo-conduction and favored bone repair. (authors)« less
Draenert, F G; Gebhart, F; Berthold, M; Gosau, M; Wagner, W
2010-07-01
The objective of this study was to determine the ability of two flat panel cone beam CT (CBCT) devices to identify demineralized bone and bone transplants in vivo and in vitro. Datasets from patients with autologous bone grafts (n = 9, KaVo 3DeXam (KaVo, Biberach, Germany); n = 38, Accuitomo 40 (Morita, Osaka, Japan)) were retrospectively evaluated. Demineralized and non-demineralized porcine cancellous bone blocks were examined with the two CBCT devices. A SawBone skull (Pacific Research Laboratories, Vashon, WA) was used as a positioning tool for the bone blocks. Descriptive evaluation and image quality assessment were conducted on the KaVo 3DeXam data (voxel size 0.3 mm) using the OsiriX viewer as well as on the Morita Accuitomo data (voxel size 0.25 mm) using proprietary viewer software. Both in vivo and in vitro, the descriptive analysis of the images of the two devices showed well-visualized bone transplants with clearly defined cancellous bones and well-defined single bone trabeculae in all cross-sections. In vitro, demineralized samples showed lower radiographic opacity but no significant loss of quality compared with fresh bone (P = 0.070). Single cancellous bone trabeculae were significantly better visualized with the Morita 3D Accuitomo device than with the KaVo 3DeXam device (P = 0.038). Both the KaVo 3DeXam and Morita 3D Accuitomo devices produce good-quality images of cancellous bones in in vivo remodelling as well as after in vitro demineralization.
Yang, D; Liu, R; Liu, L; Liao, H; Wang, C; Cao, Z
2017-08-01
The objective of this study was to investigate the possible roles of clusters of differentiation 147 (CD147) in bone resorption and mineralization through the bone markers of bone sialoprotein, osteocalcin, osteopontin and alkaline phosphatase (ALP), trabecular structure of alveolar bone and number of osteoclasts. We also investigated the effects of CD147 on inflammation and collagen breakdown. Twenty-eight male Wistar rats were randomly divided into four groups of seven animals each: healthy group, periodontitis group, periodontitis + saline group and periodontitis + anti-CD147 groups. Hematoxylin and eosin staining were used for histological assessment. Alveolar bone loss and trabecula microstructure were evaluated using micro-computed tomography. Collagen fiber breakdown was assessed via picrosirius red staining. Tartrate-resistant acid phosphatase staining was conducted for osteoclast analysis. The expressions of ALP, bone sialoprotein, osteocalcin and osteopontin were evaluated using immunohistochemistry. Anti-CD147 treatment significantly inhibited alveolar bone loss and osteoclastogenesis, and improved the bone volume/tissue volume, and the trabecular thickness of alveolar bone. Histological staining revealed that anti-CD147 significantly reduced the infiltration of inflammation and limited the fractions of degraded areas in collagen fibers. The expression of bone markers (ALP, bone sialoprotein, osteocalcin and osteopontin) was enhanced by anti-CD147 treatment. The results of the anti-CD147 treatment indicate that CD147 was involved in alveolar bone mineralization, osteoclastogenesis and trabecular microstructure. The inhibition of CD147 could increase the expression level of osteogenic markers, alveolar bone crest height and suppressed collagen fiber degradation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Biologic therapies and bone loss in rheumatoid arthritis.
Zerbini, C A F; Clark, P; Mendez-Sanchez, L; Pereira, R M R; Messina, O D; Uña, C R; Adachi, J D; Lems, W F; Cooper, C; Lane, N E
2017-02-01
Rheumatoid arthritis (RA) is a common systemic autoimmune disease of unknown cause, characterized by a chronic, symmetric, and progressive inflammatory polyarthritis. One of the most deleterious effects induced by the chronic inflammation of RA is bone loss. During the last 15 years, the better knowledge of the cytokine network involved in RA allowed the development of potent inhibitors of the inflammatory process classified as biological DMARDs. These new drugs are very effective in the inhibition of inflammation, but there are only few studies regarding their role in bone protection. The principal aim of this review was to show the evidence of the principal biologic therapies and bone loss in RA, focusing on their effects on bone mineral density, bone turnover markers, and fragility fractures. Using the PICOST methodology, two coauthors (PC, LM-S) conducted the search using the following MESH terms: rheumatoid arthritis, osteoporosis, clinical trials, TNF- antagonists, infliximab, adalimumab, etanercept, certolizumab, golimumab, IL-6 antagonists, IL-1 antagonists, abatacept, tocilizumab, rituximab, bone mineral density, bone markers, and fractures. The search was conducted electronically and manually from the following databases: Medline and Science Direct. The search period included articles from 2003 to 2015. The selection included only original adult human research written in English. Titles were retrieved and the same two authors independently selected the relevant studies for a full text. The retrieved selected studies were also reviewed completing the search for relevant articles. The first search included 904 titles from which 253 titles were selected. The agreement on the selection among researchers resulted in a Kappa statistic of 0.95 (p < 0.000). Only 248 abstracts evaluated were included in the acronym PICOST. The final selection included only 28 studies, derived from the systematic search. Additionally, a manual search in the bibliography of the selected articles was made and included into the text and into the section of "small molecules of new agents." Treatment with biologic drugs is associated with the decrease in bone loss. Studies with anti-TNF blocking agents show preservation or increase in spine and hip BMD and also a better profile of bone markers. Most of these studies were performed with infliximab. Only three epidemiological studies analyzed the effect on fractures after anti-TNF blocking agent's treatment. IL-6 blocking agents also showed improvement in localized bone loss not seen with anti-TNF agents. There are a few studies with rituximab and abatacept. Although several studies reported favorable actions of biologic therapies on bone protection, there are still unmet needs for studies regarding their actions on the risk of bone fractures.
NASA Technical Reports Server (NTRS)
Sibonga, J. D.; Spector, E. R.; King, L. J.; Evans, H. J.; Smith, S. A.
2014-01-01
Dual-energy x-ray absorptiometry [DXA] is the widely-applied bone densitometry method used to diagnose osteoporosis in a terrestrial population known to be at risk for age-related bone loss. This medical test, which measures areal bone mineral density [aBMD] of clinically-relevant skeletal sites (e.g., hip and spine), helps the clinician to identify which persons, among postmenopausal women and men older than 50 years, are at high risk for low trauma or fragility fractures and might require an intervention. The most recognized osteoporotic fragility fracture is the vertebral compression fracture which can lead to kyphosis or hunched backs typically seen in the elderly. DXA measurement of BMD however is recognized to be insufficient as a sole index for assessing fracture risk. DXA's limitation may be related to its inability to monitor changes in structural parameters, such as trabecular vs. cortical bone volumes, bone geometry or trabecular microarchitecture. Hence, in order to understand risks to human health and performance due to space exposure, NASA needs to expand its measurements of bone to include other contributors to skeletal integrity. To this aim, the Bone and Mineral Lab conducted a pilot study for a novel measurement of bone microarchitecture that can be obtained by retrospective analysis of DXA scans. Trabecular Bone Score (TBS) assesses changes to trabecular microarchitecture by measuring the grey color "texture" information extracted from DXA images of the lumbar spine. An analysis of TBS in 51 ISS astronauts was conducted to assess if TBS could detect 1) an effect of spaceflight and 2) a response to countermeasures independent of DXA BMD. In addition, changes in trunk body lean tissue mass and in trunk body fat tissue mass were also evaluated to explore an association between body composition, as impacted by ARED exercise, and bone microarchitecture. The pilot analysis of 51 astronaut scans of the lumbar spine suggests that, following an ISS mission, DXA BMD and TBS are detecting different effects of ARED exercise and of ARED + Bisphosphonate on the lumbar spine of astronauts. There is emerging evidence associating reduced TBS with terrestrial metabolic bone disorders where a TBS <1.200 is associated with "degraded" while > 1.350 is associated with "normal." However, it is not possible to conclude how the spaceflight-induced changes in TBS increase risk for vertebral fractures in the astronaut or if changes in body composition of the trunk region could be an indirect method of assessing exercise effect on bone microarchitecture. More importantly, this pilot analysis demonstrates a new, minimal risk approach for monitoring changes to vertebral bone microarchitecture. This method could help assess the combined skeletal effects of spaceflight with the effects of aging in the astronaut after return to Earth.
Ohe, Makoto; Moridaira, Hiroshi; Inami, Satoshi; Takeuchi, Daisaku; Nohara, Yutaka; Taneichi, Hiroshi
2018-03-30
OBJECTIVE Instrumentation failure caused by the loosening of pedicle screws (PSs) in patients with osteoporosis is a serious problem after spinal surgery. The addition of a thin hydroxyapatite (HA) surface coating applied by using a sputtering process was reported recently to be a promising method for providing bone conduction around an implant without a significant risk of coating-layer breakage. In this study, the authors evaluated the biomechanical and histological features of the bone-implant interface (BII) of PSs with a thin HA coating in an in vivo porcine osteoporotic spine model. METHODS Three types of PSs (untreated/standard [STPS], sandblasted [BLPS], and HA-coated [HAPS] PSs) were implanted into the thoracic and lumbar spine (T9-L6) of 8 mature Clawn miniature pigs (6 ovariectomized [osteoporosis group] and 2 sham-operated [control group] pigs). The spines were harvested from the osteoporosis group at 0, 2, 4, 8, 12, or 24 weeks after PS placement and from the control group at 0 or 24 weeks. Their bone mineral density (BMD) was measured by peripheral quantitative CT. Histological evaluation of the BIIs was conducted by performing bone volume/tissue volume and bone surface/implant surface measurements. The strength of the BII was evaluated with extraction torque testing. RESULTS The BMD decreased significantly in the osteoporosis group (p < 0.01). HAPSs exhibited the greatest mean extraction peak torque at 8 weeks, and HAPSs and BLPSs exhibited significantly greater mean torque than the STPSs at 12 weeks (p < 0.05). The bone surface/implant surface ratio was significantly higher for HAPSs than for STPSs after 2 weeks (p < 0.05), and bonding between bone and the implant surface was maintained until 24 weeks with no detachment of the coating layer. In contrast, the bone volume/tissue volume ratio was significantly higher for HAPSs than for BLPSs or STPSs only at 4 weeks. CONCLUSIONS Using PSs with a thin HA coating applied using a sputtering process strengthens bonding at the BII, which might improve early implant fixation after spinal surgery for osteoporosis. However, the absence of increased bone mass around the screw remains a concern; prescribing osteoporosis treatment to improve bone quality might be necessary to prevent fractures around the screws.
Yang, Ying; Yang, Shengbing; Wang, Yugang; Yu, Zhifeng; Ao, Haiyong; Zhang, Hongbo; Qin, Ling; Guillaume, Olivier; Eglin, David; Richards, R Geoff; Tang, Tingting
2016-12-01
Contaminated or infected bone defects remain serious challenges in clinical trauma and orthopaedics, and a bone substitute with both osteoconductivity and antibacterial properties represents an improvement for treatment strategy. In this study, quaternized chitosan (hydroxypropyltrimethyl ammonium chloride chitosan, HACC) was grafted to 3D-printed scaffolds composed of polylactide-co-glycolide (PLGA) and hydroxyapatite (HA), in order to design bone engineering scaffolds endowed with antibacterial and osteoconductive properties. We found that both the PLGA/HA/HACC and PLGA/HACC composite scaffolds decreased bacterial adhesion and biofilm formation under in vitro and in vivo conditions. Additionally, ATP leakage assay indicated that immobilizing HACC on the scaffolds could effectively disrupt microbial membranes. Using human bone marrow-derived mesenchymal stem cells (hBMSCs), we demonstrated that HA incorporated scaffolds, including PLGA/HA and PLGA/HA/HACC, favoured cell attachment, proliferation, spreading and osteogenic differentiation compared to HA-free PLGA or PLGA/HACC scaffolds. Finally, an in vivo biocompatibility assay conducted on rats, showed that HA incorporated scaffolds (including PLGA/HA and PLGA/HA/HACC scaffolds) exhibited good neovascularization and tissue integration. Taken together, our findings support the approach for developing porous PLGA/HA/HACC composite scaffold with potential clinical application in the treatment of infected bone. Although plenty of conductive scaffold biomaterials have been exploited to improve bone regeneration under infection, potential tissue toxicity under high concentration and antibiotic-resistance are their main deficiencies. This study indicated that HACC-grafted PLGA/HA composite scaffold prepared using an innovative 3D-printing technique and covalent grafting strategy showed significantly enhanced antibacterial activities, especially against the antibiotic-resistant strains, together with good osteogenic activity and biocompatibility. Therefore, it provides an effective porous composite scaffold to combat the infected bone defect in clinic with decreased risks of bacterial resistance and open a feasible strategy for the modification of scaffold interfaces involved in the bone regeneration and anti-infection. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Caricasulo, Riccardo; Malchiodi, Luciano; Ghensi, Paolo; Fantozzi, Giuliano; Cucchi, Alessandro
2018-05-15
Different implant-abutment connections are available and it has been claimed they could have an effect on marginal bone loss. The aim of this review is to establish if implant connection configuration influences peri-implant bone loss (PBL) after functional loading. A specific question was formulated according to the Population, Intervention, Control, and Outcome (PICO): Does the type of implant-abutment connection (external, internal, or conical) have an influence on peri-implant bone loss? A PubMed/MEDLINE electronic search was conducted to identify English language publications published in international journals during the last decade (from 2006 to 2016). The search was conducted by using the Medical Subject Headings (MeSH) keywords "dental implants OR dental abutment AND external connection OR internal connection OR conical connection OR Morse Taper." Selected studies were randomized clinical trials and prospective studies; in vitro studies, case reports and retrospective studies were excluded. Titles and abstracts and, in the second phase, full texts, were evaluated autonomously and in duplicate by two reviewers. A total of 1649 articles were found, but only 14 studies met the pre-established inclusion criteria and were considered suitable for meta-analytic analysis. The network meta-analysis (NMA) suggested a significant difference between the external and the conical connections; this was less evident for the internal and conical ones. Platform-switching (PS) seemed to positively affect bone levels, non-regarding the implant-connection it was applied to. Within the limitations of this systematic review, it can be concluded that crestal bone levels are better maintained in the short-medium term when internal kinds of interface are adopted. In particular, conical connections seem to be more advantageous, showing lower peri-implant bone loss, but further studies are necessary to investigate the efficacy of implant-abutment connection on stability of crestal bone levels. © 2018 Wiley Periodicals, Inc.
The three-dimensional structure of anosteocytic lamellated bone of fish.
Atkins, Ayelet; Reznikov, Natalie; Ofer, Lior; Masic, Admir; Weiner, Steve; Shahar, Ron
2015-02-01
Fish represent the most diverse and numerous of the vertebrate clades. In contrast to the bones of all tetrapods and evolutionarily primitive fish, many of the evolutionarily more advanced fish have bones that do not contain osteocytes. Here we use a variety of imaging techniques to show that anosteocytic fish bone is composed of a sequence of planar layers containing mainly aligned collagen fibrils, in which the prevailing principal orientation progressively spirals. When the sequence of fibril orientations completes a rotation of around 180°, a thin layer of poorly oriented fibrils is present between it and the next layer. The thick layer of aligned fibrils and the thin layer of non-aligned fibrils constitute a lamella. Although both basic components of mammalian lamellar bone are found here as well, the arrangement is unique, and we therefore call this structure lamellated bone. We further show that the lamellae of anosteocytic fish bone contain an array of dense, small-diameter (1-4 μm) bundles of hypomineralized collagen fibrils that are oriented mostly orthogonal to the lamellar plane. Results of mechanical tests conducted on beams from anosteocytic fish bone and human cortical bone show that the fish bones are less stiff but much tougher than the human bones. We propose that the unique lamellar structure and the orthogonal hypomineralized collagen bundles are responsible for the unusual mechanical properties and mineral distribution in anosteocytic fish bone. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Hydroxyapatite/collagen bone-like nanocomposite.
Kikuchi, Masanori
2013-01-01
Our group has succeeded to synthesize material with bone-like nanostructure and bone-like inorganic and organic composition via self-organization mechanism between them using simultaneous titration method under controlled pH and temperature. The hydroxyapatite/collagen (HAp/Col) bone-like nanocomposite completely incorporated into bone remodeling process to be substituted by new bone. Cells cultured on the HAp/Col revealed very interesting reactions. Osteoblast-like MG63 cells showed upregulation of alkaline phosphatase >3 times greater than MG63 cells cultured on tissue culture polystyrene (TCPS). MG63 cells 3-dimensionally cultured in a "HAp/Col sponge," a porous HAp/Col having sponge-like viscoelasticity, accumulated calcium phosphate nodules on extracellular matrices they secreted. Bone marrow cells co-cultured with osteoblasts on HAp/Col differentiated to osteoclasts without differentiation supplements. This phenomenon is not found in cells cultured on hydroxyapatite ceramics and TCPS, and rarely in cells cultured on dentin. These results suggest that HAp/Col is a good candidate for tissue engineering of bone as well as bone filler. In a clinical test as a bone filler, the HAp/Col sponge was significantly better than porous β-tricalcium phosphate. The HAp/Col sponge has been approved by the Japanese government and will be used as greatly needed bone filler in patients. In addition to the above, HAp/Col coating on titanium revealed higher osteo-conductivity than HAp-coated titanium and bare titanium and improved direct bonding between titanium and newly formed bone. The HAp/Col coating may be used for metal devices requiring osseointegration.
Wang, Zhi-qiang; Li, Qi-jia; Wang, Qi
2002-11-01
To observe the difference of the fracture reparation using autogeneic-iliac bone and allogenic bone. Comminuted fracture of humerus in two sides were made in rabbits. Autogeneic-iliac bone was implanted in one side, while allogenic bone of equal capacity was implanted in the other side. General observation, X-ray, and HE histologic section were done when the rabbits were put to death in different stages. One week after implantation, the graft had been enclosed by connective tissue without infiltration of the inflammatory cells. At the 2nd week, the graft had been enclosed in osteoplastic granulation tissue, and the cartilage callus had formed. At the 3rd week, there had been broken sequestrum among the callus; the cartilage had actively formed the bone; and the medulla had been making. At the 4th week, the sequestrum had disappeared, and the mature callus had appeared; the osteoblasts had arranged in a line around the edge of the mature callus. At the 5th week, the callus was strong, compact and approached mature bones. At the 6th week, there had been the compact lamellar structures and the complete haversian's systems. There was no significant difference between callus of two sides by using image quantitative analysis in the 3rd, 4th week (P > 0.05). The allogenic bone has good histocompatibility and bone conduction effect, and can be used for bone transplantation substitute with autogenous-iliac bone.
Fate of bone marrow stromal cells in a syngenic model of bone formation.
Boukhechba, Florian; Balaguer, Thierry; Bouvet-Gerbettaz, Sébastien; Michiels, Jean-François; Bouler, Jean-Michel; Carle, Georges F; Scimeca, Jean-Claude; Rochet, Nathalie
2011-09-01
Bone marrow stromal cells (BMSCs) have been demonstrated to induce bone formation when associated to osteoconductive biomaterials and implanted in vivo. Nevertheless, their role in bone reconstruction is not fully understood and rare studies have been conducted to follow their destiny after implantation in syngenic models. The aim of the present work was to use sensitive and quantitative methods to track donor and recipient cells after implantation of BMSCs in a syngenic model of ectopic bone formation. Using polymerase chain reaction (PCR) amplification of the Sex determining Region Y (Sry) gene and in situ hybridization of the Y chromosome in parallel to histological analysis, we have quantified within the implants the survival of the donor cells and the colonization by the recipient cells. The putative migration of the BMSCs in peripheral organs was also analyzed. We show here that grafted cells do not survive more than 3 weeks after implantation and might migrate in peripheral lymphoid organs. These cells are responsible for the attraction of host cells within the implants, leading to the centripetal colonization of the biomaterial by new bone.
Ciuluvică, R; Grădinaru, S; Popescu, M; Piticescu, RM; Cergan, R
2015-01-01
Introduction: This study was meant to test a new type of bone graft on an animal model. This material was a nanostructured hydroxyapatite. Materials and Methods: the study was conducted according to Ethic Committee Regulation on animal model (Oryctolagus cuniculus – rabbit) between August and November 2014, at “Carol Davila” University of Medicine and Pharmacy, Bucharest. The animals were tested by using a CT at the level of the mandible before and after using the nanostructured hydroxyapatite. Results: The animals were CT scanned at 1, 2 and respectively 3 months, noticing a growth of the mandibular bone density. After 3 months, a bone density equal with the density of the healthy bone was noticed. Conclusions: The use of the bone graft could be a viable alternative to available materials. The advantage was that bone recovery had a density similar to the density of the healthy bone and the cost of production was low because it was made out of Calcium azotate and monobasic ammonium phosphate. PMID:25914749
Bisphenyl-Polymer/Carbon-Fiber-Reinforced Composite Compared to Titanium Alloy Bone Implant
Petersen, Richard C.
2014-01-01
Aerospace/aeronautical thermoset bisphenyl-polymer/carbon-fiber-reinforced composites are considered as new advanced materials to replace metal bone implants. In addition to well-recognized nonpolar chemistry with related bisphenol-polymer estrogenic factors, carbon-fiber-reinforced composites can offer densities and electrical conductivity/resistivity properties close to bone with strengths much higher than metals on a per-weight basis. In vivo bone-marrow tests with Sprague-Dawley rats revealed far-reaching significant osseoconductivity increases from bisphenyl-polymer/carbon-fiber composites when compared to state-of-the-art titanium-6-4 alloy controls. Midtibial percent bone area measured from the implant surface increased when comparing the titanium alloy to the polymer composite from 10.5% to 41.6% at 0.8 mm, P < 10−4, and 19.3% to 77.7% at 0.1 mm, P < 10−8. Carbon-fiber fragments planned to occur in the test designs, instead of producing an inflammation, stimulated bone formation and increased bone integration to the implant. In addition, low-thermal polymer processing allows incorporation of minerals and pharmaceuticals for future major tissue-engineering potential. PMID:25553057
Bisphenyl-Polymer/Carbon-Fiber-Reinforced Composite Compared to Titanium Alloy Bone Implant.
Petersen, Richard C
2011-05-03
Aerospace/aeronautical thermoset bisphenyl-polymer/carbon-fiber-reinforced composites are considered as new advanced materials to replace metal bone implants. In addition to well-recognized nonpolar chemistry with related bisphenol-polymer estrogenic factors, carbon-fiber-reinforced composites can offer densities and electrical conductivity/resistivity properties close to bone with strengths much higher than metals on a per-weight basis. In vivo bone-marrow tests with Sprague-Dawley rats revealed far-reaching significant osseoconductivity increases from bisphenyl-polymer/carbon-fiber composites when compared to state-of-the-art titanium-6-4 alloy controls. Midtibial percent bone area measured from the implant surface increased when comparing the titanium alloy to the polymer composite from 10.5% to 41.6% at 0.8 mm, P < 10 -4 , and 19.3% to 77.7% at 0.1 mm, P < 10 -8 . Carbon-fiber fragments planned to occur in the test designs, instead of producing an inflammation, stimulated bone formation and increased bone integration to the implant. In addition, low-thermal polymer processing allows incorporation of minerals and pharmaceuticals for future major tissue-engineering potential.
Genistein treatment increases bone mass in obese, hyperglycemic mice.
Michelin, Richard M; Al-Nakkash, Layla; Broderick, Tom L; Plochocki, Jeffrey H
2016-01-01
Obesity and type 2 diabetes mellitus are associated with elevated risk of limb bone fracture. Incidences of these conditions are on the rise worldwide. Genistein, a phytoestrogen, has been shown by several studies to demonstrate bone-protective properties and may improve bone health in obese type 2 diabetics. In this study, we test the effects of genistein treatment on limb bone and growth plate cartilage histomorphometry in obese, hyperglycemic ob/ob mice. Six-week-old ob/ob mice were divided into control and genistein-treated groups. Genistein-treated mice were fed a diet containing 600 mg genistein/kg for a period of 4 weeks. Cross-sectional geometric and histomorphometric analyses were conducted on tibias. Genistein-treated mice remained obese and hyperglycemic. However, histomorphometric comparisons show that genistein-treated mice have greater tibial midshaft diameters and ratios of cortical bone to total tissue area than the controls. Genistein-treated mice also exhibit decreased growth plate thickness of the proximal tibia. Our results indicate that genistein treatment affects bone of the tibial midshaft in the ob/ob mouse, independent of improvements in the hyperglycemic state and body weight.
Diabetes, Biochemical Markers of Bone Turnover, Diabetes Control, and Bone
Starup-Linde, Jakob
2012-01-01
Diabetes mellitus is known to have late complications including micro vascular and macro vascular disease. This review focuses on another possible area of complication regarding diabetes; bone. Diabetes may affect bone via bone structure, bone density, and biochemical markers of bone turnover. The aim of the present review is to examine in vivo from humans on biochemical markers of bone turnover in diabetics compared to non-diabetics. Furthermore, the effect of glycemic control on bone markers and the similarities and differences of type 1- and type 2-diabetics regarding bone markers will be evaluated. A systematic literature search was conducted using PubMed, Embase, Cinahl, and SveMed+ with the search terms: “Diabetes mellitus,” “Diabetes mellitus type 1,” “Insulin dependent diabetes mellitus,” “Diabetes mellitus type 2,” “Non-insulin dependent diabetes mellitus,” “Bone,” “Bone and Bones,” “Bone diseases,” “Bone turnover,” “Hemoglobin A Glycosylated,” and “HbA1C.” After removing duplicates from this search 1,188 records were screened by title and abstract and 75 records were assessed by full text for inclusion in the review. In the end 43 records were chosen. Bone formation and resorption markers are investigated as well as bone regulating systems. T1D is found to have lower osteocalcin and CTX, while osteocalcin and tartrate-resistant acid are found to be lower in T2D, and sclerostin is increased and collagen turnover markers altered. Other bone turnover markers do not seem to be altered in T1D or T2D. A major problem is the lack of histomorphometric studies in humans linking changes in turnover markers to actual changes in bone turnover and further research is needed to strengthen this link. PMID:23482417
Age determination in manatees using growth-layer-group counts in bone
Marmontel, M.; O'Shea, T.J.; Kochman, H.I.; Humphrey, S.R.
1996-01-01
Growth layers were observed in histological preparations of bones of known-age, known minimum-age, and tetracycline-marked free-ranging and captive Florida manatees (Trichechus manatus latirostris), substantiating earlier preliminary findings of other studies. Detailed analysis of 17 new case histories showed that growth-layer group (GLG) counts in the periotic bone were consistent with known age, or time since tetracycline administration, but were less reliable in other bones. GLG counts were also made in periotic bones of 1,196 Florida manatees of unknown age found dead from 1974 through 1991. These counts were conducted in order to assess variability and to determine relationships among estimated age, size, sex, and degree of bone resorption. Resorption can interfere with accuracy of GLG counts. This effect does not occur until ages greater than about 15 yr and body lengths greater than 300 cm are attained. GLGs were also observed in periotic bones of Antillean manatees (Trichechus manatus manatus) but were not validated against known-age specimens. Use of GLG counts in the periotic bone is suitable for application to studies of population dynamics and other age-related aspects of manatee biology.
Long-term therapy in COPD: any evidence of adverse effect on bone?
Langhammer, Arnulf; Forsmo, Siri; Syversen, Unni
2009-01-01
Patients with COPD have high risk for osteoporosis and fractures. Hip and vertebral fractures might impair mobility, and vertebral fractures further reduce lung function. This review discusses the evidence of bone loss due to medical treatment opposed to disease severity and risk factors for COPD, and therapeutic options for the prevention and treatment of osteoporosis in these patients. A review of the English-language literature was conducted using the MEDLINE database until June 2009. Currently used bronchodilators probably lack adverse effect on bone. Oral corticosteroids (OCS) increase bone resorption and decrease bone formation in a dose response relationship, but the fracture risk is increased more than reflected by bone densitometry. Inhaled corticosteroids (ICS) have been associated with both increased bone loss and fracture risk. This might be a result of confounding by disease severity, but high doses of ICS have similar effects as equipotent doses of OCS. The life-style factors should be modified, use of regular OCS avoided and use of ICS restricted to those with evidenced effect and probably kept at moderate doses. The health care should actively reveal risk factors, include bone densitometry in fracture risk evaluation, and give adequate prevention and treatment for osteoporosis. PMID:19888355
Ben Kahla, Rabeb; Barkaoui, Abdelwahed; Merzouki, Tarek
2018-08-01
Bone tissue is a living composite material, providing mechanical and homeostatic functions, and able to constantly adapt its microstructure to changes in long term loading. This adaptation is conducted by a physiological process, known as "bone remodeling". This latter is manifested by interactions between osteoclasts and osteoblasts, and can be influenced by many local factors, via effects on bone cell differentiation and proliferation. In the current work, age and gender effects on damage rate evolution, throughout life, have been investigated using a mechanobiological finite element modeling. To achieve the aim, a mathematical model has been developed, coupling both cell activities and mechanical behavior of trabecular bone, under cyclic loadings. A series of computational simulations (ABAQUS/UMAT) has been performed on a 3D human proximal femur, allowing to investigate the effects of mechanical and biological parameters on mechanical strength of trabecular bone, in order to evaluate the fracture risk resulting from fatigue damage. The obtained results revealed that mechanical stimulus amplitude affects bone resorption and formation rates, and indicated that age and gender are major factors in bone response to the applied loadings. Copyright © 2018 Elsevier Ltd. All rights reserved.
Mean alveolar bone crest height decrement in subjects with an osteoporosis risk
NASA Astrophysics Data System (ADS)
Effrianto, H. P. S.; Priminiarti, M.; Makes, B. N.
2017-08-01
People 40-75 years of age have an osteoporosis risk that may be signaled by a decrease in alveolar bone crest height. Thus, this measure can be used as an indicator of osteoporosis risk. This study was conducted to provide a database of decreased alveolar bone crest heights in ages at risk of osteoporosis by using intraoral radiographs. Forty periapical radiographs of the posterior region of tooth 36 (or 46) were measured twice at different times by two different observers. The interproximal decrease in alveolar bone crest height was measured from the alveolar bone crest to the cementoenamel junction (CEJ) for each tooth on the mesial and distal sides using a ruler (mm). The mean decrease in alveolar bone crest height in at-risk ages for osteoporosis was 3.50±1.085 mm, with a mean of 3.15±0.864 mm for those 45-59 years of age, and 3.90±1.156 mm for those aged 60-75 years. The mean decrease in alveolar bone crest height in people 60-75 years of age was larger than in people 45-59 years of age. There was a medium correlation between age and decreased alveolar bone crest height.
Li, Chaodi; Kotha, Shiva; Mason, James
2003-01-01
The exothermic polymerization of bone cement may induce thermal necrosis of bone in cemented hip arthroplasty. A finite element formulation was developed to predict the evolution of the temperature with time in the cemented hip replacement system. The developed method is capable of taking into account both the chemical reaction that generates heat during bone cement polymerization (through a kinetic model) and the physical process of heat conduction (with an energy balance equation). The possibility of thermal necrosis of bone was then evaluated based on the temperature history in the bone and an appropriate damage criterion. Specifically, we evaluate the role of implant materials and designs on the thermal response of the system. Results indicated that the peak temperature at the bone/cement interface with a metal prosthesis was lower than that with a polymer or a composite prosthesis in hip replacement systems. Necrosis of bone was predicted to occur with a polymer or a composite prosthesis while no necrosis was predicted with a metal prosthesis in the simulated conditions. When reinforcing osteoporotic hips with injected bone cement in the cancellous core of the femur, the volume of bone cement implanted is increased which may increase the risk of thermal necrosis of bone. We evaluate whether this risk can be decreased through the use of an insulator to contain the bone cement. No thermal necrosis of bone was predicted with a 3 mm thick polyurethane insulator while more damage is predicted for the use of bone cement without the insulator. This method provides a numerical tool for the quantitative simulation of the thermal behavior of bone-cement-prosthesis designs and for examining and refining new designs computationally.
Hearing status in patients with rheumatoid arthritis.
Ahmadzadeh, A; Daraei, M; Jalessi, M; Peyvandi, A A; Amini, E; Ranjbar, L A; Daneshi, A
2017-10-01
Rheumatoid arthritis is thought to induce conductive hearing loss and/or sensorineural hearing loss. This study evaluated the function of the middle ear and cochlea, and the related factors. Pure tone audiometry, speech reception thresholds, speech discrimination scores, tympanometry, acoustic reflexes, and distortion product otoacoustic emissions were assessed in rheumatoid arthritis patients and healthy volunteers. Pure tone audiometry results revealed a higher bone conduction threshold in the rheumatoid arthritis group, but there was no significant difference when evaluated according to the sensorineural hearing loss definition. Distortion product otoacoustic emissions related prevalence of conductive or mixed hearing loss, tympanometry values, acoustic reflexes, and speech discrimination scores were not significantly different between the two groups. Sensorineural hearing loss was significantly more prevalent in patients who used azathioprine, cyclosporine and etanercept. Higher bone conduction thresholds in some frequencies were detected in rheumatoid arthritis patients that were not clinically significant. Sensorineural hearing loss is significantly more prevalent in refractory rheumatoid arthritis patients.
Wise, Sean R; LaRouere, Jacqueline S; Bojrab, Dennis I; LaRouere, Michael J
2018-04-01
To assess differences in the incidence, type, and management of complications encountered with implantation of percutaneous osseointegrated bone conduction devices when using a 9 mm abutment versus 6 mm abutment at initial implantation. Retrospective cohort study. One hundred thirty consecutive patients between January 2010 and December 2011 underwent single-stage percutaneous osseointegrated bone conduction device implantation using a 9 or 6 mm abutment. Clinical outcomes assessed for the two groups included the incidence, type, and management of postoperative complications. Abutment size, age, sex, indication for surgery, implant device type, duration of follow-up, and patient comorbidities were evaluated as potential factors affecting outcomes. Average duration of follow-up was 16 months (range 6-29 mo). Postoperative complications occurred in 38 (29.2%) patients. Twenty-four (18.4%) patients experienced minor complications requiring simple, local care; eight (6.1%) patients required in-office procedural intervention; and six (4.6%) patients required revision surgery in the operating room. Implant extrusion occurred in three (2.3%) patients. Eleven (8.5%) patients required placement of a longer abutment. Patients receiving the 6 mm abutment at initial surgery were significantly more likely to encounter a complication requiring in-office procedural intervention or revision surgery (p = 0.001). Minor complications after implantation of percutaneous osseointegrated bone conduction devices are common. The vast majority of these complications are due to localized skin reactions, most of which are readily addressed through local care. Patients receiving the 9 mm abutment during initial implantation are significantly less likely to require in-office procedural intervention or revision surgery postoperatively as compared with those receiving the shorter, 6 mm abutment.
Using a virtual reality temporal bone simulator to assess otolaryngology trainees.
Zirkle, Molly; Roberson, David W; Leuwer, Rudolf; Dubrowski, Adam
2007-02-01
The objective of this study is to determine the feasibility of computerized evaluation of resident performance using hand motion analysis on a virtual reality temporal bone (VR TB) simulator. We hypothesized that both computerized analysis and expert ratings would discriminate the performance of novices from experienced trainees. We also hypothesized that performance on the virtual reality temporal bone simulator (VR TB) would differentiate based on previous drilling experience. The authors conducted a randomized, blind assessment study. Nineteen volunteers from the Otolaryngology-Head and Neck Surgery training program at the University of Toronto drilled both a cadaveric TB and a simulated VR TB. Expert reviewers were asked to assess operative readiness of the trainee based on a blind video review of their performance. Computerized hand motion analysis of each participant's performance was conducted. Expert raters were able to discriminate novices from experienced trainees (P < .05) on cadaveric temporal bones, and there was a trend toward discrimination on VR TB performance. Hand motion analysis showed that experienced trainees had better movement economy than novices (P < .05) on the VR TB. Performance, as measured by hand motion analysis on the VR TB simulator, reflects trainees' previous drilling experience. This study suggests that otolaryngology trainees could accomplish initial temporal bone training on a VR TB simulator, which can provide feedback to the trainee, and may reduce the need for constant faculty supervision and evaluation.
Giddings, V L; Kurtz, S M; Jewett, C W; Foulds, J R; Edidin, A A
2001-07-01
Polymethylmethacrylate (PMMA) bone cement is used in total joint replacements to anchor implants to the underlying bone. Establishing and maintaining the integrity of bone cement is thus of critical importance to the long-term outcome of joint replacement surgery. The goal of the present study was to evaluate the suitability of a novel testing technique, the small punch or miniaturized disk bend test, to characterize the elastic modulus and fracture behavior of PMMA. We investigated the hypothesis that the crack initiation behavior of PMMA during the small punch test was sensitive to the test temperature. Miniature disk-shaped specimens, 0.5 mm thick and 6.4 mm in diameter, were prepared from PMMA and Simplex-P bone cement according to manufacturers' instructions. Testing was conducted at ambient and body temperatures, and the effect of test temperature on the elastic modulus and fracture behavior was statistically evaluated using analysis of variance. For both PMMA materials, the test temperature had a significant effect on elastic modulus and crack initiation behavior. At body temperature, the specimens exhibited "ductile" crack initiation, whereas at room temperature "brittle" crack initiation was observed. The small punch test was found to be a sensitive and repeatable test method for evaluating the mechanical behavior of PMMA. In light of the results of this study, future small punch testing should be conducted at body temperature.
Changes to Hearing Levels Over the First Year After Stapes Surgery: An Analysis of 139 Patients.
Nash, Robert; Patel, Bhavesh; Lavy, Jeremy
2018-06-15
Stapes surgery is performed for hearing restoration in patients with otosclerosis. Results from stapes surgery are good, although a small proportion will have a persistent conductive hearing loss and will consider revision surgery. The timing of such surgery depends on expected changes to hearing thresholds during the postoperative period. We performed a retrospective case series analysis of a database of outcomes from stapes surgery performed between July 26, 2013 and March 11, 2016 at one center. Hearing outcomes over the year subsequent to surgery were recorded. There was a significant improvement in hearing outcomes between the postoperative visit at 6 weeks (mean air-bone gap 6.0 dB) and the hearing outcome at 6 months (mean air-bone gap 3.3 dB) (p < 0.01). This improvement was maintained at 12 months (mean air-bone gap 3.1 dB), although there were individual patients whose hearing outcome improved or deteriorated during this period. Improvements in air conduction thresholds mirrored improvements in air-bone gap measurements. Patients with an initial suboptimal or poor result after stapes surgery may observed improvement in their hearing thresholds in the year after surgery. These patients may have large preoperative air-bone gaps, and have a trend to have obliterated footplates. Revision surgery should not be considered until at least 6 months after primary surgery.
Effect of simvastatin versus low level laser therapy (LLLT) on bone regeneration in rabbit's tibia
NASA Astrophysics Data System (ADS)
Gheith, Mostafa E.; Khairy, Maggie A.
2014-02-01
Simvastatin is a cholesterol lowering drug which proved effective on promoting bone healing. Recently low level laser therapy (LLLT) proved its effect as a biostimulator promoting bone regeneration. This study aims to compare the effect of both Simvastatin versus low level laser on bone healing in surgically created bone defects in rabbit's tibia. Material and methods: The study included 12 New Zealand white rabbits. Three successive 3mm defects were created in rabbits tibia first defect was left as control, second defect was filled with Simvastatin while the third defect was acted on with Low Level Laser (optical fiber 320micrometer). Rabbits were sacrificed after 48 hours, 1 week and 2 weeks intervals. Histopathology was conducted on the three defects Results: The histopathologic studies showed that the bony defects treated with the Low Level Laser showed superior healing patterns and bone regeneration than those treated with Simvastatin. While the control defect showed the least healing pattern.
Papasozomenou, Panayiota; Athanasiadis, Apostolos P; Zafrakas, Menelaos; Panteris, Eleftherios; Loufopoulos, Aristoteles; Assimakopoulos, Efstratios; Tarlatzis, Basil C
2016-03-01
To compare normal ranges of ultrasonographically measured fetal nasal bone length in the second trimester between different ethnic groups. A prospective, non-interventional study in order to establish normal ranges of fetal nasal bone length in the second trimester in a Greek population was conducted in 1220 singleton fetuses between 18 completed weeks and 23 weeks and 6 days of gestation. A literature search followed in order to identify similar studies in different population groups. Fetal nasal bone length mean values and percentiles from different population groups were compared. Analysis of measurements in the Greek population showed a linear association, i.e., increasing nasal bone length with increasing gestational age from 5.73 mm at 18 weeks to 7.63 mm at 23 weeks. Eleven studies establishing normal ranges of fetal nasal bone length in the second trimester were identified. Comparison of fetal nasal bone length mean values between the 12 population groups showed statistically significant differences (P<0.0001). Normal ranges of fetal nasal bone length in the second trimester vary significantly between different ethnic groups. Hence, distinct ethnic nomograms of fetal nasal bone length in the second trimester should be used in a given population rather than an international model.
Song, Kedong; Wang, Hai; Zhang, Bowen; Lim, Mayasari; Liu, Yingchao; Liu, Tianqing
2013-03-01
In this paper, two-dimensional flow field simulation was conducted to determine shear stresses and velocity profiles for bone tissue engineering in a rotating wall vessel bioreactor (RWVB). In addition, in vitro three-dimensional fabrication of tissue-engineered bones was carried out in optimized bioreactor conditions, and in vivo implantation using fabricated bones was performed for segmental bone defects of Zelanian rabbits. The distribution of dynamic pressure, total pressure, shear stress, and velocity within the culture chamber was calculated for different scaffold locations. According to the simulation results, the dynamic pressure, velocity, and shear stress around the surface of cell-scaffold construction periodically changed at different locations of the RWVB, which could result in periodical stress stimulation for fabricated tissue constructs. However, overall shear stresses were relatively low, and the fluid velocities were uniform in the bioreactor. Our in vitro experiments showed that the number of cells cultured in the RWVB was five times higher than those cultured in a T-flask. The tissue-engineered bones grew very well in the RWVB. This study demonstrates that stress stimulation in an RWVB can be beneficial for cell/bio-derived bone constructs fabricated in an RWVB, with an application for repairing segmental bone defects.
Anavi, Yakir; Avishai, Gal; Calderon, Shlomo; Allon, Dror M
2011-08-01
This study was conducted to establish the efficiency of microcomputerized tomography (micro-CT) in detection of trabecular bone remodeling of onlay grafts in a rodent calvaria model, and to compare bone remodeling after onlay grafts with beta-tricalcium phosphate (TCP) or coral calcium carbonate. Ten rats received calvarial onlay blocks-5 with TCP and 5 with coral calcium carbonate. The grafts were fixed with a titanium miniplate screw and were covered with a collagen resorbable membrane. Three months after surgery, the calvaria were segmented, and a serial 3-dimensional micro-CT scan of the calvarium and grafted bone block at 16-micrometer resolution was performed. Image analysis software was used to calculate the percentage of newly formed bone from the total block size. Newly formed bone was present adjacent to the calvarium and screw in all specimens. The mean area of newly formed bone of the total block size ranged from 34.67%-38.34% in the TCP blocks, and from 32.41%-34.72% in the coral blocks. In the TCP blocks, bone remodeling was found to be slightly higher than in the coral blocks. Micro-CT appears to be a precise, reproducible, specimen-nondestructive method of analysis of bone formation in onlay block grafts to rat calvaria.
NASA Astrophysics Data System (ADS)
Stratis, Andreas; Zhang, Guozhi; Jacobs, Reinhilde; Bogaerts, Ria; Bosmans, Hilde
2015-03-01
The aim of this work was to investigate the influence of backscatter radiation from the orbital bone and the intraorbital fat on the eye lens dose in the dental CBCT energy range. To this end we conducted three different yet interrelated studies; A preliminary simulation study was conducted to examine the impact of a bony layer situated underneath a soft tissue layer on the amount of backscatter radiation. We compared the Percentage Depth Dose (PDD) curves in soft tissue with and without the bone layer and we estimated the depth in tissue where the decrease in backscatter caused by the presence of the bone is noticeable. In a supplementary study, an eye voxel phantom was designed with the DOSxyznrc code. Simulations were performed exposing the phantom at different x-ray energies sequentially in air, in fat tissue and in realistic anatomy with the incident beam perpendicular to the phantom. Finally, a virtual head phantom was implemented into a validated hybrid Monte Carlo (MC) framework to simulate a large Field of View protocol of a real CBCT scanner and examine the influence of scattered dose to the eye lens during the whole rotation of the paired tube-detector system. The results indicated an increase in the dose to the lens due to the fatty tissue in the surrounding anatomy. There is a noticeable dose reduction close to the bone-tissue interface which weakens with increasing distance from the interface, such that the impact of the orbital bone in the eye lens dose becomes small.
Tournis, S; Michopoulou, E; Fatouros, I G; Paspati, I; Michalopoulou, M; Raptou, P; Leontsini, D; Avloniti, A; Krekoukia, M; Zouvelou, V; Galanos, A; Aggelousis, N; Kambas, A; Douroudos, I; Lyritis, G P; Taxildaris, K; Pappaioannou, N
2010-06-01
Weight-bearing exercise during growth exerts positive effects on the skeleton. Our objective was to test the hypothesis that long-term elite rhythmic gymnastics exerts positive effects on volumetric bone mineral density and geometry and to determine whether exercise-induced bone adaptation is associated with increased periosteal bone formation or medullary contraction using tibial peripheral quantitative computed tomography and bone turnover markers. We conducted a cross-sectional study at a tertiary center. We studied 26 elite premenarcheal female rhythmic gymnasts (RG) and 23 female controls, aged 9-13 yr. We measured bone age, volumetric bone mineral density, bone mineral content (BMC), cortical thickness, cortical and trabecular area, and polar stress strength index (SSIp) by peripheral quantitative computed tomography of the left tibia proximal to the distal metaphysis (trabecular) at 14, 38 (cortical), and 66% (muscle mass) from the distal end and bone turnover markers. The two groups were comparable according to height and chronological and bone age. After weight adjustment, cortical BMC, area, and thickness at 38% were significantly higher in RG (P < 0.005-0.001). Periosteal circumference, SSIp, and muscle area were higher in RG (P < 0.01-0.001). Muscle area was significantly associated with cortical BMC, area, and SSIp, whereas years of training showed positive association with cortical BMC, area, and thickness independent of chronological age. RG in premenarcheal girls may induce positive adaptations on the skeleton, especially in cortical bone. Increased duration of exercise is associated with a positive response of bone geometry.
Guiding bone formation in a critical-sized defect and assessments.
Jannetty, Joseph; Kolb, Eric; Boxberger, John; Deslauriers, Richard; Ganey, Timothy
2010-11-01
Development of alternatives to autologous bone has been served by many hypotheses and developments. Favorable properties of synthetic materials used currently in bone grafting support tissue differentiation without shielding capacity for integrated modeling. Ideally, new materials provide tissue compatibility and minimize patient morbidity and are attractive because of potential for in situ delivery, isothermal polymerization, porous structure, and nontoxic chemistry. For application in cranial bone, ability for materials to be laid adjacent to brain and offer postsurgical protection without neural risk is a critical asset. Kryptonite Bone Cement (KBC) meets the property criteria for cranial bone repair with regard to adhesive, conductive, and biologic transparency and US Food and Drug Administration approval for cranial bone void repair. To better delineate the morphology effective in cranial bone repair, a comparison was made between KBC and BoneSource, another material approved for the same indication. After Institutional Animal Care and Use Committee approval, the study assessed 24 rabbits, each with 2 separate cranial implants, to evaluate integration and absorption of the biomaterial at defined time points of 12, 18, 24, and 36 weeks. The 36-week assessment demonstrated near-complete resorption/integration of the BoneSource graft material. Bone was present within the biomaterial as well as independent of contact. The KBC was similarly integrated throughout the mass of the material, and new bone was in contact with the grafting material and also seen as separate islands of new bone. The bone demonstrated lamellar bone architecture with clear trabecular morphology. At higher magnification, the bone architecture can be clearly delineated, and comparison between the graft fillers is not obvious relative to the bone that has formed. Despite microscopic similarities, the most striking difference was maintenance of scaffold anatomy during bone regeneration. Kryptonite Bone Cement meets the criteria described in the introduction; properties of biologic transparency, osteoconductivity, and ergonomic utility offer other potential uses in bone repair. Key tenets of bone tissue regeneration observed in this analysis included adequate cell differentiation and tissue support. Bone that formed demonstrated lamellar rather than woven bone to suggest response to loading strain rather than merely biochemical precipitation. Over the 36-week study, the graft showed progressive bioabsorbable potential with calibrated replacement.
Bergin, M J; Bird, P A; Vlajkovic, S M; Thorne, P R
2015-12-01
Permanent high frequency (>4 kHz) sensorineural hearing loss following middle ear surgery occurs in up to 25% of patients. The aetiology of this loss is poorly understood and may involve transmission of supra-physiological forces down the ossicular chain to the cochlea. Investigating the mechanisms of this injury using animal models is challenging, as evaluating cochlear function with evoked potentials is confounded when ossicular manipulation disrupts the normal air conduction (AC) pathway. Bone conduction (BC) using clinical bone vibrators in small animals is limited by poor transducer output at high frequencies sensitive to trauma. The objectives of the present study were firstly to evaluate a novel high frequency bone conduction transducer with evoked auditory potentials in a guinea pig model, and secondly to use this model to investigate the impact of middle ear surgical manipulation on cochlear function. We modified a magnetostrictive device as a high frequency BC transducer and evaluated its performance by comparison with a calibrated AC transducer at frequencies up to 32 kHz using the auditory brainstem response (ABR), compound action potential (CAP) and summating potential (SP). To mimic a middle ear traumatising stimulus, a rotating bur was brought in to contact with the incudomalleal complex and the effect on evoked cochlear potentials was observed. BC-evoked potentials followed the same input-output function pattern as AC potentials for all ABR frequencies. Deterioration in CAP and SP thresholds was observed after ossicular manipulation. It is possible to use high frequency BC to evoke responses from the injury sensitive basal region of the cochlea and so not rely on AC with the potential confounder of conductive hearing loss. Ongoing research explores how these findings evolve over time, and ways in which injury may be reduced and the cochlea protected during middle ear surgery. Copyright © 2015 Elsevier B.V. All rights reserved.
Conductive Hearing Loss Caused by Third-Window Lesions of the Inner Ear
Merchant, Saumil N.; Rosowski, John J.
2008-01-01
Background Various authors have described conductive hearing loss (CHL), defined as an air-bone gap on audiometry, in patients without obvious middle ear pathologic findings. Recent investigations have suggested that many of these cases are due to disorders of the inner ear, resulting in pathologic third windows. Objective To provide an overview of lesions of the inner ear resulting in a CHL due to a third-window mechanism. The mechanism of the CHL is explained along with a classification scheme for these disorders. We also discuss methods for diagnosis of these disorders. Data Sources The data were compiled from a review of the literature and recent published research on middle and inner ear mechanics from our laboratory. Conclusion A number of disparate disorders affecting the labyrinth can produce CHL by acting as a pathologic third window in the inner ear. The common denominator is that these conditions result in a mobile window on the scala vestibuli side of the cochlear partition. The CHL results by the dual mechanism of worsening of air conduction thresholds and improvement of bone conduction thresholds. Such lesions may be anatomically discrete or diffuse. Anatomically discrete lesions may be classified by location: semicircular canals (superior, lateral, or posterior canal dehiscence), bony vestibule (large vestibular aqueduct syndrome, other inner ear malformations), or the cochlea (carotid-cochlear dehiscence, X-linked deafness with stapes gusher, etc.). An example of an anatomically diffuse lesion is Paget disease, which may behave as a distributed or diffuse third window. Third-window lesions should be considered in the differential diagnosis of CHL in patients with an intact tympanic membrane and an aerated, otherwise healthy, middle ear. Clues to suspect such a lesion include a low-frequency air-bone gap with supranormal thresholds for bone conduction, and presence of acoustic reflexes, vestibular evoked myogenic responses, or otoacoustic emission responses despite the CHL. Imaging studies can help confirm the diagnosis. PMID:18223508
USDA-ARS?s Scientific Manuscript database
A cross-sectional analysis of bone mineralization during the first year of life of infants (N=107) exclusively fed breast-milk (BF), milk-based formula (MF), or soy-based formula (SF) for at least the first 4 months of life was conducted. Participants were part of the longitudinal Beginnings study. ...
A 14-day ground-based hypokinesia study in nonhuman primates: A compilation of results
NASA Technical Reports Server (NTRS)
Kazarian, L.; Cann, C. E.; Parfitt, M.; Simmons, D.; Morey-Holton, E.
1981-01-01
A 14 day ground based hypokinesia study with rhesus monkeys was conducted to determine if a spaceflight of similar duration might affect bone remodeling and calcium homeostatis. The monkeys were placed in total body casts and sacrificed either immediately upon decasting or 14 days after decasting. Changes in vertebral strength were noted and further deterioration of bone strength continued during the recovery phase. Resorption in the vertebrae increased dramatically while formation decreased. Cortical bone formation was impaired in the long bones. The immobilized animals showed a progressive decrease in total serum calcium which rebounded upon remobilization. Most mandibular parameters remained unchanged during casting except for retardation of osteon birth or maturation rate and density distribution of matrix and mineral moieties.
Kawada, Etsuo; Moridaira, Kazuaki; Itoh, Katsuhiko; Hoshino, Ayami; Tamura, Jun'ichi; Morita, Toyoho
2006-01-01
Although the effect of copper on bone has been tested in animals and healthy subjects, no studies concerning the effect of copper supplementation on bone metabolism in patients with copper deficiency have been reported because of the rarity of these patients. This study was conducted to investigate the effect of copper supplementation on bone metabolism in copper-deficient patients. This study included 10 patients (83.7 +/- 8.3 years) with dietary copper deficiency under long-term bed rest for more than 12 months. They had their diets supplemented with copper sulfate (3 mg/day) over 12 weeks in addition to their diet of only one kind of enteral food with a low concentration of copper. Serum copper and ceruloplasmin, urinary deoxypyridinoline (DPD) and collagen-type 1 N-telopeptide (NTX) (biomarkers of bone resorption), serum osteocalcin (OC) and bone-specific alkaline phosphatase (Bone ALP) (biomarkers of bone formation) were analyzed at baseline, 4 and 12 weeks after copper supplementation. DPD and NTX excretion were significantly increased 4 weeks after copper supplementation (p = 0.009 and p = 0.013, respectively). Serum bone ALP and OC were not significantly changed 12 weeks after copper supplementation (p = 0.051 and p = 0.594). In patients with nutritional copper deficiency, bone resorption markers are increased with copper supplementation. Copyright (c) 2006 S. Karger AG, Basel.
Nissan, Joseph; Marilena, Vered; Gross, Ora; Mardinger, Ofer; Chaushu, Gavriel
2011-06-15
The present study was conducted to histologically and histomorphometrically evaluate the application of cancellous bone-block allografts for the augmentation of the posterior atrophic mandible. Twenty-four consecutive patients underwent augmentation with cancellous bone-block allografts in the posterior mandible. A bony deficiency of at least 3 mm horizontally and/or vertically according to CT para-axial reconstruction served as inclusion criteria. Following 6 months, 85 implants were placed and a cylindrical sample core was collected. All specimens were prepared for histological and histomorphometrical examination. Implant survival rate was 95.3%. Follow-up ranged 12-66 months (mean 43 ± 19 months). The mean newly formed bone was 44 ± 28%, that of the residual cancellous bone-block allograft 29 ± 24%, and of the marrow and connective tissue 27 ± 21%. Statistically significant histomorphometric differences regarding newly formed bone (69% vs. 31%, p = 0.05) were found between younger (< 45 years) and older (> 45 years) patients, respectively. Histomorphometric differences regarding residual cancellous bone-block allograft (17% vs. 35%) and of the marrow and connective tissue (14% vs. 34%) were not statistically significant. Cancellous bone-block allograft is biocompatible and osteoconductive, permitting new bone formation following augmentation of extremely atrophic posterior mandible with a two-stage implant placement procedure. New bone formation was age-dependent. Copyright © 2011 Wiley Periodicals, Inc.
Chavda, Suraj; Levin, Liran
2018-02-01
Alveolar ridge augmentation can be completed with various types of bone augmentation materials (autogenous, allograft, xenograft, and alloplast). Currently, autogenous bone is labeled as the "gold standard" because of faster healing times and integration between native and foreign bone. No systematic review has currently determined whether there is a difference in implant success between various bone augmentation materials. The purpose of this article was to systematically review comparative human studies of vertical and horizontal alveolar ridge augmentation comparing different types of bone graft materials (autogenous, allograft, xenograft, and alloplast). A MEDLINE search was conducted under the 3 search concepts of bone augmentation, dental implants, and alveolar ridge augmentation. Studies pertaining to socket grafts or sinus lifts were excluded. Case reports, small case series, and review papers were excluded. A bias assessment tool was applied to the final articles. Overall, 219 articles resulted from the initial search, and 9 articles were included for final analysis. There were no discernible differences in implant success between bone augmentation materials. Generally, patients preferred nonautogenous bone sources as there were fewer hospital days, less pain, and better recovery time. Two articles had industrial support; however, conclusions of whether that support influenced the outcomes could not be determined. Future comparative studies should compare nonautogenous bone sources and have longer follow-up times.
Zhang, Yanli; Huang, Hui; Gong, Biao; Duan, Leizhen; Sun, Long; He, Tongkun; Cheng, Xuemin; Li, Zhiyuan; Cui, Liuxin; Ba, Yue
2017-06-19
Although increasing evidence suggests that estrogen receptor α (ESRα) genetic variation could modify bone damage caused by environmental fluoride exposure, little is known about epigenetic mechanisms in relation to bone changes. A case-control study was conducted among farmers aged 18-55 years in Henan Province, China. X-ray was used to detect bone changes. Methylation status was determined by methylation-specific PCR. Genotypes were identified by Taqman probe and real-time PCR. In this study, we found that methylation status in the promoter region of the ESRα gene was lower in bone change cases than that in controls, which was only observed in male farmers after stratification by gender. Furthermore, methylation level was negatively associated with the urinary fluoride concentration in male farmers. No significant association was found between the distribution of ESRα rs2941740 genotypes and the risk of bone changes. Multivariate logistic regression analysis showed that after adjusting for age and gender, increased serum calcium and methylation status were protective factors for bone changes. No interaction effect was observed between fluoride exposure and ESRα rs2941740 polymorphism on bone changes. In conclusion, the current work suggests that bone changes are associated with methylation status, which might be modulated by fluoride exposure in male farmers. Methylation status and bone changes were not modified by ESRα gene rs2941740 polymorphism in the promoter region.
Thomeer, Henricus; Kunst, Henricus; Verbist, Berit; Cremers, Cor
2012-07-01
To describe the audiometric results in a consecutive series of patients with congenital ossicular aplasia (Class 4a) or dysplasia of the oval and/or round window (Class 4b), which might include a possible anomalous course of the facial nerve. Retrospective chart study. Tertiary referral center. A tertiary referral center study with a total of 14 patients with congenital minor ear anomalies as part of a consecutive series (n = 89) who underwent exploratory tympanotomies (15 ears). Audiometric results. In 8 of 15 ears, ossicular reconstruction was attempted. In the short term (1 mo), there was a serviceable hearing outcome (air-bone gap closure to within 25 dB) in 4 ears. However, the long-term results showed deterioration because of an increased air-bone gap in all but 1 ear. No facial nerve lesion was observed postoperatively. Congenital dysplasia or aplasia of the oval and/or round window is an uncommon congenital minor ear anomaly. Classical microsurgical opportunities are rare in this group of anomalies. Newer options for hearing rehabilitation, such as the osseointegrated passive bone conduction devices, have become viable alternatives for conventional air conduction hearing devices. In the near future, upcoming active bone conduction devices might become the most preferred surgical option. In cases in which the facial nerve is only partially overlying the oval window, a type of malleostapedotomy procedure might result in a serviceable postoperative hearing level.
Bordbar, Mohammad Reza; Haghpanah, Sezaneh; Dabbaghmanesh, Mohammad Hossein; Omrani, Gholamhossein Ranjbar; Saki, Forough
2016-12-01
Acute leukemia is the most common malignancy in children. We showed that low bone mass is prevalent among children with leukemia, especially in femur. Serum calcium, exercise, chemotherapy protocol, and radiotherapy are the main contributing factors. We suggest that early diagnosis and treatment of this problem could improve bone health in them. Acute leukemia is the most common malignancy in children and has been reported to be associated with low bone mass. Due to lack of sufficient data about the bone mineral density of children with leukemia in the Middle East, and inconsistencies between possible associated factors contributing to decreasing bone density in these children, we aimed to conduct a case-control study in Iran. This case-control study was conducted on 60 children with acute leukemia and 60 age- and sex-matched healthy controls. Anthropometric data, sun exposure, puberty, physical activity, and mineral biochemical parameters were assessed. Bone mineral density (BMD) was measured by dual-energy X-ray absorptiometry (DEXA). Data analysis was done by SPSS software v. 21. Serum calcium was higher in the control group (P = 0.012) while serum phosphorous, alkaline phosphatase, and serum 25(OH)D 3 were higher in children with leukemia with P values of 0.04, 0.002, and 0.036, respectively. Sun exposure and physical activity were more in healthy controls (P values <0.001 and 0.003, respectively). Prevalence of vitamin D deficiency in case and control groups was 57.8 and 79.4 %, respectively. This prevalence was higher in healthy controls (P value = 0.007). Both lumbar and femoral neck bone mineral apparent density (BMAD) were higher in the control group (P value <0.001). Serum calcium, physical activity, and radiotherapy were the most relevant factors associated with lumbar BMAD. Femoral neck BMAD was associated with chemotherapy protocol. Low bone mass for chronological age is prevalent among children with leukemia, especially in the femoral neck. Serum calcium, physical activity, chemotherapy protocol, and radiotherapy are the main contributing factors.
Pashkova, I G; Gaivoronskiy, I V; Aleksina, L A; Kornev, M A
2014-01-01
Comprehensive anthropometric and densitometric study using the dual x-ray absorptiometry was conducted to determine the relationship between the mineral density of bone tissue and somatotype in 360 women aged 20 to 87 years, permanently residing in the Republic of Karelia. Significant direct correlation was detected between the somatotype and the amount of mineral substances in the vertebrae, bone mineral density and the area of the lumbar vertebrae. Bone mineral density level of the lumbar vertebrae was higher in women with europlastic and athletic somatotypes, which were characterized by high values of body mass and length, body muscle and fat mass. Low values of bone mineral density of vertebrae were identified in women belonging to subathletic, mesoplastic and stenoplastic somatotypes. The risk of developing osteopenia and osteoporosis is increased in women with low body muscle mass.
Bioactive glass in cavitary bone defects: a comparative experimental study in rabbits
Camargo, André Ferrari de França; Baptista, André Mathias; Natalino, Renato; de Camargo, Olavo Pires
2015-01-01
OBJECTIVES: To compare bioactive glass and autograft regarding their histomorphometric characteristics. METHODS: The authors conducted a prospective case-control experimental study on animals in order to compare the histomorphometric characteristics of bioactive glass versus autograft. Eight rabbits underwent surgery in which a cavitary defect was created in both proximal femurs. One side was filled with bioactive glass granules and the other, with autograft grafted from the contralateral side. The sides were randomized. Fourteen days after surgery, the animals were euthanized. RESULTS: Histologic analysis revealed that bone neoformation was equivalent among the two groups and the osteoblasts cell-count was higher in the femurs treated with bioactive glass. The osteocytes cell-count, however, was lower. The similarity in bone formation between both groups was consistent to literature findings. CONCLUSION: Bioactive glass is similar to autograft regarding bone neoformation in this animal model of cavitary bone defects. Level of Evidence III, Case-Control Study. PMID:26327802
Atmospheric pressure as a force that fills developing bones with marrow and air.
Kurbel, Sven; Radić, Radivoje; Kristek, Branka; Ivezić, Zdravko; Selthofer, Robert; Kotromanović, Zeljko
2004-01-01
Many theories try to explain the existence and function of paranasal sinuses. This paper is an attempt to correlate process of paranasal sinus development in human with bone pneumatization processes in animals. It is here proposed that this mechanism starts in utero and continues after birth. During endochondral development, a solid hyaline cartilage model transforms into long bones. Central chondrocytes hypertrophy and their lacunae become confluent. Dissolving of the cartilage intercellular matrix forms a primitive marrow cavity. It is soon invaded by the periostal bud. Once circulation is established in the developing bone, the dissolved hyaline matrix can be slowly washed away from the bone cavity. Circulation in the bone cavity can develop slight subatmospheric pressures, similar to negative interstitial pressures in subcutaneous tissues. The amniotic fluid conducts atmospheric pressure to the fetal body. The pressure is trying to fill enlarging bone cavities through the existing vascular openings, or to create new openings. Bone walls of developing paranasal bones are to weak to resist the pressure gradient on their walls. New openings form on the weakest spots allowing airway mucosa to form initial paranasal sinuses. The enlarging cavities of long bones that are remote from the body surface and airway also develop a slightly subatmospheric pressure that fills them with cellular elements. These elements enter bone through the feeding vessels and form bone marrow. During after birth skeletal growth, bone remodeling shapes paranasal sinuses in a process of slow evolution that do not require measurable pressure gradients. When two sinuses come in vicinity, their growth rate declines, since the remaining thin and fragile bone lamella between them does not retract anymore.
Merli, Mauro; Lombardini, Francesco; Esposito, Marco
2010-01-01
To compare the efficacy of two different techniques for vertical bone regeneration at implant placement with particulated autogenous bone at 3 years after loading: resorbable collagen barriers supported by osteosynthesis plates and nonresorbable titanium-reinforced expanded polytetrafluoroethylene barriers. Twenty-two partially edentulous patients requiring vertical bone augmentation were randomly allocated to two treatment groups, each composed of 11 patients. Prosthetic and implant failures, complications, the amount of vertically regenerated bone, and peri-implant marginal bone levels were recorded by independent and blinded assessors. The implant site requiring the most vertical bone regeneration was selected in each patient for bone level assessment. The follow-up time ranged from provisional loading to 3 years after loading. Analysis of covariance and paired t tests were conducted to compare means at the .05 level of significance. No patient dropped out or was excluded at the 3-year follow-up. No prosthetic failures and no implant failures or complications occurred after loading. There was no statistically significant difference in bone loss between the two groups at either 1 year or 3 years. Both groups had gradually lost a statistically significant amount of peri-implant bone at 1 and 3 years (P < .05). After 3 years, patients treated with resorbable barriers had lost a mean of 0.55 mm of bone; patients who had received nonresorbable barriers showed a mean of 0.53 mm of bone loss. Up to 3 years after implant loading, no failures or complications occurred and peri-implant marginal bone loss was minimal. Vertically regenerated bone can be successfully maintained after functional loading.
A national portfolio of bone oncology trials—The Canadian experience in 2012
Kuchuk, I.; Simos, D.; Addison, C.L.; Clemons, M.
2012-01-01
Background The impact of both cancer and its treatment on bone is an essential component of oncological practice. Bone oncology not only affects patients with both early stage and metastatic disease but also covers the entire spectrum of tumour types. We therefore decided to review and summarise bone oncology-related trials that are currently being conducted in Canada. Method We assessed ongoing and recently completed trials in Canada. We used available North American and Canadian cancer trial websites and also contacted known investigators in this field for their input. Results Twenty seven clinical trials were identified. Seven pertained to local treatment of bone metastasis from any solid tumour type. Seven were systemic treatment trials, five focused on bone biology and predictive factors, three evaluated safety of bone-targeted agents, three were adjuvant trials and two trials investigated impact of cancer therapy on bone health. The majority of trials were related to systemic treatment and bone biology in breast cancer. Most were small, single centre, grant-funded studies. Not surprisingly the larger safety and adjuvant studies were pharmaceutical company driven. Discussion Despite the widespread interest in bone-targeted therapies our survey would suggest that most studies are single centre and breast cancer focused. If major advances in bone oncology are to be made then collaborative strategies are needed to not only increase current sample sizes but to also expand these studies into non-breast cancer populations. PMID:26909263
Han, Guiyuan; Chen, Yu-Ming; Huang, Hua; Chen, Zhanyong; Jing, Lipeng; Xiao, Su-Mei
2017-04-24
This study investigated the relationships of fat mass (FM) and lean mass (LM) with estimated hip bone strength in Chinese men aged 50-80 years (median value: 62.0 years). A cross-sectional study including 889 men was conducted in Guangzhou, China. Body composition and hip bone parameters were generated by dual-energy X-ray absorptiometry (DXA). The relationships of the LM index (LMI) and the FM index (FMI) with bone phenotypes were detected by generalised additive models and multiple linear regression. The associations between the FMI and the bone variables in LMI tertiles were further analysed. The FMI possessed a linear relationship with greater estimated hip bone strength after adjustment for the potential confounders ( p < 0.05). Linear relationships were also observed for the LMI with most bone phenotypes, except for the cross-sectional area ( p < 0.05). The contribution of the LMI (4.0%-12.8%) was greater than that of the FMI (2.0%-5.7%). The associations between the FMI and bone phenotypes became weaker after controlling for LMI. Further analyses showed that estimated bone strength ascended with FMI in the lowest LMI tertile ( p < 0.05), but not in the subgroups with a higher LMI. This study suggested that LM played a critical role in bone health in middle-aged and elderly Chinese men, and that the maintenance of adequate FM could help to promote bone acquisition in relatively thin men.
Tower, R J; Campbell, G M; Müller, M; Glüer, C C; Tiwari, S
2015-05-01
The turnover of bone is a tightly regulated process between bone formation and resorption to ensure skeletal homeostasis. This process differs between bone types, with trabecular bone often associated with higher turnover than cortical bone. Analyses of bone by micro-computed tomography (micro-CT) reveal changes in structure and mineral content, but are limited in the study of metabolic activity at a single time point, while analyses of serum markers can reveal changes in bone metabolism, but cannot delineate the origin of any aberrant findings. To obtain a site-specific assessment of bone metabolic status, bisphosphonate binding kinetics were utilized. Using a fluorescently-labeled bisphosphonate, we show that early binding kinetics monitored in vivo using fluorescent molecular tomography (FMT) can monitor changes in bone metabolism in response to bone loss, stimulated by ovariectomy (OVX), or bone gain, resulting from treatment with the anabolic bone agent parathyroid hormone (PTH), and is capable of distinguishing different, metabolically distinct skeletal sites. Using time-lapse micro-CT, longitudinal bone turnover was quantified. The spine showed a significantly greater percent resorbing volume and surface in response to OVX, while mice treated with PTH showed significantly greater resorbing volume per bone surface in the spine and significantly greater forming surfaces in the knee. Correlation studies between binding kinetics and micro-CT suggest that forming surfaces, as assessed by time-lapse micro-CT, are preferentially reflected in the rate constant values while forming and resorbing bone volumes primarily affect plateau values. Additionally, we developed a blood pool correction method which now allows for quantitative multi-compartment analyses to be conducted using FMT. These results further expand our understanding of bisphosphonate binding and the use of bisphosphonate binding kinetics as a tool to monitor site-specific changes in bone metabolism in vivo. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Hammoudeh, Jeffrey A; Fahradyan, Artur; Gould, Daniel J; Liang, Fan; Imahiyerobo, Thomas; Urbinelli, Leo; Nguyen, JoAnna T; Magee, William; Yen, Stephen; Urata, Mark M
2017-08-01
Alveolar cleft reconstruction using iliac crest bone graft is considered standard of care for children with complete cleft lip and palate at the time of mixed dentition. Harvesting bone may result in donor-site morbidity and additional operating time and length of hospitalization. Recombinant human bone morphogenetic protein (rhBMP)-2 with a demineralized bone matrix is an alternative bone source for alveolar cleft reconstruction. The authors investigated the outcomes of rhBMP-2/demineralized bone matrix versus iliac crest bone graft for alveolar cleft reconstruction by reviewing postoperative surgical complications and cleft closure. A retrospective chart review was conducted for 258 rhBMP-2/demineralized bone matrix procedures (mean follow-up, 2.9 years) and 243 iliac crest bone graft procedures (mean follow-up, 4.1 years) on 414 patients over a 12-year period. The authors compared complications, canine eruption, and alveolar cleft closure between the two groups. In the rhBMP-2/demineralized bone matrix group, one patient required prolonged intubation because of intraoperative airway swelling not thought to be caused by rhBMP-2, 36 reported facial swelling and one required outpatient steroids as treatment, and 12 had dehiscence; however, half of these complications resolved without intervention. Twenty-three of the 228 rhBMP-2/demineralized bone matrix patients and 28 of the 242 iliac crest bone graft patients required repeated surgery for alveolar cleft repair. Findings for canine tooth eruption into the cleft site through the graft were similar between the groups. The rhBMP-2/demineralized bone matrix appears to be an acceptable alternative for alveolar cleft repair. The authors found no increase in serious adverse events with the use of this material. Local complications, such as swelling and minor wound dehiscence, predominantly improved without intervention. Therapeutic, III.
NASA Astrophysics Data System (ADS)
Piga, Giampaolo; Brunetti, Antonio; Lasio, Barbara; Enzo, Stefano; Malgosa, Assumpció
2014-03-01
We conducted an X-Ray Fluorescence investigation on bone fragments belonging to King Peter III of Aragon and Queen Blanche of Anjou. The spectroscopic analysis was carried out in selected points of the bone fragments. Several transitional elements normally unexpected in the bone composition have been found at varying level of concentration. The presence of these elements was interpreted in relation to chemical treatments for mummification of bodies as well as to dietary habits, including tools used for cooking and for the consumption of food.
Experiment K-314: Fetal and neonatal rat bone and joint development following in Utero spaceflight
NASA Technical Reports Server (NTRS)
Sabelman, E. E.; Holton, E. M.; Arnaud, C. D.
1981-01-01
Infant rat limb specimens from Soviet and U.S. ground-based studies were examined by radiography, macrophotography, histologic sectioning and staining and scanning electron microscopy. A comparison was conducted between vivarium and flight-type diets suggesting that nutritional obesity may adversely affect pregnancy. Data were obtained on maturation of ossification centers, orientation of collagen fibers in bone, tendon and ligaments, joint surface texture and spatial relationships of bones of the hind limb. Computer reconstructions of the knee and hip show promise as a means of investigating the etiology of congenital hip dislocation.
Skin thickness effects on in vivo LXRF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preiss, I.L.; Washington, W. II
The analysis of lead concentration in bone utilizing LXRF can be adversely effected by overlying issue. A quantitative measure of the attenuation of the 10.5 keV Pb L a x-ray signal by skin and skin equivalent plastic has been conducted. Concentration ranges in plaster of Paris and goat bone from 7 to 90 ppm with attenuators of Lucite{reg_sign} and pig skin were examined. It is concluded that no quantitative or semi quantitative analysis can be achieved if overlying sue thickness exceeds 3 mm for Ph concentrations of less than 30 porn Ph in bone.
Successful treatment of solitary intraosseous haemangioma of the femoral neck.
Xia, Zhan; Sittampalam, Kesavan; Howe, Tet Sen; Lo, Ngai Nung
2015-04-01
Intraosseous haemangiomas (IOHs) are benign vascular bone tumours that account for 1% of all primary bone tumours. They are most frequently seen in the vertebrae and skull, and are rarely found in long bones. Herein, we present an uncommon case of a 25-year-old woman with a solitary IOH that occupied the left femoral neck. We describe the clinical, radiological and histological details of the case, as well as the three-year outcome of the surgical treatment, which successfully preserved the femoral head. We also conducted a review of the literature on this uncommon entity.
Rahmouni, Alain; Montazel, Jean-Luc; Divine, Marine; Lepage, Eric; Belhadj, Karim; Gaulard, Philippe; Bouanane, Mohamed; Golli, Mondher; Kobeiter, Hicham
2003-12-01
To evaluate gadolinium enhancement of bone marrow in patients with lymphoproliferative diseases and diffuse bone marrow involvement. Dynamic contrast material-enhanced magnetic resonance (MR) imaging of the thoracolumbar spine was performed in 42 patients with histologically proved diffuse bone marrow involvement and newly diagnosed myeloma (n = 31), non-Hodgkin lymphoma (n = 8), or Hodgkin disease (n = 3). The maximum percentage of enhancement (Emax), enhancement slope, and enhancement washout were determined from enhancement time curves (ETCs). A three-grade system for scoring bone marrow involvement was based on the percentage of neoplastic cells in bone marrow samples. Quantitative ETC values for the 42 patients were compared with ETC values for healthy subjects and with grades of bone marrow involvement by using mean t test comparisons. Receiver operating characteristic (ROC) analysis was conducted by comparing Emax values between patients with and those without bone marrow involvement. Baseline and follow-up MR imaging findings were compared in nine patients. Significant differences in Emax (P <.001), slope (P <.001), and washout (P =.005) were found between subjects with normal bone marrow and patients with diffuse bone marrow involvement. ROC analysis results showed Emax values to have a diagnostic accuracy of 99%. Emax, slope, and washout values increased with increasing bone marrow involvement grade. The mean Emax increased from 339% to 737%. Contrast enhancement decreased after treatment in all six patients who responded to treatment but not in two of three patients who did not respond to treatment. Dynamic contrast-enhanced MR images can demonstrate increased bone marrow enhancement in patients with lymphoproliferative diseases and marrow involvement.
Elastic properties of a porous titanium-bone tissue composite.
Rubshtein, A P; Makarova, E B; Rinkevich, A B; Medvedeva, D S; Yakovenkova, L I; Vladimirov, A B
2015-01-01
The porous titanium implants were introduced into the condyles of tibias and femurs of sheep. New bone tissue fills the pore, and the porous titanium-new bone tissue composite is formed. The duration of composite formation was 4, 8, 24 and 52 weeks. The formed composites were extracted from the bone and subjected to a compression test. The Young's modulus was calculated using the measured stress-strain curve. The time dependence of the Young's modulus of the composite was obtained. After 4 weeks the new bone tissue that filled the pores does not affect the elastic properties of implants. After 24 and 52 weeks the Young's modulus increases by 21-34% and 62-136%, respectively. The numerical calculations of the elasticity of porous titanium-new bone tissue composite were conducted using a simple polydisperse model that is based on the consideration of heterogeneous structure as a continuous medium with spherical inclusions of different sizes. The kinetics of the change in the elasticity of the new bone tissue is presented via the intermediate characteristics, namely the relative ultimate tensile strength or proportion of mature bone tissue in the bone tissue. The calculated and experimentally measured values of the Young's modulus of the composite are in good agreement after 8 weeks of composite formation. The properties of the porous titanium-new bone tissue composites can only be predicted when data on the properties of new bone tissue are available after 8 weeks of contact between the implant and the native bone. Copyright © 2015 Elsevier B.V. All rights reserved.
Osteoconductive carriers for integrated bone repair
Ganey, Timothy; Hutton, William; Meisel, Hans Jörg
2009-01-01
Successful bone repair is judged in achieving restitution of space and mechanical integrity, and in regaining function. When the biology or anatomy are insufficient to attain a full repair, therapeutic use of graft material has been used to omit compliance features such as strain tolerance, reduced stiffness, and attenuated strength, and instead promote primary or membranous-type bone formation within the physical approximation of a graft material. The challenge of most conductive materials is that they emerge from a static platform and in placement force the living system to adapt to placement, dimension, different properties, and eventually are only successful in degradation and replacement, or in integration. The synergy and interdependency between adhesion, ECM, and proteolysis are important concepts that must be understood to engineer scaffolds capable of holding up to standards which are more than cell decoration. Moreover, the reactive specificity to loading, degradation, therapeutic delivery during absorption remains a key aim of both academic and industrial designs. Achieving conductivity comes with challenges of best fit integration, delivery, and in integrated modeling. The more liquid is the delivery, the more modular the components, and adaptive the matrix to meeting the intended application, the more likely that the conductivity will not be excluded by the morphology of the injury site. Considerations for osteoconductive materials for bone repair and replacement have developed conceptually and advanced parallel with a better understanding of not only bone biology but of materials science. First models of material replacements utilized a reductionist-constructionist logic; define the constituents of the material in terms of its morphology and chemical composition, and then engineer material with similar content and properties as a means of accommodating a replacement. Unfortunately for biologic systems, empiric formulation is insufficient to promote adequate integration in a timely fashion. Future matrices will need to translate their biological surfaces as more than a scaffold to be decorated with cells. Conductivity will be improved by formulations that enhance function, further extended from understanding what composition best suits cell attachment, and be adopted by conveniences of delivery that meet those criteria. PMID:25802634
Osteoconductive carriers for integrated bone repair.
Ganey, Timothy; Hutton, William; Meisel, Hans Jörg
2009-01-01
Successful bone repair is judged in achieving restitution of space and mechanical integrity, and in regaining function. When the biology or anatomy are insufficient to attain a full repair, therapeutic use of graft material has been used to omit compliance features such as strain tolerance, reduced stiffness, and attenuated strength, and instead promote primary or membranous-type bone formation within the physical approximation of a graft material. The challenge of most conductive materials is that they emerge from a static platform and in placement force the living system to adapt to placement, dimension, different properties, and eventually are only successful in degradation and replacement, or in integration. The synergy and interdependency between adhesion, ECM, and proteolysis are important concepts that must be understood to engineer scaffolds capable of holding up to standards which are more than cell decoration. Moreover, the reactive specificity to loading, degradation, therapeutic delivery during absorption remains a key aim of both academic and industrial designs. Achieving conductivity comes with challenges of best fit integration, delivery, and in integrated modeling. The more liquid is the delivery, the more modular the components, and adaptive the matrix to meeting the intended application, the more likely that the conductivity will not be excluded by the morphology of the injury site. Considerations for osteoconductive materials for bone repair and replacement have developed conceptually and advanced parallel with a better understanding of not only bone biology but of materials science. First models of material replacements utilized a reductionist-constructionist logic; define the constituents of the material in terms of its morphology and chemical composition, and then engineer material with similar content and properties as a means of accommodating a replacement. Unfortunately for biologic systems, empiric formulation is insufficient to promote adequate integration in a timely fashion. Future matrices will need to translate their biological surfaces as more than a scaffold to be decorated with cells. Conductivity will be improved by formulations that enhance function, further extended from understanding what composition best suits cell attachment, and be adopted by conveniences of delivery that meet those criteria.
Vescovi, J D; Jamal, S A; De Souza, M J
2008-04-01
Functional hypothalamic amenorrhea (FHA) impairs the attainment of peak bone mass and as such can increase the risk of fractures later in life. To document available treatment strategies, we conducted a systematic review of the literature. We report that hormonal therapies have limited effectiveness in increasing bone mass, whereas increased caloric intake resulting in weight gain and/or resumption of menses is an essential strategy for restoring bone mass in women with FHA. Women with functional hypothalamic amenorrhea (FHA) may not achieve peak bone mass (PBM), which increases the risk of stress fractures, and may increase the risk of osteoporotic fractures in later life. To identify effective treatment strategies for women with FHA, we conducted a systematic review of the literature. We included randomized controlled trials (RCTs), cross-sectional studies, and case studies that reported on the effects of pharmacological and non-pharmacological interventions on bone mineral density (BMD) or bone turnover in women with FHA. Most published studies (n=26) were designed to treat the hormonal abnormalities observed in women with FHA (such as low estrogen, leptin, insulin-like growth factor-1, and DHEA); however none of these treatments demonstrated consistent improvements in BMD. Therapies containing an estrogen given for 8-24 months resulted in variable improvements (1.0-19.0%) in BMD, but failed to restore bone mass to that of age-matched controls. Three studies reported on the use of bisphosphonates (3-12 months) in anorexic women, which appear to have limited effectiveness to improve BMD compared to nutritional treatments. Another three investigations showed no improvements in BMD after androgen therapy (DHEA and testosterone) in anorexic women. In contrast, reports (n=9) describing an increase in caloric intake that results in weight gain and/or the resumption of menses reported a 1.1-16.9% increase in BMD concomitant with an improvement in bone formation and reduction in bone resorption markers. Our literature review indicates that the most successful, and indeed essential strategy for improving BMD in women with FHA is to increase caloric intake such that body mass is increased and there is a resumption of menses. Further long-term studies to determine the persistence of this effect and to determine the effects of this and other strategies on fracture risk are needed.
Tramontani, Ourania; Gkoritsa, Eleni; Ferekidis, Eleftherios; Korres, Stavros G
2014-02-07
The aim of this prospective clinical study was to evaluate the clinical importance of Vestibular-Evoked Myogenic Potentials (VEMPs) in the assessment and differential diagnosis of otosclerosis and otologic diseases characterized by "pseudo-conductive" components. We also investigated the clinical appearance of balance disorders in patients with otosclerosis by correlating VEMP results with the findings of caloric testing and pure tone audiometry(PTA). Air-conducted(AC) 4-PTA, bone-conducted(BC) 4-PTA, air-bone Gap(ABG), AC, BC tone burst evoked VEMP, and calorics were measured preoperatively in 126 otosclerotic ears. The response rate of the AC-VEMPs and BC-VEMPs was 29.36% and 44.03%, respectively. Statistical differences were found between the means of ABG, AC 4-PTA, and BC 4-PTA in the otosclerotic ears in relation to AC-VEMP elicitability. About one-third of patients presented with disequilibrium. A statistically significant interaction was found between calorics and dizziness in relation to PTA thresholds. No relationship was found between calorics and dizziness with VEMPs responses. AC and BC VEMPs can be elicited in ears with otosclerosis. AC-VEMP is more vulnerable to conductive hearing loss. Evaluation of AC-VEMP thresholds can be added in the diagnostic work-up of otosclerosis in case of doubt, enhancing differential diagnosis in patients with air-bone gaps. Otosclerosis is not a cause of canal paresis or vertigo.
Hearing in Paget's disease of bone.
Amilibia Cabeza, Emilio; Holgado Pérez, Susana; Pérez Grau, Marta; Moragues Pastor, Carme; Roca-Ribas Serdà, Francesc; Quer Agustí, Miquel
2018-06-04
Paget's disease of bone (PDB) may lead to hearing loss. The present study was conducted with the aim of measuring, characterizing and determining the risk factors for hearing loss in a group of subjects with PDB. An observational, transversal, case-control study was conducted, a cohort of 76 subjects diagnosed with PDB in the case group and a control group of 134 subjects were included. Clinical, demographic and audiometric data were analysed. The comparative analysis between the subjects in the PDB group and the control group found that the case group showed higher hearing thresholds (39,51dB) compared with the control group (37.28dB) (P=.069) and presented a greater rate of conductive hearing loss (22.76%) than the control group (12.05%) (P=.0062). The study of risk factors for hearing loss found that skull involvement in bone scintigraphy, age and high blood pressure were risk factors for higher impairment in PDB. The subjects with PDB showed more profound and a higher proportion of conductive hearing loss than the control group. The patients with PDB and skull involvement presented a more severe hearing loss compared with the subjects without skull involvement. Skull involvement and age were found to be risk factors for hearing loss. Copyright © 2018 Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. Publicado por Elsevier España, S.L.U. All rights reserved.
2013-01-01
Background Reports of recurrence following restructuring of primary giant cell tumor (GCT) defects using polymethyl methacrylate (PMMA) bone cementation or allogeneic bone graft with and without adjuvants for intralesional curettage vary widely. Systematic review and meta-analysis were conducted to investigate efficacy of PMMA bone cementation and allogeneic bone grafting following intralesional curettage for GCT. Methods Medline, EMBASE, Google Scholar, and Cochrane databases were searched for studies reporting GCT of bone treatment with PMMA cementation and/or bone grafting with or without adjuvant therapy following intralesional curettage of primary GCTs. Pooled risk ratios and 95% confidence intervals (CIs) for local recurrence risks were calculated by fixed-effects methods. Results Of 1,690 relevant titles, 6 eligible studies (1,293 patients) spanning March 2008 to December 2011 were identified in published data. Treatment outcomes of PMMA-only (n = 374), bone graft-only (n = 436), PMMA with or without adjuvant (PMMA + adjuvant; n = 594), and bone graft filling with or without adjuvant (bone graft + adjuvant; n = 699) were compared. Bone graft-only patients exhibited higher recurrence rates than PMMA-treated patients (RR 2.09, 95% CI (1.64, 2.66), Overall effect: Z = 6.00; P <0.001), and bone graft + adjuvant patients exhibited higher recurrence rates than PMMA + adjuvant patients (RR 1.66, 95% CI (1.21, 2.28), Overall effect: Z = 3.15, P = 0.002). Conclusions Local recurrence was minimal in PMMA cementation patients, suggesting that PMMA is preferable for routine clinical restructuring in eligible GCT patients. Relationships between tumor characteristics, other modern adjuvants, and recurrence require further exploration. PMID:23866921
Ardawi, Mohammed-Salleh M; Badawoud, Mohammed H; Hassan, Sherif M; Rouzi, Abdulrahim A; Ardawi, Jumanah M S; AlNosani, Nouf M; Qari, Mohammed H; Mousa, Shaker A
2016-02-01
Lycopene supplementation decreases oxidative stress and exhibits beneficial effects on bone health, but the mechanisms through which it alters bone metabolism in vivo remain unclear. The present study aims to evaluate the effects of lycopene treatment on postmenopausal osteoporosis. Six-month-old female Wistar rats (n=264) were sham-operated (SHAM) or ovariectomized (OVX). The SHAM group received oral vehicle only and the OVX rats were randomized into five groups receiving oral daily lycopene treatment (mg/kg body weight per day): 0 OVX (control), 15 OVX, 30 OVX, and 45 OVX, and one group receiving alendronate (ALN) (2μg/kg body weight per day), for 12weeks. Bone densitometry measurements, bone turnover markers, biomechanical testing, and histomorphometric analysis were conducted. Micro computed tomography was also used to evaluate changes in microarchitecture. Lycopene treatment suppressed the OVX-induced increase in bone turnover, as indicated by changes in biomarkers of bone metabolism: serum osteocalcin (s-OC), serum N-terminal propeptide of type 1 collagen (s-PINP), serum crosslinked carboxyterminal telopeptides (s-CTX-1), and urinary deoxypyridinoline (u-DPD). Significant improvement in OVX-induced loss of bone mass, bone strength, and microarchitectural deterioration was observed in lycopene-treated OVX animals. These effects were observed mainly at sites rich in trabecular bone, with less effect in cortical bone. Lycopene treatment down-regulated osteoclast differentiation concurrent with up-regulating osteoblast together with glutathione peroxidase (GPx) catalase (CAT) and superoxide dismutase (SOD) activities. These findings demonstrate that lycopene treatment in OVX rats primarily suppressed bone turnover to restore bone strength and microarchitecture. Copyright © 2015. Published by Elsevier Inc.
Freitas, Nicole Rosa de; Guerrini, Luísa Belluco; Esper, Luis Augusto; Sbrana, Michyele Cristhiane; Dalben, Gisele da Silva; Soares, Simone; Almeida, Ana Lúcia Pompéia Fraga de
2018-01-01
The repair of bone defects raises the interest of investigators in several health specialties. Grafting techniques with bone substitutes and laser therapies have been investigated to replace autogenous bone and accelerate the bone healing process. Objective To evaluate the effect of photobiomodulation therapy (PBMT) associated with guided bone regeneration (GBR) in critical size defects. Material and Methods The study was conducted on 80 male rats (Rattus norvegicus albinus, Wistar) submitted to surgical creation of a critical size defect on the calvaria, divided into eight study groups: group C (control - only blood clot); group M (collagen membrane); group PBMT (photobiomodulation therapy); group AB (autogenous bone); group AB+PBMT; group AB+M; group PBMT+M; group AB+PBMT+M. The animals were killed 30 days postoperatively. After tissue processing, bone regeneration was evaluated by histomorphometric analysis and statistical analyses were performed (Tukey test, p<0.05). Results All groups had greater area of newly formed bone compared to group C (9.96±4.49%). The group PBMT+M (achieved the greater quantity of new bone (64.09±7.62%), followed by groups PBMT (47.67±8.66%), M (47.43±15.73%), AB+PBMT (39.15±16.72%) and AB+PBMT+M (35.82±7.68%). After group C, the groups AB (25.10±16.59%) and AB+M (22.72±13.83%) had the smallest quantities of newly formed bone. The area of remaining particles did not have statistically significant difference between groups AB+M (14.93±8.92%) and AB+PBMT+M (14.76±6.58%). Conclusion The PBMT utilization may be effective for bone repair, when associated with bone regeneration techniques.
Xie, Weixing; Jin, Daxiang; Ma, Hui; Ding, Jinyong; Xu, Jixi; Zhang, Shuncong; Liang, De
2016-05-01
The risk factors for cement leakage were retrospectively reviewed in 192 patients who underwent percutaneous vertebral augmentation (PVA). To discuss the factors related to the cement leakage in PVA procedure for the treatment of osteoporotic vertebral compression fractures. PVA is widely applied for the treatment of osteoporotic vertebral fractures. Cement leakage is a major complication of this procedure. The risk factors for cement leakage were controversial. A retrospective review of 192 patients who underwent PVA was conducted. The following data were recorded: age, sex, bone density, number of fractured vertebrae before surgery, number of treated vertebrae, severity of the treated vertebrae, operative approach, volume of injected bone cement, preoperative vertebral compression ratio, preoperative local kyphosis angle, intraosseous clefts, preoperative vertebral cortical bone defect, and ratio and type of cement leakage. To study the correlation between each factor and cement leakage ratio, bivariate regression analysis was employed to perform univariate analysis, whereas multivariate linear regression analysis was employed to perform multivariate analysis. The study included 192 patients (282 treated vertebrae), and cement leakage occurred in 100 vertebrae (35.46%). The vertebrae with preoperative cortical bone defects generally exhibited higher cement leakage ratio, and the leakage is typically type C. Vertebrae with intact cortical bones before the procedure tend to experience type S leakage. Univariate analysis showed that patient age, bone density, number of fractured vertebrae before surgery, and vertebral cortical bone were associated with cement leakage ratio (P<0.05). Multivariate analysis showed that the main factors influencing bone cement leakage are bone density and vertebral cortical bone defect, with standardized partial regression coefficients of -0.085 and 0.144, respectively. High bone density and vertebral cortical bone defect are independent risk factors associated with bone cement leakage.
2011-01-01
Background and purpose The remodeling of morselized bone grafts in revision surgery can be enhanced by an anabolic substance such as a bone morphogenetic protein (BMP). On the other hand, BMPs boost catabolism and might cause a premature resorption, both of the graft and of the new-formed bone. Bisphosphonates inactivate osteoclasts and can be used to control the resorption. We studied a combination of both drugs as a local admix to a cancellous allograft. Methods Cancellous bone allografts were harvested and freeze-dried. Either saline, BMP-7, the bisphosphonate zoledronate, or a combination of BMP-7 and zoledronate were added in solution. The grafts were placed in bone conduction chambers and implanted in the proximal tibia of 34 rats. The grafts were harvested after 6 weeks and evaluated by histomorphometry. Results Bone volume/total volume (BV/TV) was 50% in the grafts treated with the combination of BMP-7 and zoledronate and 16% in the saline controls (p < 0.001). In the zoledronate group BV/TV was 56%, and in the BMP group it was 14%. The ingrowth distance of new bone into the graft was 3.5 mm for the combination of BMP-7 and zoledronate and 2.6 mm in the saline control (p = 0.002). The net amount of retained remodeled bone was more than 4 times higher when BMP-7 and zoledronate were combined than in the controls. Interpretation An anabolic drug like BMP-7 can be combined with an anti-catabolic bisphosphonate as local bone graft adjunct, and the combination increases the amount of remaining bone after remodeling is complete. PMID:21434769
Carrel, Jean-Pierre; Wiskott, Anselm; Scherrer, Susanne; Durual, Stéphane
2016-12-01
Osteoflux is a three-dimensional printed calcium phosphate porous structure for oral bone augmentation. It is a mechanically stable scaffold with a well-defined interconnectivity and can be readily shaped to conform to the bone bed's morphology. An animal experiment is reported whose aim was to assess the performance and safety of the scaffold in promoting vertical growth of cortical bone in the mandible. Four three-dimensional blocks (10 mm length, 5 mm width, 5 mm height) were affixed to edentulous segments of the dog's mandible and covered by a collagen membrane. During bone bed preparation, particular attention was paid not to create defects 0.5 mm or more so that the real potential of the three-dimensional block in driving vertical bone growth can be assessed. Histomorphometric analyses were performed after 8 weeks. At 8 weeks, the three-dimensional blocks led to substantial vertical bone growth up to 4.5 mm from the bone bed. Between 0 and 1 mm in height, 44% of the surface was filled with new bone, at 1 to 3 mm it was 20% to 35%, 18% at 3 to 4, and ca. 6% beyond 4 mm. New bone was evenly distributed along in mesio-distal direction and formed a new crest contour in harmony with the natural mandibular shape. After two months of healing, the three-dimensional printed blocks conducted new bone growth above its natural bed, up to 4.5 mm in a canine mandibular model. Furthermore, the new bone was evenly distributed in height and density along the block. These results are very promising and need to be further evaluated by a complete powerful study using the same model. © 2016 Wiley Periodicals, Inc.
Bone Formation Rate in Experimental Disuse Osteoporosis in Monkeys
NASA Technical Reports Server (NTRS)
Cann, Christopher; Young, Donald R.
1976-01-01
Specific mechanisms underlying weightless and hypodynamic bone loss are obscure. A principal relationship which must be affected is the balance between bone formation and bone resorption rates. In order to better define the influence of those parameters on bone loss, and also to develop measurements in other species as a useful adjunct to human research, studies were undertaken with experimental monkeys. Tests were conducted with a total of 6 adult male monkeys, weighing 10-13 kg, and approximately 10-12 yrs. of age to evaluate specifically bone formation rate during the development of disuse osteoporosis and osteopenia. Three animals were restrained in a semi-recumbent position for six months; three animals served as normal caged controls. Food intake (Purina) was held relatively constant at 200g/day for each animal. Using a Norland Bone Mineral Analyzer, bone mineral losses of 3.5 to 6% were seen in the mid-shaft of the tibia and in the distal radius. Bone loss was confirmed radiographically, with observation of thinning of the proximal tibial cortex and trabeculae in the calcaneus. Bone formation rate was determined using standard Ca-47 kinetics under metabolic balance conditions. After six months of restraint, accretion was 7.2-13.2 mg Ca/kg/day, compared to 3.2-4.1 mg Ca/kg/day in caged controls and 3-8 mg Ca/kg/day in normal adult humans. Fecal and urine calcium was 25-40% higher in restrained animals than in controls. Dietary calcium absorption decreases during restraint, and calcium turnover increases, implying a rise in bone resorption rate concommitant with the observed rise in bone accretion rate. Further studies dealing specifically with bone resorption are underway to define this more fully.
Structural Assessment of a Tissue Engineered Scaffold for Bone Repair
2001-10-25
lactide-co- glycolide) [ PLAGA ] have been evaluated for such uses. However, structural limitations may restrict the clinical use of these scaffolds...bone specific protein. Through this work, it was shown that an osteoconductive PLAGA scaffold with a pore system equivalent to the structure of...known as poly(lactide-co-glycolide) [ PLAGA ]. Our laboratory has conducted several studies evaluating the ability of PLAGA to promote osteoblast
Singh, Taran Singh Pall; Yusoff, Abdul Halim; Chian, Yap Keat
2015-08-01
In vitro animal cadaveric study. To identify the appropriate rotational speed and safe bone distance from neural tissue during bone burring in spinal surgery. Bone burring is a common step in spinal surgery. Unwanted frictional heat produced during bone burring may result in thermal injury to the bone and adjacent neural structure. One of the important parameters influencing the bone temperature rise during bone burring is rotational speed. This laboratory-based animal study used bovine spine bones, and the tests were conducted using a steel round burr. The bone temperature was measured simultaneously with thermocouple at the distances of 1 mm, 3 mm, and 5 mm from the burring site during the burring process. The bone burring was done with 4 different rotational speeds of 35,000 revolutions per minute (rpm), 45,000 rpm, 65,000 rpm, and 75,000 rpm. This study showed that increasing the rotational speed significantly elevated bone temperature. The threshold temperature of 47°C was reached when bone was burred for 10 seconds, with a rotational speed of 45,000 rpm. The mean bone temperature measured at a distance 1 mm from the burring site for all 4 rotational speeds was always higher than that measured at a distance of 3 mm and 5 mm and this difference was statistically significant (P < 0.001). There was no significant difference between the mean bone temperature measured at a distance of 3 mm and 5 mm (P > 0.05). Taking 47°C as the threshold temperature for causing significant impairment to the regenerative capacity of bone, a rotational speed of lower than 45,000 rpm is preferable so as to minimize thermal injury to bone tissue. We also concluded that a 3-mm distance between the site of burring and the neural tissue is a safe distance. N/A.
Changes in biomarkers of bone turnover in an aripiprazole add-on or switching study.
Lodhi, Rohit J; Masand, Salaj; Malik, Amna; Shivakumar, Kuppuswami; McAllister, Victoria D M; O'Keane, Veronica; Young, Leah C; Heald, Adrian H; Sherwood, Roy A; Aitchison, Katherine J
2016-02-01
The association between mental illness and osteoporosis and fractures is particularly pronounced in psychotic disorders. Antipsychotic use has previously been described to affect bone density. A 52-week follow-up of patients switched to aripiprazole or with aripiprazole added on, conducting a specific analysis of markers of bone turnover: urinary NTX (a biomarker of bone resorption) and serum BSAP (a biomarker of bone formation). Baseline and serial measurements of bone markers NTX, BSAP and of hormones prolactin, oestrogen and testosterone were done at weeks 0 and 1, 2, 6, 12, 26 and 52, respectively. NTX concentration reduced over time but this did not reach significance in the whole group (log-NTX: β=-0.0012, p=0.142). For BSAP the addition of or replacement with aripiprazole produced a significant reduction (log-BSAP: β=-0.00039, p=0.002). Analysis with prolactin similarly showed a significant reduction (log-prolactin: β=-0.0024, p<0.001); other hormones did not change significantly. Sensitivity analysis to compare the switchers to aripiprazole versus the "add-on" showed that the former group had a significant reduction in NTX. We found that switching to aripiprazole was associated with changes in molecular biomarkers of bone resorption, indicating a more favourable profile for bone health. Copyright © 2015 Elsevier B.V. All rights reserved.
The Skeletal Site-Specific Role of Connective Tissue Growth Factor in Prenatal Osteogenesis
Lambi, Alex G.; Pankratz, Talia L.; Mundy, Christina; Gannon, Maureen; Barbe, Mary F.; Richtsmeier, Joan T.; Popoff, Steven N.
2013-01-01
Background Connective tissue growth factor (CTGF/CCN2) is a matricellular protein that is highly expressed during bone development. Mice with global CTGF ablation (knockout, KO) have multiple skeletal dysmorphisms and perinatal lethality. A quantitative analysis of the bone phenotype has not been conducted. Results We demonstrated skeletal site-specific changes in growth plate organization, bone microarchitecture, and shape and gene expression levels in CTGF KO compared with wild-type mice. Growth plate malformations included reduced proliferation zone and increased hypertrophic zone lengths. Appendicular skeletal sites demonstrated decreased metaphyseal trabecular bone, while having increased mid-diaphyseal bone and osteogenic expression markers. Axial skeletal analysis showed decreased bone in caudal vertebral bodies, mandibles, and parietal bones in CTGF KO mice, with decreased expression of osteogenic markers. Analysis of skull phenotypes demonstrated global and regional differences in CTGF KO skull shape resulting from allometric (size-based) and nonallometric shape changes. Localized differences in skull morphology included increased skull width and decreased skull length. Dysregulation of the transforming growth factor-β-CTGF axis coupled with unique morphologic traits provides a potential mechanistic explanation for the skull phenotype. Conclusions We present novel data on a skeletal phenotype in CTGF KO mice, in which ablation of CTGF causes site-specific aberrations in bone formation. PMID:23073844
Proactive detection of bones in poultry processing
NASA Astrophysics Data System (ADS)
Daley, W. D. R.; Stewart, John
2009-05-01
Bones continue to be a problem of concern for the poultry industry. Most further processed products begin with the requirement for raw material with minimal bones. The current process for generating deboned product requires systems for monitoring and inspecting the output product. The current detection systems are either people palpitating the product or X-ray systems. The current performance of these inspection techniques are below the desired levels of accuracies and are costly. We propose a technique for monitoring bones that conduct the inspection operation in the deboning the process so as to have enough time to take action to reduce the probability that bones will end up in the final product. This is accomplished by developing active cones with built in illumination to backlight the cage (skeleton) on the deboning line. If the bones of interest are still on the cage then the bones are not in the associated meat. This approach also allows for the ability to practice process control on the deboning operation to keep the process under control as opposed to the current system where the detection is done post production and does not easily present the opportunity to adjust the process. The proposed approach shows overall accuracies of about 94% for the detection of the clavicle bones.
Application of Petri Nets in Bone Remodeling
Li, Lingxi; Yokota, Hiroki
2009-01-01
Understanding a mechanism of bone remodeling is a challenging task for both life scientists and model builders, since this highly interactive and nonlinear process can seldom be grasped by simple intuition. A set of ordinary differential equations (ODEs) have been built for simulating bone formation as well as bone resorption. Although solving ODEs numerically can provide useful predictions for dynamical behaviors in a continuous time frame, an actual bone remodeling process in living tissues is driven by discrete events of molecular and cellular interactions. Thus, an event-driven tool such as Petri nets (PNs), which may dynamically and graphically mimic individual molecular collisions or cellular interactions, seems to augment the existing ODE-based systems analysis. Here, we applied PNs to expand the ODE-based approach and examined discrete, dynamical behaviors of key regulatory molecules and bone cells. PNs have been used in many engineering areas, but their application to biological systems needs to be explored. Our PN model was based on 8 ODEs that described an osteoprotegerin linked molecular pathway consisting of 4 types of bone cells. The models allowed us to conduct both qualitative and quantitative evaluations and evaluate homeostatic equilibrium states. The results support that application of PN models assists understanding of an event-driven bone remodeling mechanism using PN-specific procedures such as places, transitions, and firings. PMID:19838338
Park, Su A.; Lee, Hyo-Jung; Kim, Keun-Suh; Lee, Jung-Tae; Kim, Sung-Yeol; Chang, Na-Hee
2018-01-01
Insufficient bone volume is one of the major challenges encountered by dentists after dental implant placement. This study aimed to evaluate the efficacy of a customized three-dimensional polycaprolactone (3D PCL) scaffold implant fabricated with a 3D bio-printing system to facilitate rapid alveolar bone regeneration. Saddle-type bone defects were surgically created on the healed site after extracting premolars from the mandibles of four beagle dogs. The defects were radiologically examined using computed tomography for designing a customized 3D PCL scaffold block to fit the defect site. After fabricating 3D PCL scaffolds using rapid prototyping, the scaffolds were implanted into the alveolar bone defects along with β-tricalcium phosphate powder. In vivo analysis showed that the PCL blocks maintained the physical space and bone conductivity around the defects. In addition, no inflammatory infiltrates were observed around the scaffolds. However, new bone formation occurred adjacent to the scaffolds, rather than directly in contact with them. More new bone was observed around PCL blocks with 400/1200 lattices than around blocks with 400/400 lattices, but the difference was not significant. These results indicated the potential of 3D-printed porous PCL scaffolds to promote alveolar bone regeneration for defect healing in dentistry. PMID:29401707
Krafft, Tim; Winter, Werner; Wichmann, Manfred; Karl, Matthias
2012-07-01
Alveolar bone quality is considered to be an important prognostic factor in dental implant stability. Although numerous methods have been described, no technique allows for reliable diagnostics. The purpose of this study was to determine if strain measurements on the shaft of a contra angle handpiece during implant bed preparation could be used for the determination of bone quality. Experiments in polyurethane foam and human cadaver bone were conducted to investigate whether strain measurements could be correlated with other diagnostic parameters, such as the surgeon's tactile sensation during drilling, implant insertion torque, implant stability, elastic modulus of bone and bone quality as assessed radiographically. Tests were also performed to determine if strain measurements could be used to distinguish various types of bone. As axial feed and contact pressure during the drilling process could not be standardized under simulated clinical conditions, substantial deviations in the time needed to complete the drilling occurred. Under controlled circumstances using polyurethane foam, this problem could be addressed by a normalization procedure, but great variations occurred in human cadaver bone. As bone quality could not be reliably determined, especially when a cortical layer was present, strain measurements on a contra angle handpiece appears to be inappropriate for this purpose. Copyright © 2011 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Platelet-rich plasma for long bone healing
Lenza, Mário; Ferraz, Silvia de Barros; Viola, Dan Carai Maia; dos Santos, Oscar Fernando Pavão; Cendoroglo, Miguel; Ferretti, Mario
2013-01-01
ABSTRACT Objective: To evaluate effectiveness of the use of platelet-rich plasma as coadjuvant for union of long bones. Methods: The search strategy included the Cochrane Library (via Central) and MEDLINE (via PubMed). There were no limits as to language or publication media. The latest search strategy was conducted in December 2011. It included randomized clinical trials that evaluated the use of platelet-rich plasma as coadjuvant medication to accelerate union of long bones (acute fractures, pseudoarthrosis and bone defects). The outcomes of interest for this review include bone regeneration, adverse events, costs, pain, and quality of life. The authors selected eligible studies, evaluated the methodological quality, and extracted the data. It was not possible to perform quantitative analysis of the grouped studies (meta-analyses). Results: Two randomized prospective clinical trials were included, with a total of 148 participants. One of them compared recombinant human morphogenic bone protein-7 versus platelet-rich plasma for the treatment of pseudoarthrosis; the other evaluated the effects of three coadjuvant treatments for union of valgising tibial osteotomies (platelet-rich plasma, platelet-rich plasma plus bone marrow stromal cells, and no coadjuvant treatment). Both had low statistical power and moderate to high risk of bias. Conclusion: There was no conclusive evidence that sustained the use of platelet-rich plasma as a coadjuvant to aid bone regeneration of fractures, pseudoarthrosis, or bone defects. PMID:23579757
Akram, Muhammad; Farooqi, Faheem Mubashir; Shahzad, Muhammad Latif; Awais, Syed Muhammad
2015-11-01
To compare the results of percutaneous autologous bone aspiration injection and steroids injections in the treatment of unicameral bone cyst. The prospective study was conducted at Mayo Hospital, Lahore, from January 2008 to March 2014, and comprised patients diagnosed radiologically as a case of unicameral bone cyst. The patients were divided into two groups, with group 1 being treated with bone marrow aspiration injection, while group 2 was given steroids injection. Aspiration of bone marrow was done from tibial tuberosity. The 30 patients in the study were divided into two groups of 15(50%) each. In group 1, 8(53.34%) patients and in group 2, 3 (20%) patients achieved healing after the first injection (p<0.05), while overall success rates were 13(86.67%) in group 1, and 11(73.33%) in group 2 (p> 0.05). The mean number of procedures required in group 1 was 1.57± 0.495 (range: 01-3) and for 2.19 ± 1.076 (range: 1-5) in group 2 (p<0.05), and mean interval-to-healing was 14.3 months ± 8.705 (range: 7-36) for group 1 and 12.5 months ± 7.88 (range: 4-32) for group 2 (p> 0.05). Bone marrow aspiration injection was better than steroids in treating unicameral bone cyst.
Gropp, Kathryn E; Carlson, Cathy S; Evans, Mark G; Bagi, Cedo M; Reagan, William J; Hurst, Susan I; Shelton, David L; Zorbas, Mark A
2018-01-01
Tanezumab, an anti-nerve growth factor (NGF) antibody, is in development for management of chronic pain. During clinical trials of anti-NGF antibodies, some patients reported unexpected adverse events requiring total joint replacements, resulting in a partial clinical hold on all NGF inhibitors. Three nonclinical toxicology studies were conducted to evaluate the effects of tanezumab or the murine precursor muMab911 on selected bone and joint endpoints and biomarkers in cynomolgus monkeys, Sprague-Dawley rats, and C57BL/6 mice. Joint and bone endpoints included histology, immunohistochemistry, microcomputed tomography (mCT) imaging, and serum biomarkers of bone physiology. Responses of bone endpoints to tanezumab were evaluated in monkeys at 4 to 30 mg/kg/week for 26 weeks and in rats at 0.2 to 10 mg/kg twice weekly for 28 days. The effects of muMab911 at 10 mg/kg/week for 12 weeks on selected bone endpoints were determined in mice. Tanezumab and muMab911 had no adverse effects on any bone or joint parameter. There were no test article-related effects on bone or joint histology, immunohistochemistry, or structure. Reversible, higher osteocalcin concentrations occurred only in the rat study. No deleterious effects were observed in joints or bones in monkeys, rats, or mice administered high doses of tanezumab or muMab911.
Grigg, A; Butcher, B; Khodr, B; Bajel, A; Hertzberg, M; Patil, S; D'Souza, A B; Ganly, P; Ebeling, P; Wong, E
2017-09-01
Bone loss occurs frequently following allogeneic haematopoietic stem cell transplantation (alloSCT). The Australasian Leukaemia and Lymphoma Group conducted a prospective phase II study of pretransplant zoledronic acid (ZA) and individualised post-transplant ZA to prevent bone loss in alloSCT recipients. Patients received ZA 4 mg before conditioning. Administration of post-transplant ZA from days 100 to 365 post alloSCT was determined by a risk-adapted algorithm based on serial bone density assessments and glucocorticoid exposure. Of 82 patients enrolled, 70 were alive and without relapse at day 100. A single pretransplant dose of ZA prevented femoral neck bone loss at day 100 compared with baseline (mean change -2.6±4.6%). Using the risk-adapted protocol, 42 patients received ZA between days 100 and 365 post alloSCT, and this minimised bone loss at day 365 compared with pretransplant levels (mean change -2.9±5.3%). Femoral neck bone loss was significantly reduced in ZA-treated patients compared with historical untreated controls at days 100 and 365. This study demonstrates that a single dose of ZA pre-alloSCT prevents femoral neck bone loss at day 100 post alloSCT, and that a risk-adapted algorithm is able to guide ZA administration from days 100 to 365 post transplant and minimise further bone loss.
Morse taper dental implants and platform switching: The new paradigm in oral implantology
Macedo, José Paulo; Pereira, Jorge; Vahey, Brendan R.; Henriques, Bruno; Benfatti, Cesar A. M.; Magini, Ricardo S.; López-López, José; Souza, Júlio C. M.
2016-01-01
The aim of this study was to conduct a literature review on the potential benefits with the use of Morse taper dental implant connections associated with small diameter platform switching abutments. A Medline bibliographical search (from 1961 to 2014) was carried out. The following search items were explored: “Bone loss and platform switching,” “bone loss and implant-abutment joint,” “bone resorption and platform switching,” “bone resorption and implant-abutment joint,” “Morse taper and platform switching.” “Morse taper and implant-abutment joint,” Morse taper and bone resorption,” “crestal bone remodeling and implant-abutment joint,” “crestal bone remodeling and platform switching.” The selection criteria used for the article were: meta-analysis; randomized controlled trials; prospective cohort studies; as well as reviews written in English, Portuguese, or Spanish languages. Within the 287 studies identified, 81 relevant and recent studies were selected. Results indicated a reduced occurrence of peri-implantitis and bone loss at the abutment/implant level associated with Morse taper implants and a reduced-diameter platform switching abutment. Extrapolation of data from previous studies indicates that Morse taper connections associated with platform switching have shown less inflammation and possible bone loss with the peri-implant soft tissues. However, more long-term studies are needed to confirm these trends. PMID:27011755
Drilling electrode for real-time measurement of electrical impedance in bone tissues.
Dai, Yu; Xue, Yuan; Zhang, Jianxun
2014-03-01
In order to prevent possible damages to soft tissues, reliable monitoring methods are required to provide valuable information on the condition of the bone being cut. This paper describes the design of an electrical impedance sensing drill developed to estimate the relative position between the drill and the bone being drilled. The two-electrode method is applied to continuously measure the electrical impedance during a drill feeding movement: two copper wire brushes are used to conduct electricity in the rotating drill and then the drill is one electrode; a needle is inserted into the soft tissues adjacent to the bone being drilled and acts as another electrode. Considering that the recorded electrical impedance is correlated with the insertion depth of the drill, we theoretically calculate the electrode-tissue contact impedance and prove that the rate of impedance change varies considerably when the drill bit crosses the boundary between two different bone tissues. Therefore, the rate of impedance change is used to determine whether the tip of the drill is located in one of cortical bone, cancellous bone, and cortical bone near a boundary with soft tissue. In vitro experiments in porcine thoracic spines were performed to demonstrate the feasibility of the impedance sensing drill. The experimental results indicate that the drill, used with the proposed data-processing method, can provide accurate and reliable breakthrough detection in the bone-drilling process.
Electromagnetic irradiation may be a new approach to therapy for peri-implantitis.
Cao, Zhensheng; Chen, Yijia; Chen, Yuxue; Zhao, Qing; Xu, Xiaomei; Chen, Yangxi
2012-03-01
Peri-implantitis can lead to bone destruction around a dental implant through inflammation and immune reactions caused by bacteria adhering to the surface of the implant abutment. Electromagnetic irradiation can inhibit bacterial growth, increase bone formation, decrease bone resorption and reduce the inflammatory response. Our hypothesis is that electromagnetic irradiation may be a new treatment approach for peri-implantitis and may simultaneously maintain bone mass around the dental implant. The results would be more significant when combined with other agents, because the effect of some antibiotics and anti-inflammatory drugs is strengthened by electromagnetic irradiation. This non-invasive therapy is expected to be conducted in a convenient manner, and even by patients at home, thereby facilitating the prevention and treatment of peri-implantitis. Copyright © 2011 Elsevier Ltd. All rights reserved.
Vajda, E G; Skedros, J G; Bloebaum, R D
1998-10-01
Backscattered electron (BSE) imaging has proven to be a useful method for analyzing the mineral distribution in microscopic regions of bone. However, an accepted method of standardization has not been developed, limiting the utility of BSE imaging for truly quantitative analysis. Previous work has suggested that BSE images can be standardized by energy-dispersive x-ray spectrometry (EDX). Unfortunately, EDX-standardized BSE images tend to underestimate the mineral content of bone when compared with traditional ash measurements. The goal of this study is to investigate the nature of the deficit between EDX-standardized BSE images and ash measurements. A series of analytical standards, ashed bone specimens, and unembedded bone specimens were investigated to determine the source of the deficit previously reported. The primary source of error was found to be inaccurate ZAF corrections to account for the organic phase of the bone matrix. Conductive coatings, methylmethacrylate embedding media, and minor elemental constituents in bone mineral introduced negligible errors. It is suggested that the errors would remain constant and an empirical correction could be used to account for the deficit. However, extensive preliminary testing of the analysis equipment is essential.
Genistein treatment increases bone mass in obese, hyperglycemic mice
Michelin, Richard M; Al-Nakkash, Layla; Broderick, Tom L; Plochocki, Jeffrey H
2016-01-01
Background Obesity and type 2 diabetes mellitus are associated with elevated risk of limb bone fracture. Incidences of these conditions are on the rise worldwide. Genistein, a phytoestrogen, has been shown by several studies to demonstrate bone-protective properties and may improve bone health in obese type 2 diabetics. Methods In this study, we test the effects of genistein treatment on limb bone and growth plate cartilage histomorphometry in obese, hyperglycemic ob/ob mice. Six-week-old ob/ob mice were divided into control and genistein-treated groups. Genistein-treated mice were fed a diet containing 600 mg genistein/kg for a period of 4 weeks. Cross-sectional geometric and histomorphometric analyses were conducted on tibias. Results Genistein-treated mice remained obese and hyperglycemic. However, histomorphometric comparisons show that genistein-treated mice have greater tibial midshaft diameters and ratios of cortical bone to total tissue area than the controls. Genistein-treated mice also exhibit decreased growth plate thickness of the proximal tibia. Conclusion Our results indicate that genistein treatment affects bone of the tibial midshaft in the ob/ob mouse, independent of improvements in the hyperglycemic state and body weight. PMID:27042131
In Situ Splitting of a Rib Bone Graft for Reconstruction of Orbital Floor and Medial Wall.
Uemura, Tetsuji; Yanai, Tetsu; Yasuta, Masato; Harada, Yoshimi; Morikawa, Aya; Watanabe, Hidetaka; Kurokawa, Masato
2017-06-01
In situ splitting of rib bone graft was conducted in 22 patients for the repair of orbital fracture with no other complicating fractures. A bone graft was harvested from the sixth or seventh rib in the right side. The repair of the orbital floor and medial wall was successful in all the cases. Ten patients had bone grafting to the orbital floor, eight had it done onto medial wall, and 4 onto both floor and wall after reduction. The mean length of in situ rib bone graft was 40.9 mm (range, 20-70 mm), the mean width of these was 14.9 mm (range, 8-20 mm). The bone grafting was done by one leaf for 15 cases and two leafs for 7 cases in size of defects. The technique of in situ splitting of a rib bone graft for the repair of the orbital floor and medial wall is a simple and safe procedure, easily taking out the in situ splitting of a rib, and less pain in donor site. It has proved to be an optimal choice in craniofacial reconstruction, especially the defects of orbital floor and medial wall.
Nanoceramics on osteoblast proliferation and differentiation in bone tissue engineering.
Sethu, Sai Nievethitha; Namashivayam, Subhapradha; Devendran, Saravanan; Nagarajan, Selvamurugan; Tsai, Wei-Bor; Narashiman, Srinivasan; Ramachandran, Murugesan; Ambigapathi, Moorthi
2017-05-01
Bone, a highly dynamic connective tissue, consist of a bioorganic phase comprising osteogenic cells and proteins which lies over an inorganic phase predominantly made of CaPO 4 (biological apatite). Injury to bone can be due to mechanical, metabolic or inflammatory agents also owing pathological conditions like fractures, osteomyelitis, osteolysis or cysts may arise in enameloid, chondroid, cementum, or chondroid bone which forms the intermediate tissues of the body. Bone tissue engineering (BTE) applies bioactive scaffolds, host cells and osteogenic signals for restoring damaged or diseased tissues. Various bioceramics used in BTE can be bioactive (like glass ceramics and hydroxyapatite bioactive glass), bioresorbable (like tricalcium phosphates) or bioinert (like zirconia and alumina). Limiting the size of these materials to nano-scale has resulted in a higher surface area to volume ratio thereby improving multi-functionality, solubility, surface catalytic activity, high heat and electrical conductivity. Nanoceramics have been found to induce osteoconduction, osteointegration, osteogenesis and osteoinduction. The present review aims at summarizing the interactions of nanoceramics and osteoblast/stem cells for promoting the proliferation and differentiation of the osteoblast cells by nanoceramics as superior bone substitutes in bone tissue engineering applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Multi analytical technique study of human bones from an archaeological discovery.
Lachowicz, J I; Palomba, S; Meloni, P; Carboni, M; Sanna, G; Floris, R; Pusceddu, V; Sarigu, M
2017-03-01
In 1953, during the building restoration of San Michele church (Bono, Sardinia, 16th-19th Century), a high number of disarticulated skeletons were recovered. From a group of 412 hip bones, two of these, affected by several pathological lesions, were analysed. The two coxal bones can be referred to the same individual, an adult man. A multi-analytical study, started with the purpose of investigating the bone pathology, was extended to characterize the mineral components of a large representative set of bones from the same ossuary, all attributed to adult men who lived in the region four-two centuries ago. A quantitative ICP-AES analysis for Ca, Fe, Mg, Mn, Na, Pb and Zn was executed, and a chemometric investigation on the results was performed. This approach gave evidence of the effects of diagenesis, allowed some hypothesis of the incidence of the known dietary habits on bone composition, and completely differentiated the pathological bones from those of a normal population on the basis of the mineral composition. Moreover, porosity, crystallinity and FT-IR analysis were conducted on both non- and pathological sample. Copyright © 2016 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Mroue, Kamal H.; Zhang, Rongchun; Zhu, Peizhi; McNerny, Erin; Kohn, David H.; Morris, Michael D.; Ramamoorthy, Ayyalusamy
2014-07-01
Reducing the data collection time without affecting the signal intensity and spectral resolution is one of the major challenges for the widespread application of multidimensional nuclear magnetic resonance (NMR) spectroscopy, especially in experiments conducted on complex heterogeneous biological systems such as bone. In most of these experiments, the NMR data collection time is ultimately governed by the proton spin-lattice relaxation times (T1). For over two decades, gadolinium(III)-DTPA (Gd-DTPA, DTPA = Diethylene triamine pentaacetic acid) has been one of the most widely used contrast-enhancement agents in magnetic resonance imaging (MRI). In this study, we demonstrate that Gd-DTPA can also be effectively used to enhance the longitudinal relaxation rates of protons in solid-state NMR experiments conducted on bone without significant line-broadening and chemical-shift-perturbation side effects. Using bovine cortical bone samples incubated in different concentrations of Gd-DTPA complex, the 1H T1 values were calculated from data collected by 1H spin-inversion recovery method detected in natural-abundance 13C cross-polarization magic angle spinning (CPMAS) NMR experiments. Our results reveal that the 1H T1 values can be successfully reduced by a factor of 3.5 using as low as 10 mM Gd-DTPA without reducing the spectral resolution and thus enabling faster data acquisition of the 13C CPMAS spectra. These results obtained from 13C-detected CPMAS experiments were further confirmed using 1H-detected ultrafast MAS experiments on Gd-DTPA doped bone samples. This approach considerably improves the signal-to-noise ratio per unit time of NMR experiments applied to bone samples by reducing the experimental time required to acquire the same number of scans.
Mroue, Kamal H; Zhang, Rongchun; Zhu, Peizhi; McNerny, Erin; Kohn, David H; Morris, Michael D; Ramamoorthy, Ayyalusamy
2014-07-01
Reducing the data collection time without affecting the signal intensity and spectral resolution is one of the major challenges for the widespread application of multidimensional nuclear magnetic resonance (NMR) spectroscopy, especially in experiments conducted on complex heterogeneous biological systems such as bone. In most of these experiments, the NMR data collection time is ultimately governed by the proton spin-lattice relaxation times (T1). For over two decades, gadolinium(III)-DTPA (Gd-DTPA, DTPA=Diethylene triamine pentaacetic acid) has been one of the most widely used contrast-enhancement agents in magnetic resonance imaging (MRI). In this study, we demonstrate that Gd-DTPA can also be effectively used to enhance the longitudinal relaxation rates of protons in solid-state NMR experiments conducted on bone without significant line-broadening and chemical-shift-perturbation side effects. Using bovine cortical bone samples incubated in different concentrations of Gd-DTPA complex, the (1)H T1 values were calculated from data collected by (1)H spin-inversion recovery method detected in natural-abundance (13)C cross-polarization magic angle spinning (CPMAS) NMR experiments. Our results reveal that the (1)H T1 values can be successfully reduced by a factor of 3.5 using as low as 10mM Gd-DTPA without reducing the spectral resolution and thus enabling faster data acquisition of the (13)C CPMAS spectra. These results obtained from (13)C-detected CPMAS experiments were further confirmed using (1)H-detected ultrafast MAS experiments on Gd-DTPA doped bone samples. This approach considerably improves the signal-to-noise ratio per unit time of NMR experiments applied to bone samples by reducing the experimental time required to acquire the same number of scans. Copyright © 2014 Elsevier Inc. All rights reserved.
Duggirala, S S; Rodgers, J B; DeLuca, P P
1996-07-01
Novel unitary devices, prepared by lyophilization of viscous solutions of sodium carboxymethylcellulose (CMC) and methylcellulose (MC), were evaluated as sustained-release delivery systems for recombinant human bone morphogenetic protein-2 (rhBMP-2). In vitro characterization of the unitary devices, which contained rhBMP-2-loaded poly (d,l lactide-co-glycolide) (PLGA) bioerodible particles (BEPs), was conducted over a 2-month period. Determinations included buffer uptake, mass and molecular weight loss and rhBMP-2 release from the unitary devices. CMC devices imbibed approximately 16 times their weight of buffer, while with MC, equilibrium uptake was approximately 6 times the dry weight of the devices. Overall mass loss percentages were approximately 55 and 35%, respectively, for CMC and MC devices. rhBMP-2 release from the devices was essentially a triphasic process: an initial phase during which "free" protein (rhBMP-2 present on the surface and within the pores of the PLGA BEPs) was released, a lag period during which no release was discerned, and then release of "bound" rhBMP-2 (protein adsorbed to the BEPs). The release of bound protein correlated with the mass loss of the polymer which began after 3 weeks. Release from the unitary devices was lower than that from the BEPs alone, due to a retardation effect of the gelled CMC/MC polymers. In rabbits in which full-thickness cranial bone defects were created, the implants were well tolerated and induced significant new bone growth during an 8-week evaluation period. The CMC devices appear to have induced bone earlier (at 2 weeks), but this did not affect eventual 8-week results. CMC devices without rhBMP-2 appeared to provide some bone conduction, in contrast to the blank MC devices.
Wilson, Clayton E; Kruyt, Moyo C; de Bruijn, Joost D; van Blitterswijk, Clemens A; Oner, F Cumhur; Verbout, Abraham J; Dhert, Wouter J A
2006-01-01
This study presents a new screening model for evaluating the influence of multiple conditions on the initial process of bone formation in the posterior lumbar spine of a large animal. This model uses cages designed for placement on the decorticated transverse process of the goat lumbar spine. Five conduction channels per cage, each be defined by a different material treatment, are open to both the underlying bone and overlying soft tissue. The model was validated in ten adult Dutch milk goats, with each animal implanted with two cages containing a total of ten calcium phosphate material treatments according to a randomized complete block design. The ten calcium phosphate ceramic materials were created through a combination of material chemistry (BCP, TCP, HA), sintering temperature (low, medium, high), calcination and surface roughness treatments. To monitor the bone formation over time, fluorochrome markers were administered at 3, 5 and 7 weeks and the animals were sacrificed at 9 weeks after implantation. Bone formation in the conduction channels was investigated by histology and histomorphometry of non-decalcified sections using traditional light and epifluorescent microscopy. According to both observed and measured bone formation parameters, materials were ranked in order of increasing magnitude as follows: low sintering temperature BCP (rough and smooth) approximately medium sintering temperature BCP approximately = TCP > calcined low sintering temperature HA > non-calcined low sintering temperature HA > high sintering temperature BCP (rough and smooth) > high sintering temperature HA (calcined and non-calcined). These results agree closely with those obtained in previous studies of osteoconduction and bioactivity of ceramics thereby validating the screening model presented in this study.
NASA Astrophysics Data System (ADS)
Nakagawa, Seiji; Fujiyuki, Chika; Kagomiya, Takayuki
2012-07-01
Bone-conducted ultrasound (BCU) is perceived even by the profoundly sensorineural deaf. A novel hearing aid using the perception of amplitude-modulated BCU (BCU hearing aid: BCUHA) has been developed; however, further improvements are needed, especially in terms of articulation and sound quality. In this study, the intelligibility and sound quality of BCU speech with several types of amplitude modulation [double-sideband with transmitted carrier (DSB-TC), double-sideband with suppressed carrier (DSB-SC), and transposed modulation] were evaluated. The results showed that DSB-TC and transposed speech were more intelligible than DSB-SC speech, and transposed speech was closer than the other types of BCU speech to air-conducted speech in terms of sound quality. These results provide useful information for further development of the BCUHA.
High-fat/high-sucrose diet results in higher bone mass in aged rats.
Minematsu, Akira; Nishii, Yasue; Sakata, Susumu
2018-06-01
Intake of high-fat/high-sucrose (HFS) diet or high fat diet influences bone metabolism in young rodents, but its effects on bone properties of aged rodents still remain unclear. This study aimed to examine the effects of HFS diet intake on trabecular bone architecture (TBA) and cortical bone geometry (CBG) in aged rats. Fifteen male Wistar rats over 1 year were randomly divided into two groups. One group was fed a standard laboratory diet (SLD) and the other group was fed a HFS diet for six months. The femur/tibia, obtained from both groups at the end of experimental period, were scanned by micro-computed tomography for TBA/CBG analyses. Serum biochemical analyses were also conducted. Body weight was significantly higher in the HFS group than in the SLD group. In both femur and tibia, the HFS group showed higher trabecular/cortical bone mass in reference to bone mineral content, volume bone mineral density and TBA/CBG parameters compared with the SLD group. In addition, serum calcium, inorganic phosphorus, total protein, triacylglycerol, HDL and TRACP-5b levels were significantly higher in the HFS group than in the SLD group. There were good correlations between body weight and bone parameters in the femur and tibia. These results suggest that HFS diet intake results in higher bone mass in aged rats. Such effects of HFS diet intake might have been induced by increased body weight.
Hearing Outcome With the Use of Glass Ionomer Cement as an Alternative to Crimping in Stapedotomy.
Elzayat, Saad; Younes, Ahmed; Fouad, Ayman; Erfan, Fatthe; Mahrous, Ali
2017-10-01
To evaluate early hearing outcomes using glass ionomer cement to fix the Teflon piston prosthesis onto the long process of incus to minimize residual conductive hearing loss after stapedotomy. Original report of prospective randomized control study. Tertiary referral center. A total of 80 consecutive patients with otosclerosis were randomized into two groups. Group A is a control group in which 40 patients underwent small fenestra stapedotomy using the classic technique. Group B included 40 patients who were subjected to small fenestra stapedotomy with fixation of the incus-prosthesis junction with glass ionomer bone cement. Stapedotomy with the classical technique in group A and the alternative technique in group B. The audiometric results before and after surgery. Analysis of the results was performed using the paired t test to compare between pre and postoperative results. χ test was used to compare the results of the two groups. A p value less than 0.05 was considered significant from the statistical standpoint. Significant postoperative improvement of both pure-tone air conduction thresholds and air-bone gaps were reported in the two studied groups. The postoperative average residual air-bone gap and hearing gain were statistically significant in group B (p < 0.05) compared with group A. The use of glass ionomer bone cement in primary otosclerosis surgery using the aforementioned prosthesis and the surgical technique is of significant value in producing maximal closure of the air-bone gap and better audiological outcomes.
Evaluation of bone surrogates for indirect and direct ballistic fractures.
Bir, Cynthia; Andrecovich, Chris; DeMaio, Marlene; Dougherty, Paul J
2016-04-01
The mechanism of injury for fractures to long bones has been studied for both direct ballistic loading as well as indirect. However, the majority of these studies have been conducted on both post-mortem human subjects (PMHS) and animal surrogates which have constraints in terms of storage, preparation and testing. The identification of a validated bone surrogate for use in forensic, medical and engineering testing would provide the ability to investigate ballistic loading without these constraints. Two specific bone surrogates, Sawbones and Synbone, were evaluated in comparison to PMHS for both direct and indirect ballistic loading. For the direct loading, the mean velocity to produce fracture was 121 ± 19 m/s for the PMHS, which was statistically different from the Sawbones (140 ± 7 m/s) and Synbone (146 ± 3 m/s). The average distance to fracture in the indirect loading was .70 cm for the PMHS. The Synbone had a statistically similar average distance to fracture (.61 cm, p=0.54) however the Sawbones average distance to fracture was statistically different (.41 cm, p<0.05). Fractures patterns were found to be comparable to the PMHS for tests conducted with Synbones, however the input parameters were slightly varied to produce similar results. The fractures patterns with the Sawbones were not found to be as comparable to the PMHS. An ideal bone surrogate for ballistic testing was not identified and future work is warranted. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Lovatto, Sabrina Telles; Bassani, Rafaela; Sarkis-Onofre, Rafael; Dos Santos, Mateus Bertolini Fernandes
2018-03-26
To assess, through a systematic review, the influence of different implant geometries on clinical longevity and maintenance of marginal bone tissue. An electronic search was conducted in MEDLINE, Scopus, and Web of Science databases, limited to studies written in English from 1996 to 2017 using specific search strategies. Only randomized controlled trials (RCTs) that compared dental implants and their geometries were included. Two reviewers independently selected studies, extracted data, and assessed the risk of bias of included studies. From the 4006 references identified by the search, 24 were considered eligible for full-text analysis, after which 10 studies were included in this review. A similar behavior of marginal bone loss between tapered and cylindrical geometries was observed; however, implants that had micro-threads in the neck presented a slight decrease of marginal bone loss compared to implants with straight or smooth neck. Success and survival rates were high, with cylindrical implants presenting higher success and survival rates than tapered ones. Implant geometry seems to have little influence on marginal bone loss (MBL) and survival and success rates after 1 year of implant placement; however, the evidence in this systematic review was classified as very low due to limitations such as study design, sample size, and publication bias. Thus, more well-designed RCTs should be conducted to provide evidence regarding the influence of implant geometry on MBL and survival and success rates after 1 year of implant placement. © 2018 by the American College of Prosthodontists.
Heat generated during seating of dental implant fixtures.
Flanagan, Dennis
2014-04-01
Frictional heat can be generated during seating of dental implants into a drill-prepared osteotomy. This in vitro study tested the heat generated by implant seating in dense bovine mandible ramus. A thermocouple was placed approximately 0.5 mm from the rim of the osteotomy during seating of each dental implant. Four diameters of implants were tested. The average temperature increases were 0.075°C for the 5.7-mm-diameter implant, 0.97°C for the 4.7-mm-diameter implant, 1.4°C for the 3.7-mm-diameter implant, and 8.6°C for the 2.5-mm-diameter implant. The results showed that heat was indeed generated and a small temperature rise occurred, apparently by the friction of the implant surface against the fresh-cut bone surface. Bone is a poor thermal conductor. The titanium of the implant and the steel of the handpiece are much better heat conductors. Titanium may be 70 times more heat conductive than bone. The larger diameter and displacement implant may act as a heat sink to draw away any heat produced from the friction of seating the implant at the bone-implant interface. The peak temperature duration was momentary, and not measured, but this was approximately less than 1 second. Except for the 2.5-mm-diameter implants, the temperature rises and durations were found to be below those previously deemed to be detrimental, so no clinically significant osseous damage would be expected during dental implant fixture seating of standard and large-diameter-sized implants. A 2.5-mm implant may generate detrimental heat during seating in nonvital bone, but this may be clinically insignificant in vital bone. The surface area and thermal conductivity are important factors in removing generated heat transfer at the bone-implant interface. The F value as determined by analysis of variance was 69.22, and the P value was less than .0001, demonstrating significant differences between the groups considered as a whole.
Chung, Mei; Fu, Zhuxuan; Insogna, Karl L.; Karlsen, Micaela C.; LeBoff, Meryl S.; Shapses, Sue A.; Sackey, Joachim; Shi, Jian; Weaver, Connie M.
2018-01-01
Background Protein may have both beneficial and detrimental effects on bone health depending on a variety of factors, including protein source. Objective The aim was to conduct a systematic review and meta-analysis evaluating the effects of animal versus plant protein intake on bone mineral density (BMD), bone mineral content (BMC) and select bone biomarkers in healthy adults. Methods Searches across five databases were conducted through 10/31/16 for randomized controlled trials (RCTs) and prospective cohort studies in healthy adults that examined the effects of animal versus plant protein intake on 1) total body (TB), total hip (TH), lumbar spine (LS) or femoral neck (FN) BMD or TB BMC for at least one year, or 2) select bone formation and resorption biomarkers for at least six months. Strength of evidence (SOE) was assessed and random effect meta-analyses were performed. Results Seven RCTs examining animal vs. isoflavone-rich soy (Soy+) protein intake in 633 healthy peri-menopausal (n = 1) and post-menopausal (n = 6) women were included. Overall risk of bias was medium. Limited SOE suggests no significant difference between Soy+ vs. animal protein on LS, TH, FN and TB BMD, TB BMC, and bone turnover markers BSAP and NTX. Meta-analysis results showed on average, the differences between Soy+ and animal protein groups were close to zero and not significant for BMD outcomes (LS: n = 4, pooled net % change: 0.24%, 95% CI: -0.80%, 1.28%; TB: n = 3, -0.24%, 95% CI: -0.81%, 0.33%; FN: n = 3, 0.13%, 95% CI: -0.94%, 1.21%). All meta-analyses had no statistical heterogeneity. Conclusions These results do not support soy protein consumption as more advantageous than animal protein, or vice versa. Future studies are needed examining the effects of different protein sources in different populations on BMD, BMC, and fracture. PMID:29474360
Depression and risk of fracture and bone loss: an updated meta-analysis of prospective studies.
Wu, Q; Liu, B; Tonmoy, S
2018-03-12
This meta-analysis pooled results from 23 qualifying individual cohort studies and found that depression was significantly associated with an increased risk of fractures and bone loss. The association between depression and risk of fracture remains controversial. We conducted a comprehensive meta-analysis to examine the effect of depression on the risk of osteoporotic fractures and bone loss. We searched databases and reviewed citations in relevant articles for eligible cohort studies. Two investigators independently conducted study selection, appraisal, and data abstraction through the use of a standardized protocol. Random effect models were used for meta-analysis. Cochrane Q and I 2 statistics were used to assess heterogeneity. Funnel plots and rank correlation tests were used to evaluate publication bias. Twenty-three studies were included for meta-analysis. In studies that reported hazard ratio (HR) as the outcome (nine studies [n = 309,862]), depression was associated with 26% increase in fracture risk (HR = 1.26, 95% CI, 1.10-1.43, p < 0.001). Studies that reported risk ratio (RR) as the outcome (seven studies [n = 64,975]) suggested that depression was associated with 39% increase in fracture risk (RR = 1.39, 95% CI, 1.19-1.62, p < 0.001). Among studies that reported hip bone mineral density (BMD) as an outcome (eight studies [n = 15,442]), depression was associated with a reduced mean annual bone loss rate of 0.35% (0.18-0.53%, p < 0.001). The increased risk of fracture and bone loss associated with depression was consistent in all meta-analysis having modified inclusion criteria and in different subgroup analyses as well. Significant heterogeneity was observed in the meta-analysis; however, no significant publication bias was detected. Depression is associated with a significant increased risk in fracture and bone loss. Effective prevention may decrease such risk.
The impact of microgravity on bone metabolism in vitro and in vivo.
Loomer, P M
2001-01-01
Exposure to microgravity has been associated with several physiological changes in astronauts and cosmonauts, including an osteoporosis-like loss of bone mass. In-flight measures used to counteract this, including intensive daily exercise regimens, have been only partially successful in reducing the bone loss and in the process have consumed valuable work time. If this bone loss is to be minimized or, preferably, prevented, more effective treatment strategies are required. This, however, requires a greater understanding of the mechanisms through which bone metabolism is affected by microgravity. Various research strategies have been used to examine this problem, including in vitro studies using bone cells and in vivo studies on humans and rats. These have been conducted both in flight and on the ground, by strategies that produce weightlessness to mimic the effects of microgravity. Overall, the majority of the studies have found that marked decreases in gravitation loading result in the loss of bone mass. The processes of bone formation and bone resorption become uncoupled, with an initial transitory increase in resorption accompanied by a prolonged decrease in formation. Loss of bone mass is not uniform throughout the skeleton, but varies at different sites depending on the type of bone and on the mechanical load received. It appears that the skeletal response is a physiologic adaptation to the space environment which, after long space flights or repeated shorter ones, could eventually lead to significant reductions in the ability of the skeletal tissues to withstand the forces of gravity and increased susceptibility to fracture.
Łukaszkiewicz, Jacek; Karczmarewicz, Elzbieta; Płudowski, Paweł; Jaworski, Maciej; Czerwiński, Edward; Lewiński, Andrzej; Marcinowska-Suchowierska, Ewa; Milewicz, Andrzej; Spaczyński, Marek; Lorenc, Roman S
2008-12-01
One of the most important risk factors for osteoporotic fractures in postmenopausal women is elevated bone turnover (EBT), occurring in 25-30% of this population. This study's aim was to find a correlation between bone resorption and bone formation markers to assess bone turnover rate and qualify an individual postmenopausal woman as a possible EBT subject. Three hundred twenty postmenopausal women (> or = one year after the last menstruation, < or = 70 years old) were enrolled at seven clinical sites in this cross-sectional observational study conducted within the EPOLOS. The group was a random sample of the population. The study was performed in a referral center involved in the diagnosis and treatment of osteoporosis. The exclusion criteria included pregnancy, cancer, fracture in the last year, and overweight (> 100 kg). Bone mineral density (BMD) measurements of the lumbar spine, total hip, trochanter, and femoral neck regions were performed. Bone resorption and formation rates were evaluated by serum levels of C-terminal telopeptide of type I collagen (CTX) and osteocalcin (OC), respectively. Using logistic regression to correlate the concentrations of CTX and OC it was possible not only to distinguish the EBT subgroup, but also to construct a simple nomogram for easy classification of individual patients as possible EBT subjects. EBT patients showed generally decreased BMD values and increased bone formation and resorption rates. Evaluation of both CTX and OC levels enables a more proper indication for EBT. The proposed nomogram may assist in evaluating outcome from the two markers of bone turnover.
Nissan, Joseph; Marilena, Vered; Gross, Ora; Mardinger, Ofer; Chaushu, Gavriel
2012-01-01
Grafting with bone blocks may be required to restore the alveolar process in extremely atrophic maxillae prior to implant placement to ensure both function and esthetics. The present study was conducted to histologically and histomorphometrically evaluate the application of allograft cancellous bone blocks for the augmentation of the anterior atrophic maxilla. Consecutive patients with severe atrophy in the anterior maxilla underwent augmentation with cancellous bone block allografts. Bony deficiencies of at least 3 mm horizontally and up to 3 mm vertically according to computed tomographic para-axial reconstructions served as inclusion criteria. After 6 months, implants were placed and a cylindric sample core from the graft area was collected. All specimens were prepared for histologic and histomorphometric examination. Forty patients were included in the study. Eighty-three implants were placed in bone that was augmented with 60 cancellous freeze-dried bone block allografts. The implant survival rate was 98.8%. Mean follow-up was 48 ± 22 months (range, 14 to 82 months). The mean percentage of newly formed bone was 33% ± 18%, that of the residual cancellous block allograft was 26% ± 17%, and marrow and connective tissue comprised 41% ± 2%. Statistically significant histomorphometric differences regarding newly formed bone and residual cancellous block allograft were found between younger (< 40 years) and older (≥ 40 years) patients, respectively. Age did not appear to influence the percentage of marrow and connective tissue. Cancellous bone block allograft is biocompatible and osteoconductive, permitting new bone formation following augmentation of extremely atrophic anterior maxillae in a two-stage implant placement procedure. New bone formation was age-dependent.
Bae, Ji Cheol; Lee, Jin-Ju; Shim, Jin-Hyung; Park, Keun-Ho; Lee, Jeong-Seok; Bae, Eun-Bin; Choi, Jae-Won; Huh, Jung-Bo
2017-12-16
In this study, a new concept of a 3D-printed scaffold was introduced for the accurate placement of an implant and the application of a recombinant human bone morphogenetic protein-2 (rhBMP-2)-loaded bone graft. This preliminary study was conducted using two adult beagles to evaluate the 3D-printed polycaprolactone (PCL)/ β -tricalcium phosphate ( β -TCP)/bone decellularized extracellular matrix (bdECM) scaffold conjugated with rhBMP-2 for the simultaneous use as an implant surgical guide stent and bone graft material that promotes new bone growth. Teeth were extracted from the mandible of the beagle model and scanned by computed tomography (CT) to fabricate a customized scaffold that would fit the bone defect. After positioning the implant guide scaffold, the implant was placed and rhBMP-2 was injected into the scaffold of the experimental group. The two beagles were sacrificed after three months. The specimen block was obtained and scanned by micro-CT. Histological analysis showed that the control and experimental groups had similar new bone volume (NBV, %) but the experimental group with BMP exhibited a significantly higher bone-to-implant contact ratio (BIC, %). Within the limitations of this preliminary study, a 3D-printed scaffold conjugated with rhBMP-2 can be used simultaneously as an implant surgical guide and a bone graft in a large bone defect site. Further large-scale studies will be needed to confirm these results.
Miyamoto, Shinji; Shinmyouzu, Kouhei; Miyamoto, Ikuya; Takeshita, Kenji; Terada, Toshihisa; Takahashi, Tetsu
2013-08-01
This study utilized the constitution and expression of Runx2/Cbfa1 to conduct 6-month-post-operation histomorphometrical and histochemical analysis of osteocalcin in bone regeneration following sinus-floor augmentation procedures using β-tricalcium phosphate (β-TCP) and autogenous cortical bone. Thirteen sinuses of nine patients were treated with sinus-floor augmentation using 50% β-TCP and 50% autogenous cancellous bone harvested from the ramus of the mandible. Biopsies of augmented sinuses were taken at 6 months for histomorphometric and immunohistochemical measurements. Runx2/Cbfa1- and osteocalcin-positive cells were found around TCP particles and on the bone surface. Approximately 60% of cells found around TCP particles stained positive for Runx2/Cbfa1. Fewer cells stained positive for osteocalcin. These positive cells decreased apically with increasing vertical distance from the maxillary bone surface. Histomorphometric analysis showed that the augmented site close to residual bone and periosteum contained approximately 42% bony tissue and 42% soft connective tissue, and the remaining 16% consisted of TCP particles. On the other hand, the augmented bone far from residual bone and periosteum contained 35% bony tissue and 50% soft connective tissue. Our data suggest that TCP particles attract osteoprogenitor cells that migrate into the interconnecting micropores of the bone-substitute material by 6 months. The augmented site close to residual bone contained a higher proportion of bony tissue and a lower proportion of soft connective tissue than did the augmented site far from residual bone. © 2012 John Wiley & Sons A/S.
Galy-Bernadoy, C; Akkari, M; Mondain, M; Uziel, A; Venail, F
2016-12-01
Bone cement is used for ossicular chain repair and revision stapes surgery. Its efficient use requires cautious removal of mucosa from the ossicles. This paper reports a technique for easy, fast and safe removal of this mucosa prior to cement application. It consists of the application of monopolar electrocoagulation on the ossicles prior to bone cement application. The outcomes of six cases of revision stapes surgery and seven cases of partial ossiculoplasty, conducted between 2007 and 2012 using this new technique, were evaluated. Intra-operative reports and audiometric data were collected. During the last assessment, reconstruction using bone cement resulted in mean post-operative air-bone gaps of 4.1 ± 6.5 dB in revision stapes surgery cases and 5.7 ± 5.5 dB in partial ossiculoplasty cases, reflecting a significant hearing improvement (p = 0.03). No complications were observed. Electrocoagulation allows the removal of mucosa from the ossicles in an easy, fast and safe manner, enabling the use of bone cement for ossicular chain reconstruction.
McClure, S R; Miles, K; Vansickle, D; South, T
2010-08-01
The objective of this study was to evaluate the effects of variable waveform low-intensity ultrasound on the healing of a fracture gap of the fourth metacarpal bone in horses. A randomized, blinded, controlled trial was conducted in eight healthy adult horses. In each horse, a 1-cm osteotomy of the fourth metacarpal bone was created. One randomly selected metacarpal gap was treated daily with a 40-min session of ultrasound and the opposite gap was managed similarly with an inactive transducer. The fourth metacarpal bones were radiographed weekly. Fluorescent markers were administered at 14, 28, 56 and 70 d. At the completion of the study at day 84, the bones were harvested and evaluated with peripheral quantitative computed tomography (pQCT) and histology. There were no significant differences between treated and control bones for any of the radiographic, pQCT or histologic parameters evaluated. These findings suggested that low-intensity ultrasound did not affect bone formation in a fracture gap model in the horse. Copyright 2010 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Lozano-Carrascal, Naroa; Hernández-Alfaro, Federico; Gehrke, Sergio-Alexandre; Gargallo-Albiol, Jordi; Calvo-Guirado, José-Luis
2017-01-01
Background The aim of this systematic literature review was to evaluate the feasibility of topical bisphosphonate application for preserving/enhancing alveolar bone in oral implantology. Material and Methods An electronic search was conducted in the PubMed/Medline, EMBASE, Scopus, Web of knowledge, and Google-Scholar databases for articles dated from January 2000 to December 2016. Two reviewers assessed the quality of the studies independently. Results A total of 154 abstracts were identified, of which 18 potentially relevant articles were selected; a final total of nine papers were included for analysis. Comparison of the findings of the selected studies was made difficult by the heterogeneity of the articles, all of them animal research papers that showed heterogeneity in the methodologies used and a high or moderate risk of bias. Conclusions The topical application of bisphosphonate solution would appear to favor new bone formation in alveolar defects, and boosts the regenerative capacities of biomaterials resulting in increased bone density. Key words:Alveolar bone, bone regeneration, topical application, biomaterial, bisphosphonates. PMID:28624840
Chen, J T; Shiraki, M; Katase, K; Kato, T; Hirai, Y; Hasumi, K
1994-10-01
To study the correlation between the basal serum calcitonin level and L2-4 bone mineral density (BMD), a cross sectional study of 384 healthy subjects (106 premenopausal, 88 perimenopausal and 109 postmenopausal subjects) and a longitudinal study of 42 oophorectomized subjects were conducted. A positive correlation was found in perimenopause (r = 0.219, p = 0.040) but not in premenopause (r = 0.069, p = 0.4898) and postmenopause (r = 0.141, p = 0.0554) in a cross sectional study. The percent reduction in L2-4BMD compared to the baseline also correlated with preoperative calcitonin levels at 6 months after oophorectomy (r = 0.333, p = 0.0442), but not significantly at 12 months (r = 0.224, p = 0.27). These data suggest that the basal calcitonin level correlates to L2-4BMD only at perimenopause or in the early postoophorectomized period when bone turnover is accelerated and bone resorption seems to be faster than bone formation. In addition the premenopausal basal calcitonin level may be an indicator of the fast loser after menopause.
Reconstruction of mandibular defects with autogenous bone grafts: a review of 30 cases.
Sajid, Malik Ali Hassan; Warraich, Riaz Ahmed; Abid, Hina; Ehsan-ul-Haq, Muhammad; Shah, Khurram Latif; Khan, Zafar
2011-01-01
Multitudes of options are available for reconstruction of functional and cosmetic defects of the mandible, caused by various ailments. At the present time, autogenous bone grafting is the gold standard by which all other techniques of reconstruction of the mandible can be judged. The purpose of this study was to evaluate the outcome of different osseous reconstruction options using autogenous bone grafts for mandibular reconstruction. This Interventional study was conducted at Department of Oral and Maxillofacial Surgery, King Edward Medical University/Mayo Hospital Lahore, from January 2008 to July 2009 including one year follow-up. The study was carried out on thirty patients having bony mandibular defects. They were reconstructed with the autogenous bone grafts from different graft donor sites. On post-operative visits they were evaluated for outcome variables. Success rate of autogenous bone grafts in this study was 90%. Only 10% of the cases showed poor results regarding infection, resorption and graft failure. Autogenous bone grafts, non-vascularised or vascularised, are a reliable treatment modality for the reconstruction of the bony mandibular defects with predictable functional and aesthetic outcome.
Park, Hyun Jung; Lee, Ok Joo; Lee, Min Chae; Moon, Bo Mi; Ju, Hyung Woo; Lee, Jung min; Kim, Jung-Ho; Kim, Dong Wook; Park, Chan Hum
2015-01-01
Silk fibroin is a biomaterial being actively studied in the field of bone tissue engineering. In this study, we aimed to select the best strategy for bone reconstruction on scaffolds by changing various conditions. We compared the characteristics of each scaffold via structural analysis using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), the swelling ratio, water uptake, porosity, compressive strength, cell infiltration and cell viability (CCK-8). The scaffolds had high porosity with good inter pore connectivity and showed high compressive strength and modulus. In addition, to confirm bone reconstruction, animal studies were conducted in which samples were implanted in rat calvaria and investigated by micro-CT scans. In conclusion, the presented study indicates that using sucrose produces scaffolds showing better pore interconnectivity and cell infiltration than scaffolds made by using a salt process. In addition, in vivo experiments showed that hydroxyapatite accelerates bone reconstruction on implanted scaffolds. Accordingly, our scaffold will be expected to have a useful application in bone reconstruction. Copyright © 2015 Elsevier B.V. All rights reserved.
Fan, Haitao T; Zhang, Renjie J; Shen, Cailiang L; Dong, Fulong L; Li, Yong; Song, Peiwen W; Gong, Chen; Wang, Yijin J
2016-03-01
The biomechanics of pedicle screw fixation combined with trajectory cement augmentation with various filling volumes were measured by pull-out, periodic antibending, and compression fatigue tests. To investigate the biomechanical properties of the pedicle screw fixation combined with trajectory bone cement (polymethylmethacrylate) augmentation in osteoporotic vertebrae and to explore the optimum filling volume of the bone cement. Pedicle screw fixation is considered to be the most effective posterior fixation method. The decrease of the bone mineral density apparently increases the fixation failure risk caused by screw loosening and displacement. Trajectory bone cement augmentation has been confirmed to be an effective method to increase the bone intensity and could markedly increase the stability of the fixation interface. Sixteen elderly cadaveric 1-5 lumbar vertebral specimens were diagnosed with osteoporosis. The left and right vertebral pedicles were alternatively randomized for treatment in all groups, with the contralateral pedicles as control. The study groups included: group A (pedicle screw fixation with full trajectory bone cement augmentation), group B (75% filling), group C (50% filling), and group D (25% filling). Finally, the bone cement leakage and dispersion were assessed and the mechanical testing was conducted. The bone cement was well dispersed around the pedicle screw. The augmented bone intensity, pull-out strength, periodic loading times, and compression fatigue performance were markedly higher than those of the control groups. With the increase in trajectory bone cement, the leakage was also increased (P<0.05). The pull-out strength of the pedicle screw was increased with an increase in bone mineral density and trajectory bone cement. It peaked at 75% filling, with the largest power consumption. The optimal filling volume of the bone cement was 75% of the trajectory volume (about 1.03 mL). The use of excessive bone cement did not increase the fixation intensity but increased the risk of leakage.
Persson, P; Harder, H; Magnuson, B
1997-01-01
Hearing results in a consecutive series of 407 patients with otosclerosis undergoing primary stapes surgery were analysed (437 operated ears). Partial stapedectomy was performed in 70 ears (16%), total stapedectomy in 205 ears (47%), in both groups using the House steel wire prosthesis on fascia in the oval window. The remaining 162 ears (37%) underwent stapedotomy using the Fisch 0.4 mm teflon-platinum piston. No case of cochlear loss (> 15 dB) occurred in the total series. The comparison between the three groups one year postoperatively showed that the air-bone gap was smaller for partial and total stapedectomy for all frequencies except 4 kHz. The air-bone gap was calculated as the difference between the preoperative bone conduction and the postoperative air conduction thresholds. Partial and total stapedectomy also showed larger improvements of bone conduction thresholds compared with stapedotomy for all frequencies but 4 kHz. At the 3-year follow-up, the hearing gain for all frequencies (250-8000 Hz) was larger for partial and total stapedectomy. Yet, when comparing the decline of hearing from 1 to 3 year postoperatively, the hearing gain achieved with partial and total stapedectomy seemed to deteriorate at a higher rate, which was considered to be caused by impaired sensorineural function. Our results show that in the short-term perspective partial or total stapedectomy can still compete for better hearing results even at higher frequencies, but stapedotomy seems to yield more stable hearing results over time and should therefore be considered as the method of choice.
Valenza, Marie Carmen; Castro-Martín, Eduardo; Valenza, Gerad; Guirao-Piñeiro, Miguel; De-la-Llave-Rincón, Ana Isabel; Fernández-de-las-Peñas, César
2012-02-01
The curricula of all health professionals have an important foundation of human anatomy. A comparison of the anatomy retention between students from different curricula has not been studied. Our aim was to examine the knowledge competency of third-year physical therapy and medical students in carpal bone anatomy. The testing was conducted on the third-year medical and physical therapy students at Universidad de Granada. Students were given 5 minutes to answer the carpal bone test, a test which requires the identification of the carpal bones in an illustration of the bony skeleton of carpal region. Differences in the distribution of the responses between groups were analyzed using the χ(2) test. One hundred thirty-four (n = 134) tests were analyzed (n = 54 [41%] physical therapy students, n = 80 [59%] medical students). Only 39 students correctly identified all of the carpal bones (42.6% physical therapy, 20% medical, P < .001). Physical therapy students correctly identified a greater number (P < .001) of carpal bones (mean ± SD, 5.8 ± 2.2) than medical students (mean ± SD, 3.1 ± 2.9). The capitate was the most frequently identified bone in both physical therapy (96%) and medical (46%) students (P < .001). The hamate bone was the least frequently identified bone by medical students (n = 29, or 36.3%), whereas the trapezoid bone was the least frequently identified bone by physical therapy students (n = 35, or 64.8%). There are few studies investigating anatomical knowledge levels between disciplines. This study found that physical therapy students exhibited better retention of anatomy of the carpal bones than medical students. Copyright © 2012 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.
Lopez, Maria de Almeida; Olate, Sergio; Lanata-Flores, Antonio; Pozzer, Leandro; Cavalieri-Pereira, Lucas; Cantín, Mario; Vásquez, Bélgica; de Albergaria-Barbosa, José
2013-01-01
The aim of this research was to determine the bone formation capacity in fenestration defects associated with dental implants using absorbable and non-absorbable membranes. Six dogs were used in the study. In both tibias of each animal 3 implants were installed, and around these 5 mm circular defects were created. The defects were covered with absorbable membranes (experimental group 1), non-absorbable membranes (experimental group 2), and the third defect was not covered (control group). At 3 and 8 weeks post-surgery, the animals were euthanized and the membranes with the bone tissue around the implants were processed for histological analysis. The statistical analysis was conducted with Tukey’s test, considering statistical significance when p<0.1. Adequate bone repair was observed in the membrane-covered defects. At 3 weeks, organization of the tissue, bone formation from the periphery of the defect and the absence of inflammatory infiltrate were observed in both experimental groups, but the defect covered with absorbable membrane presented statistically greater bone formation. At 8 weeks, both membrane-covered defects showed adequate bone formation without significant differences, although they did in fact present differences with the control defect in both periods (p>0.1). In the defects without membrane, continuous connective tissue invasions and bone repair deficiency were observed. There were no significant differences in the characteristics and volume of the neoformed bone in the defects around the implants covered by the different membranes, whereas the control defects produced significantly less bone. The use of biological membranes contributes to bone formation in three-wall defects. PMID:24228090
Boutroy, Stephanie; Zhang, Chiyuan; McMahon, Donald Jay; Zhou, Bin; Wang, Ji; Udesky, Julia; Cremers, Serge; Sarquis, Marta; Guo, Xiang-Dong Edward; Hans, Didier
2013-01-01
Context: In the milder form of primary hyperparathyroidism (PHPT), cancellous bone, represented by areal bone mineral density at the lumbar spine by dual-energy x-ray absorptiometry (DXA), is preserved. This finding is in contrast to high-resolution peripheral quantitative computed tomography (HRpQCT) results of abnormal trabecular microstructure and epidemiological evidence for increased overall fracture risk in PHPT. Because DXA does not directly measure trabecular bone and HRpQCT is not widely available, we used trabecular bone score (TBS), a novel gray-level textural analysis applied to spine DXA images, to estimate indirectly trabecular microarchitecture. Objective: The purpose of this study was to assess TBS from spine DXA images in relation to HRpQCT indices and bone stiffness in radius and tibia in PHPT. Design and Setting: This was a cross-sectional study conducted in a referral center. Patients: Participants were 22 postmenopausal women with PHPT. Main Outcome Measures: Outcomes measured were areal bone mineral density by DXA, TBS indices derived from DXA images, HRpQCT standard measures, and bone stiffness assessed by finite element analysis at distal radius and tibia. Results: TBS in PHPT was low at 1.24, representing abnormal trabecular microstructure (normal ≥1.35). TBS was correlated with whole bone stiffness and all HRpQCT indices, except for trabecular thickness and trabecular stiffness at the radius. At the tibia, correlations were observed between TBS and volumetric densities, cortical thickness, trabecular bone volume, and whole bone stiffness. TBS correlated with all indices of trabecular microarchitecture, except trabecular thickness, after adjustment for body weight. Conclusion: TBS, a measurement technology readily available by DXA, shows promise in the clinical assessment of trabecular microstructure in PHPT. PMID:23526463
The fatigue behavior of an amorphous brittle composite material
NASA Astrophysics Data System (ADS)
Kumar, Brijesh
The use of poly methyl methacrylate (PMMA) based bone cement as a grouting agent for the in-vivo fixation of orthopaedic implants has been in practice for nearly fifty years. Fatigue failure of the bone cement has been identified as the primary cause of cement failure. Implant loosening due to the failure of the cement is one of the major reasons necessitating revision surgery. The need for a more fatigue resistant bone cement is well documented in the literature. One method of producing a more fatigue resistant bone cement is to reinforce it with short fibers. The fundamental purpose of this work was to investigate the possible improvement of the fatigue characteristics of bone cement provided by the following two types of fiber reinforcements: short flexible Polyethylene Terephalate (PET) fibers and stiff milled carbon fibers. It has been shown that the reinforcement of the bone cement with fibers provides substantial improvement of the fracture toughness of the bone cement. In this investigation the impact of fiber reinforcement on the fatigue properties of the bone cement was studied. The effects of the fiber reinforcement on the fatigue life of bone cement has been determined experimentally. Since fatigue characteristics are known to have considerable scatter, a methodology was developed to analyze the experimental data in a statistically rigorous manner. The effect of the fiber reinforcement on bone cement was also analyzed using a theoretical approach and by conducting extensive Scanning Electron Microscopy (SEM) of the fractured surfaces. The results of this study indicate that fiber reinforcement improves the fatigue life of bone cement at a very high level of reliability. This could potentially lead to a more fatigue tolerant bone cement, which would delay the need for revision surgery due to implant loosening.
Brucella and Osteoarticular Cell Activation: Partners in Crime
Giambartolomei, Guillermo H.; Arriola Benitez, Paula C.; Delpino, M. Victoria
2017-01-01
Osteoarticular brucellosis is the most common presentation of human active disease although its prevalence varies widely. The three most common forms of osteoarticular involvement are sacroiliitis, spondylitis, and peripheral arthritis. The molecular mechanisms implicated in bone damage have been recently elucidated. B. abortus induces bone damage through diverse mechanisms in which TNF-α and the receptor activator of nuclear factor kappa-B ligand (RANKL)-the natural modulator of bone homeostasis are involved. These processes are driven by inflammatory cells, like monocytes/macrophages, neutrophils, Th17 CD4+ T, and B cells. In addition, Brucella abortus has a direct effect on osteoarticular cells and tilts homeostatic bone remodeling. These bacteria inhibit bone matrix deposition by osteoblasts (the only bone cells involved in bone deposition), and modify the phenotype of these cells to produce matrix metalloproteinases (MMPs) and cytokine secretion, contributing to bone matrix degradation. B. abortus also affects osteoclasts (cells naturally involved in bone resorption) by inducing an increase in osteoclastogenesis and osteoclast activation; thus, increasing mineral and organic bone matrix resorption, contributing to bone damage. Given that the pathology induced by Brucella species involved joint tissue, experiments conducted on synoviocytes revealed that besides inducing the activation of these cells to secrete chemokines, proinflammatory cytokines and MMPS, the infection also inhibits synoviocyte apoptosis. Brucella is an intracellular bacterium that replicates preferentially in the endoplasmic reticulum of macrophages. The analysis of B. abortus-infected synoviocytes indicated that bacteria also replicate in their reticulum suggesting that they could use this cell type for intracellular replication during the osteoarticular localization of the disease. Finally, the molecular mechanisms of osteoarticular brucellosis discovered recently shed light on how the interaction between B. abortus and immune and osteoarticular cells may play an important role in producing damage in joint and bone. PMID:28265268
Mendonça, Maira L.; Batista, Sérgio L.; Nogueira-Barbosa, Marcello H.; Salmon, Carlos E.G.; de Paula, Francisco J.A.
2016-01-01
OBJECTIVES: Bone marrow adipose tissue has been associated with low bone mineral density. However, no data exist regarding marrow adipose tissue in primary hyperparathyroidism, a disorder associated with bone loss in conditions of high bone turnover. The objective of the present study was to investigate the relationship between marrow adipose tissue, bone mass and parathyroid hormone. The influence of osteocalcin on the homeostasis model assessment of insulin resistance was also evaluated. METHODS: This was a cross-sectional study conducted at a university hospital, involving 18 patients with primary hyperparathyroidism (PHPT) and 21 controls (CG). Bone mass was assessed by dual-energy x-ray absorptiometry and marrow adipose tissue was assessed by 1H magnetic resonance spectroscopy. The biochemical evaluation included the determination of parathyroid hormone, osteocalcin, glucose and insulin levels. RESULTS: A negative association was found between the bone mass at the 1/3 radius and parathyroid hormone levels (r = -0.69; p<0.01). Marrow adipose tissue was not significantly increased in patients (CG = 32.8±11.2% vs PHPT = 38.6±12%). The serum levels of osteocalcin were higher in patients (CG = 8.6±3.6 ng/mL vs PHPT = 36.5±38.4 ng/mL; p<0.005), but no associations were observed between osteocalcin and insulin or between insulin and both marrow adipose tissue and bone mass. CONCLUSION: These results suggest that the increment of adipogenesis in the bone marrow microenvironment under conditions of high bone turnover due to primary hyperparathyroidism is limited. Despite the increased serum levels of osteocalcin due to primary hyperparathyroidism, these patients tend to have impaired insulin sensitivity. PMID:27626477
Varela, Aurore; Chouinard, Luc; Lesage, Elisabeth; Guldberg, Robert; Smith, Susan Y; Kostenuik, Paul J; Hattersley, Gary
2017-02-01
Abaloparatide is a novel 34 amino acid peptide selected to be a potent and selective activator of the parathyroid hormone receptor 1 (PTHR1) signaling pathway. The effects of 12months of abaloparatide treatment on bone mass, bone strength and bone quality was assessed in osteopenic ovariectomized (OVX) rats. SD rats were subjected to OVX or sham surgery at 6months of age and left untreated for 3months to allow OVX-induced bone loss. Eighteen OVX rats were sacrificed after this bone depletion period, and the remaining OVX rats received daily s.c. injections of vehicle (n=18) or abaloparatide at 1, 5 or 25μg/kg/d (n=18/dose level) for 12months. Sham controls (n=18) received vehicle daily. Bone changes were assessed by DXA and pQCT after 0, 3, 6 or 12months of treatment, and destructive biomechanical testing was conducted at month 12 to assess bone strength and bone quality. Abaloparatide dose-dependently increased bone mass at the lumbar spine and at the proximal and diaphyseal regions of the tibia and femur. pQCT revealed that increased cortical bone volume at the tibia was a result of periosteal expansion and endocortical bone apposition. Abaloparatide dose-dependently increased structural strength of L4-L5 vertebral bodies, the femur diaphysis, and the femur neck. Increments in peak load for lumbar spine and the femur diaphysis of abaloparatide-treated rats persisted even after adjusting for treatment-related increments in BMC, and estimated material properties were maintained or increased at the femur diaphysis with abaloparatide. The abaloparatide groups also exhibited significant and positive correlations between bone mass and bone strength at these sites. These data indicate that gains in cortical and trabecular bone mass with abaloparatide are accompanied by and correlated with improvements in bone strength, resulting in maintenance or improvement in bone quality. Thus, this study demonstrated that long-term daily administration of abaloparatide to osteopenic OVX rats led to dose-dependent improvements in bone mass, geometry and strength. Copyright © 2016. Published by Elsevier Inc.
Sato, Y; Iki, M; Fujita, Y; Tamaki, J; Kouda, K; Yura, A; Moon, J-S; Winzenrieth, R; Iwaki, H; Ishizuka, R; Amano, N; Tomioka, K; Okamoto, N; Kurumatani, N
2015-05-01
The effects of milk intake on bone health are not clear in elderly Asian men with low dietary calcium intake. This study showed that greater milk intake is associated with lower bone turnover, higher bone density, and higher bone microarchitecture index in community-dwelling elderly Japanese men. The consumption of milk or dairy products is widely recommended for maintaining bone health regardless of gender or age. However, little evidence exists on the beneficial effects of milk intake on bone health in elderly Japanese men characterized with relatively low dietary calcium intake. Here we examined whether or not greater milk intake was associated with lower bone turnover, higher bone density, and stronger bone microarchitecture in community-dwelling elderly Japanese men. Interviews were conducted to obtain information on medical history and lifestyle, including the amount of habitual milk intake, nutrient intake calculations based on a 1-week food diary, and measurements of areal bone mineral density (aBMD) at the lumbar spine (LS), total hip (TH), and femoral neck (FN) by dual-energy x-ray absorptiometry (DXA), trabecular bone score (TBS) using DXA images at LS, and biochemical markers of bone turnover in sera. Participants with a history of diseases or medications that affect bone metabolism, or with missing data, were excluded from the analysis. The median intake of milk in the 1479 participants (mean age, 73.0 ± 5.1 years) was one glass of milk per day. Bone turnover markers showed a decreasing trend (p < 0.05) and aBMD at TH (p = 0.0019) and FN (p = 0.0057) and TBS (p = 0.0017) showed increasing trends with greater milk intake after adjusting for demographic and behavioral confounding factors. This association was attenuated after further adjusting for nutrient intake, in particular, calcium intake. Greater milk intake was associated with lower bone turnover, higher aBMD, and higher TBS in community-dwelling elderly Japanese men.
[Comparative evaluation of mastoidoplasty results in application of various plastic materials].
Zaporoshchenko, A Iu; Kravchenko, S V
2015-01-01
The results of surgical treatment of 62 patients, suffering chronic purulent middle otitis, were analyzed. The structure of mastoid processus and attic constitutes a base for choice of middle ear surgical sanation. Sanation operation with preservation or reconstruction of external acoustical meatus posterior wall was finished with combined mastoidoplasty using autobone, spongioid bone bioimplant Tutoplast or bioceramic material "Sintekost". Achievement of a steady sanating effect have promoted in late postoperative period a trustworthy lowering of the perception threshold of the bone--conducted sounds as on vocal, and also on high frequencies, while of the air--conducted sounds--on vocal frequencies. This permits in perspective to perform a hearing--improving operations with good functional result.
ERIC Educational Resources Information Center
Nober, E. Harris
The study investigated whether low frequency air and bone thresholds elicited at high intensity levels from deaf children with a sensory-neural diagnosis reflect valid auditory sensitivity or are mediated through cutaneous-tactile receptors. Subjects were five totally deaf (mean age 17.0) yielding vibrotactile thresholds but with no air and bone…
Gholizadeh, Shayan; Moztarzadeh, Fathollah; Haghighipour, Nooshin; Ghazizadeh, Leila; Baghbani, Fatemeh; Shokrgozar, Mohammad Ali; Allahyari, Zahra
2017-04-01
A major limitation in current tissue engineering scaffolds is that some of the most important characteristics of the intended tissue are ignored. As piezoelectricity and high mechanical strength are two of the most important characteristics of the bone tissue, carbon nanotubes are getting a lot of attention as a bone tissue scaffold component in recent years. In the present study, composite scaffolds comprised of functionalized Multiwalled Carbon Nanotubes (f-MWCNT), medium molecular weight chitosan and β-Glycerophosphate were fabricated and characterized. Biodegradability and mechanical tests indicate that while increasing f-MWCNT content can improve electrical conductivity and mechanical properties, there are some limitations for these increases, such as a decrease in mechanical properties and biodegradability in 1w/v% content of f-MWCNTs. Also, MTT cytotoxicity assay was conducted for the scaffolds and no significant cytotoxicity was observed. Increasing f-MWCNT content led to higher alkaline Phosphatase activity. The overall results show that composites with f-MWCNT content between 0.1w/v% and 0.5w/v% are the most suitable for bone tissue engineering application. Additionally, Preliminary cell electrical tests proved the efficiency of the prepared scaffolds for cell electrical applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Data Mining Activities for Bone Discipline - Current Status
NASA Technical Reports Server (NTRS)
Sibonga, J. D.; Pietrzyk, R. A.; Johnston, S. L.; Arnaud, S. B.
2008-01-01
The disciplinary goals of the Human Research Program are broadly discussed. There is a critical need to identify gaps in the evidence that would substantiate a skeletal health risk during and after spaceflight missions. As a result, data mining activities will be engaged to gather reviews of medical data and flight analog data and to propose additional measures and specific analyses. Several studies are briefly reviewed which have topics that partially address these gaps in knowledge, including bone strength recovery with recovery of bone mass density, current renal stone formation knowledge, herniated discs, and a review of bed rest studies conducted at Ames Human Research Facility.
Calcium phosphate cements for bone engineering and their biological properties
Xu, Hockin HK; Wang, Ping; Wang, Lin; Bao, Chongyun; Chen, Qianming; Weir, Michael D; Chow, Laurence C; Zhao, Liang; Zhou, Xuedong; Reynolds, Mark A
2017-01-01
Calcium phosphate cements (CPCs) are frequently used to repair bone defects. Since their discovery in the 1980s, extensive research has been conducted to improve their properties, and emerging evidence supports their increased application in bone tissue engineering. Much effort has been made to enhance the biological performance of CPCs, including their biocompatibility, osteoconductivity, osteoinductivity, biodegradability, bioactivity, and interactions with cells. This review article focuses on the major recent developments in CPCs, including 3D printing, injectability, stem cell delivery, growth factor and drug delivery, and pre-vascularization of CPC scaffolds via co-culture and tri-culture techniques to enhance angiogenesis and osteogenesis. PMID:29354304
NASA Astrophysics Data System (ADS)
Shimokura, Ryota; Hosoi, Hiroshi; Nishimura, Tadashi; Iwakura, Takashi; Yamanaka, Toshiaki
2015-01-01
When the aural cartilage is made to vibrate it generates sound directly into the external auditory canal which can be clearly heard. Although the concept of cartilage conduction can be applied to various speech communication and music industrial devices (e.g. smartphones, music players and hearing aids), the conductive performance of such devices has not yet been defined because the calibration methods are different from those currently used for air and bone conduction. Thus, the aim of this study was to simulate the cartilage conduction sound (CCS) using a head and torso simulator (HATS) and a model of aural cartilage (polyurethane resin pipe) and compare the results with experimental ones. Using the HATS, we found the simulated CCS at frequencies above 2 kHz corresponded to the average measured CCS from seven subjects. Using a model of skull bone and aural cartilage, we found that the simulated CCS at frequencies lower than 1.5 kHz agreed with the measured CCS. Therefore, a combination of these two methods can be used to estimate the CCS with high accuracy.
Electron spin resonance (ESR) dose measurement in bone of Hiroshima A-bomb victim.
Kinoshita, Angela; Baffa, Oswaldo; Mascarenhas, Sérgio
2018-01-01
Explosion of the bombs in Hiroshima and Nagasaki corresponds to the only historical moment when atomic bombs were used against civilians. This event triggered countless investigations into the effects and dosimetry of ionizing radiation. However, none of the investigations has used the victims' bones as dosimeter. Here, we assess samples of bones obtained from fatal victims of the explosion by Electron Spin Resonance (ESR). In 1973, one of the authors of the present study (SM) traveled to Japan and conducted a preliminary experiment on the victims' bone samples. The idea was to use the paramagnetism induced in bone after irradiation to measure the radiation dose. Technological advances involved in the construction of spectrometers, better knowledge of the paramagnetic center, and improvement in signal processing techniques have allowed us to resume the investigation. We obtained a reconstructed dose of 9.46 ± 3.4 Gy from the jawbone, which was compatible with the dose distribution in different locations as measured in non-biological materials such as wall bricks and roof tiles.
Treatment of Nonunion of Scaphoid Waist with Ni-Ti Shape-Memory Alloy Connector and Iliac Bone Graft
NASA Astrophysics Data System (ADS)
Cao, Lie-Hu; Xu, Shuo-Gui; Wu, Ya-Le; Zhang, Chun-Cai
2011-07-01
After fracture, the unique anatomy and blood supply of the scaphoid itself predisposes to nonunion. Scaphoid nonunion presents a formidable challenge to surgeons because of the difficulties for fixation, and the high failure rate after treatment. The Ni-Ti shape-memory alloy can provide compressive stress at the nonunion site, which is the key point for bone healing. Hence, we designed a shape-memory bone connector named arched shape-memory connector (ASC). We conducted a retrospective study looking at the union rate and complications and correlating the outcome of treatment with this device. The study reviewed a cohort of six consecutive patients presenting with scaphoid waist nonunion, who were treated with ASC and iliac cancellous bone grafting at our center from August 2002 to December 2007. The patients with nonunion achieved a 100% union rate. All the patients who achieved union had good pain relief and improved function. Our study demonstrates that scaphoid waist nonunions can be successfully treated by ASC and iliac bone grafting.
Damage accumulation of bovine bone under variable amplitude loads.
Campbell, Abbey M; Cler, Michelle L; Skurla, Carolyn P; Kuehl, Joseph J
2016-12-01
Stress fractures, a painful injury, are caused by excessive fatigue in bone. This study on damage accumulation in bone sought to determine if the Palmgren-Miner rule (PMR), a well-known linear damage accumulation hypothesis, is predictive of fatigue failure in bone. An electromagnetic shaker apparatus was constructed to conduct cyclic and variable amplitude tests on bovine bone specimens. Three distinct damage regimes were observed following fracture. Fractures due to a low cyclic amplitude loading appeared ductile ( 4000 μ ϵ ), brittle due to high cyclic amplitude loading (> 9000 μ ϵ ), and a combination of ductile and brittle from mid-range cyclic amplitude loading (6500 -6750 μ ϵ ). Brittle and ductile fracture mechanisms were isolated and mixed, in a controlled way, into variable amplitude loading tests. PMR predictions of cycles to failure consistently over-predicted fatigue life when mixing isolated fracture mechanisms. However, PMR was not proven ineffective when used with a single damage mechanism.
Lévesque, Luc; Noël, Jean-Marc; Scott, Calum
2015-12-01
Temperature of porcine bone specimens are investigated by aiming a pulsed CO2 laser beam at the bone-air surface. This method of controlling temperature is believed to be flexible in medical applications as it avoids the uses of thermal devices, which are often cumbersome and generate rather larger temperature variations with time. The control of temperature using this method is modeled by the heat-conduction equation. In this investigation, it is assumed that the energy delivered by the CO2 laser is confined within a very thin surface layer of roughly 9 μm. It is shown that temperature can be maintained at a steady temperature using a CO2 laser and we demonstrate that the method can be adapted to be used in tandem with another laser beam. This method to control the temperature is believed to be useful in de-contamination of bone during the implantation treatment, in bone augmentation when using natural or synthetic materials and in low-level laser therapy.
Clinical features and radiological evaluation of otic capsule sparing temporal bone fractures.
Song, S W; Jun, B C; Kim, H
2017-03-01
To evaluate the clinical and radiological aspects of otic capsule sparing temporal bone fractures. Using medical records, 188 temporal bones of 173 patients with otic capsule sparing temporal bone fractures were evaluated. Otoscopic findings and symptoms, facial paralysis, and hearing loss were assessed. Using regional analysis, 7 fractures were classified as type I, 85 as type II, 169 as type III and 114 as type IV. Fourteen of the 17 facial paralysis cases improved to House-Brackmann grade II or lower at an average of 57.6 days after the initial evaluation. Thirty-one patients underwent initial and follow-up pure tone audiometry examinations. The air-bone gap closed significantly from 27.2 dB at an average of 21.8 days post-trauma to 19.6 dB at an average of 79.9 days post-trauma, without the need for surgical intervention. Initial conservative treatment for facial paralysis or conductive hearing loss is possible in otic capsule sparing fracture cases after careful evaluation of the patient.
Kim, Sung-Jin; Kim, Jin-Wook; Choi, Tae-Hyun; Lee, Kee-Joon
2015-04-01
An impacted mandibular first molar tends to cause serious bone defects of the adjacent teeth. When choosing between the 2 typical treatment options-extraction or orthodontic relocation of the impacted tooth-the decision should be based on assessment of the prognosis. A 22-year-old man with severe mesioangulation and impaction of the mandibular first molar and a related vertical bone defect on the distal side of the second premolar was treated with extraction of the second molar and orthodontic relocation of the first molar with a retromolar miniscrew. Comprehensive orthodontic treatment involving premolar extraction was conducted. Strategic extraction of the molar and adequate orthodontic movement helped to restore the bone structure on the affected side. This case report suggests the effectiveness of restoration of bone defects by using viable periodontal tissues around the impacted tooth for the longevity of the periodontium. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Osseointegration of alumina bioceramic granules: A comparative experimental study
NASA Astrophysics Data System (ADS)
Rerikh, V. V.; Avetisyan, A. R.; Zaydman, A. M.; Anikin, K. A.; Bataev, V. A.; Nikulina, A. A.; Sadovoy, M. A.; Aronov, A. M.; Semantsova, E. S.
2016-08-01
To perform a comparative analysis of osseointegration of bioceramic alumina-based granules, hydroxyapatite-based granules, and deproteinized bone granules. The experiment was conducted on 52 adult male Kyoto-Wistar rats weighing 350 to 520 g. The animals were divided into five matched groups that differed only in the type of an implanted material. The granules were implanted in the lumbar vertebral bodies and in the distal right femur of each laboratory animal. Two months after surgery, the animals were euthanized, followed by tissue sampling for morphological studies. An examination of specimens from the groups with implanted alumina granules revealed the newly formed trabecular bone with remodeling signs. The bone tissue filled the intragranular space, tightly adhering to the granule surface. There was no connective tissue capsule on the border between bone tissue and alumina granules. Cylindrical bioceramic alumina-based granules with an open internal channel have a higher strength surpassing than that of analogs and the osseointegration ability close to that of hydroxyapatite and deproteinized bone granules.
de Alencar, Paulo Gilberto Cimbalista; Vieira, Inácio Facó Ventura
2010-01-01
Bone banks are necessary for providing biological material for a series of orthopedic procedures. The growing need for musculoskeletal tissues for transplantation has been due to the development of new surgical techniques, and this has led to a situation in which a variety of hospital services have been willing to have their own source of tissue for transplantation. To increase the safety of transplanted tissues, standards for bone bank operation have been imposed by the government, which has limited the number of authorized institutions. The good performance in a bone bank depends on strict control over all stages, including: formation of well-trained harvesting teams; donor selection; conducting various tests on the tissues obtained; and strict control over the processing techniques used. Combination of these factors enables greater scope of use and numbers of recipient patients, while the incidence of tissue contamination becomes statistically insignificant, and there is traceability between donors and recipients. This paper describes technical considerations relating to how a bone bank functions, the use of grafts and orthopedic applications, the ethical issues and the main obstacles encountered.
Liang, Fan; Yen, Stephen L-K; Imahiyerobo, Thomas; Sanborn, Luke; Yen, Leia; Yen, Daniel; Nazarian, Sheila; Jedrzejewski, Breanna; Urata, Mark; Hammoudeh, Jeffrey
2017-10-01
Recent studies indicate that recombinant human bone morphogenetic protein-2 (rhBMP-2) in a demineralized bone matrix scaffold is a comparable alternative to iliac bone autograft in the setting of secondary alveolar cleft repair. Postreconstruction occlusal radiographs demonstrate improved bone stock when rhBMP-2/demineralized bone matrix (DBM) scaffold is used but lack the capacity to evaluate bone growth in three dimensions. This study uses cone beam computed tomography to provide the first clinical evaluation of volumetric and density comparisons between these two treatment modalities. A prospective study was conducted with 31 patients and 36 repairs of the alveolar cleft over a 2-year period. Twenty-one repairs used rhBMP-2/DBM scaffold and 14 repairs used iliac bone grafting. Postoperatively, occlusal radiographs were obtained at 3 months to evaluate bone fill; cone beam computed tomographic images were obtained at 6 to 9 months to compare volumetric and density data. At 3 months, postoperative occlusal radiographs demonstrated that 67 percent of patients receiving rhBMP-2/DBM scaffold had complete bone fill of the alveolus, versus 56 percent of patients in the autologous group. In contrast, cone beam computed tomographic data showed 31.6 percent (95 percent CI, 24.2 to 38.5 percent) fill in the rhBMP-2 group compared with 32.5 percent (95 percent CI, 22.1 to 42.9 percent) in the autologous population. Density analysis demonstrated identical average values between the groups (1.38 g/cc). These data demonstrate comparable bone regrowth and density values following secondary alveolar cleft repair using rhBMP-2/DBM scaffold versus autologous iliac bone graft. Cone beam computed tomography provides a more nuanced understanding of true bone regeneration within the alveolar cleft that may contribute to the information provided by occlusal radiographs alone. Therapeutic, II.
Bezdjian, Aren; Bruijnzeel, Hanneke; Daniel, Sam J; Grolman, Wilko; Thomeer, Hans G X M
2017-10-01
To delineate the auditory functional improvement and peri-operative outcomes of the Sophono™ transcutaneous bone conduction device. Eligible articles presenting patients implanted with the Sophono™ were identified through a comprehensive search of PubMed and Embase electronic databases. All relevant articles were reviewed to justify inclusion independently by 2 authors. Studies that successfully passed critical appraisal for directness of evidence and risk of bias were included. From a total of 125 articles, 8 studies encompassing 86 patients using 99 implants were selected. Most patients (79.1%) were children. Ear atresia (67.5%) was the most frequently reported indication for Sophono™ implantation. Overall pure tone average auditory improvement was 31.10 (±8.29) decibel. During a mean follow-up time of 12.48 months, 25 patients (29%) presented with post-operative complications from which 3 were deemed as serious implant-related adverse events (3.5%). The Sophono™ transcutaneous bone conduction device shows promising functional improvement, no intra-operative complications and minor post-operative skin related complications. If suitable, the device could be a proposed solution for the rehabilitation of hearing in children meeting eligibility criteria. A wearing schedule must be implemented in order to reduce magnet-related skin complications. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Noson, Dennis; Kato, Kosuke; Ando, Yoichi
2004-05-01
Solo singers have been shown to over estimate the relative sound pressure level of a delayed, external reproduction of their own voice, singing single syllables, which, in turn, appears to influence the preferred delay of simulated stage reflections [Noson, Ph.D. thesis, Kobe University, 2003]. Bone conduction is thought to be one factor separating singer versus instrumental performer judgments of stage acoustics. Using a parameter derived from the vocal signal autocorrelation function (ACF envelope), the changes in singer preference for delayed reflections is primarily explained by the ACF parameter, rather than internal bone conduction. An auditory model of a singer's preferred reflection delay is proposed, combining the effects of acoustical environment (reflection amplitude), bone conduction, and performer vocal overestimate, which may be applied to the acoustic design of reflecting elements in both upstage and forestage environments of opera stages. For example, soloists who characteristically underestimate external voice levels (or overestimate their own voice) should be provided shorter distances to reflective panels-irrespective of their singing style. Adjustable elements can be deployed to adapt opera houses intended for bel canto style performances to other styles. Additional examples will also be discussed. a)Now at Kumamoto Univ., Kumamoto, Japan. b)Now at: 1-10-27 Yamano Kami, Kumamoto, Japan.
Corona-Gomez, Jesus; Chen, Xiongbiao; Yang, Qiaoqin
2016-01-01
Mechanical properties of a scaffold play an important role in its in vivo performance in bone tissue engineering, due to the fact that implanted scaffolds are typically subjected to stress including compression, tension, torsion, and shearing. Unfortunately, not all the materials used to fabricate scaffolds are strong enough to mimic native bones. Extensive research has been conducted in order to increase scaffold strength and mechanical performance by incorporating nanoparticles and/or coatings. An incredible improvement has been achieved; and some outstanding examples are the usage of nanodiamond, hydroxyapatite, bioactive glass particles, SiO2, MgO, and silver nanoparticles. This review paper aims to present the results, to summarize significant findings, and to give perspective for future work, which could be beneficial to future bone tissue engineering. PMID:27420104
[Subantral augmentation with porous titanium in experiment and clinic].
Sirak, S V; Shchetinin, E V; Sletov, A A
2016-01-01
The article discusses the use of porous titanium for subantral augmentation. Experimental study was conducted on 12 yearling rams. Subantral augmentation using porous titanium was performed in 33 patients. In the control group consisting of 14 patients calcium phosphates and bone collagen based agents ("Bio-Оss" and "Collost") were used. In the main and control groups 46 and 32 implant were placed, respectively. Pilot histological and clinical studies proved that the granules of porous titanium are biocompatible with bone tissue, provide the optimal surface microrelief, thus creating good conditions for adhesion, expansion and migration of osteoforming cells, have negligible kinetics of resorption, are porous to ensure effective neovascularization of de novo formed bone tissue. Porous titanium is an effective alternative material for subantral bone augmentation for dental implantation and reconstructive operations on the maxillary sinus.
HyBAR: hybrid bone-attached robot for joint arthroplasty.
Song, S; Mor, A; Jaramaz, B
2009-06-01
A number of small bone-attached surgical robots have been introduced to overcome some disadvantages of large stand-alone surgical robots. In orthopaedics, increasing demand on minimally invasive joint replacement surgery has also been encouraging small surgical robot developments. Among various technical aspects of such an approach, optimal miniaturization that maintains structural strength for high speed bone removal was investigated. By observing advantages and disadvantages from serial and parallel robot structures, a new hybrid kinematic configuration was designed for a bone-attached robot to perform precision bone removal for cutting the femoral implant cavity during patellofemoral joint arthroplasty surgery. A series of experimental tests were conducted in order to evaluate the performance of the new robot, especially with respect to accuracy of bone preparation. A miniaturized and rigidly-structured robot prototype was developed for minimally invasive bone-attached robotic surgery. A new minimally invasive modular clamping system was also introduced to enhance the robotic procedure. Foam and pig bone experimental results demonstrated a successful implementation of the new robot that eliminated a number of major design problems of a previous prototype. For small bone-attached surgical robots that utilize high speed orthopaedic tools, structural rigidity and clamping mechanism are major design issues. The new kinematic configuration using hinged prismatic joints enabled an effective miniaturization with good structural rigidity. Although minor problems still exist at the prototype stage, the new development would be a significant step towards the practical use of such a robot.
Tran, Duong T; Gay, Isabel C; Diaz-Rodriguez, Janice; Parthasarathy, Kavitha; Weltman, Robin; Friedman, Lawrence
2016-01-01
To compare dental implant survival rates when placed in native bone and grafted sites. Additionally, risk factors associated with dental implant loss were identified. This study was based on the hypothesis that bone grafting has no effect on implant survival rates. A retrospective chart review was conducted for patients receiving dental implants at the University of Texas, School of Dentistry from 1985 to 2012. Exclusion criteria included patients with genetic diseases, radiation and chemotherapy, or an age less than 18 years. To avoid misclassification bias, implants were excluded if bone grafts were only done at the same time of placement. Data on age, sex, tobacco use, diabetes, osteoporosis, anatomical location of the implant, implant length and width, bone graft, and professional maintenance were collected for analysis. A total of 1,222 patients with 2,729 implants were included. The cumulative survival rates at 5 and 10 years were 92% and 87% for implants placed in native bone and 90% and 79% for implants placed in grafted bone, respectively. The results from multivariate analysis (Cox regression) indicated no significant difference in survival between the two groups; having maintenance therapy after implant placement reduced the failure rate by 80% (P < .001), and using tobacco increased the failure rate by 2.6-fold (P = .001). There was no difference in the dental implant survival rate when implants were placed in native bone or bone-grafted sites. Smoking and lack of professional maintenance were significantly related to increased implant loss.
Wang, Yong-Li; Wang, Xiang-Yang
2018-06-01
We sought to report a minimum 12 months' follow-up results of our improved bone graft method for upper cervical surgery with the posterior approach. Among 52 consecutive cases, odontoid nonunion occurred in 33 patients, atlantoaxial instability in 11 patients, and occipitocervical deformity in 8 patients who underwent posterior C1-C2 transarticular screw/screw-rod internal fixation (41 cases) and occipitocervical fusion (11 cases) with the improved bone graft technique. Each surgical procedure was performed by the same senior spine surgeon. We took lateral cervical standing roentgenograms before surgery and immediately after surgery. Then we conducted craniocerebral computed tomography examination with reconstruction at 3, 6, 12, and 24 months and annually thereafter. The postoperative follow-up times are about 12-38 months. All cases showed satisfactory screw fixation by radiographic examination, and there were no postoperative neurologic complications. One case had postoperative retropharyngeal infection after the transoral release and posterior reduction by pedicle screw instrumentation. All patients got solid fusions, and no pseudarthrosis occurred. All cases had solid fusions at the 3-month follow-up. Good bone graft bed, enough bone graft material, solid local fixation, and effective bone graft method are prerequisites for a successful bone graft. By analyzing postoperative follow-up in the consecutive cases in this study, our bone graft method describing a new bone graft structure is a reliable posterior fusion technique. It is worth considering, and further research is needed. Copyright © 2018. Published by Elsevier Inc.
Zhou, Guangwei; Poe, Dennis; Gopen, Quinton
2012-10-01
To determine the value of vestibular evoked myogenic potential (VEMP) test in clinical evaluation of air-bone gaps. Retrospective case review. Tertiary referral center. A total of 120 patients underwent VEMP testing during clinical investigation of significant air-bone gaps in their audiograms. Otologic examination and surgeries, high-resolution computerized tomography (CT), air and bone audiometry, tympanometry, acoustic reflex, and VEMP test. Imaging studies demonstrating structural anomalies in the temporal bone. Audiologic outcomes of air-bone gaps and VEMP thresholds. Surgical findings confirming imaging results. Middle ear pathologies, such as otosclerosis and chronic otitis media, were identified in 50 patients, and all of them had absent VEMP responses elicited by air-conduction stimuli. Moreover, 13 of them had successful middle ear surgeries with closures of the air-bone gaps. Abnormally low VEMP thresholds were found in 71 of 73 ears with inner ear anomalies, such as semicircular canal dehiscence and enlarged vestibular aqueduct. Seven patients with superior semicircular canal dehiscence underwent plugging procedure via middle fossa approach, and VEMP thresholds became normalized after the surgery in 3 of them. VEMP test failed to provide accurate diagnosis in only 3 cases. Air-bone gaps may be a result of various otologic pathologies, and the VEMP test is useful during clinical evaluation, better than tympanometry and acoustic reflexes. To avoid unnecessary middle ear surgery for air-bone gaps with unknown or unsure cause, VEMP test should be used in the differential diagnosis before an expensive imaging study.
Bone mineral density level by dual energy X-ray absorptiometry in rheumatoid arthritis.
Makhdoom, Asadullah; Rahopoto, Muhammad Qasim; Awan, Shazia; Tahir, Syed Muhammad; Memon, Shazia; Siddiqui, Khaleeque Ahmed
2017-01-01
To observe the level of bone mineral density by Dual Energy X-ray Absorptiometry in rheumatoid arthritis patients. The observational study was conducted at Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan, from January 2011 to December 2014. Bone mineral density was measured from the femoral neck, ward's triangle and lumbar spine, in patients 25-55 years of age, who were diagnosed with rheumatoid arthritis. All the cases were assessed for bone mineral density from appendicular as well as axial skeleton. Data was collected through a designed proforma and analysis was performed using SPSS 21. Of the 229 rheumatoid arthritis patients, 33(14.4%) were males. Five (15.1%) males had normal bone density, 14(42.4%) had osteopenia and 14(42.4%) had osteoporosis. Of the 196(85.5%) females, 45(29.9%) had normal bone density, 72 (37.7%) had osteopenia and 79(40.30%) had osteoporosis. Of the 123(53.7%) patients aged 30-50 years, 38(30.9%) had normal bone density, 59(48.0%) had osteopenia, and 26(21.1%) had osteoporosis. Of the 106(46.3%) patients over 50 years, 12(11.3%) had normal bone density, 27 (25.5%) had osteopenia and 67(63.2%) had osteoporosis. Osteoporosis and osteopenia were most common among rheumatoid arthritis patients. Assessment of bone mineral density by Dual Energy X-ray Absorptiometry can lead to quick relief in the clinical symptoms with timely therapy.
Bone disease in cystic fibrosis: new pathogenic insights opening novel therapies.
Jacquot, J; Delion, M; Gangloff, S; Braux, J; Velard, F
2016-04-01
Mutations within the gene encoding for the chloride ion channel cystic fibrosis transmembrane conductance regulator (CFTR) results in cystic fibrosis (CF), the most common lethal autosomal recessive genetic disease that causes a number of long-term health problems, as the bone disease. Osteoporosis and increased vertebral fracture risk associated with CF disease are becoming more important as the life expectancy of patients continues to improve. The etiology of low bone density is multifactorial, most probably a combination of inadequate peak bone mass during puberty and increased bone losses in adults. Body mass index, male sex, advanced pulmonary disease, malnutrition and chronic therapies are established additional risk factors for CF-related bone disease (CFBD). Consistently, recent evidence has confirmed that CFTR plays a major role in the osteoprotegerin (OPG) and COX-2 metabolite prostaglandin E2 (PGE2) production, two key regulators in the bone formation and regeneration. Several others mechanisms were also recognized from animal and cell models contributing to malfunctions of osteoblast (cell that form bone) and indirectly of bone-resorpting osteoclasts. Understanding such mechanisms is crucial for the development of therapies in CFBD. Innovative therapeutic approaches using CFTR modulators such as C18 have recently shown in vitro capacity to enhance PGE2 production and normalized the RANKL-to-OPG ratio in human osteoblasts bearing the mutation F508del-CFTR and therefore potential clinical utility in CFBD. This review focuses on the recently identified pathogenic mechanisms leading to CFBD and potential future therapies for treating CFBD.
Cummings, Steven R; Karpf, David B; Harris, Fran; Genant, Harry K; Ensrud, Kristine; LaCroix, Andrea Z; Black, Dennis M
2002-03-01
To estimate how much the improvement in bone mass accounts for the reduction in risk of vertebral fracture that has been observed in randomized trials of antiresorptive treatments for osteoporosis. After a systematic search, we conducted a meta-analysis of 12 trials to describe the relation between improvement in spine bone mineral density and reduction in risk of vertebral fracture in postmenopausal women. We also used logistic models to estimate the proportion of the reduction in risk of vertebral fracture observed with alendronate in the Fracture Intervention Trial that was due to improvement in bone mineral density. Across the 12 trials, a 1% improvement in spine bone mineral density was associated with a 0.03 decrease (95% confidence interval [CI]: 0.02 to 0.05) in the relative risk (RR) of vertebral fracture. The reductions in risk were greater than predicted from improvement in bone mineral density; for example, the model estimated that treatments predicted to reduce fracture risk by 20% (RR = 0.80), based on improvement in bone mineral density, actually reduce the risk of fracture by about 45% (RR = 0.55). In the Fracture Intervention Trial, improvement in spine bone mineral density explained 16% (95% CI: 11% to 27%) of the reduction in the risk of vertebral fracture with alendronate. Improvement in spine bone mineral density during treatment with antiresorptive drugs accounts for a predictable but small part of the observed reduction in the risk of vertebral fracture.
Park, Marn Joon; Lee, Jae Ryung; Yang, Chan Joo; Yoo, Myung Hoon; Jin, In Suk; Choi, Chi Ho; Park, Hong Ju
2016-11-01
Transcutaneous devices have a disadvantage, the dampening effect by soft tissue between the bone and devices. We investigated hearing outcomes with percutaneous and transcutaneous devices using test-bands in an induced unilateral conductive hearing loss. Comparison of hearing outcomes of two devices in the same individuals. The right ear was plugged in 30 subjects and a test-band with devices (Cochlear™ Baha® BP110 Power and Sophono® Alpha-2 MPO™) was applied on the right mastoid tip with the left ear masked. Sound-field thresholds, speech recognition thresholds (SRTs), and word recognition scores (WRSs) were compared. Aided thresholds of Sophono were significantly better than those of Baha at most frequencies. Sophono WRSs (86 ± 12%) at 40 dB SPL and SRTs (14 ± 5 dB HL) were significantly better than those (73 ± 24% and 23 ± 8 dB HL) of Baha. However, Sophono WRSs (98 ± 3%) at 60 dB SPL did not differ from Baha WRSs (95 ± 12%). Amplifications of the current transcutaneous device were not inferior to those of percutaneous devices with a test-band in subjects with normal bone-conduction thresholds. Since the percutaneous devices can increase the gain when fixed to the skull by eliminating the dampening effect, both devices are expected to provide sufficient hearing amplification.
Mechanisms of "kidney governing bones" theory in traditional Chinese medicine.
Ju, Dahong; Liu, Meijie; Zhao, Hongyan; Wang, Jun
2014-09-01
Studies conducted by our group on the mechanism of "kidney governing bones" theory in traditional Chinese medicine (TCM) are reviewed in this paper. Conclusions can be summarized as follows. (1) Neuroendocrine-immune network (NIN)-osteoclast regulatory pathway OPG-RANKL-RANK is one of the mechanisms of "kidney governing bones." Although kidney-reinforcing therapy is regarded as one of the holistic regulatory mechanisms of the body, characteristic holistic regulation in TCM can be reflected through nonselective regulation of the NIN during kidney reinforcement therapy, which can be used to treat osteoporosis through microadjustments in the microenvironment of the bone marrow. (2) Marrow exhaustion in TCM, which is the state wherein lipocytes in the bone marrow increase whereas other cells decrease, serves as the pathogenesis of osteoporosis brought about by failure of the "kidney governing bones." (3) The kidney in TCM can be regarded as a complex system comprising multiple functional units in the body, including the unit "governing bones." Kidney deficiency refers to a deficiency in only one or more units of the kidney system and not the whole system itself, which explains the kidney-reinforcing effect of many herbs; some herbs can treat osteoporosis, but some cannot. Although both classified as kidney-reinforcing agents, the former can resolve failure of the "kidney governing bones" unit while the latter regulates the failure of other units in the kidney system. Despite the current understanding on "kidney governing bones" theory, the mechanism of "kidney governing bones" remains complicated and unresolved. Thus, further studies in this area are warranted.
[Dietary patterns in college freshmen and its relation to bone mineral density].
Wang, Sufang; Mu, Min; Zhao, Yan; Wang, Xiaoqin; Shu, Long; Li, Qingyan; Li, Yingchun
2012-07-01
In order to investigate the bone density of freshmen, and to analyze the association between dietary pattern and bone mineral density (BMD). A questionnaire survey on the situation of dietary pattern was conducted in 1414 freshmen. Effective dietary survey questionnaires and bone mineral density measurements were completed for 1319 participants. Bone mass was assessed by using an Ultrasound Bone Densitometer on the right calcaneus (CM-200, Furuno Electric Corporation, Japan), and the speed of sound (SOS, m/s) was used as an indicator for bone density. Factor analysis with varimax rotation was used to identify the dietary patterns. After adjusting for confounders, covariance with Bonferroni's was used to further examine the associations between dietary patterns and bone mineral density (BMD). (1) Four major dietary patterns were noticed. Western food pattern (high consumption in hamburger, fried food, nuts, biscuit, chocolate, cola, coffee, sugars). Animal protein pattern (high consumption in pork, mutton, beef, poultry meat, animal liver). Calcium pattern (high consumption in fresh fruits, eggs, fish and shrimps, kelp laver and sea fish, milk and dairy products, beans and bean products). Traditional Chinese pattern (high consumption in rice and grain, fresh fruits, fresh vegetables, pork). (2) No association was observed between the western food pattern and bone mineral density. High animal protein pattern showed lower SOS value compared with low animal protein pattern. High calcium pattern showed higher SOS value compared with low calcium pattern. High traditional Chinese pattern showed higher SOS value compared with the low traditional Chinese pattern. Dietary patterns are closely related with bone mineral density (BMD) of freshmen.
Regional Variation of Bone Tissue Properties at the Human Mandibular Condyle
Kim, Do-Gyoon; Jeong, Yong-Hoon; Kosel, Erin; Agnew, Amanda M.; McComb, David W.; Bodnyk, Kyle; Hart, Richard T.; Kim, Min Kyung; Han, Sang Yeun; Johnston, William M.
2015-01-01
The temporomandibular joint (TMJ) bears different types of static and dynamic loading during occlusion and mastication. As such, characteristics of mandibular condylar bone tissue play an important role in determining the mechanical stability of the TMJ under the macro-level loading. Thus, the objective of this study was to examine regional variation of the elastic, plastic, and viscoelastic mechanical properties of human mandibular condylar bone tissue using nanoindentation. Cortical and trabecular bone were dissected from mandibular condyles of human cadavers (9 males, 54 to 96 years). These specimens were scanned using microcomputed tomography to obtain bone tissue mineral distribution. Then, nanoindentation was conducted on the surface of the same specimens in hydration. Plastic hardness (H) at a peak load, viscoelastic creep (Creep/Pmax), viscosity (η), and tangent delta (tan δ) during a 30 second hold period, and elastic modulus (E) during unloading were obtained by a cycle of indentation at the same site of bone tissue. The tissue mineral and nanoindentation parameters were analyzed for the periosteal and endosteal cortex, and trabecular bone regions of the mandibular condyle. The more mineralized periosteal cortex had higher mean values of elastic modulus, plastic hardness, and viscosity but lower viscoelastic creep and tan δ than the less mineralized trabecular bone of the mandibular condyle. These characteristics of bone tissue suggest that the periosteal cortex tissue may have more effective properties to resist elastic, plastic, and viscoelastic deformation under static loading, and the trabecular bone tissue to absorb and dissipate time-dependent viscoelastic loading energy at the TMJ during static occlusion and dynamic mastication. PMID:25913634
von See, Constantin; Stoetzer, Marcus; Ruecker, Martin; Wagner, Max; Schumann, Paul; Gellrich, Nils-Claudius
2014-01-01
The placement of self-tapping implants is associated with microfractures and the formation of bone chips along the cutting flutes. This study was conducted to investigate the effect of different cutting edge angles on chip formation during the machining of trabecular and cortical bone using instruments with a rough titanium surface. Mandibular cortical and trabecular bone specimens were obtained from freshly slaughtered domestic pigs. A predefined thrust force was applied to the specimens. Four specially designed cutting instruments that simulated dental implants and had a rough titanium surface were allowed to complete one full revolution at cutting edge angles of 55, 65, 75, and 85 degrees, respectively. Torque and thrust were measured during the cutting process. Bone chips were measured and weighed under a microscope. Different cutting edge angles did not lead to significant differences in torque. The lowest torque values were measured when the cutting edges were positioned at 65 degrees in trabecular bone and at 85 degrees in cortical bone. Bone chips were significantly larger and heavier at angles of 55 and 65 degrees than at angles of 75 and 85 degrees in trabecular bone. Instruments with a rough titanium surface show considerable angle-dependent differences in chip formation. In addition to bone density, the angle of the cutting edges should be taken into consideration during the placement of dental implants. Good results were obtained when the cutting edges were positioned at an angle of 65 degrees. This angle can have positive effects on osseointegration.
Experimental Traumatic Brain Injury Induces Bone Loss in Rats.
Brady, Rhys D; Shultz, Sandy R; Sun, Mujun; Romano, Tania; van der Poel, Chris; Wright, David K; Wark, John D; O'Brien, Terence J; Grills, Brian L; McDonald, Stuart J
2016-12-01
Few studies have investigated the influence of traumatic brain injury (TBI) on bone homeostasis; however, pathophysiological mechanisms involved in TBI have potential to be detrimental to bone. The current study assessed the effect of experimental TBI in rats on the quantity and quality of two different weight-bearing bones, the femur and humerus. Rats were randomly assigned into either sham or lateral fluid percussion injury (FPI) groups. Open-field testing to assess locomotion was conducted at 1, 4, and 12 weeks post-injury, with the rats killed at 1 and 12 weeks post-injury. Bones were analyzed using peripheral quantitative computed tomography (pQCT), histomorphometric analysis, and three-point bending. pQCT analysis revealed that at 1 and 12 weeks post-injury, the distal metaphyseal region of femora from FPI rats had reduced cortical content (10% decrease at 1 week, 8% decrease at 12 weeks; p < 0.01) and cortical thickness (10% decrease at 1 week, 11% decrease at 12 weeks p < 0.001). There was also a 23% reduction in trabecular bone volume ratio at 1 week post-injury and a 27% reduction at 12 weeks post-injury in FPI rats compared to sham (p < 0.001). There were no differences in bone quantity and mechanical properties of the femoral midshaft between sham and TBI animals. There were no differences in locomotor outcomes, which suggested that post-TBI changes in bone were not attributed to immobility. Taken together, these findings indicate that this rat model of TBI was detrimental to bone and suggests a link between TBI and altered bone remodeling.
Kang, Hyun-Joo; Jun, Choong-Man; Yun, Jeong-Ho
2016-01-01
In the present case report, the authors describe radiographic and histologic observations of a bone void that formed after a sinus augmentation using a graft material that contained recombinant human bone morphogenetic protein-2 (rhBMP-2) and discuss clinical and histologic implications of their findings. Sinus augmentation was performed using a graft material comprising 1 g of hydroxyapatite/β-tricalcium phosphate, which contained 1 mg of rhBMP-2. Radiographic evaluation was conducted with panoramic radiographs and computed tomography images of the augmented maxillary sinus, which were analyzed using a three-dimensional image-reconstruction program. Histologic evaluation was also performed on a biopsy specimen obtained 6 months after the sinus augmentation. The total augmented volume increased from 1,582.2 mm(3) immediately after the sinus augmentation to 3,344.9 mm3 at 6 months after the augmentation because of the formation of a bone void. Twenty-six months after the sinus augmentation, the bone void remained but had reduced in volume, with the total augmented volume reduced to 2,551.7 mm(3). Histologically, new bone was observed to be in contact with the grafted particles, and a fatty marrow-like tissue was present in the area of the bone void. This case report shows that the bone void that had formed after sinus augmentation resolved over time and seemed to be partially replaced with new bone. Furthermore, none of the implants failed, and clinical adverse events were not observed during the follow-up period.
Granite, Edwin L
2012-04-01
The purpose of this study was to determine the incidence of osteonecrosis of appendicular bones due to nitrogen-containing intravenous bisphosphonates and the incidence of adverse effects in bones other than the jaws. A detailed search of the professional medical and dental literature was conducted. In addition, a questionnaire was mailed to all known orthopedic surgery training programs in the United States. Programs were queried as to clinical findings and other various scenarios. There was a great paucity of literature that addressed the issue. Of the 154 questionnaires mailed, 29 (19%) were returned. Identification was optional; therefore, it was impossible to determine the geographic origin of the returned questionnaires. No orthopedic surgery training program indicated positive findings of osteonecrosis in the long bones due to nitrogen-containing intravenous bisphosphonates. There were rare reports in the literature of osteonecrosis in other areas of the bony skeleton. On the basis of literature searches and national orthopedic questionnaires, there is only a rare incidence of osteonecrosis of the appendicular bones and bones other than the jaws due to nitrogen-containing intravenous bisphosphonates. There were no reports of adverse long bone effects, based on the questionnaires. There were rare reports in the literature. Copyright © 2012 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shagina, N. B.; Tolstykh, E. I.; Degteva, M. O.
2012-06-01
The rate of cortical bone resorption was assessed from long-term in vivo measurements of 90Sr content in the skeleton for men aged 50-80 years and for women 0-30 years after menopause. Measurements of 90Sr were conducted with a whole body counter for residents of the Techa Riverside communities (Southern Urals, Russia), who ingested large amounts of 90Sr as a result of releases of liquid radioactive wastes into the river from the Mayak plutonium facility in early 1950s. The results of this study showed an increase in the rate of cortical bone resorption in both men and women, as based onmore » the use of accidentally ingested 90Sr as a tracer for bone metabolism. In men there was a continuous gradual increase in the rate of cortical bone resorption after 55 years from 2.8 to 4.5%/year by the age of 75 years. In women, there was a doubled increase in the rate of cortical bone resorption after menopause of up to 6%/year; then the rate remained unchanged for 10-12 years with a subsequent gradual decline down to 5-5.5%/year. Comparison of the rate of cortical bone resorption in men and women older than 55 years showed that women expressed significantly higher levels of cortical bone resorption.« less
Bone metastases and non-small cell lung cancer: from bisphosphonates to targeted therapy.
Rossi, A; Gridelli, C; Ricciardi, S; de Marinis, F
2012-01-01
About 30-40% of patients affected by non-small cell lung cancer (NSCLC) develop, during the course of their disease, bone metastases. The prognosis of these patients is poor with a median survival of less than 1 year. The therapeutic approach includes: palliative radiotherapy, and systemic therapy. In clinical practice, zoledronate is the most commonly used bisphosphonate to prevent, reduce the incidence and delay the onset of skeletal-related events in patients with metastatic NSCLC. However, an Italian Association of Thoracic Oncology (AIOT) survey, conducted to evaluate how bisphosphonates were used in clinical practice for the treatment of lung cancer bone metastases in Italy, showed that the bisphosphonates treatment is still not routine and varies in duration. Denosumab is a fully human monoclonal antibody directed against the receptor activator of nuclear factor kappa-B (RANK)-Ligand inhibiting the maturation of pre-osteoclasts into osteoclasts and is the first example of targeted therapy for bone metastases. An exploratory analysis showed that denosumab was associated with improved overall survival compared with zoledronate in patients with bone metastases from lung cancer. Biochemical markers of bone turnover to predict what patients are at greatest risk of developing skeletal-related events, and to direct treatment of bone metastases with either bisphosphonates or denosumab, are under investigation. This review is focused on the systemic management of bone metastases from NSCLC.
Assessing bone volume for orthodontic miniplate fixation below the maxillary frontal process.
Präger, T M; Brochhagen, H G; Mischkowski, R; Jost-Brinkmann, P-G; Müller-Hartwich, R
2014-09-01
The maxillary bone below the frontal process is used for orthodontic anchorage; indications have included skeletally anchored protraction of the maxilla for treating Class III malocclusions or the intrusion of teeth in patients with a deep bite. This study was conducted to assess the condition of bone before cortically implanting miniplates in that area of the maxilla. A total of 51 thin-sliced computed tomography scans of 51 fully-dentate adult patients (mean age 24.0 ± 8.1 years; 27 men and 24 women) obtained prior to third-molar osteotomy were evaluated. Study parameters included total bone thickness, thickness of the facial cortical plate, and width of the nasal maxillary buttress. All these parameters were measured at different vertical levels. The bone volume adjacent to the piriform aperture was most pronounced at the basal level and decreased progressively toward more cranial levels. The basal bone structure had a mean total thickness of 7.8 mm, facial cortical plate thickness of 1.9 mm, and nasal maxillary buttress width of 9.2 mm. At 16 mm cranial to the aperture base, these values fell to 5.6 mm, 1.3 mm, and 5.8 mm, respectively. These bone measurements suggest that screws 7 mm in length can be inserted at the base level of the piriform aperture and screws 5 mm long at the cranial end of the bone.
A new synthetic granular calcium phosphate compound induces new bone in a sinus lift rabbit model.
Trbakovic, Amela; Hedenqvist, Patricia; Mellgren, Torbjörn; Ley, Cecilia; Hilborn, Jöns; Ossipov, Dmitri; Ekman, Stina; Johansson, Carina B; Jensen-Waern, Marianne; Thor, Andreas
2018-03-01
The aim of this study was to investigate if a synthetic granular calcium phosphate compound (CPC) and a composite bisphosphonate-linked hyaluronic acid-calcium phosphate hydrogel (HABP·CaP) induced similar or more amount of bone as bovine mineral in a modified sinus lift rabbit model. Eighteen adult male New Zeeland White rabbits, received randomly one of the two test materials on a random side of the face, and bovine mineral as control on the contralateral side. In a sinus lift, the sinus mucosa was elevated and a titanium mini-implant was placed in the alveolar bone. Augmentation material (CPC, HABP·CaP or bovine bone) was applied in the space around the implant. The rabbits were euthanized three months after surgery and qualitative and histomorphometric evaluation were conducted. Histomorphometric evaluation included three different regions of interest (ROIs) and the bone to implant contact on each installed implant. Qualitative assessment (p = <.05), histomorphometric evaluations (p = < .01), and implant incorporation (p = <.05) showed that CPC and bovine mineral induced similar amount of bone and more than the HABP·CaP hydrogel. CPC induced similar amount of bone as bovine mineral and both materials induced more bone than HABP·CaP hydrogel. The CPC is suggested as a synthetic alternative for augmentations in the maxillofacial area. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lee, Dae Hoon; Tripathy, Nirmalya; Shin, Jae Hun; Song, Jeong Eun; Cha, Jae Geun; Min, Kyung Dan; Park, Chan Hum; Khang, Gilson
2017-02-01
Scaffolds, used for tissue regeneration are important to preserve their function and morphology during tissue healing. Especially, scaffolds for bone tissue engineering should have high mechanical properties to endure load of bone. Silk fibroin (SF) from Bombyx mori silk cocoon has potency as a type of biomaterials in the tissue engineering. β-tricalcium phosphate (β-TCP) as a type of bioceramics is also critical as biomaterials for bone regeneration because of its biocompatibility, osteoconductivity, and mechanical strength. The aim of this study was to fabricate three-dimensional SF/β-TCP scaffolds and access its availability for bone grafts through in vitro and in vivo test. The scaffolds were fabricated in each different ratios of SF and β-TCP (100:0, 75:25, 50:50, 25:75). The characterizations of scaffolds were conducted by FT-IR, compressive strength, porosity, and SEM. The in vitro and in vivo tests were carried out by MTT, ALP, RT-PCR, SEM, μ-CT, and histological staining. We found that the SF/β-TCP scaffolds have high mechanical strength and appropriate porosity for bone tissue engineering. The study showed that SF/β-TCP (75:25) scaffold exhibited the highest osteogenesis compared with other scaffolds. The results suggested that SF/β-TCP (75:25) scaffold can be applied as one of potential bone grafts for bone tissue engineering. Copyright © 2016. Published by Elsevier B.V.
Wu, Zhigang; Fu, Jun; Wang, Zhen; Li, Xiangdong; Li, Jing; Pei, Yanjun; Pei, Guoxian; Li, Dan; Guo, Zheng; Fan, Hongbin
2015-06-01
Although structural bone allografts have been used for years to treat large defects caused by tumour or trauma, selecting the most appropriate allograft is still challenging. The objectives of this study were to: (1) describe the establishment of a visual bone bank system and workflow of allograft selection, and (2) show mid-term follow-up results of patients after allograft implantation. Allografts were scanned and stored in Digital Imaging and Communications in Medicine (DICOM) files. Then, image segmentation was conducted and 3D model reconstructed to establish a visual bone bank system. Based on the volume registration method, allografts were selected after a careful matching process. From November 2010 to June 2013, with the help of the Computer-assisted Orthopaedic Surgery (CAOS) navigation system, the allografts were implanted in 14 patients to fill defects after tumour resection. By combining the virtual bone bank and CAOS, selection time was reduced and matching accuracy was increased. After 27.5 months of follow-up, the mean Musculoskeletal Tumor Society (MSTS) 93 functional score was 25.7 ± 1.1 points. Except for two patients with pulmonary metastases, 12 patents were alive without evidence of disease at the time this report was written. The virtual bone bank system was helpful for allograft selection, tumour excision and bone reconstruction, thereby improving the safety and effectiveness of limb-salvage surgery.
Effects of age, sex, and ethnicity on bone health status of the elderly in Kuala Lumpur, Malaysia
Chin, Kok-Yong; Kamaruddin, Alia Annessa Ain; Low, Nie Yen; Ima-Nirwana, Soelaiman
2016-01-01
Background Osteoporosis is a significant health problem in the developing countries and its prevalence data are important for the estimation of health care burden and policy making. This study aimed to determine the age-related changes in bone health and the prevalence of osteoporosis in males and females aged 50 years or above living in Kuala Lumpur, Malaysia. Methods A cross-sectional study was conducted between December 2014 and December 2015. Subjects answered a demographic questionnaire and underwent body anthropometric and bone health measurement. Assessment of bone health was performed using a quantitative ultrasound device that generated speed of sound, broadband ultrasound attenuation, stiffness index, and T-score based on stiffness index value as bone health indices. Results The prevalence of osteoporosis was 10.6% in males and 8.0% in females. Significant age-related decline of bone health indices (speed of sound, broadband ultrasound attenuation, stiffness index, and T-score) and a concurrent increase in the prevalence of osteoporosis and osteopenia were observed in females (P<0.05) but not in males (P>0.05). Ethnic differences in bone health indices and prevalence of osteoporosis/osteopenia were not observed (P>0.05). Conclusion A significant proportion of males and females age 50 years or above have suboptimal bone health. Preventive measures such as early screening should be implemented to retard the progression of osteoporosis. PMID:27358558
Newman, Christopher L.; Moe, Sharon M.; Chen, Neal X.; Hammond, Max A.; Wallace, Joseph M.; Nyman, Jeffry S.; Allen, Matthew R.
2014-01-01
Chronic kidney disease (CKD), which leads tocortical bone loss and increasedporosity,increases therisk of fracture. Animal models have confirmed that these changes compromise whole bone mechanical properties. Estimates from whole bone testing suggest that material properties are negatively affected, though tissue-level assessmentshavenot been conducted. Therefore, the goal of the present study was to examine changes in cortical bone at different length scales using a rat model with theprogressive development of CKD. At 30 weeks of age (∼75% reduction in kidney function), skeletally mature male Cy/+ rats were compared to their normal littermates. Cortical bone material propertieswere assessed with reference point indentation (RPI), atomic force microscopy (AFM), Raman spectroscopy,and high performance liquid chromatography (HPLC). Bones from animals with CKD had higher (+18%) indentation distance increase and first cycle energy dissipation (+8%) as measured by RPI.AFM indentation revealed a broader distribution of elastic modulus values in CKD animals witha greater proportion of both higher and lower modulus values compared to normal controls. Yet, tissue composition, collagen morphology, and collagen cross-linking fail to account for these differences. Though the specific skeletal tissue alterations responsible for these mechanical differences remain unclear, these results indicate that cortical bone material properties are altered in these animals and may contribute to the increased fracture risk associated with CKD. PMID:24911162
The effects of trunk stabilization exercise on bone density after menopause.
Kang, Jeong-Il; Jeong, Dae-Keun; Choi, Hyun
2015-12-01
[Purpose] This study examined the effect of low intensity exercise on bone density by conducting trunk stabilization exercise on females after menopause for 24 weeks. [Subjects and Methods] Thirty three female subjects over 47 years old and under the age of 53 were selected and 16 for experimental group and 17 for control group were randomly selected. Experimental group had performed spinal and pelvic stabilization exercise 30 minutes a day, 5times a week, for 24 weeks. Except for the daily life, control group did not participate in any characteristic movement. Bone density of every member in experimental group was measured using average value of bone density of 1st-4th lumbar through quantitative computer tomography. [Results] There was a meaningful difference in only control group about measured value of bone density within each group, experimental and control group, but there was no meaningful difference in measured value of bone density between two groups, experimental group and control group. [Conclusion] Through this research, we could see the fact that although trunk stability exercise could not change bone density meaningfully, it could maintain bone density. In the future, it is randomly necessary to study things related this because results of researches can show different results according to exercise intensity, exercise period, age, weight, hormone status and mediation period. It is considered that it will help to prevent and treat patients with osteoporosis a lot.
Cohen, David J.; Cheng, Alice; Sahingur, Kaan; Clohessy, Ryan M.; Hopkins, Louis B.; Boyan, Barbara D.; Schwartz, Zvi
2018-01-01
Long term success of bone-interfacing implants remains a challenge in compromised patients and in areas of low bone quality. While surface roughness at the micro/nanoscale can promote osteogenesis, macro-scale porosity is important for promoting mechanical stability of the implant over time. Currently, machining techniques permit pores to be placed throughout the implant, but the pores are generally uniform in dimension. The advent of laser sintering provides a way to design and manufacture implants with specific porosity and variable dimensions at high resolution. This approach enables production of metal implants that mimic complex geometries found in biology. In this study, we used a rabbit femur model to compare osseointegration of laser sintered solid and porous implants. Ti-6Al-4V implants were laser sintered in a clinically relevant size and shape. One set of implants had a novel porosity based on human trabecular bone; both sets had grit-blasted/acid-etched surfaces. After characterization, implants were inserted transaxially into rabbit femora; mechanical testing, microCT and histomorphometry were conducted 10 weeks postoperatively. There were no differences in pull-out strength or bone-to-implant contact. However, both microCT and histomorphometry showed significantly higher new bone volume for porous compared to solid implants. Bone growth was observed into porous implant pores, especially near apical portions of the implant interfacing with cortical bone. These results show that laser sintered Ti-6Al-4V implants with micro/nanoscale surface roughness and trabecular bone-inspired porosity promote bone growth and may be used as a superior alternative to solid implants for bone-interfacing implants. PMID:28452335
Cohen, David J; Cheng, Alice; Sahingur, Kaan; Clohessy, Ryan M; Hopkins, Louis B; Boyan, Barbara D; Schwartz, Zvi
2017-04-28
Long term success of bone-interfacing implants remains a challenge in compromised patients and in areas of low bone quality. While surface roughness at the micro/nanoscale can promote osteogenesis, macro-scale porosity is important for promoting mechanical stability of the implant over time. Currently, machining techniques permit pores to be placed throughout the implant, but the pores are generally uniform in dimension. The advent of laser sintering provides a way to design and manufacture implants with specific porosity and variable dimensions at high resolution. This approach enables production of metal implants that mimic complex geometries found in biology. In this study, we used a rabbit femur model to compare osseointegration of laser sintered solid and porous implants. Ti-6Al-4V implants were laser sintered in a clinically relevant size and shape. One set of implants had a novel porosity based on human trabecular bone; both sets had grit-blasted/acid-etched surfaces. After characterization, implants were inserted transaxially into rabbit femora; mechanical testing, micro-computed tomography (microCT) and histomorphometry were conducted 10 weeks post-operatively. There were no differences in pull-out strength or bone-to-implant contact. However, both microCT and histomorphometry showed significantly higher new bone volume for porous compared to solid implants. Bone growth was observed into porous implant pores, especially near apical portions of the implant interfacing with cortical bone. These results show that laser sintered Ti-6Al-4V implants with micro/nanoscale surface roughness and trabecular bone-inspired porosity promote bone growth and may be used as a superior alternative to solid implants for bone-interfacing implants.
Niziolek, Paul J; Bullock, Whitney; Warman, Matthew L; Robling, Alexander G
2015-01-01
The low density lipoprotein receptor-related protein-5 (LRP5), a co-receptor in the Wnt signaling pathway, modulates bone mass in humans and in mice. Lrp5 knock-out mice have severely impaired responsiveness to mechanical stimulation whereas Lrp5 gain-of-function knock-in and transgenic mice have enhanced responsiveness to mechanical stimulation. Those observations highlight the importance of Lrp5 protein in bone cell mechanotransduction. It is unclear if and how high bone mass-causing (HBM) point mutations in Lrp5 alter the bone-wasting effects of mechanical disuse. To address this issue we explored the skeletal effects of mechanical disuse using two models, tail suspension and Botulinum toxin-induced muscle paralysis, in two different Lrp5 HBM knock-in mouse models. A separate experiment employing estrogen withdrawal-induced bone loss by ovariectomy was also conducted as a control. Both disuse stimuli induced significant bone loss in WT mice, but Lrp5 A214V and G171V were partially or fully protected from the bone loss that normally results from disuse. Trabecular bone parameters among HBM mice were significantly affected by disuse in both models, but these data are consistent with DEXA data showing a failure to continue growing in HBM mice, rather than a loss of pre-existing bone. Ovariectomy in Lrp5 HBM mice resulted in similar protection from catabolism as was observed for the disuse experiments. In conclusion, the Lrp5 HBM alleles offer significant protection from the resorptive effects of disuse and from estrogen withdrawal, and consequently, present a potential mechanism to mimic with pharmaceutical intervention to protect against various bone-wasting stimuli.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ubelaker, D H; Buchholz, B A; Stewart, J
Radiocarbon dating, with special reference to the modern bomb-curve, can provide useful information to elucidate the date of death of skeletonized human remains. Interpretation can be enhanced with analysis of different types of tissues within a single skeleton because of the known variability of formation times and remodeling rates. Analysis of radiocarbon content of teeth, especially the enamel in tooth crowns provides information about the date of formation in the childhood years and in consideration of the known timing of tooth formation can be used to estimate the birth date after 1950 A.D. Radiocarbon analysis of modern cortical and trabecularmore » bone samples from the same skeleton may allow proper placement on the pre-1963 or post-1963 sides of the bomb-curve since most trabecular bone generally undergoes more rapid remodeling than does most cortical bone. Pre-1963 bone formation would produce higher radiocarbon values for most trabecular bone than for most cortical bone. This relationship is reversed for formation after 1963. Radiocarbon analysis was conducted in this study on dental, cortical and trabecular bone samples from two adult individuals of known birth (1925 and 1926) and death dates (1995 and 1959). As expected, the dental results correspond to pre-bomb bomb-curve values reflecting conditions during the childhoods of the individuals. The curve radiocarbon content of most bone samples reflected the higher modern bomb-curve values. Within the bone sample analyses, the values of the trabecular bone were higher than those of cortical bone and supported the known placement on the pre-1963 side of the bomb-curve.« less
Cui, Zhuang; Crane, Janet; Xie, Hui; Jin, Xin; Zhen, Gehua; Li, Changjun; Xie, Liang; Wang, Long; Bian, Qin; Qiu, Tao; Wan, Mei; Xie, Min; Ding, Sheng; Yu, Bin; Cao, Xu
2016-01-01
Objectives Examine whether osteoarthritis (OA) progression can be delayed by halofuginone in anterior cruciate ligament transection (ACLT) rodent models. Methods 3-month-old male C57BL/6J (wild type; WT) mice and Lewis rats were randomised to sham-operated, ACLT-operated, treated with vehicle, or ACLT-operated, treated with halofuginone. Articular cartilage degeneration was graded using the Osteoarthritis Research Society International (OARSI)-modified Mankin criteria. Immunostaining, flow cytometry, RT-PCR and western blot analyses were conducted to detect relative protein and RNA expression. Bone micro CT (μCT) and CT-based microangiography were quantitated to detect alterations of microarchitecture and vasculature in tibial subchondral bone. Results Halofuginone attenuated articular cartilage degeneration and subchondral bone deterioration, resulting in substantially lower OARSI scores. Specifically, we found that proteoglycan loss and calcification of articular cartilage were significantly decreased in halofuginone-treated ACLT rodents compared with vehicle-treated ACLT controls. Halofuginone reduced collagen X (Col X), matrix metalloproteinase-13 and A disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS 5) and increased lubricin, collagen II and aggrecan. In parallel, halofuginone-attenuated uncoupled subchondral bone remodelling as defined by reduced subchondral bone tissue volume, lower trabecular pattern factor (Tb.pf) and increased thickness of subchondral bone plate compared with vehicle-treated ACLT controls. We found that halofuginone exerted protective effects in part by suppressing Th17-induced osteoclastic bone resorption, inhibiting Smad2/3-dependent TGF-β signalling to restore coupled bone remodelling and attenuating excessive angiogenesis in subchondral bone. Conclusions Halofuginone attenuates OA progression by inhibition of subchondral bone TGF-β activity and aberrant angiogenesis as a potential preventive therapy for OA. PMID:26470720
NASA Astrophysics Data System (ADS)
Tanaka, Rie; Sanada, Shigeru; Sakuta, Keita; Kawashima, Hiroki
2015-05-01
The bone suppression technique based on advanced image processing can suppress the conspicuity of bones on chest radiographs, creating soft tissue images obtained by the dual-energy subtraction technique. This study was performed to evaluate the usefulness of bone suppression image processing in image-guided radiation therapy. We demonstrated the improved accuracy of markerless motion tracking on bone suppression images. Chest fluoroscopic images of nine patients with lung nodules during respiration were obtained using a flat-panel detector system (120 kV, 0.1 mAs/pulse, 5 fps). Commercial bone suppression image processing software was applied to the fluoroscopic images to create corresponding bone suppression images. Regions of interest were manually located on lung nodules and automatic target tracking was conducted based on the template matching technique. To evaluate the accuracy of target tracking, the maximum tracking error in the resulting images was compared with that of conventional fluoroscopic images. The tracking errors were decreased by half in eight of nine cases. The average maximum tracking errors in bone suppression and conventional fluoroscopic images were 1.3 ± 1.0 and 3.3 ± 3.3 mm, respectively. The bone suppression technique was especially effective in the lower lung area where pulmonary vessels, bronchi, and ribs showed complex movements. The bone suppression technique improved tracking accuracy without special equipment and implantation of fiducial markers, and with only additional small dose to the patient. Bone suppression fluoroscopy is a potential measure for respiratory displacement of the target. This paper was presented at RSNA 2013 and was carried out at Kanazawa University, JAPAN.
Dau, Michael; Kämmerer, Peer W; Henkel, Kai-Olaf; Gerber, Thomas; Frerich, Bernhard; Gundlach, Karsten K H
2016-05-01
Healing characteristics as well as level of tissue integration and degradation of two different nanostructured hydroxyapatite bone substitute materials (BSM) in comparison with a deproteinized hydroxyapatite bovine BSM were evaluated in an in vivo animal experiment. In the posterior mandible of 18 minipigs, bilateral mono cortical critical size bone defects were created. Randomized augmentation procedures with NanoBone(®) (NHA1), Ostim(®) (NHA2) or Bio-Oss(®) (DBBM) were conducted (each material n = 12). Samples were analyzed after five (each material n = 6) and 8 months (each material n = 6). Defect healing, formation of soft tissue and bone as well as the amount of remaining respective BSM were quantified both macro- and microscopically. For NHA2, the residual bone defect after 5 weeks was significantly less compared to NHA1 or DBBM. There was no difference in residual BSM between NHA1 and DBBM, but the amount in NHA2 was significantly lower. NHA2 also showed the least amount of soft tissue and the highest amount of new bone after 5 weeks. Eight months after implantation, no significant differences in the amount of residual bone defects, in soft tissue or in bone formation were detected between the groups. Again, NHA2 showed significant less residual material than NHA1 and DBBM. We observed non-significant differences in the biological hard tissue response of NHA1 and DBBM. The water-soluble NHA2 initially induced an increased amount of new bone but was highly compressed which may have a negative effect in less stable augmentations of the jaw. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
An Investigation of Bonding Mechanisms at the Interface of a Prosthetic Material.
1977-12-01
II. CONTROLLING OFFICE NAME AND ADDRESS Command — IkThUM eEROFP AGE S Washington, D. C. 20314 144 _______________________ I...which can influence the precipitation of hydroxyapatite in bone. Variable rates of ion release have been achieved by varying (1) Ca/P ratio, (2) the...conducted to establish parameters controlling the bonding of the glass and glass—ceramic materials with bone. These studies have demonstrated that the
2016-10-01
sclerosis as in human PTOA. We also find that PLR is deregulated in human PTOA. We have made great strides in understanding the mechanosensitive regulation...conditions. We conducted an extremely thorough analysis of multiple experimental variables (loading regimen, mouse age, time course analysis) to better...Aim 3. Determine the extent of causality between defective PLR and cartilage degeneration in PTOA. A role for PLR in bone sclerosis
Iacono, Francesco; Bruni, Danilo; Lo Presti, Mirco; Raspugli, Giovanni; Bondi, Alice; Sharma, Bharat; Marcacci, Maurilio
2012-10-01
Knee arthrodesis can be an effective treatment after an infected revision Total Knee Arthroplasty (TKA). The main hypothesis of this study is that a two-stage arthrodesis of the knee using a press-fit, modular intramedullary nail and antibiotic loaded cement, to fill the residual gap between the bone surfaces, prevents an excessive limb shortening, providing satisfactory clinical and functional results even without direct bone-on-bone fusion. The study included 22 patients who underwent knee arthrodesis between 2004 and 2009 because of recurrent infection following revision-TKA (R-TKA). Clinical and functional evaluations were performed using the Visual Analogue Scale (VAS) and the Lequesne Algofunctional Score. A postoperative clinical and radiographical evaluation of the residual limb-length discrepancy was conducted by three independent observers. VAS and LAS results showed a significant improvement with respect to the preoperative condition. The mean leg length discrepancy was less than 1cm. There were three recurrent infections that needed further surgical treatment. This study demonstrated that reinfection after Revision of total knee Arthroplasty can be effectively treated with arthrodesis using a modular intramedullary nail, along with an antibiotic loaded cement spacer and that satisfactory results can be obtained without direct bone-on-bone fusion. Published by Elsevier B.V.
Naruse, Koji; Uchino, Masataka; Hirakawa, Noriko; Toyama, Masahiro; Miyajima, Genyo; Mukai, Manabu; Urabe, Ken; Uchida, Kentaro; Itoman, Moritoshi
2016-08-01
We have conducted a basic study on the influences on ultrasonic properties when LIPUS is applied through wound dressing. According to the results of ex vivo experiments conducted to date, LIPUS showed ultrasonic properties such as transmittance, coefficient of transmission, and a non-uniformity ratio through film wound dressing better than other wound dressing, and it was considered that LIPUS's effect for fracture healing was not influenced by film wound dressing. Then, we discussed the influence on the effect of LIPUS through film wound dressing. Thirty male 8-week-old Sprague-Dawley rats were used for the trial. After creating close transverse femoral fractures on the right legs of these 30 rats, they were divided into 3 groups of 10; LIPUS through wound dressing (Group A), LIPUS without wound dressing (Group B), and No LIPUS treatment (Group C). OPSITE Wound, which was thought to have the least influence on ultrasound properties, was used for this trial. Group A and B received LIPUS for 20 minutes a day from the first day after the fractures. LIPUS was generated from Teijin Pharma's device for a basic experiment. When treating Group A, the wound dressing was pasted on the ultrasound terminal in order to apply LIPUS through the dressing. We assessed the time-oriented morphological change of each group in anesthetized condition using simple radiographs on the 8th, 16th, and 24th day after the fractures. Six rats in Group A, 2 in Group B, and 1 in Group C died in anesthesia, and we discussed the remaining 4 rats in Group A, 8 in Group B, and 9 in Group C. We defined more than one teleost callus bridging as bone-union. We also counted a bone remodeling when we recognized the absorption of existing cortical bone and the transformation of new bone to cortical bone in simple radiographs. As a result, compared with Group C, we recognized that both bone union and remodeling accelerated remarkably in Group B, but not in Group A. It suggested that LIPUS through wound dressing had negative influences on both period shorting of fracture healing and bone remodeling. When LIPUS was conducted through film wound dressing, transmittance and coefficient of transmission were unchanged; however, the non-uniformity ratio changed slightly. The non-uniformity ratio of the ultrasound transducer had a significant influence on the effect of LIPUS on fracture healing.
Alcohol: A Simple Nutrient with Complex Actions on Bone in the Adult Skeleton
Gaddini, Gino W.; Turner, Russell T.; Grant, Kathleen A.; Iwaniec, Urszula T.
2016-01-01
Background Alcohol is an important nonessential component of diet, but the overall impact of drinking on bone health, especially at moderate levels, is not well understood. Bone health is important because fractures greatly reduce quality of life and are a major cause of morbidity and mortality in the elderly. Regular alcohol consumption is most common following skeletal maturity, emphasizing the importance of understanding the skeletal consequences of drinking in adults. Method This review focuses on describing the complex effects of alcohol on the adult skeleton. Studies assessing the effects of alcohol on bone in adult humans as well as skeletally-mature animal models published since the year 2000 are emphasized. Results Light to moderate alcohol consumption is generally reported to be beneficial, resulting in higher bone mineral density (BMD) and reduced age-related bone loss, whereas heavy alcohol consumption is generally associated with decreased BMD, impaired bone quality and increased fracture risk. Bone remodeling is the principle mechanism for maintaining a healthy skeleton in adults and dysfunction in bone remodeling can lead to bone loss and/or decreased bone quality. Light to moderate alcohol may exert beneficial effects in older individuals by slowing the rate of bone remodeling but the impact of light to moderate alcohol on bone remodeling in younger individuals is less certain. The specific effects of alcohol on bone remodeling in heavy drinkers is even less certain because the effects are often obscured by unhealthy lifestyle choices, alcohol-associated disease, and altered endocrine signaling. Conclusions Although there have been advances in understanding the complex actions of alcohol on bone, much remains to be determined. Limited evidence implicates age, skeletal site evaluated, duration and pattern of drinking as important variables. Few studies systematically evaluating the impact of these factors have been conducted and should be made a priority for future research. In addition, studies performed in skeletally mature animals have potential to reveal mechanistic insights into the precise actions of alcohol and associated co-morbidity factors on bone remodeling. PMID:26971854
Horizontal alveolar bone loss: A periodontal orphan
Jayakumar, A.; Rohini, S.; Naveen, A.; Haritha, A.; Reddy, Krishnanjeneya
2010-01-01
Background: Attempts to successfully regenerate lost alveolar bone have always been a clinician’s dream. Angular defects, at least, have a fairer chance, but the same cannot be said about horizontal bone loss. The purpose of the present study was to evaluate the prevalence of horizontal alveolar bone loss and vertical bone defects in periodontal patients; and later, to correlate it with the treatment modalities available in the literature for horizontal and vertical bone defects. Materials and Methods: The study was conducted in two parts. Part I was the radiographic evaluation of 150 orthopantomographs (OPGs) (of patients diagnosed with chronic periodontitis and seeking periodontal care), which were digitized and read using the AutoCAD 2006 software. All the periodontitis-affected teeth were categorized as teeth with vertical defects (if the defect angle was ≤45° and defect depth was ≥3 mm) or as having horizontal bone loss. Part II of the study comprised search of the literature on treatment modalities for horizontal and vertical bone loss in four selected periodontal journals. Results: Out of the 150 OPGs studied, 54 (36%) OPGs showed one or more vertical defects. Totally, 3,371 teeth were studied, out of which horizontal bone loss was found in 3,107 (92.2%) teeth, and vertical defects were found only in 264 (7.8%) of the teeth, which was statistically significant (P<.001). Search of the selected journals revealed 477 papers have addressed the treatment modalities for vertical and horizontal types of bone loss specifically. Out of the 477 papers, 461 (96.3%) have addressed vertical bone loss, and 18 (3.7%) have addressed treatment options for horizontal bone loss. Two papers have addressed both types of bone loss and are included in both categories. Conclusion: Horizontal bone loss is more prevalent than vertical bone loss but has been sidelined by researchers as very few papers have been published on the subject of regenerative treatment modalities for this type of bone loss. This study should be an impetus for greater attention to an otherwise ubiquitous periodontal challenge. PMID:21760673
Tomatsu, Shunji; Montaño, Adriana M.; Oikawa, Hirotaka; Dung, Vu Chi; Hashimoto, Amiko; Oguma, Toshihiro; Takahashi, Tatsuo; Shimada, Tsutomu; Orii, Tadao; Sly, William S.
2014-01-01
We treated mucopolysaccharidosis IVA (MPS IVA) mice to assess the effects of long-term enzyme replacement therapy (ERT) initiated at birth, since adult mice treated by ERT showed little improvement in bone pathology (1). To conduct ERT in newborn mice, we used recombinant human N-acetylgalactosamine-6-sulfate sulfatase (GALNS) produced in a CHO cell line. First, to observe the tissue distribution pattern, a dose of 250 units/g body weight was administered intravenously in MPS IVA mice at day 2 or 3. The infused enzyme was primarily recovered in liver and spleen, with detectable activity in bone and brain. Second, newborn ERT was conducted after tissue distribution study. The first injection of newborn ERT was performed intravenously, the second to fourth weekly injections were intraperitoneal, and the remaining injections from 5th to 14th week were intravenous into the tail vein. MPS IVA mice treated with GALNS showed clearance of lysosomal storage in liver, spleen, and sinus lining cells in bone marrow. The column structure of the growth plate was organized better than adult mice treated with ERT; however, hyaline and fibrous cartilage cells in femur, spine, ligaments, discs, synovium, and periosteum still had storage materials to some extent. Heart valves were refractory to the treatment. Levels of serum keratan sulfate were kept normal in newborn ERT mice. In conclusion, the enzyme, which enters the cartilage before the cartilage cell layer becomes mature, prevents disorganization of column structure. Early treatment from birth leads to partial remission of bone pathology in MPS IVA mouse. PMID:24953405
Leão, Rafaella de Souza; Maior, Juliana Raposo Souto; Lemos, Cleidiel Aparecido de Araújo; Vasconcelos, Belmiro Cavalcanti do Egito; Montes, Marcos Antônio Japiassú Resende; Pellizzer, Eduardo Piza; Moraes, Sandra Lúcia Dantas
2018-06-07
Polymethyl methacrylate (PMMA) has been considered a suitable material for cranioplasty. However, no consensus has been reached concerning the best material for cranioplasty with regard to minimizing complications. Thus, this systematic review and meta-analysis aimed to compare the complication rates of PMMA with those of autologous bone and titanium mesh. This review was registered with PROSPERO (CRD42016042725). Systematic searches were conducted on PubMed/MEDLINE, Scopus, and Web of Science. The focus question was, "Do PMMA prostheses used in cranioplasty have complications rates similar to those of autologous bone and titanium mesh?" A meta-analysis of complication rates was performed on the basis of dichotomous outcomes assessed by risk ratio (RR) with corresponding 95% confidence intervals (CI). From 1014 data sources, 11 articles were selected according to eligibility criteria. These articles involved 1,256 individuals and 1,278 cranioplasties using autologous bone (n = 408), PMMA (n = 379), or titanium (n = 151). The follow-up period ranged from 63 days to 54.3 months. No difference was observed between the complication rates of PMMA and autologous bone (p = 0.94; RR, 0.98; 95%CI, 0.54-1.75) or between PMMA and titanium (p = 0.38; RR, 1.59; 95%CI, 0.57-4.48). Sub-analysis of the reasons for craniotomy (trauma/non-trauma) was conducted, which revealed no significant difference (p = 0.91; RR, 0.95; 95%CI, 0.37-2.42). The meta-analysis indicated that the use of PMMA yields complication rates that are near those of autologous bone and titanium mesh.
Kenny, Anne M; Mangano, Kelsey M; Abourizk, Robin H; Bruno, Richard S; Anamani, Denise E; Kleppinger, Alison; Walsh, Stephen J; Prestwood, Karen M; Kerstetter, Jane E
2009-07-01
Soy foods contain several components (isoflavones and amino acids) that potentially affect bone. Few long-term, large clinical trials of soy as a means of improving bone mineral density (BMD) in late postmenopausal women have been conducted. Our goal was to evaluate the long-term effect of dietary soy protein and/or soy isoflavone consumption on skeletal health in late postmenopausal women. We conducted a randomized, double-blind, placebo-controlled clinical trial in 131 healthy ambulatory women aged >60 y. Ninety-seven women completed the trial. After a 1-mo baseline period, subjects were randomly assigned into 1 of 4 intervention groups: soy protein (18 g) + isoflavone tablets (105 mg isoflavone aglycone equivalents), soy protein + placebo tablets, control protein + isoflavone tablets, and control protein + placebo tablets. Consumption of protein powder and isoflavone pills did not differ between groups, and compliance with the study powder and pills was 80-90%. No significant differences in BMD were observed between groups from baseline to 1 y after the intervention or in BMD change between equol and non-equol producers. However, there were significant negative correlations between total dietary protein (per kg) and markers of bone turnover (P < 0.05). Because soy protein and isoflavones (either alone or together) did not affect BMD, they should not be considered as effective interventions for preserving skeletal health in older women. The negative correlation between dietary protein and bone turnover suggests that increasing protein intakes may suppress skeletal turnover. This trial was registered at ClinicalTrials.gov as NCT00668447.
Cadium-induced bone loss: Effects in ovariectomized mice and osteoclast-like cells in culture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharyya, M.H.; Seed, T.M.; Peterson, D.P.
1988-01-01
The research reported here was conducted to investigate the possibility that cadmium might be a factor that increases bone loss after the menopause. In our first study, we exposed female CF1 mice to a purified diet containing CdCl2 at either 0.25, 5.0, or 50 ppM Cd starting at 70 days of age. After 12 months of exposure, mice were ovariectomized (OV) or sham-operated (SO). After surgery, they remained on their respective diets for an additional six months before sacrifice. Results showed that neither ovariectomy alone nor dietary Cd exposure alone significantly decrease bone calcium content. However, dietary Cd at 50more » ppM in combination with ovariectomy caused a striking decrease in the calcium content of mouse bones. The mice in the above study were quite old (435 days old at ovariectomy; 617 days old at sacrifice) and had been exposed to dietary cadmium for one year prior to removal of the ovaries. Consequently, the follow-up study reported here was conducted in mice whose skeletons were pre-labelled with UVCa. This study was designed to determine whether cadmium exposure would cause as increased release of UVCa from the skeletons of OV mice immediately after the start of cadmium exposure and in the absence of the one-year pre-exposure period present in our first study. Such results would indicate that cadmium might act directly on bone rather than indirectly by way of damage to another organ such as the kidney. 14 refs., 1 fig.« less
Effect of membrane exposure on guided bone regeneration: A systematic review and meta-analysis.
Garcia, Jeffrey; Dodge, Austin; Luepke, Paul; Wang, Hom-Lay; Kapila, Yvonne; Lin, Guo-Hao
2018-03-01
This review aimed at investigating the effect of membrane exposure on guided bone regeneration (GBR) outcomes at peri-implant sites and edentulous ridges. Electronic and manual literature searches were conducted by two independent reviewers using four databases, including MEDLINE, EMBASE, Web of Science, and Cochrane Central Register of Controlled Trials, for articles up to February 2017. Articles were included if they were human clinical trials or case series reporting outcomes of GBR procedures with and without membrane exposure. A random-effects meta-analysis was conducted, and the weighted mean difference (WMD) between the two groups and 95% confidence interval (CI) were reported. Overall, eight articles were included in the quantitative analysis. The WMD of the horizontal bone gain at edentulous ridges was -76.24% (95% CI = -137.52% to -14.97%, p = .01) between sites with membrane exposure and without exposure. In addition, the WMD of the dehiscence reduction at peri-implant sites was -27.27% (95% CI of -45.87% to -8.68%, p = .004). Both analyses showed significantly favorable outcomes at the sites without membrane exposure. Based on the findings of this study, membrane exposure after GBR procedures has a significant detrimental influence on the outcome of bone augmentation. For the edentulous ridges, the sites without membrane exposure achieved 74% more horizontal bone gain than the sites with exposure. For peri-implant dehiscence defects, the sites without membrane exposure had 27% more defect reduction than the sites with exposure. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Histologic and morphologic evaluation of explanted bone anchors from bone-anchored hearing aids.
Mlynski, Robert; Goldberg, Eva; Ebmeyer, Joerg; Scheich, Matthias; Gattenlöhner, Stefan; Schwager, Konrad; Hagen, Rudolf; Shehata-Dieler, Wafaa
2009-05-01
Bone-anchored hearing aids are a standard option in rehabilitation of patients with conductive or mixed hearing loss, and also CROS fitting. However, the skin-penetrating bone anchor repeatedly gives reason for discussion about the risk of infection of surrounding tissues as a major cause of malfunction. In the present study, explanted bone anchors with surrounding bone and soft tissue were examined and compared with the morphology of lost implants. The anchors originated from five patients. Two needed explantation due to deafness with the need of cochlea implantation. A third patient underwent explantation due to meningeal irritation by the bone anchor. Another patient lost the implant due to mechanical stress shortly after implantation. The last implant was lost in a child without apparent reason. All implants were clinically free of infection and had been stable for a median implantation period of 12 months. During the explantation procedure, the fixtures were recovered together with the attached soft tissue and bone. The specimens were examined by light microscopy or scanning electron microscopy (SEM). Sectioning for light microscopy was performed with a diamond-coated saw microtome. Histopathologic examination of the surrounding skin and subcutaneous soft tissue showed slight inflammation in one case only. The bone was regularly vital, presenting no signs of inflammation. The threads of the fixtures were filled with bone, with particularly strong attachment to the flank of traction. The SEM investigation exposed the ultrastructural interaction of bone with the implant surface. Filiform- and podocyte-like processes of osteocytes attach to the implant; lost implants did not reflect these features. Implant integration involves both osseointegration as well as soft tissue integration. Titanium oxide as the active implant surface promotes this integration even in unstable implants. The morphologic analysis exposed structural areas of the implant with weak bone-to-metal contact. Optimized implant design with modified surface and threads may additionally improve osseointegration of hearing aid bone anchors.
Laffey, Ann O; Krigbaum, John; Zimmerman, Andrew R
2017-02-15
Bone lipid compound-specific isotope analysis (CSIA) and bone collagen and apatite stable isotope ratio analysis are important sources of ecological and paleodietary information. Pressurized liquid extraction (PLE) is quicker and utilizes less solvent than traditional methods of lipid extraction such as soxhlet and ultrasonication. This study facilitates dietary analysis by optimizing and testing a standardized methodology for PLE of bone cholesterol. Modern and archaeological bones were extracted by PLE using varied temperatures, solvent solutions, and sample weights. The efficiency of PLE was assessed via quantification of cholesterol yields. Stable isotopic ratio integrity was evaluated by comparing isotopic signatures (δ 13 C and δ 18 O values) of cholesterol derived from whole bone, bone collagen and bone apatite. Gas chromatography/mass spectrometry (GC/MS) and gas chromatography isotope ratio mass spectrometry (GC/IRMS) were conducted on purified collagen and lipid extracts to assess isotopic responses to PLE. Lipid yield was optimized at two PLE extraction cycles of 75 °C using dichloromethane/methanol (2:1 v/v) as a solvent with 0.25-0.75 g bone sample. Following lipid extraction, saponification combined with the derivatization of the neutral fraction using trimethylsilylation yielded nearly twice the cholesterol of non-saponified or non-derivatized samples. It was also found that lipids extracted from purified bone collagen and apatite could be used for cholesterol CSIA. There was no difference in the bulk δ 13 C values of collagen extracted from bone with or without lipid. However, there was a significant depletion in 18 O of bone apatite due to lipid presence or processing. These results should assist sample selection and provide an effective, alternative extraction method for bone cholesterol that may be used for isotopic and paleodietary analysis. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Ulivieri, Fabio M; Piodi, Luca P; Grossi, Enzo; Rinaudo, Luca; Messina, Carmelo; Tassi, Anna P; Filopanti, Marcello; Tirelli, Anna; Sardanelli, Francesco
2018-01-01
The consolidated way of diagnosing and treating osteoporosis in order to prevent fragility fractures has recently been questioned by some papers, which complained of overdiagnosis and consequent overtreatment of this pathology with underestimating other causes of the fragility fractures, like falls. A new clinical approach is proposed for identifying the subgroup of patients prone to fragility fractures. This retrospective observational study was conducted from January to June 2015 at the Nuclear Medicine-Bone Metabolic Unit of the of the Fondazione IRCCS Ca' Granda, Milan, Italy. An Italian population of 125 consecutive postmenopausal women was investigated for bone quantity and bone quality. Patients with neurological diseases regarding balance and vestibular dysfunction, sarcopenia, past or current history of diseases and use of drugs known to affect bone metabolism were excluded. Dual X-ray absorptiometry was used to assess bone quantity (bone mineral density) and bone quality (trabecular bone score and bone strain). Biochemical markers of bone turnover (type I collagen carboxy-terminal telopeptide, alkaline phosphatase, vitamin D) have been measured. Morphometric fractures have been searched by spine radiography. Balance was evaluated by the Romberg test. The data were evaluated with the neural network analysis using the Auto Contractive Map algorithm. The resulting semantic map shows the Minimal Spanning Tree and the Maximally Regular Graph of the interrelations between bone status parameters, balance conditions and fractures of the studied population. A low fracture risk seems to be related to a low carboxy-terminal cross-linking telopeptide of type I collagen level, whereas a positive Romberg test, together with compromised bone trabecular microarchitecture DXA parameters, appears to be strictly connected with fragility fractures. A simple assessment of the risk of fragility fracture is proposed in order to identify those frail patients at risk for osteoporotic fractures, who may have the best benefit from a pharmacological and physiotherapeutic approach.
Frequency-specific hearing outcomes in pediatric type I tympanoplasty.
Kent, David T; Kitsko, Dennis J; Wine, Todd; Chi, David H
2014-02-01
Middle ear disease is the primary cause of hearing loss in children and has a significant impact on language development and academic performance. Multiple prognostic factors have previously been examined, but there is little published data regarding frequency-specific hearing outcomes. To examine the relationship between type I tympanoplasty in a pediatric population and frequency-specific hearing changes, as well as the relationship between several prognostic factors and graft retention. Retrospective medical chart review (February 2006 to October 2011) of 492 consecutive pediatric otolaryngology patients undergoing type I tympanoplasty for tympanic membrane (TM) perforation of any etiology at a tertiary-care pediatric otolaryngology practice. Type I tympanoplasty. Preoperative and postoperative audiometric data were collected for patients undergoing successful TM repair. It was hypothesized before data collection that conductive hearing would improve at all frequencies with no significant change in sensorineural hearing. Data collected included air conduction at 250 to 8000 Hz, speech reception thresholds, bone conduction at 500 to 4000 Hz, and air-bone gap at 500 to 4000 Hz. Demographic data obtained included sex, age, size, mechanism, location of perforation, and operative repair technique. Of 492 patients, 320 were excluded; results were thus examined for 172 patients. Surgery was successful for 73.8% of patients. Perforation size was significantly associated with repair success (mean [SD] surgical success rate of 38.6% [15.3%] vs surgical failure rate of 31.4% [15.0%]; P < .01); however, mean (SD) age (9.02 [3.89] years [surgical success] vs 8.52 [3.43] years [surgical failure]; P > .05) and repair technique (medial [73.08%] vs lateral [76.47%] graft success; P > .99) were not. Air conduction significantly improved from 250 to 2000 Hz (P < .001), did not significantly improve at 4000 Hz (P = .08), and there was a nonsignificant decline at 8000 Hz (P = .12). Speech reception threshold significantly improved (20 vs 15 dB; P < .001). This large review found an association of TM perforation size with surgical success and an improvement in speech reception threshold, air conduction at 250 to 2000 Hz, air-bone gap at 500 to 2000 Hz, and worsening bone conduction at 4000 Hz. Patients with high-frequency hearing loss due to TM perforation should not anticipate significant recovery from type I tympanoplasty. Hearing loss at higher frequencies may require postoperative hearing rehabilitation.
Comparative study of conventional and ultrasonically-assisted bone drilling.
Alam, K; Ahmed, Naseer; Silberschmidt, V V
2014-01-01
Bone drilling is a well-known surgical procedure in orthopaedics and dentistry for fracture treatment and reconstruction. Advanced understanding of the mechanics of the drill-bone interaction is necessary to overcome challenges associated with the process and related postoperative complications. The aim of this study was to explore the benefits of a novel drilling technique, ultrasonically-assisted drilling (UAD), and its possible utilization in orthopaedic surgeries. The study was performed by conducting experiments to understand the basic mechanics of the drilling process using high speed filming of the drilling zone followed by measurements to quantify thrust force, surface roughness and cracking of the bone near the immediate vicinity of the hole with and without ultrasonic assistance. Compared to the spiral chips produced during conventional drilling (CD), UAD was found to break the chips in small pieces which facilitated their fast evacuation from the cutting region. In UAD, lower drilling force and better surface roughness was measured in drilling in the radial and longitudinal axis of the bone. UAD produced crack-free holes which will enhance postoperative performance of fixative devices anchoring the bone. UAD may be used as a possible substitute for CD in orthopaedic clinics.
Perić Kačarević, Zeljka; Kavehei, Faraz; Houshmand, Alireza; Franke, Jörg; Smeets, Ralf; Rimashevskiy, Denis; Wenisch, Sabine; Schnettler, Reinhard; Jung, Ole; Barbeck, Mike
2018-04-01
Xenogeneic bone substitute materials are widely used in oral implantology. Prior to their clinical use, purification of the former bone tissue has to be conducted to ensure the removal of immunogenic components and pathogens. Different physicochemical methods are applied for purification of the donor tissue, and temperature treatment is one of these methods. Differences in these methods and especially the application of different temperatures for purification may lead to different material characteristics, which may influence the tissue reactions to these materials and the related (bone) healing process. However, little is known about the different material characteristics and their influences on the healing process. Thus, the aim of this mini-review is to summarize the preparation processes and the related material characteristics, safety aspects, tissue reactions, resorbability and preclinical and clinical data of two widely used xenogeneic bone substitutes that mainly differ in the temperature treatment: sintered (cerabone ® ) and non-sintered (Bio-Oss ® ) bovine-bone materials. Based on the summarized data from the literature, a connection between the material-induced tissue reactions and the consequences for the healing processes are presented with the aim of translation into their clinical application.
Ogawa, Sachie; Watanabe, Masahiro; Kawaai, Hiroyoshi; Tada, Hitoshi; Yamazaki, Shinya
2014-01-01
It has been reported that the action of infiltration anesthesia on the jawbone is attenuated significantly by elevation of the periosteal flap with saline irrigation in clinical studies; however, the reason is unclear. Therefore, the lidocaine concentration in mandibular bone after subperiosteal infiltration anesthesia was measured under several surgical conditions. The subjects were 48 rabbits. Infiltration anesthesia by 0.5 mL of 2% lidocaine with 1 : 80,000 epinephrine (adrenaline) was injected into the right mandibular angle and left mandibular body, respectively. Under several surgical conditions (presence or absence of periosteal flap, and presence or absence of saline irrigation), both mandibular bone samples were removed at a fixed time after subperiosteal infiltration anesthesia. The lidocaine concentration in each mandibular bone sample was measured by high-performance liquid chromatography. As a result, elevation of the periosteal flap with saline irrigation significantly decreased the lidocaine concentration in the mandibular bone. It is suggested that the anesthetic in the bone was washed out by saline irrigation. Therefore, supplemental conduction and/or general anesthesia should be utilized for long operations that include elevation of the periosteal flap with saline irrigation. PMID:24932978
Saxena, Amol; DiDomenico, Lawrence A; Widtfeldt, Arthur; Adams, Todd; Kim, Will
2005-01-01
This study assessed arthrodesis procedures performed in the foot and ankle of high-risk patients following implantation of an internal electrical bone stimulator. Criteria defining patients as "high risk" included diabetes, obesity, habitual tobacco and/or alcohol use, immunosuppressive therapy, and previous history of nonunion. Standard arthrodesis protocol of bone graft and internal fixation was supplemented with the implantable electrical bone stimulator. A retrospective, multicenter review was conducted of 26 patients (28 cases) who underwent 28 forefoot and hindfoot arthrodeses from 1998 to 2002. Complete fusion was defined as bony trabeculation across the joint, lack of motion across the joint, maintenance of hardware/fixation, and absence of radiographic signs of nonunion or pseudoarthrosis. Radiographic consolidation was achieved in 24 of the 28 cases at an average 10.3+/-4.0 weeks. Followup averaged 27.2 months. Complications included 2 patients who sustained breakage of the cables to the bone stimulator. Five patients underwent additional surgery. Four of the 5 patients had additional surgery in order to achieve arthrodesis. All 4 went on to subsequent arthrodesis. This study demonstrates how arthrodesis of the foot and ankle may be enhanced by the use of implantable electrical bone stimulation.
Osteoporosis and bone fractures in alcoholic liver disease: a meta-analysis.
Bang, Chang Seok; Shin, In Soo; Lee, Sung Wha; Kim, Jin Bong; Baik, Gwang Ho; Suk, Ki Tae; Yoon, Jai Hoon; Kim, Yeon Soo; Kim, Dong Joon
2015-04-07
To evaluate the association between alcoholic liver disease (ALD) and bone fractures or osteoporosis. Non-randomized studies were identified from databases (PubMed, EMBASE, and the Cochrane Library). The search was conducted using Boolean operators and keywords, which included "alcoholic liver diseases", "osteoporosis", or "bone fractures". The prevalence of any fractures or osteoporosis, and bone mineral density (BMD) were extracted and analyzed using risk ratios and standardized mean difference (SMD). A random effects model was applied. In total, 15 studies were identified and analyzed. Overall, ALD demonstrated a RR of 1.944 (95%CI: 1.354-2.791) for the development of bone fractures. However, ALD showed a RR of 0.849 (95%CI: 0.523-1.380) for the development of osteoporosis. BMD was not significantly different between the ALD and control groups, although there was a trend toward lower BMD in patients with ALD (SMD in femur-BMD: -0.172, 95%CI: -0.453-0.110; SMD in spine-BMD: -0.169, 95%CI: -0.476-0.138). Sensitivity analyses showed consistent results. Current publications indicate significant associations between bone fractures and ALD, independent of BMD or the presence of osteoporosis.
Augello, Marcello; Deibel, Waldemar; Nuss, Katja; Cattin, Philippe; Jürgens, Philipp
2018-04-13
Most industrial laser applications utilize computer and robot assistance, for guidance, safety, repeatability, and precision. In contrast, medical applications using laser systems are mostly conducted manually. The advantages can be effective only when the system is coupled to a robotic guidance, as operating by hand does not reach the required accuracy. We currently developed the first laser osteotome which offers preoperative planning based on CT data, robot guidance, and a precise execution of the laser cuts. In an animal trial, our system was used to create a grid pattern of the same depth on the inner layer of parietal bone in 12 adult sheep. The same bone cuts were done with piezoelectric osteotome on the contralateral side. The micro-CT and histological analysis showed more new mineralized bone in the laser group compared to the piezoelectric group. As well, a cutting pattern with especially a constant osteotomy depth in the laser group was demonstrated. The here presented autonomous osteotomy tool shows not only an advantage in early bone healing stage but additionally sharp bone cuts with a very high accuracy and freely selectable design cuts.
Osteoporosis and bone fractures in alcoholic liver disease: A meta-analysis
Bang, Chang Seok; Shin, In Soo; Lee, Sung Wha; Kim, Jin Bong; Baik, Gwang Ho; Suk, Ki Tae; Yoon, Jai Hoon; Kim, Yeon Soo; Kim, Dong Joon
2015-01-01
AIM: To evaluate the association between alcoholic liver disease (ALD) and bone fractures or osteoporosis. METHODS: Non-randomized studies were identified from databases (PubMed, EMBASE, and the Cochrane Library). The search was conducted using Boolean operators and keywords, which included “alcoholic liver diseases”, “osteoporosis”, or “bone fractures”. The prevalence of any fractures or osteoporosis, and bone mineral density (BMD) were extracted and analyzed using risk ratios and standardized mean difference (SMD). A random effects model was applied. RESULTS: In total, 15 studies were identified and analyzed. Overall, ALD demonstrated a RR of 1.944 (95%CI: 1.354-2.791) for the development of bone fractures. However, ALD showed a RR of 0.849 (95%CI: 0.523-1.380) for the development of osteoporosis. BMD was not significantly different between the ALD and control groups, although there was a trend toward lower BMD in patients with ALD (SMD in femur-BMD: -0.172, 95%CI: -0.453-0.110; SMD in spine-BMD: -0.169, 95%CI: -0.476-0.138). Sensitivity analyses showed consistent results. CONCLUSION: Current publications indicate significant associations between bone fractures and ALD, independent of BMD or the presence of osteoporosis. PMID:25852292
Supporting skill acquisition in cochlear implant surgery through virtual reality simulation.
Copson, Bridget; Wijewickrema, Sudanthi; Zhou, Yun; Piromchai, Patorn; Briggs, Robert; Bailey, James; Kennedy, Gregor; O'Leary, Stephen
2017-03-01
To evaluate the effectiveness of a virtual reality (VR) temporal bone simulator in training cochlear implant surgery. We compared the performance of 12 otolaryngology registrars conducting simulated cochlear implant surgery before (pre-test) and after (post-tests) receiving training on a VR temporal bone surgery simulator with automated performance feedback. The post-test tasks were two temporal bones, one that was a mirror image of the temporal bone used as a pre-test and the other, a novel temporal bone. Participant performances were assessed by an otologist with a validated cochlear implant competency assessment tool. Structural damage was derived from an automatically generated simulator metric and compared between time points. Wilcoxon signed-rank test showed that there was a significant improvement with a large effect size in the total performance scores between the pre-test (PT) and both the first and second post-tests (PT1, PT2) (PT-PT1: P = 0.007, r = 0.78, PT-PT2: P = 0.005, r = 0.82). The results of the study indicate that VR simulation with automated guidance can effectively be used to train surgeons in training complex temporal bone surgeries such as cochlear implantation.
Sbordone, Ludovico; Levin, Liran; Guidetti, Franco; Sbordone, Carolina; Glikman, Ari; Schwartz-Arad, Devorah
2011-05-01
A re-pneumatization phenomenon was recorded in sinuses grafted with different materials. The specific aims of this paper were to assess the dental implant survival rate and the behavior of marginal and apical bone remodeling around dental implants placed following sinus augmentation. A retrospective study was conducted on consecutive patients treated in two surgical centers. Different surgical techniques were adopted for sinus augmentation: simultaneous or delayed dental implant insertion with bovine bone-material augmentation or autologous bone grafting (chin and iliac crest). Survival rates were recorded for the overall number of implants (patients of group A). Apical and marginal bone levels (ABL and MBL, respectively) were radiographically measured, and statistical analysis was performed in implants of a subgroup of patients (group B). A total of 282 dental implants were positioned. Recorded cumulative survival rates (CSRs) were 95.6% and 100% for autogenous and bovine bone material, respectively, while CSRs at 2-year follow-up for immediate and delayed procedures were 99.3% and 96.5%. For the subgroup B, 57 sinus augmentation procedures were performed in 39 patients, with the positioning of 154 implants. Generally, the apical- and marginal-bone resorption of the bovine bone-material group was less than that of the autogenous group. The differences between the ABL values of the bovine bone-material and iliac-crest groups were statistically significant at 1 year, whereas this significance disappeared at the 2-year follow-up; tests showed that a statistical difference was recorded in the bovine bone-material group between the 1- and 2-year follow-ups. With regard to MBL comparisons between simultaneous and delayed implantation, the differences maintained their significance at the 2-year follow-up also. Differences regarding apical bone alteration between autogenous bone from the iliac crest and bovine bone material at the 1- and 2-year follow-ups, as well as in the bovine bone-material group between the 1- and 2-year follow-ups, attested to slower but more prolonged physiologic bone remodeling in the bovine-graft-material group than in the autogenous-bone group. The MBL analysis showed that remodeling in the delayed implant group demonstrated a greater resorption in the cervical portion than was seen in the simultaneous implant group. © 2010 John Wiley & Sons A/S.
Review paper: DNA delivery strategies to promote periodontal regeneration.
Elangovan, Satheesh; Karimbux, Nadeem
2010-07-01
Periodontal diseases are caused by bacteria with an inflammatory component that result in the loss of bone and soft tissue around the neck of the teeth. Recent therapies allow clinicians to regenerate some of the lost structures of the periodontium. Regeneration of these lost supporting structures is a highly orchestrated process, involving various cellular and molecular players, leading to the complete restoration of the periodontium (the tooth-supporting apparatus). The introduction of growth factors has positively influenced the clinical outcome of the existing regenerative procedures but the supra-physiological doses and the high cost associated with these growth factors can be drawbacks. Gene therapy may offer some interesting advantages to current therapies. In the field of periodontology, several studies have been conducted to explore the efficacy of delivering the DNA of key growth factors using viral vectors in both periodontal and peri-implant bone regeneration. Relatively few studies have explored the application of nonviral gene therapy in periodontal regeneration. This article is aimed at reviewing the studies conducted so far using viral and nonviral gene delivery approaches to achieve periodontal and peri-implant bone regeneration.
Comparison of Fluoroplastic Causse Loop Piston and Titanium Soft-Clip in Stapedotomy
Faramarzi, Mohammad; Gilanifar, Nafiseh; Roosta, Sareh
2017-01-01
Introduction: Different types of prosthesis are available for stapes replacement. Because there has been no published report on the efficacy of the titanium soft-clip vs the fluoroplastic Causse loop Teflon piston, we compared short-term hearing results of both types of prosthesis in patients who underwent stapedotomy due to otosclerosis. Materials and Methods: A total of 57 ears were included in the soft-clip group and 63 ears were included in the Teflon-piston group. Pre-operative and post-operative air conduction, bone conduction, air-bone gaps, speech discrimination score, and speech reception thresholds were analyzed. Results: Post-operative speech reception threshold gains did not differ significantly between the two groups (P=0.919). However, better post-operative air-bone gap improvement at low frequencies was observed in the Teflon-piston group over the short-term follow-up (at frequencies of 0.25 and 0.50 kHz; P=0.007 and P=0.001, respectively). Conclusion: Similar post-operative hearing results were observed in the two groups in the short-term. PMID:28229059
Bone Accumulation by Leopards in the Late Pleistocene in the Moncayo Massif (Zaragoza, NE Spain)
Sauqué, Víctor; Rabal-Garcés, Raquel; Sola-Almagro, Cristina; Cuenca-Bescós, Gloria
2014-01-01
Eating habits of Panthera pardus are well known. When there are caves in its territory, prey accumulates inside them. This helps to prevent its kill from being stolen by other predators like hyenas. Although the leopard is an accumulator of bones in caves, few studies have been conducted on existing lairs. There are, however, examples of fossil vertebrate sites whose main collecting agent is the leopard. During the Late Pleistocene, the leopard was a common carnivore in European faunal associations. Here we present a new locality of Quaternary mammals with a scarce human presence, the cave of Los Rincones (province of Zaragoza, Spain); we show the leopard to be the main accumulator of the bones in the cave, while there are no interactions between humans and leopards. For this purpose, a taphonomic analysis is performed on different bone-layers of the cave. PMID:24642667
The effect of the EU tissues and cells directive on bone banking in Denmark: a case study.
Birk, Sofie Okkels; Hoeyer, Klaus
2010-08-01
As a result of the EU Tissues and Cells Directive (2004/23/EC), therapeutic tissue banking is currently being restructured throughout Europe. The stated objectives are to enhance a safe and stable supply of bone and tissue in Europe and to facilitate internal exchange. We conducted an interview study to explore the effect of the Directive on Danish bone banks in terms of (1) organizational restructuring, (2) supply and range of exchange, (3) economic costs. We found that the Directive stimulated extensive re-organization of bone banks with a substantial adjoining workload; that it is doubtful whether it will increase supply and range of exchange; and that the transposition of the Directive is associated with considerable extra cost. Additionally, we found that elements in the documentation of safety were fabricated by surgeons to avoid what was seen as unnecessary questioning of potential donors.
NASA Astrophysics Data System (ADS)
Emre, G.; Akkus, A.; Karamış, M. B.
2018-01-01
In this study mechanichal and tribological properties of keratin, bone ash and hydroxylapatite by adding to PMMA ( known as the main prosthesis material) were investigated. Hydroxylapatite, bone ash, and keratin materials were added as PMMA in to the content of PMMA, in the proportions of %1, %3 and %5, respectively. The resulting mixtures were put into the molds and solidified in order to obtain samples to be used in the wear experiments. Each experiment was conducted by preparing three experimental samples. The wear data were compared according to the average values of the experimental samples. In the wear test, the results were also evaluated according to the average values obtained from each group and the results of the control group. It was observed that, the wear resistance of the PMMA including 3%, 5% bone ash and PMMA including 5% keratin flour were higher than the values of the control group.
Development, validation and characterization of a novel mouse model of Adynamic Bone Disease (ABD).
Ng, Adeline H; Willett, Thomas L; Alman, Benjamin A; Grynpas, Marc D
2014-11-01
The etiology of Adynamic Bone Disease (ABD) is poorly understood but the hallmark of ABD is a lack of bone turnover. ABD occurs in renal osteodystrophy (ROD) and is suspected to occur in elderly patients on long-term anti-resorptive therapy. A major clinical concern of ABD is diminished bone quality and an increased fracture risk. To our knowledge, experimental animal models for ABD other than ROD-ABD have not been developed or studied. The objectives of this study were to develop a mouse model of ABD without the complications of renal ablation, and to characterize changes in bone quality in ABD relative to controls. To re-create the adynamic bone condition, 4-month old female Col2.3Δtk mice were treated with ganciclovir to specifically ablate osteoblasts, and pamidronate was used to inhibit osteoclastic resorption. Four groups of animals were used to characterize bone quality in ABD: Normal bone controls, No Formation controls, No Resorption controls, and an Adynamic group. After a 6-week treatment period, the animals were sacrificed and the bones were harvested for analyses. Bone quality assessments were conducted using established techniques including bone histology, quantitative backscattered electron imaging (qBEI), dual energy X-ray absorptiometry (DXA), microcomputed tomography (microCT), and biomechanical testing. Histomorphometry confirmed osteoblast-related hallmarks of ABD in our mouse model. Bone formation was near complete suppression in the No Formation and Adynamic specimens. Inhibition of bone resorption in the Adynamic group was confirmed by tartrate-resistant acid phosphatase (TRAP) stain. Normal bone mineral density and architecture were maintained in the Adynamic group, whereas the No Formation group showed a reduction in bone mineral content and trabecular thickness relative to the Adynamic group. As expected, the No Formation group had a more hypomineralized profile and the Adynamic group had a higher mean mineralization profile that is similar to suppressed bone turnover in human. This data confirms successful replication of the adynamic bone condition in a mouse without the complication of renal ablation. Our approach is the first model of ABD that uses pharmacological manipulation in a transgenic mouse to mimic the bone cellular dynamics observed in the human ABD condition. We plan to use our mouse model to investigate the adynamic bone condition in aging and to study changes to bone quality and fracture risk as a consequence of over-suppressed bone turnover. Copyright © 2014 Elsevier Inc. All rights reserved.
Li, Cheng; Jin, Dakai; Chen, Cheng; Letuchy, Elena M.; Janz, Kathleen F.; Burns, Trudy L.; Torner, James C; Levy, Steven M.; Saha, Punam K
2015-01-01
Purpose: Cortical bone supports and protects human skeletal functions and plays an important role in determining bone strength and fracture risk. Cortical bone segmentation at a peripheral site using multirow-detector CT (MD-CT) imaging is useful for in vivo assessment of bone strength and fracture risk. Major challenges for the task emerge from limited spatial resolution, low signal-to-noise ratio, presence of cortical pores, and structural complexity over the transition between trabecular and cortical bones. An automated algorithm for cortical bone segmentation at the distal tibia from in vivo MD-CT imaging is presented and its performance and application are examined. Methods: The algorithm is completed in two major steps—(1) bone filling, alignment, and region-of-interest computation and (2) segmentation of cortical bone. After the first step, the following sequence of tasks is performed to accomplish cortical bone segmentation—(1) detection of marrow space and possible pores, (2) computation of cortical bone thickness, detection of recession points, and confirmation and filling of true pores, and (3) detection of endosteal boundary and delineation of cortical bone. Effective generalizations of several digital topologic and geometric techniques are introduced and a fully automated algorithm is presented for cortical bone segmentation. Results: An accuracy of 95.1% in terms of volume of agreement with manual outlining of cortical bone was observed in human MD-CT scans, while an accuracy of 88.5% was achieved when compared with manual outlining on postregistered high resolution micro-CT imaging. An intraclass correlation coefficient of 0.98 was obtained in cadaveric repeat scans. A pilot study was conducted to describe gender differences in cortical bone properties. This study involved 51 female and 46 male participants (age: 19–20 yr) from the Iowa Bone Development Study. Results from this pilot study suggest that, on average after adjustment for height and weight differences, males have thicker cortex (mean difference 0.33 mm and effect size 0.92 at the anterior region) with lower bone mineral density (mean difference −28.73 mg/cm3 and effect size 1.35 at the posterior region) as compared to females. Conclusions: The algorithm presented is suitable for fully automated segmentation of cortical bone in MD-CT imaging of the distal tibia with high accuracy and reproducibility. Analysis of data from a pilot study demonstrated that the cortical bone indices allow quantification of gender differences in cortical bone from MD-CT imaging. Application to larger population groups, including those with compromised bone, is needed. PMID:26233184
Iryanov, Y M; Kiryanov, N A
2015-01-01
Non-drug correction of reparative bone tissue regeneration in different pathological states - one of the most actual problems of modern medicine. Our aim was to conduct morphological analysis of the influence of electromagnetic radiation of ultra-high frequency and low intensity on reparative osteogenesis and angiogenesis in fracture treatment under transosseous osteosynthesis. A controlled nonrandomized study was carried out. In the experiment conducted on rats we modeled tibial fracture with reposition and fixation of the bone fragments both in control and experimental groups. In the animals of the experimental group the fracture zone was exposed to low intensity electromagnetic radiation of ultra-high frequency. Exposure simulation was performed in the control group. The operated bones were examined using radiography, light and electronic microscopy, X-ray electronic probe microanalysis. It has been established that electromagnetic radiation of ultra-high frequency sessions in fracture treatment stimulate secretory activity and degranulation of mast cells, produce microcirculatory bed vascular permeability increase, endotheliocyte migration phenotype expression, provide endovascular endothelial outgrowth formation, activate reparative osteogenesis and angiogenesis while fracture reparation becomes the one of the primary type. The full periosteal, intermediary and intraosteal bone union was defined in 28 days. Among the therapeutic benefits of electromagnetic radiation of ultra-high frequency in fracture treatment we can detect mast cell secretorv activity stimulation and endovascular anziozenesis activation.
Turner, Justine; Pellerin, Genevieve; Mager, Diana
2009-11-01
: Given dietary gluten exposure, growing children with celiac disease may experience malabsorption of nutrients, negatively affecting bone health. The purpose of this study was to determine the prevalence of low bone mass in children with celiac disease, according to the presence of symptoms at diagnosis. : A retrospective chart review of the Stollery Children's Hospital Celiac Clinic charts (April 1989-September 2007) was conducted. Bone mineral density (BMD) of the spine was measured using dual energy x-ray absorptiometry. Demographics, symptoms at presentation, and anthropometric and biochemical data relevant to bone health were recorded. : Seventy-four children (9.6 +/- 3.7 years; range 3.3-16.0 years) were included. Lumbar BMD z scores more than or equal to -1 were observed in 58 cases (65%), z scores below -1 but above -2 were observed in 14 cases (19%) and z scores less than or equal to -2 were observed in 12 cases (16%). There was no significant difference in mean lumbar BMD z scores between symptomatic and asymptomatic children (P = 0.34). When adjusted for bone age and bone surface area, BMD lumbar z score was inversely correlated with age at diagnosis (P < 0.05). : An equivalent reduction in spine bone mass was observed in children with celiac disease at diagnosis regardless of the presence of symptoms. Delayed diagnosis of children with celiac disease may increase the risk of adult osteoporosis. Appropriate screening of children at risk of celiac disease for the purpose of early diagnosis, as well as routine evaluation of bone mineral density in such children, are important to prevent long-term complications associated with poor bone health.
Hygum, Katrine; Starup-Linde, Jakob; Harsløf, Torben; Vestergaard, Peter; Langdahl, Bente L
2017-03-01
To investigate the differences in bone turnover between diabetic patients and controls. A systematic review and meta-analysis. A literature search was conducted using the databases Medline at PubMed and EMBASE. The free text search terms 'diabetes mellitus' and 'bone turnover', 'sclerostin', 'RANKL', 'osteoprotegerin', 'tartrate-resistant acid' and 'TRAP' were used. Studies were eligible if they investigated bone turnover markers in patients with diabetes compared with controls. Data were extracted by two reviewers. A total of 2881 papers were identified of which 66 studies were included. Serum levels of the bone resorption marker C-terminal cross-linked telopeptide (-0.10 ng/mL (-0.12, -0.08)) and the bone formation markers osteocalcin (-2.51 ng/mL (-3.01, -2.01)) and procollagen type 1 amino terminal propeptide (-10.80 ng/mL (-12.83, -8.77)) were all lower in patients with diabetes compared with controls. Furthermore, s-tartrate-resistant acid phosphatase was decreased in patients with type 2 diabetes (-0.31 U/L (-0.56, -0.05)) compared with controls. S-sclerostin was significantly higher in patients with type 2 diabetes (14.92 pmol/L (3.12, 26.72)) and patients with type 1 diabetes (3.24 pmol/L (1.52, 4.96)) compared with controls. Also, s-osteoprotegerin was increased among patients with diabetes compared with controls (2.67 pmol/L (0.21, 5.14)). Markers of both bone formation and bone resorption are decreased in patients with diabetes. This suggests that diabetes mellitus is a state of low bone turnover, which in turn may lead to more fragile bone. Altered levels of sclerostin and osteoprotegerin may be responsible for this. © 2017 European Society of Endocrinology.
NASA Technical Reports Server (NTRS)
Werner, Christopher R.; Mulugeta, Lealem; Myers, J. G.; Pennline, J. A.
2015-01-01
NASA's Digital Astronaut Project (DAP) has developed a bone remodeling model that has been validated for predicting volumetric bone mineral density (vBMD) changes of trabecular and cortical bone in the absence of mechanical loading. The model was recently updated to include skeletal loading from exercise and free living activities to maintain healthy bone using a new daily load stimulus (DLS). This new formula was developed based on an extensive review of existing DLS formulas, as discussed in the abstract by Pennline et al. The DLS formula incorporated into the bone remodeling model utilizes strains and stress calculated from finite element model (FEM) of the bone region of interest. The proximal femur was selected for the initial application of the DLS formula, with a specific focus on the femoral neck. METHODS: The FEM was generated from CAD geometry of a femur using de-identified CT data. The femur was meshed using linear tetrahedral elements Figure (1) with higher mesh densities in the femoral neck region, which is the primary region of interest for the initial application of the DLS formula in concert with the DAP bone remodeling model. Nodal loads were applied to the femoral head and the greater trochanter and the base of the femur was held fixed. An L2 norm study was conducted to reduce the length of the femoral shaft without significantly impacting the stresses in the femoral neck. The material properties of the FEM of the proximal femur were separated between cortical and trabecular regions to work with the bone remodeling model. Determining the elements with cortical material properties in the FEM was based off of publicly available CT hip scans [4] that were segmented, cleaned, and overlaid onto the FEM.
Sinibaldi, R; Conti, A; Sinjari, B; Spadone, S; Pecci, R; Palombo, M; Komlev, V S; Ortore, M G; Tromba, G; Capuani, S; Guidotti, R; De Luca, F; Caputi, S; Traini, T; Della Penna, S
2018-03-01
Bone repair/regeneration is usually investigated through X-ray computed microtomography (μCT) supported by histology of extracted samples, to analyse biomaterial structure and new bone formation processes. Magnetic resonance imaging (μMRI) shows a richer tissue contrast than μCT, despite at lower resolution, and could be combined with μCT in the perspective of conducting non-destructive 3D investigations of bone. A pipeline designed to combine μMRI and μCT images of bone samples is here described and applied on samples of extracted human jawbone core following bone graft. We optimized the coregistration procedure between μCT and μMRI images to avoid bias due to the different resolutions and contrasts. Furthermore, we used an Adaptive Multivariate Clustering, grouping homologous voxels in the coregistered images, to visualize different tissue types within a fused 3D metastructure. The tissue grouping matched the 2D histology applied only on 1 slice, thus extending the histology labelling in 3D. Specifically, in all samples, we could separate and map 2 types of regenerated bone, calcified tissue, soft tissues, and/or fat and marrow space. Remarkably, μMRI and μCT alone were not able to separate the 2 types of regenerated bone. Finally, we computed volumes of each tissue in the 3D metastructures, which might be exploited by quantitative simulation. The 3D metastructure obtained through our pipeline represents a first step to bridge the gap between the quality of information obtained from 2D optical microscopy and the 3D mapping of the bone tissue heterogeneity and could allow researchers and clinicians to non-destructively characterize and follow-up bone regeneration. Copyright © 2017 John Wiley & Sons, Ltd.
Bone-Protective Effects of Dried Plum in Postmenopausal Women: Efficacy and Possible Mechanisms
Arjmandi, Bahram H.; Johnson, Sarah A.; Pourafshar, Shirin; Navaei, Negin; George, Kelli S.; Hooshmand, Shirin; Chai, Sheau C.; Akhavan, Neda S.
2017-01-01
Osteoporosis is an age-related chronic disease characterized by a loss of bone mass and quality, and is associated with an increased risk of fragility fractures. Postmenopausal women are at the greatest risk of developing osteoporosis due to the cessation in ovarian hormone production, which causes accelerated bone loss. As the demographic shifts to a more aged population, a growing number of postmenopausal women will be afflicted with osteoporosis. Certain lifestyle factors, including nutrition and exercise, are known to reduce the risk of developing osteoporosis and therefore play an important role in bone health. In terms of nutrition, accumulating evidence suggests that dried plum (Prunus domestica L.) is potentially an efficacious intervention for preventing and reversing bone mass and structural loss in an ovariectomized rat model of osteoporosis, as well as in osteopenic postmenopausal women. Here, we provide evidence supporting the efficacy of dried plum in preventing and reversing bone loss associated with ovarian hormone deficiency in rodent models and in humans. We end with the results of a recent follow-up study demonstrating that postmenopausal women who previously consumed 100 g dried plum per day during our one-year clinical trial conducted five years earlier retained bone mineral density to a greater extent than those receiving a comparative control. Additionally, we highlight the possible mechanisms of action by which bioactive compounds in dried plum exert bone-protective effects. Overall, the findings of our studies and others strongly suggest that dried plum in its whole form is a promising and efficacious functional food therapy for preventing bone loss in postmenopausal women, with the potential for long-lasting bone-protective effects. PMID:28505102
Hansen, Morten S S; Tencerova, Michaela; Frølich, Jacob; Kassem, Moustapha; Frost, Morten
2018-01-01
The relationship between gut and skeleton is increasingly recognized as part of the integrated physiology of the whole organism. The incretin hormones gastric inhibitory polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are secreted from the intestine in response to nutrient intake and exhibit several physiological functions including regulation of islet hormone secretion and glucose levels. A number of GLP-1 receptor agonists (GLP-1RAs) are currently used in treatment of type 2 diabetes and obesity. However, GIP and GLP-1 cognate receptors are widely expressed suggesting that incretin hormones mediate effects beyond control of glucose homeostasis, and reports on associations between incretin hormones and bone metabolism have emerged. The aim of this MiniReview was to provide an overview of current knowledge regarding the in vivo and in vitro effects of GIP and GLP-1 on bone metabolism. We identified a total of 30 pre-clinical and clinical investigations of the effects of GIP, GLP-1 and GLP-1RAs on bone turnover markers, bone mineral density (BMD), bone microarchitecture and fracture risk. Studies conducted in cell cultures and rodents demonstrated that GIP and GLP-1 play a role in regulating skeletal homeostasis, with pre-clinical data suggesting that GIP inhibits bone resorption whereas GLP-1 may promote bone formation and enhance bone material properties. These effects are not corroborated by clinical studies. While there is evidence of effects of GIP and GLP-1 on bone metabolism in pre-clinical investigations, clinical trials are needed to clarify whether similar effects are present and clinically relevant in humans. © 2017 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).
Lin, Dasheng; Luo, Deqing; Lian, Kejian; Zhai, Wenliang; Ding, Zhenqi
2016-01-01
This study was conducted to determine whether in situ implantation of a dropped traumatic segmental bone fragment is safe and whether the authors' method would reduce the incidence of infectious and related complications. The authors retrospectively reviewed 16 patients with open fractures, including 11 with Gustilo-Anderson type IIIA fractures and 5 with Gustilo-Anderson type IIIB fractures who had a dropped traumatic segmental bone fragment between January 2002 and January 2012. Mean patient age was 35.4 years (range, 19-47 years). There were 10 femurs and 6 tibias. Average postoperative follow-up was 26.8 months (range, 12-60 months). The dropped traumatic segmental bone fragments were cleaned with 3% hydrogen peroxide, placed in separate sterile cups, and soaked in 1% iodophor for 30 minutes. Initial treatment included surgical debridement, wound irrigation, in situ implantation of the dropped traumatic segmental bone fragment, and temporary external fixation. Approximately 4 to 8 weeks later, after successful reconstruction of the soft tissue envelope, minimally invasive plate osteosynthesis was performed. Mean duration of treatment was 8 weeks (range, 6-14 weeks). All patients had fracture union at final follow-up. Mean healing time was 21.8 weeks (range, 14-48 weeks). One patient did not achieve primary union and required bone grafting. One patient with a Gustilo-Anderson type IIIB fracture had deep infection and removal of the dropped traumatic segmental bone fragment and bone grafting. According to the Klemm and Börner classification, 11 patients had excellent results, 3 had good results, and 2 had poor results. With adequate soft tissue coverage, this method was acceptable for the management of open fractures with bone defects. Copyright 2016, SLACK Incorporated.
LEE, CHANYOUNG; RICHTSMEIER, JOAN T.; KRAFT, REUBEN H.
2017-01-01
Bones of the murine cranial vault are formed by differentiation of mesenchymal cells into osteoblasts, a process that is primarily understood to be controlled by a cascade of reactions between extracellular molecules and cells. We assume that the process can be modeled using Turing’s reaction-diffusion equations, a mathematical model describing the pattern formation controlled by two interacting molecules (activator and inhibitor). In addition to the processes modeled by reaction-diffusion equations, we hypothesize that mechanical stimuli of the cells due to growth of the underlying brain contribute significantly to the process of cell differentiation in cranial vault development. Structural analysis of the surface of the brain was conducted to explore the effects of the mechanical strain on bone formation. We propose a mechanobiological model for the formation of cranial vault bones by coupling the reaction-diffusion model with structural mechanics. The mathematical formulation was solved using the finite volume method. The computational domain and model parameters are determined using a large collection of experimental data that provide precise three dimensional (3D) measures of murine cranial geometry and cranial vault bone formation for specific embryonic time points. The results of this study suggest that mechanical strain contributes information to specific aspects of bone formation. Our mechanobiological model predicts some key features of cranial vault bone formation that were verified by experimental observations including the relative location of ossification centers of individual vault bones, the pattern of cranial vault bone growth over time, and the position of cranial vault sutures. PMID:29225392
Barr, Andrew J; Campbell, T Mark; Hopkinson, Devan; Kingsbury, Sarah R; Bowes, Mike A; Conaghan, Philip G
2015-08-25
Bone is an integral part of the osteoarthritis (OA) process. We conducted a systematic literature review in order to understand the relationship between non-conventional radiographic imaging of subchondral bone, pain, structural pathology and joint replacement in peripheral joint OA. A search of the Medline, EMBASE and Cochrane library databases was performed for original articles reporting association between non-conventional radiographic imaging-assessed subchondral bone pathologies and joint replacement, pain or structural progression in knee, hip, hand, ankle and foot OA. Each association was qualitatively characterised by a synthesis of the data from each analysis based upon study design, adequacy of covariate adjustment and quality scoring. In total 2456 abstracts were screened and 139 papers were included (70 cross-sectional, 71 longitudinal analyses; 116 knee, 15 hip, six hand, two ankle and involved 113 MRI, eight DXA, four CT, eight scintigraphic and eight 2D shape analyses). BMLs, osteophytes and bone shape were independently associated with structural progression or joint replacement. BMLs and bone shape were independently associated with longitudinal change in pain and incident frequent knee pain respectively. Subchondral bone features have independent associations with structural progression, pain and joint replacement in peripheral OA in the hip and hand but especially in the knee. For peripheral OA sites other than the knee, there are fewer associations and independent associations of bone pathologies with these important OA outcomes which may reflect fewer studies; for example the foot and ankle were poorly studied. Subchondral OA bone appears to be a relevant therapeutic target. PROSPERO registration number: CRD 42013005009.
NASA Astrophysics Data System (ADS)
Fara, A. N. K. A.; Abdullah, H. Z.
2015-07-01
Hydroxyapatite, (HAp), Ca10(PO4)6(OH)2, is recognised as a biomaterial that is widely used for bone implant due to its chemical and structural similarity to the mineral components in human bone and enamel. The elements of HAp are primarily composed of calcium and phosphorus molar ratio of calcium to phosphorous is 1.67 capable to promote bone in-growth into prosthetic implant. Enormous amounts of by-product waste produced from fish factories generated an undesirable environmental impact. Thus, this study was conducted to obtain natural biological HAp from different types of tilapia fish bones and scales from fishery waste. Therefore, fish bones and scales can be as cheap source to produce biological HAp for medical applications. For this purpose, fish bones and scales of tilapia fish were boiled at 100°C to remove adhering meat and other impurities. Later, fish bones and scales were separated into several groups and subjected to different calcination temperatures of 800° C and 900° C for 3h respectively. Afterward, all calcined samples were crushed to form a fine powder. The XRD result revealed the presence of derived Hapfrom the samples powder and were identical with standard Hap. Thermo Gravimetric Analysis was carried out to show the thermal stability of the HAp powder from different types of fish bones and scales. SEM results show porous structure appeared in calcined samples compared to raw samples. The findings are the promising alternative to produce calcium and phosphorus from fishery wastes that beneficial to medical applications.
Le Henaff, Carole; Faria Da Cunha, Mélanie; Hatton, Aurélie; Tondelier, Danielle; Marty, Caroline; Collet, Corinne; Zarka, Mylène; Geoffroy, Valérie; Zatloukal, Kurt; Laplantine, Emmanuel; Edelman, Aleksander; Sermet-Gaudelus, Isabelle; Marie, Pierre J
2016-04-01
Patients with cystic fibrosis (CF) display low bone mass and alterations in bone formation. Mice carrying the F508del genetic mutation in the cystic fibrosis conductance regulator (Cftr) gene display reduced bone formation and decreased bone mass. However, the underlying molecular mechanisms leading to these skeletal defects are unknown, which precludes the development of an efficient anti-osteoporotic therapeutic strategy. Here we report a key role for the intermediate filament protein keratin 8 (Krt8), in the osteoblast dysfunctions in F508del-Cftr mice. We found that murine and human osteoblasts express Cftr and Krt8 at low levels. Genetic studies showed that Krt8 deletion (Krt8(-/-)) in F508del-Cftr mice increased the levels of circulating markers of bone formation, corrected the expression of osteoblast phenotypic genes, promoted trabecular bone formation and improved bone mass and microarchitecture. Mechanistically, Krt8 deletion in F508del-Cftr mice corrected overactive NF-κB signaling and decreased Wnt-β-catenin signaling induced by the F508del-Cftr mutation in osteoblasts. In vitro, treatment with compound 407, which specifically disrupts the Krt8-F508del-Cftr interaction in epithelial cells, corrected the abnormal NF-κB and Wnt-β-catenin signaling and the altered phenotypic gene expression in F508del-Cftr osteoblasts. In vivo, short-term treatment with 407 corrected the altered Wnt-β-catenin signaling and bone formation in F508del-Cftr mice. Collectively, the results show that genetic or pharmacologic targeting of Krt8 leads to correction of osteoblast dysfunctions, altered bone formation and osteopenia in F508del-Cftr mice, providing a therapeutic strategy targeting the Krt8-F508del-CFTR interaction to correct the abnormal bone formation and bone loss in cystic fibrosis. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Is Animal Age a Factor In the Response of Bone to Spaceflight?
NASA Technical Reports Server (NTRS)
Morey-Holton, E. R.; Garetto, L. P.; Doty, S. B.; Halloran, B. P.; Turner, R. T.; Dalton, Bonnie (Technical Monitor)
2002-01-01
The rodent bone response to spaceflight may be influenced by a multitude of actors including flight duration, strain, and housing. Review of bone formation rates during spaceflight suggests that age may also play a role in the response. Weanling rats show fewer bone changes than older rats. To determine if the long bones of weanling rats were insensitive to weight-bearing, a hindlimb unloading experiment was conducted simultaneously with a 9d shuttle flight in 34d old group-housed male rats. All animals were injected with bone markers 7d and 1d before flight and euthanized at landing, 24hr, and 72hr following recovery. If no differences in body weight, bone length, or bone formation at the tibiofibular junction were noted at the different time points, data were combined for each group. No significant differences in body weight were found at any time period among the groups. The humerus, tibia, and femur elongated significantly during the flight period with no difference in lengths between groups at the end of the flight period. The group-housed flight rats showed no change in cortical bone formation rate compared to preflight values, flight controls, or vivarium controls. However, the hindlimb unloading group showed a significant 30% decrease in bone formation rate compared to all other groups. Individually-housed 38d old animals flown for 14d showed approx. 10% suppression of cortical growth. We speculate that the mechanical threshold required for cross-sectional bone growth is reached in group-house weanling rats during spaceflight, perhaps, through physical interactions, and that the weanling animals are sensitive to loading. However, the threshold is not fully reached in either singly-housed flight or hindlimb unloaded weanling rats. Older singly-housed flight animals appear to show equal or greater bone changes compared to hindlimb unloaded rats. We conclude that age, flight duration, strain, and housing have important roles in rodent skeletal responses to spaceflight.
NASA Astrophysics Data System (ADS)
Akkus, Ozan
This dissertation investigates the relation of microdamage to fracture and material property degradation of human cortical bone tissue. Fracture resistance and fatigue crack growth of microcracks were examined experimentally and material property degradation was examined through theoretical modeling. To investigate the contribution of microdamage to static fracture resistance, fracture toughness tests were conducted in the transverse and longitudinal directions to the osteonal orientation of normal bone tissue. Damage accumulation was monitored by acoustic emission during testing and was spatially observed by histological observation following testing. The results suggested that the propagation of the main crack involved weakening of the tissue by diffuse damage at the fracture plane and by formation of linear microcracks away from the fracture plane for the transverse specimens. For the longitudinal specimens, growth of the main crack occurred in the form of separations at lamellar interfaces. Acoustic emission results supported the histological observations. To investigate the contribution of ultrastructure to static fracture resistance, fracture toughness tests were conducted after altering the collagen phase of the bone tissue by gamma radiation. A significant decrease in the fracture toughness, Work-to-Fracture and the amount damage was observed due to irradiation in both crack growth directions. For cortical bone irradiated at 27.5kGy, fracture toughness is reduced due to the inhibition of damage formation at and near the crack tip. Microcrack fatigue crack growth and arrest were investigated through observations of surface cracks during cyclic loading. At the applied cyclic stresses, the microcracks propagated and arrested in less than 10,000 cycles. In addition, the microcracks were observed not to grow beyond a length of 150mum and a DeltaK of 0.5MNm-3/2, supporting a microstructural barrier concept. Finally, the contribution of linear microcracks to material property degradation was examined by developing a theoretical micromechanical damage model. The model was compared to experimentally induced damage in bone tissue. The percent contribution of linear microcracks to the total degradation was predicted to be less than 5%, indicating that diffuse damage or an unidentified form of damage is primarily responsible for material property degradation in human cortical bone tissue.
Brown Adipose Tissue and Its Relationship to Bone Structure in Pediatric Patients
Ponrartana, Skorn; Aggabao, Patricia C.; Hu, Houchun H.; Aldrovandi, Grace M.; Wren, Tishya A. L.
2012-01-01
Context: Emerging evidence suggests a possible link between brown adipose tissue (BAT) and bone metabolism. Objective: The objective of this study was to examine the relationships between BAT and bone cross-sectional dimensions in children and adolescents. Design: This was a cross-sectional study. Setting: The study was conducted at a pediatric referral center. Patients: Patients included 40 children and teenagers (21 males and 19 females) successfully treated for pediatric malignancies. Interventions: There were no interventions. Main Outcome Measures: The volume of BAT was determined by fluorodeoxyglucose-positron emission tomography/computed tomography. Measures of the cross-sectional area and cortical bone area and measures of thigh musculature and sc fat were determined at the midshaft of the femur. Results: Regardless of sex, there were significant correlations seen between BAT volume and the cross-sectional dimensions of the bone (r values between 0.68 and 0.77; all P ≤ 0 .001). Multiple regression analyses indicated that the volume of BAT predicted femoral cross-sectional area and cortical bone area, even after accounting for height, weight, and gender. The addition of muscle as an independent variable increased the predictive power of the model but significantly decreased the contribution of BAT. Conclusions: The volume of BAT is positively associated with the amount of bone and the cross-sectional size of the femur in children and adolescents. This relation between BAT and bone structure could, at least in part, be mediated by muscle. PMID:22593587
Albert, Réka; Vásárhelyi, Gábor; Bodó, Gábor; Kenyeres, Annamária; Wolf, Ervin; Papp, Tamás; Terdik, Tünde; Módis, László; Felszeghy, Szabolcs
2012-09-01
One of the most promising applications for the restoration of small or moderately sized focal articular lesions is mosaicplasty (MP). Although recurrent hemarthrosis is a rare complication after MP, recently, various strategies have been designed to find an effective filling material to prevent postoperative bleeding from the donor site. The porous biodegradable polymer Polyactive (PA; a polyethylene glycol terephthalate - polybutylene terephthalate copolymer) represents a promising solution in this respect. A histological evaluation of the longterm PA-filled donor sites obtained from 10 experimental horses was performed. In this study, attention was primarily focused on the bone tissue developed in the plug. A computer-assisted image analysis and quantitative polarized light microscopic measurements of decalcified, longitudinally sectioned, dimethylmethylene blue (DMMB)- and picrosirius red (PS) stained sections revealed that the coverage area of the bone trabecules in the PA-filled donor tunnels was substantially (25%) enlarged compared to the neighboring cancellous bone. For this quantification, identical ROIs (regions of interest) were used and compared. The birefringence retardation values were also measured with a polarized light microscope using monochromatic light. Identical retardation values could be recorded from the bone trabeculae developed in the PA and in the neighboring bone, which indicates that the collagen orientation pattern does not differ significantly among these bone trabecules. Based on our new data, we speculate that PA promotes bone formation, and some of the currently identified degradation products of PA may enhance osteo-conduction and osteoinduction inside the donor canal.
Automatic bone segmentation in knee MR images using a coarse-to-fine strategy
NASA Astrophysics Data System (ADS)
Park, Sang Hyun; Lee, Soochahn; Yun, Il Dong; Lee, Sang Uk
2012-02-01
Segmentation of bone and cartilage from a three dimensional knee magnetic resonance (MR) image is a crucial element in monitoring and understanding of development and progress of osteoarthritis. Until now, various segmentation methods have been proposed to separate the bone from other tissues, but it still remains challenging problem due to different modality of MR images, low contrast between bone and tissues, and shape irregularity. In this paper, we present a new fully-automatic segmentation method of bone compartments using relevant bone atlases from a training set. To find the relevant bone atlases and obtain the segmentation, a coarse-to-fine strategy is proposed. In the coarse step, the best atlas among the training set and an initial segmentation are simultaneously detected using branch and bound tree search. Since the best atlas in the coarse step is not accurately aligned, all atlases from the training set are aligned to the initial segmentation, and the best aligned atlas is selected in the middle step. Finally, in the fine step, segmentation is conducted as adaptively integrating shape of the best aligned atlas and appearance prior based on characteristics of local regions. For experiment, femur and tibia bones of forty test MR images are segmented by the proposed method using sixty training MR images. Experimental results show that a performance of the segmentation and the registration becomes better as going near the fine step, and the proposed method obtain the comparable performance with the state-of-the-art methods.
Chin, Kok-Yong; Ima-Nirwana, Soelaiman; Mohamed, Isa Naina; Ahmad, Fairus; Mohd Ramli, Elvy Suhana; Aminuddin, Amilia; Wan Ngah, Wan Zurinah
2015-01-01
Previous studies on the relationship between bone health and metabolic syndrome (MS) have revealed heterogeneous results. There are limited studies employing bone quantitative ultrasonometry in evaluating this relationship. This study aimed to determine the relationship between MS and bone health in a group of Malaysian middle-aged and elderly men using bone quantitative ultrasonometry. This cross-sectional study recruited 309 free living Chinese and Malay men aged 40 years and above residing in Klang Valley, Malaysia. Their demographic and anthropometric data were collected. Their calcaneal speed of sound (SOS) was measured using a CM-200 bone ultrasonometer. Their blood was collected for the evaluation of lipid profile, total testosterone and sex hormone-binding globulin. The joint interim MS definition was used for the classification of subjects. Multiple linear regression analysis was used to assess the association between SOS and indicators of MS and the presence of MS, with suitable adjustment for confounders. There was no significant difference in SOS value between MS and non-MS subjects (p > 0.05). The SOS values among subjects with different MS scores did not differ significantly (p > 0.05). There were no significant associations between SOS values and indicators of MS or the presence of MS (p > 0.05). The relationship between bone health and MS is not significant in Malaysian middle-aged and elderly men. A longitudinal study should be conducted to evaluate the association between bone loss and MS to confirm this finding.
Lin, Hsin-Yi; Chang, Tsang-Wen; Peng, Tie-Kun
2018-06-01
Alginate hydrogel fibers embedded with bone cells and diclofenac were coated with a layer of chitosan hydrogel and made into a porous scaffold by three-dimensional (3D) printing for drug release and bone regeneration. It was hypothesized that the chitosan coating could improve the scaffold's drug retention and release properties and biocompatibility. Macrophage cells were stimulated and cocultured with the scaffold. Tests were conducted to show how the chitosan coating affected the scaffold's drug release efficacy and how the release efficacy affected the cellular activities of stimulated macrophages and bone cells. The bone cells encapsulated in the coated scaffold demonstrated good viability after the acidic/basic coating process. The coating improved the retention and release efficacy of diclofenac and hence significantly inhibited interleukin-6 and tumor necrosis factor-α secretion from macrophages (p < 0.05). The bone cells in the coated sample mineralized more extensively than the control (p < 0.01). They also more actively expressed genes that produce proteins for extracellular matrix remodeling, MMP13, and interacting with the mineral matrix, OPN (both p < 0.01). It is believed that on days 7 and 10, when diclofenac was depleted and the concentrations of inflammatory compounds surged, the coating effectively blocked the harmful compounds and protected the bone cells within the fibers. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1511-1521, 2018. © 2018 Wiley Periodicals, Inc.
Nakamura, Kazutoshi; Saito, Toshiko; Kobayashi, Ryosaku; Oshiki, Rieko; Kitamura, Kaori; Oyama, Mari; Narisawa, Sachiko; Nashimoto, Mitsue; Takahashi, Shunsuke; Takachi, Ribeka
2012-11-01
Current standard-dose calcium supplements (eg, 1000 mg/d) may increase the risk for cardiovascular events. Effectiveness of lower-dose supplements in preventing bone loss should thus be considered. This study aimed to assess whether calcium supplements of 500 or 250 mg/d effectively prevent bone loss in perimenopausal and postmenopausal Japanese women. We recruited 450 Japanese women between 50 and 75 years of age. They were randomly assigned to receive 500 mg of calcium (as calcium carbonate), 250 mg of calcium, or placebo daily. Medical examinations conducted three times over a 2-year follow-up period assessed bone mineral density (BMD) of the lumbar spine and femoral neck. One-factor repeated measures ANOVA was used for statistical tests. Subgroup analyses were also conducted. Average total daily calcium intake at baseline for the 418 subjects who underwent follow-up examinations was 493 mg/d. Intention-to-treat analysis showed less dramatic decreases in spinal BMD for the 500-mg/d calcium supplement group compared to the placebo group (1.2% difference over 2 years, p = 0.027). Per-protocol analysis (≥80% compliance) revealed that spinal BMD for the 500-mg/d and 250-mg/d calcium supplement groups decreased less than the placebo group (1.6%, p = 0.010 and 1.0%, p = 0.078, respectively), and that femoral neck BMD for the 500-mg/d calcium supplement group decreased less relative to the placebo group (1.0%, p = 0.077). A low-dose calcium supplement of 500 mg/d can effectively slow lumbar spine bone loss in perimenopausal and postmenopausal women with habitually low calcium intake, but its effect on the femoral neck is less certain. Calcium supplementation dosage should thus be reassessed. (Clinical Trials Registry number: UMIN000001176). Copyright © 2012 American Society for Bone and Mineral Research.
Effects of self-blood on the molding process of polymethyl methacrylate bone cement.
Guo, Ying-Jun; Nie, Lin; Zhang, Wen; Mu, Qing
2014-01-01
To evaluate whether the self-blood has influence on the molding process of polymethyl methacrylate (PMMA) bone cement, and to make sure whether it is valuable for the clinical practice. An in vitro study was performed to evaluate the prolonging-effect of self-blood on PMMA bone cement. The effect of prolonging was evaluated by the dough time (TD) and operable time (TO). Moreover, hardness test, squeezing value test and peak temperature test were also conducted to complete the evaluation of this program. The self-blood, especially the plasma, could greatly prolong the handling time of PMMA bone cement without affecting its basic characteristics including hardness, leakage level and peak temperature. On the other hand, we found that in some abnormal conditions, for example with hyperlipemia, self-blood though can also prolong the handling time, would cause some side-effects. We report a new effective way to prolong the handling time of PMMA bone cement by adding moderate amount of self-blood. But "individualized medicine" should be noticed because some abnormal conditions like hyperlipemia would cause undesired side-effects.
Sever, Cordelia; Abbott, Charles L; de Baca, Monica E; Khoury, Joseph D; Perkins, Sherrie L; Reichard, Kaaren Kemp; Taylor, Ann; Terebelo, Howard R; Colasacco, Carol; Rumble, R Bryan; Thomas, Nicole E
2016-09-01
-There is ample evidence from the solid tumor literature that synoptic reporting improves accuracy and completeness of relevant data. No evidence-based guidelines currently exist for synoptic reporting for bone marrow samples. -To develop evidence-based recommendations to standardize the basic components of a synoptic report template for bone marrow samples. -The College of American Pathologists Pathology and Laboratory Quality Center convened a panel of experts in hematopathology to develop recommendations. A systematic evidence review was conducted to address 5 key questions. Recommendations were derived from strength of evidence, open comment feedback, and expert panel consensus. -Nine guideline statements were established to provide pathology laboratories with a framework by which to develop synoptic reporting templates for bone marrow samples. The guideline calls for specific data groups in the synoptic section of the pathology report; provides a list of evidence-based parameters for key, pertinent elements; and addresses ancillary testing. -A framework for bone marrow synoptic reporting will improve completeness of the final report in a manner that is clear, succinct, and consistent among institutions.
Electron spin resonance (ESR) dose measurement in bone of Hiroshima A-bomb victim
2018-01-01
Explosion of the bombs in Hiroshima and Nagasaki corresponds to the only historical moment when atomic bombs were used against civilians. This event triggered countless investigations into the effects and dosimetry of ionizing radiation. However, none of the investigations has used the victims’ bones as dosimeter. Here, we assess samples of bones obtained from fatal victims of the explosion by Electron Spin Resonance (ESR). In 1973, one of the authors of the present study (SM) traveled to Japan and conducted a preliminary experiment on the victims’ bone samples. The idea was to use the paramagnetism induced in bone after irradiation to measure the radiation dose. Technological advances involved in the construction of spectrometers, better knowledge of the paramagnetic center, and improvement in signal processing techniques have allowed us to resume the investigation. We obtained a reconstructed dose of 9.46 ± 3.4 Gy from the jawbone, which was compatible with the dose distribution in different locations as measured in non-biological materials such as wall bricks and roof tiles. PMID:29408890
An experimental investigation on thermal exposure during bone drilling.
Lee, Jueun; Ozdoganlar, O Burak; Rabin, Yoed
2012-12-01
This study presents an experimental investigation of the effects of spindle speed, feed rate, and depth of drilling on the temperature distribution during drilling of the cortical section of the bovine femur. In an effort to reduce measurement uncertainties, a new approach for temperature measurements during bone drilling is presented in this study. The new approach is based on a setup for precise positioning of multiple thermocouples, automated data logging system, and a computer numerically controlled (CNC) machining system. A battery of experiments that has been performed to assess the uncertainty and repeatability of the new approach displayed adequate results. Subsequently, a parametric study was conducted to determine the effects of spindle speed, feed rate, hole depth, and thermocouple location on the measured bone temperature. This study suggests that the exposure time during bone drilling far exceeds the commonly accepted threshold for thermal injury, which may prevail at significant distances from the drilled hole. Results of this study suggest that the correlation of the thermal exposure threshold for bone injury and viability should be further explored. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.
Ear surgery techniques results on hearing threshold improvement
Mokhtarinejad, Farhad; Pour, Saeed Soheili; Nilforoush, Mohammad Hussein; Sepehrnejad, Mahsa; Mirelahi, Susan
2013-01-01
Background: Bone conduction (BC) threshold depression is not always by means of sensory neural hearing loss and sometimes it is an artifact caused by middle ear pathologies and ossicular chain problems. In this research, the influences of ear surgeries on bone conduction were evaluated. Materials and Methods: This study was conducted as a clinical trial study. The ear surgery performed on 83 patients classified in four categories: Stapedectomy, tympanomastoid surgery and ossicular reconstruction partially or totally; Partial Ossicular Replacement Prosthesis (PORP) and Total Ossicular Replacement Prosthesis (TORP). Bone conduction thresholds assessed in frequencies of 250, 500, 1000, 2000 and 4000 Hz pre and post the surgery. Results: In stapedectomy group, the average of BC threshold in all frequencies improved approximately 6 dB in frequency of 2000 Hz. In tympanomastoid group, BC threshold in the frequency of 500, 1000 and 2000 Hz changed 4 dB (P-value < 0.05). Moreover, In the PORP group, 5 dB enhancement was seen in 1000 and 2000 Hz. In TORP group, the results confirmed that BC threshold improved in all frequencies especially at 4000 Hz about 6.5 dB. Conclusion: In according to results of this study, BC threshold shift was seen after several ear surgeries such as stapedectomy, tympanoplasty, PORP and TORP. The average of BC improvement was approximately 5 dB. It must be considered that BC depression might happen because of ossicular chain problems. Therefore; by resolving middle ear pathologies, the better BC threshold was obtained, the less hearing problems would be faced. PMID:24381615
NASA Astrophysics Data System (ADS)
McDaniel, Harvey; Lomax, Linda
2001-03-01
Bone morphonogenetic proteins (BMP-2) have been under investigation for three decades. Deminerialized bone and extracts of deminerialized bone are o steoinductive with a temporal sequence of bone induction. Native and recombi nant BMP's have shown the ability, thru growth and differentiative factors t o induce de novo bone formation both invitro and invivo. Their principle fun ction is to induce transformation of undifferentiated mesenchymal cells into osteoblasts. Native and recombinant BMP's, when purified and used without carrier disp erse after implantation and exert no effect on bone induction. The delivery system provides the missing component to successsfully applying osteogenic p roteins for clinical need. Biological and physio-chemical properties are str ictly adhered tofor a successful delivery system. The BMP delivery system ca rrier for osteo inductive payload provided; 1)non tumorgenic genecity, 2) no n immunogenecity, 3) water insoluble, 4) biosorbability with predictable enz ymatic degradation, and 5) an optimized surface for compatibility, cell migr ation and attachment with a negative surface change that encouraged target c ell attachment. Being a controlled Release System, it binded the proteins wi th predictible BMP released kinetics. Porosity with interconnecting voids pr otected the BMP from noon specific proteolysis and promoted rapid vascular a nd mesenchymal invasion. Far wide ranging clinical applications of mechanica l and biofunctional requirements were met with the BMP delivery system. Cohe sion and malleability were reqiured forcontour augmentation, and reconstruct ion of the discontinuity defects, prevented dislocation and retained the sha pe and bone replaced the system. Biological systems have elastic activity associated with them. The activi ty was current associated with a time dependant biological/biochemical react ion (enzymic activity). Bioelectric phoenomena associated with charged molec ules in a biologic structure caused changes in distribution resulting from s pecific processes altering the local anatomy. Electron conductivity mechanisms in the body involved ions as charge carr iers. Bioelectric signal detection involved interacting ionic charge carrier s and transducing ionic current into electric current required by wires (fib eroptic electrolets impregnated on a thin filmed-collagen biomatrix and elec tronic instrumentation(invitro test setup)). The transducing function of the invitro testing was carried out by the electrodes consisting of electrical conduction (thin film biomatrix) in contact with the aqueous solution of the bone. Performance parameters of the system were given special consideration because of the interaction between electrons in the electrodes and ions in the body. The surgical protocol consisted of minimally invasive surgical pro tocol with an out patient procedure.
Does stapes surgery improve tinnitus in patients with otosclerosis?
Ismi, Onur; Erdogan, Osman; Yesilova, Mesut; Ozcan, Cengiz; Ovla, Didem; Gorur, Kemal
Otosclerosis (OS) is the primary disease of the human temporal bone characterized by conductive hearing loss and tinnitus. The exact pathogenesis of tinnitus in otosclerosis patients is not known and factors affecting the tinnitus outcome in otosclerosis patients are still controversial. To find the effect of stapedotomy on tinnitus for otosclerosis patients. Fifty-six otosclerosis patients with preoperative tinnitus were enrolled to the study. Pure tone average Air-Bone Gap values, preoperative tinnitus pitch, Air-Bone Gap closure at tinnitus frequencies were evaluated for their effect on the postoperative outcome. Low pitch tinnitus had more favorable outcome compared to high pitch tinnitus (p=0.002). Postoperative average pure tone thresholds Air-Bone Gap values were not related to the postoperative tinnitus (p=0.213). There was no statistically significant difference between postoperative Air-Bone Gap closure at tinnitus frequency and improvement of high pitch tinnitus (p=0.427). There was a statistically significant difference between Air-Bone Gap improvement in tinnitus frequency and low pitch tinnitus recovery (p=0.026). Low pitch tinnitus is more likely to be resolved after stapedotomy for patients with otosclerosis. High pitch tinnitus may not resolve even after closure of the Air-Bone Gap at tinnitus frequencies. Copyright © 2016 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Epidemiology and treatment of osteoporosis in women: an Indian perspective
Khadilkar, Anuradha V; Mandlik, Rubina M
2015-01-01
The number of women with osteoporosis, ie, with reduced bone mass and the disruption of bone architecture, is increasing in India. While data on prevalence of osteoporosis among women in India come from studies conducted in small groups spread across the country, estimates suggest that of the 230 million Indians expected to be over the age of 50 years in 2015, 20%, ie, ~46 million, are women with osteoporosis. Thus, osteoporosis is a major public health problem in Indian women. Low calcium intakes with extensive prevalence of vitamin D deficiency, increasing longevity, sex inequality, early menopause, genetic predisposition, lack of diagnostic facilities, and poor knowledge of bone health have contributed toward the high prevalence of osteoporosis. Bone health may be optimized by creating an environment to achieve peak bone mass during adolescence, maintenance of healthy bone throughout the life cycle, and prevention of bone loss postmenopausal. In Indian women, calcium, vitamin D, and bisphosphonates are the commonest first-line therapies used. The use of other drugs such as hormone replacement therapy, estrogen agonists, calcitonin, parathyroid hormone, and denosumab is decided as per the affordability and availability of treatment options. Major gaps still remain in the diagnosis and management of osteoporosis, thus highlighting the need for more structured research in this area. This review focuses on the epidemiology of osteoporosis in Indian women and available treatments. PMID:26527900
Epidemiology and treatment of osteoporosis in women: an Indian perspective.
Khadilkar, Anuradha V; Mandlik, Rubina M
2015-01-01
The number of women with osteoporosis, ie, with reduced bone mass and the disruption of bone architecture, is increasing in India. While data on prevalence of osteoporosis among women in India come from studies conducted in small groups spread across the country, estimates suggest that of the 230 million Indians expected to be over the age of 50 years in 2015, 20%, ie, ~46 million, are women with osteoporosis. Thus, osteoporosis is a major public health problem in Indian women. Low calcium intakes with extensive prevalence of vitamin D deficiency, increasing longevity, sex inequality, early menopause, genetic predisposition, lack of diagnostic facilities, and poor knowledge of bone health have contributed toward the high prevalence of osteoporosis. Bone health may be optimized by creating an environment to achieve peak bone mass during adolescence, maintenance of healthy bone throughout the life cycle, and prevention of bone loss postmenopausal. In Indian women, calcium, vitamin D, and bisphosphonates are the commonest first-line therapies used. The use of other drugs such as hormone replacement therapy, estrogen agonists, calcitonin, parathyroid hormone, and denosumab is decided as per the affordability and availability of treatment options. Major gaps still remain in the diagnosis and management of osteoporosis, thus highlighting the need for more structured research in this area. This review focuses on the epidemiology of osteoporosis in Indian women and available treatments.
Qualitative and quantitative observations of bone tissue reactions to anodised implants.
Sul, Young-Taeg; Johansson, Carina B; Röser, Kerstin; Albrektsson, Tomas
2002-04-01
Research projects focusing on biomaterials related factors; the bulk implant material, the macro-design of the implant and the microsurface roughness are routinely being conducted at our laboratories. In this study, we have investigated the bone tissue reactions to turned commercially pure (c.p.) titanium implants with various thicknesses of the oxide films after 6 weeks of insertion in rabbit bone. The control c.p. titanium implants had an oxide thickness of 17-200 nm while the test implants revealed an oxide thickness between 600 and 1000 nm. Routine histological investigations of the tissue reactions around the implants and enzyme histochemical detections of alkaline and acid phosphatase activities demonstrated similar findings around both the control and test implants. In general, the histomorphometrical parameters (bone to implant contact and newly formed bone) revealed significant quantitative differences between the control and test implants. The test implants demonstrated a greater bone response histomorphometrically than control implants and the osteoconductivity was more pronounced around the test implant surfaces. The parameters that differed between the implant surfaces, i.e. the oxide thickness, the pore size distribution, the porosity and the crystallinity of the surface oxides may represent factors that have an influence on the histomorphometrical results indicated by a stronger bone tissue response to the test implant surfaces, with an oxide thickness of more than 600 nm.
Glycemic Control and Bone Turnover in Older Mexican Americans with Type 2 Diabetes
Smith, Scott M.; Lee, MinJae; Pervin, Hannah; Musgrave, Paul; Watt, Gordon P.; Nader, Shahla; Khosla, Sundeep; Ambrose, Catherine G.; McCormick, Joseph B.; Fisher-Hoch, Susan P.
2018-01-01
Altered bone quality, caused by underlying metabolic changes of type 2 diabetes (T2D), has been hypothesized to cause altered bone strength and turnover leading to increased fracture risk in T2D patients. Current understanding about changes in bone turnover markers in T2D patients is mainly based on studies focused on Caucasian men and women. However, Hispanic populations have the highest prevalence of both T2D and osteoporosis in the US. We investigated associations of glycemic control (in terms of glycated hemoglobin [HbA1c]) and bone turnover rate in 69 older (≥50 years) Mexican American Cameron County Hispanic Cohort (CCHC) participants with T2D. Multivariable analyses were conducted to assess the associations between HbA1c (%), serum osteocalcin (OC), and serum sclerostin. In agreement with published reports from other racial/ethnic populations, our study found that lower bone turnover (indicated by lower serum OC) occurred in Mexican American men with T2D who had poorer glycemic control. For the women in our study, we found no significant association between glycemic control and OC. In contrast, HbA1c was positively associated with sclerostin for women, with near significance (p = 0.07), while no association was found in men. We recommend screening Mexican American individuals with T2D, specifically those with poor glycemic control, for bone loss and fracture risk. PMID:29862008
Wang, Zhiwei; Chen, Huanxiong; Yu, Y. Eric; Zhang, Jiajun; Cheuk, Ka-Yee; Ng, Bobby K. W.; Qiu, Yong; Guo, X. Edward; Cheng, Jack C. Y.; Lee, Wayne Y. W.
2017-01-01
Adolescent idiopathic scoliosis is a complex disease with unclear etiopathogenesis. Systemic and persistent low bone mineral density is an independent prognostic factor for curve progression. The fundamental question of how bone quality is affected in AIS remains controversy because there is lack of site-matched control for detailed analysis on bone-related parameters. In this case-control study, trabecular bone biopsies from iliac crest were collected intra-operatively from 28 severe AIS patients and 10 matched controls with similar skeletal and sexual maturity, anthropometry and femoral neck BMD Z-score to control confounding effects. In addition to static histomorphometry, micro-computed tomography (μCT) and real time-PCR (qPCR) analyses, individual trabecula segmentation (ITS)-based analysis, finite element analysis (FEA), energy dispersive X-ray spectroscopy (EDX) were conducted to provide advanced analysis of structural, mechanical and mineralization features. μCT and histomorphometry showed consistently reduced trabecular number and connectivity. ITS revealed predominant change in trabecular rods, and EDX confirmed less mineralization. The structural and mineralization abnormality led to slight reduction in apparent modulus, which could be attributed to differential down-regulation of Runx2, and up-regulation of Spp1 and TRAP. In conclusion, this is the first comprehensive study providing direct evidence of undefined unique pathological changes at different bone hierarchical levels in AIS. PMID:28054655
Autogenous teeth used for bone grafting: A systematic review.
Gual-Vaqués, P; Polis-Yanes, C; Estrugo-Devesa, A; Ayuso-Montero, R; Mari-Roig, A; López-López, J
2018-01-01
Recently, bone graft materials using permanent teeth have come to light, and clinical and histological outcomes of this material have been confirmed by some studies. The aim of this systematic review was to evaluate the reliability of the autogenous tooth bone graft material applied to alveolar ridge augmentation procedures. A systematic review of literature was conducted analyzing articles published between 2007 and 2017. The following four outcome variables were defined: a) implant stability b) post-operative complication c) evaluation of implant survival and failure rates, and d) histological analysis. A total of 108 articles were identified; 6 were selected for review. Based on the PICO (problem, intervention, comparison, outcome) model, the chief question of this study was: Can patients with alveolar ridge deficiency be successfully treated with the autogenous teeth used as bone graft? The mean primary stability of the placed implants was 67.3 ISQ and the mean secondary stability was 75.5 ISQ. The dehiscence of the wound was the most frequent complication with a rate of 29.1%. Of the 182 analyzed implants, the survival rate was 97.7% and the failure rate was 2.3%. In the histological analysis, most of studies reported bone formation. There is insufficient evidence regarding the effects of autogenous teeth used for bone grafting to support any definitive conclusions, although it has been shown clinically safe and good bone forming capacity, and good results are shown about implant stability.
Horiguchi, Hyogo; Oguma, Etsuko; Sasaki, Satoshi; Miyamoto, Kayoko; Ikeda, Yoko; Machida, Munehito; Kayama, Fujio
2005-01-01
Some recent research suggests that environmental exposure to cadmium, even at low levels, may increase the risk of osteoporosis, and that the bone demineralization is not just a secondary effect of renal dysfunction induced by high doses of cadmium as previously reported. To investigate the effect of exposure to cadmium at a level insufficient to induce kidney damage on bone mineral density (BMD) and bone metabolism, we conducted health examinations on 1380 female farmers from five districts in Japan who consumed rice contaminated by low-to-moderate levels of cadmium. We collected peripheral blood and urine samples and medical and nutritional information, and measured forearm BMD. Analysis of the data for subjects grouped by urinary cadmium level and age-related menstrual status suggested that cadmium accelerates both the increase of urinary calcium excretion around the time of menopause and the subsequent decrease in bone density after menopause. However, multivariate analyses showed no significant contribution of cadmium to bone density or urinary calcium excretion, indicating that the results mentioned above were confounded by other factors. These results indicate that environmental exposure to cadmium at levels insufficient to induce renal dysfunction does not increase the risk of osteoporosis, strongly supporting the established explanation for bone injury induced by cadmium as a secondary effect.
Efficacy of Oral Etidronate for Skeletal Diseases in Japan
Takeda, Tsuyoshi; Sato, Yoshihiro
2005-01-01
Etidronate is an oral bisphosphonate compound that is known to reduce bone resorption through the inhibition of osteoclastic activity. The efficacy of etidronate for involutional (postmenopausal and senile) and glucocorticoid-induced osteoporosis, as well as that for other skeletal diseases, was reviewed in Japanese patients. Cyclical etidronate treatment (200 mg or 400 mg/day for 2 weeks about every 3 months) increases the lumbar bone mineral density (BMD) in patients with involutional osteoporosis and prevents incident vertebral fractures in patients with glucocorticoid-induced osteoporosis. The losses of the lumbar BMD in patients with liver cirrhosis and the metacarpal BMD in hemiplegic patients after stroke are prevented, and the lumbar BMD is possibly increased, preventing fragile fractures in adult patients with osteogenesis imperfecta type I. Furthermore, proximal bone resorption around the femoral stem is reduced and some complications may be prevented in patients who undergo cementless total hip arthroplasty. Oral etidronate treatment may also help to transiently relieve metastatic cancer bone pain followed by a decrease in abnormally raised bone resorption in patients with painful bone metastases from primary cancer sites, such as the lung, breast and prostate. Thus, oral etidronate treatment is suggested to be efficacious for osteoporosis, as well as other skeletal diseases associated with increased bone resorption, in Japanese patients. Randomized controlled trials needed to be conducted on a large number of patients to confirm these effects. PMID:15988801
Calcium and Bone Homeostasis During 4-6 Months Space Flight
NASA Technical Reports Server (NTRS)
Smith, Scott M.; OBrien, K.; Wastney, M.; Morukov, B.; Larina, I.; Abrams, S.; Lane, H.; Nillen, J.; Davis-Street, J.; Paloski, W. H. (Technical Monitor)
2000-01-01
Bone and calcium homeostasis are altered by weightlessness. We previously reported calcium studies on three subjects from the first joint US/Russian mission to Mir. We report here data on an additional three male subjects, whose stays on Mir were 4 (n= 1) and 6 (n=2) mos. Data were collected before, during, and after the missions. Inflight studies were conducted at 2-3 mos. Endocrine and biochemical indices were measured, along with 3-wk calcium tracer studies. Percent differences are reported compared to preflight. Ionized calcium was unchanged (2.8 +/-2.1 %) during flight. Calcium absorption was variable inflight, but was decreased after landing. Vitamin D stores were decreased 35 +/-24% inflight, similar to previous reports. Serum PTH was decreased 59 +/-9% during flight (greater than we previously reported), while 1,25(OH)(sub 2)-Vitamin D was decreased in 2 of 3 subjects. Markers of bone resorption (e.g., crosslinks) were increased in all subjects. Bone-specific alkaline phosphatase was decreased (n=1) or unchanged (n=2), while osteocalcin was decreased 34 +/-23%. Previously presented data showed that inflight bone loss is associated with increased resorption and unchanged/decreased formation. The data reported here support these earlier findings. These studies will help to extend our understanding of space flight-induced bone loss, and of bone loss associated with diseases such as osteoporosis or paralysis.
Kim, Jeong-Woo; Lee, Jin-Ju; Bae, Eun-Bin; Jeon, Young-Chan; Jeong, Chang-Mo; Yun, Mi-Jung; Lee, So-Hyoun; Huh, Jung-Bo
2017-01-01
This study was conducted to evaluate the effect of biphasic calcium phosphate (BCP) coated with reduced graphene oxide (rGO) as bone graft materials on bone regeneration. The rGO-coated BCP bone graft material was fabricatied by mixing rGO and BCP at various concentrations. The surface charge of rGO-coated BCP was measured to be −14.43 mV, which formed a static electrostatic interaction. Cell viabilities were significantly diminished at higher concentrations of ≥100 μg/mL. The calvarial defects of 48 rats were implanted rGO-coated BCPs at a weight ratio of 2:1000 (rGO2), 4:1000 (rGO4), and 10:1000 (rGO10), repectively. BCP was used as a control group. The micro-CT and histological analysis were performed to evaluate new bone formation at 2 and 8 weeks after surgery. The results showed that the new bone volume (mm3) was significantly higher in the experimental groups than in the control group. Histological analysis showed that new bone areas (%) were significantly higher in the rGO2 and rGO10 than in the control, and significantly higher in rGO4 than in the rGO2 and rGO10. Conclusively, the rGO-coated BCP was found to be effective on osteogenesis and the concentration of the composite was an important factor. PMID:28786931
Kim, Jeong-Woo; Shin, Yong Cheol; Lee, Jin-Ju; Bae, Eun-Bin; Jeon, Young-Chan; Jeong, Chang-Mo; Yun, Mi-Jung; Lee, So-Hyoun; Han, Dong-Wook; Huh, Jung-Bo
2017-08-08
This study was conducted to evaluate the effect of biphasic calcium phosphate (BCP) coated with reduced graphene oxide (rGO) as bone graft materials on bone regeneration. The rGO-coated BCP bone graft material was fabricatied by mixing rGO and BCP at various concentrations. The surface charge of rGO-coated BCP was measured to be -14.43 mV, which formed a static electrostatic interaction. Cell viabilities were significantly diminished at higher concentrations of ≥100 μg/mL. The calvarial defects of 48 rats were implanted rGO-coated BCPs at a weight ratio of 2:1000 (rGO2), 4:1000 (rGO4), and 10:1000 (rGO10), repectively. BCP was used as a control group. The micro-CT and histological analysis were performed to evaluate new bone formation at 2 and 8 weeks after surgery. The results showed that the new bone volume (mm³) was significantly higher in the experimental groups than in the control group. Histological analysis showed that new bone areas (%) were significantly higher in the rGO2 and rGO10 than in the control, and significantly higher in rGO4 than in the rGO2 and rGO10. Conclusively, the rGO-coated BCP was found to be effective on osteogenesis and the concentration of the composite was an important factor.
Osteoporosis in premenopausal women.
Langdahl, Bente L
2017-07-01
The scope of this review was to review the newest developments in the context of the existing knowledge on premenopausal bone fragility. Fragility fractures are common in postmenopausal women and men and diagnostic criteria for osteoporosis have been agreed and multiple pharmacological treatments have been developed over the last 25 years. In premenopausal women, fragility fractures and very low bone mass are uncommon and osteoporosis in premenopausal women has therefore attracted much less interest. Recent studies have highlighted that lifestyle and dietary habits affect premenopausal bone mass. Bone mass may be improved by sufficient intake of calcium and vitamin D together with increased physical activity in premenopausal women with idiopathic osteoporosis. If pharmacological treatment is needed, teriparatide has been demonstrated to efficiently increase bone mass; however, no fracture studies and no comparative studies against antiresorptive therapies have been conducted. Pregnancy affects bone turnover and mass significantly, but pregnancy-associated osteoporosis is a rare and heterogeneous condition. The diagnosis of osteoporosis should only be considered in premenopausal women with existing fragility fractures, diseases or treatments known to cause bone loss or fractures. Secondary causes of osteoporosis should be corrected or treated if possible. The women should be recommended sufficient intake of calcium and vitamin and physical activity. In women with recurrent fractures or secondary causes that cannot be eliminated, for example glucocorticoid or cancer treatment, pharmacological intervention with bisphosphonates or teriparatide (not in the case of cancer) may be considered.
Validation of multiple subject-specific finite element models of unicompartmental knee replacement.
Tuncer, Mahmut; Cobb, Justin P; Hansen, Ulrich N; Amis, Andrew A
2013-10-01
Accurate computer modelling of the fixation of unicompartmental knee replacements (UKRs) is a valuable design tool. However, models must be validated with in vitro mechanical tests to have confidence in the results. Ten fresh-frozen cadaveric knees with differing bone densities were CT-scanned to obtain geometry and bone density data, then implanted with cementless medial Oxford UKRs by an orthopaedic surgeon. Five strain gauge rosettes were attached to the tibia and femur of each knee and the bone constructs were mechanically tested. They were re-tested following implanting the cemented versions of the implants. Finite element models of four UKR tibiae and femora were developed. Sensitivity assessments and convergence studies were conducted to optimise modelling parameters. The cemented UKR pooled R(2) values for predicted versus measured bone strains were 0.85 and 0.92 for the tibia and femur respectively. The cementless UKR pooled R(2) values were slightly lower at 0.62 and 0.73 which may have been due to the irregularity of bone resections. The correlation of the results was attributed partly to the improved material property prediction method used in this project. This study is the first to validate multiple UKR tibiae and femora for bone strain across a range of specimen bone densities. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.
Fredman, Nick John; Duque, Gustavo; Duckham, Rachel Louise; Green, Darci
2018-01-01
Introduction There is now substantial evidence of a social gradient in bone health. Social stressors, related to socioeconomic status, are suggested to produce an inflammatory response marked by increased levels of proinflammatory cytokines. Here we focus on the particular role in the years before the achievement of peak bone mass, encompassing childhood, adolescence and young adulthood. An examination of such associations will help explain how social factors such as occupation, level of education and income may affect later-life bone disorders. This paper presents the protocol for a systematic review of existing literature regarding associations between socioeconomic factors and proinflammatory cytokines in those aged 6–30 years. Methods and analysis We will conduct a systematic search of PubMed, OVID and CINAHL databases to identify articles that examine associations between socioeconomic factors and levels of proinflammatory cytokines, known to influence bone health, during childhood, adolescence or young adulthood. The findings of this review have implications for the equitable development of peak bone mass regardless of socioeconomic factors. Two independent reviewers will determine the eligibility of studies according to predetermined criteria, and studies will be assessed for methodological quality using a published scoring system. Should statistical heterogeneity be non-significant, we will conduct a meta-analysis; however, if heterogeneity prevent numerical syntheses, we will undertake a best-evidence analysis to determine whether socioeconomic differences exist in the levels of proinflammatory cytokines from childhood through to young adulthood. Ethics and dissemination This study will be a systematic review of published data, and thus ethics approval is not required. In addition to peer-reviewed publication, these findings will be presented at professional conferences in national and international arenas. PMID:29490962
GORHAM-STOUT SYNDROME: PHANTOM BONE DISEASE
El-Kouba, Gabriel; de Araújo Santos, Romilton; Pilluski, Paulo César; Severo, Antonio; Lech, Osvandré
2015-01-01
Gorham-Stout syndrome is a disease that presents idiopathic osteolysis of a bone or closely contiguous area. The etiology is unknown. It is a rare condition that is difficult to diagnose, and its treatment is controversial. It affects individuals irrespective of age or sex. In this study, we conducted a bibliographic review of the disease, specifically focusing on the differential diagnosis, and we demonstrated the follow-up on a patient with this syndrome from the time of its diagnosis, through treatment, to its current state of evolution. PMID:27026974
2018-01-23
Lymphatic Malformation; Generalized Lymphatic Anomaly (GLA); Central Conducting Lymphatic Anomaly; CLOVES Syndrome; Gorham-Stout Disease ("Disappearing Bone Disease"); Blue Rubber Bleb Nevus Syndrome; Kaposiform Lymphangiomatosis; Kaposiform Hemangioendothelioma/Tufted Angioma; Klippel-Trenaunay Syndrome; Lymphangiomatosis
[Kniest's syndrome (author's transl)].
Kniest, W; Leiber, B
1977-12-01
The clinical picture of the Kniest's syndrome is described. The syndrome is a rare hereditary condition with generalized bone dysplasia, disproportional dwarfism, conduction deafness and severe myopia, retinal detachment, cataract and amaurosis.
How minute sooglossid frogs hear without a middle ear.
Boistel, Renaud; Aubin, Thierry; Cloetens, Peter; Peyrin, Françoise; Scotti, Thierry; Herzog, Philippe; Gerlach, Justin; Pollet, Nicolas; Aubry, Jean-François
2013-09-17
Acoustic communication is widespread in animals. According to the sensory drive hypothesis [Endler JA (1993) Philos Trans R Soc Lond B Biol Sci 340(1292):215-225], communication signals and perceptual systems have coevolved. A clear illustration of this is the evolution of the tetrapod middle ear, adapted to life on land. Here we report the discovery of a bone conduction-mediated stimulation of the ear by wave propagation in Sechellophryne gardineri, one of the world's smallest terrestrial tetrapods, which lacks a middle ear yet produces acoustic signals. Based on X-ray synchrotron holotomography, we measured the biomechanical properties of the otic tissues and modeled the acoustic propagation. Our models show how bone conduction enhanced by the resonating role of the mouth allows these seemingly deaf frogs to communicate effectively without a middle ear.
Periodontal and peri-implant bone regeneration: clinical and histologic observations.
Artzi, Z; Zohar, R; Tal, H
1997-02-01
The principle of guided tissue regeneration by barrier membranes to restore lost periodontal tissue around natural teeth has also been used around osseointegrated implants in an attempt to restore alveolar ridge defects. While most periodontal procedures in the literature describe root coverage by mucogingival surgery, which achieves healing through soft tissue attachment, regeneration of denuded root surfaces is performed by guided tissue regeneration using expanded polytetrafluoroethylene barrier membranes and demineralized freeze-dried bone allografts as inductive/conductive materials. In this study the technique is applied in two partially exposed cylindrical hydroxyapatite-coated implants in extraction sites in one patient. Surgical reentry in both sites is presented, with histologic examination revealing new bone formation on the exposed root surface and the hydroxyapatite-coated implants.
Bone Density Following Long Duration Space Flight and Recovery
NASA Technical Reports Server (NTRS)
Amin, Shreyasee; Achenbach, Sara J.; Atkinson, Elizabeth J.; Melton, L. Joseph; Khosla, Sundeep; Sibonga, Jean
2010-01-01
At approx.12 months, Bone Mineral Density (BMD) at most sites in men remained lower than would be predicted, raising concerns for long-term bone health consequences following space flight. Additional analyses based on longer follow-up are being conducted. Although the N is too small for definitive conclusions, women had lower rates of loss at load-bearing sites of the hip and spine immediately post-flight relative to men and smaller differences between observed vs. predicted BMD at most sites, both immediately and 12 months post-flight, relative to men. The role of other exposures/risk factors need to be explored to further understand these possible gender differences in BMD loss and recovery following long-duration space flight.
Yamatsuji, Tomoki; Ishida, Naomasa; Takaoka, Munenori; Hayashi, Jiro; Yoshida, Kazuhiro; Shigemitsu, Kaori; Urakami, Atsushi; Haisa, Minoru; Naomoto, Yoshio
2017-01-01
Of 129 esophagectomies at our institute from June 2010 to March 2015, we experienced three preoperative positron emission tomography-computed tomographic (PET/CT) false positives. Bone metastasis was originally suspected in 2 cases, but they were later found to be bone metastasis negative after a preoperative bone biopsy and clinical course observation. The other cases suspected of mediastinal lymph node metastasis were diagnosed as inflammatory lymphadenopathy by a pathological examination of the removed lymph nodes. Conducting a PET/CT is useful when diagnosing esophageal cancer metastasis, but we need to be aware of the possibility of false positives. Therapeutic decisions should be made based on appropriate and accurate diagnoses, with pathological diagnosis actively introduced if necessary. PMID:28469502
Variation of the electric properties along the diaphysis of bovine femoral bone.
De Mercato, G; García Sánchez, F J
1991-07-01
A preliminary study is presented of the variability of the electric properties, in the axial, tangential and radial directions, as a function of position in the diaphysis of a femoral bovine bone. The measurements were carried out at three frequencies: 100 Hz, 10 kHz and 1 MHz. It is shown that both the conductivity and the permittivity exhibit significant variations along the diaphysis, and increase in magnitude towards the epiphyses. From this study, the variation of the electric properties cannot be clearly and directly ascribed to the longitudinal variability of the total volumetric fluid content of the bone. The results reflect the orthotropic nature of the electric properties, at any given location, and indicate a position-dependent tendency towards axis symmetry.
Impact of mechanical stretch on the cell behaviors of bone and surrounding tissues
Yu, Hye-Sun; Kim, Jung-Ju; Kim, Hae-Won; Lewis, Mark P; Wall, Ivan
2016-01-01
Mechanical loading is recognized to play an important role in regulating the behaviors of cells in bone and surrounding tissues in vivo. Many in vitro studies have been conducted to determine the effects of mechanical loading on individual cell types of the tissues. In this review, we focus specifically on the use of the Flexercell system as a tool for studying cellular responses to mechanical stretch. We assess the literature describing the impact of mechanical stretch on different cell types from bone, muscle, tendon, ligament, and cartilage, describing individual cell phenotype responses. In addition, we review evidence regarding the mechanotransduction pathways that are activated to potentiate these phenotype responses in different cell populations. PMID:26977284
Yao, Jian-fei; Shen, Jia-zuo; Li, Da-kun; Lin, Da-sheng; Li, Lin; Li, Qiang; Qi, Peng; Lian, Ke-jian; Ding, Zhen-qi
2012-01-01
Lower tibial bone fracture may easily cause bone delayed union or nonunion because of lacking of dynamic mechanical load. Research Group would design a new instrument as Rap System of Stress Stimulation (RSSS) to provide dynamic mechanical load which would promote lower tibial bone union postoperatively. This clinical research was conducted from January 2008 to December 2010, 92 patients(male 61/female 31, age 16-70 years, mean 36.3 years) who suffered lower tibial bone closed fracture were given intramedullary nail fixation and randomly averagely separated into experimental group and control group(according to the successively order when patients went for the admission procedure). Then researchers analysed the clinical healing time, full weight bearing time, VAS (Visual Analogue Scales) score and callus growth score of Lane-Sandhu in 3,6,12 months postoperatively. The delayed union and nonunion rates were compared at 6 and 12 months separately. All the 92 patients had been followed up (mean 14 months). Clinical bone healing time in experimental group was 88.78±8.80 days but control group was 107.91±9.03 days. Full weight bearing time in experimental group was 94.07±9.81 days but control group was 113.24±13.37 days respectively (P<0.05). The delayed union rate in 6 months was 4.3% in experimental group but 10.9% in control group(P<0.05). The nonunion rate in 12 months was 6.5% in experimental group but 19.6% in control group(P<0.05). In 3, 6, 12 months postoperatively, VAS score and Lane-Sandhu score in experimental group had more significantly difference than them in control group. RSSS can intermittently provide dynamic mechanical load and stimulate callus formation, promote lower tibial bone union, reduce bone delayed union or nonunion rate. It is an adjuvant therapy for promoting bone union after lower tibial bone fracture.
Shin, Young-Kyu; Han, Chong-Hyun; Heo, Seong-Joo; Kim, Sunjai; Chun, Heoung-Jae
2006-01-01
To evaluate the influence of macro- and microstructure of the implant surface at the marginal bone level after functional loading. Sixty-eight patients were randomly assigned to 1 of 3 groups. The first group received 35 implants with a machined neck (Ankylos); the second group, 34 implants with a rough-surfaced neck (Stage 1); and the third, 38 implants with a rough-surfaced neck with microthreads (Oneplant). Clinical and radiographic examinations were conducted at baseline (implant loading) and 3, 6, and 12 months postloading. Two-way repeated analysis of variance (ANOVA) was used to test the significance of marginal bone change of each tested group at baseline, 3, 6, and 12 month follow-ups and 1-way ANOVA was also used to compare the bone loss of each time interval within the same implant group (P < .05). At 12 months, significant differences were noted in the amount of alveolar bone loss recorded for the 3 groups (P < .05). The group with the rough-surfaced microthreaded neck had a mean crestal bone loss of 0.18 +/- 0.16 mm; the group with the rough-surfaced neck, 0.76 +/- 0.21 mm; and the group with the machined neck, 1.32 +/- 0.27 mm. In the rough-surfaced group and the rough-surfaced microthreaded group, no statistically significant changes were observed after 3 months, whereas the machined-surface group showed significant bone loss for every interval (P < .05). To minimize marginal bone loss, in addition to the use of a rough surface at the marginal bone level, a macroscopic modification such as the addition of microthreads could be recommended. A rough surface and microthreads at the implant neck not only reduce crestal bone loss but also help with early biomechanical adaptation against loading in comparison to the machined neck design. A rough surface with microthreads at the implant neck was the most effective design to maintain the marginal bone level against functional loading.
Barake, Maya; Arabi, Asma; Nakhoul, Nancy; El-Hajj Fuleihan, Ghada; El Ghandour, Sarah; Klibanski, Anne; Tritos, Nicholas A
2018-01-01
In adults, growth hormone deficiency (GHD) has been associated with low bone mineral density (BMD), an effect counteracted by growth hormone (GH) replacement. Whether GH is beneficial in adults with age-related bone loss and without hypopituitarism is unclear. We conducted a systematic literature search using Medline, Embase and the Cochrane Register of Controlled Trials. We extracted and analyzed data according to the bone outcome included [bone mineral content (BMC), BMD, and bone biomarker, fracture risk]. We performed a meta-analysis when possible. We included eight studies. Seven randomized 272 post-menopausal women, 61-69 years, to GH or control, for 6-24 months, and the eighth was an extension trial. Except for one study, all women received concurrent osteoporosis therapies. There was no significant effect of GH, as compared to control, on BMD at the lumbar spine (Weighted mean difference WMD = -0.01 [-0.04, 0.02]), total hip (WMD = 0 [-0.05, 0.06]) or femoral neck (WMD = 0 [-0.03, 0.04]). Similarly, no effect was seen on BMC. GH significantly increased the bone formation marker procollagen type-I carboxy-terminal propeptide (PICP) (WMD = 14.03 [2.68, 25.38]). GH resulted in a trend for increase in osteocalcin and in bone resorption markers. Patients who received GH had a significant decrease in fracture risk as compared to control (RR = 0.63 [0.46, 0.87]). Reported adverse events were not major, mostly related to fluid retention. GH may not improve bone density in women with age-related bone loss but may decrease fracture risk. Larger studies of longer duration are needed to further explore these findings in both genders, and to investigate the effect of GH on bone quality.
Prevalence and Survival Patterns of Patients with Bone Metastasis from Common Cancers in Thailand.
Phanphaisarn, Areerak; Patumanond, Jayantorn; Settakorn, Jongkolnee; Chaiyawat, Parunya; Klangjorhor, Jeerawan; Pruksakorn, Dumnoensun
2016-01-01
Bone metastasis is a single condition but presents with various patterns and severities. Skeletal- related events (SREs) deteriorate overall performance status and reduce quality of life. However, guidelines for early detection and management are limited. This study includes a survey of the prevalence of bone metastasis in cases with common cancers in Thailand as well as a focus on survival patterns and SREs. A retrospective cohort analysis was conducted using a database of the Chiang Mai Cancer Registry and the Musculoskeletal Tumor Registry of the OLARN Center, Chiang Mai University. The prevalence of bone metastasis from each type of primary cancer was noted and time-to-event analysis was performed to estimate cancer survival rates after bone metastasis. There were 29,447 cases of the ten most common cancers in Thailand, accounting for 82.2% of the entire cancer registry entries during the study period. Among those cases, there were 2,263 with bone metastases, accounting for 7.68% of entries. Bone metastasis from lung, liver, breast, cervix and prostate are common in the Thai population, accounting for 83.4% of all positive cases. The median survival time of all was 6 months. Of the bone metastases, 48.9% required therapeutic intervention, including treatment of spinal cord and nerve root compression, pathological fractures, and bone pain. The frequency of the top five types of bone metastasis in Thailand were different from the frequencies in other countries, but corresponded to the relative prevalence of the cancers in Thailand and osteophilic properties of each cancer. The results of this study support the establishment of country specific guidelines for primary cancer identification with skeletal lesions of unknown origin. In addition, further clinical studies of the top five bone metastases should be performed to develop guidelines for optimal patient management during palliative care.
CALCIUM-47 IN THE STUDY OF BONE PHYSIOLOGY AND PATHOLOGY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guerin, R.A.
1962-06-01
The use of Ca/sup 45/, Ca/sup 47/, Ga/sup 67/, and Sr/sup 85/ in the study of Ca metabolism of bone in human subjects is discussed. Ca/sup 47/ is considered to be most suitable because of its short half-life ( approximates 5 days) and high specific activity (10 mc/mg for Ca/sup 47/ Cl/sub 2/). Studies were conducted in 28 patients injected intravenously with Ca/sup 47/; uptake in various bones was followed by external scintillometry for periods up to 11 days later. In healthy subjects the distribution of activity was symmetrical, with highest uptake in sternum and manubrium and lower uptake inmore » cranium (particularly the occipital region), clavicle, and iliac crest. Epiphyses of the long bones showed less avidity for Ca/sup 47/, that in tibia being highest. Sternum fixed 2 to 21/2 more Ca/sup 47/ than the upper tibial epiphysis. This indicates that in the normal adult more Ca is taken up by spongy than compact bone. The Ca/sup 47/ content of bone increased rapidly, reaching a plateau by the 5th or 6th day in most bones and by the 10th day in some, such as clavicle. Studies in pathologic cases showed the very high, but transient, uptake by callus in fractures and and uptake in Paget's disease of bone that was 3 times normal. Higher than normal uptake was also noted in bone lesions in lymphogranulomatosis, where osteogenesis compensating for increased bone destruction could be detected. Pathologic states could also be detected by following the disappearance of Ca/sup 47/ from plasma, it being delayed by hypercalcemia associated with multiple cancer metastases in bone or accelerated by hypocalcemia, such as in Paget's disease. The rate of urinary excretion of radioactivity was also of diagnostic value. (H.H.D.)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chowdhury, C.R.; Ho, J.H.; Wright, A.
1988-03-01
In patients with nasopharyngeal carcinoma, deafness sometimes occurs following radiotherapy. It is usually conductive, but may be sensorineural. Tinnitus is present frequently and usually is distressing. The role of ventilation tubes (grommets) in relieving these problems was assessed in a prospective randomized controlled trial of 115 patients. In the group with grommets, there was an improvement in hearing, with a reduction of the averaged air-bone gap (p less than .01). This was not found in the control group without ventilation tubes, who developed a larger conductive loss (p less than .01) and, in addition, a slight deterioration of the averagedmore » bone conduction threshold (p less than .01). Surprisingly, the group with grommets did not develop this sensorineural loss (p less than .01). In addition, tinnitus was improved significantly by the insertion of ventilation tubes (p less than .01). Neither necrosis nor stenosis of the external auditory meatus was found in either group.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chowdhury, C.R.; Ho, J.H.; Wright, A.
In patients with nasopharyngeal carcinoma, deafness sometimes occurs following radiotherapy. It is usually conductive, but may be sensorineural. Tinnitus is present frequently and usually is distressing. The role of ventilation tubes (grommets) in relieving these problems was assessed in a prospective randomized controlled trial of 115 patients. In the group with grommets, there was an improvement in hearing, with a reduction of the averaged air-bone gap (p less than .01). This was not found in the control group without ventilation tubes, who developed a larger conductive loss (p less than .01) and, in addition, a slight deterioration of the averagedmore » bone conduction threshold (p less than .01). Surprisingly, the group with grommets did not develop this sensorineural loss (p less than .01). In addition, tinnitus was improved significantly by the insertion of ventilation tubes (p less than .01). Neither necrosis nor stenosis of the external auditory meatus was found in either group.« less
Experiments on the mechanism of underwater hearing.
Pau, Hans Wilhelm; Warkentin, Mareike; Specht, Olaf; Krentz, Helga; Herrmann, Anne; Ehrt, Karsten
2011-12-01
The findings suggest that underwater sound perception is realized by the middle ear rather than by bone conduction, at least in shallow water conditions. To prove whether underwater sound perception is effected by bone conduction or by conduction via the middle ear. Five divers, breathing through snorkels, were tested in a swimming pool, to determine whether a sound was louder when the acoustic source placed was in front of the head in comparison with a lateral application facing the ear region. The second experiment investigated whether sound perception is influenced by ear protection plugs in underwater conditions. Also, the effect of a 5 mm thick neoprene hood was determined, with and without an additional perforation in the ear region. Sounds were louder when applied from a position laterally facing the ear, louder without than with a protection plug, louder without than with a neoprene hood on, and louder when the neoprene hood had a perforation in the region of the ear than with an intact hood.
Slow rates of degradation of osteocalcin: Green light for fossil bone protein?
NASA Astrophysics Data System (ADS)
Collins, M. J.; Gernaey, A. M.; Nielsen-Marsh, C. M.; Vermeer, C.; Westbroek, P.
2000-12-01
Our claim, published in this journal, for successful immunodetection of the protein osteocalcin in dinosaur bone has been challenged on the grounds that the findings are inconsistent with the kinetics of decomposition. Here we show that the close association of osteocalcin to the bone mineral vastly enhances its preservation potential relative to the same protein in aqueous solution. We conducted heating experiments (75 95 °C) of modern bone powder and monitored the survival of three different regions of osteocalcin (N-terminal, His4-Hyp9; C-terminal, Phe45-Val49; and the mid-region, Pro15-Glu31) with monoclonal antibodies. Extrapolation of our data to 10 °C ambient burial temperatures indicates that preservation of the γ-carboxylated mid-region in fossil bone cannot be excluded on kinetic grounds. Clearly, in situ sequence analysis will be the only method by which the preservation of fossil macromolecules will be unequivocally established. Nevertheless, our findings demonstrate the importance of mineral association to protein survival, as was borne out by an investigation of Holocene (ca. 6 ka) bones. Only in those samples with little recrystallization was the γ-carboxylated mid-region well preserved. These results imply that the future success of ancient biomolecule research largely depends on our understanding the interaction between these materials and their environment throughout diagenesis.
NASA Astrophysics Data System (ADS)
Dikht, Nataliya I.; Bucharskaya, Alla B.; Maslyakova, Galina N.; Terentyuk, Georgy S.; Matveeva, Olga V.; Navolokin, Nikita A.; Khlebtsov, Boris N.; Khlebtsov, Nikolai G.
2015-03-01
In study the evaluation of the influence of gold nanorods on morphological indicators of red bone marrow and peripheral blood of rats with diabetes and transplanted liver tumor after intravenous administration of gold nanorods was conducted. We used gold nanorods with length 41 ± 8 nm and diameter of 10.2±2 nm, synthesized in the laboratory of nanobiotechnology IBPPM RAS (Saratov). After intravenous administration of gold nanorods the decrease of leukocytes, platelets and lymphocytes was observed in animals of control group in blood. It was marked the decrease of the number of mature cellular elements of the leukocyte germ in bone marrow - stab neutrophils and segmented leukocytes, and the increase of immature elements- metamyelocytes, indicating the activation of leukocyte germ after nanoparticle administration. The decrease of leukocyte amount was noted in blood and the increase of cellular elements of the leukocyte germ was revealed in bone marrow, indicating the activation of leukocyte germ in rats with alloxan diabetes and transplanted tumors. The changes of morphological indicators of blood and bone marrow testify about stimulation of myelocytic sprouts of hemopoiesis in bone marrow as a result of reduction of mature cells in peripheral blood after gold nanoparticle administration.
Lorenzen, C L; Griffin, D B; Dockerty, T R; Walter, J P; Johnson, H K; Savell, J W
1996-01-01
Boxed pork was obtained to represent four different purchase specifications (different anatomical separation locations and[or] external fat trim levels) common in the pork industry to conduct a study of retail yields and labor requirements. Bone-in loins (n = 180), boneless loins (n = 94), and Boston butts (n = 148) were assigned randomly to fabrication styles within subprimals. When comparing cutting styles within subprimals, it was evident that cutting style affected percentage of retail yield and cutting time. When more bone-in cuts were prepared from bone-in loin subprimals, retail yields ranged from 92.80 +/- .61 to 95.28 +/- .45%, and processing times ranged from 222.57 +/- 10.13 to 318.99 +/- 7.85 s, from the four suppliers. When more boneless cuts were prepared from bone-in loin subprimals, retail yields ranged from 71.12 +/- 1.10 to 77.92 +/- .77% and processing times ranged from 453.49 +/- 8.95 to 631.09 +/- 15.04 s from the different loins. Comparing boneless to bone-in cuts from bone-in loins resulted in lower yields and required greater processing times. Significant variations in yields and times were found within cutting styles. These differences seemed to have been the result of variation in supplier fat trim level and anatomical separation (primarily scribe length).
Effects of Eggshell Calcium Supplementation on Bone Mass in Postmenopausal Vietnamese Women.
Sakai, Seigo; Hien, Vu Thi Thu; Tuyen, Le Danh; Duc, Ha Anh; Masuda, Yasunobu; Yamamoto, Shigeru
2017-01-01
Bone mass decreases along with aging, especially for women after menopause because of lower estrogen secretion together with low calcium intake. This study was conducted to study the effect of eggshell calcium supplementation on bone mass in 54 postmenopausal Vietnamese women living in a farming area about 60 km from Hanoi, Vietnam. Sets of 3 subjects matched by age, bone mass, BMI and calcium intake were divided randomly into 3 groups with 18 subjects in each group. The eggshell calcium group was administered 300 mg/d calcium from eggshell, the calcium carbonate group 300 mg/d calcium from calcium carbonate and the placebo group received no calcium supplementation. Bone mass (Speed of Sound (SOS)) was measured at the beginning (the baseline), the middle (6th month) and the end of the study (12th month) by the single blind method. SOS of the eggshell group increased significantly at 12 mo (p<0.05) and was significantly higher than that of the placebo and calcium carbonate groups at 12 mo (p<0.05). The SOS of the calcium carbonate group tended to be higher than that of the placebo group but without a significant difference (p>0.05). In conclusion, eggshell calcium was more effective in increasing bone mass than calcium carbonate in postmenopausal Vietnamese women.
B-Vitamins and Bone Health–A Review of the Current Evidence
Dai, Zhaoli; Koh, Woon-Puay
2015-01-01
Because of ongoing global ageing, there is a rapid worldwide increase in incidence of osteoporotic fractures and the resultant morbidity and mortality associated with these fractures are expected to create a substantial economic burden. Dietary modification is one effective approach for prevention of osteoporosis in the general population. Recently, B vitamins have been investigated for their possible roles in bone health in human studies. In this review, we provide different lines of evidence and potential mechanisms of individual B vitamin in influencing bone structure, bone quality, bone mass and fracture risk from published peer-reviewed articles. These data support a possible protective role of B vitamins, particularly, B2, B6, folate and B12, in bone health. However, results from the clinical trials have not been promising in supporting the efficacy of B vitamin supplementation in fracture reduction. Future research should continue to investigate the underlying mechanistic pathways and consider interventional studies using dietary regimens with vitamin B enriched foods to avoid potential adverse effects of high-dose vitamin B supplementation. In addition, observational and interventional studies conducted in Asia are limited and thus require more attention due to a steep rise of osteoporosis and hip fracture incidence projected in this part of the world. PMID:25961321
Karim, Lamya; Moulton, Julia; Van Vliet, Miranda; Velie, Kelsey; Robbins, Ann; Malekipour, Fatemeh; Abdeen, Ayesha; Ayres, Douglas; Bouxsein, Mary L
2018-05-29
Skeletal fragility is a major complication of type 2 diabetes mellitus (T2D), but there is a poor understanding of mechanisms underlying T2D skeletal fragility. The increased fracture risk has been suggested to result from deteriorated bone microarchitecture or poor bone quality due to accumulation of advanced glycation end-products (AGEs). We conducted a clinical study to determine whether: 1) bone microarchitecture, AGEs, and bone biomechanical properties are altered in T2D bone, 2) bone AGEs are related to bone biomechanical properties, and 3) serum AGE levels reflect those in bone. To do so, we collected serum and proximal femur specimens from T2D (n = 20) and non-diabetic (n = 33) subjects undergoing total hip replacement surgery. A section from the femoral neck was imaged by microcomputed tomography (microCT), tested by cyclic reference point indentation, and quantified for AGE content. A trabecular core taken from the femoral head was imaged by microCT and subjected to uniaxial unconfined compression tests. T2D subjects had greater HbA 1 c (+23%, p ≤ 0.0001), but no difference in cortical tissue mineral density, cortical porosity, or trabecular microarchitecture compared to non-diabetics. Cyclic reference point indentation revealed that creep indentation distance (+18%, p ≤ 0.05) and indentation distance increase (+20%, p ≤ 0.05) were greater in cortical bone from T2D than in non-diabetics, but no other indentation variables differed. Trabecular bone mechanical properties were similar in both groups, except for yield stress, which tended to be lower in T2D than in non-diabetics. Neither serum pentosidine nor serum total AGEs were different between groups. Cortical, but not trabecular, bone AGEs tended to be higher in T2D subjects (21%, p = 0.09). Serum AGEs and pentosidine were positively correlated with cortical and trabecular bone AGEs. Our study presents new data on biomechanical properties and AGEs in adults with T2D, which are needed to better understand mechanisms contributing to diabetic skeletal fragility. Copyright © 2017. Published by Elsevier Inc.
Ayranci, Ferhat; Gungormus, Metin; Omezli, Mehmet Melih; Gundogdu, Betul
2015-12-01
Increasing sinus pneumatization and the accompanying alveolar bone resorption complicate dental implant placement. This problem can be overcome today by raising the maxillary sinus floor with graft materials. Bisphosphonates are commonly used to accelerate the recovery of the graft materials and to prevent resorption. The purpose of this study is to investigate whether systemic administration of a bisphosphonate (alendronate) would improve new bone formation and reduce fibrous tissue formation over a 6-week follow-up in rabbits treated with two different grafting materials for maxillary sinus floor augmentation. This experimental animal study was conducted at the Experimental Medical Application and Research Center at Erzurum/ Turkey. Twelve New Zealand rabbits, each weighing between 2.7 and 3.3 kg, were used. Twenty-four maxillary sinus floor elevation operations were performed, two on each animal (n = 24). Each elevation was repaired with either deproteinized bovine bone (xenograft) or autogenous bone graft obtained from the iliac crest. Both groups were divided into 2 subgroups: saline-treated and alendronate-treated. All groups underwent the same surgical procedures and evaluation, and were sacrificed at the 6th postoperative week. Sinuses augmented with deproteinized bovine bone (xenograft) and autogenous bone graft were examined histopathologically and histomorphometrically. At 6 weeks, the bone area was significantly larger in the Xenograft-Alendronate group (33.0% ± 5.0%) than in the Xenograft-Saline group (20.8% ± 4.9%) and the bone area was significantly larger in the Autogenous-Alendronate group (43.3% ± 3.8%) than in the Autogenous-Saline group (37.5% ± 6.6%) (P = 0.001). The histomorphometric and histopathological results consistently showed that alendronate stimulated bone formation and reduced fibrous tissue formation in maxillary sinus augmentation grafts, especially in the deproteinized bovine bone group (xenograft). Alendronate may be considered a therapeutic option for improving the bone formation process and reducing resorption in different bone grafting procedures. Further detailed studies should focus on dosage and time-dependent effects of alendronate on bone remodeling.
Ayranci, Ferhat; Gungormus, Metin; Omezli, Mehmet Melih; Gundogdu, Betul
2015-01-01
Background: Increasing sinus pneumatization and the accompanying alveolar bone resorption complicate dental implant placement. This problem can be overcome today by raising the maxillary sinus floor with graft materials. Bisphosphonates are commonly used to accelerate the recovery of the graft materials and to prevent resorption. Objectives: The purpose of this study is to investigate whether systemic administration of a bisphosphonate (alendronate) would improve new bone formation and reduce fibrous tissue formation over a 6-week follow-up in rabbits treated with two different grafting materials for maxillary sinus floor augmentation. Materials and Methods: This experimental animal study was conducted at the Experimental Medical Application and Research Center at Erzurum/ Turkey. Twelve New Zealand rabbits, each weighing between 2.7 and 3.3 kg, were used. Twenty-four maxillary sinus floor elevation operations were performed, two on each animal (n = 24). Each elevation was repaired with either deproteinized bovine bone (xenograft) or autogenous bone graft obtained from the iliac crest. Both groups were divided into 2 subgroups: saline-treated and alendronate-treated. All groups underwent the same surgical procedures and evaluation, and were sacrificed at the 6th postoperative week. Sinuses augmented with deproteinized bovine bone (xenograft) and autogenous bone graft were examined histopathologically and histomorphometrically. Results: At 6 weeks, the bone area was significantly larger in the Xenograft-Alendronate group (33.0% ± 5.0%) than in the Xenograft-Saline group (20.8% ± 4.9%) and the bone area was significantly larger in the Autogenous-Alendronate group (43.3% ± 3.8%) than in the Autogenous-Saline group (37.5% ± 6.6%) (P = 0.001). The histomorphometric and histopathological results consistently showed that alendronate stimulated bone formation and reduced fibrous tissue formation in maxillary sinus augmentation grafts, especially in the deproteinized bovine bone group (xenograft). Conclusions: Alendronate may be considered a therapeutic option for improving the bone formation process and reducing resorption in different bone grafting procedures. Further detailed studies should focus on dosage and time-dependent effects of alendronate on bone remodeling. PMID:26756022
Prieto-Alhambra, Daniel; Servitja, Sonia; Javaid, M Kassim; Garrigós, Laia; Arden, Nigel K; Cooper, Cyrus; Albanell, Joan; Tusquets, Ignasi; Diez-Perez, Adolfo; Nogues, Xavier
2012-06-01
Aromatase inhibitor (AI)-related bone loss is associated with increased fracture rates. Vitamin D might play a role in minimising this effect. We hypothesised that 25-hydroxy-vitamin D concentrations [25(OH)D] after 3 months supplementation might relate to bone loss after 1 year on AI therapy. We conducted a prospective cohort study from January 2006 to December 2011 of a consecutive sample of women initiating AI for early breast cancer who were ineligible for bisphosphonate therapy and stayed on treatment for 1 year (N = 232). Serum 25(OH)D was measured at baseline and 3 months, and lumbar spine (LS) bone mineral density at baseline and 1 year. Subjects were supplemented with daily calcium (1 g) and vitamin D(3) (800 IU) and additional oral 16,000 IU every 2 weeks if baseline 25(OH)D was <30 ng/ml. Linear regression models were fitted to adjust for potential confounders. After 1 year on AI therapy, 232 participants experienced a significant 1.68 % [95 % CI 1.15-2.20 %] bone loss at LS (0.017 g/cm(2) [0.012-0.024], P < 0.0001). Higher 25(OH)D at 3 months protected against LS bone loss (-0.5 % per 10 ng/ml [95 % CI -0.7 to -0.3 %], adjusted P = 0.0001), and those who reached levels ≥40 ng/ml had reduced bone loss by 1.70 % [95 % CI 0.4-3.0 %; adjusted P = 0.005] compared to those with low 25(OH)D levels (<30 ng/ml). We conclude that improved vitamin D status using supplementation is associated with attenuation of AI-associated bone loss. For this population, the current Institute of Medicine target recommendation of 20 ng/ml might be too low to ensure good bone health.
Ackerman, Kathryn E.; Nazem, Taraneh; Chapko, Dorota; Russell, Melissa; Mendes, Nara; Taylor, Alexander P.; Bouxsein, Mary L.
2011-01-01
Context: Bone mineral density (BMD) is lower in young amenorrheic athletes (AA) compared to eumenorrheic athletes (EA) and nonathletic controls and may contribute to fracture risk during a critical time of bone accrual. Abnormal bone microarchitecture is an independent determinant of fracture risk and has not been assessed in young athletes and nonathletes. Objective: We hypothesized that bone microarchitecture is impaired in AA compared to EA and nonathletes despite weight-bearing exercise. Design and Setting: We conducted this cross-sectional study at the Clinical Research Center of Massachusetts General Hospital. Subjects and Outcome Measures: We assessed BMD and bone microarchitecture in 50 subjects [16 AA, 18 EA, and 16 nonathletes (15–21 yr old)] using dual-energy x-ray absorptiometry and high-resolution peripheral quantitative computed tomography. Results: Groups did not differ for chronological age, bone age, body mass index, or vitamin D levels. Lumbar BMD Z-scores were lower in AA vs. EA and nonathletes; hip and femoral neck BMD Z-scores were highest in EA. At the weight-bearing tibia, athletes had greater total area, trabecular area, and cortical perimeter than nonathletes, whereas cortical area and thickness trended lower in AA. Trabecular number was lower and trabecular separation higher in AA vs. EA and nonathletes. At the non-weight-bearing radius, trabecular density was lower in AA vs. EA and nonathletes. Later menarchal age was an important determinant of impaired microarchitecture. After controlling for covariates, subject grouping accounted for 18–24% of the variability in tibial trabecular number and separation. Conclusion: In addition to low BMD, AA have impaired bone microarchitecture compared with EA and nonathletes. These are the first data to show abnormal bone microarchitecture in AA. PMID:21816790
Buddula, Aravind; Assad, Daniel A; Salinas, Thomas J; Garces, Yolanda I
2011-01-01
To study the long-term survival of dental implants placed in native or grafted bone in irradiated bone in subjects who had received radiation for head and neck cancer. A retrospective chart review was conducted for all patients who received dental implants following radiation treatment for head and neck cancer between May 1, 1987 and July 1, 2008. Only patients irradiated with a radiation dose of 50 Gy or greater and those who received dental implants in the irradiated field after head and neck radiation were included in the study. The associations between implant survival and patient/implant characteristics were estimated by fitting univariate marginal Cox proportional hazards models. A total of 48 patients who had prior head and neck radiation had 271 dental implants placed during May 1987-July 2008. There was no statistically significant difference between implant failure in native and grafted bone (P=0.76). Survival of implants in grafted bone was 82.3% and 98.1% in maxilla and mandible, respectively, after 3 years. Survival of implants in native bone in maxilla and mandible was 79.8% and 100%, respectively, after 3 years. For implants placed in the native bone, there was a higher likelihood of failure in the maxilla compared to the mandible and there was also a tendency for implants placed in the posterior region to fail compared to those placed in the anterior region. There was no significant difference in survival when implants were placed in native or grafted bone in irradiated head and neck cancer patients. For implants placed in native bone, survival was significantly influenced by the location of the implant (maxilla or mandible, anterior or posterior).
Wilke, Benjamin; Houdek, Matthew; Rao, Rameshwar R; Caird, Michelle S; Larson, A Noelle; Milbrandt, Todd
2017-09-01
Little data exist to guide the treatment of unicameral bone cysts in the proximal femur. Methods of treatment include corticosteroid injections, curettage and bone grafting, and internal fixation. The authors completed a multi-institutional, retrospective review to evaluate their experience with proximal femoral unicameral bone cysts. They posed the following questions: (1) Does internal fixation reduce the risk of further procedures for the treatment of a unicameral bone cyst? (2) Is radiographic healing faster with internal fixation? Following institutional review board approval, the authors conducted a retrospective review of 36 patients treated for a unicameral bone cyst of the proximal femur at their institutions between 1974 and 2014. Medical records and radiographs were reviewed to identify patient demographics and treatment outcomes. Tumor locations included femoral neck (n=13), intertrochanteric (n=16), and subtrochanteric (n=7). Initial treatment included steroid injection (n=2), curettage and bone grafting (n=9), and internal fixation with curettage and bone grafting (n=25). Mean time was 9 months to radiographic healing and 15 months to return to full activity. The number of patients requiring additional surgeries was increased among those who did not undergo internal fixation. There was no difference in time to radiographic healing. However, time to return to normal activities was reduced if patients had received internal fixation. A significant reduction in additional procedures was observed when patients had been treated with internal fixation. Although this did not influence time to radiographic healing, patients did return to normal activities sooner. Internal fixation should be considered in the treatment of proximal femoral unicameral bone cysts. [Orthopedics. 2017; 40(5):e862-e867.]. Copyright 2017, SLACK Incorporated.
Floreani, A; Carderi, I; Ferrara, F; Rizzotto, E R; Luisetto, G; Camozzi, V; Baldo, V
2007-06-01
International guidelines for managing osteoporosis in cirrhosis or severe cholestasis indicate a <-2.5 t-score as a cut-off for medical treatment, while no treatment is recommended in the case of osteopenia (t-scores ranging from -1.0 to -2.5). We conducted a prospective study in primary biliary cirrhosis with a view to optimizing the rationale for the medical treatment of bone loss. All naïve post-menopausal women with primary biliary cirrhosis were enrolled in the study. Bone metabolism was evaluated by measuring 25-hydroxy-vitamin D, parathyroid hormone, osteocalcin. Bone mineral density was assessed at the lumbar spine by dual-photon X-ray absorptiometry at the baseline and every 2 years for up to 4 years. Patients with either osteopenia or osteoporosis received the following treatment: oral calcium carbonate (1000 mg/day)+vitamin D3 (880 IU/day)+i.m. disodium clodronate 100mg every 10 days for 4 years. Ninety-six patients completed the study: 30 had a normal bone mineral density (group 1), 37 had osteopenia (group 2), 29 had osteoporosis (group 3). No significant differences in biochemical parameters of bone metabolism were observed between the three groups. A total of 288 bone mineral density measurements were taken. Linear regression analysis failed to reveal significant changes in t-score over the follow-up in all groups. A 4-year treatment with clodronate+calcium/vitamin D3 supplements does not significantly improve osteoporosis or osteopenia in primary biliary cirrhosis women in menopause, but prevents the natural bone loss in these patients. Extensive international trials are warranted to optimize the prevention and treatment of bone loss in primary biliary cirrhosis.
Increased risk of SSEs in bone-only metastatic breast cancer patients treated with zoledronic acid.
Yanae, Masashi; Fujimoto, Shinichiro; Tane, Kaori; Tanioka, Maki; Fujiwara, Kimiko; Tsubaki, Masanobu; Yamazoe, Yuzuru; Morishima, Yoshiyuki; Chiba, Yasutaka; Takao, Shintaro; Komoike, Yoshifumi; Tsurutani, Junji; Nakagawa, Kazuhiko; Nishida, Shozo
2017-09-01
Bone represents one of the most common sites to which breast cancer cells metastasize. Patients experience skeletal related adverse events (pathological fractures, spinal cord compressions, and irradiation for deteriorated pain on bone) even during treatment with zoledronic acid (ZA). Therefore, we conducted a retrospective cohort study to investigate the predictive factors for symptomatic skeletal events (SSEs) in bone-metastasized breast cancer (b-MBC) patients. We retrospectively collected data on b-MBC patients treated with ZA. Patient characteristics, including age, subtype, the presence of non-bone lesions, the presence of multiple bone metastases at the commencement of ZA therapy, duration of ZA therapy, the time interval between breast cancer diagnosis and the initiation of ZA therapy, and type of systemic therapy, presence of previous SSE were analyzed using multivariable logistic regression analysis. The medical records of 183 patients were reviewed and 176 eligible patients were analyzed. The median age was 59 (range, 30-87) years. Eighty-seven patients were aged ≥60 years and 89 patients were aged < 60 years. The proportions of patients with estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2-positive disease were 81.8%, 63.1%, and 17.6%, respectively. Fifty-three patients had bone-only MBC at the commencement of ZA therapy. SSEs were observed in 42 patients. In the multivariable logistic regression analysis, bone-only MBC but not a breast cancer subtype was an independent risk factor for an SSE during ZA therapy (odds ratio: 3.878, 95% confidence interval: 1.647-9.481; p = 0.002). Bone-only MBC patients are more likely to experience an SSE even after treatment with ZA.
Impact of Weight Loss With Intragastric Balloon on Bone Density and Microstructure in Obese Adults.
Madeira, Eduardo; Madeira, Miguel; Guedes, Erika Paniago; Mafort, Thiago Thomaz; Moreira, Rodrigo Oliveira; de Mendonça, Laura Maria Carvalho; Lima, Inayá Correa Barbosa; Neto, Leonardo Vieira; de Pinho, Paulo Roberto Alves; Lopes, Agnaldo José; Farias, Maria Lucia Fleiuss
2018-03-21
The historical concept that obesity protects against bone fractures has been questioned. Weight loss appears to reduce bone mineral density (BMD); however, the results in young adults are inconsistent, and data on the effects of weight loss on bone microstructure are limited. This study aimed to evaluate the impact of weight loss using an intragastric balloon (IGB) on bone density and microstructure. Forty obese patients with metabolic syndrome (mean age 35.1 ± 7.3 yr) used an IGB continuously for 6 mo. Laboratory tests, areal BMD, and body composition measurements via dual-energy X-ray absorptiometry, and volumetric BMD and bone microstructure measurements via high-resolution peripheral quantitative computed tomography were conducted before IGB placement and after IGB removal. The mean weight loss was 11.5%. After 6 mo, there were significant increases in vitamin D and carboxyterminal telopeptide of type 1 collagen levels. After IGB use, areal BMD increased in the spine but decreased in the total femur and the 33% radius. Cortical BMD increased in the distal radius but tended to decrease in the distal tibia. The observed trabecular bone loss in the distal tibia contributed to the decline in the total volumetric BMD at this site. There was a negative correlation between the changes in leptin levels and the measures of trabecular quality in the tibia on high-resolution peripheral quantitative computed tomography. Weight loss may negatively impact bone microstructure in young patients, especially for weight-bearing bones, in which obesity has a more prominent effect. Copyright © 2018 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Verstijnen, I. M.; van Mierlo, C. M.; de Ruijter, P.
2008-01-01
In order to investigate the effect of concurrent phoning and auditory environmental monitoring, the performance of visually impaired people was observed on a dual task that consisted of two simulation tasks. Subjects wore either a bone conducting headset, or closed or open (air conduction) earphones. Reaction times and the correctness of responses…
[The investigation rate and influence factors of tinnitus with chronic suppurative otitis media].
Lin, Y J; Wu, X Q; Ma, X; Lai, R Z
2018-04-01
Objective: To investigate the incidence of tinnitus and its influencing factors in patients with chronic suppurative otitis media, and to provide clinical data for the study of the pathogenesis of tinnitus. Method: The clinical data of 77 patients with chronic suppurative otitis media who underwent modified radical mastoidectomy and tympanoplasty were investigated. When tinnitus and otitis media happened in the same side,then the tinnitus is judged to be otitis media related. Patients were further divided into otitis media related tinnitus and the no tinnitus groups. The differences of tinnitus severity, sleep disturbance, migraine (migraine features), snoring and gastroesophageal reflux were compared between the two groups in tinnitus occurrence and classification. Result: The incidence of otitis media related tinnitus was 55.8%(43/77). Most of the tinnitus happened(33/43) later than the occurrence of otitis media for several years or even decades. There were 43 cases of tinnitus associated with otitis media, and 31 cases without tinnitus. Between the groups, significant differences were observed in migraine features, and the P value is 0.011, while no significant differences were noticed in the severity of hearing loss and sleep disorders, snoring, gastroesophageal reflux. Ranking of otitis media related tinnitus was positively related to the degree of hearing loss, especially the bone conduction threshold. With Spearman rank correlation test,P values of mean value(250Hz,500Hz,1kHz,2kHz,4kHz), middle frequency (1kHz, 2kHz)and high frequency (4kHz) of bone conduction threshold were 0.010,0.019 and 0.003, and the correlation coefficients were 0.391,0.356 and 0.443, respectively. Conclusion: The occurrence of tinnitus in patients with otitis media may not be consistent with the time of otitis media, and theoretically later than the occurrence of otitis media is more reasonable. Whether tinnitus occurs in patients with otitis media is not related to sleep disorders, the degree of air conduction and bone conduction hearing loss, but is related to migraine features. The severity of tinnitus associated with otitis media is associated with bone conduction hearing loss. Copyright© by the Editorial Department of Journal of Clinical Otorhinolaryngology Head and Neck Surgery.
Tympanic plate fractures in temporal bone trauma: prevalence and associated injuries.
Wood, C P; Hunt, C H; Bergen, D C; Carlson, M L; Diehn, F E; Schwartz, K M; McKenzie, G A; Morreale, R F; Lane, J I
2014-01-01
The prevalence of tympanic plate fractures, which are associated with an increased risk of external auditory canal stenosis following temporal bone trauma, is unknown. A review of posttraumatic high-resolution CT temporal bone examinations was performed to determine the prevalence of tympanic plate fractures and to identify any associated temporal bone injuries. A retrospective review was performed to evaluate patients with head trauma who underwent emergent high-resolution CT examinations of the temporal bone from July 2006 to March 2012. Fractures were identified and assessed for orientation; involvement of the tympanic plate, scutum, bony labyrinth, facial nerve canal, and temporomandibular joint; and ossicular chain disruption. Thirty-nine patients (41.3 ± 17.2 years of age) had a total of 46 temporal bone fractures (7 bilateral). Tympanic plate fractures were identified in 27 (58.7%) of these 46 fractures. Ossicular disruption occurred in 17 (37.0%). Fractures involving the scutum occurred in 25 (54.4%). None of the 46 fractured temporal bones had a mandibular condyle dislocation or fracture. Of the 27 cases of tympanic plate fractures, 14 (51.8%) had ossicular disruption (P = .016) and 18 (66.6%) had a fracture of the scutum (P = .044). Temporomandibular joint gas was seen in 15 (33%) but was not statistically associated with tympanic plate fracture (P = .21). Tympanic plate fractures are commonly seen on high-resolution CT performed for evaluation of temporal bone trauma. It is important to recognize these fractures to avoid the preventable complication of external auditory canal stenosis and the potential for conductive hearing loss due to a fracture involving the scutum or ossicular chain.
Buddhachat, Kittisak; Klinhom, Sarisa; Siengdee, Puntita; Brown, Janine L; Nomsiri, Raksiri; Kaewmong, Patcharaporn; Thitaram, Chatchote; Mahakkanukrauh, Pasuk; Nganvongpanit, Korakot
2016-01-01
Mineralized tissues accumulate elements that play crucial roles in animal health. Although elemental content of bone, blood and teeth of human and some animal species have been characterized, data for many others are lacking, as well as species comparisons. Here we describe the distribution of elements in horn (Bovidae), antler (Cervidae), teeth and bone (humerus) across a number of species determined by handheld X-ray fluorescence (XRF) to better understand differences and potential biological relevance. A difference in elemental profiles between horns and antlers was observed, possibly due to the outer layer of horns being comprised of keratin, whereas antlers are true bone. Species differences in tissue elemental content may be intrinsic, but also related to feeding habits that contribute to mineral accumulation, particularly for toxic heavy metals. One significant finding was a higher level of iron (Fe) in the humerus bone of elephants compared to other species. This may be an adaptation of the hematopoietic system by distributing Fe throughout the bone rather than the marrow, as elephant humerus lacks a marrow cavity. We also conducted discriminant analysis and found XRF was capable of distinguishing samples from different species, with humerus bone being the best source for species discrimination. For example, we found a 79.2% correct prediction and success rate of 80% for classification between human and non-human humerus bone. These findings show that handheld XRF can serve as an effective tool for the biological study of elemental composition in mineralized tissue samples and may have a forensic application.
NASA Technical Reports Server (NTRS)
Smith, Scott M.; Nillen, Jeannie L.; Davis-Street, Janis E.; DeKerlegand, Diane E.; LeBlanc, Adrian; Shackelford, Linda C.
2001-01-01
Weightlessness-induced bone loss must be counteracted to ensure crew health during extendedduration space missions. Studies were conducted to assess two bone loss countermeasures in a ground-based model: horizontal bed rest. Following a 3-wk ambulatory adaptation period, male and female subjects (aged 21-56 y) completed a 17-wk bed rest protocol. Subjects were assigned to one of three treatments: alendronate (ALEN; 10 mg/d, n=6), resistive exercise (RE; 1.5 h/d, 6 d/wk, n=8), or control (CN; no countermeasure, n=8). Dietary intake was adjusted to maintain body weight. Endocrine and biochemical indices were measured in blood and urine using standard laboratory methods. All data reported are expressed as percent change from individual pre-bedrest data. Serum calcium changed little during bed rest, and tended to decrease (4-8%) in ALEN subjects. In RE subjects, bone alkaline phosphatase and osteocalcin were increased >65 and >30%, respectively, during bed rest, while these were unchanged or decreased in ALEN and CN subjects. Urinary calcium was increased 50% in CN subjects, but was unchanged or decreased in both ALEN and RE groups. Urinary n-telopeptide excretion was increased 40-50% in CN and RE subjects, but decreased 20% in ALEN subjects. Pyridinium crosslink and deoxypyridinoline excretion were increased 20-50% during bed rest. These data suggest that RE countermeasures are effective at increasing markers of bone formation in an analog of weightlessness, while ALEN reduces markers of bone resorption. Counteracting the bone loss of space flight may require both pharmacologic and exercise countermeasures.
Bone mineral density changes during the menopause transition in a multiethnic cohort of women.
Finkelstein, Joel S; Brockwell, Sarah E; Mehta, Vinay; Greendale, Gail A; Sowers, MaryFran R; Ettinger, Bruce; Lo, Joan C; Johnston, Janet M; Cauley, Jane A; Danielson, Michelle E; Neer, Robert M
2008-03-01
Rates of bone loss across the menopause transition and factors associated with variation in menopausal bone loss are poorly understood. Our objective was to assess rates of bone loss at each stage of the transition and examine major factors that modify those rates. We conducted a longitudinal cohort study of 1902 African-American, Caucasian, Chinese, or Japanese women participating in The Study of Women's Health Across the Nation. Women were pre- or early perimenopausal at baseline. We assessed bone mineral density (BMD) of the lumbar spine and total hip across a maximum of six annual visits. There was little change in BMD during the pre- or early perimenopause. BMD declined substantially in the late perimenopause, with an average loss of 0.018 and 0.010 g/cm2.yr from the spine and hip, respectively (P<0.001 for both). In the postmenopause, rates of loss from the spine and hip were 0.022 and 0.013 g/cm2.yr, respectively (P<0.001 for both). During the late peri- and postmenopause, bone loss was approximately 35-55% slower in women in the top vs. the bottom tertile of body weight. Apparent ethnic differences in rates of spine bone loss were largely explained by differences in body weight. Bone loss accelerates substantially in the late perimenopause and continues at a similar pace in the first postmenopausal years. Body weight is a major determinant of the rate of menopausal BMD loss, whereas ethnicity, per se, is not. Healthcare providers should consider this information when deciding when to screen women for osteoporosis.
CHOI, Sungjin; LIU, I-Li; YAMAMOTO, Kenichi; HONNAMI, Muneki; SAKAI, Takamasa; OHBA, Shinsuke; ECHIGO, Ryosuke; SUZUKI, Shigeki; NISHIMURA, Ryouhei; CHUNG, Ung-il; SASAKI, Nobuo; MOCHIZUKI, Manabu
2013-01-01
ABSTRACT We investigated biodegradability and new bone formation after implantation of tetrapod-shaped granular artificial bone (Tetrabone®) or β-tricalcium phosphate granules (β-TCP) in experimental critical-size defects in dogs, which were created through medial and lateral femoral condyles. The defect was packed with Tetrabone® (Tetrabone group) or β-TCP (β-TCP group) or received no implant (control group). Computed tomography (CT) was performed at 0, 4 and 8 weeks after implantation. Micro-CT and histological analysis were conducted to measure the non-osseous tissue rate and the area and distribution of new bone tissue in the defect at 8 weeks after implantation. On CT, β-TCP was gradually resorbed, while Tetrabone® showed minimal resorption at 8 weeks after implantation. On micro-CT, non-osseous tissue rate of the control group was significantly higher compared with the β-TCP and Tetrabone groups (P<0.01), and that of the β-TCP group was significantly higher compared with the Tetrabone group (P<0.05). On histology, area of new bone tissue of the β-TCP group was significantly greater than those of the Tetrabone and control groups (P<0.05), and new bone distribution of the Tetrabone group was significantly greater than those of the β-TCP and control groups (P<0.05). These results indicate differences in biodegradability and connectivity of intergranule pore structure between study samples. In conclusion, Tetrabone® may be superior for the repair of large bone defects in dogs. PMID:24161964
Choi, Sungjin; Liu, I-Li; Yamamoto, Kenichi; Honnami, Muneki; Sakai, Takamasa; Ohba, Shinsuke; Echigo, Ryosuke; Suzuki, Shigeki; Nishimura, Ryouhei; Chung, Ung-Il; Sasaki, Nobuo; Mochizuki, Manabu
2014-03-01
We investigated biodegradability and new bone formation after implantation of tetrapod-shaped granular artificial bone (Tetrabone®) or β-tricalcium phosphate granules (β-TCP) in experimental critical-size defects in dogs, which were created through medial and lateral femoral condyles. The defect was packed with Tetrabone® (Tetrabone group) or β-TCP (β-TCP group) or received no implant (control group). Computed tomography (CT) was performed at 0, 4 and 8 weeks after implantation. Micro-CT and histological analysis were conducted to measure the non-osseous tissue rate and the area and distribution of new bone tissue in the defect at 8 weeks after implantation. On CT, β-TCP was gradually resorbed, while Tetrabone® showed minimal resorption at 8 weeks after implantation. On micro-CT, non-osseous tissue rate of the control group was significantly higher compared with the β-TCP and Tetrabone groups (P<0.01), and that of the β-TCP group was significantly higher compared with the Tetrabone group (P<0.05). On histology, area of new bone tissue of the β-TCP group was significantly greater than those of the Tetrabone and control groups (P<0.05), and new bone distribution of the Tetrabone group was significantly greater than those of the β-TCP and control groups (P<0.05). These results indicate differences in biodegradability and connectivity of intergranule pore structure between study samples. In conclusion, Tetrabone® may be superior for the repair of large bone defects in dogs.
Laser for bone healing after oral surgery: systematic review.
Noba, Claudio; Mello-Moura, Anna Carolina Volpi; Gimenez, Thais; Tedesco, Tamara Kerber; Moura-Netto, Cacio
2018-04-01
The purpose of this study is to perform a systematic review on the use of lasers in oral surgery for bone healing. Selection of articles was carried out by two evaluators in Pubmed and Web of Science databases for published articles and OpenGray for gray literature. Search strategy was developed based on the PICO Question "Does the use of lasers after oral surgery improve bone healing?". Eligibility criteria were: being on laser; evaluate bone healing; involve oral surgery; do not be about implant, periodontics, orthodontics, osteonecrosis or radiotherapy, nor revisions, clinical cases, etc. Data were collected from each article in a structured spreadsheet and a descriptive analysis was performed. Risk assessment of bias of the articles was carried out through the tool elaborated by the Cochrane collaboration. A total of 827 potentially relevant references were identified. No articles were found in OpenGray. Eleven articles met the eligibility criteria and were included in the systematic review. Most of studies were in vivo and in jaw, being conducted with low-power lasers which were applied immediately after the surgical procedure of extraction. Neoformation and bone density were the outcomes of choice and there was a tendency of increase in bone density, neoformation, regeneration, mineralization, or bone condensation when laser was applied. Regarding the bias risk assessment, studies were not clear in reporting most of the parameters. Low-power laser therapy seems to reduce time of bone healing in oral surgery, although there are no defined protocols and the level of evidence is still considered weak.
Buddhachat, Kittisak; Klinhom, Sarisa; Siengdee, Puntita; Brown, Janine L.; Nomsiri, Raksiri; Kaewmong, Patcharaporn; Thitaram, Chatchote; Mahakkanukrauh, Pasuk; Nganvongpanit, Korakot
2016-01-01
Mineralized tissues accumulate elements that play crucial roles in animal health. Although elemental content of bone, blood and teeth of human and some animal species have been characterized, data for many others are lacking, as well as species comparisons. Here we describe the distribution of elements in horn (Bovidae), antler (Cervidae), teeth and bone (humerus) across a number of species determined by handheld X-ray fluorescence (XRF) to better understand differences and potential biological relevance. A difference in elemental profiles between horns and antlers was observed, possibly due to the outer layer of horns being comprised of keratin, whereas antlers are true bone. Species differences in tissue elemental content may be intrinsic, but also related to feeding habits that contribute to mineral accumulation, particularly for toxic heavy metals. One significant finding was a higher level of iron (Fe) in the humerus bone of elephants compared to other species. This may be an adaptation of the hematopoietic system by distributing Fe throughout the bone rather than the marrow, as elephant humerus lacks a marrow cavity. We also conducted discriminant analysis and found XRF was capable of distinguishing samples from different species, with humerus bone being the best source for species discrimination. For example, we found a 79.2% correct prediction and success rate of 80% for classification between human and non-human humerus bone. These findings show that handheld XRF can serve as an effective tool for the biological study of elemental composition in mineralized tissue samples and may have a forensic application. PMID:27196603
Pandey, Rupesh Kumar; Panda, Sudhansu Sekhar
2014-11-01
Drilling of bone is a common procedure in orthopedic surgery to produce hole for screw insertion to fixate the fracture devices and implants. The increase in temperature during such a procedure increases the chances of thermal invasion of bone which can cause thermal osteonecrosis resulting in the increase of healing time or reduction in the stability and strength of the fixation. Therefore, drilling of bone with minimum temperature is a major challenge for orthopedic fracture treatment. This investigation discusses the use of fuzzy logic and Taguchi methodology for predicting and minimizing the temperature produced during bone drilling. The drilling experiments have been conducted on bovine bone using Taguchi's L25 experimental design. A fuzzy model is developed for predicting the temperature during orthopedic drilling as a function of the drilling process parameters (point angle, helix angle, feed rate and cutting speed). Optimum bone drilling process parameters for minimizing the temperature are determined using Taguchi method. The effect of individual cutting parameters on the temperature produced is evaluated using analysis of variance. The fuzzy model using triangular and trapezoidal membership predicts the temperature within a maximum error of ±7%. Taguchi analysis of the obtained results determined the optimal drilling conditions for minimizing the temperature as A3B5C1.The developed system will simplify the tedious task of modeling and determination of the optimal process parameters to minimize the bone drilling temperature. It will reduce the risk of thermal osteonecrosis and can be very effective for the online condition monitoring of the process. © IMechE 2014.
Thermal contribution of compact bone to intervening tissue-like media exposed to planar ultrasound
NASA Astrophysics Data System (ADS)
Moros, Eduardo G.; Novak, Petr; Straube, William L.; Kolluri, Prashant; Yablonskiy, Dmitriy A.; Myerson, Robert J.
2004-03-01
The presence of bone in the ultrasound beam path raises concerns, both in diagnostic and therapeutic applications, because significant temperature elevations may be induced at nearby soft tissue-bone interfaces due the facts that ultrasound is (i) highly absorbed in bone and (ii) reflected at soft tissue-bone interfaces in various degrees depending on angle of incidence. Consequently, in ultrasonic thermal therapy, the presence of bone in the ultrasound beam path is considered a major disadvantage and it is usually avoided. However, based on clinical experience and previous theoretical studies, we hypothesized that the presence of bone in superficial unfocused ultrasound hyperthermia can actually be exploited to induce more uniform and enhanced (with respect to the no-bone situation) temperature distributions in superficial target volumes. In particular, we hypothesize that the presence of underlying bone in superficial target volume enhances temperature elevation not only by additional direct power deposition from acoustic reflection, but also from thermal diffusion from the underlying bone. Here we report laboratory results that corroborate previous computational studies and strengthen the above-stated hypothesis. Three different temperature measurement techniques, namely, thermometric (using fibre-optic temperature probes), thermographic (using an infrared camera) and magnetic resonance imaging (using proton resonance frequency shifts), were used in high-power short-exposure, and in low-power extended-exposure, experiments using a 19 mm diameter planar transducer operating at 1.0 and 3.3 MHz (frequencies of clinical relevance). The measurements were performed on three technique-specific phantoms (with and without bone inclusions) and experimental set-ups that resembled possible superficial ultrasound hyperthermia clinical situations. Results from all three techniques were in general agreement and clearly showed that significantly higher heating rates (greater than fourfold) were induced in soft tissue-like phantom materials adjacent (within ~5 mm) to a bovine bone as compared to similar experiments without bone inclusions. For low-power long-exposure experiments, where thermal conduction effects are significant, the thermal impact of bone reached at distances >10 mm from the bone surface (upstream of the bone). Therefore, we hypothesize that underlying bone exposed to planar ultrasound hyperthermia creates a high-temperature thermal boundary at depth that compensates for beam attenuation, thus producing more uniform temperature distribution in the intervening tissue layers. With appropriate technology, this finding may lead to improved thermal doses in superficial treatment sites such as the chest wall and the head/neck.
[Effect of the middle ear status on the recording of vestibular evoked myogenic potential--VEMP].
Kurzyna, Agnieszka; Hassmann-Poznańska, Elzbieta; Topolska, Małgorzata Maria
2005-01-01
The aim of this study was to assess the effect of the middle ear status on the recording of air- and bone-conducted vestibular evoked myogenic potential. Forty eight children were included in the study, ranging in age from 4 to 10 years. All of the children underwent otoscopy, pure tone audiometry, tympanometry and air- and bone-conducted VEMP in response to click. There were 3 groups according to the condition of the middle ear: group I--52 ears (type A and C1 tympanogram, pure tone average < or = 20 dB), group II--23 ears (type C2 and B tympanogram, pure tone average < or = 20 dB), group III--21 (type B tympanogram, pure tone average > 20 dB). The threshold, presence of correct waveform morphology of the response and latency was evaluated. The condition of the middle ear has no significant effect on the recording of VEMP and mean level of the response threshold with bone stimulation, based on the performed studies. However, with air stimulation it has effect on the recording of VEMP, increase of the mean threshold response and shortening of latency p13 and n23.
Vibration characteristics of bone conducted sound in vitro.
Stenfelt, S; Håkansson, B; Tjellström, A
2000-01-01
A dry skull added with damping material was used to investigate the vibratory pattern of bone conducted sound. Three orthogonal vibration responses of the cochleae were measured, by means of miniature accelerometers, in the frequency range 0.1-10 kHz. The exciter was attached to the temporal, parietal, and frontal bones, one at the time. In the transmission response to the ipsilateral cochlea, a profound low frequency antiresonance (attenuation) was found, verified psycho-acoustically, and shown to yield a distinct lateralization effect. It was also shown that, for the ipsilateral side, the direction of excitation coincides with that of maximum response. At the contralateral cochlea, no such dominating response direction was found for frequencies above the first skull resonance. An overall higher response level was achieved, for the total energy transmission in general and specifically for the direction of excitation, at the ipsilateral cochlea when the transducer was attached to the excitation point closest to the cochlea. The transranial attenuation was found to be frequency dependent, with values from -5 to 10 dB for the energy transmission and -30 to 40 dB for measurements in a single direction, with a tendency toward higher attenuation at the higher frequencies.
NASA Astrophysics Data System (ADS)
AbdulRahman, A.; Latiff, A. A. A.; Daud, Z.; Ridzuan, M. B.; D, N. F. M.; Jagaba, A. H.
2016-07-01
Several studies have been conducted on the removal of heavy metals from palm oil mill effluent. In this study, cow bones were developed as an adsorbent for the removal of cadmium II from POME. A batch experiment was conducted to investigate the effectiveness of the prepared activated cow bone powder for the sorption of cadmium II from raw POME. The experiment was carried out under fixed conditions using 100mg/L raw POME combined with different adsorbent dosage of CBP of 184.471 Ra(nm) surface roughness. The equilibrium adsorption capacity of the hydrophobic CBP of average contact angle 890 was determined from the relationship between the initial and equilibrium liquid phase concentrations of POME. The optimum adsorption of cadmium II on CBP was at 10g adsorbent dosage for sample 1 and 2 at 97.8% and 96.93% respectively. The least uptake was at 30g adsorbent weight for both samples at average of 95.1% for both samples. The effective removal of cadmium ion showed that CBP has a great potential for the treatment of heavy metal in POME.
... even help you ward off depression and maintain orthopedic health (related to bones and muscles). Healthy Weight ... National Institutes of Health (NIH) conduct and support research into many diseases and conditions. What are clinical ...