Sample records for bone histomorphometry osteocalcin

  1. Repeated oral administration of a cathepsin K inhibitor significantly suppresses bone resorption in exercising horses with evidence of increased bone formation and maintained bone turnover.

    PubMed

    Hussein, H; Dulin, J; Smanik, L; Drost, W T; Russell, D; Wellman, M; Bertone, A

    2017-08-01

    Our investigations evaluated the effect of VEL-0230, a highly specific irreversible inhibitor of cathepsin K (CatK). The objectives of our study were to determine whether repeated dosing of a CatK inhibitor (CatKI) produced a desired inhibition of the bone resorption biomarker (CTX-1), and document the effect of repeated dosing on bone homeostasis, structure, and dynamics of bone resorption and formation in horses. Twelve young exercising horses were randomized in a prospective, controlled clinical trial and received 4 weekly doses of a CatKI or vehicle. Baseline and poststudy nuclear scintigraphy, blood sampling and analysis of plasma bone biomarkers (CTX-1 and osteocalcin), poststudy bone fluorescent labeling, and bone biopsy were performed. Bone specimens were further processed for microcomputed tomography and bone histomorphometry. Each dose of this CatKI transiently inhibited plasma CTX-1 (reflecting inhibition of bone collagen resorption) and increased bone plasma osteocalcin concentrations, with no detectable adverse effect on normal bone turnover in the face of exercise. Bone morphology, density, and formation rate were not different between control and treated group. Further investigation of CatK inhibition in abnormal bone turnover is required in animals with bone diseases. © 2016 John Wiley & Sons Ltd.

  2. Combined flurbiprofen and cyclosporin-A does not attenuate bone loss and exaggerates renal impairment.

    PubMed

    Sass, D A; Rucinski, B; Bryer, H P; Mann, G N; Yuan, Z; Ma, Y; Jee, W S; Epstein, S

    1996-10-01

    Cyclosporine (CsA) is a potent immunosuppressant that has revolutionized the success of organ transplantation. Flurbiprofen (FB), a propionic acid derivative NSAID, has been demonstrated in vivo to reduce osteoclast numbers in normal rats. The aim of this experiment was to determine whether addition of FB to CsA-treated rats could prevent the bone changes associated with CsA therapy. Forty-eight 10-12-week-old male Sprague-Dawley rats were randomized to receive, daily for 28 days: (1) CsA vehicle p.o. plus FB vehicle sc; (2) CsA (15 mg/kg) p.o. plus FB vehicle sc, (3) CsA vehicle p.o. plus FB (1.5 mg/kg) sc; and (4) CsA (15 mg/kg) p.o. plus FB (1.5 mg/kg) sc. Rats were weighed and venous blood sampled at baseline, 14 days, and 28 days for determination of glucose, Ca+2, BUN, creatinine, PTH, osteocalcin, and 1,25(OH)2 vitamin D. Tibiae were removed following killing, after double labeling for histomorphometry. Body mass was significantly lower than control in all rats receiving CsA on days 14 and 28 while blood glucose was only elevated in the CsA alone group. Day 28 BUN and creatinine were significantly elevated in the CsA group and the combination of CsA and FB revealed an exacerbation of this trend. Vitamin D and osteocalcin were consistently increased in the CsA and CsA/FB groups. Bone histomorphometry showed evidence of trabecular osteopenia in CsA and CsA/FB groups. CsA alone resulted in elevated bone turnover. FB was unable to prevent the trabecular bone loss induced by CsA therapy. This experiment indicates no role for FB as a therapeutic option in CsA-induced bone disease at the given doses and duration of treatment by virtue of its lack of bone sparing ability and adverse renal effects when the two drugs are administered concurrently.

  3. Dietary magnesium reduction to 25% of nutrient requirement disrupts bone and mineral metabolism in the rat.

    PubMed

    Rude, Robert K; Gruber, Helen E; Norton, H James; Wei, Livia Y; Frausto, Angelica; Kilburn, Jeremy

    2005-08-01

    Low dietary magnesium (Mg) may be a risk factor for osteoporosis. In animals, severe Mg deficiency (0.04% of nutrient requirement [NR]) results in bone loss. We have also found that a more moderate dietary Mg restriction (10% of NR) also resulted in loss of bone. We now report the effect of Mg intake of 25% NR on bone and mineral metabolism in the rat. Serum Mg, Ca, PTH, 1,25(OH)2-vitamin D, alkaline phosphatase, osteocalcin, and pyridinoline were measured at 2, 4, and 6 months in control and Mg-deficient animals. Femurs and tibias were collected for mineral content, micro-computerized tomography, histomorphometry, and immunocytochemical localization. Profound Mg deficiency developed as assessed by marked hypomagnesemia and 27% reduction in bone Mg content. Serum calcium was not significantly different between groups. Mg depletion resulted in a significantly lower serum PTH concentrations. Serum 1,25(OH)2-vitamin D was also significantly lower. No difference was noted in markers of bone turnover. Histomorphometry and micro-computerized tomography demonstrated decreased bone volume and trabecular thickness. No difference was observed for osteoclast or osteoblast number. Inflammatory cytokines may contribute to bone loss. We found that immunocytochemical localization of TNFalpha in osteoclasts was increased 138-150%. This increase in TNFalpha may be due to increased substance P as it was found to be elevated from 179% to 432%. These data demonstrate that Mg intake of 25% NR in the rat causes lower bone mass which may be related to increased release of substance P and TNFalpha.

  4. Administration of growth hormone in selectively protein-deprived rats decreases BMD and bone strength.

    PubMed

    Ammann, Patrick; Brennan, Tara C; Mekraldi, Samia; Aubert, Michel L; Rizzoli, René

    2010-06-01

    Isocaloric protein undernutrition is associated with decreased bone mass and decreased bone strength, together with lower IGF-I levels. It remains unclear whether administration of growth hormone (GH) corrects these alterations in bone metabolism. Six-month-old female rats were fed isocaloric diets containing either 2.5% or 15% casein for 2 weeks. Bovine growth hormone (bGH, 0.5 or 2.5mg/kg of body weight) or vehicle was then administered as subcutaneous injections, twice daily, to rats on either diet for 4 weeks. At the proximal tibia, analysis of bone mineral density (BMD), maximal load and histomorphometry were performed. In addition, urinary deoxypyridinoline, plasma osteocalcin and IGF-I concentrations were measured. Weight was monitored weekly. bGH caused a dose-dependent increase in plasma IGF-I regardless of the dietary protein content. However, bGH dose-dependently decreased BMD and bone strength in rats fed the low-protein diet. There was no significant effect of bGH on BMD in rats fed the normal protein diet within this short-term treatment period, however bone formation as detected by histomorphometry was improved in this group but not the low-protein group. Osteoclast surface was increased in the low-protein bGH-treated animals only. Changes in bone turnover markers were detectable under both normal and low-protein diets. These results emphasize the major importance of dietary protein intake in the bone response to short-term GH administration, and highlight the need for further investigation into the effects of GH treatment in patients with reduced protein intake. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Overexpression of bone sialoprotein leads to an uncoupling of bone formation and bone resorption in mice.

    PubMed

    Valverde, Paloma; Zhang, Jin; Fix, Amanda; Zhu, Ji; Ma, Wenli; Tu, Qisheng; Chen, Jake

    2008-11-01

    The purpose of this study was to determine the effects of bone sialoprotein (BSP) overexpression in bone metabolism in vivo by using a homozygous transgenic mouse line that constitutively overexpresses mouse BSP cDNA driven by the cytomegalovirus (CMV) promoter. CMV-BSP transgenic (TG) mice and wildtype mice were weighed, and their length, BMD, and trabecular bone volume were measured. Serum levels of RANKL, osteocalcin, osteoprotegerin (OPG), TRACP5b, and PTH were determined. Bone histomorphometry, von Kossa staining, RT-PCR analysis, Western blot, MTS assay, in vitro mineralization assay, and TRACP staining were also performed to delineate phenotypes of this transgenic mouse line. Compared with wildtype mice, adult TG mice exhibit mild dwarfism, lower values of BMD, and lower trabecular bone volume. TG mice serum contained increased calcium levels and decreased PTH levels, whereas the levels of phosphorus and magnesium were within normal limits. TG mice serum also exhibited lower levels of osteoblast differentiation markers and higher levels of markers, indicating osteoclastic activity and bone resorption. H&E staining, TRACP staining, and bone histomorphometry showed that adult TG bones were thinner and the number of giant osteoclasts in TG mice was higher, whereas there were no significant alterations in osteoblast numbers between TG mice and WT mice. Furthermore, the vertical length of the hypertrophic zone in TG mice was slightly enlarged. Moreover, ex vivo experiments indicated that overexpression of BSP decreased osteoblast population and increased osteoclastic activity. Partly because of its effects in enhancing osteoclastic activity and decreasing osteoblast population, BSP overexpression leads to an uncoupling of bone formation and resorption, which in turn results in osteopenia and mild dwarfism in mice. These findings are expected to help the development of therapies to metabolic bone diseases characterized by high serum level of BSP.

  6. Alendronate promotes bone formation by inhibiting protein prenylation in osteoblasts in rat tooth replantation model.

    PubMed

    Komatsu, Koichiro; Shimada, Akemi; Shibata, Tatsuya; Wada, Satoshi; Ideno, Hisashi; Nakashima, Kazuhisa; Amizuka, Norio; Noda, Masaki; Nifuji, Akira

    2013-11-01

    Bisphosphonates (BPs) are a major class of antiresorptive drug, and their molecular mechanisms of antiresorptive action have been extensively studied. Recent studies have suggested that BPs target bone-forming cells as well as bone-resorbing cells. We previously demonstrated that local application of a nitrogen-containing BP (N-BP), alendronate (ALN), for a short period of time increased bone tissue in a rat tooth replantation model. Here, we investigated cellular mechanisms of bone formation by ALN. Bone histomorphometry confirmed that bone formation was increased by local application of ALN. ALN increased proliferation of bone-forming cells residing on the bone surface, whereas it suppressed the number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts in vivo. Moreover, ALN treatment induced more alkaline phosphatase-positive and osteocalcin-positive cells on the bone surface than PBS treatment. In vitro studies revealed that pulse treatment with ALN promoted osteocalcin expression. To track the target cells of N-BPs, we applied fluorescence-labeled ALN (F-ALN) in vivo and in vitro. F-ALN was taken into bone-forming cells both in vivo and in vitro. This intracellular uptake was inhibited by endocytosis inhibitors. Furthermore, the endocytosis inhibitor dansylcadaverine (DC) suppressed ALN-stimulated osteoblastic differentiation in vitro and it suppressed the increase in alkaline phosphatase-positive bone-forming cells and subsequent bone formation in vivo. DC also blocked the inhibition of Rap1A prenylation by ALN in the osteoblastic cells. These data suggest that local application of ALN promotes bone formation by stimulating proliferation and differentiation of bone-forming cells as well as inhibiting osteoclast function. These effects may occur through endocytic incorporation of ALN and subsequent inhibition of protein prenylation.

  7. Overexpression of Bone Sialoprotein Leads to an Uncoupling of Bone Formation and Bone Resorption in Mice

    PubMed Central

    Valverde, Paloma; Zhang, Jin; Fix, Amanda; Zhu, Ji; Ma, Wenli; Tu, Qisheng; Chen, Jake

    2008-01-01

    The purpose of this study was to determine the effects of bone sialoprotein (BSP) overexpression in bone metabolism in vivo by using a homozygous transgenic mouse line that constitutively overexpresses mouse BSP cDNA driven by the cytomegalovirus (CMV) promoter. CMV-BSP transgenic (TG) mice and wildtype mice were weighed, and their length, BMD, and trabecular bone volume were measured. Serum levels of RANKL, osteocalcin, osteoprotegerin (OPG), TRACP5b, and PTH were determined. Bone histomorphometry, von Kossa staining, RT-PCR analysis, Western blot, MTS assay, in vitro mineralization assay, and TRACP staining were also performed to delineate phenotypes of this transgenic mouse line. Compared with wildtype mice, adult TG mice exhibit mild dwarfism, lower values of BMD, and lower trabecular bone volume. TG mice serum contained increased calcium levels and decreased PTH levels, whereas the levels of phosphorus and magnesium were within normal limits. TG mice serum also exhibited lower levels of osteoblast differentiation markers and higher levels of markers, indicating osteoclastic activity and bone resorption. H&E staining, TRACP staining, and bone histomorphometry showed that adult TG bones were thinner and the number of giant osteoclasts in TG mice was higher, whereas there were no significant alterations in osteoblast numbers between TG mice and WT mice. Furthermore, the vertical length of the hypertrophic zone in TG mice was slightly enlarged. Moreover, ex vivo experiments indicated that overexpression of BSP decreased osteoblast population and increased osteoclastic activity. Partly because of its effects in enhancing osteoclastic activity and decreasing osteoblast population, BSP overexpression leads to an uncoupling of bone formation and resorption, which in turn results in osteopenia and mild dwarfism in mice. These findings are expected to help the development of therapies to metabolic bone diseases characterized by high serum level of BSP. PMID:18597627

  8. Different effects on bone strength and cell differentiation in pre pubertal caloric restriction versus hypothalamic suppression✩,✩✩

    PubMed Central

    Joshi, R.N.; Safadi, F.F.; Barbe, M.F.; Carpio-Cano, Fe Del; Popoff, S.N.; Yingling, V.R.

    2013-01-01

    Hypothalamic amenorrhea and energy restriction during puberty affect peak bone mass accrual. One hypothesis suggests energy restriction alters hypothalamic function resulting in suppressed estradiol levels leading to bone loss. However, both positive and negative results have been reported regarding energy restriction and bone strength. Therefore, the purpose of this study was to investigate energy restriction and hypothalamic suppression during pubertal onset on bone mechanical strength and the osteogenic capacity of bone marrow-derived cells in two models: female rats treated with gonadotropin releasing hormone antagonists (GnRH-a) or 30% energy restriction. At 23 days of age, female Sprague Dawley rats were assigned to three groups: control group (C, n=10), GnRH-a group (n=10), and Energy Restriction (ER, n=12) group. GnRH-a animals received daily injections for 27 days. The animals in the ER group received 70% of the control animals’ intake. After sacrifice (50 days of age), body weight, uterine and muscle weights were measured. Bone marrow-derived stromal cells were cultured and assayed for proliferation and differentiation into osteoblasts. Outcome measures included bone strength, bone histomorphometry and architecture, serum IGF-1 and osteocalcin. GnRH-a suppressed uterine weight, decreased osteoblast proliferation, bone strength, trabecular bone volume and architecture compared to control. Elevated serum IGF-1 and osteocalcin levels and body weight were found. The ER model had an increase in osteoblast proliferation compared to the GnRH-a group, similar bone strength relative to body weight and increased trabecular bone volume in the lumbar spine compared to control. The ER animals were smaller but had developed bone strength sufficient for their size. In contrast, suppressed estradiol via hypothalamic suppression resulted in bone strength deficits and trabecular bone volume loss. In summary, our results support the hypothesis that during periods of nutritional stress the increased vertebral bone volume may be an adaptive mechanism to store mineral which differs from suppressed estradiol resulting from hypothalamic suppression. PMID:21807131

  9. Increased bone formation in mice lacking apolipoprotein E.

    PubMed

    Schilling, Arndt F; Schinke, Thorsten; Münch, Christian; Gebauer, Matthias; Niemeier, Andreas; Priemel, Matthias; Streichert, Thomas; Rueger, Johannes M; Amling, Michael

    2005-02-01

    ApoE is a plasma protein that plays a major role in lipoprotein metabolism. Here we describe that ApoE expression is strongly induced on mineralization of primary osteoblast cultures. ApoE-deficient mice display an increased bone formation rate compared with wildtype controls, thereby showing that ApoE has a physiologic function in bone remodeling. Apolipoprotein E (ApoE) is a protein component of lipoproteins and facilitates their clearance from the circulation. This is confirmed by the phenotype of ApoE-deficient mice that have high plasma cholesterol levels and spontaneously develop atherosclerotic lesions. The bone phenotype of these mice has not been analyzed to date, although an association between certain ApoE alleles and BMD has been reported. Primary osteoblasts were isolated from newborn mouse calvariae and mineralized ex vivo. A genome-wide expression analysis was performed during the course of differentiation using the Affymetrix gene chip system. Bones from ApoE-deficient mice and wildtype controls were analyzed using radiography, micro CT imaging, and undecalcified histology. Cellular activities were assessed using dynamic histomorphometry and by measuring urinary collagen degradation products. Lipoprotein uptake assays were performed with (125)I-labeled triglyceride-rich lipoprotein-remnants (TRL-R) using primary osteoblasts from wildtype and ApoE-deficient mice. Serum concentrations of osteocalcin were determined by radioimmunoassay after hydroxyapatite chromatography. ApoE expression is strongly induced on mineralization of primary osteoblast cultures ex vivo. Mice lacking ApoE display a high bone mass phenotype that is caused by an increased bone formation rate, whereas bone resorption is not affected. This phenotype may be explained by a decreased uptake of triglyceride-rich lipoproteins by osteoblasts, resulting in elevated levels of undercarboxylated osteocalcin in the serum of ApoE-deficient mice. The specific induction of ApoE gene expression during osteoblast differentiation along with the increased bone formation rate observed in ApoE-deficient mice shows that ApoE has a physiologic role as a regulator of osteoblast function.

  10. Osteoblast-Specific Overexpression of Human WNT16 Increases Both Cortical and Trabecular Bone Mass and Structure in Mice

    PubMed Central

    Alkhouli, Mohammed; Gerard-O'Riley, Rita L.; Wright, Weston B.; Acton, Dena; Gray, Amie K.; Patel, Bhavmik; Reilly, Austin M.; Lim, Kyung-Eun; Robling, Alexander G.; Econs, Michael J.

    2016-01-01

    Previous genome-wide association studies have identified common variants in genes associated with bone mineral density (BMD) and risk of fracture. Recently, we identified single nucleotide polymorphisms (SNPs) in Wingless-type mouse mammary tumor virus integration site (WNT)16 that were associated with peak BMD in premenopausal women. To further identify the role of Wnt16 in bone mass regulation, we created transgenic (TG) mice overexpressing human WNT16 in osteoblasts. We compared bone phenotypes, serum biochemistry, gene expression, and dynamic bone histomorphometry between TG and wild-type (WT) mice. Compared with WT mice, WNT16-TG mice exhibited significantly higher whole-body areal BMD and bone mineral content (BMC) at 6 and 12 weeks of age in both male and female. Microcomputer tomography analysis of trabecular bone at distal femur revealed 3-fold (male) and 14-fold (female) higher bone volume/tissue volume (BV/TV), and significantly higher trabecular number and trabecular thickness but lower trabecular separation in TG mice compared with WT littermates in both sexes. The cortical bone at femur midshaft also displayed significantly greater bone area/total area and cortical thickness in the TG mice in both sexes. Serum biochemistry analysis showed that male TG mice had higher serum alkaline phosphatase, osteocalcin, osteoprotegerin (OPG), OPG to receptor activator of NF-kB ligand (tumor necrosis family ligand superfamily, number 11; RANKL) ratio as compared with WT mice. Also, lower carboxy-terminal collagen cross-link (CTX) to tartrate-resistant acid phosphatase 5, isoform b (TRAPc5b) ratio was observed in TG mice compared with WT littermates in both male and female. Histomorphometry data demonstrated that both male and female TG mice had significantly higher cortical and trabecular mineralizing surface/bone surface and bone formation rate compared with sex-matched WT mice. Gene expression analysis demonstrated higher expression of Alp, OC, Opg, and Opg to Rankl ratio in bone tissue in the TG mice compared with WT littermates. Our data indicate that WNT16 is critical for positive regulation of both cortical and trabecular bone mass and structure and that this molecule might be targeted for therapeutic interventions to treat osteoporosis. PMID:26584014

  11. Chitosan-Graphene Oxide 3D scaffolds as Promising Tools for Bone Regeneration in Critical-Size Mouse Calvarial Defects.

    PubMed

    Hermenean, Anca; Codreanu, Ada; Herman, Hildegard; Balta, Cornel; Rosu, Marcel; Mihali, Ciprian Valentin; Ivan, Alexandra; Dinescu, Sorina; Ionita, Mariana; Costache, Marieta

    2017-11-30

    Limited self-regenerating capacity of human skeleton makes the reconstruction of critical size bone defect a significant challenge for clinical practice. Aimed for regenerating bone tissues, this study was designed to investigate osteogenic differentiation, along with bone repair capacity of 3D chitosan (CHT) scaffolds enriched with graphene oxide (GO) in critical-sized mouse calvarial defect. Histopathological/histomorphometry and scanning electron microscopy(SEM) analysis of the implants revealed larger amount of new bone in the CHT/GO-filled defects compared with CHT alone (p < 0.001). When combined with GO, CHT scaffolds synergistically promoted the increase of alkaline phosphatase activity both in vitro and in vivo experiments. This enhanced osteogenesis was corroborated with increased expression of bone morphogenetic protein (BMP) and Runx-2 up to week 4 post-implantation, which showed that GO facilitates the differentiation of osteoprogenitor cells. Meanwhile, osteogenesis was promoted by GO at the late stage as well, as indicated by the up-regulation of osteopontin and osteocalcin at week 8 and overexpressed at week 18, for both markers. Our data suggest that CHT/GO biomaterial could represent a promising tool for the reconstruction of large bone defects, without using exogenous living cells or growth factors.

  12. Human osteocalcin and bone sialoprotein mediating osteomimicry of prostate cancer cells: role of cAMP-dependent protein kinase A signaling pathway.

    PubMed

    Huang, Wen-Chin; Xie, Zhihui; Konaka, Hiroyuki; Sodek, Jaro; Zhau, Haiyen E; Chung, Leland W K

    2005-03-15

    Osteocalcin and bone sialoprotein are the most abundant noncollagenous bone matrix proteins expressed by osteoblasts. Surprisingly, osteocalcin and bone sialoprotein are also expressed by malignant but not normal prostate epithelial cells. The purpose of this study is to investigate how osteocalcin and bone sialoprotein expression is regulated in prostate cancer cells. Our investigation revealed that (a) human osteocalcin and bone sialoprotein promoter activities in an androgen-independent prostate cancer cell line of LNCaP lineage, C4-2B, were markedly enhanced 7- to 12-fold in a concentration-dependent manner by conditioned medium collected from prostate cancer and bone stromal cells. (b) Deletion analysis of human osteocalcin and bone sialoprotein promoter regions identified cyclic AMP (cAMP)-responsive elements (CRE) as the critical determinants for conditioned medium-mediated osteocalcin and bone sialoprotein gene expression in prostate cancer cells. Consistent with these results, the protein kinase A (PKA) pathway activators forskolin and dibutyryl cAMP and the PKA pathway inhibitor H-89, respectively, increased or repressed human osteocalcin and bone sialoprotein promoter activities. (c) Electrophoretic mobility shift assay showed that conditioned medium-mediated stimulation of human osteocalcin and bone sialoprotein promoter activities occurs through increased interaction between CRE and CRE-binding protein. (d) Conditioned medium was found to induce human osteocalcin and bone sialoprotein promoter activities via increased CRE/CRE-binding protein interaction in a cell background-dependent manner, with marked stimulation in selected prostate cancer but not bone stromal cells. Collectively, these results suggest that osteocalcin and bone sialoprotein expression is coordinated and regulated through cAMP-dependent PKA signaling, which may define the molecular basis of the osteomimicry exhibited by prostate cancer cells.

  13. Comparison of bone histomorphometry and μCT for evaluating bone quality in tail-suspended rats

    NASA Astrophysics Data System (ADS)

    Sun, Lian-Wen; Huang, Yun-Fei; Wang, Ying; Luan, Hui-Qin; Fan, Yu-Bo

    2014-10-01

    Astronauts often suffer from microgravity-induced osteoporosis due to their time in space. Bone histomorphometry, the 'gold standard' technique for detecting bone quality, is widely used in the evaluation of osteoporosis. This study investigates whether μCT has the same application value as histomorphometry in the evaluation of weightlessness-induced bone loss. A total of 24 SD rats were distributed into three groups (n = 8, each): tail-suspension (TS), TS plus active exercise (TSA), and control (CON). After 21 days, bone mineral density (BMD) was measured by dual energy X-ray absorptiometry (DXA) and μCT, and microstructure was measured by μCT and histomorphometry. BMD was found to have decreased significantly in TS and TSA compared with the CON group. The results of the μCT measurements showed that a change in BMD mainly occurred in the trabecular bone, and the trabecular BMD increased significantly in the TSA compared with the TS group. The comparison of μCT and histomorphometry showed that TS led to a significant decrease in bone volume (BV/TV), trabecular thickness (Tb.Th) and trabecular number (Tb.N), and it led to an increase in trabecular separation (Tb.Sp). However, active exercise can prevent these changes. Significant differences in most parameters between TSA and CON were found by μCT but not by histomorphometry. Additionally, the parameters of these two methods are highly correlated. Therefore, the application value of μCT is as good as histomorphometry and DXA in the diagnosis of weightlessness-induced osteoporosis and is even better in evaluating the efficacy of exercise.

  14. Appliance-induced osteopenia of dentoalveolar bone in the rat: effect of reduced bone strains on serum bone markers and the multifunctional hormone leptin.

    PubMed

    Vinoth, Jayaseelan K; Patel, Kaval J; Lih, Wei-Song; Seow, Yian-San; Cao, Tong; Meikle, Murray C

    2013-12-01

    To understand, in greater detail, the molecular mechanisms regulating the complex relationship between mechanical strain and alveolar bone metabolism during orthodontic treatment, passive cross-arch palatal springs were bonded to the maxillary molars of 6-wk-old rats, which were killed after 4 and 8 d. Outcome measures included serum assays for markers of bone formation and resorption and for the multifunctional hormone leptin, and histomorphometry of the inter-radicular bone. The concentration of the bone-formation marker alkaline phosphatase (ALP) was significantly reduced at both time points in the appliance group, accompanied by a 50% reduction in inter-radicular bone volume; however, osteocalcin (bone Gla protein) levels remained unaffected. Bone collagen deoxypyridinoline (DPD) crosslinks increased 2.3-fold at 4 d only, indicating a transient increase in bone resorption; in contrast, the level of the osteoclast-specific marker, tartrate-resistant acid phosphatase 5b (TRACP 5b), was unchanged. Leptin levels closely paralleled ALP reductions at both time points, suggesting an important role in the mechanostat negative-feedback loop required to normalize bone mass. These data suggest that an orthodontic appliance, in addition to remodeling the periodontal ligament (PDL)-bone interface, may exert unexpected side-effects on the tooth-supporting alveolar bone, and highlights the importance of recognizing that bone strains can have negative, as well as positive, effects on bone mass. © 2013 Eur J Oral Sci.

  15. [Is bone biopsy necessary for the diagnosis of metabolic bone diseases? Necessity of bone biopsy].

    PubMed

    Ito, Akemi; Yajima, Aiji

    2011-09-01

    Histological analysis of undecalcified bone biopsy specimens is a valuable clinical and research tool for studying the etiology, pathogenesis and treatment of metabolic bone diseases. In case of osteoporosis, bone biopsy is not usually required for the diagnosis ; however, bone histomorphometry may be useful in rare cases with unusual skeletal fragility. Bone histomorphometry also provides valuable information on the mechanism of action, safety and efficacy of new anti-osteoporosis drugs. Bone histomorphometry is useful for the diagnosis and the assessment of treatment response in rickets/osteomalacia and in CKD-MBD (chronic kidney disease-mineral and bone disorders) . In Japan, bone biopsy is often performed to establish the diagnosis of Paget's disease of bone, especially to differentiate it from metastatic bone disease.

  16. Aging Periosteal Progenitor Cells have Reduced Regenerative Responsiveness to Bone Injury and to the Anabolic Actions of PTH 1-34 Treatment

    PubMed Central

    Yukata, Kiminori; Xie, Chao; Li, Tian-Fang; Takahata, Masahiko; Hoak, Donna; Kondabolu, Sirish; Zhang, Xinping; Awad, Hani A.; Schwarz, Edward M.; Beck, Christopher A.; Jonason, Jennifer H.; O’Keefe, Regis J.

    2014-01-01

    A stabilized tibia fracture model was used in young (8-week old) and aged (1-year old) mice to define the relative bone regenerative potential and the relative responsiveness of the periosteal progenitor population with aging and PTH 1-34 (PTH) systemic therapy. Bone regeneration was assessed through gene expressions, radiographic imaging, histology/histomorphometry, and biomechanical testing. Radiographs and microCT showed increased calcified callus tissue and enhanced bone healing in young compared to aged mice. A key mechanism involved reduced proliferation, expansion, and differentiation of periosteal progenitor cell populations in aged mice. The experiments showed that PTH increased calcified callus tissue and torsional strength with a greater response in young mice. Histology and quantitative histomorphometry confirmed that PTH increased callus tissue area due primarily to an increase in bone formation, since minimal changes in cartilage and mesenchyme tissue area occurred. Periosteum examined at 3, 5, and 7 days showed that PTH increased cyclin D1 expression, the total number of cells in the periosteum, and width of the periosteal regenerative tissue. Gene expression showed that aging delayed differentiation of both bone and cartilage tissues during fracture healing. PTH resulted in sustained Col10a1 expression consistent with delayed chondrocyte maturation, but otherwise minimally altered cartilage gene expression. In contrast, PTH 1-34 stimulated expression of Runx2 and Osterix, but resulted in reduced Osteocalcin. β-catenin staining was present in mesenchymal chondroprogenitors and chondrocytes in early fracture healing, but was most intense in osteoblastic cells at later times. PTH increased active β-catenin staining in the osteoblast populations of both young and aged mice, but had a lesser effect in cartilage. Altogether the findings show that reduced fracture healing in aging involves decreased proliferation and differentiation of stem cells lining the bone surface. While PTH 1-34 enhances the proliferation and expansion of the periosteal stem cell population and accelerates bone formation and fracture healing, the effects are proportionately reduced in aged mice compared to young mice. β-catenin is induced by PTH in early and late fracture healing and is a potential target of PTH 1-34 effects. PMID:24530870

  17. Improvement of adynamic bone disease after renal transplantation.

    PubMed

    Abdallah, K A; Jorgetti, V; Pereira, R C; Reis, L M dos; Pereira, L M; Corrêa, P H S; Borelli, A; Ianhez, L E; Moysés, R M A; David-Neto, E

    2006-01-01

    Low bone remodeling and relatively low serum parathyroid hormone (PTH) levels characterize adynamic bone disease (ABD). The impact of renal transplantation (RT) on the course of ABD is unknown. We studied prospectively 13 patients with biopsy-proven ABD after RT. Bone histomorphometry and bone mineral density (BMD) measurements were performed in the 1st and 12th months after RT. Serum PTH, 25-hydroxyvitamin D, 1,25-dihydroxyvitamin D, and osteocalcin were measured regularly throughout the study. Serum PTH levels were slightly elevated at transplantation, normalized at the end of the third month and remained stable thereafter. Bone biopsies performed in the first month after RT revealed low bone turnover in all patients, with positive bone aluminum staining in 5. In the 12th month, second biopsies were performed on 12 patients. Bone histomorphometric dynamic parameters improved in 9 and were completely normalized in 6, whereas no bone mineralization was detected in 3 of these 12 patients. At 12 months post-RT, no bone aluminum was detected in any patient. We also found a decrease in lumbar BMD and an increase in femoral BMD. Patients suffering from ABD, even those with a reduction in PTH levels, may present partial or complete recovery of bone turnover after successful renal transplantation. However, it is not possible to positively identify the mechanisms responsible for the improvement. Identifying these mechanisms should lead to a better understanding of the physiopathology of ABD and to the development of more effective treatments.

  18. Effects of the combination of vitamin K and teriparatide on the bone metabolism in ovariectomized rats.

    PubMed

    Nagura, Nana; Komatsu, Jun; Iwase, Hideaki; Hosoda, Hiroshi; Ohbayashi, Osamu; Nagaoka, Isao; Kaneko, Kazuo

    2015-05-01

    The purpose of the present study was to evaluate the combined effects of vitamin K (VK) and teriparatide (TPTD) on bone mineral density (BMD), mechanical strength and other parameters for bone metabolism using a rat ovariectomized osteoporosis model. Ovariectomized female Sprague-Dawley rats were administered with VK (an oral dose of 30 mg/kg/day), TPTD (a subcutaneous dose of 30 µg/kg, three times a week) or a combination for 8 weeks. Thereafter, serum levels of γ-carboxylated osteocalcin (Gla-OC) were quantitated by ELISA; BMD and mechanical strength were measured by computed tomography and biomechanical testing, respectively at the femoral metaphysis. Additionally, histomorphometry was performed using the toluidine blue-stained coronal sections of distal femur. The combination of VK and TPTD clearly increased the serum levels of Gla-OC (a specific marker for bone formation) and osteoblast surface (the number of osteoblasts attaching with the surface of cancellous bone), compared to VK or TPTD alone. In addition, the combination of the two agents improved the BMD and bone strength of the femur in the ovariectomized rats, compared to VK or TPTD alone. Taken together, these findings suggest that the treatment with VK and TPTD may have a therapeutic advantage over VK or TPTD monotherapy for postmenopausal osteoporosis, possibly by enhancing the bone formation through the actions on OC and osteoblasts.

  19. Effects of the combination of vitamin K and teriparatide on the bone metabolism in ovariectomized rats

    PubMed Central

    NAGURA, NANA; KOMATSU, JUN; IWASE, HIDEAKI; HOSODA, HIROSHI; OHBAYASHI, OSAMU; NAGAOKA, ISAO; KANEKO, KAZUO

    2015-01-01

    The purpose of the present study was to evaluate the combined effects of vitamin K (VK) and teriparatide (TPTD) on bone mineral density (BMD), mechanical strength and other parameters for bone metabolism using a rat ovariectomized osteoporosis model. Ovariectomized female Sprague-Dawley rats were administered with VK (an oral dose of 30 mg/kg/day), TPTD (a subcutaneous dose of 30 µg/kg, three times a week) or a combination for 8 weeks. Thereafter, serum levels of γ-carboxylated osteocalcin (Gla-OC) were quantitated by ELISA; BMD and mechanical strength were measured by computed tomography and biomechanical testing, respectively at the femoral metaphysis. Additionally, histomorphometry was performed using the toluidine blue-stained coronal sections of distal femur. The combination of VK and TPTD clearly increased the serum levels of Gla-OC (a specific marker for bone formation) and osteoblast surface (the number of osteoblasts attaching with the surface of cancellous bone), compared to VK or TPTD alone. In addition, the combination of the two agents improved the BMD and bone strength of the femur in the ovariectomized rats, compared to VK or TPTD alone. Taken together, these findings suggest that the treatment with VK and TPTD may have a therapeutic advantage over VK or TPTD monotherapy for postmenopausal osteoporosis, possibly by enhancing the bone formation through the actions on OC and osteoblasts. PMID:26137225

  20. Formononetin, a methoxy isoflavone, enhances bone regeneration in a mouse model of cortical bone defect.

    PubMed

    Singh, Krishna Bhan; Dixit, Manisha; Dev, Kapil; Maurya, Rakesh; Singh, Divya

    2017-06-01

    The bone regeneration and healing effect of formononetin was evaluated in a cortical bone defect model that predominantly heals by intramembranous ossification. For this study, female Balb/c mice were ovariectomised (OVx) and a drill-hole injury was generated in the midfemoral bones of all animals. Treatment with formononetin commenced the day after and continued for 21 d. Parathyroid hormone (PTH1-34) was used as a reference standard. Animals were killed at days 10 and 21. Femur bones were collected at the injury site for histomorphometry studies using microcomputed tomography (μCT) and confocal microscopy. RNA and protein were harvested from the region surrounding the drill-hole injury. For immunohistochemistry, 5 µm sections of decalcified femur bone adjoining the drill-hole site were cut. μCT analysis showed that formononetin promoted bone healing at days 10 and 21 and the healing effect observed was significantly better than in Ovx mice and equal to PTH treatment in many aspects. Formononetin also significantly enhanced bone regeneration as assessed by calcein-labelling studies. In addition, formononetin enhanced the expression of osteogenic markers at the injury site in a manner similar to PTH. Formononetin treatment also led to predominant runt-related transcription factor 2 and osteocalcin localisation at the injury site. These results support the potential of formononetin to be a bone-healing agent and are suggestive of its promising role in the fracture-repair process.

  1. Uncarboxylated Osteocalcin and Gprc6a Axis Produce Intratumoral Androgens in Castration-Resistant Prostate Cancer

    DTIC Science & Technology

    2015-03-01

    interacts with bone extracellular matrix associated calcium and hydroxyapatite and deposited in the bone matrix. Some Osteocalcin is released into...fluorescence protein as control) Osteocalcin and mutant Osteocalcin using lentivirus mediated stable infections. 2. Determined the gene expression of Gprc61... used a lentiviral system for expressing Osteocalcin and mutated Osteocalcin. Osteocalcin is mutated at three positions where glutamic acid residue at

  2. High-Dietary Alpha-Tocopherol or Mixed Tocotrienols Have No Effect on Bone Mass, Density, or Turnover in Male Rats During Skeletal Maturation.

    PubMed

    Tennant, Katherine G; Leonard, Scott W; Wong, Carmen P; Iwaniec, Urszula T; Turner, Russell T; Traber, Maret G

    2017-07-01

    High levels of alpha-tocopherol, the usual vitamin E supplement, are reported to decrease bone mass in rodents; however, the effects of other vitamin E forms on the skeleton are unknown. To test the hypothesis that high intakes of various vitamin E forms or the vitamin E metabolite, carboxyethyl hydroxy chromanol, were detrimental to bone status, Sprague-Dawley rats (n = 6 per group, 11-week males) for 18 weeks consumed semipurified diets that contained adequate alpha-tocopherol, high alpha-tocopherol (500 mg/kg diet), or 50% Tocomin (250 mg mixed tocopherols and tocotrienols/kg diet). Vitamin E status was evaluated by measuring plasma, liver, and bone marrow vitamin E concentrations. Bone density, microarchitecture (cross-sectional volume, cortical volume, marrow volume, cortical thickness, and cancellous bone volume fraction, trabecular number, thickness, and spacing), and cancellous bone formation were assessed in the tibia using dual-energy X-ray absorptiometry, microcomputed tomography, and histomorphometry, respectively. In addition, serum osteocalcin was assessed as a global marker of bone turnover; gene expression in response to treatment was evaluated in the femur using targeted (osteogenesis related) gene profiling. No significant differences were detected between treatment groups for any of the bone endpoints measured. Vitamin E supplementation, either as alpha-tocopherol or mixed tocotrienols, while increasing vitamin E concentrations both in plasma and tissues, had no effect on the skeleton in rats.

  3. Low serum and bone vitamin K status in patients with longstanding Crohn's disease: another pathogenetic factor of osteoporosis in Crohn's disease?

    PubMed Central

    Schoon, E; Muller, M; Vermeer, C; Schurgers, L; Brummer, R; Stockbrugger, R

    2001-01-01

    BACKGROUND—A high prevalence of osteoporosis is reported in Crohn's disease. The pathogenesis is not completely understood but is probably multifactorial. Longstanding Crohn's disease is associated with a deficiency of fat soluble vitamins, among them vitamin K. Vitamin K is a cofactor in the carboxylation of osteocalcin, a protein essential for calcium binding to bone. A high level of circulating uncarboxylated osteocalcin is a sensitive marker of vitamin K deficiency.
AIMS—To determine serum and bone vitamin K status in patients with Crohn's disease and to elucidate its relationship with bone mineral density.
METHODS—Bone mineral density was measured in 32 patients with longstanding Crohn's disease and small bowel involvement, currently in remission, and receiving less than 5 mg of prednisolone daily. Serum levels of vitamins D and K, triglycerides, and total immunoreactive osteocalcin, as well as uncarboxylated osteocalcin ("free" osteocalcin) were determined. The hydroxyapatite binding capacity of osteocalcin was calculated. Data were compared with an age and sex matched control population.
RESULTS—Serum vitamin K levels of CD patients were significantly decreased compared with normal controls (p<0.01). "Free" osteocalcin was higher and hydroxyapatite binding capacity of circulating osteocalcin was lower than in matched controls (p<0.05 and p<0.001, respectively), indicating a low bone vitamin K status in Crohn's disease. In patients, an inverse correlation was found between "free" osteocalcin and lumbar spine bone mineral density (r=−0.375, p<0.05) and between "free" osteocalcin and the z score of the lumbar spine (r=−0.381, p<0.05). Multiple linear regression analysis showed that "free" osteocalcin was an independent risk factor for low bone mineral density of the lumbar spine whereas serum vitamin D was not.
CONCLUSIONS—The finding that a poor vitamin K status is associated with low bone mineral density in longstanding Crohn's disease may have implications for the prevention and treatment of osteoporosis in this disorder.


Keywords: Crohn's disease; bone mineral density; vitamin K; osteocalcin PMID:11247890

  4. Increased trabecular bone and improved biomechanics in an osteocalcin-null rat model created by CRISPR/Cas9 technology.

    PubMed

    Lambert, Laura J; Challa, Anil K; Niu, Aidi; Zhou, Lihua; Tucholski, Janusz; Johnson, Maria S; Nagy, Tim R; Eberhardt, Alan W; Estep, Patrick N; Kesterson, Robert A; Grams, Jayleen M

    2016-10-01

    Osteocalcin, also known as bone γ-carboxyglutamate protein (Bglap), is expressed by osteoblasts and is commonly used as a clinical marker of bone turnover. A mouse model of osteocalcin deficiency has implicated osteocalcin as a mediator of changes to the skeleton, endocrine system, reproductive organs and central nervous system. However, differences between mouse and human osteocalcin at both the genome and protein levels have challenged the validity of extrapolating findings from the osteocalcin-deficient mouse model to human disease. The rat osteocalcin (Bglap) gene locus shares greater synteny with that of humans. To further examine the role of osteocalcin in disease, we created a rat model with complete loss of osteocalcin using the CRISPR/Cas9 system. Rat osteocalcin was modified by injection of CRISPR/Cas9 mRNA into the pronuclei of fertilized single cell Sprague-Dawley embryos, and animals were bred to homozygosity and compound heterozygosity for the mutant alleles. Dual-energy X-ray absorptiometry (DXA), glucose tolerance testing (GTT), insulin tolerance testing (ITT), microcomputed tomography (µCT), and a three-point break biomechanical assay were performed on the excised femurs at 5 months of age. Complete loss of osteocalcin resulted in bones with significantly increased trabecular thickness, density and volume. Cortical bone volume and density were not increased in null animals. The bones had improved functional quality as evidenced by an increase in failure load during the biomechanical stress assay. Differences in glucose homeostasis were observed between groups, but there were no differences in body weight or composition. This rat model of complete loss of osteocalcin provides a platform for further understanding the role of osteocalcin in disease, and it is a novel model of increased bone formation with potential utility in osteoporosis and osteoarthritis research. © 2016. Published by The Company of Biologists Ltd.

  5. Identification of osteocalcin as a permanent aging constituent of the bone matrix: basis for an accurate age at death determination.

    PubMed

    Ritz, S; Turzynski, A; Schütz, H W; Hollmann, A; Rochholz, G

    1996-01-12

    Age at death determination based on aspartic acid racemization in dentin has been applied successfully in forensic odontology for several years now. An age-dependent accumulation of D-aspartic acid has also recently been demonstrated in bone osteocalcin, one of the most abundant noncollagenous proteins of the organic bone matrix. Evaluation of these initial data on in vivo racemization of aspartic acid in bone osteocalcin was taken a step further. After purification of osteocalcin from 53 skull bone specimens, the extent of aspartic acid racemization in this peptide was determined. The D-aspartic acid content of purified bone osteocalcin exhibited a very close relationship to age at death. This confirmed identification of bone osteocalcin as a permanent, 'aging' peptide of the organic bone matrix. Its D-aspartic acid content may be used as a measure of its age and hence that of the entire organism. The new biochemical approach to determination of age at death by analyzing bone is complex and demanding from a methodologic point of view, but appears to be superior in precision and reproducibility to most other methods applicable to bone.

  6. Influence of different modifications of a calcium phosphate bone cement on adhesion, proliferation, and osteogenic differentiation of human bone marrow stromal cells.

    PubMed

    Vater, Corina; Lode, Anja; Bernhardt, Anne; Reinstorf, Antje; Heinemann, Christiane; Gelinsky, Michael

    2010-03-15

    Collagen and noncollagenous proteins of the extracellular bone matrix are able to stimulate bone cell activities and bone healing. The modification of calcium phosphate bone cements used as temporary bone replacement materials with these proteins seems to be a promising approach to accelerate new bone formation. In this study, we investigated adhesion, proliferation, and osteogenic differentiation of human bone marrow stromal cells (hBMSC) on Biocement D/collagen composites which have been modified with osteocalcin and O-phospho-L-serine. Modification with osteocalcin was carried out by its addition to the cement precursor before setting as well as by functionalization of the cement samples after setting and sterilization. hBMSC were cultured on these samples for 28 days with and without osteogenic supplements. We found a positive impact especially of the phosphoserine-modifications but also of both osteocalcin-modifications on differentiation of hBMSC indicated by higher expression of the osteoblastic markers matrix metalloproteinase-13 and bone sialo protein II. For hBMSC cultured on phosphoserine-containing composites, an increased proliferation has been observed. However, in case of the osteocalcin-modified samples, only osteocalcin adsorbed after setting and sterilization of the cement samples was able to promote initial adhesion and proliferation of hBMSC. The addition of osteocalcin before setting results in a finer microstructure but the biological activity of osteocalcin might be impaired due to the sterilization process. Thus, our data indicate that the initial adhesion and proliferation of hBMSC is enhanced rather by the biological activity of osteocalcin than by the finer microstructure. (c) 2009 Wiley Periodicals, Inc.

  7. Medicarpin, a Natural Pterocarpan, Heals Cortical Bone Defect by Activation of Notch and Wnt Canonical Signaling Pathways

    PubMed Central

    Gupta, Chandra Prakash; Kureel, Jyoti; Mansoori, Mohd Nizam; Shukla, Priyanka; John, Aijaz A.; Singh, Kavita; Purohit, Dipak; Awasthi, Pallavi; Singh, Divya; Goel, Atul

    2015-01-01

    We evaluated the bone regeneration and healing effect of Medicarpin (med) in cortical bone defect model that heals by intramembranous ossification. For the study, female Sprague–Dawley rats were ovariectomized and rendered osteopenic. A drill hole injury was generated in mid femoral bones of all the animals. Med treatment was commenced the day after and continued for 15 days. PTH was taken as a reference standard. Fifteen days post-treatment, animals were sacrificed. Bones were collected for histomorphometry studies at the injury site by micro-computed tomography (μCT) and confocal microscopy. RNA and protein was harvested from newly generated bone. For immunohistochemistry, 5μm sections of decalcified femur bone adjoining the drill hole site were cut. By μCT analysis and calcein labeling of newly generated bone it was found that med promotes bone healing and new bone formation at the injury site and was comparable to PTH in many aspects. Med treatment led to increase in the Runx-2 and osteocalcin signals indicating expansion of osteoprogenitors at the injury site as evaluated by qPCR and immunohistochemical localization. It was observed that med promoted bone regeneration by activating canonical Wnt and notch signaling pathway. This was evident by increased transcript and protein levels of Wnt and notch signaling components in the defect region. Finally, we confirmed that med treatment leads to elevated bone healing in pre-osteoblasts by co localization of beta catenin with osteoblast marker alkaline phosphatase. In conclusion, med treatment promotes new bone regeneration and healing at the injury site by activating Wnt/canonical and notch signaling pathways. This study also forms a strong case for evaluation of med in delayed union and non-union fracture cases. PMID:26657206

  8. Medicarpin, a Natural Pterocarpan, Heals Cortical Bone Defect by Activation of Notch and Wnt Canonical Signaling Pathways.

    PubMed

    Dixit, Manisha; Raghuvanshi, Ashutosh; Gupta, Chandra Prakash; Kureel, Jyoti; Mansoori, Mohd Nizam; Shukla, Priyanka; John, Aijaz A; Singh, Kavita; Purohit, Dipak; Awasthi, Pallavi; Singh, Divya; Goel, Atul

    2015-01-01

    We evaluated the bone regeneration and healing effect of Medicarpin (med) in cortical bone defect model that heals by intramembranous ossification. For the study, female Sprague-Dawley rats were ovariectomized and rendered osteopenic. A drill hole injury was generated in mid femoral bones of all the animals. Med treatment was commenced the day after and continued for 15 days. PTH was taken as a reference standard. Fifteen days post-treatment, animals were sacrificed. Bones were collected for histomorphometry studies at the injury site by micro-computed tomography (μCT) and confocal microscopy. RNA and protein was harvested from newly generated bone. For immunohistochemistry, 5μm sections of decalcified femur bone adjoining the drill hole site were cut. By μCT analysis and calcein labeling of newly generated bone it was found that med promotes bone healing and new bone formation at the injury site and was comparable to PTH in many aspects. Med treatment led to increase in the Runx-2 and osteocalcin signals indicating expansion of osteoprogenitors at the injury site as evaluated by qPCR and immunohistochemical localization. It was observed that med promoted bone regeneration by activating canonical Wnt and notch signaling pathway. This was evident by increased transcript and protein levels of Wnt and notch signaling components in the defect region. Finally, we confirmed that med treatment leads to elevated bone healing in pre-osteoblasts by co localization of beta catenin with osteoblast marker alkaline phosphatase. In conclusion, med treatment promotes new bone regeneration and healing at the injury site by activating Wnt/canonical and notch signaling pathways. This study also forms a strong case for evaluation of med in delayed union and non-union fracture cases.

  9. Bone-related Circulating MicroRNAs miR-29b-3p, miR-550a-3p, and miR-324-3p and their Association to Bone Microstructure and Histomorphometry.

    PubMed

    Feichtinger, Xaver; Muschitz, Christian; Heimel, Patrick; Baierl, Andreas; Fahrleitner-Pammer, Astrid; Redl, Heinz; Resch, Heinrich; Geiger, Elisabeth; Skalicky, Susanna; Dormann, Rainer; Plachel, Fabian; Pietschmann, Peter; Grillari, Johannes; Hackl, Matthias; Kocijan, Roland

    2018-03-20

    The assessment of bone quality and the prediction of fracture risk in idiopathic osteoporosis (IOP) are complex prospects as bone mineral density (BMD) and bone turnover markers (BTM) do not indicate fracture-risk. MicroRNAs (miRNAs) are promising new biomarkers for bone diseases, but the current understanding of the biological information contained in the variability of miRNAs is limited. Here, we investigated the association between serum-levels of 19 miRNA biomarkers of idiopathic osteoporosis to bone microstructure and bone histomorphometry based upon bone biopsies and µCT (9.3 μm) scans from 36 patients. Four miRNAs were found to be correlated to bone microarchitecture and seven miRNAs to dynamic histomorphometry (p < 0.05). Three miRNAs, namely, miR-29b-3p, miR-324-3p, and miR-550a-3p showed significant correlations to histomorphometric parameters of bone formation as well as microstructure parameters. miR-29b-3p and miR-324-p were found to be reduced in patients undergoing anti-resorptive therapy. This is the first study to report that serum levels of bone-related miRNAs might be surrogates of dynamic histomorphometry and potentially reveal changes in bone microstructure. Although these findings enhance the potential value of circulating miRNAs as bone biomarkers, further experimental studies are required to qualify the clinical utility of miRNAs to reflect dynamic changes in bone formation and microstructure.

  10. Effects of deletion of ER-alpha in osteoblast-lineage cells on bone mass and adaptation to mechanical loading differs in female and male mice

    PubMed Central

    Melville, Katherine M.; Kelly, Natalie H.; Surita, Gina; Buchalter, Daniel B.; Schimenti, John C.; Main, Russell P.; Ross, F. Patrick; van der Meulen, Marjolein C. H.

    2015-01-01

    Estrogen receptor alpha (ERα) has been implicated in bone’s response to mechanical loading in both males and females. ERα in osteoblast lineage cells is important for determining bone mass, but results depend on animal sex and the cellular stage at which ERα is deleted. We demonstrated previously that when ERα is deleted from mature osteoblasts and osteocytes in mixed background female mice, bone mass and strength are decreased. However, few studies exist examining the skeletal response to loading in bone cell-specific ERαKO mice. Therefore, we crossed ERα floxed (ERαfl/fl) and osteocalcin-Cre (OC-Cre) mice to generate animals lacking ERα in mature osteoblasts and osteocytes (pOC-ERαKO) and littermate controls (LC). At 10 weeks of age the left tibia was loaded in vivo for two weeks. We analyzed bone mass through microCT, bone formation rate by dynamic histomorphometry, bone strength from mechanical testing, and osteoblast and osteoclast activity by serum chemistry and immunohistochemistry. ERα in mature osteoblasts differentially regulated bone mass in males and females. Compared to LC, female pOC-ERαKO mice had decreased cortical and cancellous bone mass, while male pOC-ERαKO mice had equal or greater bone mass than LC. Bone mass results correlated with decreased compressive strength in pOC-ERαKO female L5 vertebrae, and with increased maximum moment in pOC-ERαKO male femora. Female pOC-ERαKO mice responded more to mechanical loading, while the response of pOC-ERαKO male animals was similar to their littermate controls. PMID:25707500

  11. Raloxifene analog (LY117018 HCL) ameliorates cyclosporin A-induced osteopenia in oophorectomized rats.

    PubMed

    Bowman, A R; Sass, D A; Marshall, I; Ma, Y F; Liang, H; Jee, W S; Epstein, S

    1996-08-01

    Cyclosporin A (CsA) administered to the oophorectomized (Ox) rat exacerbates the high turnover osteopenia associated with estrogen deficiency. 17 beta-estradiol replacement therapy prevent this bone loss. The aim of this study was to see whether an estrogen-like compound, Raloxifene analog (LY117018 HCL, Ral) could likewise ameliorate CsA-induced osteopenia in the Ox rat. Sixty 6-month-old Sprague-Dawley rats, divided into five groups, underwent oophorectomy. One group acted as a basal group and the others received either vehicle (group B), CsA 15 mg/kg/day (group C), Ral 3 mg/kg/day (group D), or CsA 15 mg/kg/day and Ral 3 mg/kg/day (group E) for 28 days by gavage. A sixth sham operated group of 12 rats received vehicle only (group A). Rats were weighed and bled on days 0, 14, and 28 for measurement of ionized calcium, glucose, osteocalcin (BGP), 17 beta-estradiol, and 1,25-dihydroxyvitamin D3 (1,25[OH]2D3). Tibiae were removed on day 28 for bone histomorphometry after double tetracycline and calcein labeling. Oophorectomy caused a significant gain in weight in groups B and C which was prevented by Ral in groups D and E. Randomized blood glucose levels and 1,25(OH)2D3 levels were elevated in both CsA-treated groups. Blood ionized calcium levels were lower in vehicle (group B) compared with sham (group A) on day 28. Ox (group B) had significantly higher serum BGP levels compared with sham-operated rats. Serum BGP levels were further elevated in group C compared with vehicle and were lowered in both Ral-treated groups to vehicle levels by day 28. Bone histomorphometry revealed a high turnover osteopenia with increased parameters of bone formation and resorption and loss of cancellous bone volume postoophorectomy (group B). CsA (group C) exacerbated the effects of oophorectomy. Ral (group D) completely prevented the high turnover osteopenia caused by oophorectomy and was able to attenuate substantially the effects of CsA in the Ox rat (group E). Ral therapy ameliorated CsA-induced osteopenia in the Ox rat and might prove a useful agent in preventing bone loss in postmenopausal women receiving CsA.

  12. Bone Mass and Strength are Significantly Improved in Mice Overexpressing Human WNT16 in Osteocytes.

    PubMed

    Alam, Imranul; Reilly, Austin M; Alkhouli, Mohammed; Gerard-O'Riley, Rita L; Kasipathi, Charishma; Oakes, Dana K; Wright, Weston B; Acton, Dena; McQueen, Amie K; Patel, Bhavmik; Lim, Kyung-Eun; Robling, Alexander G; Econs, Michael J

    2017-04-01

    Recently, we demonstrated that osteoblast-specific overexpression of human WNT16 increased both cortical and trabecular bone mass and structure in mice. To further identify the cell-specific role of Wnt16 in bone homeostasis, we created transgenic (TG) mice overexpressing human WNT16 in osteocytes using Dmp1 promoter (Dmp1-hWNT16 TG) on C57BL/6 (B6) background. We analyzed bone phenotypes and serum bone biomarkers, performed gene expression analysis and measured dynamic bone histomorphometry in Dmp1-hWNT16 TG and wild-type (WT) mice. Compared to WT mice, Dmp1-hWNT16 TG mice exhibited significantly higher whole-body, spine and femoral aBMD, BMC and trabecular (BV/TV, Tb.N, and Tb.Th) and cortical (bone area and thickness) parameters in both male and female at 12 weeks of age. Femur stiffness and ultimate force were also significantly improved in the Dmp1-hWNT16 TG female mice, compared to sex-matched WT littermates. In addition, female Dmp1-hWNT16 TG mice displayed significantly higher MS/BS, MAR and BFR/BS compared to the WT mice. Gene expression analysis demonstrated significantly higher mRNA level of Alp in both male and female Dmp1-hWNT16 TG mice and significantly higher levels of Osteocalcin, Opg and Rankl in the male Dmp1-hWNT16 TG mice in bone tissue compared to sex-matched WT mice. These results indicate that WNT16 plays a critical role for acquisition of both cortical and trabecular bone mass and strength. Strategies designed to use WNT16 as a target for therapeutic interventions will be valuable to treat osteoporosis and other low bone mass conditions.

  13. Bone Mass and Strength are Significantly Improved in Mice Overexpressing Human WNT16 in Osteocytes

    PubMed Central

    Alam, Imranul; Reilly, Austin M.; Alkhouli, Mohammed; Gerard-O’Riley, Rita L.; Kasipathi, Charishma; Oakes, Dana K.; Wright, Weston B.; Acton, Dena; McQueen, Amie K.; Patel, Bhavmik; Lim, Kyung-Eun; Robling, Alexander G.; Econs, Michael J.

    2017-01-01

    Recently, we demonstrated that osteoblast-specific overexpression of human WNT16 increased both cortical and trabecular bone mass and structure in mice. To further identify the cell-specific role of Wnt16 in bone homeostasis, we created transgenic (TG) mice over-expressing human WNT16 in osteocytes using Dmp1 promoter (Dmp1-hWNT16 TG) on C57BL/6 (B6) background. We analyzed bone phenotypes and serum bone biomarkers, performed gene expression analysis and measured dynamic bone histomorphometry in Dmp1-hWNT16 TG and wild-type (WT) mice. Compared to WT mice, Dmp1-hWNT16 TG mice exhibited significantly higher whole body, spine and femoral aBMD, BMC and trabecular (BV/TV, Tb.N, and Tb.Th) and cortical (bone area and thickness) parameters in both male and female at 12 weeks of age. Femur stiffness and ultimate force were also significantly improved in the Dmp1-hWNT16 TG female mice, compared to sex-matched WT littermates. In addition, female Dmp1-hWNT16 TG mice displayed significantly higher MS/BS, MAR and BFR/BS compared to the WT mice. Gene expression analysis demonstrated significantly higher mRNA level of Alp in both male and female Dmp1-hWNT16 TG mice and significantly higher levels of Osteocalcin, Opg and Rankl in the male Dmp1-hWNT16 TG mice in bone tissue compared to sex-matched WT mice. These results indicate that WNT16 plays a critical role for acquisition of both cortical and trabecular bone mass and strength. Strategies designed to use WNT16 as a target for therapeutic interventions will be valuable to treat osteoporosis and other low bone mass conditions. PMID:28013361

  14. Primary Hyperparathyroidism: The Influence of Bone Marrow Adipose Tissue on Bone Loss and of Osteocalcin on Insulin Resistance

    PubMed Central

    Mendonça, Maira L.; Batista, Sérgio L.; Nogueira-Barbosa, Marcello H.; Salmon, Carlos E.G.; de Paula, Francisco J.A.

    2016-01-01

    OBJECTIVES: Bone marrow adipose tissue has been associated with low bone mineral density. However, no data exist regarding marrow adipose tissue in primary hyperparathyroidism, a disorder associated with bone loss in conditions of high bone turnover. The objective of the present study was to investigate the relationship between marrow adipose tissue, bone mass and parathyroid hormone. The influence of osteocalcin on the homeostasis model assessment of insulin resistance was also evaluated. METHODS: This was a cross-sectional study conducted at a university hospital, involving 18 patients with primary hyperparathyroidism (PHPT) and 21 controls (CG). Bone mass was assessed by dual-energy x-ray absorptiometry and marrow adipose tissue was assessed by 1H magnetic resonance spectroscopy. The biochemical evaluation included the determination of parathyroid hormone, osteocalcin, glucose and insulin levels. RESULTS: A negative association was found between the bone mass at the 1/3 radius and parathyroid hormone levels (r = -0.69; p<0.01). Marrow adipose tissue was not significantly increased in patients (CG = 32.8±11.2% vs PHPT = 38.6±12%). The serum levels of osteocalcin were higher in patients (CG = 8.6±3.6 ng/mL vs PHPT = 36.5±38.4 ng/mL; p<0.005), but no associations were observed between osteocalcin and insulin or between insulin and both marrow adipose tissue and bone mass. CONCLUSION: These results suggest that the increment of adipogenesis in the bone marrow microenvironment under conditions of high bone turnover due to primary hyperparathyroidism is limited. Despite the increased serum levels of osteocalcin due to primary hyperparathyroidism, these patients tend to have impaired insulin sensitivity. PMID:27626477

  15. Identification and characterization of glycation adducts on osteocalcin

    PubMed Central

    Thomas, Corinne J.; Cleland, Timothy P.; Zhang, Sheng; Gundberg, Caren M.; Vashishth, Deepak

    2017-01-01

    Osteocalcin is an important extracellular matrix bone protein that contributes to the structural properties of bone through its interactions with hydroxyapatite mineral and with collagen I. This role may be affected by glycation, a labile modification the levels of which has been shown to correlate with bone fragility. Glycation starts with the spontaneous addition of a sugar onto a free amine group on a protein, forming an Amadori product, and then proceeds through several environment-dependent stages resulting in the formation of an advanced glycation end product. Here, we induce the first step of this modification on synthetic osteocalcin, and then use multiple mass spectrometry fragmentation techniques to determine the location of this modification. Collision-induced dissociation resulted in spectra dominated by neutral loss, and was unable to identify Amadori products. Electron-transfer dissociation showed that the Amadori product formed solely on osteocalcin’s N-terminus. This suggests that the glycation of osteocalcin is unlikely to interfere with osteocalcin’s interaction with hydroxyapatite. Instead, glycation may interfere with its interaction with collagen I or another bone protein, osteopontin. Potentially, the levels of glycated osteocalcin fragments released from bone during bone resorption could be used to assess bone quality, should the N-terminal fragments be targeted. PMID:28237256

  16. Prevention of arterial calcification corrects the low bone mass phenotype in MGP-deficient mice.

    PubMed

    Marulanda, Juliana; Gao, Chan; Roman, Hassem; Henderson, Janet E; Murshed, Monzur

    2013-12-01

    Matrix gla protein (MGP), a potent inhibitor of extracellular matrix (ECM) mineralization, is primarily produced by vascular smooth muscle cells (VSMCs) and chondrocytes. Consistent with its expression profile, MGP deficiency in mice (Mgp-/- mice) results in extensive mineralization of all arteries and cartilaginous ECMs. Interestingly, we observed a progressive loss of body weight in Mgp-/- mice, which becomes apparent by the third week of age. Taking into account the new paradigm linking the metabolic regulators of energy metabolism and body mass to that of bone remodeling, we compared the bone volume in Mgp-/- mice to that of their wild type littermates by micro-CT and bone histomorphometry. We found a decrease of bone volume over tissue volume in Mgp-/- mice caused by an impaired osteoblast function. In culture, early differentiation of Mgp-/- primary osteoblasts was not affected; however there was a significant upregulation of the late osteogenic marker Bglap (osteocalcin). We examined whether the prevention of arterial calcification in Mgp-/- mice could correct the low bone mass phenotype. The bones of two different genetic models: Mgp-/-;SM22-Mgp and Mgp-/-;Eln+/- mice were analyzed. In the former strain, vascular calcification was fully rescued by transgenic overexpression of Mgp in the VSMCs, while in the latter, elastin haploinsufficiency significantly impeded the deposition of minerals in the arterial walls. In both models, the low mass phenotype seen in Mgp-/- mice was rescued. Our data support the hypothesis that the arterial calcification, not MGP deficiency itself, causes the low bone mass phenotype in Mgp-/- mice. Taken together, we provide evidence that arterial calcification affects bone remodeling and pave the way for further mechanistic studies to identify the pathway(s) regulating this process. © 2013.

  17. Deterioration of Cortical Bone Microarchitecture: Critical Component of Renal Osteodystrophy Evaluation.

    PubMed

    Sharma, Ashish K; Toussaint, Nigel D; Masterson, Rosemary; Holt, Stephen G; Rajapakse, Chamith S; Ebeling, Peter R; Mohanty, Sindhu T; Baldock, Paul; Elder, Grahame J

    2018-05-23

    Cortical bone is a significant determinant of bone strength and its deterioration contributes to bone fragility. Thin cortices and increased cortical porosity have been noted in patients with chronic kidney disease (CKD), but the "Turnover Mineralization Volume" classification of renal osteodystrophy does not emphasize cortical bone as a key parameter. We aimed to assess trabecular and cortical bone microarchitecture by histomorphometry and micro-CT in patients with CKD G5 and 5D (dialysis). Transiliac bone biopsies were performed in 14 patients undergoing kidney transplantation (n = 12) and parathyroidectomy (n = 2). Structural parameters were analysed by histomorphometry and micro-CT including trabecular bone volume, thickness (TbTh), number (TbN) and separation and cortical thickness (CtTh) and porosity (CtPo). Indices of bone remodelling and mineralisation were obtained and relationships to bone biomarkers examined. Associations were determined by Spearman's or Pearson's rank correlation coefficients. By micro-CT, trabecular parameters were within normal ranges in most patients, but all patients showed very low CtTh (127 ± 44 µm) and high CtPo (60.3 ± 22.5%). CtPo was inversely related to TbN (r = -0.56; p = 0.03) by micro-CT and to TbTh (r = -0.60; p = 0.024) by histomorphometry and correlated to parathyroid hormone values (r = 0.62; p = 0.021). By histomorphometry, bone turnover was high in 50%, low in 21% and normal in 29%, while 36% showed abnormal patterns of mineralization. Significant positive associations were observed between osteoblast surface, osteoclast surface, mineralization surface and bone turnover markers. Deterioration of cortical -microarchitecture despite predominantly normal trabecular parameters reinforces the importance of comprehensive cortical evaluation in patients with CKD. © 2018 S. Karger AG, Basel.

  18. ATF4, A Novel Mediator of the Anabolic Actions of PTH on Bone

    DTIC Science & Technology

    2009-07-01

    formation rate and bone mineral density (severe osteoporosis) that persists throughout life. The expression of both osteocalcin (Ocn) and bone sialoprotein ...established that ATF4 is critical for osteoblast differentiation as demonstrated by dramatically reduced expression of osteocalcin and bone sialoprotein mRNA

  19. Decreased bone turnover markers in children on long-term parenteral nutrition (PN) for intestinal failure (IF).

    PubMed

    Derepas, Charlène; Kosar, Christina; Avitzur, Yaron; Wales, Paul W; Courtney-Martin, Glenda

    2015-01-01

    Metabolic bone disease (MBD) is a well-recognized but poorly understood complication of long-term parenteral nutrition (PN). Bone histomorphometry in adults has provided useful information but does not provide quantitative measures of bone resorption and is to invasive for children. Measurement of bone turnover markers provides an alternative less invasive approach. We therefore aimed to measure bone turnover markers in children on long-term PN for intestinal failure (IF), and to compare them to age- and gender-matched controls. Serum concentrations of osteocalcin (OC), bone-specific alkaline phosphatase (BSAP), and c-telopeptide (CTx) were measured in IF patients treated at a multidisciplinary intestinal rehabilitation and home PN program at the Hospital for Sick Children, Toronto, Canada. Age- and gender-matched control participants were recruited for comparison. A total of 13 IF patients and 20 control participants were recruited. IF patients had lower serum OC and CTx concentrations when compared with controls: 42.43 ± 11.54 vs 68.39 ± 20.95 µg/L (P < .01) and 7.454 ± 2.17 vs 9.246 ± 1.92 (P < .05; mean ± SD) µg/L for OC and CTx, respectively. In a subgroup of 9 IF patients for whom BMD was available, OC and CTx concentration were negatively correlated to BMD (g/cm(2)) and BMD z score. Bone turnover markers may be useful indicators for identifying children on long-term PN at risk of MBD. Further studies are needed to validate the current results and determine the factors that influence the occurrence and evolution of MBD in children on PN. © 2013 American Society for Parenteral and Enteral Nutrition.

  20. Different skeletal effects of the peroxisome proliferator activated receptor (PPAR)α agonist fenofibrate and the PPARγ agonist pioglitazone

    PubMed Central

    Syversen, Unni; Stunes, Astrid K; Gustafsson, Björn I; Obrant, Karl J; Nordsletten, Lars; Berge, Rolf; Thommesen, Liv; Reseland, Janne E

    2009-01-01

    Background All the peroxisome proliferator activated receptors (PPARs) are found to be expressed in bone cells. The PPARγ agonist rosiglitazone has been shown to decrease bone mass in mice and thiazolidinediones (TZDs) have recently been found to increase bone loss and fracture risk in humans treated for type 2 diabetes mellitus. The aim of the study was to examine the effect of the PPARα agonist fenofibrate (FENO) and the PPARγ agonist pioglitazone (PIO) on bone in intact female rats. Methods Rats were given methylcellulose (vehicle), fenofibrate or pioglitazone (35 mg/kg body weight/day) by gavage for 4 months. BMC, BMD, and body composition were measured by DXA. Histomorphometry and biomechanical testing of excised femurs were performed. Effects of the compounds on bone cells were studied. Results The FENO group had higher femoral BMD and smaller medullary area at the distal femur; while trabecular bone volume was similar to controls. Whole body BMD, BMC, and trabecular bone volume were lower, while medullary area was increased in PIO rats compared to controls. Ultimate bending moment and energy absorption of the femoral shafts were reduced in the PIO group, while similar to controls in the FENO group. Plasma osteocalcin was higher in the FENO group than in the other groups. FENO stimulated proliferation and differentiation of, and OPG release from, the preosteoblast cell line MC3T3-E1. Conclusion We show opposite skeletal effects of PPARα and γ agonists in intact female rats. FENO resulted in significantly higher femoral BMD and lower medullary area, while PIO induced bone loss and impairment of the mechanical strength. This represents a novel effect of PPARα activation. PMID:19331671

  1. Effects of long-term estrogen replacement therapy on bone turnover in periarticular tibial osteophytes in surgically postmenopausal cynomolgus monkeys

    PubMed Central

    Olson, Erik J.; Lindgren, Bruce R.; Carlson, Cathy S.

    2008-01-01

    The aims of the present study were to assess the effects of long-term estrogen replacement therapy (ERT) on size and indices of bone turnover in periarticular osteophytes in ovariectomized cynomolgus monkeys and to compare dynamic indices of bone turnover in osteophyte bone with those of subchondral bone (SCB) and epiphyseal/metaphyseal cancellous (EMC) bone. One hundred sixty-five adult female cynomolgus macaques were bilaterally ovariectomized and randomly divided into three age- and weight-matched treatment groups for a 36-month treatment period. Group 1 (OVX control) received no treatment, Group 2 (SPE) received soy phytoestrogens, and Group 3 (ERT) received conjugated equine estrogens in the diet; all monkeys were labeled with calcein before necropsy. A midcoronal, plastic-embedded section of the right proximal tibia from 20 randomly selected animals per treatment group was examined histologically. Forty-nine of the sections (OVX control, n=16; SPE, n=16; ERT, n=17) contained lateral abaxial osteophytes, and static and dynamic histomorphometry measurements were taken from osteophyte bone, SCB from the lateral tibial plateau, and EMC bone. Data were analyzed using the ANOVA and Kruskal-Wallis test, correlation and regression methods, and the Friedman and Wilcoxon signed rank test. There was no significant effect of long-term ERT on osteophyte area or on any static or dynamic histomorphometry parameters. The bone volume, trabecular number, and trabecular thickness in osteophyte bone were considerably higher than in EMC bone; whereas, trabecular separation was considerably lower in osteophyte bone. In all three treatment groups, BS/BV was significantly lower in osteophyte bone vs. EMC bone and significantly higher in osteophyte bone vs. lateral SCB. We conclude that osteophyte area and static and dynamic histomorphometry parameters within periarticular tibial osteophytes in ovariectomized cynomolgus monkeys are not significantly influenced by long-term ERT, but that site differences in static and dynamic bone histomorphometry parameters exist, particularly between EMC and osteophyte bone. PMID:18291743

  2. Effects of long-term estrogen replacement therapy on bone turnover in periarticular tibial osteophytes in surgically postmenopausal cynomolgus monkeys.

    PubMed

    Olson, Erik J; Lindgren, Bruce R; Carlson, Cathy S

    2008-05-01

    The aims of the present study were to assess the effects of long-term estrogen replacement therapy (ERT) on size and indices of bone turnover in periarticular osteophytes in ovariectomized cynomolgus monkeys and to compare dynamic indices of bone turnover in osteophyte bone with those of subchondral bone (SCB) and epiphyseal/metaphyseal cancellous (EMC) bone. One hundred sixty-five adult female cynomolgus macaques were bilaterally ovariectomized and randomly divided into three age- and weight-matched treatment groups for a 36-month treatment period. Group 1 (OVX control) received no treatment, Group 2 (SPE) received soy phytoestrogens, and Group 3 (ERT) received conjugated equine estrogens in the diet; all monkeys were labeled with calcein before necropsy. A midcoronal, plastic-embedded section of the right proximal tibia from 20 randomly selected animals per treatment group was examined histologically. Forty-nine of the sections (OVX control, n=16; SPE, n=16; ERT, n=17) contained lateral abaxial osteophytes, and static and dynamic histomorphometry measurements were taken from osteophyte bone, SCB from the lateral tibial plateau, and EMC bone. Data were analyzed using the ANOVA and Kruskal-Wallis test, correlation and regression methods, and the Friedman and Wilcoxon signed rank test. There was no significant effect of long-term ERT on osteophyte area or on any static or dynamic histomorphometry parameters. The bone volume, trabecular number, and trabecular thickness in osteophyte bone were considerably higher than in EMC bone; whereas, trabecular separation was considerably lower in osteophyte bone. In all three treatment groups, BS/BV was significantly lower in osteophyte bone vs. EMC bone and significantly higher in osteophyte bone vs. lateral SCB. We conclude that osteophyte area and static and dynamic histomorphometry parameters within periarticular tibial osteophytes in ovariectomized cynomolgus monkeys are not significantly influenced by long-term ERT, but that site differences in static and dynamic bone histomorphometry parameters exist, particularly between EMC and osteophyte bone.

  3. Effect of intermittent administration of teriparatide on the mechanical and histological changes in bone grafted with β-tricalcium phosphate using a rabbit bone defect model

    PubMed Central

    Komatsu, Jun; Nagura, Nana; Iwase, Hideaki; Igarashi, Mamoru; Ohbayashi, Osamu; Nagaoka, Isao; Kaneko, Kazuo

    2018-01-01

    Grafting β-tricalcium phosphate (TCP) is a well-established method for restoring bone defects; however, there is concern that the mechanical stability of the grafted β-TCP is not maintained during bone translation. Teriparatide has an anabolic effect, stimulating bone formation and increasing bone mineral density for the treatment of osteoporosis. The aim of the present study was to evaluate the effect of intermittent teriparatide treatment on changes in bone grafted with β-TCP using a rabbit bone defect model. Bone defects (5×15 mm) were created in the distal femoral condyle of Japanese white rabbits, and β-TCP granules of two different total porosities were manually grafted. Teriparatide (40 µg/kg) or 0.2% rabbit serum albumin solution as a vehicle control was subcutaneously injected three times per week following the surgery. At 4 or 8 weeks post-surgery, serum samples were obtained and the levels of γ-carboxylated osteocalcin (Gla-OC) were quantified using ELISA. Histomorphometry was also performed using sections of graft sites following staining for tartrate resistant acid phosphatase. Activity and mechanical strength (maximum shear strength, maximum shear stiffness and total energy absorption) were evaluated using an axial push-out load to failure test. Teriparatide treatment significantly increased (P<0.05) the serum levels of Gla-OC, a specific marker for bone formation, suggesting that teriparatide enhances bone formation in β-TCP-grafted rabbits. Furthermore teriparatide increased the degradation of β-TCP by bone remodeling (P<0.05) and promoted the formation of new bone following application of the graft compared with the control group (P<0.01). Furthermore, teriparatide suppressed the reduction in mechanical strength (P<0.05) during bone translation in bone defects grafted with β-TCP. The results of the present study demonstrate that teriparatide is effective in maintaining the mechanical stability of grafted β-TCP, possibly by promoting new bone formation. PMID:29387179

  4. Associations between adiposity, hormones, and gains in height, whole-body height-adjusted bone size, and size-adjusted bone mineral content in 8- to 11-year-old children.

    PubMed

    Dalskov, S; Ritz, C; Larnkjær, A; Damsgaard, C T; Petersen, R A; Sørensen, L B; Ong, K K; Astrup, A; Michaelsen, K F; Mølgaard, C

    2016-04-01

    We examined fat-independent associations of hormones with height and whole-body bone size and mineral content in 633 school children. IGF-1 and osteocalcin predict growth in height, while fat, osteocalcin, and in girls also, IGF-1 predict growth in bone size. Leptin and ghrelin are inversely associated with bone size in girls. Obesity causes larger bone size and bone mass, but the role of hormones in this up-regulation of bone in obesity is not well elucidated. We examined longitudinal associations between baseline body fat mass (FM), and fat-independent fasting levels of ghrelin, adiponectin, leptin, insulin, insulin-like growth factor-I (IGF-1), osteocalcin, and intact parathyroid hormone, and subsequent changes in height and in whole-body height-adjusted bone area "BAheight" and size-adjusted bone mineral content "BMCsize" in 8- to 11-year-olds. Analyses were carried out separately for boys (n = 325) and girls (n = 308) including data from baseline, 3 and 6 months from OPUS School Meal Study. In both sexes: gain in BAheight was positively associated with baseline FM (≥2.05 cm(2)/kg, both p ≤ 0.003). Furthermore, gain in height was positively associated with baseline IGF-1 (≥0.02 cm/ng/ml, p = 0.001) and osteocalcin (≥0.13 cm/ng/ml, p ≤ 0.009); and gain in BAheight was positively associated with baseline osteocalcin (≥0.35 cm(2)/ng/ml, p ≤ 0.019). In girls only, gain in BAheight was also positively associated with baseline IGF-1 (0.06 cm(2)/ng/ml, p = 0.017) and inversely associated with both baseline ghrelin (-0.01 cm(2)/pg/ml, p = 0.001) and leptin (-1.21 cm(2)/μg/ml, p = 0.005). In boys, gain in BMCsize was positively associated with osteocalcin (0.18 g/ng/ml, p = 0.030). This large longitudinal study suggests that in 8- to 11-year-old children, IGF-1 and osteocalcin predict growth in height, while FM, osteocalcin, and in girls also, IGF-1 predict growth in BAheight. Fat-independent inverse associations of leptin and ghrelin with BAheight in girls' are contrary to proposed growth-stimulating effects of leptin. Osteocalcin in boys predicts gain in BMCsize.

  5. Effect of COX-2 (PGE2) and IL-6 on Prostate Cancer Bone Metastases

    DTIC Science & Technology

    2008-02-02

    to stimulate both bone targeting and bone reaction (4). Several factors, such as basic fibroblast growth factor (4), osteocalcin, bone sialoprotein (8...Proc Natl Acad Sci U S A 1990;87:75–9. 8. Huang WC, Xie Z, Konaka H, Sodek J, Zhau HE, Chung LWK. Human osteocalcin and bone sialoprotein medi- ating

  6. Magnesium release from mesoporous carriers on endosseus implants does not influence bone maturation at 6 weeks in rabbit bone.

    PubMed

    Galli, Silvia; Andersson, Martin; Jinno, Yohei; Karlsson, Johan; He, Wenxiao; Xue, Ying; Mustafa, Kamal; Wennerberg, Ann; Jimbo, Ryo

    2017-10-01

    The release of magnesium ions (Mg 2+ ) from titanium surfaces has been shown to boost the initial biological response of peri-implant bone and to increase the biomechanical strength of osseointegration. The objective of the present paper was to investigate if the initial improvement in osseointegration would influence the bone remodeling also during the maturation stage of bone healing. Titanium implants were coated with mesoporous titania layers and either loaded with Mg 2+ (test group) or left untreated (control group). The implants were inserted in the tibiae of 10 New Zealand White rabbits. Osseointegration was assessed after 6 weeks by means of biomechanical testing (RTQ), non-decalcified histology and histomorphometry (BIC%, BA%, NBA%). The expression of genes involved in the bone formation and remodeling was quantified using qPCR. Mg 2+ releasing mesoporous titania coatings showed, on average, higher removal torques and histomorphometrical outcomes (RTQ: 17.2 Ncm vs. 15 Ncm; BIC: 38.8% vs. 32.1%; BA%: 71.6% vs. 64%; NBA% 62.5% vs. 54% for the tests vs the controls); however, the differences were not statistically significant. Three osteogenic markers, osteocalcin (OC), collagen 1 alpha 1 (COL1A1), and alkalin phosphatase (ALPL), were respectively 2-fold, 1.53-fold, and 1.13-fold up-regulated in the control group compared to the test. The expression of COL1A1 was particularly high in both groups, while the biomarkers for remodeling and inflammation showed a low expression in both groups. The results suggested that the initial enhancement in osseointegration induced by magnesium release from mesoporous titania coatings has no detrimental effects during bone maturation. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2118-2125, 2017. © 2016 Wiley Periodicals, Inc.

  7. Adult Brtl/+ mouse model of osteogenesis imperfecta demonstrates anabolic response to sclerostin antibody treatment with increased bone mass and strength.

    PubMed

    Sinder, B P; White, L E; Salemi, J D; Ominsky, M S; Caird, M S; Marini, J C; Kozloff, K M

    2014-08-01

    Treatments to reduce fracture rates in adults with osteogenesis imperfecta are limited. Sclerostin antibody, developed for treating osteoporosis, has not been explored in adults with OI. This study demonstrates that treatment of adult OI mice respond favorably to sclerostin antibody therapy despite retention of the OI-causing defect. Osteogenesis imperfecta (OI) is a heritable collagen-related bone dysplasia, characterized by brittle bones with increased fracture risk. Although OI fracture risk is greatest before puberty, adults with OI remain at risk of fracture. Antiresorptive bisphosphonates are commonly used to treat adult OI, but have shown mixed efficacy. New treatments which consistently improve bone mass throughout the skeleton may improve patient outcomes. Neutralizing antibodies to sclerostin (Scl-Ab) are a novel anabolic therapy that have shown efficacy in preclinical studies by stimulating bone formation via the canonical wnt signaling pathway. The purpose of this study was to evaluate Scl-Ab in an adult 6 month old Brtl/+ model of OI that harbors a typical heterozygous OI-causing Gly > Cys substitution on Col1a1. Six-month-old WT and Brtl/+ mice were treated with Scl-Ab (25 mg/kg, 2×/week) or Veh for 5 weeks. OCN and TRACP5b serum assays, dynamic histomorphometry, microCT and mechanical testing were performed. Adult Brtl/+ mice demonstrated a strong anabolic response to Scl-Ab with increased serum osteocalcin and bone formation rate. This anabolic response led to improved trabecular and cortical bone mass in the femur. Mechanical testing revealed Scl-Ab increased Brtl/+ femoral stiffness and strength. Scl-Ab was successfully anabolic in an adult Brtl/+ model of OI.

  8. Minimizing Interpolation Bias and Precision Error in In Vivo μCT-based Measurements of Bone Structure and Dynamics

    PubMed Central

    de Bakker, Chantal M. J.; Altman, Allison R.; Li, Connie; Tribble, Mary Beth; Lott, Carina; Tseng, Wei-Ju; Liu, X. Sherry

    2016-01-01

    In vivo μCT imaging allows for high-resolution, longitudinal evaluation of bone properties. Based on this technology, several recent studies have developed in vivo dynamic bone histomorphometry techniques that utilize registered μCT images to identify regions of bone formation and resorption, allowing for longitudinal assessment of bone remodeling. However, this analysis requires a direct voxel-by-voxel subtraction between image pairs, necessitating rotation of the images into the same coordinate system, which introduces interpolation errors. We developed a novel image transformation scheme, matched-angle transformation (MAT), whereby the interpolation errors are minimized by equally rotating both the follow-up and baseline images instead of the standard of rotating one image while the other remains fixed. This new method greatly reduced interpolation biases caused by the standard transformation. Additionally, our study evaluated the reproducibility and precision of bone remodeling measurements made via in vivo dynamic bone histomorphometry. Although bone remodeling measurements showed moderate baseline noise, precision was adequate to measure physiologically relevant changes in bone remodeling, and measurements had relatively good reproducibility, with intra-class correlation coefficients of 0.75-0.95. This indicates that, when used in conjunction with MAT, in vivo dynamic histomorphometry provides a reliable assessment of bone remodeling. PMID:26786342

  9. Minimizing Interpolation Bias and Precision Error in In Vivo µCT-Based Measurements of Bone Structure and Dynamics.

    PubMed

    de Bakker, Chantal M J; Altman, Allison R; Li, Connie; Tribble, Mary Beth; Lott, Carina; Tseng, Wei-Ju; Liu, X Sherry

    2016-08-01

    In vivo µCT imaging allows for high-resolution, longitudinal evaluation of bone properties. Based on this technology, several recent studies have developed in vivo dynamic bone histomorphometry techniques that utilize registered µCT images to identify regions of bone formation and resorption, allowing for longitudinal assessment of bone remodeling. However, this analysis requires a direct voxel-by-voxel subtraction between image pairs, necessitating rotation of the images into the same coordinate system, which introduces interpolation errors. We developed a novel image transformation scheme, matched-angle transformation (MAT), whereby the interpolation errors are minimized by equally rotating both the follow-up and baseline images instead of the standard of rotating one image while the other remains fixed. This new method greatly reduced interpolation biases caused by the standard transformation. Additionally, our study evaluated the reproducibility and precision of bone remodeling measurements made via in vivo dynamic bone histomorphometry. Although bone remodeling measurements showed moderate baseline noise, precision was adequate to measure physiologically relevant changes in bone remodeling, and measurements had relatively good reproducibility, with intra-class correlation coefficients of 0.75-0.95. This indicates that, when used in conjunction with MAT, in vivo dynamic histomorphometry provides a reliable assessment of bone remodeling.

  10. Three-Dimensional Dynamic Bone Histomorphometry

    PubMed Central

    Slyfield, C.R.; Tkachenko, E.V.; Wilson, D.L.; Hernandez, C.J.

    2011-01-01

    Dynamic bone histomorphometry is the standard method for measuring bone remodeling at the level of individual events. While dynamic bone histomorphometry is an invaluable tool for understanding osteoporosis and other metabolic bone diseases, the technique’s two-dimensional nature requires the use of stereology and prevents measures of individual remodeling event number and size. Here, we use a novel three-dimensional fluorescence imaging technique to achieve measures of individual resorption cavities and formation events. We perform this three-dimensional histomorphometry approach using a common model of postmenopausal osteoporosis, the ovariectomized rat. The three-dimensional images demonstrate the spatial relationship between resorption cavities and formation events consistent with the hemi-osteonal model of cancellous bone remodeling. Established ovariectomy was associated with significant increases in the number of resorption cavities per unit bone surface (2.38 ± 0.24 mm−2 SHAM v. 3.86 ± 0.35 mm−2 OVX, mean ± SD, p < 0.05) and total volume occupied by cavities per unit bone volume (0.38 ± 0.06% SHAM v. 1.12 ± 0.18% OVX, p < 0.001), but no difference in surface area per resorption cavity, maximum cavity depth, or cavity volume. Additionally, we find that established ovariectomy is associated with increased size of bone formation events due to merging of formation events (23,700 ± 6,890 μm2 SHAM v. 33,300 ± 7,950 μm2 OVX). No differences in mineral apposition rate (determined in 3D) were associated with established ovariectomy. That established estrogen depletion is associated with increased number of remodeling events with only subtle changes in remodeling event size suggests that circulating estrogens may have their primary effect on the origination of new basic multicellular units with relatively little effect on the progression and termination of active remodeling events. PMID:22028195

  11. Positive Correlation between Serum Osteocalcin and Testosterone in Male Hyperthyroidism Patients with High Bone Turnover.

    PubMed

    Zhong, N; Xu, B; Cui, R; Xu, M; Su, J; Zhang, Z; Liu, Y; Li, L; Sheng, C; Sheng, H; Qu, S

    2016-07-01

    Animal studies suggested that there is an independent bone-osteocalcin-gonadal axis, except of the hypothalamic-pituitary-gonadal axis. Based on this hypothesis, the higher osteocalcin during the high bone turnover should be followed by higher testosterone formation. Yet such clinical evidence is limited. The patients with uncontrolled hyperthyroidism are proper model with high bone turnover. If this hypothesis is true, there should be high testosterone level in patients with uncontrolled hyperthyroidism. Therefore, Graves' disease patients were recruited to study the correlation between osteocalcin and testosterone. 50 male hyperthyroidism patients with Graves' disease and 50 health persons matched by age and gender were enrolled in our cross-section study. Serum markers for thyroid hormone, sex hormone and bone metabolic markers including free triiodothyronine (FT3), free thyroxine (FT4), thyroid-stimulating hormone (TSH), testosterone, luteinizing hormone (LH), follicle-stimulating hormone (FSH) and osteocalcin (OC), C-terminal telopeptide fragments of type I collagen (CTX) were examined. The demographic parameters such as duration of disease were also collected. All data was analyzed by SPSS 20.0. High testosterone and osteocalcin level was observed in the hyperthyroidism patients (T 36.35±10.72 nmol/l and OC 46.79±26.83 ng/ml). In simple Pearson correlation, testosterone was positively associated with OC (r=0.486, P<0.001), and this positive relation still existed after adjusted for age, BMI, smoking, drinking, duration of disease, FT3, FT4, LH, FSH, CTX in multi-linear regression analysis (See Model 1-4). In male hyperthyroidism patients, osteocalcin was positively correlated with serum testosterone, which indirectly supports the hypothesis that serum osteocalcin participates in the regulation of sex hormone. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Du-Zhong (Eucommia ulmoides Oliv.) Cortex Extract Alleviates Lead Acetate-Induced Bone Loss in Rats.

    PubMed

    Qi, Shanshan; Zheng, Hongxing; Chen, Chen; Jiang, Hai

    2018-05-09

    The purpose of this study was to evaluate the protective effect of Du-Zhong cortex extract (DZCE) on lead acetate-induced bone loss in rats. Forty female Sprague-Dawley rats were randomly divided into four groups: group I (control) was provided with distilled water. Group II (PbAc) received 500 ppm lead acetate in drinking water for 60 days. Group III (PbAc+DZCE) received 500 ppm lead acetate in drinking water, and given intragastric DZCE (100 mg/kg body weight) for 60 days. Group IV (DZCE) was given intragastric DZCE (100 mg/kg body weight) for 60 days. The bone mineral density, serum biochemical markers, bone histomorphology, and bone marrow adipocyte parameters were analyzed using dual-energy X-ray absorptiometry, biochemistry, histomorphometry, and histopathology, respectively. The results showed that the lumbar spine and femur bone mineral density was significantly decreased in PbAc group compared with the control (P < 0.05); however, this decrease was inhibited by the intake of Du-Zhong cortex extract (P < 0.05, vs. PbAc group; P > 0.05, vs. control and DZCE group). Serum calcium and serum phosphorus in the PbAc+DZCE group were greater than that in the PbAc group (P < 0.05). The PbAc group had higher ALP, osteocalcin, and RANKL than the control group (P < 0.01), and they were significantly lower in the PbAc+DZCE group compared with the PbAc group. There were no significant differences of ALP, osteocalcin, and RANKL among the PbAc+DZCE, control, and DZCE groups (P > 0.05). Serum OPG and OPG/RANKL ration were significantly higher in the PbAc+DZCE group than that in the PbAc group (P < 0.05). The bone histomorphometric analyses showed that bone volume and trabecular thickness in the femoral trabecular bone were significantly lower in the PbAc group than that in the control group, but those were restored in the PbAc+DZCE groups. The bone marrow adipocyte number, percent adipocyte volume per tissue volume (AV/TV), and mean adipocyte diameter were significantly increased in the PbAc group compared to the control (P < 0.01), and those were restored in the PbAc+DZCE group. The differences of those parameters between PbAc+DZCE, DZCE, and the control group were not significant. The results above indicate that the Du-Zhong cortex extract has protective effects on both stimulation of bone formation and suppression of bone resorption in lead-exposed rats, therefore, Du-Zhong cortex extract has the potential to prevent or treat osteoporosis resulting from lead expose.

  13. Intermittent minodronic acid treatment with sufficient bone resorption inhibition prevents reduction in bone mass and strength in ovariectomized rats with established osteopenia comparable with daily treatment.

    PubMed

    Kimoto, Aishi; Tanaka, Makoto; Nozaki, Kazutoshi; Mori, Masamichi; Fukushima, Shinji; Mori, Hiroshi; Shiroya, Tsutomu; Nakamura, Toshitaka

    2013-07-01

    This study examined and compared the effects of four-week intermittent and daily administrations of minodronic acid, a highly potent nitrogen-containing bisphosphonate, on bone mineral density (BMD), bone strength, bone turnover, and histomorphometry on established osteopenia in ovariectomized (OVX) rats. Fourteen-week-old female F344 rats were OVX or sham-operated. At 12 weeks post surgery, minodronic acid was orally administered once every 4 weeks at 0.2, 1, and 5 mg/kg and once daily at 0.006, 0.03, and 0.15 mg/kg for 12 months. The total dosing amount was comparable between the two dosing regimens. The levels of urinary deoxypyridinoline and serum osteocalcin were measured to assess bone turnover. BMD as assessed via dual-energy X-ray absorptiometry, bone structure and dynamical changes in vertebral trabecula and biomechanical properties were measured ex vivo at 12 months to assess bone content and material properties. Minodronic acid dose-dependently ameliorated the decrease in BMD of lumbar vertebrae and the femur in both treatment regimens similarly. Minodronic acid suppressed elevated urinary levels of deoxypyridinoline, a bone resorption marker, and reduced the serum levels of osteocalcin, a bone formation marker. In the mechanical test at 12 months of treatment, minodronic acid dose-dependently ameliorated the reduction in bone strength in femur and vertebral body. There is no significant difference in parameters between the two regimens except maximal load of lower doses in lumbar vertebral body and absorption energy of middle doses in femur. With these parameters with significant differences, values of the intermittent regimen were significantly lower than that of daily repeated regimen. Bone histomorphometric analysis of the lumbar vertebral body showed that minodronic acid significantly ameliorated the decrease in bone mass, trabecular thickness and number, and the increase in trabecular separation, bone resorption indices (Oc.S/BS and N.Oc/BS), and bone formation indices (BFR/BS, MAR and OV/BV) in both regimens. Minodronic acid suppressed OVX-induced increases in bone turnover at the tissue level and ameliorated all structural indices, thereby improving the deterioration of bone quality under osteoporotic disease conditions regardless of the regimen. In conclusion, a four-week intermittent treatment of minodronic acid suppressed increased bone resorption as daily treatment when considering the total administered dose in OVX rats with established osteopenia. The improvement of microarchitectural destruction in low dose of intermittent treatment was weaker than that observed in a daily repeated regimen; however the effects of high and middle doses of intermittent treatment were equivalent to that observed in daily repeated regimen accompanied by sufficient bone resorption inhibition in rats. These findings suggest that minodronic acid at an appropriate dose in an intermittent regimen may be as clinically useful in osteoporosis therapy as in daily treatment. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Finite element analysis of osteoporosis models based on synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Xu, W.; Xu, J.; Zhao, J.; Sun, J.

    2016-04-01

    With growing pressure of social aging, China has to face the increasing population of osteoporosis patients as well as the whole world. Recently synchrotron radiation has become an essential tool for biomedical exploration with advantage of high resolution and high stability. In order to study characteristic changes in different stages of primary osteoporosis, this research focused on the different periods of osteoporosis of rats based on synchrotron radiation. Both bone histomorphometry analysis and finite element analysis were then carried on according to the reconstructed three dimensional models. Finally, the changes of bone tissue in different periods were compared quantitatively. Histomorphometry analysis showed that the structure of the trabecular in osteoporosis degraded as the bone volume decreased. For femurs, the bone volume fraction (Bone volume/ Total volume, BV/TV) decreased from 69% to 43%. That led to the increase of the thickness of trabecular separation (from 45.05μ m to 97.09μ m) and the reduction of the number of trabecular (from 7.99 mm-1 to 5.97mm-1). Simulation of various mechanical tests with finite element analysis (FEA) indicated that, with the exacerbation of osteoporosis, the bones' ability of resistance to compression, bending and torsion gradually became weaker. The compression stiffness of femurs decreased from 1770.96 Fμ m-1 to 697.41 Fμ m-1, the bending and torsion stiffness were from 1390.80 Fμ m-1 to 566.11 Fμ m-1 and from 2957.28N.m/o to 691.31 N.m/o respectively, indicated the decrease of bone strength, and it matched the histomorphometry analysis. This study suggested that FEA and synchrotron radiation were excellent methods for analysing bone strength conbined with histomorphometry analysis.

  15. Bone histomorphometry in de novo renal transplant recipients indicates a further decline in bone resorption 1 year posttransplantation.

    PubMed

    Evenepoel, Pieter; Behets, Geert J; Viaene, Liesbeth; D'Haese, Patrick C

    2017-02-01

    Renal transplantation is believed to have a major impact on bone health. The present prospective observational bone biopsy study aimed to define the natural history of bone histomorphometry parameters in contemporaneous de novo renal transplant recipients. Paired bone biopsies were performed at the time of transplantation and at one-year posttransplantation in an unselected cohort of 36 patients referred for deceased kidney replacement. Parameters of mineral metabolism and circulating bone turnover markers were monitored as well. Static parameters of bone formation and especially bone resorption being already low-normal in the majority of patients at the time of renal transplantation, further declined during the first posttransplant year. However, interindividual variation was substantial, and significance was reached only for bone resorption parameters. Bone mineralization and trabecular bone volume were within the normal range at the time of transplantation (83.3% and 91.7% of graft recipients, respectively) and showed little change one-year posttransplantation. Changes in osteoclast number were paralleled by changes in circulating tartrate-resistant acid phosphatase 5b levels. Finally, cumulative glucocorticoid dose, but not the posttransplantation parathyroid hormone level, associated with trabecular bone loss. Thus, the impact of renal transplantation on bone histomorphometry is limited with only bone resorption, being already low at the time of transplantation, showing a further decline. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  16. Bone: from a reservoir of minerals to a regulator of energy metabolism

    PubMed Central

    Confavreux, Cyrille B

    2011-01-01

    Besides locomotion, organ protection, and calcium–phosphorus homeostasis, the three classical functions of the skeleton, bone remodeling affects energy metabolism through uncarboxylated osteocalcin, a recently discovered hormone secreted by osteoblasts. This review traces how energy metabolism affects osteoblasts through the central control of bone mass involving leptin, serotoninergic neurons, the hypothalamus, and the sympathetic nervous system. Next, the role of osteocalcin (insulin secretion, insulin sensitivity, and pancreas β-cell proliferation) in the regulation of energy metabolism is described. Then, the connections between insulin signaling on osteoblasts and the release of uncarboxylated osteocalcin during osteoclast bone resorption through osteoprotegerin are reported. Finally, the understanding of this new bone endocrinology will provide some insights into bone, kidney, and energy metabolism in patients with chronic kidney disease. PMID:21346725

  17. Osteocalcin Mediates Biomineralization during Osteogenic Maturation in Human Mesenchymal Stromal Cells

    PubMed Central

    Tsao, Yu-Tzu; Huang, Yi-Jeng; Wu, Hao-Hsiang; Liu, Yu-An; Liu, Yi-Shiuan; Lee, Oscar K.

    2017-01-01

    There is a growing interest in cell therapies using mesenchymal stromal cells (MSCs) for repairing bone defects. MSCs have the ability to differentiate into osteoprogenitors and osteoblasts as well as to form calcified bone matrix. However, the molecular mechanisms governing mineralization during osteogenic differentiation remain unclear. Non-collagenous proteins in the extracellular matrix are believed to control different aspects of the mineralization. Since osteocalcin is the most abundant non-collagenous bone matrix protein, the purpose of this study is to investigate the roles of osteocalcin in mineral species production during osteogenesis of MSCs. Using Raman spectroscopy, we found that the maturation of mineral species was affected by osteocalcin expression level. After osteocalcin was knocked down, the mineral species maturation was delayed and total hydroxyapatite was lower than the control group. In addition, the expression of osteogenic marker genes, including RUNX2, alkaline phosphatase, type I collagen, and osteonectin, was downregulated during osteogenic differentiation compared to the control group; whereas gene expression of osterix was upregulated after the knockdown. Together, osteocalcin plays an essential role for the maturation of mineral species and modulates osteogenic differentiation of MSCs. The results offer new insights into the enhancement of new bone formation, such as for the treatments of osteoporosis and fracture healing. PMID:28106724

  18. A urine midmolecule osteocalcin assay shows higher discriminatory power than a serum midmolecule osteocalcin assay during short-term alendronate treatment of osteoporotic patients.

    PubMed

    Srivastava, A K; Mohan, S; Singer, F R; Baylink, D J

    2002-07-01

    We isolated and characterized a peptide fragment corresponding to amino acid sequence 14-28 of human osteocalcin in urine from Paget's disease, and developed a polyclonal antibody reactive to this peptide in urine. We used this antibody to measure urinary fragments of osteocalcin and compared to efficacy of the urinary osteocalcin assay with a serum osteocalcin (sOC) assay (ELISA-Osteo, Cis-Bio International) to monitor the short-term changes in bone turnover in response to alendronate treatment. The synthetic peptide-based urinary osteocalcin (uOC) radioimmunoassay (RIA) showed an analytical sensitivity of 6.25 ng/mL, standard curve range of 3.12-400 ng/mL, and mean intra- (n = 20) and interassay (n = 30) coefficient of variation (CV) of <15%. Urine osteocalcin concentrations in postmenopausal osteoporotic patients were approximately 90% higher than in normal premenopausal controls. Series of 24 h urine and matched serum samples were collected at baseline, 30 days, and 90 days after treatment of postmenopausal osteoporotic patients with daily dose of 10 mg alendronate. We measured urinary osteocalcin (uOc) levels and urinary N-telopeptide (uNTx, Ostex) in urine samples and serum N-telopeptide (sNTx), C-telopeptide (sCTx, Osteometer), serum osteocalcin (sOC) as well as bone-specific alkaline phosphatase (sALP) (Alkphose-B, Metra Biosystems) in serum samples. The percent change data obtained between baseline and 30 days (n = 18) posttreatment suggested a rapid decline in uOC concentration (-27%, p < 0.01) in response to alendronate treatment, as compared with a marginal and nonsignificant decrease in sOC (-7.2%, p = 0.417) or sALP (-3.4%, p = 0.689), two specific markers of bone formation. As expected, due to the coupling of bone formation and bone resorption, the concentration of all markers showed a 30%-45% decline compared with baseline values after 90 days (n = 16) of treatment. Correlation of markers after a 30 day treatment with alendronate revealed a higher correlation (r = 0.61, p < 0.01) between uOC and uNTx, as compared with sOC (r = 0.03, p = 0.447) or sALP (r = -0.14, p = 0.295) with uNTx. Similarly, correlation coefficients with r values between 0.48 and 0.55 (p < 0.05) were observed between uOC, sNTx, and sCTx, whereas no significant correlation was observed between sOC and sNTx or sCTx. These results provide indirect evidence that fragments measured by the urine assay probably originated from bone resorption, and suggest that the uOC assay could be used to assess short-term changes in bone metabolism with regard to osteocalcin.

  19. Short-term systemic insulin-like growth factor-1 is unable to prevent cyclosporin A-induced osteopenia in the rat.

    PubMed

    Mann, G N; Sass, D A; Chen, H K; Buchinsky, F J; Bryer, H P; Ma, Y F; Jee, W S; Rucinski, B; Epstein, S

    1996-07-01

    Immunosuppression with cyclosporin A (CsA) is effective in a number of immune-mediated diseases and in preventing rejection following organ transplantation. We have repeatedly demonstrated that CsA in the rat model produces accelerated bone remodelling with net bone loss, best characterized in trabecular bone. IGF-I holds promise as a treatment for various osteopenic conditions. Although currently a subject of much controversy, various studies have suggested that in vivo it is anabolic to cortical as well as trabecular bone. The purpose of this study was, in part, to further characterize the effects of CsA and IGF-I on trabecular and cortical bone, and to see whether systemic IGF-I is able to modulate CsA's deleterious skeletal effects. Sixty 10 week-old, male, Sprague-Dawley rats were randomized to receive the following daily for 3 weeks: (1) CsA vehicle (veh) per os (po) + recombinant human (rh) IGF-1 veh subcutaneously (sc); (2) CsA 15 mg/kg po + rhIGF-I-veh; (3) CsA-veh + rhIGF-I 200 microg/kg sc; (4) CsA-veh + rhIGF-I 600 microg/kg sc; (5) CsA 15 mg/kg + rhIGF-I 200 microg/kg, and (6) CsA 15 mg/kg + rhIGF-I 600 microg/kg. Rats were weighed and venous blood was sampled serially for determination of glucose, ionized calcium (Ca2+), PTH, vitamin D, and osteocalcin. Following sacrifice on day 20, histomorphometry was performed on double calcein-labeled tibial metaphysis and diaphysis. All rats receiving CsA had elevated levels of blood glucose and osteocalcin by day 9 and vitamin D at day 20. PTH was similar in all groups, and Ca2+ was only raised in the CsA and CsA + IGF-I 200 microg/kg groups. Rats receiving IGF-I 200 microg/kg and IGF-I 600 microg/kg gained more weight than either vehicle- or CsA-treated animals, attesting to IGF-1's anabolic properties. CsA caused severe trabecular bone loss, not prevented by IGF-I; it even further increased the eroded surface. CsA and IGF-I had little effect on cortical bone volume or marrow area. IGF-I increased endocortical matrix synthesis, as evidenced by the increases in the percent endocortical osteoid perimeter, an effect negated by the addition of CsA. This experiment demonstrates that trabecular bone is more susceptible than cortical bone to the deleterious effects of CsA and indicates little role for IGF-1 in the pathophysiology or treatment of CsA-induced bone disease at the given doses and duration of treatment.

  20. Influence of exercise on bone remodeling-related hormones and cytokines in ovariectomized rats: a model of postmenopausal osteoporosis.

    PubMed

    Li, Lihui; Chen, Xi; Lv, Shuang; Dong, Miaomiao; Zhang, Li; Tu, Jiaheng; Yang, Jie; Zhang, Lingli; Song, Yinan; Xu, Leiting; Zou, Jun

    2014-01-01

    This study aims to explore the effects of exercise on postmenopausal osteoporosis and the mechanisms by which exercise affects bone remodeling. Sixty-three Wistar female rats were randomly divided into five groups: (1) control group, (2) sham-operated group, (3) OVX (Ovariectomy) group, (4) DES-OVX (Diethylstilbestrol-OVX) group, and (5) Ex-OVX (Exercise-OVX) group. The rat osteoporosis model was established through ovariectomy. The Ex-OVX rats were made to run 251.2 meters every day, 6 d/wk for 3 months in a running wheel. Trabecular bone volume (TBV%), total resorption surface (TRS%), trabecular formation surface (TFS%), mineralization rate (MAR), bone cortex mineralization rate (mAR), and osteoid seam width (OSW) were determined by bone histomorphometry. The mRNA and protein levels of interleukin-1β (IL-1β2), interleukin-6 (IL-6), and cyclooxygenase-2 (Cox-2) were determined by in situ hybridization and immunohistochemistry, respectively. Serum levels of estrogen estradiol (E2), calcitonin (CT), osteocalcin (BGP), and parathyroid hormone (PTH) were determined by ELISA assays. The investigation revealed that compared to the control and the sham-operated groups, the OVX group showed significantly lower levels of TBV%, E2, and CT, but much higher levels of TRS%, TFS%, MAR, OSW, BGP, and PTH. The Ex-OVX group showed increased TBV% and serum levels of E2 and CT compared to the OVX group. Ovariectomy also led to a significant increase in IL-1β mRNA and protein levels in the bone marrow and IL-6 and Cox-2 protein levels in tibias. In addition, the Ex-OVX group showed lower levels of IL-1 mRNA and protein, IL-6 mRNA, and Cox-2 mRNA and protein than those in the OVX group. The upshot of the study suggests that exercise can significantly increase bone mass in postmenopausal osteoporosis rat models by inhibiting bone resorption and increasing bone formation, especially in trabecular bones.

  1. Issues in modern bone histomorphometry☆

    PubMed Central

    Recker, R.R.; Kimmel, D.B.; Dempster, D.; Weinstein, R.S.; Wronski, T.J.; Burr, D.B.

    2012-01-01

    This review reports on proceedings of a bone histomorphometry session conducted at the Fortieth International IBMS Sun Valley Skeletal Tissue Biology Workshop held on August 1, 2010. The session was prompted by recent technical problems encountered in conducting histomorphometry on bone biopsies from humans and animals treated with anti-remodeling agents such as bisphosphonates and RANKL antibodies. These agents reduce remodeling substantially, and thus cause problems in calculating bone remodeling dynamics using in vivo fluorochrome labeling. The tissue specimens often contain few or no fluorochrome labels, and thus create statistical and other problems in analyzing variables such as mineral apposition rates, mineralizing surface and bone formation rates. The conference attendees discussed these problems and their resolutions, and the proceedings reported here summarize their discussions and recommendations. PMID:21810491

  2. Vitamin K deficiency evaluated by serum levels of undercarboxylated osteocalcin in patients with anorexia nervosa with bone loss.

    PubMed

    Urano, Ayako; Hotta, Mari; Ohwada, Rina; Araki, Mariko

    2015-06-01

    Osteoporosis is a chief complication in patients with anorexia nervosa. Serum levels of undercarboxylated osteocalcin reflect serum and bone vitamin K deficiency. We investigated vitamin K status in patients with anorexia nervosa to help establish prevention and treatment recommendations for osteoporosis. Fifty-four female amenorrheic patients with anorexia nervosa (29 restricting-type and 25 binge eating/purging type) (age, 28.0 (26.7-31.1) (mean (95% CI)) years; body mass index, 14.8 (14.1-15.5) kg/m(2), duration of illness; 107.3 (88.5-126.0) months) and 15 age-matched healthy females were included in this study. We measured serum levels of undercarboxylated osteocalcin, biochemical and nutritional markers, and bone metabolic markers. Dietary vitamin K intake was evaluated by a questionnaire. Lumbar bone mineral density and T-scores in patients with anorexia nervosa were 0.756 (0.721-0.790) g/cm(2) and -2.4 (-2.1 to -2.7), respectively, indicating bone loss. Serum levels of undercarboxylated osteocalcin in patients with anorexia nervosa were significantly higher than those of controls. The 17% of restricting type and 40% of binge eating/purging type anorexia nervosa patients, serum levels of undercarboxylated osteocalcin were higher than 4.5 ng/ml and were diagnosed with vitamin K deficiency. Serum levels of undercarboxylated osteocalcin correlated significantly and negatively with vitamin K intake in patients with anorexia nervosa. Patients with anorexia nervosa had vitamin K deficiency. Since a supplement of vitamin K might be effective for maintaining bone quality, we provide recommendations regarding vitamin K intake for prevention and treatment of osteoporosis in patients with AN. Copyright © 2014 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  3. The quantitative assessment of peri-implant bone responses using histomorphometry and micro-computed tomography.

    PubMed

    Schouten, Corinne; Meijer, Gert J; van den Beucken, Jeroen J J P; Spauwen, Paul H M; Jansen, John A

    2009-09-01

    In the present study, the effects of implant design and surface properties on peri-implant bone response were evaluated with both conventional histomorphometry and micro-computed tomography (micro-CT), using two geometrically different dental implants (Screw type, St; Push-in, Pi) either or not surface-modified (non-coated, CaP-coated, or CaP-coated+TGF-beta1). After 12 weeks of implantation in a goat femoral condyle model, peri-implant bone response was evaluated in three different zones (inner: 0-500 microm; middle: 500-1000 microm; and outer: 1000-1500 microm) around the implant. Results indicated superiority of conventional histomorphometry over micro-CT, as the latter is hampered by deficits in the discrimination at the implant/tissue interface. Beyond this interface, both analysis techniques can be regarded as complementary. Histomorphometrical analysis showed an overall higher bone volume around St compared to Pi implants, but no effects of surface modification were observed. St implants showed lowest bone volumes in the outer zone, whereas inner zones were lowest for Pi implants. These results implicate that for Pi implants bone formation started from two different directions (contact- and distance osteogenesis). For St implants it was concluded that undersized implantation technique and loosening of bone fragments compress the zones for contact and distant osteogenesis, thereby improving bone volume at the interface significantly.

  4. Evaluation of the Effects of Photobiomodulation on Partial Osteotomy in Streptozotocin-Induced Diabetes in Rats.

    PubMed

    Mostafavinia, Ataroalsadat; Masteri Farahani, Reza; Abdollahifar, Mohammad-Amin; Ghatrehsamani, Mahdi; Ghoreishi, Seyed Kamran; Hajihossainlou, Behnam; Chien, Sufan; Dadras, Sara; Rezaei, Fatemehalsadat; Bayat, Mohammad

    2018-05-31

    We examined the effects of photobiomodulation (PBM) on stereological parameters, and gene expression of Runt-related transcription factor 2 (RUNX2), osteocalcin, and receptor activator of nuclear factor kappa-B ligand (RANKL) in repairing tissue of tibial bone defect in streptozotocin (STZ)-induced type 1 diabetes mellitus (TIDM) in rats during catabolic response of fracture healing. There were conflicting results regarding the efficacy of PBM on bone healing process in healthy and diabetic animals. Forty-eight rats have been distributed into four groups: group 1 (healthy control, no TIDM and no PBM), group 2 (healthy test, no TIDM and PBM), group 3 (diabetic control, TIDM and no PBM), and group 4 (diabetic test, no TIDM and PBM). TIDM was induced in the groups 3 and 4. A partial bone defect in tibia was made in all groups. The bone defects of groups second and fourth were irradiated by a laser (890 nm, 80 Hz, 1.5 J/cm 2 ). Thirty days after the surgery, all bone defects were extracted and were submitted to stereological examination and real-time polymerase chain reaction (RT-PCR). PBM significantly increased volumes of total callus, total bone, bone marrow, trabecular bone, and cortical bone, and the numbers of osteocytes and osteoblasts of callus in TIDM rats compared to those of callus in diabetic control. In addition, TIDM increased RUNX2, and osteocalcin in callus of tibial bone defect compared to healthy group. PBM significantly decreased osteocalcin gene expression in TIDM rats. PBM significantly increased many stereological parameters of bone repair in an STZ-induced TIDM during catabolic response of fracture healing. Further RT-PCR test demonstrated that bone repair was modulated in diabetic rats during catabolic response of fracture healing by significant increase in mRNA expression of RUNX2, and osteocalcin compared to healthy control rats. PBM also decreased osteocalcin mRNA expression in TIDM rats.

  5. Bone histomorphometry using free and commonly available software.

    PubMed

    Egan, Kevin P; Brennan, Tracy A; Pignolo, Robert J

    2012-12-01

    Histomorphometric analysis is a widely used technique to assess changes in tissue structure and function. Commercially available programs that measure histomorphometric parameters can be cost-prohibitive. In this study, we compared an inexpensive method of histomorphometry to a current proprietary software program. Image J and Adobe Photoshop(®) were used to measure static and kinetic bone histomorphometric parameters. Photomicrographs of Goldner's trichrome-stained femurs were used to generate black-and-white image masks, representing bone and non-bone tissue, respectively, in Adobe Photoshop(®) . The masks were used to quantify histomorphometric parameters (bone volume, tissue volume, osteoid volume, mineralizing surface and interlabel width) in Image J. The resultant values obtained using Image J and the proprietary software were compared and differences found to be statistically non-significant. The wide-ranging use of histomorphometric analysis for assessing the basic morphology of tissue components makes it important to have affordable and accurate measurement options available for a diverse range of applications. Here we have developed and validated an approach to histomorphometry using commonly and freely available software that is comparable to a much more costly, commercially available software program. © 2012 Blackwell Publishing Limited.

  6. Bone histomorphometry using free and commonly available software

    PubMed Central

    Egan, Kevin P.; Brennan, Tracy A.; Pignolo, Robert J.

    2012-01-01

    Aims Histomorphometric analysis is a widely used technique to assess changes in tissue structure and function. Commercially-available programs that measure histomorphometric parameters can be cost prohibitive. In this study, we compared an inexpensive method of histomorphometry to a current proprietary software program. Methods and results Image J and Adobe Photoshop® were used to measure static and kinetic bone histomorphometric parameters. Photomicrographs of Goldner’s Trichrome stained femurs were used to generate black and white image masks, representing bone and non-bone tissue, respectively, in Adobe Photoshop®. The masks were used to quantify histomorphometric parameters (bone volume, tissue volume, osteoid volume, mineralizing surface, and interlabel width) in Image J. The resultant values obtained using Image J and the proprietary software were compared and found to be statistically non-significant. Conclusions The wide ranging use of histomorphometric analysis for assessing the basic morphology of tissue components makes it important to have affordable and accurate measurement options that are available for a diverse range of applications. Here we have developed and validated an approach to histomorphometry using commonly and freely available software that is comparable to a much more costly, commercially-available software program. PMID:22882309

  7. μCT-based, in vivo dynamic bone histomorphometry allows 3D evaluation of the early responses of bone resorption and formation to PTH and alendronate combination therapy.

    PubMed

    de Bakker, Chantal M J; Altman, Allison R; Tseng, Wei-Ju; Tribble, Mary Beth; Li, Connie; Chandra, Abhishek; Qin, Ling; Liu, X Sherry

    2015-04-01

    Current osteoporosis treatments improve bone mass by increasing net bone formation: anti-resorptive drugs such as bisphosphonates block osteoclast activity, while anabolic agents such as parathyroid hormone (PTH) increase bone remodeling, with a greater effect on formation. Although these drugs are widely used, their role in modulating formation and resorption is not fully understood, due in part to technical limitations in the ability to longitudinally assess bone remodeling. Importantly, it is not known whether or not PTH-induced bone formation is independent of resorption, resulting in controversy over the effectiveness of combination therapies that use both PTH and an anti-resorptive. In this study, we developed a μCT-based, in vivo dynamic bone histomorphometry technique for rat tibiae, and applied this method to longitudinally track changes in bone resorption and formation as a result of treatment with alendronate (ALN), PTH, or combination therapy of both PTH and ALN (PTH+ALN). Correlations between our μCT-based measures of bone formation and measures of bone formation based on calcein-labeled histology (r=0.72-0.83) confirm the accuracy of this method. Bone remodeling parameters measured through μCT-based in vivo dynamic bone histomorphometry indicate an increased rate of bone formation in rats treated with PTH and PTH+ALN, together with a decrease in bone resorption measures in rats treated with ALN and PTH+ALN. These results were further supported by traditional histology-based measurements, suggesting that PTH was able to induce bone formation while bone resorption was suppressed. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Effects of mangosteen peel extract combined with demineralized freeze-dried bovine bone xenograft on osteocalcin, collagen 1, and osteoblast as alveolar bone regeneration in socket preservation.

    PubMed

    Kresnoadi, Utari; Raharjo, Tika; Rostiny, Rostiny

    2018-01-01

    Tooth extraction will provoke changes in alveolar bone morphology and dimensions. Postextraction bone resorption can lead to significant problems for restorative dentistry. Therefore, the extracted tooth socket needs to be preserved to reduce alveolar ridge bone resorption. This research aimed to analyze the expression and levels of osteocalcin, collagen 1, and osteoblasts in extracted tooth sockets filled with a combination of mangosteen peel extract and demineralized freeze-dried bovine bone xenograft (DFDBBX). Fifty-six Cavia cobaya , whose lower left incisors had been extracted, were divided into eight groups according to the substance used to fill their sockets on days 7 and 30, Poly ethylene glycol, DFDBBX, mangosteen peel extract, or a combination of mangosteen peel extract and DFDBBX. This research was conducted in several stages; the application of mangosteen peel extract combined with graft material was performed as the form of tooth extraction socket preservation. The C. cobaya rats were subsequently examined by immunohistochemical methods to measure osteocalcin and collagen 1 expressions, whereas histological examination was conducted to calculate the number of osteoblasts in accordance with the duration of the research. On days 7 and 30, the group treated with a combination of DFDBBX and mangosteen peel extract which had the highest expression and levels of osteocalcin, collagen 1, and osteoblasts. The administration of mangosteen peel extract combined with DFDBBX as a means of tooth extraction socket preservation can increase osteocalcin and collagen 1 expression. Consequently, osteoblasts as a means of alveolar bone regeneration will increase in number.

  9. Dioxin-induced up-regulation of the active form of vitamin D is the main cause for its inhibitory action on osteoblast activities, leading to developmental bone toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishimura, Noriko; Nishimura, Hisao; Ito, Tomohiro

    2009-05-01

    Dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD) is known to cause bone toxicity, particularly during animal development, although its action mechanism to cause this toxicity has yet to be elucidated. Mouse pups were exposed to TCDD via dam's milk that were administered orally with 15 {mu}g TCDD/kg b.w. on postnatal day 1. Here we report that TCDD causes up-regulation of vitamin D 1{alpha}-hydroxylase in kidney, resulting in a 2-fold increase in the active form of vitamin D, 1,25-dihydroxyvitamin D{sub 3}, in serum. This action of TCDD is not caused by changes in parathyroid hormone, a decrease in vitamin D degrading enzyme, vitamin D 24-hydroxylase,more » or alterations in serum Ca{sup 2+} concentration. Vitamin D is known to affect bone mineralization. Our data clearly show that TCDD-exposed mice exhibit a marked decrease in osteocalcin and collagen type 1 as well as alkaline phosphatase gene expression in tibia by postnatal day 21, which is accompanied with a mineralization defect in the tibia, lowered activity of osteoblastic bone formation, and an increase in fibroblastic growth factor-23, a sign of increased vitamin D effect. Despite these significant effects of TCDD on osteoblast activities, none of the markers of osteoclast activities was found to be affected. Histomorphometry confirmed that osteoblastic activity, but not bone resorption activity, was altered by TCDD. A prominent lesion commonly observed in these TCDD-treated mice was impaired bone mineralization that is characterized by an increased volume and thickness of osteoids lining both the endosteum of the cortical bone and trabeculae. Together, these data suggest that the impaired mineralization resulting from reduction of the osteoblastic activity, which is caused by TCDD-induced up-regulation of vitamin D, is responsible for its bone developmental toxicity.« less

  10. Slow rates of degradation of osteocalcin: Green light for fossil bone protein?

    NASA Astrophysics Data System (ADS)

    Collins, M. J.; Gernaey, A. M.; Nielsen-Marsh, C. M.; Vermeer, C.; Westbroek, P.

    2000-12-01

    Our claim, published in this journal, for successful immunodetection of the protein osteocalcin in dinosaur bone has been challenged on the grounds that the findings are inconsistent with the kinetics of decomposition. Here we show that the close association of osteocalcin to the bone mineral vastly enhances its preservation potential relative to the same protein in aqueous solution. We conducted heating experiments (75 95 °C) of modern bone powder and monitored the survival of three different regions of osteocalcin (N-terminal, His4-Hyp9; C-terminal, Phe45-Val49; and the mid-region, Pro15-Glu31) with monoclonal antibodies. Extrapolation of our data to 10 °C ambient burial temperatures indicates that preservation of the γ-carboxylated mid-region in fossil bone cannot be excluded on kinetic grounds. Clearly, in situ sequence analysis will be the only method by which the preservation of fossil macromolecules will be unequivocally established. Nevertheless, our findings demonstrate the importance of mineral association to protein survival, as was borne out by an investigation of Holocene (ca. 6 ka) bones. Only in those samples with little recrystallization was the γ-carboxylated mid-region well preserved. These results imply that the future success of ancient biomolecule research largely depends on our understanding the interaction between these materials and their environment throughout diagenesis.

  11. Has sclerostin a true endocrine metabolic action complementary to osteocalcin in older men?

    PubMed

    Confavreux, C B; Casey, R; Varennes, A; Goudable, J; Chapurlat, R D; Szulc, P

    2016-07-01

    The reported association between sclerostin and diabetes mellitus or abdominal fat may be biased by body size and bone mass. In older men, the association between serum sclerostin levels and metabolic syndrome lost significance after adjustment for bone mass. The association between sclerostin and energy metabolism needs further clarification. Sclerostin is associated with abdominal fat, but this relationship may be biased since both are associated with body size and bone mass. Osteocalcin is a bone-derived hormone regulating energy metabolism. We assessed the association between serum sclerostin and metabolic syndrome (MetS) accounting for whole body mineral content (BMC) and osteocalcin. We studied 694 men aged 51-85 who had serum osteocalcin and sclerostin measurements. Sclerostin was higher in 216 men with MetS compared with those without MetS (p < 0.005). Average sclerostin level increased significantly across the increasing number of MetS components. In multivariable models, higher sclerostin was associated with higher odds of MetS (odds ratio (OR) = 1.24/1 standard deviation (SD) increase [95 % confidence interval (95 % CI), 1.01-1.51]; p < 0.05). After further adjustment for BMC, the association of MetS with sclerostin lost significance, whereas that with osteocalcin remained significant. Men who were simultaneously in the highest sclerostin quartile and the lowest osteocalcin quartile had higher odds of MetS (OR = 2.14 [95 % CI, 1.15-4.18]; p < 0.05) vs. men being in the three lower sclerostin quartiles and three upper osteocalcin quartiles. After adjustment for whole body BMC, the association lost significance. Higher sclerostin level is associated with MetS severity; however, this association may be related to higher whole body BMC. The adjustment for BMC had no impact on the association between MetS and osteocalcin. Clinical cross-sectional studies do not elucidate the potential role of sclerostin in the regulation of energy metabolism and direct experimental approach is necessary.

  12. Effect of taurine feeding on bone mineral density and bone markers in rats.

    PubMed

    Choi, Mi-Ja; Seo, Ji-Na

    2013-01-01

    The purpose of this study was to investigate the effect of dietary taurine supplementation on bone mineral density (BMD) and bone mineral content (BMC) in rats. Twenty Sprague-Dawley male rats (body weight 200 ± 10 g) were divided into two groups, control and taurine group (2% taurine-supplemented diet). All rats were fed on experimental diet and deionized water and libitum for 6 weeks. Serum alkaline phosphatase (ALP) activity, osteocalcin, PTH, and urinary deoxypyridinoline cross-links value were measured as markers of bone formation and resorption. BMD and BMC were measured using PIXImus (GE Lunar Co., Wisconsin) in spine and femur. The effect of diet on ALP, osteocalcine, and PTH was not significant. There were no significant differences in ALP, osteocalcine, and PTH concentration. Urinary calcium excretion was lower in taurine group than in control group. Femur BMC/weight of taurine group was significantly higher than control group. The results of this study showed the possible role of taurine in bone metabolism in male rats.

  13. Leptin induces osteocalcin expression in ATDC5 cells through activation of the MAPK-ERK1/2 signaling pathway.

    PubMed

    Han, Yingchao; Xu, Guanghui; Zhang, Jingjie; Yan, Meijun; Li, Xinhua; Ma, Bin; Jun, Lili; Wang, Shan-Jin; Tan, Jun

    2016-09-27

    Both leptin and osteocalcin have been found to affect growth-plate cartilage development through regulation of the physiologic processes of endochondral bone formation. Leptin mediates bone development and osteocalcin secreted in the late stage of osteoblast differentiation. The relationship between leptin and osteocalcin expression in the chondrogenic cells line is still not clear. Thus, the aim of this study was to explore the effect of leptin on the expression of osteocalcin in chondrocytes. We used clonal mouse chondrogenic ATDC5 cells to investigate the relationship between leptin and osteocalcin. We found that both leptin and osteocalcin expression were dynamically expressed during ATDC5 cell differentiation from 4 to 21 days. We also found that leptin significantly upregulated osteocalcin mRNA and protein levels 24 h after leptin stimulation. However, different concentrations and exposure times of osteocalcin did not affect the levels of leptin protein. Furthermore, we confirmed that leptin augmented the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) in a time-dependent manner but not p38 or AKT. Inhibition of pERK1/2 expression by a specific ERK1/2 inhibitor U0126 and a special small interfering RNA attenuated levels of leptin-induced osteocalcin expression, indicating that ERK1/2 mediates, in part, the effects of leptin on osteocalcin. Taken together, our results suggest that leptin regulates the expression of osteocalcin in growth plate chondrocytes via the ERK1/2 signaling pathway, while there is no effect on the phosphorylation of either p38 or AKT.

  14. Vitamin A Is a Negative Regulator of Osteoblast Mineralization

    PubMed Central

    Hu, Lijuan; Pejler, Gunnar; Andersson, Göran; Jacobson, Annica; Melhus, Håkan

    2013-01-01

    An excessive intake of vitamin A has been associated with an increased risk of fractures in humans. In animals, a high vitamin A intake leads to a reduction of long bone diameter and spontaneous fractures. Studies in rodents indicate that the bone thinning is due to increased periosteal bone resorption and reduced radial growth. Whether the latter is a consequence of direct effects on bone or indirect effects on appetite and general growth is unknown. In this study we therefore used pair-feeding and dynamic histomorphometry to investigate the direct effect of a high intake of vitamin A on bone formation in rats. Although there were no differences in body weight or femur length compared to controls, there was an approximately halved bone formation and mineral apposition rate at the femur diaphysis of rats fed vitamin A. To try to clarify the mechanism(s) behind this reduction, we treated primary human osteoblasts and a murine preosteoblastic cell line (MC3T3-E1) with the active metabolite of vitamin A; retinoic acid (RA), a retinoic acid receptor (RAR) antagonist (AGN194310), and a Cyp26 inhibitor (R115866) which blocks endogenous RA catabolism. We found that RA, via RARs, suppressed in vitro mineralization. This was independent of a negative effect on osteoblast proliferation. Alkaline phosphatase and bone gamma carboxyglutamate protein (Bglap, Osteocalcin) were drastically reduced in RA treated cells and RA also reduced the protein levels of Runx2 and Osterix, key transcription factors for progression to a mature osteoblast. Normal osteoblast differentiation involved up regulation of Cyp26b1, the major enzyme responsible for RA degradation, suggesting that a drop in RA signaling is required for osteogenesis analogous to what has been found for chondrogenesis. In addition, RA decreased Phex, an osteoblast/osteocyte protein necessary for mineralization. Taken together, our data indicate that vitamin A is a negative regulator of osteoblast mineralization. PMID:24340023

  15. The effects of Cosmos caudatus (ulam raja) on dynamic and cellular bone histomorphometry in ovariectomized rats

    PubMed Central

    2013-01-01

    Background Cosmos caudatus is a local plant which has antioxidant properties and contains high calcium. It is also reported to be able to strengthen the bone. This report is an extension to previously published article in Evidence Based Complementary and Alternative Medicine (doi:10.1155/2012/817814). In this study, we determined the effectiveness of C. caudatus as an alternative treatment for osteoporosis due to post-menopause by looking at the dynamic and cellular paramaters of bone histomorphometry. Methods Forty female Wistar rats were divided into four groups i.e. sham operated, ovariectomized, ovariectomized treated with calcium 1% ad libitum and ovariectomized force-fed with 500 mg/kg C. caudatus extract. Treatment was given six days a week for eight weeks. Results Dynamic and cellular histomorphometry parameters were measured. C. caudatus increased double-labeled surface (dLS/BS), mineral appositional rate (MAR), osteoid volume (OV/BV) and osteoblast surface (Ob.S/BS). C. caudatus also gave better results compared to calcium 1% in the osteoid volume (OV/BV) parameter. Conclusions C. caudatus at the 500 mg/kg dose may be an alternative treatment in restoring bone damage that may occur in post-menopausal women. PMID:23800238

  16. The effects of Cosmos caudatus (ulam raja) on dynamic and cellular bone histomorphometry in ovariectomized rats.

    PubMed

    Mohamed, Norazlina; Sahhugi, Zulaikha; Ramli, Elvy Suhana Mohd; Muhammad, Norliza

    2013-06-24

    Cosmos caudatus is a local plant which has antioxidant properties and contains high calcium. It is also reported to be able to strengthen the bone. This report is an extension to previously published article in Evidence Based Complementary and Alternative Medicine (doi:10.1155/2012/817814). In this study, we determined the effectiveness of C. caudatus as an alternative treatment for osteoporosis due to post-menopause by looking at the dynamic and cellular paramaters of bone histomorphometry. Forty female Wistar rats were divided into four groups i.e. sham operated, ovariectomized, ovariectomized treated with calcium 1% ad libitum and ovariectomized force-fed with 500 mg/kg C. caudatus extract. Treatment was given six days a week for eight weeks. Dynamic and cellular histomorphometry parameters were measured. C. caudatus increased double-labeled surface (dLS/BS), mineral appositional rate (MAR), osteoid volume (OV/BV) and osteoblast surface (Ob.S/BS). C. caudatus also gave better results compared to calcium 1% in the osteoid volume (OV/BV) parameter. C. caudatus at the 500 mg/kg dose may be an alternative treatment in restoring bone damage that may occur in post-menopausal women.

  17. ATF4, A Novel Mediator of the Anabolic Actions of PTH on Bone

    DTIC Science & Technology

    2010-07-01

    increased the expression of genes known to be associated with osteoblast differentiation including osteocalcin (Ocn), bone sialoprotein (Bsp...differentiation including osteocalcin (Ocn) (2.2-fold), bone sialoprotein (Bsp) (4.2-fold), alkaline phosphatase (Alp) (3.2-fold), a1(I) collagen (Col1... sialoprotein (BSP) gene transcription is mediated through a pituitary-specific transcription factor-1 (Pit-1) motif in the rat BSP gene promoter. Matrix Biol

  18. Osteocalcin carboxylation is not associated with body weight or percent fat changes during weight loss in post menopausal women

    USDA-ARS?s Scientific Manuscript database

    Osteocalcin (OC) is a vitamin K-dependent bone protein used as a marker of bone formation. Mouse models have demonstrated a role for the uncarboxylated form of OC (ucOC) in energy metabolism, including energy expenditure and adiposity, but human data are equivocal. To determine the associations betw...

  19. Osteocalcin carboxylation is not associated with body weight or percent fat changes during weight loss in post menopausal women

    USDA-ARS?s Scientific Manuscript database

    Osteocalcin (OC) is a vitamin K dependent bone protein used as a marker of bone formation. Mouse models have demonstrated a role for the uncarboxylated form of OC (ucOC) in energy metabolism, including energy expenditure and adiposity, but human data are equivocal. To determine the associations betw...

  20. Association of Circulating Renin and Aldosterone With Osteocalcin and Bone Mineral Density in African Ancestry Families.

    PubMed

    Kuipers, Allison L; Kammerer, Candace M; Pratt, J Howard; Bunker, Clareann H; Wheeler, Victor W; Patrick, Alan L; Zmuda, Joseph M

    2016-05-01

    Hypertension is associated with accelerated bone loss, and the renin-angiotensin-aldosterone system is a key regulator of blood pressure. Although components of this system are expressed in human bone cells, studies in humans are sparse. Thus, we studied the association of circulating renin and aldosterone with osteocalcin and bone mineral density. We recruited 373 African ancestry family members without regard to health status from 6 probands (mean family size: 62 and relative pairs: 1687). Participants underwent a clinical examination, dual-energy x-ray absorptiometry, and quantitative computed tomographic scans. Renin activity, aldosterone concentration, and osteocalcin were measured in fasting blood samples. Aldosterone/renin ratio was calculated as aldosterone concentration/renin activity. All models were analyzed using pedigree-based variance components methods. Full models included adjustment for age, sex, body composition, comorbidities, lifestyle factors, blood pressure, and antihypertensive medication. Higher renin activity was significantly associated with lower total osteocalcin and with higher trabecular bone mineral density (both P<0.01). There were also significant genetic correlations between renin activity and whole-body bone mineral density. There were no associations with aldosterone concentration in any model and results for aldosterone/renin ratio were similar to those for renin activity. This is the first study to report a significant association between renin activity and a marker of bone turnover and bone mineral density in generally healthy individuals. Also, there is evidence for significant genetic pleiotropy and, thus, there may be a shared biological mechanism underlying both the renin-angiotensin-aldosterone system and bone metabolism that is independent of hypertension. © 2016 American Heart Association, Inc.

  1. ASSOCIATION OF CIRCULATING RENIN AND ALDOSTERONE WITH OSTEOCALCIN AND BONE MINERAL DENSITY IN AFRICAN ANCESTRY FAMILIES

    PubMed Central

    Kuipers, Allison L; Kammerer, Candace M; Howard Pratt, J; Bunker, Clareann H; Wheeler, Victor W; Patrick, Alan L; Zmuda, Joseph M

    2016-01-01

    Hypertension is associated with accelerated bone loss and the renin-angiotensin-aldosterone system is a key regulator of blood pressure. Although components of this system are expressed in human bone cells, studies in humans are sparse. Thus, we studied the association of circulating renin and aldosterone with osteocalcin and bone mineral density. We recruited 373 African ancestry family members without regard to health status from 6 probands (mean family size: 62; relative pairs: 1687). Participants underwent a clinical exam, dual energy x-ray absorptiometry, and quantitative computed tomography scans. Renin activity, aldosterone concentration, and osteocalcin were measured in fasting blood samples. Aldosterone to renin ratio was calculated as aldosterone concentration/renin activity. All models were analyzed using pedigree-based variance components methods. Full models included adjustment for age, sex, body composition, co-morbidities, lifestyle factors, blood pressure, and antihypertensive medication. Higher renin activity was significantly associated with lower total osteocalcin and with higher trabecular bone mineral density (both p<0.01). There were also significant genetic correlations between renin activity and whole body bone mineral density. There were no associations with aldosterone concentration in any model and results for aldosterone to renin ratio were similar to those for renin activity. This is the first study to report a significant association between renin activity and a marker of bone turnover and bone mineral density in generally healthy individuals. Also, there is evidence for significant genetic pleiotropy and, thus, there may be a shared biologic mechanism underlying both the renin-angiotensin-aldosterone system and bone metabolism that is independent of hypertension. PMID:26975710

  2. Changes in bone structure and metabolism during simulated weightlessness: Endocrine and dietary factors

    NASA Technical Reports Server (NTRS)

    Halloran, B. P.; Wronski, T. J.

    1985-01-01

    The role of vitamin D, PTH and corticosterone in the skeletal alterations induced by simulated weightlessness was examined. The first objective was to determine if changes in the serum concentrations of Ca, P sub i, osteocalcin, 25-OH-D, 24,25(OH)2D or 1,25(OH)2D also occur following acute skeletal unloading. Animals were either suspended or pair fed for 2, 5, 7, 10, 12 and 15 days and the serum concentrations of Ca, P sub i, osteocalcin and the vitamin D metabolites measured. Bone histology was examined at day 5 after suspension. Acute skeletal unloading produced a transient hypercalcemia, a significant fall in serum osteocalcin and serum 1,25(OH)2D, a slight rise in serum 24,25(OH)2D, but did not affect the serum concentrations of P sub i or 25-OH-D. At the nadir in serum 1,25(OH)2D serum osteocalcin was reduced by 22%, osteoblast surface by 32% and longitudinal bone growth by 21%.

  3. Serum Sclerostin in Hepatitis C Virus Infected Patients

    PubMed Central

    López-Prieto, Javier; Pelazas-González, Ricardo; Alemán-Valls, M.Remedios; José de la Vega-Prieto, María; Jorge-Ripper, Carlos; Durán-Castellón, M. Carmen; Santolaria-Fernández, F

    2014-01-01

    Background Sclerostin inhibits osteoblast functions, differentiations, and survival rates. As an endogenous inhibitor of the Wnt/β-catenin pathway, the sclerostin should be related to decreased bone masses, although several studies indicate opposite results. In addition, it may be related to insulin resistances and carbohydrate metabolisms, a relation shared with other markers of bone metabolisms, such as osteocalcin. Hepatitis C virus (HCV) infected patients may present osteoporosis, and frequently show liver steatosis, which is a consequence of insulin resistance. The behaviour of sclerostin in these patients is yet unknown. The aim of this work is to analyse the relationships between serum sclerostin and osteocalcin levels and bone mineral density (BMD), liver functions, the intensity of liver steatosis and biochemical markers of bone homeostasis and insulin resistance in HCV-infected patients. Methods Forty HCV patients with 20 years of age and gender-matching controls were included in this study and underwent bone densitometry. Serum sclerostin, osteocalcin, collagen telopeptide, adiponectin, leptin, insulin, resistin, tumor necrosis factor (TNF)-α, and interleukin (IL)-6 were determined. Liver fat was histomorphometrically assessed. Results Sclerostin levels were slightly higher in patients than in controls, and were directly related to BMD at different parts of the skeleton, also to the serum telopeptide, and to the liver steatosis and TNF-α. On the contrary, osteocalcin showed a significant direct relationship with serum adiponectin, and an inverse one with IL-6. Conclusions Serum sclerostin levels were within the normal range in HCV patients, and correlated directly with BMD and serum telopeptide. In addition, the relationships of sclerostin and osteocalcin with variables associated with insulin resistance suggested the role of bones for intermediary metabolisms. PMID:24707469

  4. Feasibility of measurement of bone turnover markers in female patients with systemic lupus erythematosus.

    PubMed

    Bogaczewicz, Jaroslaw; Karczmarewicz, Elzbieta; Pludowski, Pawel; Zabek, Jakub; Kowalski, Jan; Lukaszkiewicz, Jacek; Wozniacka, Anna

    2015-01-01

    To investigate the feasibility of bone turnover markers (BTMs) for the assessment of bone metabolism in patients with systemic lupus erythematosus (SLE), according to the guidelines of the International Osteoporosis Foundation and the International Federation of Clinical Chemistry and Laboratory Medicine. The study included 43 female SLE patients. Serum procollagen type I N propeptide (PINP), C-terminal telopeptide of type I collagen (CTX), osteocalcin, PTH, 25(OH)D, anti-cardiolipin, anti-dsDNA, and anti-nucleosome levels were measured. PINP and CTX levels were elevated in SLE patients aged > 45 in comparison to those aged < 45, although with borderline significance (p = 0.05, respectively). Correlations were found between BTMs: the strongest being between PINP and osteocalcin (τ = 0.69, p < 0.05). PINP and osteocalcin were found to be associated with PTH (τ = 0.3, τ = 0.29, respectively, p < 0.05). Age correlated with PINP (τ = 0.23, p < 0.05). Elevated PINP was found more frequently than elevated osteocalcin or CTX, both in patients aged < 45 (p = 0.001) and > 45 (p < 0.001). No significant difference in PINP, osteocalcin or CTX levels was found with respect to season, neither in the entire SLE group, nor in the under-45 or over-45 groups. Previous glucocorticoid treatment was not associated with difference in BTMs. Increased BTMs in SLE appear to predominantly reflect the pattern of bone remodeling related to age. Increased PINP is expected to be the most frequent outcome among BTMs. Better diagnoses of bone disturbances with BTMs performed in accordance with international reference standards need to be included in the approach to SLE patients, in addition to bone mineral density assessment. Copyright © 2014 Elsevier Editora Ltda. All rights reserved.

  5. Novel in Vitro Modification of Bone for an Allograft with Improved Toughness Osteoconductivity

    DTIC Science & Technology

    2014-04-01

    of bone-characteristic genes, osteocalcin, Runx2, and col1a1 by RT-PCR. High-performance liquid chromatography and fluorescence microscopy will be...of molecular markers of mineralization, osteocalcin, Runx2 and col1a1 using quantitative RT-PCR with specific primers. (Months 8-15.) The purpose...bone specific Collagen, type I, alpha 1 ( COL1A1 ) Associated with cell adhesion, proliferation and differentiation of the osteoblast phenotype and

  6. Immunoexpression of PPAR-γ and osteocalcin proteins for bone repair of critical-size defects treated with fragmented autogenous abdominal adipose tissue graft.

    PubMed

    Deliberador, Tatiana Miranda; Giovanini, Allan Fernando; Lopes, Tertuliano Ricardo; Zielak, João César; Moro, Alexandre; Baratto Filho, Flares; Santos, Felipe Rychuv; Storrer, Carmen L Mueller

    2014-01-01

    Immunoexpression of PPAR-γ and osteocalcin proteins was evaluated for bone repair of critical-size defects (CSDs), created in rat calvaria (n=42) and treated with fragmented abdominal autogenous adipose tissue graft. Three groups (n=14) were formed: C (control - blood clot), AB (autogenous bone) and AT (fragmented adipose tissue). The groups were divided into subgroups (n=7) for euthanasia at 30 and 90 days. Histological and immunohistochemical analyses were performed. Data were subjected to descriptive statistics (mode). A complete bone closure was observed in Group AB 90 days after surgery. In Group C, repair was achieved by the formation of collagen fiber bundles oriented parallel to the wound surface at both post-surgery periods. In Group AT the type of healing was characterized by dense connective tissue containing collagen fiber bundles arranged amidst the remaining adipose tissue, with rare heterotopic bone formation associated with fibrosis and different types of tissue necrosis. Immunostaining of PPAR-γ was not observed in any specimen from Groups C and AB. In Group AT, the immunostaining of PPAR-γ was more evident 30 days after surgery. Immunostaining of osteocalcin was present in all groups and at both postoperative periods. The fragmented autogenous abdominal adipose tissue graft did not favor the repair of critical-size bone defects created surgically in rat calvaria as evidenced by the positive immunostaining of PPAR-γ protein and the negative immunostaining of osteocalcin in the osteoblast-like cells and bone matrix.

  7. Bone metabolism in renal transplant patients treated with cyclosporine or sirolimus.

    PubMed

    Campistol, Josep M; Holt, David W; Epstein, Solomon; Gioud-Paquet, Martine; Rutault, Karine; Burke, James T

    2005-09-01

    Sirolimus is a new immunosuppressive agent used as treatment to prevent acute renal allograft rejection. One of the complications of renal transplantation and subsequent long-term immunosuppression is bone loss associated with osteoporosis and consequent fracture. Two open-label, randomized, phase 2 studies comparing sirolimus versus cyclosporine (CsA) included indices of bone metabolism as secondary end-points. Markers of bone turnover, serum osteocalcin and urinary N-telopeptides, were measured over a 1-year period in 115 patients receiving either CsA or sirolimus as a primary therapy in combination with azathioprine and glucocorticoids (study A) or mycophenolate mofetil (MMF) and glucocorticoids (study B). Urinary excretion of N-telopeptides and the concentrations of serum osteocalcin were consistently higher in the CsA-treated patients and significantly different at week 24 for N-telopeptides and at weeks 12, 24, and 52 for osteocalcin. In conclusion, future trials are warranted to test whether a sirolimus-based regimen conserves bone mineral density compared with a CsA-based regimen.

  8. Inactivation of the Na-Cl co-transporter (NCC) gene is associated with high BMD through both renal and bone mechanisms: analysis of patients with Gitelman syndrome and Ncc null mice.

    PubMed

    Nicolet-Barousse, Laurence; Blanchard, Anne; Roux, Christian; Pietri, Laurence; Bloch-Faure, May; Kolta, Sami; Chappard, Christine; Geoffroy, Valérie; Morieux, Caroline; Jeunemaitre, Xavier; Shull, Gary E; Meneton, Pierre; Paillard, Michel; Houillier, Pascal; De Vernejoul, Marie-Christine

    2005-05-01

    Chronic thiazide treatment is associated with high BMD. We report that patients and mice with null mutations in the thiazide-sensitive NaCl cotransporter (NCC) have higher renal tubular Ca reabsorption, higher BMD, and lower bone remodeling than controls, as well as abnormalities in Ca metabolism, mainly caused by Mg depletion. Chronic thiazide treatment decreases urinary Ca excretion (UVCa) and increases BMD. To understand the underlying mechanisms, Ca and bone metabolism were studied in two models of genetic inactivation of the thiazide-sensitive NaCl cotransporter (NCC): patients with Gitelman syndrome (GS) and Ncc knockout (Ncc(-/-)) mice. Ca metabolism was analyzed in GS patients and Ncc(-/-) mice under conditions of low dietary Ca. BMD was measured by DXA in patients and mice, and bone histomorphometry was analyzed in mice. GS patients had low plasma Mg. They exhibited reduced UVCa, but similar serum Ca and GFR as control subjects, suggesting increased renal Ca reabsorption. Blood PTH was lower despite lower serum ionized Ca, and Mg repletion almost corrected both relative hypoparathyroidism and low UVCa. BMD was significantly increased in GS patients at both lumbar (+7%) and femoral (+16%) sites, and osteocalcin was reduced. In Ncc(-/-) mice, serum Ca and GFR were unchanged, but UVCa was reduced and PTH was elevated; Mg repletion largely corrected both abnormalities. Trabecular and cortical BMD were higher than in Ncc(+/+) mice (+4% and +5%, respectively), and despite elevated PTH, were associated with higher cortical thickness and lower endosteal osteoclastic surface. Higher BMD is observed in GS patients and Ncc(-/-) mice. Relative hypoparathyroidism (human) and bone resistance to PTH (mice), mainly caused by Mg depletion, can explain the low bone remodeling and normal/low serum Ca despite increased renal Ca reabsorption.

  9. Bone Turnover Markers and Lean Mass in Pubescent Boys: Comparison Between Elite Soccer Players and Controls.

    PubMed

    Nebigh, Ammar; Abed, Mohamed Elfethi; Borji, Rihab; Sahli, Sonia; Sellami, Slaheddine; Tabka, Zouhair; Rebai, Haithem

    2017-11-01

    The aim of this study was to examine the relationship between bone mass and bone turnover markers with lean mass (LM) in pubescent soccer players. Two groups participated in this study, which included 65 elite young soccer players who trained for 6-8 hours per week and 60 controls. Bone mineral density; bone mineral content in the whole body, lower limbs, lumbar spine, and femoral neck; biochemical markers of osteocalcin; bone-specific alkaline phosphatase; C-telopeptide type I collagen; and total LM were assessed. Young soccer players showed higher bone mineral density and bone mineral content in the whole body and weight-bearing sites (P < .001). Indeed, the total LM correlated with whole-body bone mineral density and bone mineral content (P < .001). There were significant differences within the bone formation markers and osteocalcin (formation)/C-telopeptide type I collagen (resorption) ratio between young soccer players compared with the control group, but no significant difference in C-telopeptide type I collagen was observed between the 2 groups. This study showed a significant positive correlation among bone-specific alkaline phosphatase, osteocalcin, and total LM (r = .29; r = .31; P < .05) only for the young soccer players. Findings of this study highlight the importance of soccer practice for bone mineral parameters and bone turnover markers during the puberty stage.

  10. Absence of bone sialoprotein (BSP) impairs cortical defect repair in mouse long bone.

    PubMed

    Malaval, Luc; Monfoulet, Laurent; Fabre, Thierry; Pothuaud, Laurent; Bareille, Reine; Miraux, Sylvain; Thiaudiere, Eric; Raffard, Gerard; Franconi, Jean-Michel; Lafage-Proust, Marie-Hélène; Aubin, Jane E; Vico, Laurence; Amédée, Joëlle

    2009-11-01

    Matrix proteins of the SIBLING family interact with bone cells and with bone mineral and are thus in a key position to regulate bone development, remodeling and repair. Within this family, bone sialoprotein (BSP) is highly expressed by osteoblasts, hypertrophic chondrocytes and osteoclasts. We recently reported that mice lacking BSP (BSP-/-) have very low trabecular bone turnover. In the present study, we set up an experimental model of bone repair by drilling a 1 mm diameter hole in the cortical bone of femurs in both BSP-/- and +/+ mice. A non-invasive MRI imaging and bone quantification procedure was designed to follow bone regeneration, and these data were extended by microCT imaging and histomorphometry on undecalcified sections for analysis at cellular level. These combined approaches revealed that the repair process as reflected in defect-refilling in the cortical area was significantly delayed in BSP-/- mice compared to +/+ mice. Concomitantly, histomorphometry showed that formation, mineralization and remodeling of repair (primary) bone in the medulla were delayed in BSP-/- mice, with lower osteoid and osteoclast surfaces at day 15. In conclusion, the absence of BSP delays bone repair at least in part by impairing both new bone formation and osteoclast activity.

  11. In Vitro Osteoblast Model for Bone Wound Infections and Antimicrobial Therapy

    DTIC Science & Technology

    2012-10-01

    such as  osteocalcin, osteopontin, and bone  sialoprotein . In addition, osteoblast‐produced  of circulating cytokines and growth factors also influence...genes such osteocalcin, bone  sialoprotein , osteopontin, and collagen type I .  When infected with the AB, KP or PA, RUNX2 expression was not significant

  12. The effect of microgravity on plasma-osteocalcin

    NASA Astrophysics Data System (ADS)

    Vermeer, C.; Ulrich, M. M. W.

    The rapid loss of bone mass is one of the serious problems which have to be solved before long-lasting manned spaceflights may be considered. In this paper we describe investigations in which we have checked whether the bone loss in astronauts as well as in osteoporotic patients may be related to abnormalities in a recently discovered calcium-binding protein, named osteocalcin. It was observed that in all subjects of a limited number of osteoporotic patients, the amount of calcium-binding groups (Gla-residues) in the circulating osteocalcin was substantially reduced. The Gla-content could be normalized, however, by the oral administration of vitamin K (1 mg/day). We also analyzed the Gla-content of plasma-osteocalcin from 4 astronauts before and after the D-1 mission. The amount of Gla-residues was reduced by more than 50% in the post-flight samples. It seems probable, that an increased vitamin K-intake by the astronauts will correct the observed abnormality, but whether this will lead to a decrease of the microgravity-induced bone-loss remains to be seen.

  13. Disrupted Bone Metabolism in Long-Term Bedridden Patients

    PubMed Central

    Endo, Naoto; Uchiyama, Seiji; Takahashi, Yoshinori; Kawashima, Hiroyuki; Watanabe, Kei

    2016-01-01

    Background Bedridden patients are at risk of osteoporosis and fractures, although the long-term bone metabolic processes in these patients are poorly understood. Therefore, we aimed to determine how long-term bed confinement affects bone metabolism. Methods This study included 36 patients who had been bedridden from birth due to severe immobility. Bone mineral density and bone metabolism markers were compared to the bedridden period in all study patients. Changes in the bone metabolism markers during a follow-up of 12 years were studied in 17 patients aged <30 years at baseline. Results The bone mineral density was reduced (0.58±0.19 g/cm3), and the osteocalcin (13.9±12.4 ng/mL) and urine N-terminal telopeptide (NTX) levels (146.9±134.0 mM BCE/mM creatinine) were greater than the cutoff value for predicting fracture. Among the bone metabolism markers studied, osteocalcin and NTX were negatively associated with the bedridden period. During the follow-up, osteocalcin and parathyroid hormone were decreased, and the 25(OH) vitamin D was increased. NTX at baseline was negatively associated with bone mineral density after 12 years. Conclusions Unique bone metabolic abnormalities were found in patients who had been bedridden for long periods, and these metabolic abnormalities were altered by further bed confinement. Appropriate treatment based on the unique bone metabolic changes may be important in long-term bedridden patients. PMID:27275738

  14. Disrupted Bone Metabolism in Long-Term Bedridden Patients.

    PubMed

    Eimori, Keiko; Endo, Naoto; Uchiyama, Seiji; Takahashi, Yoshinori; Kawashima, Hiroyuki; Watanabe, Kei

    2016-01-01

    Bedridden patients are at risk of osteoporosis and fractures, although the long-term bone metabolic processes in these patients are poorly understood. Therefore, we aimed to determine how long-term bed confinement affects bone metabolism. This study included 36 patients who had been bedridden from birth due to severe immobility. Bone mineral density and bone metabolism markers were compared to the bedridden period in all study patients. Changes in the bone metabolism markers during a follow-up of 12 years were studied in 17 patients aged <30 years at baseline. The bone mineral density was reduced (0.58±0.19 g/cm3), and the osteocalcin (13.9±12.4 ng/mL) and urine N-terminal telopeptide (NTX) levels (146.9±134.0 mM BCE/mM creatinine) were greater than the cutoff value for predicting fracture. Among the bone metabolism markers studied, osteocalcin and NTX were negatively associated with the bedridden period. During the follow-up, osteocalcin and parathyroid hormone were decreased, and the 25(OH) vitamin D was increased. NTX at baseline was negatively associated with bone mineral density after 12 years. Unique bone metabolic abnormalities were found in patients who had been bedridden for long periods, and these metabolic abnormalities were altered by further bed confinement. Appropriate treatment based on the unique bone metabolic changes may be important in long-term bedridden patients.

  15. Risedronate Prevents Early Radiation-Induced Osteoporosis in Mice at Multiple Skeletal Locations

    PubMed Central

    Willey, Jeffrey S.; Livingston, Eric W.; Robbins, Michael E.; Bourland, J. Daniel; Tirado-Lee, Leidamarie; Smith-Sielicki, Hope; Bateman, Ted A.

    2009-01-01

    Introduction Irradiation of normal, non-malignant bone during cancer therapy can lead to atrophy and increased risk of fracture at several skeletal sites, particularly the hip. This bone loss has been largely attributed to damaged osteoblasts. Little attention has been given to increased bone resorption as a contributor to radiation-induced osteoporosis. Our aims were to identify if radiation increases bone resorption resulting in acute bone loss, and if bone loss could be prevented by administering risedronate. Methods Twenty-week old female C57BL/6 mice were either: not irradiated and treated with placebo (NR+PL); whole-body irradiated with 2 Gy X-rays and treated with placebo (IR+PL); or irradiated and treated with risedronate (IR+RIS; 30μg/kg every other day). Calcein injections were administered 7 and 2 days before sacrifice. Bones were collected 1, 2, and 3 weeks after exposure. MicroCT analysis was performed at 3 sites: proximal tibial metaphysis; distal femoral metaphysis; and the body of the 5th lumbar vertebra (L5). Osteoclasts were identified from TRAP-stained histological sections. Dynamic histomorphometry of cortical and trabecular bone was performed. Circulating TRAP5b and osteocalcin concentrations were quantified. Results In animals receiving IR+PL, significant (P < 0.05) reduction in trabecular volume fraction relative to non-irradiated controls was observed at all three skeletal sites and time points. Likewise, radiation-induced loss of connectivity and trabecular number relative to NR+PL were observed at all skeletal sites throughout the study. Bone loss primarily occurred during the first week post-exposure. Trabecular and endocortical bone formation was not reduced until Week 2. Loss of bone volume was absent in animals receiving IR+RIS. Histology indicated greater osteoclast numbers at Week 1 within IR+PL mice. Serum TRAP5b concentration was increased in IR+PL mice only at Week 1 compared to NR+PL (P = 0.05). Risedronate treatment prevented the radiation-induced increase in osteoclast number, surface, and TRAP5b. Conclusion This study demonstrated a rapid loss of trabecular bone at several skeletal sites after whole-body irradiation. Changes were accompanied by an increase in osteoclast number and serum markers of bone loss. Risedronate entirely prevented bone loss, providing further evidence that an increase in bone resorption likely caused this radiation-induced bone loss. PMID:19747571

  16. Development of an enzyme-linked immunosorbent assay for detection of chicken osteocalcin and its use in evaluation of perch effects on bone remodeling in caged White Leghorns

    USDA-ARS?s Scientific Manuscript database

    Osteocalcin (OC) is a sensitive biochemical marker for evaluating bone turnover in mammals. The role of avian OC is less clear because of a need for a chicken assay. Our objectives were to develop an assay using indirect competitive ELISA for detecting chicken serum OC and use the assay to examine t...

  17. Fragility and composition of growing rat bone after one week in spaceflight

    NASA Technical Reports Server (NTRS)

    Patterson-Buckendahl, P.; Arnaud, S. B.; Mechanic, G. L.; Martin, R. B.; Grindeland, R. E.; Cann, C. E.; Mrchanic, G. L. (Principal Investigator)

    1987-01-01

    To gain some insight into the early effects of spaceflight on skeletal metabolism, we quantified the major chemical constituents and a noncollagenous protein, osteocalcin, in the third-lumbar vertebrae and humeri from 8-wk-old rats that were part of the 7-day NASA Spacelab 3 flight experiments. The ratio of calcium to hydroxyproline in the humeral diaphysis increased from 8.5 in preflight to 9.8 in ground simulation control and only to 8.9 in flight bones. There was no demonstrable change in the fraction of nonmineralized collagen. Osteocalcin content was reduced in the humerus and vertebra. Reduced accumulation of mineral and osteocalcin with no associated decrease in collagen in flight animals suggests that both mineralization and collagen metabolism are impaired in growing animals during spaceflight within a few days after launch. Strength tests of the humeri of flight rats showed substantial deficits that appeared to be related, not only to the reduced bone mass, but also to the composition and quality of new bone formed.

  18. Gravity and Skeletal Growth

    NASA Technical Reports Server (NTRS)

    Morey-Holton, Emily; Turner, Russell T.

    1999-01-01

    Two simultaneous experiments were performed using 5-week-old male Sprague Dawley rats; in one study, the rats were flown in low earth orbit; in the other study, the hindlimbs of the growing rats were elevated to prevent weight bearing. Following 9 d of unloading, weight bearing was restored for 4, 28, and 76 hrs. Afterwards, additional hindlimb unloading experiments were performed to evaluate the skeletal response to 0, 2, 4, 6, 8, 10, 12, 16, and 24 hrs of restored weight bearing following 7 d of unloading. Cancellous and cortical bone histomorphometry were evaluated in the left tibia at the proximal metaphysis and in the left femur at mid-diaphysis, respectively. Steady-state mRNA levels for bone matrix proteins and skeletal signaling peptides were determined in total cellular RNA extracted from trabeculae from the right proximal tibiametaphysis and periosteum from the right femur. Spaceflight and hindlimb unloading each resulted in cancellous osteopenia, as well as a tendency towards decreased periosteal bone formation. Both models for skeletal unloading resulted in site specific reductions in mRNA levels for transforming growth factor-beta (sub 1) (TGF-beta) osteocalcin (OC), and prepro-alpha (I) subunit of type 1 collagen (collagen) and little or no changes in mRNA levels for glyceraldehyde-3-phosphate dehydrogenase (GAP) and insulin-like growth factor I (IGF-I). Restoration of normal weight bearing resulted in transient increases in mRNA levels for the bone matrix proteins and TGF-beta in the proximal metaphysis and periosteum and no changes in either GAP or IGF-I mRNA levels. The timecourse for the response differed between the two skeletal compartments; the tibial metaphysis responded much more quickly to reloading. These results suggest that the skeletal adaptation to acute physiological changes in mechanical usage are mediated, in part, by changes in mRNA levels for bone matrix proteins and TGF-beta.

  19. Anabolic actions of PTH (1-34): use of a novel tissue engineering model to investigate temporal effects on bone.

    PubMed

    Pettway, Glenda J; Schneider, Abraham; Koh, Amy J; Widjaja, Effendi; Morris, Michael D; Meganck, Jeffrey A; Goldstein, Steven A; McCauley, Laurie K

    2005-06-01

    PTH is in clinical use for the treatment of osteoporosis and is under intensive investigation for its potential in applications of tissue engineering, fracture healing, and implant integration. However, the mechanisms of its action to stimulate bone formation are still unclear. A novel bone tissue engineering model was used to elucidate basic mechanisms of PTH anabolic actions. Ectopic ossicles containing cortical bone, trabecular bone, and a hematopoietic marrow were generated from implanted bone marrow stromal cells (BMSC). One week after implantation, nude mice were administered PTH or vehicle for 1 week (group 1), 3 weeks (group 2), or 7 weeks (group 3). Another group was also treated for 3 weeks, initiated 12 weeks after implantation (group 4). Micro-radiography and histomorphometry revealed increased marrow cellularity in group 1 PTH-treated ossicles, increased bone in group 2 PTH-treated ossicles, and similar amounts of bone in both group 3 and 4 ossicles regardless of treatment. Incidence of phosphate mineral and phosphate mineral to hydroxyproline ratio via Raman spectroscopy were significantly higher after 3 weeks versus 1 week of PTH treatment, but there was no difference between PTH- and vehicle-treated ossicles. Early events of PTH action in group 1 ossicles and the effects of a single injection of PTH on 1- and 2-week-old ossicles were evaluated by Northern blot analysis. Osteocalcin (OC) mRNA was increased after 1 week of intermittent PTH treatment in ossicles and calvaria but an acute injection did not alter OC mRNA. In contrast, a single injection of PTH increased matrix gamma-carboxyglutamic acid protein (MGP) mRNA in 2-week-old ossicles. Differential and temporal-dependent effects of PTH on OC and MGP suggest at the molecular level, that PTH acts to inhibit osteoblast mineralization. However, this does not translate into tissue level alterations. These data indicate that anabolic actions of PTH in ectopic ossicles are temporally dependent on the BMSC implanted and suggest that cell implantation strategies are particularly responsive to PTH.

  20. The effects of orbital spaceflight on bone histomorphometry and messenger ribonucleic acid levels for bone matrix proteins and skeletal signaling peptides in ovariectomized growing rats

    NASA Technical Reports Server (NTRS)

    Cavolina, J. M.; Evans, G. L.; Harris, S. A.; Zhang, M.; Westerlind, K. C.; Turner, R. T.

    1997-01-01

    A 14-day orbital spaceflight was performed using ovariectomized Fisher 344 rats to determine the combined effects of estrogen deficiency and near weightlessness on tibia radial bone growth and cancellous bone turnover. Twelve ovariectomized rats with established cancellous osteopenia were flown aboard the space shuttle Columbia (STS-62). Thirty ovariectomized rats were housed on earth as ground controls: 12 in animal enclosure modules, 12 in vivarium cages, and 6 killed the day of launch for baseline measurements. An additional 18 ovary-intact rats were housed in vivarium cages as ground controls: 8 rats were killed as baseline controls and the remaining 10 rats were killed 14 days later. Ovariectomy increased periosteal bone formation at the tibia-fibula synostosis; cancellous bone resorption and formation in the secondary spongiosa of the proximal tibial metaphysis; and messenger RNA (mRNA) levels for the prepro-alpha2(1) subunit of type 1 collagen, osteocalcin, transforming growth factor-beta, and insulin-like growth factor I in the contralateral proximal tibial metaphysis and for the collagen subunit in periosteum pooled from tibiae and femora and decreased cancellous bone area. Compared to ovariectomized weight-bearing rats, the flight group experienced decreases in periosteal bone formation, collagen subunit mRNA levels, and cancellous bone area. The flight rats had a small decrease in the cancellous mineral apposition rate, but no change in the calculated bone formation rate. Also, spaceflight had no effect on cancellous osteoblast and osteoclast perimeters or on mRNA levels for bone matrix proteins and signaling peptides. On the other hand, spaceflight resulted in an increase in bone resorption, as ascertained from the diminished retention of a preflight fluorochrome label. This latter finding suggests that osteoclast activity was increased. In a follow-up ground-based experiment, unilateral sciatic neurotomy of ovariectomized rats resulted in cancellous bone loss in the unloaded limb in excess of that induced by gonadal hormone deficiency. This additional bone loss was arrested by estrogen replacement. We conclude from these studies that estrogen alters the expression of signaling peptides believed to mediate skeletal adaptation to changes in mechanical usage and likewise modifies the skeletal response to mechanical unloading.

  1. Plasma concentrations of osteocalcin are associated with the timing of pubertal progress in boys.

    PubMed

    Schündeln, Michael M; Bäder, Lena; Kiewert, Cordula; Herrmann, Ralf; Führer, Dagmar; Hauffa, Berthold P; Grasemann, Corinna

    2017-02-01

    Animal models have shown that the skeletal hormone osteocalcin stimulates testicular testosterone synthesis. To assess whether osteocalcin might be a useful marker to detect pubertal development disorders, we examined osteocalcin plasma concentrations in children and adolescents with and without disorders of pubertal development. Osteocalcin concentrations were investigated in a total of 244 patients with endocrine disorders (122 males, mean age: 11.87+3.77 years), including patients with precocious puberty and constitutional delay of puberty. Osteocalcin concentrations were highest among adolescents with precocious puberty and advanced pubertal development (120.60±45.22 ng/mL), while the concentrations were lowest among patients with constitutional delay of puberty (102.20±37.13 ng/mL). Overall, osteocalcin concentrations were strongly correlated with markers of bone metabolism. Although plasma osteocalcin concentrations are associated with pubertal development in boys, it does not appear to be a useful diagnostic marker for altered pubertal development.

  2. Osteocalcin and bone-specific alkaline phosphatase in Asian elephants (Elephas maximus) at different ages.

    PubMed

    Arya, Nlin; Moonarmart, Walasinee; Cheewamongkolnimit, Nareerat; Keratikul, Nutcha; Poon-Iam, Sawinee; Routh, Andrew; Bumpenpol, Pitikarn; Angkawanish, Taweepoke

    2015-11-01

    Bone turnover markers could offer a potential alternative means for the early diagnosis of metabolic bone disease in young growing elephants although the baseline of bone turnover markers in elephant is not well established. The aim of this study was to determine any relationship between the age of captive Asian elephants (Elephas maximus) and markers of bone formation. Serum samples from 24 female Asian elephants were collected to evaluate levels of two bone formation markers, namely, osteocalcin (OC) and bone-specific alkaline phosphatase (BAP). Both intact and N-terminal midfragment OC and BAP were negatively correlated with age. The findings demonstrate that younger elephants have a higher rate of bone turnover than older elephants. Use of these and additional bone markers could lead to the establishment of validated protocols for the monitoring of bone disease in elephants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Commensal Microbiota Enhance Both Osteoclast and Osteoblast Activities.

    PubMed

    Uchida, Yoko; Irie, Koichiro; Fukuhara, Daiki; Kataoka, Kota; Hattori, Takako; Ono, Mitsuaki; Ekuni, Daisuke; Kubota, Satoshi; Morita, Manabu

    2018-06-23

    Recent studies suggest that the commensal microbiota affects not only host energy metabolism and development of immunity but also bone remodeling by positive regulation of osteoclast activity. However, the mechanism of regulation of bone cells by the commensal microbiota has not been elucidated. In this study, 8-week-old specific pathogen-free (SPF) and germ-free (GF) mice were compared in terms of alveolar bones and primary osteoblasts isolated from calvarias. Micro-CT analysis showed that SPF mice had larger body size associated with lower bone mineral density and bone volume fraction in alveolar bones compared with GF mice. Greater numbers of osteoclasts in alveolar bone and higher serum levels of tartrate-resistant acid phosphatase 5b were observed in SPF mice. Tissue extracts from SPF alveolar bone showed higher levels of cathepsin K, indicating higher osteoclast activity. SPF alveolar extracts also showed elevated levels of γ-carboxylated glutamic acid⁻osteocalcin as a marker of mature osteoblasts compared with GF mice. Polymerase chain reaction (PCR) array analysis of RNA directly isolated from alveolar bone showed that in SPF mice, expression of mRNA of osteocalcin , which also acts as an inhibitor of bone mineralization, was strongly enhanced compared with GF mice. Cultured calvarial osteoblasts from SPF mice showed reduced mineralization but significantly enhanced expression of mRNAs of osteocalcin, alkaline phosphatase, insulin-like growth factor-I/II , and decreased ratio of osteoprotegerin/receptor activator of nuclear factor-kappa B ligand compared with GF mice. Furthermore, PCR array analyses of transcription factors in cultured calvarial osteoblasts showed strongly upregulated expression of Forkhead box g1 . In contrast, Gata-binding protein 3 was strongly downregulated in SPF osteoblasts. These results suggest that the commensal microbiota prevents excessive mineralization possibly by stimulating osteocalcin expression in osteoblasts, and enhances both osteoblast and osteoclast activity by regulating specific transcription factors.

  4. Dietary phosphate restriction normalizes biochemical and skeletal abnormalities in a murine model of tumoral calcinosis.

    PubMed

    Ichikawa, Shoji; Austin, Anthony M; Gray, Amie K; Allen, Matthew R; Econs, Michael J

    2011-12-01

    Mutations in the GALNT3 gene cause tumoral calcinosis characterized by ectopic calcifications due to persistent hyperphosphatemia. We recently developed Galnt3 knockout mice in a mixed background, which had hyperphosphatemia with increased bone mineral density (BMD) and infertility in males. To test the effect of dietary phosphate intake on their phenotype, Galnt3 knockout mice were generated in the C57BL/6J strain and fed various phosphate diets: 0.1% (low), 0.3% (low normal), 0.6% (normal), and 1.65% (high). Sera were analyzed for calcium, phosphorus, alkaline phosphatase, creatinine, blood urine nitrogen, 1,25-dihydroxyvitamin D, osteocalcin, tartrate-resistant acid phosphatase 5b, and fibroblast growth factor 23 (Fgf23). Femurs were evaluated by dual-energy x-ray absorptiometry, dynamic histomorphometry, and/or microcomputed tomography. Galnt3 knockout mice in C57BL/6J had the same biochemical phenotype observed in our previous study: hyperphosphatemia, inappropriately normal 1,25-dihydroxyvitamin D level, decreased alkaline phosphatase activity, and low intact Fgf23 concentration but high Fgf23 fragments. Skeletal analyses of their femurs revealed significantly high BMD with increased cortical bone area and trabecular bone volume. On all four phosphate diets, Galnt3 knockout mice had consistently higher phosphorus levels and lower alkaline phosphatase and intact Fgf23 concentrations than littermate controls. The low-phosphate diet normalized serum phosphorus, alkaline phosphatase, and areal BMD but failed to correct male infertility in Galnt3 knockout mice. The high-phosphate diet did not increase serum phosphorus concentration in either mutant or control mice due to a compensatory increase in circulating intact Fgf23 levels. In conclusion, dietary phosphate restriction normalizes biochemical and skeletal phenotypes of Galnt3 knockout mice and, thus, can be an effective therapy for tumoral calcinosis.

  5. Dietary Phosphate Restriction Normalizes Biochemical and Skeletal Abnormalities in a Murine Model of Tumoral Calcinosis

    PubMed Central

    Austin, Anthony M.; Gray, Amie K.; Allen, Matthew R.; Econs, Michael J.

    2011-01-01

    Mutations in the GALNT3 gene cause tumoral calcinosis characterized by ectopic calcifications due to persistent hyperphosphatemia. We recently developed Galnt3 knockout mice in a mixed background, which had hyperphosphatemia with increased bone mineral density (BMD) and infertility in males. To test the effect of dietary phosphate intake on their phenotype, Galnt3 knockout mice were generated in the C57BL/6J strain and fed various phosphate diets: 0.1% (low), 0.3% (low normal), 0.6% (normal), and 1.65% (high). Sera were analyzed for calcium, phosphorus, alkaline phosphatase, creatinine, blood urine nitrogen, 1,25-dihydroxyvitamin D, osteocalcin, tartrate-resistant acid phosphatase 5b, and fibroblast growth factor 23 (Fgf23). Femurs were evaluated by dual-energy x-ray absorptiometry, dynamic histomorphometry, and/or microcomputed tomography. Galnt3 knockout mice in C57BL/6J had the same biochemical phenotype observed in our previous study: hyperphosphatemia, inappropriately normal 1,25-dihydroxyvitamin D level, decreased alkaline phosphatase activity, and low intact Fgf23 concentration but high Fgf23 fragments. Skeletal analyses of their femurs revealed significantly high BMD with increased cortical bone area and trabecular bone volume. On all four phosphate diets, Galnt3 knockout mice had consistently higher phosphorus levels and lower alkaline phosphatase and intact Fgf23 concentrations than littermate controls. The low-phosphate diet normalized serum phosphorus, alkaline phosphatase, and areal BMD but failed to correct male infertility in Galnt3 knockout mice. The high-phosphate diet did not increase serum phosphorus concentration in either mutant or control mice due to a compensatory increase in circulating intact Fgf23 levels. In conclusion, dietary phosphate restriction normalizes biochemical and skeletal phenotypes of Galnt3 knockout mice and, thus, can be an effective therapy for tumoral calcinosis. PMID:22009723

  6. Arthroplasty in veterans: Analysis of cartilage, bone, serum, and synovial fluid reveals differences and similarities in osteoarthritis with and without comorbid diabetes

    PubMed Central

    Oren, Trevor W.; Botolin, Sergiu; Williams, Allison; Bucknell, Allan; King, Karen B.

    2015-01-01

    Osteoarthritis patients with diabetes who receive total knee arthroplasty are more vulnerable to complications, including aseptic loosening and need for revision surgery. To elucidate mechanisms related to arthroplasty failure in diabetes, we examined serum and synovial fluid markers as well as collagen crosslinks in bone and cartilage of 20 patients (10 with diabetes, 10 controls without) undergoing this procedure. Hemoglobin A1c, body mass index, bone alkaline phosphatase, leptin, osteocalcin, and pyridinium were analyzed along with tissue content of the crosslinks hydroxylysylpyridinoline, lysylpyridinoline, and pentosidine. Pentosidine levels in tissue specimens from diabetic subjects were higher than in control subjects. Osteocalcin levels negatively correlated with hydroxylysylpyridinoline levels in cartilage. Osteocalcin levels also negatively correlated with pentosidine levels in cartilage, but only in subjects with diabetes. This study suggests potential metabolic mechanisms for arthroplasty failure in patients with diabetes. PMID:22234664

  7. Vitamin K, bone turnover, and bone mass in girls.

    PubMed

    Kalkwarf, Heidi J; Khoury, Jane C; Bean, Judy; Elliot, James G

    2004-10-01

    Vitamin K has been suggested to have a role in bone metabolism, and low vitamin K intake has been related to low bone density and increased risk of osteoporotic fracture. The objective of this study was to determine whether phylloquinone (vitamin K(1)) intake and biochemical indicators of vitamin K status are related to bone mineral content (BMC) and markers of bone formation and bone resorption in girls. Vitamin K status [plasma phylloquinone concentration and percentage of undercarboxylated osteocalcin (%ucOC)] was measured at baseline in a study of 245 healthy girls aged 3-16 y. Cross-linked N-telopeptide of type 1 collagen (NTx) breakdown, osteocalcin, and bone-specific alkaline phosphatase were measured to reflect bone resorption and formation. BMC of the total body, lumbar spine, and hip and dietary phylloquinone intake were measured annually for 4 y. Phylloquinone intake (median: 45 microg/d) was not consistently associated with bone turnover markers or BMC. Better vitamin K status (high plasma phylloquinone and low %ucOC) was associated with lower bone resorption and formation. Plasma phylloquinone was inversely associated with NTx and osteocalcin concentrations (P < 0.05), and %ucOC was positively associated with NTx and bone-specific alkaline phosphatase concentrations (P < 0.05). Indicators of vitamin K status were not consistently associated with current BMC or gain in BMC over the 4-y study period. Better vitamin K status was associated with decreased bone turnover in healthy girls consuming a typical US diet. Randomized phylloquinone supplementation trials are needed to further understand the potential benefits of phylloquinone on bone acquisition in growing children.

  8. Involvement of CD147 in alveolar bone remodeling and soft tissue degradation in experimental periodontitis.

    PubMed

    Yang, D; Liu, R; Liu, L; Liao, H; Wang, C; Cao, Z

    2017-08-01

    The objective of this study was to investigate the possible roles of clusters of differentiation 147 (CD147) in bone resorption and mineralization through the bone markers of bone sialoprotein, osteocalcin, osteopontin and alkaline phosphatase (ALP), trabecular structure of alveolar bone and number of osteoclasts. We also investigated the effects of CD147 on inflammation and collagen breakdown. Twenty-eight male Wistar rats were randomly divided into four groups of seven animals each: healthy group, periodontitis group, periodontitis + saline group and periodontitis + anti-CD147 groups. Hematoxylin and eosin staining were used for histological assessment. Alveolar bone loss and trabecula microstructure were evaluated using micro-computed tomography. Collagen fiber breakdown was assessed via picrosirius red staining. Tartrate-resistant acid phosphatase staining was conducted for osteoclast analysis. The expressions of ALP, bone sialoprotein, osteocalcin and osteopontin were evaluated using immunohistochemistry. Anti-CD147 treatment significantly inhibited alveolar bone loss and osteoclastogenesis, and improved the bone volume/tissue volume, and the trabecular thickness of alveolar bone. Histological staining revealed that anti-CD147 significantly reduced the infiltration of inflammation and limited the fractions of degraded areas in collagen fibers. The expression of bone markers (ALP, bone sialoprotein, osteocalcin and osteopontin) was enhanced by anti-CD147 treatment. The results of the anti-CD147 treatment indicate that CD147 was involved in alveolar bone mineralization, osteoclastogenesis and trabecular microstructure. The inhibition of CD147 could increase the expression level of osteogenic markers, alveolar bone crest height and suppressed collagen fiber degradation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Preservation of the bone protein osteocalcin in dinosaurs

    NASA Astrophysics Data System (ADS)

    Muyzer, Gerard; Sandberg, Philip; Knapen, Marjo H. J.; Vermeer, Cees; Collins, Matthew; Westbroek, Peter

    1992-10-01

    Two different immunological assays were used to identify the remains of a bone matrix protein, osteocalcin (OC), in the bones of dinosaurs and other fossil vertebrates. Antibodies raised against OC from modern vertebrates showed strong immunological cross-reactivity with modern and relatively young fossil samples and significant reactions with some of the dinosaur bone extracts. The presence of OC was confirmed by the detection of a peptide-bound, uniquely vertebrate amino acid, γcarboxyglutamic acid (Gla). Preservation of OC in fossil bones appears to be strongly dependent on the burial history and not simply on age. These results extend the range of protein preservation in the geologic record and provide a first step toward a molecular phylogeny of the dinosaurs.

  10. Free form fabricated features on CoCr implants with and without hydroxyapatite coating in vivo: a comparative study of bone contact and bone growth induction.

    PubMed

    Grandfield, Kathryn; Palmquist, Anders; Gonçalves, Stéphane; Taylor, Andy; Taylor, Mark; Emanuelsson, Lena; Thomsen, Peter; Engqvist, Håkan

    2011-04-01

    The current study evaluates the in vivo response to free form fabricated cobalt chromium (CoCr) implants with and without hydroxyapatite (HA) plasma sprayed coatings. The free form fabrication method allowed for integration of complicated pyramidal surface structures on the cylindrical implant. Implants were press fit into the tibial metaphysis of nine New Zealand white rabbits. Animals were sacrificed and implants were removed and embedded. Histological analysis, histomorphometry and electron microscopy studies were performed. Focused ion beam was used to prepare thin sections for high-resolution transmission electron microscopy examination. The fabricated features allowed for effective bone in-growth and firm fixation after 6 weeks. Transmission electron microscopy investigations revealed intimate bone-implant integration at the nanometre scale for the HA coated samples. In addition, histomorphometry revealed a significantly higher bone contact on HA coated implants compared to native CoCr implants. It is concluded that free form fabrication in combination with HA coating improves the early fixation in bone under experimental conditions.

  11. Glucocorticoid-induced bone loss can be reversed by the actions of PTH and Risedronate on different pathways for bone formation and mineralization

    PubMed Central

    Yao, Wei; Cheng, Zhiqiang; Pham, Aaron; Busse, Cheryl; Zimmermann, Elizabeth A.; Ritchie, Robert O.; Lane, Nancy E.

    2008-01-01

    Glucocorticoid (GC) excess decreases bone mineralization and microarchitecture and lead to reduced bone strength. Both anabolic (PTH) and anti-resorptive agents are used to prevent and treat GC-induced bone loss, yet these bone active agents alter bone turnover by very different mechanisms. Our study objective was to determine how PTH and risedronate (Ris) alter bone quality following GC excess. Five-month-old Swiss-Webster male mice were treated with the glucocorticoid (GC) prednisolone (5 mg/kg 60-day slow-release pellet) or placebo (PL)]. At day 28−56, two groups of GC-treated animals had either PTH (5μg/kg, 5x/wk) or Ris (5μg/kg, 5x/wk) intervention. Bone quality and quantity measurements include x-ray tomography microscopy (XTM) for the degree of bone mineralization (DBM), microCT for bone microarchitecture, compression testing for trabecular bone strength, biochemistry and histomorphometry for bone turnover. In addition, real-time PCR and immunohistochemistry were performed to monitor the expression of several key genes regulating Wnt signaling (bone formation) and mineralization. Results Compared to the placebo treated mice, GC treatment decreased trabecular bone volume (BV/TV) and serum osteocalcin, but increased serum CTX and osteoclast surface with a peak at day 28. GC+PTH increased and GC+Ris restored BV/TV to the PL levels after a 28 day treatment period. Average DBM was lowered after GC treatment (−27%), and it was restored to PL level with GC+Ris and GC+PTH. At day 56, RT-PCR revealed that continuous exposure to GC and GC+PTH increased, while GC+Ris decreased the expression of genes that inhibit bone mineralization (Dmp1 and Phex), compared to the PL group. Wnt signaling antagonists Dkk1, Sost and Wif1 were up-regulated by GC treatment but were down-regulated after GC+PTH treatment. Immunohistochemistry of bone sections found GC increased N terminal dmp-1 while PTH treatment increased both N and C terminal dmp-1 staining around osteocytes. Summary GC excess reduced expression of genes that regulate mineralization and increased expression of genes that inhibit Wnt signaling which were associated with reduced bone formation and bone volume over a 60 day treatment period. The addition of both PTH and Ris improved bone mass, DBM and bone strength during concurrent GC treatment, with PTH lowering expression of Wnt inhibitors and increasing bone formation; while Ris lowered the expression of mineralization inhibitors and reversed the deterioration of bone mineralization induced by GC excess. PMID:18975341

  12. Synchrotron radiation X-ray microtomography and histomorphometry for evaluation of chemotherapy effects in trabecular bone structure

    NASA Astrophysics Data System (ADS)

    Alessio, R.; Nogueira, L. P.; Almeida, A. P.; Colaço, M. V.; Braz, D.; Andrade, C. B. V.; Salata, C.; Ferreira-Machado, S. C.; de Almeida, C. E.; Tromba, G.; Barroso, R. C.

    2014-04-01

    Three-dimensional microtomography has the potential to examine complete bones of small laboratory animals with very high resolution in a non-invasive way. One of the side effects caused by some chemotherapy drugs is the induction of amenorrhea, temporary or not, in premenopausal women, with a consequent decrease in estrogen production, which can lead to bone changes. In the present work, the femur heads of rats treated with chemotherapy drugs were evaluated by 3D histomorphometry using synchrotron radiation microcomputed tomography. Control animals were also evaluated for comparison. The 3D tomographic images were obtained at the SYRMEP (SYnchrotron Radiation for MEdical Physics) beamline at the Elettra Synchrotron Laboratory in Trieste, Italy. Results showed significant differences in morphometric parameters measured from the 3D images of femur heads of rats in both analyzed groups.

  13. Role of Adrenomedullin in Breast Cancer Bone Metastasis and Chemoresistance

    DTIC Science & Technology

    2008-05-01

    osteoblast proliferation but does not induce bone matrix protein (bone sialoprotein , type I collagen, osteocalcin, and osteopontin) mRNA expression...are incompletely understood. AM treatment stimulates osteoblast proliferation but does not induce bone matrix protein (bone sialoprotein , type I

  14. Osteoblast-Specific Loss of IGF1R Signaling Results in Impaired Endochondral Bone Formation During Fracture Healing.

    PubMed

    Wang, Tao; Wang, Yongmei; Menendez, Alicia; Fong, Chak; Babey, Muriel; Tahimic, Candice G T; Cheng, Zhiqiang; Li, Alfred; Chang, Wenhan; Bikle, Daniel D

    2015-09-01

    Insulin-like growth factors (IGFs) are important local regulators during fracture healing. Although IGF1 deficiency is known to increase the risk of delayed union or non-union fractures in the elderly population, the underlying mechanisms that contribute to this defect remains unclear. In this study, IGF1 signaling during fracture healing was investigated in an osteoblast-specific IGF1 receptor (IGF1R) conditional knockout (KO) mouse model. A closed tibial fracture was induced in IGF1R(flox/flox) /2.3-kb α1(1)-collagen-Cre (KO) and IGF1R(flox/flox) (control) mice aged 12 weeks. Fracture callus samples and nonfractured tibial diaphysis were collected and analyzed by μCT, histology, immunohistochemistry, histomorphometry, and gene expression analysis at 10, 15, 21, and 28 days after fracture. A smaller size callus, lower bone volume accompanied by a defect in mineralization, bone microarchitectural abnormalities, and a higher cartilage volume were observed in the callus of these KO mice. The levels of osteoblast differentiation markers (osteocalcin, alkaline phosphatase, collagen 1α1) were significantly reduced, but the early osteoblast transcription factor runx2, as well as chondrocyte differentiation markers (collagen 2α1 and collagen 10α1) were significantly increased in the KO callus. Moreover, increased numbers of osteoclasts and impaired angiogenesis were observed during the first 15 days of fracture repair, but decreased numbers of osteoclasts were found in the later stages of fracture repair in the KO mice. Although baseline nonfractured tibias of KO mice had decreased trabecular and cortical bone compared to control mice, subsequent studies with mice expressing the 2.3-kb α1(1)-collagen-Cre ERT2 construct and given tamoxifen at the time of fracture and so starting with comparable bone levels showed similar impairment in fracture repair at least initially. Our data indicate that not only is the IGF1R in osteoblasts involved in osteoblast differentiation during fracture repair, but it plays an important role in coordinating chondrocyte, osteoclast, and endothelial responses that all contribute to the endochondral bone formation required for normal fracture repair. © 2015 American Society for Bone and Mineral Research.

  15. Effects of infrared laser on the bone repair assessed by x-ray microtomography (μct) and histomorphometry

    NASA Astrophysics Data System (ADS)

    Paolillo, Alessandra Rossi; Paolillo, Fernanda Rossi; da Silva, Alessandro M. Hakme; Reiff, Rodrigo Bezerra de Menezes; Bagnato, Vanderlei Salvador; Alves, José Marcos

    2015-06-01

    The bone fracture is important public health problems. The lasertherapy is used to accelerate tissue healing. Regarding diagnosis, few methods are validated to follow the evolution of bone microarchitecture. The aim of this study was to evaluate the effects of lasertherapy on bone repair with x-ray microtomography (μCT) and histomorphometry. A transverse rat tibia osteotomy with a Kirchner wire and a 2mm width polymeric spacer beads were used to produce a delayed bone union. Twelve rats were divided into two groups: (i) Control Group: untreated fracture and; (ii) Laser Group: fracture treated with laser. Twelve sessions of treatment (808nm laser, 100mW, 125J/cm2, 50seconds) were performed. The μCT scanner parameters were: 100kV, 100μA, Al+Cu filter and 9.92μm resolution. A volume of interest (VOI) was chosen with 300 sections above and below the central region of the fracture, totaling 601sections with a 5.96mm. The softwares CT-Analyzer, NRecon and Mimics were used for 2D and 3D analysis. A histomorphometry analysis was also performed. The connectivity (Conn) showed significant increase for Laser Group than Control Group (32371+/-20689 vs 17216+/-9467, p<0.05). There was no significant difference for bone volume (59+/-19mm3 vs 47+/- 8mm3) and histomorfometric data [Laser and Control Groups showed greater amount of cartilaginous (0.19+/-0.05% vs 0.11+/-0.09%) and fibrotic (0.21+/-0.12% vs 0.09+/-0.11%) tissues]. The negative effect was presence of the cartilaginous and fibrotic tissues which may be related to the Kirchner wire and the non-absorption of the polymeric that may have influenced negatively the light distribution through the bone. However, the positive effect was greater bone connectivity, indicating improvement in bone microarchitecture.

  16. Altered skeletal pattern of gene expression in response to spaceflight and hindlimb elevation

    NASA Technical Reports Server (NTRS)

    Bikle, D. D.; Harris, J.; Halloran, B. P.; Morey-Holton, E.

    1994-01-01

    Spaceflight leads to osteopenia, in part by inhibiting bone formation. Using an animal model (hindlimb elevation) that simulates the weightlessness of spaceflight, we and others showed a reversible inhibition of bone formation and bone mineralization. In this study, we have measured the mRNA levels of insulin-like growth factor I (IGF-I), IGF-I receptor (IGF-IR), alkaline phosphatase, and osteocalcin in the tibiae of rats flown aboard National Aeronautics and Space Administration Shuttle Flight STS-54 and compared the results with those obtained from their ground-based controls and from the bones of hindlimb-elevated animals. Spaceflight and hindlimb elevation transiently increase the mRNA levels for IGF-I, IGF-IR, and alkaline phosphatase but decrease the mRNA levels for osteocalcin. The changes in osteocalcin and alkaline phosphatase mRNA levels are consistent with a shift toward decreased maturation, whereas the rise in IGF-I and IGF-IR mRNA levels may indicate a compensatory response to the fall in bone formation. We conclude that skeletal unloading during spaceflight or hindlimb elevation resets the pattern of gene expression in the osteoblast, giving it a less mature profile.

  17. Association of adiposity indices with bone density and bone turnover in the Chinese population.

    PubMed

    Wang, J; Yan, D; Hou, X; Chen, P; Sun, Q; Bao, Y; Hu, C; Zhang, Z; Jia, W

    2017-09-01

    Associations of adiposity indices with bone mineral density (BMD) and bone turnover markers were evaluated in Chinese participants. Body mass index, fat mass, and lean mass are positively related to BMD in both genders. Subcutaneous fat area was proved to be negatively associated with BMD and positively correlated with osteocalcin in postmenopausal females. Obesity is highly associated with osteoporosis, but the effect of adipose tissue on bone is contradictory. Our study aimed to assess the associations of adiposity indices with bone mineral density (BMD) and bone turnover markers (BTMs) in the Chinese population. Our study recruited 5215 participants from the Shanghai area, evaluated related anthropometric and biochemical traits in all participants, tested serum BTMs, calculated fat distribution using magnetic resonance imaging (MRI) images and image analysis software, and tested BMD with dual-energy X-ray absorptiometry. When controlled for age, all adiposity indices were positively correlated with BMD of all sites for both genders. As for the stepwise regression analysis, body mass index (BMI), fat mass, and lean mass were protective for BMD in both genders. However, subcutaneous fat area (SFA) was detrimental for BMD of the L1-4 and femoral neck (β ± SE -0.0742 ± 0.0174; p = 2.11E-05; β ± SE -0.0612 ± 0.0147; p = 3.07E-05). Adiposity indices showed a negative correlation with BTMs adjusting for age, especially with osteocalcin. In the stepwise regression analysis, fat mass was negatively correlated with osteocalcin (β ± SE -8.8712 ± 1.4902; p = 4.17E-09) and lean mass showed a negative correlation with N-terminal procollagen of type I collagen (PINP) for males (β ± SE -0.3169 ± 0.0917; p = 0.0006). In females, BMI and visceral fat area (VFA) were all negatively associated with osteocalcin (β ± SE -0.4423 ± 0.0663; p = 2.85E-11; β ± SE -7.1982 ± 1.1094; p = 9.95E-11), while SFA showed a positive correlation with osteocalcin (β ± SE: 5.5993 ± 1.1753; p = 1.98E-06). BMI, fat mass, and lean mass are proved to be beneficial for BMD in both males and postmenopausal females. SFA is negatively associated with BMD and positively correlated with osteocalcin in postmenopausal females.

  18. Global deletion of tetraspanin CD82 attenuates bone growth and enhances bone marrow adipogenesis.

    PubMed

    Bergsma, Alexis; Ganguly, Sourik S; Dick, Daniel; Williams, Bart O; Miranti, Cindy K

    2018-05-18

    CD82 is a widely expressed member of the tetraspanin family of transmembrane proteins known to control cell signaling, adhesion, and migration. Tetraspanin CD82 is induced over 9-fold during osteoclast differentiation in vitro; however, its role in bone homeostasis is unknown. A globally deleted CD82 mouse model was used to assess the bone phenotype. Based on microCT and 4-point bending tests, CD82-deficient bones are smaller in diameter and weaker, but display no changes in bone density. Histomorphometry shows a decrease in size, erosion perimeter, and number of osteoclasts in situ, with a corresponding increase in trabecular surface area, specifically in male mice. Male-specific alterations are observed in trabecular structure by microCT and in vitro differentiated osteoclasts are morphologically abnormal. Histomorphometry did not reveal a significant reduction in osteoblast number; however, dynamic labeling reveals a significant decrease in bone growth. Consistent with defects in OB function, OB differentiation and mineralization are defective in vitro, whereas adipogenesis is enhanced. There is a corresponding increase in bone marrow adipocytes in situ. Thus, combined defects in both osteoclasts and osteoblasts can account for the observed bone phenotypes, and suggests a role for CD82 in both bone mesenchyme and myeloid cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu Lingling; Zaidi, Samir; Peng Yuanzhen

    Strontium ranelate, a new agent for the treatment of osteoporosis, has been shown stimulate bone formation in various experimental models. This study examines the effect of strontium ranelate on gene expression in osteoblasts, as well as the formation of mineralized (von Kossa-positive) colony-forming unit-osteoblasts (CFU-obs). Bone marrow-derived stromal cells cultured for 21 days under differentiating conditions, when exposed to strontium ranelate, displayed a significant time- and concentration-dependent increase in the expression of the master gene, Runx2, as well as bone sialoprotein (BSP), but interestingly without effects on osteocalcin. This was associated with a significant increase in the formation of CFU-obsmore » at day 21 of culture. In U-33 pre-osteoblastic cells, strontium ranelate significantly enhanced the expression of Runx2 and osteocalcin, but not BSP. Late, more mature osteoblastic OB-6 cells showed significant elevations in BSP and osteocalcin, but with only minimal effects on Runx2. In conclusion, strontium ranelate stimulates osteoblast differentiation, but the induction of the program of gene expression appears to be cell type-specific. The increased osteoblastic differentiation is the likely basis underlying the therapeutic bone-forming actions of strontium ranelate.« less

  20. Tridax procumbens flavonoids promote osteoblast differentiation and bone formation.

    PubMed

    Al Mamun, Md Abdullah; Hosen, Mohammad Jakir; Islam, Kamrul; Khatun, Amina; Alam, M Masihul; Al-Bari, Md Abdul Alim

    2015-11-18

    Tridax procumbens flavonoids (TPFs) are well known for their medicinal properties among local natives. Besides traditionally used for dropsy, anemia, arthritis, gout, asthma, ulcer, piles, and urinary problems, it is also used in treating gastric problems, body pain, and rheumatic pains of joints. TPFs have been reported to increase osteogenic functioning in mesenchymal stem cells. Our previous study showed that TPFs were significantly suppressed the RANKL-induced differentiation of osteoclasts and bone resorption. However, the effects of TPFs to promote osteoblasts differentiation and bone formation remain unclear. TPFs were isolated from Tridax procumbens and investigated for their effects on osteoblasts differentiation and bone formation by using primary mouse calvarial osteoblasts. TPFs promoted osteoblast differentiation in a dose-dependent manner demonstrated by up-regulation of alkaline phosphatase and osteocalcin. TPFs also upregulated osteoblast differentiation related genes, including osteocalcin, osterix, and Runx2 in primary osteoblasts. TPFs treated primary osteoblast cells showed significant upregulation of bone morphogenetic proteins (BMPs) including Bmp-2, Bmp-4, and Bmp-7. Addition of noggin, a BMP specific-antagonist, inhibited TPFs induced upregulation of the osteocalcin, osterix, and Runx2. Our findings point towards the induction of osteoblast differentiation by TPFs and suggested that TPFs could be a potential anabolic agent to treat patients with bone loss-associated diseases such as osteoporosis.

  1. Ascorbic acid insufficiency induces the severe defect on bone formation via the down-regulation of osteocalcin production

    PubMed Central

    Kim, Won; Bae, Seyeon; Kim, Hyemin; Kim, Yejin; Choi, Jiwon; Lim, Sun Young; Lee, Hei Jin; Lee, Jihyuk; Choi, Jiyea; Jang, Mirim; Lee, Kyoung Eun; Chung, Sun G.; Hwang, Young-il

    2013-01-01

    The L-gulono-γ-lactone oxidase gene (Gulo) encodes an essential enzyme in the synthesis of ascorbic acid from glucose. On the basis of previous findings of bone abnormalities in Gulo-/- mice under conditions of ascorbic acid insufficiency, we investigated the effect of ascorbic acid insufficiency on factors related to bone metabolism in Gulo-/- mice. Four groups of mice were raised for 4 weeks under differing conditions of ascorbic acid insufficiency, namely, wild type; ascorbic acid-sufficient Gulo-/- mice, 3-week ascorbic acid-insufficient Gulo-/- mice, and 4-week ascorbic acid-insufficient Gulo-/- mice. Four weeks of ascorbic acid insufficiency resulted in significant weight loss in Gulo-/- mice. Interestingly, average plasma osteocalcin levels were significantly decreased in Gulo-/- mice after 3 weeks of ascorbic acid insufficiency. In addition, the tibia weight in ascorbic acid-sufficient Gulo-/- mice was significantly higher than that in the other three groups. Moreover, significant decreases in trabecular bone volume near to the growth plate, as well as in trabecular bone attachment to the growth plate, were evident in 3- or 4-week ascorbic acid-insufficient Gulo-/-. In summary, ascorbic acid insufficiency in Gulo-/- mice results in severe defects in normal bone formation, which are closely related to a decrease in plasma osteocalcin levels. PMID:24386598

  2. Regenerate Healing Outcomes in Unilateral Mandibular Distraction Osteogenesis Using Quantitative Histomorphometry

    PubMed Central

    Schwarz, Daniel A.; Arman, Krikor G.; Kakwan, Mehreen S.; Jamali, Ameen M.; Elmeligy, Ayman A.; Buchman, Steven R.

    2015-01-01

    Background The authors’ goal was to ascertain regenerate bone-healing metrics using quantitative histomorphometry at a single consolidation period. Methods Rats underwent either mandibular distraction osteogenesis (n=7) or partially reduced fractures (n=7); their contralateral mandibles were used as controls (n=11). External fixators were secured and unilateral osteotomies performed, followed by either mandibular distraction osteogenesis (4 days’ latency, then 0.3 mm every 12 hours for 8 days; 5.1 mm) or partially reduced fractures (fixed immediately postoperatively; 2.1 mm); both groups underwent 4 weeks of consolidation. After tissue processing, bone volume/tissue volume ratio, osteoid volume/tissue volume ratio, and osteocyte count per high-power field were analyzed by means of quantitative histomorphometry. Results Contralateral mandibles had statistically greater bone volume/tissue volume ratio and osteocyte count per high-power field compared with both mandibular distraction osteogenesis and partially reduced fractures by almost 50 percent, whereas osteoid volume/tissue volume ratio was statistically greater in both mandibular distraction osteogenesis specimens and partially reduced fractures compared with contralateral mandibles. No statistical difference in bone volume/tissue volume ratio, osteoid volume/tissue volume ratio, or osteocyte count per high-power field was found between mandibular distraction osteogenesis specimens and partially reduced fractures. Conclusions The authors’ findings demonstrate significantly decreased bone quantity and maturity in mandibular distraction osteogenesis specimens and partially reduced fractures compared with contralateral mandibles using the clinically analogous protocols. If these results are extrapolated clinically, treatment strategies may require modification to ensure reliable, predictable, and improved outcomes. PMID:20463629

  3. A Mediterranean Diet Enriched with Olive Oil Is Associated with Higher Serum Total Osteocalcin Levels in Elderly Men at High Cardiovascular Risk

    PubMed Central

    Moreno-Navarrete, José Maria; Ricart, Wifredo; Ros, Emilio; Estruch, Ramon; Salas-Salvadó, Jordi

    2012-01-01

    Background: The intake of olive oil has been related to the prevention of osteoporosis in experimental and in in vitro models. Very few prospective studies have evaluated the effects of olive oil intake on circulating osteocalcin (OC) in humans. Objective: The objective of the study was to examine the longitudinal effects of a low-fat control diet (n = 34), a Mediterranean diet enriched with nuts (MedDiet+nuts, n = 51), or a Mediterranean diet enriched with virgin olive oil (MedDiet+VOO, n = 42) on circulating forms of OC and bone formation markers in elderly men at high cardiovascular risk. Design: Longitudinal associations between baseline and follow-up (2 yr) measurements of total OC, undercarboxylated osteocalcin, C-telopeptide of type I collagen, and procollagen I N-terminal propeptide (P1NP) concentrations were examined in 127 elderly men randomized to three healthy dietary interventions. Results: Baseline characteristics (age, body mass index, waist circumference, lipid profile, fasting insulin levels, and bone formation and resorption markers) were similar in all intervention groups. The total osteocalcin concentration increased robustly in the MedDiet+VOO group (P = 0.007) in parallel to increased P1NP levels (P = 0.01) and homeostasis model assessment-β-cell function (P = 0.01) but not in subjects on the MedDiet+nuts (P = 0.32) or after the control diet (P = 0.74). Interestingly, the consumption of olives was associated positively with both baseline total osteocalcin (r = 0.23, P = 0.02) and the 2-yr osteocalcin concentrations (r = 0.21, P = 0.04) in the total cohort. Conclusions: Consumption of a Mediterranean diet enriched with virgin olive oil for 2 years is associated with increased serum osteocalcin and P1NP concentrations, suggesting protective effects on bone. PMID:22855341

  4. The Consequences of GHRH-R Haplo-Insufficiency for Bone Quality and Insulin resistance

    PubMed Central

    Gois-Jr, Miburge B.; Salvatori, Roberto; Aguiar-Oliveira, Manuel H.; Pereira, Francisco A.; Oliveira, Carla R. P.; Oliveira-Neto, Luiz A.; Pereira, Rossana M. C.; Souza, Anita H.O.; Melo, Enaldo V.; de Paula, Francisco J. A.

    2011-01-01

    OBJECTIVE Growth hormone (GH)/insulin like growth factor (IGF) axis and insulin are key determinants of bone remodeling. Homozygous mutations in the GH releasing hormone receptor (GHRHR) gene (GHRHR) are a frequent cause of genetic isolated GHD (IGHD). Heterozygosity for GHRHR mutation causes changes in body composition and possibly an increase in insulin sensitivity, but its effects on bone quality are still unknown. The objective of this study was to assess the bone quality and metabolism and its correlation with insulin sensitivity in subjects heterozygous for a null mutation in the GHRHR. PATIENTS AND METHODS A cross-sectional study was performed on 76 normal subjects (68.4% females) (N/N) and 64 individuals (64.1% females) heterozygous for a mutation in the GHRHR (MUT/N). Anthropometric features, quantitative ultrasound (QUS) of the heel, bone markers (osteocalcin and CrossLaps), IGF-I, glucose, and insulin were measured and homeostasis model assessment of insulin resistance (HOMAIR) was calculated. RESULTS There were no differences in age or height between the two groups, but weight (p = 0.007) and BMI (p = 0.001) were lower in MUT/N. There were no differences in serum levels of IGF-I, glucose, T score, or absolute values of stiffness and osteocalcin, but insulin (p = 0.01), HOMAIR (p = 0.01) and CrossLaps (p = 0.01) were lower in MUT/N. There was no correlation between osteocalcin and glucose, osteocalcin and HOMAIR in the140 individuals as a whole or in the separate MUT/N or N/N groups. CONCLUSIONS The present study suggests that one allele mutation in the GHRHR gene has a greater impact on energy metabolism than on bone quality. PMID:21995288

  5. Osteocalcin as a marker of metabolic risk in healthy postmenopausal women.

    PubMed

    García-Martín, Antonia; Cortés-Berdonces, María; Luque-Fernández, Inés; Rozas-Moreno, Pedro; Quesada-Charneco, Miguel; Muñoz-Torres, Manuel

    2011-05-01

    Several studies have reported the role of osteocalcin on glucose and fat metabolism. In this study, we analyzed the relationship between the concentration of osteocalcin and metabolic risk factors in healthy postmenopausal women. Cross-sectional analyses of 54 postmenopausal women aged 56 ± 3.5 years were conducted. We recorded clinical and biochemical data of metabolic risk including fasting plasma glucose (FPG) level and evaluated the relationship between serum osteocalcin and bone formation markers. Serum osteocalcin concentration was negatively correlated with FPG (β = -0.328, P = 0.035). When osteocalcin levels were divided into tertiles, we found significant differences in FPG between the highest and the lowest tertiles (84 ± 11 vs 98 ± 30 mg/dL, respectively; P = 0.029). We found significantly lower osteocalcin levels in women with impaired fasting glucose levels than in those with normoglycemia (10.7 ± 6.1 vs 17.1 ± 7.4 ng/mL, respectively; P = 0.006). We also found lower concentrations of osteocalcin in obese women versus nonobese women (14.4 ± 8.8 vs 17.3 ± 6.2 ng/mL; P = 0.034) and women with increased low-density lipoprotein cholesterol levels versus those with low LDL-c levels (14.1 ± 5.4 vs 18.9 ± 9.1 ng/mL; P = 0.045). A concentration of 13.5 ng/ mL or lower showed a sensitivity of 85.7% and a specificity of 63.8% to detect increased risk for diabetes (FPG ≥100 mg/dL). In contrast, serum levels of bone alkaline phosphatase did not correlate with any variable. In this population, there is a consistent association between osteocalcin and markers of metabolic syndrome. We suggest potential usefulness of serum osteocalcin as a predictor for increased risk of diabetes in postmenopausal women.

  6. Serum concentrations of carboxylated osteocalcin are increased and associated with several components of the polycystic ovarian syndrome.

    PubMed

    Diamanti-Kandarakis, Evanthia; Livadas, Sarantis; Katsikis, Ilias; Piperi, Christine; Mantziou, Aimilia; Aimilia, Mantziou; Papavassiliou, Athanasios G; Panidis, Dimitrios

    2011-03-01

    Intriguing studies suggest that osteocalcin (OC) and its carboxylated (Gla)/uncarboxylated form are involved in the regulation of insulin secretion and action. Additionally, advanced glycated end products (AGEs) directly regulate the secretion of these osteoblast-derived molecules. In polycystic ovarian syndrome (PCOS), among the pathophysiological aberrations, deregulation of insulin secretion and action as well as elevated AGEs levels have been demonstrated. In this study, we evaluated the serum levels of osteocalcin and Gla osteocalcin and their possible associations with metabolic, hormonal, and ultrasonographic components of PSOS: 97 women were studied, 50 PCOS patients and 47 controls, matched for age and body mass index (BMI). In each subject, the levels of bone metabolism markers have been evaluated, and metabolic and hormonal profiles as well as ovarian ultrasound were carried out. Osteocalcin (4.30 ± 1.74 vs. 6.20 ± 1.78 ng/ml, P < 0.0005) values were significantly lower, whereas Gla osteocalcin (37.93 ± 6.87 vs. 9.64 ± 8.21 ng/ml, P < 0.0005) and receptor activator for nuclear factor-κB ligand (0.54 ± 0.26 vs. 0.16 ± 0.15 pmol/l, P < 0.0005) values were significantly higher in PCOS subjects compared to the control group, independently of obesity. A significant association was disclosed between osteocalcin and Gla osteocalcin with androgens, insulin resistance, AGEs, and ovarian morphology. Receiver operating curve analysis revealed that Gla osteocalcin [AUC, 0.975 (95% CI, 0.93-1.00)] as well as AGEs are significant prognostic factors of PCOS [AUC, 0.986 (95% CI, 0.97-1.00)]. Lower osteocalcin and elevated serum levels of its carboxylated form are displayed in PCOS subjects and are associated with several PCOS components. These findings suggest a potential interaction between bone-derived markers and the metabolic/hormonal abnormalities observed in PCOS. However, the pathophysiological mechanisms and moreover the possible clinical implications require further investigation.

  7. Young overweight and obese women with lower circulating osteocalcin concentrations exhibit higher insulin resistance and concentrations of C-reactive protein.

    PubMed

    Lucey, Alice J; Paschos, Georgios K; Thorsdottir, Inga; Martínéz, J Alfredo; Cashman, Kevin D; Kiely, Máireád

    2013-01-01

    The role of the skeleton in the regulation of energy metabolism in humans is not clear. This study investigates the hypothesis that biomarkers of bone turnover are associated with indices of glucose homeostasis and systemic inflammation in young adults. A cross-sectional study investigating the relationships between biomarkers of bone turnover (serum total and uncarboxylated osteocalcin, bone-specific alkaline phosphatase, C-telopeptide of type I collagen, urinary N-telopeptide of type I collagen) and glucose metabolism (fasting plasma glucose [FPG], insulin, insulin resistance [homeostatic model assessment of insulin resistance]), systemic inflammation (high-sensitivity C-reactive protein [hsCRP] and interleukin-6), adipokines (leptin and adiponectin), and body composition was conducted in 268 young, nondiabetic overweight and obese adults aged 20 to 40 years (116 men, 152 women; body mass index, 27.5-32.5 kg/m(2)). Data on diet, physical activity, serum 25-hydroxyvitamin D, and parathyroid hormone were also collected. In women, there was a stepwise increase in lean body mass (P < .05) and a decrease in serum hsCRP (P < .001) across tertiles of total osteocalcin. Multiple linear regression analysis showed significant inverse associations between total osteocalcin and FPG (β = -0.350; P = .016; 95% confidence interval [CI], -0.35 to -0.04), insulin (β = -0.455; P = .002; 95% CI, -1.9 to -0.46), and homeostatic model assessment of insulin resistance (β = -0.508; P = .001; 95% CI, -10.93 to -3.17) in women with total osteocalcin concentrations below the group median. Men in the lowest tertile of uncarboxylated osteocalcin had twice the concentration of hsCRP than did other men (P = .05). In this sample, women with less lean body mass had lower circulating total osteocalcin concentrations and exhibited higher FPG, insulin resistance, and hsCRP compared with their similarly sized counterparts, suggesting that associations between osteocalcin and systemic inflammation, glucose homeostasis, and insulin resistance may be influenced by differences in sex and body composition. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Histomorphometric and immunohistochemical analysis of human maxillary sinus-floor augmentation using porous β-tricalcium phosphate for dental implant treatment.

    PubMed

    Miyamoto, Shinji; Shinmyouzu, Kouhei; Miyamoto, Ikuya; Takeshita, Kenji; Terada, Toshihisa; Takahashi, Tetsu

    2013-08-01

    This study utilized the constitution and expression of Runx2/Cbfa1 to conduct 6-month-post-operation histomorphometrical and histochemical analysis of osteocalcin in bone regeneration following sinus-floor augmentation procedures using β-tricalcium phosphate (β-TCP) and autogenous cortical bone. Thirteen sinuses of nine patients were treated with sinus-floor augmentation using 50% β-TCP and 50% autogenous cancellous bone harvested from the ramus of the mandible. Biopsies of augmented sinuses were taken at 6 months for histomorphometric and immunohistochemical measurements. Runx2/Cbfa1- and osteocalcin-positive cells were found around TCP particles and on the bone surface. Approximately 60% of cells found around TCP particles stained positive for Runx2/Cbfa1. Fewer cells stained positive for osteocalcin. These positive cells decreased apically with increasing vertical distance from the maxillary bone surface. Histomorphometric analysis showed that the augmented site close to residual bone and periosteum contained approximately 42% bony tissue and 42% soft connective tissue, and the remaining 16% consisted of TCP particles. On the other hand, the augmented bone far from residual bone and periosteum contained 35% bony tissue and 50% soft connective tissue. Our data suggest that TCP particles attract osteoprogenitor cells that migrate into the interconnecting micropores of the bone-substitute material by 6 months. The augmented site close to residual bone contained a higher proportion of bony tissue and a lower proportion of soft connective tissue than did the augmented site far from residual bone. © 2012 John Wiley & Sons A/S.

  9. Relationship between adiponectin and leptin on osteocalcin in obese adolescents during weight loss therapy.

    PubMed

    Campos, Raquel Munhoz da Silveira; Masquio, Deborah Cristina Landi; Corgosinho, Flávia Campos; Carvalho-Ferreira, Joana Pereira de; Molin Netto, Bárbara Dal; Clemente, Ana Paula Grotti; Tock, Lian; Tufik, Sergio; Mello, Marco Túlio de; Dâmaso, Ana Raimunda

    2018-05-17

    Obesity is a multifactorial disease characterized by the presence of the pro-inflammatory state associated with the development of many comorbidities, including bone turnover marker alterations. This study aimed to investigate the role of the inflammatory state on bone turnover markers in obese adolescents undergoing interdisciplinary weight loss treatment for one year. Thirty four post-pubescent obese adolescents with primary obesity, a body mass index (BMI) greater than > 95th percentile of the CDC reference growth charts, participated in the present investigation. Measurements of body composition, bone turnover markers, inflammatory biomarkers and visceral and subcutaneous fat were taken. Adolescents were submitted to one year of interdisciplinary treatment (clinical approach, physical exercise, physiotherapy intervention, nutritional and psychological counseling). Reduction in body mass, body fat mass, visceral and subcutaneous fat, as well as, an increase in the body lean mass and bone mineral content was observed. An improvement in inflammatory markers was seen with an increase in adiponectin, adiponectin/leptin ratio and inteleukin-15. Moreover, a positive correlation between the adiponectin/leptin ratio and osteocalcin was demonstrated. Further, both lean and body fat mass were predictors of osteocalcin. Negative associations between leptin with osteocalcin, adiponectin with Beta CTX-collagen, and visceral fat with adiponectin were observed. It is possible to conclude that the inflammatory state can negatively influence the bone turnover markers in obese adolescents. In addition, the interdisciplinary weight loss treatment improved the inflammatory state and body composition in obese adolescents. Therefore, the present findings should be considered in clinical practice.

  10. Ectopic bone formation in nude rats using human osteoblasts seeded poly(3)hydroxybutyrate embroidery and hydroxyapatite-collagen tapes constructs.

    PubMed

    Mai, Ronald; Hagedorn, Manolo Gunnar; Gelinsky, Michael; Werner, Carsten; Turhani, Dritan; Späth, Heike; Gedrange, Tomas; Lauer, Günter

    2006-09-01

    The aim of this study was to evaluate the ectopic bone formation using tissue engineered cell-seeded constructs with two different scaffolds and primary human maxillary osteoblasts in nude rats over an implantation period of up to 96 days. Collagen I-coated Poly(3)hydroxybutyrate (PHB) embroidery and hydroxyapatite (HAP) collagen tapes were seeded with primary human maxillary osteoblasts (hOB) and implanted into athymic rnu/run rats. A total of 72 implants were placed into the back muscles of 18 rats. 24, 48 and 96 days after implantation, histological and histomorphometric analyses were made. The osteoblastic character of the cells was confirmed by immunocytochemistry and RT-PCR for osteocalcin. Histological analysis demonstrated that all cell-seeded constructs induced ectopic bone formation after 24, 48 and 96 days of implantation. There was more mineralized tissue in PHB constructs than in HAP-collagen tapes (at day 24; p < 0.05). Bone formation decreased with the increasing length of the implantation period. Osteocalcin expression verified the osteoblastic character of the cell-seeded constructs after implantation time. No bone formation and no osteocalcin expression were found in the control groups. Cell-seeded constructs either with PHB embroidery or HAP-collagen tapes can induce ectopic bone formation. However, the amount of bone formed decreased with increasing length of implantation.

  11. The effects of programmed administration of human parathyroid hormone fragment (1-34) on bone histomorphometry and serum chemistry in rats

    NASA Technical Reports Server (NTRS)

    Dobnig, H.; Turner, R. T.

    1997-01-01

    PTH treatment can result in dramatic increases in cancellous bone volume in normal and osteopenic rats. However, this potentially beneficial response is only observed after pulsatile treatment; continuous infusion of PTH leads to hypercalcemia and bone abnormalities. The purpose of these studies was to determine the optimal duration of the PTH pulses. A preliminary study revealed that human PTH-(1-34) (hPTH) is cleared from circulation within 6 h after sc administration of an anabolic dose of the hormone (80 microg/kg). To establish the effects of gradually extending the duration of exposure to hPTH without increasing the daily dose, we programmed implanted Alzet osmotic pumps to deliver the 80 microg/kg x day dose of the hormone during pulses of 1, 2, and 6 h/day, or 40 microg/kg x day continuously. Discontinuous infusion was accomplished by alternate spacing of external tubing with hPTH solution and sesame oil. After 6 days of treatment, we evaluated serum chemistry and bone histomorphometry. As negative and positive controls, groups of rats received pumps that delivered vehicle only and 80 microg/kg x day hPTH by daily sc injection, respectively. Dynamic and static bone histomorphometry revealed that the daily sc injection and 1 h/day infusion dramatically increased osteoblast number and bone formation in the proximal tibial metaphysis, whereas longer infusion resulted in systemic side-effects, including up to a 10% loss in body weight, hypercalcemia, and histological changes in the proximal tibia resembling abnormalities observed in patients with chronic primary hyperparathyroidism, including peritrabecular marrow fibrosis and focal bone resorption. Infusion for as little as 2 h/day resulted in minor weight loss and changes in bone histology that were intermediate between sc and continuous administration. The results demonstrate that the therapeutic interval for hPTH exposure is brief, but that programmed administration of implanted hormone is a feasible alternative to daily injection as a route for administration of the hormone.

  12. Comparison between the effects of platelet-rich plasma and bone marrow concentrate on defect consolidation in the rabbit tibia

    PubMed Central

    Batista, Marco Antonio; Leivas, Tomaz Puga; Rodrigues, Consuelo Junqueira; Arenas, Géssica Cantadori Funes; Belitardo, Donizeti Rodrigues; Guarniero, Roberto

    2011-01-01

    OBJECTIVE: To perform a comparative analysis of the effects of platelet-rich plasma and centrifuged bone marrow aspirate on the induction of bone healing in rabbits. METHOD: Twenty adult, male New Zealand rabbits were randomly separated into two equal groups, and surgery was performed to create a bone defect (a cortical orifice 3.3 mm in diameter) in the proximal metaphysis of each rabbit's right tibia. In the first group, platelet-rich plasma was implanted in combination with β-tricalcium phosphate (platelet-rich plasma group), and in the second group, centrifuged bone marrow in combination with β-tricalcium phosphate (centrifuged bone marrow group) was implanted. After a period of four weeks, the animals were euthanized, and the tibias were evaluated using digital radiography, computed tomography, and histomorphometry. RESULTS: Seven samples from each group were evaluated. The radiographic evaluation confirmed the absence of fractures in the postoperative limb and identified whether bone consolidation had occurred. The tomographic evaluation revealed a greater amount of consolidation and the formation of a greater cortical bone thickness in the platelet-rich plasma group. The histomorphometry revealed a greater bone density in the platelet-rich plasma group compared with the centrifuged bone marrow group. CONCLUSION: After four weeks, the platelet-rich plasma promoted a greater amount of bone consolidation than the bone marrow aspirate concentrate. PMID:22012052

  13. Pregnancy and Lactation-Associated Osteoporosis: Bone Histomorphometric Analysis and Response to Treatment with Zoledronic Acid.

    PubMed

    Grizzo, Felipe Merchan Ferraz; da Silva Martins, Janaina; Pinheiro, Marcelo M; Jorgetti, Vanda; Carvalho, Maria Dalva Barros; Pelloso, Sandra Marisa

    2015-10-01

    Pregnancy and lactation-associated osteoporosis (PAO) is a rare condition with little known pathophysiology. Most cases are diagnosed in the third trimester of pregnancy or in the first weeks postpartum, particularly in first pregnancies. Vertebral fractures are most commonly observed and characterised by prolonged severe pain, functional limitations and a loss of height. Measurements of bone mineral density and biochemical markers of bone remodelling are the clinical methods most commonly used for the management of these patients. However, a bone biopsy with histomorphometric analysis has been considered to be the gold-standard. Few studies have evaluated the histomorphometry in patients with this clinical condition and none of them performed the procedure at the beginning of the clinical assessment. In this study, we report a case of PAO in a 31-year-old postpartum patient who had undergone a twin pregnancy. We describe the clinical, laboratory tests and imaging features. Bone histomorphometry showed a high resorption rate and excellent evolution after 1 year of treatment with intravenous zoledronic acid. Our data suggest that osteoclastogenesis plays a central role in the pathophysiological processes of this disease.

  14. Novel in Vitro Modification of Bone for an Allograft with Improved Toughness Osteoconductivity

    DTIC Science & Technology

    2015-06-01

    osteocalcin, Runx2, and col1a1 by RT-PCR. Spectrophotometry and fluorescence microscopy were used to quantify AGEs. 2. KEYWORDS Fracture toughness, R...markers (alkaline phosphatase, osteocalcin, RUNX2 and COL1A1 ) Completed Task 10 Data analysis, publications, reports Completed Task 1. Retrieval...FEMALE 25 Task 9. Measure expression of molecular markers of mineralization, osteocalcin, RUNX2 and COL1A1 using quantitative RT-PCR with specific

  15. Osteoblast-Specific Loss of IGF1R Signaling Results in Impaired Endochondral Bone Formation During Fracture Healing

    PubMed Central

    Wang, Tao; Wang, Yongmei; Menendez, Alicia; Fong, Chak; Babey, Muriel; Tahimic, Candice GT; Cheng, Zhiqiang; Li, Alfred; Chang, Wenhan; Bikle, Daniel D.

    2017-01-01

    Insulin-like growth factors (IGFs) are important local regulators during fracture healing. Although IGF1 deficiency is known to increase the risk of delayed union or non-union fractures in the elderly population, the underlying mechanisms that contribute to this defect remains unclear. In this study, IGF1 signaling during fracture healing was investigated in an osteoblast-specific IGF1 receptor (IGF1R) conditional knockout (KO) mouse model. A closed tibial fracture was induced in IGF1Rflox/flox/2.3-kb α1(1)-collagen-Cre (KO) and IGF1Rflox/flox (control) mice aged 12 weeks. Fracture callus samples and nonfractured tibial diaphysis were collected and analyzed by μCT, histology, immunohistochemistry, histomorphometry, and gene expression analysis at 10, 15, 21, and 28 days after fracture. A smaller size callus, lower bone volume accompanied by a defect in mineralization, bone microarchitectural abnormalities, and a higher cartilage volume were observed in the callus of these KO mice. The levels of osteoblast differentiation markers (osteocalcin, alkaline phosphatase, collagen 1α1) were significantly reduced, but the early osteoblast transcription factor runx2, as well as chondrocyte differentiation markers (collagen 2α1 and collagen 10α1) were significantly increased in the KO callus. Moreover, increased numbers of osteoclasts and impaired angiogenesis were observed during the first 15 days of fracture repair, but decreased numbers of osteoclasts were found in the later stages of fracture repair in the KO mice. Although baseline nonfractured tibias of KO mice had decreased trabecular and cortical bone compared to control mice, subsequent studies with mice expressing the 2.3-kb α1(1)-collagen-Cre ERT2 construct and given tamoxifen at the time of fracture and so starting with comparable bone levels showed similar impairment in fracture repair at least initially. Our data indicate that not only is the IGF1R in osteoblasts involved in osteoblast differentiation during fracture repair, but it plays an important role in coordinating chondrocyte, osteoclast, and endothelial responses that all contribute to the endochondral bone formation required for normal fracture repair. PMID:25801198

  16. CCAAT/enhancer-binding protein beta promotes osteoblast differentiation by enhancing Runx2 activity with ATF4.

    PubMed

    Tominaga, Hiroyuki; Maeda, Shingo; Hayashi, Makoto; Takeda, Shu; Akira, Shizuo; Komiya, Setsuro; Nakamura, Takashi; Akiyama, Haruhiko; Imamura, Takeshi

    2008-12-01

    Although CCAAT/enhancer-binding protein beta (C/EBPbeta) is involved in osteocalcin gene expression in osteoblast in vitro, the physiological importance of and molecular mechanisms governing C/EBPbeta in bone formation remain to be elucidated. In particular, it remains unclear whether C/EBPbeta acts as a homodimer or a heterodimer with other proteins during osteoblast differentiation. Here, deletion of the C/EBPbeta gene from mice resulted in delayed bone formation with concurrent suppression of chondrocyte maturation and osteoblast differentiation. The expression of type X collagen as well as chondrocyte hypertrophy were suppressed in mutant bone, providing new insight into the possible roles of C/EBPbeta in chondrocyte maturation. In osteoblasts, luciferase reporter, gel shift, DNAP, and ChIP assays demonstrated that C/EBPbeta heterodimerized with activating transcription factor 4 (ATF4), another basic leucine zipper transcription factor crucial for osteoblast maturation. This complex interacted and transactivated osteocalcin-specific element 1 (OSE1) of the osteocalcin promoter. C/EBPbeta also enhanced the synergistic effect of ATF4 and Runx2 on osteocalcin promoter transactivation by enhancing their interaction. Thus, our results provide evidence that C/EBPbeta is a crucial cofactor in the promotion of osteoblast maturation by Runx2 and ATF4.

  17. Age-related differences in hormonal and nutritional impact on lean anorexia nervosa bone turnover uncoupling.

    PubMed

    Galusca, B; Bossu, C; Germain, N; Kadem, M; Frere, D; Lafage-Proust, M H; Lang, F; Estour, B

    2006-01-01

    In anorexia nervosa (AN) patients osteoporosis occurs within a framework of multiple hormonal abnormalities as a result of bone turnover uncoupling, with decreased bone formation and increased bone resorption. The aim of study was to evaluate the hormonal and nutritional relationships with both of these bone remodeling compartments and their eventual modifications with age. In a cohort of 115 AN patients (mean BMI:14.6 kg/m2) that included 60 mature adolescents (age: 15.5-20 years) and 55 adult women (age: 20-37 years) and in 28 age-matched controls (12 mature adolescents and 16 adults) we assessed: bone markers [serum osteocalcin, skeletal alkaline phosphatase (sALP), C-telopeptide of type I collagen (sCTX) and tartrate-resistant acid phosphatase type 5b (TRAP 5b)], nutritional markers [ body mass index (BMI, fat and lean mass), hormones (free tri-iodothyronine (T3), free T4, thyroid stimulating hormone (TSH), luteinizing hormone (LH), follicle stimulating hormone (FSH), 17 beta estradiol, free testosterone index (FTI), dehydroepiandrosterone (DHEAS), insulin-like growth factor 1 (IGF-1), growth hormone (GH) and cortisol], plasma methoxyamines (metanephrine and normetanephrine) and calcium metabolism parameters [parathyroid hormone (PTH), Ca, vitamin D3]. Osteocalcin reached similar low levels in both AN age subgroups. sCTX levels were found to be elevated in all AN subjects and higher in mature adolescents than in adult AN (11,567+/-895 vs. 8976+/-805 pmol/l, p<0.05). sALP was significantly lower only in mature adolescent AN patients, while there were no significant differences in the levels of TRAP 5b between AN patients and age-matched control groups. Osteocalcin correlated with sCTX in the control subjects (r=0.65) but not in the AN patients, suggesting the independent regulation of these markers in AN patients. Osteocalcin levels strongly correlated with freeT3, IGF-I, 17 beta estradiol and cortisol, while sCTX correlated with IGF-I, GH and cortisol in both age subgroups of the AN patients. Other hormones or nutritional parameters displayed age-related correlations with bone markers, leading to different stepwise regression models for each age interval. In mature adolescent AN patients, up to 54% of the osteocalcin variance was due to BMI, cortisol and 17 beta estradiol, while 54% of the sCTX variance was determined by GH. In adult subjects, freeT3 and IGF-I accounted for 64% of osteocalcin variance, while 65% of the sCTX variance was due to GH, FTI and methoxyamines. We suggest a more complex mechanism of AN bone uncoupling that includes not only "classical" influence elements like cortisol, IGF-I, GH or 17 beta estradiol but also freeT3, catecholamines and a "direct" hormone-independent impact of denutrition. Continuous changes of these influences with age should be considered within the therapeutic approach to AN bone loss.

  18. Caries in adolescents in relation to their skeletal status.

    PubMed

    Kostik, Mikhail M; Kuzmina, Diana A; Novikova, Valeria P; Larionova, Valentina I; Scheplyagina, Larisa A

    2015-03-01

    Despite well-known evidence of association of caries with bone metabolic diseases, there are only a small number of studies about caries and bone mineral density (BMD) on pediatric population. We evaluated the possibility of bone mineralization and metabolism disturbances in children with caries and compared them with healthy individuals. A total of 123 patients with caries (63 boys and 60 girls), aged 12-15 years, were included. The children were divided according caries stage: the decayed, missing, and filled tooth (DMFT) group (n=73) and the initial caries (IC) group (n=50), which have clinically active initial caries lesions on the enamel ("white spots"). Caries-free (CF) children (n=42) were the healthy controls. Bone mineralization was measured in all children with caries and healthy controls by dual-energy X-ray absorptiometry of the lumbar spine (L1-L4). For the assessment of bone metabolism, osteocalcin, carboxy terminal telopeptide of type I collagen (CTX), parathyroid hormone, Ca²⁺, inorganic phosphate, and total alkaline phosphatase were used. Children with DMFT have low BMD and BMD Z score in association with low osteocalcin and high CTX levels, compared with IC (p=0.008 and p=0.0001, respectively) and CF children (p<0.0000 and p=0.0001, respectively). In DMFT, Ca²⁺ was significantly higher compared with IC (p=0.01) and CF (p=0.003). Caries stages negatively correlated with BMD (r=-0.86, p<0.001). A differently directed correlation between CTX and osteocalcin was detected: CTX was negatively related to osteocalcin in the DMFT group (r=-0.22, p=0.043) and positively related in the IC (r=0.42, p=0.002) and CF children (r=0.58, p=0.0000). Children with any caries stage have decreased BMD accompanied with increased bone resorption. We consider that caries could be a marker of impact bone mineralization and metabolism.

  19. The interaction of force and repetition on musculoskeletal and neural tissue responses and sensorimotor behavior in a rat model of work-related musculoskeletal disorders

    PubMed Central

    2013-01-01

    Background We examined the relationship of musculoskeletal risk factors underlying force and repetition on tissue responses in an operant rat model of repetitive reaching and pulling, and if force x repetition interactions were present, indicative of a fatigue failure process. We examined exposure-dependent changes in biochemical, morphological and sensorimotor responses occurring with repeated performance of a handle-pulling task for 12 weeks at one of four repetition and force levels: 1) low repetition with low force, 2) high repetition with low force, 3) low repetition with high force, and 4) high repetition with high force (HRHF). Methods Rats underwent initial training for 4–6 weeks, and then performed one of the tasks for 12 weeks, 2 hours/day, 3 days/week. Reflexive grip strength and sensitivity to touch were assayed as functional outcomes. Flexor digitorum muscles and tendons, forelimb bones, and serum were assayed using ELISA for indicators of inflammation, tissue stress and repair, and bone turnover. Histomorphometry was used to assay macrophage infiltration of tissues, spinal cord substance P changes, and tissue adaptative or degradative changes. MicroCT was used to assay bones for changes in bone quality. Results Several force x repetition interactions were observed for: muscle IL-1alpha and bone IL-1beta; serum TNFalpha, IL-1alpha, and IL-1beta; muscle HSP72, a tissue stress and repair protein; histomorphological evidence of tendon and cartilage degradation; serum biomarkers of bone degradation (CTXI) and bone formation (osteocalcin); and morphological evidence of bone adaptation versus resorption. In most cases, performance of the HRHF task induced the greatest tissue degenerative changes, while performance of moderate level tasks induced bone adaptation and a suggestion of muscle adaptation. Both high force tasks induced median nerve macrophage infiltration, spinal cord sensitization (increased substance P), grip strength declines and forepaw mechanical allodynia by task week 12. Conclusions Although not consistent in all tissues, we found several significant interactions between the critical musculoskeletal risk factors of force and repetition, consistent with a fatigue failure process in musculoskeletal tissues. Prolonged performance of HRHF tasks exhibited significantly increased risk for musculoskeletal disorders, while performance of moderate level tasks exhibited adaptation to task demands. PMID:24156755

  20. The interaction of force and repetition on musculoskeletal and neural tissue responses and sensorimotor behavior in a rat model of work-related musculoskeletal disorders.

    PubMed

    Barbe, Mary F; Gallagher, Sean; Massicotte, Vicky S; Tytell, Michael; Popoff, Steven N; Barr-Gillespie, Ann E

    2013-10-25

    We examined the relationship of musculoskeletal risk factors underlying force and repetition on tissue responses in an operant rat model of repetitive reaching and pulling, and if force x repetition interactions were present, indicative of a fatigue failure process. We examined exposure-dependent changes in biochemical, morphological and sensorimotor responses occurring with repeated performance of a handle-pulling task for 12 weeks at one of four repetition and force levels: 1) low repetition with low force, 2) high repetition with low force, 3) low repetition with high force, and 4) high repetition with high force (HRHF). Rats underwent initial training for 4-6 weeks, and then performed one of the tasks for 12 weeks, 2 hours/day, 3 days/week. Reflexive grip strength and sensitivity to touch were assayed as functional outcomes. Flexor digitorum muscles and tendons, forelimb bones, and serum were assayed using ELISA for indicators of inflammation, tissue stress and repair, and bone turnover. Histomorphometry was used to assay macrophage infiltration of tissues, spinal cord substance P changes, and tissue adaptative or degradative changes. MicroCT was used to assay bones for changes in bone quality. Several force x repetition interactions were observed for: muscle IL-1alpha and bone IL-1beta; serum TNFalpha, IL-1alpha, and IL-1beta; muscle HSP72, a tissue stress and repair protein; histomorphological evidence of tendon and cartilage degradation; serum biomarkers of bone degradation (CTXI) and bone formation (osteocalcin); and morphological evidence of bone adaptation versus resorption. In most cases, performance of the HRHF task induced the greatest tissue degenerative changes, while performance of moderate level tasks induced bone adaptation and a suggestion of muscle adaptation. Both high force tasks induced median nerve macrophage infiltration, spinal cord sensitization (increased substance P), grip strength declines and forepaw mechanical allodynia by task week 12. Although not consistent in all tissues, we found several significant interactions between the critical musculoskeletal risk factors of force and repetition, consistent with a fatigue failure process in musculoskeletal tissues. Prolonged performance of HRHF tasks exhibited significantly increased risk for musculoskeletal disorders, while performance of moderate level tasks exhibited adaptation to task demands.

  1. Investigation of the protein osteocalcin of Camelops hesternus: Sequence, structure and phylogenetic implications

    NASA Astrophysics Data System (ADS)

    Humpula, James F.; Ostrom, Peggy H.; Gandhi, Hasand; Strahler, John R.; Walker, Angela K.; Stafford, Thomas W.; Smith, James J.; Voorhies, Michael R.; George Corner, R.; Andrews, Phillip C.

    2007-12-01

    Ancient DNA sequences offer an extraordinary opportunity to unravel the evolutionary history of ancient organisms. Protein sequences offer another reservoir of genetic information that has recently become tractable through the application of mass spectrometric techniques. The extent to which ancient protein sequences resolve phylogenetic relationships, however, has not been explored. We determined the osteocalcin amino acid sequence from the bone of an extinct Camelid (21 ka, Camelops hesternus) excavated from Isleta Cave, New Mexico and three bones of extant camelids: bactrian camel ( Camelus bactrianus); dromedary camel ( Camelus dromedarius) and guanaco ( Llama guanacoe) for a diagenetic and phylogenetic assessment. There was no difference in sequence among the four taxa. Structural attributes observed in both modern and ancient osteocalcin include a post-translation modification, Hyp 9, deamidation of Gln 35 and Gln 39, and oxidation of Met 36. Carbamylation of the N-terminus in ancient osteocalcin may result in blockage and explain previous difficulties in sequencing ancient proteins via Edman degradation. A phylogenetic analysis using osteocalcin sequences of 25 vertebrate taxa was conducted to explore osteocalcin protein evolution and the utility of osteocalcin sequences for delineating phylogenetic relationships. The maximum likelihood tree closely reflected generally recognized taxonomic relationships. For example, maximum likelihood analysis recovered rodents, birds and, within hominins, the Homo-Pan-Gorilla trichotomy. Within Artiodactyla, character state analysis showed that a substitution of Pro 4 for His 4 defines the Capra-Ovis clade within Artiodactyla. Homoplasy in our analysis indicated that osteocalcin evolution is not a perfect indicator of species evolution. Limited sequence availability prevented assigning functional significance to sequence changes. Our preliminary analysis of osteocalcin evolution represents an initial step towards a complete character analysis aimed at determining the evolutionary history of this functionally significant protein. We emphasize that ancient protein sequencing and phylogenetic analyses using amino acid sequences must pay close attention to post-translational modifications, amino acid substitutions due to diagenetic alteration and the impacts of isobaric amino acids on mass shifts and sequence alignments.

  2. Testosterone regulates bone response to inflammation.

    PubMed

    Steffens, J P; Herrera, B S; Coimbra, L S; Stephens, D N; Rossa, C; Spolidorio, L C; Kantarci, A; Van Dyke, T E

    2014-03-01

    This study evaluated the alveolar bone response to testosterone and the impact of Resolvin D2 (RvD2) on testosterone-induced osteoblast function. For the in vivo characterization, 60 male adult rats were used. Treatments established sub-physiologic (L), normal (N), or supra-physiologic (H) concentrations of testosterone. Forty rats were subjected to orchiectomy; 20 rats received periodical testosterone injections while 20 rats received testicular sham-operation. Four weeks after the surgeries, 10 rats in each group received a subgingival ligature around the lower first molars to induce experimental periodontal inflammation and bone loss. In parallel, osteoblasts were differentiated from neonatal mice calvariae and treated with various doses of testosterone for 48 h. Cell lysates and conditioned media were used for the determination of alkaline phosphatase, osteocalcin, RANKL, and osteoprotegerin. Micro-computed tomography linear analysis demonstrated that bone loss was significantly increased for both L and H groups compared to animals with normal levels of testosterone. Gingival IL-1β expression was increased in the L group (p<0.05). Ten nM testosterone significantly decreased osteocalcin, RANKL, and OPG levels in osteoblasts; 100 nM significantly increased the RANKL:OPG ratio. RvD2 partially reversed the impact of 10 nM testosterone on osteocalcin, RANKL, and OPG. These findings suggest that both L and H testosterone levels increase inflammatory bone loss in male rats. While low testosterone predominantly increases the inflammatory response, high testosterone promotes a higher osteoblast-derived RANKL:OPG ratio. The proresolving mediator RvD2 ameliorates testosterone-derived downregulation of osteocalcin, RANKL, and OPG in primary murine osteoblasts suggesting a direct role of inflammation in osteoblast function. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Efficacy of Vitamin K2 for Glucocorticoid-induced Osteoporosis in Patients with Systemic Autoimmune Diseases.

    PubMed

    Shikano, Kotaro; Kaneko, Kaichi; Kawazoe, Mai; Kaburaki, Makoto; Hasunuma, Tomoko; Kawai, Shinichi

    2016-01-01

    Objective Vitamin K2 (menatetrenone) is an effective treatment for patients with postmenopausal osteoporosis. We herein performed a subanalysis of patients with systemic autoimmune diseases undergoing glucocorticoid therapy in our previous prospective study. Methods Sixty patients were categorized into a group with vitamin K2 treatment (n=20, Group A) and a group without vitamin K2 treatment (n=40, Group B). All patients were treated with bisphosphonates. Results Serum levels of osteocalcin and undercarboxylated osteocalcin decreased significantly after the start of glucocorticoid therapy in both groups, while the serum osteocalcin level was significantly higher in Group A than Group B during the third (p=0.0250) and fourth weeks (p=0.0155). The serum level of the N-terminal peptide of type I procollagen, a bone formation marker, decreased during glucocorticoid therapy, but was significantly higher in Group A than Group B during the fourth week (p=0.0400). The bone mineral density and fracture rate showed no significant differences between the two groups. Conclusion Although vitamin K2 improves bone turnover markers in patients with osteoporosis on glucocorticoid therapy, it has no significant effect on the bone mineral density and fracture rate after 1.5 years of treatment.

  4. Chitosan nanofiber scaffold improves bone healing via stimulating trabecular bone production due to upregulation of the Runx2/osteocalcin/alkaline phosphatase signaling pathway

    PubMed Central

    Ho, Ming-Hua; Yao, Chih-Jung; Liao, Mei-Hsiu; Lin, Pei-I; Liu, Shing-Hwa; Chen, Ruei-Ming

    2015-01-01

    Osteoblasts play critical roles in bone formation. Our previous study showed that chitosan nanofibers can stimulate osteoblast proliferation and maturation. This translational study used an animal model of bone defects to evaluate the effects of chitosan nanofiber scaffolds on bone healing and the possible mechanisms. In this study, we produced uniform chitosan nanofibers with fiber diameters of approximately 200 nm. A bone defect was surgically created in the proximal femurs of male C57LB/6 mice, and then the left femur was implanted with chitosan nanofiber scaffolds for 21 days and compared with the right femur, which served as a control. Histological analyses revealed that implantation of chitosan nanofiber scaffolds did not lead to hepatotoxicity or nephrotoxicity. Instead, imaging analyses by X-ray transmission and microcomputed tomography showed that implantation of chitosan nanofiber scaffolds improved bone healing compared with the control group. In parallel, microcomputed tomography and bone histomorphometric assays further demonstrated augmentation of the production of new trabecular bone in the chitosan nanofiber-treated group. Furthermore, implantation of chitosan nanofiber scaffolds led to a significant increase in the trabecular bone thickness but a reduction in the trabecular parameter factor. As to the mechanisms, analysis by confocal microscopy showed that implantation of chitosan nanofiber scaffolds increased levels of Runt-related transcription factor 2 (Runx2), a key transcription factor that regulates osteogenesis, in the bone defect sites. Successively, amounts of alkaline phosphatase and osteocalcin, two typical biomarkers that can simulate bone maturation, were augmented following implantation of chitosan nanofiber scaffolds. Taken together, this translational study showed a beneficial effect of chitosan nanofiber scaffolds on bone healing through stimulating trabecular bone production due to upregulation of Runx2-mediated alkaline phosphatase and osteocalcin gene expressions. Our results suggest the potential of chitosan nanofiber scaffolds for therapy of bone diseases, including bone defects and bone fractures. PMID:26451104

  5. Effects of electromagnetic pulse on bone metabolism of mice in vivo.

    PubMed

    Li, Kang-Chu; Ma, Shi-Rong; Ding, Gui-Rong; Guo, Yao; Guo, Guo-Zhen

    2009-12-01

    To study the effects of electromagnetic pulse (EMP) on bone metabolism of mice in vivo. Twenty-four male BALB/c mice were divided into a control group and 2 experimental groups (n=8). The whole-body of mice in experimental groups were exposed to 50 kV/m and 400kV/m EMP, 400 pulses daily for 7 consecutive days at 2 seconds intervals. Alkaline phosphotase (ALP) activity, serum calcium concentration and osteocalcin level and trabecular bone volume (BV/TV, %) were measured immediately after EMP exposure by biochemical, ELISA and morphological methods. The ALP activity, serum calcium concentration and osteocalcin level and BV/TV in experimental groups remained unchanged after EMP exposure. Conclusion Under our experimental conditions, EMP exposure cannot affect bone metabolism of mice in vivo.

  6. The Effects of Cosmos caudatus on Structural Bone Histomorphometry in Ovariectomized Rats

    PubMed Central

    Mohamed, Norazlina; Gwee Sian Khee, Sharon; Shuid, Ahmad Nazrun; Muhammad, Norliza; Suhaimi, Farihah; Othman, Faizah; Babji, Abdul Salam; Soelaiman, Ima-Nirwana

    2012-01-01

    Osteoporosis is considered a serious debilitating disease. Cosmos caudatus (ulam raja), a plant containing antioxidant compounds and minerals, may be used to treat and prevent osteoporosis. This study determines the effectiveness of C. caudatus as bone protective agent in postmenopausal osteoporosis rat model. Thirty-two female rats, aged 3 months old, were divided into 4 groups. Group one was sham operated (sham) while group two was ovariectomized. These two groups were given ionized water by forced feeding. Groups three and four were ovariectomized and given calcium 1% ad libitum and force-fed with C. caudatus at the dose of 500 mg/kg, respectively. Treatments were given six days per week for a period of eight weeks. Body weight was monitored every week and structural bone histomorphometry analyses of the femur bones were performed. Ovariectomy decreased trabecular bone volume (BV/TV), decreased trabecular number (Tb.N), and increased trabecular separation (Tb.Sp). Both calcium 1% and 500 mg/kg C. caudatus reversed the above structural bone histomorphometric parameters to normal level. C. caudatus shows better effect compared to calcium 1% on trabecular number (Tb.N) and trabecular separation (Tb.Sp). Therefore, Cosmos caudatus 500 mg/kg has the potential to act as the therapeutic agent to restore bone damage in postmenopausal women. PMID:22924056

  7. The Effects of Cosmos caudatus on Structural Bone Histomorphometry in Ovariectomized Rats.

    PubMed

    Mohamed, Norazlina; Gwee Sian Khee, Sharon; Shuid, Ahmad Nazrun; Muhammad, Norliza; Suhaimi, Farihah; Othman, Faizah; Babji, Abdul Salam; Soelaiman, Ima-Nirwana

    2012-01-01

    Osteoporosis is considered a serious debilitating disease. Cosmos caudatus (ulam raja), a plant containing antioxidant compounds and minerals, may be used to treat and prevent osteoporosis. This study determines the effectiveness of C. caudatus as bone protective agent in postmenopausal osteoporosis rat model. Thirty-two female rats, aged 3 months old, were divided into 4 groups. Group one was sham operated (sham) while group two was ovariectomized. These two groups were given ionized water by forced feeding. Groups three and four were ovariectomized and given calcium 1% ad libitum and force-fed with C. caudatus at the dose of 500 mg/kg, respectively. Treatments were given six days per week for a period of eight weeks. Body weight was monitored every week and structural bone histomorphometry analyses of the femur bones were performed. Ovariectomy decreased trabecular bone volume (BV/TV), decreased trabecular number (Tb.N), and increased trabecular separation (Tb.Sp). Both calcium 1% and 500 mg/kg C. caudatus reversed the above structural bone histomorphometric parameters to normal level. C. caudatus shows better effect compared to calcium 1% on trabecular number (Tb.N) and trabecular separation (Tb.Sp). Therefore, Cosmos caudatus 500 mg/kg has the potential to act as the therapeutic agent to restore bone damage in postmenopausal women.

  8. Animal Models and Bone Histomorphometry: Translational Research for the Human Research Program

    NASA Technical Reports Server (NTRS)

    Sibonga, Jean D.

    2010-01-01

    This slide presentation reviews the use of animal models to research and inform bone morphology, in particular relating to human research in bone loss as a result of low gravity environments. Reasons for use of animal models as tools for human research programs include: time-efficient, cost-effective, invasive measures, and predictability as some model are predictive for drug effects.

  9. Targeting Discoidin Domain Receptors in Prostate Cancer

    DTIC Science & Technology

    2017-08-01

    tumor incidence by bioluminescence. Thus, DDR1 may play a role in the initial seeding of tumor cells within the bone milieu. We are currently...conducting the quantitative analyses of bioluminescence and the histomorphometry analyses and evaluation of effects on bone remodeling. Studies on DDR1...regulation and function in culture cells is ongoing. 15. SUBJECT TERMS Prostate cancer, bone metastases, discoidin domain receptors, kinases

  10. Gamma-carboxylation and fragmentation of osteocalcin in human serum defined by mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    Serum osteocalcin (Oc) concentration is a highly specific measure of bone turnover, but its circulating proteoform(s) have not been well defined. Based on immunological methods, the major forms are thought to be the intact polypeptide and a large N-terminal-mid molecule fragment for which there is n...

  11. Tactile/kinesthetic stimulation (TKS) increases tibial speed of sound and urinary osteocalcin (U-MidOC and unOC) in premature infants (29-32weeks PMA).

    PubMed

    Haley, S; Beachy, J; Ivaska, K K; Slater, H; Smith, S; Moyer-Mileur, L J

    2012-10-01

    Preterm delivery (<37 weeks post-menstrual age) is associated with suboptimal bone mass. We hypothesized that tactile/kinesthetic stimulation (TKS), a form of infant massage that incorporates kinesthetic movement, would increase bone strength and markers of bone accretion in preterm infants. Preterm, AGA infants (29-32 weeks) were randomly assigned to TKS (N=20) or Control (N=20). Twice daily TKS was provided 6 days per week for 2 weeks. Control infants received the same care without TKS treatment. Treatment was masked to parents, health care providers, and study personnel. Baseline and week two measures were collected for tibial speed of sound (tSOS, m/sec), a surrogate for bone strength, by quantitative ultrasound (Sunlight8000) and urine markers of bone metabolism, pyridinium crosslinks and osteocalcin (U-MidOC and unOC). Infant characteristics at birth and study entry as well as energy/nutrient intake were similar between TKS and Control. TKS intervention attenuated the decrease in tSOS observed in Control infants (p<0.05). Urinary pyridinium crosslinks decreased over time in both TKS and CTL (p<0.005). TKS infants experienced greater increases in urinary osteocalcin (U-MidOC, p<0.001 and unOC, p<0.05). We conclude that TKS improves bone strength in premature infants by attenuating the decrease that normally follows preterm birth. Further, biomarkers of bone metabolism suggest a modification in bone turnover in TKS infants in favor of bone accretion. Taken together, we speculate that TKS improves bone mineralization. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Key role of the expression of bone morphogenetic proteins in increasing the osteogenic activity of osteoblast-like cells exposed to shock waves and seeded on bioactive glass-ceramic scaffolds for bone tissue engineering.

    PubMed

    Muzio, Giuliana; Martinasso, Germana; Baino, Francesco; Frairia, Roberto; Vitale-Brovarone, Chiara; Canuto, Rosa A

    2014-11-01

    In this work, the role of shock wave-induced increase of bone morphogenetic proteins in modulating the osteogenic properties of osteoblast-like cells seeded on a bioactive scaffold was investigated using gremlin as a bone morphogenetic protein antagonist. Bone-like glass-ceramic scaffolds, based on a silicate experimental bioactive glass developed at the Politecnico di Torino, were produced by the sponge replication method and used as porous substrates for cell culture. Human MG-63 cells, exposed to shock waves and seeded on the scaffolds, were treated with gremlin every two days and analysed after 20 days for the expression of osteoblast differentiation markers. Shock waves have been shown to induce osteogenic activity mediated by increased expression of alkaline phosphatase, osteocalcin, type I collagen, BMP-4 and BMP-7. Cells exposed to shock waves plus gremlin showed increased growth in comparison with cells treated with shock waves alone and, conversely, mRNA contents of alkaline phosphatase and osteocalcin were significantly lower. Therefore, the shock wave-mediated increased expression of bone morphogenetic protein in MG-63 cells seeded on the scaffolds is essential in improving osteogenic activity; blocking bone morphogenetic protein via gremlin completely prevents the increase of alkaline phosphatase and osteocalcin. The results confirmed that the combination of glass-ceramic scaffolds and shock waves exposure could be used to significantly improve osteogenesis opening new perspectives for bone regenerative medicine. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  13. Dextromethorphan upregulates osteoblast and osteoclast activity but does not attenuate ovariectomy-induced osteoporosis.

    PubMed

    Wu, Jia-Lin; Tsai, Wei-Yuan; Chen, Jian-Horng; Wong, Chih-Shung

    2017-03-15

    Study on the in vivo regulatory role of glutamate in osteoblast (OB) and osteoclast (OC) differentiation is less advanced. The present study investigated the effect of dextromethorphan (DXM), an N-methyl-d-aspartate receptors (NMDARs) antagonist, on osteoporosis development. In order to examine the role of glutamate in bone metabolism, ovariectomized (Ovx) female Wistar rats were injected three times per week for 8weeks with either saline, or 15μg/kg of β-estrodiol, or DXM (40mg/kg) intraperitoneally. Serum samples were collected every two weeks for measuring osteocalcin and C-terminal telopeptide of type I collagen (CTX-1) level. Rats were then sacrificed at week 8 and the femurs harvested for micro-CT scanning and mechanical strength. In saline-treated group, osteocalcin level significantly lower than that of sham-operated rats at 8weeks after operation, while CTX-1 levels were not affected. Estrogen treatment, as a positive control, partially inhibited the Ovx-induced reduction of osteocalcin serum level. DXM injection prevented the Ovx-induced reduction of osteocalcin expression and significantly upregulated CTX-1 expression. The micro-CT scan showed that the bone volume density decreased significantly in DXM treated rats compared to the sham-operated rats. In the mechanical strength assay, the maximum failure load for DXM treatment was significantly lower than the other groups. Treatment with DXM upregulated OB and OC markers in Ovx rats, however with a greater effect on the OC marker, and had no significant benefit on bone volume density or bone strength. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Changes in Bone Biomarkers, BMC, and Insulin Resistance Following a 10-Week Whole Body Vibration Exercise Program in Overweight Latino Boys.

    PubMed

    Erceg, David N; Anderson, Lindsey J; Nickles, Chun M; Lane, Christianne J; Weigensberg, Marc J; Schroeder, E Todd

    2015-01-01

    With the childhood obesity epidemic, efficient methods of exercise are sought to improve health. We tested whether whole body vibration (WBV) exercise can positively affect bone metabolism and improve insulin/glucose dynamics in sedentary overweight Latino boys. Twenty Latino boys 8-10 years of age were randomly assigned to either a control (CON) or 3 days/wk WBV exercise (VIB) for 10-wk. Significant increases in BMC (4.5 ± 3.2%; p=0.01) and BMD (1.3 ± 1.3%; p<0.01) were observed for the VIB group when compared to baseline values. For the CON group BMC significantly increased (2.0 ± 2.2%; p=0.02), with no change in BMD (0.8 ± 1.3%; p=0.11). There were no significant between group changes in BMC or BMD. No significant change was observed for osteocalcin and (collagen type I C-telopeptide) CTx for the VIB group. However, osteocalcin showed a decreasing trend (p=0.09) and CTx significantly increased (p<0.03) for the CON group. This increase in CTx was significantly different between groups (p<0.02) and the effect size of between-group difference in change was large (-1.09). There were no significant correlations between osteocalcin and measures of fat mass or insulin resistance for collapsed data. Although bone metabolism was altered by WBV training, no associations were apparent between osteocalcin and insulin resistance. These findings suggest WBV exercise may positively increase BMC and BMD by decreasing bone resorption in overweight Latino boys.

  15. The Clinical and Biochemical Predictors of Bone Mass in Preterm Infants.

    PubMed

    Czech-Kowalska, Justyna; Czekuc-Kryskiewicz, Edyta; Pludowski, Pawel; Zaniuk, Katarzyna; Jaworski, Maciej; Łuba, Anna; Grzybowska, Karolina; Piłat, Krystyna; Dobrzanska, Anna

    2016-01-01

    Metabolic bone disease of prematurity still occurs in preterm infants, although a significant improvement in neonatal care has been observed in recent decades. Dual-energy X-ray absorptiometry (DXA) is the precise technique for assessing bone mineral content (BMC) in preterm infants, but is not widely available. To investigate the clinical and biochemical parameters, including bone metabolism markers as potential predictors of BMC, in preterm infants up to 3 months corrected age (CA). Ca-P homeostasis, iPTH, 25-hydroxyvitamin D, osteocalcin, N-terminal propeptide, cross-linked C-telopeptide and amino-terminal pro C-type natriuretic peptide and the DXA scans were prospectively performed in 184 preterm infants (≤ 34 weeks' gestation) between term age and 3 mo CA. Lower bone mass was defined as BMC below or equal to respective median value for the whole study group, rounded to the nearest whole number. The appropriate quality DXA scans were available for 160 infants (87%) examined at term and for 130 (71%) tested at 3 mo CA. Higher iPTH level was the only independent predictor of lower BMC at term, whereas lower BMC at 3 mo CA was associated both with lower urinary phosphate excretion and higher serum osteocalcin level. ROC analysis showed that iPTH >43.6 pg/mL provided 40% sensitivity and 88% specificity in identification of preterm infants with lower BMC at term. In turn, urinary phosphate excretion (TRP>97% or UP/Cr ≤0.74 mg/mg) and serum osteocalcin >172 ng/mL provided 40% sensitivity and 93% specificity in identification of infants with decreased BMC at 3 mo CA. Serum iPTH might to be a simple predictor of reduced BMC in preterm infants at term age, but urinary phosphate excretion and serum osteocalcin might predict reduced BMC at 3 mo CA. These results represent a promising diagnostic tool based on simple, widely available biochemical measurements for bone mass assessment in preterm infants.

  16. Circulating levels of dickkopf-1, osteoprotegerin and sclerostin are higher in old compared with young men and women and positively associated with whole-body bone mineral density in older adults.

    PubMed

    Coulson, J; Bagley, L; Barnouin, Y; Bradburn, S; Butler-Browne, G; Gapeyeva, H; Hogrel, J-Y; Maden-Wilkinson, T; Maier, A B; Meskers, C; Murgatroyd, C; Narici, M; Pääsuke, M; Sassano, L; Sipilä, S; Al-Shanti, N; Stenroth, L; Jones, D A; McPhee, J S

    2017-09-01

    Bone mineral density declines with increasing older age. We examined the levels of circulating factors known to regulate bone metabolism in healthy young and older adults. The circulating levels of dickkopf-1, osteocalcin, osteoprotegerin and sclerostin were positively associated with whole-body bone mineral density (WBMD) in older adults, despite the average WBMD being lower and circulating dickkopf-1, osteoprotegerin and sclerostin being higher in old than young. This study aims to investigate the relationship between whole-body bone mineral density (WBMD) and levels of circulating factors with known roles in bone remodelling during 'healthy' ageing. WBMD and fasting plasma concentrations of dickkopf-1, fibroblast growth factor-23, osteocalcin, osteoprotegerin, osteopontin and sclerostin were measured in 272 older subjects (69 to 81 years; 52% female) and 171 younger subjects (18-30 years; 53% female). WBMD was lower in old than young. Circulating osteocalcin was lower in old compared with young, while dickkopf-1, osteoprotegerin and sclerostin were higher in old compared with young. These circulating factors were each positively associated with WBMD in the older adults and the relationships remained after adjustment for covariates (r values ranging from 0.174 to 0.254, all p < 0.01). In multivariate regression, the body mass index, circulating sclerostin and whole-body lean mass together accounted for 13.8% of the variation with WBMD in the older adults. In young adults, dickkopf-1 and body mass index together accounted for 7.7% of variation in WBMD. Circulating levels of dickkopf-1, osteocalcin, osteoprotegerin and sclerostin are positively associated with WBMD in community-dwelling older adults, despite the average WBMD being lower and circulating dickkopf-1, osteoprotegerin and sclerostin being higher in old than young.

  17. Hepatic Osteodystrophy: The Mechanism of Bone Loss in Hepatocellular Disease and the Effects of Pamidronate Treatment

    PubMed Central

    Spirlandeli, Adriano L.; Dick-de-Paula, Ingrid; Zamarioli, Ariane; Jorgetti, Vanda; Ramalho, Leandra N.Z.; Nogueira-Barbosa, Marcello H.; Volpon, Jose B.; Jordão, Alceu A.; Cunha, Fernando Q.; Fukada, Sandra Y.; de Paula, Francisco J.A.

    2017-01-01

    OBJECTIVES: The present study was designed to evaluate the bone phenotypes and mechanisms involved in bone disorders associated with hepatic osteodystrophy. Hepatocellular disease was induced by carbon tetrachloride (CCl4). In addition, the effects of disodium pamidronate on bone tissue were evaluated. METHODS: The study included 4 groups of 15 mice: a) C = mice subjected to vehicle injections; b) C+P = mice subjected to vehicle and pamidronate injections; c) CCl4+V = mice subjected to CCl4 and vehicle injections; and d) CCl4+P = mice subjected to CCl4 and pamidronate injections. CCl4 or vehicle was administered for 8 weeks, while pamidronate or vehicle was injected at the end of the fourth week. Bone histomorphometry and biomechanical analysis were performed in tibiae, while femora were used for micro-computed tomography and gene expression. RESULTS: CCl4 mice exhibited decreased bone volume/trabecular volume and trabecular numbers, as well as increased trabecular separation, as determined by bone histomorphometry and micro-computed tomography, but these changes were not detected in the group treated with pamidronate. CCl4 mice showed increased numbers of osteoclasts and resorption surface. High serum levels of receptor activator of nuclear factor-κB ligand and the increased expression of tartrate-resistant acid phosphatase in the bones of CCl4 mice supported the enhancement of bone resorption in these mice. CONCLUSION: Taken together, these results suggest that bone resorption is the main mechanism of bone loss in chronic hepatocellular disease in mice. PMID:28492723

  18. Hepatic Osteodystrophy: The Mechanism of Bone Loss in Hepatocellular Disease and the Effects of Pamidronate Treatment.

    PubMed

    Spirlandeli, Adriano L; Dick-de-Paula, Ingrid; Zamarioli, Ariane; Jorgetti, Vanda; Ramalho, Leandra N Z; Nogueira-Barbosa, Marcello H; Volpon, Jose B; Jordão, Alceu A; Cunha, Fernando Q; Fukada, Sandra Y; de Paula, Francisco J A

    2017-04-01

    The present study was designed to evaluate the bone phenotypes and mechanisms involved in bone disorders associated with hepatic osteodystrophy. Hepatocellular disease was induced by carbon tetrachloride (CCl4). In addition, the effects of disodium pamidronate on bone tissue were evaluated. The study included 4 groups of 15 mice: a) C = mice subjected to vehicle injections; b) C+P = mice subjected to vehicle and pamidronate injections; c) CCl4+V = mice subjected to CCl4 and vehicle injections; and d) CCl4+P = mice subjected to CCl4 and pamidronate injections. CCl4 or vehicle was administered for 8 weeks, while pamidronate or vehicle was injected at the end of the fourth week. Bone histomorphometry and biomechanical analysis were performed in tibiae, while femora were used for micro-computed tomography and gene expression. CCl4 mice exhibited decreased bone volume/trabecular volume and trabecular numbers, as well as increased trabecular separation, as determined by bone histomorphometry and micro-computed tomography, but these changes were not detected in the group treated with pamidronate. CCl4 mice showed increased numbers of osteoclasts and resorption surface. High serum levels of receptor activator of nuclear factor-κB ligand and the increased expression of tartrate-resistant acid phosphatase in the bones of CCl4 mice supported the enhancement of bone resorption in these mice. Taken together, these results suggest that bone resorption is the main mechanism of bone loss in chronic hepatocellular disease in mice.

  19. The Presence of Thyroid-Stimulation Blocking Antibody Prevents High Bone Turnover in Untreated Premenopausal Patients with Graves' Disease.

    PubMed

    Cho, Sun Wook; Bae, Jae Hyun; Noh, Gyeong Woon; Kim, Ye An; Moon, Min Kyong; Park, Kyoung Un; Song, Junghan; Yi, Ka Hee; Park, Do Joon; Chung, June-Key; Cho, Bo Youn; Park, Young Joo

    2015-01-01

    Osteoporosis-related fractures are one of the complications of Graves' disease. This study hypothesized that the different actions of thyroid-stimulating hormone receptor (TSHR) antibodies, both stimulating and blocking activities in Graves' disease patients might oppositely impact bone turnover. Newly diagnosed premenopausal Graves' disease patients were enrolled (n = 93) and divided into two groups: patients with TSHR antibodies with thyroid-stimulating activity (stimulating activity group, n = 83) and patients with TSHR antibodies with thyroid-stimulating activity combined with blocking activity (blocking activity group, n = 10). From the stimulating activity group, patients who had matched values for free T4 and TSH binding inhibitor immunoglobulin (TBII) to the blocking activity group were further classified as stimulating activity-matched control (n = 11). Bone turnover markers BS-ALP, Osteocalcin, and C-telopeptide were significantly lower in the blocking activity group than in the stimulating activity or stimulating activity-matched control groups. The TBII level showed positive correlations with BS-ALP and osteocalcin levels in the stimulating activity group, while it had a negative correlation with the osteocalcin level in the blocking activity group. In conclusion, the activation of TSHR antibody-activated TSH signaling contributes to high bone turnover, independent of the actions of thyroid hormone, and thyroid-stimulation blocking antibody has protective effects against bone metabolism in Graves' disease.

  20. Reheating of soy oil is detrimental to bone metabolism in oestrogen deficient rats.

    PubMed

    Ima-Nirwana, S; Ahmad, S Nazrun; Yee, L J; Loh, H C; Yew, S F; Norazlina, M; Abdul, M T Gapor; Kamsiah, J

    2007-03-01

    The short-term and long- term effects of heated soy oil on bone metabolism in ovariectomised Sprague-Dawley rats were studied. Three-month-old female rats, were divided into five groups: normal control (NC); ovariectomised control (OVXC); ovariectomised and fed rat chow with added fresh soybean oil (SOF) or once-heated soy oil (SO1) or five-times-heated soy oil (SO5). Short-term parameters measured after one month were serum interleukin-6 (IL-6) and osteocalcin. Long-term parameters measured after six months were the structural bone histomorphometrical parameters. Vitamin E content in the soy oil subjected to the different heating treatments were also measured. Rats in the SO5 group had higher levels of IL-6 after one month compared to the other four groups. Osteocalcin levels in the SO1 and SO5 groups remained high after treatment, while those in the NC and SOF groups declined. After six months, bone mass declined in the SO5 group. Vitamin E assay in the oils showed that levels of alpha-tocopherol decreased after heating the oil once and five times, while levels of gamma- and delta-tocopherols only declined after heating five times. Repeated heating of soy oil destroyed the tocopherols causing raised serum IL-6 and osteocalcin levels, leading to increased bone resorption and osteoporosis in the long term.

  1. How MMPs Impact Bone Responses to Metastatic Prostate Cancer

    DTIC Science & Technology

    2010-02-01

    13. SUPPLEMENTARY NOTES 14. ABSTRACT Using an animal model of prostate tumor progression in the bone we have previously shown that MMPs...in osteolytic or osteoblastic responses between wild type and MMP-9 deficient animals were detected by Faxitron, CT, SPECT and histomorphometry...as the ‘vicious cycle’ (4). Using an animal model of 2 tumor progression in the bone, we have previously identified a group of enzymes known as

  2. Sequence preservation of osteocalcin protein and mitochondrial DNA in bison bones older than 55 ka

    NASA Astrophysics Data System (ADS)

    Nielsen-Marsh, Christina M.; Ostrom, Peggy H.; Gandhi, Hasand; Shapiro, Beth; Cooper, Alan; Hauschka, Peter V.; Collins, Matthew J.

    2002-12-01

    We report the first complete sequences of the protein osteocalcin from small amounts (20 mg) of two bison bone (Bison priscus) dated to older than 55.6 ka and older than 58.9 ka. Osteocalcin was purified using new gravity columns (never exposed to protein) followed by microbore reversed-phase high-performance liquid chromatography. Sequencing of osteocalcin employed two methods of matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS): peptide mass mapping (PMM) and post-source decay (PSD). The PMM shows that ancient and modern bison osteocalcin have the same mass to charge (m/z) distribution, indicating an identical protein sequence and absence of diagenetic products. This was confirmed by PSD of the m/z 2066 tryptic peptide (residues 1 19); the mass spectra from ancient and modern peptides were identical. The 129 mass unit difference in the molecular ion between cow (Bos taurus) and bison is caused by a single amino-acid substitution between the taxa (Trp in cow is replaced by Gly in bison at residue 5). Bison mitochondrial control region DNA sequences were obtained from the older than 55.6 ka fossil. These results suggest that DNA and protein sequences can be used to directly investigate molecular phylogenies over a considerable time period, the absolute limit of which is yet to be determined.

  3. The Relevance of Osteoclastic and Osteoblastic Activity Markers Follow-Up in Patients on Antiresorptive Osteoporosis Treatment.

    PubMed

    Smilic, Tanja N; Novakovic, Tatjana R; Markovic-Jovanovic, Snezana R; Smilic, Ljiljana L J; Mitic, Javorka S; Radunovic, Miodrag L

    2017-11-02

    In general, markers of bone formation and markers of bone resorption are changing synergistically, so the monitoring of any osteoclastic and any osteoblastic marker should reflect the rate of bone transformation. The aim of the study is to monitor the bone metabolism markers in postmenopausal women with osteoporosis and osteopenia along with the variations caused by the effects of bisphosphonate therapy. The study involved 55 women of average age of 57.95 years, with osteopenia or osteoporosis. The patients with osteoporosis were treated with bisphosphonates (75 mg once a week); the laboratory tests were performed before the treatment and 6 months later. Patients with osteopenia were evaluated at the first assessment and 6 months later. The tests included bone densitometry, dual-energy X-ray absorptiometry, osteocalcin, alkaline phosphatase, collagen 1 N-terminal pro-peptide (P1NP), and beta C telopeptide of type I collagen (CTX). The mean T-score was -2.80 ± 0.63 before therapy and -2.64 ± 0.45 6 months later (p < 0.001). Women with osteoporosis had elevated levels of osteocalcin and P1NP at the first assessment, whereas the alkaline phosphatase level did not change with the treatment. After the introduction of antiresorptive therapy, the levels of osteocalcin and P1NP significantly decreased (p < 0.001). In the group with osteopenia, the biochemical markers activity were increased in both assessments. In patients with osteoporosis, Beta-CTX was increased in the first evaluation, and decreased after treatment (p = 0.001). The results indicate that the assessment of biochemical markers of bone metabolism show excellent results in the assessment of prognosis, monitoring the course and the response to various treatment regimens of osteoporosis and evince strong correlation with standard densitometry and dual-energy X-ray absorptiometry procedures. P1NP and CTX show better diagnostic applicability compared with osteocalcin and alkaline phosphatase. The analysis of the activity of biochemical markers may obtain early information on the therapeutic response, before definitive assessment by bone density measurements. Copyright © 2017 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  4. Unique local bone tissue characteristics in iliac crest bone biopsy from adolescent idiopathic scoliosis with severe spinal deformity

    PubMed Central

    Wang, Zhiwei; Chen, Huanxiong; Yu, Y. Eric; Zhang, Jiajun; Cheuk, Ka-Yee; Ng, Bobby K. W.; Qiu, Yong; Guo, X. Edward; Cheng, Jack C. Y.; Lee, Wayne Y. W.

    2017-01-01

    Adolescent idiopathic scoliosis is a complex disease with unclear etiopathogenesis. Systemic and persistent low bone mineral density is an independent prognostic factor for curve progression. The fundamental question of how bone quality is affected in AIS remains controversy because there is lack of site-matched control for detailed analysis on bone-related parameters. In this case-control study, trabecular bone biopsies from iliac crest were collected intra-operatively from 28 severe AIS patients and 10 matched controls with similar skeletal and sexual maturity, anthropometry and femoral neck BMD Z-score to control confounding effects. In addition to static histomorphometry, micro-computed tomography (μCT) and real time-PCR (qPCR) analyses, individual trabecula segmentation (ITS)-based analysis, finite element analysis (FEA), energy dispersive X-ray spectroscopy (EDX) were conducted to provide advanced analysis of structural, mechanical and mineralization features. μCT and histomorphometry showed consistently reduced trabecular number and connectivity. ITS revealed predominant change in trabecular rods, and EDX confirmed less mineralization. The structural and mineralization abnormality led to slight reduction in apparent modulus, which could be attributed to differential down-regulation of Runx2, and up-regulation of Spp1 and TRAP. In conclusion, this is the first comprehensive study providing direct evidence of undefined unique pathological changes at different bone hierarchical levels in AIS. PMID:28054655

  5. Improved bone metabolism in female elite athletes after vitamin K supplementation.

    PubMed

    Craciun, A M; Wolf, J; Knapen, M H; Brouns, F; Vermeer, C

    1998-10-01

    In female elite athletes strenuous exercise may result in hypoestrogenism and amenorrhoea. As a consequence a low peak bone mass and rapid bone loss are often seen in relatively young athletes. In postmenopausal women, increased intake of vitamin K may result in an increase of serum markers for bone formation, a decrease of urinary markers for bone resorption, and a decrease in urinary calcium loss. In the present paper we report an intervention study among eight female athletes, four of whom had been amenorrhoeic for more than one year, whereas the others had been using oral contraceptives. All participants received vitamin K supplementation (10 mg/day) during one month, and various bone markers were measured before and after treatment. At baseline the athletes not using oral contraceptives were biochemically vitamin K-deficient as deduced from the calcium binding capacity of the circulating bone protein osteocalcin. In all subjects increased vitamin K was associated with an increased calcium-binding capacity of osteocalcin. In the low-estrogen group vitamin K supplementation induced a 15-20% increase of bone formation markers and a parallel 20-25% decrease of bone resorption markers. This shift is suggestive for an improved balance between bone formation and resorption.

  6. Decreased Levels of Circulating Carboxylated Osteocalcin in Children with Low Energy Fractures: A Pilot Study.

    PubMed

    Popko, Janusz; Karpiński, Michał; Chojnowska, Sylwia; Maresz, Katarzyna; Milewski, Robert; Badmaev, Vladimir; Schurgers, Leon J

    2018-06-06

    In the past decades, an increased interest in the roles of vitamin D and K has become evident, in particular in relation to bone health and prevention of bone fractures. The aim of the current study was to evaluate vitamin D and K status in children with low-energy fractures and in children without fractures. The study group of 20 children (14 boys, 6 girls) aged 5 to 15 years old, with radiologically confirmed low-energy fractures was compared with the control group of 19 healthy children (9 boys, 10 girls), aged 7 to 17 years old, without fractures. Total vitamin D (25(OH)D3 plus 25(OH)D2), calcium, BALP (bone alkaline phosphatase), NTx (N-terminal telopeptide), and uncarboxylated (ucOC) and carboxylated osteocalcin (cOC) serum concentrations were evaluated. Ratio of serum uncarboxylated osteocalcin to serum carboxylated osteocalcin ucOC:cOC (UCR) was used as an indicator of bone vitamin K status. Logistic regression models were created to establish UCR influence for odds ratio of low-energy fractures in both groups. There were no statistically significant differences in the serum calcium, NTx, BALP, or total vitamin D levels between the two groups. There was, however, a statistically significant difference in the UCR ratio. The median UCR in the fracture group was 0.471 compared with the control group value of 0.245 ( p < 0.0001). In the logistic regression analysis, odds ratio of low-energy fractures for UCR was calculated, with an increased risk of fractures by some 78.3 times. In this pilot study, better vitamin K status expressed as the ratio of ucOC:cOC-UCR—is positively and statistically significantly correlated with lower rate of low-energy fracture incidence.

  7. Compensatory Cellular Reactions to Nonsteroidal Anti-Inflammatory Drugs on Osteogenic Differentiation in Canine Bone Marrow-Derived Mesenchymal Stem Cells

    PubMed Central

    OH, Namgil; KIM, Sangho; HOSOYA, Kenji; OKUMURA, Masahiro

    2014-01-01

    ABSTRACT The suppressive effects of nonsteroidal anti-inflammatory drugs (NSAIDs) on the bone healing process have remained controversial, since no clinical data have clearly shown the relationship between NSAIDs and bone healing. The aim of this study was to assess the compensatory response of canine bone marrow-derived mesenchymal stem cells (BMSCs) to several classes of NSAIDs, including carprofen, meloxicam, indomethacin and robenacoxib, on osteogenic differentiation. Each of the NSAIDs (10 µM) was administered during 20 days of the osteogenic process with human recombinant IL-1β (1 ng/ml) as an inflammatory stimulator. Gene expression of osteoblast differentiation markers (alkaline phosphatase and osteocalcin), receptors of PGE2 (EP2 and EP4) and enzymes for prostaglandin (PG) E2 synthesis (COX-1, COX-2, cPGES and mPGES-1) was measured by using quantitative reverse transcription-polymerase chain reaction. Protein production levels of alkaline phosphatase, osteocalcin and PGE2 were quantified using an alkaline phosphatase activity assay, osteocalcin immunoassay and PGE2 immunoassay, respectively. Histologic analysis was performed using alkaline phosphatase staining, von Kossa staining and alizarin red staining. Alkaline phosphatase and calcium deposition were suppressed by all NSAIDs. However, osteocalcin production showed no significant suppression by NSAIDs. Gene expression levels of PGE2-related receptors and enzymes were upregulated during continuous treatment with NSAIDs, while certain channels for PGE2 synthesis were utilized differently depending on the kind of NSAIDs. These data suggest that canine BMSCs have a compensatory mechanism to restore PGE2 synthesis, which would be an intrinsic regulator to maintain differentiation of osteoblasts under NSAID treatment. PMID:24419976

  8. Serum leptin is correlated to high turnover in osteoporosis.

    PubMed

    Hipmair, Gunter; Böhler, Nikolaus; Maschek, Wilma; Soriguer, Federico; Rojo-Martínez, Gemma; Schimetta, Wolfgang; Pichler, Robert

    2010-01-01

    Clinical data have suggested that obesity protects against osteoporosis. Leptin, mainly secreted by white adipose tissue, might be involved by mediating an effect on bone metabolism. This study was conducted to investigate a possible relationship of leptin and bone turn-over in postmenopausal women with osteoporosis. We measured bone mineral density (BMD), serum leptin levels and markers of bone metabolism, including osteocalcin and cross-laps in 44 patients with osteoporosis. The main group consisted of 32 postmenopausal women. Mean serum leptin was 13.1 microg/L and showed no statistically significant difference to the levels measured in a collective of normal persons adjusted for age and BMI. When related to serum cross-laps as markers of bone resorption, a positive correlation (p<0.05) was observed, whereas no correlation with osteocalcin could be seen. A dual control of bone formation by leptin is assumed: This involves local mechanisms acting on osteoblasts and a central inhibitory effect on bone metabolism via a hypothalamic relay. Our data indicate that the net effect of circulating leptin may cause bone loss and is significantly related to high-turnover serum bone markers, at least in postmenopausal women with osteoporosis.

  9. Annatto tocotrienol improves indices of bone static histomorphometry in osteoporosis due to testosterone deficiency in rats.

    PubMed

    Chin, Kok-Yong; Abdul-Majeed, Saif; Fozi, Nur Farhana Mohd; Ima-Nirwana, Soelaiman

    2014-11-10

    This study aimed to evaluate the effects of annatto tocotrienol on indices of bone static histomorphometry in orchidectomized rats. Forty male rats were randomized into baseline (BL), sham (SH), orchidectomized (ORX), annatto tocotrienol-treated (AnTT) and testosterone enanthate-treated (TE) groups. The BL group was sacrificed upon receipt. All rats except the SH group underwent bilateral orchidectomy. Annatto tocotrienol at 60 mg/kg body weight was administered orally daily to the AnTT group for eight weeks. Testosterone enanthate at 7 mg/kg body weight was administered intramuscularly once weekly for eight weeks to the TE group. The rat femurs were collected for static histomorphometric analysis upon necropsy. The results indicated that the ORX group had significantly higher osteoclast surface and eroded surface, and significantly lower osteoblast surface, osteoid surface and osteoid volume compared to the SH group (p < 0.05). Annatto tocotrienol and testosterone enanthate intervention prevented all these changes (p < 0.05). The efficacy of annatto tocotrienol was on par with testosterone enanthate. In conclusion, annatto tocotrienol at 60 mg/kg can prevent the imbalance in bone remodeling caused by increased osteoclast and bone resorption, and decreased osteoblast and bone formation. This serves as a basis for the application of annatto tocotrienol in hypogonadal men as an antiosteoporotic agent.

  10. Annatto Tocotrienol Improves Indices of Bone Static Histomorphometry in Osteoporosis Due to Testosterone Deficiency in Rats

    PubMed Central

    Chin, Kok-Yong; Abdul-Majeed, Saif; Mohd. Fozi, Nur Farhana; Ima-Nirwana, Soelaiman

    2014-01-01

    This study aimed to evaluate the effects of annatto tocotrienol on indices of bone static histomorphometry in orchidectomized rats. Forty male rats were randomized into baseline (BL), sham (SH), orchidectomized (ORX), annatto tocotrienol-treated (AnTT) and testosterone enanthate-treated (TE) groups. The BL group was sacrificed upon receipt. All rats except the SH group underwent bilateral orchidectomy. Annatto tocotrienol at 60 mg/kg body weight was administered orally daily to the AnTT group for eight weeks. Testosterone enanthate at 7 mg/kg body weight was administered intramuscularly once weekly for eight weeks to the TE group. The rat femurs were collected for static histomorphometric analysis upon necropsy. The results indicated that the ORX group had significantly higher osteoclast surface and eroded surface, and significantly lower osteoblast surface, osteoid surface and osteoid volume compared to the SH group (p < 0.05). Annatto tocotrienol and testosterone enanthate intervention prevented all these changes (p < 0.05). The efficacy of annatto tocotrienol was on par with testosterone enanthate. In conclusion, annatto tocotrienol at 60 mg/kg can prevent the imbalance in bone remodeling caused by increased osteoclast and bone resorption, and decreased osteoblast and bone formation. This serves as a basis for the application of annatto tocotrienol in hypogonadal men as an antiosteoporotic agent. PMID:25389899

  11. Effects of fructose-induced metabolic syndrome on rat skeletal cells and tissue, and their responses to metformin treatment.

    PubMed

    Felice, Juan Ignacio; Schurman, León; McCarthy, Antonio Desmond; Sedlinsky, Claudia; Aguirre, José Ignacio; Cortizo, Ana María

    2017-04-01

    Deleterious effects of metabolic syndrome (MS) on bone are still controversial. In this study we evaluated the effects of a fructose-induced MS, and/or an oral treatment with metformin on the osteogenic potential of bone marrow mesenchymal stromal cells (MSC), as well as on bone formation and architecture. 32 male 8week-old Wistar rats were assigned to four groups: control (C), control plus oral metformin (CM), rats receiving 10% fructose in drinking water (FRD), and FRD plus metformin (FRDM). Samples were collected to measure blood parameters, and to perform pQCT analysis and static and dynamic histomorphometry. MSC were isolated to determine their osteogenic potential. Metformin improved blood parameters in FRDM rats. pQCT and static and dynamic histomorphometry showed no significant differences in trabecular and cortical bone parameters among groups. FRD reduced TRAP expression and osteocyte density in trabecular bone and metformin only normalized osteocyte density. FRD decreased the osteogenic potential of MSC and metformin administration could revert some of these parameters. FRD-induced MS shows reduction in MSC osteogenic potential, in osteocyte density and in TRAP activity. Oral metformin treatment was able to prevent trabecular osteocyte loss and the reduction in extracellular mineralization induced by FRD-induced MS. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Soy protein is beneficial but high-fat diet and voluntary running are detrimental to bone structure in mice.

    PubMed

    Yan, Lin; Graef, George L; Nielsen, Forrest H; Johnson, LuAnn K; Cao, Jay

    2015-06-01

    Physical activity and soy protein isolate (SPI) augmentation have been reported to be beneficial for bone health. We hypothesized that combining voluntary running and SPI intake would alleviate detrimental changes in bone induced by a high-fat diet. A 2 × 2 × 2 experiment was designed with diets containing 16% or 45% of energy as corn oil and 20% SPI or casein fed to sedentary or running male C57BL/6 mice for 14 weeks. Distal femurs were assessed for microstructural changes. The high-fat diet significantly decreased trabecular number (Tb.N) and bone mineral density (BMD) and increased trabecular separation (Tb.Sp). Soy protein instead of casein, regardless of fat content, in the diet significantly increased bone volume fraction, Tb.N, connectivity density, and BMD and decreased Tb.Sp. Voluntary running, regardless of fat content, significantly decreased bone volume fraction, Tb.N, connectivity density, and BMD and increased Tb.Sp. The high-fat diet significantly decreased osteocalcin and increased tartrate-resistant acid phosphatase 5b (TRAP 5b) concentrations in plasma. Plasma concentrations of osteocalcin were increased by both SPI and running. Running alleviated the increase in TRAP 5b induced by the high-fat diet. These findings demonstrate that a high-fat diet is deleterious, and SPI is beneficial to trabecular bone properties. The deleterious effect of voluntary running on trabecular structural characteristics indicates that there may be a maximal threshold of running beyond which beneficial effects cease and detrimental effects occur. Increases in plasma osteocalcin and decreases in plasma TRAP 5b in running mice suggest that a compensatory response occurs to counteract the detrimental effects of excessive running. Published by Elsevier Inc.

  13. Sclerostin and bone metabolism markers in hyperthyroidism before treatment and interrelations between them.

    PubMed

    Sarıtekin, İlker; Açıkgöz, Şerefden; Bayraktaroğlu, Taner; Kuzu, Fatih; Can, Murat; Güven, Berrak; Mungan, Görkem; Büyükuysal, Çağatay; Sarıkaya, Selda

    2017-01-01

    Sclerostin, which is a glycoprotein produced by osteocytes, reduces the formation of bones by inhibiting the Wnt signal pathway. Thyroid hormones are related with Wnt signal pathway and it has been reported that increased thyroid hormones in hyperthyroidism fasten epiphysis maturation in childhood, and increase the risk of bone fractures by stimulating the bone loss in adults. The aim of this study was to examine the sclerostin serum levels, the relation between sclerostin and thyroid hormones as well as the biochemical markers of the bone metabolism in patients with hyperthyroidism (including multinodular goiter and Graves' disease), whose treatments have not started yet. No difference was found in the serum sclerostin levels between the hyperthyroidism group (n=24) and the control group (n=24) (p=0.452). The serum osteocalcin levels and 24-hour urinary phosphorus excretion were found to be higher in the hyperthyroid group than in the control group (p<0.001, p=0.009). A positive correlation was determined between the sclerostin and bone alkaline phosphatase levels (p<0.001); a negative correlation between the osteocalcin and thyroid stimulating hormone (TSH) (p<0.05); a positive correlation between the osteocalcin and thyroid hormones (FT 3 ,FT 4 ) (p<0.001); and a positive correlation between the deoxypyridinoline and hydroxyproline (p<0.001). No correlation was determined between sclerostin and TSH,FT 3 ,FT 4 (p>0.05). Therefore, we consider that a long-term study that covers the pre-post treatment stages of hyperthyroidism, including both the destruction and construction of the skeleton would be more enlightening. Moreover, the assessment of the synthesis of sclerostin in the bone tissue and in the serum level might show differences.

  14. Characterization of a 5-fluorouracil-enriched osteoprogenitor population of the murine bone marrow.

    PubMed

    Falla, N; Van Vlasselaer; Bierkens, J; Borremans, B; Schoeters, G; Van Gorp, U

    1993-12-15

    In the presence of beta-glycerophosphate and vitamin C, cultures of normal mouse bone marrow cells form three-dimensional structures that stain positive with the Von Kossa technique and express alkaline phosphatase (ALP), collagen type I, and osteocalcin. Little is known about the characteristics and frequency of the cells that contribute to this phenomenon. Most likely, mature osteoblastic cells do not contribute to the nodule formation because no osteocalcin expressing cells are detected in the flushed marrow by in situ hybridization. Limiting dilution analysis shows that, in normal bone marrow, 1 of 2.2 x 10(5) cells has the potency to form a bone nodule and to express ALP, collagen, and osteocalcin in a temporal fashion. Upon in vivo treatment with 5-fluorouracil (5-FU), this frequency increases 12-fold, eg, 1 in 1.75 x 10(4) cells shows osteogenic activity. In comparison, fibroblast colony forming cells occur at a frequency of 1 of 2.5 x 10(4) or 1 of 5 x 10(3) plated cells in normal or 5-FU-treated marrow, respectively. Using density centrifugation, the majority of the osteoprogenitor cells in 5-FU marrow are found in the low-density (1.066 to 1.067 g/mL) fractions. In addition, these cells bind to nylon wool but not to plastic and aggregate in the presence of wheat germ agglutinin and soybean agglutinin. Scanning and transmission electron microscopy shows that the bone nodules in 5-FU marrow cultures are composed of fibroblastoid cells embedded in a mineralized collagen matrix. In conclusion, our results show that a quiescent cell population in the murine bone marrow with fibroblastoid characteristics contributes to the formation of bone-like nodules in vitro.

  15. Low serum osteocalcin concentration is associated with incident type 2 diabetes mellitus in Japanese women.

    PubMed

    Urano, Tomohiko; Shiraki, Masataka; Kuroda, Tatsuhiko; Tanaka, Shiro; Urano, Fumihiko; Uenishi, Kazuhiro; Inoue, Satoshi

    2017-08-01

    Increasing evidence suggests that osteocalcin is involved in the regulation of glucose homeostasis. However, the relationship between serum osteocalcin levels and risk of incident type 2 diabetes mellitus is not clear. The objective of this study is to investigate whether serum osteocalcin levels are associated with the risk of incident type 2 diabetes mellitus. This study included 1691 Japanese postmenopausal women, 61 incident diabetes cases, and 1630 non-diabetic control subjects in the observation period. Baseline concentrations of intact osteocalcin, HbA1c, bone-specific alkaline phosphatase, adiponectin, leptin, urinary N-telopeptides were assessed. Serum osteocalcin levels were significantly correlated with HbA1c levels among 1691 Japanese postmenopausal women (R = -0.12, P < 0.0001). In receiver operating characteristic curve analysis, the optimal cut-off levels for serum osteocalcin to predict the development of type 2 diabetes mellitus was 6.1 ng/mL. The group with baseline osteocalcin levels <6.1 ng/mL showed a significantly higher risk for developing diabetes than the group with baseline osteocalcin levels >6.1 ng/mL (log-rank test, P  <  0.0001) during the mean observation period (7.6 ± 6.1 years; mean ± SD). In multiple Cox proportional hazard analysis, osteocalcin levels were significantly associated with development of type 2 diabetes mellitus during the observation period. Our results indicate that a decrease in serum osteocalcin levels is associated with future development of type 2 diabetes mellitus independent of conventional risk factors in Japanese postmenopausal women.

  16. Low-Dose Daily Intake of Vitamin K(2) (Menaquinone-7) Improves Osteocalcin γ-Carboxylation: A Double-Blind, Randomized Controlled Trials.

    PubMed

    Inaba, Naoko; Sato, Toshiro; Yamashita, Takatoshi

    2015-01-01

    Vitamin K is essential for bone health, but the effects of low-dose vitamin K intake in Japanese subjects remain unclear. We investigated the effective minimum daily menaquinone-7 dose for improving osteocalcin γ-carboxylation. Study 1 was a double-blind, randomized controlled dose-finding trial; 60 postmenopausal women aged 50-69 y were allocated to one of four dosage group and consumed 0, 50, 100, or 200 μg menaquinone-7 daily for 4 wk, respectively, with a controlled diet in accordance with recommended daily intakes for 2010 in Japan. Study 2 was a double-blind, randomized placebo-controlled trial based on the results of Study 1; 120 subjects aged 20-69 y were allocated to the placebo or MK-7 group and consumed 0 or 100 μg menaquinone-7 daily for 12 wk, respectively. In both studies, circulating carboxylated osteocalcin and undercarboxylated osteocalcin were measured. The carboxylated osteocalcin/undercarboxylated osteocalcin ratio decreased significantly from baseline in the 0 μg menaquinone-7 group, in which subjects consumed the recommended daily intake of vitamin K with vitamin K1 and menaquinone-4 (Study 1). Menaquinone-7 increased the carboxylated osteocalcin/undercarboxylated osteocalcin ratio dose dependently, and significant effects were observed in both the 100 and 200 μg groups compared with the 0 μg group. Undercarboxylated osteocalcin concentrations decreased significantly, and the carboxylated osteocalcin/undercarboxylated osteocalcin ratio increased significantly in the 100 μg menaquinone-7 group compared with the placebo group (Study 2). Daily menaquinone-7 intake ≥100 μg was suggested to improve osteocalcin γ-carboxylation.

  17. Dietary 2-oxoglutarate prevents bone loss caused by neonatal treatment with maximal dexamethasone dose

    PubMed Central

    Tomaszewska, Ewa; Muszyński, Siemowit; Blicharski, Tomasz; Pierzynowski, Stefan G

    2017-01-01

    Synthetic glucocorticoids (GCs) are widely used in the variety of dosages for treatment of premature infants with chronic lung disease, respiratory distress syndrome, allergies, asthma, and other inflammatory and autoimmune conditions. Yet, adverse effects such as glucocorticoid-induced osteoporosis and growth retardation are recognized. Conversely, 2-oxoglutarate (2-Ox), a precursor of glutamine, glutamate, and collagen amino acids, exerts protective effects on bone development. Our aim was to elucidate the effect of dietary administered 2-Ox on bone loss caused by neonatal treatment with clinically relevant maximal therapeutic dexamethasone (Dex) dose. Long bones of neonatal female piglets receiving Dex, Dex+2-Ox, or untreated were examined through measurements of mechanical properties, density, mineralization, geometry, histomorphometry, and histology. Selected hormones, bone turnover, and growth markers were also analyzed. Neonatal administration of clinically relevant maximal dose of Dex alone led to over 30% decrease in bone mass and the ultimate strength (P < 0.001 for all). The length (13 and 7% for femur and humerus, respectively) and other geometrical parameters (13–45%) decreased compared to the control (P < 0.001 for all). Dex impaired bone growth and caused hormonal imbalance. Dietary 2-Ox prevented Dex influence and vast majority of assessed bone parameters were restored almost to the control level. Piglets receiving 2-Ox had heavier, denser, and stronger bones; higher levels of growth hormone and osteocalcin concentration; and preserved microarchitecture of trabecular bone compared to the Dex group. 2-Ox administered postnatally had a potential to maintain bone structure of animals simultaneously treated with maximal therapeutic doses of Dex, which, in our opinion, may open up a new opportunity in developing combined treatment for children treated with GCs. Impact statement The present study has showed, for the first time, that dietary 2-oxoglutarate (2-Ox) administered postnatally has a potential to improve/maintain bone structure of animals simultaneously treated with maximal therapeutic doses of dexamethasone (Dex). It may open the new direction in searching and developing combined treatment for children treated with glucocorticoids (GCs) since growing group of children is exposed to synthetic GCs and adverse effects such as glucocorticoid-induced osteoporosis and growth retardation are recognized. Currently proposed combined therapies have numerous side effects. Thus, this study proposed a new direction in combined therapies utilizing dietary supplementation with glutamine derivative. Impairment caused by Dex in presented long bones animal model was prevented by dietary supplementation with 2-Ox and vast majority of assessed bone parameters were restored almost to the control level. These results support previous thesis on the regulatory mechanism of nutrient utilization regulated by glutamine derivatives and enrich the nutritional science. PMID:28178857

  18. Differences of bone alkaline phosphatase isoforms in metastatic bone disease and discrepant effects of clodronate on different skeletal sites indicated by the location of pain.

    PubMed

    Magnusson, P; Larsson, L; Englund, G; Larsson, B; Strang, P; Selin-Sjögren, L

    1998-08-01

    We compared clodronate with placebo administration in 42 primarily or secondarily hormone-refractory prostate cancer patients with skeletal metastases and persisting pain. Serum total alkaline phosphatase (ALP), bone ALP isoforms, osteocalcin, cross-linked carboxy-terminal telopeptide of type I collagen, and prostate-specific antigen were analyzed before and after 1 month of treatment. Six ALP isoforms were quantified by HPLC: one bone/intestinal, two bone (B1, B2), and three liver ALP isoforms. The most apparent difference compared with healthy males was observed for the bone ALP isoform B2. Patients and healthy males had a B2 activity corresponding to 75% and 35% of the total ALP activity, respectively (P <0.0001). We propose that the different bone ALP isoforms reflect different stages of osteoblast differentiation during the extracellular matrix maturation phase of osteogenesis. All bone markers except osteocalcin increased after 1 month of clodronate administration. These increases were associated with pain only in the upper part of the body. We suggest that the uptake of clodronate by the skeleton was not uniform during our treatment period.

  19. Human osteoblast-like cells respond to mechanical strain with increased bone matrix protein production independent of hormonal regulation

    NASA Technical Reports Server (NTRS)

    Harter, L. V.; Hruska, K. A.; Duncan, R. L.

    1995-01-01

    Exposure of osteosarcoma cell lines to chronic intermittent strain increases the activity of mechano-sensitive cation (SA-cat) channels. The impact of mechano-transduction on osteoblast function has not been well studied. We analyzed the expression and production of bone matrix proteins in human osteoblast-like osteosarcoma cells, OHS-4, in response to chronic intermittent mechanical strain. The OHS-4 cells exhibit type I collagen production, 1,25-Dihydroxyvitamin D-inducible osteocalcin, and mineralization of the extracellular matrix. The matrix protein message level was determined from total RNA isolated from cells exposed to 1-4 days of chronic intermittent strain. Northern analysis for type I collagen indicated that strain increased collagen message after 48 h. Immunofluorescent labeling of type I collagen demonstrated that secretion was also enhanced with mechanical strain. Osteopontin message levels were increased several-fold by the application of mechanical load in the absence of vitamin D, and the two stimuli together produced an additive effect. Osteocalcin secretion was also increased with cyclic strain. Osteocalcin levels were not detectable in vitamin D-untreated control cells. However, after 4 days of induced load, significant levels of osteocalcin were observed in the medium. With vitamin D present, osteocalcin levels were 4 times higher in the medium of strained cells compared to nonstrained controls. We conclude that mechanical strain of osteoblast-like cells is sufficient to increase the transcription and secretion of matrix proteins via mechano-transduction without hormonal induction.

  20. Histomorphometry and bone mechanical property evolution around different implant systems at early healing stages: an experimental study in dogs.

    PubMed

    Jimbo, Ryo; Anchieta, Rodolfo; Baldassarri, Marta; Granato, Rodrigo; Marin, Charles; Teixeira, Hellen S; Tovar, Nick; Vandeweghe, Stefan; Janal, Malvin N; Coelho, Paulo G

    2013-12-01

    Commercial implants differ at macro-, micro-, and nanolevels, which makes it difficult to distinguish their effect on osseointegration. The aim of this study was to evaluate the early integration of 5 commercially available implants (Astra OsseoSpeed, Straumann SLA, Intra-Lock Blossom Ossean, Nobel Active, and OsseoFix) by histomorphometry and nanoindentation. Implants were installed in the tibiae of 18 beagle dogs. Samples were retrieved at 1, 3, and 6 weeks (n = 6 for each time point) and were histologically and nanomechanically evaluated. The results presented that both time (P < 0.01) and implant system and time interaction (P < 0.02) significantly affected the bone-to-implant contact (BIC). At 1 week, the different groups presented statistically different outcomes. No significant changes in BIC were noted thereafter. There were no significant differences in rank elastic modulus (E) or in rank hardness (H) for time (E: P > 0.80; H: P > 0.75) or implant system (E: P > 0.90; H: P > 0.85). The effect of different implant designs on osseointegration was evident especially at early stages of bone healing.

  1. Relationship between plasma fibroblast growth factor-23 concentration and bone mineralization in children with renal failure on peritoneal dialysis.

    PubMed

    Wesseling-Perry, Katherine; Pereira, Renata C; Wang, Hejing; Elashoff, Robert M; Sahney, Shobha; Gales, Barbara; Jüppner, Harald; Salusky, Isidro B

    2009-02-01

    Fibroblast growth factor (FGF)-23 is produced in bone, and circulating levels are markedly elevated in patients with end-stage kidney disease, but the relationship between plasma levels of FGF-23 and bone histology in dialysis patients with secondary hyperparathyroidism is unknown. The aim of the study was to evaluate the correlation between plasma levels of FGF-23 and bone histology in pediatric patients with end-stage kidney disease who display biochemical evidence of secondary hyperparathyroidism. We performed a cross-sectional analysis of the relationship between plasma FGF-23 levels and bone histomorphometry. The study was conducted in a referral center. Participants consisted of forty-nine pediatric patients who were treated with maintenance peritoneal dialysis and who had serum PTH levels (1st generation Nichols assay) greater than 400 pg/ml. There were no interventions. Plasma FGF-23 levels and bone histomorphometry were measured. No correlation existed between values of PTH and FGF-23. Bone formation rates correlated with PTH (r = 0.44; P < 0.01), but not with FGF-23. Higher FGF-23 concentrations were associated with decreased osteoid thickness (r = -0.49; P < 0.01) and shorter osteoid maturation time (r = -0.48; P < 0.01). High levels of FGF-23 are associated with improved indices of skeletal mineralization in dialyzed pediatric patients with high turnover renal osteodystrophy. Together with other biomarkers, FGF-23 measurements may indicate skeletal mineralization status in this patient population.

  2. Performance of laser sintered Ti-6Al-4V implants with bone-inspired porosity and micro/nanoscale surface roughness in the rabbit femur

    PubMed Central

    Cohen, David J.; Cheng, Alice; Sahingur, Kaan; Clohessy, Ryan M.; Hopkins, Louis B.; Boyan, Barbara D.; Schwartz, Zvi

    2018-01-01

    Long term success of bone-interfacing implants remains a challenge in compromised patients and in areas of low bone quality. While surface roughness at the micro/nanoscale can promote osteogenesis, macro-scale porosity is important for promoting mechanical stability of the implant over time. Currently, machining techniques permit pores to be placed throughout the implant, but the pores are generally uniform in dimension. The advent of laser sintering provides a way to design and manufacture implants with specific porosity and variable dimensions at high resolution. This approach enables production of metal implants that mimic complex geometries found in biology. In this study, we used a rabbit femur model to compare osseointegration of laser sintered solid and porous implants. Ti-6Al-4V implants were laser sintered in a clinically relevant size and shape. One set of implants had a novel porosity based on human trabecular bone; both sets had grit-blasted/acid-etched surfaces. After characterization, implants were inserted transaxially into rabbit femora; mechanical testing, microCT and histomorphometry were conducted 10 weeks postoperatively. There were no differences in pull-out strength or bone-to-implant contact. However, both microCT and histomorphometry showed significantly higher new bone volume for porous compared to solid implants. Bone growth was observed into porous implant pores, especially near apical portions of the implant interfacing with cortical bone. These results show that laser sintered Ti-6Al-4V implants with micro/nanoscale surface roughness and trabecular bone-inspired porosity promote bone growth and may be used as a superior alternative to solid implants for bone-interfacing implants. PMID:28452335

  3. Performance of laser sintered Ti-6Al-4V implants with bone-inspired porosity and micro/nanoscale surface roughness in the rabbit femur.

    PubMed

    Cohen, David J; Cheng, Alice; Sahingur, Kaan; Clohessy, Ryan M; Hopkins, Louis B; Boyan, Barbara D; Schwartz, Zvi

    2017-04-28

    Long term success of bone-interfacing implants remains a challenge in compromised patients and in areas of low bone quality. While surface roughness at the micro/nanoscale can promote osteogenesis, macro-scale porosity is important for promoting mechanical stability of the implant over time. Currently, machining techniques permit pores to be placed throughout the implant, but the pores are generally uniform in dimension. The advent of laser sintering provides a way to design and manufacture implants with specific porosity and variable dimensions at high resolution. This approach enables production of metal implants that mimic complex geometries found in biology. In this study, we used a rabbit femur model to compare osseointegration of laser sintered solid and porous implants. Ti-6Al-4V implants were laser sintered in a clinically relevant size and shape. One set of implants had a novel porosity based on human trabecular bone; both sets had grit-blasted/acid-etched surfaces. After characterization, implants were inserted transaxially into rabbit femora; mechanical testing, micro-computed tomography (microCT) and histomorphometry were conducted 10 weeks post-operatively. There were no differences in pull-out strength or bone-to-implant contact. However, both microCT and histomorphometry showed significantly higher new bone volume for porous compared to solid implants. Bone growth was observed into porous implant pores, especially near apical portions of the implant interfacing with cortical bone. These results show that laser sintered Ti-6Al-4V implants with micro/nanoscale surface roughness and trabecular bone-inspired porosity promote bone growth and may be used as a superior alternative to solid implants for bone-interfacing implants.

  4. Effects of abaloparatide-SC (BA058) on bone histology and histomorphometry: The ACTIVE phase 3 trial.

    PubMed

    Moreira, Carolina A; Fitzpatrick, Lorraine A; Wang, Yamei; Recker, Robert R

    2017-04-01

    There are a number of effective treatments for osteoporosis but most are in the antiresorptive class of compounds. Abaloparatide-SC is a new osteoanabolic agent, which increased bone mineral density and lowered the risk of osteoporosis-related fractures in the phase 3 ACTIVE trial. The objective of this report is to describe the effects of abaloparatide-SC 80μg on bone histology and histomorphometry in iliac crest bone biopsies from this trial in which participants were randomized to receive blinded daily subcutaneous injections of placebo or abaloparatide-SC 80μg/d or open-label teriparatide 20μg/d for 18months. Iliac crest bone biopsies were obtained between 12 and 18months. Qualitative histological analysis of biopsies from abaloparatide-SC-treated patients revealed normal bone microarchitecture without evidence of adverse effects on mineralization or on the formation of normal lamellar bone. There were no bone marrow abnormalities, marrow fibrosis nor was there presence of excess osteoid or woven bone. There were few significant differences among the three treatment groups in a standard panel of static and dynamic histomorphometric indices. The mineral apposition rate was higher in the teriparatide-treated group than in the placebo-treated group. The eroded surface was lower in the abaloparatide-SC-treated group than in the placebo-treated group. Cortical porosity was higher in both the abaloparatide-SC- and the teriparatide-treated groups than in the placebo-treated group. We conclude that histological and histomorphometric analysis of iliac crest bone biopsies from subjects who were treated for up to 18months with abaloparatide-SC showed no evidence of concern for bone safety. ClinicalTrials.gov number NCT01343004. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Reference intervals for serum osteocalcin concentrations in adult men and women from the study of health in Pomerania.

    PubMed

    Hannemann, Anke; Friedrich, Nele; Spielhagen, Christin; Rettig, Rainer; Ittermann, Till; Nauck, Matthias; Wallaschofski, Henri

    2013-03-13

    Osteocalcin (OC) is a bone-specific protein produced primarily by osteoblasts during bone formation. Besides its role in bone formation, osteocalcin may play a role in the regulation of energy metabolism and male fertility. To interpret serum OC data, reference intervals adapted to a specific laboratory method are needed. A healthy reference population was selected from the first follow-up of the Study of Health in Pomerania. Serum OC concentrations were measured with the IDS-iSYS N-Mid Osteocalcin assay on the IDS-iSYS Automated System (Immunodiagnostic Systems, Frankfurt am Main, Germany). The reference interval was defined as the central 95% range (2.5th-97.5th percentile). Age-specific reference intervals were calculated by quantile regression for 1107 men (25-79 years) and 545 premenopausal women (25-54 years). The reference interval for 498 postmenopausal women (50-79 years) was calculated irrespective of age. Median (1st-3rd quartile) serum OC concentrations were 15.4 ng/mL (12.0-19.4 ng/mL) in men, 14.4 ng/mL (11.3-18.5 ng/mL) in premenopausal women, and 18.6 ng/mL (13.6-25.6 ng/mL) in postmenopausal women. Serum OC concentrations were highest in men and premenopausal women aged 25-29 years, were stable during midlife, and rose again after 65 years of age in men and at transition to menopause in women. Serum OC concentrations were lower in women taking oral contraceptives or who were under hormone replacement therapy after menopause and in subjects with diabetes mellitus or with body mass index < 18 or > 30 kg/m2 than in subjects without these conditions. We established sex-specific adult reference intervals for the serum OC concentration measured by the IDS-iSYS N-Mid Osteocalcin assay.

  6. Reducing undercarboxylated osteocalcin with vitamin K supplementation does not promote lean tissue loss or fat gain over three years in older women and men: a randomized controlled trial

    USDA-ARS?s Scientific Manuscript database

    Osteocalcin (OC) is a vitamin K-dependent protein synthesized during bone formation. Mice injected with the undercarboxylated form of OC (ucOC) had more skeletal muscle mass and less fat mass than sham-treated controls, suggesting a unique metabolic role for ucOC. UcOC decreases in response to vitam...

  7. Cell morphology, viability, osteocalcin activity, and alkaline phosphatase activity in milled versus unmilled surface of the femoral head.

    PubMed

    Rhyu, Kee Hyung; Cho, Chang Hoon; Yoon, Kyung Sik; Chun, Young Soo

    2016-12-01

    To evaluate cellular activity in milled versus unmilled surface of the femoral head in 21 patients who underwent robot-assisted total hip arthroplasty(THA). The femoral head of 21 consecutive patients who underwent robot-assisted THA for osteonecrosis was used. 10 cc of trabecular bone from the entire milled surface was obtained using a curette. The same amount of trabecular bone was obtained at least 1 cm away from the milled surface and served as a matched control. Cell morphology, viability, osteocalcin activity, and alkaline phosphatase activity in milled versus unmilled surface were assessed. Cell morphology of the milled or unmilled surface was comparable; cells were smaller in the milled surface. Cell viability was a mean of 40% higher in the milled surface (107.4% vs. 67.2%, p<0.001); cell viability at 5 time points was comparable in each group. Osteocalcin activity of cells was slightly higher in the milled surface (1.43 vs. 1.24 ng/ml, p=0.69). Alkaline phosphatase activity of cells was slightly higher in the unmilled surface (150 105 vs. 141 789 U/L, p=0.078). The milled and unmilled surfaces of the femoral head were comparable in terms of cell morphology, viability, osteocalcin activity, and alkaline phosphatase activity.

  8. Osteocalcin and serum insulin-like growth factor-1 as biochemical skeletal maturity indicators.

    PubMed

    Tripathi, Tulika; Gupta, Prateek; Rai, Priyank; Sharma, Jitender; Gupta, Vinod Kumar; Singh, Navneet

    2017-10-02

    With change in concepts of growth determination methods, there is a surge in the measurement of biomarkers for appraisal of growth status. Osteocalcin is a bone-specific protein and was observed to parallel the normal growth curve. Hence, the present study was intended to assess the levels of serum osteocalcin and serum insulin-like growth factor-1 (IGF-1) and compare them with cervical vertebral maturation index (CVMI) stages. The cross-sectional study was performed on 150 subjects (75 males and 75 females) in the age group of 8-20 years and segregated into six CVMI stages. Serum osteocalcin and IGF-1 were estimated by ELISA. Mann-Whitney U test was used to compare the mean ranks of serum osteocalcin and serum IGF-1 with different CVMI stages. Spearman correlation was performed to find association between serum osteocalcin and serum IGF-1 across six CVMI stages. Peak serum IGF-1 levels were obtained at CVMI stages 4 and 3 for males and females, respectively, with insignificant difference between stages 3 and 4 in females. Peak serum osteocalcin levels were found at stage 5 and 3 for males and females with insignificant difference from other stages except stages 5 and 6 in males. A statistically significant correlation was seen between serum IGF-1 and serum osteocalcin across six CVMI stages (P < 0.01). Osteocalcin followed IGF-1 across all CVMI stages but showed insignificant interstage differences.

  9. Bone Mineral Density in Relation to Metabolic Syndrome Components in Postmenopausal Women With Diabetes Mellitus Type 2

    PubMed

    Bilić-Ćurčić, Ines; Makarović, Sandra; Mihaljević, Ivan; Franceschi, Maja; Jukić, Tomislav

    2017-03-01

    Diabetes mellitus type 2 is associated with greater bone mineral density (BMD) due to obesity, although rapid bone loss observed over time could be explained by elevated chronic inflammation. The objective of this study was to investigate the relationship between central adiposity and hyperinsulinemia, as well as inflammation markers with vertebral and femoral BMD and bone turnover markers in postmenopausal women with type 2 diabetes. Femoral and vertebral BMD, osteocalcin, pyrilinks D, beta-CrossLaps (B-CTx), insulin, C-reactive protein (CRP), fibrinogen and plasminogen activator inhibitor-1 (PAI-1) were measured in 114 postmenopausal female patients with diabetes type 2. The patients of similar age, HbA1c levels and diabetes duration were divided into 2 groups based on their body mass index (BMI) values: lower or equal to 27 kg/m(2) (31 patients) and higher than 27 kg/m(2) (83 patients). Lower levels of osteocalcin (p=0.001), B-CTx (p=0.000007) and pyrilinks D (p=0.0365), and higher femoral BMD (p=0.00006), insulin level (p=0.0002), PAI-1 (p=0.00000) and CRP (p=0.002) were found in the overweight group. There were no signifi cant differences in vertebral BMD and fibrinogen. Osteocalcin and B-CTx showed inverse correlation, and femoral BMD positive correlation with waist circumference, insulin level and PAI-1. This suggests that abdominal obesity and hyperinsulinemia as components of the metabolic syndrome could increase femoral BMD by lowering bone rate. In addition, the only inflammation marker linked with femoral BMD was PAI-1, which is associated with increased mineralization of cortical bone in mouse.

  10. Are levels of bone turnover related to lower bone mass of adolescents previously fed a macrobiotic diet?

    PubMed

    Parsons, T J; van Dusseldorp, M; Seibel, M J; van Staveren, W A

    2001-01-01

    Dutch adolescents who consumed a macrobiotic (vegan-type) diet in early life, demonstrate a lower relative bone mass than their omnivorous counterparts. We investigated whether subjects from the macrobiotic group showed signs of catching up with controls in terms of relative bone mass, reflected by higher levels of serum osteocalcin and alkaline phosphatase and lower levels of urinary cross-links. Group differences in calciotropic hormones and mineral excretion were also investigated. Bone measurements, blood, and urine samples were obtained from 69 macrobiotic (34 girls, 35 boys) and 99 control (57 girls, 42 boys) subjects, aged 9-15. Bone turnover markers and 1,25(OH)2D reached maximal levels at pubertal stages 3-4, and decreased thereafter. After adjusting for puberty, age, and lean body mass, no group differences were found in markers of bone turnover, 1,25(OH)2D, PTH, or calcium excretion, but phosphate excretion was 23% lower in macrobiotic girls. After adjustment for puberty, 1,25(OH)2D was positively related to osteocalcin. In summary, we found no evidence for group differences in bone turnover, or catch up in relative bone mass, which might be due to the fact that 60% of subjects were still in early stages of puberty.

  11. Nutritional Determination of Bone Health: A Survey of Australian Defence Force (ADF) Trainees

    DTIC Science & Technology

    2005-07-01

    aims to determine the prevalence of key risk factors, including diet, exercise, bone turn-over, bone mineral density and anthropometry , and to relate...incorporated in bone matrix during bone formation. The ratio of undercarboxylated osteocalcin (a protein with low biological activity) to total...serves returned to DSTO- Scottsdale. 2.3 Data Manipulation A ratio of energy intake (EI) to Basal Metabolic Rate (BMR) of 0.9 represents the

  12. Nutritional Determinants of Bone Health: A Survey of Australian Defence Force (ADF) Trainees

    DTIC Science & Technology

    2005-07-01

    aims to determine the prevalence of key risk factors, including diet, exercise, bone turn-over, bone mineral density and anthropometry , and to relate...incorporated in bone matrix during bone formation. The ratio of undercarboxylated osteocalcin (a protein with low biological activity) to total...serves returned to DSTO- Scottsdale. 2.3 Data Manipulation A ratio of energy intake (EI) to Basal Metabolic Rate (BMR) of 0.9 represents the

  13. 3D perfusion bioreactor-activated porous granules on implant fixation and early bone formation in sheep.

    PubMed

    Ding, Ming; Henriksen, Susan S; Martinetti, Roberta; Overgaard, Søren

    2017-11-01

    Early fixation of total joint arthroplasties is crucial for ensuring implant survival. An alternative bone graft material in revision surgery is needed to replace the current gold standard, allograft, seeing that the latter is associated with several disadvantages. The incubation of such a construct in a perfusion bioreactor has been shown to produce viable bone graft materials. This study aimed at producing larger amounts of viable bone graft material (hydroxyapatite 70% and β-tricalcium-phosphate 30%) in a novel perfusion bioreactor. The abilities of the bioreactor-activated graft material to induce early implant fixation were tested in a bilateral implant defect model in sheep, with allograft as the control group. Defects were bilaterally created in the distal femurs of the animals, and titanium implants were inserted. The concentric gaps around the implants were randomly filled with either allograft, granules, granules with bone marrow aspirate or bioreactor-activated graft material. Following an observation time of 6 weeks, early implant fixation and bone formation were assessed by micro-CT scanning, mechanical testing, and histomorphometry. Bone formations were seen in all groups, while no significant differences between groups were found regarding early implant fixation. The microarchitecture of the bone formed by the synthetic graft materials resembled that of allograft. Histomorphometry revealed that allograft induced significantly more bone and less fibrous tissue (p < 0.05). In conclusion, bone formation was observed in all groups, while the bioreactor-activated graft material did not reveal additional effects on early implant fixation comparable to allograft in this model. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2465-2476, 2017. © 2016 Wiley Periodicals, Inc.

  14. Skeletal unloading induces selective resistance to the anabolic actions of growth hormone on bone

    NASA Technical Reports Server (NTRS)

    Halloran, B. P.; Bikle, D. D.; Harris, J.; Autry, C. P.; Currier, P. A.; Tanner, S.; Patterson-Buckendahl, P.; Morey-Holton, E.

    1995-01-01

    Loss of skeletal weight bearing or physical unloading of bone in the growing animal inhibits bone formation and induces a bone mineral deficit. To determine whether the inhibition of bone formation induced by skeletal unloading in the growing animal is a consequence of diminished sensitivity to growth hormone (GH) we studied the effects of skeletal unloading in young hypophysectomized rats treated with GH (0, 50, 500 micrograms/100 g body weight/day). Skeletal unloading reduced serum osteocalcin, impaired uptake of 3H-proline into bone, decreased proximal tibial mass, and diminished periosteal bone formation at the tibiofibular junction. When compared with animals receiving excipient alone, GH administration increased bone mass in all animals. The responses in serum osteocalcin, uptake of 3H-proline and 45Ca into the proximal tibia, and proximal tibial mass in non-weight bearing animals were equal to those in weight bearing animals. The responses in trabecular bone volume in the proximal tibia and bone formation at the tibiofibular junction to GH, however, were reduced significantly by skeletal unloading. Bone unloading prevented completely the increase in metaphyseal trabecular bone normally induced by GH and severely dampened the stimulatory effect (158% vs. 313%, p < 0.002) of GH on periosteal bone formation. These results suggest that while GH can stimulate the overall accumulation of bone mineral in both weight bearing and non-weight bearing animals, skeletal unloading selectively impairs the response of trabecular bone and periosteal bone formation to the anabolic actions of GH.

  15. Antiosteoporotic Effect of Combined Extract of Morus alba and Polygonum odoratum

    PubMed Central

    Sungkamanee, Sudarat; Thukham-mee, Wipawee

    2014-01-01

    Due to the limitation of osteoporosis therapy, the alternative therapies from natural sources have been considered. In this study, we aimed to determine the antiosteoporotic effect of the combined extract of Morus alba and Polygonum odoratum leaves. Ovariectomized rats, weighing 200–220 g, were orally given the combined extract at doses of 5, 150, and 300 mg·kg−1 BW for 3 months. At the end of study, blood was collected to determine serum osteocalcin, calcium, and alkaline phosphatase level. In addition, tibia bone was isolated to determine bone oxidative stress markers, cortical bone thickness, and density of osteoblast. The combined extract decreased oxidative stress and osteoclast density but increased osteoblast density and cortical thickness. The elevation of serum calcium, alkaline phosphatase, and osteocalcin was also observed. These results suggested the antiosteoporotic effect of the combined extract via the increased growth formation together with the suppression of bone resorption. However, further studies concerning chronic toxicity and the underlying mechanism are required. PMID:25478061

  16. EFFECT OF DIETARY FLAVONOID NARINGENIN ON BONES IN RATS WITH OVARIECTOMY-INDUCED OSTEOPOROSIS.

    PubMed

    Kaczmarczyk-Sedlak, Ilona; Wojnar, Weronika; Zych, Maria; Ozimina-Kamińska, Ewa; Bońka, Anna

    2016-07-01

    Naringenin is a dietary flavanone which can be found in many products such as citrus fruits. This substance reveals multiple pharmacological activities such as antiinflammatory and antioxidative. During the menopause, the estrogen deficiency occurs, thus naringenin, which is also considered as a phytoestrogen, may be useful in the treatment of menopause-associated osteoporosis. The aim of the presented study was to examine the effect of naringenin on the mechanical properties, chemical composition and the histomorphological parameters of bones in the rats with ovariectomy-induced osteoporosis. The female Wistar rats were divided into 4 groups: sham-operated, ovariectomized, ovariectoiized treated with estradiol (0.2 mg/kg p.o.) and ovariectomized treated with naringenin (50 mg/kg p.o.), and the tested substances were administered for 4 weeks. The obtained results show that ovariectomy caused the characteristic changes in the skeletal system of rats - there was deterioration in mechanics, chemistry and histomorphometry. The estradiol administered to the rats served as positive control for the experiment. Administration of naringenin to the ovariectomized rats affected neither the bone chemical content nor the mechanical properties, however, there was a slight improvement in the bone microarchitecture in the tissue affected by osteoporosis. It can be concluded that the intake of naringenin in dietary products is not harmful and may even bring beneficial effect on the bones histomorphometry during postmenopausal osteoporosis.

  17. Trabecular Bone Histomorphometry in Humans with Type 1 Diabetes Mellitus

    PubMed Central

    Armas, Laura A.G.; Akhter, Mohammed P.; Drincic, Andjela; Recker, Robert R.

    2011-01-01

    Patients with Type 1 Diabetes Mellitus (DM) have markedly increased risk of fracture, but little is known about abnormalities in bone micro-architecture or remodeling properties that might give insight into the pathogenesis of skeletal fragility in these patients. We report here a case-control study comparing bone histomorphometric and micro-CT results from iliac biopsies in 18 otherwise healthy subjects with Type 1 Diabetes Mellitus with those from healthy age- and sex- matched non-diabetic control subjects. Five of the diabetics had histories of low-trauma fracture. Transilial bone biopsies were obtained after tetracycline labeling. The biopsy specimens were fixed, embedded, and scanned using a desktop μCT at 16 micron resolution. They were then sectioned and quantitative histomorphometry was performed as previously described by Recker et al. 1988.[1] Two sections, >250 μm apart, were read from the central part of each biopsy. Overall there were no significant differences between diabetics and controls in histomorphometric or micro-CT measurements. However, fracturing diabetics had structural and dynamic trends different from nonfracturing diabetics by both methods of analysis. In conclusion, Type 1 Diabetes Mellitus does not result in abnormalities in bone histomorphometric or micro-CT variables in the absence of manifest complications from the diabetes. However, diabetics suffering fractures may have defects in their skeletal microarchitecture that may underlie the presence of excess skeletal fragility. PMID:22001578

  18. Trabecular bone histomorphometry in humans with Type 1 Diabetes Mellitus.

    PubMed

    Armas, Laura A G; Akhter, Mohammed P; Drincic, Andjela; Recker, Robert R

    2012-01-01

    Patients with Type 1 Diabetes Mellitus (DM) have markedly increased risk of fracture, but little is known about abnormalities in bone microarchitecture or remodeling properties that might give insight into the pathogenesis of skeletal fragility in these patients. We report here a case-control study comparing bone histomorphometric and micro-CT results from iliac biopsies in 18 otherwise healthy subjects with Type 1 Diabetes Mellitus with those from healthy age- and sex-matched non-diabetic control subjects. Five of the diabetics had histories of low-trauma fracture. Transilial bone biopsies were obtained after tetracycline labeling. The biopsy specimens were fixed, embedded, and scanned using a desktop μCT at 16 μm resolution. They were then sectioned and quantitative histomorphometry was performed as previously described by Recker et al. [1]. Two sections, >250 μm apart, were read from the central part of each biopsy. Overall there were no significant differences between diabetics and controls in histomorphometric or micro-CT measurements. However, fracturing diabetics had structural and dynamic trends different from nonfracturing diabetics by both methods of analysis. In conclusion, Type 1 Diabetes Mellitus does not result in abnormalities in bone histomorphometric or micro-CT variables in the absence of manifest complications from the diabetes. However, diabetics suffering fractures may have defects in their skeletal microarchitecture that may underlie the presence of excess skeletal fragility. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Adiponectin and osteocalcin: relation to insulin sensitivity.

    PubMed

    Zhang, Yanjun; Zhou, Peng; Kimondo, Julia Wanjiru

    2012-10-01

    Obesity and osteoporosis have grave consequences for human health, quality of life, and even the efficiency of the labor force. Interestingly, these diseases share several features including a genetic predisposition and a common progenitor cell. Recent findings show that high adipocyte count in bone marrow is directly related to bone loss, as fat cells replace osteoblasts resulting in reduced bone mineral density and increased propensity towards osteoporosis. This close relationship has a positive aspect, whereby higher osteocalcin levels results in increased adiponectin production while the presence of adiponectin influences osteoblast proliferation and differentiation in a positive way. We focus on how osteoblasts and adipocytes affect each other and ultimately insulin resistance through the hormones they produce. This approach to whole animal physiology is the main stay of Alternative Medicine. It is assumed that the body is linked together intricately, and treating one is equal to treating the whole body. As we go further into bone and adipocytes physiology, it is evident that these organs affect each other. Therefore, elucidation on the actions of fat on bone and vice versa will unravel the complex mechanism of insulin resistance.

  20. Post-Traumatic Caspase-3 Expression in the Adjacent Areas of Growth Plate Injury Site: A Morphological Study

    PubMed Central

    Musumeci, Giuseppe; Castrogiovanni, Paola; Loreto, Carla; Castorina, Sergio; Pichler, Karin; Weinberg, Annelie Martina

    2013-01-01

    The epiphyseal plate is a hyaline cartilage plate that sits between the diaphysis and the epiphysis. The objective of this study was to determine the impact of an injury in the growth plate chondrocytes through the study of histological morphology, immunohistochemistry, histomorphometry and Western Blot analyses of the caspase-3 and cleaved PARP-1, and levels of the inflammatory cytokines, Interleukin-6 (IL-6) and Tumor Necrosis Factor alpha (TNF-α), in order to acquire more information about post-injury reactions of physeal cell turnover. In our results, morphological analysis showed that in experimental bones, neo-formed bone trabeculae—resulting from bone formation repair—invaded the growth plate and reached the metaphyseal bone tissue (bone bridge), and this could result in some growth arrest. We demonstrated, by ELISA, increased expression levels of the inflammatory cytokines IL-6 and TNF-α. Immunohistochemistry, histomorphometry and Western Blot analyses of the caspase-3 and cleaved PARP-1 showed that the physeal apoptosis rate of the experimental bones was significantly higher than that of the control ones. In conclusion, we could assume that the inflammation process causes stress to chondrocytes that will die as a biological defense mechanism, and will also increase the survival of new chondrocytes for maintaining cell homeostasis. Nevertheless, the exact stimulus leading to the increased apoptosis rate, observed after injury, needs additional research to understand the possible contribution of chondrocyte apoptosis to growth disturbance. PMID:23899790

  1. Beta 2-Microglobulin: A Novel Therapeutic Target for the Treatment of Human Prostate Cancer Bone Metastasis

    DTIC Science & Technology

    2009-03-14

    H, Sodek J, Zhau HE, Chung LW. Human osteocalcin and bone sialoprotein mediating osteomimicry of prostate cancer cells: role of cAMP-dependent...with mesenchymal phenotype b2-m b2-Microglobulin BSP Bone sialoprotein C4-2 Lineage derivative cells from LNCaP C4-2B C4-2 cells metastasized to bone...OPN) and bone sialoprotein (BSP), and RANKL, collectively allow- ing cancer cells to survive and thrive in the bone microenvironment [7–9]. Previous

  2. Skeleton and Glucose Metabolism: A Bone-Pancreas Loop

    PubMed Central

    Luce, Vincenza; Ventura, Annamaria; Colucci, Silvia; Cavallo, Luciano; Grano, Maria

    2015-01-01

    Bone has been considered a structure essential for mobility, calcium homeostasis, and hematopoietic function. Recent advances in bone biology have highlighted the importance of skeleton as an endocrine organ which regulates some metabolic pathways, in particular, insulin signaling and glucose tolerance. This review will point out the role of bone as an endocrine “gland” and, specifically, of bone-specific proteins, as the osteocalcin (Ocn), and proteins involved in bone remodeling, as osteoprotegerin, in the regulation of insulin function and glucose metabolism. PMID:25873957

  3. Bone as an endocrine organ relevant to diabetes

    USDA-ARS?s Scientific Manuscript database

    There are well-established associations between diabetes and fracture risk and yet the mechanism underlying these associations are controversial. Guided by a series of mouse studies, a specific form of the bone protein, osteocalcin, was proposed to be the mechanistic link between these two chronic d...

  4. The Effects of Tocotrienol and Lovastatin Co-Supplementation on Bone Dynamic Histomorphometry and Bone Morphogenetic Protein-2 Expression in Rats with Estrogen Deficiency.

    PubMed

    Chin, Kok-Yong; Abdul-Majeed, Saif; Mohamed, Norazlina; Ima-Nirwana, Soelaiman

    2017-02-15

    Both tocotrienol and statins are suppressors of the mevalonate pathway. Supplementation of tocotrienol among statin users could potentially protect them against osteoporosis. This study aimed to compare the effects of tocotrienol and lovastatin co-supplementation with individual treatments on bone dynamic histomorphometric indices and bone morphogenetic protein-2 (BMP-2) gene expression in ovariectomized rats. Forty-eight female Sprague-Dawley rats were randomized equally into six groups. The baseline was sacrificed upon receipt. All other groups were ovariectomized, except for the sham group. The ovariectomized groups were administered orally daily with (1) lovastatin 11 mg/kg/day alone; (2) tocotrienol derived from annatto bean (annatto tocotrienol) 60 mg/kg/day alone; (3) lovastatin 11 mg/kg/day, and annatto tocotrienol 60 mg/kg/day. The sham and ovariectomized control groups were treated with equal volume of vehicle. After eight weeks of treatment, the rats were sacrificed. Their bones were harvested for bone dynamic histomorphometry and BMP-2 gene expression. Rats supplemented with annatto tocotrienol and lovastatin concurrently demonstrated significantly lower single-labeled surface, but increased double-labeled surface, mineralizing surface, mineral apposition rate and bone formation rate compared to individual treatments ( p < 0.05). There was a parallel increase in BMP-2 gene expression in the rats receiving combined treatment ( p < 0.05). The combination of annatto tocotrienol and lovastatin exerted either additively or synergistically on selected bone parameters. In conclusion, tocotrienol can augment the bone formation and mineralization in rats receiving low-dose statins. Supplementation of tocotrienol in statin users can potentially protect them from osteoporosis.

  5. The Effects of Tocotrienol and Lovastatin Co-Supplementation on Bone Dynamic Histomorphometry and Bone Morphogenetic Protein-2 Expression in Rats with Estrogen Deficiency

    PubMed Central

    Chin, Kok-Yong; Abdul-Majeed, Saif; Mohamed, Norazlina; Ima-Nirwana, Soelaiman

    2017-01-01

    Both tocotrienol and statins are suppressors of the mevalonate pathway. Supplementation of tocotrienol among statin users could potentially protect them against osteoporosis. This study aimed to compare the effects of tocotrienol and lovastatin co-supplementation with individual treatments on bone dynamic histomorphometric indices and bone morphogenetic protein-2 (BMP-2) gene expression in ovariectomized rats. Forty-eight female Sprague-Dawley rats were randomized equally into six groups. The baseline was sacrificed upon receipt. All other groups were ovariectomized, except for the sham group. The ovariectomized groups were administered orally daily with (1) lovastatin 11 mg/kg/day alone; (2) tocotrienol derived from annatto bean (annatto tocotrienol) 60 mg/kg/day alone; (3) lovastatin 11 mg/kg/day, and annatto tocotrienol 60 mg/kg/day. The sham and ovariectomized control groups were treated with equal volume of vehicle. After eight weeks of treatment, the rats were sacrificed. Their bones were harvested for bone dynamic histomorphometry and BMP-2 gene expression. Rats supplemented with annatto tocotrienol and lovastatin concurrently demonstrated significantly lower single-labeled surface, but increased double-labeled surface, mineralizing surface, mineral apposition rate and bone formation rate compared to individual treatments (p < 0.05). There was a parallel increase in BMP-2 gene expression in the rats receiving combined treatment (p < 0.05). The combination of annatto tocotrienol and lovastatin exerted either additively or synergistically on selected bone parameters. In conclusion, tocotrienol can augment the bone formation and mineralization in rats receiving low-dose statins. Supplementation of tocotrienol in statin users can potentially protect them from osteoporosis. PMID:28212283

  6. Transgenic Expression of Osteoactivin/gpnmb Enhances Bone Formation In Vivo and Osteoprogenitor Differentiation Ex Vivo.

    PubMed

    Frara, Nagat; Abdelmagid, Samir M; Sondag, Gregory R; Moussa, Fouad M; Yingling, Vanessa R; Owen, Thomas A; Popoff, Steven N; Barbe, Mary F; Safadi, Fayez F

    2016-01-01

    Initial identification of osteoactivin (OA)/glycoprotein non-melanoma clone B (gpnmb) was demonstrated in an osteopetrotic rat model, where OA expression was increased threefold in mutant bones, compared to normal. OA mRNA and protein expression increase during active bone regeneration post-fracture, and primary rat osteoblasts show increased OA expression during differentiation in vitro. To further examine OA/gpnmb as an osteoinductive agent, we characterized the skeletal phenotype of transgenic mouse overexpressing OA/gpnmb under the CMV-promoter (OA-Tg). Western blot analysis showed increased OA/gpnmb in OA-Tg osteoblasts, compared to wild-type (WT). In OA-Tg mouse femurs versus WT littermates, micro-CT analysis showed increased trabecular bone volume and thickness, and cortical bone thickness; histomorphometry showed increased osteoblast numbers, bone formation and mineral apposition rates in OA-Tg mice; and biomechanical testing showed higher peak moment and stiffness. Given that OA/gpnmb is also over-expressed in osteoclasts in OA-Tg mice, we evaluated bone resorption by ELISA and histomorphometry, and observed decreased serum CTX-1 and RANK-L, and decreased osteoclast numbers in OA-Tg, compared to WT mice, indicating decreased bone remodeling in OA-Tg mice. The proliferation rate of OA-Tg osteoblasts in vitro was higher, compared to WT, as was alkaline phosphatase staining and activity, the latter indicating enhanced differentiation of OA-Tg osteoprogenitors. Quantitative RT-PCR analysis showed increased TGF-β1 and TGF-β receptors I and II expression in OA-Tg osteoblasts, compared to WT. Together, these data suggest that OA overexpression has an osteoinductive effect on bone mass in vivo and stimulates osteoprogenitor differentiation ex vivo. © 2015 Wiley Periodicals, Inc.

  7. A novel three-dimensional bone chip organ culture.

    PubMed

    Kuttenberger, Johannes; Polska, Elzbieta; Schaefer, Birgit M

    2013-07-01

    The objective of this study was to develop a 3D bone chip organ culture model. We aimed to collect in vitro evidence of the ability of vital bone chips to promote new bone formation. We developed a 3D in vitro hypoxic bone chip organ culture model. Histology of the bone chips was performed before and after culture and immunohistochemistry after 3-week culture. The 3D culture supernatants were tested for the presence of pro-angiogenic growth factors, TGFβ1, GADPH, bone alkaline phosphatase, osteocalcin, osteonectin, osteopontin, bone sialoprotein and collagen type I. Histology after culture revealed bone chips in a matrix of fibrin remnants and a fibrous-appearing matter. Collagen type I- and IV-positive structures were also identified. Cells could be seen on the surface of the bone chips, with spindle-shaped cells bridging the bone chip particles. Pro-angiogenic growth factors and TGFβ1were detected in the 3D cell culture supernatants. The transcripts for osteocalcin, bone sialoprotein and collagen type I were revealed only via PCR. Our results indicate that bone chips in our 3D organ culture remain vital and may stimulate the growth of a bone-forming matrix. The use of autogenous bone chips for oral and maxillofacial bone augmentation procedures is widespread in clinical practice. The rationale for this is that if bone chips remain vital in vivo, they could provide an environment promoting new bone formation through growth factors and cells. This 3D culture method is an essential tool for investigating the behaviour of bone chips.

  8. [Bone mineral density, biochemical bone turnover markers and factors associated with bone health in young Korean women].

    PubMed

    Park, Young Joo; Lee, Sook Ja; Shin, Nah Mee; Shin, Hyunjeong; Kim, Yoo Kyung; Cho, Yunjung; Jeon, Songi; Cho, Inhae

    2014-10-01

    This study was done to assess the bone mineral density (BMD), biochemical bone turnover markers (BTMs), and factors associated with bone health in young Korean women. Participants were 1,298 women, ages 18-29, recruited in Korea. Measurements were BMD by calcaneus quantitative ultrasound, BTMs for Calcium, Phosphorus, Osteocalcin, and C-telopeptide cross-links (CTX), body composition by physical measurements, nutrients by food frequency questionnaire and psychosocial factors associated with bone health by self-report. The mean BMD (Z-score) was -0.94. 8.7% women had lower BMD (Z-score≤-2) and 14.3% women had higher BMD (Z-score≥0) than women of same age. BTMs were not significantly different between high-BMD (Z-score≥0) and low-BMD (Z-score<0) women. However, Osteocalcin and CTX were higher in women preferring caffeine intake, sedentary lifestyle and alcoholic drinks. Body composition and Calcium intake were significantly higher in high-BMD. Low-BMD women reported significantly higher susceptibility and barriers to exercise in health beliefs, lower bone health self-efficacy and promoting behaviors. Results of this study indicate that bone health of young Korean women is not good. Development of diverse strategies to intervene in factors such as exercise, nutrients, self-efficacy, health beliefs and behaviors, shown to be important, are needed to improve bone health.

  9. Analysis of fracture healing in osteopenic bone caused by disuse: experimental study.

    PubMed

    Paiva, A G; Yanagihara, G R; Macedo, A P; Ramos, J; Issa, J P M; Shimano, A C

    2016-03-01

    Osteoporosis has become a serious global public health issue. Hence, osteoporotic fracture healing has been investigated in several previous studies because there is still controversy over the effect osteoporosis has on the healing process. The current study aimed to analyze two different periods of bone healing in normal and osteopenic rats. Sixty, 7-week-old female Wistar rats were randomly divided into four groups: unrestricted and immobilized for 2 weeks after osteotomy (OU2), suspended and immobilized for 2 weeks after osteotomy (OS2), unrestricted and immobilized for 6 weeks after osteotomy (OU6), and suspended and immobilized for 6 weeks after osteotomy (OS6). Osteotomy was performed in the middle third of the right tibia 21 days after tail suspension, when the osteopenic condition was already set. The fractured limb was then immobilized by orthosis. Tibias were collected 2 and 6 weeks after osteotomy, and were analyzed by bone densitometry, mechanical testing, and histomorphometry. Bone mineral density values from bony calluses were significantly lower in the 2-week post-osteotomy groups compared with the 6-week post-osteotomy groups (multivariate general linear model analysis, P<0.000). Similarly, the mechanical properties showed that animals had stronger bones 6 weeks after osteotomy compared with 2 weeks after osteotomy (multivariate general linear model analysis, P<0.000). Histomorphometry indicated gradual bone healing. Results showed that osteopenia did not influence the bone healing process, and that time was an independent determinant factor regardless of whether the fracture was osteopenic. This suggests that the body is able to compensate for the negative effects of suspension.

  10. S-Ketoprofen Inhibits Tenotomy-Induced Bone Loss and Dynamics in Weanling Rats

    NASA Technical Reports Server (NTRS)

    Zeng, Q. Q.; Jee, W. S. S.; Ke, H. Z.; Wechter, W. J.

    1993-01-01

    The objects of this study were to determine whether S-ketoprofen, a non-steroidal anti-inflammatory drug (NSAID), can prevent immobilization (tenotomy)-induced bone loss in weanling rats. Forty five 4 week-old Sprague-Dawley female rats were either sham-operated or subjected to knee tenotomy and treated simultaneously with 0, 0.02, 0.1, 0.5 or 2.5 mg of S-ketoprofen/kg per day for 21 days. We then studied double-fluorescent labeled proximal tibial longitudinal sections and tibial shaft cross sections using static and dynamic histomorphometry. Less cancellous bone mass in proximal tibial metaphyses was found in tenotomized controls than in basal (36%) and sham-operated (54%) controls. This was due to the inhibition of age-related bone gain and induced bone loss due to increased bone resorption and decreased bone formation. S-ketoprofen prevented both the inhibition of age-related bone gain and the stimulation of bone loss at the 2.5 mg/kg per day dose level, while it only prevented bone loss at the 0.5 mg/kg dose levels. In cancellous bone, dynamic histomorphometry showed that S-ketoprofen prevented the tenotomy induced decrease in bone formation and increase in bone resorption. In the tibial shaft, tenotomy inhibited the enlargement of total tissue area by depressing periosteal bone formation, and thus inhibited age-related cortical bone gain. S-ketoprofen treatment did not prevent this change at all dose levels, but reduced marrow cavity area to increase cortical bone area at the 0.1, 0.5 and 2.5 mg/kg per dose levels compared to tenotomy controls. However, the cortical bone area in the 0.1 and 0.5 mg dose-treated treated tenotomy rats was still lower than in the age-related controls. S-ketoprofen also prevented the increase in endocortical eroded perimeter induced by tenotomy. In summary, tenotomy inhibited age-related bone gain and stimulated bone loss in cancellous bone sites, and only inhibited age-related bone gain in cortical bone sites. S-ketoprofen treatment at the highest dose levels prevented the changes in cancellous bone, and reduced marrow area to increase cortical bone in the tibial shafts.

  11. Local delivery of zoledronate from a poly (D,L-lactide)-Coating increases fixation of press-fit implants.

    PubMed

    Jakobsen, Thomas; Bechtold, Joan E; Søballe, Kjeld; Jensen, Thomas; Greiner, Stefan; Vestermark, Marianne T; Baas, Jørgen

    2016-01-01

    Early secure fixation of total joint replacements is crucial for long-term survival. Antiresorptive agents such as bisphosphonates have been shown to increase implant fixation. We investigated whether local delivery of zoledronate from poly-D, L-lactide (PDLLA)-coated implants could improve implant fixation and osseointegration. Experimental titanium implants were bilaterally inserted press-fit into the proximal tibiae of 10 dogs. On one side the implant was coated with PDLLA containing zoledronate. The contralateral implant was uncoated and used as control. Observation period was 12 weeks. Implant fixation was evaluated with histomorphometry and biomechanical push-out test. We found an approximately twofold increase in all biomechanical parameters when comparing data from the zoledronate group with their respective controls. Histomorphometry showed increased amount of preserved bone and increased bone formation around the zoledronate implants. This study indicates that local delivery of zoledronate from a PDDLA coating has the potential to increase implant fixation. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  12. Effects of 16 weeks of treatment with tibolone on bone mass and bone mechanical and histomorphometric indices in mature ovariectomized rats with established osteopenia on a low-calcium diet.

    PubMed

    Yoshitake, K; Yokota, K; Kasugai, Y; Kagawa, M; Sukamoto, T; Nakamura, T

    1999-09-01

    Tibolone is a synthetic steroid with tissue-specific estrogenic, progestogenic, and androgenic properties. The therapeutic effects of tibolone on bone mass and strength, bone metabolic markers, and indices of histomorphometry were investigated in ovariectomized (ovx) rats on a low (0.1%)-calcium diet in comparison with 17alpha-ethynylestradiol (EE) or 1alpha-hydroxyvitamin D3 [1alpha(OH)D3]. Tibolone (0.1-3 mg/kg/day), EE (0.1 mg/kg/day), or 1alpha(OH)D3 (0.5 microg/kg/day) was administered orally once a day for 16 weeks, starting 12 weeks after ovariectomy, when the bone mineral density (BMD) of lumbar vertebrae (L4-5) and femur (global, proximal, and distal regions) had already been decreased by the combination of ovariectomy and low dietary calcium. The BMD of the lumbar vertebrae and the femur were higher in the groups treated with tibolone, EE, or 1alpha(OH)D3 than in the ovx control group. The BMD of the mid-diaphysial regions of femur and tibia, which consist mainly of cortical bone, were decreased 28 weeks after ovariectomy in the ovx control group. The BMD of the mid-diaphysial femur was higher in the groups treated with 1alpha-(OH)D3, and the BMD of mid-diaphysial tibia was higher in the groups treated with tibolone or 1alpha(OH)D3 than in the ovx control group. Like BMD, the compressive strength of the vertebral body of L2, corrected for the volume of each individual vertebra tested, was higher in the groups treated with tibolone, EE, or 1alpha(OH)D3 than in the ovx control group. Trabecular bone volume and trabecular number were reduced 12 and 28 weeks after ovariectomy but there was no change in trabecular thickness. These reduced indices were increased in the groups treated with tibolone, EE, or 1alpha(OH)D3 when compared with the ovx control group. Tibolone or EE decreased serum levels of osteocalcin and bone alkaline phosphatase and urinary levels of deoxypyridinoline and pyridinoline compared with the ovx control group. Furthermore, tibolone or EE decreased the mineralizing surface and bone formation rate as well as the osteoclast surface and osteoclast numbers. 1Alpha(OH)D3, however, did not affect these serum and urinary parameters. These data suggest that tibolone suppresses the accelerated bone turnover induced by a combination of ovariectomy and low dietary calcium, and indicate that tibolone may be a potentially useful drug for the treatment of postmenopausal osteoporosis.

  13. Circadian and longitudinal variation of serum C-telopeptide, osteocalcin, and skeletal alkaline phosphatase in C3H/HeJ mice.

    PubMed

    Srivastava, A K; Bhattacharyya, S; Li, X; Mohan, S; Baylink, D J

    2001-10-01

    Inbred strains of mice are increasingly being used as an animal model to investigate skeletal disorders relevant to humans. In the bone field, one of the most convenient endpoints for evaluating genetic, physiological, or pharmaceutical perturbations is the use of biochemical markers. To apply biochemical markers in an effective manner, it is of key importance to establish the biological variation and appropriate sampling time. In this study, we evaluate two components: (i) circadian changes, and (ii) longitudinal variation for three serum markers, osteocalcin, C-telopeptide, and skeletal alkaline phosphatase (sALP), using 6-week-old C3H/HeJ (C3H) mice. To study circadian rhythms, the mice were randomly divided into eight groups of 15 mice each. Blood was collected at 3 h intervals, starting at 9:00 A.M. and continuing until 6:00 A.M. the next day. To determine whether circadian rhythm is intrinsically regulated or influenced by restricted food intake, it was also studied after a 12 h fasting period. Serum osteocalcin and C-telopeptide levels were measured by enzyme-linked immunoassay (ELISA) and skeletal alkaline phosphatase by a kinetic assay. The results demonstrated significant circadian variations in osteocalcin and C-telopeptide levels with a peak value between 0900 and 1200 h during daytime and a nadir between 15:00 and 18:00 h. The peak levels of C-telopeptide and osteocalcin were 26%-66% higher as compared with 24 h mean values. The pattern of the circadian variation of C-telopeptide and osteocalcin was similar in female and male animals and was not significantly affected by restricted food intake. The sALP levels were only marginally affected by the circadian rhythm. Longitudinal variations, expressed as coefficient of variation (CV), for osteocalcin, C-telopeptide, and sALP concentrations were 17%, 14%, and 16%, respectively. In addition, the longitudinal variations were not significantly influenced by the time of blood collection in sALP and osteocalcin levels, whereas C-telopeptide levels showed significantly higher within-subject day-to-day variation in morning samples, as compared with blood samples collected in the afternoon. The results highlight the importance of: (i) the timing of sample collection for appropriate interpretation of the bone marker data; and (ii) using the appropriate number of samples based on the variance obtained herein.

  14. Assessment of the Genetic Variation in Bone Fracture Healing

    DTIC Science & Technology

    2004-10-01

    decrease in the expression of the major mRNA markers of differentiated osteogenic cells (osteocalcin type I collagen and bone sialoprotein ) (Kon et al., 9...and higher levels of bone sialoprotein which are seen both during cartilage hypertrophy and as a marker of early to mid osteogenic differentiation...Biochem 89(2):401-26. Barnes GL, Della Torre T, Sommer B, Young MF, Gerstenfeld LC. 2002. Transcriptional regulation restricting bone sialoprotein gene

  15. Comparative studies on bone structure in dairy cows with different feeding conditions.

    PubMed

    Pilmane, M; Zitare, I; Jemeljanovs, A

    2010-01-01

    The bone belongs to the dynamic tissues and its structure in domestic cows is still not completely understood in correlation to the impact of different food components. The aim of our work was a histomorphometrical and immunohistochemical research on bone morphology and factors influencing it in healthy dairy cows fed with self-produced grain and with rapeseed cakes. The bone of self-produced grain-fed cows demonstrated statistically significant difference in the number of osteocytes from the bone of rapeseed cakes-fed cows. The rapeseed cakes-fed cows didn't show any bone cell positive for BMP2/4, while FGFR1 increased significantly in their supportive tissues. The number of bFGF- and apoptosis-containing structures varied in cows of both groups. MMP2 expression showed statistically significant difference between both animals' groups with domination in bone of cows fed with self-produced grain. Defensin-, osteopontin- and osteocalcin-containing cells showed tendency to increase in bone of cows on rapeseed cakes diet. Conclusions. The rapeseed-fed cow's long bones demonstrate significant decrease of osteocytes per mm2 and selective increase of FGFR1, suggesting the (compensatory) growth stimulation in supportive tissue. The statistically significant selective absence of MMP2 with a slight tendency of increase in osteopontin and osteocalcin in rapeseed-fed cow's long bones indicates the persistence of seemingly still compensated qualitative changes in bone (beginning of disturbances in mineralization, metabolism etc.) proved also by a slight increase of the bone antimicrobial peptide.

  16. Reduced osteoblast activity in the mice lacking TR4 nuclear receptor leads to osteoporosis.

    PubMed

    Lin, Shin-Jen; Ho, Hsin-Chiu; Lee, Yi-Fen; Liu, Ning-Chun; Liu, Su; Li, Gonghui; Shyr, Chih-Rong; Chang, Chawnshang

    2012-06-07

    Early studies suggested that TR4 nuclear receptor might play important roles in the skeletal development, yet its detailed mechanism remains unclear. We generated TR4 knockout mice and compared skeletal development with their wild type littermates. Primary bone marrow cells were cultured and we assayed bone differentiation by alkaline phosphatase and alizarin red staining. Primary calvaria were cultured and osteoblastic marker genes were detected by quantitative PCR. Luciferase reporter assays, chromatin immunoprecipitation (ChIP) assays, and electrophoretic mobility shift assays (EMSA) were performed to demonstrate TR4 can directly regulate bone differentiation marker osteocalcin. We first found mice lacking TR4 might develop osteoporosis. We then found that osteoblast progenitor cells isolated from bone marrow of TR4 knockout mice displayed reduced osteoblast differentiation capacity and calcification. Osteoblast primary cultures from TR4 knockout mice calvaria also showed higher proliferation rates indicating lower osteoblast differentiation ability in mice after loss of TR4. Mechanism dissection found the expression of osteoblast markers genes, such as ALP, type I collagen alpha 1, osteocalcin, PTH, and PTHR was dramatically reduced in osteoblasts from TR4 knockout mice as compared to those from TR4 wild type mice. In vitro cell line studies with luciferase reporter assay, ChIP assay, and EMSA further demonstrated TR4 could bind directly to the promoter region of osteocalcin gene and induce its gene expression at the transcriptional level in a dose dependent manner. Together, these results demonstrate TR4 may function as a novel transcriptional factor to play pathophysiological roles in maintaining normal osteoblast activity during the bone development and remodeling, and disruption of TR4 function may result in multiple skeletal abnormalities.

  17. Combination therapy with ONO-KK1-300-01, a cathepsin K inhibitor, and parathyroid hormone results in additive beneficial effect on bone mineral density in ovariectomized rats.

    PubMed

    Ochi, Yasuo; Yamada, Hiroyuki; Mori, Hiroshi; Kawada, Naoki; Tanaka, Makoto; Imagawa, Akira; Ohmoto, Kazuyuki; Kawabata, Kazuhito

    2016-01-01

    This study examined the effects of a novel cathepsin K inhibitor, ONO-KK1-300-01 (KK1-300), used concurrently with parathyroid hormone (PTH) in ovariectomized (OVX) rats. KK1-300 (3 mg/kg, twice daily), alendronate (1 mg/kg, once daily) or vehicle were orally administered to OVX rats for 56 days, starting the day after ovariectomy, followed by combination treatment with or without PTH (3 μg/kg, subcutaneously three times a week) for another 28 days. OVX control animals exhibited a significant increase in both bone resorption (urinary deoxypyridinoline; DPD) and formation markers (serum osteocalcin) as well as microstructural changes associated with decreased bone mineral density (BMD). Combination treatment with KK1-300 and PTH significantly decreased urinary DPD and increased serum osteocalcin, indicating a sustained beneficial effect compared to the effect of each mono-therapy. On the other hand, combination therapy with alendronate and PTH weakened the PTH-induced increase in osteocalcin. In proximal tibia, combination treatment with KK1-300 and PTH increased BMD to a level significantly higher than that achieved following single treatment with KK1-300 or PTH alone. On the other hand, combination treatment with alendronate and PTH failed to produce any significant additive effect on BMD following single treatment with alendronate or PTH alone. Microstructural analysis revealed that the PTH-induced increase in bone formation (MS/BS and BFR/BS) was fully maintained following combination treatment with KK1-300 and PTH, but not following combination treatment with alendronate and PTH. These findings indicate that KK1-300, unlike alendronate, has an additive effect on the preventive action of PTH on bone loss in OVX rats.

  18. Low bone mineral mass is associated with decreased bone formation and diet in girls with Rett syndrome.

    PubMed

    Motil, Kathleen J; Barrish, Judy O; Neul, Jeffrey L; Glaze, Daniel G

    2014-09-01

    The aim of the present study was to characterize biomarkers of bone turnover and their relation with bone mineral mass in a cross-sectional cohort of girls with Rett syndrome (RTT) and to examine the role of dietary, biochemical, hormonal, and inflammatory factors on bone mineral mass and bone biomarkers in this disorder. Total body bone mineral content (BMC) and bone mineral density (BMD) were determined by dual-energy x-ray absorptiometry. Dietary nutrient intakes were determined from 3-day food records. Biomarkers of bone turnover, bone metabolites, vitamin D metabolites, hormones, and inflammatory markers were measured by standard clinical laboratory methods. Serum osteocalcin, bone alkaline phosphatase, and C-telopeptide showed significant inverse relations with age in the RTT cohort. Mean osteocalcin concentrations were significantly lower and mean bone alkaline phosphatase concentrations were significantly higher for individual age groups in the RTT cohort than mean values for their respective age ranges in the reference population. Significant inverse associations were identified between urinary calcium losses, expressed as calcium:creatinine ratios, and total body BMC and BMD z scores. Dietary protein, calcium, and phosphorus intakes, expressed as a proportion of Dietary Reference Intakes for age and sex, showed significant positive associations with total body BMD z scores. The present study suggests decreased bone formation instead of increased bone resorption may explain in part the deficits in bone mineral mass in RTT and that attention to the adequacy of dietary protein, calcium, and phosphorus intakes may offer an opportunity to improve bone health in RTT.

  19. Accelerated Tumor Cell Death by Angiogenic Modifiers

    DTIC Science & Technology

    2004-08-01

    factors; extracellular matrix; 3-D cell culture; cancer metastasis Running title: Tumor-Stroma Interaction Abbreviations: BSP, bone sialoprotein ; ECM...such as osteocalcin (OC), bone sialoprotein (BSP), osteopontin (OPN), osteonectin (ON or SPARC), 18 osteoprotegerin (OPG), PTHrP, M-CSF, RANK and...Waltregny, D., Bellahcene, A., Van Riet, I., Fisher, L. W., Young, M., Fernandez, P. and et al. Prognostic value of bone sialoprotein expression in

  20. Canola and hydrogenated soybean oils accelerate ectopic bone formation induced by implantation of bone morphogenetic protein in mice.

    PubMed

    Hashimoto, Yoko; Mori, Mayumi; Kobayashi, Shuichiro; Hanya, Akira; Watanabe, Shin-Ichi; Ohara, Naoki; Noguchi, Toshihide; Kawai, Tatsushi; Okuyama, Harumi

    2014-01-01

    Canola oil (Can) and hydrogenated soybean oil (H2-Soy) are commonly used edible oils. However, in contrast to soybean oil (Soy), they shorten the survival of stroke-prone spontaneously hypertensive (SHRSP) rats. It has been proposed that the adverse effects of these oils on the kidney and testis are caused at least in part by dihydro-vitamin K (VK) 1 in H2-Soy and unidentified component(s) in Can. Increased intake of dihydro-VK1 is associated with decreased tissue VK2 levels and bone mineral density in rats and humans, respectively. The aim of the present study was to determine the effects of these oils on bone morphogenetic protein (BMP)-induced ectopic bone formation, which is promoted by VK2 deficiency, in relation to the role of VK in the γ-carboxylation of osteocalcin and matrix Gla protein. A crude extract of BMPs was implanted into a gap in the fascia of the femoral muscle in 5-week-old mice maintained on a Soy, Can, or H2-Soy diet. Newly formed bone volume, assessed by three-dimensional X-ray micro-computed tomography and three-dimensional reconstruction imaging for bone, was 4-fold greater in the Can and H2-Soy groups than in the Soy group. The plasma carboxylated osteocalcin (Gla-OC) and total OC (Gla-OC plus undercarboxylated osteocalcin [Glu-OC]) levels were significantly lower in the Can group than in the Soy group ( p < 0.05). However, these levels did not significantly differ between the H2-Soy and Soy groups. The plasma Gla-OC/Glu-OC ratio in the Can and H2-Soy groups was significantly lower (in Can; p = 0.044) or was almost significantly lower (in H2-Soy; p = 0.053) than that in the Soy group. In conclusion, Can and H2-Soy accelerated BMP-induced bone formation in mice to a greater extent than Soy. Further research is required to evaluate whether the difference in accelerated ectopic bone formation is associated with altered levels of VK2 and VK-dependent protein(s) among the three dietary groups.

  1. Association of Blood Biomarkers of Bone Turnover in HIV-1 Infected Individuals Receiving Anti-Retroviral Therapy (ART)

    PubMed Central

    Aziz, Najib; Butch, Anthony W; Quint, Joshua J; Detels, Roger

    2015-01-01

    Objective To evaluate the association of bone turnover biomarkers with blood levels of alkaline phosphatase (ALP), bone-specific alkaline phosphatase (BAP), osteocalcin (OC), tartrate-resistant acid phosphatase (TRAP), parathyroid hormone (PTH), and other blood markers in HIV-1 infected men receiving anti-retroviral therapy (ART). Advances in the treatment of HIV-1 infection have extended the life span of HIV-1 infected individuals. However, these advances may come at the price of metabolic side effects and bone disorders, including premature osteopenia, osteoporosis and osteonecrosis. Methods Analyses of Ostase BAP, osteocalcin, and TRAP in blood were measured in three groups of MACS participants: 35 HIV-1 infected men on ART (A); 35 HIV-1- infected men not on ART (B); and 34 HIV-1 uninfected men (C). Results The mean and standard deviation results for groups A, B, and C were 19.7 ± 6.56, 17.2 ± 3.96, and 16.9 ± 5.78 for ostase BAP; 7.9 ± 9.53, 8.5 ± 8.30, and 5.5 ± 1.65 for osteocalcin; and 3.9 ± 1.04, 3.1 ± 0.81, and 2.5 ± 0.59 for TRAP, respectively. Simple and multivariate analyses showed significant differences in mean TRAP and BAP concentrations between the three groups. In addition strong correlations between blood levels of Ostase BAP and TRAP (r=0.570, p=0.0004), and between blood levels of Ostase BAP and PTH (r=0.436, P=0.0098) for HIV-1 infected men on ART were observed. Conclusion New strategies for measurement of blood and urine biochemical markers of bone formation and resorption during bone turnover can be useful for clinical monitoring of treatment of HIV-1 infected patients. Recently developed methods for measuring serum levels of TRAP and Ostase BAP represent superior laboratory tools for assessing the hyperactivity of osteoclasts, osteoblasts and bone loss in HIV-1 infected individuals receiving ART. Measurements of TRAP and BAP as bone turnover biomarkers are economical and are important for monitoring bone metabolism during ART and the need for osteoporosis treatment. PMID:25705563

  2. Osteocalcin protects pancreatic beta cell function and survival under high glucose conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kover, Karen, E-mail: kkover@cmh.edu; University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108; Yan, Yun

    Diabetes is characterized by progressive beta cell dysfunction and loss due in part to oxidative stress that occurs from gluco/lipotoxicity. Treatments that directly protect beta cell function and survival in the diabetic milieu are of particular interest. A growing body of evidence suggests that osteocalcin, an abundant non-collagenous protein of bone, supports beta cell function and proliferation. Based on previous gene expression data by microarray, we hypothesized that osteocalcin protects beta cells from glucose-induced oxidative stress. To test our hypothesis we cultured isolated rat islets and INS-1E cells in the presence of normal, high, or high glucose ± osteocalcin for up tomore » 72 h. Oxidative stress and viability/mitochondrial function were measured by H{sub 2}O{sub 2} assay and Alamar Blue assay, respectively. Caspase 3/7 activity was also measured as a marker of apoptosis. A functional test, glucose stimulated insulin release, was conducted and expression of genes/protein was measured by qRT-PCR/western blot/ELISA. Osteocalcin treatment significantly reduced high glucose-induced H{sub 2}O{sub 2} levels while maintaining viability/mitochondrial function. Osteocalcin also significantly improved glucose stimulated insulin secretion and insulin content in rat islets after 48 h of high glucose exposure compared to untreated islets. As expected sustained high glucose down-regulated gene/protein expression of INS1 and BCL2 while increasing TXNIP expression. Interestingly, osteocalcin treatment reversed the effects of high glucose on gene/protein expression. We conclude that osteocalcin can protect beta cells from the negative effects of glucose-induced oxidative stress, in part, by reducing TXNIP expression, thereby preserving beta cell function and survival. - Highlights: • Osteocalcin reduces glucose-induced oxidative stress in beta cells. • Osteocalcin preserves beta cell function and survival under stress conditions. • Osteocalcin reduces glucose-induced TXNIP expression in beta cells.« less

  3. Low Bone Mineral Mass Is Associated with Decreased Bone Formation and Diet in Females with Rett Syndrome

    PubMed Central

    Motil, Kathleen J.; Barrish, Judy O.; Neul, Jeffrey L.; Glaze, Daniel G.

    2014-01-01

    Objective To characterize biomarkers of bone turnover and their relation with bone mineral mass in a cross-sectional cohort of females with Rett syndrome (RTT) and to examine the role of dietary, biochemical, hormonal, and inflammatory factors on bone mineral mass and bone biomarkers in this disorder. Methods Total body bone mineral content (BMC) and density (BMD) were determined by dual-energy x-ray absorptiometry. Dietary nutrient intakes were determined from 3-day food records. Biomarkers of bone turnover, bone metabolites, vitamin D metabolites, hormones, and inflammatory markers were measured by standard clinical laboratory methods. Results Serum osteocalcin, bone alkaline phosphatase, and C-telopeptide showed significant inverse relations with age in the RTT cohort. Mean osteocalcin concentrations were significantly lower and mean bone alkaline phosphatase concentrations were significantly higher for individual age groups in the RTT cohort than mean values for their respective age ranges in the reference population. Significant inverse associations were identified between urinary calcium losses, expressed as calcium:creatinine ratios, and total body BMC and BMD z-scores. Dietary protein, calcium, and phosphorus intakes, expressed as a proportion of Dietary Reference Intakes for age and gender, showed significant positive associations with total body BMD z-scores. Conclusion This study suggests decreased bone formation rather than increased bone resorption may explain in part the deficits in bone mineral mass in RTT and that attention to the adequacy of dietary protein, calcium and phosphorus intakes may offer an opportunity to improve bone health in RTT. PMID:25144778

  4. The effect of a short-term delay of puberty on trabecular bone mass and structure in female rats: A texture-based and histomorphometric analysis.

    PubMed Central

    Yingling, Vanessa R; Xiang, Yongqing; Raphan, Theodore; Schaffler, Mitchell; Koser, Karen; Malique, Rumena

    2007-01-01

    Accrual of bone mass and strength during development is imperative in order to reduce the risk of fracture later in life. Although delayed pubertal onset is associated with an increased incidence of stress fracture, evidence supports the concept of “catch up” growth. It remains unclear if deficits in bone mass associated with delayed puberty have long term effects on trabecular bone structure and strength. The purpose of this study was to use texture-based analysis and histomorphometry to investigate the effect of a delay in puberty on trabecular bone mass and structure immediately post-puberty and at maturity in female rats. Forty-eight female Sprague Dawley rats (25 days) were randomly assigned to one of four groups; 1) short-term control (C-ST), 2) long-term control (C-LT), 3) short-term GnRH antagonist (G-ST) and 4) long-term GnRH antagonist (G-LT). Injections of either saline or gonadotropin-releasing hormone antagonist (GnRH-a) (100 μg/day) (Cetrotide™, Serono, Inc) were given intraperitoneally for 18 days (day 35–42) to both ST and LT. The ST groups were sacrificed after the last injection (day 43) and the LT groups at 6 months of age. Pubertal and gonadal development was retarded by the GnRA antagonist injections as indicated by a delay in vaginal opening, lower ovarian and uterine weights and suppressed estradiol levels in the short-term experimental animals (G-ST). Delayed puberty caused a transient reduction in trabecular bone area as assessed by histomorphometry. Specifically, the significant deficit in bone area resulted from a decreased number of trabecula and an increase in trabecular separation. Texture analysis, a new method to assess bone density and structural anisotropy, correlated well with the standard histomorphometry and measured significant deficits in the density measure (MDensity) in the G-ST group that remained at maturity (6 months). The texture energy deficit in the G-ST group was primarily in the 0° orientation (−13.2 %), which measures the longitudinal trabeculae in the proximal tibia. However, the deficit in the G-LT group was in the 45° and 135° orientations. These results suggest that any “catch-up” growth following the cessation of the GnRH-antagonist injection protocol may be directed in trabeculae oriented perpendicular to 0° at the expense of trabeculae in other orientations. PMID:16979963

  5. Maintaining Restored Bone with Bisphoshonate in the Ovariectomized Rat Skeleton: Dynamic Histomorphometry of Changes in Bone Mass

    NASA Technical Reports Server (NTRS)

    Jee, W. S. S.; Tang, L.; Ke, H. Z.; Setterberg, R. B.; Kimmel, D. B.

    1993-01-01

    This experiment contains the crucial data for the Lose, Restore and Maintain (LRM) concept, a practical approach for reversing existing osteoporosis. The LRM concept uses ovariectomy (ox) to lose bone, an anabolic agent to restore bone mass and then switches to an anti-resorptive agent to maintain bone mass. We ox'd or sham-ox'd rats for 150 days (Loss Phase), treated them with 6 mg PGE2/kg/d for 75 days to restore lost cancellous bone mass (Restore Phase) and then stopped PGE2 treatment and began treatment with 1 or 5 micro-g/kg Risedronate, a bisphosphonate twice a week for 60 days (Maintain Phase). During the Loss Phase, cancellous bone volumes of the proximal tibial metaphysis (PTM) in the ox'd rat fell to 19% of initial controls. During the Restore Phase, the PTM bone volume in ox'd rats doubled. However, when PGE2 treatment was stopped, the PGE2-induced cancellous bone disappeared. In contrast, 5 micro-g of Risedronate inhibited the bone loss and maintained it at the PGE2 treatment level. The key dynamic histomorphometry value for the restore (R) and maintenance (M) phases was the ratio of bone formation to resorption rates. The ratio was elevated to 5.8 in the R phase and depressed to 0.4 for no and 1 micro-g Risedronate treated M phase and to a ratio of near unity of 1.1 for the 5 micro-g Risedronate treatment. These findings indicate that we were successful in maintaining the new PTM bone induced by PGE2 after discontinuing PGE2 by administering enough Risedronate, a resorption inhibitor. We concluded that the LRM concept is correct and such an approach should be considered when employing anabolic agents or growth factors in the treatment of osteoporosis. Continued use of an anabolic agent may not be appropriate because of cost, potential adverse side effects and a loss of efficacy.

  6. Maintaining Restored Bone with Bisphosphonate in the Ovariectomized Rat Skeleton: Dynamic Histomorphometry of Changes in Bone Mass

    NASA Technical Reports Server (NTRS)

    Jee, W. S. S.; Tang, L.; Ke, H. Z.; Setterberg, R. B.; Kimmel, D. B.

    1993-01-01

    This experiment contains the crucial data for the Lose, Restore and Maintain (LRM) concept, a practical approach for reversing existing osteoporosis. The LRM concept uses ovariectomy (ox) to lose bone, an anabolic agent to restore bone mass and then switches to an antiresorptive agent to maintain bone mass. We ox'd or sham-ox'd rats for 150 days (Loss Phase), treated them with 6 mg PGE(sub 2)kg/d for 75 days to restore lost cancellous bone mass (Restore Phase) and then stopped PGE(sub 2) treatment and began treatment with 1 or 5 micrograms/kg Risedronate, a bisphosphonate twice a week for 60 days (Maintain Phase). During the Loss Phase, cancellous bone volumes of the Proximal Tibial Metaphysis (PTM) in the ox'd rat fell to 19% of initial controls. During the Restore Phase, the PTM bone volume in ox'd rats doubled. However, when PGE(sub 2) treatment was stopped, the PGE(sub 2)-induced cancellous bone disappeared. In contrast, 5 miligrams of Risedronate inhibited the bone loss and maintained it at the PGE(sub 2) treatment level. The key dynamic histomorphometry value for the Restore (R) and Maintenance (M) phases was the ratio of bone formation to resorption rates. The ratio was elevated to 5.8 in the R phase and depressed to 0.4 for no and 1 miligram Risedronate treated M phase and to a ratio of near unity of 1.1 for the 5miligrams Risedronate treatment. These findings indicate that we were successful in maintaining the new PTM bone induced by PGE(sub 2) after discontinuing PGE(sub 2) by administering enough Risedronate, a resorption inhibitor. We concluded that the LRM concept is correct and such an approach should be considered when employing anabolic agents or growth factors in the treatment of osteoporosis. Continued use of an anabolic agent may not be appropriate because of cost, potential adverse side effects and a loss of efficacy.

  7. Comparing three novel endpoints for developmental osteotoxicity in the embryonic stem cell test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nieden, Nicole I. zur, E-mail: nicole.zurnieden@ucr.ed; Department of Cell Biology and Neuroscience and Stem Cell Center, University of California Riverside, Riverside, CA 92521; Fraunhofer Institute for Cell Therapy and Immunology, Perlickstrasse 1, 04103 Leipzig

    Birth defects belong to the most serious side effects of pharmaceutical compounds or environmental chemicals. In vivo, teratogens most often affect the normal development of bones, causing growth retardation, limb defects or craniofacial malformations. The embryonic stem cell test (EST) is one of the most promising models that allow the in vitro prediction of embryotoxicity, with one of its endpoints being bone tissue development. The present study was designed to describe three novel inexpensive endpoints to assess developmental osteotoxicity using the model compounds penicillin G (non-teratogenic), 5-fluorouracil (strong teratogen) and all-trans retinoic acid (bone teratogen). These three endpoints were: quantificationmore » of matrix incorporated calcium by (1) morphometric analysis and (2) measurement of calcium levels as well as (3) activity of alkaline phosphatase, an enzyme involved in matrix calcification. To evaluate our data, we have compared the concentration curves and resulting ID{sub 50}s of the new endpoints with mRNA expression for osteocalcin. Osteocalcin is an exclusive marker found only in mineralized tissues, is regulated upon compound treatment and reliably predicts the potential of a chemical entity acting as a bone teratogen. By comparing the new endpoints to quantitative expression of osteocalcin, which we previously identified as suitable to detect developmental osteotoxicity, we were ultimately able to illustrate IMAGE analysis and Ca{sup 2+} deposition assays as two reliable novel endpoints for the EST. This is of particular importance for routine industrial assessment of novel compounds as these two new endpoints may substitute previously used molecular read-out methods, which are often costly and time-consuming.« less

  8. Spaceflight has compartment- and gene-specific effects on mRNA levels for bone matrix proteins in rat femur

    NASA Technical Reports Server (NTRS)

    Evans, G. L.; Morey-Holton, E.; Turner, R. T.

    1998-01-01

    In the present study, we evaluated the possibility that the abnormal bone matrix produced during spaceflight may be associated with reduced expression of bone matrix protein genes. To test this possibility, we investigated the effects of a 14-day spaceflight (SLS-2 experiment) on steady-state mRNA levels for glyceraldehyde-3-phosphate dehydrogenase (GAPDH), osteocalcin, osteonectin, and prepro-alpha(1) subunit of type I collagen in the major bone compartments of rat femur. There were pronounced site-specific differences in the steady-state levels of expression of the mRNAs for the three bone matrix proteins and GAPDH in normal weight-bearing rats, and these relationships were altered after spaceflight. Specifically, spaceflight resulted in decreases in mRNA levels for GAPDH (decreased in proximal metaphysis), osteocalcin (decreased in proximal metaphysis), osteonectin (decreased in proximal and distal metaphysis), and collagen (decreased in proximal and distal metaphysis) compared with ground controls. There were no changes in mRNA levels for matrix proteins or GAPDH in the shaft and distal epiphysis. These results demonstrate that spaceflight leads to site- and gene-specific decreases in mRNA levels for bone matrix proteins. These findings are consistent with the hypothesis that spaceflight-induced decreases in bone formation are caused by concomitant decreases in expression of genes for bone matrix proteins.

  9. Tocotrienol supplementation in postmenopausal osteoporosis: evidence from a laboratory study.

    PubMed

    Muhammad, Norliza; Luke, Douglas Alwyn; Shuid, Ahmad Nazrun; Mohamed, Norazlina; Soelaiman, Ima Nirwana

    2013-10-01

    Accelerated bone loss that occurs in postmenopausal women has been linked to oxidative stress and increased free radicals. We propose the use of antioxidants to prevent and reverse postmenopausal osteoporosis. This study aimed to examine the effects of tocotrienol, a vitamin E analog, on bone loss due to estrogen deficiency. Our previous study showed that tocotrienol increased the trabecular bone volume and trabecular number in ovariectomized rats. In the current study, we investigated the effects of tocotrienol supplementation on various biochemical parameters in a postmenopausal osteoporosis rat model. A total of 32 female Wistar rats were randomly divided into four groups. The baseline group was sacrificed at the start of the study, and another group was sham operated. The remaining rats were ovariectomized and either given olive oil as a vehicle or treated with tocotrienol at a dose of 60 mg/kg body weight. After four weeks of treatment, blood was withdrawn for the measurement of interleukin-1 (IL1) and interleukin-6 (IL6) (bone resorbing cytokines), serum osteocalcin (a bone formation marker) and pyridinoline (a bone resorption marker). Tocotrienol supplementation in ovariectomized rats significantly reduced the levels of osteocalcin, IL1 and IL6. However, it did not alter the serum pyridinoline level. Tocotrienol prevented osteoporotic bone loss by reducing the high bone turnover rate associated with estrogen deficiency. Therefore, tocotrienol has the potential to be used as an anti-osteoporotic agent in postmenopausal women.

  10. Zinc deficiency reduces bone mineral density in the spine of young adult rats: a pilot study.

    PubMed

    Ryz, Natasha R; Weiler, Hope A; Taylor, Carla G

    2009-01-01

    The objective of this study was to investigate the effects of zinc deficiency initiated during adolescence on skeletal densitometry, serum markers of bone metabolism, femur minerals and morphometry in young adult rats. Ten-week-old male rats were fed a <1-mg Zn/kg diet (9ZD), a 5-mg Zn/kg diet (9MZD) or a 30-mg Zn/kg diet (9CTL) for up to 9 weeks. Analyses included bone mineral density, serum osteocalcin and C-terminal peptides of type I collagen, serum zinc, femur zinc, calcium and phosphorus, and femur morphometry. Bone mineral density was 14% lower in the spine of 9ZD, but was not altered in the whole body, tibia or femur, or in any of the aforementioned sites in 9MZD, compared to 9CTL. When adjusted for size, spine bone mineral apparent density was still 8% lower in 9ZD than 9CTL. Serum osteocalcin, a marker for bone formation, was approximately 33% lower in 9ZD compared to both 9MZD and 9CTL. The 9ZD and 9MZD had 57% lower femur zinc and 56-88% lower serum zinc concentrations compared to 9CTL. These findings indicate that severe zinc deficiency initiated during adolescence may have important implications for future bone health, especially with regards to bone consolidation in the spine. 2009 S. Karger AG, Basel.

  11. Vitamin K and bone health.

    PubMed

    Hamidi, Maryam S; Gajic-Veljanoski, Olga; Cheung, Angela M

    2013-01-01

    Vitamin K has been purported to play an important role in bone health. It is required for the gamma-carboxylation of osteocalcin (the most abundant noncollagenous protein in bone), making osteocalcin functional. There are 2 main forms (vitamin K1 and vitamin K2), and they come from different sources and have different biological activities. Epidemiologic studies suggest a diet high in vitamin K is associated with a lower risk of hip fractures in aging men and women. However, randomized controlled trials of vitamin K1 or K2 supplementation in white populations did not increase bone mineral density at major skeletal sites. Supplementation with vitamin K1 and K2 may reduce the risk of fractures, but the trials that examined fractures as an outcome have methodological limitations. Large well-designed trials are needed to compare the efficacies of vitamin K1 and K2 on fractures. We conclude that currently there is not enough evidence to recommend the routine use of vitamin K supplements for the prevention of osteoporosis and fractures in postmenopausal women. Copyright © 2013 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  12. Osteogenic differentiation of human mesenchymal bone marrow cells in silk scaffolds is regulated by nitric oxide.

    PubMed

    Damoulis, Petros D; Drakos, Dimitrios E; Gagari, Eleni; Kaplan, David L

    2007-11-01

    Bone marrow-derived mesenchymal stem cells (BMSC) are a powerful tool for tissue engineering and can be used in the regeneration of bone and other tissues. Nitric oxide (NO) produced by the endothelial NO synthase (eNOS) plays an important role in bone development and healing. We hypothesized that NO plays a role in osteogenic differentiation of BMSC cultured in three-dimensional silk scaffolds. eNOS protein was measured by Western Analysis and its activity was assessed by measuring nitrite in culture supernatants. Mineralization was evaluated through calcium deposition and the expression of genes associated with osteogenic differentiation (collagen I, RUNX2, and osteocalcin) was quantified using real-time RT-PCR. eNOS was consistently expressed with minor fluctuations, but NO production significantly increased at later time points (weeks 4 and 5). Addition of a competitive NOS inhibitor (L-NAME) resulted in a modest decrease in calcium deposition, which became statistically significant in week 5. This was preceded by a dramatic decrease in RUNX2 and osteocalcin expression in week 4. These results support our hypothesis and implicate NO as an important player in bone tissue engineering.

  13. The Effect of Titanium Surface Roughness on Growth, Differentiation, and Protein Synthesis of Cartilage and Bone Cells

    DTIC Science & Technology

    1996-05-01

    at San Antonio Supervising Professors: Barbara D. Boyan, Ph.D. David L. Cochran, D.D.S., Ph.D. Placement of endosseous dental implants requires the...titanium substratum was chosen for these studies since most medical and dental implants are fabricated from titanium The titanium was cut into uniform...electron microscopy to evaluate the histomorphometry of the implant-bone interface of various titanium and ceramic dental implants placed in dog mandibles

  14. Effects of physical activities that induce moderate external loading on bone metabolism in male athletes.

    PubMed

    Maïmoun, L; Mariano-Goulart, D; Couret, I; Manetta, J; Peruchon, E; Micallef, J P; Verdier, R; Rossi, M; Leroux, J L

    2004-09-01

    Sports characterized by little or moderate weight bearing or impact have a low osteogenic effect. However, the action of such sports on bone turnover remains unclear. The objective of this study was to determine the effect on bone remodelling of physical activities that induce moderate external loading on the skeleton. Thirty-eight male athletes aged 18-39 years (cyclists, n = 11; swimmers, n = 13; triathletes, n = 14) and 10 age-matched sedentary controls aged 22-35 years participated in the study. The study combined measurement of bone mineral density by dual-energy X-ray absorptiometry and bone turnover assessment from specific biochemical markers: serum bone-specific alkaline phosphatase, osteocalcin, urinary type I collagen C-telopeptide and calcium. Compared with the controls and swimmers, adjusted bone mineral density was higher (P < 0.05) in triathletes at the total proximal femur and lower limbs. No differences in bone mineral density were found between cyclists, swimmers and controls. Compared with controls, osteocalcin was higher (P < 0.05) in triathletes and swimmers and urinary type I collagen C-telopeptide was higher in swimmers only. Serum bone-specific alkaline phosphatase was lower (P < 0.05) in cyclists than in all other groups. In conclusion, an osteogenic effect was found only in triathletes, mainly at bone sites under high mechanical stress. Bone turnover differed in athletes compared with controls, suggesting that bone turnover may be sport-practice dependent. Despite some encouraging observations, it was not possible to show that changes in the bone remodelling process were sport-discipline dependent.

  15. Effect of adiponectin and sex steroid hormones on bone mineral density and bone formation markers in postmenopausal women with subclinical hyperthyroidism.

    PubMed

    Ahn, Ki Hoon; Lee, Seung Hyeun; Park, Hyun Tae; Kim, Tak; Hur, Jun Young; Kim, Young Tae; Kim, Sun Haeng

    2010-04-01

    The relationship between adiponectin and sex hormones with bone mineral density (BMD) and bone formation markers was investigated in postmenopausal women with subclinical hyperthyroidism (SCH). Seventy-five postmenopausal women were selected among the patients who participated in a health screening program in 2007. Thirty-seven control women with normal thyroid function were matched to 38 women with SCH by age, body mass index (BMI), and years since menopause (YSM). The associations between adiponectin and sex hormones with lumbar spine BMD and bone turnover markers were investigated. Adiponectin, testosterone (T; total and free forms), and thyroid-stimulating hormone were significantly different between the women with SCH and euthyroid. After adjusting for age, BMI, and YSM, free T (r = 0.351; P = 0.029) and estradiol (E2; r = -0.368; P = 0.024) had significant associations with bone alkaline phosphatase (B-ALP). Total T (r = 0.388; P = 0.021) and E2 (r = -0.376; P = 0.026) had significant associations with osteocalcin. However, there were no significant associations between adiponectin and sex hormones with the BMD levels in the SCH subjects. There were correlations between sex hormones with B-ALP and osteocalcin, but no associations between adiponectin and sex hormones with the lumbar spine BMD in postmenopausal SCH patients.

  16. Effects of pyrophosphate delivery in a peritoneal dialysis solution on bone tissue of apolipoprotein-E knockout mice with chronic kidney disease.

    PubMed

    Barreto, Fellype C; de Oliveira, Rodrigo B; Benchitrit, Joyce; Louvet, Loïc; Rezg, Raja; Poirot, Sabrina; Jorgetti, Vanda; Drüeke, Tilman B; Riser, Bruce L; Massy, Ziad A

    2014-11-01

    Vascular calcification (VC) is a risk factor for cardiovascular mortality in the setting of chronic kidney disease (CKD). Pyrophosphate (PPi), an endogenous molecule that inhibits hydroxyapatite crystal formation, has been shown to prevent the development of VC in animal models of CKD. However, the possibility of harmful effects of exogenous administration of PPi on bone requires further investigation. To this end, we examined by histomorphometry the bone of CKD mice after intraperitoneal PPi administration. After CKD creation or sham surgery, 10-week-old female apolipoprotein-E knockout (apoE(-/-)) mice were randomized to one non-CKD group or 4 CKD groups (n = 10-35/group) treated with placebo or three distinct doses of PPi, and fed with standard diet. Eight weeks later, the animals were killed. Serum and femurs were sampled. Femurs were processed for bone histomorphometry. Placebo-treated CKD mice had significantly higher values of osteoid volume, osteoid surface and bone formation rate than sham-placebo mice with normal renal function. Slightly higher osteoid values were observed in CKD mice in response to very low PPi dose (OV/BV, O.Th and ObS/BS) and, for one parameter measured, to high PPi dose (O.Th), compared to placebo-treated CKD mice. Treatment with PPi did not modify any other structural parameters. Mineral apposition rates, and other parameters of bone formation and resorption were not significantly different among the treated animal groups or control CKD placebo group. In conclusion, PPi does not appear to be deleterious to bone tissue in apoE(-/-) mice with CKD, although a possible stimulatory PPi effect on osteoid formation may be worth further investigation.

  17. The influence of corticosteroid treatment on the OPG/RANK/RANKL pathway and osteocalcin in patients with pemphigus

    PubMed Central

    Woźniacka, Anna; Torzecka, Jolanta D.

    2014-01-01

    Introduction Pemphigus is a rare autoimmune blistering disease, which requires prolonged administration of corticosteroids at high doses. Although this therapy improves the health and lives of patients, it may have various side effects, for example osteoporosis. Aim To assess the concentration of osteoprotegerin (OPG), the soluble receptor activator of nuclear factor-κβ ligand (sRANKL) and osteocalcin in patients with pemphigus. Material and methods The study comprised a group of 29 patients with pemphigus (17 women and 12 men) aged between 23 years and 75 years treated from 1994 to 2009 in the Department of Dermatology and Venereology, Medical University of Lodz, as well as 24 healthy volunteers matched appropriately in terms of gender and age. Results In patients with pemphigus, the mean osteoprotegerin concentration was up to 16.46% higher than in the control group. The average RANKL concentration in serum of patients with pemphigus was 26.88% higher. However, the patient group demonstrated a significantly lower concentration of osteocalcin by up to 18.03%. Conclusions Under corticosteroid treatment, RANKL, which is released by osteoblasts, links with the RANK specific osteoclast receptor and stimulates osteoclastogenesis. This reaction can be blocked by osteoprotegerin, which is a competitive inhibitor to the same receptor site. A decreased osteoblast activity stimulates bone loss. The reduced level of osteocalcin, which is regarded as a marker for bone formation, and a simultaneously elevated RANK level reveal the promotion of osteoclast proliferation in patients treated with corticosteroids. PMID:25395923

  18. Skeletal response to short-term weightlessness

    NASA Technical Reports Server (NTRS)

    Wronski, T. J.; Morey-Holton, E. R.

    1986-01-01

    Male Sprague Dawley rats were placed in orbit for 7 days aboard the space shuttle. Bone histomorphometry was performed in the long bones and lumbar vertebrae of flight rats and compared to data derived from ground based control rats. Trabecular bone mass was not altered during the first week of weightlessness. Strong trends were observed in flight rats for decreased periosteal bone formation in the tibial diaphysis, reduced osteoblast size in the proximal tibia, and decreased osteoblast surface and number in the lumbar vertebra. Histologic indices of bone resorption was relatively normal in flight rats. The results indicate that 7 day of weightlessness are not of sufficient duration to induce histologicaly detectable loss of trabecular bone in rats. However, cortical and trabecular bone formation appear to be diminished during the first week of space flight.

  19. Monocyte chemotactic protein-1 deficiency attenuates and high-fat diet exacerbates bone loss in mice with Lewis lung carcinoma.

    PubMed

    Yan, Lin; Nielsen, Forrest H; Sundaram, Sneha; Cao, Jay

    2017-04-04

    Bone loss occurs in obesity and cancer-associated complications including wasting. This study determined whether a high-fat diet and a deficiency in monocyte chemotactic protein-1 (MCP-1) altered bone structural defects in male C57BL/6 mice with Lewis lung carcinoma (LLC) metastases in lungs. Compared to non-tumor-bearing mice, LLC reduced bone volume fraction, connectivity density, trabecular number, trabecular thickness and bone mineral density and increased trabecular separation in femurs. Similar changes occurred in vertebrae. The high-fat diet compared to the AIN93G diet exacerbated LLC-induced detrimental structural changes; the exacerbation was greater in femurs than in vertebrae. Mice deficient in MCP-1 compared to wild-type mice exhibited increases in bone volume fraction, connectivity density, trabecular number and decreases in trabecular separation in both femurs and vertebrae, and increases in trabecular thickness and bone mineral density and a decrease in structure model index in vertebrae. Lewis lung carcinoma significantly decreased osteocalcin but increased tartrate-resistant acid phosphatase 5b (TRAP 5b) in plasma. In LLC-bearing mice, the high-fat diet increased and MCP-1 deficiency decreased plasma TRAP 5b; neither the high-fat diet nor MCP-1 deficiency resulted in significant changes in plasma concentration of osteocalcin. In conclusion, pulmonary metastasis of LLC is accompanied by detrimental bone structural changes; MCP-1 deficiency attenuates and high-fat diet exacerbates the metastasis-associated bone wasting.

  20. Effects of protein-rich supplementation and nandrolone on bone tissue after a hip fracture.

    PubMed

    Tengstrand, Birgitta; Cederholm, Tommy; Söderqvist, Anita; Tidermark, Jan

    2007-08-01

    Osteoporosis is a major health problem worldwide. Low weight is a major risk factor for low bone mass and fractures. The aim of this study was to investigate the effects on bone tissue of protein-rich supplementation alone or in combination with nandrolone decanoate in lean elderly women after a hip fracture. Sixty elderly women with BMI <24 kg/m(2) admitted to hospital due to a femoral neck fracture were randomised to a control group, to receive a protein-rich formula or to receive the same formula with an addition of nandrolone decanoate for 6 months. All patients received additional calcium and vitamin D. The effects after 6 and 12 months were measured by means of bone mineral density (BMD) using dual-energy X-ray absorptiometry (DXA), and with biochemical bone markers. Osteocalcin and C-terminal telopeptide of collagen-1 (CTX) were used to estimate bone formation and bone resorption, respectively. The analyses showed an increase in total body BMD at 6 and 12 months in patients who received protein-rich supplementation. Nandrolone decanoate did not appear to have any additional effect on BMD. Osteocalcin increased in all groups while no significant changes were found for CTX. The overall results of the study indicated that protein-rich supplementation given to lean elderly female hip fracture patients increased the total body BMD.

  1. Bone Area Histomorphometry.

    PubMed

    Andronowski, Janna M; Crowder, Christian

    2018-05-21

    Quantifying the amount of cortical bone loss is one variable used in histological methods of adult age estimation. Measurements of cortical area tend to be subjective and additional information regarding bone loss is not captured considering cancellous bone is disregarded. We describe whether measuring bone area (cancellous + cortical area) rather than cortical area may improve histological age estimation for the sixth rib. Mid-shaft rib cross-sections (n = 114) with a skewed sex distribution were analyzed. Ages range from 16 to 87 years. Variables included: total cross-sectional area, cortical area, bone area, relative bone area, relative cortical area, and endosteal area. Males have larger mean total cross-sectional area, bone area, and cortical area than females. Females display a larger mean endosteal area and greater mean relative measure values. Relative bone area significantly correlates with age. The relative bone area variable will provide researchers with a less subjective and more accurate measure than cortical area. © 2018 American Academy of Forensic Sciences.

  2. Histomorphometric evaluation of a calcium-phosphosilicate putty bone substitute in extraction sockets.

    PubMed

    Kotsakis, Georgios A; Joachim, Frederic P C; Saroff, Stephen A; Mahesh, Lanka; Prasad, Hari; Rohrer, Michael D

    2014-01-01

    The objective of this study was to evaluate bone regeneration in 24 sockets grafted with a calcium phosphosilicate putty alloplastic bone substitute. A core was obtained from 17 sockets prior to implant placement for histomorphometry at 5 to 6 months postextraction. Radiographic analysis during the same postextraction healing period showed radiopaque tissue in all sockets. Histomorphometric analysis revealed a mean vital bone content of 31.76% (± 14.20%) and residual graft content of 11.47% (± 8.99%) after a mean healing period of 5.7 months. The high percentage of vital bone in the healed sites in combination with its timely absorption rate suggest that calcium phosphosilicate putty can be a reliable choice for osseous regeneration in extraction sockets.

  3. [Osteogenic potential of bone marrow mesenchymal stem cells from ovariectomied osteoporotic rat].

    PubMed

    Li, Dong-ju; Ge, Dong-xia; Wu, Wen-chao; Wu, Jiang; Li, Liang

    2005-05-01

    To investigate the difference of osteogenic potential of bone marrow mesenchymal stem cells (MSCs) between healthy rats and osteoporotic rats. We established the animal model of osteoporosis by performing ovariectom on the 3-month-old female Sprague-Dawley rats. Bone marrow mesenchymal stem cells(MSCs) were isolated from the rats of control group and of ovariectomized (ovx) group by means of the density-gradient centrifugation method, and the 3rd-4th passage MSCs were used in all the experiments. The experiments comprised 4 groups: (1) Marrow mesenchymal stem cells control group (MSCs control group); (2) Marrow mesenchymal stem cells ovx group (MSCs ovx group); (3) Osteogenesis induction control group (OSI control group); (4) Osteogenesis induction ovx group (OSI ovx group). Cell cycle and proliferation index (PI) of MSCs were detected by flow cytometry. The expression of alkaline phosphatase (ALP) was detected by dynamics method with substrate of phosphoric acid para-Nitro benzene. The levels of osteocalcin were detected with the isotope labelling method. (1) PI of MSCs was lower in MSCs ovx group than in MSCs control group. (2) The expression of alkaline phosphatase (ALP) was much higher in OSI control group than in the MSCs control group; the expression of alkaline phosphatase (ALP) was much higher in the OSI control group than in OSI ovx group after 7-day and 14-day osteogenic induction. (3) The level of osteocalcin was much higher in the OSI control group than in the MSCs control group after 14-day, 21-day, 28-day osteogenic induction. The level of osteocalcin was much higher in the OSI control group than in the OSI ovx group. Both the proliferative potential and the osteogenic potential of bone marrow mesenchymal stem cells (MSCs) from the ovariectomized osteoporotic rat are decreased.

  4. ESWT and alendronate sodium demonstrate equal protective effects in osteoarthritis of the knee

    NASA Astrophysics Data System (ADS)

    Wang, Ching-Jen; Chou, Wen-Yi; Hsu, Shan-Ling; Huang, Chien-Yiu; Cheng, Jai-Hong

    2016-01-01

    This study compared the effects of extracorporeal shock wave therapy (ESWT) and alendronate sodium (alendronate) in osteoarthritis (OA) of rat knees. The control group was subjected to a sham surgery and did not receive either ESWT or alendronate treatment. The OA group underwent anterior cruciate ligament transection (ACLT) and medial meniscectomy (MM) surgery and did not receive either ESWT or alendronate. The ESWT group underwent ACLT and MM surgery and received ESWT after the surgery. The alendronate group received alendronate after ACLT and MM surgery. The evaluations included radiograph, bone mineral density (BMD), serum C-telopeptide collagen II (CTX-II), cartilage oligomeric protein (COMP), alkaline phosphatase and osteocalcin, histopathological examination and immunohistochemical analysis. Radiographs at 12 weeks showed pronounced OA changes in the OA group. The BMD values, CTX-II, COMP, alkaline phosphatase and osteocalcin showed no significant difference between ESWT and alendronate groups. In histopathology, the Mankin and Safranin O scores significantly increased in the OA, ESWT and alendronate groups, but without any significant difference between the ESWT and alendronate groups. In immunohistochemical analysis, the von Willebrand factor (vWF), vascular endothelial factor (VEGF), soluble vascular cell adhesion molecule (sVCAM), proliferating cell nuclear antigen (PCNA), bone morphogenetic protein 2 (BMP-2), and osteocalcin expressions in articular cartilage and subchondral bone showed a significant decrease in the OA group, but no difference was noted between the ESWT and alendronate groups. In conclusion, ESWT and alendronate sodium demonstrate equal protective effects from developing osteoarthritis of the knee in rats.

  5. Sclerostin distribution in children and adolescents with type 1 diabetes mellitus and correlation with bone metabolism and bone mineral density.

    PubMed

    Tsentidis, Charalampos; Gourgiotis, Dimitrios; Kossiva, Lydia; Marmarinos, Antonios; Doulgeraki, Artemis; Karavanaki, Kyriaki

    2016-06-01

    Sclerostin is an inhibitor of the Wnt/beta-catenin bone metabolic pathway. Increased sclerostin levels and reduced bone mineral density (BMD) have been documented in adult patients with diabetes mellitus (DM), predominantly in those with type 2 diabetes mellitus (T2DM). No relative data exist on childhood type 1 diabetes mellitus (T1DM). Our objective was to study plasma sclerostin in T1DM children and adolescents and controls and its correlations with metabolic bone markers and BMD. This was a cross-sectional study that was conducted at an outpatient clinical center. Forty T1DM children and adolescents were evaluated (mean ± SD age: 13.04 ± 3.53 yr, T1DM duration: 5.15 ± 3.33 yr), along with 40 healthy matched controls (age 12.99 ± 3.3 yr). Sclerostin, soluble receptor activator of nuclear factor-kappaB ligand (s-RANKL), osteoprotegerin, osteocalcin, C-telopeptide crosslinks, electrolytes, parathyroid hormone (PTH), and total 25(OH)D were measured. Lumbar and subcranial total body BMD were evaluated with dual energy X-ray absorptiometry (DXA). Sclerostin levels demonstrated a Gaussian distribution, with no significant difference between patients and controls (51.56 ± 12.05 vs. 50.98 ± 13.55 pmol/L, p = 0.84). Significantly lower values were found in girls and prepubertal children. Sclerostin values were significantly and gradually increased in children through pubertal Tanner stages 1-3, were reduced at stage 4 and increased again at pubertal stage 5. Sclerostin levels were positively correlated with logCTX (logarithm of C-terminal telopeptide crosslinks of type I collagen), logOsteocalcin (logarithm of Osteocalcin), magnesium, total body, and L1-L4 BMD z-score. T1DM patients had similar levels of sclerostin with controls. Sclerostin correlated with bone resorption and formation markers and also with bone mass indices, gender, and pubertal stage. The decrease in sclerostin values observed in pubertal stage 4 adolescents coincides with the concurrent growth spurt, and is consistent with sclerostin physiology as an inhibiting signal. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Inactivation of the Progesterone Receptor in Mx1+ Cells Potentiates Osteogenesis in Calvaria but Not in Long Bone.

    PubMed

    Zhong, Zhendong A; Sun, Weihua; Chen, Haiyan; Zhang, Hongliang; Lane, Nancy E; Yao, Wei

    2015-01-01

    The effect of progesterone on bone remains elusive. We previously reported that global progesterone receptor (PR) knockout mice displayed high bone mass phenotype, suggesting that PR influences bone growth and modeling. Recently, Mx1+ cells were characterized to be mesenchymal stem cell-like pluripotent Cells. The aim of this study was to evaluate whether the PR in Mx1+ cells regulates osteogenesis. Using the Mx1-Cre;mT/mG reporter mouse model, we found that the calvarial cells exhibited minimal background Mx1-Cre activity prior to Cre activation by IFNα treatment as compared to the bone marrow stromal cells. IFNα treatment significantly activated Mx1-Cre in the calvarial cells. When the PR gene was deleted in the Mx1-Cre;PR-flox calvarial cells in vitro, significantly higher levels of expression of osteoblast maturation marker genes (RUNX2, Osteocalcin, and Dmp1) and osteogenic potential were detected. The PR-deficient calvariae exhibited greater bone volume, especially in the males. Although Mx1-Cre activity could be induced on the bone surface in vivo, the Mx1+ cells did not differentiate into osteocytes in long bones. Bone volumes at the distal femurs and the bone turnover marker serum Osteocalcin were similar between the Mx1-Cre;PR-flox mutant mice and the corresponding wild types in both sexes. In conclusion, our data demonstrates that blocking progesterone signaling via PRs in calvarial Mx1+ cells promoted osteoblast differentiation in the calvaria. Mx1+ was expressed by heterogeneous cells in bone marrow and did not differentiate into osteocyte during long bone development in vivo. Selectively inactivating the PR gene in Mx1+ cells affected the membrane bone formation but did not affect peripheral skeletal homeostasis.

  7. Tocotrienol supplementation in postmenopausal osteoporosis: evidence from a laboratory study

    PubMed Central

    Muhammad, Norliza; Luke, Douglas Alwyn; Shuid, Ahmad Nazrun; Mohamed, Norazlina; Soelaiman, Ima Nirwana

    2013-01-01

    OBJECTIVE: Accelerated bone loss that occurs in postmenopausal women has been linked to oxidative stress and increased free radicals. We propose the use of antioxidants to prevent and reverse postmenopausal osteoporosis. This study aimed to examine the effects of tocotrienol, a vitamin E analog, on bone loss due to estrogen deficiency. Our previous study showed that tocotrienol increased the trabecular bone volume and trabecular number in ovariectomized rats. In the current study, we investigated the effects of tocotrienol supplementation on various biochemical parameters in a postmenopausal osteoporosis rat model. MATERIALS AND METHODS: A total of 32 female Wistar rats were randomly divided into four groups. The baseline group was sacrificed at the start of the study, and another group was sham operated. The remaining rats were ovariectomized and either given olive oil as a vehicle or treated with tocotrienol at a dose of 60 mg/kg body weight. After four weeks of treatment, blood was withdrawn for the measurement of interleukin-1 (IL1) and interleukin-6 (IL6) (bone resorbing cytokines), serum osteocalcin (a bone formation marker) and pyridinoline (a bone resorption marker). RESULTS: Tocotrienol supplementation in ovariectomized rats significantly reduced the levels of osteocalcin, IL1 and IL6. However, it did not alter the serum pyridinoline level. CONCLUSION: Tocotrienol prevented osteoporotic bone loss by reducing the high bone turnover rate associated with estrogen deficiency. Therefore, tocotrienol has the potential to be used as an anti-osteoporotic agent in postmenopausal women. PMID:24212841

  8. Decreased undercarboxylated osteocalcin in children with type 2 diabetes mellitus.

    PubMed

    Takaya, Junji; Tanabe, Yuko; Kuroyanagi, Yuichi; Kaneko, Kazunari

    2016-08-01

    Osteocalcin (OC) is a bone-specific protein secreted by osteoblasts and often used as a bone formation biomarker. OC undergoes post-translational carboxylation to yield carboxylated osteocalcin (Gla-OC) and undercarboxylated osteocalcin (uc-OC) molecules. The aim of this study was to explore the association between bone and glucose metabolism by evaluating OC, ionized cations, and markers of glucose metabolism in children with obesity and type 2 diabetes mellitus (DM2). The subjects were nine children with DM2 [six males, three females; age 15.7±4.1 years; duration of disease 3.2±1.2 years], 18 children with simple obesity [12 males, six females; age 12.6±4.1 years], and 12 controls [eight males, four females; age 12.3±3.2 years]. Serum Gla-OC and uc-OC levels were determined using an enzyme-linked immunosorbent assay (ELISA). Patients with DM2 (0.65±0.46 ng/mL), but not with obesity (1.11±0.55 ng/mL), had lower uc-OC levels than controls (1.25±0.49 ng/mL). Serum uc-OC was negatively correlated with mean serum glucose levels (r=-0.447, p=0.013) and hemoglobin A1c (HbA1c) (r=-0.455, p=0.012) in all subjects. Serum Gla-OC was correlated with serum alkaline phosphatase (r=0.601, p<0.001) and inorganic phosphorus (r=0.686, p<0.001), yet negatively correlated with age (r=-0.383, p=0.030). Mean serum ionized magnesium was lower in DM2 subjects than in controls. Mean serum ionized calcium was higher in obese subjects than in controls. In all subjects, mean serum ionized magnesium was negatively correlated with mean serum glucose levels. Osteoblast-derived protein OC, especially uc-OC, may have a role in the pathophysiology of diabetes by being associated with blood glucose homeostasis.

  9. Surface-modified functionalized polycaprolactone scaffolds for bone repair: in vitro and in vivo experiments.

    PubMed

    Jensen, Jonas; Rölfing, Jan Hendrik Duedal; Le, Dang Quang Svend; Kristiansen, Asger Albaek; Nygaard, Jens Vinge; Hokland, Lea Bjerre; Bendtsen, Michael; Kassem, Moustapha; Lysdahl, Helle; Bünger, Cody Eric

    2014-09-01

    A porcine calvaria defect study was carried out to investigate the bone repair potential of three-dimensional (3D)-printed poly-ε-caprolactone (PCL) scaffolds embedded with nanoporous PCL. A microscopic grid network was created by rapid prototyping making a 3D-fused deposition model (FDM-PCL). Afterward, the FDM-PCL scaffolds were infused with a mixture of PCL, water, and 1,4-dioxane and underwent a thermal-induced phase separation (TIPS) followed by lyophilization. The TIPS process lead to a nanoporous structure shielded by the printed microstructure (NSP-PCL). Sixteen Landrace pigs were divided into two groups with 8 and 12 weeks follow-up, respectively. A total of six nonpenetrating holes were drilled in the calvaria of each animal. The size of the cylindrical defects was h 10 mm and Ø 10 mm. The defects were distributed randomly using following groups: (a) NSP-PCL scaffold, (b) FDM-PCL scaffold, (c) autograft, (d) empty defect, (a1) NSP-PCL scaffold + autologous mononuclear cells, and (a2) NSP-PCL scaffold + bone morphogenetic protein 2. Bone volume to total volume was analyzed using microcomputed tomography (µCT) and histomorphometry. The µCT and histological data showed significantly less bone formation in the NSP-PCL scaffolds in all three variations after both 8 and 12 weeks compared to all other groups. The positive autograft control had significantly higher new bone formation compared to all other groups except the FDM-PCL when analyzed using histomorphometry. The NSP-PCL scaffolds were heavily infiltrated with foreign body giant cells suggesting an inflammatory response and perhaps active resorption of the scaffold material. The unmodified FDM-PCL scaffold showed good osteoconductivity and osseointegration after both 8 and 12 weeks. © 2013 Wiley Periodicals, Inc.

  10. Prostaglandin E2 Increased Rat Cortical Bone Mass When Administered Immediately Following Ovariectomy

    NASA Technical Reports Server (NTRS)

    Ke, Hua Zhu; Jee, Webster S.S.; Zeng, Qing Qiang; Li, Mei; Lin, Bai Yun

    1993-01-01

    To investigate the effects of ovariectomy and the simultaneous administration of prostaglandin E2 (PGE2) on rat tibial shaft cortical bone histomorphometry, thirty-five 3 month-old female Sprague-Dawley rats were either ovariectomized (OVX), or sham ovariectomy (sham-OVX). The OVX rats were divided into three groups and treated with 0, 1 and 6 mg PGE2/kg/day for 90 days. The double fluorescent labeled undecalcified tibial shaft cross sections (proximal to the tibiofibular junction) of all the subjects were used for histomorphometry analysis. No differences in cross-sectional area and cortical bone area were found between sham-OVX and OVX controls, but OVX increased marrow area, intracortical porosity area and endocortical eroded perimeter. Periosteal and endocortical bone formation rates decreased with aging yet OVX prevented these changes. These OVX-induced increases in marrow area and endocortical eroded perimeter were prevented by 1 mg PGE2/kg/day treatment and added bone to periosteal and endocortical surfaces and to the marrow cavity. At the 6 mg/kg/day dose level, PGE2-treated OVX rats increased total tissue area, cortical bone area, marrow trabmular bone area, minimal cortical width and intracortical porosity area, and decreased marrow area compared to basal, sham-OVX and OVX controls. In addition, periosteal bone formation was elevated in the 6 mg PGE2/kg/day-treated OVX rats compared to OVX controls. Endocortical eroded perimeter increased from basal and sham-OVX control levels, but decreased from OVX control levels in the 6 mg PGE2/kg/day-treated OVX rats. Our study confirmed that ovariectomy does not cause osteopenia in tibial shaft cortical bone in rats, but it does stimulate endocortical bone resorption and enlarges marrow area. The new findings from the present study demonstrate that PGE2 prevents the OVX-induced increases in endocortical bone resorption and marrow area and adds additional bone to periosteal and endocortical surfaces and to marrow cavity to increase total bone mass in the tibial shaft of OVX rats when given immediately following ovafiectomy.

  11. Short-term effects of growth hormone and insulin-like growth factor I on cancellous bone in rhesus macaque monkeys.

    PubMed

    Sass, D A; Jerome, C P; Bowman, A R; Bennett-Cain, A; Ginn, T A; LeRoith, D; Epstein, S

    1997-04-01

    The purpose of our study was to determine the effects of GH and insulin-like growth factor I (IGF-I) administration singly and in combination on vertebral, tibial, and femoral bone in aged female monkeys as well as the various treatment effects on serum hormone levels and osteocalcin gene expression. Twenty-one ovulating female monkeys (rhesus macaque), aged 16-20 yr (5-6 kg), were divided into four groups to receive the following treatment for 7 weeks via Alzet pumps inserted sc: A, eluant (control group); B, recombinant human IGF-I (rhIGF-I; 120 micrograms/kg.day); C) rhGH (100 micrograms/kg.day); D, combination of rhIGF-I (120 micrograms/kg.day) and rhGH (100 micrograms/kg.day). Serum was assayed serially for glucose, IGF-I, GH, and IGF-binding protein-3 levels. All groups received double labeling with calcein. On the day of death, the primates' second lumbar vertebrae, tibiae, and femora were carefully dissected, fixed in 70% ethanol, and subjected to histomorphometric analysis. Ribonucleic acid was extracted from contralateral tibiae for the purpose of osteocalcin gene expression analysis. Serum glucose was unaffected by treatment. Serum GH was significantly elevated in groups C and D, whereas serum IGF-I and IGFBP-3 were only significantly increased in group D. Histomorphometric analysis showed no significant differences or trends for bone volume in any treatment group. Bone formation rate, surface and/or bone volume referent were significantly higher in both groups treated with GH (C and D) in tibia and femur, with a similar trend in vertebrae. The increase in bone formation rate was due mainly to a significant increase in mineral apposition rate, but there was also an increase in tibial mineralizing surface by GH by factorial analysis (P < 0.05). There were significant treatment effects on osteoid surface and osteoclastic surface in femur in the combination treatment group vs. the controls. Osteocalcin gene expression analysis supported an enhanced expression in both groups treated with GH. These findings are consistent with a short term effect of GH to increase bone remodeling and predominantly osteoblastic activity in the appendicular skeleton. In contrast, other than an isolated increase in osteoclastic surface in femoral bone, IGF-I, when administered alone, was unable to significantly influence bone formation or resorption activity in this short term study.

  12. Exercise training in obese older adults prevents increase in bone turnover and attenuates decrease in hip BMD induced by weight loss despite decline in bone-active hormones*

    PubMed Central

    Shah, Krupa; Armamento-Villareal, Reina; Parimi, Nehu; Chode, Suresh; Sinacore, David R.; Hilton, Tiffany N.; Napoli, Nicola; Qualls, Clifford; Villareal, Dennis T.

    2011-01-01

    Weight-loss therapy to improve health in obese older adults is controversial because it causes further bone loss. Therefore, it is recommended that weight-loss therapy should include an intervention to minimize bone loss such as exercise training (ET). The purpose of this study was to determine the independent and combined effects of weight loss and ET on bone metabolism in relation to bone mineral density (BMD) in obese older adults. One-hundred-seven older (age >65 yrs) obese (BMI ≥30 kg/m2) adults were randomly assigned to a control group, diet group, exercise group, and diet-exercise group for 1 year. Body weight decreased in the diet (−9.6%) and diet-exercise (−9.4%) groups, not in the exercise (−1%) and control (−0.2%) groups (between-group P<.001). However, despite comparable weight loss, bone loss at the total hip was relatively less in the diet-exercise group (−1.1%) than in the diet group (−2.6%), whereas BMD increased in the exercise group (1.5%) (between-group P<.001) Serum C-terminal telopeptide (CTX) and osteocalcin concentrations increased in the diet group (31% and 24%) while they decreased in the exercise group (−13% and −15%) (between-group P<.001). In contrast, similar to the control group, serum CTX and osteocalcin concentrations did not change in the diet-exercise group. Serum procollagen propeptide concentrations decreased in the exercise group (−15%) compared with the diet group (9%) (P=.04). Serum leptin and estradiol concentrations decreased in the diet (−25% and −15%) and diet-exercise (−38% and −13%) groups, not in the exercise and control groups (between-group P=.001). Multivariate analyses revealed that changes in lean body mass (β=.33), serum osteocalcin (β= −.24), and 1-RM strength (β=.23) were independent predictors of changes in hip BMD (all P<.05). In conclusion, the addition of ET to weight-loss therapy among obese older adults prevents weight-loss-induced increase in bone turnover and attenuates weight-loss-induced reduction in hip BMD despite weight-loss-induced decrease in bone-active hormones. PMID:21786319

  13. Effects of omega-3 fatty acids on bone turnover markers in postmenopausal women: systematic review and meta-analysis.

    PubMed

    Shen, D; Zhang, X; Li, Z; Bai, H; Chen, L

    2017-12-01

    There is conflicting evidence regarding the effects of omega-3 fatty acids on bone turnover markers in postmenopausal women. Thus, we systematically reviewed the efficacy of omega-3 fatty acids by conducting a meta-analysis of available randomized controlled trials. PubMed, Embase, Cochrane Library and Scopus were searched in December 2016. The standardized mean difference (SMD) or weighted mean difference (WMD) and the corresponding 95% confidence intervals (CIs) were calculated using a fixed-effects model. Eight trials were included in the present meta-analysis. The pooled findings did not identify significant decreases in bone-specific alkaline phosphatase (SMD -0.08, 95% CI -0.29 to 0.12, p = 0.429) and collagen type I cross-linked C-telopeptide (WMD 0 ng/ml, 95% CI -0.04 to 0.04, p = 0.899). There was a significant decrease in osteocalcin (WMD -0.86 ng/ml, 95% CI -1.68 to -0.04, p = 0.040) as compared with control. Omega-3 fatty acids reduced postmenopausal women's serum osteocalcin. Further well-designed studies are needed to verify the effects of omega-3 fatty acids on bone mass density and other bone turnover markers in postmenopausal women. CRD42016053219 ( https://www.crd.york.ac.uk/PROSPERO/ ).

  14. Reduced proliferation and osteocalcin expression in osteoblasts of male idiopathic osteoporosis.

    PubMed

    Ruiz-Gaspà, Sílvia; Blanch-Rubió, Josep; Ciria-Recasens, Manuel; Monfort, Jordi; Tío, Laura; Garcia-Giralt, Natàlia; Nogués, Xavier; Monllau, Joan C; Carbonell-Abelló, Jordi; Pérez-Edo, Lluis

    2010-03-01

    Osteoporosis is characterized by low bone mineral density (BMD), resulting in increasing susceptibility to bone fractures. In men, it has been related to some diseases and toxic habits, but in some instances the cause of the primary--or idiopathic--osteoporosis is not apparent. In a previous study, our group compared histomorphometric measurements in cortical and cancellous bones from male idiopathic osteoporosis (MIO) patients to those of control subjects and found reduced bone formation without major differences in bone resorption. To confirm these results, this study analyzed the etiology of this pathology, examining the osteoblast behavior in vitro. We compared two parameters of osteoblast activity in MIO patients and controls: osteoblastic proliferation and gene expression of COL1A1 and osteocalcin, in basal conditions and with vitamin D(3) added. All these experiments were performed from a first-passage osteoblastic culture, obtained from osteoblasts that had migrated from the transiliac explants to the plate. The results suggested that the MIO osteoblast has a slower proliferation rate and decreased expression of genes related to matrix formation, probably due to a lesser or slower response to some stimulus. We concluded that, contrary to female osteoporosis, in which loss of BMD is predominantly due to increased resorption, low BMD in MIO seems to be due to an osteoblastic defect.

  15. Automated trabecular bone histomorphometry

    NASA Technical Reports Server (NTRS)

    Polig, E.; Jee, W. S. S.

    1985-01-01

    The toxicity of alpha-emitting bone-seeking radionuclides and the relationship between bone tumor incidence and the local dosimetry of radionuclides in bone are investigated. The microdistributions of alpha-emitting radionuclides in the trabecular bone from the proximal humerus, distal humerus, proximal ulna, proximal femur, and distal femur of six young adult beagles injected with Am-241 (three with 2.8 micro-Ci/kg and three with 0.9 micro-Ci/kg) are estimated using a computer-controlled microscope photometer system; the components of the University of Utah Optical Track Scanner are described. The morphometric parameters for the beagles are calculated and analyzed. It is observed that the beagles injected with 0.9 micro-Ci of Am-241/kg showed an increase in the percentage of bone and trabecular bone thickness, and a reduction in the width of the bone marrow space and surface/volume ratio. The data reveal that radiation damage causes abnormal bone structure.

  16. Skeletal unloading inhibits the in vitro proliferation and differentiation of rat osteoprogenitor cells

    NASA Technical Reports Server (NTRS)

    Kostenuik, P. J.; Halloran, B. P.; Morey-Holton, E. R.; Bikle, D. D.

    1997-01-01

    Loss of weight bearing in the growing rat decreases bone formation, osteoblast numbers, and bone maturation in unloaded bones. These responses suggest an impairment of osteoblast proliferation and differentiation. To test this assumption, we assessed the effects of skeletal unloading using an in vitro model of osteoprogenitor cell differentiation. Rats were hindlimb elevated for 0 (control), 2, or 5 days, after which their tibial bone marrow stromal cells (BMSCs) were harvested and cultured. Five days of hindlimb elevation led to significant decreases in proliferation, alkaline phosphatase (AP) enzyme activity, and mineralization of BMSC cultures. Differentiation of BMSCs was analyzed by quantitative competitive polymerase chain reaction of cDNA after 10, 15, 20, and 28 days of culture. cDNA pools were analyzed for the expression of c-fos (an index of proliferation), AP (an index of early osteoblast differentiation), and osteocalcin (a marker of late differentiation). BMSCs from 5-day unloaded rats expressed 50% less c-fos, 61% more AP, and 35% less osteocalcin mRNA compared with controls. These data demonstrate that cultured osteoprogenitor cells retain a memory of their in vivo loading history and indicate that skeletal unloading inhibits proliferation and differentiation of osteoprogenitor cells in vitro.

  17. Cortical bone is more sensitive to alcohol dose effects than trabecular bone in the rat.

    PubMed

    Maurel, Delphine B; Boisseau, Nathalie; Benhamou, Claude-Laurent; Jaffré, Christelle

    2012-10-01

    While chronic alcohol consumption is known to decrease bone mineral content (BMC), bone mineral density (BMD), and negatively modify trabecular bone microarchitecture, the impact of alcohol on cortical microarchitecture is still unclear. The aim of this study was to investigate the effects of various doses of alcohol on bone density, trabecular and cortical parameters and bone strength in rats. Forty-eight male Wistar rats were divided into four groups: control (C), alcohol 25% v/v (A25), alcohol 30% v/v (A30) and alcohol 35% v/v (A35). Rats in the alcohol groups were fed a solution composed of ethanol and water for 17 weeks while the control group drank only water. Bone quality and quantity were evaluated through the analysis of density, trabecular and cortical bone microarchitectural parameters, osteocalcin and N-Telopeptide concentrations and a 3-point bending test. Bone density along with trabecular and cortical thickness were lower in alcohol groups compared to C. BMD was lower in A35 vs. A30 and cortical thickness was lower in A35 vs. A25 and A30. Pore number was increased by alcohol and the porosity was greater in A35 compared to C. N-Telopeptide concentration was decreased in alcohol groups compared to control whereas no differences were observed in osteocalcin concentrations. Maximal energy to failure was lower in A25 and A35 compared to C. Chronic ethanol consumption increases cortical bone damage in rats and may have detrimental effects on bone strength. These effects were dose-dependent, with greater negative effects proportionate to greater alcohol doses. Copyright © 2011 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.

  18. Methoxsalen supplementation attenuates bone loss and inflammatory response in ovariectomized mice.

    PubMed

    Ham, Ju Ri; Choi, Ra-Yeong; Yee, Sung-Tae; Hwang, Yun-Ho; Kim, Myung-Joo; Lee, Mi-Kyung

    2017-12-25

    Methoxsalen (MTS) is a natural bioactive compound found in a variety of plants that has many known biofunctions; however, its effects on osteoporosis and related mechanisms are not clear. This study examined whether MTS exhibited preventive effects against postmenopausal osteoporosis. Female C3H/HeN mice were divided into four groups: Sham, ovariectomy (OVX), OVX with MTS (0.02% in diet), and OVX with estradiol (0.03 μg/day, s.c). After 6 weeks, MTS supplementation significantly increased femur bone mineral density and bone surface along with bone surface/total volume. MTS significantly elevated the levels of serum formation markers (estradiol, osteocalcin and bone-alkaline phosphatase) such as estradiol in OVX mice. Tartrate resistant acid phosphatase staining revealed that MTS suppressed osteoclast numbers and formation in femur tissues compared with the OVX group. Supplementation of MTS slightly up-regulated osteoblastogenesis-related genes (Runx-2, osterix, osteocalcin, and Alp) expression, whereas it significantly down-regulated inflammatory genes (Nfκb and Il6) expression in femur tissue compared with the OVX group. These results indicate that MTS supplementation effectively prevented OVX-induced osteoporosis via enhancement of bone formation and suppression of inflammatory response in OVX mice. Our study provides valid scientific information regarding the development and application of MTS as a food ingredient, a food supplement or an alternative agent for preventing postmenopausal osteoporosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. [Evaluation of bone structure and quality of ovariectomized rats by microcrack].

    PubMed

    Dai, Ru-chun; Liao, Er-yuan; Yang, Chuan

    2003-12-01

    To compare microcrack with bone mineral desity (BMD), bone histomorphometry and biomechanics parameters, and to investigate the potential of microcrack in the evaluation of bone biomechanical quality. Eight 10-month-old Sprague-Dawley rats were served as baseline controls, and 90 10-month-old rats were randomly divided into A, B, and C groups. Each group comprised ovariectomized (OVX), 17 beta-estradiol treated [EST, 10 micro/(kg x d)] and sham-operated (SHAM) subgroups. Rats from groups A,B and C were killed at the 3rd, 15th and 21st week post-operatively. Total body and lumbar vertebral BMD were measured before being killed, and BMD of isolated lumbar vertebrae and tibiae were measured after killing. Bone histomorphometry of the proximal end of isolated right tibia was performed,and compression test was carried out on the isolated 5th lumbar vertebra (L5). After fatigue damage, the isolated 4th lumbar vertebra was stained by en bloc basic fuchsin staining, and microcrack density (Cr. Dn) and microcrack surface density (Cr. SDn) were de- termined on the bone tissue sections. Bone parameters in each subgroup of rats were observed at different time. (1) At the 15th and 21st week post-operatively, multi-part BMD, Cr. Dn and Cr. SDn were higher than those at the 3rd week. (2) At the 15th week, trabecular separation (Tb. Sp) increased, trabecular number (Tb. N) decreased, and the maximum loading level and elastic modulus of vertebra reached the peak. (3) At the 3rd week, Tb. Sp, Cr. Dn and Cr. SDn in the OVX subgroup were greater than those in the EST subgroup, while the percentage of trabecular area (TbTr) in the OVX subgroup was lower than that of the EST and SHAM subgroups. No changes of BMDs and biomechanic parameters were observed among the three subgroups. (4) At the 15th week, multi-part BMD and maximum loading level in the OVX and EST subgroups were lower than those in the SHAM subgroup, while elastic modulus, bone histomorphometry parameters, Cr. Dn and Cr. SDn had no change among the three subgroups. (5) At the 21st week, multi-part BMDs, Tb. N and TbTr in the OVX subgroup were smaller than those in the EST and SHAM subgroups. Tb. Sp, bone formation rate, mineral apposition rate, percent labeled perimeter,Cr. Dn and Cr. SDn in the OVX subgroups were greater than those in the EST and SHAM subgroups. Maximum loading level and elastic modulus of vertebra in EST and OVX subgroups were lower than those in the SHAM subgroup. There were no significant differences in all of these parameters Microcrack can be regarded as an alterative between the EST and the SHAM subgroup. Conclusion parameter in the evaluation of bone biomechanical quality.

  20. Time-course changes in bone turnover markers and fat-soluble vitamins after obesity surgery.

    PubMed

    Granado-Lorencio, Fernando; Simal-Antón, Alberto; Salazar-Mosteiro, Javier; Herrero-Barbudo, Carmen; Donoso-Navarro, Encarnación; Blanco-Navarro, Inmaculada; Pérez-Sacristán, Belen

    2010-11-01

    The available evidence indicates a progressive increase in the incidence and severity of the deficiency of certain vitamins and related clinical conditions (i.e., metabolic bone disease). Because of the potential role of fat-soluble vitamins and carotenoids in bone metabolism, our aim was to assess the time-course changes of fat-soluble vitamins and serum markers of bone metabolism in candidates for obesity surgery and following two bariatric procedures. Sixty-five candidates for bariatric surgery and 150 serum samples after obesity surgery (i.e., Roux-en-Y gastric bypass, n = 85; biliopancreatic diversion, n = 65) were consecutively analyzed over a period of more than 2 years. Retinol, α- and γ-tocopherol, 25-OH-vitamin D3, β-cryptoxanthin, and β-carotene were analyzed by high-performance liquid chromatography. Calcium, phosphorus, alkaline phosphatase, intact parathyroid hormone (iPTH), osteocalcin, beta-crosslaps, and N-terminal peptide of procollagen I (P1NP) were determined using commercial kits. Retinol, β-cryptoxanthin, β-carotene, and α- and γ-tocopherol levels were significantly lower in post-surgery samples while osteocalcin, b-crosslaps, and P1NP were significantly increased. Along the time and regardless of the surgical procedure, P1NP, b-crosslaps, and osteocalcin increased during the first 12-24 months but declined afterward. 25-OH-vitamin D increased during the first 12 months and tended to decrease afterward while iPTH remained constant or decreased but increased after 1 year in both groups. Vitamin A remained constant but α- and γ-tocopherol, β-cryptoxanthin, and β-carotene decreased in both groups. In addition to the nutritional assessment, regular monitoring of bone markers seems necessary in these patients and the early introduction of preventive strategies (i.e., the use of antiresorptive agents) should be evaluated.

  1. Human parathyroid hormone-(1-38) restores cancellous bone to the immobilized, osteopenic proximal tibial metaphysis in rats

    NASA Technical Reports Server (NTRS)

    Ma, Y. F.; Jee, W. S.; Ke, H. Z.; Lin, B. Y.; Liang, X. G.; Li, M.; Yamamoto, N.

    1995-01-01

    The purpose of this study was to determine if human parathyroid hormone-(1-38) (hPTH(1-38)) can restore cancellous bone mass to the established osteopenic, immobilized proximal tibial metaphyses of female rats. The right hindlimbs of 6-month-old female Sprague-Dawley rats were immobilized by bandaging the right hindlimbs to the abdomen. After 30 days of right hindlimb immobilization, the rats were subcutaneously injected with 200 micrograms hPTH(1-38)/kg/day for 15 days (short-term treatment) or 75 days (longer-term treatment). Static bone histomorphometry was performed on the primary spongiosa, and both static and dynamic histomorphometry were performed on the secondary spongiosa of the right proximal tibial metaphyses. Immobilization for 30 days without treatment decreased trabecular bone area, number, and thickness in both primary and secondary spongiosa, and induced an increase in eroded perimeter and a decrease in tissue referent-bone formation rate in the secondary spongiosa. These changes reached a new steady state thereafter. Treatment with 200 micrograms hPTH(1-38)/kg/day for 15 days, beginning 30 days after immobilization, significantly increased trabecular bone area, thickness, and number in both primary and secondary spongiosa despite continuous immobilization when compared with controls. The short-term PTH treatment (15 days) significantly increased labeling perimeter, mineral apposition rate, and tissue referent-bone formation rate in the secondary spongiosa and stimulated longitudinal bone growth as compared with the controls. Longer PTH treatment (75 days) further increased trabecular bone area, thickness, and number as compared with controls and groups given short-term PTH treatment (15 days). The bone formation indices in the secondary spongiosa of the longer-term treated rats were lower than those of the short-term treated group, but they were still higher than those of controls. Our findings indicate that PTH treatment stimulates cancellous bone formation, and restores and adds extra cancellous bone to the established, disuse-osteopenic proximal tibial metaphysis of female rats with continuously immobilized right hindlimbs. These results suggest that PTH may be useful in treating disuse-induced osteoporosis in humans.

  2. Targeted Disruption of NF1 in Osteocytes Increases FGF23 and Osteoid With Osteomalacia-like Bone Phenotype.

    PubMed

    Kamiya, Nobuhiro; Yamaguchi, Ryosuke; Aruwajoye, Olumide; Kim, Audrey J; Kuroyanagi, Gen; Phipps, Matthew; Adapala, Naga Suresh; Feng, Jian Q; Kim, Harry Kw

    2017-08-01

    Neurofibromatosis type 1 (NF1, OMIM 162200), caused by NF1 gene mutations, exhibits multi-system abnormalities, including skeletal deformities in humans. Osteocytes play critical roles in controlling bone modeling and remodeling. However, the role of neurofibromin, the protein product of the NF1 gene, in osteocytes is largely unknown. This study investigated the role of neurofibromin in osteocytes by disrupting Nf1 under the Dmp1-promoter. The conditional knockout (Nf1 cKO) mice displayed serum profile of a metabolic bone disorder with an osteomalacia-like bone phenotype. Serum FGF23 levels were 4 times increased in cKO mice compared with age-matched controls. In addition, calcium-phosphorus metabolism was significantly altered (calcium reduced; phosphorus reduced; parathyroid hormone [PTH] increased; 1,25(OH) 2 D decreased). Bone histomorphometry showed dramatically increased osteoid parameters, including osteoid volume, surface, and thickness. Dynamic bone histomorphometry revealed reduced bone formation rate and mineral apposition rate in the cKO mice. TRAP staining showed a reduced osteoclast number. Micro-CT demonstrated thinner and porous cortical bones in the cKO mice, in which osteocyte dendrites were disorganized as assessed by electron microscopy. Interestingly, the cKO mice exhibited spontaneous fractures in long bones, as found in NF1 patients. Mechanical testing of femora revealed significantly reduced maximum force and stiffness. Immunohistochemistry showed significantly increased FGF23 protein in the cKO bones. Moreover, primary osteocytes from cKO femora showed about eightfold increase in FGF23 mRNA levels compared with control cells. The upregulation of FGF23 was specifically and significantly inhibited by PI3K inhibitor Ly294002, indicating upregulation of FGF23 through PI3K in Nf1-deficient osteocytes. Taken together, these results indicate that Nf1 deficiency in osteocytes dramatically increases FGF23 production and causes a mineralization defect (ie, hyperosteoidosis) via the alteration of calcium-phosphorus metabolism. This study demonstrates critical roles of neurofibromin in osteocytes for osteoid mineralization. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.

  3. PTH promotes allograft integration in a calvarial bone defect.

    PubMed

    Sheyn, Dmitriy; Cohn Yakubovich, Doron; Kallai, Ilan; Su, Susan; Da, Xiaoyu; Pelled, Gadi; Tawackoli, Wafa; Cook-Weins, Galen; Schwarz, Edward M; Gazit, Dan; Gazit, Zulma

    2013-12-02

    Allografts may be useful in craniofacial bone repair, although they often fail to integrate with the host bone. We hypothesized that intermittent administration of parathyroid hormone (PTH) would enhance mesenchymal stem cell recruitment and differentiation, resulting in allograft osseointegration in cranial membranous bones. Calvarial bone defects were created in transgenic mice, in which luciferase is expressed under the control of the osteocalcin promoter. The mice were given implants of allografts with or without daily PTH treatment. Bioluminescence imaging (BLI) was performed to monitor host osteprogenitor differentiation at the implantation site. Bone formation was evaluated with the aid of fluorescence imaging (FLI) and microcomputed tomography (μCT) as well as histological analyses. Reverse transcription polymerase chain reaction (RT-PCR) was performed to evaluate the expression of key osteogenic and angiogenic genes. Osteoprogenitor differentiation, as detected by BLI, in mice treated with an allograft implant and PTH was over 2-fold higher than those in mice treated with an allograft implant without PTH. FLI also demonstrated that the bone mineralization process in PTH-treated allografts was significantly higher than that in untreated allografts. The μCT scans revealed a significant increase in bone formation in allograft + PTH treated mice comparing to allograft + PBS treated mice. The osteogenic genes osteocalcin (Oc/Bglap) and integrin binding sialoprotein (Ibsp) were upregulated in the allograft + PTH treated animals. In summary, PTH treatment enhances osteoprogenitor differentiation and augments bone formation around structural allografts. The precise mechanism is not clear, but we show that infiltration pattern of mast cells, associated with the formation of fibrotic tissue, in the defect site is significantly affected by the PTH treatment.

  4. Diabetes, Biochemical Markers of Bone Turnover, Diabetes Control, and Bone

    PubMed Central

    Starup-Linde, Jakob

    2012-01-01

    Diabetes mellitus is known to have late complications including micro vascular and macro vascular disease. This review focuses on another possible area of complication regarding diabetes; bone. Diabetes may affect bone via bone structure, bone density, and biochemical markers of bone turnover. The aim of the present review is to examine in vivo from humans on biochemical markers of bone turnover in diabetics compared to non-diabetics. Furthermore, the effect of glycemic control on bone markers and the similarities and differences of type 1- and type 2-diabetics regarding bone markers will be evaluated. A systematic literature search was conducted using PubMed, Embase, Cinahl, and SveMed+ with the search terms: “Diabetes mellitus,” “Diabetes mellitus type 1,” “Insulin dependent diabetes mellitus,” “Diabetes mellitus type 2,” “Non-insulin dependent diabetes mellitus,” “Bone,” “Bone and Bones,” “Bone diseases,” “Bone turnover,” “Hemoglobin A Glycosylated,” and “HbA1C.” After removing duplicates from this search 1,188 records were screened by title and abstract and 75 records were assessed by full text for inclusion in the review. In the end 43 records were chosen. Bone formation and resorption markers are investigated as well as bone regulating systems. T1D is found to have lower osteocalcin and CTX, while osteocalcin and tartrate-resistant acid are found to be lower in T2D, and sclerostin is increased and collagen turnover markers altered. Other bone turnover markers do not seem to be altered in T1D or T2D. A major problem is the lack of histomorphometric studies in humans linking changes in turnover markers to actual changes in bone turnover and further research is needed to strengthen this link. PMID:23482417

  5. One year soy protein supplementation has positive effects on bone formation markers but not bone density in postmenopausal women.

    PubMed

    Arjmandi, Bahram H; Lucas, Edralin A; Khalil, Dania A; Devareddy, Latha; Smith, Brenda J; McDonald, Jennifer; Arquitt, Andrea B; Payton, Mark E; Mason, Claudia

    2005-02-23

    Although soy protein and its isoflavones have been reported to reduce the risk of osteoporosis in peri- and post-menopausal women, most of these studies are of short duration (i.e. six months). The objective of this study was to examine if one year consumption of soy-containing foods (providing 25 g protein and 60 mg isoflavones) exerts beneficial effects on bone in postmenopausal women. Eighty-seven eligible postmenopausal women were randomly assigned to consume soy or control foods daily for one year. Bone mineral density (BMD) and bone mineral content (BMC) of the whole body, lumbar (L1-L4), and total hip were measured using dual energy x-ray absorptiometry at baseline and after one year. Blood and urine markers of bone metabolism were also assessed. Sixty-two subjects completed the one-year long study. Whole body and lumbar BMD and BMC were significantly decreased in both the soy and control groups. However, there were no significant changes in total hip BMD and BMC irrespective of treatment. Both treatments positively affected markers of bone formation as indicated by increased serum bone-specific alkaline phosphatase (BSAP) activity, insulin-like growth factor-I (IGF-I), and osteocalcin (BSAP: 27.8 and 25.8%, IGF-I: 12.8 and 26.3%, osteocalcin: 95.2 and 103.4% for control and soy groups, respectively). Neither of the protein supplements had any effect on urinary deoxypyridinoline excretion, a marker of bone resorption. Our findings suggest that although one year supplementation of 25 g protein per se positively modulated markers of bone formation, this amount of protein was unable to prevent lumbar and whole body bone loss in postmenopausal women.

  6. Estrogen Inhibits Dlk1/FA1 Production: A Potential Mechanism for Estrogen Effects on Bone Turnover

    PubMed Central

    Abdallah, B. M.; Bay-Jensen, A.; Srinivasan, B.; Tabassi, N. C.; Garnero, P.; Delaissé, J.; Khosla, S.; Kassem, M.

    2011-01-01

    We have recently identified Dlk1/FA1 (Delta-like 1/FA1) as a novel regulator of bone mass that functions to mediate bone loss, under estrogen deficiency, in mice. In this report, we investigated the effects of estrogen (E)-deficiency and E replacement on serum (s) levels of Dlk1/FA1 (s-Dlk1FA1) and its correlation with bone turnover markers. s-Dlk1/FA1 and bone turnover markers (s-CTx and s-osteocalcin), were measured in two cohorts: a group of pre- and postmenopausal women (n=100) and a group of postmenopausal women, where half had received estrogen replacement therapy (ERT) (n=166). s-Dlk1/FA1, and s-CTX were elevated in postmenopausal E-deficient compared to premenopausal E-replete women (both; P<0.001). s-Dlk1/FA1 was correlated with s-CTX (r=0.30, P<0.01). ERT, in postmenopausal women, decreased s-Dlk1/FA1, as well as s-CTX and s-osteoclacin (all; P<0.0001). Changes in s-Dlk1 were significantly correlated with those observed in s-CTx (r=0.18, P<0.05) and s-osteocalcin (r=0.28, P<0.001). In conclusion, s-Dlk1/FA1 is influenced by E-deficiency and is correlated with bone turnover. Increased levels of s-Dlk1/FA1 in post-menopausal women may be a mechanism mediating the effects estrogen deficiency on bone turnover. PMID:21681814

  7. Unraveling the sequence and structure of the protein osteocalcin from a 42 ka fossil horse

    NASA Astrophysics Data System (ADS)

    Ostrom, Peggy H.; Gandhi, Hasand; Strahler, John R.; Walker, Angela K.; Andrews, Philip C.; Leykam, Joseph; Stafford, Thomas W.; Kelly, Robert L.; Walker, Danny N.; Buckley, Mike; Humpula, James

    2006-04-01

    We report the first complete amino acid sequence and evidence of secondary structure for osteocalcin from a temperate fossil. The osteocalcin derives from a 42 ka equid bone excavated from Juniper Cave, Wyoming. Results were determined by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-MS) and Edman sequencing with independent confirmation of the sequence in two laboratories. The ancient sequence was compared to that of three modern taxa: horse ( Equus caballus), zebra ( Equus grevyi), and donkey ( Equus asinus). Although there was no difference in sequence among modern taxa, MALDI-MS and Edman sequencing show that residues 48 and 49 of our modern horse are Thr, Ala rather than Pro, Val as previously reported (Carstanjen B., Wattiez, R., Armory, H., Lepage, O.M., Remy, B., 2002. Isolation and characterization of equine osteocalcin. Ann. Med. Vet.146(1), 31-38). MALDI-MS and Edman sequencing data indicate that the osteocalcin sequence of the 42 ka fossil is similar to that of modern horse. Previously inaccessible structural attributes for ancient osteocalcin were observed. Glu 39 rather than Gln 39 is consistent with deamidation, a process known to occur during fossilization and aging. Two post-translational modifications were documented: Hyp 9 and a disulfide bridge. The latter suggests at least partial retention of secondary structure. As has been done for ancient DNA research, we recommend standards for preparation and criteria for authenticating results of ancient protein sequencing.

  8. Upregulation of genes related to bone formation by γ-amino butyric acid and γ-oryzanol in germinated brown rice is via the activation of GABAB-receptors and reduction of serum IL-6 in rats.

    PubMed

    Muhammad, Sani Ismaila; Maznah, Ismail; Mahmud, Rozi; Zuki, Abu Bakar Zakaria; Imam, Mustapha Umar

    2013-01-01

    Osteoporosis and other bone degenerative diseases are among the most challenging non-communicable diseases to treat. Previous works relate bone loss due to osteoporosis with oxidative stress generated by free radicals and inflammatory cytokines. Alternative therapy to hormone replacement has been an area of interest to researchers for almost three decades due to hormone therapy-associated side effects. In this study, we investigated the effects of gamma-amino butyric acid (GABA), gamma-oryzanol (ORZ), acylated steryl glucosides (ASG), and phenolic extracts from germinated brown rice (GBR) on the expression of genes related to bone metabolism, such as bone morphogenic protein-2 (BMP-2), secreted protein acidic and rich in cysteine (SPARC), runt-related transcription factor 2 (RUNX-2), osteoblast-specific transcription factor osterix (Osx), periostin, osteoblast specific factor (Postn), collagen 1&2 (Col1&2), calcitonin receptor gene (CGRP); body weight measurement and also serum interleukin-6 (IL-6) and osteocalcin, in serum and bone. Rats were treated with GBR, ORZ, GABA, and ASG at (100 and 200 mg/kg); estrogen (0.2 mg/kg), or remifemin (10 and 20 mg/kg), compared to ovariectomized non-treated group as well as non-ovariectomized non-treated (sham) group. Enzyme-linked immunosorbent assay was used to measure the IL-6 and osteocalcin levels at week 2, 4, and 8, while the gene expression in the bone tissue was determined using the Genetic Analysis System (Beckman Coulter Inc., Brea, CA, USA). The results indicate that groups treated with GABA (100 and 200 mg/kg) showed significant upregulation of SPARC, calcitonin receptor, and BMP-2 genes (P < 0.05), while the ORZ-treated group (100 and 200 mg/kg) revealed significant (P < 0.05) upregulation of Osx, Postn, RUNX-2, and Col1&2. Similarly, IL-6 concentration decreased, while osteocalcin levels increased significantly (P < 0.05) in the treated groups as compared to ovariectomized non-treated groups. GABA and ORZ from GBR stimulates osteoblastogenesis by upregulation of bone formation genes, possibly via the activation of GABAB receptors and by inhibiting the activity of inflammatory cytokines and reactive oxygen species. Therefore, it could be used effectively in the management of osteoporosis.

  9. Upregulation of genes related to bone formation by γ-amino butyric acid and γ-oryzanol in germinated brown rice is via the activation of GABAB-receptors and reduction of serum IL-6 in rats

    PubMed Central

    Muhammad, Sani Ismaila; Maznah, Ismail; Mahmud, Rozi; Zuki, Abu Bakar Zakaria; Imam, Mustapha Umar

    2013-01-01

    Background Osteoporosis and other bone degenerative diseases are among the most challenging non-communicable diseases to treat. Previous works relate bone loss due to osteoporosis with oxidative stress generated by free radicals and inflammatory cytokines. Alternative therapy to hormone replacement has been an area of interest to researchers for almost three decades due to hormone therapy-associated side effects. Methods In this study, we investigated the effects of gamma-amino butyric acid (GABA), gamma-oryzanol (ORZ), acylated steryl glucosides (ASG), and phenolic extracts from germinated brown rice (GBR) on the expression of genes related to bone metabolism, such as bone morphogenic protein-2 (BMP-2), secreted protein acidic and rich in cysteine (SPARC), runt-related transcription factor 2 (RUNX-2), osteoblast-specific transcription factor osterix (Osx), periostin, osteoblast specific factor (Postn), collagen 1&2 (Col1&2), calcitonin receptor gene (CGRP); body weight measurement and also serum interleukin-6 (IL-6) and osteocalcin, in serum and bone. Rats were treated with GBR, ORZ, GABA, and ASG at (100 and 200 mg/kg); estrogen (0.2 mg/kg), or remifemin (10 and 20 mg/kg), compared to ovariectomized non-treated group as well as non-ovariectomized non-treated (sham) group. Enzyme-linked immunosorbent assay was used to measure the IL-6 and osteocalcin levels at week 2, 4, and 8, while the gene expression in the bone tissue was determined using the Genetic Analysis System (Beckman Coulter Inc., Brea, CA, USA). Results The results indicate that groups treated with GABA (100 and 200 mg/kg) showed significant upregulation of SPARC, calcitonin receptor, and BMP-2 genes (P < 0.05), while the ORZ-treated group (100 and 200 mg/kg) revealed significant (P < 0.05) upregulation of Osx, Postn, RUNX-2, and Col1&2. Similarly, IL-6 concentration decreased, while osteocalcin levels increased significantly (P < 0.05) in the treated groups as compared to ovariectomized non-treated groups. Conclusion GABA and ORZ from GBR stimulates osteoblastogenesis by upregulation of bone formation genes, possibly via the activation of GABAB receptors and by inhibiting the activity of inflammatory cytokines and reactive oxygen species. Therefore, it could be used effectively in the management of osteoporosis. PMID:24098073

  10. The biological effects of tocotrienol on bone: a review on evidence from rodent models.

    PubMed

    Chin, Kok-Yong; Ima-Nirwana, Soelaiman

    2015-01-01

    Osteoporosis causes significant health care and economic burden to society, leading to a relentless search for effective preventive agents. Tocotrienol, a member of the vitamin E family, has demonstrated promising potential as an osteoporosis-preventing agent. This review summarizes evidence on the effects of tocotrienol on bone in animal models. Techniques used to examine the effects of tocotrienol on bone in animals included bone histomorphometry, X-ray microtomography, dual-energy X-ray absorptiometry, bone turnover markers, bone calcium content, and biomechanical strength. Tocotrienol was shown to improve osteoblast number, bone formation, mineral deposition, and bone microarchitecture in osteopenic rats. It also decreased osteoclast number and bone erosion in the rats. Tocotrienol supplementation resulted in an improvement in bone mineral density, although biomechanical strength was not significantly altered in the rats. The beneficial effects of tocotrienol on bone can be attributed to its role as an antioxidant, anti-inflammatory agent, suppressor of the mevalonate pathway, and modulator of genes favorable to bone formation.

  11. The biological effects of tocotrienol on bone: a review on evidence from rodent models

    PubMed Central

    Chin, Kok-Yong; Ima-Nirwana, Soelaiman

    2015-01-01

    Osteoporosis causes significant health care and economic burden to society, leading to a relentless search for effective preventive agents. Tocotrienol, a member of the vitamin E family, has demonstrated promising potential as an osteoporosis-preventing agent. This review summarizes evidence on the effects of tocotrienol on bone in animal models. Techniques used to examine the effects of tocotrienol on bone in animals included bone histomorphometry, X-ray microtomography, dual-energy X-ray absorptiometry, bone turnover markers, bone calcium content, and biomechanical strength. Tocotrienol was shown to improve osteoblast number, bone formation, mineral deposition, and bone microarchitecture in osteopenic rats. It also decreased osteoclast number and bone erosion in the rats. Tocotrienol supplementation resulted in an improvement in bone mineral density, although biomechanical strength was not significantly altered in the rats. The beneficial effects of tocotrienol on bone can be attributed to its role as an antioxidant, anti-inflammatory agent, suppressor of the mevalonate pathway, and modulator of genes favorable to bone formation. PMID:25897211

  12. Human parathyroid hormone-(1-38) restores cancellous bone to the immobilized, osteopenic proximal tibial metaphysis in rats

    NASA Technical Reports Server (NTRS)

    Ma, Y. F.; Jee, W. S. S.; Ke, H. Z.; Lin, B. Y.; Liang, X. G.; Li, M.; Yamamoto, N.

    1994-01-01

    The purpose of this study was to determine if human parathyroid hormone-(1-38) (PTH) can restore cancellous bone mass to the established osteopenic, immobilized proximal tibial metaphyses (PTM) of female rats. The right hindlimbs of six-month-old female Sprague-Dawley rats were immobilized by bandaging the right hindlimbs to the abdomen. After 30 days of right hindlimb immobilization (RHLI), the rats were subcutaneously injected with 200 microgram hPTH(1-38)/kg/day for 15 (short-term) or 75 (longer-term) days. Static bone histomorphometry was performed on the primary spongiosa, while both static and dynamic histomorphometry were performed on the secondary spongiosa of the right PTM. Immobilization for 30 days without treatment decreased trabecular bone area, number and thickness in both primary and secondary spongiosa, and induced an increase in eroded perimeter and a decrease in tissue referent-bone formation rate (BFR/TV) in the secondary spongios. These changes reached a new steady state thereafter. Treatment with 200 microgram hPTH(1-38)/kg/day for 15 days, beginning at 30 days post immobilization (IM), significantly increased trabecular bone area, thickness and number in both primary and secondary spongiosa despite continuous IM when compared to the age-related and IM controls. The short-term (15 days) PTH treatment significantly increased labeling perimeter, mineral apposition rate and BFR/TV in the secondary spongiosa and stimulated longitudinal bone growth as compared to the age-related and IM controls. PTH treatment for longer-term (75 days) further increased trabecular bone area, thickness and number as compared to aging and IM controls and short-term (15 days) PTH treated groups. The bone formation indices in the secondary spongiosa of these longer-term treated rats were lower than that of short-term (15 days) PTH treated group, but they were still higher than those of IM and age-related controls. Our findings indicate that PTH treatment stimulates cancellous bone formation, restores and adds extra cancellous bone to the established, disuse-osteopenic proximal tibial metaphysis of continuously RHLI female rats. These results suggest that PTH may be a useful agent in treatment disuse-induced osteoporosis in humans.

  13. Hematopoietic Stem Cells as a Novel Source of Dental Tissue Cells.

    PubMed

    Wilson, Katie R; Kang, In-Hong; Baliga, Uday; Xiong, Ying; Chatterjee, Shilpak; Moore, Emily; Parthiban, Beneta; Thyagarajan, Krishnamurthy; Borke, James L; Mehrotra, Shikhar; Kirkwood, Keith L; LaRue, Amanda C; Ogawa, Makio; Mehrotra, Meenal

    2018-05-23

    While earlier studies have suggested that cells positive for hematopoietic markers can be found in dental tissues, it has yet to be confirmed. To conclusively demonstrate this, we utilized a unique transgenic model in which all hematopoietic cells are green fluorescent protein + (GFP + ). Pulp, periodontal ligament (PDL) and alveolar bone (AvB) cell culture analysis demonstrated numerous GFP + cells, which were also CD45 + (indicating hematopoietic origin) and co-expressed markers of cellular populations in pulp (dentin matrix protein-1, dentin sialophosphoprotein, alpha smooth muscle actin [ASMA], osteocalcin), in PDL (periostin, ASMA, vimentin, osteocalcin) and in AvB (Runx-2, bone sialoprotein, alkaline phosphatase, osteocalcin). Transplantation of clonal population derived from a single GFP + hematopoietic stem cell (HSC), into lethally irradiated recipient mice, demonstrated numerous GFP + cells within dental tissues of recipient mice, which also stained for markers of cell populations in pulp, PDL and AvB (used above), indicating that transplanted HSCs can differentiate into cells in dental tissues. These hematopoietic-derived cells deposited collagen and can differentiate in osteogenic media, indicating that they are functional. Thus, our studies demonstrate, for the first time, that cells in pulp, PDL and AvB can have a hematopoietic origin, thereby opening new avenues of therapy for dental diseases and injuries.

  14. The flavonoid fisetin promotes osteoblasts differentiation through Runx2 transcriptional activity.

    PubMed

    Léotoing, Laurent; Davicco, Marie-Jeanne; Lebecque, Patrice; Wittrant, Yohann; Coxam, Véronique

    2014-06-01

    Flavonoids represent a group of polyphenolic compounds commonly found in daily nutrition with proven health benefits. Among this group, the flavonol fisetin has been previously shown to protect bone by repressing osteoclast differentiation. In the present study, we investigated the role of fisetin in regulating osteoblasts physiology. In vivo mice treated with LPSs exhibited osteoporosis features associated with a dramatic repression of osteoblast marker expression. In this model, inhibition of osteocalcin and type I collagen alpha 1 transcription was partially countered by a daily consumption of fisetin. Interestingly, in vitro, fisetin promoted both osteoblast alkaline phosphatase activity and mineralization process. To decipher how fisetin may exert its positive effect on osteoblastogenesis, we analyzed its ability to control the runt-related transcription factor 2 (Runx2), a key organizer in developing and maturing osteoblasts. While fisetin did not impact Runx2 mRNA and protein levels, it upregulated its transcriptional activity. Actually, fisetin stimulated the luciferase activity of a reporter plasmid driven by the osteocalcin gene promoter that contains Runx2 binding sites and promoted the mRNA expression of osteocalcin and type I collagen alpha 1 targets. Bone sparing properties of fisetin also rely on its positive influence on osteoblast differentiation and activity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Vibrational bone characteristics versus bone density for the assessment of osteoporosis in ovariectomized rats.

    PubMed

    Anastassopoulos, G; Panteliou, S; Christopoulou, G; Stavropoulou, A; Panagiotopoulos, E; Lyritis, G; Khaldi, Lubna; Varakis, J; Karamanos, N

    2010-01-01

    Our previous research findings suggested this integrated study in order to monitor changes of bone properties and assess bone integrity using vibrational characteristics in osteoporosis. The method is based on measurement of the bone dynamic characteristic modal damping factor (MDF). The experimental animal model is ovariectomized rat followed by alendronate treatment. According to the experimental design, adult female Wistar rats are ovariectomized and 60 days later, with confirmed osteoporosis, the population is divided into two groups. One is administered alendronate and the second is given no treatment. Furthermore, established techniques such as pQCT and histomorphometry are applied at all time points, in order to compare and correlate to MDF. The results indicate induction of osteoporosis due to ovariectomy and render MDF capable of monitoring changes in bone material properties and architecture, with high sensitivity and repeatability.

  16. Triiodothyronine increases calcium loss in a bed rest antigravity model for space flight.

    PubMed

    Smith, Steven R; Lovejoy, Jennifer C; Bray, George A; Rood, Jennifer; Most, Marlene M; Ryan, Donna H

    2008-12-01

    Bed rest has been used as a model to simulate the effects of space flight on bone metabolism. Thyroid hormones accelerate bone metabolism. Thus, supraphysiologic doses of this hormone might be used as a model to accelerate bone metabolism during bed rest and potentially simulate space flight. The objective of the study was to quantitate the changes in bone turnover after low doses of triiodothyronine (T(3)) added to short-term bed rest. Nine men and 5 women were restricted to bed rest for 28 days with their heads positioned 6 degrees below their feet. Subjects were randomly assigned to receive either placebo or oral T(3) at doses of 50 to 75 microg/d in a single-blind fashion. Calcium balance was measured over 5-day periods; and T(3), thyroxine, thyroid-stimulating hormone, immunoreactive parathyroid hormone, osteocalcin, bone alkaline phosphatase, and urinary deoxypyridinoline were measured weekly. Triiodothyronine increased 2-fold in the men and 5-fold in the women during treatment, suppressing both thyroxine and thyroid-stimulating hormone. Calcium balance was negative by 300 to 400 mg/d in the T(3)-treated volunteers, primarily because of the increased fecal loss that was not present in the placebo group. Urinary deoxypyridinoline to creatinine ratio, a marker of bone resorption, increased 60% in the placebo group during bed rest, but more than doubled in the T(3)-treated subjects (P < .01), suggesting that bone resorption was enhanced by treatment with T(3). Changes in serum osteocalcin and bone-specific alkaline phosphatase, markers of bone formation, were similar in T(3)- and placebo-treated subjects. Triiodothyronine increases bone resorption and fecal calcium loss in subjects at bed rest.

  17. Whole-body vibration therapy in children with severe motor disabilities.

    PubMed

    Kilebrant, Sophie; Braathen, Gunnar; Emilsson, Roger; Glansén, Ulla; Söderpalm, Ann-Charlott; Zetterlund, Bo; Westerberg, Barbro; Magnusson, Per; Swolin-Eide, Diana

    2015-03-01

    To study the effect of whole-body vibration therapy on bone mass, bone turnover and body composition in severely disabled children. Nineteen non-ambulatory children aged 5.1-16.3 years (6 males, 13 females) with severe motor disabilities participated in an intervention programme with standing exercise on a self-controlled dynamic platform, which included whole-body vibration therapy (vibration, jump and rotation movements). Whole-body vibration therapy was performed at 40-42 Hz, with an oscillation amplitude of 0.2 mm, 5-15 min/treatment, twice/week for 6 months. Bone mass parameters and bone markers were measured at the study start, and after 6 and 12 months. Whole-body vibration therapy was appreciated by the children. Total-body bone mineral density increased during the study period (p < 0.05). Z-scores for total-body bone mineral density ranged from -5.10 to -0.60 at study start and remained unchanged throughout. Approximately 50% of the subjects had increased levels of carboxy-terminal telopeptides of type I collagen and decreased levels of osteocalcin at the start. Body mass index did not change during the intervention period, but had increased by the 12-month follow-up (p < 0.05). Whole-body vibration therapy appeared to be well tolerated by children with severe motor disabilities. Total-body bone mineral density increased after 6 months of whole-body vibration therapy. Higher carboxy-terminal telopeptides of type I collagen and lower osteocalcin values indicated that severely disabled children have a reduced capacity for bone acquisition.

  18. Thyrotropin serum levels are differentially associated with biochemical markers of bone turnover and stiffness in women and men: results from the SHIP cohorts.

    PubMed

    Tsourdi, E; Wallaschofski, H; Rauner, M; Nauck, M; Pietzner, M; Rettig, R; Ittermann, T; Völzke, H; Völker, U; Hofbauer, L C; Hannemann, A

    2016-02-01

    In two large German population-based cohorts, we showed positive associations between serum thyrotropin (TSH) concentrations and the Fracture Risk Assessment score (FRAX) in men and positive associations between TSH concentrations and bone turnover markers in women. The role of thyroid hormones on bone stiffness and turnover is poorly defined. Existing studies are confounded by differences in design and small sample size. We assessed the association between TSH serum concentrations and bone stiffness and turnover in the SHIP cohorts, which are two population-based cohorts from a region in Northern Germany comprising 2654 men and women and 3261 men and women, respectively. We calculated the bone stiffness index using quantitative ultrasound (QUS) at the calcaneus, employed FRAX score for assessment of major osteoporotic fractures, and measured bone turnover markers, N-terminal propeptide of type I procollagen (P1NP), bone-specific alkaline phosphatase (BAP), osteocalcin, and type I collagen cross-linked C-telopeptide (CTX) in all subjects and sclerostin in a representative subgroup. There was no association between TSH concentrations and the stiffness index in both genders. In men, TSH correlated positively with the FRAX score both over the whole TSH range (p < 0.01) and within the reference TSH range (p < 0.01). There were positive associations between TSH concentrations and P1NP, BAP, osteocalcin, and CTX (p < 0.01) in women but not in men. There was no significant association between TSH and sclerostin levels. TSH serum concentrations are associated with gender-specific changes in bone turnover and stiffness.

  19. Bone turnover, calcium homeostasis, and vitamin D status in Danish vegans.

    PubMed

    Hansen, Tue H; Madsen, Marie T B; Jørgensen, Niklas R; Cohen, Arieh S; Hansen, Torben; Vestergaard, Henrik; Pedersen, Oluf; Allin, Kristine H

    2018-01-23

    A vegan diet has been associated with increased bone fracture risk, but the physiology linking nutritional exposure to bone metabolism has only been partially elucidated. This study investigated whether a vegan diet is associated with increased bone turnover and altered calcium homeostasis due to insufficient intake of calcium and vitamin D. Fractionated and total 25-hydroxyvitamin D (25(OH)-D), parathyroid hormone (PTH), calcium, and four bone turnover markers (osteocalcin, N-terminal propeptide of type I procollagen (PINP), bone-specific alkaline phosphatase (BAP), and C-terminal telopeptide of type I collagen (CTX)) were measured in serum from 78 vegans and 77 omnivores. When adjusting for seasonality and constitutional covariates (age, sex, and body fat percentage) vegans had higher concentrations of PINP (32 [95% CI: 7, 64]%, P = 0.01) and BAP (58 [95% CI: 27, 97]%, P < 0.001) compared to omnivores, whereas CTX (30 [95% CI: -1, 72]%, P = 0.06) and osteocalcin (21.8 [95% CI: -9.3, 63.7]%, P = 0.2) concentrations did not differ between the two groups. Vegans had higher serum PTH concentration (38 [95% CI: 19, 60]%; P < 0.001) and lower 25(OH)-D serum concentration (-33 [95% CI: -45, -19]%; P < 0.001), but similar serum calcium concentration (-1 [95% CI: -3, 1]%, P = 0.18 compared to omnivores. Vegans have higher levels of circulating bone turnover markers compared to omnivores, which may in the long-term lead to poorer bone health. Differences in dietary habits including intake of vitamin D and calcium may, at least partly, explain the observed differences.

  20. Transcriptional control of the tissue-specific, developmentally regulated osteocalcin gene requires a binding motif for the Msx family of homeodomain proteins.

    PubMed

    Hoffmann, H M; Catron, K M; van Wijnen, A J; McCabe, L R; Lian, J B; Stein, G S; Stein, J L

    1994-12-20

    The OC box of the rat osteocalcin promoter (nt -99 to -76) is the principal proximal regulatory element contributing to both tissue-specific and developmental control of osteocalcin gene expression. The central motif of the OC box includes a perfect consensus DNA binding site for certain homeodomain proteins. Homeodomain proteins are transcription factors that direct proper development by regulating specific temporal and spatial patterns of gene expression. We therefore addressed the role of the homeodomain binding motif in the activity of the OC promoter. In this study, by the combined application of mutagenesis and site-specific protein recognition analysis, we examined interactions of ROS 17/2.8 osteosarcoma cell nuclear proteins and purified Msx-1 homeodomain protein with the OC box. We detected a series of related specific protein-DNA interactions, a subset of which were inhibited by antibodies directed against the Msx-1 homeodomain but which also recognize the Msx-2 homeodomain. Our results show that the sequence requirements for binding the Msx-1 or Msx-2 homeodomain closely parallel those necessary for osteocalcin gene promoter activity in vivo. This functional relationship was demonstrated by transient expression in ROS 17/2.8 osteosarcoma cells of a series of osteocalcin promoter (nt -1097 to +24)-reporter gene constructs containing mutations within and flanking the homeodomain binding site of the OC box. Northern blot analysis of several bone-related cell types showed that all of the cells expressed msx-1, whereas msx-2 expression was restricted to cells transcribing osteocalcin. Taken together, our results suggest a role for Msx-1 and -2 or related homeodomain proteins in transcription of the osteocalcin gene.

  1. Associations among endocrine, inflammatory, and bone markers, body composition and weight loss induced bone loss.

    PubMed

    Labouesse, Marie A; Gertz, Erik R; Piccolo, Brian D; Souza, Elaine C; Schuster, Gertrud U; Witbracht, Megan G; Woodhouse, Leslie R; Adams, Sean H; Keim, Nancy L; Van Loan, Marta D

    2014-07-01

    Weight loss reduces co-morbidities of obesity, but decreases bone mass. Our aims were to (1) determine if adequate dairy intake attenuates weight loss-induced bone loss; (2) evaluate the associations of endocrine, inflammatory and bone markers, anthropometric and other parameters to bone mineral density and content (BMD, BMC) pre- and post-weight loss; and (3) model the contribution of these variables to post weight-loss BMD and BMC. Overweight/obese women (BMI: 28-37 kg/m2) were enrolled in an energy reduced (-500 kcal/d; -2092 kJ/d) diet with adequate dairy (AD: 3-4 servings/d; n=25, 32.2±8.8 years) or low dairy (LD: ≤1 serving/d; n=26, 31.7±8.4 years). BMD, BMC and body composition were measured by DXA. Bone markers (CTX, PYD, BAP, OC), endocrine (PTH, vitamin D, leptin, adiponectin, ghrelin, amylin, insulin, GLP-1, PAI-1, HOMA) and inflammatory markers (CRP, IL1-β, IL-6, IL-8, TNF-α, cortisol) were measured in serum or plasma. PA was assessed by accelerometry. Following weight loss, AD intake resulted in significantly greater (p=0.004) lumbar spine BMD and serum osteocalcin (p=0.004) concentration compared to LD. Pre- and post-body fat was negatively associated with hip and lumbar spine BMC (r=-0.28, p=0.04 to -0.45, p=0.001). Of note were the significant negative associations among bone markers and IL-1β, TNFα and CRP ranging from r = -0.29 (p=0.04) to r = -0.34 (p=0.01); magnitude of associations did not change with weight loss. Adiponectin was negatively related to change in osteocalcin. Factor analysis resulted in 8 pre- and post-weight loss factors. Pre-weight loss factors accounted for 13.7% of the total variance in pre-weight loss hip BMD; post-weight loss factors explained 19.6% of the total variance in post-weight loss hip BMD. None of the factors contributed to the variance in lumbar spine BMD. AD during weight loss resulted in higher lumbar spine BMD and osteocalcin compared to LD. Significant negative associations were observed between bone and inflammatory markers suggesting that inflammation suppresses bone metabolism. Using factor analysis, 19.6% of total variance in post-weight loss hip BMD could be explained by endocrine, immune, and anthropometric variables, but not lumbar spine BMD. Published by Elsevier Inc.

  2. Associations among Endocrine, Inflammatory, and Bone Markers, Body Composition and Physical Activity to Weight Loss Induced Bone Loss

    PubMed Central

    Labouesse, Marie A.; Gertz, Erik R.; Piccolo, Brian D.; Souza, Elaine C.; Schuster, Gertrud U.; Witbracht, Megan G.; Woodhouse, Leslie R.; Adams, Sean H.; Keim, Nancy L.; Van Loan, Marta D.

    2015-01-01

    INTRODUCTION Weight loss reduces co-morbidities of obesity, but decreases bone mass. PURPOSE Our aims were to 1) determine if adequate dairy intake attenuates weight loss-induced bone loss; 2) evaluate the associations of endocrine, inflammatory and bone markers, anthropometric and other parameters to bone mineral density and content (BMD, BMC) pre- and post-weight loss; 3) model the contribution of these variables to post weight-loss BMD and BMC METHODS Overweight/obese women (BMI: 28–37 kg/m2) were enrolled in an energy reduced (−500 kcal/d; −2092 kJ/d) diet with adequate dairy (AD: 3–4 servings/d; n=25, 32.2 ± 8.8y) or low dairy (LD: ≤ 1 serving/d; n=26, 31.7 ± 8.4 y). BMD, BMC and body composition were measured by DXA. Bone markers (CTX, PYD, BAP, OC), endocrine (PTH, vitamin D, leptin, adiponectin, ghrelin, amylin, insulin, GLP-1, PAI-1, HOMA) and inflammatory markers (CRP, IL1-β, IL-6, IL-8, TNF-α, cortisol) were measured in serum or plasma. PA was assessed by accelerometry. RESULTS Following weight loss, AD intake resulted in significantly greater (p= 0.004) lumbar spine BMD and serum osteocalcin (p=0.004) concentration compared to LD. Pre- and post- body fat were negatively associated with hip and lumbar spine BMC (r= −0.28, p=0.04 to −0.45, p=0.001). Of note were the significant negative associations among bone markers and IL-1β, TNFα and CRP ranging from r = −0.29 (p=0.04) to r = −0.34 (p=0.01); magnitude of associations did not change with weight loss. Adiponectin was negatively related to change in osteocalcin. Factor analysis resulted in 8 pre- and post-weight loss Factors. Pre-weight loss Factors accounted for 13.7% of the total variance in pre-weight loss hip BMD; post-weight loss Factors explained 19.6% of the total variance in post-weight loss hip BMD. None of the Factors contributed to the variance in lumbar spine BMD. CONCLUSION AD during weight loss resulted in higher lumbar spine BMD and osteocalcin compared to LD. Significant negative associations were observed between bone and inflammatory markers suggesting inflammation suppresses bone metabolism. Using Factor Analysis, 19.6% of total variance in post-weight loss hip BMD could be explained by endocrine, immune, and anthropometric variables, but not lumbar spine BMD. PMID:24709689

  3. Inflammation as a contributing factor among postmenopausal Saudi women with osteoporosis

    PubMed Central

    Al-Daghri, Nasser M.; Aziz, Ibrahim; Yakout, Sobhy; Aljohani, Naji J.; Al-Saleh, Yousef; Amer, Osama E.; Sheshah, Eman; Younis, Ghaida Zakaria; Al-Badr, Fahad Badr M.

    2017-01-01

    Abstract Postmenopausal osteoporosis is an important metabolic bone disease characterized by rapid bone loss occurring in the postmenopausal period. Recently, the most prevalent form of clinically significant osteopenia and osteoporosis involves various inflammatory conditions. The aim of the study is to evaluate the association between proinflammatory markers (interleukin [IL]-1β, IL-6, TNF-α) with bone turnover markers (BTMs) in postmenopausal Saudi women with and without osteoporosis. A total of 200 postmenopausal Saudi women ≥50 years old, 100 with osteoporosis and 100 without osteoporosis (control) were recruited under the supervision of qualified physicians in King Salman Hospital and King Fahd Medical City, Riyadh, Saudi Arabia. Serum tumor necrosis factor alpha (TNF-α), IL-1, IL-4, IL-6, and parathyroid hormone (PTH) were determined using Luminex xMAP technology. N-telopeptides of collagen type I (NTx) was assessed using ELISA, 25(OH) vitamin D and osteocalcin were determined using electrochemiluminescence, serum calcium and inorganic phosphate (Pi) were measured by a chemical analyzer. Serum IL-1β, IL-6, NTx, and PTH levels in women with osteoporosis were significantly higher than controls. Although IL-4 and osteocalcin were significantly lower than controls. IL-1β and TNF-α were positively associated with NTx in osteoporosis women. TNF-α, IL-6, and TNF-α were positively correlated with IL-lβ in both groups. A significant negative correlation between osteocalcin and IL-1β in healthy women and women with osteoporosis were observed. Findings of the present study implicate a role for cytokine pattern-mediated inflammation in patients with osteoporosis. PMID:28121926

  4. [Secondary osteoporosis UPDATE. Bone metabolic change and osteoporosis during pregnancy and lactation].

    PubMed

    Kurabayashi, Takumi; Tamura, Ryo; Hata, Yuki; Nishijima, Shota; Tsuneki, Ikunosuke; Tamura, Masaki; Yanase, Toru

    2010-05-01

    Calcium transfer from the mother to the infant during pregnancy and lactation plays an extremely important role in the bone health of the mother and neonate. Calcium aids in bone health through all ages but is especially crucial during pregnancy and lactation. Changes in the structure and metabolism of bone during pregnancy and the early stage of postpartum are evaluated by investigating bone mineral density (BMD), bone histomorphometry and bone markers of human or animal models. The bone resorption increased at the end of pregnancy and lactation, and the bone formation increases and the bone structure is almost recovered after cessation of lactating in postpartum. Puerperal BMD remained static over the subsequent 5-10 years. If the women have a low BMD at this stage of their reproductive life, it tends not to improve over this time. Perhaps identification of this at-risk group may lead to effective interventions to reduce fracture risk in later life.

  5. Incorporation of osteogenic and angiogenic small interfering RNAs into chitosan sponge for bone tissue engineering

    PubMed Central

    Jia, Sen; Yang, Xinjie; Song, Wen; Wang, Lei; Fang, Kaixiu; Hu, Zhiqiang; Yang, Zihui; Shan, Chun; Lei, Delin; Lu, Bin

    2014-01-01

    Engineered bone substitutes are being extensively explored in response to growing demand. However, the angiogenesis that occurs during bone formation is often overlooked in scaffold design. In this novel study, we incorporated two small interfering RNAs (siRNAs), ie, small interfering RNA targets casein kinase 2 interaction protein 1 (siCkip-1) and small interfering RNA targets soluble VEGF receptor 1 (siFlt-1), which can promote osteogenesis and angiogenesis, into a chitosan sponge. This scaffold could maintain siRNAs for over 2 weeks in neutral phosphate-buffered saline and degraded rapidly in the presence of lysozyme. The chitosan sponge with siCkip-1 and siFlt-1 in vitro bioactivity was investigated using mesenchymal stem cells. Target genes were significantly suppressed, and osteocalcin, alkaline phosphatase, and vascular endothelial growth factor were significantly upregulated. Alizarin Red staining revealed that mineralization of the extracellular matrix was markedly enhanced by dual transfection. Further analysis by immunofluorescence confirmed that the siRNA-modified scaffold simultaneously improved the expression of osteocalcin and von Willebrand factor. In vivo testing in a skull critical-size defect model showed marked bone regeneration in rats treated with siCkip-1 and siFlt-1. In conclusion, chitosan sponge containing osteogenic and angiogenic siRNAs may be used as a scaffold for bone regeneration. The dual siRNA concept may also be useful in the biofunctionalization of other materials. PMID:25429217

  6. Short-term variations in bone remodeling markers of an oral contraception formulation containing 3 mg of drospirenone plus 30 microg of ethinyl estradiol: observational study in young postadolescent women.

    PubMed

    Paoletti, Anna Maria; Orrù, Marisa; Lello, Stefano; Floris, Stefano; Ranuzzi, Francesca; Etzi, Rossella; Zedda, Pierina; Guerriero, Stefano; Fratta, Stefania; Sorge, Roberto; Mallarini, Giorgio; Melis, Gian Benedetto

    2004-10-01

    The clinical study of treated subjects and nontreated controls was made in healthy eumenorrheic young postadolescent women volunteers in the Department of Obstetrics and Gynaecology at Cagliari University, to investigate whether an oral contraceptive (OC) containing drospirenone (3 mg) plus ethinyl estradiol (30 microg) (DRSP+EE) can affect bone metabolism. Control group (n = 26) and OC group (n = 28) women did not differ in age, body mass index, waist-to-hip ratio and main outcome measures [urinary levels of deoxypyridinoline and pyridinoline, serum levels of osteocalcin, bone specific alkaline phosphatase (bSAP), total testosterone (total-T), sex hormone-binding globulin (SHBG), progesterone and bone mineral density (BMD) at the heel]. The control group was studied at the luteal phase (LP) during both the first and the sixth menstrual cycle; the OC group was studied during the first cycle at the LP, and on days 16-18 of the sixth cycle of DRSP+EE treatment. At the sixth cycle, in the control group, the main outcome measures did not change compared to baseline. In the OC group, deoxypyridinoline, pyridinoline, osteocalcin, bSAP, total-T and progesterone levels were reduced, whereas SHBG levels were increased. The BMD was unchanged compared to baseline. The results suggest that 6-month DRSP+EE treatment decreases bone turnover. Copyright 2004 Elsevier Inc.

  7. Bone metabolism in galactosemia.

    PubMed

    Panis, B; Forget, P Ph; van Kroonenburgh, M J P G; Vermeer, C; Menheere, P P; Nieman, F H; Rubio-Gozalbo, M E

    2004-10-01

    Classical galactosemia is an autosomal recessively inherited disorder of galactose metabolism. Treatment consists of life-long dietary restriction of galactose. Despite treatment, long-term complications occur such as a decreased bone mineral density (BMD). A decreased BMD might be the result of either dietary deficiencies secondary to the galactose-restricted diet or unknown intrinsic factors. In this study, 40 children with classical galactosemia (13 males and 27 females, aged 3-17 years) on dietary treatment were included to gain insight in the bone metabolism of galactosemics. We found weight and height Z scores significantly decreased in galactosemics. Mean areal BMD Z scores of lumbar spine and of femoral neck as measured by Dual energy X-ray Absorptiometry (DXA) were -0.6 (P < 0.001) and -0.3 (P = 0.066), respectively. Mean volumetric BMD of the femoral neck was significant lower in galactosemics (P < 0.001). The recommended dietary allowances (RDA) for calcium, magnesium, zinc, vitamin D, and protein were met in all patients. Mean serum levels of calcium, phosphate, magnesium, zinc, 1,25-dihydroxy vitamin D (1,25OHD), parathormone (PTH), 17-beta estradiol, bone alkaline phosphatase (BAP), and under-carboxylated osteocalcin (ucOC) were normal. Serum levels of IGF-1 Z score, carboxylated osteocalcin (cOC), N-terminal telopeptide (NTX), and C-terminal telopeptide (CTX) were significantly lower in galactosemics than in control subjects. The different bone markers were strongly correlated. The low levels of IGF-1 Z score, formation marker cOC, and resorption markers NTX and CTX suggest a decreased bone metabolism in galactosemics.

  8. ErbB2 and bone sialoprotein as markers for metastatic osteosarcoma cells

    PubMed Central

    Valabrega, G; Fagioli, F; Corso, S; Madon, E; Brach del Prever, A; Biasin, E; Linari, A; Aglietta, M; Giordano, S

    2003-01-01

    Osteosarcoma is the most common malignant bone neoplasia occurring in young patients in the first two decades of life, and represents 20% of all primitive malignant bone tumours. At present, treatment of metastatic osteosarcoma is unsatisfactory. High-dose chemotherapy followed by CD34+ leukapheresis rescue may improve these poor results. Neoplastic cells contaminating the apheresis may, however, contribute to relapse. To identify markers suitable for detecting osteosarcoma cells in aphereses we analysed the expression of bone-specific genes (Bone Sialoprotein (BSP) and Osteocalcin) and oncogenes (Met and ErbB2) in 22 patients with metastatic osteosarcoma and six healthy stem cell donors. The expression of these genes in aphereses of patients affected by metastatic osteosarcoma was assessed by RT–PCR and Southern blot analysis. Met and Osteocalcin proved to be not useful markers since they are positive in aphereses of both patients with metastatic osteosarcoma and healthy stem cell donors. On the contrary, BSP was expressed at significant levels in 85% of patients. Moreover, 18% of patients showed a strong and significantly positive (seven to 16 times higher than healthy stem cell donors) ErbB2 expression. In all positive cases, neoplastic tissue also expressed ErbB2. Our data show that ErbB2 can be a useful marker for tumour contamination in aphereses of patients affected by ErbB2-expressing osteosarcomas and that analysis of Bone Sialoprotein expression can be an alternative useful marker. PMID:12569382

  9. Maternal Flaxseed Oil During Lactation Enhances Bone Development in Male Rat Pups.

    PubMed

    Pereira, Aline D'Avila; Ribeiro, Danielle Cavalcante; de Santana, Fernanda Carvalho; de Sousa Dos Santos, Aline; Mancini-Filho, Jorge; do Nascimento-Saba, Celly Cristina Alves; Velarde, Luis Guillermo Coca; da Costa, Carlos Alberto Soares; Boaventura, Gilson Teles

    2016-08-01

    Flaxseed oil is an alpha linolenic acid source important in the growth and body development stage; furthermore, this acid acts on adipose tissue and bone health. The aim of this study was to evaluate body composition, fatty acid composition, hormone profile, retroperitoneal adipocyte area and femur structure of pups at weaning, whose mothers were fed a diet containing flaxseed oil during lactation. After birth, pups were randomly assigned: control (C, n = 12) and flaxseed oil (FO, n = 12), rats whose mothers were treated with diet containing soybean or flaxseed oil. At 21 days, the pups were weaned and body mass, length, body composition, biochemical parameter, leptin, osteoprotegerin, osteocalcin, fatty acids composition, intra-abdominal fat mass and femur structure were analyzed. FO showed (p < 0.05): higher body mass (+12 %) and length (+9 %); body fat mass (g, +45 %); bone mineral density (+8 %), bone mineral content (+55 %) and bone area (+35 %), osteocalcin (+173 %) and osteoprotegerin (+183 %). Arachidonic acid was lower (p < 0.0001), alpha-linolenic and eicosapentaenoic were higher (p < 0.0001). Intra-abdominal fat mass was higher (+25 %), however, the retroperitoneal adipocytes area was lower (-44 %). Femur mass (+10 %), distance between epiphyses (+4 %) and bone mineral density (+13 %) were higher. The study demonstrates that adequate flaxseed oil content during a lactation diet plays an important role in the development of pups.

  10. PTH promotes allograft integration in a calvarial bone defect

    PubMed Central

    Sheyn, Dmitriy; Yakubovich, Doron Cohn; Kallai, Ilan; Su, Susan; Da, Xiaoyu; Pelled, Gadi; Tawackoli, Wafa; Cook-Weins, Galen; Schwarz, Edward M.; Gazit, Dan; Gazit, Zulma

    2013-01-01

    Allografts may be useful in craniofacial bone repair, although they often fail to integrate with the host bone. We hypothesized that intermittent administration of parathyroid hormone (PTH) would enhance mesenchymal stem cell recruitment and differentiation, resulting in allograft osseointegration in cranial membranous bones. Calvarial bone defects were created in transgenic mice, in which luciferase is expressed under the control of the osteocalcin promoter. The mice were given implants of allografts with or without daily PTH treatment. Bioluminescence imaging (BLI) was performed to monitor host osteprogenitor differentiation at the implantation site. Bone formation was evaluated with the aid of fluorescence imaging (FLI) and micro–computed tomography (μCT) as well as histological analyses. Reverse transcription polymerase chain reaction (RT-PCR) was performed to evaluate the expression of key osteogenic and angiogenic genes. Osteoprogenitor differentiation, as detected by BLI, in mice treated with an allograft implant and PTH was over 2-fold higher than those in mice treated with an allograft implant without PTH. FLI also demonstrated that the bone mineralization process in PTH-treated allografts was significantly higher than that in untreated allografts. The μCT scans revealed a significant increase in bone formation in Allograft + PTH–treated mice comparing to Allograft + PBS treated mice. The osteogenic genes osteocalcin (Oc/Bglap) and integrin binding sialoprotein (Ibsp) were upregulated in the Allograft + PTH–treated animals. In summary, PTH treatment enhances osteoprogenitor differentiation and augments bone formation around structural allografts. The precise mechanism is not clear, but we show that infiltration pattern of mast cells, associated with the formation of fibrotic tissue, in the defect site is significantly affected by the PTH treatment. PMID:24131143

  11. Ozone Therapy Enhances Osseous Healing in Rats With Diabetes With Calvarial Defects: A Morphometric and Immunohistochemical Study.

    PubMed

    Alpan, Aysan Lektemur; Toker, Hülya; Ozer, Hatice

    2016-08-01

    Bone healing is impaired in diabetes mellitus (DM) cases. The aim of this study is to investigate, both morphometrically and immunohistochemically, the effect of gaseous ozone on bone healing in diabetic rat calvarial defects treated with xenografts. DM was induced with 50 mg/kg intraperitoneal streptozotocin in 56 male Wistar rats. Study groups were as follows: 1) empty defect (control, n = 14); 2) xenograft (XG, n = 14); 3) empty defect treated with ozone therapy (control + ozone, n = 14); and 4) xenograft and ozone application (XG + ozone, n = 14). Critical-size defects were created in all rats. Bovine-derived xenograft was applied to XG groups. Gaseous ozone was applied on the operation day and daily for 2 weeks (140 ppm at 2 L/d, 2.24 mg). Rats were sacrificed at 4 or 8 weeks post-surgery. Total bone area, newly formed bone, and residual graft material were measured histomorphometrically. Osteocalcin and bone morphogenic protein (BMP)-2 expression was evaluated immunohistochemically. Osteoclast numbers in the XG + ozone group were higher than the other groups at week 4 (P <0.05). XG + ozone group revealed more total bone area and new bone area than the XG group at weeks 4 (P <0.05) and 8 (P >0.05). Residual graft materials were decreased in the XG + ozone group and the same group revealed more BMP-2 positivity compared with other groups. Osteocalcin positivity in XG groups was higher than in control groups. Within the limitations of this DM animal study, gaseous ozone application accelerates xenograft resorption and enhances bone regeneration, especially in the early stages of bone healing.

  12. Assessment of bone repair in critical-size defect in the calvarium of rats after the implantation of tricalcium phosphate beta (β-TCP).

    PubMed

    de Freitas Silva, Leonardo; de Carvalho Reis, Erik Neiva Ribeiro; Barbara, Tânia Aparecida; Bonardi, João Paulo; Garcia, Idelmo Rangel; de Carvalho, Paulo Sérgio Perri; Ponzoni, Daniela

    2017-07-01

    Evaluating the osteoconductive property of tricalcium phosphate beta (β-TCP) in comparison to that of inorganic bovine bone for repair in a critical-size defect in the rat calvarium. Critical-size defects of 7mm were made with a trephine in the calvaria of 48 Wistar rats. The animals were divided into four groups, and the defects in each group were filled with tricalcium phosphate beta (β-TCP), inorganic bovine bone (Bio-Oss), autogenous bone, or left empty. The animals were euthanized at two different time points (30 and 60days post-operation). All defects were recovered with a absorbable membrane of bovine cortical bone. Histological, histometric, and immunohistochemical (osteocalcin) assessments were carried out at 30 and 60days post-operation. At 30days post-operation, all groups showed areas of bone formation, predominantly when autogenous grafts were used. However, there were no statistically significant differences between the treatment groups (p>0.05). After 60days, there were similarities in the bone formation patterns between the β-TCP (26.32±) and Bio-Oss (17.35±) groups (p=0.549). In terms of the immunohistochemical assessment of osteocalcin, the clot group showed light to moderate staining at 30 and 60days. The autogenous group showed moderate staining at 30days and moderate to intense staining after 60days. The Bio-Oss group showed light to moderate staining after 30days and intense staining at 60days. The β-TCP group showed moderate staining at 30 and 60days post-operation. β-TCP is a good osteoconductive material with similar effects to those of inorganic bovine bone graft and is suitable for utilization in the repair of bone defects. Copyright © 2017 Elsevier GmbH. All rights reserved.

  13. Bone as a Possible Target of Chemical Toxicity of Natural Uranium in Drinking Water

    PubMed Central

    Kurttio, Päivi; Komulainen, Hannu; Leino, Aila; Salonen, Laina; Auvinen, Anssi; Saha, Heikki

    2005-01-01

    Uranium accumulates in bone, affects bone metabolism in laboratory animals, and when ingested in drinking water increases urinary excretion of calcium and phosphate, important components in the bone structure. However, little is known about bone effects of ingested natural uranium in humans. We studied 146 men and 142 women 26–83 years of age who for an average of 13 years had used drinking water originating from wells drilled in bedrock, in areas with naturally high uranium content. Biochemical indicators of bone formation were serum osteocalcin and amino-terminal propeptide of type I procollagen, and a marker for bone resorption was serum type I collagen carboxy-terminal telopeptide (CTx). The primary measure of uranium exposure was uranium concentration in drinking water, with additional information on uranium intake and uranium concentration in urine. The data were analyzed separately for men and women with robust regression (which suppresses contributions of potential influential observations) models with adjustment for age, smoking, and estrogen use. The median uranium concentration in drinking water was 27 μg/L (interquartile range, 6–116 μg/L). The median of daily uranium intake was 36 μg (7–207 μg) and of cumulative intake 0.12 g (0.02–0.66 g). There was some suggestion that elevation of CTx (p = 0.05) as well as osteocalcin (p = 0.19) could be associated with increased uranium exposure (uranium in water and intakes) in men, but no similar relationship was found in women. Accordingly, bone may be a target of chemical toxicity of uranium in humans, and more detailed evaluation of bone effects of natural uranium is warranted. PMID:15626650

  14. Acute bone response to whole body vibration in healthy pre-pubertal boys

    PubMed Central

    Harrison, R.; Ward, K.; Lee, E.; Razaghi, H.; Horne, C.; Bishop, N.J.

    2015-01-01

    The skeleton responds to mechanical stimulation. We wished to ascertain the magnitude and speed of the growing skeleton’s response to a standardised form of mechanical stimulation, vibration. 36 prepubertal boys stood for 10 minutes in total on one of two vibrating platforms (high (>2 g) or low (<1 g) magnitude vibration) on either 1, 3 or 5 successive days (n=12 for each duration); 15 control subjects stood on an inactive platform. Blood samples were taken at intervals before and after vibration to measure bone formation (P1NP, osteocalcin) and resorption (CTx) markers as well as osteoprotegerin and sclerostin. There were no significant differences between platform and control groups in bone turnover markers immediately after vibration on days 1, 3 and 5. Combining platform groups, at day 8 P1NP increased by 25.1% (CI 12.3 to 38.0; paired t-test p=0.005) and bone resorption increased by 10.9% (CI 3.6 to 18.2; paired t-test p=0.009) compared to baseline. Osteocalcin, osteoprotogerin and sclerostin did not change significantly. The growing skeleton can respond quickly to vibration of either high or low magnitude. Further work is needed to determine the utility of such “stimulation-testing” in clinical practice. PMID:26032203

  15. Effect of bone sialoprotein and collagen coating on cell attachment to TICER and pure titanium implant surfaces.

    PubMed

    Graf, H-L; Stoeva, S; Armbruster, F P; Neuhaus, J; Hilbig, H

    2008-07-01

    To improve integration between implants and biological tissues, this study compared bone sialoprotein (BSP) as a surface-coating material against the major organic and inorganic components of bone, collagen type I and hydroxyapatite (TICER). The expression of osteocalcin, osteonectin and transforming growth factor ss was evaluated using immunohistochemical staining procedures. The distribution patterns of osteoblasts on the surface of pure titanium with a smooth machined surface and a rough surface (TICER) were determined by image processing using confocal laser scanning microscopy. The results compared to uncoated control materials showed that, at all times investigated, the number of cells on the surface of the TICER and pure titanium samples differed significantly (P<0.1), demonstrating the superiority of TICER over pure titanium in this respect. For pure titanium implants, collagen-precoated surfaces were not beneficial for the attachment of bone-derived cells with the exception of day 3 in vitro (P<0.01). BSP-precoated implant surfaces displayed non-significantly higher numbers of settled cells. BSP-precoated implant surfaces were beneficial for osteoinduction as revealed by osteocalcin and osteonectin expression. BSP precoating of the rough TICER implant surface enhanced the osteoinductive effect much more than did collagen precoating. These results contribute to the consideration of at least two distinct pathways of osseointegration.

  16. Acute bone response to whole body vibration in healthy pre-pubertal boys.

    PubMed

    Harrison, R; Ward, K; Lee, E; Razaghi, H; Horne, C; Bishop, N J

    2015-06-01

    The skeleton responds to mechanical stimulation. We wished to ascertain the magnitude and speed of the growing skeleton's response to a standardised form of mechanical stimulation, vibration. 36 prepubertal boys stood for 10 minutes in total on one of two vibrating platforms (high (>2 g) or low (<1 g) magnitude vibration) on either 1, 3 or 5 successive days (n=12 for each duration); 15 control subjects stood on an inactive platform. Blood samples were taken at intervals before and after vibration to measure bone formation (P1NP, osteocalcin) and resorption (CTx) markers as well as osteoprotegerin and sclerostin. There were no significant differences between platform and control groups in bone turnover markers immediately after vibration on days 1, 3 and 5. Combining platform groups, at day 8 P1NP increased by 25.1% (CI 12.3 to 38.0; paired t-test p=0.005) and bone resorption increased by 10.9% (CI 3.6 to 18.2; paired t-test p=0.009) compared to baseline. Osteocalcin, osteoprotogerin and sclerostin did not change significantly. The growing skeleton can respond quickly to vibration of either high or low magnitude. Further work is needed to determine the utility of such "stimulation-testing" in clinical practice.

  17. Growth hormone favorably affects bone turnover and bone mineral density in patients with short bowel syndrome undergoing intestinal rehabilitation.

    PubMed

    Tangpricha, Vin; Luo, Menghua; Fernández-Estívariz, Concepción; Gu, Li H; Bazargan, Niloofar; Klapproth, Jan-Michael; Sitaraman, Shanthi V; Galloway, John R; Leader, Lorraine M; Ziegler, Thomas R

    2006-01-01

    Patients with short bowel syndrome (SBS) have a high prevalence of metabolic bone disease due to nutrient malabsorption and potential effects of parenteral nutrition (PN). Human growth hormone (hGH) has been shown in some studies to have anabolic effects on bone, but hGH effects on bone in patients with SBS are unknown. Adults with PN-dependent SBS underwent a 7-day period of baseline studies while receiving usual oral diet and PN and then began receiving modified diets designed to improve nutrient absorption and daily oral calcium/vitamin D supplements (1500 mg elemental calcium and 600 IU vitamin D, respectively). Subjects were randomized to receive in a double-blind manner either subcutaneous (sc) saline placebo as the control or hGH (0.1 mg/kg/d for 3 weeks, then 0.1 mg/kg 3 days a week for 8 subsequent weeks). Open-label hGH was given from week 13 to week 24 in subjects who required PN after completion of the 12-week double-blind phase. Markers of bone turnover (serum osteocalcin and urinary N-telopeptide [NTX]), vitamin D nutriture (serum calcium, 25-hydroxyvitamin D [25-OH D] and parathyroid hormone [PTH] concentrations), and intestinal calcium absorption were measured at baseline and at weeks 4 and 12. Dual x-ray absorptiometry (DXA) of the hip and spine was performed to determine bone mineral density (BMD) at baseline and weeks 12 and 24. The majority of subjects in each group exhibited evidence of vitamin D deficiency at baseline (25-OH D levels<30 ng/mL; 78% and 79% of control and hGH-treated subjects, respectively). Subjects treated with hGH demonstrated a significant increase from baseline in serum osteocalcin levels at 12 weeks (+62%; p<.05). The levels of NTX were increased over time in the hGH-treated group; however, this did not reach statistical significance. Both NTX and osteocalcin remained unchanged in control subjects. BMD of the spine and total hip was unchanged in subjects treated with placebo or hGH at 24 weeks. However, femoral neck BMD was slightly but significantly decreased in the placebo group at this time point but remained unchanged from baseline in the hGH-treated subjects. hGH therapy significantly increased markers of bone turnover during the initial 3 months of therapy and stabilized femoral neck bone mass over a 6-month period in patients with severe SBS undergoing intestinal rehabilitation.

  18. Formation of bone-like mineralized matrix by periodontal ligament cells in vivo: a morphological study in rats.

    PubMed

    Hiraga, Toru; Ninomiya, Tadashi; Hosoya, Akihiro; Takahashi, Masafumi; Nakamura, Hiroaki

    2009-01-01

    Periodontal ligament (PDL) is a unique connective tissue that not only connects cementum and alveolar bone to support teeth, but also plays an important role in reconstructing periodontal tissues. Previous studies have suggested that PDL cells have osteogenic potential; however, they lack precise histological examinations. Here, we studied bone-like matrix formation by PDL cells in rats using morphological techniques. Rat and human PDL cells exhibited substantial alkaline phosphatase activity and induced mineralization in vitro. RT-PCR analyses showed that PDL cells expressed the osteoblast markers, Runx2, osterix, and osteocalcin. These results suggest that PDL cells share similar phenotypes with osteoblasts. To examine the bone-like matrix formation in vivo, PDL cells isolated from green fluorescent protein (GFP)-transgenic rats were inoculated with hydroxyapatite (HA) disks into wild-type rats. Five weeks after the implantation, the pores in HA disks were occupied by GFP-positive cells. Mineralized matrix formation was also found on the surface of HA pores. At 12 weeks, some of the pores were filled with bone-like mineralized matrices (BLMM), which were positive for the bone matrix proteins, osteopontin, bone sialoprotein, and osteocalcin. Immunohistochemical examination revealed that most of the osteoblast- and osteocyte-like cells on or in the BLMM were GFP-positive, suggesting that the BLMM were directly formed by the inoculated PDL cells. On the pore surfaces, Sharpey's fiber-like structures embedded in cementum-like mineralized layers were also observed. These results collectively suggest that PDL cells have the ability to form periodontal tissues and could be a useful source for regenerative therapies of periodontal diseases.

  19. Serum sclerostin levels associated with lumbar spine bone mineral density and bone turnover markers in patients with postmenopausal osteoporosis.

    PubMed

    Xu, Xiao-juan; Shen, Lin; Yang, Yan-ping; Lu, Fu-rong; Zhu, Rui; Shuai, Bo; Li, Cheng-gang; Wu, Man-xiang

    2013-07-01

    Sclerostin, expressed exclusively by osteocytes, is a negative regulator of bone formation. To gain insights into the action of sclerostin in postmenopausal osteoporosis, we evaluated serum sclerostin levels in postmenopausal women and investigated its possible associations with bone turnover markers in patients with postmenopausal osteoporosis. We detected serum sclerostin, and measured lumbar spine bone mineral density in 650 Chinese postmenopausal women. We also assessed serum levels of β-isomerized C-terminal crosslinking of type I collagen, intact N-terminal propeptide of type I collagen, N-mid fragment of osteocalcin, 25-hydroxyvitamin D, and estradiol. Serum sclerostin levels were lower in postmenopausal osteoporotic women compared with non-osteoporotic postmenopausal women ((38.79 ± 7.43) vs. (52.86 ± 6.69) pmol/L, P < 0.001). Serum sclerostin was positively correlated with lumbar spine bone mineral density (r = 0.391, P < 0.001) and weakly negatively correlated with β-isomerized C-terminal crosslinking of type I collagen, intact N-terminal propeptide of type I collagen, N-mid fragment of osteocalcin (r = -0.225, P < 0.001; r = -0.091, P = 0.046; r = -0.108, P = 0.018; respectively) in postmenopausal osteoporosis. There was no significant association of serum sclerostin with age, body mass index, 25-hydroxyvitamin D, and estradiol (r = -0.004, P = 0.926; r = 0.067, P = 0.143; r = 0.063, P = 0.165; r = -0.045, P = 0.324; respectively). Sclerostin may be involved in the pathogenesis of postmenopausal osteoporosis and may play a role in bone turnover.

  20. Reconstruction of Canine Mandibular Bone Defects Using a Bone Transport Reconstruction Plate

    PubMed Central

    Elsalanty, Mohammed E.; Zakhary, Ibrahim; Akeel, Sara; Benson, Byron; Mulone, Timothy; Triplett, Gilbert R.; Opperman, Lynne A.

    2010-01-01

    Objectives Reconstruction of mandibular segmental bone defects is a challenging task. This study tests a new device used for reconstructing mandibular defects based on the principle of bone transport distraction osteogenesis. Methods Thirteen beagle dogs were divided into control and experimental groups. In all animals, a 3 cm defect was created on one side of the mandible. In eight control animals, the defect was stabilized with a reconstruction plate without further reconstruction and the animals were sacrificed two to three months after surgery. The remaining five animals were reconstructed with a bone transport reconstruction plate (BTRP), comprising a reconstruction plate with attached intraoral transport unit, and were sacrificed after one month of consolidation. Results Clinical evaluation, cone-beam CT densitometry, three-dimensional histomorphometry, and docking site histology revealed significant new bone formation within the defect in the distracted group. Conclusion The physical dimensions and architectural parameters of the new bone were comparable to the contralateral normal bone. Bone union at the docking site remains a problem. PMID:19770704

  1. Virgin Coconut Oil Supplementation Prevents Bone Loss in Osteoporosis Rat Model

    PubMed Central

    Hayatullina, Zil; Muhammad, Norliza; Mohamed, Norazlina; Soelaiman, Ima-Nirwana

    2012-01-01

    Oxidative stress and free radicals have been implicated in the pathogenesis of osteoporosis. Therefore, antioxidant compounds have the potential to be used in the prevention and treatment of the disease. In this study, we investigated the effects of virgin coconut oil (VCO) on bone microarchitecture in a postmenopausal osteoporosis rat model. VCO is a different form of coconut oil as it is rich with antioxidants. Three-month-old female rats were randomly grouped into baseline, sham-operated, ovariectomized control (Ovx), and ovariectomized rats fed with 8% VCO in their diet for six weeks (Ovx+VCO). Bone histomorphometry of the right femora was carried out at the end of the study. Rats supplemented with VCO had a significantly greater bone volume and trabecular number while trabecular separation was lower than the Ovx group. In conclusion, VCO was effective in maintaining bone structure and preventing bone loss in estrogen-deficient rat model. PMID:23024690

  2. Virgin coconut oil supplementation prevents bone loss in osteoporosis rat model.

    PubMed

    Hayatullina, Zil; Muhammad, Norliza; Mohamed, Norazlina; Soelaiman, Ima-Nirwana

    2012-01-01

    Oxidative stress and free radicals have been implicated in the pathogenesis of osteoporosis. Therefore, antioxidant compounds have the potential to be used in the prevention and treatment of the disease. In this study, we investigated the effects of virgin coconut oil (VCO) on bone microarchitecture in a postmenopausal osteoporosis rat model. VCO is a different form of coconut oil as it is rich with antioxidants. Three-month-old female rats were randomly grouped into baseline, sham-operated, ovariectomized control (Ovx), and ovariectomized rats fed with 8% VCO in their diet for six weeks (Ovx+VCO). Bone histomorphometry of the right femora was carried out at the end of the study. Rats supplemented with VCO had a significantly greater bone volume and trabecular number while trabecular separation was lower than the Ovx group. In conclusion, VCO was effective in maintaining bone structure and preventing bone loss in estrogen-deficient rat model.

  3. Osteogenic Activity of Locally Applied Small Molecule Drugs in a Rat Femur Defect Model

    PubMed Central

    Cottrell, Jessica A.; Vales, Francis M.; Schachter, Deborah; Wadsworth, Scott; Gundlapalli, Rama; Kapadia, Rasesh; O'Connor, J. Patrick

    2010-01-01

    The long-term success of arthroplastic joints is dependent on the stabilization of the implant within the skeletal site. Movement of the arthroplastic implant within the bone can stimulate osteolysis, and therefore methods which promote rigid fixation or bone growth are expected to enhance implant stability and the long-term success of joint arthroplasty. In the present study, we used a simple bilateral bone defect model to analyze the osteogenic activity of three small-molecule drug implants via microcomputerized tomography (micro-CT) and histomorphometry. In this study, we show that local delivery of alendronate, but not lovastatin or omeprazole, led to significant new bone formation at the defect site. Since alendronate impedes osteoclast-development, it is theorized that alendronate treatment results in a net increase in bone formation by preventing osteoclast mediated remodeling of the newly formed bone and upregulating osteoblasts. PMID:20625499

  4. A New Piezoelectric Actuator Induces Bone Formation In Vivo: A Preliminary Study

    PubMed Central

    Reis, Joana; Frias, Clara; Canto e Castro, Carlos; Botelho, Maria Luísa; Marques, António Torres; Simões, José António Oliveira; Capela e Silva, Fernando; Potes, José

    2012-01-01

    This in vivo study presents the preliminary results of the use of a novel piezoelectric actuator for orthopedic application. The innovative use of the converse piezoelectric effect to mechanically stimulate bone was achieved with polyvinylidene fluoride actuators implanted in osteotomy cuts in sheep femur and tibia. The biological response around the osteotomies was assessed through histology and histomorphometry in nondecalcified sections and histochemistry and immunohistochemistry in decalcified sections, namely, through Masson's trichrome, and labeling of osteopontin, proliferating cell nuclear antigen, and tartrate-resistant acid phosphatase. After one-month implantation, total bone area and new bone area were significantly higher around actuators when compared to static controls. Bone deposition rate was also significantly higher in the mechanically stimulated areas. In these areas, osteopontin increased expression was observed. The present in vivo study suggests that piezoelectric materials and the converse piezoelectric effect may be used to effectively stimulate bone growth. PMID:22701304

  5. C-terminal Amidation of an Osteocalcin-derived Peptide Promotes Hydroxyapatite Crystallization*

    PubMed Central

    Hosseini, Samaneh; Naderi-Manesh, Hossein; Mountassif, Driss; Cerruti, Marta; Vali, Hojatollah; Faghihi, Shahab

    2013-01-01

    Genesis of natural biocomposite-based materials, such as bone, cartilage, and teeth, involves interactions between organic and inorganic systems. Natural biopolymers, such as peptide motif sequences, can be used as a template to direct the nucleation and crystallization of hydroxyapatite (HA). In this study, a natural motif sequence consisting of 13 amino acids present in the first helix of osteocalcin was selected based on its calcium binding ability and used as substrate for nucleation of HA crystals. The acidic (acidic osteocalcin-derived peptide (OSC)) and amidic (amidic osteocalcin-derived peptide (OSN)) forms of this sequence were synthesized to investigate the effects of different C termini on the process of biomineralization. Electron microscopy analyses show the formation of plate-like HA crystals with random size and shape in the presence of OSN. In contrast, spherical amorphous calcium phosphate is formed in the presence of OSC. Circular dichroism experiments indicate conformational changes of amidic peptide to an open and regular structure as a consequence of interaction with calcium and phosphate. There is no conformational change detectable in OSC. It is concluded that HA crystal formation, which only occurred in OSN, is attributable to C-terminal amidation of a natural peptide derived from osteocalcin. It is also proposed that natural peptides with the ability to promote biomineralization have the potential to be utilized in hard tissue regeneration. PMID:23362258

  6. High-intensity exercise of short duration alters bovine bone density and shape.

    PubMed

    Hiney, K M; Nielsen, B D; Rosenstein, D; Orth, M W; Marks, B P

    2004-06-01

    The ability of short-duration high-intensity exercise to stimulate bone formation in confinement was investigated using immature Holstein bull calves as a model. Eighteen bull calves, 8 wk of age, were assigned to one of three treatment groups: 1) group-housed (GR, which served as a control), 2) confined with no exercise (CF), or 3) confined with exercise (EX). The exercise protocol consisted of running 50 m on a concrete surface once daily, 5 d/wk. Confined calves remained stalled for the 42-d duration of the trial. Blood samples were taken to analyze concentrations of osteocalcin and deoxypyridinoline, markers of bone formation and resorption. At the completion of the trial, calves were humanely killed, and both forelegs were collected. The fused third and fourth metacarpal bone was scanned using computed tomography for determination of cross-sectional geometry and bone mineral density. Three-point bending tests to failure were performed on metacarpal bones. The exercise protocol resulted in the formation of a rounder bone in EX as well as in increased dorsal cortex thickness compared with those in the GR and CF. The exercised calves had a significantly smaller medullary cavity than CF and GR (P < 0.01) and a larger percentage of cortical bone area than CF (P < 0.01). Dorsal, palmar, and total bone mineral density was greater in EX than in CF (P < 0.05), and palmar and total bone mineral densities were greater (P < 0.05) in EX than in GR. There was a trend for the bones of EX to have a higher fracture force than CF (P < 0.10). Osteocalcin concentrations normalized from d 0 were higher in EX than CF (P < 0.05). Therefore, the exercise protocol altered bone shape and seemed to increase bone formation comparison with the stalled and group-housed calves.

  7. Noninvasive markers of bone metabolism in the rhesus monkey: normal effects of age and gender

    NASA Technical Reports Server (NTRS)

    Cahoon, S.; Boden, S. D.; Gould, K. G.; Vailas, A. C.

    1996-01-01

    Measurement of bone turnover in conditions such as osteoporosis has been limited by the need for invasive iliac bone biopsy to reliably determine parameters of bone metabolism. Recent advances in the area of serum and urinary markers of bone metabolism have raised the possibility for noninvasive measurements; however, little nonhuman primate data exist for these parameters. The purpose of this experiment was to define the normal range and variability of several of the newer noninvasive bone markers which are currently under investigation in humans. The primary intent was to determine age and gender variability, as well as provide some normative data for future experiments in nonhuman primates. Twenty-four rhesus macaques were divided into equal groups of male and female according to the following age groupings: 3 years, 5-10 years, 15-20 years, and > 25 years. Urine was collected three times daily for a four-day period and measured for several markers of bone turnoverm including pyridinoline (PYD), deoxypyrodinoline (DPD), hydroxyproline, and creatinine. Bone mineral density measurements of the lumbar spine were performed at the beginning and end of the study period. Serum was also obtained at the time of bone densitometry for measurement of osteocalcin levels by radioimmunoassay. There were no significant differences in bone mineral density, urine PYD, or urine DPD based on gender. Bone density was lowest in the youngest animals, peaked in the 15-20-year group, but again decreased in the oldest animals. The osteocalcin, PYD, and DPD levels followed an inversely related pattern to bone density. The most important result was the relative age insensitivity of the ratio of PYD:DPD in monkeys up to age 20 years. Since bone density changes take months or years to become measurable and iliac biopsies are invasive, the PYD/DPD marker ratio may have important implications for rapid noninvasive measurement of the effects of potential treatments for osteoporosis in the non-human primate model.

  8. Static Histomorphometry of the iliac crest after 360 days of antiorthostatic bed rest with and without countermeasures

    NASA Astrophysics Data System (ADS)

    Thomsen, J. S.; Morukov, B. V.; Vico, L.; Saparin, P. I.; Gowin, W.

    The loss of bone during immobilization is well-known and investigated, whereas the structural changes human cancellous bone undergoes during disuse is less well examined. The aim of the study was to examine the influence of hypokinesia on the static histomorphometric measures of the iliac crest using a 360-day-long bed rest experiment, simulating exposure to microgravity. Eight healthy males underwent 360 days of 5° head-down tilt bed rest. Three subjects were treated with the bisphosphonate Xidifon (900 mg/day) combined with a treadmill and ergonometer exercise regimen (1--2 hours/day) for the entire study period. Five subjects underwent 120 days of bed rest without countermeasures followed by 240 days of bed rest with the treadmill and ergonometer exercise regimen. Transiliac bone biopsies were obtained either at day 0 and 360 or at day 0, 120, and 360 at alternating sides of the ileum. The biopsies were embedded in methylmethacrylate, cut in 7-μm-thick sections, stained with Goldner trichrome, and static histomorphometry was performed. 120 days of bed rest without countermeasures resulted in decreased trabecular bone volume (-6.3%, p = 0.046) and trabecular number (-10.2%, p = 0.080) and increased trabecular separation (14.7%, p = 0.020), whereas 240 days of subsequent bed rest with exercise treatment prevented further significant deterioration of the histomorphometric measures. 360 days of bed rest with bisphosphonate and exercise treatment did not induce any significant changes in any of the histomorphometric measures. The study showed that 120 days of antiorthostatic bed rest without countermeasures induced significant deterioration of iliac crest trabecular bone histomorphometric properties. There are indications that the immobilization induced changes involve a loss of trabeculae rather than a general thinning of the trabeculae. On average, the countermeasures consisting of either bisphosphonate and exercise or exercise alone were able to either prevent or stop immobilization induced changes of the iliac trabecular bone structure. Limitation: due to the inhomogeneous distribution of the trabecular bone structure of the iliac crest, it should be carefully considered whether paired sets of iliac crest bone biopsies are well-suited for studies of microgravity induced changes of trabecular bone structure.

  9. Optimizing tamoxifen-inducible Cre/loxp system to reduce tamoxifen effect on bone turnover in long bones of young mice.

    PubMed

    Zhong, Zhendong A; Sun, Weihua; Chen, Haiyan; Zhang, Hongliang; Lay, Yu-An E; Lane, Nancy E; Yao, Wei

    2015-12-01

    For tamoxifen-dependent Cre recombinase, also known as CreER recombinase, tamoxifen (TAM) is used to activate the Cre to generate time- and tissue-specific mouse mutants. TAM is a potent CreER system inducer; however, TAM is also an active selective estrogen receptor modulator (SERM) that can influence bone homeostasis. The purpose of this study was to optimize the TAM dose for Cre recombinase activation while minimizing the effects of TAM on bone turnover in young growing mice. To evaluate the effects of TAM on bone turnover and bone mass, 1-month-old wild-type male and female mice were intraperitoneally injected with TAM at 0, 1, 10 or 100mg/kg/day for four consecutive days, or 100, 300 mg/kg/day for one day. The distal femurs were analyzed one month after the last TAM injection by microCT, mechanical test, and surface-based bone histomorphometry. Similar doses of TAM were used in Col1 (2.3 kb)-CreERT2; mT/mG reporter male mice to evaluate the dose-dependent efficacy of Cre-ER activation in bone tissue. A TAM dose of 100 mg/kg × 4 days significantly increased trabecular bone volume/total volume (BV/TV) of the distal femur, femur length, bone strength, and serum bone turnover markers compared to the 0mg control group. In contrast, TAM doses ≤ 10 mg/kg did not significantly change any of these parameters compared to the 0mg group, although a higher bone strength was observed in the 10mg group. Surface-based histomorphometry revealed that the 100mg/kg dose of TAM dose significantly increased trabecular bone formation and decreased periosteal bone formation at 1-week post-TAM treatment. Using the reporter mouse model Col1-CreERT2; mT/mG, we found that 10mg/kg TAM induced Col1-CreERT2 activity in bone at a comparable level to the 100mg/kg dose. TAM treatment at 100mg/kg/day × 4 days significantly affects bone homeostasis, resulting in an anabolic bone effect on trabecular bone in 1-month-old male mice. However, a lower dose of TAM at 10 mg/kg/day × 4 days can yield similar Col1-CreERT2 induction efficacy with minimum effects on bone turnover in young male mice. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Analysis of Circulating Mediators of Bone Remodeling in Prader-Willi Syndrome.

    PubMed

    Brunetti, G; Grugni, G; Piacente, L; Delvecchio, M; Ventura, A; Giordano, P; Grano, M; D'Amato, G; Laforgia, D; Crinò, A; Faienza, M F

    2018-06-01

    We tested the hypothesis that the levels of bone remodeling mediators may be altered in Prader-Willi syndrome (PWS). We assessed RANKL, OPG, sclerostin, DKK-1 serum levels, and bone metabolism markers in 12 PWS children (7.8 ± 4.3 years), 14 PWS adults (29.5 ± 7.2 years), and 31 healthy controls matched for sex and age. Instrumental parameters of bone mineral density (BMD) were also evaluated. Lumbar spine BMD Z-scores were reduced in PWS children (P < 0.01), reaching osteopenic levels in PWS adults. PWS patients showed lower 25(OH)-vitamin D serum levels than controls (P < 0.001). Osteocalcin was increased in PWS children but reduced in adults respect to controls (P < 0.005 and P < 0.01, respectively). RANKL levels were higher in both pediatric and PWS adults than controls (P < 0.004), while OPG levels were significantly reduced (P < 0.004 and P < 0.006, respectively). Sclerostin levels were increased in children (P < 0.04) but reduced in adults compared to controls (P < 0.01). DKK-1 levels did not show significant difference between patients and controls. In PWS patients, RANKL, OPG, and sclerostin significantly correlated with metabolic and bone instrumental parameters. Consistently, with adjustment for age, multiple linear regression analysis showed that BMD and osteocalcin were the most important predictors for RANKL, OPG, and sclerostin in children, and GH and sex steroid replacement treatment in PWS adults. We demonstrated the involvement of RANKL, OPG, and sclerostin in the altered bone turnover of PWS subjects suggesting these molecules as markers of bone disease and new potential pharmacological targets to improve bone health in PWS.

  11. Pilot Study: Unique Response of Bone Tissue During an Investigation of Radio-Adaptive Effects in Mice

    NASA Technical Reports Server (NTRS)

    Sibonga, J. D.; Iwaniec, U.; Wu, H.

    2011-01-01

    PURPOSE: We obtained bone tissue to evaluate the collateral effects of experiments designed to investigate molecular mechanisms of radio-adaptation in a mouse model. Radio-adaptation describes a process by which the prior exposure to low dose radiation can protect against the toxic effect of a subsequent high dose exposure. In the radio-adaptation experiments, C57Bl/6 mice were exposed to either a Sham or a priming Low Dose (5 cGy) of Cs-137 gamma rays before being exposed to either a Sham or High Dose (6 Gy) 24 hours later. ANALYSIS: Bone tissue were obtained from two experiments where mice were sacrificed at 3 days (n=3/group, 12 total) and at 14 days (n=6/group, 24 total) following high dose exposure. Tissues were analyzed to 1) evaluate a radio-adaptive response in bone tissue and 2) describe cellular and microstructural effects for two skeletal sites with different rates of bone turnover. One tibia and one lumbar vertebrae (LV2), collected at the 3-day time-point, were analyzed by bone histomorphometry and micro-CT to evaluate the cellular response and any evidence of microarchitectural impact. Likewise, tibia and LV2, collected at the 14-day time-point, were analyzed by micro-CT alone to evaluate resulting changes to bone structure and microarchitecture. The data were analyzed by 2-way ANOVA to evaluate the effects of the priming low dose radiation, of the high dose radiation, and of any interaction between the priming low and high doses of radiation. Bone histomorphometry was performed in the cancellous bone (aka trabecular bone) compartments of the proximal tibial metaphysis and of LV2. RESULTS: Cellular Response @ 3 Days The priming Low Dose radiation decreased osteoblast-covered bone perimeter in the proximal tibia and the total cell density in the bone marrow in the LV2. High Dose radiation, regardless of prior exposure to priming dose, dramatically reduced total cell density in bone marrow of both the long bone and vertebra. However, in the proximal tibia, High Dose radiation increased the osteoclast-covered bone perimeters, the density of adipocytes in bone marrow, and the area of bone marrow occupied by fat cells -- while in the LV2, adipocytes were rare and not stimulated by High Dose radiation. In an unexpected response, High Dose radiation dramatically increased (10-fold) osteoblast-covered bone perimeter in the LV2.

  12. Bone regeneration by implantation of adipose-derived stromal cells expressing BMP-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Huiwu; Health and Science Center, SIBS CAS and SSMU, 225 South Chongqing Road, Shanghai 200025; Dai Kerong

    2007-05-18

    In this study, we reported that the adipose-derived stromal cells (ADSCs) genetically modified by bone morphogenetic protein 2 (BMP-2) healed critical-sized canine ulnar bone defects. First, the osteogenic and adipogenic differentiation potential of the ADSCs derived from canine adipose tissue were demonstrated. And then the cells were modified by the BMP-2 gene and the expression and bone-induction ability of BMP-2 were identified. Finally, the cells modified by BMP-2 gene were applied to a {beta}-tricalcium phosphate (TCP) carrier and implanted into ulnar bone defects in the canine model. After 16 weeks, radiographic, histological, and histomorphometry analysis showed that ADSCs modified bymore » BMP-2 gene produced a significant increase of newly formed bone area and healed or partly healed all of the bone defects. We conclude that ADSCs modified by the BMP-2 gene can enhance the repair of critical-sized bone defects in large animals.« less

  13. Osteogenic effect of a gastric pentadecapeptide, BPC-157, on the healing of segmental bone defect in rabbits: a comparison with bone marrow and autologous cortical bone implantation.

    PubMed

    Sebecić, B; Nikolić, V; Sikirić, P; Seiwerth, S; Sosa, T; Patrlj, L; Grabarević, Z; Rucman, R; Petek, M; Konjevoda, P; Jadrijević, S; Perović, D; Slaj, M

    1999-03-01

    Gastrectomy often results in increased likelihood of osteoporosis, metabolic aberration, and risk of fracture, and there is a need for a gastric peptide with osteogenic activity. A novel stomach pentadecapeptide, BPC-157, improves wound and fracture healing in rats in addition to having an angiogenic effect. Therefore, in the present study, using a segmental osteoperiosteal bone defect (0.8 cm, in the middle of the left radius) that remained incompletely healed in all control rabbits for 6 weeks (assessed in 2 week intervals), pentadecapeptide BPC-157 was further studied (either percutaneously given locally [10 microg/kg body weight] into the bone defect, or applied intramuscularly [intermittently, at postoperative days 7, 9, 14, and 16 at 10 microg/kg body weight] or continuously [once per day, postoperative days 7-21 at 10 microg or 10 ng/kg body weight]). For comparison, rabbits percutaneously received locally autologous bone marrow (2 mL, postoperative day 7). As standard treatment, immediately after its formation, the bone defect was filled with an autologous cortical graft. Saline-treated (2 mL intramuscularly [i.m.] and 2 mL locally into the bone defect), injured animals were used as controls. Pentadecapeptide BPC-157 significantly improved the healing of segmental bone defects. For instance, upon radiographic assessment, the callus surface, microphotodensitometry, quantitative histomorphometry (10 microg/kg body weight i.m. for 14 days), or quantitative histomorphometry (10 ng/kg body weight i.m. for 14 days) the effect of pentadecapeptide BPC-157 was shown to correspond to improvement after local application of bone marrow or autologous cortical graft. Moreover, a comparison of the number of animals with unhealed defects (all controls) or healed defects (complete bony continuity across the defect site) showed that besides pentadecapeptide intramuscular application for 14 days (i.e., local application of bone marrow or autologous cortical graft), also following other pentadecapeptide BPC-157 regimens (local application, or intermittent intramuscular administration), the number of animals with healed defect was increased. Hopefully, in the light of the suggested stomach significance for bone homeostasis, the possible relevance of this pentadecapeptide BPC-157 effect (local or intramuscular effectiveness, lack of unwanted effects) could be a basis for methods of choice in the future management of healing impairment in humans, and requires further investigation.

  14. [Evidences of safety and tolerability of the zoledronic acid 5 mg yearly in the post-menopausal osteoporosis: the HORIZON project].

    PubMed

    Dalle Carbonare, L; Bertoldo, F; Lo Cascio, V

    2009-01-01

    Bisphosphonates are the most commonly prescribed medications for the treatment of osteoporosis. Despite evidence supporting the anti-fracture efficacy of aminobisphosphonates approximately 50% of patients do not follow their prescribed treatment regimen and/or discontinue treatment within the first year. Poor compliance is associated with negative outcomes, including increased fracture risk. Tolerability and safety are among the causes of poor compliance. Intravenous bisphosphonates avoids the gastrointestial intolerance and the complex dosing instruction of the oral route ensuring full compliance which may provide improved efficacy. However, there are some concerns regarding potent intravenous bisphosphonates as zoledronic acid with respect to tolerability, mainly the acute phase response and to safety, mainly a theoretical risk of over suppression of bone turnover, renal toxicity and osteonecrosis of the jaw. In the HORIZON study, 152 patients on active treatment (82) or placebo (70) underwent to a bone biopsy after double tetracycline labeling. Bone biopsies (iliac crest) were obtained at the final visit at month 36, 1 year after the last infusion. The biopsies were analyzed by histomorphometry on bone sections and by micro-CT (microCT) analysis. One hundred forthy-three biopsies (76 zoledronic acid, 67 placebo) had at least one microCT parameter measured and 111 were available for quantitative histomorphometry (59 zoledronic acid, 52 placebo). Micro-CT analysis of bone structure revealed higher trabecular bone volume (BV/TV), decreased trabecular separation (Tb.Sp), and a strong trend towards improvement in connectivity density in biopsies obtained from patients treated with zoledronic acid, indicating preservation of trabecular bone structure with respect to placebo. Histomorphometric analysis obtained from patients treated with zoledronic acid exhibited reduction of bone turnover, as suggested by decreased activation frequency (Ac.F) by 63%, mineralizing surface (MS/BS), bone formation rate (BFR/BV). In addition, mineral appositional rate (MAR), reflecting the bone-forming capacity of osteoblastic teams at the bone multicellular unit (BMU) level, was significantly higher in patients on active treatment. No sign of excessive suppression of bone turnover or mineralization impairment was detected, confirming the safety of the treatment with intravenous zoledronic acid once a year. These interesting findings are discussed in the article, particularly in terms of new histomorphometric results and clinical findings supporting the tolerability and safety of zoledronic acid.

  15. Lack of association between vitamin D receptor genotypes and osteoporosis in Koreans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Sung Kil; Park, Young Suk; Park, Jae Min

    To evaluate whether common allelic variants in the gene encoding the vitamin D receptor (VDR) were useful in predicting differences in bone mineral density (BMD) and bone turnover rate in Koreans, we analyzed the restriction pattern of the polymerase chain reaction product of the VDR gene with the Bsm1 enzyme and serum osteocalcin in patients with osteoporosis. The prevalence of the BB genotype in the controls was extremely low when compared with that in other reports: the BB, Bb, and bb genotypes accounted for 1.4%, 12.9%, and 85.7%, respectively. Only 2.8% of those patients with osteoporosis had the BB genotype.more » In contrast, 12.5% had the Bb genotype, and 84.7% had the bb genotype. The prevalence of the BB genotype in patients with severe osteoporosis was also extremely low: the BB, Bb and bb genotypes accounted for 0%, 12.4%, and 87.6%, respectively. Compared with the mean serum osteocalcin level of the pre- and post-menopausal controls, the levels in patients with severe osteoporosis was higher, and this was statistically significant. As expected, a negative correlation was observed between the serum osteocalcin levels and the age-matched Z scores for spinal BMD. However, no correlation was found in the femoral neck BMD. These results suggest that restriction fragment length polymorphism analysis of the VDR gene with a Bsm1 restriction enzyme in Koreans is not helpful for early detection of patients at risk of developing osteoporosis. This is true even in patients with a high rate of bone turnover. Our data suggest extreme ethnic differences in the pattern of prevalence of the VDR allele. 19 refs., 5 figs., 2 tabs.« less

  16. Chitosan-glycerol phosphate/blood implants elicit hyaline cartilage repair integrated with porous subchondral bone in microdrilled rabbit defects.

    PubMed

    Hoemann, C D; Sun, J; McKee, M D; Chevrier, A; Rossomacha, E; Rivard, G-E; Hurtig, M; Buschmann, M D

    2007-01-01

    We have previously shown that microfractured ovine defects are repaired with more hyaline cartilage when the defect is treated with in situ-solidified implants of chitosan-glycerol phosphate (chitosan-GP) mixed with autologous whole blood. The objectives of this study were (1) to characterize chitosan-GP/blood clots in vitro, and (2) to develop a rabbit marrow stimulation model in order to determine the effects of the chitosan-GP/blood implant and of debridement on the formation of incipient cartilage repair tissue. Blood clots were characterized by histology and in vitro clot retraction tests. Bilateral 3.5 x 4 mm trochlear defects debrided into the calcified layer were pierced with four microdrill holes and filled with a chitosan-GP/blood implant or allowed to bleed freely as a control. At 1 day post-surgery, initial defects were characterized by histomorphometry (n=3). After 8 weeks of repair, osteochondral repair tissues between or through the drill holes were evaluated by histology, histomorphometry, collagen type II expression, and stereology (n=16). Chitosan-GP solutions structurally stabilized the blood clots by inhibiting clot retraction. Treatment of drilled defects with chitosan-GP/blood clots led to the formation of a more integrated and hyaline repair tissue above a more porous and vascularized subchondral bone plate compared to drilling alone. Correlation analysis of repair tissue between the drill holes revealed that the absence of calcified cartilage and the presence of a porous subchondral bone plate were predictors of greater repair tissue integration with subchondral bone (P<0.005), and of a higher total O'Driscoll score (P<0.005 and P<0.01, respectively). Chitosan-GP/blood implants applied in conjunction with drilling, compared to drilling alone, elicited a more hyaline and integrated repair tissue associated with a porous subchondral bone replete with blood vessels. Concomitant regeneration of a vascularized bone plate during cartilage repair could provide progenitors, anabolic factors and nutrients that aid in the formation of hyaline cartilage.

  17. Effect of sintering temperature rise from 870 to 920°C on physicomechanical and biological quality of nano-hydroxyapatite: An explorative multi-phase experimental in vitro/vivo study.

    PubMed

    Khoshzaban, Ahad; Rakhshan, Vahid; Najafi, Farhood; Aghajanpour, Leila; Hashemian, Seyed Jafar; Keshel, Saeed Heidari; Watanabe, Ikuya; Valanezhad, Alireza; Jafarzadeh Kashi, Tahereh Sadat

    2017-08-01

    Hydroxyapatite (HA) is a proper scaffold for bone repair, however, it is not of excellent mechanical properties. Most previous studies on the effect of temperature increases were in vitro and had assessed merely improvements of HA's physicomechanical quality. This in vitro/vivo study investigated the effect of temperature increases from 870 to 920°C on physicomechanical and biological quality of Nano-HA. Forty experimentally produced HA disks sintered at 870 to 920°C were prepared (n=20×2). Disks were subjected to Vickers microindentation test (1 disk from each group divided into 4 quarters), Fourier transform infrared spectroscopy (1 disk), X-ray diffraction (XRD) [1 disk together with non-sintered HA], field emission scanning electron microscopy (FSEM, 1 disk from each group together with non-sintered HA), cell seeding and SEM assessment (2 disks), MTT assay over 4 different time periods (16 quadrants of 4 disks from each group), 6 one-thirds of 2 disks from each group for immunocytochemical (ICC) assay, and 8 disks from each group [as well as non-sintered HA] for the animal study (implantation in 4 sockets in 8 rabbits [32 specimens], histomorphometry, and computerized tomography) over two time periods. Quantitative data were analyzed statistically (α=0.05). Vickers microhardness increased from 63.7±11.9 in the 870 group to 153.4±104.7 in the 920 group (P=0.057). XRD indicated more regular crystal patterns in sintered groups compared to non-sintered nanoHA. FSEM showed larger crystals in the 920 group compared to 870 and non-sintered nanoHA. Expression of osteocalcin, osteonectin, and RUNX2 genes were more visible in ICC samples of the 920HA group. In MTT, cell numbers increased in all groups significantly (P=0.000), with no between-group differences (P>0.3). In rabbit experiments, the extent of 'newly formed bone' increased significantly over time (two-way ANOVA, P=0.000), reaching 39.5%, 46.4%, and 77.5% in the groups non-sintered HA, 870, and 920, respectively. The 920°C-sintered nanoHA induced the highest bone formation (P=0.000). Increasing the temperature of nanoHA sintering from 870 to 920°C can improve its physicomechanical properties and bone formation potential. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Effects of 16-month treatment with the cathepsin K inhibitor ONO-5334 on bone markers, mineral density, strength and histomorphometry in ovariectomized cynomolgus monkeys.

    PubMed

    Yamada, Hiroyuki; Ochi, Yasuo; Mori, Hiroshi; Nishikawa, Satoshi; Hashimoto, Yasuaki; Nakanishi, Yasutomo; Tanaka, Makoto; Bruce, Mark; Deacon, Steve; Kawabata, Kazuhito

    2016-05-01

    We examined the effects of ONO-5334, a cathepsin K inhibitor, on bone markers, BMD, strength and histomorphometry in ovariectomized (OVX) cynomolgus monkeys. ONO-5334 (1.2, 6 and 30mg/kg/day, p.o.), alendronate (0.05mg/kg/2weeks, i.v.), or vehicle was administered to OVX monkeys (all groups N=20) for 16months. A concurrent Sham group (N=20) was also treated with vehicle for 16months. OVX significantly increased bone resorption and formation markers and decreased BMD in lumbar vertebra, femoral neck, proximal tibia and distal radius. Alendronate suppressed these parameters to a level similar to that in the Sham-operated monkeys. ONO-5334 at doses 6 and 30mg/kg decreased bone resorption markers to a level roughly half of that in the Sham group, while keeping bone formation markers level above that in the Sham monkeys. Changes in DXA BMD confirmed that ONO-5334 at doses 6 and 30mg/kg increased BMD to a level greater than that in the Sham group in all examined sites. In the proximal tibia, in vivo pQCT analysis showed that ONO-5334 at doses 6 and 30mg/kg suppressed trabecular BMD loss to the sham level. However, ONO-5334 increased cortical BMD, cortical area and cortical thickness to a level greater than that in the Sham group, suggesting that ONO-5334 improves both cortical BMD and cortical geometry. Histomorphometric analysis revealed that ONO-5334 suppressed bone formation rate (BFR) at osteonal site in the midshaft femur but did not influence OVX-induced increase in BFR at either the periosteal or endocortical surfaces. Unlike alendronate, ONO-5334 increased osteoclasts surface (Oc.S/BS) and serum tartrate-resistant acid phosphatise 5b (TRAP5b) activity, highlighting the difference in the mode of action between these two drugs. Our results suggest that ONO-5334 has therapeutic potential not only in vertebral bones, but also in non-vertebral bones. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. The temporal response of bone to unloading

    NASA Technical Reports Server (NTRS)

    Globus, R. K.; Bikle, D. D.; Morey-Holton, E.

    1984-01-01

    Rats were suspended by their tails with the forelimbs bearing the weight load to simulate the weightlessness of space flight. Growth in bone mass ceased by 1 week in the hindlimbs and lumbar vertebrae in growing rats, while growth in the forelimbs and cervical vertebrae remained unaffected. The effects of selective skeletal unloading on bone formation during 2 weeks of suspension was investigated using radio iostope incorporation (with Ca-45 and H-3 proline) and histomorphometry (with tetracycline labeling). The results of these studies were confirmed by histomorphometric measurements of bone formation using triple tetracycline labeling. This model of simulated weightlessness results in an initial inhibition of bone formation in the unloaded bones. This temporary cessation of bone formation is followed in the accretion of bone mass, which then resumes at a normal rate by 14 days, despite continued skeletal unloading. This cycle of inhibition and resumption of bone formation has profound implication for understanding bone dynamics durng space flight, immobilization, or bed rest and offers an opportunity to study the hormonal and mechanical factors that regulate bone formation.

  20. Negative impact of high cumulative glucocorticoid dose on bone metabolism of patients with myasthenia gravis.

    PubMed

    Braz, Nayara Felicidade Tomaz; Rocha, Natalia Pessoa; Vieira, Érica Leandro Marciano; Gomez, Rodrigo Santiago; Barbosa, Izabela Guimarães; Malheiro, Olívio Brito; Kakehasi, Adriana Maria; Teixeira, Antonio Lucio

    2017-08-01

    This current study aimed to evaluate the frequency of low bone mass, osteopenia, and osteoporosis in patients with myasthenia gravis (MG) and to investigate the possible association between bone mineral density (BMD) and plasma levels of bone metabolism markers. Eighty patients with MG and 62 controls BMD were measured in the right femoral neck and lumbar spine by dual-energy X-ray absorptiometry. Plasma concentrations of osteocalcin, osteopontin, osteoprotegerin, tumor necrosis factor (TNF-α), interleukin (IL)-1β, IL-6, dickkopf (DKK-1), sclerostin, insulin, leptin, adrenocorticotropic hormone, parathyroid hormone, and fibroblast growth factor (FGF-23) were analyzed by Luminex®. The mean age of patients was 41.9 years, with 13.5 years of length of illness, and a mean cumulative dose of glucocorticoids 38,123 mg. Patients had significant reduction in BMD of the lumbar, the femoral neck, and in the whole body when compared with controls. Fourteen percent MG patients had osteoporosis at the lumbar spine and 2.5% at the femoral neck. In comparison with controls, patients with MG presented lower levels of osteocalcin, adrenocorticotropic hormone, parathyroid hormone, sclerostin, TNF-α, and DKK-1 and higher levels of FGF-23, leptin, and IL-6. There was a significant negative correlation between cumulative glucocorticoid dose and serum calcium, lumbar spine T-score, femoral neck BMD, T-score, and Z-score. After multivariate analysis, higher TNF-α levels increased the likelihood of presenting low bone mass by 2.62. MG patients under corticotherapy presented low BMD and altered levels of bone markers.

  1. [Association between bone turnover markers, bone mineral density and vitamin D in Moroccan postmenopausal women].

    PubMed

    Elmaataoui, A; Elmachtani Idrissi, S; Dami, A; Bouhsain, S; Chabraoui, L; Ouzzif, Z

    2014-02-01

    The aim of the study is to find the correlation between bone turnover markers and bone mineral density in a cohort of Moroccan postmenopausal women. A cross-sectional study, conducted over a period of 12 months from October 2008 to November 2009. Five hundred Moroccan postmenopausal women volunteers participated in this study and we included only 185. In this cohort of 185 women, average age 60 years, the percentage of osteoporotic women was 35.7%, they were older 62.09 (9.13) years and they had an average of the body mass index (BMI), the lowest 29.58 (4.45). The values of the bone mineral density (BMD) measured at the lumbar spine correlated positively and significantly with BMI (P<0.001), serum calcium (P=0.026), negatively with age (P<0.001) and osteocalcin (OC) (P=0.0033). As for the results of BMD measured at the femoral neck, they show a negative and highly significant correlation with age (P<0.001) and osteocalcin. Looking for an association between the biochemical markers of bone remodeling, a weak positive correlation was found between the calcium (Ca) and alkaline phosphatase (PAL) on the one hand and Ca and intact parathyroid hormone (PTHi) in the other hand. And a significant positive correlation was found between PTHi and PAL, and between PTHi and OC. Finally, a significant positive correlation was found between the cross-laps (β-CTX) and Ca and between PAL and OC. Our results are in agree to some international studies and disagree to others. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  2. Bone mineral status and metabolism in patients with Williams-Beuren syndrome.

    PubMed

    Stagi, Stefano; Manoni, Cristina; Scalini, Perla; Chiarelli, Francesco; Verrotti, Alberto; Cecchi, Cecilia; Lapi, Elisabetta; Giglio, Sabrina; Romano, Silvia; de Martino, Maurizio

    2016-07-01

    To evaluate bone mineral status and metabolism in a cohort of patients with Williams-Beuren syndrome (WBS). Thirty-one children (15 females, 16 males; mean age 9.6±2.74 years) and 10 young adults (6 females, 4 males; mean age 21.4±5.11 years) with WBS were cross-sectionally evaluated and compared with two age-, sex-, and body-size-matched paediatric (155 subjects, 75 females and 80 males; mean age 9.7±2.93 years) and adult (50 subjects, 30 females and 20 males; mean age 22.3±5.42 years) healthy controls. We evaluated ionised and total calcium, phosphate, parathyroid hormone (PTH), 25-hydroxyvitamin D, 1,25-dihydroxyvitamin D, osteocalcin, bone alkaline phosphatase levels, and urinary deoxypyridinoline concentrations. We also calculated the phalangeal amplitude-dependent speed of sound (AD-SoS) and the bone transmission time (BTT) z-scores. WBS patients showed a significantly reduced AD-SoS z-score (p <0.001) and BTT z-score (p <0.001) compared with the controls. This finding persisted when we divided the sample into paediatric and adult patients. WBS patients also had significantly higher ionised (p <0.001) and total calcium (p <0.001) levels as well as higher PTH levels (p <0.001) compared with the controls. Furthermore, WBS children and adolescents had significantly lower serum osteocalcin levels (p <0.001) and urinary deoxypyridinoline concentrations (p <0.001) than controls. WBS subjects exhibit a significant reduction in bone mineral status and impaired bone metabolism. These findings point to the need for close monitoring of WBS patients.

  3. Impact of Phosphorus-Based Food Additives on Bone and Mineral Metabolism.

    PubMed

    Gutiérrez, Orlando M; Luzuriaga-McPherson, Alexandra; Lin, Yiming; Gilbert, Linda C; Ha, Shin-Woo; Beck, George R

    2015-11-01

    Phosphorus-based food additives can substantially increase total phosphorus intake per day, but the effect of these additives on endocrine factors regulating bone and mineral metabolism is unclear. This study aimed to examine the effect of phosphorus additives on markers of bone and mineral metabolism. Design and Setting, and Participants: This was a feeding study of 10 healthy individuals fed a diet providing ∼1000 mg of phosphorus/d using foods known to be free of phosphorus additives for 1 week (low-additive diet), immediately followed by a diet containing identical food items; however, the foods contained phosphorus additives (additive-enhanced diet). Parallel studies were conducted in animals fed low- (0.2%) and high- (1.8%) phosphorus diets for 5 or 15 weeks. The changes in markers of mineral metabolism after each diet period were measured. Participants were 32 ± 8 years old, 30% male, and 70% black. The measured phosphorus content of the additive-enhanced diet was 606 ± 125 mg higher than the low-additive diet (P < .001). After 1 week of the low-additive diet, consuming the additive-enhanced diet for 1 week significantly increased circulating fibroblast growth factor 23 (FGF23), osteopontin, and osteocalcin concentrations by 23, 10, and 11%, respectively, and decreased mean sclerostin concentrations (P < .05 for all). Similarly, high-phosphorus diets in mice significantly increased blood FGF23, osteopontin and osteocalcin, lowered sclerostin, and decreased bone mineral density (P < .05 for all). The enhanced phosphorus content of processed foods can disturb bone and mineral metabolism in humans. The results of the animal studies suggest that this may compromise bone health.

  4. Histomorphometric analysis of osteopenia associated with endemic osteoarthritis (Mseleni joint disease).

    PubMed

    Schnitzler, C M; Pieczkowski, W M; Fredlund, V; Mesquita, J M; Sweet, M B; Smit, A E

    1988-01-01

    Mseleni Joint Disease (MJD), a polyarticular osteoarthritis of uncertain etiology is endemic among the Tonga-Zulu tribe. The traditional diet is deficient in calcium, and palm wine (2-4% alcohol) is drunk widely. Patients with MJD are reported to be more osteopenic than those without. Iliac bone biopsies of 19 arthritic patients were examined by routine histomorphometry and revealed decreased trabecular bone volume (p less than 0.0005), increased resorption surfaces (p less than 0.01), decreased bone formation rate at the BMU (p less than 0.01) level and increased mineralization lag time (p less than 0.01). Six of the 19 patients (31.6%) had features of osteomalacia and six (31.6%) signs of osteoblast failure. The most likely cause of the bone disorder is calcium deficiency, but inanition, inactivity and alcohol abuse may have contributed. Although the joint disorder may have contributed to the bone disorder, the converse is unlikely the case.

  5. Effects of developmental exposure to perfluorooctanoic acid (PFOA) on long bone morphology and bone cell differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koskela, A., E-mail: antti.koskela@oulu.fi

    Perfluorooctanoic acid (PFOA) is a ubiquitous and persistent environmental chemical, which has been used extensively due to its stability and surface tension-lowering properties. Toxicological effects include induction of neonatal mortality and reproductive toxicity. In this study, pregnant C57BL/6 mice were exposed orally to 0.3 mg PFOA/kg/day throughout pregnancy, and female offspring were studied at the age of 13 or 17 months. Morphometrical and biomechanical properties of femurs and tibias were analyzed with micro-computed tomography and 3-point bending, and bone PFOA concentrations were determined by mass spectrometry. The effects of PFOA on bone cell differentiation were studied in osteoclasts from C57BL/6more » mice and in the MC3T3 pre-osteoblast cell line. PFOA exposed mice showed increased femoral periosteal area as well as decreased mineral density of tibias. Biomechanical properties of these bones were not affected. Bone PFOA concentrations were clearly elevated even at the age of 17 months. In osteoblasts, low concentrations of PFOA increased osteocalcin (OCN) expression and calcium secretion, but at PFOA concentrations of 100 μM and above osteocalcin (OCN) expression and calcium secretion were decreased. The number of osteoclasts was increased at all PFOA concentrations tested and resorption activity dose-dependently increased from 0.1–1.0 μM, but decreased at higher concentrations. The results show that PFOA accumulates in bone and is present in bones until the old age. PFOA has the potential to influence bone turnover over a long period of time. Therefore bone is a target tissue for PFOA, and altered bone geometry and mineral density seem to persist throughout the life of the animal. - Highlights: • Bone is a target tissue for PFOA both in vivo and in vitro. • Maternal exposure during pregnancy results in PFOA accumulation in bone of the offspring. • PFOA is present in bones until the old age. • PFOA causes mild alterations in bone morphometry and decreases bone mineral density. • Low PFOA concentrations stimulate the resorption activity of osteoclasts.« less

  6. The association of testosterone, sex hormone-binding globulin, and insulin-like growth factor-1 with bone parameters in Korean men aged 50 years or older.

    PubMed

    Kim, Hye-Jung; Koo, Hyung Suk; Kim, Young-Sang; Kim, Moon Jong; Kim, Kwang-Min; Joo, Nam-Seok; Haam, Ji-Hee

    2017-11-01

    Testosterone and insulin-like growth factor-1 (IGF-1) are essential factors for the maintenance of bone health in men. However, the results for the association of testosterone and IGF-1 with bone parameters were not consistent in prior studies. We evaluated the relationship of testosterone, sex hormone-binding globulin (SHBG), and IGF-1 with bone mineral density (BMD) and bone turnover markers (BTMs) in Korean men. We enrolled 1227 men aged ≥50 years in this cross-sectional study. Serum levels of total testosterone (TT), SHBG, IGF-1, osteocalcin, and C-terminal cross-linking telopeptide of type I collagen (CTX) were measured. Free testosterone (FT) was calculated using Vermeulen's method. BMD was measured by dual-energy X-ray absorptiometry. TT level was not related to BMD or BTMs in the unadjusted model; however, after adjusting for SHBG and IGF-1, the association between TT and BTMs was significant (β = -0.139 for osteocalcin and β = -0.204 for CTX). SHBG levels were negatively associated with lumbar BMD, and positively associated with BTMs in all models. As SHBG level increased, the prevalence of osteopenia or osteoporosis defined by BMD significantly increased (OR of 1SD change, 1.24). IGF-1 levels were significantly related with BMD, but not with BTMs. Meanwhile, FT levels were positively associated with BMD and negatively associated with BTMs. In conclusion, SHBG levels were independently related with bone parameters and osteopenia in men aged ≥50 years. IGF-1 levels were positively associated with BMD, but not with BTMs. SHBG may play a role in regulating age-related bone loss in men after middle-age.

  7. Effect of 1-year dietary supplementation with vitaminized olive oil on markers of bone turnover and oxidative stress in healthy post-menopausal women.

    PubMed

    Mazzanti, Laura; Battino, Maurizio; Nanetti, Laura; Raffaelli, Francesca; Alidori, Alessandro; Sforza, Giulia; Carle, Flavia; Quagliarini, Veronica; Cester, Nelvio; Vignini, Arianna

    2015-11-01

    Osteoporosis represents a serious health problem worldwide associated with an increased risk of fractures and mortality. Nutrition should form part of bone disease prevention strategies, especially in the light of the population ageing and the diet effect on bone health. Thus the study aimed at verifying whether 1 year of oral supplementation with either extra virgin olive oil (VOO) enriched with vitamins D3, K1 and B6 (VitVOO) or VOO used as placebo (PlaVOO) is able to modify some bone turnover and oxidative stress markers. Bone mineral density (BMD) was assessed in 60 healthy post-menopausal women together with the bone vitamin K status by measuring undercarboxylated osteocalcine (ucOC) plasma levels, the ratio between ucOC and carboxylated osteocalcine (UCR) and the relations with oxidative stress markers. After 1 year (T 1), subjects taking VitVOO showed lower ucOC levels than those taking PlaVOO; the same trend was found for UCR. As far as BMD is concerned, a significant increase in T-score at T 1 in VitVOO subjects compared to PlaVOO was found. All oxidative stress markers as thiobarbituric acid reactive substances, lipid hydroperoxides and conjugated dienes showed a significant reduction after VitVOO supplementation, whilst plasma total antioxidant capacity values was significantly increased in VitVOO group compared to PlaVOO group at T 1. It might be suggested that the use of VitVOO in the diet of post-menopausal women could represent a proper tool for bone protection and a useful strategy against oxidative stress and related diseases, thus confirming the antioxidant role played by the added vitamins.

  8. Heterodimeric BMP-2/7 Antagonizes the Inhibition of All-Trans Retinoic Acid and Promotes the Osteoblastogenesis

    PubMed Central

    Bi, Wenjuan; Gu, Zhiyuan; Zheng, Yuanna; Zhang, Xiao; Guo, Jing; Wu, Gang

    2013-01-01

    Objectives Hypervitaminosis A and alcoholism can result in a low mineral density and compromised regenerative capacity of bone, thus delaying implant osteointegration. The inhibitory effect of all-trans retinoic acid on osteoblastogenesis is considered to be one of the mechanisms. We hypothesized that heterodimeric bone morphogenetic protein-2/7 could antagonize all-trans retinoic acid and enhance osteoblastogenesis, with an aim to accelerate and enhance bone regeneration and implant osteointegration. Materials and Methods We applied 5 ng/ml or 50 ng/ml bone morphogenetic protein-2/7 to restore the osteoblastogenesis of pre-osteoblasts (MC3T3-E1 cell line) that was inhibited by 1 µM all-trans retinoic acid. We evaluated the efficacy by assessing cell numbers (proliferation), alkaline phosphatase activity (a marker for early differentiation), osteocalcin (a marker for late differentiation), calcium deposition (a marker for final mineralization) and the expression of osteoblastogenic genes (such as Runx2, Collagen Ia, alkaline phosphatase and osteocalcin) at different time points. Results All-trans retinoic acid significantly inhibited the expression of all the tested osteoblastogenic genes and proteins except alkaline phosphatase activity. In the presence of ATRA, 50 ng/ml bone morphogenetic protein-2/7 not only completely restored but also significantly enhanced all the osteoblastogenic genes and proteins. On the 28th day, mineralization was completely inhibited by all-trans retinoic acid. In contrast, 50 ng/ml BMP-2/7 could antagonize ATRA and significantly enhance the mineralization about 2.5 folds in comparison with the control treatment (no ATRA, no BMP2/7). Conclusions Heterodimeric bone morphogenetic protein-2/7 bears a promising application potential to significantly promote bone regeneration and implant osteointegration for the patients with hypervitaminosis A and alcoholism. PMID:24205156

  9. Interruption or deferral of antiretroviral therapy reduces markers of bone turnover compared with continuous therapy: the SMART Body Composition Substudy

    PubMed Central

    Hoy, Jennifer; Grund, Birgit; Roediger, Mollie; Ensrud, Kristine E.; Brar, Indira; Colebunders, Robert; De Castro, Nathalie; Johnson, Margaret; Sharma, Anjali; Carr, Andrew

    2013-01-01

    Bone mineral density (BMD) declines significantly in HIV patients on antiretroviral therapy (ART). We compared the effects of intermittent versus continuous ART on markers of bone turnover in the Body Composition substudy of the Strategies for Management of AntiRetroviral Therapy (SMART) trial and determined whether early changes in markers predicted subsequent change in BMD. For 202 participants (median age 44 years, 17% female, 74% on ART) randomised to continuous or intermittent ART, plasma markers of inflammation and bone turnover were evaluated at baseline, months 4 and 12; BMD at the spine (dual X-ray absorptiometry [DXA] and computed tomography) and hip (DXA) was evaluated annually. Compared to the continuous ART group, mean bone-specific alkaline phosphatase (bALP), osteocalcin, procollagen type 1 N-terminal propeptide (P1NP), N-terminal cross-linking telopeptide of type 1 collagen (NTX), and C-terminal cross-linking telopeptide of type 1 collagen (βCTX) decreased significantly in the intermittent ART group, whereas RANKL and the RANKL:osteoprotegerin (OPG) ratio increased (all p≤0.002 at month 4 and month 12). Increases in bALP, osteocalcin, P1NP, NTX, and βCTX at month 4 predicted decrease in hip BMD at month 12, while increases in RANKL and the RANKL:OPG ratio at month 4 predicted increase in hip and spine BMD at month 12. This study has shown that compared with continuous ART, interruption of ART results in a reduction in markers of bone turnover and increase in BMD at hip and spine, and that early changes in markers of bone turnover predict BMD changes at 12 months. PMID:23299909

  10. Bone mineral density and bone turnover among young women in Chiang Mai, Thailand.

    PubMed

    Iwasaki, Eriko; Morakote, Nuntana; Chaovistsaree, Somsak; Matsuo, Hiroya

    2014-03-12

    The present study was carried out to investigate the influence of lifestyle on bone mineral density (BMD) and bone turnover among young women in Chiang Mai, Thailand. A total of 177 young women affiliated with Chiang Mai University hospital were enrolled. Firstly, questionnaires about their lifestyle and the Osteoporosis Knowledge Test (OKT) were examined. The measurement of BMD was assessed by Quantitative Ultrasound (QUS). Secondly, based on the measurement of BMD, the subjects were divided into 2 groups, a Low BMD group (L group: less than YAM-1.0SD) and a Normal BMD group (N group: more than YAM-1.0SD). L group (n=23) and N group (n=23) were examined using Osteocalcine (OC), type 1 collagen cross-linked N-telopeptide (NTx) and undercarboxylated osteocalcin (ucOC) as bone turnover markers, and serum Ca, 1,25-(OH)2Vitamin D, Vitamin K1 and Vitamin K2 (MK-4) as bone turnover related factors. Based on the results, the percentage of Low BMD group was 23.2%. Concerning lifestyle and BMD, the BMD of the low cheese intake group was 99.7± 17.0 and the BMD of the high cheese intake one was 110.0± 23.3 (p<0.05). The BMD of the fracture experience group was 82.5± 11.6 and the BMD of no-fracture group was 103.3± 19.6 (p<0.05). These were significant differences in ucOC and 1,25-(OH)2Vitamin D between L and N groups (p<0.05). It was suggested that BMI, food and fracture experience might affect BMD level and suppression of bone formation might have contributed to the low BMD group among young women in Chiang Mai, Thailand.

  11. Nutritional supplementation of hop rho iso-alpha acids, berberine, vitamin D₃, and vitamin K₁ produces a favorable bone biomarker profile supporting healthy bone metabolism in postmenopausal women with metabolic syndrome.

    PubMed

    Lamb, Joseph J; Holick, Michael F; Lerman, Robert H; Konda, Veera R; Minich, Deanna M; Desai, Anuradha; Chen, Tai C; Austin, Melissa; Kornberg, Jacob; Chang, Jyh-Lurn; Hsi, Alex; Bland, Jeffrey S; Tripp, Matthew L

    2011-05-01

    Metabolic syndrome poses additional risk for postmenopausal women who are already at risk for osteoporosis. We hypothesized that a nutritional supplement containing anti-inflammatory phytochemicals and essential bone nutrients would produce a favorable bone biomarker profile in postmenopausal women with metabolic syndrome. In this 14-week, randomized trial, 51 women were instructed to consume a modified Mediterranean-style, low-glycemic-load diet and to engage in aerobic exercise. Those in the intervention arm (n = 25) additionally received 200 mg hop rho iso-alpha acids, 100 mg berberine sulfate trihydrate, 500 IU vitamin D₃, and 500 μg vitamin K₁ twice daily. Forty-five women completed the study. Baseline nutrient intake did not differ between arms. Compared with baseline, the intervention arm exhibited an approximate 25% mean decrease (P < .001) in serum osteocalcin (indicative of bone turnover), whereas the placebo arm exhibited a 21% increase (P = .003). Serum 25-hydroxyvitamin D increased 23% (P = .001) in the intervention arm and decreased 12% (P = .03) in the placebo arm. The between-arm differences for osteocalcin and 25-hydroxyvitamin D were statistically significant. Serum insulin-like growth factor I was statistically increased in both arms, but the between-arm differences were not statistically significant. Subanalysis showed that among those in the highest tertile of baseline insulin-like growth factor I, the intervention arm exhibited a significant increase in amino-terminal propeptide of type I collagen, whereas the placebo arm showed a significant decrease at 14 weeks. Treatment with rho iso-alpha acids, berberine, vitamin D₃, and vitamin K₁ produced a more favorable bone biomarker profile indicative of healthy bone metabolism in postmenopausal women with metabolic syndrome. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Pioglitazone-induced bone loss in diabetic rats and its amelioration by berberine: A portrait of molecular crosstalk.

    PubMed

    Adil, Mohammad; Mansoori, Mohd Nizam; Singh, Divya; Kandhare, Amit Dattatraya; Sharma, Manju

    2017-10-01

    Diabetes mellitus and osteoporosis both are high prevalence disorders, especially in the elderly population. Pioglitazone, a PPAR-γ agonist associated with bone loss and risk of fracture in type 2 diabetes mellitus patients. In this study, ameliorative effect of berberine against pioglitazone-induced bone loss in diabetic rats and possible mechanisms has been explored. Diabetes was induced in male Wistar albino rats by streptozotocin (65 mg/kg, i.v.) after 15min of nicotinamide (230mg/kg, i.p.) administration. Diabetic rats were treated orally with pioglitazone (10mg/kg) and berberine (100mg/kg) alone and in combination of both for 12 weeks. Femur of each rat was isolated and evaluated for the bone micro-architecture, BMD, histology and mRNA expression of PPAR-γ, AMPK, and bone turnover markers (RANKL, OPG, Runx2, and osteocalcin). Urinary calcium and serum TRAP was also measured. Treatment of pioglitazone and berberine alone and in combination significantly ameliorate abnormal blood glucose, serum insulin, and HbA1c levels in streptozotocin-induced diabetic rats. Pioglitazone treatment significantly increased urinary calcium, serum TRAP, mRNA expression of RANKL, PPAR-γ as well as significantly decreased Runx2, OPG, osteocalcin and AMPK levels in diabetic rats. Pioglitazone administration also shows detrimental effect on femur epiphysis micro-architecture, BMD and histology. Whereas, berberine treatment alone and in combination with pioglitazone remarkably ameliorates the abnormal urinary calcium, mRNA expression of AMPK, bone turnover markers, femur epiphysis micro-architecture, histology and also increases BMD in diabetic rats. In conclusion, berberine shows protective effect against pioglitazone-induced bone loss in diabetic rats possibly through AMPK activation pathway. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Novel in Vitro Modification of Bone for an Allograft with Improved Toughness Osteoconductivity

    DTIC Science & Technology

    2013-10-01

    col1a1 by RT-PCR. High-performance liquid chromatography and fluorescence microscopy will be used to quantify AGEs and crosslinks. BODY The...molecular markers of mineralization, osteocalcin, Runx2 and col1a1 using quantitative RT-PCR with specific primers. (Months 14-15.) 5a. Preperation of...cellular activity and differentiation but not bone specific Collagen, type I, alpha 1 ( COL1A1 ) Associated with cell adhesion, proliferation and

  14. Promotion of osteoblast differentiation in 3D biomaterial micro-chip arrays comprising fibronectin-coated poly(methyl methacrylate) polycarbonate.

    PubMed

    Altmann, Brigitte; Steinberg, Thorsten; Giselbrecht, Stefan; Gottwald, Eric; Tomakidi, Pascal; Bächle-Haas, Maria; Kohal, Ralf-Joachim

    2011-12-01

    Due to the architecture of solid body tissues including bone, three-dimensional (3D) in vitro microenvironments appear favorable, since herein cell growth proceeds under more physiological conditions compared to conventional 2D systems. In the present study we show that a 3D microenvironment comprising a fibronectin-coated PMMA/PC-based micro-chip promotes differentiation of primary human osteoblasts as reflected by the densely-packed 3D bone cell aggregates and expression of biomarkers indicating osteoblast differentiation. Morphogenesis and fluorescence dye-based live/dead staining revealed homogenous cell coverage of the microcavities of the chip array, whereat cells showed high viability up to 14 days. Moreover, Azur II staining proved formation of uniform sized multilayered aggregates, exhibiting progressive intracellular deposition of extracellular bone matrix constituents comprising fibronectin, osteocalcin and osteonectin from day 7 on. Compared to 2D monolayers, osteoblasts grown in the 3D chip environment displayed differential mostly higher gene expression for osteocalcin, osteonectin, and alkaline phosphatase, while collagen type I remained fairly constant in both culture environments. Our results indicate that the 3D microenvironment, based on the PMMA biomaterial chip array promotes osteoblast differentiation, and hereby renders a promising tool for tissue-specific in vitro preconditioning of osteoblasts designated for clinically-oriented bone augmentation or regeneration. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Effects of local vibration and pulsed electromagnetic field on bone fracture: A comparative study.

    PubMed

    Bilgin, Hakkı Murat; Çelik, Ferhat; Gem, Mehmet; Akpolat, Veysi; Yıldız, İsmail; Ekinci, Aysun; Özerdem, Mehmet Siraç; Tunik, Selçuk

    2017-07-01

    The effectiveness of various therapeutic methods on bone fracture has been demonstrated in several studies. In the present study, we tried to evaluate the effect of local low-magnitude, high-frequency vibration (LMHFV) on rat tibia fracture in comparison with pulsed electromagnetic fields (PEMF) during the healing process. Mid-diaphysis tibiae fractures were induced in 30 Sprague-Dawley rats. The rats were assigned into groups such as control (CONT), LMHFV (15 min/day, 7 days/week), and PEMF (3.5 h/day, 7 days/week) for a three-week treatment. Nothing was applied to control group. Radiographs, serum osteocalcin levels, and stereological bone analyses of the three groups were compared. The X-rays of tibiae were taken 21 days after the end of the healing process. PEMF and LMHFV groups had more callus formation when compared to CONT group; however, the difference was not statistically significant (P = 0.375). Serum osteocalcin levels were elevated in the experimental groups compared to CONT (P ≤ 0.001). Stereological tests also showed higher osteogenic results in experimental groups, especially in LMHFV group. The results of the present study suggest that application of direct local LMHFV on fracture has promoted bone formation, showing great potential in improving fracture outcome. Bioelectromagnetics. 38:339-348, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Osteocalcin carboxylation is not associated with body weight or percent fat changes during weight loss in post-menopausal women.

    PubMed

    Centi, Amanda J; Booth, Sarah L; Gundberg, Caren M; Saltzman, Edward; Nicklas, Barbara; Shea, M Kyla

    2015-12-01

    Osteocalcin (OC) is a vitamin K-dependent bone protein used as a marker of bone formation. Mouse models have demonstrated a role for the uncarboxylated form of OC (ucOC) in energy metabolism, including energy expenditure and adiposity, but human data are equivocal. The purpose of this study was to determine the associations between changes in measures of OC and changes in body weight and percent body fat in obese, but otherwise healthy post-menopausal women undergoing a 20-week weight loss program. All participants received supplemental vitamins K and D and calcium. Body weight and body fat percentage (%BF) were assessed before and after the intervention. Serum OC [(total (tOC), ucOC, percent uncarboxylated (%ucOC)], and procollagen type 1N-terminal propeptide (P1NP; a measure of bone formation) were measured. Women lost an average of 10.9 ± 3.9 kg and 4 %BF. Serum concentrations of tOC, ucOC, %ucOC, and P1NP did not significantly change over the twenty-week intervention, nor were these measures associated with changes in weight (all p > 0.27) or %BF (all p > 0.54). Our data do not support an association between any serum measure of OC and weight or %BF loss in post-menopausal women supplemented with nutrients implicated in bone health.

  17. Influence of exercise mode and osteogenic index on bone biomarker responses during short-term physical training.

    PubMed

    Lester, Mark E; Urso, Maria L; Evans, Rachel K; Pierce, Joseph R; Spiering, Barry A; Maresh, Carl M; Hatfield, Disa L; Kraemer, William J; Nindl, Bradley C

    2009-10-01

    Prescribing exercise based on intensity, frequency, and duration of loading may maximize osteogenic responses in bone, but a model of the osteogenic potential of exercise has not been established in humans. In rodents, an osteogenic index (OI) has been used to predict the osteogenic potential of exercise. The current study sought to determine whether aerobic, resistance, or combined aerobic and resistance exercise programs conducted over eight weeks and compared to a control group could produce changes in biochemical markers of bone turnover indicative of bone formation. We further sought to determine whether an OI could be calculated for each of these programs that would reflect observed biochemical changes. We collected serum biomarkers [bone-specific alkaline phosphatase (BAP), osteocalcin, tartrate-resistant acid phosphatase (TRAP), C-terminal telopeptide fragment of type I collagen (CTx), deoxypyridinoline (DPD), 25-hydroxy vitamin D (25(OH)D), and parathyroid hormone (PTH)] in 56 women (20.3+/-1.8 years) before, during and after eight weeks of training. We also measured bone mineral density (BMD) at regional areas of interest using DXA and pQCT. Biomarkers of bone formation (BAP and osteocalcin) increased in the Resistance and Combined groups (p<0.05), while biomarkers of bone resorption (TRAP and DPD) decreased and increased, respectively, after training (p<0.05) in all groups. Small changes in volumetric and areal BMD (p<0.05) were observed in the distal tibia in the Aerobic and Combined groups, respectively. Mean weekly OIs were 16.0+/-1.9, 20.6+/-2.2, and 36.9+/-5.2 for the Resistance, Aerobic, and Combined groups, respectively. The calculated osteogenic potential of our programs did not correlate with the observed changes in biomarkers of bone turnover. The results of the present study demonstrate that participation in an eight week physical training program that incorporates a resistance component by previously inactive young women results in alterations in biomarkers of bone remodeling indicative of increased formation without substantial alterations in markers of resorption.

  18. Ethanol extract of Peperomia pellucida (Piperaceae) promotes fracture healing by an anabolic effect on osteoblasts.

    PubMed

    Ngueguim, Florence Tsofack; Khan, Mohd Parvez; Donfack, Jean Hubert; Tewari, Deepshikha; Dimo, Theophile; Kamtchouing, Pierre; Maurya, Rakesh; Chattopadhyay, Naibedya

    2013-06-21

    The whole plant or some part of Peperomia pellucida (L.) HBK is used in some parts of Cameroon as a treatment for fracture healing. To evaluate the effect of ethanolic extracts of Peperomia pellucida (L.), a Cameroonian medicinal plant on bone regeneration following bone and marrow injury, and determine the mode of action. Ethanol extract of Peperomia pellucida was administered at 100 and 200mg/kg doses orally to adult female Sprague-Dawley rats having a drill hole injury (0.8mm) in the femur diaphysis. Vehicle (gum-acacia in distilled water) was given to the control group. After 12 days of treatment, animals were euthanized and femur bones collected. Confocal microscopy of calcein labeling at the drill hole site was performed to evaluate bone regeneration. 3-D microarchitecture of drill hole site was analyzed by micorocomputed tomography. Osteogenic effects of the extract were evaluated by assessing mineralized nodule formation of bone marrow stromal cells and expression of osteogenic genes (mRNA level of type-1 collagen, bone morphogenetic protein-2 and osteocalcin genes) in the femur. Ethanol extract from Peperomia Pellucida (L.) dose-dependently induced bone regeneration at the fracture site. At 200mg/kg dose, the extract significantly increased mineral deposition compared to controls. The extract also improved microarchitecture of the regenerating bone evident from increased bone volume fraction, trabecular thickness, trabecular number, and decreased trabecular separation and structure model index. In addition, the extract increased the formation of mineralized nodules from the bone marrow stromal cells. Furthermore, the extract induced the expression of osteogenic genes in the femur including type 1 collagen, osteocalcin and BMP-2, compared to control. Ethanolic extract of P. pellucid (L.) accelerates fracture repair in rats via stimulatory effects on osteoblast differentiation and mineralization, thereby justifying its traditional use. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Repeatability of quantitative parameters of 18F-fluoride PET/CT and biochemical tumour and specific bone remodelling markers in prostate cancer bone metastases.

    PubMed

    Wassberg, Cecilia; Lubberink, Mark; Sörensen, Jens; Johansson, Silvia

    2017-12-01

    18F-fluoride PET/CT exhibits high sensitivity to delineate and measure the extent of bone metastatic disease in patients with prostate cancer. 18F-fluoride PET/CT could potentially replace traditional bone scintigraphy in clinical routine and trials. However, more studies are needed to assess repeatability and biological uptake variation. The aim of this study was to perform test-retest analysis of quantitative PET-derived parameters and blood/serum bone turnover markers at the same time point. Ten patients with prostate cancer and verified bone metastases were prospectively included. All underwent two serial 18F-fluoride PET/CT at 1 h post-injection. Up to five dominant index lesions and whole-body 18F-fluoride skeletal tumour burden were recorded per patient. Lesion-based PET parameters were SUVmax, SUVmean and functional tumour volume applying a VOI with 50% threshold (FTV 50% ). The total skeletal tumour burden, total lesion 18F-fluoride (TLF), was calculated using a threshold of SUV of ≥15. Blood/serum biochemical bone turnover markers obtained at the time of each PET were PSA, ALP, S-osteocalcin, S-beta-CTx, 1CTP and BAP. A total of 47 index lesions and a range of 2-122 bone metastases per patient were evaluated. Median time between 18F-fluoride PET/CT was 7 days (range 6-8 days). Repeatability coefficients were for SUVmax 26%, SUVmean 24%, FTV 50% for index lesions 23% and total skeletal tumour burden (TLF) 35%. Biochemical bone marker repeatability coefficients were for PSA 19%, ALP 23%, S-osteocalcin 18%, S-beta-CTx 22%, 1CTP 18% and BAP 23%. Quantitative 18F-fluoride uptake and simultaneous biochemical bone markers measurements are reproducible for prostate cancer metastases and show similar magnitude in test-retest variation.

  20. Role of TGF-β in a mouse model of high turnover renal osteodystrophy.

    PubMed

    Liu, Shiguang; Song, Wenping; Boulanger, Joseph H; Tang, Wen; Sabbagh, Yves; Kelley, Brian; Gotschall, Russell; Ryan, Susan; Phillips, Lucy; Malley, Katie; Cao, Xiaohong; Xia, Tai-He; Zhen, Gehua; Cao, Xu; Ling, Hong; Dechow, Paul C; Bellido, Teresita M; Ledbetter, Steven R; Schiavi, Susan C

    2014-01-01

    Altered bone turnover is a key pathologic feature of chronic kidney disease-mineral and bone disorder (CKD-MBD). Expression of TGF-β1, a known regulator of bone turnover, is increased in bone biopsies from individuals with CKD. Similarly, TGF-β1 mRNA and downstream signaling is increased in bones from jck mice, a model of high-turnover renal osteodystrophy. A neutralizing anti-TGF-β antibody (1D11) was used to explore TGF-β's role in renal osteodystrophy. 1D11 administration to jck significantly attenuated elevated serum osteocalcin and type I collagen C-telopeptides. Histomorphometric analysis indicated that 1D11 administration increased bone volume and suppressed the elevated bone turnover in a dose-dependent manner. These effects were associated with reductions in osteoblast and osteoclast surface areas. Micro-computed tomography (µCT) confirmed the observed increase in trabecular bone volume and demonstrated improvements in trabecular architecture and increased cortical thickness. 1D11 administration was associated with significant reductions in expression of osteoblast marker genes (Runx2, alkaline phosphatase, osteocalcin) and the osteoclast marker gene, Trap5. Importantly, in this model, 1D11 did not improve kidney function or reduce serum parathyroid hormone (PTH) levels, indicating that 1D11 effects on bone are independent of changes in renal or parathyroid function. 1D11 also significantly attenuated high-turnover bone disease in the adenine-induced uremic rat model. Antibody administration was associated with a reduction in pSMAD2/SMAD2 in bone but not bone marrow as assessed by quantitative immunoblot analysis. Immunostaining revealed pSMAD staining in osteoblasts and osteocytes but not osteoclasts, suggesting 1D11 effects on osteoclasts may be indirect. Immunoblot and whole genome mRNA expression analysis confirmed our previous observation that repression of Wnt/β-catenin expression in bone is correlated with increased osteoclast activity in jck mice and bone biopsies from CKD patients. Furthermore, our data suggest that elevated TGF-β may contribute to the pathogenesis of high-turnover disease partially through inhibition of β-catenin signaling. © 2014 American Society for Bone and Mineral Research.

  1. Comparative 3D micro-CT and 2D histomorphometry analysis of dental implant osseointegration in the maxilla of minipigs.

    PubMed

    Bissinger, Oliver; Probst, Florian Andreas; Wolff, Klaus-Dietrich; Jeschke, Anke; Weitz, Jochen; Deppe, Herbert; Kolk, Andreas

    2017-04-01

    The bone implant contact (BIC) has traditionally been evaluated with histological methods. Thereupon, strong correlations of two-dimensional (2D) BIC have been detected between μCT and destructive histology. However, due to the high intra-sample variability in BIC values, one histological slice is not sufficient to represent 3D BIC. Therefore, our aim has been to correlate the averaged values of 3-4 histological sections to 3D μCT. Fifty-four implants inserted into the maxilla of 14 minipigs were evaluated. Two different time points were selected to assess the 3D BIC (distance to implant: 2-5 voxels), an inner ring (6-30 voxels) and an outer ring (55-100 voxels) using μCT (voxel size: 10 μm) and to correlate the values to histomorphometry. Strong correlations (p < 0.0001; 28 days, 56 days, total) were seen between μCT and histomorphometry concerning BIC (r = 0.84, r = 0.85, r = 0.83), the inner ring (r = 0.87, r = 0.87, r = 0.88) and the outer ring (r = 0.85, r = 0.85, r = 0.88). Closer to the implant, μCT values were higher compared with histomorphometry. Although 3-4 histological slices per implant seem to predict the 3D BIC, μCT might be advantageous because of its non-destructive 3D character. The healing time may not impact on the comparability. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. [Nutrition and bone health. Soybean and soy foods, and bone health].

    PubMed

    Kubota, Megumi; Shimizu, Hirotoshi

    2009-10-01

    Soybean and various types of soy products, such as natto, tofu, miso, and soy sauce, have long been consumed in Japan. Soybean, a rich source of plant proteins, contains a relatively high amount of calcium as well as being an important source of isoflavones, a group of substances whose chemical structure is similar to that of estrogen. Natto, fermented soybeans, contains vitamin K, which is involved in the activation of osteocalcin. For bone health and osteoporosis prevention in Japanese, it is thus beneficial to consume adequate amounts of soybean and soy products on a daily basis.

  3. Divalent Metal Ions Induced Osteogenic Differentiation of MC3T3E1

    NASA Astrophysics Data System (ADS)

    Wang, Guoshou; Su, Wenta; Chen, Pohung; Huang, Teyang

    2017-12-01

    Biomaterial scaffolds blended with biochemical signal molecules with adequate osteoinductive and osteoconductive properties have attracted significant interest in bone tissue engineering regeneration. The divalent metal ions can gradually release from the scaffold into the culture medium and then induced osteoblastic differentiation of MC3T3E1. These MC3T3E1 cells expressed high activity of alkaline phosphatase, bone-related gene expression of collagen type I, Runx2, osteopontin, osteocalcin, and significantly enhanced deposited minerals on scaffold after 21 days of culture. This experiment provided a useful inducer for osteogenic differentiation in bone repair.

  4. Role of TGF-β in a Mouse Model of High Turnover Renal Osteodystrophy†

    PubMed Central

    Liu, Shiguang; Song, Wenping; Boulanger, Joseph H; Tang, Wen; Sabbagh, Yves; Kelley, Brian; Gotschall, Russell; Ryan, Susan; Phillips, Lucy; Malley, Katie; Cao, Xiaohong; Xia, Tai-He; Zhen, Gehua; Cao, Xu; Ling, Hong; Dechow, Paul C; Bellido, Teresita M; Ledbetter, Steven R; Schiavi, Susan C

    2014-01-01

    Altered bone turnover is a key pathologic feature of chronic kidney disease-mineral and bone disorder (CKD-MBD). Expression of TGF-β1, a known regulator of bone turnover, is increased in bone biopsies from individuals with CKD. Similarly, TGF-β1 mRNA and downstream signaling is increased in bones from jck mice, a model of high-turnover renal osteodystropy. A neutralizing anti-TGF-β antibody (1D11) was used to explore TGF-βs role in renal osteodystrophy. 1D11 administration to jck significantly attenuated elevated serum osteocalcin and type I collagen C-telopeptides. Histomorphometric analysis indicated that 1D11 administration increased bone volume and suppressed the elevated bone turnover in a dose-dependent manner. These effects were associated with reductions in osteoblast and osteoclast surface areas. μCT confirmed the observed increase in trabecular bone volume and demonstrated improvements in trabecular architecture and increased cortical thickness. 1D11 administration was associated with significant reductions in expression of osteoblast marker genes (Runx2, alkaline phosphatase, osteocalcin) and the osteoclast marker gene, Trap5. Importantly, in this model, 1D11 did not improve kidney function or reduce serum PTH levels indicating that 1D11 effects on bone are independent of changes in renal or parathyroid function. 1D11 also significantly attenuated high turnover bone disease in the adenine-induced uremic rat model. Antibody administration was associated with a reduction in pSMAD2/SMAD2 in bone but not bone marrow as assessed by quantitative immunoblot analysis. Immunostaining revealed pSMAD staining in osteoblasts and osteocytes but not osteoclasts, suggesting 1D11 effects on osteoclasts may be indirect. Immunoblot and whole genome mRNA expression analysis confirmed our previous observation that repression of Wnt/β catenin expression in bone is correlated with increased osteoclast activity in jck mice and bone biopsies from CKD patients. Furthermore, our data suggests that elevated TGF-β may contribute to the pathogenesis of high turnover disease partially through inhibition of β-catenin signaling. PMID:24166835

  5. Hindlimb unloading has a greater effect on cortical compared with cancellous bone in mature female rats

    NASA Technical Reports Server (NTRS)

    Allen, Matthew R.; Bloomfield, Susan A.

    2003-01-01

    This study was designed to determine the effects of 28 days of hindlimb unloading (HU) on the mature female rat skeleton. In vivo proximal tibia bone mineral density and geometry of HU and cage control (CC) rats were measured with peripheral quantitative computed tomography (pQCT) on days 0 and 28. Postmortem pQCT, histomorphometry, and mechanical testing were performed on tibiae and femora. After 28 days, HU animals had significantly higher daily food consumption (+39%) and lower serum estradiol levels (-49%, P = 0.079) compared with CC. Proximal tibia bone mineral content and cortical bone area significantly declined over 28 days in HU animals (-4.0 and 4.8%, respectively), whereas total and cancellous bone mineral densities were unchanged. HU animals had lower cortical bone formation rates and mineralizing surface at tibial midshaft, whereas differences in similar properties were not detected in cancellous bone of the distal femur. These results suggest that cortical bone, rather than cancellous bone, is more prominently affected by unloading in skeletally mature retired breeder female rats.

  6. Reappraisal of mesenchymal chondrosarcoma: novel morphologic observations of the hyaline cartilage and endochondral ossification and beta-catenin, Sox9, and osteocalcin immunostaining of 22 cases.

    PubMed

    Fanburg-Smith, Julie C; Auerbach, Aaron; Marwaha, Jayson S; Wang, Zengfeng; Rushing, Elisabeth J

    2010-05-01

    Mesenchymal chondrosarcoma, a rare malignant round cell and hyaline cartilage tumor, is most commonly intraosseous but can occur in extraskeletal sites. We intensively observed the morphology and applied Sox9 (master regulator of chondrogenesis), beta-catenin (involved in bone formation, thought to inhibit chondrogenesis in a Sox9-dependent manner), and osteocalcin (a marker for osteoblastic phenotype) to 22 central nervous system and musculoskeletal mesenchymal chondrosarcoma. Cases of mesenchymal chondrosarcoma were retrieved and reviewed from our files. Immunohistochemistry and follow-up were obtained on mesenchymal chondrosarcoma and tumor controls. Twenty-two mesenchymal chondrosarcomas included 5 central nervous system (all female; mean age, 30.2; mean size, 7.8 cm; in frontal lobe [n = 4] and spinal cord [n = 1]) and 17 musculoskeletal (female-male ratio, 11:6; mean age, 31.1; mean size, 6.2 cm; 3 each of humerus and vertebrae; 2 each of pelvis, rib, tibia, neck soft tissue; one each of femur, unspecified bone, and elbow soft tissue). The hyaline cartilage in most tumors revealed a consistent linear progression of chondrocyte morphology, from resting to proliferating to hypertrophic chondrocytes. Sixty-seven percent of cases demonstrated cell death and acquired osteoblastic phenotype, cells positive for osteocalcin at the site of endochondral ossification. Small round cells of mesenchymal chondrosarcoma were negative for osteocalcin. SOX9 was positive in both components of 21 of 22 cases of mesenchymal chondrosarcoma. beta-Catenin highlighted rare nuclei at the interface between round cells and hyaline cartilage in 35% cases. Control skull and central nervous system cases were compared, including chondrosarcomas and small cell osteosarcoma, the latter positive for osteocalcin in small cells. Mesenchymal chondrosarcoma demonstrates centrally located hyaline cartilage with a linear progression of chondrocytes from resting to proliferative to hypertrophic, which undergoes endochondral ossification, recapitulating growth plate cartilage and suggesting that this component of mesenchymal chondrosarcoma may be a differentiated (benign or metaplastic) component of a malignant metastasizing tumor. This hyaline cartilage component is morphologically different from cartilage of control chondrosarcoma. Mesenchymal chondrosarcoma can be separated from small cell osteosarcoma, using Sox 9 for cartilage and osteocalcin for osteoblastic phenotype. Rare nuclear beta-catenin expression at the interface between hyaline cartilage and small round cells potentially implicates the APC/Wnt pathway during endochondral ossification in morphologically benign hyaline cartilage component of mesenchymal chondrosarcoma. Published by Elsevier Inc.

  7. Effect of avocado/soybean unsaponifiables on ligature-induced bone loss and bone repair after ligature removal in rats.

    PubMed

    Oliveira, G J P L; Paula, L G F; Souza, J A C; Spin-Neto, R; Stavropoulos, A; Marcantonio, R A C

    2016-06-01

    The aim of this study was to evaluate the effects of administration of avocado/soybean unsaponifiable (ASU), a drug that is commonly used in the treatment of rheumatoid arthritis, on ligature-induced bone loss and bone repair after ligature removal in rats. Eighty-four rats were randomly assigned to four groups of equal size and received a daily gavage of either sterile saline [control (CTR)] or ASU (0.6 mg/kg), starting 7 d before (ASU/-7), on the day of (ASU/0) or 7 d after (ASU/+7) periodontitis induction. Periodontitis was induced by placing silk ligatures into the gingival sulcus of the second maxillary molars for 7 d; after 7 d, the ligatures were removed. Seven rats from each group were sacrificed, 7, 15 or 30 d after ligature removal. Bone resorption was evaluated by histomorphometry and micro-computed tomography (micro-CT). Immunohistochemistry was used to evaluate the expression of TRAP, RANKL and alkaline phosphatase (ALP), and quantitative PCR (qPCR) was used to evaluate the levels of interleukin-1beta (Il1β), tumor necrosis factor alpha (Tnfα), interleukin-6 (Il-6), Rankl and Alp. Statistical analysis was performed using the Shapiro-Wilk test, ANOVA and Tukey's test for normal data, and using the Kruskall-Wallis and Dunnet's tests for non-normal data (p < 0.05). Histomorphometry and micro-CT analysis showed greater bone resorption in the CTR group than in the ASU/0 (15 d) and ASU/+7 (7 and 15 d) groups. The CTR group also presented with a higher expression of TRAP (15 and 30 d) and RANKL (7 and 15 d) compared with ASU/0 and ASU/+7 groups. Similarly, qPCR analysis showed higher levels of Rankl and Il1β mRNAs, and lower levels of Alp mRNA, in the CTR group compared with all other groups (for all periods). ASU exhibited a positive effect on bone repair following ligature-induced periodontitis in rats. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. A correlative imaging based methodology for accurate quantitative assessment of bone formation in additive manufactured implants.

    PubMed

    Geng, Hua; Todd, Naomi M; Devlin-Mullin, Aine; Poologasundarampillai, Gowsihan; Kim, Taek Bo; Madi, Kamel; Cartmell, Sarah; Mitchell, Christopher A; Jones, Julian R; Lee, Peter D

    2016-06-01

    A correlative imaging methodology was developed to accurately quantify bone formation in the complex lattice structure of additive manufactured implants. Micro computed tomography (μCT) and histomorphometry were combined, integrating the best features from both, while demonstrating the limitations of each imaging modality. This semi-automatic methodology registered each modality using a coarse graining technique to speed the registration of 2D histology sections to high resolution 3D μCT datasets. Once registered, histomorphometric qualitative and quantitative bone descriptors were directly correlated to 3D quantitative bone descriptors, such as bone ingrowth and bone contact. The correlative imaging allowed the significant volumetric shrinkage of histology sections to be quantified for the first time (~15 %). This technique demonstrated the importance of location of the histological section, demonstrating that up to a 30 % offset can be introduced. The results were used to quantitatively demonstrate the effectiveness of 3D printed titanium lattice implants.

  9. An animal model in sheep for biocompatibility testing of biomaterials in cancellous bones

    PubMed Central

    Nuss, Katja MR; Auer, Joerg A; Boos, Alois; Rechenberg, Brigitte von

    2006-01-01

    Background The past years have seen the development of many synthetic bone replacements. To test their biocompatibility and ability for osseointegration, osseoinduction and -conduction requires their placement within bone preferably in an animal experiment of a higher species. Methods A suitable experimental animal model in sheep with drill holes of 8 mm diameter and 13 mm depth within the proximal and distal humerus and femur for testing biocompatibility issues is introduced. Results This present sheep model allows the placing of up to 8 different test materials within one animal and because of the standardization of the bone defect, routine evaluation by means of histomorphometry is easily conducted. This method was used successfully in 66 White Alpine Sheep. When the drill holes were correctly placed no complications such as spontaneous fractures were encountered. Conclusion This experimental animal model serves an excellent basis for testing the biocompatibility of novel biomaterials to be used as bone replacement or new bone formation enhancing materials. PMID:16911787

  10. An animal model in sheep for biocompatibility testing of biomaterials in cancellous bones.

    PubMed

    Nuss, Katja M R; Auer, Joerg A; Boos, Alois; von Rechenberg, Brigitte

    2006-08-15

    The past years have seen the development of many synthetic bone replacements. To test their biocompatibility and ability for osseointegration, osseoinduction and -conduction requires their placement within bone preferably in an animal experiment of a higher species. A suitable experimental animal model in sheep with drill holes of 8 mm diameter and 13 mm depth within the proximal and distal humerus and femur for testing biocompatibility issues is introduced. This present sheep model allows the placing of up to 8 different test materials within one animal and because of the standardization of the bone defect, routine evaluation by means of histomorphometry is easily conducted. This method was used successfully in 66 White Alpine Sheep. When the drill holes were correctly placed no complications such as spontaneous fractures were encountered. This experimental animal model serves an excellent basis for testing the biocompatibility of novel biomaterials to be used as bone replacement or new bone formation enhancing materials.

  11. Short-term variability in biomarkers of bone metabolism in sheep.

    PubMed

    Sousa, Cristina P; de Azevedo, Jorge T; Reis, Rui L; Gomes, Manuela E; Dias, Isabel R

    2014-01-01

    Changes in bone remodeling during pathological states and during their treatment can be assessed noninvasively by measuring biomarkers of bone metabolism. Their application is limited, however, by the potential biological variability in the levels of these biomarkers over time. To determine the short-term variability in biomarkers of bone metabolism in adult sheep, the authors measured serum levels of alkaline phosphatase (ALP), bone-specific alkaline phosphatase (BALP), osteocalcin (OC), N-terminal propeptide of type-III procollagen (PIIINP), deoxypyridinoline (DPD), tartrate-resistant acid phosphatase (TRAP), calcium and phosphorus intermittently over a 12-week period. There were significant differences in mean ALP activity and in phosphorus concentrations over time, but all other biomarkers showed no significant short-term variability. The results suggest that biomarkers of bone metabolism in sheep, especially the bone resorption marker DPD and the bone formation marker BALP, can be used reliably to detect changes in bone cellular activity.

  12. A single topical dose of erythropoietin applied on a collagen carrier enhances calvarial bone healing in pigs

    PubMed Central

    2014-01-01

    Background and purpose The osteogenic potency of erythropoietin (EPO) has been documented. However, its efficacy in a large-animal model has not yet been investigated; nor has a clinically safe dosage. The purpose of this study was to overcome such limitations of previous studies and thereby pave the way for possible clinical application. Our hypothesis was that EPO increases calvarial bone healing compared to a saline control in the same subject. Methods We used a porcine calvarial defect model. In each of 18 pigs, 6 cylindrical defects (diameter: 1 cm; height: 1 cm) were drilled, allowing 3 pairwise comparisons. Treatment consisted of either 900 IU/mL EPO or an equal volume of saline in combination with either autograft, a collagen carrier, or a polycaprolactone (PCL) scaffold. After an observation time of 5 weeks, the primary outcome (bone volume fraction (BV/TV)) was assessed with high-resolution quantitative computed tomography. Secondary outcome measures were histomorphometry and blood samples. Results The median BV/TV ratio of the EPO-treated collagen group was 1.06 (CI: 1.02–1.11) relative to the saline-treated collagen group. Histomorphometry showed a similar median effect size, but it did not reach statistical significance. Autograft treatment had excellent healing potential and was able to completely regenerate the bone defect independently of EPO treatment. Bony ingrowth into the PCL scaffold was sparse, both with and without EPO. Neither a substantial systemic effect nor adverse events were observed. The number of blood vessels was similar in EPO-treated defects and saline-treated defects. Interpretation Topical administration of EPO on a collagen carrier moderately increased bone healing. The dosing regime was safe, and could have possible application in the clinical setting. However, in order to increase the clinical relevance, a more potent but still clinically safe dose should be investigated. PMID:24564750

  13. Bone ingrowth in bFGF-coated hydroxyapatite ceramic implants.

    PubMed

    Schnettler, Reinhard; Alt, Volker; Dingeldein, Elvira; Pfefferle, Hans-Joachim; Kilian, Olaf; Meyer, Christof; Heiss, Christian; Wenisch, Sabine

    2003-11-01

    This experimental study was performed to evaluate angiogenesis, bone formation, and bone ingrowth in response to osteoinductive implants of bovine-derived hydroxyapatite (HA) ceramics either uncoated or coated with basic fibroblast growth factor (bFGF) in miniature pigs. A cylindrical bone defect was created in both femur condyles of 24 miniature pigs using a saline coated trephine. Sixteen of the 48 defects were filled with HA cylinders coated with 50 microg rhbFG, uncoated HA cylinders, and with autogenous transplants, respectively. Fluorochrome labelled histological analysis, histomorphometry, and scanning electron microscopy were performed to study angiogenesis, bone formation and bone ingrowth. Complete bone ingrowth into bFGF-coated HA implants and autografts was seen after 34 days compared to 80 days in the uncoated HA group. Active ring-shaped areas of fluorochrome labelled bone deposition with dynamic bone remodelling were found in all cylinders. New vessels could be found in all cylinders. Histomorphometric analysis showed no difference in bone ingrowth over time between autogenous transplants and bFGF-coated HA implants. The current experimental study revealed comparable results of bFGF-coated HA implants and autogenous grafts regarding angiogenesis, bone synthesis and bone ingrowth.

  14. Novel Osteogenic Ti-6Al-4V Device For Restoration Of Dental Function In Patients With Large Bone Deficiencies: Design, Development And Implementation

    PubMed Central

    Cohen, D. J.; Cheng, A.; Kahn, A.; Aviram, M.; Whitehead, A. J.; Hyzy, S. L.; Clohessy, R. M.; Boyan, B. D.; Schwartz, Z.

    2016-01-01

    Custom devices supporting bone regeneration and implant placement are needed for edentulous patients with large mandibular deficiencies where endosteal implantation is not possible. We developed a novel subperiosteal titanium-aluminum-vanadium bone onlay device produced by additive manufacturing (AM) and post-fabrication osteogenic micro-/nano-scale surface texture modification. Human osteoblasts produced osteogenic and angiogenic factors when grown on laser-sintered nano-/micro-textured surfaces compared to smooth surfaces. Surface-processed constructs caused higher bone-to-implant contact, vertical bone growth into disk pores (microCT and histomorphometry), and mechanical pull-out force at 5 and 10 w on rat calvaria compared to non surface-modified constructs, even when pre-treating the bone to stimulate osteogenesis. Surface-modified wrap-implants placed around rabbit tibias osseointegrated by 6 w. Finally, patient-specific constructs designed to support dental implants produced via AM and surface-processing were implanted on edentulous mandibular bone. 3 and 8 month post-operative images showed new bone formation and osseointegration of the device and indicated stability of the dental implants. PMID:26854193

  15. Novel Osteogenic Ti-6Al-4V Device For Restoration Of Dental Function In Patients With Large Bone Deficiencies: Design, Development And Implementation.

    PubMed

    Cohen, D J; Cheng, A; Kahn, A; Aviram, M; Whitehead, A J; Hyzy, S L; Clohessy, R M; Boyan, B D; Schwartz, Z

    2016-02-08

    Custom devices supporting bone regeneration and implant placement are needed for edentulous patients with large mandibular deficiencies where endosteal implantation is not possible. We developed a novel subperiosteal titanium-aluminum-vanadium bone onlay device produced by additive manufacturing (AM) and post-fabrication osteogenic micro-/nano-scale surface texture modification. Human osteoblasts produced osteogenic and angiogenic factors when grown on laser-sintered nano-/micro-textured surfaces compared to smooth surfaces. Surface-processed constructs caused higher bone-to-implant contact, vertical bone growth into disk pores (microCT and histomorphometry), and mechanical pull-out force at 5 and 10 w on rat calvaria compared to non surface-modified constructs, even when pre-treating the bone to stimulate osteogenesis. Surface-modified wrap-implants placed around rabbit tibias osseointegrated by 6 w. Finally, patient-specific constructs designed to support dental implants produced via AM and surface-processing were implanted on edentulous mandibular bone. 3 and 8 month post-operative images showed new bone formation and osseointegration of the device and indicated stability of the dental implants.

  16. OSTEOCLAST-INDUCED FOXP3+ CD8 T-CELLS LIMIT BONE LOSS IN MICE

    PubMed Central

    Buchwald, Zachary S.; Kiesel, Jennifer R.; Yang, Chang; DiPaolo, Richard; Novack, Deborah V.; Aurora, Rajeev

    2014-01-01

    Osteoimmunology is the crosstalk between the skeletal and immune system. We have previously shown in vitro that osteoclasts (OC) crosspresent antigens to induce FoxP3 in CD8 T-cells (OCiTcREG), which then suppress osteoclast activity. Here we assessed the ability of OC-iTcREG to limit bone resorption in vivo. Mice lacking CD8 T-cells lose more bone in response to RANKL (Tnfsf11) administration. Using adoptive transfer experiments we demonstrate that FoxP3+ CD8 T-cells limit bone loss by RANKL administration. In ovariectomized mice, a murine model of postmenopausal osteoporosis, OC-iTcREG limited bone loss and increased bone density as assessed by serum markers, micro computed tomography (μCT) and histomorphometry. Indeed, OC-iTcREG—treated ovariectomized mice had decreased levels of effector T-cells in the bone marrow compared to untreated mice, and increased bone formation rates relative to bisphosphonate-treated mice. Our results provide the first in vivo evidence that OC-iTcREG have anti-resorptive activity and repress the immune system, thus extending the purview of osteoimmunology. PMID:23756229

  17. Experiment K-6-04. Trace element balance in rats during spaceflight

    NASA Technical Reports Server (NTRS)

    Cann, C. E.; Patterson-Buckendahl, P.; Durnova, G.; Kaplansky, A.

    1990-01-01

    Exposure to microgravity causes alterations in the skeletal and mineral homeostatic systems. Little is known about the effects of flight in an older skeleton; limited data suggest that bone resorption is increased after 5 days but no data are available about other metabolic effects. The response of a more slowly-growing skeleton to microgravity may be different than that of a younger animal, similar to the different responses seen in adolescents and adult humans to immobilization. This experiment was designed to investigate changes occurring in skeletal and mineral homeostatis in these older rats flown for two weeks in space. We may expect that the two portions of the rat vertebra, the vertebral body and the posterior elements, will show different responses to spaceflight. The results of the analyses from this study confirm major differences between portions of the vertebra. The posterior bone is more highly mineralized, evidenced by increased concentration (per unit weight of bone) of calcium (5 percent), phosphorus (6 percent) and osteocalcin (37 percent), similar to the differences seen between proximal and mid humerus in previous studies. The major increase in osteocalcin content indicates the presence of mature, low-turnover bone. The difference between flight and control animals were minimal in these older, slower-growing rats. Mass of whole vertebrae increased 6.2 percent in synchronous rats compared to less than 2 percent in flight rats over the 16 days when compared to basal controls, suggesting a decreased rate of bone growth in flight. Compared to young rats in which vertebral mass increased over 40 percent in 10 days in controls and 20 percent in flight rats, this may be a clear indication that even in the older skeleton bone growth will slow in microgravity.

  18. Effects of eight-month treatment with ONO-5334, a cathepsin K inhibitor, on bone metabolism, strength and microstructure in ovariectomized cynomolgus monkeys.

    PubMed

    Ochi, Yasuo; Yamada, Hiroyuki; Mori, Hiroshi; Nakanishi, Yasutomo; Nishikawa, Satoshi; Kayasuga, Ryoji; Kawada, Naoki; Kunishige, Akiko; Hashimoto, Yasuaki; Tanaka, Makoto; Sugitani, Masafumi; Kawabata, Kazuhito

    2014-08-01

    This study examined the effect of ONO-5334, a cathepsin K inhibitor, on bone turnover, mineral density (BMD), mechanical strength and microstructure in ovariectomized (OVX) cynomolgus monkeys. Vehicle, ONO-5334 (3, 10 or 30 mg/kg) or alendronate (0.5 mg/kg) was orally administered for eight months to sham- and OVX-operated monkeys. ONO-5334 dose-dependently suppressed OVX-induced increase in bone turnover markers (urinary C-terminal cross-linking telopeptide of type I collagen (CTX) and serum osteocalcin). At the dose of 30 mg/kg, ONO-5334 maintained urinary CTX at nearly zero level and kept serum osteocalcin around the level of the sham animals. Marker levels in the alendronate-treated animals were similar to those in the sham animals throughout the study. ONO-5334 dose-dependently reversed the effect of OVX on vertebral BMD as measured by dual-energy X-ray absorptiometry (DXA) with improvement of bone mechanical strength. Both ONO-5334 and alendronate suppressed OVX-induced changes in vertebral microstructure and turnover state. In the femoral neck, peripheral quantitative computed tomography (pQCT) analysis showed that ONO-5334 increased total and cortical BMD. In particular, ONO-5334 significantly increased cortical BMD with improvement of bone mechanical strength. In microstructural analysis, alendronate suppressed OVX-induced increase in femoral mid-shaft osteonal bone formation rate (BFR) to a level below that recorded in the sham group, whereas ONO-5334 at 30 mg/kg did not suppress periosteal, osteonal and endocortical BFR. This finding supports the significant effect of ONO-5334 on cortical BMD and mechanical strength in the femoral neck. The results of this study suggest that ONO-5334 has good therapeutic potential for the treatment of osteoporosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Alendronate promotes osteoblast differentiation and bone formation in ovariectomy-induced osteoporosis through interferon-β/signal transducer and activator of transcription 1 pathway

    PubMed Central

    Ma, Xiaoqing; Xu, Zhongyang; Ding, Shaofeng; Yi, Guangkun; Wang, Qian

    2018-01-01

    Alendronate is commonly used for the treatment of postmenopausal osteoporosis; however, the underlying pathological molecular mechanisms of its action remain unclear. In the present study, the alendronate-treated signaling pathway in bone metabolism in rats with ovariectomy induced by osteoporosis was investigated. Rats with osteoporosis were orally administered alendronate or phosphate-buffered saline (control). In addition, the interferon-β (IFN-β)/signal transducer and activator of transcription 1 (STAT1) signaling pathway was investigated in osteoblasts following treatment with alendronate in vitro and in vivo. During the differentiation period, IFN-β (100 ng/ml) was used to treat the osteoblast cells, and the activity, viability and bone metabolism-associated gene expression levels (STAT1, p-STAT1, Fra1, TRAF6 and SOCS1) were analyzed in osteoblast cells. Histopathological changes were used to evaluate osteoblasts, osteoclasts, inflammatory phase of bone healing and osteonecrotic areas. The results demonstrated that alendronate significantly inhibited the activity of osteoporotic osteoclasts by stimulating expression of IFN-β, as well as markedly improved the viability and activity of osteoblasts compared with the control group. In addition, alendronate increased the expression and phosphorylation levels of STAT1 in osteoclasts, enhanced osteoblast differentiation, upregulated the expression levels of alkaline phosphatase and osteocalcin, and increased the expression of osteoblast differentiation-associated genes (osteocalcin, osterix and Runx2). Inhibition of IFN-β expression canceled the benefits of alendronate-mediated osteoblast differentiation. Notably, alendronate enhanced bone formation in rats with osteoporosis induced by ovariectomy. In conclusion, these findings suggest that alendronate can regulate osteoblast differentiation and bone formation in rats with osteoporosis induced by ovariectomy through upregulation of IFN-β/STAT1 signaling pathway. PMID:29375681

  20. Omega 3 Fatty Acids Reduce Bone Resorption While Promoting Bone Generation in Rat Apical Periodontitis.

    PubMed

    Azuma, Mariane Maffei; Gomes-Filho, João Eduardo; Ervolino, Edilson; Pipa, Camila Barbosa; Cardoso, Carolina de Barros Morais; Andrada, Ana Cristina; Kawai, Toshihisa; Cintra, Luciano Tavares Angelo

    2017-06-01

    This study evaluated the effects of the dietary supplement omega 3 polyunsaturated fatty acids (ω-3 PUFAs) on pulp exposure-induced apical periodontitis (AP) in rats. Twenty-eight male rats were divided into groups: control untreated rats (C), control rats treated with ω-3 PUFAs alone (C-O), rats with pulp exposure-induced AP, and rats with pulp exposure-induced AP treated with ω-3 PUFAs (AP-O). The ω-3 PUFAs were administered orally, once a day, for 15 days before pulp exposure and, subsequently, 30 days after pulp exposure. Rats were killed 30 days after pulp exposure, and jaws were subjected to histologic and immunohistochemical analyses. Immunohistochemical analyses were performed to detect tartrate-resistant acid phosphatase-positive osteoclasts and osteocalcin-positive osteoblasts on the bone surface of periapical area. Results were statistically evaluated by using analysis of variance and Tukey honestly significant difference, and P < .05 was considered statistically significant. The bone resorption lesion was significantly larger in the AP group compared with AP-O, C, and C-O groups (P < .05). The level of inflammatory cell infiltration was significantly elevated, and the number of tartrate-resistant acid phosphatase-positive osteoclasts was significantly higher in the periapical lesions of the AP group compared with AP-O, C, and C-O groups (P < .05). The number of osteocalcin-positive osteoblasts was significantly increased in the AP-O group compared with the AP group (P > .05). Supplementation with ω-3 PUFAs not only suppresses bone resorption but also promotes new bone formation in the periapical area of rats with AP in conjunction with downregulation of inflammatory cell infiltration into the lesion. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. Effect of Daily Exposure to an Isolated Soy Protein Supplement on Body Composition, Energy and Macronutrient Intake, Bone Formation Markers, and Lipid Profile in Children in Colombia.

    PubMed

    Mejía, Wilson; Córdoba, Diana; Durán, Paola; Chacón, Yersson; Rosselli, Diego

    2018-01-16

    A soy protein-based supplement may optimize bone health, support physical growth, and stimulate bone formation. This study aimed to assess the effect of a daily soy protein supplement (SPS) on nutritional status, bone formation markers, lipid profile, and daily energy and macronutrient intake in children. One hundred seven participants (62 girls), ages 2 to 9, started the study and were randomly assigned to lunch fruit juice with (n = 57, intervention group) or without (n = 50, control group) addition of 45 g (230 Kcal) of a commercial SPS during 12 months; 84 children (51 girls, 33 boys) completed the study (45 and 39 intervention and control, respectively). Nutritional assessment included anthropometry and nutrient intakes; initial and final blood samples were taken; insulin-like growth factor-I (IGF-I), osteocalcin, bone specific alkaline phosphatase (BAP), insulin-like growth factor binding protein-3 (IGFBP-3), cholesterol, triglycerides, low-density lipoprotein (LDL), and high-density lipoprotein (HDL) were analyzed. Statistically significant changes (p < .05) in body mass index and weight for age Z scores were observed between groups while changes in body composition were not. Changes in energy, total protein, and carbohydrate intakes were significantly higher in the intervention group (p < .01). Calorie intake changes were statistically significant between groups (p < .001), and BAP decreased in both groups, with values within normal ranges. Osteocalcin, IGFBP-3, and lipid profile were not different between groups. IGF-I levels and IGF/IGFBP-3 ratio increased significantly in both groups. In conclusion, changes in macronutrient and energy intake and nutritional status in the intervention group compared to control group may ensure harmonious and adequate bone health and development.

  2. Combined effects of chronic alcohol consumption and physical activity on bone health: study in a rat model.

    PubMed

    Maurel, Delphine B; Boisseau, Nathalie; Ingrand, Isabelle; Dolleans, Eric; Benhamou, Claude-Laurent; Jaffre, Christelle

    2011-12-01

    Chronic alcohol consumption may be deleterious for bone tissue depending on the amount of ethanol consumed, whereas physical activity has positive effects on bone. This study was designed to analyze the effects of moderate alcohol consumption on bone in trained rats. 48 male Wistar rats were divided into four groups: control (C), alcohol (A), exercise (E) and alcohol + exercise (AE). A and AE groups drank a solution composed of water and ethanol. E and AE groups were trained for 2 months (treadmill: 40 min/day, 5 times/week). Body composition and bone mineral density (BMD) were assessed by dual X-ray absorptiometry and microarchitectural parameters using micro-computed tomography. Serum osteocalcin and CTx were determined by ELISA assays. The body weight and lean mass gain were lower in group A, while the fat mass gain was lower in exercised groups. BMD and BMC were higher with alcohol after body weight adjustment. Trabecular thickness was significantly higher in AE and A groups compared to C and E; cross-sectional area was larger in A and C groups compared to AE and E. CTx levels were higher in A compared to C and in AE and E versus C and A. Osteocalcin levels were significantly greater in AE and E groups versus C and A. In conclusion, the light to moderate alcohol consumption over a short period increased the trabecular thickness, BMC and BMD in A and AE groups. However, we observed alterations in bone remodeling and body composition with alcohol, at the end of the protocol, which did not appear when alcohol was combined to exercise.

  3. Experiment K-6-01. Distribution and biochemistry of mineral and matrix in the femurs of rats

    NASA Technical Reports Server (NTRS)

    Arnaud, S.; Mechanic, G.; Buckendahl, P.; Bromage, T.; Boyde, A.; Elliott, J.; Katz, E.; Durnova, G

    1990-01-01

    Previous analyses of the composition of mineral and matrix in the bone of young rats following space flight has revealed deficits in calcium, phosphorus, and osteocalcin, a non-collagenous protein, without an associated decrease in collagen. To characterize the location and nature of this mineralization defect in a weight bearing long bone, the femur, researchers attempted to relate the spatial distribution of mineral in situ in the proximal, central and distal thirds of the femoral diaphysis to the biochemical composition of bone from the same area. Biochemical analyses revealed lower concentrations of calcium, phosphorus and osteocalcin but not collagen only in the central third of the diaphysis of the flight animals (F) compared to synchronous controls (S). Collagen concentration was reduced only in the proximal third of the diaphysis, where all 3 crosslinks, expressed as nM/mol collagen were higher in F than S. A new technique, x ray microtomography, with a resolution of 26 microns, was used to obtain semi-quantitative data on mineral distribution in reconstructed sections of wet whole bone. To improve the resolution of the mineral density distribution, images of the surfaces of cut sections were analyzed by backscattered electrons in a scanning electron microscope (BSE). There was good agreement between the results of the two stereochemical techniques which revealed distinct patterns of mineralization in transverse and longitudinal directions of the diaphysis. The novel methodology developed for this flight experiment shows considerable promise in elucidating the biochemical nature of what appear to be regional alterations in the mineralization of long bones of animals exposed to spaceflight.

  4. Prevalence of Vitamin D Deficiency and Its Association With Metabolic Disease in Korean Orthopedic Patients.

    PubMed

    Kim, Ki-Tack; Kang, Kyung-Chung; Shin, Dong-Eun; Lee, Sang-Hoon; Lee, Jung-Hee; Kwon, Tae-Yoon

    2015-10-01

    Vitamin D is considered essential for bone and muscle health, and some studies have demonstrated the positive effects of vitamin D on metabolic diseases and cancer. Nevertheless, a high prevalence of vitamin D deficiency has been reported in various populations, regardless of country or race. However, no studies regarding the prevalence of vitamin D deficiency in Korean orthopedic patients currently exist. This cross-sectional study included 272 male and 937 female patients aged 50 years and older who were consecutively admitted to the authors' orthopedic department. Vitamin D (25-hydroxy vitamin D), bone turnover markers (osteocalcin, c-telopeptide), and bone mineral density were measured. The prevalence of vitamin D deficiency and its association with other factors were evaluated. Mean patient age was 67.2 ± 8.9 years, and mean level of vitamin D was 16.1 ± 9.1 ng/mL. Overall, 91.2% of patients had deficient (<20 ng/mL; 70.6%) or insufficient (20-30 ng/mL; 20.6%) levels of vitamin D. Vitamin D level did not vary by age group or sex. The level of vitamin D was significantly associated with osteocalcin, c-telopeptide, calcium, alkaline phosphatase, total cholesterol, triglycerides, low-density lipoprotein cholesterol, and glucose (P<.01). Vitamin D level in Korean orthopedic patients of this region was extremely low, regardless of sex and age. Although vitamin D was not directly associated with bone mineral density, there were significant associations between vitamin D and other factors related to bone health and metabolic diseases. Copyright 2015, SLACK Incorporated.

  5. Osteogenic capacity of transgenic flax scaffolds.

    PubMed

    Gredes, Tomasz; Wróbel-Kwiatkowska, Magdalena; Dominiak, Marzena; Gedrange, Tomasz; Kunert-Keil, Christiane

    2012-01-19

    The modification of flax fibers to create biologically active dressings is of undoubted scientific and practical interest. Flax fibers, derived from transgenic flax expressing three bacterial genes for the synthesis of poly-3-hydroxybutyric acid (PHB), have better mechanical properties than unmodified flax fibers; do not show any inflammation response after subcutaneous insertion; and have a good in vitro and in vivo biocompatibility. The aim of this study was to examine the applicability of composites containing flax fibers of genetically modified (M50) or non-modified (wt-Nike) flax within a polylactide (PLA) matrix for bone regeneration. For this, the mRNA expression of genes coding for growth factors (insulin-like growth factor IGF1, IGF2, vascular endothelial growth factor), for osteogenic differentiation (alkaline phosphatase, osteocalcin, Runx2, Phex, type 1 and type 2 collagen), and for bone resorption markers [matrix metalloproteinase 8 (MMP8), acid phosphatase type 5] were analyzed using quantitative real-time polymerase chain reaction. We found a significant elevated mRNA expression of IGF1 with PLA and PLA-wt-Nike composites. The mRNA amount of MMP8 and osteocalcin was significantly decreased in all biocomposite-treated cranial tissue samples compared to controls, whereas the expression of all other tested transcripts did not show any differences. It is assumed that both flax composites are able to stimulate bone regeneration, but composites from transgenic flax plants producing PHB showed faster bone regeneration than composites of non-transgenic flax plants. The application of these linen membranes for bone tissue engineering should be proved in further studies.

  6. The Effect of Conditional Inactivation of Beta 1 Integrins using Twist 2 Cre, Osterix Cre and Osteocalcin Cre Lines on Skeletal Phenotype

    PubMed Central

    Shekaran, Asha; Shoemaker, James T.; Kavanaugh, Taylor E.; Lin, Angela S.; LaPlaca, Michelle C.; Fan, Yuhong; Guldberg, Robert E.; García, Andrés J.

    2014-01-01

    Skeletal development and growth are complex processes regulated by multiple microenvironmental cues, including integrin-ECM interactions. The β1 sub-family of integrins is the largest integrin sub-family and constitutes the main integrin binding partners of collagen I, the major ECM component of bone. As complete β1 integrin integrin knockout results in embryonic lethality, studies of β1 integrin function in vivo rely on tissue-specific gene deletions. While multiple in vitro studies indicate that β1 integrins are crucial regulators of osteogenesis and mineralization, in vivo osteoblast-specific perturbations of β1 integrins have resulted in mild and sometimes contradictory skeletal phenotypes. To further investigate the role of β1 integrins on skeletal phenotype, we used the Twist2-Cre, Osterix-Cre and Osteocalcin-Cre lines to generate conditional β1 integrin deletions, where cre is expressed primarily in mesenchymal condensation, pre-osteoblast, and mature osteoblast lineage cells respectively within these lines. Mice with Twist2-specific β1 integrin disruption were smaller, had impaired skeletal development, especially in the craniofacial and vertebral tissues at E19.5, and did not survive beyond birth. Osterix-specific β1 integrin deficiency resulted in viable mice which were normal at birth but displayed early defects in calvarial ossification, incisor eruption and growth as well as femoral bone mineral density, structure, and mechanical properties. Although these defects persisted into adulthood, they became milder with age. Finally, a lack of β1 integrins in mature osteoblasts and osteocytes resulted in minor alterations to femur structure but had no effect on mineral density, biomechanics or fracture healing. Taken together, our data indicate that β1 integrin expression in early mesenchymal condensations play an important role in skeletal ossification, while β1 integrin-ECM interactions in pre-osteoblast, odontoblast- and hypertrophic chondryocyte- lineage cells regulate incisor eruption and perinatal bone formation in both intramembranously and endochondrally formed bones in young, rapidly growing mice. In contrast, the Osteocalcin-specific β1 integrin deletion had only minor effects on skeletal phenotype. PMID:25183373

  7. Biochemical markers of bone metabolism and risk of dorsal metacarpal disease in 2-year-old Thoroughbreds.

    PubMed

    Jackson, B F; Lonnell, C; Verheyen, K L P; Dyson, P; Pfeiffer, D U; Price, J S

    2005-01-01

    Dorsal metacarpal disease (DMD) is a common problem in 2-year-old racehorses and results in loss of a significant number of days from training. Biochemical markers of bone cell activity measured early in the training season could have value for identifying 2-year-old Thoroughbred racehorses that develop DMD. To determine the association between serum concentrations of osteocalcin, the carboxyterminal propeptide of type I collagen (PICP) and the carboxyterminal cross-linked telopeptide of type I collagen (ICTP) measured early in the training season and the risk of DMD. Blood samples were collected from 165 two-year-old Thoroughbreds during late November/early December. Osteocalcin and PICP were measured as markers of bone formation, and ICTP as a marker of bone resorption. Training and veterinary records for each horse were monitored over the following training/racing season (10 months). Cases were defined as an episode where signs of DMD were sufficiently severe for a horse to miss at least 5 consecutive days of training. Classification tree and logistic regression analysis were used to identify the most important factors suitable for prediction of DMD risk. There were 24 cases of DMD during the season (14.6% cumulative incidence), with an average time to recognition of approximately 6 months (May). The earliest recognised case was in February and the latest in September. Osteocalcin and ICTP concentrations in the early stages of the training season were significantly higher in horses that subsequently developed DMD (P = 0.017 and 0.019, respectively). DMD cases were also significantly older compared to noncases (21.04 vs. 20.44 months, P = 0.023). Using a multivariable logistic regression model, it was possible to postulate a set of diagnostic rules to predict the likelihood of DMD injury during the season. This suggested that horses with ICTP concentrations above 12365 ug/l and older than 20.5 months are 2.6 times more likely to develop DMD. The measurement of the bone resorption marker ICTP could be useful for identification of 2-year-olds at increased risk of developing DMD. These findings, together with other strategies such as modification of training regimens, e.g. early introduction of short distances of high-speed exercise into the training programme, could help reduce the days lost to training as a result of DMD.

  8. Type 2 Diabetes in Relation to Hip Bone Density, Area, and Bone Turnover in Swedish Men and Women: A Cross-Sectional Study.

    PubMed

    Mitchell, Adam; Fall, Tove; Melhus, Håkan; Wolk, Alicja; Michaëlsson, Karl; Byberg, Liisa

    2018-06-26

    Men and women with type 2 diabetes mellitus (T2DM) have higher risk of hip fracture, but the mechanisms are not fully understood. We aimed to investigate how T2DM, glucose, and insulin were associated with femoral bone mineral density (BMD), bone mineral area (BMA), and bone turnover markers. We used two cross-sectional cohorts: the Uppsala Longitudinal Study of Adult Men (ULSAM, n = 452, mean age 82 years) and the Swedish Mammography Cohort Clinical (SMCC, n = 4713, mean age 68 years). We identified men and women with normal fasting glucose (NFG), impaired fasting plasma glucose (IFG), and T2DM. BMD and BMA at the total hip and femoral shaft were measured using dual energy X-ray absorptiometry (DXA). Bone turnover markers; CrossLaps and osteocalcin were measured in women. Linear regression models were applied. Men and women showed a progressively higher BMD following the clinical cutoffs of fasting glucose from NFG to IFG to T2DM. In contrast, there was a progressively lower BMA. Men and women with T2DM, compared to those with NFG, had lower BMA at the total hip (- 1.7%; 95% CI - 3.2, - 0.2 and - 1.0%; 95% CI - 1.6, - 0.4) and the femoral shaft (- 2.0%; 95% CI - 3.5, - 0.4 and - 0.6%; 95% CI - 1.2, - 0.01), respectively. T2DM was associated with lower concentrations of CrossLaps (- 8.1%; 95% CI - 12.7, - 3.6) and osteocalcin (- 15.2%; 95% CI - 19.0, - 11.2). These cross-sectional results indicate that those with T2DM have smaller bone area and lower bone turnover, which could increase the risk of hip fracture.

  9. Conditional deletion of Hdac3 in osteoprogenitor cells attenuates diet-induced systemic metabolic dysfunction

    PubMed Central

    McGee-Lawrence, Meghan E.; White, Thomas A.; LeBrasseur, Nathan K.; Westendorf, Jennifer J.

    2015-01-01

    Obesity is a major health epidemic in the United States and a leading cause of preventable diseases including type 2 diabetes. A growing body of evidence indicates that the skeleton influences whole body metabolism and suggests a new avenue for developing novel therapeutic agents, but the underlying mechanisms are not well understood. Here, it is demonstrated that conditional deletion of an epigenetic regulator, Hdac3, in osteoblast progenitor cells abrogates high fat diet-induced insulin resistance and hepatic steatosis. These Hdac3-deficient mice have reduced bone formation and lower circulating levels of total and undercarboxylated osteocalcin, coupled with decreased bone resorption activity. They also maintain lower body fat and fasting glucose levels on normal and high fat chow diets. The mechanisms by which Hdac3 controls systemic energy homeostasis from within osteoblasts have not yet been fully realized, but the current study suggests that it does not involve elevated levels of circulating osteocalcin. Thus, Hdac3 is a new player in the emerging paradigm that the skeleton influences systemic energy metabolism. PMID:25666992

  10. Cyclosporin A promotes mineralization by human cementoblastoma-derived cells in culture.

    PubMed

    Arzate, Higinio; Alvarez, Marco A; Narayanan, A Sampath

    2005-06-01

    The immunosuppressive drug cyclosporin A has been shown to induce cementum deposition in vivo in experimental animals. Using cementoblastoma-derived cells, we have studied whether this drug will be useful to study cementum mineralization and differentiation in vitro. Human cementoblastoma cells and gingival fibroblasts (controls) were cultured and treated with 0.5, 1.0 and 5.0 microg/ml of cyclosporin A. Cell proliferation was evaluated by MTT (tetrazolium) assay and cell number, and cell viability was assessed by trypan blue dye exclusion. Induction of mineralization was evaluated by alizarin red S staining to detect mineralized nodules and by reverse transcription-polymerase chain reaction (RT-PCR) to assess the expression of bone differentiation markers alkaline phosphatase, osteocalcin, bone sialoprotein and core-binding factor a1 (Cbfa1). Cyclosporin A at 5.0 microg/ml concentration reduced significantly the increase in the number of cementoblastoma cells. A dose-dependent increase in the number of mineralized nodules occurred in cultures of cementoblastoma-derived cells treated with cyclosporin A, and RT-PCR analyses showed significantly higher levels of expression of alkaline phosphatase, bone sialoprotein, type I collagen, matrix metalloproteinase-1, osteocalcin, osteopontin, and Cbfa1. Human gingival fibroblast proliferation and cell number were not affected. Mineralized nodules were not detected in gingival fibroblasts and bone specific proteins were not expressed. Presence of cyclosporin A during 14-day culture period appears to suppress the proliferation of cementoblastoma cells and induce the formation mineralized-like tissue by these cells.

  11. Palmitate Attenuates Osteoblast Differentiation of Fetal Rat Calvarial Cells

    PubMed Central

    Yeh, Lee-Chuan C.; Ford, Jeffery J.; Lee, John C.; Adamo, Martin L.

    2014-01-01

    Aging is associated with the accumulation of ectopic lipid resulting in the inhibition of normal organ function, a phenomenon known as lipotoxicity. Within the bone marrow microenvironment, elevation in fatty acid levels may produce an increase in osteoclast activity and a decrease in osteoblast number and function, thus contributing to age-related osteoporosis. However, little is known about lipotoxic mechanisms in intramembraneous bone. Previously we reported that the long chain saturated fatty acid palmitate inhibited the expression of the osteogenic markers RUNX2 and osteocalcin in fetal rat calvarial cell (FRC) cultures. Moreover, the acetyl Co-A carboxylase inhibitor TOFA blocked the inhibitory effect of palmitate on expression of these two markers. In the current study we have extended these observations to show that palmitate inhibits spontaneous mineralized bone formation in FRC cultures in association with reduced mRNA expression of RUNX2, alkaline phosphatase, osteocalcin, and bone sialoprotein and reduced alkaline phosphatase activity. The effects of palmitate on osteogenic marker expression were inhibited by TOFA. Palmitate also inhibited the mRNA expression of fatty acid synthase and PPAR gamma in FRC cultures, and as with osteogenic markers, this effect was inhibited by TOFA. Palmitate had no effect on FRC cell proliferation or apoptosis, but inhibited BMP-7-induced alkaline phosphatase activity. We conclude that palmitate accumulation may lead to lipotoxic effects on osteoblast differentiation and mineralization and that increases in fatty acid oxidation may help to prevent these lipotoxic effects. PMID:24955854

  12. Palmitate attenuates osteoblast differentiation of fetal rat calvarial cells.

    PubMed

    Yeh, Lee-Chuan C; Ford, Jeffery J; Lee, John C; Adamo, Martin L

    2014-07-18

    Aging is associated with the accumulation of ectopic lipid resulting in the inhibition of normal organ function, a phenomenon known as lipotoxicity. Within the bone marrow microenvironment, elevation in fatty acid levels may produce an increase in osteoclast activity and a decrease in osteoblast number and function, thus contributing to age-related osteoporosis. However, little is known about lipotoxic mechanisms in intramembraneous bone. Previously we reported that the long chain saturated fatty acid palmitate inhibited the expression of the osteogenic markers RUNX2 and osteocalcin in fetal rat calvarial cell (FRC) cultures. Moreover, the acetyl CoA carboxylase inhibitor TOFA blocked the inhibitory effect of palmitate on expression of these two markers. In the current study we have extended these observations to show that palmitate inhibits spontaneous mineralized bone formation in FRC cultures in association with reduced mRNA expression of RUNX2, alkaline phosphatase, osteocalcin, and bone sialoprotein and reduced alkaline phosphatase activity. The effects of palmitate on osteogenic marker expression were inhibited by TOFA. Palmitate also inhibited the mRNA expression of fatty acid synthase and PPARγ in FRC cultures, and as with osteogenic markers, this effect was inhibited by TOFA. Palmitate had no effect on FRC cell proliferation or apoptosis, but inhibited BMP-7-induced alkaline phosphatase activity. We conclude that palmitate accumulation may lead to lipotoxic effects on osteoblast differentiation and mineralization and that increases in fatty acid oxidation may help to prevent these lipotoxic effects. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Autogenous bone particle/titanium fiber composites for bone regeneration in a rabbit radius critical-size defect model.

    PubMed

    Xie, Huanxin; Ji, Ye; Tian, Qi; Wang, Xintao; Zhang, Nan; Zhang, Yicai; Xu, Jun; Wang, Nanxiang; Yan, Jinglong

    2017-11-01

    To explore the effects of autogenous bone particle/titanium fiber composites on repairing segmental bone defects in rabbits. A model of bilateral radial bone defect was established in 36 New Zealand white rabbits which were randomly divided into 3 groups according to filling materials used for bilaterally defect treatment: in group C, 9 animal bone defect areas were prepared into simple bilateral radius bone defect (empty sham) as the control group; 27 rabbits were used in groups ABP and ABP-Ti. In group ABP, left defects were simply implanted with autogenous bone particles; meanwhile, group ABP-Ti animals had right defects implanted with autogenous bone particle/titanium fiber composites. Animals were sacrificed at 4, 8, and 12 weeks, respectively, after operation. Micro-CT showed that group C could not complete bone regeneration. Bone volume to tissue volume values in group ABP-Ti were better than group ABP. From histology and histomorphometry Groups ABP and ABP-Ti achieved bone repair, the bone formation of group ABP-Ti was better. The mechanical strength of group ABP-Ti was superior to that of other groups. These results confirmed the effectiveness of autologous bone particle/titanium fiber composites for promoting bone regeneration and mechanical strength.

  14. Local Bisphosphonate Treatment Increases Fixation of Hydroxyapatite-Coated Implants Inserted with Bone Compaction

    PubMed Central

    Jakobsen, Thomas; Baas, Jørgen; Kold, Søren; Bechtold, Joan E.; Elmengaard, Brian; Søballe, Kjeld

    2013-01-01

    It has been shown that fixation of primary cementless joint replacement can independently be enhanced by either: (1) use of hydroxyapatite (HA) coated implants, (2) compaction of the peri-implant bone, or (3) local application of bisphosphonate. We investigated whether the combined effect ofHAcoating and bone compaction can be further enhanced with the use of local bisphosphonate treatment .HA-coated implants were bilaterally inserted into the proximal tibiae of 10 dogs. On one side local bisphosphonate was applied prior to bone compaction. Saline was used as control on the contralateral side. Implants were evaluated with histomorphometry and biomechanical pushout test. We found that bisphosphonate increased the peri-implant bone volume fraction (1.3-fold), maximum shear strength (2.1-fold), and maximum shear stiffness (2.7-fold). No significant difference was found in bone-to-implant contact or total energy absorption. This study indicates that local alendronate treatment can further improve the fixation of porous-coated implants that have also undergone HA-surface coating and peri-implant bone compaction. PMID:18752278

  15. Genistein treatment increases bone mass in obese, hyperglycemic mice.

    PubMed

    Michelin, Richard M; Al-Nakkash, Layla; Broderick, Tom L; Plochocki, Jeffrey H

    2016-01-01

    Obesity and type 2 diabetes mellitus are associated with elevated risk of limb bone fracture. Incidences of these conditions are on the rise worldwide. Genistein, a phytoestrogen, has been shown by several studies to demonstrate bone-protective properties and may improve bone health in obese type 2 diabetics. In this study, we test the effects of genistein treatment on limb bone and growth plate cartilage histomorphometry in obese, hyperglycemic ob/ob mice. Six-week-old ob/ob mice were divided into control and genistein-treated groups. Genistein-treated mice were fed a diet containing 600 mg genistein/kg for a period of 4 weeks. Cross-sectional geometric and histomorphometric analyses were conducted on tibias. Genistein-treated mice remained obese and hyperglycemic. However, histomorphometric comparisons show that genistein-treated mice have greater tibial midshaft diameters and ratios of cortical bone to total tissue area than the controls. Genistein-treated mice also exhibit decreased growth plate thickness of the proximal tibia. Our results indicate that genistein treatment affects bone of the tibial midshaft in the ob/ob mouse, independent of improvements in the hyperglycemic state and body weight.

  16. A single measurement of biochemical markers of bone turnover has limited utility in the individual person.

    PubMed

    Beck-Jensen, J E; Kollerup, G; Sørensen, H A; Pors Nielsen, S; Sørensen, O H

    1997-07-01

    Biochemical markers of bone turnover are used to estimate the rate of bone loss in the individual osteoporotic patient. During recent years it has become increasingly clear that the biological variability of biochemical bone markers has to be taken into consideration in the evaluation of their usefulness in the clinical setting. Eleven premenopausal, 8 perimenopausal and 11 postmenopausal healthy women were included. We assessed the analytical and the biological components of variation for a number of resorptive and formative bone markers: u-hydroxyproline, u-pyridinoline, and u-deoxypyridinoline together with u-calcium and u-creatinine, s-total alkaline phosphatases and s-osteocalcin. Blood and urine samples were collected five times with 7-day intervals. Urinary parameters were expressed as outputs and corrected for creatinine in fasting night urines and second void fasting morning urines. The absolute values differed with a tendency towards increasing values in the postmenopausal women, but the biological variations in relation to menopausal status were not different. The biological variability was much higher for the urinary resorptive markers than for the formative markers in the blood. The critical difference expressing the difference needed between two serial results from the same person to be significant at a 5% level was 15% for s-alkaline phosphatases, 18% for s-osteocalcin, and lowest in the second void fasting morning urines with values of 28% and 34% for u-pyridinoline/creatinine and u-deoxypyridinoline/creatinine, and 50% and 112% for u-hydroxyproline/creatinine and u-calcium/creatinine, respectively. The index of individuality, denoting the individual variation divided by the variation between subjects, was in the range from 0.19 for s-alkaline phosphatases to 1.23 for u-hydroxyproline/minute in second void fasting morning urine making the use of conventional reference intervals difficult. Low indices, however, indicate high test performance and offer the possibility of stratification of persons within a range. The number of samples required to determine the true individual mean value +/- 5% for the single person, ranged from 5 for s-total alkaline phosphatases, 6 for s-osteocalcin, 23 for u-deoxypyridinoline/creatinine in the fasting morning urine to over two hundred for u-calcium analytes. It is concluded that, due to high biological variation, a single measurement of biochemical markers of bone turnover is of limited utility in the individual person. We recommend that routine clinical use of biochemical markers should be restricted until further evidence justifies it.

  17. Biocompatibility of sol-gel-derived titania-silica coated intramedullary NiTi nails.

    PubMed

    Muhonen, V; Kujala, S; Vuotikka, A; Aäritalo, V; Peltola, T; Areva, S; Närhi, T; Tuukkanen, J

    2009-02-01

    We investigated bone response to sol-gel-derived titania-silica coated functional intramedullary NiTi nails that applied a continuous bending force. Nails 26 mm in length, either straight or with a radius of curvature of 28 or 15 mm, were implanted in the cooled martensite form from a proximal to distal direction into the medullary cavity of the right femur in 40 Sprague-Dawley rats. Body temperature restored the austenite form, causing the curved implants to generate a bending force on the bone. The femurs were examined after 24 weeks. Bone length measurements did not reveal any bowing or shortening of the bone in the experimental groups. The results from histomorphometry demonstrated that the stronger bending force, together with sol-gel surface treatment, resulted in more bone deposition around the implant and the formation of significantly less fibrous tissue. Straight intramedullary nails, even those with a titania-silica coating, were poorly attached when compared to the implants with a curved austenite structure.

  18. [Bone histomorphometry of lactating and no lactating hyperthyroid rats].

    PubMed

    Serakides, Rogéria; Ocarino, Natália de Melo; Magalhães, Fernanda do Carmo; Souza, Cíntia de Almeida; Leite, Eveline Dias; Freitas, Edmilson Santos de

    2008-06-01

    The objective of this study was to verify if hyperthyroidism potentiates the osteopenia lactational. 24 adult female rats were distributed in four groups: euthyroid no lactating (control), euthyroid lactating, hyperthyroid no lactating and hyperthyroid lactating. 20 days after gestation, all the animals were necropsied. The thoracic and lumbar vertebrae, the femur and tibia were decalcified and processed for histomorphometric analysis. The euthyroid lactating group presented intense osteopenia in the studied bones. In the hyperthyroid no lactating group, there was not any change in trabecular bone percentage in none of the analyzed bone. In the hyperthyroid lactating group, there was osteopenia in the tibia and femur, similar to the one in the euthyroid lactating group. But the trabecular bone percentage in all the vertebral bodies was significantly larger in comparison with the euthyroid lactating group. It was concluded that the hyperthyroidism does not potentiate the osteopenia lactational in female rats, but it minimizes the vertebral osteopenia once it stimulates the osteoblastic activity.

  19. Oral treatment with retinoic acid decreases bone mass in rats.

    PubMed

    Hotchkiss, Charlotte E; Latendresse, John; Ferguson, Sherry A

    2006-12-01

    13-cis-retinoic acid (13-cis-RA, isotretinoin) is used to treat severe recalcitrant acne. Other retinoids have adverse effects on bone. Recent studies of human patients treated with 13-cis-RA have had varying results, perhaps because of variability among patients and the lack of control groups. The effects of retinoids have been studied in rodents, but little information is available regarding the effects of clinically relevant retinoid doses as evaluated by use of bone densitometric techniques. We treated rats for 15 or 20 wk with 13-cis-RA, all-trans-RA, or soybean oil (control) by gavage. We used dual-energy X-ray absorptiometry, histomorphometry, and histologic evaluation to evaluate effects on bone. Spontaneous long bone fractures occurred in some rats treated with 15 mg/kg all-trans-RA daily. Bone mineral density, bone mineral content, bone diameter, and cortical thickness of the femur were reduced in rats treated daily with 10 or 15 mg/kg all-trans-RA or 30 mg/kg 13-cis-RA. The lumbar spine was not affected. Although the effects of 13-cis-RA were not as dramatic as those of all-trans-RA, further study of the effects of 13-cis-RA on long bones is warranted.

  20. Adaptation of Diaphyseal Structure with Aging and Increased Mechanical Usage in the Adult Rat: A Histomorphometrical and Biomechanical Study

    NASA Technical Reports Server (NTRS)

    Jee, Webster S. S.; Li, Xiao Jian; Schaffler, Mitchell B.

    1991-01-01

    The experimental increase in mechanical usage or overloading of the left hindlimb was produced by immobilization of the contralateral hindlimb. The right hindlimb was placed in a flexed position against the body and was immobilized using an elastic bandage. Some control animals were sacrificed initially at time zero and increased mechanical usage and age-matched control animals were sacrificed after 2, 10, 18, and 26 weeks of treatment. All animals received double bone fluorochrome labeling prior to sacrifice. Cortical bone histomorphometry and cross-sectional moments of inertia were determined. Marrow cavity enlargement and total cross-sectional area expansion represented the age-related cortical bone changes. Increased mechanical usage enhanced periosteal bone modeling in the formation mode and dampened endocortical bone remodeling and bone modeling in the resorption mode (resorption drift) to create a slight positive bone balance. These observations are in general agreement with Frost's postulate for mechanical effects on bone modeling and remodeling. The maximum moment of inertia did not change significantly in either control or overloaded tibial shafts. The minimum and polar moment of inertias in overloaded bones increases over those of controls at 18 and 26 weeks of the experiment.

  1. Adaptation of Diaphyseal Structure With Aging and Increased Mechanical Usage in the Adult Rat: A Histomorphometrical and Biomechanical Study

    NASA Technical Reports Server (NTRS)

    Jee, Webster S. S.; Li, Xiao Jian; Schaffler, Mitchell B.

    1991-01-01

    The experimental increase in mechanical usage or overloading of the left hindlimb was produced by immobilization of the contralateral hindlimb. The right hindlimb was placed in a flexed position against the body and was immobilized using an elastic bandage. Some control animals were sacrificed initially at time zero and increased mechanical usage and age-matched control animals were sacrificed after 2, 10, 18, and 26 weeks of treatment. All animals received double bone fluorochrome labeling prior to sacrifice. Cortical bone histomorphometry and cross-sectional moments of inertia were determined. Marrow cavity enlargement and total cross-sectional area expansion represented the age-related cortical bone changes. Increased mechanical usage enhanced periosteal bone modeling in the formation mode and dampened endocortical bone remodeling and bone modeling in the resorption mode (resorption drift) to create a slight positive bone balance. These observations are in general agreement with Frost's postulate for mechanical effects on bone modeling and remodeling. The maximum moment of inertia did not change significantly in either control or overloaded tibial shafts. The minimum and polar moment of inertias in overloaded bones increases over those of controls at 18 and 26 weeks of the experiment.

  2. Orphan nuclear receptor chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) protein negatively regulates bone morphogenetic protein 2-induced osteoblast differentiation through suppressing runt-related gene 2 (Runx2) activity.

    PubMed

    Lee, Kkot-Nim; Jang, Won-Gu; Kim, Eun-Jung; Oh, Sin-Hye; Son, Hye-Ju; Kim, Sun-Hun; Franceschi, Renny; Zhang, Xiao-Kun; Lee, Shee-Eun; Koh, Jeong-Tae

    2012-06-01

    Chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) is an orphan nuclear receptor of the steroid-thyroid hormone receptor superfamily. COUP-TFII is widely expressed in multiple tissues and organs throughout embryonic development and has been shown to regulate cellular growth, differentiation, and organ development. However, the role of COUP-TFII in osteoblast differentiation has not been systematically evaluated. In the present study, COUP-TFII was strongly expressed in multipotential mesenchymal cells, and the endogenous expression level decreased during osteoblast differentiation. Overexpression of COUP-TFII inhibited bone morphogenetic protein 2 (BMP2)-induced osteoblastic gene expression. The results of alkaline phosphatase, Alizarin Red staining, and osteocalcin production assay showed that COUP-TFII overexpression blocks BMP2-induced osteoblast differentiation. In contrast, the down-regulation of COUP-TFII synergistically induced the expression of BMP2-induced osteoblastic genes and osteoblast differentiation. Furthermore, the immunoprecipitation assay showed that COUP-TFII and Runx2 physically interacted and COUP-TFII significantly impaired the Runx2-dependent activation of the osteocalcin promoter. From the ChIP assay, we found that COUP-TFII repressed DNA binding of Runx2 to the osteocalcin gene, whereas Runx2 inhibited COUP-TFII expression via direct binding to the COUP-TFII promoter. Taken together, these findings demonstrate that COUP-TFII negatively regulates osteoblast differentiation via interaction with Runx2, and during the differentiation state, BMP2-induced Runx2 represses COUP-TFII expression and promotes osteoblast differentiation.

  3. Switching from tenofovir to abacavir in HIV-1-infected patients with low bone mineral density: changes in bone turnover markers and circulating sclerostin levels.

    PubMed

    Negredo, Eugènia; Diez-Pérez, Adolfo; Bonjoch, Anna; Domingo, Pere; Pérez-Álvarez, Núria; Gutierrez, Mar; Mateo, Gracia; Puig, Jordi; Echeverría, Patricia; Escrig, Roser; Clotet, Bonaventura

    2015-07-01

    Tenofovir is involved in accelerated bone mineral density (BMD) loss. We recently published a hip BMD improvement at week 48 [+2.1% (95% CI: -0.6, 4.7) (P = 0.043)] in HIV-infected patients with osteopenia/osteoporosis randomized to switch from tenofovir to abacavir (n = 26), although without reaching statistical significance compared with those who maintained tenofovir (n = 28). Here, we present changes at week 48 in bone markers [C-terminal telopeptide of collagen type 1 (CTX), osteocalcin and procollagen type 1 N propeptide (P1NP)] as well as in circulating levels of three proteins involved in bone regulation [osteoprotegerin, receptor activator for NF-κB ligand (RANKL) and sclerostin, a selective regulator of bone formation through the Wnt pathway] in 44 of these patients. χ(2) or Fisher and Student t-tests were performed according to the distribution of the variables. Bone markers decreased only in the abacavir group [mean (SD) CTX changed from 0.543 (0.495) to 0.301 (0.306) ng/mL; mean (SD) osteocalcin changed from 23.72 (22.20) to 13.95 (12.40) ng/mL; and mean (SD) P1NP changed from 54.68 (54.52) to 28.65 (27.48) ng/mL (P < 0.001 in all cases)], reaching statistical significance between the groups at week 48. Osteoprotegerin did not vary, but sclerostin significantly increased in the abacavir group [from 29.53 (27.91) to 35.56 (34.59) pmol/L, P = 0.002]. No significant differences in osteoprotegerin and sclerostin were detected between the groups at week 48. RANKL values were below the limit of detection in all samples. The switch from tenofovir to abacavir seems to induce a positive effect on bone tissue, since bone turnover markers decreased. In addition, circulating sclerostin levels increased, a change associated with improved bone properties. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Digital image processing of bone - Problems and potentials

    NASA Technical Reports Server (NTRS)

    Morey, E. R.; Wronski, T. J.

    1980-01-01

    The development of a digital image processing system for bone histomorphometry and fluorescent marker monitoring is discussed. The system in question is capable of making measurements of UV or light microscope features on a video screen with either video or computer-generated images, and comprises a microscope, low-light-level video camera, video digitizer and display terminal, color monitor, and PDP 11/34 computer. Capabilities demonstrated in the analysis of an undecalcified rat tibia include the measurement of perimeter and total bone area, and the generation of microscope images, false color images, digitized images and contoured images for further analysis. Software development will be based on an existing software library, specifically the mini-VICAR system developed at JPL. It is noted that the potentials of the system in terms of speed and reliability far exceed any problems associated with hardware and software development.

  5. Effects of short-term step aerobics exercise on bone metabolism and functional fitness in postmenopausal women with low bone mass.

    PubMed

    Wen, H J; Huang, T H; Li, T L; Chong, P N; Ang, B S

    2017-02-01

    Measurement of bone turnover markers is an alternative way to determine the effects of exercise on bone health. A 10-week group-based step aerobics exercise significantly improved functional fitness in postmenopausal women with low bone mass, and showed a positive trend in reducing resorption activity via bone turnover markers. The major goal of this study was to determine the effects of short-term group-based step aerobics (GBSA) exercise on the bone metabolism, bone mineral density (BMD), and functional fitness of postmenopausal women (PMW) with low bone mass. Forty-eight PMW (aged 58.2 ± 3.5 years) with low bone mass (lumbar spine BMD T-score of -2.00 ± 0.67) were recruited and randomly assigned to an exercise group (EG) or to a control group (CG). Participants from the EG attended a progressive 10-week GBSA exercise at an intensity of 75-85 % of heart rate reserve, 90 min per session, and three sessions per week. Serum bone metabolic markers (C-terminal telopeptide of type 1 collagen [CTX] and osteocalcin), BMD, and functional fitness components were measured before and after the training program. Mixed-models repeated measures method was used to compare differences between the groups (α = 0.05). After the 10-week intervention period, there was no significant exercise program by time interaction for CTX; however, the percent change for CTX was significantly different between the groups (EG = -13.1 ± 24.4 % vs. CG = 11.0 ± 51.5 %, P < 0.05). While there was no significant change of osteocalcin in both groups. As expected, there was no significant change of BMD in both groups. In addition, the functional fitness components in the EG were significantly improved, as demonstrated by substantial enhancement in both lower- and upper-limb muscular strength and cardiovascular endurance (P < 0.05). The current short-term GBSA exercise benefited to bone metabolism and general health by significantly reduced bone resorption activity and improved functional fitness in PMW with low bone mass. This suggested GBSA could be adopted as a form of group-based exercise for senior community.

  6. Saxagliptin affects long-bone microarchitecture and decreases the osteogenic potential of bone marrow stromal cells.

    PubMed

    Sbaraglini, María Laura; Molinuevo, María Silvina; Sedlinsky, Claudia; Schurman, León; McCarthy, Antonio Desmond

    2014-03-15

    Diabetes mellitus is associated with a decrease in bone quality and an increase in fracture incidence. Additionally, treatment with anti-diabetic drugs can either adversely or positively affect bone metabolism. In this study we evaluated: the effect of a 3-week oral treatment with saxagliptin on femoral microarchitecture in young male non-type-2-diabetic Sprague Dawley rats; and the in vitro effect of saxagliptin and/or fetal bovine serum (FBS), insulin or insulin-like growth factor-1 (IGF1), on the proliferation, differentiation (Runx2 and PPAR-gamma expression, type-1 collagen production, osteocalcin expression, mineralization) and extracellular-regulated kinase (ERK) activation, in bone marrow stromal cells (MSC) obtained from control (untreated) rats and in MC3T3E1 osteoblast-like cells. In vivo, oral saxagliptin treatment induced a significant decrease in the femoral osteocytic and osteoblastic density of metaphyseal trabecular bone and in the average height of the proximal cartilage growth plate; and an increase in osteoclastic tartrate-resistant acid phosphatase (TRAP) activity of the primary spongiosa. In vitro, saxagliptin inhibited FBS-, insulin- and IGF1-induced ERK phosphorylation and cell proliferation, in both MSC and MC3T3E1 preosteoblasts. In the absence of growth factors, saxagliptin had no effect on ERK activation or cell proliferation. In both MSC and MC3T3E1 cells, saxagliptin in the presence of FBS inhibited Runx2 and osteocalcin expression, type-1 collagen production and mineralization, while increasing PPAR-gamma expression. In conclusion, orally administered saxagliptin induced alterations in long-bone microarchitecture that could be related to its in vitro down-regulation of the ERK signaling pathway for insulin and IGF1 in MSC, thus decreasing the osteogenic potential of these cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Short term sodium alendronate administration improves the peri-implant bone quality in osteoporotic animals

    PubMed Central

    de OLIVEIRA, Danila; HASSUMI, Jaqueline Suemi; GOMES-FERREIRA, Pedro Henrique da Silva; POLO, Tárik Ocon Braga; FERREIRA, Gabriel Ramalho; FAVERANI, Leonardo Perez; OKAMOTO, Roberta

    2017-01-01

    Abstract Sodium alendronate is a bisphosphonate drug that exerts antiresorptive action and is used to treat osteoporosis. Objective The aim of this study was to evaluate the bone repair process at the bone/implant interface of osteoporotic rats treated with sodium alendronate through the analysis of microtomography, real time polymerase chain reactions and immunohistochemistry (RUNX2 protein, bone sialoprotein (BSP), alkaline phosphatase, osteopontin and osteocalcin). Material and Methods A total of 42 rats were used and divided in to the following experimental groups: CTL: control group (rats submitted to fictitious surgery and fed with a balanced diet), OST: osteoporosis group (rats submitted to a bilateral ovariectomy and fed with a low calcium diet) and ALE: alendronate group (rats submitted to a bilateral ovariectomy, fed with a low calcium diet and treated with sodium alendronate). A surface treated implant was installed in both tibial metaphyses of each rat. Euthanasia of the animals was conducted at 14 (immunhostochemistry) and 42 days (immunohistochemistry, micro CT and PCR). Data were subjected to statistical analysis with a 5% significance level. Results Bone volume (BV) and total pore volume were higher for ALE group (P<0.05). Molecular data for RUNX2 and BSP proteins were significantly expressed in the ALE group (P<0.05), in comparison with the other groups. ALP expression was higher in the CTL group (P<0.05). The immunostaining for RUNX2 and osteopontin was positive in the osteoblastic lineage cells of neoformed bone for the CTL and ALE groups in both periods (14 and 42 days). Alkaline phosphatase presented a lower staining area in the OST group compared to the CTL in both periods and the ALE at 42 days. Conclusion There was a decrease of osteocalcin precipitation at 42 days for the ALE and OST groups. Therefore, treatment with short-term sodium alendronate improved bone repair around the implants installed in the tibia of osteoporotic rats. PMID:28198975

  8. A Novel Anti-Beta2-Microglobulin Antibody Inhibition of Androgen Receptor Expression, Survival, and Progression in Prostate Cancer Cells

    DTIC Science & Technology

    2009-05-31

    Konaka H, Sodek J, Zhau HE, Chung LW. Human Osteocalcin and Bone Sialoprotein Mediating Osteomimicry of Prostate Cancer Cells: Role of cAMP... sialoprotein mediating osteomimicry of prostate cancer cells: role of cAMP-dependent protein kinase A signaling path- way. Cancer Res 2005;65:2303^13

  9. Combination of bone morphogenetic protein-2 plasmid DNA with chemokine CXCL12 creates an additive effect on bone formation onset and volume.

    PubMed

    Wegman, F; Poldervaart, M T; van der Helm, Y J; Oner, F C; Dhert, W J; Alblas, J

    2015-07-27

    Bone morphogenetic protein-2 (BMP-2) gene delivery has shown to induce bone formation in vivo in cell-based tissue engineering. In addition, the chemoattractant stromal cell-derived factor-1α (SDF-1α, also known as CXCL12) is known to recruit multipotent stromal cells towards its release site where it enhances vascularisation and possibly contributes to osteogenic differentiation. To investigate potential cooperative behaviour for bone formation, we investigated combined release of BMP-2 and SDF-1α on ectopic bone formation in mice. Multipotent stromal cell-seeded and cell-free constructs with BMP-2 plasmid DNA and /or SDF-1α loaded onto gelatin microparticles, were implanted subcutaneously in mice for a period of 6 weeks. Histological analysis and histomorphometry revealed that the onset of bone formation and the formed bone volume were both enhanced by the combination of BMP-2 and SDF-1α compared to controls in cell-seeded constructs. Samples without seeded multipotent stromal cells failed to induce any bone formation. We conclude that the addition of stromal cell-derived factor-1α to a cell-seeded alginate based bone morphogenetic protein-2 plasmid DNA construct has an additive effect on bone formation and can be considered a promising combination for bone regeneration.

  10. Effects of combined maternal administration with alpha-ketoglutarate (AKG) and β-hydroxy-β-methylbutyrate (HMB) on prenatal programming of skeletal properties in the offspring.

    PubMed

    Tatara, Marcin R; Krupski, Witold; Tymczyna, Barbara; Studziński, Tadeusz

    2012-05-11

    Nutritional manipulations during fetal growth may induce long-term metabolic effects in postnatal life. The aim of the study was to test whether combined treatment of pregnant sows with alpha-ketoglutarate and β-hydroxy-β-methylbutyrate induces additive long-term effects on skeletal system properties in the offspring. The study was performed on 290 pigs obtained from 24 sows divided into 4 equal groups and subjected to experimental treatment during two weeks before delivery. The first group consisted of control sows, while the second group received alpha-ketoglutarate. The third group was treated with β-hydroxy-β-methylbutyrate and the fourth group underwent combined administration of alpha-ketoglutarate and β-hydroxy-β-methylbutyrate. Piglets obtained from sows were reared until slaughter age to perform morphometric, densitometric and mechanical analyses of femur. Serum evaluations of growth hormone, insulin-like growth factor-1, bone-specific alkaline phosphatase and osteocalcin were performed in newborns and 90-day old piglets; additionally, plasma amino acid concentration was measured in newborns. Maternal treatment with alpha-ketoglutarate and β-hydroxy-β-methylbutyrate significantly reduced fattening time and increased birth body weight, daily body weight gain, bone weight, volumetric bone mineral density, geometrical parameters and mechanical endurance of femur. These effects were associated with increased serum concentrations of growth hormone, insulin-like growth factor-1, bone-specific alkaline phosphatase and osteocalcin. Furthermore, alpha-ketoglutarate and β-hydroxy-β-methylbutyrate administered solely or in combination significantly increased plasma level of 19 amino acids. Hormonal and amino acid evaluations in pigs indicate additive effects of AKG and HMB on systemic growth and development; however, determination of bone properties has not shown such phenomenon.

  11. Effects of combined maternal administration with alpha-ketoglutarate (AKG) and β-hydroxy-β-methylbutyrate (HMB) on prenatal programming of skeletal properties in the offspring

    PubMed Central

    2012-01-01

    Background Nutritional manipulations during fetal growth may induce long-term metabolic effects in postnatal life. The aim of the study was to test whether combined treatment of pregnant sows with alpha-ketoglutarate and β-hydroxy-β-methylbutyrate induces additive long-term effects on skeletal system properties in the offspring. Methods The study was performed on 290 pigs obtained from 24 sows divided into 4 equal groups and subjected to experimental treatment during two weeks before delivery. The first group consisted of control sows, while the second group received alpha-ketoglutarate. The third group was treated with β-hydroxy-β-methylbutyrate and the fourth group underwent combined administration of alpha-ketoglutarate and β-hydroxy-β-methylbutyrate. Piglets obtained from sows were reared until slaughter age to perform morphometric, densitometric and mechanical analyses of femur. Serum evaluations of growth hormone, insulin-like growth factor-1, bone-specific alkaline phosphatase and osteocalcin were performed in newborns and 90-day old piglets; additionally, plasma amino acid concentration was measured in newborns. Results Maternal treatment with alpha-ketoglutarate and β-hydroxy-β-methylbutyrate significantly reduced fattening time and increased birth body weight, daily body weight gain, bone weight, volumetric bone mineral density, geometrical parameters and mechanical endurance of femur. These effects were associated with increased serum concentrations of growth hormone, insulin-like growth factor-1, bone-specific alkaline phosphatase and osteocalcin. Furthermore, alpha-ketoglutarate and β-hydroxy-β-methylbutyrate administered solely or in combination significantly increased plasma level of 19 amino acids. Conclusions Hormonal and amino acid evaluations in pigs indicate additive effects of AKG and HMB on systemic growth and development; however, determination of bone properties has not shown such phenomenon. PMID:22578071

  12. The effect of physical activity on bone turnover in young adults.

    PubMed

    Franck, H; Beuker, F; Gurk, S

    1991-01-01

    Physical activity has been suggested as one of the determinants of bone turnover and to prevent the involutional age related bone loss. However, the degree to which physical exercise is necessary to induce changes in bone turnover and calciotropic hormones have been widely discussed (Williams et al., 1984; Cook et al., 1987; Smith et al., 1985). The aim of this study was to examine the rate of bone formation measured by osteocalcin in 56 healthy volunteers before and after 4 and 8 weeks of physical exercise (PE) and its dependence on various parameters of calcium and phosphate metabolism. The studied group consisting of 44 men and 12 women, mean age 24.8 and 24.3 years, respectively, performed a standardized physical training of 8 weeks. Mean serum osteocalcin levels were significantly (p less than 0.01) reduced after 4 weeks (men: 2.26 +/- 1.8 ng/ml; women: 0.94 +/- 1.6 ng/ml) compared to the values before PE (men: 4.01 +/- 2.18 ng/ml; women: 1.69 +/- 1.7 ng/ml) and returned to normal values after 8 weeks. Similarly, magnesium levels (0.82 mmol/l) decreased significantly (p less than 0.01) after 4 weeks of PE (0.79 mmol/l), returning to normal values after 8 weeks. Concomitantly, there was only a slight, but significant fall of serum calcium from 2.48 +/- 0.07 to 2.45 +/- 0.07 returning to initial values again. Furthermore, serum phosphate increased slightly in men from 1.01 mmol/l to 1.13 and 1.15 mmol/l after 4 and 8 weeks, respectively. In contrast, alkaline phosphatase and serum creatinine remained in the normal range.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Osteoblasts are target cells for transformation in c-fos transgenic mice

    PubMed Central

    1993-01-01

    We have generated transgenic mice expressing the proto-oncogene c-fos from an H-2Kb class I MHC promoter as a tool to identify and isolate cell populations which are sensitive to altered levels of Fos protein. All homozygous H2-c-fosLTR mice develop osteosarcomas with a short latency period. This phenotype is specific for c-fos as transgenic mice expressing the fos- and jun-related genes, fosB and c-jun, from the same regulatory elements do not develop any pathology despite high expression in bone tissues. The c-fos transgene is not expressed during embryogenesis but is expressed after birth in bone tissues before the onset of tumor formation, specifically in putative preosteoblasts, bone- forming osteoblasts, osteocytes, as well as in osteoblastic cells present within the tumors. Primary and clonal cell lines established from c-fos-induced tumors expressed high levels of exogenous c-fos as well as the bone cell marker genes, type I collagen, alkaline phosphatase, and osteopontin/2ar. In contrast, osteocalcin/BGP expression was either low or absent. All cell lines were tumorigenic in vivo, some of which gave rise to osteosarcomas, expressing exogenous c- fos mRNA, and Fos protein in osteoblastic cells. Detailed analysis of one osteogenic cell line, P1, and several P1-derived clonal cell lines indicated that bone-forming osteoblastic cells were transformed by Fos. The regulation of osteocalcin/BGP and alkaline phosphatase gene expression by 1,25-dihydroxyvitamin D3 was abrogated in P1-derived clonal cells, whereas glucocorticoid responsiveness was unaltered. These results suggest that high levels of Fos perturb the normal growth control of osteoblastic cells and exert specific effects on the expression of the osteoblast phenotype. PMID:8335693

  14. Effects of vitamin K in postmenopausal women: mini review.

    PubMed

    Guralp, Onur; Erel, Cemal Tamer

    2014-03-01

    Possible benefits of vitamin K on bone health, fracture risk, markers of bone formation and resorption, cardiovascular health, and cancer risk in postmenopausal women have been investigated for over three decades; yet there is no clear evidence-based universal recommendation for its use. Interventional studies showed that vitamin K1 provided significant improvement in undercarboxylated osteocalcin (ucOC) levels in postmenopausal women with normal bone mineral density (BMD); however, there are inconsistent results in women with low BMD. There is no study showing any improvement in bone-alkaline-phosphatase (BAP), n-telopeptide of type-1 collagen (NTX), 25-hydroxy-vitamin D, and urinary markers. Improvement in BMD could not be shown in the majority of the studies; there is no interventional study evaluating the fracture risk. Studies evaluating the isolated effects of menatetrenone (MK-4) showed significant improvement in osteocalcin (OC); however, there are inconsistent results on BAP, NTX, and urinary markers. BMD was found to be significantly increased in the majority of studies. The fracture risk was assessed in three studies, which showed decreased fracture risk to some extent. Although there are proven beneficial effects on some of the bone formation markers, there is not enough evidence-based data to support a role for vitamin K supplementation in osteoporosis prevention among healthy, postmenopausal women receiving vitamin D and calcium supplementation. Interventional studies investigating the isolated role of vitamin K on cardiovascular health are required. Longterm clinical trials are required to evaluate the effect of vitamin K on gynecological cancers. MK-4 seems safe even at doses as high as 45 mg/day. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Fortified tuna bone powder supplementation increases bone mineral density of lactating rats and their offspring.

    PubMed

    Suntornsaratoon, Panan; Charoenphandhu, Narattaphol; Krishnamra, Nateetip

    2018-03-01

    Breastfeeding leads to bone calcium loss for milk production, resulting in progressive maternal osteopenia. Calcium supplement from natural sources has been postulated to be more beneficial to bone health than purified CaCO 3 because natural sources also contain other nutrients such as certain amino acids that might enhance calcium metabolism. Herein, we examined the effect of calcium supplementation from tuna bone powder and CaCO 3 on bones of dams and the offspring. Both forms of calcium supplement, i.e. tuna bone powder and CaCO 3 , increased maternal bone mineral density (BMD). However, bone histomorphometry revealed that only tuna bone had beneficial effect on maternal bone microstructure, i.e. increased bone formation, decreased bone resorption and increased in bone volume. Regarding the mechanical properties, the decreased ultimate load in non-supplement lactating mothers was restored to the load seen in nulliparous animals by calcium supplementation. Moreover, both tuna bone and CaCO 3 supplementation in mothers led to increased milk calcium concentration and consequently increased BMD in the growing offspring. Calcium supplement from tuna bone powder was effective in preventing maternal osteopenia. Tuna bone, which is a readily available fishing industrial waste, is a good alternative source of calcium supplement that increases BMD in both lactating mothers and the neonates. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Efficiency of High Molecular Weight Backbone Degradable HPMA Copolymer – Prostaglandin E1 Conjugate in Promotion of Bone Formation in Ovariectomized Rats

    PubMed Central

    Pan, Huaizhong; Sima, Monika; Miller, Scott C.; Kopečková, Pavla; Yang, Jiyuan; Kopeček, Jindřich

    2013-01-01

    Multiblock, high molecular weight, linear, backbone degradable HPMA copolymer-prostaglandin E1 (PGE1) conjugate has been synthesized by RAFT polymerization mediated by a new bifunctional chain transfer agent (CTA), which contains an enzymatically degradable oligopeptide sequence flanked by two dithiobenzoate groups, followed by post-polymerization aminolysis and thiol-ene chain extension. The multiblock conjugate contains Asp8 as the bone-targeting moiety and enzymatically degradable bonds in the polymer backbone; in vivo degradation produces cleavage products that are below the renal threshold. Using an ovariectomized (OVX) rat model, the accumulation in bone and efficacy to promote bone formation was evaluated; low molecular weight conjugates served as control. The results indicated a higher accumulation in bone, greater enhancement of bone density, and higher plasma osteocalcin levels for the backbone degradable conjugate. PMID:23731780

  17. Bone health. New role for vitamin K?

    PubMed Central

    Ryan-Harshman, Milly; Aldoori, Walid

    2004-01-01

    OBJECTIVE: To assess growing evidence that vitamin K (phylloquinone) plays an important role in bone health and, subsequently, in prevention of osteoporotic fractures. QUALITY OF EVIDENCE: We searched MEDLINE from January 1972 to December 2002 using the key words vitamin K and bone health. We reviewed 30 articles that seemed relevant or had a human focus. All evidence can be categorized as level II. MAIN MESSAGE: Evidence suggests that dietary phylloquinone intake of <100 microg daily might not be optimal for bone health. Low intake of vitamin K could contribute to osteoporosis and subsequent fracture due to the undercarboxylation of osteocalcin. CONCLUSION: Family physicians need to be aware of the importance of encouraging adequate vitamin K intake, particularly among institutionalized elderly people, to prevent increased bone resorption. Further study is needed to determine the exact role of vitamin K in bone metabolism, and methods of assessing vitamin K requirements need to be standardized. PMID:15317231

  18. Low Intensity, High Frequency Vibration Training to Improve Musculoskeletal Function in a Mouse Model of Duchenne Muscular Dystrophy

    PubMed Central

    Novotny, Susan A.; Mader, Tara L.; Greising, Angela G.; Lin, Angela S.; Guldberg, Robert E.; Warren, Gordon L.; Lowe, Dawn A.

    2014-01-01

    The objective of the study was to determine if low intensity, high frequency vibration training impacted the musculoskeletal system in a mouse model of Duchenne muscular dystrophy, relative to healthy mice. Three-week old wildtype (n = 26) and mdx mice (n = 22) were randomized to non-vibrated or vibrated (45 Hz and 0.6 g, 15 min/d, 5 d/wk) groups. In vivo and ex vivo contractile function of the anterior crural and extensor digitorum longus muscles, respectively, were assessed following 8 wks of vibration. Mdx mice were injected 5 and 1 days prior to sacrifice with Calcein and Xylenol, respectively. Muscles were prepared for histological and triglyceride analyses and subcutaneous and visceral fat pads were excised and weighed. Tibial bones were dissected and analyzed by micro-computed tomography for trabecular morphometry at the metaphysis, and cortical geometry and density at the mid-diaphysis. Three-point bending tests were used to assess cortical bone mechanical properties and a subset of tibiae was processed for dynamic histomorphometry. Vibration training for 8 wks did not alter trabecular morphometry, dynamic histomorphometry, cortical geometry, or mechanical properties (P≥0.34). Vibration did not alter any measure of muscle contractile function (P≥0.12); however the preservation of muscle function and morphology in mdx mice indicates vibration is not deleterious to muscle lacking dystrophin. Vibrated mice had smaller subcutaneous fat pads (P = 0.03) and higher intramuscular triglyceride concentrations (P = 0.03). These data suggest that vibration training at 45 Hz and 0.6 g did not significantly impact the tibial bone and the surrounding musculature, but may influence fat distribution in mice. PMID:25121503

  19. The conclusiveness of less-invasive imaging techniques (computer tomography, X-ray) with regard to their identification of bone diseases in a primate model (Callithrix jacchus).

    PubMed

    Grohmann, J; Taetzner, S; Theuss, T; Kuehnel, F; Buchwald, U; Einspanier, A

    2012-04-01

    Although common marmosets seem to be appropriate animal models to examine bone diseases, no data about the conclusiveness of less-invasive techniques are available. Therefore, the aim was to combine different techniques to analyse changes in bone metabolism of common marmosets with bone diseases. Five monkeys were examined by X-ray, computer tomography (CT), histology and immunohistochemistry (IHC). Monkeys with lowest bone mineral density (BMD) showed increased bone marrow, decreased cancellous bone and decreased contrast in X-ray. Highest alkaline phosphatase (AP)-levels were detected in bones with low elastic modulus. Expression of osteopontin (OPN), osteocalcin (OC) and runt-related transcriptions factor 2 (RUNX 2) was detected in bones with high modulus. No expression was present in bones with lower modulus. Collagen type I and V were found in every bone. In conclusion, CT, X-ray and AP are useful techniques to detect bone diseases in common marmosets. These observations could be confirmed by IHC. © 2012 John Wiley & Sons A/S.

  20. Bone sialoprotein, but not osteopontin, deficiency impairs the mineralization of regenerating bone during cortical defect healing.

    PubMed

    Monfoulet, Laurent; Malaval, Luc; Aubin, Jane E; Rittling, Susan R; Gadeau, Alain P; Fricain, Jean-Christophe; Chassande, Olivier

    2010-02-01

    Bone healing is a complex multi-step process, which depends on the position and size of the lesion, and on the mechanical stability of the wounded area. To address more specifically the mechanisms involved in cortical bone healing, we created drill-hole defects in the cortex of mouse femur, a lesion that triggers intramembranous repair, and compared the roles of bone sialoprotein (BSP) and osteopontin (OPN), two proteins of the extracellular matrix, in the repair process. Bone regeneration was analyzed by ex vivo microcomputerized X-ray tomography and histomorphometry of bones of BSP-deficient, OPN-deficient and wild-type mice. In all mouse strains, the cortical gap was bridged with woven bone within 2 weeks and no mineralized tissue was observed in the marrow. Within 3 weeks, lamellar cortical bone filled the gap. The amount and degree of mineralization of the woven bone was not affected by OPN deficiency, but cortical bone healing was delayed in BSP-deficient mice due to delayed mineralization. Gene expression studies showed a higher amount of BSP transcripts in the repair bone of OPN-deficient mice, suggesting a possible compensation of OPN function by BSP in OPN-null mice. Our data suggest that BSP, but not OPN, plays a role in primary bone formation and mineralization of newly formed bone during the process of cortical bone healing. (c) 2009 Elsevier Inc. All rights reserved.

  1. [Serum vitamin K concentration and nutrition].

    PubMed

    Tsugawa, Naoko; Okano, Toshio

    2007-11-01

    Vitamin K (VK) is well known for its role in the synthesis of a number of blood coagulation factors. VK is also an important factor for bone metabolism via gamma-carboxylation of VK-dependent proteins such as osteocalcin, matrix Gla protein, and protein S. Recently, it is rare that severe VK deficiency is observed. However, low dietary VK intake or low VK status has been shown to be associated with low bone mineral density and increased hip fracture risk. These studies suggest that there is potential VK insufficiency in bone, even in sufficient VK status for blood coagulation. In the present review, the studies concerning relationship between serum VK concentration and bone health, including pharmacokinetics of VK analogues (such as phylloquinone and menaquinone) and factors which affect on blood circulation of VK, are reviewed.

  2. The effect of carrier type on bone regeneration of demineralized bone matrix in vivo.

    PubMed

    Tavakol, Shima; Khoshzaban, Ahad; Azami, Mahmoud; Kashani, Iraj Ragerdi; Tavakol, Hani; Yazdanifar, Mahbube; Sorkhabadi, Seyed Mahdi Rezayat

    2013-11-01

    Demineralized bone matrix (DBM) is a bone substitute biomaterial used as an excellent grafting material. Some factors such as carrier type might affect the healing potential of this material. The background data discuss the present status of the field: Albumin as a main protein in blood and carboxymethyl cellulose (CMC) were applied frequently in the DBM gels. We investigated the bone-repairing properties of 2 DBMs with different carriers. Bone regeneration in 3 groups of rat calvaria treated with DBM from the Iranian Tissue Bank Research and Preparation Center, DBM from Hans Biomed Corporation, and an empty cavity was studied. Albumin and CMC as carriers were used. The results of bone regeneration in the samples after 1, 4, and 8 weeks of implantation were compared. The block of the histologic samples was stained with hematoxylin and eosin, and the percentage area of bone formation was calculated using the histomorphometry method. The results of in vivo tests showed a significantly stronger new regenerated bone occupation in the DBM with albumin carrier compared with the one with CMC 8 weeks after the implantation. The 2 types of DBM had a significant difference in bone regeneration. This difference is attributed to the type of carriers. Albumin could improve mineralization and bioactivity compared with CMC.

  3. Micro-CT characterization of human trabecular bone in osteogenesis imperfecta

    NASA Astrophysics Data System (ADS)

    Jameson, John; Albert, Carolyne; Smith, Peter; Molthen, Robert; Harris, Gerald

    2011-03-01

    Osteogenesis imperfecta (OI) is a genetic syndrome affecting collagen synthesis and assembly. Its symptoms vary widely but commonly include bone fragility, reduced stature, and bone deformity. Because of the small size and paucity of human specimens, there is a lack of biomechanical data for OI bone. Most literature has focused on histomorphometric analyses, which rely on assumptions to extrapolate 3-D properties. In this study, a micro-computed tomography (μCT) system was used to directly measure structural and mineral properties in pediatric OI bone collected during routine surgical procedures. Surface renderings suggested a poorly organized, plate-like orientation. Patients with a history of bone-augmenting drugs exhibited increased bone volume fraction (BV/TV), trabecular number (Tb.N), and connectivity density (Eu.Conn.D). The latter two parameters appeared to be related to OI severity. Structural results were consistently higher than those reported in a previous histomorphometric study, but these differences can be attributed to factors such as specimen collection site, drug therapy, and assumptions associated with histomorphometry. Mineral testing revealed strong correlations with several structural parameters, highlighting the importance of a dual approach in trabecular bone testing. This study reports some of the first quantitative μCT data of human OI bone, and it suggests compelling possibilities for the future of OI bone assessment.

  4. Comparison of nanoparticular hydroxyapatite pastes of different particle content and size in a novel scapula defect model

    PubMed Central

    Hruschka, Veronika; Tangl, Stefan; Ryabenkova, Yulia; Heimel, Patrick; Barnewitz, Dirk; Möbus, Günter; Keibl, Claudia; Ferguson, James; Quadros, Paulo; Miller, Cheryl; Goodchild, Rebecca; Austin, Wayne; Redl, Heinz; Nau, Thomas

    2017-01-01

    Nanocrystalline hydroxyapatite (HA) has good biocompatibility and the potential to support bone formation. It represents a promising alternative to autologous bone grafting, which is considered the current gold standard for the treatment of low weight bearing bone defects. The purpose of this study was to compare three bone substitute pastes of different HA content and particle size with autologous bone and empty defects, at two time points (6 and 12 months) in an ovine scapula drillhole model using micro-CT, histology and histomorphometry evaluation. The nHA-LC (38% HA content) paste supported bone formation with a high defect bridging-rate. Compared to nHA-LC, Ostim® (35% HA content) showed less and smaller particle agglomerates but also a reduced defect bridging-rate due to its fast degradation The highly concentrated nHA-HC paste (48% HA content) formed oversized particle agglomerates which supported the defect bridging but left little space for bone formation in the defect site. Interestingly, the gold standard treatment of the defect site with autologous bone tissue did not improve bone formation or defect bridging compared to the empty control. We concluded that the material resorption and bone formation was highly impacted by the particle-specific agglomeration behaviour in this study. PMID:28233833

  5. Dissociated Agonist of Glucocorticoid Receptor or Prednisone for Active Rheumatoid Arthritis: Effects on P1NP and Osteocalcin Pharmacodynamics

    PubMed Central

    Shoji, S; Suzuki, A; Conrado, DJ; Peterson, MC; Hey‐Hadavi, J; McCabe, D; Rojo, R

    2017-01-01

    Fosdagrocorat (PF‐04171327), a dissociated agonist of the glucocorticoid receptor, has potent anti‐inflammatory activity in patients with rheumatoid arthritis with reduced adverse effects on bone health. To identify fosdagrocorat doses with bone formation marker changes similar to prednisone 5 mg, we characterized treatment‐related changes in amino‐terminal propeptide of type I collagen (P1NP) and osteocalcin (OC) with fosdagrocorat (1, 5, 10, or 15 mg) and prednisone (5 or 10 mg) in a phase II randomized trial (N = 323). The time course of markers utilized a mixed‐effects longitudinal kinetic‐pharmacodynamic model. Median predicted changes from baseline at week 8 with fosdagrocorat 5, 10, and 15 mg were −18, −22, and −22% (P1NP), and −7, −13, and −17% (OC), respectively. Changes with prednisone 5 and 10 mg were −15% and −18% (P1NP) and −10% and −17% (OC). The probability of fosdagrocorat doses up to 15 mg being noninferior to prednisone 5 mg for P1NP and OC changes was >90%. PMID:28556506

  6. The effect of globin scaffold on osteoblast adhesion and phenotype expression in vitro.

    PubMed

    Hamdan, Ahmad A; Loty, Sabine; Isaac, Juliane; Tayot, Jean-Louis; Bouchard, Philippe; Khraisat, Ameen; Bedral, Ariane; Sautier, Jean-Michel

    2012-01-01

    Different synthetic and natural biomaterials have been used in bone tissue regeneration. However, several limitations are associated with the use of synthetic as well as allogenous or xenogenous natural materials. This study evaluated, in an in vitro model, the behavior of rat osteoblastic cells cultured on a human globin scaffold. Rat osteoblastic cells were isolated from the calvaria of 21-day-old fetal Sprague-Dawley rats. They were then grown in the presence of globin. Real-time polymerase chain reaction (RT-PCR) was performed to study the expression of cyclin D1, integrin Β1, Msx2, Dlx5, Runx2, and osteocalcin on days 1, 5, and 9. Moreover, alkaline phosphatase activity was measured on days 1, 3, 5, and 7. Alizarin red staining was performed on day 9 to observe calcium deposition. Cells were able to adhere, proliferate, and differentiate on globin scaffolds. Moreover, RT-PCR showed that globin may stimulate some key genes of osteoblastic differentiation (Runx2, osteocalcin, Dlx5). Globin had an inhibitory effect on alkaline phosphatase activity. Calcium deposits were seen after 9 days of culture. These results indicate that purified human globin might be a suitable scaffold for bone tissue regeneration.

  7. Comparative Evaluation of Cell Viability Immediately After Osteotomy for Implants With Drills and Piezosurgery: Immunohistochemistry Analysis.

    PubMed

    Pereira, Cassiano Costa Silva; Batista, Fábio Roberto de Souza; Jacob, Ricardo Garcia Mureb; Nogueira, Lamis Meorin; Carvalho, Abrahão Cavalcante Gomes de Souza; Gealh, Walter Cristiano; Garcia-Júnior, Idelmo Rangel; Okamoto, Roberta

    2018-05-08

    To evaluate the effect of reusing drills and piezosurgery tips during implant osteotomy on immediate bone cell viability through immunohistochemical analysis. Six male rabbits were divided into 2 groups and then divided into 5 subgroups-correspond to drills and tips used 10, 20, 30, 40, and 50 times, respectively. All animals received 10 osteotomies in each tibia, by use of the classic drilling procedure in one group (G1) and the piezosurgery device in the other group (G2). For immunohistochemical technique were utilized the osteoprotegerin, RANKL, osteocalcin, and caspase 3. Control procedures were performed by omitting the primary antibodies (negative control). Bone formation and resorption responses presented in more intense way during the piezosurgery. The expression of osteocalcin had become quite intense in piezosurgery groups, but with reduced immunostaining from the 30th osteotomy. The caspase 3 showed the viability of the osteoblast from the 20th osteotomy with piezosurgery and remained constant until the 50th. Piezosurgery provides greater osteoblastic cell viability than the system of conventional drilling. This study will provide data so that the authors can recycle the drills and tips for implant placement, thus enabling a better cell viability for osseointegration.

  8. Nanoparticle-antagomiR based targeting of miR-31 to induce osterix and osteocalcin expression in mesenchymal stem cells.

    PubMed

    McCully, Mark; Conde, João; V Baptista, Pedro; Mullin, Margaret; Dalby, Matthew J; Berry, Catherine C

    2018-01-01

    Mesenchymal stem cells are multipotent adult stem cells capable of generating bone, cartilage and fat, and are thus currently being exploited for regenerative medicine. When considering osteogenesis, developments have been made with regards to chemical induction (e.g. differentiation media) and physical induction (e.g. material stiffness, nanotopography), targeting established early transcription factors or regulators such as runx2 or bone morphogenic proteins and promoting increased numbers of cells committing to osteo-specific differentiation. Recent research highlighted the involvement of microRNAs in lineage commitment and terminal differentiation. Herein, gold nanoparticles that confer stability to short single stranded RNAs were used to deliver MiR-31 antagomiRs to both pre-osteoblastic cells and primary human MSCs in vitro. Results showed that blocking miR-31 led to an increase in osterix protein in both cell types at day 7, with an increase in osteocalcin at day 21, suggesting MSC osteogenesis. In addition, it was noted that antagomiR sequence direction was important, with the 5 prime reading direction proving more effective than the 3 prime. This study highlights the potential that miRNA antagomiR-tagged nanoparticles offer as novel therapeutics in regenerative medicine.

  9. Vitamin D Deficiency Is Associated with Increased Osteocalcin Levels in Acute Aortic Dissection: A Pilot Study on Elderly Patients.

    PubMed

    Vianello, Elena; Dozio, Elena; Barassi, Alessandra; Tacchini, Lorenza; Lamont, John; Trimarchi, Santi; Marrocco-Trischitta, Massimiliano M; Corsi Romanelli, Massimiliano M

    2017-01-01

    An imbalance between degradation and reconstruction of the aortic wall is one of the leading causes of acute aortic dissection (AAD). Vitamin D seems an intriguing molecule to explore in the field of AAD since it improves endothelial function and protects smooth muscle cells from inflammation-induced remodeling, calcification, and loss of function, all events which are strongly related to the aging process. We quantified 25-hydroxy vitamin D, calcium, parathormone, bone alkaline phosphatase, and osteocalcin levels in 24 elderly AAD patients to identify a potential pathological implication of these molecules in AAD. Median 25-hydroxy vitamin D (10.75 ng/mL, 25th-75th percentiles: 6.86-19.23 ng/mL) and calcium levels (8.70 mg/dL, 25th-75th percentiles: 7.30-8.80 mg/dL) suggested hypovitaminosis D and a moderate hypocalcemia. Thirty-eight percent of AAD patients had severe (<10 ng/mL), 38% moderate (10-20 ng/mL), and 24% mild 25-hydroxy vitamin D deficiency (20-30 ng/mL). A significant inverse correlation was observed between 25OHD and osteocalcin levels. All the other molecules were unchanged. A condition of hypovitaminosis D associated to an increase in osteocalcin levels is present in AAD patients. The identification of these molecules as new factors involved in AAD may be helpful to identify individuals at high risk as well to study preventing strategies.

  10. Histometric analyses of cancellous and cortical interface in autogenous bone grafting

    PubMed Central

    Netto, Henrique Duque; Olate, Sergio; Klüppel, Leandro; do Carmo, Antonio Marcio Resende; Vásquez, Bélgica; Albergaria-Barbosa, Jose

    2013-01-01

    Surgical procedures involving the rehabilitation of the maxillofacial region frequently require bone grafts; the aim of this research was to evaluate the interface between recipient and graft with cortical or cancellous contact. 6 adult beagle dogs with 15 kg weight were included in the study. Under general anesthesia, an 8 mm diameter block was obtained from parietal bone of each animal and was put on the frontal bone with a 12 mm 1.5 screws. Was used the lag screw technique from better contact between the recipient and graft. 3-week and 6-week euthanized period were chosen for histometric evaluation. Hematoxylin-eosin was used in a histologic routine technique and histomorphometry was realized with IMAGEJ software. T test was used for data analyses with p<0.05 for statistical significance. The result show some differences in descriptive histology but non statistical differences in the interface between cortical or cancellous bone at 3 or 6 week; as natural, after 6 week of surgery, bone integration was better and statistically superior to 3-week analyses. We conclude that integration of cortical or cancellous bone can be usefully without differences. PMID:23923071

  11. Prevention of bone loss in ovariectomized rats: the effect of Salvia miltiorrhiza extracts.

    PubMed

    Chae, H J; Chae, S W; Yun, D H; Keum, K S; Yoo, S K; Kim, H R

    2004-02-01

    The preventive effect of Salvia miltiorrhiza extracts (SMEs) on the progress of bone loss induced by ovariectomy (OVX) was studied in rats. We measured body weight and bone histomorphometry in sham, OVX or SMEs-administered OVX rats. From light microscopic analyses, a porous or erosive appearances were observed on the surface of trabecular bone of tibia in OVX rats, whereas those of the same bone in sham rats and in SMEs-administered rats were composed of fine particles. The trabecular bone area and trabecular thickness in OVX rats decreased by 50% from those in sham rats, these decreases were completely inhibited by administration of SMEs for 7 weeks. In this study, the mechanical strength in femur neck was significantly enhanced by the treatment of SMEs for 7 weeks. In OVX rats, free T3 was normal in all cases, whereas free T4 was significantly increased. Although there was no difference between OVX and SMEs-administered rats in T3 level, we have found significant difference between them in T4 level. These results strongly suggest that SMEs are effective in preventing the development of bone loss induced by OVX in rats.

  12. Genistein treatment increases bone mass in obese, hyperglycemic mice

    PubMed Central

    Michelin, Richard M; Al-Nakkash, Layla; Broderick, Tom L; Plochocki, Jeffrey H

    2016-01-01

    Background Obesity and type 2 diabetes mellitus are associated with elevated risk of limb bone fracture. Incidences of these conditions are on the rise worldwide. Genistein, a phytoestrogen, has been shown by several studies to demonstrate bone-protective properties and may improve bone health in obese type 2 diabetics. Methods In this study, we test the effects of genistein treatment on limb bone and growth plate cartilage histomorphometry in obese, hyperglycemic ob/ob mice. Six-week-old ob/ob mice were divided into control and genistein-treated groups. Genistein-treated mice were fed a diet containing 600 mg genistein/kg for a period of 4 weeks. Cross-sectional geometric and histomorphometric analyses were conducted on tibias. Results Genistein-treated mice remained obese and hyperglycemic. However, histomorphometric comparisons show that genistein-treated mice have greater tibial midshaft diameters and ratios of cortical bone to total tissue area than the controls. Genistein-treated mice also exhibit decreased growth plate thickness of the proximal tibia. Conclusion Our results indicate that genistein treatment affects bone of the tibial midshaft in the ob/ob mouse, independent of improvements in the hyperglycemic state and body weight. PMID:27042131

  13. Calcium aluminate coated and uncoated free form fabricated CoCr implants: a comparative study in rabbit.

    PubMed

    Palmquist, A; Jarmar, T; Hermansson, L; Emanuelsson, L; Taylor, A; Taylor, M; Engqvist, H; Thomsen, P

    2009-10-01

    The purpose of this study was to compare the integration in bone of uncoated free form fabricated cobalt chromium (CoCr) implants to the same implant with a calcium aluminate coating. The implants of cylindrical design with a pyramidal surface structure were press-fit into the limbs of New Zealand white rabbits. After 6 weeks, the rabbits were sacrificed, and samples were retrieved and embedded. Ground sections were subjected to histological analysis and histomorphometry. The section counter part was used for preparing an electron transparent transmission electron microscopy sample by focused ion beam milling. Calcium aluminate dip coating provided a significantly greater degree of bone contact than that of the native CoCr. The gibbsite hydrate formed in the hardening reaction of the calcium aluminate was found to be the exclusive crystalline phase material in direct contact with bone. (c) 2009 Wiley Periodicals, Inc.

  14. Short-term effects on bone turnover of replacing milk with cola beverages: a 10-day interventional study in young men.

    PubMed

    Kristensen, Mette; Jensen, Marlene; Kudsk, Jane; Henriksen, Marianne; Mølgaard, Christian

    2005-12-01

    In the Western world, increased consumption of carbonated soft drinks combined with a decreasing intake of milk may increase the risk of osteoporosis. This study was designed to reflect the trend of replacing milk with carbonated beverages in a group of young men on a low-calcium diet and studies the effects of this replacement on calcium homeostasis and bone turnover. This controlled crossover intervention study included 11 healthy men (22-29 years) who were given a low-calcium basic diet in two 10-day intervention periods with an intervening 10-day washout. During one period, they drank 2.5 l of Coca Cola per day and during the other period 2.5 l of semi-skimmed milk. Serum concentrations of calcium, phosphate, 25-hydroxycholecalciferol, 1,25-dihydroxycholecalciferol (1,25(OH)2D), osteocalcin, bone-specific alkaline phosphatase (B-ALP) and cross-linked C-telopeptides (CTX), plasma intact parathyroid hormone (PTH) and urinary cross-linked N-telopeptides (NTX) were determined at baseline and endpoint of each intervention period. An increase in serum phosphate (P<0.001), 1,25(OH)2D (P<0.001), PTH (P=0.046) and osteocalcin (P<0.001) was observed in the cola period compared to the milk period. Also, bone resorption was significantly increased following the cola period, seen as increased serum CTX (P<0.001) and urinary NTX (P<0.001) compared to the milk period. No changes were observed in serum concentrations of calcium or B-ALP. This study demonstrates that over a 10-day period high intake of cola with a low-calcium diet induces increased bone turnover compared to a high intake of milk with a low-calcium diet. Thus, the trend towards a replacement of milk with cola and other soft drinks, which results in a low calcium intake, may negatively affect bone health as indicated by this short-term study.

  15. Bone health and risk factors of cardiovascular disease--a cross-sectional study in healthy young adults.

    PubMed

    Pirilä, Satu; Taskinen, Mervi; Turanlahti, Maila; Kajosaari, Merja; Mäkitie, Outi; Saarinen-Pihkala, Ulla M; Viljakainen, Heli

    2014-01-01

    Both osteoporosis and cardiovascular disease (CVD) are diseases that comprise a growing medical and economic burden in ageing populations. They share many risk factors, including ageing, low physical activity, and possibly overweight. We aimed to study associations between individual risk factors for CVD and bone mineral density (BMD) and turnover markers (BTMs) in apparently healthy cohort. A cross-sectional assessment of 155 healthy 32-year-old adults (74 males) was performed for skeletal status, CVD risk factors and lifestyle factors. We analysed serum osteocalcin, procollagen I aminoterminal propeptide (P1NP), collagen I carboxy-terminal telopeptide (ICTP) and urine collagen I aminoterminal telopeptide (U-NTX), as well as serum insulin, plasma glucose, triglyceride and HDL-cholesterol levels. BMD, fat and lean mass were assessed using DXA scanning. Associations were tested with partial correlations in crude and adjusted models. Bone status was compared between men with or without metabolic syndrome (defined according to the NCEP-ATPIII criteria) with multivariate analysis. Osteocalcin and P1NP correlated inversely with insulin (R = -0.243, P = 0.003 and R = -0.187, P = 0.021) and glucose (R = -0.213, P = 0.009 and R = -0.190, P = 0.019), but after controlling for fat mass and lifestyle factors, the associations attenuated with insulin (R = -0.162, P = 0.053 and R = -0.093, P = 0.266) and with glucose (R = -0.099, P = 0.240 and R = -0.133, P = 0.110), respectively. Whole body BMD associated inversely only with triglycerides in fully adjusted model. In men with metabolic syndrome, whole body BMD, osteocalcin and P1NP were lower compared to healthy men, but these findings disappeared in fully adjusted model. In young adults, inverse associations between BTM/BMD and risk factors of CVD appeared in crude models, but after adjusting for fat mass, no association continued to be present. In addition to fat mass, lifestyle factors, especially physical activity, modified the associations between CVD and bone characteristics. Prospective studies are needed to specify the role of mediators and lifestyle factors in the prevention of CVD and osteoporosis.

  16. Calcium metabolism before, during, and after a 3-mo spaceflight: kinetic and biochemical changes

    NASA Technical Reports Server (NTRS)

    Smith, S. M.; Wastney, M. E.; Morukov, B. V.; Larina, I. M.; Nyquist, L. E.; Abrams, S. A.; Taran, E. N.; Shih, C. Y.; Nillen, J. L.; Davis-Street, J. E.; hide

    1999-01-01

    The loss of bone during spaceflight is considered a physiological obstacle for the exploration of other planets. This report of calcium metabolism before, during, and after long-duration spaceflight extends results from Skylab missions in the 1970s. Biochemical and endocrine indexes of calcium and bone metabolism were measured together with calcium absorption, excretion, and bone turnover using stable isotopes. Studies were conducted before, during, and after flight in three male subjects. Subjects varied in physical activity, yet all lost weight during flight. During flight, calcium intake and absorption decreased up to 50%, urinary calcium excretion increased up to 50%, and bone resorption (determined by kinetics or bone markers) increased by over 50%. Osteocalcin and bone-specific alkaline phosphatase, markers of bone formation, increased after flight. Subjects lost approximately 250 mg bone calcium per day during flight and regained bone calcium at a slower rate of approximately 100 mg/day for up to 3 mo after landing. Further studies are required to determine the time course of changes in calcium homeostasis during flight to develop and assess countermeasures against flight-induced bone loss.

  17. The short-term effects of cisplatin chemotherapy on bone turnover.

    PubMed

    Young, D R; Virolainen, P; Inoue, N; Frassica, F J; Chao, E Y

    1997-11-01

    Cisplatin is an effective agent in the treatment of osteosarcoma of bone but little is known of its effects on normal bone turnover. Twenty-four dogs divided into three study groups were used to study the effect of cisplatin on normal bone turnover at the distant site of surgery. Group 1 served as the control group, group 2 received four cycles of cisplatin every 3 weeks before the surgery, and group 3 received four cycles postoperatively. The bone turnover rate was evaluated by measuring levels of systemic bone markers, osteocalcin, alkaline phospohatase, urine pyridinoline cross-links, and by determination histomorphometric indices. Histomorphological analysis showed poor correlation on bone formation with systemic bone markers at distant sites of surgery. Histomorphometrically normal bone turnover was affected by administration of cisplatin, but the effect was temporary, late, and less significant than what occurred at the surgical site. Our data showed that significant effects of cisplatin are observed at the site of active cellular induction and proliferation, such as implant-host interface, and less effects are seen at the sites of normal bone turnover.

  18. Differential effects of intermittent and continuous administration of parathyroid hormone on bone histomorphometry and gene expression

    NASA Technical Reports Server (NTRS)

    Lotinun, Sutada; Sibonga, Jean D.; Turner, Russell T.

    2002-01-01

    A mechanism explaining the differential skeletal effects of intermittent and continuous elevation of serum parathyroid hormone (PTH) remains elusive. Intermittent PTH increases bone formation and bone mass and is being investigated as a therapy for osteoporosis. By contrast, chronic hyperparathyroidism results in the metabolic bone disease osteitis fibrosa characterized by osteomalacia, focal bone resorption, and peritrabecular bone marrow fibrosis. Intermittent and continuous PTH have similar effects on the number of osteoblasts and bone-forming activity. Many of the beneficial as well as detrimental effects of the hormone appear to be mediated by osteoblast-derived growth factors. This hypothesis was tested using cDNA microgene arrays to compare gene expression in tibia of rats treated with continuous and pulsatile administration of PTH. These treatments result in differential expression of many genes, including growth factors. One of the genes whose steady-state mRNA levels was increased by continuous but not pulsatile administration was platelet-derived growth factor-A (PDGF-A). Administration of a PDGF-A antagonist greatly reduced bone resorption, osteomalacia, and bone marrow fibrosis in a rat model for hyperparathyroidism, suggesting that PDGF-A is a causative agent for this disease. These findings suggest that profiling changes in gene expression can help identify the metabolic pathways responsible for the skeletal responses to the hormone.

  19. Strontium enhances osseointegration of calcium phosphate cement: a histomorphometric pilot study in ovariectomized rats.

    PubMed

    Baier, Martin; Staudt, Patric; Klein, Roman; Sommer, Ulrike; Wenz, Robert; Grafe, Ingo; Meeder, Peter Jürgen; Nawroth, Peter P; Kasperk, Christian

    2013-06-07

    Calcium phosphate cements are used frequently in orthopedic and dental surgeries. Strontium-containing drugs serve as systemic osteoblast-activating medication in various clinical settings promoting mechanical stability of the osteoporotic bone. Strontium-containing calcium phosphate cement (SPC) and calcium phosphate cement (CPC) were compared regarding their local and systemic effects on bone tissue in a standard animal model for osteoporotic bone. A bone defect was created in the distal femoral metaphysis of 60 ovariectomized Sprague-Dawley rats. CPC and SPC were used to fill the defects in 30 rats in each group. Local effects were assessed by histomorphometry at the implant site. Systemic effects were assessed by bone mineral density (BMD) measurements at the contralateral femur and the spine. Faster osseointegration and more new bone formation were found for SPC as compared to CPC implant sites. SPC implants exhibited more cracks than CPC implants, allowing more bone formation within the implant. Contralateral femur BMD and spine BMD did not differ significantly between the groups. The addition of strontium to calcium phosphate stimulates bone formation in and around the implant. Systemic release of strontium from the SPC implants did not lead to sufficiently high serum strontium levels to induce significant systemic effects on bone mass in this rat model.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tu Qisheng; Valverde, Paloma; Chen, Jake

    Osterix (Osx) is a zinc-finger-containing transcription factor that is expressed in osteoblasts of all endochondral and membranous bones. In Osx null mice osteoblast differentiation is impaired and bone formation is absent. In this study, we hypothesized that overexpression of Osx in murine bone marrow stromal cells (BMSC) would be able to enhance their osteoblastic differentiation and mineralization in vitro. Retroviral transduction of Osx in BMSC cultured in non-differentiating medium did not affect expression of Runx2/Cbfa1, another key transcription factor of osteoblast differentiation, but induced an increase in the expression of other markers associated with the osteoblastic lineage including alkaline phosphatase,more » bone sialoprotein, osteocalcin, and osteopontin. Retroviral transduction of Osx in BMSC also increased their proliferation, alkaline phosphatase activity, and ability to form bone nodules. These events occurred without significant changes in the expression of {alpha}1(II) procollagen or lipoprotein lipase, which are markers of chondrogenic and adipogenic differentiation, respectively.« less

  1. Effect of cisplatin on bone transport osteogenesis in dogs.

    PubMed

    Ehrhart, Nicole; Eurell, Jo Ann C; Tommasini, Matteo; Constable, Peter D; Johnson, Ann L; Feretti, Antonio

    2002-05-01

    To document effects of cisplatin on regenerate bone formation during the distraction and consolidation phases of bone transport osteogenesis. 10 skeletally mature hounds. Bone transport osteogenesis was performed to reconstruct a 3-cm defect in the radius of each dog. Five dogs were randomly selected to receive cisplatin (70 mg/m2, IV, q 21 d for 4 cycles), and 5 were administered saline (0.9% NaCl) solution. Bone mineral density was measured by use of dual-energy x-ray absorptiometry (DEXA) on days 24, 55, and 90 after surgery. Dogs were euthanatized 90 days after surgery. Histomorphometry was performed on nondecalcified sections of regenerate bone. Bone mineral density and histomorphometric indices of newly formed bone were compared between groups. Densitometric differences in regenerate bone mineral density were not detected between groups at any time period. Cisplatin-treated dogs had decreased mineralized bone volume, decreased percentage of woven bone volume, decreased percentage of osteoblast-covered bone, increased porosity, and increased percentage of osteoblast-covered surfaces, compared with values for control dogs. Lamellar bone volume and osteoid volume did not differ significantly between groups. Regenerate bone will form and remodel during administration of cisplatin. Results of histomorphometric analysis suggest that bone formation and resorption may be uncoupled in cisplatin-treated regenerate bone as a result of increased osteoclast activity or delayed secondary bone formation during remodeling. These histomorphometric differences were modest in magnitude and did not result in clinically observable complications or decreased bone mineral density as measured by use of DEXA.

  2. Effects of Thread Depth in the Neck Area on Peri-Implant Hard and Soft Tissues: An Animal Study.

    PubMed

    Sun, Shan-Pao; Lee, Dong-Won; Yun, Jeong-Ho; Park, Kwang-Ho; Park, Kwang-Bum; Moon, Ik-Sang

    2016-11-01

    Implants with deep thread depth have been developed for the purpose of increasing total implant surface area. However, effects of implant thread depth remain controversial. The aim of this study is to examine effects of thread depth on peri-implant tissues in terms of bone-implant contact (BIC), bone-implant volume (BIV), and hard and soft tissue dimensions using comprehensive analyses, including microcomputed tomography (micro-CT). Five beagle dogs received experimental intramandibular implants 3 months after removal of their premolars and first molars (P 2 , P 3 , P 4 , and M 1 ). Two different types of implants were installed in each animal: deep threaded (DT) and shallow threaded (ST). Resonance frequency testing was performed on the day of implantation as well as 4 and 8 weeks after implantation. Intraoral radiography, micro-CT, and histomorphometry were used to evaluate peri-implant tissues 4 and 8 weeks after implantation. There were no significant differences in resonance frequency test results between the two groups. Although radiographic analysis showed no group differences, micro-CT (P = 0.01) and histomorphometry (P = 0.003) revealed the DT group had significantly lower BIC values than the ST group at 4 weeks. However, by 8 weeks, BIC values of the two groups did not differ significantly. No significant differences in BIV or soft tissue height were observed between the two groups at either time point. DT implants showed no benefits over ST implants when inserted in dog mandibles.

  3. Spaceflight and age affect tibial epiphyseal growth plate histomorphometry

    NASA Technical Reports Server (NTRS)

    Montufar-Solis, Dina; Duke, Pauline J.; Durnova, G.

    1992-01-01

    Growth plate histomorphometry of rats flown aboard the Soviet biosatellite Cosmos 2044, a 14-day spaceflight, was compared with that of control groups. In growth plates of flight animals, there was a significant increase in cell number per column and height of the proliferative zone and a reduction in height and cell number in the hypertrophy/calcification zone. No significant differences were found in matrix organization at the ultrastructural level of flight animals, indicating that although spacefligfht continues to affect bone growth of 15-wk-old rats, extracellular matrix is not altered in the same manner as seen previously in younger animals. All groups showed growth plate characteristics attributed to aging: lack of calcification zone, reduced hypertrophy zone, and unraveling of collagen fibrils. Tail-suspended controls did not differ from other controls in any of the parameters measured. The results suggest that growth plates of older rats are less responsive to unloading by spaceflight or suspension than those of younger rats and provide new evidence about the modifying effect of spaceflight on the growth plate.

  4. Prostaglandin E2 Adds Bone to a Cancellous Bone Site with a Closed Growth Plate and Low Bone Turnover in Ovariectomized Rats

    NASA Technical Reports Server (NTRS)

    Ma, Y. F.; Ke, H. Z.; Jee, W. S. S.

    1994-01-01

    The objects of this study were to determine the responses of a cancellous bone site with a closed growth plate, (the distal tibial metaphysis (DTM), to ovariectomy (OVX) and OVX plus a prostaglandin E(2) treatment, and compare the site's response to previous findings reported for another site, the proximal tibial metaphysis (PTM). Thirty five 3-month old female Sprague-Dawley rats were divided into five groups; basal, sham OVX, and OVX+0, +1, or +6 mg PGE(2)/kg/d injected subcutaneously for 3 months and given double fluorescent labels before sacrifice. Cancellous bone histomorphometric analyses were performed on 20 micrometer thick undecalcified DTM sections. Similar to the PTM, the DTM showed age-related decreases in bone formation and increases in bone resorption, but it differed in that at 3 months POST OVX there was neither bone loss nor changes in formation endpoints. Giving 1 mg PGE(2)/kg/d to OVX rats prevented most age-related changes and maintained the bone formation histomorphometry near basal levels. Treating OVX rats with 6 mg PGE(2)/kd/d prevented age-related bone changes, added extra bone, and improved microanatomical structure by stimulating bone formation, without altering bone resportion. Futhermore, After PGE(2) admimnistration, the DTM, a cancellous bone site with a closed growth plate, increased bone formation more than did the cancellous bone in the PTM.

  5. Prostaglandin E2 Adds Bone to a Cancellous Bone Site with a Closed Growth Plate and Low Bone Turnover in Ovariectomized Rats

    NASA Technical Reports Server (NTRS)

    Ma, Y. F.; Ke, H. Z.; Jee, W. S. S.

    1994-01-01

    The objects of this study were to determine the responses of a cancellous bone site with a closed growth plate (the distal tibial metaphysis, DTM) to ovariectomy (OVX) and OVX plus a prostaglandin E2 (PGE2) treatment, and compare the site's response to previous findings reported for another site (the proximal tibial metaphysis, PTM). Thirty-five 3-month old female Sprague-Dawley rats were divided into five groups: basal, sham-OVX, and OVX+0, +1, or +6 mg PGE2/kg/d injected subcutaneously for 3 months and given double fluorescent labels before sacrifice. Cancellous bone histomorphometric analyses were performed on 20-micron-thick undecalcified DTM sections. Similar to the PTM, the DTM showed age-related decreases in bone formation and increases in bone resorption, but it differed in that at 3 months post-OVX; there was neither bone loss nor changes in formation endpoints. Giving 1 mg PGE2/kg/d to OVX rats prevented most age-related changes and maintained the bone formation histomorphometry near basal levels. Treating OVX rats with 6 mg PGE2/kg/d prevented age-related bone changes, added extra bone, and improved microanatomical structure by stimulating bone formation without altering bone resorption. Furthermore, after PGE2 administration, the DTM, a cancellous bone site with a closed growth plate, inereased bone formation more than did the cancellous bone in the PTM.

  6. Longitudinal study of bone loss in chronic spinal cord injury patients

    PubMed Central

    Karapolat, Inanc; Karapolat, Hale Uzumcugil; Kirazli, Yesim; Capaci, Kazim; Akkoc, Yesim; Kumanlioglu, Kamil

    2015-01-01

    [Purpose] This prospective longitudinal study evaluated the changes in bone metabolism markers and bone mineral density of spinal cord injury patients over 3 years. We also assessed the relationships among the bone mineral density, bone metabolism, and clinical data of spinal cord injury patients. [Subjects and Methods] We assessed the clinical data (i.e., immobilization due to surgery, neurological status, neurological level, and extent of lesion) in 20 spinal cord injury patients. Bone mineral density, and hormonal and biochemical markers of the patients were measured at 0, 6, 12, and 36 months. [Results] Femoral neck T score decreased significantly at 36 months (p < 0.05). Among the hormonal markers, parathyroid hormone and vitamin D were significantly elevated, while bone turnover markers (i.e., deoxypyridinoline and osteocalcin) were significantly decreased at 12 and 36 months (p < 0.05). [Conclusion] Bone mineral density of the femoral neck decreases significantly during the long-term follow-up of patients with spinal cord injury due to osteoporosis. This could be due to changes in hormonal and bone turnover markers. PMID:26157234

  7. A randomized and controlled clinical trial of two different compositions of deproteinized bovine bone and autogenous bone used for lateral ridge augmentation.

    PubMed

    Mordenfeld, Arne; Johansson, Carina B; Albrektsson, Tomas; Hallman, Mats

    2014-03-01

    The aim of the study was to radiologically and histologically evaluate the graft healing and volumetric changes after lateral augmentation with two different compositions of deproteinized bovine bone (DPBB) and autogenous bone (AB). Thirteen patients with a mean age of 59.6 ± 12.1 years (six men and seven women) were included in this randomized and controlled trial, designed as a split-mouth study. Ten edentulous and four partially edentulous jaws with an alveolar ridge width of ≤4 mm were laterally augmented with a graft composition of 60 : 40 (DPBB/AB) on one side and 90 : 10 (DPBB/AB) on the contralateral side. Cone beam computed tomography (CB/CT) was obtained immediately postoperatively and after a healing period of 7.5 months. Width changes were measured on CB/CT scans. After a mean healing period of 8.1 months (range, 7.9-8.3), biopsies were retrieved perpendicular to the crest from each graft by means of a trephine bur. Histomorphometry was performed, and the following variables were recorded: Ingrowth of new bone (percentage of total graft width), percentage of DPBB, bone and soft tissue, and percentage of DPBB particles in contact with bone. The mean gained width of the alveolar crest after 7.5 months was significantly more for the 60 : 40 mixture compared with the 90 : 10 mixture, 3.5 (±1.3) mm and 2.9 (±1.3) mm, respectively. There was a significant difference in graft width reduction between 60 : 40 and 90 : 10 after 7.5 months, 37 (±19.9)% and 46.9 (±23.5)%, respectively. New bone ingrowth had occurred in 82.1 (±23.3)% and 82.3 (±26.6)% of the graft, respectively. There were no statistical differences between fractions of different tissues between the 90 : 10 and 60 : 40 compositions. However, there were significantly more soft tissue and less new bone formation closer to the periosteum compared with the graft portion closer to the residual bone in both 60 : 40 and 90 : 10 compositions. There was significantly less graft width reduction with a mixture of 60 : 40 (DPBB/AB) compared with a mixture of 90 : 10 composition, but the results from the histomorphometry showed no statistical differences comparing the groups. © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  8. The Effects of IGFBP3 Induction by TFG-B in Breast Tumorigenesis

    DTIC Science & Technology

    2000-09-01

    of differentiation inducing media. This media contains P3-glycerolphosphate to facilitate mineral deposistion and ascorbic acid to facilitate collagen...collagenase to isolate osteoblasts. These isolated primary osteoblasts express differentiation markers such as osteocalcin and will form calcium nodules in...a synthetic peptide of a parathyroid hormone-related protein on calcium homeostasis, renal tubular calcium reabsorption, and bone metabolism in vivo

  9. Curcumin alleviates glucocorticoid-induced osteoporosis through the regulation of the Wnt signaling pathway

    PubMed Central

    CHEN, ZHIGUANG; XUE, JINQI; SHEN, TAO; MU, SHUAI; FU, QIN

    2016-01-01

    It is known that prolonged glucocorticoid (GC) treatment results in osteoporosis. This study aimed to evaluate the protective effects of curcumin on the bones of rats with dexamethasone (DXM)-induced osteoporosis. In the present study, rats were administered DXM for 60 days to induce osteoporosis, and they were then treated with curcumin (100 mg/kg/day) for a further 60 days. H&E staining was used to observe the pathological changes in the femurs. Serum osteocalcin levels and collagen-type I fragments (CTX) were examined as bone metabolism markers. The results revealed that treatment with curcumin attenuated DXM-induced bone injury in femurs, increased the serum levels of osteocalcin and decreased the levels of CTX. In addition, in in vitro experiments, primary rat osteoblasts treated with curcumin at 0.5, 1 and 2 µM were exposed to 100 nM DXM. An MTT assay was used to determine the proliferative ability of the cells. Alkaline phosphatase activity, and the mRNA expression levels of runt-related transcription factor 2 (Runx2), osterix, osteocalcin, collagen, type 1, alpha 1 (Col1A1) and osteonectin were detected to assess transcription factor-associated osteogenic differentiation. The mRNA and protein expression levels of osteoprotegerin (OPG) and receptor activator for nuclear factor-kappa B ligand (RANKL) were detected to assess cytokine-associated osteoclastogenesis. The results demonstrated that curcumin prevented the DXM-induced inhibition of the proliferative ability of the osteoblasts in a dose-dependent manner. In addition, curcumin upregulated the mRNA expression levels of transcription factors that favor osteoblast differentiation and increased the ratio of OPG to RANKL. Moreover, the effects of curcumin on the Wnt signaling pathway were also investigated. RT-qPCR and western blot analysis demonstrated that the Wnt signaling pathway, which was inhibited by DXM, was re-activated upon treatment with curcumin. Immunofluorescence staining revealed that curcumin restored the intranuclear staining of β-catenin in the DXM-stimulated osteoblasts. Collectively, our data demonstrate that curcumin may be a potential therapeutic agent for the treatment of GC-induced osteoporosis. PMID:26677102

  10. Addition of bone morphogenetic protein type 2 to ascorbate and β-glycerophosphate supplementation did not enhance osteogenic differentiation of human adipose-derived stem cells.

    PubMed

    Cruz, Ariadne Cristiane Cabral; Silva, Mariana Lúcia; Caon, Thiago; Simões, Cláudia Maria Oliveira

    2012-01-01

    Bone morphogenetic protein type 2 (BMP-2) is a potent local factor, which promotes bone formation and has been used as an osteogenic supplement for mesenchymal stem cells. This study evaluated the effect of a recombinant BMP-2 as well as the endogenous BMP-4 and BMP-7 in the osteogenic differentiation of adipose-derived stem cells (ASCs) in medium supplemented with ascorbate and β-glycerophosphate. Human ASCs were treated with osteogenic medium in the presence (ASCs+OM+BMP-2) or absence (ASCs+OM) of BMP-2. The alkaline phosphatase (ALP) activity was determined and the extracellular matrix mineralization was evaluated by Von Kossa staining and calcium quantification. The expressions of BMP-4, BMP-7, Smad1, Smad4, and phosphorylated Smad1/5/8 were analyzed by western blotting. Relative mRNA expressions of Smad1, BMP receptor type II (BMPR-II), osteonectin, and osteocalcin were evaluated by qPCR. ASCs+OM demonstrated the highest expression of BMP-4 and BMP-7 at days 21 and 7, respectively, the highest levels of BMPR-II mRNA expression at day 28, and the highest levels of Smad1 mRNA at days 14 and 28. ASCs+OM+BMP-2 demonstrated the highest levels of Smad1 mRNA expression at days 1, 7, and 21, the highest expression of Smad1 at day 7, the highest expression of Smad4 at day 14, the highest ALP activity at days 14 and 21, and expression of phosphorylated Smad1/5/8 at day 7. ASCs+OM and ASCs+OM+BMP2 showed similar ALP activity at days 7 and 28, similar osteonectin and osteocalcin mRNA expression at all time periods, and similar calcium depositions at all time periods. We concluded that human ASCs expressed endogenous BMP-4 and BMP-7. Moreover, the supplementation of ASCs with BMP-2 did not increase the level of osteogenic markers in the initial (ALP activity), intermediate (osteonectin and osteocalcin), or final (calcium deposition) phases, suggesting that the exogenous addition of BMP-2 did not improve the in vitro osteogenesis process of human ASCs.

  11. Excessive dietary intake of vitamin A reduces skull bone thickness in mice

    PubMed Central

    Öhman, Caroline; Calounova, Gabriela; Rasmusson, Annica; Andersson, Göran; Pejler, Gunnar; Melhus, Håkan

    2017-01-01

    Calvarial thinning and skull bone defects have been reported in infants with hypervitaminosis A. These findings have also been described in humans, mice and zebrafish with loss-of-function mutations in the enzyme CYP26B1 that degrades retinoic acid (RA), the active metabolite of vitamin A, indicating that these effects are indeed caused by too high levels of vitamin A and that evolutionary conserved mechanisms are involved. To explore these mechanisms, we have fed young mice excessive doses of vitamin A for one week and then analyzed the skull bones using micro computed tomography, histomorphometry, histology and immunohistochemistry. In addition, we have examined the effect of RA on gene expression in osteoblasts in vitro. Compared to a standard diet, a high dietary intake of vitamin A resulted in a rapid and significant reduction in calvarial bone density and suture diastasis. The bone formation rate was almost halved. There was also increased staining of tartrate resistant acid phosphatase in osteocytes and an increased perilacunar matrix area, indicating osteocytic osteolysis. Consistent with this, RA induced genes associated with bone degradation in osteoblasts in vitro. Moreover, and in contrast to other known bone resorption stimulators, vitamin A induced osteoclastic bone resorption on the endocranial surfaces. PMID:28426756

  12. Effect of collagen sponge and fibrin glue on bone repair

    PubMed Central

    SANTOS, Thiago de Santana; ABUNA, Rodrigo Paolo Flores; de ALMEIDA, Adriana Luisa Gonçalves; BELOTI, Marcio Mateus; ROSA, Adalberto Luiz

    2015-01-01

    ABSTRACT The ability of hemostatic agents to promote bone repair has been investigated using in vitro and in vivo models but, up to now, the results are inconclusive. Objective In this context, the aim of this study was to compare the potential of bone repair of collagen sponge with fibrin glue in a rat calvarial defect model. Material and Methods Defects of 5 mm in diameter were created in rat calvariae and treated with either collagen sponge or fibrin glue; untreated defects were used as control. At 4 and 8 weeks, histological analysis and micro-CT-based histomorphometry were carried out and data were compared by two-way ANOVA followed by Student-Newman-Keuls test when appropriated (p≤0.05). Results Three-dimensional reconstructions showed increased bone formation in defects treated with either collagen sponge or fibrin glue compared with untreated defects, which was confirmed by the histological analysis. Morphometric parameters indicated the progression of bone formation from 4 to 8 weeks. Additionally, fibrin glue displayed slightly higher bone formation rate when compared with collagen sponge. Conclusion Our results have shown the benefits of using collagen sponge and fibrin glue to promote new bone formation in rat calvarial bone defects, the latter being discreetly more advantageous. PMID:26814464

  13. Subclinical thyroid dysfunction and circulating thyroid hormones are not associated with bone turnover markers or incident hip fracture in older men.

    PubMed

    Siru, Ranita; Alfonso, Helman; Chubb, S A Paul; Golledge, Jonathan; Flicker, Leon; Yeap, Bu B

    2018-04-14

    Overt thyroid dysfunction is a risk factor for osteoporosis and fractures. Subclinical hyperthyroidism has also been associated with fracture. It remains unclear whether variation in thyroid hormones within the euthyroid range modulates bone health, particularly among older men. We assessed whether thyroid stimulating hormone (TSH) and free thyroxine (FT4) are associated with bone turnover markers (BTMs) and predict hip fracture risk in community-dwelling older men without known thyroid disease. Prospective cohort study. 4248 men aged 70-89 years. Baseline blood samples were assayed for TSH, FT4, total osteocalcin (TOC), undercarboxylated osteocalcin (ucOC), N-terminal propeptide of type I collagen (P1NP) and collagen type I C-terminal cross-linked telopeptide (CTX). Incidence of hip fracture events was ascertained to 2012. Associations of TSH and FT4 with BTMs were analysed at baseline using Pearson correlation coefficients, and with incident hip fracture using Cox proportional hazards regression. After excluding men with pre-existing thyroid or bone disease, there were 3, 338 men for analysis. Of these, 3, 117 were euthyroid, 135 had subclinical hypothyroidism and 86 had subclinical hyperthyroidism. Men with subclinical thyroid disease were older and those with subclinical hyperthyroidism had lower creatinine than the other groups. After multivariate analysis, there was no association found between FT4, TSH or subclinical thyroid dysfunction and BTMs at baseline. Neither subclinical thyroid dysfunction, TSH nor FT4 were predictive of incident hip fracture in our study population. In euthyroid older men, TSH and FT4 were not associated with BTMs or incident hip fracture. Our findings differ from those previously described in post-menopausal women. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. Synergistic interaction of platelet derived growth factor (PDGF) with the surface of PLLA/Col/HA and PLLA/HA scaffolds produces rapid osteogenic differentiation.

    PubMed

    Raghavendran, Hanumantha Rao Balaji; Mohan, Saktiswaren; Genasan, Krishnamurithy; Murali, Malliga Raman; Naveen, Sangeetha Vasudevaraj; Talebian, Sepehr; McKean, Robert; Kamarul, Tunku

    2016-03-01

    Scaffolds with structural features similar to the extracellular matrix stimulate rapid osteogenic differentiation in favorable microenvironment and with growth factor supplementation. In this study, the osteogenic potential of electrospun poly-l-lactide/hydroxyapatite/collagen (PLLA/Col/HA, PLLA/HA and PLLA/Col) scaffolds were tested in vitro with the supplementation of platelet derived growth factor-BB (PDGF-BB). Cell attachment and topography, mineralization, extracellular matrix protein localization, and gene expression of the human mesenchymal stromal cells were compared between the fibrous scaffolds PLLA/Col/HA, PLLA/Col, and PLLA/HA. The levels of osteocalcin, calcium, and mineralization were significantly greater in the PLLA/Col/HA and PLLA/HA compared with PLLA/Col. High expression of fibronectin, intracellular adhesion molecule, cadherin, and collagen 1 (Col1) suggests that PLLA/Col/HA and PLLA/HA scaffolds had superior osteoinductivity than PLLA/Col. Additionally, osteopontin, osteocalcin, osterix, Runt-related transcription factor 2 (Runx2), and bone morphogenic protein (BMP2) expression were higher in PLLA/Col/HA and PLLA/HA compared with PLLA/Col. In comparison with PLLA/Col, the PLLA/Col/HA and PLLA/HA scaffolds presented a significant upregulation of the genes Runx2, Col 1, Integrin, osteonectin (ON), bone gamma-carboxyglutamic acid-containing protein (BGALP), osteopontin (OPN), and BMP2. The upregulation of these genes was further increased with PDGF-BB supplementation. These results show that PDGF-BB acts synergistically with PLLA/Col/HA and PLLA/HA to enhance the osteogenic differentiation potential. Therefore, this combination can be used for the rapid expansion of bone marrow stromal cells into bone-forming cells for tissue engineering. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Effects of Teriparatide Retreatment in Osteoporotic Men and Women

    PubMed Central

    Finkelstein, Joel S.; Wyland, Jason J.; Leder, Benjamin Z.; Burnett-Bowie, Sherri-Ann M.; Lee, Hang; Jüppner, Harald; Neer, Robert M.

    2009-01-01

    Context: The stimulatory effect of teriparatide on bone mineral density (BMD) and bone turnover is initially exuberant, but then diminishes. Objective: Our objective was to determine whether retreating with teriparatide after a drug-free period can restore the initial exuberant response to teriparatide. Design and Setting: This was a planned extension of a randomized controlled trial conducted in a single university hospital. Patients and Intervention: Subjects previously participated in a 30-month randomized trial comparing the effects of alendronate (group 1), teriparatide (group 2), or both (group 3) on BMD and bone turnover in men and women with low BMD (phase 1). Subjects who completed phase 1 on their assigned therapy entered phase 2 (months 30–42), during which teriparatide was stopped in groups 2 and 3. Teriparatide was administered to all subjects during months 42 to 54 (phase 3). Main Outcome Measures: We compared changes in BMD and markers of bone turnover (serum osteocalcin, N-terminal propeptide of type 1 collagen, and N-telopeptide) between phase 1 and 3 in subjects receiving teriparatide alone. Results: Posterior-anterior and lateral spine BMD increased 12.5 ± 1.5 and 16.9 ± 1.7%, respectively, during the first 12 months of teriparatide administration and 5.2 ± 0.8 and 6.2 ± 1.8%, respectively, during teriparatide retreatment (P < 0.001 and P = 0.001). Increases in osteocalcin (P < 0.001), N-terminal propeptide of type 1 collagen (P < 0.001), and N-telopeptide (P < 0.001) were greater during the first period of teriparatide administration. Conclusion: The response to teriparatide is attenuated when readministered after a 12-month hiatus. PMID:19401368

  16. Palmitate attenuates osteoblast differentiation of fetal rat calvarial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeh, Lee-Chuan C.; Ford, Jeffery J.; Lee, John C.

    Highlights: • Palmitate inhibits osteoblast differentiation. • Fatty acid synthase. • PPARγ. • Acetyl Co-A carboxylase inhibitor TOFA. • Fetal rat calvarial cell culture. - Abstract: Aging is associated with the accumulation of ectopic lipid resulting in the inhibition of normal organ function, a phenomenon known as lipotoxicity. Within the bone marrow microenvironment, elevation in fatty acid levels may produce an increase in osteoclast activity and a decrease in osteoblast number and function, thus contributing to age-related osteoporosis. However, little is known about lipotoxic mechanisms in intramembraneous bone. Previously we reported that the long chain saturated fatty acid palmitate inhibitedmore » the expression of the osteogenic markers RUNX2 and osteocalcin in fetal rat calvarial cell (FRC) cultures. Moreover, the acetyl CoA carboxylase inhibitor TOFA blocked the inhibitory effect of palmitate on expression of these two markers. In the current study we have extended these observations to show that palmitate inhibits spontaneous mineralized bone formation in FRC cultures in association with reduced mRNA expression of RUNX2, alkaline phosphatase, osteocalcin, and bone sialoprotein and reduced alkaline phosphatase activity. The effects of palmitate on osteogenic marker expression were inhibited by TOFA. Palmitate also inhibited the mRNA expression of fatty acid synthase and PPARγ in FRC cultures, and as with osteogenic markers, this effect was inhibited by TOFA. Palmitate had no effect on FRC cell proliferation or apoptosis, but inhibited BMP-7-induced alkaline phosphatase activity. We conclude that palmitate accumulation may lead to lipotoxic effects on osteoblast differentiation and mineralization and that increases in fatty acid oxidation may help to prevent these lipotoxic effects.« less

  17. Bone morphogenetic protein (BMP)1-3 enhances bone repair.

    PubMed

    Grgurevic, Lovorka; Macek, Boris; Mercep, Mladen; Jelic, Mislav; Smoljanovic, Tomislav; Erjavec, Igor; Dumic-Cule, Ivo; Prgomet, Stefan; Durdevic, Dragan; Vnuk, Drazen; Lipar, Marija; Stejskal, Marko; Kufner, Vera; Brkljacic, Jelena; Maticic, Drazen; Vukicevic, Slobodan

    2011-04-29

    Members of the astacin family of metalloproteinases such as human bone morphogenetic protein 1 (BMP-1) regulate morphogenesis by processing precursors to mature functional extracellular matrix (ECM) proteins and several growth factors including TGFβ, BMP2, BMP4 and GFD8. We have recently discovered that BMP1-3 isoform of the Bmp-1 gene circulates in the human plasma and is significantly increased in patients with acute bone fracture. We hypothesized that circulating BMP1-3 might have an important role in bone repair and serve as a novel bone biomarker. When administered systemically to rats with a long bone fracture and locally to rabbits with a critical size defect of the ulna, recombinant human BMP1-3 enhanced bone healing. In contrast, neutralization of the endogenous BMP1-3 by a specific polyclonal antibody delayed the bone union. Invitro BMP1-3 increased the expression of collagen type I and osteocalcin in MC3T3-E(1) osteoblast like cells, and enhanced the formation of mineralized bone nodules from bone marrow mesenchymal stem cells. We suggest that BMP1-3 is a novel systemic regulator of bone repair. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. [Ultrasound monitoring of consolidation processes in fractures of long tubular bones in osteosynthesis using bioactive implants].

    PubMed

    Zavadovskaia, V D; Popov, V P; Akbasheva, O E; Grigor'ev, E G; Druzhinina, T V

    2014-01-01

    To show the capabilities of ultrasound monitoring to assess consolidation processes in fractures of long tubular bones in the use of bioactive material-containing implants. Eighty-two (45.1%) patients whose bone fragments had been fixed with bioactive material-coated plates and 100 (54.9%) patients with bioinert material-coated ones were examined. Consolidation changes were estimated by ultrasound and X-ray studies 2, 4, 6, and 12 months after surgery. Bone metabolic changes were determined by US osteometry 2 months following surgery. Ultrasound data were compared with the biochemical markers: C-terminal telopeptide (CrossLaps) and osteocalcin. Ultrasound monitoring of the rates of consolidation and the time course of changes in bone strength versus the biochemical markers established the positive effect of bioactiveplates on the process of consolidation in fractures of tubular bones and made it possible to consider local osteopenic syndrome to be a prognostically favorable sign of timely callus formation.

  19. Effect of epimedium pubescen flavonoid on bone mineral status and bone turnover in male rats chronically exposed to cigarette smoke

    PubMed Central

    2012-01-01

    Background Epimedii herba is one of the most frequently used herbs in formulas that are prescribed for the treatment of osteoporosis in China and its main constituent is Epimedium pubescen flavonoid (EPF). However, it is unclear whether EPF during chronic exposure to cigarette smoke may have a protective influence on the skeleton. The present study investigated the effect of EPF on bone mineral status and bone turnover in a rat model of human relatively high exposure to cigarette smoke. Methods Fifty male Wistar rats were randomized into five groups: controls, passive smoking groups and passive smoking rats administered EPF at three dosage levels (75, 150 or 300 mg/kg/day) in drinking water for 4 months. A rat model of passive smoking was prepared by breeding male rats in a cigarette-smoking box. Bone mineral content (BMC), bone mineral density (BMD), bone turnover markers, bone histomorphometric parameters and biomechanical properties were examined. Results Smoke exposure decreased BMC and BMD, increased bone turnover (inhibited bone formation and stimulated its resorption), affected bone histomorphometry (increased trabecular separation and osteoclast surface per bone surface; decreased trabecular bone volume, trabecular thickness, trabecular number, cortical thickness, bone formation rate and osteoblast surface per bone surface), and reduced mechanical properties. EPF supplementation during cigarette smoke exposure prevented smoke-induced changes in bone mineral status and bone turnover. Conclusion The results suggest that EPF can prevent the adverse effects of smoke exposure on bone by stimulating bone formation and inhibiting bone turnover and bone resorption. PMID:22713117

  20. Effect of epimedium pubescen flavonoid on bone mineral status and bone turnover in male rats chronically exposed to cigarette smoke.

    PubMed

    Gao, Shu-guang; Cheng, Ling; Li, Kang-hua; Liu, Wen-He; Xu, Mai; Jiang, Wei; Wei, Li-Cheng; Zhang, Fang-jie; Xiao, Wen-feng; Xiong, Yi-lin; Tian, Jian; Zeng, Chao; Sun, Jin-peng; Xie, Qiang; Lei, Guang-hua

    2012-06-19

    Epimedii herba is one of the most frequently used herbs in formulas that are prescribed for the treatment of osteoporosis in China and its main constituent is Epimedium pubescen flavonoid (EPF). However, it is unclear whether EPF during chronic exposure to cigarette smoke may have a protective influence on the skeleton. The present study investigated the effect of EPF on bone mineral status and bone turnover in a rat model of human relatively high exposure to cigarette smoke. Fifty male Wistar rats were randomized into five groups: controls, passive smoking groups and passive smoking rats administered EPF at three dosage levels (75, 150 or 300 mg/kg/day) in drinking water for 4 months. A rat model of passive smoking was prepared by breeding male rats in a cigarette-smoking box. Bone mineral content (BMC), bone mineral density (BMD), bone turnover markers, bone histomorphometric parameters and biomechanical properties were examined. Smoke exposure decreased BMC and BMD, increased bone turnover (inhibited bone formation and stimulated its resorption), affected bone histomorphometry (increased trabecular separation and osteoclast surface per bone surface; decreased trabecular bone volume, trabecular thickness, trabecular number, cortical thickness, bone formation rate and osteoblast surface per bone surface), and reduced mechanical properties. EPF supplementation during cigarette smoke exposure prevented smoke-induced changes in bone mineral status and bone turnover. The results suggest that EPF can prevent the adverse effects of smoke exposure on bone by stimulating bone formation and inhibiting bone turnover and bone resorption.

  1. Carprofen simultaneously reduces progression of morphological changes in cartilage and subchondral bone in experimental dog osteoarthritis.

    PubMed

    Pelletier, J P; Lajeunesse, D; Jovanovic, D V; Lascau-Coman, V; Jolicoeur, F C; Hilal, G; Fernandes, J C; Martel-Pelletier, J

    2000-12-01

    To examine the effect of a nonsteroidal antiinflammatory drug, carprofen, on the structure and metabolism of cartilage and subchondral bone in the experimental osteoarthritic (OA) canine model. Experimental Groups 1 and 2 received a sectioning of the anterior cruciate ligament (ACL) of the right stifle joint, and were administered carprofen (2.2 and 4.4 mg/kg/twice daily/po, respectively) for 8 weeks beginning 4 weeks postsurgery. Group 3 received ACL sectioning and no treatment. Group 4 was composed of unoperated normal dogs. Cartilage macroscopic lesions were assessed, and their histological severity was graded. Specimens of subchondral bones were fixed, decalcified, and stained with hematoxylin/eosin. The level of metalloprotease (MMP) activity in cartilage was measured. Osteoblast cells were prepared from the subchondral bone. The level of synthesis of osteoblast biomarkers (osteocalcin, alkaline phosphatase), as well as urokinase plasminogen activator (uPA) activity and insulin-like growth factor (IGF-1) in the culture medium, was estimated. Carprofen treatment decreased the width of osteophytes (p < 0.01), the size of cartilage lesions, and the histologic severity of cartilage lesions (p < 0.008). There was no difference in the levels of MMP activity in cartilage between OA and carprofen treated groups. In OA dogs, the subchondral bone plate was thinner and was the site of an extensive remodeling process with numerous lacunae. Dogs treated with carprofen showed a marked decrease in the remodeling activity with normal plate thickness, and subchondral bone morphology resembling that of normal dogs. Osteoblasts from untreated OA dogs showed slightly higher alkaline phosphatase activities and osteocalcin release that reverted back to normal upon carprofen treatment. Moreover, uPA activity and IGF-1 levels were increased in OA dogs and were significantly reduced in carprofen treated dogs. Under therapeutic conditions, treatment with carprofen could reduce the progression of early structural changes in experimental OA. Carprofen treatment also delays and/or prevents the abnormal metabolism of subchondral osteoblasts in this model. The hypothesis of a possible link between the protective effect of carprofen and its effect on subchondral bone is of interest in the context of therapeutic intervention.

  2. [Operational mechanism modification of bone mechanostat in an animal model of nutritional stress: effect of propranolol].

    PubMed

    Pintos, Patricia Mabel; Lezón, Christian Esteban; Bozzini, Clarisa; Friedman, Silvia María; Boyer, Patricia Mónica

    2013-01-01

    Propranolol (P) treatment exerts a preventive effect against the detrimental consequences to bone status in mildly chronically food-restricted growing rats (NGR) by an increment in cortical bone and by improving its spatial distribution. To study the effect of beta-blocker on operational mechanism of bone mechanostat in an animal model of nutritional stress. Weanling male Wistar rats were randomly assigned to four groups: control (C), C + P (CP), NGR and NGR + P (NGRP). C and CP rats were fed freely with the standard diet. NGR and NGRP rats received, for 4 weeks, 80% of the amount of food consumed by C and CP respectively, the previous day, corrected by body weight. Propranolol (7 mg/kg/day) was injected ip 5 days per week, for four weeks in CP and NGRP rats. C and NGR received saline injections at an identical dosage regimen. Body weight and length were determined during the experimental period. Dietary intake was registered daily. Animals were sacrificed after 4 weeks of food restriction. Immediately, cuadriceps, femur and tibiae from each animal were dissected and weighed, and histomorphometric and mechanical studies were performed. Serum a-CTX, osteocalcin, intact PTH, calcium and phosphorous were determined. Body protein (% prot) was measured in all groups. Food restriction induced detrimental effects on body and femoral growth, load-bearing capacity (Wf), % prot and cuadriceps weight in NGR us. C (p < 0.01). beta-blocker did not modify anthropometric and bone morphometric parameters in NGRP and CP us. NGR and C, respectively (p > 0.05). However, Wf NGRP vs. NGR was significantly higher (p < 0.01). alpha-CTX was significantly higher in NGR vs. C (p < 0.01). No significant differences were observed in alpha-CTX levels between CP, NGRP and C (p > 0.05). Serum osteocalcin, intact PTH, calcium and phospho- rous showed no significant difference between groups (p > 0.05). These results suggest that modeling increase in bone mass and strength in NGRP rats could be due to an anticatabolic interaction of the beta-blocker propranolol on operational mechanism of bone mechanostat in an animal model of nutritional stress.

  3. Zoledronate promotes bone formation by blocking osteocyte-osteoblast communication during bone defect healing.

    PubMed

    Cui, Pingping; Liu, Hongrui; Sun, Jing; Amizuka, Norio; Sun, Qinfeng; Li, Minqi

    2018-01-01

    Nitrogen-containing bisphosphonates (N-BPs) are potent antiresorptive drugs and their actions on osteoclasts have been studied extensively. Recent studies have suggested that N-BPs also target bone-forming cells. However, the precise mechanism of N-BPs in osteoblasts is paradoxical, and the specific role of osteocytes is worthy of in-depth study. Here, we investigated the cellular mechanisms of N-BPs regulating bone defect healing by zoledronate (ZA). Bone histomorphometry confirmed an increase in new bone formation by systemic ZA administration. ZA induced more alkaline phosphatase-positive osteoblasts and tartrate-resistant acid phosphatase-positive osteoclasts residing on the bone surface. Inexplicably, ZA increased SOST expression in osteocytes embedded in the bone matrix, which was not compatible with the intense osteoblast activity on the bone surface. ZA induced heterogeneous osteocytes and disturbed the distribution of the osteocytic-canalicular system (OLCS). Furthermore, according to the degree of OLCS regularity, dentin matrix protein 1 reactivity had accumulated around osteocytes in the ZA group, but it was distributed evenly in the OLCS of the control group. The control group showed a dense array of the gap junction protein connexin 43. However, connexin 43 was extremely sparse after ZA administration. In summary, ZA treatment reduces gap junction connections and blocks cellular communication between osteocytes and osteoblasts. Retaining SOST expression in osteocytes leads to activation of the Wnt signaling pathway and subsequent bone formation.

  4. Comparative bone tissue integration of nanostructured and microroughened dental implants.

    PubMed

    Salou, Laëtitia; Hoornaert, Alain; Stanovici, Julien; Briand, Sylvain; Louarn, Guy; Layrolle, Pierre

    2015-01-01

    The aim was to compare osteointegration of nanostructured implants to a microsurface widely used for titanium dental implants. Commercial titanium dental implants with smooth or microroughened surfaces were nanostructured. Implants were inserted into the femoral condyles of rabbits. After 2 and 4 weeks, histomorphometry calculation was performed. Nanotubes measuring 60 nm in diameter were observed on both S-NANO (roughness: 0.05 μm) and R-NANO (roughness: 0.40 μm) surfaces. The MICRO surface exhibited typical random cavities (roughness: 2.09 μm). At 4 weeks, bone-to-implant contact values were significantly higher for the R-NANO than for the MICRO surface while no differences were observed at 2 weeks. Overall, this study shows that the nanostructured surfaces improved osteointegration similar or higher than the MICRO.

  5. Impact of skeletal unloading on bone formation: Role of systemic and local factors

    NASA Astrophysics Data System (ADS)

    Bikle, Daniel D.; Halloran, Bernard P.; Morey-Holton, Emily

    We have developed a model of skeletal unloading using growing rats whose hindlimbs are unweighted by tail suspension. The bones in the hindlimbs undergo a transient cessation of bone growth; when reloaded bone formation is accelerated until bone mass is restored. These changes do not occur in the normally loaded bones of the forelimbs. Associated with the fall in bone formation is a fall in 1,25(OH) 2D 3 production and osteocalcin levels. In contrast, no changes in parathyroid hormone, calcium, or corticosterone levels are seen. To examine the role of locally produced growth factors, we have measured the mRNA and protein levels of insulin like growth factor-1 (IGF-1) in bone during tail suspension. Surprisingly, both the mRNA and protein levels of IGF-1 increase during tail suspension as bone formation is reduced. Furthermore, the bones in the hindlimbs of the suspended animals develop a resistance to the growth promoting effects of both growth hormone and IGF-1 when given parenterally. Thus, the cessation of bone growth with skeletal unloading is apparently associated with a resistance to rather than failure to produce local growth factors. The cause of this resistance remains under active investigation.

  6. Roles of leptin in bone metabolism and bone diseases.

    PubMed

    Chen, Xu Xu; Yang, Tianfu

    2015-09-01

    Adipose tissue has been more accepted as an active contributor to whole body homeostasis, rather than just a fat depot, since leptin, a 16 kDa protein, was discovered as the product of the obese gene in 1994. With more and more studies conducted on this hormone, it has been shown that there is a close relationship between adipose tissue and bone, which have important effects on each other. Bone is the source of many hormones, such as osteocalcin, that can affect energy metabolism and then the anabolism or catabolism of fat tissue. In contrast, the adipose tissue synthesizes and releases a series of adipokines, which are involved in bone metabolism through direct or indirect effects on bone formation and resorption. Interestingly, leptin, one of the most important cytokines derived from fat tissue, seems to account for the largest part of effects on bone, through direct or indirect involvement in bone remodeling and by playing a significant role in many bone diseases, such as osteoporosis, osteoarthritis, rheumatic arthritis, bone tumors and even fractures. In this review, we will discuss the progress in leptin research, particularly focusing on the roles of leptin in bone diseases.

  7. Relationship between serum leptin concentrations and bone mineral density as well as biochemical markers of bone turnover in women with postmenopausal osteoporosis.

    PubMed

    Shaarawy, Mohamed; Abassi, Asmaa Farid; Hassan, Hany; Salem, Mahmoud E

    2003-04-01

    To determine whether leptin is involved in bone remodeling in patients with postmenopausal osteoporosis. Cross-sectional study. Department of Obstetrics and Gynecology, Faculty of Medicine, Cairo University. Ninety postmenopausal osteoporotic women (37 obese and 53 nonobese) and 30 healthy premenopausal women from the same clinic served as controls. Lumbar spine bone mineral density (LS-BMD) of osteoporotic patients was more than 2.5 SD below the normal mean of healthy premenopausal women. Serum levels of leptin, osteocalcin (OC), bone alkaline phosphatase (B-ALP), urinary deoxypyridinoline (DPyr), and N-telopeptide of type 1 collagen (NTX) as well as LS-BMD using dual energy X-ray absorptiometry (DEXA). The serum leptin level in obese postmenopausal osteoporotic patients was significantly increased compared with nonobese osteoporotic patients. There were no significant differences of bone formation markers (B-ALP, OC), bone resorption markers (DPyr, NTX), or LS-BMD between the obese and nonobese groups. There were no significant correlations between serum leptin and any biomarkers of bone turnover and BMD. In postmenopausal osteoporotic patients with increased bone turnover, serum leptin concentration is not correlated with BMD or with the biomarkers of bone formation or bone resorption.

  8. Hypogonadal men with type 2 diabetes mellitus have smaller bone size and lower bone turnover.

    PubMed

    Colleluori, Georgia; Aguirre, Lina; Dorin, Richard; Robbins, David; Blevins, Dean; Barnouin, Yoann; Chen, Rui; Qualls, Clifford; Villareal, Dennis T; Armamento-Villareal, Reina

    2017-06-01

    Both hypogonadism and type 2 diabetes mellitus (T2D) are associated with increased fracture risk. Emerging data support the negative effect of low testosterone on glucose metabolism, however, there is little information on the bone health of hypogonadal men with diabetes. We evaluated the bone mineral density (BMD), bone geometry and bone turnover of hypogonadal men with T2D compared to hypogonadal men without diabetes. Cross-sectional study, men 40-74years old, with average morning testosterone (done twice) of<300ng/dl. Areal BMD (aBMD) was measured by DXA; volumetric BMD (vBMD) and bone geometry by peripheral-quantitative-computed-tomography; serum C-telopeptide (CTX), osteocalcin, sclerostin and sex hormone-binding globulin (SHBG) by ELISA, testosterone and 25-hydroxyvitamin D (25OHD) by automated immunoassay and estradiol by liquid-chromatography/mass-spectrometry. Groups were compared by ANOVA adjusted for covariates. One-hundred five men, 49 with and 56 without diabetes were enrolled. Adjusted vBMD at 38% tibia was higher in diabetic than non-diabetic men (857.3±69.0mg/cm 3 vs. 828.7±96.7mg/cm 3 , p=0.02). Endosteal (43.9±5.8mm vs. 47.1±7.8mm, p=0.04) and periosteal (78.4±5.0mm vs. 81.3±6.5mm, p=0.02) circumferences and total area (491.0±61.0mm 2 vs. 527.7±87.2mm 2 , p=0.02) at 38% tibia, were lower in diabetic men even after adjustments for covariates. CTX (0.25±0.14ng/ml vs. 0.40±0.19ng/ml, p<0.001) and osteocalcin (4.8±2.8ng/ml vs. 6.8±3.5ng/ml, p=0.006) were lower in diabetic men; there were no differences in sclerostin and 25OHD. Circulating gonadal hormones were comparable between the groups. Among hypogonadal men, those with T2D have higher BMD, poorer bone geometry and relatively suppressed bone turnover. Studies with larger sample size are needed to verify our findings and possible even greater risk for fractures among hypogonadal diabetic men. Published by Elsevier Inc.

  9. Chondroitin and glucosamine sulfate in combination decrease the pro-resorptive properties of human osteoarthritis subchondral bone osteoblasts: a basic science study

    PubMed Central

    Tat, Steeve Kwan; Pelletier, Jean-Pierre; Vergés, Josep; Lajeunesse, Daniel; Montell, Eulàlia; Fahmi, Hassan; Lavigne, Martin; Martel-Pelletier, Johanne

    2007-01-01

    Early in the pathological process of osteoarthritis (OA), subchondral bone remodelling, which is related to altered osteoblast metabolism, takes place. In the present study, we explored in human OA subchondral bone whether chondroitin sulfate (CS), glucosamine sulfate (GS), or both together affect the major bone biomarkers, osteoprotegerin (OPG), receptor activator of nuclear factor-kappa B ligand (RANKL), and the pro-resorptive activity of OA osteoblasts. The effect of CS (200 μg/mL), GS (50 and 200 μg/mL), or both together on human OA subchondral bone osteoblasts, in the presence or absence of 1,25(OH)2D3 (vitamin D3) (50 nM), was determined on the bone biomarkers alkaline phosphatase and osteocalcin, on the expression (mRNA) and production (enzyme-linked immunosorbent assay) of bone remodelling factors OPG and RANKL, and on the pro-resorptive activity of these cells. For the latter experiments, human OA osteoblasts were incubated with differentiated peripheral blood mononuclear cells on a sub-micron synthetic calcium phosphate thin film. Data showed that CS and GS affected neither basal nor vitamin D3-induced alkaline phosphatase or osteocalcin release. Interestingly, OPG expression and production under basal conditions or vitamin D3 treatment were upregulated by CS and by both CS and GS incubated together. Under basal conditions, RANKL expression was significantly reduced by CS and by both drugs incubated together. Under vitamin D3, these drugs also showed a decrease in RANKL level, which, however, did not reach statistical significance. Importantly, under basal conditions, CS and both compounds combined significantly upregulated the expression ratio of OPG/RANKL. Vitamin D3 decreased this ratio, and GS further decreased it. Both drugs reduced the resorption activity, and statistical significance was reached for GS and when CS and GS were incubated together. Our data indicate that CS and GS do not overly affect cell integrity or bone biomarkers. Yet CS and both compounds together increase the expression ratio of OPG/RANKL, suggesting a positive effect on OA subchondral bone structural changes. This was confirmed by the decreased resorptive activity for the combination of CS and GS. These data are of major significance and may help to explain how these two drugs exert a positive effect on OA pathophysiology. PMID:17996099

  10. Increased bone density in mice lacking the proton receptor, OGR1

    PubMed Central

    Krieger, Nancy S.; Yao, Zhenqiang; Kyker-Snowman, Kelly; Kim, Min Ho; Boyce, Brendan F.; Bushinsky, David A.

    2016-01-01

    Chronic metabolic acidosis stimulates cell-mediated calcium efflux from bone through osteoblastic prostaglandin E2-induced stimulation of RANKL leading to increased osteoclastic bone resorption. Osteoblasts express the proton-sensing G-protein coupled receptor, OGR1, which activates IP3-mediated intracellular calcium. Proton-induced osteoblastic intracellular calcium signaling requires OGR1, suggesting OGR1 is the sensor activated during acidosis to cause bone resorption. Growing mice produce large amounts of metabolic acids which must be buffered, primarily by bone, prior to excretion by the kidney. Here we tested whether lack of OGR1 inhibits proton-induced bone resorption by measuring bone mineral density by μCT and histomorphometry in 8 week old male OGR1−/− and C57/Bl6 wild type mice. OGR1−/− mice have normal skeletal development with no atypical gross phenotype. Trabecular and cortical bone volume was increased in tibiae and vertebrae from OGR1−/−. There were increased osteoblast numbers on the cortical and trabecular surfaces of tibiae from OGR1−/− mice, increased endocortical and trabecular bone formation rates, and osteoblastic gene expression. Osteoclast numbers and surface were increased in tibiae of OGR1−/− mice. Thus, in rapidly growing mice, lack of OGR1 leads to increased bone mass with increased bone turnover and a greater increase in bone formation than resorption. This supports the important role of the proton receptor, OGR1, in the response of bone to protons. PMID:26880453

  11. Osteointegration of porous absorbable bone substitutes: A systematic review of the literature.

    PubMed

    Paulo, Maria Júlia Escanhoela; Dos Santos, Mariana Avelino; Cimatti, Bruno; Gava, Nelson Fabrício; Riberto, Marcelo; Engel, Edgard Eduard

    2017-07-01

    Biomaterials' structural characteristics and the addition of osteoinductors influence the osteointegration capacity of bone substitutes. This study aims to identify the characteristics of porous and resorbable bone substitutes that influence new bone formation. An Internet search for studies reporting new bone formation rates in bone defects filled with porous and resorbable substitutes was performed in duplicate using the PubMed, Web of Science, Scielo, and University of São Paulo Digital Library databases. Metaphyseal or calvarial bone defects 4 to 10 mm in diameter from various animal models were selected. New bone formation rates were collected from the histomorphometry or micro-CT data. The following variables were analyzed: animal model, bone region, defect diameter, follow-up time after implantation, basic substitute material, osteoinductor addition, pore size and porosity. Of 3,266 initially identified articles, 15 articles describing 32 experimental groups met the inclusion criteria. There were no differences between the groups in the experimental model characteristics, except for the follow-up time, which showed a very weak to moderate correlation with the rate of new bone formation. In terms of the biomaterial and structural characteristics, only porosity showed a significant influence on the rate of new bone formation. Higher porosity is related to higher new bone formation rates. The influence of other characteristics could not be identified, possibly due to the large variety of experimental models and methodologies used to estimate new bone formation rates. We suggest the inclusion of standard control groups in future experimental studies to compare biomaterials.

  12. Association between vitamin K intake from fermented soybeans, natto, and bone mineral density in elderly Japanese men: the Fujiwara-kyo Osteoporosis Risk in Men (FORMEN) study.

    PubMed

    Fujita, Y; Iki, M; Tamaki, J; Kouda, K; Yura, A; Kadowaki, E; Sato, Y; Moon, J-S; Tomioka, K; Okamoto, N; Kurumatani, N

    2012-02-01

    A cross-sectional analysis of 1,662 community dwelling elderly Japanese men suggested that habitual natto intake was significantly associated with higher bone mineral density (BMD). When adjustment was made for undercarboxylated osteocalcin levels, this association was insignificant, showing the natto-bone association to be primarily mediated by vitamin K. Low vitamin K intake is associated with an increased risk of hip fracture, but reports have been inconsistent on its effect on BMD. Our first aim was to examine the association between BMD and intake of fermented soybeans, natto, which contain vitamin K1 (20 μg/pack) and K2 (380 μg/pack). Our second aim was to examine the association between undercarboxylated osteocalcin (ucOC), a biomarker of vitamin K intake, and BMD to evaluate the role of vitamin K in this association. Of the Japanese men aged ≥65 years who participated in the baseline survey of the Fujiwara-kyo Osteoporosis Risk in Men study, 1,662 men without diseases or medications known to affect bone metabolism were examined for associations between self-reported natto intake or serum ucOC levels with lumbar spine or hip BMD. The subjects with greater intake of natto showed significantly lower level of serum ucOC. Analysis after adjustment for confounding variables showed an association of greater intake of natto with both significantly higher BMD and lower risk of low BMD (T-score < -1 SD) at the total hip and femoral neck. This association became insignificant after further adjustment for ucOC level. Habitual intake of natto was associated with a beneficial effect on bone health in elderly men, and this association is primarily due to vitamin K content of natto, although the lack of information on dietary nutrient intake, including vitamin K1 and K2, prevented us from further examining the association.

  13. The Antioxidant Enzyme GPX1 Gene Polymorphisms Are Associated with Low BMD and Increased Bone Turnover Markers

    PubMed Central

    Mlakar, Simona Jurkovic; Osredkar, Josko; Prezelj, Janez; Marc, Janja

    2010-01-01

    Recently, oxidative stress has been suggested as participating in the development of osteoporosis. Glutathione peroxidase 1 (GPX1) is one of antioxidant enzymes responsible for the defence of cells against oxidative damage and thus for protection against age related diseases such as osteoporosis. The aim of present study was to associate genetic variances of GPX1 enzyme with bone mineral density (BMD) and biochemical bone turnover markers and to show the influence of antioxidative defence system in genetics of osteoporosis. We evaluated 682 Slovenian subjects: 571 elderly women and 111 elderly men. All subjects were genotyped for the presence of GPX1 gene polymorphisms Pro198Leu and polyAla region. BMD and biochemical markers were also measured. General linear model analysis, adjusted to height, and (one-way) analysis of variance were used to assess differences between the genotype.and haplotype subgroups, respectively. The significant or borderline significant associations were found between the polyAla or the Pro198Leu polymorphisms and total hip BMD (0.018; 0.023, respectively), femoral neck BMD (0.117; 0.026, respectively) and lumbar spine BMD (0.032; 0.086, respectively), and with biochemical bone turnover markers such as plasma osteocalcin (0.027; 0.025, respectively) and serum C-terminal telopeptide of type I collagen concentrations (0.114; 0.012, respectively) in whole group. Haplotype analysis revealed that the 6-T haplotype is associated significantly with low BMD values (p > 0.025) at all measured locations of the skeleton, and with high plasma osteocalcin concentrations (p = 0.008). This study shows for the first time that the polymorphisms polyAla and Pro198Leu of the GPX1 gene, individually and in combination, are associated with BMD and therefore may be useful as genetic markers for bone disease. Moreover, it implies the important contribution of the oxidative stress to pathogenesis of osteoporosis. PMID:21045266

  14. The antioxidant enzyme GPX1 gene polymorphisms are associated with low BMD and increased bone turnover markers.

    PubMed

    Mlakar, Simona Jurkovic; Osredkar, Josko; Prezelj, Janez; Marc, Janja

    2010-01-01

    Recently, oxidative stress has been suggested as participating in the development of osteoporosis. Glutathione peroxidase 1 (GPX1) is one of antioxidant enzymes responsible for the defence of cells against oxidative damage and thus for protection against age related diseases such as osteoporosis. The aim of present study was to associate genetic variances of GPX1 enzyme with bone mineral density (BMD) and biochemical bone turnover markers and to show the influence of antioxidative defence system in genetics of osteoporosis. We evaluated 682 Slovenian subjects: 571 elderly women and 111 elderly men. All subjects were genotyped for the presence of GPX1 gene polymorphisms Pro198Leu and polyAla region. BMD and biochemical markers were also measured. General linear model analysis, adjusted to height, and (one-way) analysis of variance were used to assess differences between the genotype.and haplotype subgroups, respectively. The significant or borderline significant associations were found between the polyAla or the Pro198Leu polymorphisms and total hip BMD (0.018; 0.023, respectively), femoral neck BMD (0.117; 0.026, respectively) and lumbar spine BMD (0.032; 0.086, respectively), and with biochemical bone turnover markers such as plasma osteocalcin (0.027; 0.025, respectively) and serum C-terminal telopeptide of type I collagen concentrations (0.114; 0.012, respectively) in whole group. Haplotype analysis revealed that the 6-T haplotype is associated significantly with low BMD values (p< 0.025) at all measured locations of the skeleton, and with high plasma osteocalcin concentrations (p=0.008). This study shows for the first time that the polymorphisms polyAla and Pro198Leu of the GPX1 gene, individually and in combination, are associated with BMD and therefore may be useful as genetic markers for bone disease. Moreover, it implies the important contribution of the oxidative stress to pathogenesis of osteoporosis.

  15. Insulin growth factor-1 correlates with higher bone mineral density and lower inflammation status in obese adult subjects.

    PubMed

    Fornari, Rachele; Marocco, Chiara; Francomano, Davide; Fittipaldi, Simona; Lubrano, Carla; Bimonte, Viviana M; Donini, Lorenzo M; Nicolai, Emanuele; Aversa, Antonio; Lenzi, Andrea; Greco, Emanuela A; Migliaccio, Silvia

    2018-06-01

    Obesity is a severe public health problem worldwide, leading to an insulin-resistant state in liver, adipose, and muscle tissue, representing a risk factor for type 2 diabetes mellitus, cardiovascular diseases, and cancer. We have shown that abdominal obesity is associated with homeostasis derangement, linked to several hormonal and paracrine factors. Data regarding potential link between GH/IGF1 axis, bone mineral density, and inflammation in obesity are lacking. Thus, aim of this study was to evaluate correlation among IGF-1, BMD, and inflammation in obese individuals. The study included 426 obese subjects, mean age 44.8 ± 14 years; BMI 34.9 ± 6.1. Exclusion criteria were chronic medical conditions, use of medications affecting bone metabolism, hormonal and nutritional status, recent weight loss, and prior bariatric surgery. Patients underwent measurements of BMD and body composition by DEXA and were evaluated for hormonal, metabolic profile, and inflammatory markers. In this population, IGF-1 was inversely correlated with abdominal FM% (p < 0.001, r 2  = 0.12) and directly correlated with osteocalcin (OSCA) (p < 0.002, r 2  = 0.14). A negative correlation was demonstrated between IGF-1 levels and nonspecific inflammatory index, such as fibrinogen (p < 0.01, r 2  = 0.04) and erythrocyte sedimentation rate (p < 0.0001, r 2  = 0.03). IGF-1 was directly correlated with higher BMD, at both lumbar (p < 0.02, r 2  = 0.03) and femoral site (p < 0.04, r 2  = 0.03). In conclusion, our results show that higher levels of serum IGF-1 in obese patients correlate with lower inflammatory pattern and better skeletal health, as demonstrated by higher BMD and osteocalcin levels. These results lead to speculate the existence of a bone-adipose-muscle interplay modulating energy homeostasis, glucose, bone metabolism, and chronic inflammation in individuals affected by abdominal obesity.

  16. Bone tissue reactions to biomimetic ion-substituted apatite surfaces on titanium implants.

    PubMed

    Ballo, Ahmed M; Xia, Wei; Palmquist, Anders; Lindahl, Carl; Emanuelsson, Lena; Lausmaa, Jukka; Engqvist, Håkan; Thomsen, Peter

    2012-07-07

    The aim of this study was to evaluate the bone tissue response to strontium- and silicon-substituted apatite (Sr-HA and Si-HA) modified titanium (Ti) implants. Sr-HA, Si-HA and HA were grown on thermally oxidized Ti implants by a biomimetic process. Oxidized implants were used as controls. Surface properties, i.e. chemical composition, surface thickness, morphology/pore characteristics, crystal structure and roughness, were characterized with various analytical techniques. The implants were inserted in rat tibiae and block biopsies were prepared for histology, histomorphometry and scanning electron microscopy analysis. Histologically, new bone formed on all implant surfaces. The bone was deposited directly onto the Sr-HA and Si-HA implants without any intervening soft tissue. The statistical analysis showed significant higher amount of bone-implant contact (BIC) for the Si-doped HA modification (P = 0.030), whereas significant higher bone area (BA) for the Sr-doped HA modification (P = 0.034), when compared with the non-doped HA modification. The differences were most pronounced at the early time point. The healing time had a significant impact for both BA and BIC (P < 0.001). The present results show that biomimetically prepared Si-HA and Sr-HA on Ti implants provided bioactivity and promoted early bone formation.

  17. The Effects of Whole Body Vibration Training on Some Biochemical Values in Terms of Osteoporosis Risk in Premenopausal Women

    ERIC Educational Resources Information Center

    Demirel, Nurcan; Kaya, Faith; Pinar, Salih

    2018-01-01

    The main purpose of the present study is to comparatively examine the effects of Whole body vibration (WBV) trainings on some biochemical bone-turnover markers (Beta-CTx, Osteocalcin) in terms of osteoporosis. Twenty-four sedentary women (mean age = 37.12 ± 1.84 years) participated in the study. The participants were randomly divided to 3 groups:…

  18. Whole-Body Vibration Mimics the Metabolic Effects of Exercise in Male Leptin Receptor–Deficient Mice

    PubMed Central

    McGee-Lawrence, Meghan E.; Wenger, Karl H.; Misra, Sudipta; Davis, Catherine L.; Pollock, Norman K.; Elsalanty, Mohammed; Ding, Kehong; Isales, Carlos M.; Hamrick, Mark W.; Wosiski-Kuhn, Marlena; Arounleut, Phonepasong; Mattson, Mark P.; Cutler, Roy G.; Yu, Jack C.

    2017-01-01

    Whole-body vibration (WBV) has gained attention as a potential exercise mimetic, but direct comparisons with the metabolic effects of exercise are scarce. To determine whether WBV recapitulates the metabolic and osteogenic effects of physical activity, we exposed male wild-type (WT) and leptin receptor–deficient (db/db) mice to daily treadmill exercise (TE) or WBV for 3 months. Body weights were analyzed and compared with WT and db/db mice that remained sedentary. Glucose and insulin tolerance testing revealed comparable attenuation of hyperglycemia and insulin resistance in db/db mice following TE or WBV. Both interventions reduced body weight in db/db mice and normalized muscle fiber diameter. TE or WBV also attenuated adipocyte hypertrophy in visceral adipose tissue and reduced hepatic lipid content in db/db mice. Although the effects of leptin receptor deficiency on cortical bone structure were not eliminated by either intervention, exercise and WBV increased circulating levels of osteocalcin in db/db mice. In the context of increased serum osteocalcin, the modest effects of TE and WBV on bone geometry, mineralization, and biomechanics may reflect subtle increases in osteoblast activity in multiple areas of the skeleton. Taken together, these observations indicate that WBV recapitulates the effects of exercise on metabolism in type 2 diabetes. PMID:28323991

  19. Vhl deletion in osteoblasts boosts cellular glycolysis and improves global glucose metabolism

    PubMed Central

    Dirckx, Naomi; Tower, Robert J.; Mercken, Evi M.; Moreau-Triby, Caroline; Breugelmans, Tom; Nefyodova, Elena; Cardoen, Ruben; Mathieu, Chantal; Van der Schueren, Bart; Confavreux, Cyrille B.; Clemens, Thomas L.

    2018-01-01

    The skeleton has emerged as an important regulator of systemic glucose homeostasis, with osteocalcin and insulin representing prime mediators of the interplay between bone and energy metabolism. However, genetic evidence indicates that osteoblasts can influence global energy metabolism through additional, as yet unknown, mechanisms. Here, we report that constitutive or postnatally induced deletion of the hypoxia signaling pathway component von Hippel–Lindau (VHL) in skeletal osteolineage cells of mice led to high bone mass as well as hypoglycemia and increased glucose tolerance, not accounted for by osteocalcin or insulin. In vitro and in vivo data indicated that Vhl-deficient osteoblasts displayed massively increased glucose uptake and glycolysis associated with upregulated HIF-target gene expression, resembling the Warburg effect that typifies cancer cells. Overall, the glucose consumption by the skeleton was increased in the mutant mice, as revealed by 18F-FDG radioactive tracer experiments. Moreover, the glycemia levels correlated inversely with the level of skeletal glucose uptake, and pharmacological treatment with the glycolysis inhibitor dichloroacetate (DCA), which restored glucose metabolism in Vhl-deficient osteogenic cells in vitro, prevented the development of the systemic metabolic phenotype in the mutant mice. Altogether, these findings reveal a novel link between cellular glucose metabolism in osteoblasts and whole-body glucose homeostasis, controlled by local hypoxia signaling in the skeleton. PMID:29431735

  20. Altered Osteocyte-Specific Protein Expression in Bone after Childhood Solid Organ Transplantation

    PubMed Central

    Pereira, Renata C.; Valta, Helena; Tumber, Navdeep; Salusky, Isidro B.; Jalanko, Hannu

    2015-01-01

    Background Bone fragility is common post solid organ transplantation but little is known about bone pathology on a tissue level. Abnormal osteocytic protein expression has been linked to compromised bone health in chronic kidney disease (CKD) and immunosuppressant medications may impact osteocyte function. Methods Transiliac bone biopsies were obtained from 22 pediatric solid organ allograft recipients (average age 15.6 years) an average of 6.3 ± 1.2 years after transplantation and from 12 pediatric pre-dialysis CKD patients (average age 13.2 years). Histomorphometry and immunohistochemistry for FGF23, DMP1, sclerostin, and osteopontin were performed on all biopsies. Results FGF23 and sclerostin were increased in transplant recipients relative to non-transplant CKD, regardless of the type of allograft received and despite, in the case of liver and heart recipients, a higher GFR. Bone DMP1 expression was higher in liver or heart than in kidney recipients, concomitant with higher serum phosphate values. Osteopontin expression was higher in CKD than in transplant recipients (p<0.01). Bone FGF23 and sclerostin correlated directly (r = 0.38, p<0.05); bone FGF23 expression and osteoid thickness correlated inversely (r = - 0.46, p<0.01). Conclusions Solid-organ transplantation is associated with increased FGF23 and sclerostin expression. The contribution of these findings to compromised bone health post transplantation warrants further evaluation. PMID:26390291

  1. Altered Osteocyte-Specific Protein Expression in Bone after Childhood Solid Organ Transplantation.

    PubMed

    Pereira, Renata C; Valta, Helena; Tumber, Navdeep; Salusky, Isidro B; Jalanko, Hannu; Mäkitie, Outi; Wesseling Perry, Katherine

    2015-01-01

    Bone fragility is common post solid organ transplantation but little is known about bone pathology on a tissue level. Abnormal osteocytic protein expression has been linked to compromised bone health in chronic kidney disease (CKD) and immunosuppressant medications may impact osteocyte function. Transiliac bone biopsies were obtained from 22 pediatric solid organ allograft recipients (average age 15.6 years) an average of 6.3 ± 1.2 years after transplantation and from 12 pediatric pre-dialysis CKD patients (average age 13.2 years). Histomorphometry and immunohistochemistry for FGF23, DMP1, sclerostin, and osteopontin were performed on all biopsies. FGF23 and sclerostin were increased in transplant recipients relative to non-transplant CKD, regardless of the type of allograft received and despite, in the case of liver and heart recipients, a higher GFR. Bone DMP1 expression was higher in liver or heart than in kidney recipients, concomitant with higher serum phosphate values. Osteopontin expression was higher in CKD than in transplant recipients (p<0.01). Bone FGF23 and sclerostin correlated directly (r = 0.38, p<0.05); bone FGF23 expression and osteoid thickness correlated inversely (r = - 0.46, p<0.01). Solid-organ transplantation is associated with increased FGF23 and sclerostin expression. The contribution of these findings to compromised bone health post transplantation warrants further evaluation.

  2. Bone tissue engineering with a collagen–hydroxyapatite scaffold and culture expanded bone marrow stromal cells

    PubMed Central

    Villa, Max M.; Wang, Liping; Huang, Jianping; Rowe, David W.; Wei, Mei

    2015-01-01

    Osteoprogenitor cells combined with supportive biomaterials represent a promising approach to advance the standard of care for bone grafting procedures. However, this approach faces challenges, including inconsistent bone formation, cell survival in the implant, and appropriate biomaterial degradation. We have developed a collagen–hydroxyapatite (HA) scaffold that supports consistent osteogenesis by donor derived osteoprogenitors, and is more easily degraded than a pure ceramic scaffold. Herein, the material properties are characterized as well as cell attachment, viability, and progenitor distribution in vitro. Furthermore, we examined the biological performance in vivo in a critical-size mouse calvarial defect. To aid in the evaluation of the in-house collagen–HA scaffold, the in vivo performance was compared with a commercial collagen–HA scaffold (Healos®, Depuy). The in-house collagen–HA scaffold supported consistent bone formation by predominantly donor-derived osteoblasts, nearly completely filling a 3.5 mm calvarial defect with bone in all samples (n=5) after 3 weeks of implantation. In terms of bone formation and donor cell retention at 3 weeks postimplantation, no statistical difference was found between the in-house and commercial scaffold following quantitative histomorphometry. The collagen–HA scaffold presented here is an open and well-defined platform that supports robust bone formation and should facilitate the further development of collagen–hydroxyapatite biomaterials for bone tissue engineering. PMID:24909953

  3. Fixation of Hydroxyapatite-Coated Revision Implants Is Improved by the Surgical Technique of Cracking the Sclerotic Bone Rim

    PubMed Central

    Elmengaard, Brian; Bechtold, Joan E.; Chen, Xinqian; Søballe, Kjeld

    2013-01-01

    Revision joint replacement has poorer outcomes that have been associated with poorer mechanical fixation. We investigate a new bone-sparing surgical technique that locally cracks the sclerotic bone rim formed during aseptic loosening. We inserted 16 hydroxyapatite-coated implants bilaterally in the distal femur of eight dogs, using a controlled weight-bearing experimental model that replicates important features of a typical revision setting. At 8 weeks, a control revision procedure and a crack revision procedure were performed on contralateral implants. The crack procedure used a splined tool to perform a systematic local perforation of the sclerotic bone rim of the revision cavity. After 4 weeks, the hydroxyapatite-coated implants were evaluated for mechanical fixation by a push-out test and for tissue distribution by histomorphometry. The cracking revision procedure resulted in significantly improved mechanical fixation, significantly more bone ongrowth and bone volume in the gap, and reduced fibrous tissue compared to the control revision procedure. The study demonstrates that the sclerotic bone rim prevents bone ingrowth and promotes fixation by fibrous tissue. The effect of the cracking technique may be due to improved access to the vascular compartment of the bone. The cracking technique is a simple surgical method that potentially can improve the fixation of revision implants in sclerotic regions important for obtaining the fixation critical for overall implant stability. PMID:19148940

  4. SDF-1 promotes endochondral bone repair during fracture healing at the traumatic brain injury condition.

    PubMed

    Liu, Xiaoqi; Zhou, Changlong; Li, Yanjing; Ji, Ye; Xu, Gongping; Wang, Xintao; Yan, Jinglong

    2013-01-01

    The objective of this study was to investigate the role of stromal cell-derived factor-1 (SDF-1) and its receptor, CXCR4, on bone healing and whether SDF-1 contributes to accelerating bone repair in traumatic brain injury (TBI)/fracture model. Real-time polymerase chain reaction and immunohistochemical analysis were used to detect the expression of SDF-1 during the repair of femoral bone in TBI/fracture model. The TBI/fracture model was treated with anti-SDF-1 neutralizing antibody or AMD3100, an antagonist for CXCR4, and evaluated by histomorphometry. In vitro and in vivo migration assays were used to evaluate the functional effect of SDF-1 on primary mesenchymal stem cells. The expression of SDF1 and CXCR4 messenger RNA was increased during the bone healing in TBI/fracture model but was less increased in fracture only model. High expression of SDF-1 protein was observed in the surrounding tissue of the damaged bone. Treated with anti-SDF-1 antibody or AMD3100 could inhibit new bone formation. SDF-1 increased mesenchymal stem cell chemotaxis in vitro in a dose-dependent manner. The in vivo migration study demonstrated that mesenchymal stem cells recruited by SDF-1 participate in endochondral bone repair. The SDF-1/CXCR4 axis plays a crucial role in the accelerating fracture healing under the condition of TBI and contributes to endochondral bone repair.

  5. Regional distribution of mineral and matrix in the femurs of rats flown on Cosmos 1887 biosatellite

    NASA Technical Reports Server (NTRS)

    Mechanic, Gerald L.; Arnaud, Sara B.; Boyde, Alan; Bromage, Timothy G.; Buckendahl, Patricia

    1990-01-01

    The location and nature of the defect in mineralization known to occur in growing animals after spaceflight are studied. The distribution of bone mineral density in situ is mapped, and these images are correlated with the chemical composition of the diaphyseal bone. Concentrations of mineral and osteocalcin are found to be low in the distal half of the diaphysis and concentrations of collagen to be low with evidence of increased synthesis in the proximal half of the diaphysis of the flight bones. X-ray microtomography indicates a longitudinal gradient of decreasing mineralization toward the distal diaphysis. Analysis of embedded sections by backscattered electrons reveals patterns of mineral distribution in the proximal, central, and distal regions of the diaphysis and also shows a net reduction in mineral levels toward the distal shaft. Increases in mineral density to higher fractions in controls are less in the flight bones at all three levels.

  6. Vitamin D supplementation during short-term caloric restriction in healthy overweight/obese older women: Effect on glycemic indices and serum osteocalcin levels.

    PubMed

    Sukumar, D; Shapses, S A; Schneider, S H

    2015-07-15

    The effect of vitamin D supplementation and caloric restriction (CR) on glycemic indices and osteocalcin (OC) is not clear. In this randomized controlled double blind trial, we examined whether vitamin D3 supplementation at 2500 IU/d (D) or placebo has differential effects on markers of insulin sensitivity and bone turnover in overweight/obese postmenopausal women during 6 weeks of caloric restriction (weight loss; WL, n = 39) compared to weight maintenance (WM, n = 37). Seventy-six women (57 ± 6 years) completed this study and the WL groups lost 4 ± 1% of body weight. Baseline serum 25-hydroxyvitamin D (25OHD) was 24.8 ± 5.6 ng/mL at baseline; the rise was greatest in WL-D group (p < 0.05). There was an interaction between vitamin D intake and weight on serum OC, insulin, glucose and markers of insulin sensitivity (p < 0.05). The change in OC was explained by changes in serum 25OHD and insulin (model R(2) = 25.6%). Overall, vitamin D supplementation and CR influence serum osteocalcin levels and modestly favor improvements in insulin sensitivity. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Bone Metabolism of the Patient with a Malignant Melanoma during the Entry Examination and the Check-up of Whole-body Bone Scintigraphy.

    PubMed

    Weissensteiner, Jaroslav; Babušíková, Eva

    Malignant melanoma is a malignancy located predominantly in the skin and the incidence of melanoma increases. We compared the markers of bone metabolism - osteocalcin (OC), beta-carboxyterminal cross-linked telopeptide of type I collagen (β-CrossLaps, β-CTx) and tumour marker - human epididymis protein 4 (HE4) in the serum with finding during the entry examination and the check-up of whole-body bone scintigraphy of the patient with a malignant melanoma. Serum concentrations of OC, β-CTx, HE4 were determined in 1 patient (female, age 64 years) with malignant melanoma and correlated with the presence of equivocal bone metastases detected by whole-body bone scintigraphy (the entry examination and check-up after 6 months). Concentrations of bone metabolism markers decreased during six months and we observed progress in bone metastases. The change of the markers levels during the entry examination and the check-up of the whole-body bone scintigraphy with equivocal finding of bone metastases could be a sign of a possible initiating progression of malignant melanoma despite a clinically negative finding that does not prove the progression of the disease.

  8. Effect of antitumour necrosis factor-alpha therapy on bone turnover in patients with active Crohn's disease: a prospective study.

    PubMed

    Ryan, B M; Russel, M G V M; Schurgers, L; Wichers, M; Sijbrandij, J; Stockbrugger, R W; Schoon, E

    2004-10-15

    Patients with Crohn's disease are at increased risk of osteoporosis. Disease activity and circulating proinflammatory cytokines are thought to play a role in this process. Infliximab, a chimaeric antitumour necrosis factor-alpha antibody is effective in the treatment of Crohn's disease. The aim of this study was to investigate the impact of treatment with infliximab on bone turnover in Crohn's disease patients. This was a prospective trial. Twenty-four patients with active Crohn's disease were treated with infliximab (5 mg/kg). Bone markers were assayed pre- and post-treatment. Bone formation was measured using serum bone-specific alkaline phosphatase and total osteocalcin and bone resorption using serum N-telopeptide cross-linked type 1 collagen. Infliximab therapy caused a significant increase in both markers of bone formation in patients with active Crohn's disease. No significant change in the bone resorption marker serum N-telopeptide cross-linked type 1 was found. Infliximab therapy had a significant beneficial effect on bone metabolism in patients with active Crohn's disease. These findings further support the theory that active ongoing inflammation and high levels of circulating cytokines play a pivotal role in the pathogenesis of bone loss in patients with Crohn's disease.

  9. Histological Evaluation of the Healing Process of Various Bone Graft Materials after Engraftment into the Human Body.

    PubMed

    Jo, Sang Hyun; Kim, Young-Kyun; Choi, Yong-Hoon

    2018-05-02

    The purpose of this study was to measure the level of new bone formation induced by various bone graft materials to provide clinicians with more choices. The samples were divided into three groups: group 1 ( n = 9: allograft + xenograft, DBX ® , San Francisco, CA, USA + Bio-Oss ® , Princeton, NJ, USA), group 2 ( n = 10: xenograft, Bio-Oss ® ), and group 3 ( n = 8: autogenous tooth bone graft, AutoBT ® , Korea Tooth Bank, Seoul, Korea). The average duration of evaluation was 9.56, 2.50, and 3.38 months, respectively. A tissue sample was taken from 27 patients during the second implant surgery. New bone formation was measured via histomorphometry, using a charge-coupled device camera, adaptor, and image analysis software. Total bone area, total area, and ((total bone area/total area) × 100) was measured to determine the extent of new bone formation. The mean value of the total bone area was 152,232.63 μm²; the mean value of the total area was 1,153,696.46 μm²; and the mean total bone area/total area ratio was 13.50%. In each comparison, there was no significant difference among the groups; no inflammation or complications were found in any of the groups. AutoBT ® , an autogenous tooth bone graft, resulted in a level of bone formation similar to that using allografts and xenografts.

  10. Maternal Active Mastication during Prenatal Stress Ameliorates Prenatal Stress-Induced Lower Bone Mass in Adult Mouse Offspring

    PubMed Central

    Azuma, Kagaku; Ogura, Minori; Kondo, Hiroko; Suzuki, Ayumi; Hayashi, Sakurako; Iinuma, Mitsuo; Onozuka, Minoru; Kubo, Kin-ya

    2017-01-01

    Chronic psychological stress is a risk factor for osteoporosis. Maternal active mastication during prenatal stress attenuates stress response. The aim of this study is to test the hypothesis that maternal active mastication influences the effect of prenatal stress on bone mass and bone microstructure in adult offspring. Pregnant ddY mice were randomly divided into control, stress, and stress/chewing groups. Mice in the stress and stress/chewing groups were placed in a ventilated restraint tube for 45 minutes, 3 times a day, and was initiated on day 12 of gestation and continued until delivery. Mice in the stress/chewing group were allowed to chew a wooden stick during the restraint stress period. The bone response of 5-month-old male offspring was evaluated using quantitative micro-CT, bone histomorphometry, and biochemical markers. Prenatal stress resulted in significant decrease of trabecular bone mass in both vertebra and distal femur of the offspring. Maternal active mastication during prenatal stress attenuated the reduced bone formation and increased bone resorption, improved the lower trabecular bone volume and bone microstructural deterioration induced by prenatal stress in the offspring. These findings indicate that maternal active mastication during prenatal stress can ameliorate prenatal stress-induced lower bone mass of the vertebra and femur in adult offspring. Active mastication during prenatal stress in dams could be an effective coping strategy to prevent lower bone mass in their offspring. PMID:28553167

  11. Maternal Active Mastication during Prenatal Stress Ameliorates Prenatal Stress-Induced Lower Bone Mass in Adult Mouse Offspring.

    PubMed

    Azuma, Kagaku; Ogura, Minori; Kondo, Hiroko; Suzuki, Ayumi; Hayashi, Sakurako; Iinuma, Mitsuo; Onozuka, Minoru; Kubo, Kin-Ya

    2017-01-01

    Chronic psychological stress is a risk factor for osteoporosis. Maternal active mastication during prenatal stress attenuates stress response. The aim of this study is to test the hypothesis that maternal active mastication influences the effect of prenatal stress on bone mass and bone microstructure in adult offspring. Pregnant ddY mice were randomly divided into control, stress, and stress/chewing groups. Mice in the stress and stress/chewing groups were placed in a ventilated restraint tube for 45 minutes, 3 times a day, and was initiated on day 12 of gestation and continued until delivery. Mice in the stress/chewing group were allowed to chew a wooden stick during the restraint stress period. The bone response of 5-month-old male offspring was evaluated using quantitative micro-CT, bone histomorphometry, and biochemical markers. Prenatal stress resulted in significant decrease of trabecular bone mass in both vertebra and distal femur of the offspring. Maternal active mastication during prenatal stress attenuated the reduced bone formation and increased bone resorption, improved the lower trabecular bone volume and bone microstructural deterioration induced by prenatal stress in the offspring. These findings indicate that maternal active mastication during prenatal stress can ameliorate prenatal stress-induced lower bone mass of the vertebra and femur in adult offspring. Active mastication during prenatal stress in dams could be an effective coping strategy to prevent lower bone mass in their offspring.

  12. High-Dose α-Tocopherol Supplementation Does Not Induce Bone Loss in Normal Rats

    PubMed Central

    Kasai, Shunji; Ito, Akemi; Shindo, Kaori; Toyoshi, Tohru; Bando, Masahiro

    2015-01-01

    Oxidative stress affects bone turnover. Preventative effects of antioxidants such as vitamin E on reduced bone mineral density and fractures associated with aging, osteoporosis, and smoking have been examined in animals and humans. The effects of vitamin E (α-tocopherol; αT) on bone health have yielded conflicting and inconclusive results from animal studies. In this study, to determine the bone effects of αT, we investigated the in vivo effects of αT on the bone mineral density, bone mass, bone microstructure, bone resorption, and osteogenesis through peripheral quantitative computed tomography (pQCT) measurements, micro-computed tomography (micro-CT) analyses, and bone histomorphometry of lumbar vertebrae and femurs in normal female Wistar rats fed diets containing αT in different quantities (0, 30, 120, or 600 mg/kg diet) for 8 weeks. To validate our hypotheses regarding bone changes, we examined ovariectomized rats as an osteoporosis model and control sham-operated rats in parallel. As expected, ovariectomized rats had reduced bone mineral density in lumbar vertebrae and the distal metaphyses of their femurs, reduced bone mass and deteriorated microstructure of cancellous bones in the vertebral body and distal femur metaphyses, and reduced bone mass due to resorption-dominant enhanced bone turnover in secondary cancellous bones in these sites. In comparison, αT administered to normal rats, even at the highest dose, did not induce reduced bone mineral density of lumbar vertebrae and femurs or a reduced bone mass or fragile microstructure of cancellous bones of the vertebral body and distal femur metaphyses. Instead, αT-fed rats showed a tendency for an osteogenesis-dominant bone mass increase in secondary cancellous bones in the vertebral body, in which active bone remodeling occurs. Thus, αT consumption may have beneficial effects on bone health. PMID:26147575

  13. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone.

    PubMed Central

    Weinstein, R S; Jilka, R L; Parfitt, A M; Manolagas, S C

    1998-01-01

    Glucocorticoid-induced bone disease is characterized by decreased bone formation and in situ death of isolated segments of bone (osteonecrosis) suggesting that glucocorticoid excess, the third most common cause of osteoporosis, may affect the birth or death rate of bone cells, thus reducing their numbers. To test this hypothesis, we administered prednisolone to 7-mo-old mice for 27 d and found decreased bone density, serum osteocalcin, and cancellous bone area along with trabecular narrowing. These changes were accompanied by diminished bone formation and turnover, as determined by histomorphometric analysis of tetracycline-labeled vertebrae, and impaired osteoblastogenesis and osteoclastogenesis, as determined by ex vivo bone marrow cell cultures. In addition, the mice exhibited a threefold increase in osteoblast apoptosis in vertebrae and showed apoptosis in 28% of the osteocytes in metaphyseal cortical bone. As in mice, an increase in osteoblast and osteocyte apoptosis was documented in patients with glucocorticoid-induced osteoporosis. Decreased production of osteoclasts explains the reduction in bone turnover, whereas decreased production and apoptosis of osteoblasts would account for the decline in bone formation and trabecular width. Furthermore, accumulation of apoptotic osteocytes may contribute to osteonecrosis. These findings provide evidence that glucocorticoid-induced bone disease arises from changes in the numbers of bone cells. PMID:9664068

  14. Insulin antagonises pigment epithelium-derived factor (PEDF)-induced modulation of lineage commitment of myocytes and heterotrophic ossification.

    PubMed

    Carnagarin, Revathy; Elahy, Mina; Dharmarajan, Arun M; Dass, Crispin R

    2017-12-16

    Extensive bone defects arising as a result of trauma, infection and tumour resection and other bone pathologies necessitates the identification of effective strategies in the form of tissue engineering, gene therapy and osteoinductive agents to enhance the bone repair process. PEDF is a multifunctional glycoprotein which plays an important role in regulating osteoblastic differentiation and bone formation. PEDF treatment of mice and human skeletal myocytes at physiological concentration inhibited myogenic differentiation and activated Erk1/2 MAPK- dependent osteogenic transdifferentiation of myocytes. In mice, insulin, a promoter of bone regeneration, attenuated PEDF-induced expression of osteogenic markers such as osteocalcin, alkaline phosphatase and mineralisation for bone formation in the muscle and surrounding adipose tissue. These results provide new insights into the molecular aspects of the antagonising effect of insulin on PEDF-dependent modulation of the differentiation commitment of musculoskeletal environment into osteogenesis, and suggest that PEDF may be developed as an effective clinical therapy for bone regeneration as its heterotopic ossification can be controlled via co-administration of insulin. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Gender differences in D-aspartic acid content in skull bone.

    PubMed

    Torikoshi-Hatano, Aiko; Namera, Akira; Shiraishi, Hiroaki; Arima, Yousuke; Toubou, Hirokazu; Ezaki, Jiro; Morikawa, Masami; Nagao, Masataka

    2012-12-01

    In forensic medicine, the personal identification of cadavers is one of the most important tasks. One method of estimating age at death relies on the high correlation between racemization rates in teeth and actual age, and this method has been applied successfully in forensic odontology for several years. In this study, we attempt to facilitate the analysis of racemized amino acids and examine the determination of age at death on the basis of the extent of aspartic acid (Asp) racemization in skull bones. The specimens were obtained from 61 human skull bones (19 females and 42 males) that underwent judicial autopsy from October 2010 to May 2012. The amount of D-Asp and L-Asp, total protein, osteocalcin, and collagen I in the skull bones was measured. Logistic regression analysis was performed for age, sex, and each measured protein. The amount of D-Asp in the female skull bones was significantly different from that in the male skull bones (p = 0.021), whereas the amount of L-Asp was similar. Thus, our study indicates that the amount of D-Asp in skull bones is different between the sexes.

  16. Use of ossein-hydroxyapatite complex in the prevention of bone loss: a review.

    PubMed

    Castelo-Branco, C; Dávila Guardia, J

    2015-02-01

    The ossein-hydroxyapatite complex (OHC) is a microcrystalline form of calcium which provides a number of additional minerals (magnesium, phosphorus, potassium, zinc), and proteins (osteocalcin, type I collagen, type I insulin growth factor I and II, transforming growth factor beta) associated with bone metabolism. The objective of this review is to examine the role of OHC in preventing bone loss in different conditions. A review of clinical trials assessing the relationship between OHC and bone loss was made using the following data sources: Medline (from 1966 to December 2013), the Cochrane Controlled Clinical Trials Register, Embase (up to December 2013), contact with companies marketing the supplements studied, and reference lists. Different randomized, clinical trials and meta-analysis suggest that OHC is more effective than calcium supplements in maintaining bone mass in postmenopausal women and in different conditions related to bone loss. In addition, OHC improves pain symptoms and accelerates fracture consolidation in patients with osteopenia or osteoporosis. The ossein-hydroxyapatite complex is significantly more effective in preventing bone loss than calcium carbonate.

  17. Determinants of alveolar ridge preservation differ by anatomic location

    PubMed Central

    Leblebicioglu, Binnaz; Salas, Mabel; Ort, Yirae; Johnson, Ashley; Yildiz, Vedat O.; Kim, Do-Gyoon; Agarwal, Sudha; Tatakis, Dimitris N.

    2016-01-01

    Aim To investigate and compare outcomes following alveolar ridge preservation (ARP) in posterior maxilla and mandible. Methods Twenty-four patients (54 ± 3 years) with single posterior tooth extraction were included. ARP was performed with freeze-dried bone allograft and collagen membrane. Clinical parameters were recorded at extraction and re-entry. Harvested bone cores were analysed by microcomputed tomography (micro-CT), histomorphometry and immunohistochemistry. Results In both jaws, ARP prevented ridge height loss, but ridge width was significantly reduced by approximately 2.5 mm. Healing time, initial clinical attachment loss and amount of keratinized tissue at extraction site were identified as determinants of ridge height outcome. Buccal plate thickness and tooth root length were identified as determinants of ridge width outcome. In addition, initial ridge width was positively correlated with ridge width loss. Micro-CT revealed greater mineralization per unit volume in new bone compared with existing bone in mandible (p < 0.001). Distributions of residual graft, new cellular bone and immature tissue were similar in both jaws. Conclusion Within the limitations of this study, the results indicate that in different anatomic locations different factors may determine ARP outcomes. Further studies are needed to better understand determinants of ARP outcomes. PMID:23432761

  18. Biphasic β-TCP mixed with silicon increases bone formation in critical site defects in rabbit calvaria.

    PubMed

    Calvo-Guirado, José Luis; Garces, Miguel; Delgado-Ruiz, Rafael Arcesio; Ramirez Fernandez, Maria P; Ferres-Amat, Eduard; Romanos, Georgios E

    2015-08-01

    The aim of this study was to assess the bone regeneration of critical size defects in rabbit calvarias filled with β-TCP doped with silicon. Twenty-one New Zealand rabbits were used in this study. Two critical size defects were created in the parietal bones. Three experimental groups were evaluated: Test A (HA/β-TCP granules alone), Test B (HA/β-TCP granules plus 3% silicon), Control (empty defect). The animals were sacrificed at 8 and 12 weeks. Evaluation was performed by μCT analysis and histomorphometry. μCT evaluation showed higher volume reduction in Test A group compared with Test B (P < 0.05). The Test B group showed the highest values for cortical closure and bone formation around the particles, followed by Test A and controls (P < 0.05). Within the limitations of this animal study, it can be concluded that HA/β-TCP plus 3% silicon increases bone formation in critical size defects in rabbit calvarias, and the incorporation of 3% silicon reduces the resorption rate of the HA/β-TCP granules. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Bone Loss from High Repetitive High Force Loading is Prevented by Ibuprofen Treatment

    PubMed Central

    Jain, Nisha X.; Barr-Gillespie, Ann E.; Clark, Brian D.; Kietrys, David M.; Wade, Christine K.; Litvin, Judith; Popoff, Steven N.; Barbe, Mary F.

    2014-01-01

    We examined roles of loading and inflammation on forearm bones in a rat model of upper extremity overuse. Trabecular structure in distal radius and ulna was examined in three groups of young adult rats: 1) 5% food-restricted that underwent an initial training period of 10 min/day for 5 weeks to learn the repetitive task (TRHF); 2) rats that underwent the same training before performing a high repetition high force task, 2 hours/day for 12 weeks (HRHF); and 3) food-restricted only (FRC). Subsets were treated with oral ibuprofen (IBU). TRHF rats had increased trabecular bone volume and numbers, osteoblasts, and serum osteocalcin, indicative of bone adaptation. HRHF rats had constant muscle pulling forces, showed limited signs of bone adaptation, but many signs of bone resorption, including decreased trabecular bone volume and bone mineral density, increased osteoclasts and bone inflammatory cytokines, and reduced median nerve conduction velocity (15%). HRHF+IBU rats showed no trabecular resorptive changes, no increased osteoclasts or bone inflammatory cytokines, no nerve inflammation, preserved nerve conduction, and increased muscle voluntary pulling forces. Ibuprofen treatment preserved trabecular bone quality by reducing osteoclasts and bone inflammatory cytokines, and improving muscle pulling forces on bones as a result of reduced nerve inflammation. PMID:24583543

  20. Production of New Trabecular Bone in Osteopenic Ovariectomized Rats by Prostaglandin E2

    NASA Technical Reports Server (NTRS)

    Mori, S.; Jee, W. S. S.; Li, X. J.

    1992-01-01

    Serum chemistry and bone morphometry of the proximal tibial metaphysis were performed in 3 month-old double fluorescent-labeled, female Sprague-Dawley rats subjected to bilateral ovariectomy or sham surgery for 4 months prior to treatment with 0, 0.3, 1,3, or 6 mg of prostaglandin E2 (PGE2)/kg/day subcutaneously for 30 days. The 4 month postovariectomized rats possessed an osteopenic proximal tibial metaphysis with 7% trabecular area compared with controls (19%). PGE2 treatment elevated osteocalcin levels and augmented proximal tibial metaphyseal bone area in ovariectomized and sham-operated rats. Osteopenic, ovariectomized rats treated with 6 mg (PGE2)/kg/day for 30 days restored bone area to levels of agematched sham-operated rats. Morphometric analyses showed increased woven and lamellar bone area, fluorescent-labeled perimeter (osteoblastic recruitment), mineral apposition rate (osteoblastic activity), bone formation rate (BFR/BV), and longitudinal bone growth. These dramatic bone changes were all significantly increased at the doseresponse manner. This study showed that in vivo PGE2 is a powerful activator of bone remodeling, it increases both bone resorption and bone formation, and produces an anabolic effect by shifting bone balance to the positive direction. Furthermore, PGE2-induced augmentation of metaphyseal bone area in ovariectomized rats was at least two times greater than in sham-operated rats.

  1. Zone-dependent changes in human vertebral trabecular bone: clinical implications.

    PubMed

    Thomsen, Jesper Skovhus; Ebbesen, E N; Mosekilde, Li

    2002-05-01

    We have previously shown that there are pronounced age-related changes in human vertebral cancellous bone density and microarchitecture. However, the magnitude of these changes seemed to be dependent on zone location in the vertebral body-the central third vs. the areas adjacent to the endplates. The aim of the present study was, therefore, to investigate whether such zone-specific differences could be identified by static histomorphometric measures. The material comprised 48 individuals (24 women aged 19-97 years, and 24 men aged 23-95 years). Three of the women had a known fracture of the L-2. From each L-2, thick frontal sections of half of the vertebra were embedded undecalcified in methylmethacrylate, cut into 10-microm-thick sections, and stained with aniline blue. The sections were scanned into a computer, and classic static histomorphometry was performed on the images. The histomorphometry was performed on both the whole section and on the separate zones (central and sub-endplate zone). The results showed that trabecular bone volume, trabecular number, and connectivity density decreased significantly faster with age, whereas marrow space star volume increased significantly faster with age in the zones adjacent to the endplates than in the central zone. The other histomorphometric measures showed no zone specificity in relation to aging. However, trabecular thickness and trabecular separation were both higher at all ages in the central zone than in the sub-endplate zone, although this was significant only for trabecular separation. The described differences might have significant clinical implications concerning quantitative computed tomography (QCT) scanning, X-ray analyses, and assessment of fracture liability in the human spine, but the underlying pathogenesis is still not known. This study shows that the human vertebral body can be described as two distinct zones with very specific age-related changes in density and microstructure. This zone-specificity is important for the correct interpretation of clinical data.

  2. Dipeptidyl Peptidase-4 Inhibitor, Vildagliptin, Improves Trabecular Bone Mineral Density and Microstructure in Obese, Insulin-Resistant, Pre-diabetic Rats.

    PubMed

    Charoenphandhu, Narattaphol; Suntornsaratoon, Panan; Sa-Nguanmoo, Piangkwan; Tanajak, Pongpan; Teerapornpuntakit, Jarinthorn; Aeimlapa, Ratchaneevan; Chattipakorn, Nipon; Chattipakorn, Siriporn

    2018-02-02

    Obese insulin resistance and type 2 diabetes mellitus profoundly impair bone mechanical properties and bone quality. However, because several antidiabetes drugs, especially thiazolidinediones, further aggravate bone loss in individuals with diabetes, diabetic osteopathy should not be treated by using simply any glucose-lowering agents. Recently, incretins have been reported to affect osteoblast function positively. The present study aimed to investigate the effects of vildagliptin, an inhibitor of dipeptidyl peptidase-4, on bone of rats with high-fat-diet-induced prediabetes. Male rats were fed a high-fat diet for 12 weeks to induce obese insulin resistance and then treated with vildagliptin for 4 weeks. The effects of the drug on bone were determined by microcomputed tomography and bone histomorphometry. Vildagliptin markedly improved insulin resistance in these obese insulin-resistant rats. It also significantly increased volumetric bone mineral density. Specifically, vildagliptin-treated obese insulin-resistant rats exhibited higher trabecular volumetric bone mineral density than vehicle-treated obese insulin-resistant rats, whereas cortical volumetric bone mineral density, cortical thickness and area were not changed. Bone histomorphometric analysis in a trabecular-rich area (i.e. tibial metaphysis) revealed greater trabecular bone volume and number and less trabecular separation without change in trabecular thickness, osteocyte lacunar area or cortical thickness in the vildagliptin-treated group. Vildagliptin had a beneficial effect on the bone of obese insulin-resistant rats with prediabetes, particularly at the trabecular site. Such benefit probably results from enhanced bone formation rather than from suppressed bone resorption. Copyright © 2018 Diabetes Canada. Published by Elsevier Inc. All rights reserved.

  3. Effects of dexamethasone, celecoxib, and methotrexate on the histology and metabolism of bone tissue in healthy Sprague Dawley rats.

    PubMed

    Liu, Yanzhi; Cui, Yang; Chen, Yan; Gao, Xiang; Su, Yanjie; Cui, Liao

    2015-01-01

    To investigate the long-term effects of three antiarthritics, namely dexamethasone, celecoxib, and methotrexate on the histology and metabolism of intact bone tissue in rats. Thirty-two 12-week-old healthy female Sprague Dawley rats were randomly allocated into four groups: 1) control (saline, daily); 2) dexamethasone (2 mg/kg, twice weekly); 3) celecoxib (50 mg/kg, daily); and 4) methotrexate (0.5 mg/kg, twice weekly). The drugs were administered to the rats for 12 weeks and the animals were weighed on a weekly basis. The femurs and lumbar vertebrae were harvested for bone mineral density and bone mechanical properties analyses. The proximal tibiae were processed for bone histomorphometry and micro-computed tomography analyses. The following results were obtained: 1) dexamethasone strongly inhibited bone formation rate accompanied with a decrease in bone mineral density and bone biomechanical properties; 2) celecoxib stimulated bone resorption, leading to a decrease of bone mass and femur biomechanic properties; and 3) methotrexate caused bone loss and bone quality deterioration to a lesser extent due to the increase of the bone turnover rate on the proximal tibial metaphysis of the rats. This study provides a comparative profile of the long-term effects of clinical doses of celecoxib, methotrexate, and dexamethasone on intact skeletons of the rats. The results indicate that the three antiarthritics have varying degrees of side effects on bone metabolism, and these findings will help physicians to learn more about the potential effects of antiarthritics on bone metabolism.

  4. Pre-augmentation soft tissue expansion improves scaffold-based vertical bone regeneration - a randomized study in dogs.

    PubMed

    Kaner, Doğan; Zhao, Han; Arnold, Wolfgang; Terheyden, Hendrik; Friedmann, Anton

    2017-06-01

    Soft tissue (ST) dehiscence with graft exposure is a frequent complication of vertical augmentation. Flap dehiscence is caused by failure to achieve tension-free primary wound closure and by the impairment of flap microcirculation due to surgical trauma. Soft tissue expansion (STE) increases ST quality and quantity prior to reconstructive surgery. We hypothesized that flap preconditioning using STE would reduce the incidence of ST complications after bone augmentation and that optimized ST healing would improve the outcome of bone regeneration. Self-filling tissue expanders were implanted in mandibular bone defects in ten beagle dogs. After expansion, alloplastic scaffolds were placed for vertical bone augmentation in STE sites and in control sites without STE pre-treatment. ST flap microcirculation was analysed using laser Doppler flowmetry. The incidence of graft exposures was evaluated after 2 weeks. Bone formation was assessed after 2 months, using histomorphometry and immunohistochemistry. Test sites showed significantly less impairment of perfusion and faster recovery of microcirculation after bone augmentation. Furthermore, no flap dehiscences occurred in STE sites. Bone regeneration was found in both groups; however, significantly greater formation of new bone was detected in test sites with preceding STE. Preconditioning using STE improved ST healing and bone formation after vertical augmentation. The combination of STE and the subsequent placement of alloplastic scaffolds may facilitate the reconstruction of severe bone defects. © 2016 The Authors. Clinical Oral Implants Research Published by John Wiley & Sons Ltd.

  5. Synergistic effects of bisphosphonate and calcium phosphate nanoparticles on peri-implant bone responses in osteoporotic rats.

    PubMed

    Alghamdi, Hamdan S; Bosco, Ruggero; Both, Sanne K; Iafisco, Michele; Leeuwenburgh, Sander C G; Jansen, John A; van den Beucken, Jeroen J J P

    2014-07-01

    The prevalence of osteoporosis will increase within the next decades due to the aging world population, which can affect the bone healing response to dental and orthopedic implants. Consequently, local drug targeting of peri-implant bone has been proposed as a strategy for the enhancement of bone-implant integration in osteoporotic conditions. In the present study, an established in-vivo femoral condyle implantation model in osteoporotic and healthy bone is used to analyze the osteogenic capacity of titanium implants coated with bisphosphonate (BP)-loaded calcium phosphate nanoparticles (nCaP) under compromised medical conditions. After 4 weeks of implantation, peri-implant bone volume (%BV; by μCT) and bone area (%BA; by histomorphometry) were significantly increased within a distance of 500 μm from implant surfaces functionalized with BP compared to control implants in osteoporotic and healthy conditions. Interestingly, the deposition of nCaP/BP coatings onto implant surfaces increased both peri-implant bone contact (%BIC) and volume (%BV) compared to the deposition of nCaP or BP coatings individually, in osteoporotic and healthy conditions. The results of real-time PCR revealed similar osteogenic gene expression levels to all implant surfaces at 4-weeks post-implantation. In conclusion, simultaneous targeting of bone formation (by nCaP) and bone resorption (by BP) using nCaP/BP surface coatings represents an effective strategy for synergistically improvement of bone-implant integration, especially in osteoporotic conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Disuse exaggerates the detrimental effects of alcohol on cortical bone

    NASA Technical Reports Server (NTRS)

    Hefferan, Theresa E.; Kennedy, Angela M.; Evans, Glenda L.; Turner, Russell T.

    2003-01-01

    BACKGROUND: Alcohol abuse is associated with an increased risk for osteoporosis. However, comorbidity factors may play an important role in the pathogenesis of alcohol-related bone fractures. Suboptimal mechanical loading of the skeleton, an established risk factor for bone loss, may occur in some alcohol abusers due to reduced physical activity, muscle atrophy, or both. The effect of alcohol consumption and reduced physical activity on bone metabolism has not been well studied. The purpose of this study was to determine whether mechanical disuse alters bone metabolism in a rat model for chronic alcohol abuse. METHODS: Alcohol was administered in the diet (35% caloric intake) of 6-month-old male rats for 4 weeks. Rats were hindlimb-unloaded the final 2 weeks of the experiment to prevent dynamic weight bearing. Afterward, cortical bone histomorphometry was evaluated at the tibia-fibula synostosis. RESULTS: At the periosteal surface of the tibial diaphysis, alcohol and hindlimb unloading independently decreased the mineralizing perimeter, mineral apposition rate, and bone formation rate. In addition, alcohol, but not hindlimb unloading, increased endocortical bone resorption. The respective detrimental effects of alcohol and hindlimb unloading to inhibit bone formation were additive; there was no interaction between the two variables. CONCLUSIONS: Reduced weight bearing accentuates the detrimental effects of alcohol on cortical bone in adult male rats by further inhibiting bone formation. This finding suggests that reduced physical activity may be a comorbidity factor for osteoporosis in alcohol abusers.

  7. Bone protein extraction without demineralization using principles from hydroxyapatite chromatography.

    PubMed

    Cleland, Timothy P; Vashishth, Deepak

    2015-03-01

    Historically, extraction of bone proteins has relied on the use of demineralization to better retrieve proteins from the extracellular matrix; however, demineralization can be a slow process that restricts subsequent analysis of the samples. Here, we developed a novel protein extraction method that does not use demineralization but instead uses a methodology from hydroxyapatite chromatography where high concentrations of ammonium phosphate and ammonium bicarbonate are used to extract bone proteins. We report that this method has a higher yield than those with previously published small-scale extant bone extractions, with and without demineralization. Furthermore, after digestion with trypsin and subsequent high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analysis, we were able to detect several extracellular matrix and vascular proteins in addition to collagen I and osteocalcin. Our new method has the potential to isolate proteins within a short period (4h) and provide information about bone proteins that may be lost during demineralization or with the use of denaturing agents. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Next generation bone tissue engineering: non-viral miR-133a inhibition using collagen-nanohydroxyapatite scaffolds rapidly enhances osteogenesis

    NASA Astrophysics Data System (ADS)

    Mencía Castaño, Irene; Curtin, Caroline M.; Duffy, Garry P.; O'Brien, Fergal J.

    2016-06-01

    Bone grafts are the second most transplanted materials worldwide at a global cost to healthcare systems valued over $30 billion every year. The influence of microRNAs in the regenerative capacity of stem cells offers vast therapeutic potential towards bone grafting; however their efficient delivery to the target site remains a major challenge. This study describes how the functionalisation of porous collagen-nanohydroxyapatite (nHA) scaffolds with miR-133a inhibiting complexes, delivered using non-viral nHA particles, enhanced human mesenchymal stem cell-mediated osteogenesis through the novel focus on a key activator of osteogenesis, Runx2. This study showed enhanced Runx2 and osteocalcin expression, as well as increased alkaline phosphatase activity and calcium deposition, thus demonstrating a further enhanced therapeutic potential of a biomaterial previously optimised for bone repair applications. The promising features of this platform offer potential for a myriad of applications beyond bone repair and tissue engineering, thus presenting a new paradigm for microRNA-based therapeutics.

  9. Marrow adipose tissue spectrum in obesity and type 2 diabetes mellitus.

    PubMed

    de Araújo, Iana M; Salmon, Carlos E G; Nahas, Andressa K; Nogueira-Barbosa, Marcello H; Elias, Jorge; de Paula, Francisco J A

    2017-01-01

    To assess the association of bone mass and marrow adipose tissue (MAT) with other fat depots, insulin resistance, bone remodeling markers, adipokines and glucose control in type 2 diabetes and obesity. The study groups comprised 24 controls (C), 26 obese (O) and 28 type 2 diabetes. Dual-energy X-ray absorptiometry was used to determine bone mineral density (BMD). Blood samples were collected for biochemical measurements. 1 H Magnetic resonance spectroscopy was used to assess MAT in the L3 vertebra, and abdominal magnetic resonance imaging was used to assess intrahepatic lipids in visceral (VAT) and subcutaneous adipose tissue. Regression analysis models were used to test the association between parameters. At all sites tested, BMD was higher in type 2 diabetes than in O and C subjects. The C group showed lower VAT values than the type 2 diabetes group and lower IHL than the O and type 2 diabetes groups. However, MAT was similar in the 3 groups. Osteocalcin and C-terminal telopeptide of type 1 collagen were lower in type 2 diabetes than those in C and O subjects. Moreover, at all sites, BMD was negatively associated with osteocalcin. No association was observed between MAT and VAT. No relationship was observed among MAT and HOMA-IR, leptin, adiponectin or Pref-1, but MAT was positively associated with glycated hemoglobin. MAT is not a niche for fat accumulation under conditions of energy surplus and type 2 diabetes, also is not associated with VAT or insulin resistance. MAT is associated with glycated hemoglobin. © 2017 European Society of Endocrinology.

  10. Metabolic phenotype in the mouse model of osteogenesis imperfecta.

    PubMed

    Boraschi-Diaz, Iris; Tauer, Josephine T; El-Rifai, Omar; Guillemette, Delphine; Lefebvre, Geneviève; Rauch, Frank; Ferron, Mathieu; Komarova, Svetlana V

    2017-09-01

    Osteogenesis imperfecta (OI) is the most common heritable bone fragility disorder, usually caused by dominant mutations in genes coding for collagen type I alpha chains, COL1A1 or COL1A2 Osteocalcin (OCN) is now recognized as a bone-derived regulator of insulin secretion and sensitivity and glucose homeostasis. Since OI is associated with increased rates of bone formation and resorption, we hypothesized that the levels of undercarboxylated OCN are increased in OI. The objective of this study was to determine changes in OCN and to elucidate the metabolic phenotype in the Col1a1 Jrt/+ mouse, a model of dominant OI caused by a Col1a1 mutation. Circulating levels of undercarboxylated OCN were higher in 4-week-old OI mice and normal by 8 weeks of age. Young OI animals exhibited a sex-dependent metabolic phenotype, including increased insulin levels in males, improved glucose tolerance in females, lower levels of random glucose and low adiposity in both sexes. The rates of O 2 consumption and CO 2 production, as well as energy expenditure assessed using indirect calorimetry were significantly increased in OI animals of both sexes, whereas respiratory exchange ratio was significantly higher in OI males only. Although OI mice have significant physical impairment that may contribute to metabolic differences, we specifically accounted for movement and compared OI and WT animals during the periods of similar activity levels. Taken together, our data strongly suggest that OI animals have alterations in whole body energy metabolism that are consistent with the action of undercarboxylated osteocalcin. © 2017 Society for Endocrinology.

  11. A preliminary assessment of vitamin K1 intakes and serum undercarboxylated osteocalcin levels in 11-13 year old Irish girls.

    PubMed

    Collins, Aoife; Cashman, Kevin D; Kiely, Máiréad

    2006-11-01

    Low vitamin K1 intakes have been associated with low bone mineral density in women and reduced bone turnover in girls. No European data exist on the relationship between vitamin K1 and serum undercarboxylated osteocalcin (ucOC), an indicator of K1 status in adolescents. The aim of the current study was to assess intakes of vitamin K1 in relation to serum ucOC status in Irish girls. A detailed dietary history method, which measured habitual intakes from a typical 14-day period, was used to estimate vitamin K1 intakes in 18 girls aged 11-13 years. Recently compiled and validated food composition data for vitamin K1 were used to determine vitamin K1 intakes. An enzyme immunoassay was used to measure ucOC in fasting serum samples. The mean (+/- SD) intake of vitamin K1 in the girls was 72.4 microg/day (SD 34.4). Vegetables (particularly broccoli, composite dishes, and lettuce) contributed 53% of total vitamin K1 intakes. Thirty-Seven percent of the girls failed to meet the current U.S. adequate intake for adolescents of 60 microg/day vitamin K1. Serum ucOC levels were inversely related to body weight-adjusted vitamin K1 intakes, controlling for energy intake (partial correlation r = -0.538; p = 0.026). The data indicate that large-scale studies to examine relationships between vitamin K1 (and green vegetable) intakes and bone growth and development in adolescents are warranted.

  12. Vitamin K1 and 25(OH)D are independently and synergistically associated with a risk for hip fracture in an elderly population: a case control study.

    PubMed

    Torbergsen, Anne C; Watne, Leiv O; Wyller, Torgeir B; Frihagen, Frede; Strømsøe, Knut; Bøhmer, Thomas; Mowe, Morten

    2015-02-01

    The incidence of hip fractures in Oslo is among the highest in the world. Vitamin D, as well as vitamin K, may play an important role in bone metabolism. We examined if vitamin K1 and 25(OH)D were associated with an increased risk of hip fracture, and whether the possible synergistic effect of these two micronutrients is mediated through bone turnover markers. Blood was drawn for vitamin K1, 25(OH)D, and the bone turnover marker osteocalcin upon admission for hip fracture and in healthy controls. Vitamin K1 and 25(OH)D were independently associated with a risk of hip fracture. The adjusted odds ratio (95% CI) per ng/ml increase in vitamin K1 was 0.07 (0.02-0.32), and that per nmol/L increase in 25(OH)D was 0.96 (0.95-0.98). There was a significant interaction between 25(OH)D and vitamin K1 (p < 0.001), and a significant correlation between total osteocalcin and vitamin K1 and 25(OH)D (rho = 0.18, p = 0.01; rho = 0.20, p = 0.01, respectively). Vitamin K1 and 25(OH)D are lower in hip fracture patients compared with controls. Vitamin K1 and 25(OH)D are independently and synergistically associated with the risk of hip fracture when adjusting for confounders. Intervention studies should include both vitamins. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  13. SERUM LEVELS OF FIBROBLAST GROWTH FACTOR-23, OSTEOPROTEGERIN, AND RECEPTOR ACTIVATOR OF NUCLEAR FACTOR KAPPA B LIGAND IN PATIENTS WITH PROLACTINOMA.

    PubMed

    Arslan, Muyesser Sayki; Sahin, Mustafa; Karakose, Melia; Tutal, Esra; Topaloglu, Oya; Ucan, Bekir; Demirci, Taner; Caliskan, Mustafa; Ozdemir, Seyda; Ozbek, Mustafa; Cakal, Erman

    2017-03-01

    The aim of this study to was to evaluate the effect of fibroblast growth factor-23 (FGF-23), osteoprotegerin (OPG), receptor activator nuclear κB ligand (RANKL), and vitamin D hormones on bone loss in patients with hyperprolactinemia due to pituitary prolactinoma. We recruited 46 premenopausal female patients with prolactinoma and age and sex-matched healthy controls (Group 3, n = 20) for this cross-sectional study. Prolactinoma patients were divided into 2 groups as patients newly diagnosed (Group 1, n = 26) and those under cabergoline treatment (Group 2, n = 20). Anthropometric and metabolic variables; hormonal profiles; and osteocalcin, deoxypyridinoline (DOP), and bone mineral density measurements were performed for all participants. FGF-23, OPG, and RANKL levels were analyzed in all groups. FGF-23, OPG, calcium, phosphorus, and parathormone levels were similar between all groups despite significantly higher levels in the control group in terms of vitamin D and RANKL levels than in patients. Bone loss was found more in Group 2, particularly observed in Z scores of femur and spinal bone (P<.05). Correlation analysis revealed a negative correlation between FGF-23 and femur neck T score (r = -0.0433, P = .05) in patients with active prolactinoma. A positive correlation was also observed between parameters of DOP and OPG (r = 0.673, P = .02). In patients with remission there were a negative correlation between prolactin and luteinizing hormone (r = -600, P = .08). Additionally, a negative correlation was found between osteocalcin and osteoprotegerin in patients in remission (r = -0.73, P = .01). Our data indicated that FGF-23 and OPG levels do not play a critical role on the development of bone decrease in patients with hyperprolactinemia. However, further prospective studies in larger numbers of participants should be designed to clarify this issue. BFP = body fat percentage BMD = bone mineral density BMI = body mass index CV = coefficient of variation DOP = deoxypyridinoline ELISA = enzyme-linked immunosorbent assay FGF-23 = fibroblast growth factor-23 HOMA-IR = homeostatic model assessment of insulin resistance OPG = osteoprotegerin RANKL = receptor activator nuclear κB ligand.

  14. Mobilization of bone marrow mesenchymal stem cells in vivo augments bone healing in a mouse model of segmental bone defect.

    PubMed

    Kumar, Sanjay; Ponnazhagan, Selvarangan

    2012-04-01

    Although the number of mesenchymal stem cells (MSC) in the bone marrow is sufficient to maintain skeletal homeostasis, in osteopenic pathology, aggravated osteoclast activity or insufficient osteoblast numbers ensue, affecting normal bone remodeling. Most of the currently available therapies are anti-resorptive with limited osteogenic potential. Since mobilization of stem/progenitors from the BM is a prerequisite for their participation in tissue repair, amplification of endogenous stem cells may provide an alternative approach in these conditions. The present study determined the potential of MSC mobilization in vivo, using combinations of different growth factors with the CXCR4 antagonist, AMD3100, in a mouse model of segmental bone defect. Results indicated that among several factors tested IGF1 had maximum proliferative ability of MSC in vitro. Results of the in vivo studies indicated that the combination of IGF1 and AMD3100 provided significant augmentation of bone growth as determined by DXA, micro-CT and histomorphometry in mice bearing segmental fractures. Further, characterization of MSC isolated from mice treated with IGF1 and AMD3100 indicated Akt/PI3K, MEK1/2-Erk1/2 and smad2/3 as key signaling pathways mediating this effect. These data indicate the potential of in vivo stem cell mobilization as a novel alternative for bone healing. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Assessment of osteoinduction using a porous hydroxyapatite coating prepared by micro-arc oxidation on a new titanium alloy.

    PubMed

    Jing, Wensen; Zhang, Minghua; Jin, Lei; Zhao, Jian; Gao, Qing; Ren, Min; Fan, Qingyu

    2015-12-01

    Surface modification and material improvement is now an important way to improve the osseointegration between bone and uncemented prothesis. The purpose of this study was to investigate the bone ingrowth potential of porous hydroxyapatite (HA) coatings prepared by micro-arc oxidation (MAO) on Ti-3Zr-2Sn-3Mo-25Nb, a new titanium alloy. HA-coated specimens were implanted in the left proximal femoral medullary canal of beagles for 4, 12, and 24 weeks, and uncoated specimens were implanted in the right as a control. The surface morphology and phase composition were investigated with environmental scanning electron microscopy and X-ray diffractometry. The bone ingrowth was assessed by histomorphometry. A pull-out test was performed to assess the mechanical performance of the bone-implant interface. A porous coating was well prepared on the new titanium alloy by using the MAO method. The bone-to-implant contact was significantly higher for the HA-coated group compared to that in the uncoated group. Mechanical tests showed that the HA-coated group had significantly higher maximum force at the bone-implant interface compared to the uncoated specimens. MAO is a suitable coating approach for this new titanium alloy. The HA coating prepared by this approach can significantly promote bone ingrowth and the mechanical performance of the bone-implant interface. Copyright © 2015. Published by Elsevier Ltd.

  16. Effect of HIP/Ribosomal Protein L29 Deficiency on Mineral Properties of Murine Bones and Teeth

    PubMed Central

    Sloofman, Laura G.; Verdelis, Kostas; Spevak, Lyudmila; Zayzafoon, Majd; Yamauchi, Mistuo; Opdenaker, Lynn M.; Farach-Carson, Mary C.; Boskey, Adele L.; Kirn-Safran, Catherine B.

    2010-01-01

    Mice lacking HIP/RPL29, a component of the ribosomal machinery, display increased bone fragility. To understand the effect of sub-efficient protein synthetic rates on mineralized tissue quality, we performed dynamic and static histomorphometry and examined the mineral properties of both bones and teeth in HIP/RPL29 knock-out mice using Fourier transform infrared imaging (FTIRI). While loss of HIP/RPL29 consistently reduced total bone size, decreased mineral apposition rates were not significant, indicating that short stature is not primarily due to impaired osteoblast function. Interestingly, our microspectroscopic studies showed that a significant decrease in collagen crosslinking during maturation of HIP/RPL29-null bone precedes an overall enhancement in the relative extent of mineralization of both trabecular and cortical adult bones. This report provides strong genetic evidence that ribosomal insufficiency induces subtle organic matrix deficiencies which elevates calcification. Consistent with the HIP/RPL29-null bone phenotype, HIP/RPL29-deficient teeth also showed reduced geometric properties accompanied with relative increased mineral densities of both dentin and enamel. Increased mineralization associated with enhanced tissue fragility related to imperfection in organic phase microstructure evokes defects seen in matrix protein-related bone and tooth diseases. Thus, HIP/RPL29 mice constitute a new genetic model for studying the contribution of global protein synthesis in the establishment of organic and inorganic phases in mineral tissues. PMID:20362701

  17. Histomorphometry and cortical robusticity of the adult human femur.

    PubMed

    Miszkiewicz, Justyna Jolanta; Mahoney, Patrick

    2018-01-13

    Recent quantitative analyses of human bone microanatomy, as well as theoretical models that propose bone microstructure and gross anatomical associations, have started to reveal insights into biological links that may facilitate remodeling processes. However, relationships between bone size and the underlying cortical bone histology remain largely unexplored. The goal of this study is to determine the extent to which static indicators of bone remodeling and vascularity, measured using histomorphometric techniques, relate to femoral midshaft cortical width and robusticity. Using previously published and new quantitative data from 450 adult human male (n = 233) and female (n = 217) femora, we determine if these aspects of femoral size relate to bone microanatomy. Scaling relationships are explored and interpreted within the context of tissue form and function. Analyses revealed that the area and diameter of Haversian canals and secondary osteons, and densities of secondary osteons and osteocyte lacunae from the sub-periosteal region of the posterior midshaft femur cortex were significantly, but not consistently, associated with femoral size. Cortical width and bone robusticity were correlated with osteocyte lacunae density and scaled with positive allometry. Diameter and area of osteons and Haversian canals decreased as the width of cortex and bone robusticity increased, revealing a negative allometric relationship. These results indicate that microscopic products of cortical bone remodeling and vascularity are linked to femur size. Allometric relationships between more robust human femora with thicker cortical bone and histological products of bone remodeling correspond with principles of bone functional adaptation. Future studies may benefit from exploring scaling relationships between bone histomorphometric data and measurements of bone macrostructure.

  18. Effect of dietary calcium deficiency and altered diet hardness on the jawbone growth: A micro-CT and bone histomorphometric study in rats.

    PubMed

    Fujita, Yuko; Goto, Shota; Ichikawa, Maika; Hamaguchi, Ayako; Maki, Kenshi

    2016-12-01

    We examined the effects of a low-calcium diet and altered diet hardness on bone architecture and metabolism in the maxilla and mandible. Male rats (n=48, 3 weeks old) were divided into six groups. In total, 24 rats were given a normal-calcium diet and the others were given a low-calcium diet. Each group was then divided into three subgroups, which were fed a 'hard̕ diet for 8 weeks, a 'soft̕ die for 8 weeks, or switched from the soft diet after 4 weeks to the hard diet for 4 weeks. The bone architecture was analyzed using cephalometry and micro-computed tomography, in addition, the bone metabolism was analyzed using serum bone markers and bone histomorphometry in the maxilla and mandible. Moreover, the bone formation patterns were evaluated using histopathologically in the midpalatal suture. The low-calcium diet affected bone architecture by increasing bone turnover and the soft diet affected bone architecture mainly by increasing bone resorption. The soft diet changed the chondrocyte cell layers into fibrous connective tissues in the midpalatal suture. At 4 weeks after the return to a hard diet from a soft diet, recovery of the deterioration in bone architectures was seen in the maxilla and mandible. We demonstrated that mastication with a hard diet is effective for recovering the collapsed equilibrium of jaw bone turnover and the deteriorating jaw bone architectures due to the poor masticatory function during the growing period. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Histological evaluation of an impacted bone graft substitute composed of a combination of mineralized and demineralized allograft in a sheep vertebral bone defect.

    PubMed

    Fujishiro, Takaaki; Bauer, Thomas W; Kobayashi, Naomi; Kobayashi, Hideo; Sunwoo, Moon Hae; Seim, Howard B; Turner, A Simon

    2007-09-01

    Demineralized bone matrix (DBMs) preparations are a potential alternative or supplement to autogenous bone graft, but many DBMs have not been adequately tested in clinically relevant animal models. The aim of current study was to compare the efficacy of a new bone graft substitute composed of a combination of mineralized and demineralized allograft, along with hyaluronic acid (AFT Bone Void Filler) with several other bone graft materials in a sheep vertebral bone void model. A drilled defect in the sheep vertebral body was filled with either the new DBM preparation, calcium sulfate (OsteoSet), autologous bone graft, or left empty. The sheep were euthanized after 6 or 12 weeks, and the defects were examined by histology and quantitative histomorphometry. The morphometry data were analyzed by one-way analysis of variance with the post hoc Tukey-Kramer test or the Student's t-test. All of the bone defects in the AFT DBM preparation group showed good new bone formation with variable amounts of residual DBM and mineralized bone graft. The DBM preparation group at 12 weeks contained significantly more new bone than the defects treated with calcium sulfate or left empty (respectively, p < 0.05, p < 0.01). There was no significant difference between the DBM and autograft groups. No adverse inflammatory reactions were associated with any of the three graft materials. The AFT preparation of a mixture of mineralized and demineralized allograft appears to be an effective autograft substitute as tested in this sheep vertebral bone void model.

  20. The influence of electromagnetic radiation generated by a mobile phone on the skeletal system of rats.

    PubMed

    Sieroń-Stołtny, Karolina; Teister, Łukasz; Cieślar, Grzegorz; Sieroń, Dominik; Śliwinski, Zbigniew; Kucharzewski, Marek; Sieroń, Aleksander

    2015-01-01

    The study was focused on the influence of electromagnetic field generated by mobile phone on the skeletal system of rats, assessed by measuring the macrometric parameters of bones, mechanical properties of long bones, calcium and phosphorus content in bones, and the concentration of osteogenesis (osteocalcin) and bone resorption (NTX, pyridinoline) markers in blood serum. The study was carried out on male rats divided into two groups: experimental group subjected to 28-day cycle of exposures in electromagnetic field of 900 MHz frequency generated by mobile phone and a control, sham-exposed one. The mobile phone-generated electromagnetic field did not influence the macrometric parameters of long bones and L4 vertebra, it altered mechanical properties of bones (stress and energy at maximum bending force, stress at fracture), it decreased the content of calcium in long bones and L4 vertebra, and it altered the concentration of osteogenesis and bone resorption markers in rats. On the basis of obtained results, it was concluded that electromagnetic field generated by 900 MHz mobile phone does not have a direct impact on macrometric parameters of bones; however, it alters the processes of bone mineralization and the intensity of bone turnover processes and thus influences the mechanical strength of bones.

Top