Sample records for bone imaging agent

  1. Synthesis and in vitro evaluation of bone-seeking superparamagnetic iron oxide nanoparticles as contrast agents for imaging bone metabolic activity.

    PubMed

    Panahifar, Arash; Mahmoudi, Morteza; Doschak, Michael R

    2013-06-12

    In this article, we report the synthesis and in vitro evaluation of a new class of nonionizing bone-targeting contrast agents based on bisphosphonate-conjugated superparamagnetic iron oxide nanoparticles (SPIONs), for use in imaging of bone turnover with magnetic resonance imaging (MRI). Similar to bone-targeting (99m)Technetium medronate, our novel contrast agent uses bisphosphonates to impart bone-seeking properties, but replaces the former radioisotope with nonionizing SPIONs which enables their subsequent detection using MRI. Our reported method is relatively simple, quick and cost-effective and results in BP-SPIONs with a final nanoparticle size of 17 nm under electron microscopy technique (i.e., TEM). In-vitro binding studies of our novel bone tracer have shown selective binding affinity (around 65%) for hydroxyapatite, the principal mineral of bone. Bone-targeting SPIONs offer the potential for use as nonionizing MRI contrast agents capable of imaging dynamic bone turnover, for use in the diagnosis and monitoring of metabolic bone diseases and related bone pathology.

  2. Biocompatible, Biodegradable, and Enzymatic-Cleavable MRI Contrast Agents for Early Detection of Bone Metastatic Breast cancer

    DTIC Science & Technology

    2013-04-01

    metastasis from breast cancer. The proposed imaging agent is consist of bone targeting moiety of Asp8 and MRI imaging moiety of DOTA (Gd) with a cathepsin K...the Gd chelator of DOTA . Asp8 has a high affinity for bone mineral and has been used as bone-targeting moiety in molecular therapeutics.(1-6) The use...findings in literature.(4, 7, 17) To obtain imaging agents for MRI studies, the above mentioned peptides were allowed to react with DOTA -NHS

  3. Biocompatible, Biodegradable, and Enzymatic-Cleavable MRI Contrast Agents for Early Detection of Bone Metastatic Breast Cancer

    DTIC Science & Technology

    2012-04-01

    detection of bone metastasis from breast cancer. The proposed imaging agent is consist of bone targeting moiety of Asp8 and MRI imaging moiety of DOTA ...peptide onto DOTA followed by Gd complexation was performed to achieve the proposed imaging agent. Non-targeting and CTSK-insensitive controls were...synthesis (SPPS) strategy, and purified by preparative HPLC. The chemical structures of peptides were shown below. Peptides reacted with DOTA -NHS

  4. Magnetic resonance imaging of osteosarcoma using a bis(alendronate)-based bone-targeted contrast agent.

    PubMed

    Ge, Pingju; Sheng, Fugeng; Jin, Yiguang; Tong, Li; Du, Lina; Zhang, Lei; Tian, Ning; Li, Gongjie

    2016-12-01

    Magnetic resonance (MR) is currently used for diagnosis of osteosarcoma but not well even though contrast agents are administered. Here, we report a novel bone-targeted MR imaging contrast agent, Gd 2 -diethylenetriaminepentaacetate-bis(alendronate) (Gd 2 -DTPA-BA) for the diagnosis of osteosarcoma. It is the conjugate of a bone cell-seeking molecule (i.e., alendronate) and an MR imaging contrast agent (i.e., Gd-DTPA). Its physicochemical parameters were measured, including pK a , complex constant, and T 1 relaxivity. Its bone cell-seeking ability was evaluated by measuring its adsorption on hydroxyapatite. Hemolysis was investigated. MR imaging and biodistribution of Gd 2 -DTPA-BA and Gd-DTPA were studied on healthy and osteosarcoma-bearing nude mice. Gd 2 -DTPA-BA showed high adsorption on hydroxyapatite, the high MR relaxivity (r 1 ) of 7.613mM -1 s -1 (2.6 folds of Gd-DTPA), and no hemolysis. The MR contrast effect of Gd 2 -DTPA-BA was much higher than that of Gd-DTPA after intravenous injection to the mice. More importantly, the MR imaging of osteosarcoma was significantly improved by Gd 2 -DTPA-BA. The signal intensity of Gd 2 -DTPA-BA reached 120.3% at 50min, equal to three folds of Gd-DTPA. The bone targeting index (bone/blood) of Gd 2 -DTPA-BA in the osteosarcoma-bearing mice was very high to 130 at 180min. Furthermore, the contrast enhancement could also be found in the lung due to metastasis of osteosarcoma. Gd 2 -DTPA-BA plays a promising role in the diagnoses of osteosacomas, including the primary bone tumors and metastases. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. [Frontiers in Live Bone Imaging Researches. Novel drug discovery by means of intravital bone imaging technology].

    PubMed

    Ishii, Masaru

    2015-06-01

    Recent advances in intravital bone imaging technology has enabled us to grasp the real cellular behaviors and functions in vivo , revolutionizing the field of drug discovery for novel therapeutics against intractable bone diseases. In this chapter, I introduce various updated information on pharmacological actions of several antibone resorptive agents, which could only be derived from advanced imaging techniques, and also discuss the future perspectives of this new trend in drug discovery.

  6. Bone as an effect compartment : models for uptake and release of drugs.

    PubMed

    Stepensky, David; Kleinberg, Lilach; Hoffman, Amnon

    2003-01-01

    "Bone-seeking agents" are drugs characterised by high affinity for bone, and are disposed in bone for prolonged periods of time while maintaining remarkably low systemic concentrations. As a consequence, the bone becomes a reservoir for bone-seeking agents, and a site of both desirable and adverse effects, depending on the pharmacological activities of the specific agent. For some agents, significant systemic effects may also be produced following their prolonged release from bone, a process that is governed mostly by the rate of bone remodelling. This review covers the pharmacokinetic and pharmacodynamic features of bone-seeking agents with different pharmacological properties, including drugs (bisphosphonates, drug-bisphosphonate conjugates, radiopharmaceuticals and fluoride), bone markers (tetracycline, bone imaging agents) and toxins (lead, chromium, aluminium). In addition, drugs that do not possess bone-seeking properties but are used for therapy of bone diseases (such as antibacterials for treatment of osteomyelitis) are discussed, along with targeting of these drugs to the bone by conjugation to bone-seeking agents, local delivery systems, and other approaches. The pharmacokinetic and pharmacodynamic behaviour of bone-seeking agents is extremely complex due to heterogeneity in bone morphology and physiology. This complexity, accompanied by difficulties in human bone research caused by ethical and other limitations, gave rise to modelling approaches to study bone drug disposition. This review describes the pharmacokinetic models that have been proposed to describe the pharmacokinetic behaviour of bone-seeking agents and predict bone concentrations of these agents for different doses and patient populations. Models of different types (compartmental and physiologically based) and of different complexity have been applied, but their relevance to drug effects in the bone tissue is limited since they describe the behaviour of the "average" drug molecule. Understanding of the cellular and molecular processes responsible for the heterogeneity of bone tissue will provide better comprehension of the influence of microenvironment on drug bone disposition and the resulting pharmacological response.

  7. Copper-64 Labeled Liposomes for Imaging Bone Marrow

    PubMed Central

    Lee, Sang-gyu; Gangangari, Kishore; Kalidindi, Teja Muralidhar; Punzalan, Blesida; Larson, Steven M.; Pillarsetty, Naga Vara Kishore

    2016-01-01

    Introduction Bone marrow is the soft tissue compartment inside the bones made up of hematopoietic cells, adipocytes, stromal cells, phagocytic cells, stem cells, and sinusoids. While [18F]-FLT has been utilized to image proliferative marrow, to date, there are no reports of particle based positron emission tomography (PET) imaging agents for imaging bone marrow. We have developed copper-64 labeled liposomal formulation that selectively targets bone marrow and therefore serves as an efficient PET probe for imaging bone marrow. Methods Optimized liposomal formulations were prepared with succinyl PE, DSPC, cholesterol, and mPEG-DSPE (69:39:1:10:0.1) with diameters of 90 and 140 nm, and were doped with DOTA-Bn-DSPE for stable 64Cu incorporation into liposomes. Results PET imaging and biodistribution studies with 64Cu-labeled liposomes indicate that accumulation in bone marrow was as high as 15.18 ± 3.69 %ID/g for 90 nm liposomes and 7.01 ± 0.92 %ID/g for 140 nm liposomes at 24 h post-administration. In vivo biodistribution studies in tumor-bearing mice indicate that the uptake of 90 nm particles is approximately 0.89 ± 0.48 %ID/g in tumor and 14.22 ± 8.07 %ID/g in bone marrow, but respective values for Doxil® like liposomes are 0.83 ± 0.49 %ID/g and 2.23 ± 1.00 %ID/g. Conclusion Our results indicate that our novel PET labeled liposomes target bone marrow with very high efficiency and therefore can function as efficient bone marrow imaging agents. PMID:27694056

  8. An introduction to Na(18)F bone scintigraphy: basic principles, advanced imaging concepts, and case examples.

    PubMed

    Bridges, Robert L; Wiley, Chris R; Christian, John C; Strohm, Adam P

    2007-06-01

    Na(18)F, an early bone scintigraphy agent, is poised to reenter mainstream clinical imaging with the present generations of stand-alone PET and PET/CT hybrid scanners. (18)F PET scans promise improved imaging quality for both benign and malignant bone disease, with significantly improved sensitivity and specificity over conventional planar and SPECT bone scans. In this article, basic acquisition information will be presented along with examples of studies related to oncology, sports medicine, and general orthopedics. The use of image fusion of PET bone scans with CT and MRI will be demonstrated. The objectives of this article are to provide the reader with an understanding of the history of early bone scintigraphy in relation to Na(18)F scanning, a familiarity with basic imaging techniques for PET bone scanning, an appreciation of the extent of disease processes that can be imaged with PET bone scanning, an appreciation for the added value of multimodality image fusion with bone disease, and a recognition of the potential role PET bone scanning may play in clinical imaging.

  9. Evaluation of Ga-DOTA-(D-Asp)n as bone imaging agents: D-aspartic acid peptides as carriers to bone.

    PubMed

    Ogawa, Kazuma; Ishizaki, Atsushi; Takai, Kenichiro; Kitamura, Yoji; Makino, Akira; Kozaka, Takashi; Kiyono, Yasushi; Shiba, Kazuhiro; Odani, Akira

    2017-10-25

    67 Ga-DOTA-(L-Asp) 11 and 67 Ga-DOTA-(L-Asp) 14 , which have been developed as bone imaging agents, showed a high accumulation in bone and a rapid blood clearance in mice. However, peptides composed of D-amino acids are more stable in vivo than those composed of their L-equivalents. In this study, 67 Ga-DOTA-(D-Asp) n (n = 2, 5, 8, 11, or 14) were synthesized using the Fmoc-based solid-phase methodology and evaluated. In hydroxyapatite binding assay, binding of 67 Ga-DOTA-(D-Asp) n tended to increase with increasing length of the amino acid chain. 67 Ga-DOTA-(D-Asp) 11 and 67 Ga-DOTA-(D-Asp) 14 caused a high accumulation of radioactivity in the bones of the mice. However, the results for 67 Ga-DOTA-(D-Asp) n and 67 Ga-DOTA-(L-Asp) n were comparable. In urine analyses, the proportion of intact complex after injection of 67 Ga-DOTA-(D-Asp) 14 was significantly higher than that of 67 Ga-DOTA-(L-Asp) 14 . Although 67 Ga-DOTA-(D-Asp) 14 was more stable than 67 Ga-DOTA-(L-Asp) 14 , the properties of 67 Ga-DOTA-(D-Asp) n and 67 Ga-DOTA-(L-Asp) n as bone imaging agents may be comparable.

  10. [Homeostasis and Disorder of Musculoskeletal System.Cellular dynamics in musculoskeletal system visualized by intravital imaging techniques.

    PubMed

    Kikuta, Junichi; Ishii, Masaru

    Bone is continually remodeled by bone-resorbing osteoclasts and bone-forming osteoblasts. Although it has long been believed that bone homeostasis is tightly regulated by communication between osteoclasts and osteoblasts, the fundamental process and dynamics have remained elusive. We originally established an advanced imaging system to visualize living bone tissues using intravital two-photon microscopy. By means of this system, we revealed the in vivo behavior of bone-resorbing osteoclasts and bone-forming osteoblasts in bone tissues. This approach facilitates investigation of cellular dynamics in the pathogenesis of musculoskeletal disorders, and would thus be useful for evaluating the efficacy of novel therapeutic agents.

  11. Computed Tomography and Optical Imaging of Osteogenesis-angiogenesis Coupling to Assess Integration of Cranial Bone Autografts and Allografts.

    PubMed

    Cohn Yakubovich, Doron; Tawackoli, Wafa; Sheyn, Dmitriy; Kallai, Ilan; Da, Xiaoyu; Pelled, Gadi; Gazit, Dan; Gazit, Zulma

    2015-12-22

    A major parameter determining the success of a bone-grafting procedure is vascularization of the area surrounding the graft. We hypothesized that implantation of a bone autograft would induce greater bone regeneration by abundant blood vessel formation. To investigate the effect of the graft on neovascularization at the defect site, we developed a micro-computed tomography (µCT) approach to characterize newly forming blood vessels, which involves systemic perfusion of the animal with a polymerizing contrast agent. This method enables detailed vascular analysis of an organ in its entirety. Additionally, blood perfusion was assessed using fluorescence imaging (FLI) of a blood-borne fluorescent agent. Bone formation was quantified by FLI using a hydroxyapatite-targeted probe and µCT analysis. Stem cell recruitment was monitored by bioluminescence imaging (BLI) of transgenic mice that express luciferase under the control of the osteocalcin promoter. Here we describe and demonstrate preparation of the allograft, calvarial defect surgery, µCT scanning protocols for the neovascularization study and bone formation analysis (including the in vivo perfusion of contrast agent), and the protocol for data analysis. The 3D high-resolution analysis of vasculature demonstrated significantly greater angiogenesis in animals with implanted autografts, especially with respect to arteriole formation. Accordingly, blood perfusion was significantly higher in the autograft group by the 7(th) day after surgery. We observed superior bone mineralization and measured greater bone formation in animals that received autografts. Autograft implantation induced resident stem cell recruitment to the graft-host bone suture, where the cells differentiated into bone-forming cells between the 7(th) and 10(th) postoperative day. This finding means that enhanced bone formation may be attributed to the augmented vascular feeding that characterizes autograft implantation. The methods depicted may serve as an optimal tool to study bone regeneration in terms of tightly bounded bone formation and neovascularization.

  12. Bioinorganic Activity of Technetium Radiopharmaceuticals.

    ERIC Educational Resources Information Center

    Pinkerton, Thomas C.; And Others

    1985-01-01

    Technetium radiopharmaceuticals are diagnostic imaging agents used in the field of nuclear medicine to visualize tissues, anatomical structures, and metabolic disorders. Bioavailability of technetium complexes, thyroid imaging, brain imaging, kidney imaging, imaging liver function, bone imaging, and heart imaging are the major areas discussed. (JN)

  13. Technetium-99m and rhenium-188 complexes with one and two pendant bisphosphonate groups for imaging arterial calcification.

    PubMed

    Bordoloi, Jayanta Kumar; Berry, David; Khan, Irfan Ullah; Sunassee, Kavitha; de Rosales, Rafael Torres Martin; Shanahan, Catherine; Blower, Philip J

    2015-03-21

    The first (99m)Tc and (188)Re complexes containing two pendant bisphosphonate groups have been synthesised, based on the mononuclear M(v) nitride core with two dithiocarbamate ligands each with a pendant bisphosphonate. The structural identity of the (99)Tc and stable rhenium analogues as uncharged, mononuclear nitridobis(dithiocarbamate) complexes was determined by electrospray mass spectrometry. The (99m)Tc complex showed greater affinity for synthetic and biological hydroxyapatite, and greater stability in biological media, than the well-known but poorly-characterised and inhomogeneous bone imaging agent (99m)Tc-MDP. It gave excellent SPECT images of both bone calcification (mice and rats) and vascular calcification (rat model), but the improved stability and the availability of two pendant bisphosphonate groups conferred no dramatic advantage in imaging over the conventional (99m)Tc-MDP agent in which the bisphosphonate group is bound directly to Tc. The (188)Re complex also showed preferential uptake in bone. These tracers and the biological model of vascular calcification offer the opportunity to study the biological interpretation and clinical potential of radionuclide imaging of vascular calcification and to deliver radionuclide therapy to bone metastases.

  14. Subtraction micro-computed tomography of angiogenesis and osteogenesis during bone repair using synchrotron radiation with a novel contrast agent.

    PubMed

    Matsumoto, Takeshi; Goto, Daichi; Sato, Syota

    2013-09-01

    Quantitative three-dimensional (3D) imaging of angiogenesis during bone repair remains an experimental challenge. We developed a novel contrast agent containing 0.07- to 0.1-μm particles of zirconium dioxide (ZrCA) and established subtraction μCT using synchrotron radiation (sSRCT) for quantitative imaging of angiogenesis and bone repair. This method was applied to a rat model of tibial bone repair 3 days (DAY3; n = 2), 5 days (DAY5; n = 8), or 10 days (DAY10; n = 8) after drill-hole injury. Using the same drill-hole defect model, its potential use was illustrated by comparison of bone repair between hindlimbs subjected to mechanical unloading (n = 6) and normal weight bearing (n = 6) for 10 days. Following vascular casting with ZrCA, the defect site was scanned with 17.9- and 18.1-keV X-rays. In the latter, image contrast between ZrCA-filled vasculature and bone was enhanced owing to the sharp absorption jump of zirconium dioxide at 18.0 keV (k-edge). The two scan data sets were reconstructed with 2.74-μm voxel resolution, registered by mutual information, and digitally subtracted to extract the contrast-enhanced vascular image. K2HPO4 phantom solutions were scanned at 17.9 keV for quantitative evaluation of bone mineral. Angiogenesis had already started, but new bone formation was not found on DAY3. New bone emerged near the defect boundary on DAY5 and took the form of trabecular-like structure invaded by microvessels on DAY10. Vascular and bone volume fractions, blood vessel and bone thicknesses, and mineralization were higher on DAY10 than on DAY5. All these parameters were found to be decreased after 10 days of hindlimb unloading, indicating the possible involvement of angiogenesis in bone repair impairment caused by reduced mechanical stimuli. In conclusion, the combined technique of sSRCT and ZrCA vascular casting is suitable for quantitative 3D imaging of angiogenesis and its surrounding bone regeneration. This method will be useful for better understanding the linkage between angiogenesis and bone repair.

  15. Psoralen inhibits bone metastasis of breast cancer in mice.

    PubMed

    Wu, Chunyu; Sun, Zhenping; Ye, Yiyi; Han, Xianghui; Song, Xiaoyun; Liu, Sheng

    2013-12-01

    Breast cancer is the most common female malignancy and it frequently metastasizes to bone. Metastatic breast cancer continues to be the primary cause of death for women in East and Southeast Asia. Psoralen is a furocoumarin that can be isolated from the seeds of Psoralea corylifolia L. Psoralen exhibits a wide range of biological properties and has been demonstrated as an antioxidant, antidepressant, anticancer, antibacterial, and antiviral agent. Additionally, it is involved in the formation and regulation of bone. This study investigated whether psoralen can inhibit metastasis of breast cancer to bone in vivo. Histological, molecular biological, and imaging analyses revealed that psoralen inhibits bone metastases in mice. Psoralen may function to inhibit breast cancer cell growth in the bone microenvironment and regulate the function of osteoblasts and osteoclasts in tumor-bearing mice. The results of this study suggest that psoralen is a bone-modifying agent and a potential therapeutic to treat patients with bone metastases. © 2013.

  16. Tin-117m-labeled stannic (Sn.sup.4+) chelates

    DOEpatents

    Srivastava, Suresh C.; Meinken, George E.; Richards, Powell

    1985-01-01

    The radiopharmaceutical reagents of this invention and the class of Tin-117m radiopharmaceuticals are therapeutic and diagnostic agents that incorporate gamma-emitting nuclides that localize in bone after intravenous injection in mammals (mice, rats, dogs, and rabbits). Images reflecting bone structure or function can then be obtained by a scintillation camera that detects the distribution of ionizing radiation emitted by the radioactive agent. Tin-117m-labeled chelates of stannic tin localize almost exclusively in cortical bone. Upon intravenous injection of the reagent, the preferred chelates are phosphonate compounds, preferable, PYP, MDP, EHDP, and DTPA. This class of reagents is therapeutically and diagnostically useful in skeletal scintigraphy and for the radiotherapy of bone tumors and other disorders.

  17. Contrast Agents for Micro-Computed Tomography of Microdamage in Bone

    DTIC Science & Technology

    2011-01-01

    solution from DI water (or PBS). For the second model, a 5 mm cube of cortical bone tissue was embedded in polymethylmethacrylate and sectioned...radiography1 and as a radiopacifer in polymethylmethacrylate bone cement.2 Current commercial products for either application use microscale BaSO4 particles... polymethylmethacrylate bone cement (Lewis, 1997). The objective of this study was to non-destructively and three-dimensionally image microdamage

  18. Detection of breast cancer microcalcification using (99m)Tc-MDP SPECT or Osteosense 750EX FMT imaging.

    PubMed

    Felix, Dayo D; Gore, John C; Yankeelov, Thomas E; Peterson, Todd E; Barnes, Stephanie; Whisenant, Jennifer; Weis, Jared; Shoukouhi, Sepideh; Virostko, John; Nickels, Michael; McIntyre, J Oliver; Sanders, Melinda; Abramson, Vandana; Tantawy, Mohammed N

    2015-03-01

    In previous work, we demonstrated the presence of hydroxyapetite (type II microcalcification), HAP, in triple negative MDA-MB-231 breast cancer cells. We used (18)F-NaF to detect these types of cancers in mouse models as the free fluorine, (18)F(-), binds to HAP similar to bone uptake. In this work, we investigate other bone targeting agents and techniques including (99m)Tc-MDP SPECT and Osteosense 750EX FMT imaging as alternatives for breast cancer diagnosis via targeting HAP within the tumor microenvironment. Thirteen mice were injected subcutaneously in the right flank with 10(6) MDA-MB-231 cells. When the tumor size reached ~0.6 cm(3), mice (n=9) were injected with ~37 MBq of (99m)Tc-MDP intravenously and then imaged one hour later in a NanoSPECT/CT or injected intravenously with 4 nmol/g of Osetosense 750EX and imaged 24 hours later in an FMT (n=4). The imaging probe concentration in the tumor was compared to that of muscle. Following SPECT imaging, the tumors were harvested, sectioned into 10 μm slices, and underwent autoradiography or von Kossa staining to correlate (99m)Tc-MDP binding with HAP distribution within the tumor. The SPECT images were normalized to the injected dose and regions-of-interest (ROIs) were drawn around bone, tumor, and muscle to obtain the radiotracer concentration in these regions in units of percent injected dose per unit volume. ROIs were drawn around bone and tumor in the FMT images as no FMT signal was observed in normal muscle. Uptake of (99m)Tc-MDP was observed in the bone and tumor with little or no uptake in the muscle with concentrations of 11.34±1.46 (mean±SD), 2.22±0.95, and 0.05±0.04%ID/cc, respectively. Uptake of Osteosense 750EX was also observed in the bone and tumor with concentrations of 0.35±0.07 (mean±SD) and 0.04±0.01picomoles, respectively. No FMT signal was observed in the normal muscle. There was no significant difference in the bone-to-tumor ratio between the two modalities (5.1±2.3 for SPECT and 8.8±2.2 for FMT) indicating that there is little difference in tumor uptake between these two agents. This study provides evidence of the accessibility of HAP within the breast tumor microenvironment as an in vivo imaging target for bone-seeking agents. SPECT imaging using (99m)Tc-MDP can be rapidly translated to the clinic. FMT imaging using Osteosense 750EX is not currently approved for clinical use and is limited to animal research. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. [Current approaches in multiple myeloma and other cancer-related bone diseases].

    PubMed

    Engelhardt, M; Kleber, M; Udi, J; Wäsch, R

    2012-05-01

    Multiple myeloma (MM) ranges second of all hematological malignancies and occurs most commonly in elderly patients. Almost all MM patients develop bone lesions in the course of their disease or have evidence of bone loss at initial diagnosis. Whole-body conventional radiography remains the gold standard in the diagnostic evaluation, albeit computed tomography (CT) and magnetic resonance imaging (MRI) are increasingly used as complementary techniques in the more sensitive detection of osteolytic processes. Bisphosphonates like zoledronate or pamidronate represent the cornerstone therapeutics in osteolytic disease, and are effective supportives to potent anti-myeloma therapies, including novel agents such as the proteasome inhibitor bortezomib or immunomodulatory drugs (IMIDs, e. g. thalidomide or lenalidomide). Several studies are ongoing to investigate the effects of alternative bone-seeking agents and their therapeutic potential for the management of myeloma bone disease, such as denosumab (RANKL-neutralizing antibody), anti-sclerostin (monoclonal antibody, generated against sclerostin) or sotatercept (potent activin-A inhibitor). This review summarizes the most prominent data on myeloma bone disease pathogenesis, the role of imaging techniques as well as therapy and prevention of lytic complications in myeloma which may similarly or equally be true for other bone metastases-inducing solid tumors. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Seeing through Musculoskeletal Tissues: Improving In Situ Imaging of Bone and the Lacunar Canalicular System through Optical Clearing

    PubMed Central

    Berke, Ian M.; Miola, Joseph P.; David, Michael A.; Smith, Melanie K.; Price, Christopher

    2016-01-01

    In situ, cells of the musculoskeletal system reside within complex and often interconnected 3-D environments. Key to better understanding how 3-D tissue and cellular environments regulate musculoskeletal physiology, homeostasis, and health is the use of robust methodologies for directly visualizing cell-cell and cell-matrix architecture in situ. However, the use of standard optical imaging techniques is often of limited utility in deep imaging of intact musculoskeletal tissues due to the highly scattering nature of biological tissues. Drawing inspiration from recent developments in the deep-tissue imaging field, we describe the application of immersion based optical clearing techniques, which utilize the principle of refractive index (RI) matching between the clearing/mounting media and tissue under observation, to improve the deep, in situ imaging of musculoskeletal tissues. To date, few optical clearing techniques have been applied specifically to musculoskeletal tissues, and a systematic comparison of the clearing ability of optical clearing agents in musculoskeletal tissues has yet to be fully demonstrated. In this study we tested the ability of eight different aqueous and non-aqueous clearing agents, with RIs ranging from 1.45 to 1.56, to optically clear murine knee joints and cortical bone. We demonstrated and quantified the ability of these optical clearing agents to clear musculoskeletal tissues and improve both macro- and micro-scale imaging of musculoskeletal tissue across several imaging modalities (stereomicroscopy, spectroscopy, and one-, and two-photon confocal microscopy) and investigational techniques (dynamic bone labeling and en bloc tissue staining). Based upon these findings we believe that optical clearing, in combination with advanced imaging techniques, has the potential to complement classical musculoskeletal analysis techniques; opening the door for improved in situ investigation and quantification of musculoskeletal tissues. PMID:26930293

  1. Seeing through Musculoskeletal Tissues: Improving In Situ Imaging of Bone and the Lacunar Canalicular System through Optical Clearing.

    PubMed

    Berke, Ian M; Miola, Joseph P; David, Michael A; Smith, Melanie K; Price, Christopher

    2016-01-01

    In situ, cells of the musculoskeletal system reside within complex and often interconnected 3-D environments. Key to better understanding how 3-D tissue and cellular environments regulate musculoskeletal physiology, homeostasis, and health is the use of robust methodologies for directly visualizing cell-cell and cell-matrix architecture in situ. However, the use of standard optical imaging techniques is often of limited utility in deep imaging of intact musculoskeletal tissues due to the highly scattering nature of biological tissues. Drawing inspiration from recent developments in the deep-tissue imaging field, we describe the application of immersion based optical clearing techniques, which utilize the principle of refractive index (RI) matching between the clearing/mounting media and tissue under observation, to improve the deep, in situ imaging of musculoskeletal tissues. To date, few optical clearing techniques have been applied specifically to musculoskeletal tissues, and a systematic comparison of the clearing ability of optical clearing agents in musculoskeletal tissues has yet to be fully demonstrated. In this study we tested the ability of eight different aqueous and non-aqueous clearing agents, with RIs ranging from 1.45 to 1.56, to optically clear murine knee joints and cortical bone. We demonstrated and quantified the ability of these optical clearing agents to clear musculoskeletal tissues and improve both macro- and micro-scale imaging of musculoskeletal tissue across several imaging modalities (stereomicroscopy, spectroscopy, and one-, and two-photon confocal microscopy) and investigational techniques (dynamic bone labeling and en bloc tissue staining). Based upon these findings we believe that optical clearing, in combination with advanced imaging techniques, has the potential to complement classical musculoskeletal analysis techniques; opening the door for improved in situ investigation and quantification of musculoskeletal tissues.

  2. [New methods for the evaluation of bone quality. Assessment of bone structural property using imaging.

    PubMed

    Ito, Masako

    Structural property of bone includes micro- or nano-structural property of the trabecular and cortical bone, and macroscopic geometry. Radiological technique is useful to analyze the bone structural property;multi-detector row CT(MDCT)or high-resolution peripheral QCT(HR-pQCT)is available to analyze human bone in vivo . For the analysis of hip geometry, CT-based hip structure analysis(HSA)is available as well as DXA-based HSA. These structural parameters are related to biomechanical property, and these assessment tools provide information of pathological changes or the effects of anti-osteoporotic agents on bone.

  3. Bone vascularization and bone micro-architecture characterizations according to the μCT resolution

    NASA Astrophysics Data System (ADS)

    Crauste, E.; Autrusseau, F.; Guédon, Jp.; Pilet, P.; Amouriq, Y.; Weiss, P.; Giumelli, B.

    2015-03-01

    Trabecular bone and its micro-architecture are of prime importance for health. Changes of bone micro-architecture are linked to different pathological situations like osteoporosis and begin now to be understood. In a previous paper [12], we started to investigate the relationships between bone and vessels and proposed some indices of characterization for the vessels issued from those used for the bone. Our main objective in this paper is to qualify the classical values used for bone as well as those we proposed for vessels according to different acquisition parameters and for several thresholding methods used to separate bone vessels and background. This study is also based on vessels perfusion by a contrast agent (barium sulfate mixed with gelatin) before euthanasia on rats. Femurs and tibias as well as mandibles were removed after rat's death and were imaged by microCT (Skyscan 1272, Bruker, Belgium) with a resolution ranging from 18 to 3μm. The so obtained images were analyzed with various softwares (NRecon Reconstruction, CtAn, and CtVox from Bruker) in order to calculate bone and vessels micro-architecture parameters (density of bone/blood within the volume), and to know if the results both for bone and vascular micro-architecture are constant along the chosen pixel resolution. The result is clearly negative. We found a very different characterization both for bone and vessels with the 3μm acquisition. Tibia and mandibles bones were also used to show results that can be visually assessed. The largest portions of the vascular tree are orthogonal to the obtained slices of the bone. Therefore, the contrast agent appears as cylinders of various sizes.

  4. Optical clearing of articular cartilage: a comparison of clearing agents

    NASA Astrophysics Data System (ADS)

    Bykov, Alexander; Hautala, Tapio; Kinnunen, Matti; Popov, Alexey; Karhula, Sakari; Saarakkala, Simo; Nieminen, Miika T.; Tuchin, Valery

    2015-07-01

    Optical clearing technique was applied to the problem of OCT imaging of articular cartilage and subchondral bone. We show that optical clearing significantly enhances visualization of articular cartilage and cartilage-bone interface. The effect of different clearing agents was analyzed. For the clearing, iohexol solution and propylene glycol (PG) were used. Clearing was performed in vitro at room temperature by immersion method. Cylindrical osteochondral samples (d=4.8mm) were drilled from bovine lateral femur and stored in phosphate-buffered saline at -20°C until clearing. Monitoring of clearing process was performed using high-speed spectral-domain OCT system providing axial resolution of 5.8μm at 930nm. Total duration of experiment was 90-100min to ensure saturation of clearing. We have shown that iohexol solution and PG are capable to optically clear articular cartilage enabling reliable characterization of cartilagebone interface with OCT. Being a low osmolarity agent, iohexol provides minimal changes to the thickness of cartilage sample. Clearing saturation time for the cartilage sample with the thickness of 0.9 mm measured with OCT is of 50 min. However, less than 15 min is enough to reliably detect the rear cartilage boundary. Alternatively, PG significantly (60%) reduces the cartilage thickness enabling better visualization of subchondral bone. It was observed that PG has higher clearing rate. The clearing saturation time is of 30 min, however less than 5 min is enough to detect cartilage-bone interface. We conclude that iohexol solution is superior for OCT imaging of cartilage and cartilage-bone interface, while PG suits better for subhondral bone visualization.

  5. Tin-117m-labeled stannic (Sn/sup 4 +/) chelate of diethylenetriamine pentaacetic acid (DTPA) for application in diagnosis and therapy

    DOEpatents

    Srivastava, S.C.; Meinken, G.E.; Richards, P.

    1983-08-25

    The radiopharmaceutical reagents of this invention and the class of Tin-117m radiopharmaceuticals are therapeutic and diagnostic agents that incorporate gamma-emitting nuclides that localize in bone after intravenous injection in mammals (mice, rats, dogs, and rabbits). Images reflecting bone structure or function can then be obtained by a scintillation camera that detects the distribution of ionizing radiation emitted by the radioactive agent. Tin-117m-labeled chelates of stannic tin localize almost exclusively in cortical bone. Upon intravenous injection of the reagent, the preferred chelates are phosphonate compounds, preferable, PYP, MDP, EHDP, and DTPA. This class of reagents is therapeutically and diagnostically useful in skeletal scintigraphy and for the radiotherapy of bone tumors and other disorders.

  6. The bone scan.

    PubMed

    Brenner, Arnold I; Koshy, June; Morey, Jose; Lin, Cheryl; DiPoce, Jason

    2012-01-01

    Bone imaging continues to be the second greatest-volume nuclear imaging procedure, offering the advantage of total body examination, low cost, and high sensitivity. Its power rests in the physiological uptake and pathophysiologic behavior of 99m technetium (99m-Tc) diphosphonates. The diagnostic utility, sensitivity, specificity, and predictive value of 99m-Tc bone imaging for benign conditions and tumors was established when only planar imaging was available. Currently, nearly all bone scans are performed as a planar study (whole-body, 3-phase, or regional), with the radiologist often adding single-photon emission computed tomography (SPECT) imaging. Here we review many current indications for planar bone imaging, highlighting indications in which the planar data are often diagnostically sufficient, although diagnosis may be enhanced by SPECT. (18)F sodium fluoride positron emission tomography (PET) is also re-emerging as a bone agent, and had been considered interchangeable with 99m-Tc diphosphonates in the past. In addition to SPECT, new imaging modalities, including (18)F fluorodeoxyglucose, PET/CT, CT, magnetic resonance, and SPECT/CT, have been developed and can aid in evaluating benign and malignant bone disease. Because (18)F fluorodeoxyglucose is taken up by tumor cells and Tc diphosphonates are taken up in osteoblastic activity or osteoblastic healing reaction, both modalities are complementary. CT and magnetic resonance may supplement, but do not replace, bone imaging, which often detects pathology before anatomic changes are appreciated. We also stress the importance of dose reduction by reducing the dose of 99m-Tc diphosphonates and avoiding unnecessary CT acquisitions. In addition, we describe an approach to image interpretation that emphasizes communication with referring colleagues and correlation with appropriate history to significantly improve our impact on patient care. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Painful hip prosthesis: value of nuclear imaging in the diagnosis of late complications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pearlman, A.W.

    1980-04-01

    Loosening of the prosthesis and infection are the most common late complications of the Charnley low friction arthroplasty. A noninvasive diagnostic approach to the symptomatic patient, using plain radiographs and nuclear imaging with a bone imaging agent, is presented. Nuclear imaging is a more sensitive indicator than plain radiography, but the two studies supplement each other.

  8. Validation of a simple and fast method to quantify in vitro mineralization with fluorescent probes used in molecular imaging of bone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moester, Martiene J.C.; Schoeman, Monique A.E.; Oudshoorn, Ineke B.

    2014-01-03

    Highlights: •We validate a simple and fast method of quantification of in vitro mineralization. •Fluorescently labeled agents can detect calcium deposits in the mineralized matrix of cell cultures. •Fluorescent signals of the probes correlated with Alizarin Red S staining. -- Abstract: Alizarin Red S staining is the standard method to indicate and quantify matrix mineralization during differentiation of osteoblast cultures. KS483 cells are multipotent mouse mesenchymal progenitor cells that can differentiate into chondrocytes, adipocytes and osteoblasts and are a well-characterized model for the study of bone formation. Matrix mineralization is the last step of differentiation of bone cells and ismore » therefore a very important outcome measure in bone research. Fluorescently labelled calcium chelating agents, e.g. BoneTag and OsteoSense, are currently used for in vivo imaging of bone. The aim of the present study was to validate these probes for fast and simple detection and quantification of in vitro matrix mineralization by KS483 cells and thus enabling high-throughput screening experiments. KS483 cells were cultured under osteogenic conditions in the presence of compounds that either stimulate or inhibit osteoblast differentiation and thereby matrix mineralization. After 21 days of differentiation, fluorescence of stained cultures was quantified with a near-infrared imager and compared to Alizarin Red S quantification. Fluorescence of both probes closely correlated to Alizarin Red S staining in both inhibiting and stimulating conditions. In addition, both compounds displayed specificity for mineralized nodules. We therefore conclude that this method of quantification of bone mineralization using fluorescent compounds is a good alternative for the Alizarin Red S staining.« less

  9. Phosphonated Near-Infrared Fluorophores for Biomedical Imaging of Bone**

    PubMed Central

    Hyun, Hoon; Wada, Hideyuki; Bao, Kai; Gravier, Julien; Yadav, Yogesh; Laramie, Matt; Henary, Maged; Frangioni, John V.

    2014-01-01

    The conventional method for creating targeted contrast agents is to conjugate separate targeting and fluorophore domains. In this study we report a new strategy based on incorporation of targeting moieties into the non-resonant structure of pentamethine and heptamethine indocyanines. Using the known affinity of phosphonates for bone minerals as a model system, we have synthesized two families of bifunctional molecules that target bone without the need for a traditional bisphosphonate. With peak fluorescence emission at ≈ 700 nm or ≈ 800 nm, these molecules can be used for FLARE dual-channel imaging. Longitudinal FLARE studies in mice demonstrate that phosphonated near-infrared fluorophores remain stable in bone for over 5 weeks, and histological analysis demonstrates incorporation into bone matrix. Taken together, we describe a new strategy for creating ultracompact, targeted, near-infrared fluorophores for various bioimaging applications. PMID:25139079

  10. Dual-mode imaging with radiolabeled gold nanorods

    NASA Astrophysics Data System (ADS)

    Agarwal, Ashish; Shao, Xia; Rajian, Justin R.; Zhang, Huanan; Chamberland, David L.; Kotov, Nicholas A.; Wang, Xueding

    2011-05-01

    Many nanoparticle contrast agents have difficulties with deep tissue and near-bone imaging due to limited penetration of visible photons in the body and mineralized tissues. We are looking into the possibility of mediating this problem while retaining the capabilities of the high spatial resolution associated with optical imaging. As such, the potential combination of emerging photoacoustic imaging and nuclear imaging in monitoring of antirheumatic drug delivery by using a newly developed dual-modality contrast agent is investigated. The contrast agent is composed of gold nanorods (GNRs) conjugated to the tumor necrosis factor (TNF-α) antibody and is subsequently radiolabeled by 125I. ELISA experiments designed to test TNF-α binding are performed to prove the specificity and biological activity of the radiolabeled conjugated contrast agent. Photoacoustic and nuclear imaging are performed to visualize the distribution of GNRs in articular tissues of the rat tail joints in situ. Findings from the two imaging modalities correspond well with each other in all experiments. Our system can image GNRs down to a concentration of 10 pM in biological tissues and with a radioactive label of 5 μCi. This study demonstrates the potential of combining photoacoustic and nuclear imaging modalities through one targeted contrast agent for noninvasive monitoring of drug delivery as well as deep and mineralized tissue imaging.

  11. Which metabolic imaging, besides bone scan with 99mTc-phosphonates, for detecting and evaluating bone metastases in prostatic cancer patients? An open discussion.

    PubMed

    Bombardieri, E; Setti, L; Kirienko, M; Antunovic, L; Guglielmo, P; Ciocia, G

    2015-12-01

    Prostate cancer bone metastases occur frequently in advanced cancer and this is matter of particular attention, due to the great impact on patient's management and considering that a lot of new emerging therapeutic options have been recently introduced. Imaging bone metastases is essential to localize lesions, to establish their size and number, to study characteristics and changes during therapy. Besides radiological imaging, nuclear medicine modalities can image their features and offer additional information about their metabolic behaviour. They can be classified according to physical characteristics, type of detection, mechanism of uptake, availability for daily use. The physiopathology of metastases formation and the mechanisms of tracer uptake are essential to understand the interpretation of nuclear medicine images. Therefore, radiopharmaceuticals for bone metastases can be classified in agents targeting bone (99mTc-phosphonates, 18F-fluoride) and those targeting prostatic cancer cells (18F-fluoromethylcholine, 11C-choline, 18F-fluorodeoxyglucose). The modalities using the first group of tracers are planar bone scan, SPECT or SPECT/CT with 99mTc-diphosphonates, and 18F-fluoride PET/CT, while the modalities using the second group include 18F/11C-choline derivatives PET/CT, 18F-FDG PET/CT and PET/CT scans with several other radiopharmaceuticals described in the literature, such as 18F/11C-acetate derivatives, 18F-fluoro-5α-dihydrotestosterone (FDHT), 18F-anti-1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC), 18F-2'-fluoro-5-methyl-1-β-D-arabinofuranosyluracil (FMAU) and 68Ga-labeled-prostate specific membrane antigen (PMSA) PET/TC. However, since data on clinical validation for these last novel modalities are not conclusive and/or are not still sufficient in number, at present they can be still considered as promising tools under evaluation. The present paper considers the nuclear modalities today available for the clinical routine. This overview wants to discuss the opportunities and the drawbacks of these current diagnostic tests in a scenario where planar scintigraphy and/or SPECT with phosphonates, is the only metabolic imaging recommended by the most important Guidelines of the Scientific Societies dealing with prostate cancer. Other nuclear medicine modalities are in very few cases just cited, never recommended except in rare situations. Is there space for agents other than 99mTc-phosphonates to image bone lesions from prostate cancer?

  12. Juvenile Gaucher disease simulating osteomyelitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, J.H.; Ortega, J.A.; Heisel, M.A.

    1981-10-01

    A case in which several imaging procedures suggested juvenile Gaucher disease in a child who presented with symptomatology of osteomyelitis is discussed. The 20-month girl was given a Technetium-99m radionuclide skeletal examination which revealed intense uptake of tracer agents along the shaft of the right femur. It was also found that the liver and spleen were dramatically Ga-67 avid. The bone pain symptomatology suggested an osteomyelitis of the femur, but skeletal scintigraphy with Tc-99m-labeled bone tracer demonstrated photopenic areas involving the femur, suggesting that the bone pain may have been due to marrow packed with Gaucher cells. This overexpansion ofmore » the marrow may lead to microfractures with remodeling seen radiographically as periosteal new bone and scintigraphically as increased periosteal deposition of tracer agent. The radiogallium study was useful to exclude an underlying osteomyelitis in the involved femurs. Although juvenile Gaucher disease is unusual, it should be considered in any child who presents with the constellation of hepatosplenomegaly and bone pain simulating osteomyelitis.« less

  13. Radionuclide bone imaging in the evaluation of osseous allograft systems. Scientific report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, J.F.; Cagle, J.D.; Stevenson, J.S.

    1975-02-01

    Evaluation of the progress of osteogenic activity in mandibular bone grafts in dogs by a noninvasive, nondestructive radionuclide method is feasible. The method provides a meaningful sequential interpretation of osseous repair more sensitive than conventional radiography. It is presumed that accumulating hydroxyapatite is being labelled by the imaging agent technetium diphosphonate. The osseous allograft systems studied were comparable to or exceeded autografts in their repair activity in mandibular discontinuity defects as judged by radionuclide imaging. A lyophilized mandibular allograft segment augmented with autologous cancellous marrow was more active than autograft controls at 3 and 6 weeks and was the mostmore » active system studied. Allograft segments augmented with lyophilized crushed cortical allogeneic bone particles were equal to controls at 3 weeks and more active than controls at 6 weeks. Lyophilized crushed cortical allogeneic bone particles retained in a Millipore filter while not clinically stable at 6 weeks did show osteogenic activity equal to control autografts at this interval. (GRA)« less

  14. In vivo small animal micro-CT using nanoparticle contrast agents

    PubMed Central

    Ashton, Jeffrey R.; West, Jennifer L.; Badea, Cristian T.

    2015-01-01

    Computed tomography (CT) is one of the most valuable modalities for in vivo imaging because it is fast, high-resolution, cost-effective, and non-invasive. Moreover, CT is heavily used not only in the clinic (for both diagnostics and treatment planning) but also in preclinical research as micro-CT. Although CT is inherently effective for lung and bone imaging, soft tissue imaging requires the use of contrast agents. For small animal micro-CT, nanoparticle contrast agents are used in order to avoid rapid renal clearance. A variety of nanoparticles have been used for micro-CT imaging, but the majority of research has focused on the use of iodine-containing nanoparticles and gold nanoparticles. Both nanoparticle types can act as highly effective blood pool contrast agents or can be targeted using a wide variety of targeting mechanisms. CT imaging can be further enhanced by adding spectral capabilities to separate multiple co-injected nanoparticles in vivo. Spectral CT, using both energy-integrating and energy-resolving detectors, has been used with multiple contrast agents to enable functional and molecular imaging. This review focuses on new developments for in vivo small animal micro-CT using novel nanoparticle probes applied in preclinical research. PMID:26581654

  15. Tumor resistance to vascular disrupting agents: mechanisms, imaging, and solutions

    PubMed Central

    Liang, Wenjie; Ni, Yicheng; Chen, Feng

    2016-01-01

    The emergence of vascular disrupting agents (VDAs) is a significant advance in the treatment of solid tumors. VDAs induce rapid and selective shutdown of tumor blood flow resulting in massive necrosis. However, a viable marginal tumor rim always remains after VDA treatment and is a major cause of recurrence. In this review, we discuss the mechanisms involved in the resistance of solid tumors to VDAs. Hypoxia, tumor-associated macrophages, and bone marrow-derived circulating endothelial progenitor cells all may contribute to resistance. Resistance can be monitored using magnetic resonance imaging markers. The various solutions proposed to manage tumor resistance to VDAs emphasize combining these agents with other approaches including antiangiogenic agents, chemotherapy, radiotherapy, radioimmunotherapy, and sequential dual-targeting internal radiotherapy. PMID:26812886

  16. In vitro stabilization of a low-tin bone-imaging agent (99mTc-Sn-HEDP) by ascorbic acid.

    PubMed

    Tofe, A J; Francis, M D

    1976-09-01

    The presence of oxidants in the 99mTc-pertechnetate and of oxygen in diagnostic kits containing low concentrations of Sn(II) has a detrimental effect upon in vitro and in vivo stability. Maintaining a nitrogen atmosphere or increasing the Sn(II) concentration inhibits the formation of 99mTcO4-. However, the latter remedy is likely to cause uptake in the reticuloendothelial system and has been associated with false positive or negative brain scans. We used ascorbic acid (an antioxidant) to ensure the in vitro stability with the low-Sn(II) bone agent disodium etidronate. In vitro stability studies by instant thin-layer chromatography, using high-acitivity generators and "instant pertechnetate," yielded less than 2% free pertechnetate at 24 hr after preparation. Distribution studies in guinea pigs show neither altered distribution of the bone agent nor abnormal distribution of ascorbic acid, suggesting its sole function as a noncomplexing stabilizer.

  17. Repression of Multiple Myeloma Growth and Preservation of Bone with Combined Radiotherapy and Anti-angiogenic Agent

    PubMed Central

    Jia, Dan; Koonce, Nathan A.; Halakatti, Roopa; Li, Xin; Yaccoby, Shmuel; Swain, Frances L.; Suva, Larry J.; Hennings, Leah; Berridge, Marc S.; Apana, Scott M.; Mayo, Kevin; Corry, Peter M.; Griffin, Robert J.

    2011-01-01

    The effects of ionizing radiation, with or without the antiangiogenic agent anginex (Ax), on multiple myeloma growth were tested in a SCID-rab mouse model. Mice carrying human multiple myeloma cell-containing pre-implanted bone grafts were treated weekly with various regimens for 8 weeks. Rapid multiple myeloma growth, assessed by bioluminescence intensity (IVIS), human lambda Ig light chain level in serum (ELISA), and the volume of bone grafts (caliper), was observed in untreated mice. Tumor burden in mice receiving combined therapy was reduced to 59% (by caliper), 43% (by ELISA), and 2% (by IVIS) of baseline values after 8 weeks of treatment. Ax or radiation alone slowed but did not stop tumor growth. Four weeks after the withdrawal of the treatments, tumor burden remained minimal in mice given Ax + radiation but increased noticeably in the other three groups. Multiple myeloma suppression by Ax + radiation was accompanied by a marked decrease in the number and activity of osteoclasts in bone grafts assessed by histology. Bone graft integrity was preserved by Ax + radiation but was lost in the other three groups, as assessed by microCT imaging and radiography. These results suggest that radiotherapy, when primed by anti-angiogenic agents, may be a potent therapy for focal multiple myeloma. PMID:20518660

  18. PEGylated Peptide-Based Imaging Agents for Targeted Molecular Imaging.

    PubMed

    Wu, Huizi; Huang, Jiaguo

    2016-01-01

    Molecular imaging is able to directly visualize targets and characterize cellular pathways with a high signal/background ratio, which requires a sufficient amount of agents to uptake and accumulate in the imaging area. The design and development of peptide based agents for imaging and diagnosis as a hot and promising research topic that is booming in the field of molecular imaging. To date, selected peptides have been increasingly developed as agents by coupling with different imaging moieties (such as radiometals and fluorophore) with the help of sophisticated chemical techniques. Although a few successes have been achieved, most of them have failed mainly caused by their fast renal clearance and therefore low tumor uptakes, which may limit the effectively tumor retention effect. Besides, several peptide agents based on nanoparticles have also been developed for medical diagnostics. However, a great majority of those agents shown long circulation times and accumulation over time into the reticuloendothelial system (RES; including spleen, liver, lymph nodes and bone marrow) after systematic administration, such long-term severe accumulation probably results in the possible likelihood of toxicity and potentially induces health hazards. Recently reported design criteria have been proposed not only to enhance binding affinity in tumor region with long retention, but also to improve clearance from the body in a reasonable amount of time. PEGylation has been considered as one of the most successful modification methods to prolong tumor retention and improve the pharmacokinetic and pharmacodynamic properties for peptide-based imaging agents. This review summarizes an overview of PEGylated peptides imaging agents based on different imaging moieties including radioisotopes, fluorophores, and nanoparticles. The unique concepts and applications of various PEGylated peptide-based imaging agents are introduced for each of several imaging moieties. Effects of PEGylation on their target capability, clearance kinetics and metabolic stability are depicted. Problems and issues relating to the pharmacokinetic and optimization design of peptide-based imaging agents are also discussed.

  19. Coronary angiography using synchrotron radiation (invited)

    NASA Astrophysics Data System (ADS)

    Thompson, A. C.; Rubenstein, E.; Zeman, H. D.; Hofstadter, R.; Otis, J. N.; Giacomini, J. C.; Gordon, H. J.; Brown, G. S.; Thomlinson, W.; Kernoff, R. S.

    1989-07-01

    Imaging of coronary arteries using a venous instead of an arterial injection of contrast agent could provide a much safer method to diagnose heart disease. The tunability, intensity, and collimation of synchrotron radiation x-ray beams makes possible imaging systems with greatly improved imaging sensitivity. A pair of fan x-ray beams, a movable patient chair, and a multielement x-ray detector are used to acquire a pair of x-ray images above and below the iodine K edge. The logarithmic subtraction of these two images produces an image with excellent sensitivity to contrast agent and minimal sensitivity to bone and tissue. High-quality images from a dog and preliminary images from five humans have been obtained. Improvements are being made to the system to increase the effective radiation flux and to measure the position of both x-ray beams.

  20. AEG-1 promoter-mediated imaging of prostate cancer

    PubMed Central

    Bhatnagar, Akrita; Wang, Yuchuan; Mease, Ronnie C.; Gabrielson, Matthew; Sysa, Polina; Minn, Il; Green, Gilbert; Simmons, Brian; Gabrielson, Kathleen; Sarkar, Siddik; Fisher, Paul B.; Pomper, Martin G.

    2014-01-01

    We describe a new imaging method for detecting prostate cancer, whether localized or disseminated and metastatic to soft tissues and bone. The method relies on the use of imaging reporter genes under the control of the promoter of AEG-1 (MTDH), which is selectively active only in malignant cells. Through systemic, nanoparticle-based delivery of the imaging construct, lesions can be identified through bioluminescence imaging and single photon emission-computed tomography in the PC3-ML murine model of prostate cancer at high sensitivity. This approach is applicable for the detection of prostate cancer metastases, including bone lesions for which there is no current reliable agent for non-invasive clinical imaging. Further, the approach compares favorably to accepted and emerging clinical standards, including positron emission tomography with [18F]fluorodeoxyglucose and [18F]sodium fluoride. Our results offer a preclinical proof of concept that rationalizes clinical evaluation in patients with advanced prostate cancer. PMID:25145668

  1. Dynamic iterative beam hardening correction (DIBHC) in myocardial perfusion imaging using contrast-enhanced computed tomography.

    PubMed

    Stenner, Philip; Schmidt, Bernhard; Allmendinger, Thomas; Flohr, Thomas; Kachelrie, Marc

    2010-06-01

    In cardiac perfusion examinations with computed tomography (CT) large concentrations of iodine in the ventricle and in the descending aorta cause beam hardening artifacts that can lead to incorrect perfusion parameters. The aim of this study is to reduce these artifacts by performing an iterative correction and by accounting for the 3 materials soft tissue, bone, and iodine. Beam hardening corrections are either implemented as simple precorrections which cannot account for higher order beam hardening effects, or as iterative approaches that are based on segmenting the original image into material distribution images. Conventional segmentation algorithms fail to clearly distinguish between iodine and bone. Our new algorithm, DIBHC, calculates the time-dependent iodine distribution by analyzing the voxel changes of a cardiac perfusion examination (typically N approximately 15 electrocardiogram-correlated scans distributed over a total scan time up to T approximately 30 s). These voxel dynamics are due to changes in contrast agent. This prior information allows to precisely distinguish between bone and iodine and is key to DIBHC where each iteration consists of a multimaterial (soft tissue, bone, iodine) polychromatic forward projection, a raw data comparison and a filtered backprojection. Simulations with a semi-anthropomorphic dynamic phantom and clinical scans using a dual source CT scanner with 2 x 128 slices, a tube voltage of 100 kV, a tube current of 180 mAs, and a rotation time of 0.28 seconds have been carried out. The uncorrected images suffer from beam hardening artifacts that appear as dark bands connecting large concentrations of iodine in the ventricle, aorta, and bony structures. The CT-values of the affected tissue are usually underestimated by roughly 20 HU although deviations of up to 61 HU have been observed. For a quantitative evaluation circular regions of interest have been analyzed. After application of DIBHC the mean values obtained deviate by only 1 HU for the simulations and the corrected values show an increase of up to 61 HU for the measurements. One iteration of DIBHC greatly reduces the beam hardening artifacts induced by the contrast agent dynamics (and those due to bone) now allowing for an improved assessment of contrast agent uptake in the myocardium which is essential for determining myocardial perfusion.

  2. Preparation and Biological Study of 68Ga-DOTA-alendronate

    PubMed Central

    Fakhari, Ashraf; Jalilian, Amir R.; Johari-Daha, Fariba; Shafiee-Ardestani, Mehdi; Khalaj, Ali

    2016-01-01

    Objective(s): In line with previous research on the development of conjugated bisphosphonate ligands as new bone-avid agents, in this study, DOTA-conjugated alendronate (DOTA-ALN) was synthesized and evaluated after labeling with gallium-68 (68Ga). Methods: DOTA-ALN was synthesized and characterized, followed by 68Ga-DOTA-ALN preparation, using DOTA-ALN and 68GaCl3 (pH: 4-5) at 92-95° C for 10 min. Stability tests, hydroxyapatite assay, partition coefficient calculation, biodistribution studies, and imaging were performed on the developed agent in normal rats. Results: The complex was prepared with high radiochemical purity (>99% as depicted by radio thin-layer chromatography; specific activity: 310-320 GBq/mmol) after solid phase purification and was stabilized for up to 90 min with a log P value of -2.91. Maximum ligand binding (65%) was observed in the presence of 50 mg of hydroxyapatite; a major portion of the activity was excreted through the kidneys. With the exception of excretory organs, gastrointestinal tract organs, including the liver, intestine, and colon, showed significant uptake; however, the bone uptake was low (<1%) at 30 min after the injection. The data were also confirmed by sequential imaging at 30-90 min following the intravenous injection. Conclusion: The high solubility and anionic properties of the complex led to major renal excretion and low hydroxyapatite uptake; therefore, the complex failed to demonstrate bone imaging behaviors. PMID:27408898

  3. Preparation and Biological Study of (68)Ga-DOTA-alendronate.

    PubMed

    Fakhari, Ashraf; Jalilian, Amir R; Johari-Daha, Fariba; Shafiee-Ardestani, Mehdi; Khalaj, Ali

    2016-01-01

    In line with previous research on the development of conjugated bisphosphonate ligands as new bone-avid agents, in this study, DOTA-conjugated alendronate (DOTA-ALN) was synthesized and evaluated after labeling with gallium-68 ((68)Ga). DOTA-ALN was synthesized and characterized, followed by (68)Ga-DOTA-ALN preparation, using DOTA-ALN and (68)GaCl3 (pH: 4-5) at 92-95° C for 10 min. Stability tests, hydroxyapatite assay, partition coefficient calculation, biodistribution studies, and imaging were performed on the developed agent in normal rats. The complex was prepared with high radiochemical purity (>99% as depicted by radio thin-layer chromatography; specific activity: 310-320 GBq/mmol) after solid phase purification and was stabilized for up to 90 min with a log P value of -2.91. Maximum ligand binding (65%) was observed in the presence of 50 mg of hydroxyapatite; a major portion of the activity was excreted through the kidneys. With the exception of excretory organs, gastrointestinal tract organs, including the liver, intestine, and colon, showed significant uptake; however, the bone uptake was low (<1%) at 30 min after the injection. The data were also confirmed by sequential imaging at 30-90 min following the intravenous injection. The high solubility and anionic properties of the complex led to major renal excretion and low hydroxyapatite uptake; therefore, the complex failed to demonstrate bone imaging behaviors.

  4. Sensitivity and specificity of ultrasonography and low-field magnetic resonance imaging for diagnosing arthritis.

    PubMed

    Broll, Matthias; Albrecht, Katinka; Tarner, Ingo; Müller-Ladner, Ulf; Strunk, Johannes

    2012-01-01

    To evaluate the value of grey-scale ultrasonography (US) including power Doppler ultrasonography (PDUS) and low-field magnetic resonance imaging (MRI) for the diagnosis of arthritis in a diagnostic phase III study. Fifty consecutive patients with suspected arthritis were included in the study. Following a standardised protocol, US of the carpus and the metacarpophalangeal (MCP) joints of the dominant hand was performed. Subsequently, low-field MRI was done using standard sequences, with contrast agent (Gadolinium DTPA) administered to 29 patients. In 32 out of 50 patients a clinical diagnosis of arthritis was established. In grey-scale ultrasonography including PDUS, sensitivity and specificity were determined as 0.94 and 0.5, respectively, for synovitis (effusion and hypertrophy), 0.72 and 0.94, respectively, for Doppler signals, and 0.38 and 1.0, respectively, for bone erosions. In low-field MRI, sensitivity and specificity values were 0.77 and 0.75, respectively, for synovitis (when using contrast agent), 0.48 and 0.78, respectively, for bone marrow oedema, and 0.58 and 0.83, respectively, for bone erosion. Both grey-scale ultrasonography including PDUS and low-field MRI are suitable imaging methods for diagnosing arthritis at an early stage. However, PDUS displays a higher specificity and almost the same sensitivity as compared to contrast-enhanced MRI, while being a much simpler and less costly procedure.

  5. Technetium-99m-labeled ceftizoxime loaded long-circulating and pH-sensitive liposomes used to identify osteomyelitis.

    PubMed

    Ferreira, Soraya Maria Zandim Maciel Dias; Domingos, Giselle Pires; Ferreira, Diego dos Santos; Rocha, Talita Guieiro Ribeiro; Serakides, Rogéria; de Faria Rezende, Cleuza Maria; Cardoso, Valbert Nascimento; Fernandes, Simone Odília Antunes; Oliveira, Mônica Cristina

    2012-07-15

    Osteomyelitis is an infectious disease located in the bone or bone marrow. Long-circulating and pH-sensitive liposomes containing a technetium-99m-labeled antibiotic, ceftizoxime, (SpHL-(99m)Tc-CF) were developed to identify osteomyelitis foci. Biodistribution studies and scintigraphic images of bone infection or non infection-bearing rats that had been treated with these liposomes were performed. A high accumulation in infectious foci and high values in the target-non target ratio could be observed. These results indicate the potential of SpHL-(99m)Tc-CF as a potential agent for the diagnosis of bone infections. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Applications of immunoPET: Using 124I-anti-PSCA A11 minibody for imaging disease progression and response to therapy in mouse xenograft models of prostate cancer

    DOE PAGES

    Knowles, Scott M.; Tavare, Richard; Zettlitz, Kirstin A.; ...

    2014-10-17

    Here, prostate stem cell antigen (PSCA) is highly expressed in local prostate cancers and prostate cancer bone metastases and its expression correlates with androgen receptor activation and a poor prognosis. Here in this study, we investigate the potential clinical applications of immunoPET with the anti-PSCA A11 minibody, an antibody fragment optimized for use as an imaging agent. We compare A11 minibody immunoPET to 18F-Fluoride PET bone scans for detecting prostate cancer bone tumors and evaluate the ability of the A11 minibody to image tumor response to androgen deprivation. Osteoblastic, PSCA expressing, LAPC-9 intratibial xenografts were imaged with serial 124I-anti-PSCA A11more » minibody immunoPET and 18F-Fluoride bone scans. Mice bearing LAPC-9 subcutaneous xenografts were treated with either vehicle or MDV-3100 and imaged with A11 minibody immunoPET/CT scans pre- and post-treatment. Ex vivo flow cytometry measured the change in PSCA expression in response to androgen deprivation. A11 minibody demonstrated improved sensitivity and specificity over 18F-Fluoride bone scans for detecting LAPC-9 intratibial xenografts at all time points. Finally, LAPC-9 subcutaneous xenografts showed downregulation of PSCA when treated with MDV-3100 which A11 minibody immunoPET was able to detect in vivo.« less

  7. Transcranial functional ultrasound imaging of the brain using microbubble-enhanced ultrasensitive Doppler

    PubMed Central

    Errico, Claudia; Osmanski, Bruno-Félix; Pezet, Sophie; Couture, Olivier; Lenkei, Zsolt; Tanter, Mickael

    2016-01-01

    Functional ultrasound (fUS) is a novel neuroimaging technique, based on high-sensitivity ultrafast Doppler imaging of cerebral blood volume, capable of measuring brain activation and connectivity in rodents with high spatiotemporal resolution (100 μm, 1 ms). However, the skull attenuates acoustic waves, so fUS in rats currently requires craniotomy or a thinned-skull window. Here we propose a non-invasive approach by enhancing the fUS signal with a contrast agent, inert gas microbubbles. Plane-wave illumination of the brain at high frame rate (500 Hz compounded sequence with three tilted plane waves, PRF = 1500Hz with a 128 element 15 MHz linear transducer), yields highly-resolved neurovascular maps. We compared fUS imaging performance through the intact skull bone (transcranial fUS) versus a thinned-skull window in the same animal. First, we show that the vascular network of the adult rat brain can be imaged transcranially only after a bolus intravenous injection of microbubbles, which leads to a 9 dB gain in the contrast-to-tissue ratio. Next, we demonstrate that functional increase in the blood volume of the primary sensory cortex after targeted electrical-evoked stimulations of the sciatic nerve is observable transcranially in presence of contrast agents, with high reproducibility (Pearson's coefficient ρ = 0.7 ± 0.1, p = 0.85). Our work demonstrates that the combination of ultrafast Doppler imaging and injection of contrast agent allows non-invasive functional brain imaging through the intact skull bone in rats. These results should ease non-invasive longitudinal studies in rodents and open a promising perspective for the adoption of highly resolved fUS approaches for the adult human brain. PMID:26416649

  8. Clinical utility of (18)F-fluoride PET/CT in benign and malignant bone diseases.

    PubMed

    Li, Yuxin; Schiepers, Christiaan; Lake, Ralph; Dadparvar, Simin; Berenji, Gholam R

    2012-01-01

    (18)F labeled sodium fluoride is a positron-emitting, bone seeking agent with more favorable skeletal kinetics than conventional phosphate and diphosphonate compounds. With the expanding clinical usage of PET/CT, there is renewed interest in using (18)F-fluoride PET/CT for imaging bone diseases. Growing evidence indicates that (18)F fluoride PET/CT offers increased sensitivity, specificity, and diagnostic accuracy in evaluating metastatic bone disease compared to (99m)Tc based bone scintigraphy. National Oncologic PET Registry (NOPR) has expanded coverage for (18)F sodium fluoride PET scans since February 2011 for the evaluation of osseous metastatic disease. In this article, we reviewed the pharmacological characteristics of sodium fluoride, as well as the clinical utility of PET/CT using (18)F-fluoride in both benign and malignant bone disorders. Published by Elsevier Inc.

  9. Development of Novel Radiogallium-Labeled Bone Imaging Agents Using Oligo-Aspartic Acid Peptides as Carriers

    PubMed Central

    Ogawa, Kazuma; Ishizaki, Atsushi; Takai, Kenichiro; Kitamura, Yoji; Kiwada, Tatsuto; Shiba, Kazuhiro; Odani, Akira

    2013-01-01

    68Ga (T 1/2 = 68 min, a generator-produced nuclide) has great potential as a radionuclide for clinical positron emission tomography (PET). Because poly-glutamic and poly-aspartic acids have high affinity for hydroxyapatite, to develop new bone targeting 68Ga-labeled bone imaging agents for PET, we used 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) as a chelating site and conjugated aspartic acid peptides of varying lengths. Subsequently, we compared Ga complexes, Ga-DOTA-(Asp)n (n = 2, 5, 8, 11, or 14) with easy-to-handle 67Ga, with the previously described 67Ga-DOTA complex conjugated bisphosphonate, 67Ga-DOTA-Bn-SCN-HBP. After synthesizing DOTA-(Asp)n by a Fmoc-based solid-phase method, complexes were formed with 67Ga, resulting in 67Ga-DOTA-(Asp)n with a radiochemical purity of over 95% after HPLC purification. In hydroxyapatite binding assays, the binding rate of 67Ga-DOTA-(Asp)n increased with the increase in the length of the conjugated aspartate peptide. Moreover, in biodistribution experiments, 67Ga-DOTA-(Asp)8, 67Ga-DOTA-(Asp)11, and 67Ga-DOTA-(Asp)14 showed high accumulation in bone (10.5±1.5, 15.1±2.6, and 12.8±1.7% ID/g, respectively) but were barely observed in other tissues at 60 min after injection. Although bone accumulation of 67Ga-DOTA-(Asp)n was lower than that of 67Ga-DOTA-Bn-SCN-HBP, blood clearance of 67Ga-DOTA-(Asp)n was more rapid. Accordingly, the bone/blood ratios of 67Ga-DOTA-(Asp)11 and 67Ga-DOTA-(Asp)14 were comparable with those of 67Ga-DOTA-Bn-SCN-HBP. In conclusion, these data provide useful insights into the drug design of 68Ga-PET tracers for the diagnosis of bone disorders, such as bone metastases. PMID:24391942

  10. Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images

    NASA Astrophysics Data System (ADS)

    Rogowska, Jadwiga; Brezinski, Mark E.

    2002-02-01

    Osteoarthritis, whose hallmark is the progressive loss of joint cartilage, is a major cause of morbidity worldwide. Recently, optical coherence tomography (OCT) has demonstrated considerable promise for the assessment of articular cartilage. Among the most important parameters to be assessed is cartilage width. However, detection of the bone cartilage interface is critical for the assessment of cartilage width. At present, the quantitative evaluations of cartilage thickness are being done using manual tracing of cartilage-bone borders. Since data is being obtained near video rate with OCT, automated identification of the bone-cartilage interface is critical. In order to automate the process of boundary detection on OCT images, there is a need for developing new image processing techniques. In this paper we describe the image processing techniques for speckle removal, image enhancement and segmentation of cartilage OCT images. In particular, this paper focuses on rabbit cartilage since this is an important animal model for testing both chondroprotective agents and cartilage repair techniques. In this study, a variety of techniques were examined. Ultimately, by combining an adaptive filtering technique with edge detection (vertical gradient, Sobel edge detection), cartilage edges can be detected. The procedure requires several steps and can be automated. Once the cartilage edges are outlined, the cartilage thickness can be measured.

  11. Nuclear medicine and the failed joint replacement: Past, present, and future

    PubMed Central

    Palestro, Christopher J

    2014-01-01

    Soon after the introduction of the modern prosthetic joint, it was recognized that radionuclide imaging provides useful information about these devices. The bone scan was used extensively to identify causes of prosthetic joint failure. It became apparent, however, that although sensitive, regardless of how the images were analyzed or how it was performed, the test was not specific and could not distinguish among the causes of prosthetic failure. Advances in anatomic imaging, notably cross sectional modalities, have facilitated the diagnosis of many, if not most, causes of prosthetic failure, with the important exception of infection. This has led to a shift in the diagnostic paradigm, in which nuclear medicine investigations increasingly have focused on diagnosing infection. The recognition that bone scintigraphy could not reliably diagnose infection led to the development of combined studies, first bone/gallium and subsequently leukocyte/bone and leukocyte/marrow imaging. Labeled leukocyte imaging, combined with bone marrow imaging is the most accurate (about 90%) imaging test for diagnosing joint arthroplasty infection. Its value not withstanding, there are significant disadvantages to this test. In-vivo techniques for labeling leukocytes, using antigranulocyte antibodies have been explored, but have their own limitations and the results have been inconsistent. Fluorodeoxyglucose (FDG)-positron emission tomography (FDG-PET) has been extensively investigated for more than a decade but its role in diagnosing the infected prosthesis has yet to be established. Antimicrobial peptides bind to bacterial cell membranes and are infection specific. Data suggest that these agents may be useful for diagnosing prosthetic joint infection, but large scale studies have yet to be undertaken. Although for many years nuclear medicine has focused on diagnosing prosthetic joint infection, the advent of hybrid imaging with single-photon emission computed tomography(SPECT)/electronic computer X-ray tomography technique (CT) and the availability of fluorine-18 fluoride PET suggests that the diagnostic paradigm may be shifting again. By providing the anatomic information lacking in conventional radionuclide studies, there is renewed interest in bone scintigraphy, performed as a SPECT/CT procedure, for detecting joint instability, mechanical loosening and component malpositioning. Fluoride-PET may provide new insights into periprosthetic bone metabolism. The objective of this manuscript is to provide a comprehensive review of the evolution of nuclear medicine imaging of joint replacements. PMID:25071885

  12. Pharmacological management of osteogenesis

    PubMed Central

    Nardone, Valeria; D'Asta, Federica; Brandi, Maria Luisa

    2014-01-01

    Osteogenesis and bone remodeling are complex biological processes that are essential for the formation of new bone tissue and its correct functioning. When the balance between bone resorption and formation is disrupted, bone diseases and disorders such as Paget's disease, fibrous dysplasia, osteoporosis and fragility fractures may result. Recent advances in bone cell biology have revealed new specific targets for the treatment of bone loss that are based on the inhibition of bone resorption by osteoclasts or the stimulation of bone formation by osteoblasts. Bisphosphonates, antiresorptive agents that reduce bone resorption, are usually recommended as first-line therapy in women with postmenopausal osteoporosis. Numerous studies have shown that bisphosphonates are able to significantly reduce the risk of femoral and vertebral fractures. Other antiresorptive agents indicated for the treatment of osteoporosis include selective estrogen receptor modulators, such as raloxifene. Denosumab, a human monoclonal antibody, is another antiresorptive agent that has been approved in Europe and the USA. This agent blocks the RANK/RANKL/OPG system, which is responsible for osteoclastic activation, thus reducing bone resorption. Other approved agents include bone anabolic agents, such as teriparatide, a recombinant parathyroid hormone that improves bone microarchitecture and strength, and strontium ranelate, considered to be a dual-action drug that acts by both osteoclastic inhibition and osteoblastic stimulation. Currently, anti-catabolic drugs that act through the Wnt-β catenin signaling pathway, serving as Dickkopf-related protein 1 inhibitors and sclerostin antagonists, are also in development. This concise review provides an overview of the drugs most commonly used for the control of osteogenesis in bone diseases. PMID:24964310

  13. Whole-body MRI including diffusion-weighted MRI compared with 5-HTP PET/CT in the detection of neuroendocrine tumors

    PubMed Central

    Carlbom, Lina; Caballero-Corbalán, José; Granberg, Dan; Sörensen, Jens; Eriksson, Barbro; Ahlström, Håkan

    2017-01-01

    Aim We wanted to explore if whole-body magnetic resonance imaging (MRI) including diffusion-weighted (DW) and liver-specific contrast agent-enhanced imaging could be valuable in lesion detection of neuroendocrine tumors (NET). [11C]-5-Hydroxytryptophan positron emission tomography/computed tomography (5-HTP PET/CT) was used for comparison. Materials and methods Twenty-one patients with NET were investigated with whole-body MRI, including DW imaging (DWI) and contrast-enhanced imaging of the liver, and whole-body 5-HTP PET/CT. Seven additional patients underwent upper abdomen MRI including DWI, liver-specific contrast agent-enhanced imaging, and 5-HTP PET/CT. Results There was a patient-based concordance of 61% and a lesion-based concordance of 53% between the modalities. MRI showed good concordance with PET in detecting bone metastases but was less sensitive in detecting metastases in mediastinal lymph nodes. MRI detected more liver metastases than 5-HTP PET/CT. Conclusion Whole-body MRI with DWI did not detect all NET lesions found with whole-body 5-HTP PET/CT. Our findings indicate that MRI of the liver including liver-specific contrast agent-enhanced imaging and DWI could be a useful complement to whole-body 5-HTP PET/CT. PMID:27894208

  14. Cardiotonic agent milrinone stimulates resorption in rodent bone organ culture.

    PubMed Central

    Krieger, N S; Stappenbeck, T S; Stern, P H

    1987-01-01

    The cardiotonic agent amrinone inhibits bone resorption in vitro. Milrinone, an amrinone analog, is a more potent cardiotonic agent with lower toxicity. In contrast to amrinone, milrinone stimulated resorption in cultures of neonatal mouse calvaria and fetal rat limb bones. Threshold doses were 0.1 microM in calvaria and 0.1 mM in limb bones; maximal stimulation occurred in calvaria at 0.1 mM. Maximal responses to milrinone and parathyroid hormone were comparable. Milrinone concentrations below 0.1 mM did not affect calvarial cyclic AMP. 0.5 microM indomethacin inhibited milrinone effects in calvaria but usually not in limb bones. 3 nM calcitonin inhibited milrinone-stimulated resorption and there was no escape from this inhibition. Structural homology between milrinone and thyroxine has been reported. We find similarities between milrinone and thyroxine actions on bone, because prostaglandin production was crucial for the effects of both agents in calvaria but not in limb bones, and neither agent exhibited escape from calcitonin inhibition. PMID:3027124

  15. Meeting Report From the Prostate Cancer Foundation Scientific Working Group on Radium-223.

    PubMed

    Miyahira, Andrea K; Morris, Michael; Soule, Howard R

    2017-02-01

    The Prostate Cancer Foundation (PCF) convened a Scientific Working Group Meeting on Radium-223 on September 8, 2016, at The Sidney Kimmel Center for Prostate and Urologic Cancers, Memorial Sloan Kettering Cancer Center. The meeting was attended by 18 investigators with expertise in radium-223, bone biology, molecular imaging, biomarkers, and prostate cancer clinical trials. The goal of this meeting was to discuss the known and unknown surroundings the therapeutic effects of the bone targeting agent radium-223, in bone metastatic prostate cancer therapy, and to outline the most critical studies needed to improve the clinical use of this agent. Three major topic areas were discussed: (1) the basic science of radium; (2) immuno-adjuvant properties of radium therapy; and (3) high impact clinical trials and correlative science. This article reviews the major topics discussed at the meeting for the purpose of accelerating studies that will improve the use of radium-223 in the treatment of prostate cancer patients. Prostate 77:245-254, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Treatment with eldecalcitol positively affects mineralization, microdamage, and collagen crosslinks in primate bone.

    PubMed

    Saito, Mitsuru; Grynpas, Marc D; Burr, David B; Allen, Matthew R; Smith, Susan Y; Doyle, Nancy; Amizuka, Norio; Hasegawa, Tomoka; Kida, Yoshikuni; Marumo, Keishi; Saito, Hitoshi

    2015-04-01

    Eldecalcitol (ELD), an active form of vitamin D analog approved for the treatment of osteoporosis in Japan, increases lumbar spine bone mineral density (BMD), suppresses bone turnover markers, and reduces fracture risk in patients with osteoporosis. We have previously reported that treatment with ELD for 6 months improved the mechanical properties of the lumbar spine in ovariectomized (OVX) cynomolgus monkeys. ELD treatment increased lumbar BMD, suppressed bone turnover markers, and reduced histomorphometric parameters of both bone formation and resorption in vertebral trabecular bone. In this study, we elucidated the effects of ELD on bone quality (namely, mineralization, microarchitecture, microdamage, and bone collagen crosslinks) in OVX cynomolgus monkeys in comparison with OVX-vehicle control monkeys. Density fractionation of bone powder prepared from lumbar vertebrae revealed that ELD treatment shifted the distribution profile of bone mineralization to a higher density, and backscattered electron microscopic imaging showed improved trabecular bone connectivity in the ELD-treated groups. Higher doses of ELD more significantly reduced the amount of microdamage compared to OVX-vehicle controls. The fractionated bone powder samples were divided according to their density, and analyzed for collagen crosslinks. Enzymatic crosslinks were higher in both the high-density (≥2.0 mg/mL) and low-density (<2.0 mg/mL) fractions from the ELD-treated groups than in the corresponding fractions in the OVX-vehicle control groups. On the other hand, non-enzymatic crosslinks were lower in both the high- and low-density fractions. These observations indicated that ELD treatment stimulated the enzymatic reaction of collagen crosslinks and bone mineralization, but prevented non-enzymatic reaction of collagen crosslinks and accumulation of bone microdamage. Bone anti-resorptive agents such as bisphosphonates slow down bone remodeling so that bone mineralization, bone microdamage, and non-enzymatic collagen crosslinks all increase. Bone anabolic agents such as parathyroid hormone decrease bone mineralization and bone microdamage by stimulating bone remodeling. ELD did not fit into either category. Histological analysis indicated that the ELD treatment strongly suppressed bone resorption by reducing the number of osteoclasts, while also stimulating focal bone formation without prior bone resorption (bone minimodeling). These bidirectional activities of ELD may account for its unique effects on bone quality. Copyright © 2014. Published by Elsevier Inc.

  17. Dimensionality and noise in energy selective x-ray imaging

    PubMed Central

    Alvarez, Robert E.

    2013-01-01

    Purpose: To develop and test a method to quantify the effect of dimensionality on the noise in energy selective x-ray imaging. Methods: The Cramèr-Rao lower bound (CRLB), a universal lower limit of the covariance of any unbiased estimator, is used to quantify the noise. It is shown that increasing dimensionality always increases, or at best leaves the same, the variance. An analytic formula for the increase in variance in an energy selective x-ray system is derived. The formula is used to gain insight into the dependence of the increase in variance on the properties of the additional basis functions, the measurement noise covariance, and the source spectrum. The formula is also used with computer simulations to quantify the dependence of the additional variance on these factors. Simulated images of an object with three materials are used to demonstrate the trade-off of increased information with dimensionality and noise. The images are computed from energy selective data with a maximum likelihood estimator. Results: The increase in variance depends most importantly on the dimension and on the properties of the additional basis functions. With the attenuation coefficients of cortical bone, soft tissue, and adipose tissue as the basis functions, the increase in variance of the bone component from two to three dimensions is 1.4 × 103. With the soft tissue component, it is 2.7 × 104. If the attenuation coefficient of a high atomic number contrast agent is used as the third basis function, there is only a slight increase in the variance from two to three basis functions, 1.03 and 7.4 for the bone and soft tissue components, respectively. The changes in spectrum shape with beam hardening also have a substantial effect. They increase the variance by a factor of approximately 200 for the bone component and 220 for the soft tissue component as the soft tissue object thickness increases from 1 to 30 cm. Decreasing the energy resolution of the detectors increases the variance of the bone component markedly with three dimension processing, approximately a factor of 25 as the resolution decreases from 100 to 3 bins. The increase with two dimension processing for adipose tissue is a factor of two and with the contrast agent as the third material for two or three dimensions is also a factor of two for both components. The simulated images show that a maximum likelihood estimator can be used to process energy selective x-ray data to produce images with noise close to the CRLB. Conclusions: The method presented can be used to compute the effects of the object attenuation coefficients and the x-ray system properties on the relationship of dimensionality and noise in energy selective x-ray imaging systems. PMID:24320442

  18. Fatty acid is a potential agent for bone tissue induction: In vitro and in vivo approach.

    PubMed

    Cardoso, Guinea Bc; Chacon, Erivelto; Chacon, Priscila Gl; Bordeaux-Rego, Pedro; Duarte, Adriana Ss; Saad, Sara T Olalla; Zavaglia, Cecilia Ac; Cunha, Marcelo R

    2017-12-01

    Our hypothesis was to investigate the fatty acid potential as a bone induction factor. In vitro and in vivo studies were performed to evaluate this approach. Oleic acid was used in a 0.5 wt.% concentration. Polycaprolactone was used as the polymeric matrix by combining solvent-casting and particulate-leaching techniques, with a final porosity of 70 wt.%, investigated by SEM images. Contact angle measurements were produced to investigate the influence of oleic acid on polycaprolactone chains. Cell culture was performed using adipocyte-derived stem cells to evaluate biocompatibility and bioactivity properties. In addition, in vivo studies were performed to evaluate the induction potential of oleic acid addition. Adipocyte-derived stem cells were used to provide differentiation after 21 days of culture. Likewise, information were obtained with in vivo data and cellular invagination was observed on both scaffolds (polycaprolactone and polycaprolactone /oleic acid); interestingly, the scaffold with oleic acid addition demonstrated that cellular migrations are not related to the surrounding tissue, indicating bioactive potential. Our hypothesis is that fatty acid may be used as a potential induction factor for bone tissue engineering. The study's findings indicate oleic acid as a possible agent for bone induction, according to data on cell differentiation, proliferation, and migration. Impact statement The biomaterial combined in this study on bone regeneration is innovative and shows promising results in the treatment of bone lesions. Polycaprolactone (PCL) and oleic acid have been studied separately. In this research, we combined biomaterials to assess the stimulus and the speed of bone healing.

  19. Nanoscale X-Ray Microscopic Imaging of Mammalian Mineralized Tissue

    PubMed Central

    Andrews, Joy C.; Almeida, Eduardo; van der Meulen, Marjolein C.H.; Alwood, Joshua S.; Lee, Chialing; Liu, Yijin; Chen, Jie; Meirer, Florian; Feser, Michael; Gelb, Jeff; Rudati, Juana; Tkachuk, Andrei; Yun, Wenbing; Pianetta, Piero

    2010-01-01

    A novel hard transmission X-ray microscope (TXM) at the Stanford Synchrotron Radiation Light-source operating from 5 to 15 keV X-ray energy with 14 to 30 µm2 field of view has been used for high-resolution (30–40 nm) imaging and density quantification of mineralized tissue. TXM is uniquely suited for imaging of internal cellular structures and networks in mammalian mineralized tissues using relatively thick (50 µm), untreated samples that preserve tissue micro- and nanostructure. To test this method we performed Zernike phase contrast and absorption contrast imaging of mouse cancellous bone prepared under different conditions of in vivo loading, fixation, and contrast agents. In addition, the three-dimensional structure was examined using tomography. Individual osteocytic lacunae were observed embedded within trabeculae in cancellous bone. Extensive canalicular networks were evident and included processes with diameters near the 30–40 nm instrument resolution that have not been reported previously. Trabecular density was quantified relative to rod-like crystalline apatite, and rod-like trabecular struts were found to have 51–54% of pure crystal density and plate-like areas had 44–53% of crystal density. The nanometer resolution of TXM enables future studies for visualization and quantification of ultrastructural changes in bone tissue resulting from osteoporosis, dental disease, and other pathologies. PMID:20374681

  20. Pharmacotherapy of bone metastases in breast cancer patients.

    PubMed

    Petrut, Bianca; Simmons, Christine; Broom, Reuben; Trinkaus, Mateya; Clemons, Mark

    2008-04-01

    A diagnosis of bone metastases is often a devastating occurrence in breast cancer patients. Bone metastases are associated with increased morbidity as reflected through pain, reduced quality of life and skeletal-related events. This paper reviews the role of different pharmacotherapeutic agents in the treatment of bone metastases from breast cancer. Randomised controlled trials of osteoclast-inhibiting agents, that is the bisphosphonates, have shown significant patient benefit. The aims of bisphosphonates are to prevent and delay skeletal-related events, reduce bone pain and improve quality of life. However, there are some limitations with bisphosphonate treatment. Biochemical markers of bone turnover seem to be a promising tool in guiding bisphosphonate treatment and future research directions. Hopefully, patient management will be further improved as new agents become available such as denosumab, osteoprotegerin analogues and anti-angiogenic agents.

  1. A new adhesive technique for internal fixation in midfacial surgery

    PubMed Central

    Endres, Kira; Marx, Rudolf; Tinschert, Joachim; Wirtz, Dieter Christian; Stoll, Christian; Riediger, Dieter; Smeets, Ralf

    2008-01-01

    Background The current surgical therapy of midfacial fractures involves internal fixation in which bone fragments are fixed in their anatomical positions with osteosynthesis plates and corresponding screws until bone healing is complete. This often causes new fractures to fragile bones while drilling pilot holes or trying to insert screws. The adhesive fixation of osteosynthesis plates using PMMA bone cement could offer a viable alternative for fixing the plates without screws. In order to achieve the adhesive bonding of bone cement to cortical bone in the viscerocranium, an amphiphilic bone bonding agent was created, analogous to the dentin bonding agents currently on the market. Methods The adhesive bonding strengths were measured using tension tests. For this, metal plates with 2.0 mm diameter screw holes were cemented with PMMA bone cement to cortical bovine bone samples from the femur diaphysis. The bone was conditioned with an amphiphilic bone bonding agent prior to cementing. The samples were stored for 1 to 42 days at 37 degrees C, either moist or completely submerged in an isotonic NaCl-solution, and then subjected to the tension tests. Results Without the bone bonding agent, the bonding strength was close to zero (0.2 MPa). Primary stability with bone bonding agent is considered to be at ca. 8 MPa. Moist storage over 42 days resulted in decreased adhesion forces of ca. 6 MPa. Wet storage resulted in relatively constant bonding strengths of ca. 8 MPa. Conclusion A new amphiphilic bone bonding agent was developed, which builds an optimizied interlayer between the hydrophilic bone surface and the hydrophobic PMMA bone cement and thus leads to adhesive bonding between them. Our in vitro investigations demonstrated the adhesive bonding of PMMA bone cement to cortical bone, which was also stable against hydrolysis. The newly developed adhesive fixing technique could be applied clinically when the fixation of osteosynthesis plates with screws is impossible. With the detected adhesion forces of ca. 6 to 8 MPa, it is assumed that the adhesive fixation system is able to secure bone fragments from the non-load bearing midfacial regions in their orthotopic positions until fracture consolidation is complete. PMID:18489785

  2. Anabolic agents and bone quality.

    PubMed

    Sibai, Tarek; Morgan, Elise F; Einhorn, Thomas A

    2011-08-01

    The definition of bone quality is evolving particularly from the perspective of anabolic agents that can enhance not only bone mineral density but also bone microarchitecture, composition, morphology, amount of microdamage, and remodeling dynamics. This review summarizes the molecular pathways and physiologic effects of current and potential anabolic drugs. From a MEDLINE search (1996-2010), articles were identified by the search terms "bone quality" (1851 articles), "anabolic agent" (5044 articles), "PTH or parathyroid hormone" (32,229 articles), "strontium" or "strontium ranelate" (283 articles), "prostaglandin" (77,539 articles), and "statin" or "statins" (14,233 articles). The search strategy included combining each with the phrase "bone quality." Another more limited search aimed at finding more novel potential agents. Parathyroid hormone is the only US Food and Drug Administration-approved bone anabolic agent in the United States and has been the most extensively studied in in vitro animal and human trials. Strontium ranelate is approved in Europe but has not undergone Food and Drug Administration trials in the United States. All the studies on prostaglandin agonists have used in vivo animal models and there are no human trials examining prostaglandin agonist effects. The advantages of statins include the long-established advantages and safety profile, but they are limited by their bioavailability in bone. Other potential pathways include proline-rich tyrosine kinase 2 (PYK2) and sclerostin (SOST) inhibition, among others. The ongoing research to enhance the anabolic potential of current agents, identify new agents, and develop better delivery systems will greatly enhance the management of bone quality-related injuries and diseases in the future.

  3. Assessment of a new biomimetic scaffold and its effects on bone formation by OCT

    NASA Astrophysics Data System (ADS)

    Yang, Ying; Aydin, Halil M.; Piskin, Erhan; El Haj, Alicia J.

    2009-02-01

    The ultimate target of bone tissue engineering is to generate functional load bearing bone. By nature, the porous volume in the trabecular bone is occupied by osseous medulla. The natural bone matrix consists of hydroxyapatite (HA) crystals precipitated along the collagen type I fibres. The mineral phase renders bone strength while collagen provides flexibility. Without mineral component, bone is very flexible and can not bear loads, whereas it is brittle in the case of mineral phase without the collagen presence. In this study, we designed and prepared a new type of scaffold which mimics the features of natural bone. The scaffold consists of three different components, a biphasic polymeric base composed of two different biodegradable polymers prepared by using dual porogen approach and bioactive agents, i.e., collagen and HA particles which are distributed throughout the matrix only in the pore surfaces. Interaction of the bioactive scaffolds possessing very high porosity and interconnected pore structures with cells were investigated in a prolonged culture period by using an osteoblastic cell line. The mineral HA particles have a slight different refractive index from the other elements such as polymeric scaffolds and cell/matrix in a tissue engineering constructs, exhibiting brighter images in OCT. Thus, OCT renders a convenient means to assess the morphology and architecture of the blank biomimetic scaffolds. This study also takes a close observation of OCT images for the cultured cell-scaffold constructs in order to assess neo-formed minerals and matrix. The OCT assessments have been compared with the results from confocal and SEM analysis.

  4. In vivo visualisation of different modes of action of biological DMARDs inhibiting osteoclastic bone resorption.

    PubMed

    Matsuura, Yoshinobu; Kikuta, Junichi; Kishi, Yuika; Hasegawa, Tetsuo; Okuzaki, Daisuke; Hirano, Toru; Minoshima, Masafumi; Kikuchi, Kazuya; Kumanogoh, Atsushi; Ishii, Masaru

    2018-04-28

    Osteoclasts play critical roles in inflammatory bone destruction. Precursor cell migration, cell differentiation, and functional cell activation are all in play. Biological disease-modifying antirheumatic drugs (DMARDs) have been shown to significantly inhibit both bone erosion as well as synovitis, although how such agents reduce osteoclastic bone destruction in vivo has not been fully explained. Here, we used an intravital time-lapse imaging technique to directly visualise mature osteoclasts and their precursors, and explored how different biological DMARDs acted in vivo . Lipopolysaccharide (LPS) was injected into the calvarial periosteum of fluorescent reporter mice to induce inflammatory bone destruction. Time-lapse imaging was performed via intravital multiphoton microscopy 5 days after LPS injection. Biological DMARDs, including monoclonal antibodies (mAbs) against the interleukin (IL) 6 receptor (IL-6R) and tumour necrosis factor α (TNFα), or cytotoxic T-lymphocyte-associated protein 4 (CTLA4)-Ig, were intraperitoneally administered at the time of LPS injection. We determined CD80/86 expression levels in mature osteoclasts and their precursors by flow cytometry, quantitative PCR and immunohistochemistry. Of the biologicals tested, anti-IL-6R and anti-TNFα mAbs affected mature osteoclasts and switched bone-resorbing osteoclasts to non-resorbing cells. CTLA4-Ig had no action on mature osteoclasts but mobilised osteoclast precursors, eliminating their firm attachment to bone surfaces. In agreement with these results, CD80/86 (the target molecules of CTLA4-Ig) were prominently expressed only in osteoclast precursor cells, being suppressed during osteoclast maturation. Intravital imaging revealed that various biological DMARDs acted at specific therapeutic time points during osteoclastic bone destruction, with different efficacies. These results enable us to grasp the real modes of action of drugs, optimising the usage of drug regimens. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. Preparation and characterization of an iron oxide-hydroxyapatite nanocomposite for potential bone cancer therapy.

    PubMed

    Sneha, Murugesan; Sundaram, Nachiappan Meenakshi

    2015-01-01

    Recently, multifunctional magnetic nanostructures have been found to have potential applications in biomedical and tissue engineering. Iron oxide nanoparticles are biocompatible and have distinctive magnetic properties that allow their use in vivo for drug delivery and hyperthermia, and as T2 contrast agents for magnetic resonance imaging. Hydroxyapatite is used frequently due to its well-known biocompatibility, bioactivity, and lack of toxicity, so a combination of iron oxide and hydroxyapatite materials could be useful because hydroxyapatite has better bone-bonding ability. In this study, we prepared nanocomposites of iron oxide and hydroxyapatite and analyzed their physicochemical properties. The results suggest that these composites have superparamagnetic as well as biocompatible properties. This type of material architecture would be well suited for bone cancer therapy and other biomedical applications.

  6. The biological effects of tocotrienol on bone: a review on evidence from rodent models.

    PubMed

    Chin, Kok-Yong; Ima-Nirwana, Soelaiman

    2015-01-01

    Osteoporosis causes significant health care and economic burden to society, leading to a relentless search for effective preventive agents. Tocotrienol, a member of the vitamin E family, has demonstrated promising potential as an osteoporosis-preventing agent. This review summarizes evidence on the effects of tocotrienol on bone in animal models. Techniques used to examine the effects of tocotrienol on bone in animals included bone histomorphometry, X-ray microtomography, dual-energy X-ray absorptiometry, bone turnover markers, bone calcium content, and biomechanical strength. Tocotrienol was shown to improve osteoblast number, bone formation, mineral deposition, and bone microarchitecture in osteopenic rats. It also decreased osteoclast number and bone erosion in the rats. Tocotrienol supplementation resulted in an improvement in bone mineral density, although biomechanical strength was not significantly altered in the rats. The beneficial effects of tocotrienol on bone can be attributed to its role as an antioxidant, anti-inflammatory agent, suppressor of the mevalonate pathway, and modulator of genes favorable to bone formation.

  7. The biological effects of tocotrienol on bone: a review on evidence from rodent models

    PubMed Central

    Chin, Kok-Yong; Ima-Nirwana, Soelaiman

    2015-01-01

    Osteoporosis causes significant health care and economic burden to society, leading to a relentless search for effective preventive agents. Tocotrienol, a member of the vitamin E family, has demonstrated promising potential as an osteoporosis-preventing agent. This review summarizes evidence on the effects of tocotrienol on bone in animal models. Techniques used to examine the effects of tocotrienol on bone in animals included bone histomorphometry, X-ray microtomography, dual-energy X-ray absorptiometry, bone turnover markers, bone calcium content, and biomechanical strength. Tocotrienol was shown to improve osteoblast number, bone formation, mineral deposition, and bone microarchitecture in osteopenic rats. It also decreased osteoclast number and bone erosion in the rats. Tocotrienol supplementation resulted in an improvement in bone mineral density, although biomechanical strength was not significantly altered in the rats. The beneficial effects of tocotrienol on bone can be attributed to its role as an antioxidant, anti-inflammatory agent, suppressor of the mevalonate pathway, and modulator of genes favorable to bone formation. PMID:25897211

  8. Evaluation of tibolone administration in bone architectural by MicroCT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carvalho, A. C. B.; Henriques, H. N.; Granjeiro, J. M.

    Elderly women are at higher risk for hip fracture because of additional and relatively rapid bone loss due to estrogen deficiency by loss of the ovarian function and a longer average life span than men. The early application of agents that suppress the increase in bone turnover due to estrogen deficiency is essential to prevent bone loss and reduce the risk of osteoporosis. Some advanced imaging techniques may be required to investigate osteoporosis. X-ray micro-computed tomography has been used to generate high-resolution 3D images of cancellous and cortical bone morphology from normal and pathologic human and animal specimens. The aimmore » of this study is to verify the effects of tibolone administration by evaluating the trabecular bone region. The experiment was performed on two groups of rats previously ovariectomized in which one received tibolone while the other did not. Tibolone administration (1 mg/day) began thirty days after the ovariectomy and the treatment remained for five months. At last, the animals were euthanized and femurs were collected. The scan was obtained using a Hamamatsu 10 Mp camera with a pixel size of 11.59 {mu}m and trabecular region in the right femoral head were quantified. All results were statistically evaluated with significance set at P<0.05%. Tibolone administration was shown to be beneficial in some analysis of the femoral head, performing higher bone volume and reducing the porosity when compared to ovariectomized. It can be concluded that tibolone administered to ovariectomized rats significantly preserved bone mass in the femoral head and microtomography was an efficient method to identify bone loss process and to evaluate potential therapies, as tibolone administration. (authors)« less

  9. A theranostic dental pulp capping agent with improved MRI and CT contrast and biological properties.

    PubMed

    Mastrogiacomo, S; Güvener, N; Dou, W; Alghamdi, H S; Camargo, W A; Cremers, J G O; Borm, P J A; Heerschap, A; Oosterwijk, E; Jansen, J A; Walboomers, X F

    2017-10-15

    Different materials have been used for vital dental pulp treatment. Preferably a pulp capping agent should show appropriate biological performance, excellent handling properties, and a good imaging contrast. These features can be delivered into a single material through the combination of therapeutic and diagnostic agents (i.e. theranostic). Calcium phosphate based composites (CPCs) are potentially ideal candidate for pulp treatment, although poor imaging contrast and poor dentino-inductive properties are limiting their clinical use. In this study, a theranostic dental pulp capping agent was developed. First, imaging properties of the CPC were improved by using a core-shell structured dual contrast agent (csDCA) consisting of superparamagnetic iron oxide (SPIO) and colloidal gold, as MRI and CT contrast agent respectively. Second, biological properties were implemented by using a dentinogenic factor (i.e. bone morphogenetic protein 2, BMP-2). The obtained CPC/csDCA/BMP-2 composite was tested in vivo, as direct pulp capping agent, in a male Habsi goat incisor model. Our outcomes showed no relevant alteration of the handling and mechanical properties (e.g. setting time, injectability, and compressive strength) by the incorporation of csDCA particles. In vivo results proved MRI contrast enhancement up to 7weeks. Incisors treated with BMP-2 showed improved tertiary dentin deposition as well as faster cement degradation as measured by µCT assessment. In conclusion, the presented theranostic agent matches the imaging and regenerative requirements for pulp capping applications. In this study, we combined diagnostic and therapeutic agents in order to developed a theranostic pulp capping agent with enhanced MRI and CT contrast and improved dentin regeneration ability. In our study we cover all the steps from material preparation, mechanical and in vitro characterization, to in vivo study in a goat dental model. To the best of our knowledge, this is the first time that a theranostic pulp capping material have been developed and tested in an in vivo animal model. Our promising results in term of imaging contrast enhancement and of induction of new dentin formation, open a new scenario in the development of innovative dental materials. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Spectral CT data acquisition with Medipix3.1

    NASA Astrophysics Data System (ADS)

    Walsh, M. F.; Nik, S. J.; Procz, S.; Pichotka, M.; Bell, S. T.; Bateman, C. J.; Doesburg, R. M. N.; De Ruiter, N.; Chernoglazov, A. I.; Panta, R. K.; Butler, A. P. H.; Butler, P. H.

    2013-10-01

    This paper describes the acquisition of spectral CT images using the Medipix3.1 in spectroscopic mode, in which the chip combines 2 × 2 pixel clusters to increase the number of energy thresholds and counters from 2 to 8. During preliminary measurements, it was observed that the temperature, DAC and equalisation stability of the Medipix3.1 outperformed the Medipix3.0, while maintaining similar imaging quality. In this paper, the Medipix3.1 chips were assembled in a quad (2 × 2) layout, with the four ASICs bump-bonded to a silicon semiconductor doped as an np-junction diode. To demonstrate the biological imaging quality that is possible with the Medipix3.1, an image of a mouse injected with gold nano-particle contrast agent was obtained. CT acquisition in spectroscopic mode was enabled and examined by imaging a customised phantom containing multiple contrast agents and biological materials. These acquisitions showed a limitation of imaging performance depending on the counter used. Despite this, identification of multiple materials in the phantom was demonstrated using an in-house material decomposition algorithm. Furthermore, gold nano-particles were separated from biological tissues and bones within the mouse by means of image rendering.

  11. Skeletal scintigraphy and quantitative tracer studies in metabolic bone disease

    NASA Astrophysics Data System (ADS)

    Fogelman, Ignac

    Bone scan imaging with the current bone seeking radiopharmaceuticals, the technetium-99m labelled diphosphonates, has dramatically improved our ability to evaluate skeletal pathology. In this thesis, chapter 1 presents a review of the history of bone scanning, summarises present concepts as to the mechanism of uptake of bone seeking agents and briefly illustrates the role of bone scanning in clinical practice. In chapter 2 the applications of bone scan imaging and quantitative tracer techniques derived from the bone scan in the detection of metabolic bone disease are discussed. Since skeletal uptake of Tc-99m diphosphonate depends upon skeletal metabolism one might expect that the bone scan would be of considerable value in the assessment of metabolic bone disease. However in these disorders the whole skeleton is often diffusely involved by the metabolic process and simple visual inspection of the scan image may not reveal the uniformly increased uptake of tracer. Certain patterns of bone scan abnormality have, however, been reported in patients with primary hyperparathyroidism and renal osteo-dystrophy; the present studies extend these observations and introduce the concept of "metabolic features" which are often recognisable in conditions with generalised increased bone turnover. As an aid to systematic recognition of these features on a given bone scan image a semi-quantitative scoring system, the metabolic index, was introduced. The metabolic index allowed differentiation between various groups of patients with metabolic disorders and a control population. In addition, in a bone scan study of patients with acromegaly, it was found that the metabolic index correlated well with disease activity as measured by serum growth hormone levels. The metabolic index was, however, found to be a relatively insensitive means of identifying disease in individual patients. Patients with increased bone turnover will have an absolute increase in skeletal uptake of tracer. As a means of quantitating this uptake the use of bone to soft-tissue ratios derived from the bone scan image by computer was critically evaluated. The technique was shown to be observer dependent and again found to be of limited value due to the large overlap of patient results with those from control subjects. In chapter 3 the use of bone scan imaging in metabolic bone disease has been compared with radiology. Despite the difficulties mentioned above the metabolic index was employed, and the bone scan found to be the more sensitive investigation in primary hyperparathyroidism, renal osteodystrophy and osteomalacia. In osteoporosis, however, the bone scan was often unable to identify disease and radiology remains the investigation of choice. In a further study comparing bone scanning and radiology in Paget's disease, the bone scan was found to be clearly the more sensitive investigation. As a result of the work described in chapter 2 it became apparent that a sensitive means of quantitating absolute bone uptake of tracer could be of diagnostic value. In chapter 4 a promising new quantitative technique is described in which the 24-hour whole-body retention of Tc-99m diphosphonate (WBR) is measured using a shadow-shield whole-body monitor. At 24 hours after injection, diphosphonate has reached a stable equilibrium in bone reflecting skeletal metabolic activity, while tracer in the soft-tissues of the body has been largely excreted via the urinary tract. It was found that this technique provided a sensitive means of detecting patients with primary hyperparathyroidism, osteomalacia, renal osteodystrophy and Paget's disease and that in these conditions all the results from individual patients lay outside the control range. In further studies the WBR technique was shown to be highly reproducible and not subject to any significant technical errors.

  12. Multiple energy synchrotron biomedical imaging system

    NASA Astrophysics Data System (ADS)

    Bassey, B.; Martinson, M.; Samadi, N.; Belev, G.; Karanfil, C.; Qi, P.; Chapman, D.

    2016-12-01

    A multiple energy imaging system that can extract multiple endogenous or induced contrast materials as well as water and bone images would be ideal for imaging of biological subjects. The continuous spectrum available from synchrotron light facilities provides a nearly perfect source for multiple energy x-ray imaging. A novel multiple energy x-ray imaging system, which prepares a horizontally focused polychromatic x-ray beam, has been developed at the BioMedical Imaging and Therapy bend magnet beamline at the Canadian Light Source. The imaging system is made up of a cylindrically bent Laue single silicon (5,1,1) crystal monochromator, scanning and positioning stages for the subjects, flat panel (area) detector, and a data acquisition and control system. Depending on the crystal’s bent radius, reflection type, and the horizontal beam width of the filtered synchrotron radiation (20-50 keV) used, the size and spectral energy range of the focused beam prepared varied. For example, with a bent radius of 95 cm, a (1,1,1) type reflection and a 50 mm wide beam, a 0.5 mm wide focused beam of spectral energy range 27 keV-43 keV was obtained. This spectral energy range covers the K-edges of iodine (33.17 keV), xenon (34.56 keV), cesium (35.99 keV), and barium (37.44 keV) some of these elements are used as biomedical and clinical contrast agents. Using the developed imaging system, a test subject composed of iodine, xenon, cesium, and barium along with water and bone were imaged and their projected concentrations successfully extracted. The estimated dose rate to test subjects imaged at a ring current of 200 mA is 8.7 mGy s-1, corresponding to a cumulative dose of 1.3 Gy and a dose of 26.1 mGy per image. Potential biomedical applications of the imaging system will include projection imaging that requires any of the extracted elements as a contrast agent and multi-contrast K-edge imaging.

  13. Noninvasive imaging of multiple myeloma using near infrared fluorescent molecular probe

    NASA Astrophysics Data System (ADS)

    Hathi, Deep; Zhou, Haiying; Bollerman-Nowlis, Alex; Shokeen, Monica; Akers, Walter J.

    2016-03-01

    Multiple myeloma is a plasma cell malignancy characterized by monoclonal gammopathy and osteolytic bone lesions. Multiple myeloma is most commonly diagnosed in late disease stages, presenting with pathologic fracture. Early diagnosis and monitoring of disease status may improve quality of life and long-term survival for multiple myeloma patients from what is now a devastating and fatal disease. We have developed a near-infrared targeted fluorescent molecular probe with high affinity to the α4β1 integrin receptor (VLA-4)overexpressed by a majority of multiple myeloma cells as a non-radioactive analog to PET/CT tracer currently being developed for human diagnostics. A near-infrared dye that emits about 700 nm was conjugated to a high affinity peptidomimmetic. Binding affinity and specificity for multiple myeloma cells was investigated in vitro by tissue staining and flow cytometry. After demonstration of sensitivity and specificity, preclinical optical imaging studies were performed to evaluate tumor specificity in murine subcutaneous and metastatic multiple myeloma models. The VLA-4-targeted molecular probe showed high affinity for subcutaneous MM tumor xenografts. Importantly, tumor cells specific accumulation in the bone marrow of metastatic multiple myeloma correlated with GFP signal from transfected cells. Ex vivo flow cytometry of tumor tissue and bone marrow further corroborated in vivo imaging data, demonstrating the specificity of the novel agent and potential for quantitative imaging of multiple myeloma burden in these models.

  14. Dimensionality and noise in energy selective x-ray imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alvarez, Robert E.

    Purpose: To develop and test a method to quantify the effect of dimensionality on the noise in energy selective x-ray imaging.Methods: The Cramèr-Rao lower bound (CRLB), a universal lower limit of the covariance of any unbiased estimator, is used to quantify the noise. It is shown that increasing dimensionality always increases, or at best leaves the same, the variance. An analytic formula for the increase in variance in an energy selective x-ray system is derived. The formula is used to gain insight into the dependence of the increase in variance on the properties of the additional basis functions, the measurementmore » noise covariance, and the source spectrum. The formula is also used with computer simulations to quantify the dependence of the additional variance on these factors. Simulated images of an object with three materials are used to demonstrate the trade-off of increased information with dimensionality and noise. The images are computed from energy selective data with a maximum likelihood estimator.Results: The increase in variance depends most importantly on the dimension and on the properties of the additional basis functions. With the attenuation coefficients of cortical bone, soft tissue, and adipose tissue as the basis functions, the increase in variance of the bone component from two to three dimensions is 1.4 × 10{sup 3}. With the soft tissue component, it is 2.7 × 10{sup 4}. If the attenuation coefficient of a high atomic number contrast agent is used as the third basis function, there is only a slight increase in the variance from two to three basis functions, 1.03 and 7.4 for the bone and soft tissue components, respectively. The changes in spectrum shape with beam hardening also have a substantial effect. They increase the variance by a factor of approximately 200 for the bone component and 220 for the soft tissue component as the soft tissue object thickness increases from 1 to 30 cm. Decreasing the energy resolution of the detectors increases the variance of the bone component markedly with three dimension processing, approximately a factor of 25 as the resolution decreases from 100 to 3 bins. The increase with two dimension processing for adipose tissue is a factor of two and with the contrast agent as the third material for two or three dimensions is also a factor of two for both components. The simulated images show that a maximum likelihood estimator can be used to process energy selective x-ray data to produce images with noise close to the CRLB.Conclusions: The method presented can be used to compute the effects of the object attenuation coefficients and the x-ray system properties on the relationship of dimensionality and noise in energy selective x-ray imaging systems.« less

  15. Advances in functional X-ray imaging techniques and contrast agents

    PubMed Central

    Chen, Hongyu; Rogalski, Melissa M.

    2012-01-01

    X-rays have been used for non-invasive high-resolution imaging of thick biological specimens since their discovery in 1895. They are widely used for structural imaging of bone, metal implants, and cavities in soft tissue. Recently, a number of new contrast methodologies have emerged which are expanding X-ray’s biomedical applications to functional as well as structural imaging. These techniques are promising to dramatically improve our ability to study in situ biochemistry and disease pathology. In this review, we discuss how X-ray absorption, X-ray fluorescence, and X-ray excited optical luminescence can be used for physiological, elemental, and molecular imaging of vasculature, tumours, pharmaceutical distribution, and the surface of implants. Imaging of endogenous elements, exogenous labels, and analytes detected with optical indicators will be discussed. PMID:22962667

  16. Invited review of a workshop: anabolic hormones in bone: basic research and therapeutic potential.

    PubMed

    Margolis, R N; Canalis, E; Partridge, N C

    1996-03-01

    Age-, postmenopause-, and disease-related conditions that result in low bone mass represent important public health issues. Maintenance of bone mass is a balance between bone resorption and formation and is influenced by diet, body composition, activity level, and the interactions between and among a large number of hormones, growth factors, and cytokines. Recent research has emphasized establishing a more complete understanding of the hormonal regulation of bone and developing anabolic agents with therapeutic potential for the treatment of low bone mass. The NIDDK at the NIH recently sponsored a Workshop, entitled Anabolic Hormones in Bone: Basic Research and Therapeutic Potential, that attempted to define the current state of the art knowledge of hormones, growth factors, and cytokines that affect bone mass, with particular emphasis on those that could potentially have a role as anabolic agents in bone. This review presents a condensed proceedings of that workshop along with a summary of the optimal requisites for the development of anabolic agents with therapeutic potential in bone.

  17. Advancements in automated tissue segmentation pipeline for contrast-enhanced CT scans of adult and pediatric patients

    NASA Astrophysics Data System (ADS)

    Somasundaram, Elanchezhian; Kaufman, Robert; Brady, Samuel

    2017-03-01

    The development of a random forests machine learning technique is presented for fully-automated neck, chest, abdomen, and pelvis tissue segmentation of CT images using Trainable WEKA (Waikato Environment for Knowledge Analysis) Segmentation (TWS) plugin of FIJI (ImageJ, NIH). The use of a single classifier model to segment six tissue classes (lung, fat, muscle, solid organ, blood/contrast agent, bone) in the CT images is studied. An automated unbiased scheme to sample pixels from the training images and generate a balanced training dataset over the seven classes is also developed. Two independent training datasets are generated from a pool of 4 adult (>55 kg) and 3 pediatric patients (<=55 kg) with 7 manually contoured slices for each patient. Classifier training investigated 28 image filters comprising a total of 272 features. Highly correlated and insignificant features are eliminated using Correlated Feature Subset (CFS) selection with Best First Search (BFS) algorithms in WEKA. The 2 training models (from the 2 training datasets) had 74 and 71 input training features, respectively. The study also investigated the effect of varying the number of trees (25, 50, 100, and 200) in the random forest algorithm. The performance of the 2 classifier models are evaluated on inter-patient intra-slice, intrapatient inter-slice and inter-patient inter-slice test datasets. The Dice similarity coefficients (DSC) and confusion matrices are used to understand the performance of the classifiers across the tissue segments. The effect of number of features in the training input on the performance of the classifiers for tissue classes with less than optimal DSC values is also studied. The average DSC values for the two training models on the inter-patient intra-slice test data are: 0.98, 0.89, 0.87, 0.79, 0.68, and 0.84, for lung, fat, muscle, solid organ, blood/contrast agent, and bone, respectively. The study demonstrated that a robust segmentation accuracy for lung, muscle and fat tissue classes. For solid-organ, blood/contrast and bone, the performance of the segmentation pipeline improved significantly by using the advanced capabilities of WEKA. However, further improvements are needed to reduce the noise in the segmentation.

  18. EFFECT OF CHELATING AGENTS ON UPTAKE OF Ca$sup 45$ AND Sr$sup 85$ BY DEFATTED BONE IN VITRO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samachson, J.; Lederer, H.

    The presence of chelating agents in buffered solutions affected the relative uptake of Ca/sup 45/ and Sr/sup 85/ by defatted bone powder. Strong chelating agents, like ethylenediaminetetraacetic acid and cyclohexanediaminetetraacetic acid, decreased the ratio of Ca/sup 45//Sr/sup 85/ uptake considerably in presence of Ca, Ca plus Sr, or Sr carrier. Citrate and adenosinetriphosphate had similar but weaker effects. No effect was shown by glucose, lactate, gluconate, bicarbonate, bicarbonate plus phosphate, glutamate, aspartate, borate, glycerophosphate, lysine or glutathione. Those compeunds which showed no effect had stability constants for Ca of less than 3. Strong chelating agents also decreased the relative amountmore » of Sr/sup 85/ removed from defatted bone powder by exchange. Results indicate that natural chelating agents may be partly responsible for the low Ca/sup 45//Sr/sup 85/ uptake ratio by bone from serum compared with uptake from synthetic inorganic solutions and emphasize the difficulty of removing be partly responsible for the low Ca/sup 45//Sr/sup 85/ uptske ratio by bone from serum compared with uptake from synthetic inorganic solutions and emphasize the difficulty of removing Sr/sup 35/ from bone with chelating agents now available. (auth)« less

  19. Revisiting the Pharmacokinetic Profiles of Gadolinium-Based Contrast Agents: Differences in Long-Term Biodistribution and Excretion.

    PubMed

    Lancelot, Eric

    2016-11-01

    Gadolinium-based contrast agents (GBCAs) have been used for years for magnetic resonance imaging examinations. Because of their rapid blood clearance, they were considered as very safe products until some of them were shown to induce nephrogenic systemic fibrosis in patients with renal failure and hypersignals on T1-weighted unenhanced brain scans of patients with normal renal function. To date, these adverse effects have been related almost exclusively to the use of low-stability linear agents, which are more prone to release free gadolinium. The aim of the present meta-analysis was to ascertain the existence of a deep compartment for gadolinium storage in the body and to assess whether all the GBCAs present the same toxicokinetic profile. Applying a systematic literature search methodology, all clinical and preclinical studies reporting time-dependent plasma concentrations and renal excretion data of gadolinium were identified and analyzed. Since the individual data were not available, the analysis focused on the average values per groups of subjects or animals, which had received a given GBCA at a given dose. The rate constants of the distribution phase (α), rapid elimination phase (β), and residual excretion phase (γ) of gadolinium were determined in each group from the plasma concentration (Cp) time curves and the relative urinary excretion rate (rER) time curves, taking the 2-hour time point as a reference. Moreover, as bone may represent a reservoir for long-term gadolinium accumulation and slow release into the blood stream, the time curves of the relative concentration in the bone (rCB) of Gd-labeled GBCAs in mice or rats were analyzed taking day 1 concentrations as a reference. The ratio of gadolinium concentrations in the bone marrow (CBM) as compared with the bone (CB) was also calculated. The relative urinary excretion rate (rER) plots revealed a prolonged residual excretion phase of gadolinium in healthy volunteers, consistent with the existence of a deep compartment of distribution for the GBCAs. The rate constant γ of gadoterate meglumine (0.107 hour) is 5 times higher than that of the linear agents (0.020 ± 0.008 hour), indicating a much faster blood clearance for the macrocyclic GBCA. Similar results were obtained in the preclinical studies. A strong correlation was shown between the γ values of the different products and their respective thermodynamic stability constants (Ktherm). Greater clearance rates of Gd from murine bone were also found after gadoterate meglumine or gadoteridol injection (0.131-0.184 day) than after administration of the linear agents (0.004-0.067 day). The concentrations of Gd in the bone marrow (CBM) from animals exposed to either gadoterate meglumine or gadodiamide are higher than those in the bone (CB) for at least 24 hours. Moreover, the ratio of concentrations (CBM/CB) at 4 hours is significantly lower with the former agent than the latter (1.9 vs 6.5, respectively). Using a nonconventional pharmacokinetic approach, we showed that gadoterate meglumine undergoes a much faster residual excretion from the body than the linear GBCAs, a process that seems related to the thermodynamic stability of the different chelates. Gadolinium dissociation occurs in vivo for some linear chelates, a mechanism that may explain their long-term retention and slow release from bone. Potential consequences in terms of bone toxicity warrant further investigations.

  20. Preparation, quality control and biodistribution assessment of ¹⁵³Sm-BPAMD as a novel agent for bone pain palliation therapy.

    PubMed

    Rabie, Ali; Enayati, Razieh; Yousefnia, Hassan; Jalilian, Amir Reza; Shamsaei, Mojtaba; Zolghadri, Samaneh; Bahrami-Samani, Ali; Hosntalab, Mohammad

    2015-12-01

    Various phosphonate ligands labeled with β(-)-emitting radionuclides have shown good efficacy for bone pain palliation. In this study, a new agent for bone pain palliation has been developed. ¹⁵³Sm-(4-{[(bis(phosphonomethyl))carbamoyl]methyl}-7,10-bis(carboxymethyl)-1,4,7,10-tetraazacyclododec-1-yl) acetic acid (¹⁵³Sm-BPAMD) complex was prepared using BPAMD ligand and ¹⁵³SmCl3. The effect of various parameters on the labeling yield of ¹⁵³Sm-BPAMD including ligand concentration, pH, temperature and reaction time were studied. Radiochemical purity of the radiolabeled complex was checked by instant thin layer chromatography (ITLC). Stability studies of the complex in the final preparation and in the presence of human serum were performed up to 48 h. Partition coefficient and hydroxyapatite (HA) binding of the complex were investigated and biodistribution studies (SPECT imaging and scarification) were performed after injection of the complex to Syrian mice up to 48 h post-injection. The biodistribution of the complex was compared with the biodistribution of the ¹⁵³Sm cation in the same type mice. ¹⁵³Sm-BPAMD was prepared in high radiochemical purity >98% and specific activity of 267 GBq/mmol at the optimal conditions. The complex demonstrated significant stability at room temperature and in human serum at least for 48 h. HA binding assay demonstrated that at the amount of more than 5 mg, approximately, all radiolabeled complex was bound to HA. At the pH 7.4, LogP o/w was -1.86 ± 0.02. Both SPECT and scarification showed major accumulation of the labeled compound in the bone tissue. The results show that ¹⁵³Sm-BPAMD has interesting characteristics as an agent for bone pain palliation; however, further biological studies in other mammals are still needed.

  1. Recent biological trends in management of fracture non-union

    PubMed Central

    Emara, Khaled M; Diab, Ramy Ahmed; Emara, Ahmed Khaled

    2015-01-01

    Bone regeneration is a complex, well-orchestrated physiological process of bone formation, which can be seen during normal fracture healing, and is involved in continuous remodelling throughout adult life. Currently, there is a plethora of different strategies to augment the impaired or “insufficient” bone-regeneration process, including the “gold standard” autologous bone graft, free fibula vascularised graft, allograft implantation, and use of growth factors, osteoconductive scaffolds, osteoprogenitor cells and distraction osteogenesis. Improved “local” strategies in terms of tissue engineering and gene therapy, or even “systemic” enhancement of bone repair, are under intense investigation, in an effort to overcome the limitations of the current methods, to produce bone-graft substitutes with biomechanical properties that are as identical to normal bone as possible, to accelerate the overall regeneration process, or even to address systemic conditions, such as skeletal disorders and osteoporosis. An improved understanding of the molecular and cellular events that occur during bone repair and remodeling has led to the development of biologic agents that can augment the biological microenvironment and enhance bone repair. Orthobiologics, including stem cells, osteoinductive growth factors, osteoconductive matrices, and anabolic agents, are available clinically for accelerating fracture repair and treatment of compromised bone repair situations like delayed unions and nonunions. A lack of standardized outcome measures for comparison of biologic agents in clinical fracture repair trials, frequent off-label use, and a limited understanding of the biological activity of these agents at the bone repair site have limited their efficacy in clinical applications. PMID:26396938

  2. Technical Note: Radiological properties of tissue surrogates used in a multimodality deformable pelvic phantom for MR-guided radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niebuhr, Nina I., E-mail: n.niebuhr@dkfz.de; Johnen, Wibke; Güldaglar, Timur

    Purpose: Phantom surrogates were developed to allow multimodal [computed tomography (CT), magnetic resonance imaging (MRI), and teletherapy] and anthropomorphic tissue simulation as well as materials and methods to construct deformable organ shapes and anthropomorphic bone models. Methods: Agarose gels of variable concentrations and loadings were investigated to simulate various soft tissue types. Oils, fats, and Vaseline were investigated as surrogates for adipose tissue and bone marrow. Anthropomorphic shapes of bone and organs were realized using 3D-printing techniques based on segmentations of patient CT-scans. All materials were characterized in dual energy CT and MRI to adapt CT numbers, electron density, effectivemore » atomic number, as well as T1- and T2-relaxation times to patient and literature values. Results: Soft tissue simulation could be achieved with agarose gels in combination with a gadolinium-based contrast agent and NaF to simulate muscle, prostate, and tumor tissues. Vegetable oils were shown to be a good representation for adipose tissue in all modalities. Inner bone was realized using a mixture of Vaseline and K{sub 2}HPO{sub 4}, resulting in both a fatty bone marrow signal in MRI and inhomogeneous areas of low and high attenuation in CT. The high attenuation of outer bone was additionally adapted by applying gypsum bandages to the 3D-printed hollow bone case with values up to 1200 HU. Deformable hollow organs were manufactured using silicone. Signal loss in the MR images based on the conductivity of the gels needs to be further investigated. Conclusions: The presented surrogates and techniques allow the customized construction of multimodality, anthropomorphic, and deformable phantoms as exemplarily shown for a pelvic phantom, which is intended to study adaptive treatment scenarios in MR-guided radiation therapy.« less

  3. Technical Note: Radiological properties of tissue surrogates used in a multimodality deformable pelvic phantom for MR-guided radiotherapy.

    PubMed

    Niebuhr, Nina I; Johnen, Wibke; Güldaglar, Timur; Runz, Armin; Echner, Gernot; Mann, Philipp; Möhler, Christian; Pfaffenberger, Asja; Jäkel, Oliver; Greilich, Steffen

    2016-02-01

    Phantom surrogates were developed to allow multimodal [computed tomography (CT), magnetic resonance imaging (MRI), and teletherapy] and anthropomorphic tissue simulation as well as materials and methods to construct deformable organ shapes and anthropomorphic bone models. Agarose gels of variable concentrations and loadings were investigated to simulate various soft tissue types. Oils, fats, and Vaseline were investigated as surrogates for adipose tissue and bone marrow. Anthropomorphic shapes of bone and organs were realized using 3D-printing techniques based on segmentations of patient CT-scans. All materials were characterized in dual energy CT and MRI to adapt CT numbers, electron density, effective atomic number, as well as T1- and T2-relaxation times to patient and literature values. Soft tissue simulation could be achieved with agarose gels in combination with a gadolinium-based contrast agent and NaF to simulate muscle, prostate, and tumor tissues. Vegetable oils were shown to be a good representation for adipose tissue in all modalities. Inner bone was realized using a mixture of Vaseline and K2HPO4, resulting in both a fatty bone marrow signal in MRI and inhomogeneous areas of low and high attenuation in CT. The high attenuation of outer bone was additionally adapted by applying gypsum bandages to the 3D-printed hollow bone case with values up to 1200 HU. Deformable hollow organs were manufactured using silicone. Signal loss in the MR images based on the conductivity of the gels needs to be further investigated. The presented surrogates and techniques allow the customized construction of multimodality, anthropomorphic, and deformable phantoms as exemplarily shown for a pelvic phantom, which is intended to study adaptive treatment scenarios in MR-guided radiation therapy.

  4. Magnetic resonance imaging of the nose and paranasal sinuses.

    PubMed Central

    Lloyd, G A

    1989-01-01

    Seventy-five patients with a wide range of sinus disease have been investigated by magnetic resonance (MR): these included congenital conditions, allergic and inflammatory sinus disease, fungus infections, and the necrotizing granulomata. In addition, a variety of benign and malignant tumours have been examined, and in the more recent sinus malignancies the paramagnetic contrast agent, Gadolinium (Gd) DTPA (Schering Health Care) has been used. This experience of magnetic resonance scanning has shown that it is superior to computed tomography in demonstrating the extent of malignant disease in the nose and sinuses; most especially when Gd DTPA is used, reaching an accuracy of over 96% by biopsy correlation. An additional advantage of this technique is the wide coverage of the head and neck for the assessment of malignant disease, provided by direct 3 plane imaging and the multislice facility. The main disadvantage of magnetic resonance of the sinuses is the poor demonstration of calcification and bone. For this reason the MR scans may need to be augmented by high resolution CT performed specifically to show bone detail. Images Figure 2. Figure 3. PMID:2926770

  5. Advances in imaging: impact on studying craniofacial bone structure.

    PubMed

    Majumdar, S

    2003-01-01

    Methods for measuring the structure of craniofacial bones are discussed in this paper. In addition to the three-dimensional macro-structure of the craniofacial skeleton, there is considerable interest in imaging the bone at a microscopic resolution in order to depict the micro-architecture of the trabecular bone itself. In addition to the density of the bone, the microarchitecture reflects bone quality. An understanding of bone quality and density changes has implications for a number of craniofacial pathologies, as well as for implant design and understanding the biomechanical function and loading of the jaw. Trabecular bone micro-architecture has been recently imaged using imaging methods such as micro-computed tomography, magnetic resonance imaging, and the images have been used in finite element models to assess bone mechanical properties. In this paper, some of the recent advances in micro-computed tomography and magnetic resonance imaging are reviewed, and their potential for imaging the trabecular bone in mandibular bones is presented. Examples of in vitro and in vivo images are presented.

  6. Osteogenesis Imperfecta Diagnosed from Mandibular and Lower Limb Fractures: A Case Report.

    PubMed

    Kobayashi, Yoshikazu; Satoh, Koji; Mizutani, Hideki

    2016-06-01

    Osteogenesis imperfecta (OI) is a congenital disease characterized by bone fragility and low bone mass. Despite the variety of its manifestation and severity, facial fractures occur very infrequently. Here, we report a case of an infant diagnosed with OI after mandibular and lower limb fractures. A boy aged 1 year and 3 months was brought to his neighboring hospital with a complaint of facial injury. He was transferred to our hospital to undergo operation 3 days later. Computed tomography images revealed multiple mandibular fractures including complete fracture in the symphysis and dislocated condylar fracture on the right side. Open reduction and internal fixation with absorbable implants was performed 7 days after injury. He fractured his right lower limb 2 months later. He was diagnosed with OI type IA by an orthopedist. He will be administered bone-modifying agents if he suffers from frequent fractures.

  7. A Model for Assessing the Clinical and Economic Benefits of Bone-forming Agents for Reducing Fractures in Postmenopausal Women at High, Near-term Risk of Osteoporotic Fracture.

    PubMed

    O'Hanlon, Claire E; Parthan, Anju; Kruse, Morgan; Cartier, Shannon; Stollenwerk, Bjorn; Jiang, Yawen; Caloyeras, John P; Crittenden, Daria B; Barron, Richard

    2017-07-01

    The goal of this study was to assess and compare the potential clinical and economic value of emerging bone-forming agents using the only currently available agent, teriparatide, as a reference case in patients at high, near-term (imminent, 1- to 2-year) risk of osteoporotic fractures, extending to a lifetime horizon with sequenced antiresorptive agents for maintenance treatment. Analyses were performed by using a Markov cohort model accounting for time-specific fracture protection effects of bone-forming agents followed by antiresorptive treatment with denosumab. The alternative bone-forming agent profiles were defined by using assumptions regarding the onset and total magnitude of protection against fractures with teriparatide. The model cohort comprised 70-year-old female patients with T scores below -2.5 and a previous vertebral fracture. Outcomes included clinical fractures, direct costs, and quality-adjusted life years. The simulated treatment strategies were compared by calculating their incremental "value" (net monetary benefit). Improvements in the onset and magnitude of fracture protection (vs the teriparatide reference case) produced a net monetary benefit of $17,000,000 per 10,000 treated patients during the (1.5-year) bone-forming agent treatment period and $80,000,000 over a lifetime horizon that included 3.5 years of maintenance treatment with denosumab. Incorporating time-specific fracture effects in the Markov cohort model allowed for estimation of a range of cost savings, quality-adjusted life years gained, and clinical fractures avoided at different levels of fracture protection onset and magnitude. Results provide a first estimate of the potential "value" new bone-forming agents (romosozumab and abaloparatide) may confer relative to teriparatide. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Cancer-targeted therapies and radiopharmaceuticals

    PubMed Central

    Rachner, Tilman D; Jakob, Franz; Hofbauer, Lorenz C

    2015-01-01

    The treatment of bone metastases remains a clinical challenge. Although a number of well-established agents, namely bisphosphonates and denosumab, are available to reduce the occurrence of skeletal-related events, additional cancer-targeted therapies are required to improve patients' prognosis and quality of life. This review focuses on novel targets and agents that are under clinical evaluation for the treatment of malignant bone diseases such as activin A, src and endothelin-1 inhibition or agents that are clinically approved and may positively influence bone, such as the mTOR inhibitor everolimus. In addition, the potential of alpharadin, a novel radiopharmaceutical approved for the treatment of prostatic bone disease, is discussed. PMID:26131359

  9. Current management of advanced and castration resistant prostate cancer.

    PubMed

    Gomella, Leonard G; Petrylak, Daniel P; Shayegan, Bobby

    2014-04-01

    Newer approaches to the management of advanced prostate cancer have rapidly evolved. While basic androgen deprivation remains as the first line in newly diagnosed hormone naïve metastatic prostate cancer, the agents used and strategies followed have undergone significant changes. Numerous new agents such as sipuleucel-T, abiraterone, enzalutamide, cabazitaxel and radium 223 have all been approved since 2010 to treat metastatic castration resistant prostate cancer (CRPC). New imaging techniques to detect advanced disease such as F-18 PET, 11 C-choline PET and other modalities are becoming available. The concepts of "bone health" and the management of side effects related to androgen deprivation therapy are also gaining attention as men are being treated with longer courses of androgen deprivation. Understanding the theory behind these new agents and management approaches while focusing on the practical clinical considerations are essential to improve outcomes in advanced prostate cancer. A review of the current state of the art in the management of advanced and castration resistant prostate cancer presented in this Canadian Journal of Urology International supplement was performed. Key findings are summarized and presented along with critical updates based on recent publications and meeting presentations. Key concepts identified in the management of advanced prostate cancer included the new understanding of prostate cancer based on translational discoveries, applications of various hormonally based strategies in advanced disease including traditional and recently approved agents. The use of new imaging modalities to identify metastatic disease, immunotherapy approaches and discussions of sequencing and which new agents are likely to be available in the future in the management of CRPC were identified. Bone targeted strategies are also addressed in the setting of androgen deprivation and metastatic disease. The management of men with advanced prostate cancer has become more multidisciplinary as treatment options have expanded. As the use of these agents and new strategies expand, urologists, medical oncologists and radiation oncologists must all become familiar with this rapidly changing field in order to maximize the outcome of patients with advanced and castration resistant prostate cancer.

  10. Peptide Based Radiopharmaceuticals: Specific Construct Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Som, P; Rhodes, B A; Sharma, S S

    1997-10-21

    The objective of this project was to develop receptor based peptides for diagnostic imaging and therapy. A series of peptides related to cell adhesion molecules (CAM) and immune regulation were designed for radiolabeling with 99mTc and evaluated in animal models as potential diagnostic imaging agents for various disease conditions such as thrombus (clot), acute kidney failure, and inflection/inflammation imaging. The peptides for this project were designed by the industrial partner, Palatin Technologies, (formerly Rhomed, Inc.) using various peptide design approaches including a newly developed rational computer assisted drug design (CADD) approach termed MIDAS (Metal ion Induced Distinctive Array of Structures).more » In this approach, the biological function domain and the 99mTc complexing domain are fused together so that structurally these domains are indistinguishable. This approach allows construction of conformationally rigid metallo-peptide molecules (similar to cyclic peptides) that are metabolically stable in-vivo. All the newly designed peptides were screened in various in vitro receptor binding and functional assays to identify a lead compound. The lead compounds were formulated in a one-step 99mTc labeling kit form which were studied by BNL for detailed in-vivo imaging using various animals models of human disease. Two main peptides usingMIDAS approach evolved and were investigated: RGD peptide for acute renal failure and an immunomodulatory peptide derived from tuftsin (RMT-1) for infection/inflammation imaging. Various RGD based metallopeptides were designed, synthesized and assayed for their efficacy in inhibiting ADP-induced human platelet aggregation. Most of these peptides displayed biological activity in the 1-100 µM range. Based on previous work by others, RGD-I and RGD-II were evaluated in animal models of acute renal failure. These earlier studies showed that after acute ischemic injury the renal cortex displays RGD receptor with higher density. The results have indicated good diagnostic potential for their use in this clinical situation, as an imaging agent to diagnose ischemic renal injury and differentiate from other causes. Very promising results were obtained with newly developed tuftsin related metallopeptides. A number of these peptides displayed high potency (nM range) in imaging infection. Antagonists were successfully used to image experimentally induced abscesses in rodents. One of the antagonists, termed 99mTc-RMT-1, was evaluated in rabbits and dogs for its applicability as infection/inflammation imaging agent. Both in dog and rabbit infection/inflammation models 99mTc-RMT-1 could be used for rapid scintigraphic diagnosis. A very high and rapid uptake was observed in both soft tissue and bone infection providing a good target to background contrast. The agent also allowed distinction between bone fracture and osteomyelitis. All these results warrant human clinical trials with 99mTc-RMT-1 which may help replace hazardous ex-vivo WBC labeling procedures that are current clincial modality for imaging infection foci.« less

  11. Novel therapies in benign and malignant bone diseases.

    PubMed

    Rachner, Tilman D; Hadji, Peyman; Hofbauer, Lorenz C

    2012-06-01

    With an ageing population and improving cancer therapies, the two most common benign and malignant bone diseases, osteoporosis and bone metastases, will continue to affect an increasing number of patients. Our expanding knowledge of the molecular processes underlying these conditions has resulted in novel bone targets that are currently being explored in clinical trials. Clearly, the approval of denosumab, a monoclonal antibody directed against RANKL, has just marked the beginning of a new era for bone therapy with several additional new therapies lining up for clinical approval in the coming years. Potential agents targeting the osteoclast include cathepsin K, currently in phase 3 trials, and src inhibitors. Amongst anabolic agents, inhibitors of the Wnt-inhibitor sclerostin and dickkopf-1 are promising in clinical trials. Here, we will provide a comprehensive overview of the most promising agents currently explored for the treatment of bone diseases. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Liquid-solid phase transition alloy as reversible and rapid molding bone cement.

    PubMed

    Yi, Liting; Jin, Chao; Wang, Lei; Liu, Jing

    2014-12-01

    Acrylic bone cement has been an essential non-metallic implant used as fixing agent in the cemented total joint arthroplasty (THA). However, the currently available materials based mainly on polymethylmethacrylate (PMMA) still encounter certain limitations, such as time-consuming polymerization, thermal and chemical necrosis and troublesome revision procedure. Here from an alternative way, we proposed for the first time to adopt the injectable alloy cement to address such tough issues through introducing its unique liquid-solid phase transition mechanism. A typical cement along this way is thus made of an alloy Bi/In/Sn/Zn with a specifically designed low melting point 57.5 °C, which enables its rapid molding into various desired shapes with high plasticity and ultimate metallic behaviors. The fundamental characteristics including the mechanical strength, biocompatibility and phase transition-induced thermal effects have been clarified to demonstrate the importance of such alloy as unconventional cement with favorable merits. In addition, we also disclosed its advantage as an excellent contrast agent for radiation imaging on the bone interior structure which is highly beneficial for guiding the surgery and monitoring the therapeutic effects. Particularly, the proposed alloy cement with reversible phase transition feature significantly simplifies the revision of the cement and prosthesis. This study opens the way for employing the injectable alloy materials as reversible bone cement to fulfill diverse clinical needs in the coming time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Photothermal and infrared thermography characterizations of thermal diffusion in hydroxyapatite materials

    NASA Astrophysics Data System (ADS)

    Bante-Guerra, J.; Conde-Contreras, M.; Trujillo, S.; Martinez-Torres, P.; Cruz-Jimenez, B.; Quintana, P.; Alvarado-Gil, J. J.

    2009-02-01

    Non destructive analysis of hydroxyapatite materials is an active research area mainly in the study of dental pieces and bones due to the importance these pieces have in medicine, archeology, dentistry, forensics and anthropology. Infrared thermography and photothermal techniques constitute highly valuable tools in those cases. In this work the quantitative analysis of thermal diffusion in bones is presented. The results obtained using thermographic images are compared with the ones obtained from the photothermal radiometry. Special emphasis is done in the analysis of samples with previous thermal damage. Our results show that the treatments induce changes in the physical properties of the samples. These results could be useful in the identification of the agents that induced modifications of unknown origin in hydroxyapatite structures.

  14. An unusual cause of headache: Pott's puffy tumour.

    PubMed

    McDermott, Cian; O'Sullivan, Ronan; McMahon, Geraldine

    2007-06-01

    Osteomyelitis of the frontal bone (eponymously known as Pott's puffy tumour) is an extremely rare and potentially life-threatening complication of frontal sinusitis. The entity was first described by Sir Percival Pott, an 18th century neurosurgeon. It is today considered a historical vignette with the introduction of modern antimicrobial agents. Early diagnosis and immediate active treatment are necessary to prevent severe neurologic sequelae. We report on a case of Pott's puffy tumour in a previously healthy young man with a progressively worsening headache and swelling of the frontal bone. Computed tomography and magnetic resonance imaging revealed features characteristic of this condition. Following emergency sinus trephination and 6 weeks of parenteral and enteral antibiotic therapy, the patient achieved a complete recovery.

  15. Bismuth@US-tubes as a Potential Contrast Agent for X-ray Imaging Applications

    PubMed Central

    Rivera, Eladio J.; Tran, Lesa A.; Hernández-Rivera, Mayra; Yoon, Diana; Mikos, Antonios G.; Rusakova, Irene A.; Cheong, Benjamin Y.; Cabreira-Hansen, Maria da Graça; Willerson, James T.; Perin, Emerson C.; Wilson, Lon J.

    2013-01-01

    The encapsulation of bismuth as BiOCl/Bi2O3 within ultra-short (ca. 50 nm) single-walled carbon nanocapsules (US-tubes) has been achieved. The Bi@US-tubes have been characterized by high-resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray spectroscopy (EDS), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Bi@US-tubes have been used for intracellular labeling of pig bone marrow-derived mesenchymal stem cells (MSCs) to show high X-ray contrast in computed tomography (CT) cellular imaging for the first time. The relatively high contrast is achieved with low bismuth loading (2.66% by weight) within the US-tubes and without compromising cell viability. X-ray CT imaging of Bi@US-tubes-labeled MSCs showed a nearly two-fold increase in contrast enhancement when compared to unlabeled MSCs in a 100 kV CT clinical scanner. The CT signal enhancement from the Bi@US-tubes is 500 times greater than polymer-coated Bi2S3 nanoparticles and several-fold that of any clinical iodinated contrast agent (CA) at the same concentration. Our findings suggest that the Bi@US-tubes can be used as a potential new class of X-ray CT agent for stem cell labeling and possibly in vivo tracking. PMID:24288589

  16. The botanical molecule p-hydroxycinnamic acid as a new osteogenic agent: insight into the treatment of cancer bone metastases.

    PubMed

    Yamaguchi, Masayoshi

    2016-10-01

    Bone homeostasis is maintained through a balance between osteoblastic bone formation and osteoclastic bone resorption. Bone loss with aging is induced by decreasing in osteoblastic bone formation and increasing in osteoclastic bone resorption, thereby leading to osteoporosis. Osteoporosis with its accompanying decrease in bone mass is widely recognized as a major public heath problem. Pharmacologic and nutritional factors may play a role in the prevention and treatment of bone loss with aging. p-Hydroxycinnamic acid (HCA), which stimulates bone mineralization in mouse bone tissues in vitro, has been found to be present in the leafstalk of wasabi (Wasabi japonica MATSUM) among various food and plants. Other phenolic acids including cinnamic acid, ferulic acid, caffeic acid and 3,4-dimethoxycinnamic acid did not have osteogenic effects. HCA was demonstrated to stimulate osteoblastic bone formation and suppresses osteoclastic bone resorption in vitro by antagonizing activation of the nuclear factor kappa B. Oral administration of HCA was found to exhibit restorative effects on bone loss induced by ovariectomy and diabetic states, supporting a role in the treatment of osteoporosis. Moreover, HCA was demonstrated to prevent the suppressed osteoblastic mineralization and the enhanced osteoclastogenesis in mouse bone marrow cells cocultured with bone metastatic MDA-MB-231 human breast cancer cells in vitro. The botanical molecule HCA, as a new osteogenic agent, is suggested to play a role in the treatment of cancer bone metastases. This review will discuss an advanced recent finding that HCA may be a useful agent to treat bone metabolic disorder.

  17. Noninvasive measurement of pharmacokinetics by near-infrared fluorescence imaging in the eye of mice

    NASA Astrophysics Data System (ADS)

    Dobosz, Michael; Strobel, Steffen; Stubenrauch, Kay-Gunnar; Osl, Franz; Scheuer, Werner

    2014-01-01

    Purpose: For generating preclinical pharmacokinetics (PKs) of compounds, blood is drawn at different time points and levels are quantified by different analytical methods. In order to receive statistically meaningful data, 3 to 5 animals are used for each time point to get serum peak-level and half-life of the compound. Both characteristics are determined by data interpolation, which may influence the accuracy of these values. We provide a method that allows continuous monitoring of blood levels noninvasively by measuring the fluorescence intensity of labeled compounds in the eye and other body regions of anesthetized mice. Procedures: The method evaluation was performed with four different fluorescent compounds: (i) indocyanine green, a nontargeting dye; (ii) OsteoSense750, a bone targeting agent; (iii) tumor targeting Trastuzumab-Alexa750; and (iv) its F(-alxea750 fragment. The latter was used for a direct comparison between fluorescence imaging and classical blood analysis using enzyme-linked immunosorbent assay (ELISA). Results: We found an excellent correlation between blood levels measured by noninvasive eye imaging with the results generated by classical methods. A strong correlation between eye imaging and ELISA was demonstrated for the F( fragment. Whole body imaging revealed a compound accumulation in the expected regions (e.g., liver, bone). Conclusions: The combination of eye and whole body fluorescence imaging enables the simultaneous measurement of blood PKs and biodistribution of fluorescent-labeled compounds.

  18. A review of the musculoskeletal manifestations of sarcoidosis.

    PubMed

    Bechman, Katie; Christidis, Dimitrios; Walsh, Sarah; Birring, Surinder S; Galloway, James

    2018-05-01

    Sarcoidosis is a systemic disease of unknown aetiology that is characterized by granulomatous inflammation that can develop in almost any organ system. Musculoskeletal manifestations are seen in up to one-third of patients, ranging from arthralgia through to widespread destructive bone lesions. Inflammatory tendon lesions and periarticular swelling are more common than true joint synovitis. Despite advances in our understanding of the pathophysiology of the disease, diagnosis remains challenging. Definitive diagnosis, irrespective of organ site involvement, hinges on histological confirmation of non-caseating granuloma combined with an appropriate clinical syndrome. Musculoskeletal involvement usually develops early in the disease course. Imaging modalities, particularly fluorodeoxyglucose PET, are helpful in delineating the extent of involvement and measuring disease activity. Bone involvement may only become apparent following isotope imaging. Corticosteroids remain the cornerstone of treatment. MTX is the steroid-sparing agent of choice unless there is renal involvement. Biologic therapies are sometimes used in severe disease, although the evidence base for efficacy is inconsistent.

  19. A systematic review of dosing frequency with bone-targeted agents for patients with bone metastases from breast cancer

    PubMed Central

    Hutton, Brian; Addison, Christina L.; Campbell, Kaitryn; Fergusson, Dean; Mazarello, Sasha; Clemons, Mark

    2013-01-01

    Background Bone-targeted agents are usually administered to breast cancer patients with bone metastases every 3–4 weeks. Less frequent (‘de-escalated’) treatment may provide similar benefits with improved safety and reduced cost. Methods To systematically review randomised trials comparing de-escalated treatment with bone-targeted agents (i.e. every 12–16 weeks) to standard treatment (i.e. every 3–4 weeks), a formal systematic review of the literature was performed. Two individuals independently screened citations and full text articles. Random effects meta-analyses of clinically important outcomes were planned provided homogeneous studies were identified. Results Five relevant studies (n=1287 patients) were identified. Sample size ranged from 38 to 425. Information on outcomes including occurrence of SREs, bone pain, urinary N-telopeptide concentrations, serum C-telopeptide concentrations, pain medication use and safety outcomes was not consistently available. Two trials were non-inferiority studies, two dose-response evaluations and one was a pilot study. Bone-targeted agents use varied between studies, as did duration of prior therapy. Patient populations were considered heterogeneous in several ways, and thus no meta-analyses were performed. Observations from the included studies suggest there is potential that 3 month de-escalated treatment may provide similar benefits compared to 3–4 weekly treatment and that lower doses of zoledronic acid and denosumab might be equally effective. Conclusions Studies comparing standard and de-escalated treatment with bone-targeted agents in breast cancer are rare. The benefits of standard treatment compared to de-escalated therapy on important clinical outcomes remain unclear. Future pragmatic studies must be conducted to determine the merits of this approach. PMID:26909282

  20. An exploratory study of contrast agents for soft tissue visualization by means of high resolution X-ray computed tomography imaging.

    PubMed

    Pauwels, E; Van Loo, D; Cornillie, P; Brabant, L; Van Hoorebeke, L

    2013-04-01

    High resolution X-ray computed tomography (CT), or microCT, is a promising and already widely used technique in various scientific fields. Also for histological purposes it has great potential. Although microCT has proven to be a valuable technique for the imaging of bone structures, the visualization of soft tissue structures is still an important challenge due to their low inherent X-ray contrast. One way to achieve contrast enhancement is to make use of contrast agents. However, contrary to light and electron microscopy, knowledge about contrast agents and staining procedures is limited for X-ray CT. The purpose of this paper is to identify useful X-ray contrast agents for soft tissue visualization, which can be applied in a simple way and are also suited for samples larger than (1 cm)(3) . And 28 chemical substances have been investigated. All chemicals were applied in the form of concentrated aqueous solutions in which the samples were immersed. First, strips of green Bacon were stained to evaluate contrast enhancement between muscle and adipose tissue. Furthermore it was also tested whether the contrast agents remained fixed in the tissue after staining by re-immersing them in water. Based on the results, 12 contrast agents were selected for further testing on postmortem mice hind legs, containing a variety of different tissues, including muscle, fat, bone, cartilage and tendons. It was evaluated whether the contrast agents allowed a clearer distinction between the different soft tissue structures present. Finally also penetration depth was measured. And 26 chemicals resulted in contrast enhancement between muscle and adipose tissue in the Bacon strips. Mercury(II)chloride (HgCl2 ), phosphotungstic acid (PTA), phosphomolybdic acid (PMA) and ammonium orthomolybdate ((NH4 )2 MoO4 ) remained fixed after re-immersion in water. The penetration tests showed that potassium iodide (KI) and sodium tungstate can be most efficiently used for large samples of the order of several tens of cm(3) . PMA, PTA, HgCl2 and also to a lesser extent Na2 WO4 and (NH4 )2 MoO4 allowed a clearer distinction between the different soft tissue structures present. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  1. Accumulation of rare earth elements in human bone within the lifespan.

    PubMed

    Zaichick, Sofia; Zaichick, Vladimir; Karandashev, Vasilii; Nosenko, Sergey

    2011-02-01

    For the first time, the contents of rare earth elements (REEs) in a rib bone of a healthy human were determined. The mean value of the contents of Ce, Dy, Er, Gd, La, Nd, Pr, Sm, Tb, and Yb (10 elements out of 17 total REEs), as well as the upper limit of means for Ho, Lu, Tm, and Y (4 elements) were measured in the rib bone tissue of 38 females and 42 males (15 to 55 years old) using inductively coupled plasma mass spectrometry (ICP-MS). We found age-related accumulation of REEs in the bone tissue of healthy individuals who lived in a non-industrial region. It was calculated that during a lifespan the content of REEs in a skeleton of non-industrial region residents may increase by one to two orders of magnitude. Using our results as indicative normal values and published data we estimated relative Gd accumulation in the bone tissue of patients according to magnetic resonance imaging with contrast agent and La accumulation in the bone tissue of patients receiving hemodialysis after treatment with lanthanum carbonate as a phosphate binder. It was shown that after such procedures contents of Gd and La in the bone tissue of patients are two to three orders of magnitude higher than normal levels. In our opinion, REEs incorporation may affect bone quality and health similar to other potentially toxic trace metals. The impact of elevated REEs content on bone physiology, biochemistry and morphology requires further investigation.

  2. Bone cell-independent benefits of raloxifene on the skeleton: A novel mechanism for improving bone material properties

    PubMed Central

    Gallant, Maxime A.; Brown, Drew M.; Hammond, Max; Wallace, Joseph M.; Du, Jiang; Deymier-Black, Alix C.; Almer, Jonathan D.; Stock, Stuart R.; Allen, Matthew R.; Burr, David B.

    2014-01-01

    Raloxifene is an FDA approved agent used to treat bone loss and decrease fracture risk. In clinical trials and animal studies, raloxifene reduces fracture risk and improves bone mechanical properties, but the mechanisms of action remain unclear because these benefits occur largely independent of changes to bone mass. Using a novel experimental approach, machined bone beams, both from mature male canine and human male donors, were depleted of living cells and then exposed to raloxifene ex vivo. Our data show that ex vivo exposure of non-viable bone to raloxifene improves intrinsic toughness, both in canine and human cortical bone beams tested by 4-point bending. These effects are cell-independent and appear to be mediated by an increase in matrix bound water, assessed using basic gravimetric weighing and sophisticated ultrashort echo time magnetic resonance imaging. The hydroxyl groups (−OH) on raloxifene were shown to be important in both the water and toughness increases. Wide and small angle x-ray scattering patterns during 4-pt bending show that raloxifene alters the transfer of load between the collagen matrix and the mineral crystals, placing lower strains on the mineral, and allowing greater overall deformation prior to failure. Collectively, these findings provide a possible mechanistic explanation for the therapeutic effect of raloxifene and more importantly identify a cell-independent mechanism that can be utilized for novel pharmacological approaches for enhancing bone strength. PMID:24468719

  3. Predictors of rapid spontaneous resolution of acute subdural hematoma.

    PubMed

    Fujimoto, Kenji; Otsuka, Tadahiro; Yoshizato, Kimio; Kuratsu, Jun-ichi

    2014-03-01

    Acute subdural hematoma (ASDH) usually requires emergency surgical decompression, but rare cases exhibit rapid spontaneous resolution. The aim of this retrospective study was to identify factors predictive of spontaneous ASDH resolution. A total of 366 consecutive patients with ASDH treated between January 2006 and September 2012 were identified in our hospital database. Patients with ASDH clot thickness >10mm in the frontoparietotemporal region and showing a midline shift >10mm on the initial computed tomography (CT) scan were divided into two groups according to subsequent spontaneous resolution. Univariate and multivariate logistic regression analyses were used to identify factors predictive of rapid spontaneous ASDH resolution. Fifty-six ASDH patients met study criteria and 18 demonstrated rapid spontaneous resolution (32%). Majority of these patients were not operated because of poor prognosis/condition and in accordance to family wishes. Univariate analysis revealed significant differences in use of antiplatelet agents before head injury and in the incidence of a low-density band between the hematoma and inner wall of the skull bone on the initial CT. Use of antiplatelet agents before head injury (OR 19.6, 95% CI 1.5-260.1, p=0.02) and the low-density band on CT images (OR 40.3, 95% CI 3.1-520.2, p=0.005) were identified as independent predictive factors by multivariate analysis. Our analysis suggested that use of antiplatelet agents before head injury and a low-density band between the hematoma and inner skull bone on CT images (indicative of cerebrospinal fluid infusion into the subdural space) increase the probability of rapid spontaneous resolution. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Bone surface enhancement in ultrasound images using a new Doppler-based acquisition/processing method.

    PubMed

    Yang, Xu; Tang, Songyuan; Tasciotti, Ennio; Righetti, Raffaella

    2018-01-17

    Ultrasound (US) imaging has long been considered as a potential aid in orthopedic surgeries. US technologies are safe, portable and do not use radiations. This would make them a desirable tool for real-time assessment of fractures and to monitor fracture healing. However, image quality of US imaging methods in bone applications is limited by speckle, attenuation, shadow, multiple reflections and other imaging artifacts. While bone surfaces typically appear in US images as somewhat 'brighter' than soft tissue, they are often not easily distinguishable from the surrounding tissue. Therefore, US imaging methods aimed at segmenting bone surfaces need enhancement in image contrast prior to segmentation to improve the quality of the detected bone surface. In this paper, we present a novel acquisition/processing technique for bone surface enhancement in US images. Inspired by elastography and Doppler imaging methods, this technique takes advantage of the difference between the mechanical and acoustic properties of bones and those of soft tissues to make the bone surface more easily distinguishable in US images. The objective of this technique is to facilitate US-based bone segmentation methods and improve the accuracy of their outcomes. The newly proposed technique is tested both in in vitro and in vivo experiments. The results of these preliminary experiments suggest that the use of the proposed technique has the potential to significantly enhance the detectability of bone surfaces in noisy ultrasound images.

  5. Bone surface enhancement in ultrasound images using a new Doppler-based acquisition/processing method

    NASA Astrophysics Data System (ADS)

    Yang, Xu; Tang, Songyuan; Tasciotti, Ennio; Righetti, Raffaella

    2018-01-01

    Ultrasound (US) imaging has long been considered as a potential aid in orthopedic surgeries. US technologies are safe, portable and do not use radiations. This would make them a desirable tool for real-time assessment of fractures and to monitor fracture healing. However, image quality of US imaging methods in bone applications is limited by speckle, attenuation, shadow, multiple reflections and other imaging artifacts. While bone surfaces typically appear in US images as somewhat ‘brighter’ than soft tissue, they are often not easily distinguishable from the surrounding tissue. Therefore, US imaging methods aimed at segmenting bone surfaces need enhancement in image contrast prior to segmentation to improve the quality of the detected bone surface. In this paper, we present a novel acquisition/processing technique for bone surface enhancement in US images. Inspired by elastography and Doppler imaging methods, this technique takes advantage of the difference between the mechanical and acoustic properties of bones and those of soft tissues to make the bone surface more easily distinguishable in US images. The objective of this technique is to facilitate US-based bone segmentation methods and improve the accuracy of their outcomes. The newly proposed technique is tested both in in vitro and in vivo experiments. The results of these preliminary experiments suggest that the use of the proposed technique has the potential to significantly enhance the detectability of bone surfaces in noisy ultrasound images.

  6. Diagnosing aneurysmal and unicameral bone cysts with magnetic resonance imaging.

    PubMed

    Sullivan, R J; Meyer, J S; Dormans, J P; Davidson, R S

    1999-09-01

    The differential between aneurysmal bone cysts and unicameral bone cysts usually is clear clinically and radiographically. Occasionally there are cases in which the diagnosis is not clear. Because natural history and treatment are different, the ability to distinguish between these two entities before surgery is important. The authors reviewed, in a blinded fashion, the preoperative magnetic resonance images to investigate criteria that could be used to differentiate between the two lesions. All patients had operative or pathologic confirmation of an aneurysmal bone cyst or unicameral bone cyst. The authors analyzed the preoperative magnetic resonance images of 14 patients with diagnostically difficult bone cysts (eight children with unicameral bone cysts and six children with aneurysmal bone cysts) and correlated these findings with diagnosis after biopsy or cyst aspiration and contrast injection. The presence of a double density fluid level within the lesion strongly indicated that the lesion was an aneurysmal bone cyst, rather than a unicameral bone cyst. Other criteria that suggested the lesion was an aneurysmal bone cyst were the presence of septations within the lesion and signal characteristics of low intensity on T1 images and high intensity on T2 images. The authors identified a way of helping to differentiate between aneurysmal bone cysts and unicameral bone cysts on magnetic resonance images. Double density fluid level, septation, and low signal on T1 images and high signal on T2 images strongly suggest the bone cyst in question is an aneurysmal bone cyst, rather than a unicameral bone cyst. This may be helpful before surgery for the child who has a cystic lesion for which radiographic features do not allow a clear differentiation of unicameral bone cyst from aneurysmal bone cyst.

  7. Quantitative analysis of rib movement based on dynamic chest bone images: preliminary results

    NASA Astrophysics Data System (ADS)

    Tanaka, R.; Sanada, S.; Oda, M.; Mitsutaka, M.; Suzuki, K.; Sakuta, K.; Kawashima, H.

    2014-03-01

    Rib movement during respiration is one of the diagnostic criteria in pulmonary impairments. In general, the rib movement is assessed in fluoroscopy. However, the shadows of lung vessels and bronchi overlapping ribs prevent accurate quantitative analysis of rib movement. Recently, an image-processing technique for separating bones from soft tissue in static chest radiographs, called "bone suppression technique", has been developed. Our purpose in this study was to evaluate the usefulness of dynamic bone images created by the bone suppression technique in quantitative analysis of rib movement. Dynamic chest radiographs of 10 patients were obtained using a dynamic flat-panel detector (FPD). Bone suppression technique based on a massive-training artificial neural network (MTANN) was applied to the dynamic chest images to create bone images. Velocity vectors were measured in local areas on the dynamic bone images, which formed a map. The velocity maps obtained with bone and original images for scoliosis and normal cases were compared to assess the advantages of bone images. With dynamic bone images, we were able to quantify and distinguish movements of ribs from those of other lung structures accurately. Limited rib movements of scoliosis patients appeared as reduced rib velocity vectors. Vector maps in all normal cases exhibited left-right symmetric distributions, whereas those in abnormal cases showed nonuniform distributions. In conclusion, dynamic bone images were useful for accurate quantitative analysis of rib movements: Limited rib movements were indicated as a reduction of rib movement and left-right asymmetric distribution on vector maps. Thus, dynamic bone images can be a new diagnostic tool for quantitative analysis of rib movements without additional radiation dose.

  8. Diagnostic role of (99)Tc(m)-MDP SPECT/CT combined SPECT/MRI Multi modality imaging for early and atypical bone metastases.

    PubMed

    Chen, Xiao-Liang; Li, Qian; Cao, Lin; Jiang, Shi-Xi

    2014-01-01

    The bone metastasis appeared early before the bone imaging for most of the above patients. (99)Tc(m)-MDP ((99)Tc(m) marked methylene diphosphonate) bone imaging could diagnosis the bone metastasis with highly sensitivity, but with lower specificity. The aim of this study is to explore the diagnostic value of (99)Tc(m)-MDP SPECT/CT combined SPECT/MRI Multi modality imaging for the early period atypical bone metastases. 15 to 30 mCi (99)Tc(m)-MDP was intravenously injected to the 34 malignant patients diagnosed as doubtful early bone metastases. SPECT, CT and SPECT/CT images were captured and analyzed consequently. For the patients diagnosed as early period atypical bone metastases by SPECT/CT, combining the SPECT/CT and MRI together as the SPECT/MRI integrated image. The obtained SPECT/MRI image was analyzed and compared with the pathogenic results of patients. The results indicated that 34 early period doubtful metastatic focus, including 34 SPECT positive focus, 17 focus without special changes by using CT method, 11 bone metastases focus by using SPECT/CT method, 23 doubtful bone metastases focus, 8 doubtful bone metastases focus, 14 doubtful bone metastases focus and 2 focus without clear image. Totally, SPECT/CT combined with SPECT/MRI method diagnosed 30 bone metastatic focus and 4 doubtfully metastatic focus. In conclusion, (99)Tc(m)-MDP SPECT/CT combined SPECT/MRI Multi modality imaging shows a higher diagnostic value for the early period bone metastases, which also enhances the diagnostic accuracy rate.

  9. Improved accuracy of markerless motion tracking on bone suppression images: preliminary study for image-guided radiation therapy (IGRT)

    NASA Astrophysics Data System (ADS)

    Tanaka, Rie; Sanada, Shigeru; Sakuta, Keita; Kawashima, Hiroki

    2015-05-01

    The bone suppression technique based on advanced image processing can suppress the conspicuity of bones on chest radiographs, creating soft tissue images obtained by the dual-energy subtraction technique. This study was performed to evaluate the usefulness of bone suppression image processing in image-guided radiation therapy. We demonstrated the improved accuracy of markerless motion tracking on bone suppression images. Chest fluoroscopic images of nine patients with lung nodules during respiration were obtained using a flat-panel detector system (120 kV, 0.1 mAs/pulse, 5 fps). Commercial bone suppression image processing software was applied to the fluoroscopic images to create corresponding bone suppression images. Regions of interest were manually located on lung nodules and automatic target tracking was conducted based on the template matching technique. To evaluate the accuracy of target tracking, the maximum tracking error in the resulting images was compared with that of conventional fluoroscopic images. The tracking errors were decreased by half in eight of nine cases. The average maximum tracking errors in bone suppression and conventional fluoroscopic images were 1.3   ±   1.0 and 3.3   ±   3.3 mm, respectively. The bone suppression technique was especially effective in the lower lung area where pulmonary vessels, bronchi, and ribs showed complex movements. The bone suppression technique improved tracking accuracy without special equipment and implantation of fiducial markers, and with only additional small dose to the patient. Bone suppression fluoroscopy is a potential measure for respiratory displacement of the target. This paper was presented at RSNA 2013 and was carried out at Kanazawa University, JAPAN.

  10. Maintaining Restored Bone with Bisphoshonate in the Ovariectomized Rat Skeleton: Dynamic Histomorphometry of Changes in Bone Mass

    NASA Technical Reports Server (NTRS)

    Jee, W. S. S.; Tang, L.; Ke, H. Z.; Setterberg, R. B.; Kimmel, D. B.

    1993-01-01

    This experiment contains the crucial data for the Lose, Restore and Maintain (LRM) concept, a practical approach for reversing existing osteoporosis. The LRM concept uses ovariectomy (ox) to lose bone, an anabolic agent to restore bone mass and then switches to an anti-resorptive agent to maintain bone mass. We ox'd or sham-ox'd rats for 150 days (Loss Phase), treated them with 6 mg PGE2/kg/d for 75 days to restore lost cancellous bone mass (Restore Phase) and then stopped PGE2 treatment and began treatment with 1 or 5 micro-g/kg Risedronate, a bisphosphonate twice a week for 60 days (Maintain Phase). During the Loss Phase, cancellous bone volumes of the proximal tibial metaphysis (PTM) in the ox'd rat fell to 19% of initial controls. During the Restore Phase, the PTM bone volume in ox'd rats doubled. However, when PGE2 treatment was stopped, the PGE2-induced cancellous bone disappeared. In contrast, 5 micro-g of Risedronate inhibited the bone loss and maintained it at the PGE2 treatment level. The key dynamic histomorphometry value for the restore (R) and maintenance (M) phases was the ratio of bone formation to resorption rates. The ratio was elevated to 5.8 in the R phase and depressed to 0.4 for no and 1 micro-g Risedronate treated M phase and to a ratio of near unity of 1.1 for the 5 micro-g Risedronate treatment. These findings indicate that we were successful in maintaining the new PTM bone induced by PGE2 after discontinuing PGE2 by administering enough Risedronate, a resorption inhibitor. We concluded that the LRM concept is correct and such an approach should be considered when employing anabolic agents or growth factors in the treatment of osteoporosis. Continued use of an anabolic agent may not be appropriate because of cost, potential adverse side effects and a loss of efficacy.

  11. Maintaining Restored Bone with Bisphosphonate in the Ovariectomized Rat Skeleton: Dynamic Histomorphometry of Changes in Bone Mass

    NASA Technical Reports Server (NTRS)

    Jee, W. S. S.; Tang, L.; Ke, H. Z.; Setterberg, R. B.; Kimmel, D. B.

    1993-01-01

    This experiment contains the crucial data for the Lose, Restore and Maintain (LRM) concept, a practical approach for reversing existing osteoporosis. The LRM concept uses ovariectomy (ox) to lose bone, an anabolic agent to restore bone mass and then switches to an antiresorptive agent to maintain bone mass. We ox'd or sham-ox'd rats for 150 days (Loss Phase), treated them with 6 mg PGE(sub 2)kg/d for 75 days to restore lost cancellous bone mass (Restore Phase) and then stopped PGE(sub 2) treatment and began treatment with 1 or 5 micrograms/kg Risedronate, a bisphosphonate twice a week for 60 days (Maintain Phase). During the Loss Phase, cancellous bone volumes of the Proximal Tibial Metaphysis (PTM) in the ox'd rat fell to 19% of initial controls. During the Restore Phase, the PTM bone volume in ox'd rats doubled. However, when PGE(sub 2) treatment was stopped, the PGE(sub 2)-induced cancellous bone disappeared. In contrast, 5 miligrams of Risedronate inhibited the bone loss and maintained it at the PGE(sub 2) treatment level. The key dynamic histomorphometry value for the Restore (R) and Maintenance (M) phases was the ratio of bone formation to resorption rates. The ratio was elevated to 5.8 in the R phase and depressed to 0.4 for no and 1 miligram Risedronate treated M phase and to a ratio of near unity of 1.1 for the 5miligrams Risedronate treatment. These findings indicate that we were successful in maintaining the new PTM bone induced by PGE(sub 2) after discontinuing PGE(sub 2) by administering enough Risedronate, a resorption inhibitor. We concluded that the LRM concept is correct and such an approach should be considered when employing anabolic agents or growth factors in the treatment of osteoporosis. Continued use of an anabolic agent may not be appropriate because of cost, potential adverse side effects and a loss of efficacy.

  12. SPECT imaging in evaluating extent of malignant external otitis: case report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    English, R.J.; Tu'Meh, S.S.; Piwnica-Worms, D.

    1987-03-01

    Otitis externa, a benign inflammatory process of the external auditory canal, is general responsive to local therapy. Some patients however, develop a less controllable disease leading to chondritis and osteomyelitis of the base of the skull. The direct invasive characteristic of the disease has led to the descriptive term malignant external otitis (MEO), more appropriately called necrotizing or invasive external otitis. Malignant external otitis is caused by an aggressive pseudomonas or proteus infection that almost exclusively occurs in elderly diabetic patients. The primary imaging modalities previously used in the diagnosis and evaluation of MEO were standard planar scintigraphic techniques withmore » technetium-99M (/sup 99m/Tc) bone agents and gallium-67 (/sup 67/Ga), and pluridirectional tomography. The advent of high resolution computed tomography (CT) effectively allowed demonstration of the soft tissue extension and bone destruction associated with MEO, but still suffered from the low sensitivity constraints of all radiographic techniques in determining early inflammatory bone involvement. Recent work suggests that scintigraphic detection of MEO with /sup 99m/Tc-MDP and /sup 67/Ga, combined with the cross-sectional resolution of single photon emission computed tomography (SPECT) may be of value in planning treatment of this inflammatory condition.« less

  13. Bone Biopsy

    MedlinePlus

    ... News Physician Resources Professions Site Index A-Z Bone Biopsy Bone biopsy uses a needle and imaging ... the limitations of Bone Biopsy? What is a Bone Biopsy? A bone biopsy is an image-guided ...

  14. MO-FG-204-06: A New Algorithm for Gold Nano-Particle Concentration Identification in Dual Energy CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, L; Shen, C; Ng, M

    Purpose: Gold nano-particle (GNP) has recently attracted a lot of attentions due to its potential as an imaging contrast agent and radiotherapy sensitiser. Imaging the GNP at its low contraction is a challenging problem. We propose a new algorithm to improve the identification of GNP based on dual energy CT (DECT). Methods: We consider three base materials: water, bone, and gold. Determining three density images from two images in DECT is an under-determined problem. We propose to solve this problem by exploring image domain sparsity via an optimization approach. The objective function contains four terms. A data-fidelity term ensures themore » fidelity between the identified material densities and the DECT images, while the other three terms enforces the sparsity in the gradient domain of the three images corresponding to the density of the base materials by using total variation (TV) regularization. A primal-dual algorithm is applied to solve the proposed optimization problem. We have performed simulation studies to test this model. Results: Our digital phantom in the tests contains water, bone regions and gold inserts of different sizes and densities. The gold inserts contain mixed material consisting of water with 1g/cm3 and gold at a certain density. At a low gold density of 0.0008 g/cm3, the insert is hardly visible in DECT images, especially for those with small sizes. Our algorithm is able to decompose the DECT into three density images. Those gold inserts at a low density can be clearly visualized in the density image. Conclusion: We have developed a new algorithm to decompose DECT images into three different material density images, in particular, to retrieve density of gold. Numerical studies showed promising results.« less

  15. Comparison of bone and gallium-67 imaging in heroin users' arthritis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bittini, A.; Dominguez, P.L.; Martinez Pueyo, M.L.

    1985-12-01

    Nine cases of primary septic arthritis in heroin addicts are reported. Fibrous and cartilaginous joint localizations are prominent (four sternoarticular, three sacroiliac, one sacroccocygeal, and one knee). In all patients but one, conventional roentgenographic studies were negative. In six cases the causative agent was Staphylococcus aureus and in two cases, Candida albicans. In one case, it could not be determined. Our clinical observations, correlating the radioisotopic studies, suggest that in the first week of evolution the diagnostic procedure of choice is the (67Ga)citrate scintigram. Indeed, during this period the (99Tc)MDP bone scan is usually negative. The early demonstration and localizationmore » of the disease, together with the rapid bacteriologic diagnosis, allows for an early and more appropriate antibiotic treatment and better results.« less

  16. Comparison of two interpolation methods for empirical mode decomposition based evaluation of radiographic femur bone images.

    PubMed

    Udhayakumar, Ganesan; Sujatha, Chinnaswamy Manoharan; Ramakrishnan, Swaminathan

    2013-01-01

    Analysis of bone strength in radiographic images is an important component of estimation of bone quality in diseases such as osteoporosis. Conventional radiographic femur bone images are used to analyze its architecture using bi-dimensional empirical mode decomposition method. Surface interpolation of local maxima and minima points of an image is a crucial part of bi-dimensional empirical mode decomposition method and the choice of appropriate interpolation depends on specific structure of the problem. In this work, two interpolation methods of bi-dimensional empirical mode decomposition are analyzed to characterize the trabecular femur bone architecture of radiographic images. The trabecular bone regions of normal and osteoporotic femur bone images (N = 40) recorded under standard condition are used for this study. The compressive and tensile strength regions of the images are delineated using pre-processing procedures. The delineated images are decomposed into their corresponding intrinsic mode functions using interpolation methods such as Radial basis function multiquadratic and hierarchical b-spline techniques. Results show that bi-dimensional empirical mode decomposition analyses using both interpolations are able to represent architectural variations of femur bone radiographic images. As the strength of the bone depends on architectural variation in addition to bone mass, this study seems to be clinically useful.

  17. Effect of low-intensity whole-body vibration on bone defect repair and associated vascularization in mice.

    PubMed

    Matsumoto, Takeshi; Goto, Daichi

    2017-12-01

    Low-intensity whole-body vibration (LIWBV) may stimulate bone healing, but the involvement of vascular ingrowth, which is essential for bone regeneration, has not been well examined. We thus investigated the LIWBV effect on vascularization during early-stage bone healing. Mice aged 13 weeks were subjected to cortical drilling on tibial bone. Two days after surgery (day 0), mice were exposed daily to sine-wave LIWBV at 30 Hz and 0.1 g peak-to-peak acceleration for 20 min/day (Vib) or were sham-treated (sham). Following vascular casting with a zirconium-based contrast agent on days 6, 9, or 12 and sacrifice, vascular and bone images were obtained by K-edge subtraction micro-CT using synchrotron lights. Bone regeneration advanced more in the Vib group from days 9 to 12. The vascular volume fraction decreased from days 6 to 9 in both groups; however, from days 9 to 12, it was increased in shams, while it stabilized in the Vib group. The vascular volume fraction tended to be or was smaller in the Vib group on days 6 and 12. The vessel number density was higher on day 9 but lower on day 12 in the Vib group. These results suggest that the LIWBV-promoted bone repair is associated with the modulation of vascularization, but additional studies are needed to determine the causality of this association.

  18. Scanning electron microscopy of bone.

    PubMed

    Boyde, Alan

    2012-01-01

    This chapter described methods for Scanning Electron Microscopical imaging of bone and bone cells. Backscattered electron (BSE) imaging is by far the most useful in the bone field, followed by secondary electrons (SE) and the energy dispersive X-ray (EDX) analytical modes. This chapter considers preparing and imaging samples of unembedded bone having 3D detail in a 3D surface, topography-free, polished or micromilled, resin-embedded block surfaces, and resin casts of space in bone matrix. The chapter considers methods for fixation, drying, looking at undersides of bone cells, and coating. Maceration with alkaline bacterial pronase, hypochlorite, hydrogen peroxide, and sodium or potassium hydroxide to remove cells and unmineralised matrix is described in detail. Attention is given especially to methods for 3D BSE SEM imaging of bone samples and recommendations for the types of resin embedding of bone for BSE imaging are given. Correlated confocal and SEM imaging of PMMA-embedded bone requires the use of glycerol to coverslip. Cathodoluminescence (CL) mode SEM imaging is an alternative for visualising fluorescent mineralising front labels such as calcein and tetracyclines. Making spatial casts from PMMA or other resin embedded samples is an important use of this material. Correlation with other imaging means, including microradiography and microtomography is important. Shipping wet bone samples between labs is best done in glycerol. Environmental SEM (ESEM, controlled vacuum mode) is valuable in eliminating -"charging" problems which are common with complex, cancellous bone samples.

  19. Serial nonenhancing magnetic resonance imaging scans of high grade glioblastoma multiforme.

    PubMed Central

    Moore-Stovall, J.; Venkatesh, R.

    1993-01-01

    Magnetic resonance imaging (MRI) from clinical experience has proven to be superior to all other diagnostic imaging modalities, including computed tomography (CT) in the detection of intracranial neoplasms. Although glioblastoma multiforme presents a challenge for all diagnostic imaging modalities including MRI, MRI is paramount to CT in detecting subtle abnormal water accumulation in brain tissue caused by tumor even before there is disruption of the blood brain barrier. Currently, clinical research and investigational trials on nonionic gadolinium contrast agents have proven that nonionic gadolinium HP-DO3A (ProHance) contrast agents have lower osmolality and greater stability, which make them superior compounds to gadolinium diethylenetriamine-pentacetic acid (Gd-DTPA). Therefore, the nonionic gadolinium contrasts have been safely administered more rapidly, in higher or multiple doses for contrast enhanced MRI without adverse side effects or changes in serum iron or total bilirubin, and the intensity of the area of enhancement and number of lesions detected were superior to that of Gd-DTPA (Magnevist) at the standard dose (0.1 mmol/Kg). Perhaps if the nonionic gadolinium contrast agent, ProHance, had been approved by the Food and Drug Administration (FDA) when this MRI was performed in 1990 it would have aided in providing contrast enhancement and visualization of the tumor lesion to assist in patient diagnosis and management. Magnetic resonance imaging also provides unique multiplanar capabilities that allow for optimal visualization of the temporal and occipital lobes of the brain without bone interference.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9A Figure 9B Figure 10 Figure 11 Figure 12 Figure 13 PMID:8382751

  20. Use of trimetasphere metallofullerene MRI contrast agent for the non-invasive longitudinal tracking of stem cells in the lung

    PubMed Central

    Murphy, Sean V.; Hale, Austin; Reid, Tanya; Olson, John; Kidiyoor, Amritha; Tan, Josh; Zhou, Zhiguo; Jackson, John; Atala, Anthony

    2016-01-01

    Magnetic Resonance Imaging (MRI) is a commonly used, non-invasive imaging technique that provides visualization of soft tissues with high spatial resolution. In both a research and clinical setting, the major challenge has been identifying a non-invasive and safe method for longitudinal tracking of delivered cells in vivo. The labeling and tracking of contrast agent labeled cells using MRI has the potential to fulfill this need. Contrast agents are often used to enhance the image contrast between the tissue of interest and surrounding tissues with MRI. The most commonly used MRI contrast agents contain Gd(III) ions. However, Gd(III) ions are highly toxic in their ionic form, as they tend to accumulate in the liver, spleen, kidney and bones and block calcium channels. Endohedral metallofullerenes such as trimetallic nitride endohedral metallofullerenes (Trimetasphere®) are one unique class of fullerene molecules where a Gd3N cluster is encapsulated inside a C80 carbon cage referred to as Gd3N@C80. These endohedral metallofullerenes have several advantages over small chelated Gd(III) complexes such as increased stability of the Gd(III) ion, minimal toxic effects, high solubility in water and high proton relativity. In this study, we describe the evaluation of gadolinium-based Trimetasphere® positive contrast agent for the in vitro labeling and in vivo tracking of human amniotic fluid-derived stem cells within lung tissue. In addition, we conducted a ‘proof-of-concept’ experiment demonstrating that this methodology can be used to track the homing of stem cells to injured lung tissue and provide longitudinal analysis of cell localization over an extended time course. PMID:26546729

  1. Use of trimetasphere metallofullerene MRI contrast agent for the non-invasive longitudinal tracking of stem cells in the lung.

    PubMed

    Murphy, Sean V; Hale, Austin; Reid, Tanya; Olson, John; Kidiyoor, Amritha; Tan, Josh; Zhou, Zhiguo; Jackson, John; Atala, Anthony

    2016-04-15

    Magnetic Resonance Imaging (MRI) is a commonly used, non-invasive imaging technique that provides visualization of soft tissues with high spatial resolution. In both a research and clinical setting, the major challenge has been identifying a non-invasive and safe method for longitudinal tracking of delivered cells in vivo. The labeling and tracking of contrast agent labeled cells using MRI has the potential to fulfill this need. Contrast agents are often used to enhance the image contrast between the tissue of interest and surrounding tissues with MRI. The most commonly used MRI contrast agents contain Gd(III) ions. However, Gd(III) ions are highly toxic in their ionic form, as they tend to accumulate in the liver, spleen, kidney and bones and block calcium channels. Endohedral metallofullerenes such as trimetallic nitride endohedral metallofullerenes (Trimetasphere®) are one unique class of fullerene molecules where a Gd3N cluster is encapsulated inside a C80 carbon cage referred to as Gd3N@C80. These endohedral metallofullerenes have several advantages over small chelated Gd(III) complexes such as increased stability of the Gd(III) ion, minimal toxic effects, high solubility in water and high proton relativity. In this study, we describe the evaluation of gadolinium-based Trimetasphere® positive contrast agent for the ​in vitro labeling and in vivo tracking of human amniotic fluid-derived stem cells within lung tissue. In addition, we conducted a 'proof-of-concept' experiment demonstrating that this methodology can be used to track the homing of stem cells to injured lung tissue and provide longitudinal analysis of cell localization over an extended time course. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Identifying Potential Therapeutics for Osteoporosis by Exploiting the Relationship between Mevalonate Pathway and Bone Metabolism.

    PubMed

    Wan Hasan, Wan Nuraini; Chin, Kok-Yong; Jolly, James Jam; Abd Ghafar, Norzana; Soelaiman, Ima Nirwana

    2018-04-23

    Osteoporosis is a silent skeletal disease characterized by low bone mass and destruction of skeletal microarchitecture, leading to an increased fracture risk. This occurs due to an imbalance in bone remodelling, whereby the rate of bone resorption is greater than bone formation. Mevalonate pathway, previously known to involve in cholesterol synthesis, is an important regulatory pathway for bone remodelling. This review aimed to provide an overview of the relationship between mevalonate pathway and bone metabolism, as well as agents which act through this pathway to achieve their therapeutic potential. Mevalonate pathway produces farnesyl pyrophosphate and geranylgeranyl pyrophosphate essential in protein prenylation. An increase in protein prenylation favours bone resorption over bone formation. Non-nitrogen containing bisphosphonates inhibit farnesyl diphosphate synthase which produces farnesyl pyrophosphate. They are used as the first line therapy for osteoporosis. Statins, a well-known class of cholesterol-lowering agents, inhibit 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase, the rate-determining enzyme in the mevalonate pathway. It was shown to increase bone mineral density and prevent fracture in humans. Tocotrienol is a group of vitamin E commonly found in palm oil, rice bran and annatto bean. It causes degradation of HMG-CoA reductase. Many studies demonstrated that tocotrienol prevented bone loss in animal studies but its efficacy has not been tested in humans. mevalonate pathway can be exploited to develop effective antiosteoporosis agents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Design and development of novel hyaluronate-modified nanoparticles for combo-delivery of curcumin and alendronate: Fabrication, characterization, and cellular and molecular evidence of enhanced bone regeneration.

    PubMed

    Dong, Jinlei; Thu, Hnin Ei; Abourehab, Mohammed A S; Hussain, Zahid

    2018-05-18

    Osteoporosis is a medical condition of fragile bones with an increased susceptibility to bone fracture. Despite having availability of a wide range of pharmacological agents, prevalence of this metabolic disorder is continuously escalating. Owing to excellent biomedical achievements of nanomedicines in the last few decades, we aimed combo delivery of bone anti-resorptive agent, alendronate (ALN), and bone density enhancing drug, curcumin (CUR), in the form of polymeric nanoparticles. To further optimize the therapeutic efficacy, the prepared ALN/CUR nanoparticles were decorated with hyaluronic acid which is a well-documented biomacromolecule having exceptional bone regenerating potential. The optimized nanoformulation was evaluated for bone regeneration efficacy by assessing the time-mannered modulation in the proliferation, differentiation, and mineralization of MC3T3-E1 cells, a pre-osteoblast model. Moreover, the time-mannered expressions of various bone-forming protein biomarkers including bone morphogenetic protein, runt related transcription factor 2, and osteocalcin were assessed in the cell lysates. Results revealed that HA-ALN/CUR NPs provoke remarkable increase in proliferation, differentiation, and mineralization in the ECM of MC3T3-E1 cells which ultimately leads to enhanced bone formation. This new strategy employing simultaneous delivery of anti-resorptive and bone forming agents would open new horizons for the scientists as an efficient alternative pharmacotherapy for the management of osteoporosis. Copyright © 2017. Published by Elsevier B.V.

  4. A comparison of rat SPECT images obtained using (99m)Tc derived from 99Mo produced by an electron accelerator with that from a reactor.

    PubMed

    Galea, R; Wells, R G; Ross, C K; Lockwood, J; Moore, K; Harvey, J T; Isensee, G H

    2013-05-07

    Recent shortages of molybdenum-99 ((99)Mo) have led to an examination of alternate production methods that could contribute to a more robust supply. An electron accelerator and the photoneutron reaction were used to produce (99)Mo from which technetium-99m ((99m)Tc) is extracted. SPECT images of rat anatomy obtained using the accelerator-produced (99m)Tc with those obtained using (99m)Tc from a commercial generator were compared. Disks of (100)Mo were irradiated with x-rays produced by a 35 MeV electron beam to generate about 1110 MBq (30 mCi) of (99)Mo per disk. After target dissolution, a NorthStar ARSII unit was used to separate the (99m)Tc, which was subsequently used to tag pharmaceuticals suitable for cardiac and bone imaging. SPECT images were acquired for three rats and compared to images for the same three rats obtained using (99m)Tc from a standard reactor (99)Mo generator. The efficiency of (99)Mo-(99m)Tc separation was typically greater than 90%. This study demonstrated the delivery of (99m)Tc from the end of beam to the end user of approximately 30 h. Images obtained using the heart and bone scanning agents using reactor and linac-produced (99m)Tc were comparable. High-power electron accelerators are an attractive option for producing (99)Mo on a national scale.

  5. Application of nonlinear phenomena induced by focused ultrasound to bone imaging.

    PubMed

    Callé, Samuel; Remenieras, Jean-Pierre; Bou Matar, Olivier; Defontaine, Marielle; Patat, Frederic

    2003-03-01

    A tissue deformability image is obtained with the vibroacoustography imaging method using mechanical low-frequency (LF) excitation. This ultrasonic excitation is created locally by means of a focused annular array emitting two primary beams at two close frequencies, f(1) and f(2) (f(2) = f(1) + f(LF)). The LF acoustic emission resulting from the vibration of the medium is detected by a sensitive hydrophone and then used to form the image. This noninvasive imaging method was demonstrated in this study to be suitable for bone imaging, with x and y transverse resolutions less than 300 micro m. Two bone sites susceptible to demineralization were tested: the calcaneus and the neck of the femur. The vibroacoustic method provides valuable ultrasonic images regarding the structure and the elastic properties of bone tissue. Correlation was made between vibroacoustic bone images, performed in vitro, and images acquired by other imaging methods (i.e., bone ultrasound attenuation and x-ray computerized tomography (CT)). Moreover, the amplitudes of vibroacoustic signals radiating from phosphocalcic ceramic samples (bone substitute) of different porosity were evaluated. The good correlation between these results and the description of our images and the quality of vibroacoustic images indicate that bone decalcification could be detected using vibroacoustography.

  6. Characterization of controlled bone defects using 2D and 3D ultrasound imaging techniques.

    PubMed

    Parmar, Biren J; Longsine, Whitney; Sabonghy, Eric P; Han, Arum; Tasciotti, Ennio; Weiner, Bradley K; Ferrari, Mauro; Righetti, Raffaella

    2010-08-21

    Ultrasound is emerging as an attractive alternative modality to standard x-ray and CT methods for bone assessment applications. As of today, however, there is a lack of systematic studies that investigate the performance of diagnostic ultrasound techniques in bone imaging applications. This study aims at understanding the performance limitations of new ultrasound techniques for imaging bones in controlled experiments in vitro. Experiments are performed on samples of mammalian and non-mammalian bones with controlled defects with size ranging from 400 microm to 5 mm. Ultrasound findings are statistically compared with those obtained from the same samples using standard x-ray imaging modalities and optical microscopy. The results of this study demonstrate that it is feasible to use diagnostic ultrasound imaging techniques to assess sub-millimeter bone defects in real time and with high accuracy and precision. These results also demonstrate that ultrasound imaging techniques perform comparably better than x-ray imaging and optical imaging methods, in the assessment of a wide range of controlled defects both in mammalian and non-mammalian bones. In the future, ultrasound imaging techniques might provide a cost-effective, real-time, safe and portable diagnostic tool for bone imaging applications.

  7. Harnessing and Modulating Inflammation in Strategies for Bone Regeneration

    PubMed Central

    Mountziaris, Paschalia M.; Spicer, Patrick P.; Kasper, F. Kurtis

    2011-01-01

    Inflammation is an immediate response that plays a critical role in healing after fracture or injury to bone. However, in certain clinical contexts, such as in inflammatory diseases or in response to the implantation of a biomedical device, the inflammatory response may become chronic and result in destructive catabolic effects on the bone tissue. Since our previous review 3 years ago, which identified inflammatory signals critical for bone regeneration and described the inhibitory effects of anti-inflammatory agents on bone healing, a multitude of studies have been published exploring various aspects of this emerging field. In this review, we distinguish between regenerative and damaging inflammatory processes in bone, update our discussion of the effects of anti-inflammatory agents on bone healing, summarize recent in vitro and in vivo studies demonstrating how inflammation can be modulated to stimulate bone regeneration, and identify key future directions in the field. PMID:21615330

  8. Y-90-DOTA-hLL2: An Agent for Radioimmunotherapy of Non-Hodgkin's Lymphoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffiths, Gary L.; Govindan, Serengulam V.; Sharkey, Robert M.

    2003-01-01

    The goal of this work was to determine an optimal radioimmunotherapy agent for non-Hodgkin's lymphoma. We established the stability profile of yttrium-90-labeled humanized LL2 (hLL2) monoclonal antibody prepared with different chelating agents, and from these data estimated the improvement using the most stable yttrium-90 chelate-hLL2 complex. Methods: The complementary-determining region- (cdr)-grafted (humanized) anti-CD22 mAb, hLL2 (epratuzumab), was conjugated to derivatives of DTPA and 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid (DOTA). The conjugates were labeled with Y-90 and tested against a 10,000-fold molar excess of free DTPA and against human serum. The conjugates were also labeled with Y-88 and compared for biodistribution in normal andmore » lymphoma xenograft-bearing athymic mice. In vivo data were analyzed for uptake of yttrium in bone and washed bone when either the DOTA or the Mx-DTPA chelates were used, and dosimetry calculations were made for each. Results: Y-90-DOTA -mAb were stable to either DTPA or serum challenge. DTPA complexes of hLL2 lost 3-4% of Y-90 (days 1-4) and 10-15% thereafter. In vivo, stability differences showed lower Y-90 uptake in bone using DOTA. Absorbed doses per 37 MBq (1 mCi) Y-90-mAb were 3555 and 5405 cGy for bone, and 2664 and 4524 cGy for washed-bone for 90Y-DOTA-hLL2 and 90Y-MxDTPA-hLL2, respectively, amounting to 52% and 69.8% increases in absorbed radiation doses for bone and washed-bone when switching from a DOTA to a Mx-DTPA chelate. Conclusion: Y-90-hLL2 prepared with the DOTA chelate represents a preferred agent for RAIT of non-Hodgkin's lymphoma, with an in vivo model demonstrating a large reduction in bone-deposited yttrium, as compared to yttrium-90-hLL2 agents prepared with open-chain DTPA-type chelating agents. Dosimetry suggests that this will result in a substantial toxicological advantage for a DOTA-based hLL2 conjugate.« less

  9. Radionuclide bone imaging: an illustrative review.

    PubMed

    Love, Charito; Din, Anabella S; Tomas, Maria B; Kalapparambath, Tomy P; Palestro, Christopher J

    2003-01-01

    Bone scintigraphy with technetium-99m-labeled diphosphonates is one of the most frequently performed of all radionuclide procedures. Radionuclide bone imaging is not specific, but its excellent sensitivity makes it useful in screening for many pathologic conditions. Moreover, some conditions that are not clearly depicted on anatomic images can be diagnosed with bone scintigraphy. Bone metastases usually appear as multiple foci of increased activity, although they occasionally manifest as areas of decreased uptake. Traumatic processes can often be detected, even when radiographic findings are negative. Most fractures are scintigraphically detectable within 24 hours, although in elderly patients with osteopenia, further imaging at a later time is sometimes indicated. Athletic individuals are prone to musculoskeletal trauma, and radionuclide bone imaging is useful for identifying pathologic conditions such as plantar fasciitis, stress fractures, "shin splints," and spondylolysis, for which radiographs may be nondiagnostic. A combination of focal hyperperfusion, focal hyperemia, and focally increased bone uptake is virtually diagnostic for osteomyelitis in patients with nonviolated bone. Bone scintigraphy is also useful for evaluating disease extent in Paget disease and for localizing avascular necrosis in patients with negative radiographs. Radionuclide bone imaging will likely remain a popular and important imaging modality for years to come. Copyright RSNA, 2003

  10. Therapeutic Strategies for Bone Metastases and Their Clinical Sequelae in Prostate Cancer

    PubMed Central

    Autio, Karen A.; Scher, Howard I.

    2013-01-01

    Opinion statement Skeletal metastases threaten quality of life, functionality, and longevity in patients with metastatic castration-resistant prostate cancer (mCRPC). Therapeutic strategies for bone metastases in prostate cancer can palliate pain, delay/prevent skeletal complications, and prolong survival. Pharmacologic agents representing several drug classes have demonstrated the ability to achieve these treatment goals in men with mCRPC. Skeletal-related events such as fracture and the need for radiation can be delayed using drugs that target the osteoclast/osteoblast pathway. Cancer-related bone pain can be palliated using beta-emitting bone-seeking radiopharmaceuticals such as samarium-153 EDTMP and strontium-89. Also, prospective randomized studies have demonstrated that cytotoxic chemotherapy can palliate bone pain. For the first time, bone-directed therapy has been shown to prolong survival using the novel alpha-emitting radiopharmaceutical radium-223. Given these multifold clinical benefits, treatments targeting bone metabolism, tumor-bone stromal interactions, and bone metastases themselves are now central elements of routine clinical care. Decisions about which agents, alone or in combination, will best serve the patient’s and clinician’s clinical goals is contingent on the treatment history to date, present disease manifestations, and symptomatology. Clinical trials exploring novel agents such as those targeting c-Met and Src are under way, using endpoints that directly address how patients feel, function, and survive. PMID:22528368

  11. Understanding bone responses in B-mode ultrasound images and automatic bone surface extraction using a Bayesian probabilistic framework

    NASA Astrophysics Data System (ADS)

    Jain, Ameet K.; Taylor, Russell H.

    2004-04-01

    The registration of preoperative CT to intra-operative reality systems is a crucial step in Computer Assisted Orthopedic Surgery (CAOS). The intra-operative sensors include 3D digitizers, fiducials, X-rays and Ultrasound (US). Although US has many advantages over others, tracked US for Orthopedic Surgery has been researched by only a few authors. An important factor limiting the accuracy of tracked US to CT registration (1-3mm) has been the difficulty in determining the exact location of the bone surfaces in the US images (the response could range from 2-4mm). Thus it is crucial to localize the bone surface accurately from these images. Moreover conventional US imaging systems are known to have certain inherent inaccuracies, mainly due to the fact that the imaging model is assumed planar. This creates the need to develop a bone segmentation framework that can couple information from various post-processed spatially separated US images (of the bone) to enhance the localization of the bone surface. In this paper we discuss the various reasons that cause inherent uncertainties in the bone surface localization (in B-mode US images) and suggest methods to account for these. We also develop a method for automatic bone surface detection. To do so, we account objectively for the high-level understanding of the various bone surface features visible in typical US images. A combination of these features would finally decide the surface position. We use a Bayesian probabilistic framework, which strikes a fair balance between high level understanding from features in an image and the low level number crunching of standard image processing techniques. It also provides us with a mathematical approach that facilitates combining multiple images to augment the bone surface estimate.

  12. A hyperboliod representation of the bone-marrow interface within 3D NMR images of trabecular bone: applications to skeletal dosimetry

    NASA Astrophysics Data System (ADS)

    Rajon, D. A.; Shah, A. P.; Watchman, C. J.; Brindle, J. M.; Bolch, W. E.

    2003-06-01

    Recent advances in physical models of skeletal dosimetry utilize high-resolution NMR microscopy images of trabecular bone. These images are coupled to radiation transport codes to assess energy deposition within active bone marrow irradiated by bone- or marrow-incorporated radionuclides. Recent studies have demonstrated that the rectangular shape of image voxels is responsible for cross-region (bone-to-marrow) absorbed fraction errors of up to 50% for very low-energy electrons (<50 keV). In this study, a new hyperboloid adaptation of the marching cube (MC) image-visualization algorithm is implemented within 3D digital images of trabecular bone to better define the bone-marrow interface, and thus reduce voxel effects in the assessment of cross-region absorbed fractions. To test the method, a mathematical sample of trabecular bone was constructed, composed of a random distribution of spherical marrow cavities, and subsequently coupled to the EGSnrc radiation code to generate reference values for the energy deposition in marrow or bone. Next, digital images of the bone model were constructed over a range of simulated image resolutions, and coupled to EGSnrc using the hyperboloid MC (HMC) algorithm. For the radionuclides 33P, 117mSn, 131I and 153Sm, values of S(marrow←bone) estimated using voxel models of trabecular bone were shown to have relative errors of 10%, 9%, <1% and <1% at a voxel size of 150 µm. At a voxel size of 60 µm, these errors were 6%, 5%, <1% and <1%, respectively. When the HMC model was applied during particle transport, the relative errors on S(marrow←bone) for these same radionuclides were reduced to 7%, 6%, <1% and <1% at a voxel size of 150 µm, and to 2%, 2%, <1% and <1% at a voxel size of 60 µm. The technique was also applied to a real NMR image of human trabecular bone with a similar demonstration of reductions in dosimetry errors.

  13. The bone marrow niche, stem cells, and leukemia: impact of drugs, chemicals, and the environment.

    PubMed

    Snyder, Robert

    2014-03-01

    Detection, treatment, and prevention of bone marrow diseases have long been the aims of experimental and clinical hematologists and mechanistically oriented toxicologists. Among these diseases is aplastic anemia, which manifests as the cessation of normal blood cell production; the leukemias, in contrast, feature the production of excessive hematologic cancer cells. Both diseases are associated with exposure to either industrial chemicals or cancer chemotherapeutic agents. Studies of hematopoietic bone marrow cells in culture have shown that the generation of circulating blood cells requires the interaction of hematopoietic stem cells (HSCs) with supporting marrow stromal cells; yet, isolation of HSCs from bone destroys the unique morphology of the marrow stroma in which the HSCs reside. Imaging techniques and related studies have made it possible to examine specific niches where HSCs may either initiate differentiation toward mature blood cells or reside in a dormant state awaiting a signal to begin differentiation. HSCs and related cells may be highly vulnerable to the mutagenic or toxic effects of drugs or other chemicals early in these processes. Additional studies are required to determine the mechanisms by which drug or chemical exposure may affect these cells and lead to either depression of bone marrow function or to leukemia. © 2014 New York Academy of Sciences.

  14. Biologic therapies and bone loss in rheumatoid arthritis.

    PubMed

    Zerbini, C A F; Clark, P; Mendez-Sanchez, L; Pereira, R M R; Messina, O D; Uña, C R; Adachi, J D; Lems, W F; Cooper, C; Lane, N E

    2017-02-01

    Rheumatoid arthritis (RA) is a common systemic autoimmune disease of unknown cause, characterized by a chronic, symmetric, and progressive inflammatory polyarthritis. One of the most deleterious effects induced by the chronic inflammation of RA is bone loss. During the last 15 years, the better knowledge of the cytokine network involved in RA allowed the development of potent inhibitors of the inflammatory process classified as biological DMARDs. These new drugs are very effective in the inhibition of inflammation, but there are only few studies regarding their role in bone protection. The principal aim of this review was to show the evidence of the principal biologic therapies and bone loss in RA, focusing on their effects on bone mineral density, bone turnover markers, and fragility fractures. Using the PICOST methodology, two coauthors (PC, LM-S) conducted the search using the following MESH terms: rheumatoid arthritis, osteoporosis, clinical trials, TNF- antagonists, infliximab, adalimumab, etanercept, certolizumab, golimumab, IL-6 antagonists, IL-1 antagonists, abatacept, tocilizumab, rituximab, bone mineral density, bone markers, and fractures. The search was conducted electronically and manually from the following databases: Medline and Science Direct. The search period included articles from 2003 to 2015. The selection included only original adult human research written in English. Titles were retrieved and the same two authors independently selected the relevant studies for a full text. The retrieved selected studies were also reviewed completing the search for relevant articles. The first search included 904 titles from which 253 titles were selected. The agreement on the selection among researchers resulted in a Kappa statistic of 0.95 (p < 0.000). Only 248 abstracts evaluated were included in the acronym PICOST. The final selection included only 28 studies, derived from the systematic search. Additionally, a manual search in the bibliography of the selected articles was made and included into the text and into the section of "small molecules of new agents." Treatment with biologic drugs is associated with the decrease in bone loss. Studies with anti-TNF blocking agents show preservation or increase in spine and hip BMD and also a better profile of bone markers. Most of these studies were performed with infliximab. Only three epidemiological studies analyzed the effect on fractures after anti-TNF blocking agent's treatment. IL-6 blocking agents also showed improvement in localized bone loss not seen with anti-TNF agents. There are a few studies with rituximab and abatacept. Although several studies reported favorable actions of biologic therapies on bone protection, there are still unmet needs for studies regarding their actions on the risk of bone fractures.

  15. Hyperspectral Raman imaging of bone growth and regrowth chemistry

    NASA Astrophysics Data System (ADS)

    Pezzuti, Jerilyn A.; Morris, Michael D.; Bonadio, Jeffrey F.; Goldstein, Steven A.

    1998-06-01

    Hyperspectral Raman microscopic imaging of carbonated hydroxyapatite (HAP) is used to follow the chemistry of bone growth and regrowth. Deep red excitation is employed to minimize protein fluorescence interference. A passive line generator based on Powell lens optics and a motorized translation stage provide the imaging capabilities. Raman image contrast is generated from several lines of the HAP Raman spectrum, primarily the PO4-3. Factor analysis is used to minimize the integration time needed for acceptable contrast and to explore the chemical species within the bone. Bone age is visualized as variations in image intensity. High definition, high resolution images of newly formed bone and mature bone are compared qualitatively. The technique is currently under evaluation for study of experimental therapies for fracture repair.

  16. Techniques for deriving tissue structure from multiple projection dual-energy x-ray absorptiometry

    NASA Technical Reports Server (NTRS)

    Feldmesser, Howard S. (Inventor); Charles, Jr., Harry K. (Inventor); Beck, Thomas J. (Inventor); Magee, Thomas C. (Inventor)

    2004-01-01

    Techniques for deriving bone properties from images generated by a dual-energy x-ray absorptiometry apparatus include receiving first image data having pixels indicating bone mineral density projected at a first angle of a plurality of projection angles. Second image data and third image data are also received. The second image data indicates bone mineral density projected at a different second angle. The third image data indicates bone mineral density projected at a third angle. The third angle is different from the first angle and the second angle. Principal moments of inertia for a bone in the subject are computed based on the first image data, the second image data and the third image data. The techniques allow high-precision, high-resolution dual-energy x-ray attenuation images to be used for computing principal moments of inertia and strength moduli of individual bones, plus risk of injury and changes in risk of injury to a patient.

  17. Early-term and mid-term histologic events during single-level posterolateral intertransverse process fusion with rhBMP-2/collagen carrier and a ceramic bulking agent in a nonhuman primate model: implications for bone graft preparation.

    PubMed

    Khan, Safdar N; Toth, Jeffrey M; Gupta, Kavita; Glassman, Steven D; Gupta, Munish C

    2014-06-01

    We used a nonhuman primate lumbar intertransverse process arthrodesis model to evaluate biological cascade of bone formation using different carrier preparation methods with a single dose of recombinant human bone morphogenetic protein-2 (rhBMP-2) at early time points. To examine early-term/mid-term descriptive histologic and computerized tomographic events in single-level uninstrumented posterolateral nonhuman primate spinal fusions using rhBMP-2/absorbable collagen sponge (ACS) combined with ceramic bulking agents in 3 different configurations. rhBMP-2 on an ACS carrier alone leads to consistent posterolateral lumbar spine fusions in lower-order animals; however, these results have been difficult to replicate in nonhuman primates. Twelve skeletally mature, rhesus macaque monkeys underwent single-level posterolateral arthrodesis at L4-L5. A hydroxyapatite/β-tricalcium phosphate ceramic bulking agent in 3 formulations was used in the treatment groups (n=3). When used, rhBMP-2/ACS at 1.5 mg/cm (3.0 mg rhBMP-2) was combined with 2.5 cm of ceramic bulking agent per side. Animals were euthanized at 4 and 12 weeks postoperative. Computerized tomography scans were performed immediately postoperatively and every 4 weeks until they were euthanized. Sagittal histologic sections were evaluated for bone histogenesis and location, cellular infiltration of the graft/substitute, and bone remodeling activity. Significant histologic differences in the developing fusion appeared between the 3 rhBMP-2/ACS treatment groups at 4 and 12 weeks. At 4 weeks, bone formation appeared to originate at the transverse process and the intertransverse membrane. Cellular infiltration was greatest in granular ceramic groups compared with matrix ceramic group. Minimal to no residual ACS was identified at the early time point. At 12 weeks, marked ceramic remodeling was observed with continued bone formation noted in all carrier groups. At the early time period, histology showed that bone formation appeared to originate at the transverse processes and the intertransverse membrane, indicating that the dorsal muscle bed may not be the only location for bone formation. Histology also showed that the collagen carrier for rhBMP-2 is mostly resorbed by 4 weeks. Our results and previous literature indicate that ceramic bulking agents are needed to provide resistance to compression caused by paraspinal muscles on the fusion bed in the posterolateral environment. Histology showed that ceramic bulking agents may offer long-term scaffolding and a structure to supporting bone formation of the developing fusion mass.

  18. An experimental study on the application of radionuclide imaging in repair of the bone defect

    PubMed Central

    Zhu, Weimin; Wang, Daping; Zhang, Xiaojun; Lu, Wei; Liu, Jianquan; Peng, Liangquan; Li, Hao; Han, Yun; Zeng, Yanjun

    2011-01-01

    The aim of our study was to validate the effect of radionuclide imaging in early monitoring of the bone’s reconstruction, the animal model of bone defect was made on the rabbits repaired with HA artificial bone. The ability of bone defect repair was evaluated by using radionuclide bone imaging at 2, 4, 8 and 12 weeks postoperatively. The results indicate that the experimental group stimulated more bone formation than that of the control group. The differences of the bone reconstruction ability were statistically significant (p<0.05). The nano-HA artificial has good bone conduction, and it can be used for the treatment of bone defects. Radionuclide imaging may be an effective and first choice method for the early monitoring of the bone’s reconstruction. PMID:21875418

  19. Minimizing Interpolation Bias and Precision Error in In Vivo μCT-based Measurements of Bone Structure and Dynamics

    PubMed Central

    de Bakker, Chantal M. J.; Altman, Allison R.; Li, Connie; Tribble, Mary Beth; Lott, Carina; Tseng, Wei-Ju; Liu, X. Sherry

    2016-01-01

    In vivo μCT imaging allows for high-resolution, longitudinal evaluation of bone properties. Based on this technology, several recent studies have developed in vivo dynamic bone histomorphometry techniques that utilize registered μCT images to identify regions of bone formation and resorption, allowing for longitudinal assessment of bone remodeling. However, this analysis requires a direct voxel-by-voxel subtraction between image pairs, necessitating rotation of the images into the same coordinate system, which introduces interpolation errors. We developed a novel image transformation scheme, matched-angle transformation (MAT), whereby the interpolation errors are minimized by equally rotating both the follow-up and baseline images instead of the standard of rotating one image while the other remains fixed. This new method greatly reduced interpolation biases caused by the standard transformation. Additionally, our study evaluated the reproducibility and precision of bone remodeling measurements made via in vivo dynamic bone histomorphometry. Although bone remodeling measurements showed moderate baseline noise, precision was adequate to measure physiologically relevant changes in bone remodeling, and measurements had relatively good reproducibility, with intra-class correlation coefficients of 0.75-0.95. This indicates that, when used in conjunction with MAT, in vivo dynamic histomorphometry provides a reliable assessment of bone remodeling. PMID:26786342

  20. Minimizing Interpolation Bias and Precision Error in In Vivo µCT-Based Measurements of Bone Structure and Dynamics.

    PubMed

    de Bakker, Chantal M J; Altman, Allison R; Li, Connie; Tribble, Mary Beth; Lott, Carina; Tseng, Wei-Ju; Liu, X Sherry

    2016-08-01

    In vivo µCT imaging allows for high-resolution, longitudinal evaluation of bone properties. Based on this technology, several recent studies have developed in vivo dynamic bone histomorphometry techniques that utilize registered µCT images to identify regions of bone formation and resorption, allowing for longitudinal assessment of bone remodeling. However, this analysis requires a direct voxel-by-voxel subtraction between image pairs, necessitating rotation of the images into the same coordinate system, which introduces interpolation errors. We developed a novel image transformation scheme, matched-angle transformation (MAT), whereby the interpolation errors are minimized by equally rotating both the follow-up and baseline images instead of the standard of rotating one image while the other remains fixed. This new method greatly reduced interpolation biases caused by the standard transformation. Additionally, our study evaluated the reproducibility and precision of bone remodeling measurements made via in vivo dynamic bone histomorphometry. Although bone remodeling measurements showed moderate baseline noise, precision was adequate to measure physiologically relevant changes in bone remodeling, and measurements had relatively good reproducibility, with intra-class correlation coefficients of 0.75-0.95. This indicates that, when used in conjunction with MAT, in vivo dynamic histomorphometry provides a reliable assessment of bone remodeling.

  1. In vivo response to starch-based scaffolds designed for bone tissue engineering applications.

    PubMed

    Salgado, A J; Coutinho, O P; Reis, R L; Davies, J E

    2007-03-15

    Our purpose was to evaluate the in vivo endosseous response to three starch-based scaffolds implanted in rats (n = 54). We implanted the three scaffold groups; a 50/50 (wt %) blend of corn starch and ethylene-vinyl alcohol (SEVA-C), the same composition coated with a biomimetic calcium phosphate (Ca-P) layer (SEVA-C/CaP), and a 50/50 (wt %) blend of corn starch and cellulose acetate (SCA), all produced by extrusion with blowing agents, into distal femurs proximal to the epiphyseal plate, for 1, 3, or 6 weeks. Our results showed that at 1 week considerable reparative bone formed around all scaffold groups, although the bone was separated from the scaffold by an intervening soft tissue interfacial zone that comprised two distinct compartments: the surface of the scaffold was occupied by multinucleate giant cells and the compartment between these cells and the surrounding bone was occupied by a streaming fibrous-like tissue. The extracellular matrix of the latter was continuous with the extracellular bone matrix itself, labeled positively for osteocalcin and appeared mineralized by back-scattered electron imaging. All three scaffolds showed a similar tissue response, with the soft tissue interface diminishing with time. No bone contact was observed with SEVA-C at any time point, only transitory bone contact was observed with SEVA-C/CaP at 3 weeks, but SCA exhibited direct bone contact at 6 weeks where 56.23 +/- 6.46% of the scaffold surface was occupied by bone. We conclude that all materials exhibited a favorable bony response and that the rapidly forming initial "connective tissue" seen around all scaffolds was a very early form of bone formation.

  2. Human stem cell osteoblastogenesis mediated by novel glycogen synthase kinase 3 inhibitors induces bone formation and a unique bone turnover biomarker profile in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilmour, Peter S., E-mail: Peter.Gilmour@astrazeneca.com; O'Shea, Patrick J.; Fagura, Malbinder

    Wnt activation by inhibiting glycogen synthase kinase 3 (GSK-3) causes bone anabolism in rodents making GSK-3 a potential therapeutic target for osteoporotic and osteolytic metastatic bone disease. To understand the wnt pathway related to human disease translation, the ability of 3 potent inhibitors of GSK-3 (AZD2858, AR79, AZ13282107) to 1) drive osteoblast differentiation and mineralisation using human adipose-derived stem cells (hADSC) in vitro; and 2) stimulate rat bone formation in vivo was investigated. Bone anabolism/resorption was determined using clinically relevant serum biomarkers as indicators of bone turnover and bone formation assessed in femurs by histopathology and pQCT/μCT imaging. GSK-3 inhibitorsmore » caused β-catenin stabilisation in human and rat mesenchymal stem cells, stimulated hADSC commitment towards osteoblasts and osteogenic mineralisation in vitro. AZD2858 produced time-dependent changes in serum bone turnover biomarkers and increased bone mass over 28 days exposure in rats. After 7 days, AZD2858, AR79 or AZ13282107 exposure increased the bone formation biomarker P1NP, and reduced the resorption biomarker TRAcP-5b, indicating increased bone anabolism and reduced resorption in rats. This biomarker profile was differentiated from anabolic agent PTH{sub 1–34} or the anti-resorptive Alendronate-induced changes. Increased bone formation in cortical and cancellous bone as assessed by femur histopathology supported biomarker changes. 14 day AR79 treatment increased bone mineral density and trabecular thickness, and decreased trabecular number and connectivity assessed by pQCT/μCT. GSK-3 inhibition caused hADSC osteoblastogenesis and mineralisation in vitro. Increased femur bone mass associated with changes in bone turnover biomarkers confirmed in vivo bone formation and indicated uncoupling of bone formation and resorption. - Highlights: • Wnt modulation with 3 novel GSK-3 inhibitors alters bone growth. • Human stem cell osteoblastogenesis and mineralisation produced by GSK-3 inhibition. • In rats, 3 GSK-3 inhibitors produced a unique serum bone turnover biomarker profile. • Enhanced bone formation was seen within 7 to 14 days of compound treatment in rats.« less

  3. Removal of bone in CT angiography by multiscale matched mask bone elimination.

    PubMed

    Gratama van Andel, H A F; Venema, H W; Streekstra, G J; van Straten, M; Majoie, C B L M; den Heeten, G J; Grimbergen, C A

    2007-10-01

    For clear visualization of vessels in CT angiography (CTA) images of the head and neck using maximum intensity projection (MIP) or volume rendering (VR) bone has to be removed. In the past we presented a fully automatic method to mask the bone [matched mask bone elimination (MMBE)] for this purpose. A drawback is that vessels adjacent to bone may be partly masked as well. We propose a modification, multiscale MMBE, which reduces this problem by using images at two scales: a higher resolution than usual for image processing and a lower resolution to which the processed images are transformed for use in the diagnostic process. A higher in-plane resolution is obtained by the use of a sharper reconstruction kernel. The out-of-plane resolution is improved by deconvolution or by scanning with narrower collimation. The quality of the mask that is used to remove bone is improved by using images at both scales. After masking, the desired resolution for the normal clinical use of the images is obtained by blurring with Gaussian kernels of appropriate widths. Both methods (multiscale and original) were compared in a phantom study and with clinical CTA data sets. With the multiscale approach the width of the strip of soft tissue adjacent to the bone that is masked can be reduced from 1.0 to 0.2 mm without reducing the quality of the bone removal. The clinical examples show that vessels adjacent to bone are less affected and therefore better visible. Images processed with multiscale MMBE have a slightly higher noise level or slightly reduced resolution compared with images processed by the original method and the reconstruction and processing time is also somewhat increased. Nevertheless, multiscale MMBE offers a way to remove bone automatically from CT angiography images without affecting the integrity of the blood vessels. The overall image quality of MIP or VR images is substantially improved relative to images processed with the original MMBE method.

  4. Micro-computed tomography imaging and analysis in developmental biology and toxicology.

    PubMed

    Wise, L David; Winkelmann, Christopher T; Dogdas, Belma; Bagchi, Ansuman

    2013-06-01

    Micro-computed tomography (micro-CT) is a high resolution imaging technique that has expanded and strengthened in use since it was last reviewed in this journal in 2004. The technology has expanded to include more detailed analysis of bone, as well as soft tissues, by use of various contrast agents. It is increasingly applied to questions in developmental biology and developmental toxicology. Relatively high-throughput protocols now provide a powerful and efficient means to evaluate embryos and fetuses subjected to genetic manipulations or chemical exposures. This review provides an overview of the technology, including scanning, reconstruction, visualization, segmentation, and analysis of micro-CT generated images. This is followed by a review of more recent applications of the technology in some common laboratory species that highlight the diverse issues that can be addressed. Copyright © 2013 Wiley Periodicals, Inc.

  5. Mediators of Inflammation-Induced Bone Damage in Arthritis and Their Control by Herbal Products

    PubMed Central

    Nanjundaiah, Siddaraju M.; Astry, Brian; Moudgil, Kamal D.

    2013-01-01

    Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation of the synovial joints leading to bone and cartilage damage. Untreated inflammatory arthritis can result in severe deformities and disability. The use of anti-inflammatory agents and biologics has been the mainstay of treatment of RA. However, the prolonged use of such agents may lead to severe adverse reactions. In addition, many of these drugs are quite expensive. These limitations have necessitated the search for newer therapeutic agents for RA. Natural plant products offer a promising resource for potential antiarthritic agents. We describe here the cellular and soluble mediators of inflammation-induced bone damage (osteoimmunology) in arthritis. We also elaborate upon various herbal products that possess antiarthritic activity, particularly mentioning the specific target molecules. As the use of natural product supplements by RA patients is increasing, this paper presents timely and useful information about the mechanism of action of promising herbal products that can inhibit the progression of inflammation and bone damage in the course of arthritis. PMID:23476694

  6. Issues in modern bone histomorphometry☆

    PubMed Central

    Recker, R.R.; Kimmel, D.B.; Dempster, D.; Weinstein, R.S.; Wronski, T.J.; Burr, D.B.

    2012-01-01

    This review reports on proceedings of a bone histomorphometry session conducted at the Fortieth International IBMS Sun Valley Skeletal Tissue Biology Workshop held on August 1, 2010. The session was prompted by recent technical problems encountered in conducting histomorphometry on bone biopsies from humans and animals treated with anti-remodeling agents such as bisphosphonates and RANKL antibodies. These agents reduce remodeling substantially, and thus cause problems in calculating bone remodeling dynamics using in vivo fluorochrome labeling. The tissue specimens often contain few or no fluorochrome labels, and thus create statistical and other problems in analyzing variables such as mineral apposition rates, mineralizing surface and bone formation rates. The conference attendees discussed these problems and their resolutions, and the proceedings reported here summarize their discussions and recommendations. PMID:21810491

  7. T1-201 chloride scintigraphy for bone tumors and soft part sarcomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terui, S.; Oyamada, H.; Nishikawa, K.

    1984-01-01

    The author investigated T1-201 chloride as a tumor scanning agent of both tumors and soft part sarcomas. Six bone tumors (2 with Ewing sarcoma, 3 with osteosarcoma and 1 with giant cell tumor) and 3 soft part sarcoma (1 with liposarcoma and 2 with malignant fibrous histiocytoma (MFH)) were examined. All but one MFH were untreated primary cases. The diagnosis was determined from biopsy specimen. One patient with Ewing sarcoma had bone metastases. All cases were subsequently received chemotherpeutic agents. Surgery or local irradiation were also used in treatment. T1-201 scintigraphy were performed with intravenous administration of 2 mCi ofmore » T1-201 chloride before initiation of therapy. In addition, follow-up examinations were done in 4 patients (2 with Ewing sarcoma and 2 with osteosarcoma) to study the effect of chemotherapy on T1-201 uptake by the tumor. Tc-99m bone scans were available for comparison in 6 tumor. Ga-67 citrate scans were also examined for the 3 soft part sarcomas. The untreated tumors even in the metastatic lesions of Ewing sarcoma were distinctly visualized with T1-201 in all cases. The distribution of T1-201 in the tumors was sometimes different from that of Tc-99m and similar to that of Ga-67. Of 3 out of the 4 follow-up patients, the post-therapy scan showed reduction in T1-201 uptake more markedly than Tc-99m uptake during effective chemotherapy. The other one patient had not responded to the treatment so that the scan showed no changes in T1-201 uptake. These findings indicate that the tumor imaging with T1-201 is useful in the diagnosis of these malignant tumors and may be of value in assessing the response of bone tumors to chemotherapy.« less

  8. A Set of Image Processing Algorithms for Computer-Aided Diagnosis in Nuclear Medicine Whole Body Bone Scan Images

    NASA Astrophysics Data System (ADS)

    Huang, Jia-Yann; Kao, Pan-Fu; Chen, Yung-Sheng

    2007-06-01

    Adjustment of brightness and contrast in nuclear medicine whole body bone scan images may confuse nuclear medicine physicians when identifying small bone lesions as well as making the identification of subtle bone lesion changes in sequential studies difficult. In this study, we developed a computer-aided diagnosis system, based on the fuzzy sets histogram thresholding method and anatomical knowledge-based image segmentation method that was able to analyze and quantify raw image data and identify the possible location of a lesion. To locate anatomical reference points, the fuzzy sets histogram thresholding method was adopted as a first processing stage to suppress the soft tissue in the bone images. Anatomical knowledge-based image segmentation method was then applied to segment the skeletal frame into different regions of homogeneous bones. For the different segmented bone regions, the lesion thresholds were set at different cut-offs. To obtain lesion thresholds in different segmented regions, the ranges and standard deviations of the image's gray-level distribution were obtained from 100 normal patients' whole body bone images and then, another 62 patients' images were used for testing. The two groups of images were independent. The sensitivity and the mean number of false lesions detected were used as performance indices to evaluate the proposed system. The overall sensitivity of the system is 92.1% (222 of 241) and 7.58 false detections per patient scan image. With a high sensitivity and an acceptable false lesions detection rate, this computer-aided automatic lesion detection system is demonstrated as useful and will probably in the future be able to help nuclear medicine physicians to identify possible bone lesions.

  9. Utility of unenhanced fat-suppressed T1-weighted MRI in children with sickle cell disease -- can it differentiate bone infarcts from acute osteomyelitis?

    PubMed

    Delgado, Jorge; Bedoya, Maria A; Green, Abby M; Jaramillo, Diego; Ho-Fung, Victor

    2015-12-01

    Children with sickle cell disease (SCD) are at risk of bone infarcts and acute osteomyelitis. The clinical differentiation between a bone infarct and acute osteomyelitis is a diagnostic challenge. Unenhanced T1-W fat-saturated MR images have been proposed as a potential tool to differentiate bone infarcts from osteomyelitis. To evaluate the reliability of unenhanced T1-W fat-saturated MRI for differentiation between bone infarcts and acute osteomyelitis in children with SCD. We retrospectively reviewed the records of 31 children (20 boys, 11 girls; mean age 10.6 years, range 1.1-17.9 years) with SCD and acute bone pain who underwent MR imaging including unenhanced T1-W fat-saturated images from 2005 to 2010. Complete clinical charts were reviewed by a pediatric hematologist with training in infectious diseases to determine a clinical standard to define the presence or absence of osteomyelitis. A pediatric radiologist reviewed all MR imaging and was blinded to clinical information. Based on the signal intensity in T1-W fat-saturated images, the children were further classified as positive for osteomyelitis (low bone marrow signal intensity) or positive for bone infarct (high bone marrow signal intensity). Based on the clinical standard, 5 children were classified as positive for osteomyelitis and 26 children as positive for bone infarct (negative for osteomyelitis). The bone marrow signal intensity on T1-W fat-saturated imaging was not significant for the differentiation between bone infarct and osteomyelitis (P = 0.56). None of the additional evaluated imaging parameters on unenhanced MRI proved reliable in differentiating these diagnoses. The bone marrow signal intensity on unenhanced T1-W fat-saturated MR images is not a reliable criterion to differentiate bone infarcts from osteomyelitis in children.

  10. Cold lesions on bone imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sy, W.M.; Westring, D.W.; Weinberger, G.

    1975-11-01

    Photon-deficient foci or cold lesions were demonstrated on /sup 99m/Tc- polyphosphate bone imaging in eight individuals with various malignancies and one in sickle cell crisis. The bone radiographs of five of these persons failed to show corresponding bony changes at the time of the imaging. Most of the cold lesions observed on bone imaging were located in the denser and tubular bones. A postulate has been advanced regarding the factors that might influence the different gamma-imaging manifestations of radiographically demonstrable lytic lesions. The cases presented herein further emphasize the importance of recognizing the existence of cold areas in the imagesmore » of bones and the need to place these in proper perspective when interpreting scans. (auth)« less

  11. Optical Fourier diffractometry applied to degraded bone structure recognition

    NASA Astrophysics Data System (ADS)

    Galas, Jacek; Godwod, Krzysztof; Szawdyn, Jacek; Sawicki, Andrzej

    1993-09-01

    Image processing and recognition methods are useful in many fields. This paper presents the hybrid optical and digital method applied to recognition of pathological changes in bones involved by metabolic bone diseases. The trabecular bone structure, registered by x ray on the photographic film, is analyzed in the new type of computer controlled diffractometer. The set of image parameters, extracted from diffractogram, is evaluated by statistical analysis. The synthetic image descriptors in discriminant space, constructed on the base of 3 training groups of images (control, osteoporosis, and osteomalacia groups) by discriminant analysis, allow us to recognize bone samples with degraded bone structure and to recognize the disease. About 89% of the images were classified correctly. This method after optimization process will be verified in medical investigations.

  12. Effect of bone chip orientation on quantitative estimates of changes in bone mass using digital subtraction radiography.

    PubMed

    Mol, André; Dunn, Stanley M

    2003-06-01

    To assess the effect of the orientation of arbitrarily shaped bone chips on the correlation between radiographic estimates of bone loss and true mineral loss using digital subtraction radiography. Twenty arbitrarily shaped bone chips (dry weight 1-10 mg) were placed individually on the superior lingual aspect of the interdental alveolar bone of a dry dentate hemi-mandible. After acquiring the first baseline image, each chip was rotated 90 degrees and a second radiograph was captured. Follow-up images were created without the bone chips and after rotating the mandible 0, 1, 2, 4, and 6 degrees around a vertical axis. Aluminum step tablet intensities were used to normalize image intensities for each image pair. Follow-up images were registered and geometrically standardized using projective standardization. Bone chips were dry ashed and analyzed for calcium content using atomic absorption. No significant difference was found between the radiographic estimates of bone loss from the different bone chip orientations (Wilcoxon: P > 0.05). The correlation between the two series of estimates for all rotations was 0.93 (Spearman: P < 0.05). Linear regression analysis indicated that both correlates did not differ appreciably ( and ). It is concluded that the spatial orientation of arbitrarily shaped bone chips does not have a significant impact on quantitative estimates of changes in bone mass in digital subtraction radiography. These results were obtained in the presence of irreversible projection errors of up to six degrees and after application of projective standardization for image reconstruction and image registration.

  13. Investigating the Abscopal Effects of Radioablation on Shielded Bone Marrow in Rodent Models Using Multimodality Imaging.

    PubMed

    Afshar, Solmaz F; Zawaski, Janice A; Inoue, Taeko; Rendon, David A; Zieske, Arthur W; Punia, Jyotinder N; Sabek, Omaima M; Gaber, M Waleed

    2017-07-01

    The abscopal effect is the response to radiation at sites that are distant from the irradiated site of an organism, and it is thought to play a role in bone marrow (BM) recovery by initiating responses in the unirradiated bone marrow. Understanding the mechanism of this effect has applications in treating BM failure (BMF) and BM transplantation (BMT), and improving survival of nuclear disaster victims. Here, we investigated the use of multimodality imaging as a translational tool to longitudinally assess bone marrow recovery. We used positron emission tomography/computed tomography (PET/CT), magnetic resonance imaging (MRI) and optical imaging to quantify bone marrow activity, vascular response and marrow repopulation in fully and partially irradiated rodent models. We further measured the effects of radiation on serum cytokine levels, hematopoietic cell counts and histology. PET/CT imaging revealed a radiation-induced increase in proliferation in the shielded bone marrow (SBM) compared to exposed bone marrow (EBM) and sham controls. T 2 -weighted MRI showed radiation-induced hemorrhaging in the EBM and unirradiated SBM. In the EBM and SBM groups, we found alterations in serum cytokine and hormone levels and in hematopoietic cell population proportions, and histological evidence of osteoblast activation at the bone marrow interface. Importantly, we generated a BMT mouse model using fluorescent-labeled bone marrow donor cells and performed fluorescent imaging to reveal the migration of bone marrow cells from shielded to radioablated sites. Our study validates the use of multimodality imaging to monitor bone marrow recovery and provides evidence for the abscopal response in promoting bone marrow recovery after irradiation.

  14. Graphite-reinforced bone cement

    NASA Technical Reports Server (NTRS)

    Knoell, A. C.

    1976-01-01

    Chopped graphite fibers added to surgical bone cement form bonding agent with mechanical properties closely matched to those of bone. Curing reaction produces less heat, resulting in reduced traumatization of body tissues. Stiffness is increased without affecting flexural strength.

  15. Personalized models of bones based on radiographic photogrammetry.

    PubMed

    Berthonnaud, E; Hilmi, R; Dimnet, J

    2009-07-01

    The radiographic photogrammetry is applied, for locating anatomical landmarks in space, from their two projected images. The goal of this paper is to define a personalized geometric model of bones, based uniquely on photogrammetric reconstructions. The personalized models of bones are obtained from two successive steps: their functional frameworks are first determined experimentally, then, the 3D bone representation results from modeling techniques. Each bone functional framework is issued from direct measurements upon two radiographic images. These images may be obtained using either perpendicular (spine and sacrum) or oblique incidences (pelvis and lower limb). Frameworks link together their functional axes and punctual landmarks. Each global bone volume is decomposed in several elementary components. Each volumic component is represented by simple geometric shapes. Volumic shapes are articulated to the patient's bone structure. The volumic personalization is obtained by best fitting the geometric model projections to their real images, using adjustable articulations. Examples are presented to illustrating the technique of personalization of bone volumes, directly issued from the treatment of only two radiographic images. The chosen techniques for treating data are then discussed. The 3D representation of bones completes, for clinical users, the information brought by radiographic images.

  16. In vivo ultrasound imaging of the bone cortex

    NASA Astrophysics Data System (ADS)

    Renaud, Guillaume; Kruizinga, Pieter; Cassereau, Didier; Laugier, Pascal

    2018-06-01

    Current clinical ultrasound scanners cannot be used to image the interior morphology of bones because these scanners fail to address the complicated physics involved for exact image reconstruction. Here, we show that if the physics is properly addressed, bone cortex can be imaged using a conventional transducer array and a programmable ultrasound scanner. We provide in vivo proof for this technique by scanning the radius and tibia of two healthy volunteers and comparing the thickness of the radius bone with high-resolution peripheral x-ray computed tomography. Our method assumes a medium that is composed of different homogeneous layers with unique elastic anisotropy and ultrasonic wave-speed values. The applicable values of these layers are found by optimizing image sharpness and intensity over a range of relevant values. In the algorithm of image reconstruction we take wave refraction between the layers into account using a ray-tracing technique. The estimated values of the ultrasonic wave-speed and anisotropy in cortical bone are in agreement with ex vivo studies reported in the literature. These parameters are of interest since they were proposed as biomarkers for cortical bone quality. In this paper we discuss the physics involved with ultrasound imaging of bone and provide an algorithm to successfully image the first segment of cortical bone.

  17. Bone scan

    MedlinePlus

    ... scan is an imaging test used to diagnose bone diseases and find out how severe they are. How ... a 3-phase bone scan. To evaluate metastatic bone disease, images are taken only after the 3- to ...

  18. Registration-based segmentation with articulated model from multipostural magnetic resonance images for hand bone motion animation.

    PubMed

    Chen, Hsin-Chen; Jou, I-Ming; Wang, Chien-Kuo; Su, Fong-Chin; Sun, Yung-Nien

    2010-06-01

    The quantitative measurements of hand bones, including volume, surface, orientation, and position are essential in investigating hand kinematics. Moreover, within the measurement stage, bone segmentation is the most important step due to its certain influences on measuring accuracy. Since hand bones are small and tubular in shape, magnetic resonance (MR) imaging is prone to artifacts such as nonuniform intensity and fuzzy boundaries. Thus, greater detail is required for improving segmentation accuracy. The authors then propose using a novel registration-based method on an articulated hand model to segment hand bones from multipostural MR images. The proposed method consists of the model construction and registration-based segmentation stages. Given a reference postural image, the first stage requires construction of a drivable reference model characterized by hand bone shapes, intensity patterns, and articulated joint mechanism. By applying the reference model to the second stage, the authors initially design a model-based registration pursuant to intensity distribution similarity, MR bone intensity properties, and constraints of model geometry to align the reference model to target bone regions of the given postural image. The authors then refine the resulting surface to improve the superimposition between the registered reference model and target bone boundaries. For each subject, given a reference postural image, the proposed method can automatically segment all hand bones from all other postural images. Compared to the ground truth from two experts, the resulting surface image had an average margin of error within 1 mm (mm) only. In addition, the proposed method showed good agreement on the overlap of bone segmentations by dice similarity coefficient and also demonstrated better segmentation results than conventional methods. The proposed registration-based segmentation method can successfully overcome drawbacks caused by inherent artifacts in MR images and obtain more accurate segmentation results automatically. Moreover, realistic hand motion animations can be generated based on the bone segmentation results. The proposed method is found helpful for understanding hand bone geometries in dynamic postures that can be used in simulating 3D hand motion through multipostural MR images.

  19. Microtomographic imaging in the process of bone modeling and simulation

    NASA Astrophysics Data System (ADS)

    Mueller, Ralph

    1999-09-01

    Micro-computed tomography ((mu) CT) is an emerging technique to nondestructively image and quantify trabecular bone in three dimensions. Where the early implementations of (mu) CT focused more on technical aspects of the systems and required equipment not normally available to the general public, a more recent development emphasized practical aspects of micro- tomographic imaging. That system is based on a compact fan- beam type of tomograph, also referred to as desktop (mu) CT. Desk-top (mu) CT has been used extensively for the investigation of osteoporosis related health problems gaining new insight into the organization of trabecular bone and the influence of osteoporotic bone loss on bone architecture and the competence of bone. Osteoporosis is a condition characterized by excessive bone loss and deterioration in bone architecture. The reduced quality of bone increases the risk of fracture. Current imaging technologies do not allow accurate in vivo measurements of bone structure over several decades or the investigation of the local remodeling stimuli at the tissue level. Therefore, computer simulations and new experimental modeling procedures are necessary for determining the long-term effects of age, menopause, and osteoporosis on bone. Microstructural bone models allow us to study not only the effects of osteoporosis on the skeleton but also to assess and monitor the effectiveness of new treatment regimens. The basis for such approaches are realistic models of bone and a sound understanding of the underlying biological and mechanical processes in bone physiology. In this article, strategies for new approaches to bone modeling and simulation in the study and treatment of osteoporosis and age-related bone loss are presented. The focus is on the bioengineering and imaging aspects of osteoporosis research. With the introduction of desk-top (mu) CT, a new generation of imaging instruments has entered the arena allowing easy and relatively inexpensive access to the three-dimensional microstructure of bone, thereby giving bone researchers a powerful tool for the exploration of age-related bone loss and osteoporosis.

  20. Combined multi-kernel head computed tomography images optimized for depicting both brain parenchyma and bone.

    PubMed

    Takagi, Satoshi; Nagase, Hiroyuki; Hayashi, Tatsuya; Kita, Tamotsu; Hayashi, Katsumi; Sanada, Shigeru; Koike, Masayuki

    2014-01-01

    The hybrid convolution kernel technique for computed tomography (CT) is known to enable the depiction of an image set using different window settings. Our purpose was to decrease the number of artifacts in the hybrid convolution kernel technique for head CT and to determine whether our improved combined multi-kernel head CT images enabled diagnosis as a substitute for both brain (low-pass kernel-reconstructed) and bone (high-pass kernel-reconstructed) images. Forty-four patients with nondisplaced skull fractures were included. Our improved multi-kernel images were generated so that pixels of >100 Hounsfield unit in both brain and bone images were composed of CT values of bone images and other pixels were composed of CT values of brain images. Three radiologists compared the improved multi-kernel images with bone images. The improved multi-kernel images and brain images were identically displayed on the brain window settings. All three radiologists agreed that the improved multi-kernel images on the bone window settings were sufficient for diagnosing skull fractures in all patients. This improved multi-kernel technique has a simple algorithm and is practical for clinical use. Thus, simplified head CT examinations and fewer images that need to be stored can be expected.

  1. Three-dimensional visualization and characterization of bone structure using reconstructed in-vitro μCT images: A pilot study for bone microarchitecture analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latief, Fourier Dzar Eljabbar, E-mail: fourier@fi.itb.ac.id; Dewi, Dyah Ekashanti Octorina; Shari, Mohd Aliff Bin Mohd

    Micro Computed Tomography (μCT) has been largely used to perform micrometer scale imaging of specimens, bone biopsies and small animals for the study of porous or cavity-containing objects. One of its favored applications is for assessing structural properties of bone. In this research, we perform a pilot study to visualize and characterize bone structure of a chicken bone thigh, as well as to delineate its cortical and trabecular bone regions. We utilize an In-Vitro μCT scanner Skyscan 1173 to acquire a three dimensional image data of a chicken bone thigh. The thigh was scanned using X-ray voltage of 45 kVmore » and current of 150 μA. The reconstructed images have spatial resolution of 142.50 μm/pixel. Using image processing and analysis e.i segmentation by thresholding the gray values (which represent the pseudo density) and binarizing the images, we were able to visualize each part of the bone, i.e., the cortical and trabecular regions. Total volume of the bone is 4663.63 mm{sup 3}, and the surface area of the bone is 7913.42 mm{sup 2}. The volume of the cortical is approximately 1988.62 mm{sup 3} which is nearly 42.64% of the total bone volume. This pilot study has confirmed that the μCT is capable of quantifying 3D bone structural properties and defining its regions separately. For further development, these results can be improved for understanding the pathophysiology of bone abnormality, testing the efficacy of pharmaceutical intervention, or estimating bone biomechanical properties.« less

  2. Polarization sensitive optical coherence tomography in equine bone

    NASA Astrophysics Data System (ADS)

    Jacobs, J. W.; Matcher, S. J.

    2009-02-01

    Optical coherence tomography (OCT) has been used to image equine bone samples. OCT and polarization sensitive OCT (PS-OCT) images of equine bone samples, before and after demineralization, are presented. Using a novel approach, taking a series of images at different angles of illumination, the polar angle and true birefringence of collagen within the tissue is determined, at one site in the sample. The images were taken before and after the bones were passed through a demineralization process. The images show an improvement in depth penetration after demineralization allowing better visualization of the internal structure of the bone and the optical orientation of the collagen. A quantitative measurement of true birefringence has been made of the bone; true birefringence was shown to be 1.9x10-3 before demineralization increasing to 2.7x10-3 after demineralization. However, determined collagen fiber orientation remains the same before and after demineralization. The study of bone is extensive within the field of tissue engineering where an understanding of the internal structures is essential. OCT in bone, and improved depth penetration through demineralization, offers a useful approach to bone analysis.

  3. Measurement accuracy and perceived quality of imaging systems for the evaluation of periodontal structures.

    PubMed

    Baksi, B Güniz

    2008-07-01

    The aim of this study was to compare the subjective diagnostic quality of F-speed film images and original and enhanced storage phosphor plate (SPP) digital images for the visualization of periodontal ligament space (PLS) and periapical (PB) and alveolar crestal bone (CB) and to assess the accuracy of these image modalities for the measurement of alveolar bone levels. Standardized images of six dried mandibles were obtained with film and Digora SPPs. Six evaluators rated the visibility of anatomical structures using a three-point scale. Alveolar bone levels were measured from the coronal-most tip of the marginal bone to a reference point. Results were compared by using Friedman and Wilcoxon signed-ranks tests. The kappa (kappa) statistic was used to measure agreement among observers. The measurements were compared using repeated measures analysis of variance and Bonferroni tests (P = 0.05). A paired t test was used for comparison with true bone levels (P = 0.05). Enhanced SPP images were rated superior, followed by film and then the original SPP images, for the evaluation of anatomical structures. The value of kappa rose from fair to substantial after the enhancement of the SPP images. Film and enhanced SPP images provided alveolar bone lengths close to the true bone lengths. Enhancement of digital images provided better visibility and resulted in comparable accuracy to film images for the evaluation of periodontal structures.

  4. [Comparation on Haversian system between human and animal bones by imaging analysis].

    PubMed

    Lu, Hui-Ling; Zheng, Jing; Yao, Ya-Nan; Chen, Sen; Wang, Hui-Pin; Chen, Li-Xian; Guo, Jing-Yuan

    2006-04-01

    To explore the differences in Haversian system between human and animal bones through imaging analysis and morphology description. Thirty-five slices grinding from human being as well as dog, pig, cow and sheep bones were observed to compare their structure, then were analysed with the researchful microscope. Plexiform bone or oeston band was not found in human bones; There were significant differences in the shape, size, location, density of Haversian system, between human and animal bones. The amount of Haversian lamella and diameter of central canal in human were the biggest; Significant differences in the central canal diameter and total area percentage between human and animal bones were shown by imaging analysis. (1) Plexiform bone and osteon band could be the exclusive index in human bone; (2) There were significant differences in the structure of Haversian system between human and animal bones; (3) The percentage of central canals total area was valuable in species identification through imaging analysis.

  5. Evaluation of trabecular bone patterns on dental radiographic images: influence of cortical bone

    NASA Astrophysics Data System (ADS)

    Amouriq, Yves; Evenou, Pierre; Arlicot, Aurore; Normand, Nicolas; Layrolle, Pierre; Weiss, Pierre; Guédon, Jean-Pierre

    2010-03-01

    For some authors trabecular bone is highly visible in intraoral radiographs. For other authors, the observed intrabony trabecular pattern is a representation of only the endosteal surface of cortical bone, not of intermedullary striae. The purpose of this preliminary study was to investigate the true anatomical structures that are visible in routine dental radiographs and classically denoted trabecular bone. This is a major point for bone texture analysis on radiographs. Computed radiography (CR) images of dog mandible section in molar region were compared with simulations calculated from high-resolution micro-CT volumes. Calculated simulations were obtained using the Mojette Transform. By digitally editing the CT volume, the simulations were separated into trabecular and cortical components into a region of interest. Different images were compared and correlated, some bone micro-architecture parameters calculated. A high correlation was found between computed radiographs and calculated simulations from micro-CT. The Mojette transform was successful to obtain high quality images. Cortical bone did not contribute to change in a major way simulated images. These first results imply that intrabony trabecular pattern observed on radiographs can not only be a representation of the cortical bone endosteal surface and that trabecular bone is highly visible in intraoral radiographs.

  6. Fortifying the Bone-Implant Interface Part 2: An In Vivo Evaluation of 3D-Printed and TPS-Coated Triangular Implants.

    PubMed

    MacBarb, Regina F; Lindsey, Derek P; Woods, Shane A; Lalor, Peggy A; Gundanna, Mukund I; Yerby, Scott A

    2017-01-01

    Minimally invasive surgical fusion of the sacroiliac (SI) joint using machined solid triangular titanium plasma spray (TPS) coated implants has demonstrated positive clinical outcomes in SI joint pain patients. Additive manufactured (AM), i.e. 3D-printed, fenestrated triangular titanium implants with porous surfaces and bioactive agents, such as nanocrystalline hydroxyapatite (HA) or autograft, may further optimize bony fixation and subsequent biomechanical stability. A bilateral ovine distal femoral defect model was used to evaluate the cancellous bone-implant interfaces of TPS-coated and AM implants. Four implant groups (n=6/group/time-point) were included: 1)TPS-coated, 2)AM, 3)AM+HA, and 4)AM+Autograft. The bone-implant interfaces of 6- and 12-week specimens were investigated via radiographic, biomechanical, and histomorphometric methods. Imaging showed peri-implant bone formation around all implants. Push-out testing demonstrated forces greater than 2500 N, with no significant differences among groups. While TPS implants failed primarily at the bone-implant interface, AM groups failed within bone ~2-3mm away from implant surfaces. All implants exhibited bone ongrowth, with no significant differences among groups. AM implants had significantly more bone ingrowth into their porous surfaces than TPS-coated implants ( p <0.0001). Of the three AM groups, AM+Auto implants had the greatest bone ingrowth into the porous surface and through their core ( p <0.002). Both TPS and AM implants exhibited substantial bone ongrowth and ingrowth, with additional bone through growth into the AM implants' core. Overall, AM implants experienced significantly more bone infiltration compared to TPS implants. While HA-coating did not further enhance results, the addition of autograft fostered greater osteointegration for AM implants. Additive manufactured implants with a porous surface provide a highly interconnected porous surface that has comparatively greater surface area for bony integration. Results suggest this may prove advantageous toward promoting enhanced biomechanical stability compared to TPS-coated implants for SI joint fusion procedures.

  7. Assessment of image quality in soft tissue and bone visualization tasks for a dedicated extremity cone-beam CT system.

    PubMed

    Demehri, S; Muhit, A; Zbijewski, W; Stayman, J W; Yorkston, J; Packard, N; Senn, R; Yang, D; Foos, D; Thawait, G K; Fayad, L M; Chhabra, A; Carrino, J A; Siewerdsen, J H

    2015-06-01

    To assess visualization tasks using cone-beam CT (CBCT) compared to multi-detector CT (MDCT) for musculoskeletal extremity imaging. Ten cadaveric hands and ten knees were examined using a dedicated CBCT prototype and a clinical multi-detector CT using nominal protocols (80 kVp-108mAs for CBCT; 120 kVp- 300 mAs for MDCT). Soft tissue and bone visualization tasks were assessed by four radiologists using five-point satisfaction (for CBCT and MDCT individually) and five-point preference (side-by-side CBCT versus MDCT image quality comparison) rating tests. Ratings were analyzed using Kruskal-Wallis and Wilcoxon signed-rank tests, and observer agreement was assessed using the Kappa-statistic. Knee CBCT images were rated "excellent" or "good" (median scores 5 and 4) for "bone" and "soft tissue" visualization tasks. Hand CBCT images were rated "excellent" or "adequate" (median scores 5 and 3) for "bone" and "soft tissue" visualization tasks. Preference tests rated CBCT equivalent or superior to MDCT for bone visualization and favoured the MDCT for soft tissue visualization tasks. Intraobserver agreement for CBCT satisfaction tests was fair to almost perfect (κ ~ 0.26-0.92), and interobserver agreement was fair to moderate (κ ~ 0.27-0.54). CBCT provided excellent image quality for bone visualization and adequate image quality for soft tissue visualization tasks. • CBCT provided adequate image quality for diagnostic tasks in extremity imaging. • CBCT images were "excellent" for "bone" and "good/adequate" for "soft tissue" visualization tasks. • CBCT image quality was equivalent/superior to MDCT for bone visualization tasks.

  8. Solitary Plasmacytoma.

    PubMed

    Grammatico, Sara; Scalzulli, Emilia; Petrucci, Maria Teresa

    2017-01-01

    Solitary plasmacytoma is a rare disease characterized by a localized proliferation of neoplastic monoclonal plasma cells, without evidence of systemic disease. It can be subdivided into solitary bone plasmacytoma if the lesion originates in bone, or solitary extramedullary plasmacytoma if the lesion involves a soft tissue. The incidence of solitary bone plasmacytoma is higher than solitary extramedullary plasmacytoma. Also, the prognosis is different: even if both forms respond well to treatment, overall survival and progression-free survival of solitary bone plasmacytoma are poorer than solitary extramedullary plasmacytoma due to its higher rate of evolution in multiple myeloma. However, the recent advances in the diagnosis of multiple myeloma can better refine also the diagnosis of plasmacytoma. Flow cytometry studies and molecular analysis may reveal clonal plasma cells in the bone marrow; magnetic resonance imaging or 18 Fluorodeoxyglucose positron emission tomography could better define osteolytic bone lesions. A more explicit exclusion of possible occult systemic involvement can avoid cases of misdiagnosed multiple myeloma patients, which were previously considered solitary plasmacytoma and less treated, with an unavoidable poor prognosis. Due to the rarity of the disease, there is no uniform consensus about prognostic factors and treatment. Radiotherapy is the treatment of choice; however, some authors debate about the radiotherapy dose and the relationship with the response rate. Moreover, the role of surgery and chemotherapy is still under debate. Nevertheless, we must consider that the majority of studies include a small number of patients and analyze the efficacy of conventional chemotherapy; few cases are reported concerning the efficacy of novel agents.

  9. Osthole Stimulates Osteoblast Differentiation and Bone Formation by Activation of β-Catenin–BMP Signaling

    PubMed Central

    Tang, De-Zhi; Hou, Wei; Zhou, Quan; Zhang, Minjie; Holz, Jonathan; Sheu, Tzong-Jen; Li, Tian-Fang; Cheng, Shao-Dan; Shi, Qi; Harris, Stephen E; Chen, Di; Wang, Yong-Jun

    2010-01-01

    Osteoporosis is defined as reduced bone mineral density with a high risk of fragile fracture. Current available treatment regimens include antiresorptive drugs such as estrogen receptor analogues and bisphosphates and anabolic agents such as parathyroid hormone (PTH). However, neither option is completely satisfactory because of adverse effects. It is thus highly desirable to identify novel anabolic agents to improve future osteoporosis treatment. Osthole, a coumarin-like derivative extracted from Chinese herbs, has been shown to stimulate osteoblast proliferation and differentiation, but its effect on bone formation in vivo and underlying mechanism remain unknown. In this study, we found that local injection of Osthole significantly increased new bone formation on the surface of mouse calvaria. Ovariectomy caused evident bone loss in rats, whereas Osthole largely prevented such loss, as shown by improved bone microarchitecture, histomorphometric parameters, and biomechanical properties. In vitro studies demonstrated that Osthole activated Wnt/β-catenin signaling, increased Bmp2 expression, and stimulated osteoblast differentiation. Targeted deletion of the β-catenin and Bmp2 genes abolished the stimulatory effect of Osthole on osteoblast differentiation. Since deletion of the Bmp2 gene did not affect Osthole-induced β-catenin expression and the deletion of the β-catenin gene inhibited Osthole-regulated Bmp2 expression in osteoblasts, we propose that Osthole acts through β-catenin–BMP signaling to promote osteoblast differentiation. Our findings demonstrate that Osthole could be a potential anabolic agent to stimulate bone formation and prevent estrogen deficiency–induced bone loss. © 2010 American Society for Bone and Mineral Research. PMID:20200936

  10. The feasibility of in vivo quantification of bone-gadolinium in humans by prompt gamma neutron activation analysis (PGNAA) following gadolinium-based contrast-enhanced MRI

    NASA Astrophysics Data System (ADS)

    Mostafaei, F.; McNeill, F. E.; Chettle, D. R.; Noseworthy, M. D.; Prestwich, W. V.

    2015-11-01

    The feasibility of using a 238Pu/Be-based in vivo prompt γ-ray neutron activation analysis (IVNAA) system, previously successfully used for measurements of muscle, for the detection of gadolinium (Gd) in bone was presented. Gd is extensively used in contrast agents in MR imaging. We present phantom measurement data for the measurement of Gd in the tibia. Gd has seven naturally occurring isotopes, of which two have extremely large neutron capture cross sections; 155Gd (14.8% natural abundance (NA), σ= 60,900 barns) and 157Gd (15.65% NA, σ= 254,000 barns). Our previous work focused on muscle but this only informs about the short term kinetics of Gd. We studied the possibility of measuring bone, as it may be a long term storage site for Gd. A human simulating bone phantom set was developed. The phantoms were doped with seven concentrations of Gd of concentrations 0.0, 25, 50, 75, 100, 120 and 150 ppm. Additional elements important for neutron activation analysis, Na, Cl and Ca, were also included to create an overall elemental composition consistent with Reference Man. The overall conclusion is that the potential application of this Pu-Be-based prompt in vivo NAA for the monitoring of the storage and retention of Gd in bone is not feasible.

  11. Microcomputed tomography characterization of neovascularization in bone tissue engineering applications.

    PubMed

    Young, Simon; Kretlow, James D; Nguyen, Charles; Bashoura, Alex G; Baggett, L Scott; Jansen, John A; Wong, Mark; Mikos, Antonios G

    2008-09-01

    Vasculogenesis and angiogenesis have been studied for decades using numerous in vitro and in vivo systems, fulfilling the need to elucidate the mechanisms involved in these processes and to test potential therapeutic agents that inhibit or promote neovascularization. Bone tissue engineering in particular has benefited from the application of proangiogenic strategies, considering the need for an adequate vascular supply during healing and the challenges associated with the vascularization of scaffolds implanted in vivo. Conventional methods of assessing the in vivo angiogenic response to tissue-engineered constructs tend to rely on a two-dimensional assessment of microvessel density within representative histological sections without elaboration of the true vascular tree. The introduction of microcomputed tomography (micro-CT) has recently allowed investigators to obtain a diverse range of high-resolution, three-dimensional characterization of structures, including renal, coronary, and hepatic vascular networks, as well as bone formation within healing defects. To date, few studies have utilized micro-CT to study the vascular response to an implanted tissue engineering scaffold. In this paper, conventional in vitro and in vivo models for studying angiogenesis will be discussed, followed by recent developments in the use of micro-CT for vessel imaging in bone tissue engineering research. A new study demonstrating the potential of contrast-enhanced micro-CT for the evaluation of in vivo neovascularization in bony defects is described, which offers significant potential in the evaluation of bone tissue engineering constructs.

  12. [Development of fluorescent probes for bone imaging in vivo ~Fluorescent probes for intravital imaging of osteoclast activity~.

    PubMed

    Minoshima, Masafumi; Kikuchi, Kazuya

    Fluorescent molecules are widely used as a tool to directly visualize target biomolecules in vivo. Fluorescent probes have the advantage that desired function can be rendered based on rational design. For bone-imaging fluorescent probes in vivo, they should be delivered to bone tissue upon administration. Recently, a fluorescent probe for detecting osteoclast activity was developed. The fluorescent probe has acid-sensitive fluorescence property, specific delivery to bone tissue, and durability against laser irradiation, which enabled real-time intravital imaging of bone-resorbing osteoclasts for a long period of time.

  13. Deregulation of Bone Forming Cells in Bone Diseases and Anabolic Effects of Strontium-Containing Agents and Biomaterials

    PubMed Central

    Tan, Shuang; Zhang, Binbin; Zhu, Xiaomei; Ao, Ping; Guo, Huajie; Yi, Weihong; Zhou, Guang-Qian

    2014-01-01

    Age-related bone loss and osteoporosis are associated with bone remodeling changes that are featured with decreased trabecular and periosteal bone formation relative to bone resorption. Current anticatabolic therapies focusing on the inhibition of bone resorption may not be sufficient in the prevention or reversal of age-related bone deterioration and there is a big need in promoting osteoblastogenesis and bone formation. Enhanced understanding of the network formed by key signaling pathways and molecules regulating bone forming cells in health and diseases has therefore become highly significant. The successful development of agonist/antagonist of the PTH and Wnt signaling pathways are profits of the understanding of these key pathways. As the core component of an approved antiosteoporosis agent, strontium takes its effect on osteoblasts at multilevel through multiple pathways, representing a good example in revealing and exploring anabolic mechanisms. The recognition of strontium effects on bone has led to its expected application in a variety of biomaterial scaffolds used in tissue engineering strategies aiming at bone repairing and regeneration. While summarizing the recent progress in these respects, this review also proposes the new approaches such as systems biology in order to reveal new insights in the pathology of osteoporosis as well as possible discovery of new therapies. PMID:24800251

  14. Biocompatible inorganic nanoparticles for [18F]-fluoride binding with applications in PET imaging

    PubMed Central

    Jauregui-Osoro, Maite; Williamson, Peter A.; Glaria, Arnaud; Sunassee, Kavitha; Charoenphun, Putthiporn; Green, Mark A.; Mullen, Gregory E. D.; Blower, Philip J.

    2014-01-01

    A wide selection of insoluble nanoparticulate metal salts was screened for avid binding of [18F]-fluoride. Hydroxyapatite and aluminium hydroxide nanoparticles showed particularly avid and stable binding of [18F]-fluoride in various biological media. The in vivo behaviour of the [18F]-labelled hydroxyapatite and aluminium hydroxide particles was determined by PET-CT imaging in mice. [18F]-labelled hydroxyapatite was stable in circulation and when trapped in various tissues (lung embolisation, subcutaneous and intramuscular), but accumulation in liver via reticuloendothelial clearance was followed by gradual degradation and release of [18F]-fluoride (over a period of 4 h) which accumulated in bone. [18F]-labelled aluminium hydroxide was also cleared to liver and spleen but degraded slightly even without liver uptake (subcutanenous and intramuscular). Both materials have properties that are an attractive basis for the design of molecular targeted PET imaging agents labelled with 18F. PMID:21394352

  15. Transdermal drug delivery: feasibility for treatment of superficial bone stress fractures.

    PubMed

    Aghazadeh-Habashi, Ali; Yang, Yang; Tang, Kathy; Lőbenberg, Raimar; Doschak, Michael R

    2015-12-01

    Transdermal drug delivery offers the promise of effective drug therapy at selective sites of pathology whilst reducing systemic exposure to the pharmaceutical agents in off-target organs and tissues. However, that strategy is often limited to cells comprising superficial tissues of the body (rarely to deeper bony structures) and mostly indicated with small hydrophobic pharmacological agents, such as steroid hormones and anti-inflammatory gels to skin, muscle, and joints. Nonetheless, advances in transdermal liposomal formulation have rendered the ability to readily incorporate pharmacologically active hydrophilic drug molecules and small peptide biologics into transdermal dosage forms to impart the effective delivery of those bioactive agents across the skin barrier to underlying superficial tissue structures including bone, often enhanced by some form of electrical, chemical, and mechanical facilitation. In the following review, we evaluate transdermal drug delivery systems, with a particular focus on delivering therapeutic agents to treat superficial bone pain, notably stress fractures. We further introduce and discuss several small peptide hormones active in bone (such as calcitonins and parathyroid hormone) that have shown potential for transdermal delivery, often under the added augmentation of transdermal drug delivery systems that employ lipo/hydrophilicity, electric charge, and/or microprojection facilitation across the skin barrier.

  16. Automatic and hierarchical segmentation of the human skeleton in CT images.

    PubMed

    Fu, Yabo; Liu, Shi; Li, Harold; Yang, Deshan

    2017-04-07

    Accurate segmentation of each bone of the human skeleton is useful in many medical disciplines. The results of bone segmentation could facilitate bone disease diagnosis and post-treatment assessment, and support planning and image guidance for many treatment modalities including surgery and radiation therapy. As a medium level medical image processing task, accurate bone segmentation can facilitate automatic internal organ segmentation by providing stable structural reference for inter- or intra-patient registration and internal organ localization. Even though bones in CT images can be visually observed with minimal difficulty due to the high image contrast between the bony structures and surrounding soft tissues, automatic and precise segmentation of individual bones is still challenging due to the many limitations of the CT images. The common limitations include low signal-to-noise ratio, insufficient spatial resolution, and indistinguishable image intensity between spongy bones and soft tissues. In this study, a novel and automatic method is proposed to segment all the major individual bones of the human skeleton above the upper legs in CT images based on an articulated skeleton atlas. The reported method is capable of automatically segmenting 62 major bones, including 24 vertebrae and 24 ribs, by traversing a hierarchical anatomical tree and by using both rigid and deformable image registration. The degrees of freedom of femora and humeri are modeled to support patients in different body and limb postures. The segmentation results are evaluated using the Dice coefficient and point-to-surface error (PSE) against manual segmentation results as the ground-truth. The results suggest that the reported method can automatically segment and label the human skeleton into detailed individual bones with high accuracy. The overall average Dice coefficient is 0.90. The average PSEs are 0.41 mm for the mandible, 0.62 mm for cervical vertebrae, 0.92 mm for thoracic vertebrae, and 1.45 mm for pelvis bones.

  17. Automatic and hierarchical segmentation of the human skeleton in CT images

    NASA Astrophysics Data System (ADS)

    Fu, Yabo; Liu, Shi; Li, H. Harold; Yang, Deshan

    2017-04-01

    Accurate segmentation of each bone of the human skeleton is useful in many medical disciplines. The results of bone segmentation could facilitate bone disease diagnosis and post-treatment assessment, and support planning and image guidance for many treatment modalities including surgery and radiation therapy. As a medium level medical image processing task, accurate bone segmentation can facilitate automatic internal organ segmentation by providing stable structural reference for inter- or intra-patient registration and internal organ localization. Even though bones in CT images can be visually observed with minimal difficulty due to the high image contrast between the bony structures and surrounding soft tissues, automatic and precise segmentation of individual bones is still challenging due to the many limitations of the CT images. The common limitations include low signal-to-noise ratio, insufficient spatial resolution, and indistinguishable image intensity between spongy bones and soft tissues. In this study, a novel and automatic method is proposed to segment all the major individual bones of the human skeleton above the upper legs in CT images based on an articulated skeleton atlas. The reported method is capable of automatically segmenting 62 major bones, including 24 vertebrae and 24 ribs, by traversing a hierarchical anatomical tree and by using both rigid and deformable image registration. The degrees of freedom of femora and humeri are modeled to support patients in different body and limb postures. The segmentation results are evaluated using the Dice coefficient and point-to-surface error (PSE) against manual segmentation results as the ground-truth. The results suggest that the reported method can automatically segment and label the human skeleton into detailed individual bones with high accuracy. The overall average Dice coefficient is 0.90. The average PSEs are 0.41 mm for the mandible, 0.62 mm for cervical vertebrae, 0.92 mm for thoracic vertebrae, and 1.45 mm for pelvis bones.

  18. Comparative uptake of ¹⁸F-FEN-DPAZn2, ¹⁸F-FECH, ¹⁸F-fluoride, and ¹⁸F-FDG in fibrosarcoma and aseptic inflammation.

    PubMed

    Liang, Xiang; Tang, Ganghua; Wang, Hongliang; Hu, Kongzhen; Tang, Xiaolan; Nie, Dahong; Sun, Ting; Huang, Tingting

    2014-08-01

    The aim of this study is to evaluate uptake of 2-(18)F-fluoroethyl-bis(zinc(II)-dipicolylamine) ((18)F-FEN-DPAZn2) as a promising cell death imaging agent, a choline analog (18)F-fluoroethylcholine ((18)F-FECH), (18)F-fluoride as a bone imaging agent, and a glucose analog 2-(18)F-fluoro-2-deoxy-d-glucose ((18)F-FDG) in the combined S180 fibrosarcoma and turpentine-induced inflammation mice models. The results showed that (18)F-FDG had the highest tumor-to-blood uptake ratio and tumor-to-muscle ratio, and high inflammation-to-blood ratio and inflammation-to-muscle ratio. (18)F -FECH showed moderate tumor-to-blood ratio and tumor-to-muscle ratio, and low inflammation-to-blood ratio and inflammation-to-muscle ratio. However, accumulation of (18)F FEN-DPAZn2 in tumor was similar to that in normal muscle. Also, (18)F-FEN-DPAZn2 and (18)F-fluoride exhibited the best selectivity to inflammation. (18)F-FECH positron emission tomography (PET) imaging demonstrates some advantages over (18)F-FDG PET for the differentiation of tumor from inflammation. (18)F FEN-DPAZn2 and (18)F-fluoride can be used for PET imaging of aseptic inflammation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Rapid ex vivo imaging of PAIII prostate to bone tumor with SWIFT-MRI.

    PubMed

    Luhach, Ihor; Idiyatullin, Djaudat; Lynch, Conor C; Corum, Curt; Martinez, Gary V; Garwood, Michael; Gillies, Robert J

    2014-09-01

    The limiting factor for MRI of skeletal/mineralized tissue is fast transverse relaxation. A recent advancement in MRI technology, SWIFT (Sweep Imaging with Fourier Transform), is emerging as a new approach to overcome this difficulty. Among other techniques like UTE, ZTE, and WASPI, the application of SWIFT technology has the strong potential to impact preclinical and clinical imaging, particularly in the context of primary or metastatic bone cancers because it has the added advantage of imaging water in mineralized tissues of bone allowing MRI images to be obtained of tissues previously visible only with modalities such as computed tomography (CT). The goal of the current study is to examine the feasibility of SWIFT for the assessment of the prostate cancer induced changes in bone formation (osteogenesis) and destruction (osteolysis) in ex vivo specimens. A luciferase expressing prostate cancer cell line (PAIII) or saline control was inoculated directly into the tibia of 6-week-old immunocompromised male mice. Tumor growth was assessed weekly for 3 weeks before euthanasia and dissection of the tumor bearing and sham tibias. The ex vivo mouse tibia specimens were imaged with a 9.4 Tesla (T) and 7T MRI systems. SWIFT images are compared with traditional gradient-echo and spin-echo MRI images as well as CT and histological sections. SWIFT images with nominal resolution of 78 μm are obtained with the tumor and different bone structures identified. Prostate cancer induced changes in the bone microstructure are visible in SWIFT images, which is supported by spin-echo, high resolution CT and histological analysis. SWIFT MRI is capable of high-quality high-resolution ex vivo imaging of bone tumor and surrounding bone and soft tissues. Furthermore, SWIFT MRI shows promise for in vivo bone tumor imaging, with the added benefits of nonexposure to ionizing radiation, quietness, and speed. Copyright © 2013 Wiley Periodicals, Inc.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gratama van Andel, H. A. F.; Venema, H. W.; Streekstra, G. J.

    For clear visualization of vessels in CT angiography (CTA) images of the head and neck using maximum intensity projection (MIP) or volume rendering (VR) bone has to be removed. In the past we presented a fully automatic method to mask the bone [matched mask bone elimination (MMBE)] for this purpose. A drawback is that vessels adjacent to bone may be partly masked as well. We propose a modification, multiscale MMBE, which reduces this problem by using images at two scales: a higher resolution than usual for image processing and a lower resolution to which the processed images are transformed formore » use in the diagnostic process. A higher in-plane resolution is obtained by the use of a sharper reconstruction kernel. The out-of-plane resolution is improved by deconvolution or by scanning with narrower collimation. The quality of the mask that is used to remove bone is improved by using images at both scales. After masking, the desired resolution for the normal clinical use of the images is obtained by blurring with Gaussian kernels of appropriate widths. Both methods (multiscale and original) were compared in a phantom study and with clinical CTA data sets. With the multiscale approach the width of the strip of soft tissue adjacent to the bone that is masked can be reduced from 1.0 to 0.2 mm without reducing the quality of the bone removal. The clinical examples show that vessels adjacent to bone are less affected and therefore better visible. Images processed with multiscale MMBE have a slightly higher noise level or slightly reduced resolution compared with images processed by the original method and the reconstruction and processing time is also somewhat increased. Nevertheless, multiscale MMBE offers a way to remove bone automatically from CT angiography images without affecting the integrity of the blood vessels. The overall image quality of MIP or VR images is substantially improved relative to images processed with the original MMBE method.« less

  1. Bone effects of biologic drugs in rheumatoid arthritis.

    PubMed

    Corrado, Addolorata; Neve, Anna; Maruotti, Nicola; Cantatore, Francesco Paolo

    2013-01-01

    Biologic agents used in the treatment of rheumatoid arthritis (RA) are able to reduce both disease activity and radiographic progression of joint disease. These drugs are directed against several proinflammatory cytokines (TNF α , IL-6, and IL-1) which are involved both in the pathogenesis of chronic inflammation and progression of joint structural damage and in systemic and local bone loss typically observed in RA. However, the role of biologic drugs in preventing bone loss in clinical practice has not yet clearly assessed. Many clinical studies showed a trend to a positive effect of biologic agents in preventing systemic bone loss observed in RA. Although the suppression of inflammation is the main goal in the treatment of RA and the anti-inflammatory effects of biologic drugs exert a positive effect on bone metabolism, the exact relationship between the prevention of bone loss and control of inflammation has not been clearly established, and if the available biologic drugs against TNF α , IL-1, and IL-6 can exert their effect on systemic and local bone loss also through a direct mechanism on bone cell metabolism is still to be clearly defined.

  2. Nanocomposite scaffolds with tunable mechanical and degradation capabilities: co-delivery of bioactive agents for bone tissue engineering.

    PubMed

    Cattalini, Juan P; Roether, Judith; Hoppe, Alexander; Pishbin, Fatemeh; Haro Durand, Luis; Gorustovich, Alejandro; Boccaccini, Aldo R; Lucangioli, Silvia; Mouriño, Viviana

    2016-10-21

    Novel multifunctional nanocomposite scaffolds made of nanobioactive glass and alginate crosslinked with therapeutic ions such as calcium and copper were developed for delivering therapeutic agents, in a highly controlled and sustainable manner, for bone tissue engineering. Alendronate, a well-known antiresorptive agent, was formulated into microspheres under optimized conditions and effectively loaded within the novel multifunctional scaffolds with a high encapsulation percentage. The size of the cation used for the alginate crosslinking impacted directly on porosity and viscoelastic properties, and thus, on the degradation rate and the release profile of copper, calcium and alendronate. According to this, even though highly porous structures were created with suitable pore sizes for cell ingrowth and vascularization in both cases, copper-crosslinked scaffolds showed higher values of porosity, elastic modulus, degradation rate and the amount of copper and alendronate released, when compared with calcium-crosslinked scaffolds. In addition, in all cases, the scaffolds showed bioactivity and mechanical properties close to the endogenous trabecular bone tissue in terms of viscoelasticity. Furthermore, the scaffolds showed osteogenic and angiogenic properties on bone and endothelial cells, respectively, and the extracts of the biomaterials used promoted the formation of blood vessels in an ex vivo model. These new bioactive nanocomposite scaffolds represent an exciting new class of therapeutic cell delivery carrier with tunable mechanical and degradation properties; potentially useful in the controlled and sustainable delivery of therapeutic agents with active roles in bone formation and angiogenesis, as well as in the support of cell proliferation and osteogenesis for bone tissue engineering.

  3. A Novel Two-Compartment Model for Calculating Bone Volume Fractions and Bone Mineral Densities From Computed Tomography Images.

    PubMed

    Lin, Hsin-Hon; Peng, Shin-Lei; Wu, Jay; Shih, Tian-Yu; Chuang, Keh-Shih; Shih, Cheng-Ting

    2017-05-01

    Osteoporosis is a disease characterized by a degradation of bone structures. Various methods have been developed to diagnose osteoporosis by measuring bone mineral density (BMD) of patients. However, BMDs from these methods were not equivalent and were incomparable. In addition, partial volume effect introduces errors in estimating bone volume from computed tomography (CT) images using image segmentation. In this study, a two-compartment model (TCM) was proposed to calculate bone volume fraction (BV/TV) and BMD from CT images. The TCM considers bones to be composed of two sub-materials. Various equivalent BV/TV and BMD can be calculated by applying corresponding sub-material pairs in the TCM. In contrast to image segmentation, the TCM prevented the influence of the partial volume effect by calculating the volume percentage of sub-material in each image voxel. Validations of the TCM were performed using bone-equivalent uniform phantoms, a 3D-printed trabecular-structural phantom, a temporal bone flap, and abdominal CT images. By using the TCM, the calculated BV/TVs of the uniform phantoms were within percent errors of ±2%; the percent errors of the structural volumes with various CT slice thickness were below 9%; the volume of the temporal bone flap was close to that from micro-CT images with a percent error of 4.1%. No significant difference (p >0.01) was found between the areal BMD of lumbar vertebrae calculated using the TCM and measured using dual-energy X-ray absorptiometry. In conclusion, the proposed TCM could be applied to diagnose osteoporosis, while providing a basis for comparing various measurement methods.

  4. Use of Alendronate Sodium (Fosamax) to Ameliorate Osteoporosis in Renal Transplant Patients: A Case-Control Study

    PubMed Central

    Huang, Wen-Hung; Lee, Shen-Yang; Weng, Cheng-Hao; Lai, Ping-Chin

    2012-01-01

    Background Renal transplant patients often have severe bone and mineral deficiencies. While the clinical effects of immunosuppressive agents like calcineurin inhibitors (CIs) and sirolimus on bone turnover are unclear, bisphosphonates are effective in bone recovery in these patients. Gender is significantly associated with osteoporosis and affects bone turnover, which is different in women and men. The effective gender-related site of action of bisphosphonates is unknown. Methods Initially, we enrolled 84 kidney recipients who had received their transplants at least 5 months ago; of these, 8 were excluded and 76 were finally included in the study. First bone mineral density (BMD) at the lumbar spine, hip, and femoral neck was determined using dual-energy X-ray absorptiometry (DXA) between September 2008 and March 2009. These 76 patients underwent a repeat procedure after a mean period 14 months. Immunosuppressive agents, bisphosphonates, patients' characteristics, and biochemical factors were analyzed on the basis of the BMD determined using DXA. Results After the 14-month period, the BMD of lumbar spine increased significantly (from 0.9 g/cm2 to 0.92 g/cm2, p<0.001), whereas that of the hip and femoral neck did not. Ordinal logistic regression analysis was used to show that Fosamax improved bone condition, as defined by WHO (p = 0.007). The use of immunosuppressive agents did not affect bone turnover (p>0.05). Moreover, in subgroup analysis, Fosamax increased the BMD at the lumbar spine and the hipbone in males (p = 0.028 and 0.03, respectively) but only at the lumbar spine in females (p = 0.022). Conclusion After a long periods after renal transplantation, the detrimental effects of steroid and immunosuppressive agents on bone condition diminished. Short-term Fosamax administration effectively improves BMD in these patients. The efficacy of Fosamax differed between male and female renal transplant patients. PMID:23185261

  5. EVALUATION OF CALCIUM 47 IN NORMAL MAN AND ITS USE IN THE EVALUATION OF BONE HEALING FOLLOWING RADIATION THERAPY IN METASTATIC DESEASE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brady, L.W.; Croll, M.N.; Stanton, L.

    1962-02-01

    It was concluded that radioactlve Ca/sup 47/ is an isotope suitable for the study of calcium metabolism in the body. It is easily traced by external counting technics. Local uptake measurements as well as ratios over various areas of the skeleton can be determined, thus yielding useful diagnostic information. It is a safe agent for use. It is possible to differentiate normal bone from areas of diseased bone using it. It is not useful for scintiscanning. It is grossly applicable in the evaluation of effects of radiation therapy to local metastatic lesions in bone. These observations support the fact thatmore » bone- seeking isotopes may well be useful as diagnostic agents for the evaluation of subradiographic metastases. (auth)« less

  6. Bonelike apatite formation on ethylene-vinyl alcohol copolymer modified with silane coupling agent and calcium silicate solutions.

    PubMed

    Oyane, Ayako; Kawashita, Masakazu; Nakanishi, Kazuki; Kokubo, Tadashi; Minoda, Masahiko; Miyamoto, Takeaki; Nakamura, Takashi

    2003-05-01

    An ethylene-vinyl alcohol copolymer (EVOH) was treated with a silane coupling agent and calcium silicate solutions, and then soaked in a simulated body fluid (SBF) with ion concentrations approximately equal to those of human blood plasma. A smooth and uniform bonelike apatite layer was successfully formed on both the EVOH plate and the EVOH-knitted fibers in SBF within 2 days. Part of the structure of the resulting apatite-EVOH fiber composite was similar to that of natural bone. If this kind of composite can be fabricated into a three-dimensional structure similar to natural bone, the resultant composite is expected to exhibit both mechanical properties analogous to those of natural bone and bone-bonding ability. Hence, it has great potential as a bone substitute. Copyright 2003 Elsevier Science Ltd.

  7. Mechanisms of Radiation-Induced Bone Loss and Effects on Prostate Cancer Bone Metastases

    DTIC Science & Technology

    2013-06-01

    and in vivo bone imaging [months 6-10]. b. Determine apoptosis of bone cells (OT, OB & OC) by quantifying TUNEL staining [months 6-10]. Animal...Zoledronic acid will be used as positive control for inhibition of apoptosis and also inhibition of resorption [month 10]. c. Perform in vivo bone imaging ...described and presented in Task 3. Task 5: Image calvarial osteocytes in real-time after single dose exposure of 2 Gy [months 6-12] A single dose of

  8. Bone texture analysis on dental radiographic images: results with several angulated radiographs on the same region of interest

    NASA Astrophysics Data System (ADS)

    Amouriq, Yves; Guedon, Jeanpierre; Normand, Nicolas; Arlicot, Aurore; Benhdech, Yassine; Weiss, Pierre

    2011-03-01

    Bone microarchitecture is the predictor of bone quality or bone disease. It can only be measured on a bone biopsy, which is invasive and not available for all clinical situations. Texture analysis on radiographs is a common way to investigate bone microarchitecture. But relationship between three-dimension histomorphometric parameters and two-dimension texture parameters is not always well known, with poor results. The aim of this study is to performed angulated radiographs of the same region of interest and see if a better relationship between texture analysis on several radiographs and histomorphometric parameters can be developed. Computed radiography images of dog (Beagle) mandible section in molar regions were compared with high-resolution micro-CT (Computed-Tomograph) volumes. Four radiographs with 27° angle (up, down, left, right, using Rinn ring and customized arm positioning system) were performed from initial radiograph position. Bone texture parameters were calculated on all images. Texture parameters were also computed from new images obtained by difference between angulated images. Results of fractal values in different trabecular areas give some caracterisation of bone microarchitecture.

  9. Feasibility of fabricating personalized 3D-printed bone grafts guided by high-resolution imaging

    NASA Astrophysics Data System (ADS)

    Hong, Abigail L.; Newman, Benjamin T.; Khalid, Arbab; Teter, Olivia M.; Kobe, Elizabeth A.; Shukurova, Malika; Shinde, Rohit; Sipzner, Daniel; Pignolo, Robert J.; Udupa, Jayaram K.; Rajapakse, Chamith S.

    2017-03-01

    Current methods of bone graft treatment for critical size bone defects can give way to several clinical complications such as limited available bone for autografts, non-matching bone structure, lack of strength which can compromise a patient's skeletal system, and sterilization processes that can prevent osteogenesis in the case of allografts. We intend to overcome these disadvantages by generating a patient-specific 3D printed bone graft guided by high-resolution medical imaging. Our synthetic model allows us to customize the graft for the patients' macro- and microstructure and correct any structural deficiencies in the re-meshing process. These 3D-printed models can presumptively serve as the scaffolding for human mesenchymal stem cell (hMSC) engraftment in order to facilitate bone growth. We performed highresolution CT imaging of a cadaveric human proximal femur at 0.030-mm isotropic voxels. We used these images to generate a 3D computer model that mimics bone geometry from micro to macro scale represented by STereoLithography (STL) format. These models were then reformatted to a format that can be interpreted by the 3D printer. To assess how much of the microstructure was replicated, 3D-printed models were re-imaged using micro-CT at 0.025-mm isotropic voxels and compared to original high-resolution CT images used to generate the 3D model in 32 sub-regions. We found a strong correlation between 3D-printed bone volume and volume of bone in the original images used for 3D printing (R2 = 0.97). We expect to further refine our approach with additional testing to create a viable synthetic bone graft with clinical functionality.

  10. Window classification of brain CT images in biomedical articles.

    PubMed

    Xue, Zhiyun; Antani, Sameer; Long, L Rodney; Demner-Fushman, Dina; Thoma, George R

    2012-01-01

    Effective capability to search biomedical articles based on visual properties of article images may significantly augment information retrieval in the future. In this paper, we present a new method to classify the window setting types of brain CT images. Windowing is a technique frequently used in the evaluation of CT scans, and is used to enhance contrast for the particular tissue or abnormality type being evaluated. In particular, it provides radiologists with an enhanced view of certain types of cranial abnormalities, such as the skull lesions and bone dysplasia which are usually examined using the " bone window" setting and illustrated in biomedical articles using "bone window images". Due to the inherent large variations of images among articles, it is important that the proposed method is robust. Our algorithm attained 90% accuracy in classifying images as bone window or non-bone window in a 210 image data set.

  11. Scanning electron microscopy of bone: instrument, specimen, and issues.

    PubMed

    Boyde, A; Jones, S J

    1996-02-01

    There are many ways available now to maximise and analyse the information that can be obtained on the structure and constitution of bone using SEM. This paper considers a range of methods and the problems that arise relating to instrumentation and methodology as they apply to the use of SEM in the study of bone. In addition to the review content, some novel technical approaches to the SEM of bone are considered here for the first time; these include low kV imaging for the detection of new surface bone packets (and residual demineralized matrix after resorption), low kV BSE imaging of uncoated, embedded, and unembedded samples, environmental SEM for the study of wet tissue, low distortion, very low magnification imaging for the study of cancellous bone architecture, the use of multiple detectors for fast electrons in improving the imaging of porous samples, and high resolution, low voltage imaging for the study of collagen degradation during bone resorption.

  12. Bone-seeking TRAP conjugates: surprising observations and their implications on the development of gallium-68-labeled bisphosphonates

    PubMed Central

    2012-01-01

    Background Bisphosphonates possess strong affinity to bone. 99mTc bisphosphonate complexes are widely used for bone scintigraphy. For positron emission tomography (PET) bone imaging, Ga-68-based PET tracers based on bisphosphonates are highly desirable. Findings Two trimeric bisphosphonate conjugates of the triazacyclononane-phosphinate (TRAP) chelator were synthesized, labeled with Ga-68, and used for microPET imaging of bone in male Lewis rats. Both Ga-68 tracers show bone uptake and, thus, are suitable for PET bone imaging. Surprisingly, Ga-71 nuclear magnetic resonance data prove that Ga(III) is not located in the chelating cavity of TRAP and must therefore be bound by the conjugated bisphosphonate units. Conclusion The intrinsic Ga-68 chelating properties of TRAP are not needed for Ga-68 PET bone imaging with TRAP-bisphosphonate conjugates. Here, TRAP serves only as a trimeric scaffold. For preparation of Ga-68-based bone seekers for PET, it appears sufficient to equip branched scaffolds with multiple bisphosphonate units, which serve both Ga-68-binding and bone-targeting purposes. PMID:22464278

  13. ALX 111: ALX1-11, parathyroid hormone (1-84) - NPS Allelix, PREOS, PTH, recombinant human parathyroid hormone, rhPTH (1-84).

    PubMed

    2003-01-01

    ALX 111 [parathyroid hormone (1-84) - NPS Allelix, recombinant human parathyroid hormone, rhPTH (1-84), PREOS] is a full-length, recombinant human parathyroid hormone. It has potential as an anti-osteoporotic agent, due to its properties as a bone formation stimulant. This profile has been selected from R&D Insight, a pharmaceutical intelligence database produced by Adis International Ltd. It has been recommended that ALX 111 should be given for 1 to 2 years and may be given in combination with an antiresorptive agent, such as estrogen or a bisphosphonate. In December 1999, Allelix Biopharmaceuticals merged with NPS Pharmaceuticals. This combined company is operating as NPS Pharmaceuticals in the US and as NPS Allelix in Canada. The merger has enabled a phase III study of ALX 111 to begin in the US, Europe and South America. NPS harmaceuticals has signed an agreement with Bio-Imaging Technologies, which will provide all image handling and analysis for this trial. Until 1994, Allelix Biopharmaceuticals and Glaxo in Canada were involved in a joint venture to investigate the efficacy of ALX 111 in osteoporosis. Allelix was subsequently, until September 1998, collaborating with Astra of Sweden in developing ALX 111. Astra had acquired exclusive worldwide rights to ALX 111 and was responsible for development of the agent. However, Astra returned all rights to ALX 111 to Allelix as a result of its merger with Zeneca to form AstraZeneca. In December 1999, Allelix Biopharmaceuticals merged with NPS Pharmaceuticals. This combined company is operating as NPS Pharmaceuticals in the US and as NPS Allelix in Canada. The merger has enabled a phase III study of ALX 111 to begin in the US, Europe and South America. The phase III trial of ALX 111 for the treatment of osteoporosis has completed patient enrolment, and phase II trials have been completed in Canada and the Netherlands. The 18-month, phase III, multicentre, placebo-controlled trial (Treatment of Osteoporosis with Parathyroid Hormone; TOP) has been designed to assess the bone-building and fracture-reducing potential of the drug, and over 2600 postmenopausal women with osteoporosis who have not received previous drug therapy for osteoporosis have been enrolled. Treatment will be completed in September 2003, but more than 75% of patients enrolled in the TOP study have chosen to enrol in an Open Label Extension Study (OLES), which allows for a total treatment period of up to 24 months. NPS Pharmaceuticals has signed an agreement with Bio-Imaging Technologies, which will provide all image handling and analysis for this trial. In September 2002, NPS Pharmaceuticals announced that it has met its patient enrolment target (n > 150) for its POWER (PTH for Osteoporotic Women on Estrogen Replacement) study; a 24-month phase III trial initiated in Europe in November 2001. In this trial, women with osteoporosis receive SC injections of ALX 111 or placebo, in combination with their existing hormone replacement therapies, to test the bone building potential of the drug. In addition to the POWER study, a clinical trial sponsored by the National Institutes of Health (NIH) is being conducted to evaluate the potential of ALX 111 to build bone in combination with another osteoporosis medication. The 'PaTH' study (PTH/alendronate) is designed to assess the effect of various combinations and sequential uses of ALX 111 and Merck's Fosamax, a drug for slowing the loss of bone due to osteoporosis. The PaTH study, initiated in May 2000 and scheduled to conclude in September 2003, involved 238 patients with postmenopausal osteoporosis. It is thought that alendronic acid and ALX 111, when administered in combination, may act in an additive manner to treat osteoporosis because they act in different ways; alendronic acid acts to inhibit resorption and ALX 111 speeds up bone formation and resorption, with a net increase in formation. Results of this study are still being analysed but preliminary results appear to be positive. The effect of ALX 111 on bone cell cultures underare still being analysed but preliminary results appear to be positive. The effect of ALX 111 on bone cell cultures under conditions of microgravity was tested in orbit on the Space Shuttle Columbia, which was launched on 16 January 2003 but did not survive re-entry. This study was one in a series of studies known as 'OSTEO' and had been prepared by researchers from NPS Pharmaceuticals using Millenium Biologix' OSTEO Mini-Lab System. Under space flight conditions, astronauts experience a loss in bone density at a rate up to ten times faster than that of earth-bound patients with osteoporosis, and it was hoped that this study would indicate the mechanism of action of ALX 111 at cellular and genetic levels. The results of these studies were represented by the samples of human bone cells, which were lost during the re-entry tragedy.

  14. True Color Image Analysis For Determination Of Bone Growth In Fluorochromic Biopsies

    NASA Astrophysics Data System (ADS)

    Madachy, Raymond J.; Chotivichit, Lee; Huang, H. K.; Johnson, Eric E.

    1989-05-01

    A true color imaging technique has been developed for analysis of microscopic fluorochromic bone biopsy images to quantify new bone growth. The technique searches for specified colors in a medical image for quantification of areas of interest. Based on a user supplied training set, a multispectral classification of pixel values is performed and used for segmenting the image. Good results were obtained when compared to manual tracings of new bone growth performed by an orthopedic surgeon. At a 95% confidence level, the hypothesis that there is no difference between the two methods can be accepted. Work is in progress to test bone biopsies with different colored stains and further optimize the analysis process using three-dimensional spectral ordering techniques.

  15. [Quantitative data analysis for live imaging of bone.

    PubMed

    Seno, Shigeto

    Bone tissue is a hard tissue, it was difficult to observe the interior of the bone tissue alive. With the progress of microscopic technology and fluorescent probe technology in recent years, it becomes possible to observe various activities of various cells forming bone society. On the other hand, the quantitative increase in data and the diversification and complexity of the images makes it difficult to perform quantitative analysis by visual inspection. It has been expected to develop a methodology for processing microscopic images and data analysis. In this article, we introduce the research field of bioimage informatics which is the boundary area of biology and information science, and then outline the basic image processing technology for quantitative analysis of live imaging data of bone.

  16. SU-E-I-74: Image-Matching Technique of Computed Tomography Images for Personal Identification: A Preliminary Study Using Anthropomorphic Chest Phantoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsunobu, Y; Shiotsuki, K; Morishita, J

    Purpose: Fingerprints, dental impressions, and DNA are used to identify unidentified bodies in forensic medicine. Cranial Computed tomography (CT) images and/or dental radiographs are also used for identification. Radiological identification is important, particularly in the absence of comparative fingerprints, dental impressions, and DNA samples. The development of an automated radiological identification system for unidentified bodies is desirable. We investigated the potential usefulness of bone structure for matching chest CT images. Methods: CT images of three anthropomorphic chest phantoms were obtained on different days in various settings. One of the phantoms was assumed to be an unidentified body. The bone imagemore » and the bone image with soft tissue (BST image) were extracted from the CT images. To examine the usefulness of the bone image and/or the BST image, the similarities between the two-dimensional (2D) or threedimensional (3D) images of the same and different phantoms were evaluated in terms of the normalized cross-correlation value (NCC). Results: For the 2D and 3D BST images, the NCCs obtained from the same phantom assumed to be an unidentified body (2D, 0.99; 3D, 0.93) were higher than those for the different phantoms (2D, 0.95 and 0.91; 3D, 0.89 and 0.80). The NCCs for the same phantom (2D, 0.95; 3D, 0.88) were greater compared to those of the different phantoms (2D, 0.61 and 0.25; 3D, 0.23 and 0.10) for the bone image. The difference in the NCCs between the same and different phantoms tended to be larger for the bone images than for the BST images. These findings suggest that the image-matching technique is more useful when utilizing the bone image than when utilizing the BST image to identify different people. Conclusion: This preliminary study indicated that evaluating the similarity of bone structure in 2D and 3D images is potentially useful for identifying of an unidentified body.« less

  17. Effect of glycerol concentrations on the mechanical properties of additive manufactured porous calcium polyphosphate structures for bone substitute applications.

    PubMed

    Sheydaeian, Esmat; Vlasea, Mihaela; Woo, Ami; Pilliar, Robert; Hu, Eugene; Toyserkani, Ehsan

    2017-05-01

    This article addresses the effects of glycerol (GLY) concentrations on the mechanical properties of calcium polyphosphate (CPP) bone substitute structures manufactured using binder jetting additive manufacturing. To achieve this goal, nine types of water-based binder solutions were prepared with 10, 12.5, and 15 wt % GLY liquid-binding agent, mixed, respectively, with 0, 0.75, and 1.5 wt % ethylene glycol diacetate (EGD) flow enhancer. The print quality of each of the solutions was established quantitatively using an image processing algorithm. The print quality analysis narrowed down the solutions to three batches containing 1.5 wt % EGD and variable amount of GLY. These solutions were used to manufacture porous CPP bone substitute samples, which were characterized physically to determine shrinkage, porosity, microstructure, and compression strength. The 12.5 wt % GLY, 1.5 wt % EGD solution resulted in the highest mechanical strength after sintering (34.6 ± 5.8 MPa), illustrating similar mechanical properties when compared to previous studies (33.9 ± 6.3 MPa) of additively manufactured CPP bone substitutes using a commercially available binder. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 828-835, 2017. © 2016 Wiley Periodicals, Inc.

  18. Reliability of high- and low-field magnetic resonance imaging systems for detection of cartilage and bone lesions in the equine cadaver fetlock.

    PubMed

    Smith, M A; Dyson, S J; Murray, R C

    2012-11-01

    To determine the reliability of 2 magnetic resonance imaging (MRI) systems for detection of cartilage and bone lesions of the equine fetlock. To test the hypotheses that lesions in cartilage, subchondral and trabecular bone of the equine fetlock verified using histopathology can be detected on high- and low-field MR images with a low incidence of false positive or negative results; that low-field images are less reliable than high-field images for detection of cartilage lesions; and that combining results of interpretation from different pulse sequences increases detection of cartilage lesions. High- and low-field MRI was performed on 19 limbs from horses identified with fetlock lameness prior to euthanasia. Grading systems were used to score cartilage, subchondral and trabecular bone on MR images and histopathology. Sensitivity and specificity were calculated for images. High-field T2*-weighted gradient echo (T2*W-GRE) and low-field T2-weighted fast spin echo (T2W-FSE) images had high sensitivity but low specificity for detection of cartilage lesions. All pulse sequences had high sensitivity and low-moderate specificity for detection of subchondral bone lesions and moderate sensitivity and moderate-high specificity for detection of trabecular bone lesions (histopathology as gold standard). For detection of lesions of trabecular bone low-field T2*W-GRE images had higher sensitivity and specificity than T2W-FSE images. There is high likelihood of false positive results using high- or low-field MRI for detection of cartilage lesions and moderate-high likelihood of false positive results for detection of subchondral bone lesions compared with histopathology. Combining results of interpretation from different pulse sequences did not increase detection of cartilage lesions. MRI interpretation of trabecular bone was more reliable than cartilage or subchondral bone in both MR systems. Independent interpretation of a variety of pulse sequences may maximise detection of cartilage and bone lesions in the fetlock. Clinicians should be aware of potential false positive and negative results. © 2012 EVJ Ltd.

  19. [Bone Cell Biology Assessed by Microscopic Approach. Assessment of bone quality using Raman and infrared spectroscopy].

    PubMed

    Suda, Hiromi Kimura

    2015-10-01

    Bone quality, which was defined as "the sum total of characteristics of the bone that influence the bone's resistance to fracture" at the National Institute of Health (NIH) conference in 2001, contributes to bone strength in combination with bone mass. Bone mass is often measured as bone mineral density (BMD) and, consequently, can be quantified easily. On the other hand, bone quality is composed of several factors such as bone structure, bone matrix, calcification degree, microdamage, and bone turnover, and it is not easy to obtain data for the various factors. Therefore, it is difficult to quantify bone quality. We are eager to develop new measurement methods for bone quality that make it possible to determine several factors associated with bone quality at the same time. Analytic methods based on Raman and FTIR spectroscopy have attracted a good deal of attention as they can provide a good deal of chemical information about hydroxyapatite and collagen, which are the main components of bone. A lot of studies on bone quality using Raman and FTIR imaging have been reported following the development of the two imaging systems. Thus, both Raman and FTIR imaging appear to be promising new bone morphometric techniques.

  20. Image acquisitions, processing and analysis in the process of obtaining characteristics of horse navicular bone

    NASA Astrophysics Data System (ADS)

    Zaborowicz, M.; Włodarek, J.; Przybylak, A.; Przybył, K.; Wojcieszak, D.; Czekała, W.; Ludwiczak, A.; Boniecki, P.; Koszela, K.; Przybył, J.; Skwarcz, J.

    2015-07-01

    The aim of this study was investigate the possibility of using methods of computer image analysis for the assessment and classification of morphological variability and the state of health of horse navicular bone. Assumption was that the classification based on information contained in the graphical form two-dimensional digital images of navicular bone and information of horse health. The first step in the research was define the classes of analyzed bones, and then using methods of computer image analysis for obtaining characteristics from these images. This characteristics were correlated with data concerning the animal, such as: side of hooves, number of navicular syndrome (scale 0-3), type, sex, age, weight, information about lace, information about heel. This paper shows the introduction to the study of use the neural image analysis in the diagnosis of navicular bone syndrome. Prepared method can provide an introduction to the study of non-invasive way to assess the condition of the horse navicular bone.

  1. Technique for bone volume measurement from human femur head samples by classification of micro-CT image histograms.

    PubMed

    Marinozzi, Franco; Bini, Fabiano; Marinozzi, Andrea; Zuppante, Francesca; De Paolis, Annalisa; Pecci, Raffaella; Bedini, Rossella

    2013-01-01

    Micro-CT analysis is a powerful technique for a non-invasive evaluation of the morphometric parameters of trabecular bone samples. This elaboration requires a previous binarization of the images. A problem which arises from the binarization process is the partial volume artifact. Voxels at the external surface of the sample can contain both bone and air so thresholding operates an incorrect estimation of volume occupied by the two materials. The aim of this study is the extraction of bone volumetric information directly from the image histograms, by fitting them with a suitable set of functions. Nineteen trabecular bone samples were extracted from femoral heads of eight patients subject to a hip arthroplasty surgery. Trabecular bone samples were acquired using micro-CT Scanner. Hystograms of the acquired images were computed and fitted by Gaussian-like functions accounting for: a) gray levels produced by the bone x-ray absorption, b) the portions of the image occupied by air and c) voxels that contain a mixture of bone and air. This latter contribution can be considered such as an estimation of the partial volume effect. The comparison of the proposed technique to the bone volumes measured by a reference instrument such as by a helium pycnometer show the method as a good way for an accurate bone volume calculation of trabecular bone samples.

  2. Agent-Based Deterministic Modeling of the Bone Marrow Homeostasis.

    PubMed

    Kurhekar, Manish; Deshpande, Umesh

    2016-01-01

    Modeling of stem cells not only describes but also predicts how a stem cell's environment can control its fate. The first stem cell populations discovered were hematopoietic stem cells (HSCs). In this paper, we present a deterministic model of bone marrow (that hosts HSCs) that is consistent with several of the qualitative biological observations. This model incorporates stem cell death (apoptosis) after a certain number of cell divisions and also demonstrates that a single HSC can potentially populate the entire bone marrow. It also demonstrates that there is a production of sufficient number of differentiated cells (RBCs, WBCs, etc.). We prove that our model of bone marrow is biologically consistent and it overcomes the biological feasibility limitations of previously reported models. The major contribution of our model is the flexibility it allows in choosing model parameters which permits several different simulations to be carried out in silico without affecting the homeostatic properties of the model. We have also performed agent-based simulation of the model of bone marrow system proposed in this paper. We have also included parameter details and the results obtained from the simulation. The program of the agent-based simulation of the proposed model is made available on a publicly accessible website.

  3. Practical use of imaging technique for management of bone and soft tissue tumors.

    PubMed

    Miwa, Shinji; Otsuka, Takanobu

    2017-05-01

    Imaging modalities including radiography, computed tomography (CT), and magnetic resonance imaging (MRI) are necessary for the diagnosis of bone and soft tissue tumors. The history of imaging began with the discovery of X-rays in the 19th century. The development of CT, MRI, ultrasonography, and positron emission tomography (PET) have improved the management of bone and soft tissue tumors. X-ray imaging and CT scans enable the evaluation of bone destruction, periosteal reaction, sclerotic changes in lesions, condition of cortical bone, and ossification. MRI enables the assessment of tissue characteristics, tumor extent, and the reactive areas. Functional imaging modalities including 201 thallium ( 201 Tl) scintigraphy can be used to differentiate benign lesions from malignant lesions and to assess chemotherapeutic effects. Real-time assessment of soft tissue tumors by ultrasonography enables accurate and safe performance of surgery and biopsy. This article describes useful imaging modalities and characteristic findings in the management of bone and soft tissue tumors. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  4. Bisphosphonates as a Countermeasure to Space Flight Induced Bone Loss

    NASA Technical Reports Server (NTRS)

    LeBlanc, Adrian; Matsumoto, Toshio; Jones, Jeffrey A.; Shapiro, Jay; Lang, Thomas F.; Smith, Scott M.; Shackelford, Linda C.; Sibonga, Jean; Evans, Harlan; Spector, Elisabeth; hide

    2009-01-01

    Bisphosphonates as a Countermeasure to Space Flight Induced Bone Loss (Bisphosphonates) will determine whether antiresorptive agents, in conjunction with the routine inflight exercise program, will protect ISS crewmembers from the regional decreases in bone mineral density documented on previous ISS missions.

  5. Accuracy of CT-based attenuation correction in PET/CT bone imaging

    NASA Astrophysics Data System (ADS)

    Abella, Monica; Alessio, Adam M.; Mankoff, David A.; MacDonald, Lawrence R.; Vaquero, Juan Jose; Desco, Manuel; Kinahan, Paul E.

    2012-05-01

    We evaluate the accuracy of scaling CT images for attenuation correction of PET data measured for bone. While the standard tri-linear approach has been well tested for soft tissues, the impact of CT-based attenuation correction on the accuracy of tracer uptake in bone has not been reported in detail. We measured the accuracy of attenuation coefficients of bovine femur segments and patient data using a tri-linear method applied to CT images obtained at different kVp settings. Attenuation values at 511 keV obtained with a 68Ga/68Ge transmission scan were used as a reference standard. The impact of inaccurate attenuation images on PET standardized uptake values (SUVs) was then evaluated using simulated emission images and emission images from five patients with elevated levels of FDG uptake in bone at disease sites. The CT-based linear attenuation images of the bovine femur segments underestimated the true values by 2.9 ± 0.3% for cancellous bone regardless of kVp. For compact bone the underestimation ranged from 1.3% at 140 kVp to 14.1% at 80 kVp. In the patient scans at 140 kVp the underestimation was approximately 2% averaged over all bony regions. The sensitivity analysis indicated that errors in PET SUVs in bone are approximately proportional to errors in the estimated attenuation coefficients for the same regions. The variability in SUV bias also increased approximately linearly with the error in linear attenuation coefficients. These results suggest that bias in bone uptake SUVs of PET tracers ranges from 2.4% to 5.9% when using CT scans at 140 and 120 kVp for attenuation correction. Lower kVp scans have the potential for considerably more error in dense bone. This bias is present in any PET tracer with bone uptake but may be clinically insignificant for many imaging tasks. However, errors from CT-based attenuation correction methods should be carefully evaluated if quantitation of tracer uptake in bone is important.

  6. The Influence of Reconstruction Kernel on Bone Mineral and Strength Estimates Using Quantitative Computed Tomography and Finite Element Analysis.

    PubMed

    Michalski, Andrew S; Edwards, W Brent; Boyd, Steven K

    2017-10-17

    Quantitative computed tomography has been posed as an alternative imaging modality to investigate osteoporosis. We examined the influence of computed tomography convolution back-projection reconstruction kernels on the analysis of bone quantity and estimated mechanical properties in the proximal femur. Eighteen computed tomography scans of the proximal femur were reconstructed using both a standard smoothing reconstruction kernel and a bone-sharpening reconstruction kernel. Following phantom-based density calibration, we calculated typical bone quantity outcomes of integral volumetric bone mineral density, bone volume, and bone mineral content. Additionally, we performed finite element analysis in a standard sideways fall on the hip loading configuration. Significant differences for all outcome measures, except integral bone volume, were observed between the 2 reconstruction kernels. Volumetric bone mineral density measured using images reconstructed by the standard kernel was significantly lower (6.7%, p < 0.001) when compared with images reconstructed using the bone-sharpening kernel. Furthermore, the whole-bone stiffness and the failure load measured in images reconstructed by the standard kernel were significantly lower (16.5%, p < 0.001, and 18.2%, p < 0.001, respectively) when compared with the image reconstructed by the bone-sharpening kernel. These data suggest that for future quantitative computed tomography studies, a standardized reconstruction kernel will maximize reproducibility, independent of the use of a quantitative calibration phantom. Copyright © 2017 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  7. Hyperthermia in bone generated with MR imaging-controlled focused ultrasound: control strategies and drug delivery.

    PubMed

    Staruch, Robert; Chopra, Rajiv; Hynynen, Kullervo

    2012-04-01

    To evaluate the feasibility of achieving image-guided drug delivery in bone by using magnetic resonance (MR) imaging-controlled focused ultrasound hyperthermia and temperature-sensitive liposomes. Experiments were approved by the institutional animal care committee. Hyperthermia (43°C, 20 minutes) was generated in 10-mm-diameter regions at a muscle-bone interface in nine rabbit thighs by using focused ultrasound under closed-loop temperature control with MR thermometry. Thermosensitive liposomal doxorubicin was administered systemically during heating. Heating uniformity and drug delivery were evaluated for control strategies with the temperature control image centered 10 mm (four rabbits) or 0 mm (five rabbits) from the bone. Simulations estimated temperature elevations in bone. Drug delivery was quantified by using the fluorescence of doxorubicin extracted from bone marrow and muscle and was compared between treated and untreated thighs by using the one-sided Wilcoxon signed rank test. With ultrasound focus and MR temperature control plane 0 mm and 10 mm from the bone interface, average target region temperatures were 43.1°C and 43.3°C, respectively; numerically estimated bone temperatures were 46.8°C and 78.1°C. The 10-mm offset resulted in thermal ablation; numerically estimated muscle temperature was 66.1°C at the bone interface. Significant increases in doxorubicin concentration occurred in heated versus unheated marrow (8.2-fold, P = .002) and muscle (16.8-fold, P = .002). Enhancement occurred for 0- and 10-mm offsets, which suggests localized drug delivery in bone is possible with both hyperthermia and thermal ablation. MR imaging-controlled focused ultrasound can achieve localized hyperthermia in bone for image-guided drug delivery in bone with temperature-sensitive drug carriers. © RSNA, 2012.

  8. Well-Designed Bone-Seeking Radiolabeled Compounds for Diagnosis and Therapy of Bone Metastases

    PubMed Central

    2015-01-01

    Bone-seeking radiopharmaceuticals are frequently used as diagnostic agents in nuclear medicine, because they can detect bone disorders before anatomical changes occur. Furthermore, their effectiveness in the palliation of metastatic bone cancer pain has been demonstrated in the clinical setting. With the aim of developing superior bone-seeking radiopharmaceuticals, many compounds have been designed, prepared, and evaluated. Here, several well-designed bone-seeking compounds used for diagnostic and therapeutic use, having the concept of radiometal complexes conjugated to carrier molecules to bone, are reviewed. PMID:26075256

  9. High resolution bone mineral densitometry with a gamma camera

    NASA Technical Reports Server (NTRS)

    Leblanc, A.; Evans, H.; Jhingran, S.; Johnson, P.

    1983-01-01

    A technique by which the regional distribution of bone mineral can be determined in bone samples from small animals is described. The technique employs an Anger camera interfaced to a medical computer. High resolution imaging is possible by producing magnified images of the bone samples. Regional densitometry of femurs from oophorectomised and bone mineral loss.

  10. Image analysis for dental bone quality assessment using CBCT imaging

    NASA Astrophysics Data System (ADS)

    Suprijanto; Epsilawati, L.; Hajarini, M. S.; Juliastuti, E.; Susanti, H.

    2016-03-01

    Cone beam computerized tomography (CBCT) is one of X-ray imaging modalities that are applied in dentistry. Its modality can visualize the oral region in 3D and in a high resolution. CBCT jaw image has potential information for the assessment of bone quality that often used for pre-operative implant planning. We propose comparison method based on normalized histogram (NH) on the region of inter-dental septum and premolar teeth. Furthermore, the NH characteristic from normal and abnormal bone condition are compared and analyzed. Four test parameters are proposed, i.e. the difference between teeth and bone average intensity (s), the ratio between bone and teeth average intensity (n) of NH, the difference between teeth and bone peak value (Δp) of NH, and the ratio between teeth and bone of NH range (r). The results showed that n, s, and Δp have potential to be the classification parameters of dental calcium density.

  11. Studying leukemia metastasis and therapy monitoring by in vivo imaging and flow cytometer

    NASA Astrophysics Data System (ADS)

    Wei, Xunbin; Li, Yan; Tan, Yuan; Zhang, Li; Chen, Yun; Liu, Guangda; Chen, Tong; Gu, Zhenqin; Wang, Guiying; Zhou, Zenghui; Wang, Li; Wang, Chen

    2007-11-01

    Cytotoxic chemotherapy agents are the foundation of current leukemia therapy. For a large number of adult and elderly patients, however, treatment options are poor. These patients may suffer from disease that is resistant to conventional chemotherapy or may not be candidates for curative therapies because of advanced age or poor medical conditions. To control disease in these patients, new therapies must be developed that are selectively targeted to unique characteristics of leukemic cell growth and metastasis. A large body of elegant work in the field of immunology has demonstrated the mechanisms whereby leukocytes traffic to specific sites within the body. Vascular cell adhesion molecules and chemicalattractants combine to direct white blood cells to appropriate environments. Although it has been hypothesized that leukemic white blood cells home to hematopoietic organs using mechanisms similar to those of their benign leukocyte counterparts, detailed study of leukemic cell transit through bone marrow has yet to be undertaken. We develop the "in vivo microscopy" to study the mechanisms that govern leukemic cell spread through the bone marrow microenvironment in vivo in real-time confocal infrared fluorescence imaging. A recently developed "in vivo flow cytometer" and optical imaging are used to assess leukemic cell spreading and the circulation kinetics of leukemic cells. A real- time quantitative monitoring of circulating leukemic cells by the in vivo flow cytometer will be useful to assess the effectiveness of the potential therapeutic interventions.

  12. Musculoskeletal Imaging Findings of Hematologic Malignancies.

    PubMed

    Navarro, Shannon M; Matcuk, George R; Patel, Dakshesh B; Skalski, Matthew; White, Eric A; Tomasian, Anderanik; Schein, Aaron J

    2017-01-01

    Hematologic malignancies comprise a set of prevalent yet clinically diverse diseases that can affect every organ system. Because blood components originate in bone marrow, it is no surprise that bone marrow is a common location for both primary and metastatic hematologic neoplasms. Findings of hematologic malignancy can be seen with most imaging modalities including radiography, computed tomography (CT), technetium 99m ( 99m Tc) methylene diphosphonate (MDP) bone scanning, fluorine 18 ( 18 F) fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT, and magnetic resonance (MR) imaging. Because of the diversity of imaging appearances and clinical behavior of this spectrum of disease, diagnosis can be challenging, and profound understanding of the underlying pathophysiologic changes and current treatment modalities can be daunting. The appearance of normal bone marrow at MR imaging and FDG PET/CT is also varied due to dynamic compositional changes with normal aging and in response to hematologic demand or treatment, which can lead to false-positive interpretation of imaging studies. In this article, the authors review the normal maturation and imaging appearance of bone marrow. Focusing on lymphoma, leukemia, and multiple myeloma, they present the spectrum of imaging findings of hematologic malignancy affecting the musculoskeletal system and the current imaging tools available to the radiologist. They discuss the imaging findings of posttreatment bone marrow and review commonly used staging systems and consensus recommendations for appropriate imaging for staging, management, and assessment of clinical remission. © RSNA, 2017.

  13. Classification of micro-CT images using 3D characterization of bone canal patterns in human osteogenesis imperfecta

    NASA Astrophysics Data System (ADS)

    Abidin, Anas Z.; Jameson, John; Molthen, Robert; Wismüller, Axel

    2017-03-01

    Few studies have analyzed the microstructural properties of bone in cases of Osteogenenis Imperfecta (OI), or `brittle bone disease'. Current approaches mainly focus on bone mineral density measurements as an indirect indicator of bone strength and quality. It has been shown that bone strength would depend not only on composition but also structural organization. This study aims to characterize 3D structure of the cortical bone in high-resolution micro CT images. A total of 40 bone fragments from 28 subjects (13 with OI and 15 healthy controls) were imaged using micro tomography using a synchrotron light source (SRµCT). Minkowski functionals - volume, surface, curvature, and Euler characteristics - describing the topological organization of the bone were computed from the images. The features were used in a machine learning task to classify between healthy and OI bone. The best classification performance (mean AUC - 0.96) was achieved with a combined 4-dimensional feature of all Minkowski functionals. Individually, the best feature performance was seen using curvature (mean AUC - 0.85), which characterizes the edges within a binary object. These results show that quantitative analysis of cortical bone microstructure, in a computer-aided diagnostics framework, can be used to distinguish between healthy and OI bone with high accuracy.

  14. [Optimizing histological image data for 3-D reconstruction using an image equalizer].

    PubMed

    Roth, A; Melzer, K; Annacker, K; Lipinski, H G; Wiemann, M; Bingmann, D

    2002-01-01

    Bone cells form a wired network within the extracellular bone matrix. To analyse this complex 3D structure, we employed a confocal fluorescence imaging procedure to visualize live bone cells within their native surrounding. By means of newly developed image processing software, the "Image-Equalizer", we aimed to enhanced the contrast and eliminize artefacts in such a way that cell bodies as well as fine interconnecting processes were visible.

  15. Application of synchrotron radiation computed microtomography for quantification of bone microstructure in human and rat bones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parreiras Nogueira, Liebert; Barroso, Regina Cely; Pereira de Almeida, Andre

    2012-05-17

    This work aims to evaluate histomorphometric quantification by synchrotron radiation computed microto-mography in bones of human and rat specimens. Bones specimens are classified as normal and pathological (for human samples) and irradiated and non-irradiated samples (for rat ones). Human bones are specimens which were affected by some injury, or not. Rat bones are specimens which were irradiated, simulating radiotherapy procedures, or not. Images were obtained on SYRMEP beamline at the Elettra Synchrotron Laboratory in Trieste, Italy. The system generated 14 {mu}m tomographic images. The quantification of bone structures were performed directly by the 3D rendered images using a home-made software.more » Resolution yielded was excellent what facilitate quantification of bone microstructures.« less

  16. Digital hand atlas and computer-aided bone age assessment via the Web

    NASA Astrophysics Data System (ADS)

    Cao, Fei; Huang, H. K.; Pietka, Ewa; Gilsanz, Vicente

    1999-07-01

    A frequently used assessment method of bone age is atlas matching by a radiological examination of a hand image against a reference set of atlas patterns of normal standards. We are in a process of developing a digital hand atlas with a large standard set of normal hand and wrist images that reflect the skeletal maturity, race and sex difference, and current child development. The digital hand atlas will be used for a computer-aided bone age assessment via Web. We have designed and partially implemented a computer-aided diagnostic (CAD) system for Web-based bone age assessment. The system consists of a digital hand atlas, a relational image database and a Web-based user interface. The digital atlas is based on a large standard set of normal hand an wrist images with extracted bone objects and quantitative features. The image database uses a content- based indexing to organize the hand images and their attributes and present to users in a structured way. The Web-based user interface allows users to interact with the hand image database from browsers. Users can use a Web browser to push a clinical hand image to the CAD server for a bone age assessment. Quantitative features on the examined image, which reflect the skeletal maturity, will be extracted and compared with patterns from the atlas database to assess the bone age. The relevant reference imags and the final assessment report will be sent back to the user's browser via Web. The digital atlas will remove the disadvantages of the currently out-of-date one and allow the bone age assessment to be computerized and done conveniently via Web. In this paper, we present the system design and Web-based client-server model for computer-assisted bone age assessment and our initial implementation of the digital atlas database.

  17. The Use of Micro and Nano Particulate Fillers to Modify the Mechanical and Material Properties of Acrylic Bone Cement

    NASA Astrophysics Data System (ADS)

    Slane, Joshua A.

    Acrylic bone cement (polymethyl methacrylate) is widely used in total joint replacements to provide long-term fixation of implants. In essence, bone cement acts as a grout by filling in the voids left between the implant and the patient's bone, forming a mechanical interlock. While bone cement is considered the `gold standard' for implant fixation, issues such as mechanical failure of the cement mantle (aseptic loosening) and the development of prosthetic joint infection (PJI) still plague joint replacement procedures and often necessitate revision arthroplasty. In an effort to address these failures, various modifications are commonly made to bone cement such as mechanical reinforcement with particles/fibers and the addition of antibiotics to mitigate PJI. Despite these attempts, issues such as poor particle interfacial adhesion, inadequate drug release, and the development of multidrug resistant bacteria limit the effectiveness of bone cement modifications. Therefore, the overall goal of this work was to use micro and nanoparticles to enhance the properties of acrylic bone cement, with particular emphasis placed on improving the mechanical properties, cumulative antibiotic release, and antimicrobial properties. An acrylic bone cement (Palacos R) was modified with three types of particles in various loading ratios: mesoporous silica nanoparticles (for mechanical reinforcement), xylitol microparticles (for increased antibiotic release), and silver nanoparticles (as an antimicrobial agent). These particles were used as sole modifications, not in tandem with one another. The resulting cement composites were characterized using a variety of mechanical (macro to nano, fatigue, fracture, and dynamic), imaging, chemical, thermal, biological, and antimicrobial testing techniques. The primary outcomes of this dissertation demonstrate that: (1) mesoporous silica, as used in this work, is a poor reinforcement phase for acrylic bone cement, (2) xylitol can significantly increase the cumulative antibiotic release from acrylic cement, and (3) silver nanoparticles are a potential alternative to traditional antibiotics in cement, such as gentamicin.

  18. Scaffold-based Anti-infection Strategies in Bone Repair

    PubMed Central

    Johnson, Christopher T.; García, Andrés J.

    2014-01-01

    Bone fractures and non-union defects often require surgical intervention where biomaterials are used to correct the defect, and approximately 10% of these procedures are compromised by bacterial infection. Currently, treatment options are limited to sustained, high doses of antibiotics and surgical debridement of affected tissue, leaving a significant, unmet need for the development of therapies to combat device-associated biofilm and infections. Engineering implants to prevent infection is a desirable material characteristic. Tissue engineered scaffolds for bone repair provide a means to both regenerate bone and serve as a base for adding antimicrobial agents. Incorporating anti-infection properties into regenerative medicine therapies could improve clinical outcomes and reduce the morbidity and mortality associated with biomaterial implant-associated infections. This review focuses on current animal models and technologies available to assess bone repair in the context of infection, antimicrobial agents to fight infection, the current state of antimicrobial scaffolds, and future directions in the field. PMID:25476163

  19. From Roentgen to magnetic resonance imaging: the history of medical imaging.

    PubMed

    Scatliff, James H; Morris, Peter J

    2014-01-01

    Medical imaging has advanced in remarkable ways since the discovery of x-rays 120 years ago. Today's radiologists can image the human body in intricate detail using computed tomography, magnetic resonance imaging, positron emission tomography, ultrasound, and various other modalities. Such technology allows for improved screening, diagnosis, and monitoring of disease, but it also comes with risks. Many imaging modalities expose patients to ionizing radiation, which potentially increases their risk of developing cancer in the future, and imaging may also be associated with possible allergic reactions or risks related to the use of intravenous contrast agents. In addition, the financial costs of imaging are taxing our health care system, and incidental findings can trigger anxiety and further testing. This issue of the NCMJ addresses the pros and cons of medical imaging and discusses in detail the following uses of medical imaging: screening for breast cancer with mammography, screening for osteoporosis and monitoring of bone mineral density with dual-energy x-ray absorptiometry, screening for congenital hip dysplasia in infants with ultrasound, and evaluation of various heart conditions with cardiac imaging. Together, these articles show the challenges that must be met as we seek to harness the power of today's imaging technologies, as well as the potential benefits that can be achieved when these hurdles are overcome.

  20. Quantitative Characterizations of Ultrashort Echo (UTE) Images for Supporting Air-Bone Separation in the Head

    PubMed Central

    Hsu, Shu-Hui; Cao, Yue; Lawrence, Theodore S.; Tsien, Christina; Feng, Mary; Grodzki, David M.; Balter, James M.

    2015-01-01

    Accurate separation of air and bone is critical for creating synthetic CT from MRI to support Radiation Oncology workflow. This study compares two different ultrashort echo-time sequences in the separation of air from bone, and evaluates post-processing methods that correct intensity nonuniformity of images and account for intensity gradients at tissue boundaries to improve this discriminatory power. CT and MRI scans were acquired on 12 patients under an institution review board-approved prospective protocol. The two MRI sequences tested were ultra-short TE imaging using 3D radial acquisition (UTE), and using pointwise encoding time reduction with radial acquisition (PETRA). Gradient nonlinearity correction was applied to both MR image volumes after acquisition. MRI intensity nonuniformity was corrected by vendor-provided normalization methods, and then further corrected using the N4itk algorithm. To overcome the intensity-gradient at air-tissue boundaries, spatial dilations, from 0 to 4 mm, were applied to threshold-defined air regions from MR images. Receiver operating characteristic (ROC) analyses, by comparing predicted (defined by MR images) versus “true” regions of air and bone (defined by CT images), were performed with and without residual bias field correction and local spatial expansion. The post-processing corrections increased the areas under the ROC curves (AUC) from 0.944 ± 0.012 to 0.976 ± 0.003 for UTE images, and from 0.850 ± 0.022 to 0.887 ± 0.012 for PETRA images, compared to without corrections. When expanding the threshold-defined air volumes, as expected, sensitivity of air identification decreased with an increase in specificity of bone discrimination, but in a non-linear fashion. A 1-mm air mask expansion yielded AUC increases of 1% and 4% for UTE and PETRA images, respectively. UTE images had significantly greater discriminatory power in separating air from bone than PETRA images. Post-processing strategies improved the discriminatory power of air from bone for both UTE and PETRA images, and reduced the difference between the two imaging sequences. Both postprocessed UTE and PETRA images demonstrated sufficient power to discriminate air from bone to support synthetic CT generation from MRI data. PMID:25776205

  1. Bone remodeling after MR imaging-guided high-intensity focused ultrasound ablation: evaluation with MR imaging, CT, Na(18)F-PET, and histopathologic examination in a swine model.

    PubMed

    Bucknor, Matthew D; Rieke, Viola; Seo, Youngho; Horvai, Andrew E; Hawkins, Randall A; Majumdar, Sharmila; Link, Thomas M; Saeed, Maythem

    2015-02-01

    To serially monitor bone remodeling in the swine femur after magnetic resonance (MR) imaging-guided high-intensity focused ultrasound (HIFU) ablation with MR imaging, computed tomography (CT), sodium fluorine 18 (Na(18)F)-positron emission tomography (PET), and histopathologic examination, as a function of sonication energy. Experimental procedures received approval from the local institutional animal care and use committee. MR imaging-guided HIFU was used to create distal and proximal ablations in the right femurs of eight pigs. The energy used at the distal target was higher (mean, 419 J; range, 390-440 J) than that used at the proximal target (mean, 324 J; range, 300-360 J). Imaging was performed before and after ablation with 3.0-T MR imaging and 64-section CT. Animals were reevaluated at 3 and 6 weeks with MR imaging (n = 8), CT (n = 8), Na(18)F-PET (n = 4), and histopathologic examination (n = 4). Three-dimensional ablation lengths were measured on contrast material-enhanced MR images, and bone remodeling in the cortex was measured on CT images. Ablation sizes at MR imaging 3 and 6 weeks after MR imaging-guided HIFU ablation were similar between proximal (low-energy) and distal (high-energy) lesions (average, 8.7 × 21.9 × 16.4 mm). However, distal ablation lesions (n = 8) demonstrated evidence of subperiosteal new bone formation at CT, with a subtle focus of new ossification at 3 weeks and a larger focus of ossification at 6 weeks. New bone formation was associated with increased uptake at Na(18)F-PET in three of four animals; this was confirmed at histopathologic examination in four of four animals. MR imaging-guided HIFU ablation of bone may result in progressive remodeling, with both subcortical necrosis and subperiosteal new bone formation. This may be related to the use of high energies. MR imaging, CT, and PET are suitable noninvasive techniques to monitor bone remodeling after MR imaging-guided HIFU ablation. © RSNA, 2014.

  2. Thermographic image analysis as a pre-screening tool for the detection of canine bone cancer

    NASA Astrophysics Data System (ADS)

    Subedi, Samrat; Umbaugh, Scott E.; Fu, Jiyuan; Marino, Dominic J.; Loughin, Catherine A.; Sackman, Joseph

    2014-09-01

    Canine bone cancer is a common type of cancer that grows fast and may be fatal. It usually appears in the limbs which is called "appendicular bone cancer." Diagnostic imaging methods such as X-rays, computed tomography (CT scan), and magnetic resonance imaging (MRI) are more common methods in bone cancer detection than invasive physical examination such as biopsy. These imaging methods have some disadvantages; including high expense, high dose of radiation, and keeping the patient (canine) motionless during the imaging procedures. This project study identifies the possibility of using thermographic images as a pre-screening tool for diagnosis of bone cancer in dogs. Experiments were performed with thermographic images from 40 dogs exhibiting the disease bone cancer. Experiments were performed with color normalization using temperature data provided by the Long Island Veterinary Specialists. The images were first divided into four groups according to body parts (Elbow/Knee, Full Limb, Shoulder/Hip and Wrist). Each of the groups was then further divided into three sub-groups according to views (Anterior, Lateral and Posterior). Thermographic pattern of normal and abnormal dogs were analyzed using feature extraction and pattern classification tools. Texture features, spectral feature and histogram features were extracted from the thermograms and were used for pattern classification. The best classification success rate in canine bone cancer detection is 90% with sensitivity of 100% and specificity of 80% produced by anterior view of full-limb region with nearest neighbor classification method and normRGB-lum color normalization method. Our results show that it is possible to use thermographic imaging as a pre-screening tool for detection of canine bone cancer.

  3. Bone scaffolds with homogeneous and discrete gradient mechanical properties.

    PubMed

    Jelen, C; Mattei, G; Montemurro, F; De Maria, C; Mattioli-Belmonte, M; Vozzi, G

    2013-01-01

    Bone TE uses a scaffold either to induce bone formation from surrounding tissue or to act as a carrier or template for implanted bone cells or other agents. We prepared different bone tissue constructs based on collagen, gelatin and hydroxyapatite using genipin as cross-linking agent. The fabricated construct did not present a release neither of collagen neither of genipin over its toxic level in the surrounding aqueous environment. Each scaffold has been mechanically characterized with compression, swelling and creep tests, and their respective viscoelastic mechanical models were derived. Mechanical characterization showed a practically elastic behavior of all samples and that compressive elastic modulus basically increases as content of HA increases, and it is strongly dependent on porosity and water content. Moreover, by considering that gradients in cellular and extracellular architecture as well as in mechanical properties are readily apparent in native tissues, we developed discrete functionally graded scaffolds (discrete FGSs) in order to mimic the graded structure of bone tissue. These new structures were mechanically characterized showing a marked anisotropy as the native bone tissue. Results obtained have shown FGSs could represent valid bone substitutes. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Dose and diagnostic image quality in digital tomosynthesis imaging of facial bones in pediatrics

    NASA Astrophysics Data System (ADS)

    King, J. M.; Hickling, S.; Elbakri, I. A.; Reed, M.; Wrogemann, J.

    2011-03-01

    The purpose of this study was to evaluate the use of digital tomosynthesis (DT) for pediatric facial bone imaging. We compared the eye lens dose and diagnostic image quality of DT facial bone exams relative to digital radiography (DR) and computed tomography (CT), and investigated whether we could modify our current DT imaging protocol to reduce patient dose while maintaining sufficient diagnostic image quality. We measured the dose to the eye lens for all three modalities using high-sensitivity thermoluminescent dosimeters (TLDs) and an anthropomorphic skull phantom. To assess the diagnostic image quality of DT compared to the corresponding DR and CT images, we performed an observer study where the visibility of anatomical structures in the DT phantom images were rated on a four-point scale. We then acquired DT images at lower doses and had radiologists indicate whether the visibility of each structure was adequate for diagnostic purposes. For typical facial bone exams, we measured eye lens doses of 0.1-0.4 mGy for DR, 0.3-3.7 mGy for DT, and 26 mGy for CT. In general, facial bone structures were visualized better with DT then DR, and the majority of structures were visualized well enough to avoid the need for CT. DT imaging provides high quality diagnostic images of the facial bones while delivering significantly lower doses to the lens of the eye compared to CT. In addition, we found that by adjusting the imaging parameters, the DT effective dose can be reduced by up to 50% while maintaining sufficient image quality.

  5. Avascular necrosis (AVN) of the proximal fragment in scaphoid nonunion: is intravenous contrast agent necessary in MRI?

    PubMed

    Schmitt, R; Christopoulos, G; Wagner, M; Krimmer, H; Fodor, S; van Schoonhoven, J; Prommersberger, K J

    2011-02-01

    The purpose of this prospective study is to assess the diagnostic value of intravenously applied contrast agent for diagnosing osteonecrosis of the proximal fragment in scaphoid nonunion, and to compare the imaging results with intraoperative findings. In 88 patients (7 women, 81 men) suffering from symptomatic scaphoid nonunion, preoperative MRI was performed (coronal PD-w FSE fs, sagittal-oblique T1-w SE nonenhanced and T1-w SE fs contrast-enhanced, sagittal T2*-w GRE). MRI interpretation was based on the intensity of contrast enhancement: 0 = none, 1 = focal, 2 = diffuse. Intraoperatively, the osseous viability was scored by means of bleeding points on the osteotomy site of the proximal scaphoid fragment: 0=absent, 1 = moderate, 2 = good. Intraoperatively, 17 necrotic, 29 compromised, and 42 normal proximal fragments were found. In nonenhanced MRI, bone viability was judged necrotic in 1 patient, compromised in 20 patients, and unaffected in 67 patients. Contrast-enhanced MRI revealed 14 necrotic, 21 compromised, and 53 normal proximal fragments. Judging surgical findings as the standard of reference, statistical analysis for nonenhanced MRI was: sensitivity 6.3%, specificity 100%, positive PV 100%, negative PV 82.6%, and accuracy 82.9%; statistics for contrast-enhanced MRI was: sensitivity 76.5%, specificity 98.6%, positive PV 92.9%, negative PV 94.6%, and accuracy 94.3%. Sensitivity for detecting avascular proximal fragments was significantly better (p<0.001) in contrast-enhanced MRI in comparison to nonenhanced MRI. Viability of the proximal fragment in scaphoid nonunion can be significantly better assessed with the use of contrast-enhanced MRI as compared to nonenhanced MRI. Bone marrow edema is an inferior indicator of osteonecrosis. Application of intravenous gadolinium is recommended for imaging scaphoid nonunion. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  6. Kinetochore identification in micronuclei in mouse bone-marrow erythrocytes: an assay for the detection of aneuploidy-inducing agents.

    PubMed

    Gudi, R; Sandhu, S S; Athwal, R S

    1990-10-01

    An in vivo micronucleus assay using mouse bone marrow for identifying the ability of chemicals to induce aneuploidy and/or chromosome breaks is described. Micronucleus formation in bone-marrow erythrocytes of mice is commonly used as an index for evaluating the clastogenicity of environmental agents. However, micronuclei may also originate from intact lagging chromosomes resulting from the effect of aneuploidy-inducing agents. We have used immunofluorescent staining using anti-kinetochore antibodies to classify micronuclei for the presence or absence of kinetochores. Micronuclei positive for kinetochores are assumed to contain intact chromosomes and result from induced aneuploidy; while those negative for kinetochores contain acentric chromosomal fragments and originate from clastogenic events. The assay was evaluated using X-irradiation (a known clastogen) and vincristine sulfate (an aneuploidy-inducing agent). A dose-related response for the induction of micronuclei was observed for both agents. Micronuclei induced by X-irradiation were negative for kinetochores while the majority of the micronuclei resulting from vincristine treatment contained kinetochores. Thus, the micronucleus assay in combination with immunofluorescent staining for kinetochores may provide a useful method to simultaneously assess the ability of chemicals to induce aneuploidy and/or chromosome breaks.

  7. False-positive diagnosis of disease progression by magnetic resonance imaging for response assessment in prostate cancer with bone metastases: A case report and review of the pitfalls of images in the literature

    PubMed Central

    YU, YI-SHAN; LI, WAN-HU; LI, MING-HUAN; MENG, XUE; KONG, LI; YU, JIN-MING

    2015-01-01

    Bone metastases are common in prostate cancer. However, differentiating neoplastic from non-neoplastic alterations of bone on images is challenging. In the present report, a rare case of bone marrow reconversion on magnetic resonance imaging (MRI) assessment, which may lead to a false-positive diagnosis of disease progression of bone metastases in hormone-resistant prostate cancer, is presented. Furthermore, a review of the literature regarding the pitfalls of images for response assessment, including the ‘flare’ phenomenon on bone scintigraphy, computed tomography (CT), positron emission tomography/CT and marrow reconversion on MRI is also provided. These inaccuracies, which may lead to a premature termination of an efficacious treatment, should be carefully considered by the radiologists and oncologists involved in clinical trials. The case reported in the present study showed how to assess the early therapeutic response and select the appropriate treatment for the patient when these pitfalls are encountered on clinical images. PMID:26788174

  8. Radionuclide imaging of bone marrow disorders

    PubMed Central

    Agool, Ali; Glaudemans, Andor W. J. M.; Boersma, Hendrikus H.; Dierckx, Rudi A. J. O.; Vellenga, Edo

    2010-01-01

    Noninvasive imaging techniques have been used in the past for visualization the functional activity of the bone marrow compartment. Imaging with radiolabelled compounds may allow different bone marrow disorders to be distinguished. These imaging techniques, almost all of which use radionuclide-labelled tracers, such as 99mTc-nanocolloid, 99mTc-sulphur colloid, 111In-chloride, and radiolabelled white blood cells, have been used in nuclear medicine for several decades. With these techniques three separate compartments can be recognized including the reticuloendothelial system, the erythroid compartment and the myeloid compartment. Recent developments in research and the clinical use of PET tracers have made possible the analysis of additional properties such as cellular metabolism and proliferative activity, using 18F-FDG and 18F-FLT. These tracers may lead to better quantification and targeting of different cell systems in the bone marrow. In this review the imaging of different bone marrow targets with radionuclides including PET tracers in various bone marrow diseases are discussed. PMID:20625724

  9. Synchrotron μCT imaging of bone, titanium implants and bone substitutes - a systematic review of the literature.

    PubMed

    Neldam, Camilla Albeck; Pinholt, Else Marie

    2014-09-01

    Today X-ray micro computer tomography (μCT) imaging is used to investigate bone microarchitecture. μCT imaging is obtained by polychromatic X-ray beams, resulting in images with beam hardening artifacts, resolution levels at 10 μm, geometrical blurring, and lack of contrasts. When μCT is coupled to synchrotron sources (SRμCT) a spatial resolution up to one tenth of a μm may be achieved. A review of the literature concerning SRμCT was performed to investigate its usability and its strength in visualizing fine bone structures, vessels, and microarchitecture of bone. Although mainly limited to in vitro examinations, SRμCT is considered as a gold standard to image trabecular bone microarchitecture since it is possible in a 3D manner to visualize fine structural elements within mineralized tissue such as osteon boundaries, rods and plates structures, cement lines, and differences in mineralization. Copyright © 2013 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  10. Radioisotope scanning of brain, liver, lung and bone with a note on tumour localizing agents

    PubMed Central

    Lavender, J. P.

    1973-01-01

    Radioisotopic scanning of brain, liver, lungs and the skeleton is briefly reviewed with a survey of recent developments of clinical significance. In brain scanning neoplasm detection rates of greater than 90% are claimed. The true figure is probably 70-80%. Autopsy data shows a number of false negatives, particularly with vascular lesions. Attempts to make scanning more specific in differentiating neoplasm from vascular lesions by rapid sequence blood flow studies are reviewed. In liver scanning by means of colloids again high success rate is claimed but small metastases are frequently missed and the false negative scan rate is probably quite high. Lung scanning still has its main place in investigating pulmonary embolic disease. Ventilation studies using Xenon 133 are useful, particularly combined with perfusion studies. The various radiopharmaceuticals for use in bone scanning are reviewed. The appearance of technetium labelled phosphate compounds will probably allow much wider use of total skeletal scanning. Research into tumour localizing agents continues, the most recent and interesting being Gallium citrate and labelled bleomycin. Neither agent is predictable however although Gallium may have a place in Hodgkins disease and bronchogenic neoplasm and both may have a place in the detection of cerebral tumours. ImagesFig. 1Fig. 2Fig. 3p452-bFig. 3bFig. 4Fig. 5Fig. 5bFig. 6Fig. 7Fig. 8Fig. 9Fig. 10Fig. 11Fig. 12Fig. 12c & 12dFig. 13Fig. 13 b,c,dFig. 14Fig. 14bFig. 15Fig. 15bFig. 16Fig. 17Fig. 18 PMID:4602127

  11. Automatic graph-cut based segmentation of bones from knee magnetic resonance images for osteoarthritis research.

    PubMed

    Ababneh, Sufyan Y; Prescott, Jeff W; Gurcan, Metin N

    2011-08-01

    In this paper, a new, fully automated, content-based system is proposed for knee bone segmentation from magnetic resonance images (MRI). The purpose of the bone segmentation is to support the discovery and characterization of imaging biomarkers for the incidence and progression of osteoarthritis, a debilitating joint disease, which affects a large portion of the aging population. The segmentation algorithm includes a novel content-based, two-pass disjoint block discovery mechanism, which is designed to support automation, segmentation initialization, and post-processing. The block discovery is achieved by classifying the image content to bone and background blocks according to their similarity to the categories in the training data collected from typical bone structures. The classified blocks are then used to design an efficient graph-cut based segmentation algorithm. This algorithm requires constructing a graph using image pixel data followed by applying a maximum-flow algorithm which generates a minimum graph-cut that corresponds to an initial image segmentation. Content-based refinements and morphological operations are then applied to obtain the final segmentation. The proposed segmentation technique does not require any user interaction and can distinguish between bone and highly similar adjacent structures, such as fat tissues with high accuracy. The performance of the proposed system is evaluated by testing it on 376 MR images from the Osteoarthritis Initiative (OAI) database. This database included a selection of single images containing the femur and tibia from 200 subjects with varying levels of osteoarthritis severity. Additionally, a full three-dimensional segmentation of the bones from ten subjects with 14 slices each, and synthetic images with background having intensity and spatial characteristics similar to those of bone are used to assess the robustness and consistency of the developed algorithm. The results show an automatic bone detection rate of 0.99 and an average segmentation accuracy of 0.95 using the Dice similarity index. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Microcomputed Tomography Characterization of Neovascularization in Bone Tissue Engineering Applications

    PubMed Central

    Young, Simon; Kretlow, James D.; Nguyen, Charles; Bashoura, Alex G.; Baggett, L. Scott; Jansen, John A.; Wong, Mark

    2008-01-01

    Abstract Vasculogenesis and angiogenesis have been studied for decades using numerous in vitro and in vivo systems, fulfilling the need to elucidate the mechanisms involved in these processes and to test potential therapeutic agents that inhibit or promote neovascularization. Bone tissue engineering in particular has benefited from the application of proangiogenic strategies, considering the need for an adequate vascular supply during healing and the challenges associated with the vascularization of scaffolds implanted in vivo. Conventional methods of assessing the in vivo angiogenic response to tissue-engineered constructs tend to rely on a two-dimensional assessment of microvessel density within representative histological sections without elaboration of the true vascular tree. The introduction of microcomputed tomography (micro-CT) has recently allowed investigators to obtain a diverse range of high-resolution, three-dimensional characterization of structures, including renal, coronary, and hepatic vascular networks, as well as bone formation within healing defects. To date, few studies have utilized micro-CT to study the vascular response to an implanted tissue engineering scaffold. In this paper, conventional in vitro and in vivo models for studying angiogenesis will be discussed, followed by recent developments in the use of micro-CT for vessel imaging in bone tissue engineering research. A new study demonstrating the potential of contrast-enhanced micro-CT for the evaluation of in vivo neovascularization in bony defects is described, which offers significant potential in the evaluation of bone tissue engineering constructs. PMID:18657028

  13. Synergistic effects of green tea polyphenols and alphacalcidol on chronic inflammation-induced bone loss in female rats

    USDA-ARS?s Scientific Manuscript database

    Summary: Studies suggest that green tea polyphenols (GTP) or alphacalcidol is promising agent for preventing bone loss. Findings that GTP supplementation in the drinking water plus alphacalcidol administration resulted in increased bone mass via a decrease of oxidative stress and inflammation sugges...

  14. 3D SPECT/CT fusion using image data projection of bone SPECT onto 3D volume-rendered CT images: feasibility and clinical impact in the diagnosis of bone metastasis.

    PubMed

    Ogata, Yuji; Nakahara, Tadaki; Ode, Kenichi; Matsusaka, Yohji; Katagiri, Mari; Iwabuchi, Yu; Itoh, Kazunari; Ichimura, Akira; Jinzaki, Masahiro

    2017-05-01

    We developed a method of image data projection of bone SPECT into 3D volume-rendered CT images for 3D SPECT/CT fusion. The aims of our study were to evaluate its feasibility and clinical usefulness. Whole-body bone scintigraphy (WB) and SPECT/CT scans were performed in 318 cancer patients using a dedicated SPECT/CT systems. Volume data of bone SPECT and CT were fused to obtain 2D SPECT/CT images. To generate our 3D SPECT/CT images, colored voxel data of bone SPECT were projected onto the corresponding location of the volume-rendered CT data after a semi-automatic bone extraction. Then, the resultant 3D images were blended with conventional volume-rendered CT images, allowing to grasp the three-dimensional relationship between bone metabolism and anatomy. WB and SPECT (WB + SPECT), 2D SPECT/CT fusion, and 3D SPECT/CT fusion were evaluated by two independent reviewers in the diagnosis of bone metastasis. The inter-observer variability and diagnostic accuracy in these three image sets were investigated using a four-point diagnostic scale. Increased bone metabolism was found in 744 metastatic sites and 1002 benign changes. On a per-lesion basis, inter-observer agreements in the diagnosis of bone metastasis were 0.72 for WB + SPECT, 0.90 for 2D SPECT/CT, and 0.89 for 3D SPECT/CT. Receiver operating characteristic analyses for the diagnostic accuracy of bone metastasis showed that WB + SPECT, 2D SPECT/CT, and 3D SPECT/CT had an area under the curve of 0.800, 0.983, and 0.983 for reader 1, 0.865, 0.992, and 0.993 for reader 2, respectively (WB + SPECT vs. 2D or 3D SPECT/CT, p < 0.001; 2D vs. 3D SPECT/CT, n.s.). The durations of interpretation of WB + SPECT, 2D SPECT/CT, and 3D SPECT/CT images were 241 ± 75, 225 ± 73, and 182 ± 71 s for reader 1 and 207 ± 72, 190 ± 73, and 179 ± 73 s for reader 2, respectively. As a result, it took shorter time to read 3D SPECT/CT images than 2D SPECT/CT (p < 0.0001) or WB + SPECT images (p < 0.0001). 3D SPECT/CT fusion offers comparable diagnostic accuracy to 2D SPECT/CT fusion. The visual effect of 3D SPECT/CT fusion facilitates reduction of reading time compared to 2D SPECT/CT fusion.

  15. Detecting mineral content in turbid medium using nonlinear Raman imaging: feasibility study

    PubMed Central

    Arora, Rajan; Petrov, Georgi I.; Noojin, Gary D.; Thomas, Patrick A.; Denton, Michael L.; Rockwell, Benjamin A.; Thomas, Robert J.; Yakovlev, Vladislav V.

    2012-01-01

    Osteoporosis is a bone disease characterized by reduced mineral content with resulting changes in bone architecture, which in turn increases the risk of bone fracture. Raman spectroscopy has an intrinsic sensitivity to the chemical content of the bone, but its application to study bones in vivo is limited due to strong optical scattering in tissue. It has been proposed that Raman excitation with photoacoustic detection can successfully address the problem of chemically specific imaging in deep tissue. In this report, the principal possibility of photoacoustic imaging for detecting mineral content is evaluated. PMID:22337734

  16. Automated cortical bone segmentation for multirow-detector CT imaging with validation and application to human studies

    PubMed Central

    Li, Cheng; Jin, Dakai; Chen, Cheng; Letuchy, Elena M.; Janz, Kathleen F.; Burns, Trudy L.; Torner, James C; Levy, Steven M.; Saha, Punam K

    2015-01-01

    Purpose: Cortical bone supports and protects human skeletal functions and plays an important role in determining bone strength and fracture risk. Cortical bone segmentation at a peripheral site using multirow-detector CT (MD-CT) imaging is useful for in vivo assessment of bone strength and fracture risk. Major challenges for the task emerge from limited spatial resolution, low signal-to-noise ratio, presence of cortical pores, and structural complexity over the transition between trabecular and cortical bones. An automated algorithm for cortical bone segmentation at the distal tibia from in vivo MD-CT imaging is presented and its performance and application are examined. Methods: The algorithm is completed in two major steps—(1) bone filling, alignment, and region-of-interest computation and (2) segmentation of cortical bone. After the first step, the following sequence of tasks is performed to accomplish cortical bone segmentation—(1) detection of marrow space and possible pores, (2) computation of cortical bone thickness, detection of recession points, and confirmation and filling of true pores, and (3) detection of endosteal boundary and delineation of cortical bone. Effective generalizations of several digital topologic and geometric techniques are introduced and a fully automated algorithm is presented for cortical bone segmentation. Results: An accuracy of 95.1% in terms of volume of agreement with manual outlining of cortical bone was observed in human MD-CT scans, while an accuracy of 88.5% was achieved when compared with manual outlining on postregistered high resolution micro-CT imaging. An intraclass correlation coefficient of 0.98 was obtained in cadaveric repeat scans. A pilot study was conducted to describe gender differences in cortical bone properties. This study involved 51 female and 46 male participants (age: 19–20 yr) from the Iowa Bone Development Study. Results from this pilot study suggest that, on average after adjustment for height and weight differences, males have thicker cortex (mean difference 0.33 mm and effect size 0.92 at the anterior region) with lower bone mineral density (mean difference −28.73 mg/cm3 and effect size 1.35 at the posterior region) as compared to females. Conclusions: The algorithm presented is suitable for fully automated segmentation of cortical bone in MD-CT imaging of the distal tibia with high accuracy and reproducibility. Analysis of data from a pilot study demonstrated that the cortical bone indices allow quantification of gender differences in cortical bone from MD-CT imaging. Application to larger population groups, including those with compromised bone, is needed. PMID:26233184

  17. Bone suppression technique for chest radiographs

    NASA Astrophysics Data System (ADS)

    Huo, Zhimin; Xu, Fan; Zhang, Jane; Zhao, Hui; Hobbs, Susan K.; Wandtke, John C.; Sykes, Anne-Marie; Paul, Narinder; Foos, David

    2014-03-01

    High-contrast bone structures are a major noise contributor in chest radiographic images. A signal of interest in a chest radiograph could be either partially or completely obscured or "overshadowed" by the highly contrasted bone structures in its surrounding. Thus, removing the bone structures, especially the posterior rib and clavicle structures, is highly desirable to increase the visibility of soft tissue density. We developed an innovative technology that offers a solution to suppress bone structures, including posterior ribs and clavicles, on conventional and portable chest X-ray images. The bone-suppression image processing technology includes five major steps: 1) lung segmentation, 2) rib and clavicle structure detection, 3) rib and clavicle edge detection, 4) rib and clavicle profile estimation, and 5) suppression based on the estimated profiles. The bone-suppression software outputs an image with both the rib and clavicle structures suppressed. The rib suppression performance was evaluated on 491 images. On average, 83.06% (±6.59%) of the rib structures on a standard chest image were suppressed based on the comparison of computer-identified rib areas against hand-drawn rib areas, which is equivalent to about an average of one rib that is still visible on a rib-suppressed image based on a visual assessment. Reader studies were performed to evaluate reader performance in detecting lung nodules and pneumothoraces with and without a bone-suppression companion view. Results from reader studies indicated that the bone-suppression technology significantly improved radiologists' performance in the detection of CT-confirmed possible nodules and pneumothoraces on chest radiographs. The results also showed that radiologists were more confident in making diagnoses regarding the presence or absence of an abnormality after rib-suppressed companion views were presented

  18. Management of beta-thalassemia-associated osteoporosis.

    PubMed

    Giusti, Andrea; Pinto, Valeria; Forni, Gian Luca; Pilotto, Alberto

    2016-03-01

    Beta-Thalassemia-associated osteoporosis is a multifactorial and complex condition. Different acquired and genetic factors are involved in its pathogenesis. These factors produce an imbalance in bone remodeling by inhibiting osteoblast activity and increasing osteoclast function, leading to bone loss and increased fracture risk. The management of patients presenting with thalassemia-associated osteoporosis should consist of the implementation of general measures and the prescription of a specific pharmacological agent, with the aim of reducing fracture risk and preventing disability and deterioration of quality of life. General measures include control of anemia, adequate chelation therapy, healthy nutrition and lifestyle, regular exercise, adequate management of comorbid conditions, hormone replacement therapy in patients with hypogonadism, and vitamin D supplementation/therapy. Among the pharmacological agents currently available for the management of osteoporosis in postmenopausal women and men, bisphosphonates have been shown to improve bone mineral density, to reduce bone turnover, and to decrease bone/back pain in patients with thalassemia-associated osteoporosis, with a good profile of safety and tolerability. On the other hand, there are limited experiences with other pharmacological agents (e.g., denosumab or teriparatide). The complexity of this condition presents diagnostic and therapeutic challenges and underscores the importance of a comprehensive and multidisciplinary approach. © 2016 New York Academy of Sciences.

  19. Osteoporosis Imaging: State of the Art and Advanced Imaging

    PubMed Central

    2012-01-01

    Osteoporosis is becoming an increasingly important public health issue, and effective treatments to prevent fragility fractures are available. Osteoporosis imaging is of critical importance in identifying individuals at risk for fractures who would require pharmacotherapy to reduce fracture risk and also in monitoring response to treatment. Dual x-ray absorptiometry is currently the state-of-the-art technique to measure bone mineral density and to diagnose osteoporosis according to the World Health Organization guidelines. Motivated by a 2000 National Institutes of Health consensus conference, substantial research efforts have focused on assessing bone quality by using advanced imaging techniques. Among these techniques aimed at better characterizing fracture risk and treatment effects, high-resolution peripheral quantitative computed tomography (CT) currently plays a central role, and a large number of recent studies have used this technique to study trabecular and cortical bone architecture. Other techniques to analyze bone quality include multidetector CT, magnetic resonance imaging, and quantitative ultrasonography. In addition to quantitative imaging techniques measuring bone density and quality, imaging needs to be used to diagnose prevalent osteoporotic fractures, such as spine fractures on chest radiographs and sagittal multidetector CT reconstructions. Radiologists need to be sensitized to the fact that the presence of fragility fractures will alter patient care, and these fractures need to be described in the report. This review article covers state-of-the-art imaging techniques to measure bone mineral density, describes novel techniques to study bone quality, and focuses on how standard imaging techniques should be used to diagnose prevalent osteoporotic fractures. © RSNA, 2012 PMID:22438439

  20. Percutaneous magnetic resonance imaging-guided bone tumor management and magnetic resonance imaging-guided bone therapy.

    PubMed

    Sequeiros, Roberto Blanco; Fritz, Jan; Ojala, Risto; Carrino, John A

    2011-08-01

    Magnetic resonance imaging (MRI) is promising tool for image-guided therapy. In musculoskeletal setting, image-guided therapy is used to direct diagnostic and therapeutic procedures and to steer patient management. Studies have demonstrated that MRI-guided interventions involving bone, soft tissue, joints, and intervertebral disks are safe and in selected indications can be the preferred action to manage clinical situation. Often, these procedures are technically similar to those performed in other modalities (computed tomography, fluoroscopy) for bone and soft tissue lesions. However, the procedural perception to the operator can be very different to other modalities because of the vastly increased data.Magnetic resonance imaging guidance is particularly advantageous should the lesion not be visible by other modalities, for selective lesion targeting, intra-articular locations, cyst aspiration, and locations adjacent to surgical hardware. Palliative tumor-related pain management such as ablation therapy forms a subset of procedures that are frequently performed under MRI. Another suitable entity for MRI guidance are the therapeutic percutaneous osseous or joint-related benign or reactive conditions such as osteoid osteoma, epiphyseal bone bridging, osteochondritis dissecans, bone cysts, localized bone necrosis, and posttraumatic lesions. In this article, we will describe in detail the technical aspects of performing MRI-guided therapeutic musculoskeletal procedures as well as the clinical indications.

  1. Miscellaneous indications in bone scintigraphy: metabolic bone diseases and malignant bone tumors.

    PubMed

    Cook, Gary J R; Gnanasegaran, Gopinath; Chua, Sue

    2010-01-01

    The diphosphonate bone scan is ideally suited to assess many global, focal or multifocal metabolic bone disorders and there remains a role for conventional bone scintigraphy in metabolic bone disorders at diagnosis, investigation of complications, and treatment response assessment. In contrast, the role of bone scintigraphy in the evaluation of primary malignant bone tumors has reduced with the improvement of morphologic imaging, such as computed tomography and magnetic resonance imaging. However, an increasing role for (18)F-fluorodeoxyglucose positron emission tomography and positron emission tomography/computed tomography is emerging as a functional assessment at diagnosis, staging, and neoadjuvant treatment response assessment.

  2. Assessment of glucose metabolism and cellular proliferation in multiple myeloma: a first report on combined 18F-FDG and 18F-FLT PET/CT imaging.

    PubMed

    Sachpekidis, C; Goldschmidt, H; Kopka, K; Kopp-Schneider, A; Dimitrakopoulou-Strauss, A

    2018-04-10

    Despite the significant upgrading in recent years of the role of 18 F-FDG PET/CT in multiple myeloma (MM) diagnostics, there is a still unmet need for myeloma-specific radiotracers. 3'-Deoxy-3'-[ 18 F]fluorothymidine ( 18 F-FLT) is the most studied cellular proliferation PET agent, considered a potentially new myeloma functional imaging tracer. The aim of this pilot study was to evaluate 18 F-FLT PET/CT in imaging of MM patients, in the context of its combined use with 18 F-FDG PET/CT. Eight patients, four suffering from symptomatic MM and four suffering from smoldering MM (SMM), were enrolled in the study. All patients underwent 18 F-FDG PET/CT and 18 F-FLT PET/CT imaging by means of static (whole body) and dynamic PET/CT of the lower abdomen and pelvis (dPET/CT) in two consecutive days. The evaluation of PET/CT studies was based on qualitative evaluation, semi-quantitative (SUV) calculation, and quantitative analysis based on two-tissue compartment modeling. 18 F-FDG PET/CT demonstrated focal, 18 F-FDG avid, MM-indicative bone marrow lesions in five patients. In contrary, 18 F-FLT PET/CT showed focal, 18 F-FLT avid, myeloma-indicative lesions in only two patients. In total, 48 18 F-FDG avid, focal, MM-indicative lesions were detected with 18 F-FDG PET/CT, while 17 18 F-FLT avid, focal, MM-indicative lesions were detected with 18 F-FLT PET/CT. The number of myeloma-indicative lesions was significantly higher for 18 F-FDG PET/CT than for 18 F-FLT PET/CT. A common finding was a mismatch of focally increased 18 F-FDG uptake and reduced 18 F-FLT uptake (lower than the surrounding bone marrow). Moreover, 18 F-FLT PET/CT was characterized by high background activity in the bone marrow compartment, further complicating the evaluation of bone marrow lesions. Semi-quantitative evaluation revealed that both SUV mean and SUV max were significantly higher for 18 F-FLT than for 18 F-FDG in both MM lesions and reference tissue. SUV values were higher in MM lesions than in reference bone marrow for both tracers. Despite the limited number of patients analyzed in this pilot study, the first results of the trial indicate that 18 F-FLT does not seem suitable as a single tracer in MM diagnostics. Further studies with a larger patient population are warranted to generalize the herein presented results.

  3. Optimizing the treatment of metastatic castration-resistant prostate cancer: a Latin America perspective.

    PubMed

    Sade, Juan Pablo; Báez, Carlos Alberto Vargas; Greco, Martin; Martínez, Carlos Humberto; Avitia, Miguel Ángel Álvarez; Palazzo, Carlos; Toriz, Narciso Hernández; Trujillo, Patricia Isabel Bernal; Bastos, Diogo Assed; Schutz, Fabio Augusto; Bella, Santiago; Nogueira, Lucas; Shore, Neal D

    2018-03-19

    Prostate cancer is a significant burden and cause of mortality in Latin America. This article reviews the treatment options for patients with metastatic castration-resistant prostate cancer (mCRPC) and provides consensus recommendations to assist Latin American prostate cancer specialists with clinical decision making. A multidisciplinary expert panel from Latin America reviewed the available data and their individual experience to develop clinical consensus opinions for the use of life-prolonging agents in mCRPC, with consideration given to factors influencing patient selection and treatment monitoring. There is a lack of level 1 evidence for the best treatment sequence or combinations in mCRPC. In this context, consensus recommendations were provided for the use of taxane-based chemotherapies, androgen receptor axis-targeted agents and targeted alpha therapy, for patients in Latin America. Prostate-specific antigen (PSA) changes alone, during treatment, should be treated with caution; PSA may not be a suitable biomarker for radium-223. Bone scans and computed tomography are the standard imaging modalities in Latin America. Imaging should be prompted during treatment where symptomatic decline and/or significant worsening of laboratory evaluations are reported, or where a course of therapy has been completed and another antineoplastic agent is under consideration. Recommendations and guidance for treatment options in Latin America are provided in the context of country-level variable access to approved agents and technologies for treatment monitoring. Patients should be treated with the purpose of prolonging overall survival and preserving quality of life through increasing the opportunity to administer all available life-prolonging therapies when appropriate.

  4. Segmentation of knee MRI using structure enhanced local phase filtering

    NASA Astrophysics Data System (ADS)

    Lim, Mikhiel; Hacihaliloglu, Ilker

    2016-03-01

    The segmentation of bone surfaces from magnetic resonance imaging (MRI) data has applications in the quanti- tative measurement of knee osteoarthritis, surgery planning for patient specific total knee arthroplasty and its subsequent fabrication of artificial implants. However, due to the problems associated with MRI imaging such as low contrast between bone and surrounding tissues, noise, bias fields, and the partial volume effect, segmentation of bone surfaces continues to be a challenging operation. In this paper, a new framework is presented for the enhancement of knee MRI scans prior to segmentation in order to obtain high contrast bone images. During the first stage, a new contrast enhanced relative total variation (RTV) regularization method is used in order to remove textural noise from the bone structures and surrounding soft tissue interface. This salient bone edge information is further enhanced using a sparse gradient counting method based on L0 gradient minimization, which globally controls how many non-zero gradients are resulted in order to approximate prominent bone structures in a structure-sparsity-management manner. The last stage of the framework involves incorporation of local phase bone boundary information in order to provide an intensity invariant enhancement of contrast between the bone and surrounding soft tissue. The enhanced images are segmented using a fast random walker algorithm. Validation against expert segmentation was performed on 10 clinical knee MRI images, and achieved a mean dice similarity coefficient (DSC) of 0.975.

  5. Detecting microdamage in bone.

    PubMed

    Lee, T C; Mohsin, S; Taylor, D; Parkesh, R; Gunnlaugsson, T; O'Brien, F J; Giehl, M; Gowin, W

    2003-08-01

    Fatigue-induced microdamage in bone contributes to stress and fragility fractures and acts as a stimulus for bone remodelling. Detecting such microdamage is difficult as pre-existing microdamage sustained in vivo must be differentiated from artefactual damage incurred during specimen preparation. This was addressed by bulk staining specimens in alcohol-soluble basic fuchsin dye, but cutting and grinding them in an aqueous medium. Nonetheless, some artefactual cracks are partially stained and careful observation under transmitted light, or epifluorescence microscopy, is required. Fuchsin lodges in cracks, but is not site-specific. Cracks are discontinuities in the calcium-rich bone matrix and chelating agents, which bind calcium, can selectively label them. Oxytetracycline, alizarin complexone, calcein, calcein blue and xylenol orange all selectively bind microcracks and, as they fluoresce at different wavelengths and colours, can be used in sequence to label microcrack growth. New agents that only fluoresce when involved in a chelate are currently being developed--fluorescent photoinduced electron transfer (PET) sensors. Such agents enable microdamage to be quantified and crack growth to be measured and are useful histological tools in providing data for modelling the material behaviour of bone. However, a non-invasive method is needed to measure microdamage in patients. Micro-CT is being studied and initial work with iodine dyes linked to a chelating group has shown some promise. In the long term, it is hoped that repeated measurements can be made at critical sites and microdamage accumulation monitored. Quantification of microdamage, together with bone mass measurements, will help in predicting and preventing bone fracture failure in patients with osteoporosis.

  6. Detecting microdamage in bone

    PubMed Central

    Lee, TC; Mohsin, S; Taylor, D; Parkesh, R; Gunnlaugsson, T; O'Brien, FJ; Giehl, M; Gowin, W

    2003-01-01

    Fatigue-induced microdamage in bone contributes to stress and fragility fractures and acts as a stimulus for bone remodelling. Detecting such microdamage is difficult as pre-existing microdamage sustained in vivo must be differentiated from artefactual damage incurred during specimen preparation. This was addressed by bulk staining specimens in alcohol-soluble basic fuchsin dye, but cutting and grinding them in an aqueous medium. Nonetheless, some artefactual cracks are partially stained and careful observation under transmitted light, or epifluorescence microscopy, is required. Fuchsin lodges in cracks, but is not site-specific. Cracks are discontinuities in the calcium-rich bone matrix and chelating agents, which bind calcium, can selectively label them. Oxytetracycline, alizarin complexone, calcein, calcein blue and xylenol orange all selectively bind microcracks and, as they fluoresce at different wavelengths and colours, can be used in sequence to label microcrack growth. New agents that only fluoresce when involved in a chelate are currently being developed – fluorescent photoinduced electron transfer (PET) sensors. Such agents enable microdamage to be quantified and crack growth to be measured and are useful histological tools in providing data for modelling the material behaviour of bone. However, a non-invasive method is needed to measure microdamage in patients. Micro-CT is being studied and initial work with iodine dyes linked to a chelating group has shown some promise. In the long term, it is hoped that repeated measurements can be made at critical sites and microdamage accumulation monitored. Quantification of microdamage, together with bone mass measurements, will help in predicting and preventing bone fracture failure in patients with osteoporosis. PMID:12924817

  7. Direct depiction of bone microstructure using MRI with zero echo time.

    PubMed

    Weiger, Markus; Stampanoni, Marco; Pruessmann, Klaas P

    2013-05-01

    This paper reports a proof of principle of direct depiction of trabecular bone microstructure in vitro by means of magnetic resonance imaging (MRI). Such depiction is achieved by (1)H imaging of water embedded in the bone matrix. The fast transverse relaxation of this compartment with T2(⁎) on the order of a few hundreds of microseconds is addressed by a three-dimensional MRI technique with zero echo time (ZTE). ZTE imaging at an isotropic spatial resolution of 56 μm is demonstrated in a trabecular bone specimen extracted from a bovine bone. In the MR images, the trabecular bone structure is clearly depicted and a high level of robustness against off-resonance artefacts is observed. The structural accuracy of the MR data is investigated by comparison with x-ray micro-computed tomography. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Bone grafts.

    PubMed

    Hubble, Matthew J W

    2002-09-01

    Bone grafts are used in musculoskeletal surgery to restore structural integrity and enhance osteogenic potential. The demand for bone graft for skeletal reconstruction in bone tumor, revision arthroplasty, and trauma surgery, couple with recent advances in understanding and application of the biology of bone transplantation, has resulted in an exponential increase in the number of bone-grafting procedures performed over the last decade. It is estimated that 1.5 million bone-grafting procedures are currently performed worldwide each year, compared to a fraction of that number 20 years ago. Major developments also have resulted in the harvesting, storage, and use of bone grafts and production of graft derivatives, substitutes, and bone-inducing agents.

  9. Imaging of Alkaline Phosphatase Activity in Bone Tissue

    PubMed Central

    Gade, Terence P.; Motley, Matthew W.; Beattie, Bradley J.; Bhakta, Roshni; Boskey, Adele L.; Koutcher, Jason A.; Mayer-Kuckuk, Philipp

    2011-01-01

    The purpose of this study was to develop a paradigm for quantitative molecular imaging of bone cell activity. We hypothesized the feasibility of non-invasive imaging of the osteoblast enzyme alkaline phosphatase (ALP) using a small imaging molecule in combination with 19Flourine magnetic resonance spectroscopic imaging (19FMRSI). 6, 8-difluoro-4-methylumbelliferyl phosphate (DiFMUP), a fluorinated ALP substrate that is activatable to a fluorescent hydrolysis product was utilized as a prototype small imaging molecule. The molecular structure of DiFMUP includes two Fluorine atoms adjacent to a phosphate group allowing it and its hydrolysis product to be distinguished using 19Fluorine magnetic resonance spectroscopy (19FMRS) and 19FMRSI. ALP-mediated hydrolysis of DiFMUP was tested on osteoblastic cells and bone tissue, using serial measurements of fluorescence activity. Extracellular activation of DiFMUP on ALP-positive mouse bone precursor cells was observed. Concurringly, DiFMUP was also activated on bone derived from rat tibia. Marked inhibition of the cell and tissue activation of DiFMUP was detected after the addition of the ALP inhibitor levamisole. 19FMRS and 19FMRSI were applied for the non-invasive measurement of DiFMUP hydrolysis. 19FMRS revealed a two-peak spectrum representing DiFMUP with an associated chemical shift for the hydrolysis product. Activation of DiFMUP by ALP yielded a characteristic pharmacokinetic profile, which was quantifiable using non-localized 19FMRS and enabled the development of a pharmacokinetic model of ALP activity. Application of 19FMRSI facilitated anatomically accurate, non-invasive imaging of ALP concentration and activity in rat bone. Thus, 19FMRSI represents a promising approach for the quantitative imaging of bone cell activity during bone formation with potential for both preclinical and clinical applications. PMID:21799916

  10. Appearance of bony lesions on 3-D CT reconstructions: a case study in variable renderings

    NASA Astrophysics Data System (ADS)

    Mankovich, Nicholas J.; White, Stuart C.

    1992-05-01

    This paper discusses conventional 3-D reconstruction for bone visualization and presents a case study to demonstrate the dangers of performing 3-D reconstructions without careful selection of the bone threshold. The visualization of midface bone lesions directly from axial CT images is difficult because of the complex anatomic relationships. Three-dimensional reconstructions made from the CT to provide graphic images showing lesions in relation to adjacent facial bones. Most commercially available 3-D image reconstruction requires that the radiologist or technologist identify a threshold image intensity value that can be used to distinguish bone from other tissues. Much has been made of the many disadvantages of this technique, but it continues as the predominant method in producing 3-D pictures for clinical use. This paper is intended to provide a clear demonstration for the physician of the caveats that should accompany 3-D reconstructions. We present a case of recurrent odontogenic keratocyst in the anterior maxilla where the 3-D reconstructions, made with different bone thresholds (windows), are compared to the resected specimen. A DMI 3200 computer was used to convert the scan data from a GE 9800 CT into a 3-D shaded surface image. Threshold values were assigned to (1) generate the most clinically pleasing image, (2) produce maximum theoretical fidelity (using the midpoint image intensity between average cortical bone and average soft tissue), and (3) cover stepped threshold intensities between these two methods. We compared the computer lesions with the resected specimen and noted measurement errors of up to 44 percent introduced by inappropriate bone threshold levels. We suggest clinically applicable standardization techniques in the 3-D reconstruction as well as cautionary language that should accompany the 3-D images.

  11. Novel (188)Re multi-functional bone-seeking compounds: Synthesis, biological and radiotoxic effects in metastatic breast cancer cells.

    PubMed

    Fernandes, Célia; Monteiro, Sofia; Belchior, Ana; Marques, Fernanda; Gano, Lurdes; Correia, João D G; Santos, Isabel

    2016-02-01

    Radiolabeled bisphosphonates (BPs) have been used for bone imaging and delivery of β(-) emitting radionuclides for bone pain palliation. As a β(-) emitter, (188)Re has been considered particularly promising for bone metastases therapy. Aimed at finding innovative bone-seeking agents for systemic radiotherapy of bone metastases, we describe herein novel organometallic compounds of the type fac-[(188)Re(CO)3(k(3)-L)], (L=BP-containing chelator), their in vitro and in vivo stability, and their cellular damage in MDAMB231 cells, a metastatic breast cancer cell line. After synthesis and characterization of the novel organometallic compounds of the type fac-[(188)Re(CO)3(k(3)-L)] their radiochemical purity and in vitro stability was assessed by HPLC. In vivo stability and pharmacokinetic profile were evaluated in mice and the radiocytotoxic activity and DNA damage were assessed by MTT assay and by the cytokinesis-block micronucleus (CBMN) assay, respectively. Among all complexes, (188)Re3 was obtained with high radiochemical purity (>95%) and high specific activity and presented high in vitro and in vivo stability. Biodistribution studies of (188)Re3 in Balb/c mice showed fast blood clearance, high bone uptake (16.1 ± 3.3% IA/g organ, 1h p.i.) and high bone-to-blood and bone-to-muscle radioactivity ratios, indicating that it is able to deliver radiation to bone in a very selective way. The radiocytotoxic effect elicited by (188)Re3 in the MDAMB231 cells was dependent on its concentration, and was higher than that induced by identical concentrations of [(188)ReO4](-). Additionally, (188)Re3 elicited morphological changes in the cells and induced DNA damage by the increased number of MN observed. Altogether, our results demonstrate that (188)Re3 could be considered an attractive candidate for further preclinical evaluation for systemic radionuclide therapy of bone metastases considering its ability to deliver radiation to bone in a very selective way and to induce radiation damage. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Fortifying the Bone-Implant Interface Part 2: An In Vivo Evaluation of 3D-Printed and TPS-Coated Triangular Implants

    PubMed Central

    Lindsey, Derek P.; Woods, Shane A.; Lalor, Peggy A.; Gundanna, Mukund I.; Yerby, Scott A.

    2017-01-01

    Background Minimally invasive surgical fusion of the sacroiliac (SI) joint using machined solid triangular titanium plasma spray (TPS) coated implants has demonstrated positive clinical outcomes in SI joint pain patients. Additive manufactured (AM), i.e. 3D-printed, fenestrated triangular titanium implants with porous surfaces and bioactive agents, such as nanocrystalline hydroxyapatite (HA) or autograft, may further optimize bony fixation and subsequent biomechanical stability. Methods A bilateral ovine distal femoral defect model was used to evaluate the cancellous bone-implant interfaces of TPS-coated and AM implants. Four implant groups (n=6/group/time-point) were included: 1)TPS-coated, 2)AM, 3)AM+HA, and 4)AM+Autograft. The bone-implant interfaces of 6- and 12-week specimens were investigated via radiographic, biomechanical, and histomorphometric methods. Results Imaging showed peri-implant bone formation around all implants. Push-out testing demonstrated forces greater than 2500 N, with no significant differences among groups. While TPS implants failed primarily at the bone-implant interface, AM groups failed within bone ~2-3mm away from implant surfaces. All implants exhibited bone ongrowth, with no significant differences among groups. AM implants had significantly more bone ingrowth into their porous surfaces than TPS-coated implants (p<0.0001). Of the three AM groups, AM+Auto implants had the greatest bone ingrowth into the porous surface and through their core (p<0.002). Conclusions Both TPS and AM implants exhibited substantial bone ongrowth and ingrowth, with additional bone through growth into the AM implants’ core. Overall, AM implants experienced significantly more bone infiltration compared to TPS implants. While HA-coating did not further enhance results, the addition of autograft fostered greater osteointegration for AM implants. Clinical Relevance Additive manufactured implants with a porous surface provide a highly interconnected porous surface that has comparatively greater surface area for bony integration. Results suggest this may prove advantageous toward promoting enhanced biomechanical stability compared to TPS-coated implants for SI joint fusion procedures. PMID:28765800

  13. Co-registration of multi-modality imaging allows for comprehensive analysis of tumor-induced bone disease

    PubMed Central

    Seeley, Erin H.; Wilson, Kevin J.; Yankeelov, Thomas E.; Johnson, Rachelle W.; Gore, John C.; Caprioli, Richard M.; Matrisian, Lynn M.; Sterling, Julie A.

    2014-01-01

    Bone metastases are a clinically significant problem that arises in approximately 70% of metastatic breast cancer patients. Once established in bone, tumor cells induce changes in the bone microenvironment that lead to bone destruction, pain, and significant morbidity. While much is known about the later stages of bone disease, less is known about the earlier stages or the changes in protein expression in the tumor micro-environment. Due to promising results of combining magnetic resonance imaging (MRI) and Matrix-Assisted Laser Desorption/Ionization Imaging Mass Spectrometry (MALDI IMS) ion images in the brain, we developed methods for applying these modalities to models of tumor-induced bone disease in order to better understand the changes in protein expression that occur within the tumor-bone microenvironment. Specifically, we integrated three dimensional-volume reconstructions of spatially resolved MALDI IMS with high-resolution anatomical and diffusion weighted MRI data and histology in an intratibial model of breast tumor-induced bone disease. This approach enables us to analyze proteomic profiles from MALDI IMS data with corresponding in vivo imaging and ex vivo histology data. To the best of our knowledge, this is the first time these three modalities have been rigorously registered in the bone. The MALDI mass-to-charge ratio peaks indicate differential expression of calcyclin, ubiquitin, and other proteins within the tumor cells, while peaks corresponding to hemoglobin A and calgranulin A provided molecular information that aided in the identification of areas rich in red and white blood cells, respectively. This multimodality approach will allow us to comprehensively understand the bone-tumor microenvironment and thus may allow us to better develop and test approaches for inhibiting bone metastases. PMID:24487126

  14. [Advantages and Application Prospects of Deep Learning in Image Recognition and Bone Age Assessment].

    PubMed

    Hu, T H; Wan, L; Liu, T A; Wang, M W; Chen, T; Wang, Y H

    2017-12-01

    Deep learning and neural network models have been new research directions and hot issues in the fields of machine learning and artificial intelligence in recent years. Deep learning has made a breakthrough in the applications of image and speech recognitions, and also has been extensively used in the fields of face recognition and information retrieval because of its special superiority. Bone X-ray images express different variations in black-white-gray gradations, which have image features of black and white contrasts and level differences. Based on these advantages of deep learning in image recognition, we combine it with the research of bone age assessment to provide basic datum for constructing a forensic automatic system of bone age assessment. This paper reviews the basic concept and network architectures of deep learning, and describes its recent research progress on image recognition in different research fields at home and abroad, and explores its advantages and application prospects in bone age assessment. Copyright© by the Editorial Department of Journal of Forensic Medicine.

  15. Multiscale imaging of bone microdamage

    PubMed Central

    Poundarik, Atharva A.; Vashishth, Deepak

    2015-01-01

    Bone is a structural and hierarchical composite that exhibits remarkable ability to sustain complex mechanical loading and resist fracture. Bone quality encompasses various attributes of bone matrix from the quality of its material components (type-I collagen, mineral and non-collagenous matrix proteins) and cancellous microarchitecture, to the nature and extent of bone microdamage. Microdamage, produced during loading, manifests in multiple forms across the scales of hierarchy in bone and functions to dissipate energy and avert fracture. Microdamage formation is a key determinant of bone quality, and through a range of biological and physical mechanisms, accumulates with age and disease. Accumulated microdamage in bone decreases bone strength and increases bone’s propensity to fracture. Thus, a thorough assessment of microdamage, across the hierarchical levels of bone, is crucial to better understand bone quality and bone fracture. This review article details multiple imaging modalities that have been used to study and characterize microdamage; from bulk staining techniques originally developed by Harold Frost to assess linear microcracks, to atomic force microscopy, a modality that revealed mechanistic insights into the formation diffuse damage at the ultrastructural level in bone. New automated techniques using imaging modalities such as microcomputed tomography are also presented for a comprehensive overview. PMID:25664772

  16. Automated segmentation and recognition of the bone structure in non-contrast torso CT images using implicit anatomical knowledge

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Hayashi, T.; Han, M.; Chen, H.; Hara, T.; Fujita, H.; Yokoyama, R.; Kanematsu, M.; Hoshi, H.

    2009-02-01

    X-ray CT images have been widely used in clinical diagnosis in recent years. A modern CT scanner can generate about 1000 CT slices to show the details of all the human organs within 30 seconds. However, CT image interpretations (viewing 500-1000 slices of CT images manually in front of a screen or films for each patient) require a lot of time and energy. Therefore, computer-aided diagnosis (CAD) systems that can support CT image interpretations are strongly anticipated. Automated recognition of the anatomical structures in CT images is a basic pre-processing of the CAD system. The bone structure is a part of anatomical structures and very useful to act as the landmarks for predictions of the other different organ positions. However, the automated recognition of the bone structure is still a challenging issue. This research proposes an automated scheme for segmenting the bone regions and recognizing the bone structure in noncontrast torso CT images. The proposed scheme was applied to 48 torso CT cases and a subjective evaluation for the experimental results was carried out by an anatomical expert following the anatomical definition. The experimental results showed that the bone structure in 90% CT cases have been recognized correctly. For quantitative evaluation, automated recognition results were compared to manual inputs of bones of lower limb created by an anatomical expert on 10 randomly selected CT cases. The error (maximum distance in 3D) between the recognition results and manual inputs distributed from 3-8 mm in different parts of the bone regions.

  17. Errors in quantitative backscattered electron analysis of bone standardized by energy-dispersive x-ray spectrometry.

    PubMed

    Vajda, E G; Skedros, J G; Bloebaum, R D

    1998-10-01

    Backscattered electron (BSE) imaging has proven to be a useful method for analyzing the mineral distribution in microscopic regions of bone. However, an accepted method of standardization has not been developed, limiting the utility of BSE imaging for truly quantitative analysis. Previous work has suggested that BSE images can be standardized by energy-dispersive x-ray spectrometry (EDX). Unfortunately, EDX-standardized BSE images tend to underestimate the mineral content of bone when compared with traditional ash measurements. The goal of this study is to investigate the nature of the deficit between EDX-standardized BSE images and ash measurements. A series of analytical standards, ashed bone specimens, and unembedded bone specimens were investigated to determine the source of the deficit previously reported. The primary source of error was found to be inaccurate ZAF corrections to account for the organic phase of the bone matrix. Conductive coatings, methylmethacrylate embedding media, and minor elemental constituents in bone mineral introduced negligible errors. It is suggested that the errors would remain constant and an empirical correction could be used to account for the deficit. However, extensive preliminary testing of the analysis equipment is essential.

  18. Tomographic imaging of bone composition using coherently scattered x rays

    NASA Astrophysics Data System (ADS)

    Batchelar, Deidre L.; Dabrowski, W.; Cunningham, Ian A.

    2000-04-01

    Bone tissue consists primarily of calcium hydroxyapatite crystals (bone mineral) and collagen fibrils. Bone mineral density (BMD) is commonly used as an indicator of bone health. Techniques available at present for assessing bone health provide a measure of BMD, but do not provide information about the degree of mineralization of the bone tissue. This may be adequate for assessing diseases in which the collagen-mineral ratio remains constant, as assumed in osteoporosis, but is insufficient when the mineralization state is known to change, as in osteomalacia. No tool exists for the in situ examination of collagen and hydroxyapatite density distributions independently. Coherent-scatter computed tomography (CSCT) is a technique we are developing that produces images of the low- angle scatter properties of tissue. These depend on the molecular structure of the scatterer making it possible to produce material-specific maps of each component in a conglomerate. After corrections to compensate for exposure fluctuations, self-attenuation of scatter and the temporal response of the image intensifier, material-specific images of mineral, collagen, fat and water distributions are obtained. The gray-level in these images provides the volumetric density of each component independently.

  19. Detection of Bone Marrow Edema in Nondisplaced Hip Fractures: Utility of a Virtual Noncalcium Dual-Energy CT Application.

    PubMed

    Kellock, Trenton T; Nicolaou, Savvas; Kim, Sandra S Y; Al-Busaidi, Sultan; Louis, Luck J; O'Connell, Tim W; Ouellette, Hugue A; McLaughlin, Patrick D

    2017-09-01

    Purpose To quantify the sensitivity and specificity of dual-energy computed tomographic (CT) virtual noncalcium images in the detection of nondisplaced hip fractures and to assess whether obtaining these images as a complement to bone reconstructions alters sensitivity, specificity, or diagnostic confidence. Materials and Methods The clinical research ethics board approved chart review, and the requirement to obtain informed consent was waived. The authors retrospectively identified 118 patients who presented to a level 1 trauma center emergency department and who underwent dual-energy CT for suspicion of a nondisplaced traumatic hip fracture. Clinical follow-up was the standard of reference. Three radiologists interpreted virtual noncalcium images for traumatic bone marrow edema. Bone reconstructions for the same cases were interpreted alone and then with virtual noncalcium images. Diagnostic confidence was rated on a scale of 1 to 10. McNemar, Fleiss κ, and Wilcoxon signed-rank tests were used for statistical analysis. Results Twenty-two patients had nondisplaced hip fractures and 96 did not have hip fractures. Sensitivity with virtual noncalcium images was 77% and 91% (17 and 20 of 22 patients), and specificity was 92%-99% (89-95 of 96 patients). Sensitivity increased by 4%-5% over that with bone reconstruction images alone for two of the three readers when both bone reconstruction and virtual noncalcium images were used. Specificity remained unchanged (99% and 100%). Diagnostic confidence in the exclusion of fracture was improved with combined bone reconstruction and virtual noncalcium images (median score: 10, 9, and 10 for readers 1, 2, and 3, respectively) compared with bone reconstruction images alone (median score: 9, 8, and 9). Conclusion When used as a supplement to standard bone reconstructions, dual-energy CT virtual noncalcium images increased sensitivity for the detection of nondisplaced traumatic hip fractures and improved diagnostic confidence in the exclusion of these fractures. © RSNA, 2017 Online supplemental material is available for this article. An earlier incorrect version of this article appeared online. This article was corrected on March 17, 2017.

  20. MR-Based Assessment of Bone Marrow Fat in Osteoporosis, Diabetes, and Obesity

    PubMed Central

    Cordes, Christian; Baum, Thomas; Dieckmeyer, Michael; Ruschke, Stefan; Diefenbach, Maximilian N.; Hauner, Hans; Kirschke, Jan S.; Karampinos, Dimitrios C.

    2016-01-01

    Bone consists of the mineralized component (i.e., cortex and trabeculae) and the non-mineralized component (i.e., bone marrow). Most of the routine clinical bone imaging uses X-ray-based techniques and focuses on the mineralized component. However, bone marrow adiposity has been also shown to have a strong linkage with bone health. Specifically, multiple previous studies have demonstrated a negative association between bone marrow fat fraction (BMFF) and bone mineral density. Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) are ideal imaging techniques for non-invasively investigating the properties of bone marrow fat. In the present work, we first review the most important MRI and MRS methods for assessing properties of bone marrow fat, including methodologies for measuring BMFF and bone marrow fatty acid composition parameters. Previous MRI and MRS studies measuring BMFF and fat unsaturation in the context of osteoporosis are then reviewed. Finally, previous studies investigating the relationship between bone marrow fat, other fat depots, and bone health in patients with obesity and type 2 diabetes are presented. In summary, MRI and MRS are powerful non-invasive techniques for measuring properties of bone marrow fat in osteoporosis, obesity, and type 2 diabetes and can assist in future studies investigating the pathophysiology of bone changes in the above clinical scenarios. PMID:27445977

  1. Evaluation of demineralized bone and bone transplants in vitro and in vivo with cone beam computed tomography imaging.

    PubMed

    Draenert, F G; Gebhart, F; Berthold, M; Gosau, M; Wagner, W

    2010-07-01

    The objective of this study was to determine the ability of two flat panel cone beam CT (CBCT) devices to identify demineralized bone and bone transplants in vivo and in vitro. Datasets from patients with autologous bone grafts (n = 9, KaVo 3DeXam (KaVo, Biberach, Germany); n = 38, Accuitomo 40 (Morita, Osaka, Japan)) were retrospectively evaluated. Demineralized and non-demineralized porcine cancellous bone blocks were examined with the two CBCT devices. A SawBone skull (Pacific Research Laboratories, Vashon, WA) was used as a positioning tool for the bone blocks. Descriptive evaluation and image quality assessment were conducted on the KaVo 3DeXam data (voxel size 0.3 mm) using the OsiriX viewer as well as on the Morita Accuitomo data (voxel size 0.25 mm) using proprietary viewer software. Both in vivo and in vitro, the descriptive analysis of the images of the two devices showed well-visualized bone transplants with clearly defined cancellous bones and well-defined single bone trabeculae in all cross-sections. In vitro, demineralized samples showed lower radiographic opacity but no significant loss of quality compared with fresh bone (P = 0.070). Single cancellous bone trabeculae were significantly better visualized with the Morita 3D Accuitomo device than with the KaVo 3DeXam device (P = 0.038). Both the KaVo 3DeXam and Morita 3D Accuitomo devices produce good-quality images of cancellous bones in in vivo remodelling as well as after in vitro demineralization.

  2. Quantitative imaging methods in osteoporosis.

    PubMed

    Oei, Ling; Koromani, Fjorda; Rivadeneira, Fernando; Zillikens, M Carola; Oei, Edwin H G

    2016-12-01

    Osteoporosis is characterized by a decreased bone mass and quality resulting in an increased fracture risk. Quantitative imaging methods are critical in the diagnosis and follow-up of treatment effects in osteoporosis. Prior radiographic vertebral fractures and bone mineral density (BMD) as a quantitative parameter derived from dual-energy X-ray absorptiometry (DXA) are among the strongest known predictors of future osteoporotic fractures. Therefore, current clinical decision making relies heavily on accurate assessment of these imaging features. Further, novel quantitative techniques are being developed to appraise additional characteristics of osteoporosis including three-dimensional bone architecture with quantitative computed tomography (QCT). Dedicated high-resolution (HR) CT equipment is available to enhance image quality. At the other end of the spectrum, by utilizing post-processing techniques such as the trabecular bone score (TBS) information on three-dimensional architecture can be derived from DXA images. Further developments in magnetic resonance imaging (MRI) seem promising to not only capture bone micro-architecture but also characterize processes at the molecular level. This review provides an overview of various quantitative imaging techniques based on different radiological modalities utilized in clinical osteoporosis care and research.

  3. Deep erosions of the palmar aspect of the navicular bone diagnosed by standing magnetic resonance imaging.

    PubMed

    Sherlock, C; Mair, T; Blunden, T

    2008-11-01

    Erosion of the palmar (flexor) aspect of the navicular bone is difficult to diagnose with conventional imaging techniques. To review the clinical, magnetic resonance (MR) and pathological features of deep erosions of the palmar aspect of the navicular bone. Cases of deep erosions of the palmar aspect of the navicular bone, diagnosed by standing low field MR imaging, were selected. Clinical details, results of diagnostic procedures, MR features and pathological findings were reviewed. Deep erosions of the palmar aspect of the navicular bone were diagnosed in 16 mature horses, 6 of which were bilaterally lame. Sudden onset of lameness was recorded in 63%. Radiography prior to MR imaging showed equivocal changes in 7 horses. The MR features consisted of focal areas of intermediate or high signal intensity on T1-, T2*- and T2-weighted images and STIR images affecting the dorsal aspect of the deep digital flexor tendon, the fibrocartilage of the palmar aspect, subchondral compact bone and medulla of the navicular bone. On follow-up, 7/16 horses (44%) had been subjected to euthanasia and only one was being worked at its previous level. Erosions of the palmar aspect of the navicular bone were confirmed post mortem in 2 horses. Histologically, the lesions were characterised by localised degeneration of fibrocartilage with underlying focal osteonecrosis and fibroplasia. The adjacent deep digital flexor tendon showed fibril formation and fibrocartilaginous metaplasia. Deep erosions of the palmar aspect of the navicular bone are more easily diagnosed by standing low field MR imaging than by conventional radiography. The lesions involve degeneration of the palmar fibrocartilage with underlying osteonecrosis and fibroplasia affecting the subchondral compact bone and medulla, and carry a poor prognosis for return to performance. Diagnosis of shallow erosive lesions of the palmar fibrocartilage may allow therapeutic intervention earlier in the disease process, thereby preventing progression to deep erosive lesions.

  4. SU-E-J-90: MRI-Based Treatment Simulation and Patient Setup for Radiation Therapy of Brain Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Y; Cao, M; Han, F

    2014-06-01

    Purpose: Traditional radiation therapy of cancer is heavily dependent on CT. CT provides excellent depiction of the bones but lacks good soft tissue contrast, which makes contouring difficult. Often, MRIs are fused with CT to take advantage of its superior soft tissue contrast. Such an approach has drawbacks. It is desirable to perform treatment simulation entirely based on MRI. To achieve MR-based simulation for radiation therapy, bone imaging is an important challenge because of the low MR signal intensity from bone due to its ultra-short T2 and T1, which presents difficulty for both dose calculation and patient setup in termsmore » of digitally reconstructed radiograph (DRR) generation. Current solutions will either require manual bone contouring or multiple MR scans. We present a technique to generate DRR using MRI with an Ultra Short Echo Time (UTE) sequence which is applicable to both OBI and ExacTrac 2D patient setup. Methods: Seven brain cancer patients were scanned at 1.5 Tesla using a radial UTE sequence. The sequence acquires two images at two different echo times. The two images were processed using in-house software. The resultant bone images were subsequently loaded into commercial systems to generate DRRs. Simulation and patient clinical on-board images were used to evaluate 2D patient setup with MRI-DRRs. Results: The majority bones are well visualized in all patients. The fused image of patient CT with the MR bone image demonstrates the accuracy of automatic bone identification using our technique. The generated DRR is of good quality. Accuracy of 2D patient setup by using MRI-DRR is comparable to CT-based 2D patient setup. Conclusion: This study shows the potential of DRR generation with single MR sequence. Further work will be needed on MR sequence development and post-processing procedure to achieve robust MR bone imaging for other human sites in addition to brain.« less

  5. Synthetic and biogenic magnetite nanoparticles for tracking of stem cells and dendritic cells

    NASA Astrophysics Data System (ADS)

    Schwarz, Sebastian; Fernandes, Fabiana; Sanroman, Laura; Hodenius, Michael; Lang, Claus; Himmelreich, Uwe; Schmitz-Rode, Thomas; Schueler, Dirk; Hoehn, Mathias; Zenke, Martin; Hieronymus, Thomas

    2009-05-01

    Accurate delivery of cells to target organs is critical for success of cell-based therapies with stem cells or immune cells such as antigen-presenting dendritic cells (DC). Labeling with contrast agents before implantation provides a powerful means for monitoring cellular migration using magnetic resonance imaging (MRI). In this study, we investigated the uptake of fully synthesized or bacterial magnetic nanoparticles (MNPs) into hematopoietic Flt3 + stem cells and DC from mouse bone marrow. We show that (i) uptake of both synthetic and biogenic nanoparticles into cells endow magnetic activity and (ii) low numbers of MNP-loaded cells are readily detected by MRI.

  6. Primary bone tumors of adulthood

    PubMed Central

    Teo, Harvey E L; Peh, Wilfred C G

    2004-01-01

    Imaging plays a crucial role in the evaluation of primary bone tumors in adults. Initial radiographic evaluation is indicated in all cases with suspected primary bone tumors. Radiographs are useful for providing the diagnosis, a short list of differential diagnosis or at least indicating the degree of aggressiveness of the lesion. More detailed information about the lesion, such as cortical destruction or local spread, can be obtained using cross-sectional imaging techniques such as computed tomography and magnetic resonance imaging. This article discusses the characteristic features of the more common primary bone tumors of adulthood, and also the pre-treatment evaluation and staging of these lesions using imaging techniques. PMID:18250012

  7. New Antiresorptive Therapies for Postmenopausal Osteoporosis

    PubMed Central

    2015-01-01

    Osteoporosis is a systemic skeletal disease whose risk increases with age and it is common among postmenopausal women. Currently, almost all pharmacological agents for osteoporosis target the bone resorption component of bone remodeling activity. Current antiresorptive agents are effective, but the effectiveness of some agents is limited by real or perceived intolerance, longterm adverse events (AEs), coexisting comorbidities, and inadequate long-term adherence. New antiresorptive therapies that may expand options for the prevention and treatment of osteoporosis include denosumab, combination of conjugated estrogen/bazedoxifene and cathepsin K inhibitors. However, the long-term efficacy and AEs of these antiresorptive therapies need to be confirmed in studies with a longer follow-up period. PMID:26046031

  8. Design of calcium phosphate ceramics for drug delivery applications in bone diseases: A review of the parameters affecting the loading and release of the therapeutic substance.

    PubMed

    Parent, Marianne; Baradari, Hiva; Champion, Eric; Damia, Chantal; Viana-Trecant, Marylène

    2017-04-28

    Effective treatment of critical-size defects is a key challenge in restorative surgery of bone. The strategy covers the implantation of biocompatible, osteoconductive, bioactive and biodegradable devices which (1) well interact with native tissue, mimic multi-dimensional and hierarchical structure of bone and (2) are able to enhance bone repair, treating post implantation pathologies or bone diseases by local delivery of therapeutic agents. Among different options, calcium phosphate biomaterials are found to be attractive choices, due to their excellent biocompatibility, customisable bioactivity and biodegradability. Several approaches have been established to enhance this material ability to be loaded with a therapeutic agent, in order to obtain an in situ controlled release that meets the clinical needs. This article reviews the most important factors influencing on both drug loading and release capacity of porous calcium phosphate bone substitutes. Characteristics of the carrier, drug/carrier interactions, experimental conditions of drug loading and evaluation of drug delivery are considered successively. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Noninvasive imaging of bone microarchitecture

    PubMed Central

    Patsch, Janina M.; Burghardt, Andrew J.; Kazakia, Galateia; Majumdar, Sharmila

    2015-01-01

    The noninvasive quantification of peripheral compartment-specific bone microarchitecture is feasible with high-resolution peripheral quantitative computed tomography (HR-pQCT) and high-resolution magnetic resonance imaging (HR-MRI). In addition to classic morphometric indices, both techniques provide a suitable basis for virtual biomechanical testing using finite element (FE) analyses. Methodical limitations, morphometric parameter definition, and motion artifacts have to be considered to achieve optimal data interpretation from imaging studies. With increasing availability of in vivo high-resolution bone imaging techniques, special emphasis should be put on quality control including multicenter, cross-site validations. Importantly, conclusions from interventional studies investigating the effects of antiosteoporotic drugs on bone microarchitecture should be drawn with care, ideally involving imaging scientists, translational researchers, and clinicians. PMID:22172043

  10. Alkylating chemotherapeutic agents cyclophosphamide and melphalan cause functional injury to human bone marrow-derived mesenchymal stem cells.

    PubMed

    Kemp, Kevin; Morse, Ruth; Sanders, Kelly; Hows, Jill; Donaldson, Craig

    2011-07-01

    The adverse effects of melphalan and cyclophosphamide on hematopoietic stem cells are well-known; however, the effects on the mesenchymal stem cells (MSCs) residing in the bone marrow are less well characterised. Examining the effects of chemotherapeutic agents on patient MSCs in vivo is difficult due to variability in patients and differences in the drug combinations used, both of which could have implications on MSC function. As drugs are not commonly used as single agents during high-dose chemotherapy (HDC) regimens, there is a lack of data comparing the short- or long-term effects these drugs have on patients post treatment. To help address these problems, the effects of the alkylating chemotherapeutic agents cyclophosphamide and melphalan on human bone marrow MSCs were evaluated in vitro. Within this study, the exposure of MSCs to the chemotherapeutic agents cyclophosphamide or melphalan had strong negative effects on MSC expansion and CD44 expression. In addition, changes were seen in the ability of MSCs to support hematopoietic cell migration and repopulation. These observations therefore highlight potential disadvantages in the use of autologous MSCs in chemotherapeutically pre-treated patients for future therapeutic strategies. Furthermore, this study suggests that if the damage caused by chemotherapeutic agents to marrow MSCs is substantial, it would be logical to use cultured allogeneic MSCs therapeutically to assist or repair the marrow microenvironment after HDC.

  11. The prevention of fragility fractures in patients with non-metastatic prostate cancer: a position statement by the international osteoporosis foundation

    PubMed Central

    Cianferotti, Luisella; Bertoldo, Francesco; Carini, Marco; Kanis, John A.; Lapini, Alberto; Longo, Nicola; Martorana, Giuseppe; Mirone, Vincenzo; Reginster, Jean-Yves; Rizzoli, Rene; Brandi, Maria Luisa

    2017-01-01

    Androgen deprivation therapy is commonly employed for the treatment of non-metastatic prostate cancer as primary or adjuvant treatment. The skeleton is greatly compromised in men with prostate cancer during androgen deprivation therapy because of the lack of androgens and estrogens, which are trophic factors for bone. Men receiving androgen deprivation therapy sustain variable degrees of bone loss with an increased risk of fragility fractures. Several bone antiresorptive agents have been tested in randomized controlled trials in these patients. Oral bisphosphonates, such as alendronate and risedronate, and intravenous bisphosphonates, such as pamidronate and zoledronic acid, have been shown to increase bone density and decrease the risk of fractures in men receiving androgen deprivation therapy. Denosumab, a fully monoclonal antibody that inhibits osteoclastic-mediated bone resorption, is also effective in increasing bone mineral density and reducing fracture rates in these patients. The assessment of fracture risk, T-score and/or the evaluation of prevalent fragility fractures are mandatory for the selection of patients who will benefit from antiresorptive therapy. In the future, new agents modulating bone turnover and skeletal muscle metabolism will be available for testing in these subjects. PMID:29088899

  12. The prevention of fragility fractures in patients with non-metastatic prostate cancer: a position statement by the international osteoporosis foundation.

    PubMed

    Cianferotti, Luisella; Bertoldo, Francesco; Carini, Marco; Kanis, John A; Lapini, Alberto; Longo, Nicola; Martorana, Giuseppe; Mirone, Vincenzo; Reginster, Jean-Yves; Rizzoli, Rene; Brandi, Maria Luisa

    2017-09-26

    Androgen deprivation therapy is commonly employed for the treatment of non-metastatic prostate cancer as primary or adjuvant treatment. The skeleton is greatly compromised in men with prostate cancer during androgen deprivation therapy because of the lack of androgens and estrogens, which are trophic factors for bone. Men receiving androgen deprivation therapy sustain variable degrees of bone loss with an increased risk of fragility fractures. Several bone antiresorptive agents have been tested in randomized controlled trials in these patients. Oral bisphosphonates, such as alendronate and risedronate, and intravenous bisphosphonates, such as pamidronate and zoledronic acid, have been shown to increase bone density and decrease the risk of fractures in men receiving androgen deprivation therapy. Denosumab, a fully monoclonal antibody that inhibits osteoclastic-mediated bone resorption, is also effective in increasing bone mineral density and reducing fracture rates in these patients. The assessment of fracture risk, T-score and/or the evaluation of prevalent fragility fractures are mandatory for the selection of patients who will benefit from antiresorptive therapy. In the future, new agents modulating bone turnover and skeletal muscle metabolism will be available for testing in these subjects.

  13. Simvastatin Prodrug Micelles Target Fracture and Improve Healing

    PubMed Central

    Dusad, Anand; Yuan, Hongjiang; Ren, Ke; Li, Fei; Fehringer, Edward V.; Purdue, P. Edward; Goldring, Steven R.; Daluiski, Aaron; Wang, Dong

    2014-01-01

    Simvastatin (SIM), a widely used anti-lipidaemic drug, has been identified as a bone anabolic agent. Its poor water solubility and the lack of distribution to the skeleton, however, have limited its application in the treatment of bone metabolic diseases. In this study, an amphiphilic macromolecular prodrug of SIM was designed and synthesized to overcome these limitations. The polyethylene glycol (PEG)-based prodrug can spontaneously self-assemble to form micelles. The use of SIM trimer as the prodrug’s hydrophobic segment allows easy encapsulation of additional free SIM. The in vitro studies showed that SIM/SIM-mPEG micelles were internalized by MC3T3 cells via lysosomal trafficking and consistently induced expression of both BMP2 and DKK1 mRNA, suggesting that the prodrug micelle retains the biological functions of SIM. After systemic administration, optical imaging suggests that the micelles would passively target to bone fracture sites associated with hematoma and inflammation. Furthermore, flow cytometry study revealed that SIM/SIM-mPEG micelles had preferred cellular uptake by inflammatory and resident cells within the fracture callus tissue. The treatment study using a mouse osteotomy model validated the micelles’ therapeutic efficacy in promoting bone fracture healing as demonstrated by micro-CT and histological analyses. Collectively, these data suggest that the macromolecular prodrug-based micelle formulation of SIM may have great potential for clinical management of impaired fracture healing. PMID:25542644

  14. High-resolution axial MR imaging of tibial stress injuries

    PubMed Central

    2012-01-01

    Purpose To evaluate the relative involvement of tibial stress injuries using high-resolution axial MR imaging and the correlation with MR and radiographic images. Methods A total of 33 patients with exercise-induced tibial pain were evaluated. All patients underwent radiograph and high-resolution axial MR imaging. Radiographs were taken at initial presentation and 4 weeks later. High-resolution MR axial images were obtained using a microscopy surface coil with 60 × 60 mm field of view on a 1.5T MR unit. All images were evaluated for abnormal signals of the periosteum, cortex and bone marrow. Results Nineteen patients showed no periosteal reaction at initial and follow-up radiographs. MR imaging showed abnormal signals in the periosteal tissue and partially abnormal signals in the bone marrow. In 7 patients, periosteal reaction was not seen at initial radiograph, but was detected at follow-up radiograph. MR imaging showed abnormal signals in the periosteal tissue and entire bone marrow. Abnormal signals in the cortex were found in 6 patients. The remaining 7 showed periosteal reactions at initial radiograph. MR imaging showed abnormal signals in the periosteal tissue in 6 patients. Abnormal signals were seen in the partial and entire bone marrow in 4 and 3 patients, respectively. Conclusions Bone marrow abnormalities in high-resolution axial MR imaging were related to periosteal reactions at follow-up radiograph. Bone marrow abnormalities might predict later periosteal reactions, suggesting shin splints or stress fractures. High-resolution axial MR imaging is useful in early discrimination of tibial stress injuries. PMID:22574840

  15. Bone targeting compounds for radiotherapy and imaging: *Me(III)-DOTA conjugates of bisphosphonic acid, pamidronic acid and zoledronic acid.

    PubMed

    Meckel, M; Bergmann, R; Miederer, M; Roesch, F

    2017-01-01

    Bisphosphonates have a high adsorption on calcified tissues and are commonly used in the treatment of bone disorder diseases. Conjugates of bisphosphonates with macrocyclic chelators open new possibilities in bone targeted radionuclide imaging and therapy. Subsequent to positron emission tomography (PET) examinations utilizing 68 Ga-labelled analogues, endoradiotheraphy with 177 Lu-labelled macrocyclic bisphosphonates may have a great potential in the treatment of painful skeletal metastases. Based on the established pharmaceuticals pamidronate and zoledronate two new DOTA-α-OH-bisphosphonates, DOTA PAM and DOTA ZOL (MM1.MZ) were successfully synthesized. The ligands were labelled with the positron emitting nuclide 68 Ga and the β - emitting nuclide 177 Lu and compared in in vitro studies and in ex vivo biodistribution studies together with small animal PET and single photon emission computed tomography (SPECT) studies against [ 18 F]NaF and a known DOTA-α-H-bisphosphonate conjugate (BPAPD) in healthy Wistar rats. The new DOTA-bisphosphonates can be labelled in high yield of 80 to 95 % in 15 min with post-processed 68 Ga and >98 % with 177 Lu. The tracers showed very low uptake in soft tissue, a fast renal clearance and a high accumulation on bone. The best compound was [ 68 Ga]DOTA ZOL (SUV Femur  = 5.4 ± 0.6) followed by [ 18 F]NaF (SUV Femur  = 4.8 ± 0.2), [ 68 Ga]DOTA PAM (SUV Femur  = 4.5 ± 0.2) and [ 68 Ga]BPAPD (SUV Femur  = 3.2 ± 0.3). [ 177 Lu]DOTA ZOL showed a similar distribution as the diagnostic 68 Ga complex. The 68 Ga labelled compounds showed a promising pharmacokinetics, with similar uptake profile and distribution kinetics. Bone accumulation was highest for [ 68 Ga]DOTA ZOL , which makes this compound probably an interesting bone targeting agent for a therapeutic approach with 177 Lu. The therapeutic compound [ 177 Lu]DOTA ZOL showed a high target-to-background ratio. SPECT experiments showed concordance to the PET scans in healthy rats. [ 68 Ga/ 177 Lu]DOTA ZOL appears to be a potential theranostic combination in the management of disseminated bone metastases.

  16. Bone vascularization: a way to study bone microarchitecture?

    NASA Astrophysics Data System (ADS)

    Blery, P.; Autrusseau, F.; Crauste, E.; Freuchet, Erwan; Weiss, Pierre; Guédon, J.-P.; Amouriq, Y.

    2014-03-01

    Trabecular bone and its microarchitecture are of prime importance for health. Studying vascularization helps to better know the relationship between bone and vascular microarchitecture. This research is an animal study (nine Lewis rats), based on the perfusion of vascularization by a contrast agent (a mixture of 50% barium sulfate with 1.5% of gelatin) before euthanasia. The samples were studied by micro CT at a resolution of 9μm. Softwares were used to show 3D volumes of bone and vessels, to calculate bone and vessels microarchitecture parameters. This study aims to understand simultaneously the bone microarchitecture and its vascular microarchitecture.

  17. Bone Blood Flow During Simulated Microgravity: Physiological and Molecular Mechanisms

    NASA Technical Reports Server (NTRS)

    Bloomfield, Susan A.

    1999-01-01

    Blood flow to bone has been shown to affect bone mass and presumably bone strength. Preliminary data indicate that blood flow to the rat femur decreases after 14 days of simulated microgravity, using hindlimb suspension (HLS). If adult rats subjected to HLS are given dobutamine, a synthetic catecholamine which can cause peripheral vasodilation and increased blood flow, the loss of cortical bone area usually observed is prevented. Further, mechanisms exist at the molecular level to link changes in bone blood flow to changes in bone cell activity, particularly for vasoactive agents like nitric oxide (NO). The decreases in fluid shear stress created by fluid flow associated with the shifts of plasma volume during microgravity may result in alterations in expression of vasoactive agents such as NO, producing important functional effects on bone cells. The primary aim of this project is to characterize changes in 1) bone blood flow, 2) indices of bone mass, geometry, and strength, and 3) changes in gene expression for modulators of nitric oxide activity (e.g., nitric oxide synthase) and other candidate genes involved in signal transduction of mechanical loading after 3, 7, 14, 21, and 28 days of HLS in the adult rat. Using a rat of at least 5 months of age avoids inadvertently studying effects of simulated microgravity on growing, rather than adult, bone. Utilizing the results of these studies, we will then define how altered blood flow contributes to changes in bone with simulated microgravity by administering a vasodilatory agent (which increases blood flow to tissues) during hindlimb suspension. In all studies, responses in the unloaded hindlimb bones (tibial shaft, femoral neck) will be compared with those in the weightbearing humeral shaft and the non-weightbearing calvarium (skull) from the same animal. Bone volumetric mineral density and geometry will be quantified by peripheral quantitative CT; structural and material properties of the long bones will be determined by 3-point bending (tibia, humerus) or compression (femoral neck) testing to failure. A unique aspect of these studies will be defining the time course of changes in gene expression in bone cell populations with unloading, accomplished with Northern blots, in situ hybridization, and immunohistochemistry. These studies have high relevance for concurrent protocols being proposed by investigators on NSBRI Cardiovascular and Muscle teams, with blood flow data available on a number of tissues other than bone. Further, dobutamine and other Beta-agonists have been tested as countermeasures for altered muscle and cardiovascular function. Results of the intervention tested in our studies have potential relevance for a number of systemic changes seen with prolonged spaceflight.

  18. k-space sampling optimization for ultrashort TE imaging of cortical bone: Applications in radiation therapy planning and MR-based PET attenuation correction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Lingzhi, E-mail: hlingzhi@gmail.com, E-mail: raymond.muzic@case.edu; Traughber, Melanie; Su, Kuan-Hao

    Purpose: The ultrashort echo-time (UTE) sequence is a promising MR pulse sequence for imaging cortical bone which is otherwise difficult to image using conventional MR sequences and also poses strong attenuation for photons in radiation therapy and PET imaging. The authors report here a systematic characterization of cortical bone signal decay and a scanning time optimization strategy for the UTE sequence through k-space undersampling, which can result in up to a 75% reduction in acquisition time. Using the undersampled UTE imaging sequence, the authors also attempted to quantitatively investigate the MR properties of cortical bone in healthy volunteers, thus demonstratingmore » the feasibility of using such a technique for generating bone-enhanced images which can be used for radiation therapy planning and attenuation correction with PET/MR. Methods: An angularly undersampled, radially encoded UTE sequence was used for scanning the brains of healthy volunteers. Quantitative MR characterization of tissue properties, including water fraction and R2{sup ∗} = 1/T2{sup ∗}, was performed by analyzing the UTE images acquired at multiple echo times. The impact of different sampling rates was evaluated through systematic comparison of the MR image quality, bone-enhanced image quality, image noise, water fraction, and R2{sup ∗} of cortical bone. Results: A reduced angular sampling rate of the UTE trajectory achieves acquisition durations in proportion to the sampling rate and in as short as 25% of the time required for full sampling using a standard Cartesian acquisition, while preserving unique MR contrast within the skull at the cost of a minimal increase in noise level. The R2{sup ∗} of human skull was measured as 0.2–0.3 ms{sup −1} depending on the specific region, which is more than ten times greater than the R2{sup ∗} of soft tissue. The water fraction in human skull was measured to be 60%–80%, which is significantly less than the >90% water fraction in brain. High-quality, bone-enhanced images can be generated using a reduced sampled UTE sequence with no visible compromise in image quality and they preserved bone-to-air contrast with as low as a 25% sampling rate. Conclusions: This UTE strategy with angular undersampling preserves the image quality and contrast of cortical bone, while reducing the total scanning time by as much as 75%. The quantitative results of R2{sup ∗} and the water fraction of skull based on Dixon analysis of UTE images acquired at multiple echo times provide guidance for the clinical adoption and further parameter optimization of the UTE sequence when used for radiation therapy and MR-based PET attenuation correction.« less

  19. Automatic bone outer contour extraction from B-modes ultrasound images based on local phase symmetry and quadratic polynomial fitting

    NASA Astrophysics Data System (ADS)

    Karlita, Tita; Yuniarno, Eko Mulyanto; Purnama, I. Ketut Eddy; Purnomo, Mauridhi Hery

    2017-06-01

    Analyzing ultrasound (US) images to get the shapes and structures of particular anatomical regions is an interesting field of study since US imaging is a non-invasive method to capture internal structures of a human body. However, bone segmentation of US images is still challenging because it is strongly influenced by speckle noises and it has poor image quality. This paper proposes a combination of local phase symmetry and quadratic polynomial fitting methods to extract bone outer contour (BOC) from two dimensional (2D) B-modes US image as initial steps of three-dimensional (3D) bone surface reconstruction. By using local phase symmetry, the bone is initially extracted from US images. BOC is then extracted by scanning one pixel on the bone boundary in each column of the US images using first phase features searching method. Quadratic polynomial fitting is utilized to refine and estimate the pixel location that fails to be detected during the extraction process. Hole filling method is then applied by utilize the polynomial coefficients to fill the gaps with new pixel. The proposed method is able to estimate the new pixel position and ensures smoothness and continuity of the contour path. Evaluations are done using cow and goat bones by comparing the resulted BOCs with the contours produced by manual segmentation and contours produced by canny edge detection. The evaluation shows that our proposed methods produces an excellent result with average MSE before and after hole filling at the value of 0.65.

  20. Image database for digital hand atlas

    NASA Astrophysics Data System (ADS)

    Cao, Fei; Huang, H. K.; Pietka, Ewa; Gilsanz, Vicente; Dey, Partha S.; Gertych, Arkadiusz; Pospiech-Kurkowska, Sywia

    2003-05-01

    Bone age assessment is a procedure frequently performed in pediatric patients to evaluate their growth disorder. A commonly used method is atlas matching by a visual comparison of a hand radiograph with a small reference set of old Greulich-Pyle atlas. We have developed a new digital hand atlas with a large set of clinically normal hand images of diverse ethnic groups. In this paper, we will present our system design and implementation of the digital atlas database to support the computer-aided atlas matching for bone age assessment. The system consists of a hand atlas image database, a computer-aided diagnostic (CAD) software module for image processing and atlas matching, and a Web user interface. Users can use a Web browser to push DICOM images, directly or indirectly from PACS, to the CAD server for a bone age assessment. Quantitative features on the examined image, which reflect the skeletal maturity, are then extracted and compared with patterns from the atlas image database to assess the bone age. The digital atlas method built on a large image database and current Internet technology provides an alternative to supplement or replace the traditional one for a quantitative, accurate and cost-effective assessment of bone age.

  1. Evaluation of the utility of 99m Tc-MDP bone scintigraphy versus MIBG scintigraphy and cross-sectional imaging for staging patients with neuroblastoma.

    PubMed

    Gauguet, Jean-Marc; Pace-Emerson, Tamara; Grant, Frederick D; Shusterman, Suzanne; DuBois, Steven G; Frazier, A Lindsay; Voss, Stephan D

    2017-11-01

    Accurate staging of neuroblastoma requires multiple imaging examinations. The purpose of this study was to determine the relative contribution of 99m Tc-methylene diphosphonate (MDP) bone scintigraphy (bone scan) versus metaiodobenzylguanidine scintigraphy (MIBG scan) for accurate staging of neuroblastoma. A medical record search by the identified patients with neuroblastoma from 1993 to 2012 who underwent both MIBG and bone scan for disease staging. Cross-sectional imaging was used to corroborate the scintigraphy results. Clinical records were used to correlate imaging findings with clinical staging and patient management. One hundred thirty-two patients underwent both MIBG and bone scan for diagnosis. All stage 1 (n = 12), 2 (n = 8), and 4S (n = 4) patients had a normal bone scan with no skeletal MIBG uptake. Six of 30 stage 3 patients had false (+) bone scans. In the 78 stage 4 patients, 58/78 (74%) were both skeletal MIBG(+)/bone scan (+). In 56 of the 58 cases, skeletal involvement detected with MIBG was equal to or greater than that detected by bone scan. Only 3/78 had (-) skeletal MIBG uptake and (+) bone scans; all 3 had other sites of metastatic disease. Five of 78 had (+) skeletal MIBG with a (-) bone scan, while 12/78 had no skeletal involvement by either MIBG or bone scan. In no case did a positive bone scan alone determine a stage 4 designation. In the staging of neuroblastoma, 99m Tc-MDP bone scintigraphy does not identify unique sites of disease that affect disease stage or clinical management, and in the majority of cases bone scans can be omitted from the routine neuroblastoma staging algorithm. © 2017 Wiley Periodicals, Inc.

  2. Analysis of imaging characteristics of primary malignant bone tumors in children

    PubMed Central

    Sun, Yingwei; Liu, Xueyong; Pan, Shinong; Deng, Chunbo; Li, Xiaohan; Guo, Qiyong

    2017-01-01

    The present study aimed to investigate the imaging characteristics of primary malignant bone tumors in children. The imaging results of 34 children with primary malignant bone tumors confirmed by histopathological diagnosis between March 2008 and January 2014 were retrospectively analyzed. In total, 25 patients had osteosarcoma, with radiography and computed tomography (CT) showing osteolytic bone destruction or/and osteoblastic bone sclerosis, an aggressive periosteal reaction, a soft-tissue mass and cancerous bone. The tumors appeared as mixed magnetic resonance imaging (MRI) signals that were inhomogeneously enhanced. A total of 5 patients presented with Ewing sarcoma, with radiography and CT showing invasive bone destruction and a soft-tissue mass. Of the 5 cases, 2 showed a laminar periosteal reaction. The tumors were shown to have mixed low signal on T1-weighted images (T1WI) and high signal on T2-weighted images (T2WI); 1 case showed marked inhomogeneous enhancement. Another 3 patients exhibited chondrosarcoma. Of these cases, 1 was adjacent to the cortex of the proximal tibia, and presented with local cortical bone destruction and a soft-tissue mass containing scattered punctate and amorphous calcifications. MRI revealed mixed low T1 signal and high T2 signals. Another case was located in the medullary cavity of the distal femur, with radiography revealing a localized periosteal reaction. The tumor appeared with mixed MRI signals, and with involvement of the epiphysis and epiphyseal plates. Radiography and CT of the third case showed bone destruction in the right pubic ramus, with patchy punctate, cambered calcifications in the soft-tissue mass. MRI of the soft-tissue mass revealed isointensity on T1WI and heterogeneous hyperintensity on T2WI. Ossifications and the septum appeared as low T1WI and T2WI. Of the 34 patients, 1 patient presented with lymphoma involving the T12, L1 and L2 vertebrae. CT showed vertebral bone destruction, a soft-tissue mass and a compression fracture of L1. MRI showed a soft-tissue mass with low T1 signal and high T2 signal and marked inhomogeneous enhancement. Overall, osteosarcoma was the most common primary malignant bone tumor, followed by Ewing sarcoma, chondrosarcoma and lymphoma. Osteoblastic or osteolytic bone destruction, an invasive periosteal reaction, soft-tissue masses, a tumor matrix and inhomogeneous enhancement were important imaging features of malignant bone tumors. PMID:29113210

  3. Biomimetic fiber mesh scaffolds based on gelatin and hydroxyapatite nano-rods: Designing intrinsic skills to attain bone reparation abilities.

    PubMed

    Sartuqui, Javier; Gravina, A Noel; Rial, Ramón; Benedini, Luciano A; Yahia, L'Hocine; Ruso, Juan M; Messina, Paula V

    2016-09-01

    Intrinsic material skills have a deep effect on the mechanical and biological performance of bone substitutes, as well as on its associated biodegradation properties. In this work we have manipulated the preparation of collagenous derived fiber mesh frameworks to display a specific composition, morphology, open macroporosity, surface roughness and permeability characteristics. Next, the effect of the induced physicochemical attributes on the scaffold's mechanical behavior, bone bonding potential and biodegradability were evaluated. It was found that the scaffold microstructure, their inherent surface roughness, and the compression strength of the gelatin scaffolds can be modulated by the effect of the cross-linking agent and, essentially, by mimicking the nano-scale size of hydroxyapatite in natural bone. A clear effect of bioactive hydroxyapatite nano-rods on the scaffolds skills can be appreciated and it is greater than the effect of the cross-linking agent, offering a huge perspective for the upcoming progress of bone implant technology. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. [Action of Calendula officinalis essence on bone preservation after the extraction].

    PubMed

    Uribe-Fentanes, Laura K; Soriano-Padilla, Fernando; Pérez-Frutos, Jorge Raúl; Veras-Hernández, Miriam Alejandra

    2018-01-01

    Calendula officinalis is a phytodrug used as analgesic, antiseptic and wound-healing agent due to its collagenogenic effect, which is why it is a convenient and affordable treatment that promotes alveolar bone preservation after tooth extraction in vivo. The aim of this study was to use Calendula officinalis during and after tooth extraction to determine its ability to preserve bone after this procedure. We established two groups matched by age, gender and position of the third molar. We used with patients on the experimental group Calendula officinalis diluted 10% as an irrigant during surgical extraction of third molars. We performed the conventional way with the control group irrigating with saline solution. Subsequently, both groups continued to make mouthwash for a week with the irrigating agent. Every week for a month, each patient underwent periapical radiography, out of which we took measurements of alveolar ridges and depth of alveolar bone, which were compared. There is statistically significant evidence to state that Calendula officinalis favorably affects bone preservation after extraction.

  5. Bone accumulation of the Tc-99m complex of carbamyl phosphate and its analogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosain, P.; Spencer, R.P.; Ahlquist, K.J.

    1978-05-01

    Carbamyl phosphate, an organic moecule containing a single phosphate group, has been used in the therapy of sickle-cell disease. Carbamyl phosphate bound Tc-99m and achieved bone uptake in mice, rabbits, and a human volunteer. By examination of the structural formula, a working hypothesis was developed that predicted that the Tc-99m complexes of the analogous compounds acetyl phosphate, propionyl phosphate, and butyryl phosphate, each carrying single phosphate and carbonyl groups, would also show bone specificity. This was confirmed experimentally. Phosphonoacetic acid is a structural analog of these compounds. The structural analysis also predicted that aminomethylphosphonic acid and phosphoenolpyruvate would not havemore » as avid bone affinity, and this was also confirmed. These compounds represent a new class of bone-seeking agents that have the common properties of a lone phosphate and a carbonyl function. Such agents may permit the synthesis of additional analogs in an effort to obtain optimal affinity in the Tc-99m complexes.« less

  6. Efficacy and safety of emtricitabine/tenofovir alafenamide (FTC/TAF) vs. emtricitabine/tenofovir disoproxil fumarate (FTC/TDF) as a backbone for treatment of HIV-1 infection in virologically suppressed adults: subgroup analysis by third agent of a randomized, double-blind, active-controlled phase 3 trial.

    PubMed

    Post, Frank A; Yazdanpanah, Yazdan; Schembri, Gabriel; Lazzarin, Adriano; Reynes, Jacques; Maggiolo, Franco; Yan, Mingjin; Abram, Michael E; Tran-Muchowski, Cecilia; Cheng, Andrew; Rhee, Martin S

    2017-05-01

    FTC/TAF was shown to be noninferior to FTC/TDF with advantages in markers of renal and bone safety. To evaluate the efficacy and safety of switching to FTC/TAF from FTC/TDF by third agent (boosted protease inhibitor [PI] vs. unboosted third agent). We conducted a 48-week subgroup analysis based on third agent from a randomized, double blind study in virologically suppressed adults on a FTC/TDF-containing regimen who switched to FTC/TAF vs. continued FTC/TDF while remaining on the same third agent. We randomized (1:1) 663 participants to either switch to FTC/TAF (N = 333) or continue FTC/TDF (N = 330), each with baseline third agent stratifying by class of third agent in the prior treatment regimen (boosted PI 46%, unboosted third agent 54%). At week 48, significant differences in renal biomarkers and bone mineral density were observed favoring FTC/TAF over FTC/TDF (p < 0.05 for all), with similar improvements in the FTC/TAF arm in those who received boosted PI vs. unboosted third agents. At week 48, virologic success rates were similar between treatment groups for those who received a boosted PI (FTC/TAF 92%, FTC/TDF 93%) and for those who received an unboosted third agent (97% vs. 93%). In virologically suppressed patients switching to FTC/TAF from FTC/TDF, high rates of virologic suppression were maintained, while renal and bone safety parameters improved, regardless of whether participants were receiving a boosted PI or an unboosted third agent. FTC/TAF offers safety advantages over FTC/TDF and can be an important option as an NRTI backbone given with a variety of third agents.

  7. Vertebral osteoporosis: perfused animal cadaver model for testing new vertebroplastic agents.

    PubMed

    Hoell, Thomas; Huschak, Gerald; Beier, Andre; Holzhausen, Hans-Juergen; Meisel, Hans-Joerg; Emmrich, Frank

    2010-12-01

    Experimental study. It was aimed to establish a cadaver model to imitate osteoporotic perfused vertebral bone and to allow for transpedicular transfer of bone cement and various new materials into vertebrae. The model was perfused to simulate vertebroplasty in the presence of transvertebral blood flow. The injection of bone cement into vertebrae bears the risk of irreversible discharge of material into the venous system of the spinal canal. The bovine cadaver model studied allows visual studies of material distribution in a vertebral bone, the potential spill-out of material, and quantification of washout and disintegration phenomena. Thoracic and lumbar vertebrae from 1-year-old calves were cut transversally into 5 mm slices, macerated, and decalcified. The softened bone slices were compressed between 2 transparent plastic discs. A standard vertebroplasty cannula (outer diameter 3.5 mm, inner diameter 2.5 mm) was inserted into the vertebral body via the pedicle to transfer the different vertebroplasty materials. Arterial blood flow was simulated by means of liquid irrigation via 2 needles in the ventral part of the vertebral body slice. Metal powder was mixed with the solution to indicate the blood flow in the bone. The model was evaluated with the vertebroplasty cement polymethylmethacrylate. The model permitted visualization of the insertion and distribution of vertebroplasty materials. Liquid bone cement was effused into the spinal canal as in the clinical situation. Higher modulus cement acted in the same way as in clinical vertebroplasty. Rigid vertebroplasty agents led to trabecular fractures and stable mechanical interactions with the bone and eventually moved dorsal bone fragments into the spinal canal. Sedimentation of the metal powder indicated regions of perfusion. The model simulated the clinical behavior of liquid and higher modulus vertebroplasty agents in the presence of blood flow. It enabled safe ex vivo testing of the mechanical and physical properties of alternative vertebroplasty materials under flow conditions.

  8. Prevent and cure disuse bone loss

    NASA Technical Reports Server (NTRS)

    Jee, Webster S. S.

    1994-01-01

    Anabolic agents like parathyroid hormone and postagladin E-like substances were studied in dogs and rats to determine their effectiveness in the prevention and cure of bone loss due to immobilization. It was determined that postagladin E2 administration prevented immobilization while at the same time it added extra bone in a dose responsive manner. Although bone mass returns, poor trabecular architecture remains after normal ambulation recovery from immobilization. Disuse related bone loss and poor trabecular architecture were cured by post-immobilization postagladin E2 treatment.

  9. Whole-body FDG PET-MR oncologic imaging: pitfalls in clinical interpretation related to inaccurate MR-based attenuation correction.

    PubMed

    Attenberger, Ulrike; Catana, Ciprian; Chandarana, Hersh; Catalano, Onofrio A; Friedman, Kent; Schonberg, Stefan A; Thrall, James; Salvatore, Marco; Rosen, Bruce R; Guimaraes, Alexander R

    2015-08-01

    Simultaneous data collection for positron emission tomography and magnetic resonance imaging (PET/MR) is now a reality. While the full benefits of concurrently acquiring PET and MR data and the potential added clinical value are still being evaluated, initial studies have identified several important potential pitfalls in the interpretation of fluorodeoxyglucose (FDG) PET/MRI in oncologic whole-body imaging, the majority of which being related to the errors in the attenuation maps created from the MR data. The purpose of this article was to present such pitfalls and artifacts using case examples, describe their etiology, and discuss strategies to overcome them. Using a case-based approach, we will illustrate artifacts related to (1) Inaccurate bone tissue segmentation; (2) Inaccurate air cavities segmentation; (3) Motion-induced misregistration; (4) RF coils in the PET field of view; (5) B0 field inhomogeneity; (6) B1 field inhomogeneity; (7) Metallic implants; (8) MR contrast agents.

  10. First cosmic-ray images of bone and soft tissue

    NASA Astrophysics Data System (ADS)

    Mrdja, Dusan; Bikit, Istvan; Bikit, Kristina; Slivka, Jaroslav; Hansman, Jan; Oláh, László; Varga, Dezső

    2016-11-01

    More than 120 years after Roentgen's first X-ray image, the first cosmic-ray muon images of bone and soft tissue are created. The pictures, shown in the present paper, represent the first radiographies of structures of organic origin ever recorded by cosmic rays. This result is achieved by a uniquely designed, simple and versatile cosmic-ray muon-imaging system, which consists of four plastic scintillation detectors and a muon tracker. This system does not use scattering or absorption of muons in order to deduct image information, but takes advantage of the production rate of secondaries in the target materials, detected in coincidence with muons. The 2D image slices of cow femur bone are obtained at several depths along the bone axis, together with the corresponding 3D image. Real organic soft tissue, polymethyl methacrylate and water, never seen before by any other muon imaging techniques, are also registered in the images. Thus, similar imaging systems, placed around structures of organic or inorganic origin, can be used for tomographic imaging using only the omnipresent cosmic radiation.

  11. Automated bone segmentation from large field of view 3D MR images of the hip joint

    NASA Astrophysics Data System (ADS)

    Xia, Ying; Fripp, Jurgen; Chandra, Shekhar S.; Schwarz, Raphael; Engstrom, Craig; Crozier, Stuart

    2013-10-01

    Accurate bone segmentation in the hip joint region from magnetic resonance (MR) images can provide quantitative data for examining pathoanatomical conditions such as femoroacetabular impingement through to varying stages of osteoarthritis to monitor bone and associated cartilage morphometry. We evaluate two state-of-the-art methods (multi-atlas and active shape model (ASM) approaches) on bilateral MR images for automatic 3D bone segmentation in the hip region (proximal femur and innominate bone). Bilateral MR images of the hip joints were acquired at 3T from 30 volunteers. Image sequences included water-excitation dual echo stead state (FOV 38.6 × 24.1 cm, matrix 576 × 360, thickness 0.61 mm) in all subjects and multi-echo data image combination (FOV 37.6 × 23.5 cm, matrix 576 × 360, thickness 0.70 mm) for a subset of eight subjects. Following manual segmentation of femoral (head-neck, proximal-shaft) and innominate (ilium+ischium+pubis) bone, automated bone segmentation proceeded via two approaches: (1) multi-atlas segmentation incorporating non-rigid registration and (2) an advanced ASM-based scheme. Mean inter- and intra-rater reliability Dice's similarity coefficients (DSC) for manual segmentation of femoral and innominate bone were (0.970, 0.963) and (0.971, 0.965). Compared with manual data, mean DSC values for femoral and innominate bone volumes using automated multi-atlas and ASM-based methods were (0.950, 0.922) and (0.946, 0.917), respectively. Both approaches delivered accurate (high DSC values) segmentation results; notably, ASM data were generated in substantially less computational time (12 min versus 10 h). Both automated algorithms provided accurate 3D bone volumetric descriptions for MR-based measures in the hip region. The highly computational efficient ASM-based approach is more likely suitable for future clinical applications such as extracting bone-cartilage interfaces for potential cartilage segmentation.

  12. Automated bone segmentation from large field of view 3D MR images of the hip joint.

    PubMed

    Xia, Ying; Fripp, Jurgen; Chandra, Shekhar S; Schwarz, Raphael; Engstrom, Craig; Crozier, Stuart

    2013-10-21

    Accurate bone segmentation in the hip joint region from magnetic resonance (MR) images can provide quantitative data for examining pathoanatomical conditions such as femoroacetabular impingement through to varying stages of osteoarthritis to monitor bone and associated cartilage morphometry. We evaluate two state-of-the-art methods (multi-atlas and active shape model (ASM) approaches) on bilateral MR images for automatic 3D bone segmentation in the hip region (proximal femur and innominate bone). Bilateral MR images of the hip joints were acquired at 3T from 30 volunteers. Image sequences included water-excitation dual echo stead state (FOV 38.6 × 24.1 cm, matrix 576 × 360, thickness 0.61 mm) in all subjects and multi-echo data image combination (FOV 37.6 × 23.5 cm, matrix 576 × 360, thickness 0.70 mm) for a subset of eight subjects. Following manual segmentation of femoral (head-neck, proximal-shaft) and innominate (ilium+ischium+pubis) bone, automated bone segmentation proceeded via two approaches: (1) multi-atlas segmentation incorporating non-rigid registration and (2) an advanced ASM-based scheme. Mean inter- and intra-rater reliability Dice's similarity coefficients (DSC) for manual segmentation of femoral and innominate bone were (0.970, 0.963) and (0.971, 0.965). Compared with manual data, mean DSC values for femoral and innominate bone volumes using automated multi-atlas and ASM-based methods were (0.950, 0.922) and (0.946, 0.917), respectively. Both approaches delivered accurate (high DSC values) segmentation results; notably, ASM data were generated in substantially less computational time (12 min versus 10 h). Both automated algorithms provided accurate 3D bone volumetric descriptions for MR-based measures in the hip region. The highly computational efficient ASM-based approach is more likely suitable for future clinical applications such as extracting bone-cartilage interfaces for potential cartilage segmentation.

  13. Severe hypocalcaemia as a cause of seemingly idiopathic bilateral lower limb oedema.

    PubMed

    Hung, Aaron Karnell Dachuan

    2014-01-10

    The existing scientific literature has not drawn a link between severe hypocalcaemia and its role in recalcitrant peripheral oedema. This phenomenon is particularly relevant in oncological and geriatric medicine as bone strengthening but serum calcium-lowering agents such as bisphosphonates and denosumab are used for osteoporosis and/or bone metastasis. This case report, through metastatic prostate cancer in a 66-year-old man with bone metastasis being treated with a monoclonal antibody denosumab, proposes the mechanism of hypocalcaemic oedema as being akin to calcium deprivation such as those induced by calcium channel antagonism. It demonstrates the importance of calcium supplementation as a concurrent treatment while patients are on these osteoclast inhibiting agents.

  14. Estimated human absorbed dose of ¹⁷⁷Lu-BPAMD based on mice data: Comparison with ¹⁷⁷Lu-EDTMP.

    PubMed

    Yousefnia, Hassan; Zolghadri, Samaneh; Shanehsazzadeh, Saeed

    2015-10-01

    In this work, the absorbed dose of human organs for (177)Lu-BPAMD was evaluated based on biodistribution studies into the Syrian mice by RADAR method and was compared with (177)Lu-EDTMP as the only clinically used Lu-177 bone-seeking agent. The highest absorbed dose for both (177)Lu-BPAMD and (177)Lu-EDTMP is observed on the bone surface with 8.007 and 4.802 mSv/MBq. Generally, (177)Lu-BPAMD has considerable characteristics compared with (177)Lu-EDTMP and can be considered as a promising agent for the bone pain palliation therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Skeletal dosimetry for external exposure to photons based on µCT images of spongiosa from different bone sites

    NASA Astrophysics Data System (ADS)

    Kramer, R.; Khoury, H. J.; Vieira, J. W.; Kawrakow, I.

    2007-11-01

    Micro computed tomography (µCT) images of human spongiosa have recently been used for skeletal dosimetry with respect to external exposure to photon radiation. In this previous investigation, the calculation of equivalent dose to the red bone marrow (RBM) and to the bone surface cells (BSC) was based on five different clusters of micro matrices derived from µCT images of vertebrae, and the BSC equivalent dose for 10 µm thickness of the BSC layer was determined using an extrapolation method. The purpose of this study is to extend the earlier investigation by using µCT images from eight different bone sites and by introducing an algorithm for the direct calculation of the BSC equivalent dose with sub-micro voxel resolution. The results show that for given trabecular bone volume fractions (TBVFs) the whole-body RBM equivalent dose does not depend on bone site-specific properties or imaging parameters. However, this study demonstrates that apart from the TBVF and the BSC layer thickness, the BSC equivalent dose additionally depends on a so-called trabecular bone structure (TBS) effect, i.e. that the contribution of photo-electrons released in trabecular bone to the BSC equivalent dose also depends on the bone site-specific structure of the trabeculae. For a given bone site, the TBS effect is also a function of the thickness of the BSC layer, and it could be shown that this effect would disappear almost completely, should the BSC layer thickness be raised from 10 to 50 µm, according to new radiobiological findings.

  16. Bone age maturity assessment using hand-held device

    NASA Astrophysics Data System (ADS)

    Ratib, Osman M.; Gilsanz, Vicente; Liu, Xiaodong; Boechat, M. I.

    2004-04-01

    Purpose: Assessment of bone maturity is traditionally performed through visual comparison of hand and wrist radiograph with existing reference images in textbooks. Our goal was to develop a digital index based on idealized hand Xray images that can be incorporated in a hand held computer and used for visual assessment of bone age for patients. Material and methods: Due to the large variability in bone maturation in normals, we generated a set of "ideal" images obtained by computer combinations of images from our normal reference data sets. Software for hand-held PDA devices was developed for easy navigation through the set of images and visual selection of matching images. A formula based on our statistical analysis provides the standard deviation from normal based on the chronological age of the patient. The accuracy of the program was compared to traditional interpretation by two radiologists in a double blind reading of 200 normal Caucasian children (100 boys, 100 girls). Results: Strong correlations were present between chronological age and bone age (r > 0.9) with no statistical difference between the digital and traditional assessment methods. Determinations of carpal bone maturity in adolescents was slightly more accurate using the digital system. The users did praise the convenience and effectiveness of the digital Palm Index in clinical practice. Conclusion: An idealized digital Palm Bone Age Index provides a convenient and effective alternative to conventional atlases for the assessment of skeletal maturity.

  17. MO-FG-204-09: High Spatial Resolution and Artifact-Free CT Bone Imaging at Off-Centered Positions: An Application of Model-Based Iterative Reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, G; Li, K; Gomez-Cardona, D

    Purpose: Although the anatomy of interest should be positioned as close as possible to the isocenter of CT scanners, off-centering may be inevitable during certain exams in clinical practice such as lumbar spine and elbow imaging. Off-centering degrades image sharpness, generates streak artifacts, and sometimes creates blooming artifacts due to truncation. The purpose of this work was to investigate whether the use of model-based image reconstruction (MBIR) can alleviate the negative impacts of off-centering to achieve high quality CT bone imaging. Methods: Both an anthropomorphic phantom and an ex vivo swine elbow sample were scanned at centered and off-centered positionsmore » using clinical CT bone scan protocols. The magnitude of off-centering was determined from localizer radiographs. Both FBP and MBIR reconstructions were performed. For FBP, both standard and Bone Plus kernels commonly used in bone imaging were used. Objective assessment of image sharpness, noise standard deviation, and noise nonuniformity were performed. Additionally, we retrospectively analyzed human subject data acquired under off-centered conditions as a validation study. Results: In FBP images of the phantom, off-centering by 10 cm led to a 14% increase in noise (p<1e-3) and a 68% increase in noise nonuniformity (p<0.02). A visible drop in bone sharpness was observed. In contrast, no significant difference in the noise magnitude or the noise nonuniformity between the centered and off-centered MBIR images was found. The image sharpness of off-centered MBIR images outperformed that of FBP images reconstructed with the Bone Plus kernel. In images of the swine elbow off-centered by 20 cm, not only was the noise and spatial resolution performance improved by MBIR, truncation artifacts were also elliminated. The human subject study generated similar results, in which the visibility of the off-centered lumbar spine was significantly improved. Conclusion: High quality CT bone imaging at off-centered positions can be achieved using MBIR. This work was partially supported by an NIH grant R01CA169331 and GE Healthcare. K. Li, D. Gomez-Cardona: Nothing to disclose. G.-H. Chen: Research funded, GE Healthcare; Research funded, Siemens AX. A. Budde, J. Hsieh: Employee, GE Healthcare.« less

  18. Investigating the Role of Global Histogram Equalization Technique for 99mTechnetium-Methylene diphosphonate Bone Scan Image Enhancement.

    PubMed

    Pandey, Anil Kumar; Sharma, Param Dev; Dheer, Pankaj; Parida, Girish Kumar; Goyal, Harish; Patel, Chetan; Bal, Chandrashekhar; Kumar, Rakesh

    2017-01-01

    99m Technetium-methylene diphosphonate ( 99m Tc-MDP) bone scan images have limited number of counts per pixel, and hence, they have inferior image quality compared to X-rays. Theoretically, global histogram equalization (GHE) technique can improve the contrast of a given image though practical benefits of doing so have only limited acceptance. In this study, we have investigated the effect of GHE technique for 99m Tc-MDP-bone scan images. A set of 89 low contrast 99m Tc-MDP whole-body bone scan images were included in this study. These images were acquired with parallel hole collimation on Symbia E gamma camera. The images were then processed with histogram equalization technique. The image quality of input and processed images were reviewed by two nuclear medicine physicians on a 5-point scale where score of 1 is for very poor and 5 is for the best image quality. A statistical test was applied to find the significance of difference between the mean scores assigned to input and processed images. This technique improves the contrast of the images; however, oversaturation was noticed in the processed images. Student's t -test was applied, and a statistically significant difference in the input and processed image quality was found at P < 0.001 (with α = 0.05). However, further improvement in image quality is needed as per requirements of nuclear medicine physicians. GHE techniques can be used on low contrast bone scan images. In some of the cases, a histogram equalization technique in combination with some other postprocessing technique is useful.

  19. Intraoperative /sup 99m/Tc bone imaging in the treatment of benign osteoblastic tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sty, J.; Simons, G.

    1982-05-01

    Benign bone tumors can be successfully treated by local resection with the use of intraoperative bone imaging. Intraoperative bone imaging provided accurate localization of an osteoid osteoma in a patella of a 16-year-old girl when standard radiographs failed to demonstrate the lesion. In a case of osteoblastoma of the sacrum in a 12-year old girl, intraoperative scanning was used repeatedly to guide completeness of resection. In these cases in which routine intraoperative radiographs would have failed, intraoperative scanning proved to be essential for success.

  20. Techniques to assess bone ultrastructure organization: orientation and arrangement of mineralized collagen fibrils

    PubMed Central

    Georgiadis, Marios; Müller, Ralph; Schneider, Philipp

    2016-01-01

    Bone's remarkable mechanical properties are a result of its hierarchical structure. The mineralized collagen fibrils, made up of collagen fibrils and crystal platelets, are bone's building blocks at an ultrastructural level. The organization of bone's ultrastructure with respect to the orientation and arrangement of mineralized collagen fibrils has been the matter of numerous studies based on a variety of imaging techniques in the past decades. These techniques either exploit physical principles, such as polarization, diffraction or scattering to examine bone ultrastructure orientation and arrangement, or directly image the fibrils at the sub-micrometre scale. They make use of diverse probes such as visible light, X-rays and electrons at different scales, from centimetres down to nanometres. They allow imaging of bone sections or surfaces in two dimensions or investigating bone tissue truly in three dimensions, in vivo or ex vivo, and sometimes in combination with in situ mechanical experiments. The purpose of this review is to summarize and discuss this broad range of imaging techniques and the different modalities of their use, in order to discuss their advantages and limitations for the assessment of bone ultrastructure organization with respect to the orientation and arrangement of mineralized collagen fibrils. PMID:27335222

  1. Silicon Micro- and Nanofabrication for Medicine

    PubMed Central

    Fine, Daniel; Goodall, Randy; Bansal, Shyam S.; Chiappini, Ciro; Hosali, Sharath; van de Ven, Anne L.; Srinivasan, Srimeenkashi; Liu, Xuewu; Godin, Biana; Brousseau, Louis; Yazdi, Iman K.; Fernandez-Moure, Joseph; Tasciotti, Ennio; Wu, Hung-Jen; Hu, Ye; Klemm, Steve; Ferrari, Mauro

    2013-01-01

    This manuscript constitutes a review of several innovative biomedical technologies fabricated using the precision and accuracy of silicon micro- and nanofabrication. The technologies to be reviewed are subcutaneous nanochannel drug delivery implants for the continuous tunable zero-order release of therapeutics, multi-stage logic embedded vectors for the targeted systemic distribution of both therapeutic and imaging contrast agents, silicon and porous silicon nanowires for investigating cellular interactions and processes as well as for molecular and drug delivery applications, porous silicon (pSi) as inclusions into biocomposites for tissue engineering, especially as it applies to bone repair and regrowth, and porous silica chips for proteomic profiling. In the case of the biocomposites, the specifically designed pSi inclusions not only add to the structural robustness, but can also promote tissue and bone regrowth, fight infection, and reduce pain by releasing stimulating factors and other therapeutic agents stored within their porous network. The common material thread throughout all of these constructs, silicon and its associated dielectrics (silicon dioxide, silicon nitride, etc.), can be precisely and accurately machined using the same scalable micro- and nanofabrication protocols that are ubiquitous within the semiconductor industry. These techniques lend themselves to the high throughput production of exquisitely defined and monodispersed nanoscale features that should eliminate architectural randomness as a source of experimental variation thereby potentially leading to more rapid clinical translation. PMID:23584841

  2. Identification of optimal mask size parameter for noise filtering in 99mTc-methylene diphosphonate bone scintigraphy images.

    PubMed

    Pandey, Anil K; Bisht, Chandan S; Sharma, Param D; ArunRaj, Sreedharan Thankarajan; Taywade, Sameer; Patel, Chetan; Bal, Chandrashekhar; Kumar, Rakesh

    2017-11-01

    Tc-methylene diphosphonate (Tc-MDP) bone scintigraphy images have limited number of counts per pixel. A noise filtering method based on local statistics of the image produces better results than a linear filter. However, the mask size has a significant effect on image quality. In this study, we have identified the optimal mask size that yields a good smooth bone scan image. Forty four bone scan images were processed using mask sizes 3, 5, 7, 9, 11, 13, and 15 pixels. The input and processed images were reviewed in two steps. In the first step, the images were inspected and the mask sizes that produced images with significant loss of clinical details in comparison with the input image were excluded. In the second step, the image quality of the 40 sets of images (each set had input image, and its corresponding three processed images with 3, 5, and 7-pixel masks) was assessed by two nuclear medicine physicians. They selected one good smooth image from each set of images. The image quality was also assessed quantitatively with a line profile. Fisher's exact test was used to find statistically significant differences in image quality processed with 5 and 7-pixel mask at a 5% cut-off. A statistically significant difference was found between the image quality processed with 5 and 7-pixel mask at P=0.00528. The identified optimal mask size to produce a good smooth image was found to be 7 pixels. The best mask size for the John-Sen Lee filter was found to be 7×7 pixels, which yielded Tc-methylene diphosphonate bone scan images with the highest acceptable smoothness.

  3. A primer of bone metastases management in breast cancer patients.

    PubMed

    Petrut, B; Trinkaus, M; Simmons, C; Clemons, M

    2008-01-01

    Bone is the most common site for distant spread of breast cancer. Following a diagnosis of metastatic bone disease, patients can suffer from significant morbidity because of pain and skeletal related events (SRES). Bisphosphonates are potent inhibitors of osteoclastic function and the mainstay of bone-directed therapy for bone metastases. The aims of bisphosphonates are to prevent and delay SRES, to reduce bone pain, and to improve quality of life. Bisphosphonate therapy appears to have revolutionized treatment of bone metastases, but bisphosphonate use has several limitations. Those limitations include the high cost of the agents and the need for return trips to the clinic for intravenous treatment. Moreover, many uncertainties surround bisphosphonate use-for example, the timing of bisphosphonate initiation, the choice of bisphosphonate to use, the optimal duration of treatment, and the appropriate means to identify patients who will and will not benefit. In addition, potentially serious adverse effects have been associated with bisphosphonate use-for example, renal toxicity, gastrointestinal side effects, and osteonecrosis of the jaw. The present review is intended as a primer for oncology specialists who treat patients with bone metastases secondary to breast cancer. It focuses on bisphosphonate treatment guidelines, the evidence for those guidelines, and a discussion of new therapeutic agents. It also discusses the use of biochemical markers of bone metabolism, which show promise for predicting the risk of a patient's developing a SRE and of benefiting from bisphosphonate treatment.

  4. The biocompatibility of carbon hydroxyapatite/β-glucan composite for bone tissue engineering studied with Raman and FTIR spectroscopic imaging.

    PubMed

    Sroka-Bartnicka, Anna; Kimber, James A; Borkowski, Leszek; Pawlowska, Marta; Polkowska, Izabela; Kalisz, Grzegorz; Belcarz, Anna; Jozwiak, Krzysztof; Ginalska, Grazyna; Kazarian, Sergei G

    2015-10-01

    The spectroscopic approaches of FTIR imaging and Raman mapping were applied to the characterisation of a new carbon hydroxyapatite/β-glucan composite developed for bone tissue engineering. The composite is an artificial bone material with an apatite-forming ability for the bone repair process. Rabbit bone samples were tested with an implanted bioactive material for a period of several months. Using spectroscopic and chemometric methods, we were able to determine the presence of amides and phosphates and the distribution of lipid-rich domains in the bone tissue, providing an assessment of the composite's bioactivity. Samples were also imaged in transmission using an infrared microscope combined with a focal plane array detector. CaF2 lenses were also used on the infrared microscope to improve spectral quality by reducing scattering artefacts, improving chemometric analysis. The presence of collagen and lipids at the bone/composite interface confirmed biocompatibility and demonstrate the suitability of FTIR microscopic imaging with lenses in studying these samples. It confirmed that the composite is a very good background for collagen growth and increases collagen maturity with the time of the bone growth process. The results indicate the bioactive and biocompatible properties of this composite and demonstrate how Raman and FTIR spectroscopic imaging have been used as an effective tool for tissue characterisation.

  5. [Imaging assessment of bone and cartilage destruction in rheumatoid arthritis].

    PubMed

    Hirata, Shintaro; Tanaka, Yoshiya

    2015-12-01

    Rheumatoid arthritis (RA) is characterized by synovitis and subsequent joint destruction involving bone and cartilage. Recent therapeutic development have improved outcomes including disease activity and structural progression in RA, and standardized procedures of imaging assessment including modified total Sharp score (mTSS) have contributed largely for the development of therapeutic strategy. In addition, ultrasonography and MRI of joints have been recently emerging as novel imaging methods for RA. Here, we review current imaging assessments of bone and cartilage destruction in RA.

  6. Ultrasound in Radiology: from Anatomic, Functional, Molecular Imaging to Drug Delivery and Image-Guided Therapy

    PubMed Central

    Klibanov, Alexander L.; Hossack, John A.

    2015-01-01

    During the past decade, ultrasound has expanded medical imaging well beyond the “traditional” radiology setting - a combination of portability, low cost and ease of use makes ultrasound imaging an indispensable tool for radiologists as well as for other medical professionals who need to obtain imaging diagnosis or guide a therapeutic intervention quickly and efficiently. Ultrasound combines excellent ability for deep penetration into soft tissues with very good spatial resolution, with only a few exceptions (i.e. those involving overlying bone or gas). Real-time imaging (up to hundreds and thousands frames per second) enables guidance of therapeutic procedures and biopsies; characterization of the mechanical properties of the tissues greatly aids with the accuracy of the procedures. The ability of ultrasound to deposit energy locally brings about the potential for localized intervention encompassing: tissue ablation, enhancing penetration through the natural barriers to drug delivery in the body and triggering drug release from carrier micro- and nanoparticles. The use of microbubble contrast agents brings the ability to monitor and quantify tissue perfusion, and microbubble targeting with ligand-decorated microbubbles brings the ability to obtain molecular biomarker information, i.e., ultrasound molecular imaging. Overall, ultrasound has become the most widely used imaging modality in modern medicine; it will continue to grow and expand. PMID:26200224

  7. Bone stress injury of the ankle in professional ballet dancers seen on MRI

    PubMed Central

    Elias, Ilan; Zoga, Adam C; Raikin, Steven M; Peterson, Judith R; Besser, Marcus P; Morrison, William B; Schweitzer, Mark E

    2008-01-01

    Background Ballet Dancers have been shown to have a relatively high incidence of stress fractures of the foot and ankle. It was our objective to examine MR imaging patterns of bone marrow edema (BME) in the ankles of high performance professional ballet dancers, to evaluate clinical relevance. Methods MR Imaging was performed on 12 ankles of 11 active professional ballet dancers (6 female, 5 male; mean age 24 years, range 19 to 32). Individuals were imaged on a 0.2 T or 1.5 T MRI units. Images were evaluated by two musculoskeletal radiologists and one orthopaedic surgeon in consensus for location and pattern of bone marrow edema. In order to control for recognized sources of bone marrow edema, images were also reviewed for presence of osseous, ligamentous, tendinous and cartilage injuries. Statistical analysis was performed to assess the strength of the correlation between bone marrow edema and ankle pain. Results Bone marrow edema was seen only in the talus, and was a common finding, observed in nine of the twelve ankles imaged (75%) and was associated with pain in all cases. On fluid-sensitive sequences, bone marrow edema was ill-defined and centered in the talar neck or body, although in three cases it extended to the talar dome. No apparent gender predilection was noted. No occult stress fracture could be diagnosed. A moderately strong correlation (phi = 0.77, p= 0.0054) was found between edema and pain in the study population. Conclusion Bone marrow edema seems to be a specific MRI finding in the talus of professional ballet dancers, likely related to biomechanical stress reactions, due to their frequently performed unique maneuvers. Clinically, this condition may indicate a sign of a bone stress injury of the ankle. PMID:18371230

  8. Intraoperative cone-beam computed tomography and multi-slice computed tomography in temporal bone imaging for surgical treatment.

    PubMed

    Erovic, Boban M; Chan, Harley H L; Daly, Michael J; Pothier, David D; Yu, Eugene; Coulson, Chris; Lai, Philip; Irish, Jonathan C

    2014-01-01

    Conventional computed tomography (CT) imaging is the standard imaging technique for temporal bone diseases, whereas cone-beam CT (CBCT) imaging is a very fast imaging tool with a significant less radiation dose compared with conventional CT. We hypothesize that a system for intraoperative cone-beam CT provides comparable image quality to diagnostic CT for identifying temporal bone anatomical landmarks in cadaveric specimens. Cross-sectional study. University tertiary care facility. Twenty cadaveric temporal bones were affixed into a head phantom and scanned with both a prototype cone-beam CT C-arm and multislice helical CT. Imaging performance was evaluated by 3 otologic surgeons and 1 head and neck radiologist. Participants were presented images in a randomized order and completed landmark identification questionnaires covering 21 structures. CBCT and multislice CT have comparable performance in identifying temporal structures. Three otologic surgeons indicated that CBCT provided statistically equivalent performance for 19 of 21 landmarks, with CBCT superior to CT for the chorda tympani and inferior for the crura of the stapes. Subgroup analysis showed that CBCT performed superiorly for temporal bone structures compared with CT. The radiologist rated CBCT and CT as statistically equivalent for 18 of 21 landmarks, with CT superior to CBCT for the crura of stapes, chorda tympani, and sigmoid sinus. CBCT provides comparable image quality to conventional CT for temporal bone anatomical sites in cadaveric specimens. Clinical applications of low-dose CBCT imaging in surgical planning, intraoperative guidance, and postoperative assessment are promising but require further investigation.

  9. Role of apparent diffusion coefficients with diffusion-weighted magnetic resonance imaging in differentiating between benign and malignant bone tumors.

    PubMed

    Wang, Tingting; Wu, Xiangru; Cui, Yanfen; Chu, Caiting; Ren, Gang; Li, Wenhua

    2014-11-29

    Benign and malignant bone tumors can present similar imaging features. This study aims to evaluate the significance of apparent diffusion coefficients (ADC) in differentiating between benign and malignant bone tumors. A total of 187 patients with 198 bone masses underwent diffusion-weighted (DW) magnetic resonance (MR) imaging. The ADC values in the solid components of the bone masses were assessed. Statistical differences between the mean ADC values in the different tumor types were determined by Student's t-test. Histological analysis showed that 84/198 (42.4%) of the bone masses were benign and 114/198 (57.6%) were malignant. There was a significant difference between the mean ADC values in the benign and malignant bone lesions (P<0.05). However, no significant difference was found in the mean ADC value between non-ossifying fibromas, osteofibrous dysplasia, and malignant bone tumors. When an ADC cutoff value≥1.10×10(-3) mm2/s was applied, malignant bone lesions were excluded with a sensitivity of 89.7%, a specificity of 84.5%, a positive predictive value of 82.6%, and a negative predictive value of 95.3%. The combination of DW imaging with ADC quantification and T2-weighted signal characteristics of the solid components in lesions can facilitate differentiation between benign and malignant bone tumors.

  10. Trabecular bone class mapping across resolutions: translating methods from HR-pQCT to clinical CT

    NASA Astrophysics Data System (ADS)

    Valentinitsch, Alexander; Fischer, Lukas; Patsch, Janina M.; Bauer, Jan; Kainberger, Franz; Langs, Georg; DiFranco, Matthew

    2015-03-01

    Quantitative assessment of 3D bone microarchitecture in high-resolution peripheral quantitative computed tomography (HR-pQCT) has shown promise in fracture risk assessment and biomechanics, but is limited to the distal radius and tibia. Trabecular microarchitecture classes (TMACs), based on voxel-wise clustering texture and structure tensor features in HRpQCT, is extended in this paper to quantify trabecular bone classes in clinical multi-detector CT (MDCT) images. Our comparison of TMACs in 12 cadaver radii imaged using both HRpQCT and MDCT yields a mean Dice score of up to 0.717+/-0.40 and visually concordant bone quality maps. Further work to develop clinically viable bone quantitative imaging using HR-pQCT validation could have a significant impact on overall bone health assessment.

  11. Cancer-associated bone disease.

    PubMed

    Rizzoli, R; Body, J-J; Brandi, M-L; Cannata-Andia, J; Chappard, D; El Maghraoui, A; Glüer, C C; Kendler, D; Napoli, N; Papaioannou, A; Pierroz, D D; Rahme, M; Van Poznak, C H; de Villiers, T J; El Hajj Fuleihan, G

    2013-12-01

    Bone is commonly affected in cancer. Cancer-induced bone disease results from the primary disease, or from therapies against the primary condition, causing bone fragility. Bone-modifying agents, such as bisphosphonates and denosumab, are efficacious in preventing and delaying cancer-related bone disease. With evidence-based care pathways, guidelines assist physicians in clinical decision-making. Of the 57 million deaths in 2008 worldwide, almost two thirds were due to non-communicable diseases, led by cardiovascular diseases and cancers. Bone is a commonly affected organ in cancer, and although the incidence of metastatic bone disease is not well defined, it is estimated that around half of patients who die from cancer in the USA each year have bone involvement. Furthermore, cancer-induced bone disease can result from the primary disease itself, either due to circulating bone resorbing substances or metastatic bone disease, such as commonly occurs with breast, lung and prostate cancer, or from therapies administered to treat the primary condition thus causing bone loss and fractures. Treatment-induced osteoporosis may occur in the setting of glucocorticoid therapy or oestrogen deprivation therapy, chemotherapy-induced ovarian failure and androgen deprivation therapy. Tumour skeletal-related events include pathologic fractures, spinal cord compression, surgery and radiotherapy to bone and may or may not include hypercalcaemia of malignancy while skeletal complication refers to pain and other symptoms. Some evidence demonstrates the efficacy of various interventions including bone-modifying agents, such as bisphosphonates and denosumab, in preventing or delaying cancer-related bone disease. The latter includes treatment of patients with metastatic skeletal lesions in general, adjuvant treatment of breast and prostate cancer in particular, and the prevention of cancer-associated bone disease. This has led to the development of guidelines by several societies and working groups to assist physicians in clinical decision making, providing them with evidence-based care pathways to prevent skeletal-related events and bone loss. The goal of this paper is to put forth an IOF position paper addressing bone diseases and cancer and summarizing the position papers of other organizations.

  12. Bone marrow necrosis secondary to imatinib usage, mimicking spinal metastasis on magnetic resonance imaging and FDG-PET/CT.

    PubMed

    Aras, Yavuz; Akcakaya, Mehmet Osman; Unal, Seher N; Bilgic, Bilge; Unal, Omer Faruk

    2012-01-01

    Imatinib mesylate has become the treatment of choice for gastrointestinal stromal tumors (GISTs) and has made a revolutionary impact on survival rates. Bone marrow necrosis is a very rare adverse event in malignant GIST. Bone metastases are also rarely encountered in the setting of this disease. The authors report on a patient with malignant GIST who developed a bone lesion, mimicking spinal metastasis on both MR imaging and FDG-PET/CT. Corpectomy and anterior fusion was performed, but the pathology report was consistent with bone marrow necrosis. Radiological and clinical similarities made the distinction between metastasis and bone marrow necrosis challenging for the treating physicians. Instead of radical surgical excision, more conservative methods such as percutaneous or endoscopic bone biopsies may be more useful for pathological confirmation, even though investigations such as MR imaging and FDG-PET/CT indicate metastatic disease.

  13. Automated processing of human bone marrow can result in a population of mononuclear cells capable of achieving engraftment following transplantation.

    PubMed

    Areman, E M; Cullis, H; Spitzer, T; Sacher, R A

    1991-10-01

    A concentrate of mononuclear bone marrow cells is often desired for ex vivo treatment with pharmacologic agents, monoclonal antibodies, cytokines, and other agents prior to transplantation. A method has been developed for automated separation of mononuclear cells from large volumes of harvested bone marrow. A programmable instrument originally designed for clinical ex vivo cell separation and the plasma-pheresis of patients and blood donors was adapted to permit rapid preparation, in a closed sterile system, of a bone marrow product enriched with mononuclear cells. A mean (+/- SEM) of 53 +/- 30 percent of the original mononuclear cells was recovered in a volume of 125 +/- 42 mL containing 82 +/- 12 percent mononuclear cells. This technique removed 95 +/- 9 percent of the red cells in the original marrow. No density gradient materials or sedimenting agents were employed in this process. Of 36 marrows processed by this technique, 19 autologous (6 of which were purged with 4-hydroperoxycyclophosphamide) and 7 allogeneic marrows have been transplanted, with all evaluable patients achieving a neutrophil count of 0.5 x 10(9) per L in a mean (+/- SEM) of 21 +/- 6 days.

  14. Acceleration of natural-abundance solid-state MAS NMR measurements on bone by paramagnetic relaxation from gadolinium-DTPA

    NASA Astrophysics Data System (ADS)

    Mroue, Kamal H.; Zhang, Rongchun; Zhu, Peizhi; McNerny, Erin; Kohn, David H.; Morris, Michael D.; Ramamoorthy, Ayyalusamy

    2014-07-01

    Reducing the data collection time without affecting the signal intensity and spectral resolution is one of the major challenges for the widespread application of multidimensional nuclear magnetic resonance (NMR) spectroscopy, especially in experiments conducted on complex heterogeneous biological systems such as bone. In most of these experiments, the NMR data collection time is ultimately governed by the proton spin-lattice relaxation times (T1). For over two decades, gadolinium(III)-DTPA (Gd-DTPA, DTPA = Diethylene triamine pentaacetic acid) has been one of the most widely used contrast-enhancement agents in magnetic resonance imaging (MRI). In this study, we demonstrate that Gd-DTPA can also be effectively used to enhance the longitudinal relaxation rates of protons in solid-state NMR experiments conducted on bone without significant line-broadening and chemical-shift-perturbation side effects. Using bovine cortical bone samples incubated in different concentrations of Gd-DTPA complex, the 1H T1 values were calculated from data collected by 1H spin-inversion recovery method detected in natural-abundance 13C cross-polarization magic angle spinning (CPMAS) NMR experiments. Our results reveal that the 1H T1 values can be successfully reduced by a factor of 3.5 using as low as 10 mM Gd-DTPA without reducing the spectral resolution and thus enabling faster data acquisition of the 13C CPMAS spectra. These results obtained from 13C-detected CPMAS experiments were further confirmed using 1H-detected ultrafast MAS experiments on Gd-DTPA doped bone samples. This approach considerably improves the signal-to-noise ratio per unit time of NMR experiments applied to bone samples by reducing the experimental time required to acquire the same number of scans.

  15. Acceleration of natural-abundance solid-state MAS NMR measurements on bone by paramagnetic relaxation from gadolinium-DTPA.

    PubMed

    Mroue, Kamal H; Zhang, Rongchun; Zhu, Peizhi; McNerny, Erin; Kohn, David H; Morris, Michael D; Ramamoorthy, Ayyalusamy

    2014-07-01

    Reducing the data collection time without affecting the signal intensity and spectral resolution is one of the major challenges for the widespread application of multidimensional nuclear magnetic resonance (NMR) spectroscopy, especially in experiments conducted on complex heterogeneous biological systems such as bone. In most of these experiments, the NMR data collection time is ultimately governed by the proton spin-lattice relaxation times (T1). For over two decades, gadolinium(III)-DTPA (Gd-DTPA, DTPA=Diethylene triamine pentaacetic acid) has been one of the most widely used contrast-enhancement agents in magnetic resonance imaging (MRI). In this study, we demonstrate that Gd-DTPA can also be effectively used to enhance the longitudinal relaxation rates of protons in solid-state NMR experiments conducted on bone without significant line-broadening and chemical-shift-perturbation side effects. Using bovine cortical bone samples incubated in different concentrations of Gd-DTPA complex, the (1)H T1 values were calculated from data collected by (1)H spin-inversion recovery method detected in natural-abundance (13)C cross-polarization magic angle spinning (CPMAS) NMR experiments. Our results reveal that the (1)H T1 values can be successfully reduced by a factor of 3.5 using as low as 10mM Gd-DTPA without reducing the spectral resolution and thus enabling faster data acquisition of the (13)C CPMAS spectra. These results obtained from (13)C-detected CPMAS experiments were further confirmed using (1)H-detected ultrafast MAS experiments on Gd-DTPA doped bone samples. This approach considerably improves the signal-to-noise ratio per unit time of NMR experiments applied to bone samples by reducing the experimental time required to acquire the same number of scans. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. A correlative imaging based methodology for accurate quantitative assessment of bone formation in additive manufactured implants.

    PubMed

    Geng, Hua; Todd, Naomi M; Devlin-Mullin, Aine; Poologasundarampillai, Gowsihan; Kim, Taek Bo; Madi, Kamel; Cartmell, Sarah; Mitchell, Christopher A; Jones, Julian R; Lee, Peter D

    2016-06-01

    A correlative imaging methodology was developed to accurately quantify bone formation in the complex lattice structure of additive manufactured implants. Micro computed tomography (μCT) and histomorphometry were combined, integrating the best features from both, while demonstrating the limitations of each imaging modality. This semi-automatic methodology registered each modality using a coarse graining technique to speed the registration of 2D histology sections to high resolution 3D μCT datasets. Once registered, histomorphometric qualitative and quantitative bone descriptors were directly correlated to 3D quantitative bone descriptors, such as bone ingrowth and bone contact. The correlative imaging allowed the significant volumetric shrinkage of histology sections to be quantified for the first time (~15 %). This technique demonstrated the importance of location of the histological section, demonstrating that up to a 30 % offset can be introduced. The results were used to quantitatively demonstrate the effectiveness of 3D printed titanium lattice implants.

  17. [Chemoembolization of symptomatic bone metastases: technical considerations and therapeutic effectiveness].

    PubMed

    Clarençon, F; Cormier, E; Di Maria, F; Sourour, N-A; Szatmary, Z; Rose, M; Chiras, J

    2011-09-01

    Chemoembolization of bone metastases is defined by the intraarterial perfusion of a chemotherapy agent followed by microparticles embolization to improve tissue impregnation. This technique increases the local concentration of the chemotherapy agent. Tumor response (stable or reduced tumor size) is achieved in 30-80% of cases with symptomatic relief in over 80% of cases. The indications, technical considerations, and effectiveness of this procedure will be reviewed. Copyright © 2011 Elsevier Masson SAS and Éditions françaises de radiologie. All rights reserved.

  18. Detection, Isolation and Characterization of an Agent from Febrile Patients in Malaysia Serologically Reactive with Rickettsia sennetsu.

    DTIC Science & Technology

    1983-12-01

    sennetsu by inoculating mice with the blood and bone marrow homogenates of a patient suffering from "Japanese infectious mononucleosis ." Tanaka and...Rickettsia sennetsu in Cell Culture System. Jpn. J. Microbiol. 9:75-86. Misao, T., and Kobayashi, Y. 1954. Studies on Infectious Mononucleosis . I...Isolation of Etiologic Agent from Blood, Bone Marrow and Lymph Node of a Patient with Infectious Mononucleosis by Using Mice. Tokyo Iji Shinshi 71:683-686

  19. Comparison of 3D bone models of the knee joint derived from CT and 3T MR imaging.

    PubMed

    Neubert, Aleš; Wilson, Katharine J; Engstrom, Craig; Surowiec, Rachel K; Paproki, Anthony; Johnson, Nicholas; Crozier, Stuart; Fripp, Jurgen; Ho, Charles P

    2017-08-01

    To examine whether magnetic resonance (MR) imaging can offer a viable alternative to computed tomography (CT) based 3D bone modeling. CT and MR (SPACE, TrueFISP, VIBE) images were acquired from the left knee joint of a fresh-frozen cadaver. The distal femur, proximal tibia, proximal fibula and patella were manually segmented from the MR and CT examinations. The MR bone models obtained from manual segmentations of all three sequences were compared to CT models using a similarity measure based on absolute mesh differences. The average absolute distance between the CT and the various MR-based bone models were all below 1mm across all bones. The VIBE sequence provided the best agreement with the CT model, followed by the SPACE, then the TrueFISP data. The most notable difference was for the proximal tibia (VIBE 0.45mm, SPACE 0.82mm, TrueFISP 0.83mm). The study indicates that 3D MR bone models may offer a feasible alternative to traditional CT-based modeling. A single radiological examination using the MR imaging would allow simultaneous assessment of both bones and soft-tissues, providing anatomically comprehensive joint models for clinical evaluation, without the ionizing radiation of CT imaging. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Use of cone beam computed tomography in periodontology

    PubMed Central

    Acar, Buket; Kamburoğlu, Kıvanç

    2014-01-01

    Diagnosis of periodontal disease mainly depends on clinical signs and symptoms. However, in the case of bone destruction, radiographs are valuable diagnostic tools as an adjunct to the clinical examination. Two dimensional periapical and panoramic radiographs are routinely used for diagnosing periodontal bone levels. In two dimensional imaging, evaluation of bone craters, lamina dura and periodontal bone level is limited by projection geometry and superpositions of adjacent anatomical structures. Those limitations of 2D radiographs can be eliminated by three-dimensional imaging techniques such as computed tomography. Cone beam computed tomography (CBCT) generates 3D volumetric images and is also commonly used in dentistry. All CBCT units provide axial, coronal and sagittal multi-planar reconstructed images without magnification. Also, panoramic images without distortion and magnification can be generated with curved planar reformation. CBCT displays 3D images that are necessary for the diagnosis of intra bony defects, furcation involvements and buccal/lingual bone destructions. CBCT applications provide obvious benefits in periodontics, however; it should be used only in correct indications considering the necessity and the potential hazards of the examination. PMID:24876918

  1. Effects of magnetic resonance-guided high-intensity focused ultrasound ablation on bone mechanical properties and modeling.

    PubMed

    Yeo, Sin Yuin; Arias Moreno, Andrés J; van Rietbergen, Bert; Ter Hoeve, Natalie D; van Diest, Paul J; Grüll, Holger

    2015-01-01

    Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) is a promising technique for palliative treatment of bone pain. In this study, the effects of MR-HIFU ablation on bone mechanics and modeling were investigated. A total of 12 healthy rat femurs were ablated using 10 W for 46 ± 4 s per sonication with 4 sonications for each femur. At 7 days after treatments, all animals underwent MR and single photon emission computed tomography/computed tomography (SPECT/CT) imaging. Then, six animals were euthanized. At 1 month following ablations, the remaining six animals were scanned again with MR and SPECT/CT prior to euthanization. Thereafter, both the HIFU-treated and contralateral control bones of three animals from each time interval were processed for histology, whereas the remaining bones were subjected to micro-CT (μCT), three-point bending tests, and micro-finite element (micro-FE) analyses. At 7 days after HIFU ablations, edema formation around the treated bones coupled with bone marrow and cortical bone necrosis was observed on MRI and histological images. SPECT/CT and μCT images revealed presence of bone modeling through an increased uptake of (99m)Tc-MDP and formation of woven bone, respectively. At 31 days after ablations, as illustrated by imaging and histology, healing of the treated bone and the surrounding soft tissue was noted, marked by decreased in amount of tissue damage, formation of scar tissue, and sub-periosteal reaction. The results of three-point bending tests showed no significant differences in elastic stiffness, ultimate load, and yield load between the HIFU-treated and contralateral control bones at 7 days and 1 month after treatments. Similarly, the elastic stiffness and Young's moduli determined by micro-FE analyses at both time intervals were not statistically different. Multimodality imaging and histological data illustrated the presence of HIFU-induced bone damage at the cellular level, which activated the bone repair mechanisms. Despite that, these changes did not have a mechanical impact on the bone.

  2. Protective effects of total saponins from stem and leaf of Panax ginseng against cyclophosphamide-induced genotoxicity and apoptosis in mouse bone marrow cells and peripheral lymphocyte cells.

    PubMed

    Zhang, Qiu Hua; Wu, Chun Fu; Duan, Lian; Yang, Jing Yu

    2008-01-01

    Cyclophosphamide (CP), commonly used anti-cancer, induces oxidative stress and is cytotoxic to normal cells. It is very important to choice the protective agent combined CP to reduce the side effects in cancer treatment. Ginsenosides are biological active constituents of Panax ginseng C.A. Meyer that acts as the tonic agent for the cancer patients to reduce the side effects in the clinic application. Because CP is a pro-oxidant agent and induces oxidative stress by the generation of free radicals to decrease the activities of anti-oxidant enzymes, the protective effects of the total saponins from stem and leaf of P. ginseng C.A. Meyer (TSPG) act as an anti-oxidant agent against the decreased anti-oxidant enzymes, the genotoxicity and apoptosis induced by CP was carried out. The alkaline single cell gel electrophoresis was employed to detect DNA damage; flow cytometry assay and AO/EB staining assay were employed to measure cell apoptosis; the enzymatic anti-oxidants (T-SOD, CAT and GPx) and non-enzymatic anti-oxidant (GSH) were measured by the various colorimetric methods. CP induced the significant DNA damage in mouse peripheral lymphocytes in time- and dose-dependent manners, inhibited the activities of T-SOD, GPx and CAT, and decreased the contents of GSH in mouse blood, triggered bone marrow cell apoptosis at 6 and 12h. TSPG significantly reduced CP-induced DNA damages in bone marrow cells and peripheral lymphocyte cells, antagonized CP-induced reduction of T-SOD, GPx, CAT activities and the GSH contents, decreased the bone marrow cell apoptosis induced by CP. TSPG, significantly reduced the genotoxicity of CP in bone marrow cells and peripheral lymphocyte cells, and decreased the apoptotic cell number induced by CP in bone marrow cells. The effects of TSPG on T-SOD, GPx, CAT activities and GSH contents might partially contribute to its protective effects on CP-induced cell toxicities.

  3. Identification tibia and fibula bone fracture location using scanline algorithm

    NASA Astrophysics Data System (ADS)

    Muchtar, M. A.; Simanjuntak, S. E.; Rahmat, R. F.; Mawengkang, H.; Zarlis, M.; Sitompul, O. S.; Winanto, I. D.; Andayani, U.; Syahputra, M. F.; Siregar, I.; Nasution, T. H.

    2018-03-01

    Fracture is a condition that there is a damage in the continuity of the bone, usually caused by stress, trauma or weak bones. The tibia and fibula are two separated-long bones in the lower leg, closely linked at the knee and ankle. Tibia/fibula fracture often happen when there is too much force applied to the bone that it can withstand. One of the way to identify the location of tibia/fibula fracture is to read X-ray image manually. Visual examination requires more time and allows for errors in identification due to the noise in image. In addition, reading X-ray needs highlighting background to make the objects in X-ray image appear more clearly. Therefore, a method is required to help radiologist to identify the location of tibia/fibula fracture. We propose some image-processing techniques for processing cruris image and Scan line algorithm for the identification of fracture location. The result shows that our proposed method is able to identify it and reach up to 87.5% of accuracy.

  4. Cross-sectional imaging of extracted jawbone of a pig by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Tachikawa, Noriko; Yoshimura, Reiko; Ohbayashi, Kohji

    2011-03-01

    Dental implantation has become popular in dental treatments. Although careful planning is made to identify vital structures such as the inferior alveolar nerve or the sinus, as well as dimensions of the bone, prior to commencement of surgery, dental implantation is not fully free from risks. If a diagnostic tool is available to objectively measure bone feature before surgery and dimensions during surgery, considerable fraction of the risks may be avoided. Optical coherence tomography (OCT) is a candidate for the purpose, which enables cross-sectional imaging of bone. In this work, we performed in vitro cross-sectional imaging of extracted pig's jawbone with swept source OCT using superstructure-grating distributed Bragg reflector (SSG-DBR) laser as the source. The relatively long wavelength range of 1600nm of the laser is suitable for deeper bone imaging. We confirmed an image penetration depth of about 3 mm in physical length, which satisfies one of the criterions to apply OCT for in vivo diagnosis of bone during surgery.

  5. Bone marrow fat quantification in the presence of trabecular bone: initial comparison between water-fat imaging and single-voxel MRS

    PubMed Central

    Karampinos, Dimitrios C.; Melkus, Gerd; Baum, Thomas; Bauer, Jan S.; Rummeny, Ernst J.; Krug, Roland

    2013-01-01

    Purpose The purpose of the present study was to test the relative performance of chemical shift-based water-fat imaging in measuring bone marrow fat fraction in the presence of trabecular bone, having as reference standard the single-voxel magnetic resonance spectroscopy (MRS). Methods Six-echo gradient echo imaging and single-voxel MRS measurements were performed on the proximal femur of seven healthy volunteers. The bone marrow fat spectrum was characterized based on the magnitude of measurable fat peaks and an a priori knowledge of the chemical structure of triglycerides, in order to accurately extract the water peak from the overlapping broad fat peaks in MRS. The imaging-based fat fraction results were then compared to the MRS-based results both without and with taking into consideration the presence of short T2* water components in MRS. Results There was a significant underestimation of the fat fraction using the MRS model not accounting for short T2* species with respect to the imaging-based water fraction. A good equivalency was observed between the fat fraction using the MRS model accounting for short T2* species and the imaging-based fat fraction (R2=0.87). Conclusion The consideration of the short T2* water species effect on bone marrow fat quantification is essential when comparing MRS-based and imaging-based fat fraction results. PMID:23657998

  6. Bone marrow with diffuse tumor infiltration in patients with lymphoproliferative diseases: dynamic gadolinium-enhanced MR imaging.

    PubMed

    Rahmouni, Alain; Montazel, Jean-Luc; Divine, Marine; Lepage, Eric; Belhadj, Karim; Gaulard, Philippe; Bouanane, Mohamed; Golli, Mondher; Kobeiter, Hicham

    2003-12-01

    To evaluate gadolinium enhancement of bone marrow in patients with lymphoproliferative diseases and diffuse bone marrow involvement. Dynamic contrast material-enhanced magnetic resonance (MR) imaging of the thoracolumbar spine was performed in 42 patients with histologically proved diffuse bone marrow involvement and newly diagnosed myeloma (n = 31), non-Hodgkin lymphoma (n = 8), or Hodgkin disease (n = 3). The maximum percentage of enhancement (Emax), enhancement slope, and enhancement washout were determined from enhancement time curves (ETCs). A three-grade system for scoring bone marrow involvement was based on the percentage of neoplastic cells in bone marrow samples. Quantitative ETC values for the 42 patients were compared with ETC values for healthy subjects and with grades of bone marrow involvement by using mean t test comparisons. Receiver operating characteristic (ROC) analysis was conducted by comparing Emax values between patients with and those without bone marrow involvement. Baseline and follow-up MR imaging findings were compared in nine patients. Significant differences in Emax (P <.001), slope (P <.001), and washout (P =.005) were found between subjects with normal bone marrow and patients with diffuse bone marrow involvement. ROC analysis results showed Emax values to have a diagnostic accuracy of 99%. Emax, slope, and washout values increased with increasing bone marrow involvement grade. The mean Emax increased from 339% to 737%. Contrast enhancement decreased after treatment in all six patients who responded to treatment but not in two of three patients who did not respond to treatment. Dynamic contrast-enhanced MR images can demonstrate increased bone marrow enhancement in patients with lymphoproliferative diseases and marrow involvement.

  7. Is cortical bone hip? What determines cortical bone properties?

    PubMed

    Epstein, Sol

    2007-07-01

    Increased bone turnover may produce a disturbance in bone structure which may result in fracture. In cortical bone, both reduction in turnover and increase in hip bone mineral density (BMD) may be necessary to decrease hip fracture risk and may require relatively greater proportionate changes than for trabecular bone. It should also be noted that increased porosity produces disproportionate reduction in bone strength, and studies have shown that increased cortical porosity and decreased cortical thickness are associated with hip fracture. Continued studies for determining the causes of bone strength and deterioration show distinct promise. Osteocyte viability has been observed to be an indicator of bone strength, with viability as the result of maintaining physiological levels of loading and osteocyte apoptosis as the result of a decrease in loading. Osteocyte apoptosis and decrease are major factors in the bone loss and fracture associated with aging. Both the osteocyte and periosteal cell layer are assuming greater importance in the process of maintaining skeletal integrity as our knowledge of these cells expand, as well being a target for pharmacological agents to reduce fracture especially in cortical bone. The bisphosphonate alendronate has been seen to have a positive effect on cortical bone by allowing customary periosteal growth, while reducing the rate of endocortical bone remodeling and slowing bone loss from the endocortical surface. Risedronate treatment effects were attributed to decrease in bone resorption and thus a decrease in fracture risk. Ibandronate has been seen to increase BMD as the spine and femur as well as a reduced incidence of new vertebral fractures and non vertebral on subset post hoc analysis. And treatment with the anabolic agent PTH(1-34) documented modeling and remodelling of quiescent and active bone surfaces. Receptor activator of nuclear factor kappa B ligand (RANKL) plays a key role in bone destruction, and the human monoclonal antibody denosumab binds to RANKL, inhibiting its action and thus improving BMD significantly.

  8. MRI of the hip at 7T: feasibility of bone microarchitecture, high-resolution cartilage, and clinical imaging.

    PubMed

    Chang, Gregory; Deniz, Cem M; Honig, Stephen; Egol, Kenneth; Regatte, Ravinder R; Zhu, Yudong; Sodickson, Daniel K; Brown, Ryan

    2014-06-01

    To demonstrate the feasibility of performing bone microarchitecture, high-resolution cartilage, and clinical imaging of the hip at 7T. This study had Institutional Review Board approval. Using an 8-channel coil constructed in-house, we imaged the hips of 15 subjects on a 7T magnetic resonance imaging (MRI) scanner. We applied: 1) a T1-weighted 3D fast low angle shot (3D FLASH) sequence (0.23 × 0.23 × 1-1.5 mm(3) ) for bone microarchitecture imaging; 2) T1-weighted 3D FLASH (water excitation) and volumetric interpolated breath-hold examination (VIBE) sequences (0.23 × 0.23 × 1.5 mm(3) ) with saturation or inversion recovery-based fat suppression for cartilage imaging; 3) 2D intermediate-weighted fast spin-echo (FSE) sequences without and with fat saturation (0.27 × 0.27 × 2 mm) for clinical imaging. Bone microarchitecture images allowed visualization of individual trabeculae within the proximal femur. Cartilage was well visualized and fat was well suppressed on FLASH and VIBE sequences. FSE sequences allowed visualization of cartilage, the labrum (including cartilage and labral pathology), joint capsule, and tendons. This is the first study to demonstrate the feasibility of performing a clinically comprehensive hip MRI protocol at 7T, including high-resolution imaging of bone microarchitecture and cartilage, as well as clinical imaging. Copyright © 2013 Wiley Periodicals, Inc.

  9. Correction of oral contrast artifacts in CT-based attenuation correction of PET images using an automated segmentation algorithm.

    PubMed

    Ahmadian, Alireza; Ay, Mohammad R; Bidgoli, Javad H; Sarkar, Saeed; Zaidi, Habib

    2008-10-01

    Oral contrast is usually administered in most X-ray computed tomography (CT) examinations of the abdomen and the pelvis as it allows more accurate identification of the bowel and facilitates the interpretation of abdominal and pelvic CT studies. However, the misclassification of contrast medium with high-density bone in CT-based attenuation correction (CTAC) is known to generate artifacts in the attenuation map (mumap), thus resulting in overcorrection for attenuation of positron emission tomography (PET) images. In this study, we developed an automated algorithm for segmentation and classification of regions containing oral contrast medium to correct for artifacts in CT-attenuation-corrected PET images using the segmented contrast correction (SCC) algorithm. The proposed algorithm consists of two steps: first, high CT number object segmentation using combined region- and boundary-based segmentation and second, object classification to bone and contrast agent using a knowledge-based nonlinear fuzzy classifier. Thereafter, the CT numbers of pixels belonging to the region classified as contrast medium are substituted with their equivalent effective bone CT numbers using the SCC algorithm. The generated CT images are then down-sampled followed by Gaussian smoothing to match the resolution of PET images. A piecewise calibration curve was then used to convert CT pixel values to linear attenuation coefficients at 511 keV. The visual assessment of segmented regions performed by an experienced radiologist confirmed the accuracy of the segmentation and classification algorithms for delineation of contrast-enhanced regions in clinical CT images. The quantitative analysis of generated mumaps of 21 clinical CT colonoscopy datasets showed an overestimation ranging between 24.4% and 37.3% in the 3D-classified regions depending on their volume and the concentration of contrast medium. Two PET/CT studies known to be problematic demonstrated the applicability of the technique in clinical setting. More importantly, correction of oral contrast artifacts improved the readability and interpretation of the PET scan and showed substantial decrease of the SUV (104.3%) after correction. An automated segmentation algorithm for classification of irregular shapes of regions containing contrast medium was developed for wider applicability of the SCC algorithm for correction of oral contrast artifacts during the CTAC procedure. The algorithm is being refined and further validated in clinical setting.

  10. A novel model for ectopic, chronic, intravital multiphoton imaging of bone marrow vasculature and architecture in split femurs

    PubMed Central

    Bălan, Mirela; Kiefer, Friedemann

    2015-01-01

    Creating a model for intravital visualization of femoral bone marrow, a major site of hematopoiesis in adult mammalian organisms, poses a serious challenge, in that it needs to overcome bone opacity and the inaccessibility of marrow. Furthermore, meaningful analysis of bone marrow developmental and differentiation processes requires the repetitive observation of the same site over long periods of time, which we refer to as chronic imaging. To surmount these issues, we developed a chronic intravital imaging model that allows the observation of split femurs, ectopically transplanted into a dorsal skinfold chamber of a host mouse. Repeated, long term observations are facilitated by multiphoton microscopy, an imaging technique that combines superior imaging capacity at greater tissue depth with low phototoxicity. The transplanted, ectopic femur was stabilized by its sterile environment and rapidly connected to the host vasculature, allowing further development and observation of extended processes. After optimizing transplant age and grafting procedure, we observed the development of new woven bone and maturation of secondary ossification centers in the transplanted femurs, preceded by the sprouting of a sinusoidal-like vascular network, which was almost entirely composed of femoral endothelial cells. After two weeks, the transplant was still populated with stromal and haematopoietic cells belonging both to donor and host. Over this time frame, the transplant partially retained myeloid progenitor cells with single and multi-lineage differentiation capacity. In summary, our model allowed repeated intravital imaging of bone marrow angiogenesis and hematopoiesis. It represents a promising starting point for the development of improved chronic optical imaging models for femoral bone marrow. PMID:28243515

  11. Massive Bone Loss Due to Orchidectomy and Localized Disuse: Preventive Effects of a Biosphonsphonate

    NASA Astrophysics Data System (ADS)

    Libouban, H.; Moreau, M. F.; Chappard, D.

    2008-06-01

    Orchidectomy (ORX) and hindlimb paralysis induced by botulinum neurotoxin (BTX) were combined to see if their effects were cumulative and if bone loss could be prevented by an antiresorptive agent (risedronate) or testosterone. Four groups of mature rats were studied for 1 month: SHAM operated; ORX and right hindlimb immobilization (BTX); ORX+BTX+risedronate or testosterone. Bone loss and microarchitecture deterioration were maximized on the immobilized bone. Risedronate but not testosterone prevented trabecular bone loss but was less effective on cortical bone loss. ORX and BTX had additive effects on bone loss which can be prevented by risedronate but not testosterone.

  12. Characterization of microgravity effects on bone structure and strength using fractal analysis

    NASA Technical Reports Server (NTRS)

    Acharya, Raj S.; Shackelford, Linda

    1995-01-01

    The effect of micro-gravity on the musculoskeletal system has been well studied. Significant changes in bone and muscle have been shown after long term space flight. Similar changes have been demonstrated due to bed rest. Bone demineralization is particularly profound in weight bearing bones. Much of the current techniques to monitor bone condition use bone mass measurements. However, bone mass measurements are not reliable to distinguish Osteoporotic and Normal subjects. It has been shown that the overlap between normals and osteoporosis is found for all of the bone mass measurement technologies: single and dual photon absorptiometry, quantitative computed tomography and direct measurement of bone area/volume on biopsy as well as radiogrammetry. A similar discordance is noted in the fact that it has not been regularly possible to find the expected correlation between severity of osteoporosis and degree of bone loss. Structural parameters such as trabecular connectivity have been proposed as features for assessing bone conditions. In this report, we use fractal analysis to characterize bone structure. We show that the fractal dimension computed with MRI images and X-Ray images of the patella are the same. Preliminary experimental results show that the fractal dimension computed from MRI images of vertebrae of human subjects before bedrest is higher than during bedrest.

  13. Discrete tomography in an in vivo small animal bone study.

    PubMed

    Van de Casteele, Elke; Perilli, Egon; Van Aarle, Wim; Reynolds, Karen J; Sijbers, Jan

    2018-01-01

    This study aimed at assessing the feasibility of a discrete algebraic reconstruction technique (DART) to be used in in vivo small animal bone studies. The advantage of discrete tomography is the possibility to reduce the amount of X-ray projection images, which makes scans faster and implies also a significant reduction of radiation dose, without compromising the reconstruction results. Bone studies are ideal for being performed with discrete tomography, due to the relatively small number of attenuation coefficients contained in the image [namely three: background (air), soft tissue and bone]. In this paper, a validation is made by comparing trabecular bone morphometric parameters calculated from images obtained by using DART and the commonly used standard filtered back-projection (FBP). Female rats were divided into an ovariectomized (OVX) and a sham-operated group. In vivo micro-CT scanning of the tibia was done at baseline and at 2, 4, 8 and 12 weeks after surgery. The cross-section images were reconstructed using first the full set of projection images and afterwards reducing them in number to a quarter and one-sixth (248, 62, 42 projection images, respectively). For both reconstruction methods, similar changes in morphometric parameters were observed over time: bone loss for OVX and bone growth for sham-operated rats, although for DART the actual values were systematically higher (bone volume fraction) or lower (structure model index) compared to FBP, depending on the morphometric parameter. The DART algorithm was, however, more robust when using fewer projection images, where the standard FBP reconstruction was more prone to noise, showing a significantly bigger deviation from the morphometric parameters obtained using all projection images. This study supports the use of DART as a potential alternative method to FBP in X-ray micro-CT animal studies, in particular, when the number of projections has to be drastically minimized, which directly reduces scanning time and dose.

  14. Multimodal-3D imaging based on μMRI and μCT techniques bridges the gap with histology in visualization of the bone regeneration process.

    PubMed

    Sinibaldi, R; Conti, A; Sinjari, B; Spadone, S; Pecci, R; Palombo, M; Komlev, V S; Ortore, M G; Tromba, G; Capuani, S; Guidotti, R; De Luca, F; Caputi, S; Traini, T; Della Penna, S

    2018-03-01

    Bone repair/regeneration is usually investigated through X-ray computed microtomography (μCT) supported by histology of extracted samples, to analyse biomaterial structure and new bone formation processes. Magnetic resonance imaging (μMRI) shows a richer tissue contrast than μCT, despite at lower resolution, and could be combined with μCT in the perspective of conducting non-destructive 3D investigations of bone. A pipeline designed to combine μMRI and μCT images of bone samples is here described and applied on samples of extracted human jawbone core following bone graft. We optimized the coregistration procedure between μCT and μMRI images to avoid bias due to the different resolutions and contrasts. Furthermore, we used an Adaptive Multivariate Clustering, grouping homologous voxels in the coregistered images, to visualize different tissue types within a fused 3D metastructure. The tissue grouping matched the 2D histology applied only on 1 slice, thus extending the histology labelling in 3D. Specifically, in all samples, we could separate and map 2 types of regenerated bone, calcified tissue, soft tissues, and/or fat and marrow space. Remarkably, μMRI and μCT alone were not able to separate the 2 types of regenerated bone. Finally, we computed volumes of each tissue in the 3D metastructures, which might be exploited by quantitative simulation. The 3D metastructure obtained through our pipeline represents a first step to bridge the gap between the quality of information obtained from 2D optical microscopy and the 3D mapping of the bone tissue heterogeneity and could allow researchers and clinicians to non-destructively characterize and follow-up bone regeneration. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Imaging of cartilage and bone: promises and pitfalls in clinical trials of osteoarthritis

    PubMed Central

    Eckstein, F.; Guermazi, A.; Gold, G.; Duryea, J.; Le Graverand, M.-P. Hellio; Wirth, W.; Miller, C.G.

    2015-01-01

    summary Imaging in clinical trials is used to evaluate subject eligibility, and/or efficacy of intervention, supporting decision making in drug development by ascertaining treatment effects on joint structure. This review focusses on imaging of bone and cartilage in clinical trials of (knee) osteoarthritis. We narratively review the full-text literature on imaging of bone and cartilage, adding primary experience in the implementation of imaging methods in clinical trials. Aims and constraints of applying imaging in clinical trials are outlined. The specific uses of semi-quantitative and quantitative imaging biomarkers of bone and cartilage in osteoarthritis trials are summarized, focusing on radiography and magnetic resonance imaging (MRI). Studies having compared both imaging methodologies directly and those having established a relationship between imaging biomarkers and clinical outcomes are highlighted. To make this review of practical use, recommendations are provided as to which imaging protocols are ideal for capturing specific aspects of bone and cartilage tissue, and pitfalls in their usage are highlighted. Further, the longitudinal sensitivity to change, of different imaging methods is reported for various patient strata. From these power calculations can be accomplished, provided the strength of the treatment effect is known. In conclusion, current imaging methodologies provide powerful tools for scoring and measuring morphological and compositional aspects of most articular tissues, capturing longitudinal change with reasonable to excellent sensitivity. When employed properly, imaging has tremendous potential for ascertaining treatment effects on various joint structures, potentially over shorter time scales than required for demonstrating effects on clinical outcomes. PMID:25278061

  16. Pharmacological therapy of spondyloarthritis.

    PubMed

    Palazzi, Carlo; D'Angelo, Salvatore; Gilio, Michele; Leccese, Pietro; Padula, Angela; Olivieri, Ignazio

    2015-01-01

    The current pharmacological therapy of spondyloarthritis (SpA) includes several drugs: Non-steroidal anti-inflammatory drugs, corticosteroids, traditional disease-modifying antirheumatic drugs and biologic drugs. A systematic literature search was completed using the largest electronic databases (Medline, Embase and Cochrane), starting from 1995, with the aim to review data on traditional and biologic agents commercialised for SpA treatment. Randomised controlled trials and large observational studies were considered. In addition, studies performed in SpA patients treated with other, still unapproved, drugs (rituximab, anti-IL6 agents, apremilast, IL17 inhibitors and anakinra) were also taken into account. Biologic agents, especially anti-TNF drugs, have resulted in significant progress in improving clinical symptoms and signs, reducing inflammatory features in laboratory tests and imaging findings, and recovering all functional indexes. Anti-TNF drugs have radically changed the evolution of radiographic progression in peripheral joints; the first disappointing data concerning their efficacy on new bone formation of axial SpA has been recently challenged by studies enrolling patients who have been earlier diagnosed and treated. The opportunity to extend the interval of administration or to reduce the doses of anti-TNF agents can favourably influence the costs. Ustekinumab, the first non-anti-TNF biologic drug commercialised for psoriatic arthritis, offers new chances to patients that are unresponsive to anti-TNF.

  17. Investigating the Role of Global Histogram Equalization Technique for 99mTechnetium-Methylene diphosphonate Bone Scan Image Enhancement

    PubMed Central

    Pandey, Anil Kumar; Sharma, Param Dev; Dheer, Pankaj; Parida, Girish Kumar; Goyal, Harish; Patel, Chetan; Bal, Chandrashekhar; Kumar, Rakesh

    2017-01-01

    Purpose of the Study: 99mTechnetium-methylene diphosphonate (99mTc-MDP) bone scan images have limited number of counts per pixel, and hence, they have inferior image quality compared to X-rays. Theoretically, global histogram equalization (GHE) technique can improve the contrast of a given image though practical benefits of doing so have only limited acceptance. In this study, we have investigated the effect of GHE technique for 99mTc-MDP-bone scan images. Materials and Methods: A set of 89 low contrast 99mTc-MDP whole-body bone scan images were included in this study. These images were acquired with parallel hole collimation on Symbia E gamma camera. The images were then processed with histogram equalization technique. The image quality of input and processed images were reviewed by two nuclear medicine physicians on a 5-point scale where score of 1 is for very poor and 5 is for the best image quality. A statistical test was applied to find the significance of difference between the mean scores assigned to input and processed images. Results: This technique improves the contrast of the images; however, oversaturation was noticed in the processed images. Student's t-test was applied, and a statistically significant difference in the input and processed image quality was found at P < 0.001 (with α = 0.05). However, further improvement in image quality is needed as per requirements of nuclear medicine physicians. Conclusion: GHE techniques can be used on low contrast bone scan images. In some of the cases, a histogram equalization technique in combination with some other postprocessing technique is useful. PMID:29142344

  18. Image interpolation allows accurate quantitative bone morphometry in registered micro-computed tomography scans.

    PubMed

    Schulte, Friederike A; Lambers, Floor M; Mueller, Thomas L; Stauber, Martin; Müller, Ralph

    2014-04-01

    Time-lapsed in vivo micro-computed tomography is a powerful tool to analyse longitudinal changes in the bone micro-architecture. Registration can overcome problems associated with spatial misalignment between scans; however, it requires image interpolation which might affect the outcome of a subsequent bone morphometric analysis. The impact of the interpolation error itself, though, has not been quantified to date. Therefore, the purpose of this ex vivo study was to elaborate the effect of different interpolator schemes [nearest neighbour, tri-linear and B-spline (BSP)] on bone morphometric indices. None of the interpolator schemes led to significant differences between interpolated and non-interpolated images, with the lowest interpolation error found for BSPs (1.4%). Furthermore, depending on the interpolator, the processing order of registration, Gaussian filtration and binarisation played a role. Independent from the interpolator, the present findings suggest that the evaluation of bone morphometry should be done with images registered using greyscale information.

  19. MR imaging of pseudosarcoma in Paget's disease of bone: a report of two cases.

    PubMed

    Tins, B J; Davies, A M; Mangham, D C

    2001-03-01

    Pseudosarcoma is a rare manifestation of Paget's disease of bone. We report the MR imaging of two cases highlighting the difficulties in diagnosis. One of the cases is the first time this condition has been described outside the long bones of the lower limb.

  20. Angiography by Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Rubenstein, E.; Brown, G. S.; Giacomini, J. C.; Gordon, H. J.; Hofstadter, R.; Kernoff, R. S.; Otis, J. N.; Thomlinson, W.; Thompson, A. C.; Zeman, H. D.

    1987-01-01

    Because coronary disease represents the principal health problem in the Western, industrialized world, and because of the risks and costs associated with conventional methods of visualizing the coronary arteries, an effort has been underway at the Stanford Synchrotron Radiation Laboratory to develop a less invasive coronary imaging procedure based on iodine K-edge dichromography. A pair of line images, recorded within a few milliseconds of each other, is taken with two monochromatic X-ray beams whose energy closely brackets the K-edge of iodine, 33.17 keV. The logarithmic subtraction of the images produced by these beams results in an image which greatly enhances signals arising from attenuation by iodine and almost totally suppresses signals arising from attenuation by soft tissue and bone. The high sensitivity to iodine allows the visualization of arterial structures after an intravenous injection of contrast agent and its subsequent 20-30 fold dilution. The experiments began in 1979, with initial studies done on phantoms and excised pig hearts. The first images of anesthetized dogs were taken in 1982. The results of experiments on dogs will be reviewed, showing the stepwise evolution of the imaging system, leading to the use of the system on human subjects in 1986. The images recorded on human subjects will be described and the remaining problems discussed.

  1. Image processing, geometric modeling and data management for development of a virtual bone surgery system.

    PubMed

    Niu, Qiang; Chi, Xiaoyi; Leu, Ming C; Ochoa, Jorge

    2008-01-01

    This paper describes image processing, geometric modeling and data management techniques for the development of a virtual bone surgery system. Image segmentation is used to divide CT scan data into different segments representing various regions of the bone. A region-growing algorithm is used to extract cortical bone and trabecular bone structures systematically and efficiently. Volume modeling is then used to represent the bone geometry based on the CT scan data. Material removal simulation is achieved by continuously performing Boolean subtraction of the surgical tool model from the bone model. A quadtree-based adaptive subdivision technique is developed to handle the large set of data in order to achieve the real-time simulation and visualization required for virtual bone surgery. A Marching Cubes algorithm is used to generate polygonal faces from the volumetric data. Rendering of the generated polygons is performed with the publicly available VTK (Visualization Tool Kit) software. Implementation of the developed techniques consists of developing a virtual bone-drilling software program, which allows the user to manipulate a virtual drill to make holes with the use of a PHANToM device on a bone model derived from real CT scan data.

  2. Automatic bone segmentation in knee MR images using a coarse-to-fine strategy

    NASA Astrophysics Data System (ADS)

    Park, Sang Hyun; Lee, Soochahn; Yun, Il Dong; Lee, Sang Uk

    2012-02-01

    Segmentation of bone and cartilage from a three dimensional knee magnetic resonance (MR) image is a crucial element in monitoring and understanding of development and progress of osteoarthritis. Until now, various segmentation methods have been proposed to separate the bone from other tissues, but it still remains challenging problem due to different modality of MR images, low contrast between bone and tissues, and shape irregularity. In this paper, we present a new fully-automatic segmentation method of bone compartments using relevant bone atlases from a training set. To find the relevant bone atlases and obtain the segmentation, a coarse-to-fine strategy is proposed. In the coarse step, the best atlas among the training set and an initial segmentation are simultaneously detected using branch and bound tree search. Since the best atlas in the coarse step is not accurately aligned, all atlases from the training set are aligned to the initial segmentation, and the best aligned atlas is selected in the middle step. Finally, in the fine step, segmentation is conducted as adaptively integrating shape of the best aligned atlas and appearance prior based on characteristics of local regions. For experiment, femur and tibia bones of forty test MR images are segmented by the proposed method using sixty training MR images. Experimental results show that a performance of the segmentation and the registration becomes better as going near the fine step, and the proposed method obtain the comparable performance with the state-of-the-art methods.

  3. [New methods for the evaluation of bone quality. Bone anabolic agents and bone quality.

    PubMed

    Yamamoto, Norio; Tsuchiya, Hiroyuki

    Teriparatide(TPTD)products that can be used clinically in Japan include a daily subcutaneous injection form produced by genetic engineering and a weekly subcutaneous injectable TPTD acetate form produced by chemical synthesis. Published reports indicate that both forms exhibit excellent antifracture efficacy, and as the only anabolic agents that promote osteogenesis, TPTD products now occupy a prominent position. However, the two forms differ considerably, not only in frequency of administration, but also in mechanism of action. The daily form stimulates osteogenesis and accompanying resorption through more radical high bone turnover, and early in the course of treatment, intracortical porosity and apatite crystallization decrease, while immature collagen crosslinking increases. However, because daily formulations also produce an increase in cortical surface area or cortical thickness, the effects are counterbalanced, and bone strength is maintained. In contrast, the weekly form prioritizes osteogenesis, and by concurrently lowering turnover below pretreatment levels, improves trabecular bone mass and structure, and enhances strength without leading to cortical porosity and other undesirable phenomena. Abaloparatide, a PTHrP(1-34)analog that is homologous with the biologically active site of PTH drugs, is currently under development, and we eagerly anticipate further clarification of the mechanism of action of each formulation on bone.

  4. The Effects of Cosmos caudatus on Structural Bone Histomorphometry in Ovariectomized Rats

    PubMed Central

    Mohamed, Norazlina; Gwee Sian Khee, Sharon; Shuid, Ahmad Nazrun; Muhammad, Norliza; Suhaimi, Farihah; Othman, Faizah; Babji, Abdul Salam; Soelaiman, Ima-Nirwana

    2012-01-01

    Osteoporosis is considered a serious debilitating disease. Cosmos caudatus (ulam raja), a plant containing antioxidant compounds and minerals, may be used to treat and prevent osteoporosis. This study determines the effectiveness of C. caudatus as bone protective agent in postmenopausal osteoporosis rat model. Thirty-two female rats, aged 3 months old, were divided into 4 groups. Group one was sham operated (sham) while group two was ovariectomized. These two groups were given ionized water by forced feeding. Groups three and four were ovariectomized and given calcium 1% ad libitum and force-fed with C. caudatus at the dose of 500 mg/kg, respectively. Treatments were given six days per week for a period of eight weeks. Body weight was monitored every week and structural bone histomorphometry analyses of the femur bones were performed. Ovariectomy decreased trabecular bone volume (BV/TV), decreased trabecular number (Tb.N), and increased trabecular separation (Tb.Sp). Both calcium 1% and 500 mg/kg C. caudatus reversed the above structural bone histomorphometric parameters to normal level. C. caudatus shows better effect compared to calcium 1% on trabecular number (Tb.N) and trabecular separation (Tb.Sp). Therefore, Cosmos caudatus 500 mg/kg has the potential to act as the therapeutic agent to restore bone damage in postmenopausal women. PMID:22924056

  5. The Effects of Cosmos caudatus on Structural Bone Histomorphometry in Ovariectomized Rats.

    PubMed

    Mohamed, Norazlina; Gwee Sian Khee, Sharon; Shuid, Ahmad Nazrun; Muhammad, Norliza; Suhaimi, Farihah; Othman, Faizah; Babji, Abdul Salam; Soelaiman, Ima-Nirwana

    2012-01-01

    Osteoporosis is considered a serious debilitating disease. Cosmos caudatus (ulam raja), a plant containing antioxidant compounds and minerals, may be used to treat and prevent osteoporosis. This study determines the effectiveness of C. caudatus as bone protective agent in postmenopausal osteoporosis rat model. Thirty-two female rats, aged 3 months old, were divided into 4 groups. Group one was sham operated (sham) while group two was ovariectomized. These two groups were given ionized water by forced feeding. Groups three and four were ovariectomized and given calcium 1% ad libitum and force-fed with C. caudatus at the dose of 500 mg/kg, respectively. Treatments were given six days per week for a period of eight weeks. Body weight was monitored every week and structural bone histomorphometry analyses of the femur bones were performed. Ovariectomy decreased trabecular bone volume (BV/TV), decreased trabecular number (Tb.N), and increased trabecular separation (Tb.Sp). Both calcium 1% and 500 mg/kg C. caudatus reversed the above structural bone histomorphometric parameters to normal level. C. caudatus shows better effect compared to calcium 1% on trabecular number (Tb.N) and trabecular separation (Tb.Sp). Therefore, Cosmos caudatus 500 mg/kg has the potential to act as the therapeutic agent to restore bone damage in postmenopausal women.

  6. Deep tissue imaging of microfracture and non-displaced fracture of bone using the second and third near-infrared therapeutic windows

    NASA Astrophysics Data System (ADS)

    Sordillo, Laura A.; Pu, Yang; Sordillo, P. P.; Budansky, Yury; Alfano, Robert R.

    2014-03-01

    Near-infrared (NIR) light in the wavelengths of 700 nm to 2,000 nm has three NIR optical, or therapeutic, windows, which allow for deeper depth penetration in scattering tissue media. Microfractures secondary to repetitive stress, particularly in the lower extremities, are an important problem for military recruits and athletes. They also frequently occur in the elderly, or in patients taking bisphosphonates or denosumab. Microfractures can be early predictors of a major bone fracture. Using the second and third NIR therapeutic windows, we investigated the results from images of chicken bone and human tibial bone with microfractures and non-displaced fractures with and without overlying tissues of various thicknesses. Images of bone with microfractures and non-displaced fractures with tissue show scattering photons in the third NIR window with wavelengths between 1,650 nm and 1,870 nm are diminished and absorption is increased slightly from and second NIR windows. Results from images of fractured bones show the attenuation length of light through tissue in the third optical window to be larger than in the second therapeutic window. Use of these windows may aid in the detection of bone microfractures, and thus reduce the incidence of major bone fracture in susceptible groups.

  7. A semi-automatic method for positioning a femoral bone reconstruction for strict view generation.

    PubMed

    Milano, Federico; Ritacco, Lucas; Gomez, Adrian; Gonzalez Bernaldo de Quiros, Fernan; Risk, Marcelo

    2010-01-01

    In this paper we present a semi-automatic method for femoral bone positioning after 3D image reconstruction from Computed Tomography images. This serves as grounding for the definition of strict axial, longitudinal and anterior-posterior views, overcoming the problem of patient positioning biases in 2D femoral bone measuring methods. After the bone reconstruction is aligned to a standard reference frame, new tomographic slices can be generated, on which unbiased measures may be taken. This could allow not only accurate inter-patient comparisons but also intra-patient comparisons, i.e., comparisons of images of the same patient taken at different times. This method could enable medical doctors to diagnose and follow up several bone deformities more easily.

  8. Temporal Subtraction of Serial CT Images with Large Deformation Diffeomorphic Metric Mapping in the Identification of Bone Metastases.

    PubMed

    Sakamoto, Ryo; Yakami, Masahiro; Fujimoto, Koji; Nakagomi, Keita; Kubo, Takeshi; Emoto, Yutaka; Akasaka, Thai; Aoyama, Gakuto; Yamamoto, Hiroyuki; Miller, Michael I; Mori, Susumu; Togashi, Kaori

    2017-11-01

    Purpose To determine the improvement of radiologist efficiency and performance in the detection of bone metastases at serial follow-up computed tomography (CT) by using a temporal subtraction (TS) technique based on an advanced nonrigid image registration algorithm. Materials and Methods This retrospective study was approved by the institutional review board, and informed consent was waived. CT image pairs (previous and current scans of the torso) in 60 patients with cancer (primary lesion location: prostate, n = 14; breast, n = 16; lung, n = 20; liver, n = 10) were included. These consisted of 30 positive cases with a total of 65 bone metastases depicted only on current images and confirmed by two radiologists who had access to additional imaging examinations and clinical courses and 30 matched negative control cases (no bone metastases). Previous CT images were semiautomatically registered to current CT images by the algorithm, and TS images were created. Seven radiologists independently interpreted CT image pairs to identify newly developed bone metastases without and with TS images with an interval of at least 30 days. Jackknife free-response receiver operating characteristics (JAFROC) analysis was conducted to assess observer performance. Reading time was recorded, and usefulness was evaluated with subjective scores of 1-5, with 5 being extremely useful and 1 being useless. Significance of these values was tested with the Wilcoxon signed-rank test. Results The subtraction images depicted various types of bone metastases (osteolytic, n = 28; osteoblastic, n = 26; mixed osteolytic and blastic, n = 11) as temporal changes. The average reading time was significantly reduced (384.3 vs 286.8 seconds; Wilcoxon signed rank test, P = .028). The average figure-of-merit value increased from 0.758 to 0.835; however, this difference was not significant (JAFROC analysis, P = .092). The subjective usefulness survey response showed a median score of 5 for use of the technique (range, 3-5). Conclusion TS images obtained from serial CT scans using nonrigid registration successfully depicted newly developed bone metastases and showed promise for their efficient detection. © RSNA, 2017 Online supplemental material is available for this article.

  9. Development and validation of technique for in-vivo 3D analysis of cranial bone graft survival

    NASA Astrophysics Data System (ADS)

    Bernstein, Mark P.; Caldwell, Curtis B.; Antonyshyn, Oleh M.; Ma, Karen; Cooper, Perry W.; Ehrlich, Lisa E.

    1997-05-01

    Bone autografts are routinely employed in the reconstruction of facial deformities resulting from trauma, tumor ablation or congenital malformations. The combined use of post- operative 3D CT and SPECT imaging provides a means for quantitative in vivo evaluation of bone graft volume and osteoblastic activity. The specific objectives of this study were: (1) Determine the reliability and accuracy of interactive computer-assisted analysis of bone graft volumes based on 3D CT scans; (2) Determine the error in CT/SPECT multimodality image registration; (3) Determine the error in SPECT/SPECT image registration; and (4) Determine the reliability and accuracy of CT-guided SPECT uptake measurements in cranial bone grafts. Five human cadaver heads served as anthropomorphic models for all experiments. Four cranial defects were created in each specimen with inlay and onlay split skull bone grafts and reconstructed to skull and malar recipient sites. To acquire all images, each specimen was CT scanned and coated with Technetium doped paint. For purposes of validation, skulls were landmarked with 1/16-inch ball-bearings and Indium. This study provides a new technique relating anatomy and physiology for the analysis of cranial bone graft survival.

  10. Intrinsically superparamagnetic Fe-hydroxyapatite nanoparticles positively influence osteoblast-like cell behaviour

    PubMed Central

    2012-01-01

    Background Superparamagnetic nanoparticles (MNPs) have been progressively explored for their potential in biomedical applications and in particular as a contrast agent for diagnostic imaging, for magnetic drug delivery and more recently for tissue engineering applications. Considering the importance of having safe MNPs for such applications, and the essential role of iron in bone remodelling, this study developed and analysed novel biocompatible and bioreabsorbable superparamagnetic nanoparticles, that avoid the use of poorly tolerated magnetite based nanoparticles, for bone tissue engineering applications. Results MNPs were obtained by doping hydroxyapatite (HA) with Fe ions, by directly substituting Fe2+ and Fe3+ into the HA structure yielding superparamagnetic bioactive phase. In the current study, we have investigated the effects of increasing concentrations (2000 μg/ml; 1000 μg/ml; 500 μg/ml; 200 μg/ml) of FeHA MNPs in vitro using Saos-2 human osteoblast-like cells cultured for 1, 3 and 7 days with and without the exposure to a static magnetic field of 320 mT. Results demonstrated not only a comparable osteoblast viability and morphology, but increased in cell proliferation, when compared to a commercially available Ha nanoparticles, even with the highest dose used. Furthermore, FeHA MNPs exposure to the static magnetic field resulted in a significant increase in cell proliferation throughout the experimental period, and higher osteoblast activity. In vivo preliminary results demonstrated good biocompatibility of FeHA superparamagnetic material four weeks after implantation into a critical size lesion of the rabbit condyle. Conclusions The results of the current study suggest that these novel FeHA MNPs may be particularly relevant for strategies of bone tissue regeneration and open new perspectives for the application of a static magnetic field in a clinical setting of bone replacement, either for diagnostic imaging or magnetic drug delivery. PMID:22828388

  11. Advanced imaging of the macrostructure and microstructure of bone

    NASA Technical Reports Server (NTRS)

    Genant, H. K.; Gordon, C.; Jiang, Y.; Link, T. M.; Hans, D.; Majumdar, S.; Lang, T. F.

    2000-01-01

    Noninvasive and/or nondestructive techniques are capable of providing more macro- or microstructural information about bone than standard bone densitometry. Although the latter provides important information about osteoporotic fracture risk, numerous studies indicate that bone strength is only partially explained by bone mineral density. Quantitative assessment of macro- and microstructural features may improve our ability to estimate bone strength. The methods available for quantitatively assessing macrostructure include (besides conventional radiographs) quantitative computed tomography (QCT) and volumetric quantitative computed tomography (vQCT). Methods for assessing microstructure of trabecular bone noninvasively and/or nondestructively include high-resolution computed tomography (hrCT), micro-computed tomography (muCT), high-resolution magnetic resonance (hrMR), and micromagnetic resonance (muMR). vQCT, hrCT and hrMR are generally applicable in vivo; muCT and muMR are principally applicable in vitro. Although considerable progress has been made in the noninvasive and/or nondestructive imaging of the macro- and microstructure of bone, considerable challenges and dilemmas remain. From a technical perspective, the balance between spatial resolution versus sampling size, or between signal-to-noise versus radiation dose or acquisition time, needs further consideration, as do the trade-offs between the complexity and expense of equipment and the availability and accessibility of the methods. The relative merits of in vitro imaging and its ultrahigh resolution but invasiveness versus those of in vivo imaging and its modest resolution but noninvasiveness also deserve careful attention. From a clinical perspective, the challenges for bone imaging include balancing the relative advantages of simple bone densitometry against the more complex architectural features of bone or, similarly, the deeper research requirements against the broader clinical needs. The considerable potential biological differences between the peripheral appendicular skeleton and the central axial skeleton have to be addressed further. Finally, the relative merits of these sophisticated imaging techniques have to be weighed with respect to their applications as diagnostic procedures requiring high accuracy or reliability on one hand and their monitoring applications requiring high precision or reproducibility on the other. Copyright 2000 S. Karger AG, Basel.

  12. Autologous chondrocyte implantation in knee joint: MR imaging and histologic features at 1-year follow-up.

    PubMed

    Tins, Bernhard J; McCall, Iain W; Takahashi, Tomoki; Cassar-Pullicino, Victor; Roberts, Sally; Ashton, Brian; Richardson, James

    2005-02-01

    To evaluate magnetic resonance (MR) imaging features of autologous chondrocyte implantation (ACI) grafts and compare these with graft histologic features 1 year after ACI for treatment of femoral condylar defects. This study was approved by the regional ethics committee, and all patients gave informed consent. Forty-one patients (mean age, 35 years; 30 men, 11 women) underwent ACI for treatment of femoral condylar defects. One year later, knee joint MR imaging and graft biopsy were performed. Graft biopsy results were categorized into those showing hyaline, mixed fibrohyaline cartilage, fibrocartilage, and fibrous tissue. Standard T1-, T2-, T2*-, and intermediate-weighted sequences were performed, as well as three-dimensional (3D) fast low-angle shot (FLASH) and double-echo steady-state sequences for cartilage assessment. ACI grafts were assessed for signal intensity (with FLASH sequence), thickness, overgrowth, surface smoothness, integration to adjacent cartilage and underlying bone, bone marrow edema underneath graft, and contour of bone underneath graft. MR images were assessed by two observers, first independently and then in consensus. MR imaging findings were correlated with histologic findings. All 41 grafts were present at 1-year follow-up. The graft consisted of hyaline cartilage in four, mixed fibrohyaline cartilage in 10, fibrocartilage in 25, and fibrous tissue in two cases. Graft signal intensity was virtually always lower than adjacent normal cartilage signal intensity, and there was no relationship between graft signal intensity and histologic appearance (P = .34). Graft thickness (P = .83), overgrowth (P = .69), surface smoothness (P = .28), and integration with adjacent cartilage and underlying bone (P = .90); edema in bone marrow underneath graft (P = .63); and bone contour underneath graft (P = .94) at MR imaging had no correlation with graft histologic appearance. Graft overgrowth (n = 16; 39%) and edema-like signal in bone marrow underneath graft (n = 23; 56%) were common. The origin of graft overgrowth remains unclear. With the methods presented here, MR imaging findings cannot predict ACI graft histologic features, and graft histologic appearance determined at biopsy was not related to graft signal intensity, graft thickness, overgrowth, surface smoothness, integration with adjacent cartilage or underlying bone, signal intensity change in underlying bone marrow, or underlying bone contour. Overgrowth and bone marrow changes underneath the graft were common. (c) RSNA, 2004.

  13. A primer of bone metastases management in breast cancer patients

    PubMed Central

    Petrut, B.; Trinkaus, M.; Simmons, C.; Clemons, M.

    2008-01-01

    Bone is the most common site for distant spread of breast cancer. Following a diagnosis of metastatic bone disease, patients can suffer from significant morbidity because of pain and skeletal related events (sres). Bisphosphonates are potent inhibitors of osteoclastic function and the mainstay of bone-directed therapy for bone metastases. The aims of bisphosphonates are to prevent and delay sres, to reduce bone pain, and to improve quality of life. Bisphosphonate therapy appears to have revolutionized treatment of bone metastases, but bisphosphonate use has several limitations. Those limitations include the high cost of the agents and the need for return trips to the clinic for intravenous treatment. Moreover, many uncertainties surround bisphosphonate use—for example, the timing of bisphosphonate initiation, the choice of bisphosphonate to use, the optimal duration of treatment, and the appropriate means to identify patients who will and will not benefit. In addition, potentially serious adverse effects have been associated with bisphosphonate use—for example, renal toxicity, gastrointestinal side effects, and osteonecrosis of the jaw. The present review is intended as a primer for oncology specialists who treat patients with bone metastases secondary to breast cancer. It focuses on bisphosphonate treatment guidelines, the evidence for those guidelines, and a discussion of new therapeutic agents. It also discusses the use of biochemical markers of bone metabolism, which show promise for predicting the risk of a patient’s developing a sre and of benefiting from bisphosphonate treatment. PMID:18231649

  14. Geodesic topological analysis of trabecular bone microarchitecture from high-spatial resolution magnetic resonance images.

    PubMed

    Carballido-Gamio, Julio; Krug, Roland; Huber, Markus B; Hyun, Ben; Eckstein, Felix; Majumdar, Sharmila; Link, Thomas M

    2009-02-01

    In vivo assessment of trabecular bone microarchitecture could improve the prediction of fracture risk and the efficacy of osteoporosis treatment and prevention. Geodesic topological analysis (GTA) is introduced as a novel technique to quantify the trabecular bone microarchitecture from high-spatial resolution magnetic resonance (MR) images. Trabecular bone parameters that quantify the scale, topology, and anisotropy of the trabecular bone network in terms of its junctions are the result of GTA. The reproducibility of GTA was tested with in vivo images of human distal tibiae and radii (n = 6) at 1.5 Tesla; and its ability to discriminate between subjects with and without vertebral fracture was assessed with ex vivo images of human calcanei at 1.5 and 3.0 Tesla (n = 30). GTA parameters yielded an average reproducibility of 4.8%, and their individual areas under the curve (AUC) of the receiver operating characteristic curve analysis for fracture discrimination performed better at 3.0 than at 1.5 Tesla reaching values of up to 0.78 (p < 0.001). Logistic regression analysis demonstrated that fracture discrimination was improved by combining GTA parameters, and that GTA combined with bone mineral density (BMD) allow for better discrimination than BMD alone (AUC = 0.95; p < 0.001). Results indicate that GTA can substantially contribute in studies of osteoporosis involving imaging of the trabecular bone microarchitecture. Copyright 2009 Wiley-Liss, Inc.

  15. Cost-appropriateness of whole body vs limited bone imaging for suspected focal sports injuries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagle, C.E.

    Bone imaging has been recognized as a useful diagnostic tool in detecting the presence of focal musculoskeletal injury when radiographs are normal. A retrospective review of bone images in a small number of amateur athletes indicates that secondary injuries were commonly detected at sites different from the site of musculoskeletal pain being evaluated for injury. While a larger study will be necessary to confirm the data, this review suggests that it is medically justified and cost-appropriate to perform imaging of the entire skeleton as opposed to imaging limited to the anatomic site of pain and suspected injury.

  16. SU-E-J-224: Using UTE and T1 Weighted Spin Echo Pulse Sequences for MR-Only Treatment Planning; Phantom Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, H; Fatemi, A; Sahgal, A

    Purpose: Investigating a new approach in MRI based treatment planning using the combination of (Ultrashort Echo Time) UTE and T1 weighted spin echo pulse sequences to delineate air, bone and water (soft tissues) in generating pseudo CT images comparable with CT. Methods: A gel phantom containing chicken bones, ping pang balls filled with distilled water and air bubbles, was made. It scanned with MRI using UTE and 2D T1W SE pulse sequences with (in plane resolution= 0.53mm, slice thickness= 2 mm) and CT with (in plane resolution= 0.5 mm and slice thickness= 0.75mm) as a ground truth for geometrical accuracy.more » The UTE and T1W SE images were registered with CT using mutual information registration algorithm provided by Philips Pinnacle treatment planning system. The phantom boundaries were detected using Canny edge detection algorithm for CT, and MR images. The bone, air bubbles and water in ping pong balls were segmented from CT images using threshold 300HU, - 950HU and 0HU, respectively. These tissue inserts were automatically segmented from combined UTE and T1W SE images using edge detection and relative intensity histograms of the phantom. The obtained segmentations of air, bone and water inserts were evaluated with those obtained from CT. Results: Bone and air can be clearly differentiated in UTE images comparable to CT. Combining UTE and T1W SE images successfully segmented the air, bone and water. The maximum segmentation differences from combine MRI images (UTE and T1W SE) and CT are within 1.3 mm, 1.1mm for bone, air, respectively. The geometric distortion of UTE sequence is small less than 1 pixel (0.53 mm) of MR image resolution. Conclusion: Our approach indicates that MRI can be used solely for treatment planning and its quality is comparable with CT.« less

  17. Denosumab Reduces Risk of Bone Side Effects in Advanced Prostate Cancer

    Cancer.gov

    The biological agent denosumab (Xgeva) is more effective than zoledronic acid at decreasing the risk of bone fractures and other skeletal-related events (SRE) in men with castration-resistant metastatic prostate cancer, according to results from a randomi

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soliman, A; Safigholi, H; Sunnybrook Health Sciences Center, Toronto, ON

    Purpose: To propose a new method that provides a positive contrast visualization of the prostate brachytherapy seeds using the phase information from MR images. Additionally, the feasibility of using the processed phase information to distinguish seeds from calcifications is explored. Methods: A gel phantom was constructed using 2% agar dissolved in 1 L of distilled water. Contrast agents were added to adjust the relaxation times. Four iodine-125 (Eckert & Ziegler SML86999) dummy seeds were placed at different orientations with respect to the main magnetic field (B0). Calcifications were obtained from a sheep femur cortical bone due to its close similaritymore » to human bone tissue composition. Five samples of calcifications were shaped into different dimensions with lengths ranging between 1.2 – 6.1 mm.MR imaging was performed on a 3T Philips Achieva using an 8-channel head coil. Eight images were acquired at eight echo-times using a multi-gradient echo sequence. Spatial resolution was 0.7 × 0.7 × 2 mm, TR/TE/dTE = 20.0/2.3/2.3 ms and BW = 541 Hz/pixel. Complex images were acquired and fed into a two-step processing pipeline: the first includes phase unwrapping and background phase removal using Laplacian operator (Wei et al. 2013). The second step applies a specific phase mask on the resulting tissue phase from the first step to provide the desired positive contrast of the seeds and to, potentially, differentiate them from the calcifications. Results: The phase-processing was performed in less than 30 seconds. The proposed method has successfully resulted in a positive contrast of the brachytherapy seeds. Additionally, the final processed phase image showed difference between the appearance of seeds and calcifications. However, the shape of the seeds was slightly distorted compared to the original dimensions. Conclusion: It is feasible to provide a positive contrast of the seeds from MR images using Laplacian operator-based phase processing.« less

  19. Clinical Imaging of Bone Microarchitecture with HR-pQCT

    PubMed Central

    Nishiyama, Kyle K.; Shane, Elizabeth

    2014-01-01

    Osteoporosis, a disease characterized by loss of bone mass and structural deterioration, is currently diagnosed by dual-energy x-ray absorptiometry (DXA). However, DXA does not provide information about bone microstructure, which is a key determinant of bone strength. Recent advances in imaging permit the assessment of bone microstructure in vivo using high-resolution peripheral quantitative computed tomography (HR-pQCT). From these data, novel image processing techniques can be applied to characterize bone quality and strength. To date, most HR-pQCT studies are cross-sectional comparing subjects with and without fracture. These studies have shown that HR-pQCT is capable of discriminating fracture status independent of DXA. Recent longitudinal studies present new challenges in terms of analyzing the same region of interest and multisite calibrations. Careful application of analysis techniques and educated clinical interpretation of HR-pQCT results have improved our understanding of various bone-related diseases and will no doubt continue to do so in the future. PMID:23504496

  20. Development of a Preclinical Orthotopic Xenograft Model of Ewing Sarcoma and Other Human Malignant Bone Disease Using Advanced In Vivo Imaging

    PubMed Central

    Batey, Michael A.; Almeida, Gilberto S.; Wilson, Ian; Dildey, Petra; Sharma, Abhishek; Blair, Helen; Hide, I. Geoff; Heidenreich, Olaf; Vormoor, Josef; Maxwell, Ross J.; Bacon, Chris M.

    2014-01-01

    Ewing sarcoma and osteosarcoma represent the two most common primary bone tumours in childhood and adolescence, with bone metastases being the most adverse prognostic factor. In prostate cancer, osseous metastasis poses a major clinical challenge. We developed a preclinical orthotopic model of Ewing sarcoma, reflecting the biology of the tumour-bone interactions in human disease and allowing in vivo monitoring of disease progression, and compared this with models of osteosarcoma and prostate carcinoma. Human tumour cell lines were transplanted into non-obese diabetic/severe combined immunodeficient (NSG) and Rag2−/−/γc−/− mice by intrafemoral injection. For Ewing sarcoma, minimal cell numbers (1000–5000) injected in small volumes were able to induce orthotopic tumour growth. Tumour progression was studied using positron emission tomography, computed tomography, magnetic resonance imaging and bioluminescent imaging. Tumours and their interactions with bones were examined by histology. Each tumour induced bone destruction and outgrowth of extramedullary tumour masses, together with characteristic changes in bone that were well visualised by computed tomography, which correlated with post-mortem histology. Ewing sarcoma and, to a lesser extent, osteosarcoma cells induced prominent reactive new bone formation. Osteosarcoma cells produced osteoid and mineralised “malignant” bone within the tumour mass itself. Injection of prostate carcinoma cells led to osteoclast-driven osteolytic lesions. Bioluminescent imaging of Ewing sarcoma xenografts allowed easy and rapid monitoring of tumour growth and detection of tumour dissemination to lungs, liver and bone. Magnetic resonance imaging proved useful for monitoring soft tissue tumour growth and volume. Positron emission tomography proved to be of limited use in this model. Overall, we have developed an orthotopic in vivo model for Ewing sarcoma and other primary and secondary human bone malignancies, which resemble the human disease. We have shown the utility of small animal bioimaging for tracking disease progression, making this model a useful assay for preclinical drug testing. PMID:24409320

  1. Does estrogen play a role in response to adjuvant bone-targeted therapies?

    PubMed Central

    Russell, Kent; Amir, Eitan; Paterson, Alexander; Josse, Robert; Addison, Christina; Kuchuk, Iryna; Clemons, Mark

    2013-01-01

    Bone remains the most common site of breast cancer recurrence. The results of population studies, pre-clinical research and clinical studies in patients with metastatic disease provided a rationale for testing bone-targeted agents in the adjuvant setting. Despite the initial optimism, results from eight prospectively designed, randomized control studies powered to assess the value of adjuvant bone-targeted therapy in early breast cancer are conflicting. Data have shown that, where benefit exists, it tends to be in women with a “low estrogen environment”, either through menopause or suppression of ovarian function. In this manuscript, we review clinical data supporting the hypothesis that estrogen levels may play a part in explaining the response of patients to bone-targeted agents in the adjuvant setting. The results presented to date suggest that there may be data supporting a unifying role for estrogen in adjuvant trials. However, in the absence of any prospective randomized trials in which estrogen data has been systematically collected we cannot specifically answer this question. We await the results of the Oxford overview analysis of individual patient data with interest. PMID:26909288

  2. Production, Quality Control and Biological Evaluation of 166Ho-PDTMP as a Possible Bone Palliation Agent

    PubMed Central

    Zolghadri, Samaneh; Jalilian, Amir Reza; Naseri, Zohreh; Yousefnia, Hassan; Bahrami-Samani, Ali; Ghannadi-Maragheh, Mohammad; Afarideh, Hossein

    2013-01-01

    Objective(s): In this study, 166Ho-1,2-propylene di-amino tetra(methy1enephosphonicAcid) (166Ho-PDTMP) complex was prepared as a bone palliation agent. Materials and Methods: The complex was successfully prepared using an in-house synthesized EDTMP ligand and 166HoCl3. Ho-166 chloride was obtained by thermal neutron irradiation (1 × 1013 n.cm-2.s-1) of natural Ho(NO3)3 samples followed by radiolabeling and stability studies. Biodistribution in wild type rats was also peformed. Results: The complex was prepared with the specific activity of 278 GBq/mg and high radiochemical purity (>99%, checked by ITLC). 166Ho-PDTMP complex was stabilized in the final preparation and in the presence of human serum (>90%) up to 72 hr. The biodistribution of 166Ho-PDTMP in wild-type rats demonstrated significant bone uptake was up to 48 hr compared to 166HoCl3. Conclusion: The produced 166Ho-PDTMP properties suggest a possible new bone palliative therapeutic to overcome the metastatic bone pains. PMID:23826495

  3. Scattered image artifacts from cone beam computed tomography and its clinical potential in bone mineral density estimation.

    PubMed

    Ko, Hoon; Jeong, Kwanmoon; Lee, Chang-Hoon; Jun, Hong Young; Jeong, Changwon; Lee, Myeung Su; Nam, Yunyoung; Yoon, Kwon-Ha; Lee, Jinseok

    2016-01-01

    Image artifacts affect the quality of medical images and may obscure anatomic structure and pathology. Numerous methods for suppression and correction of scattered image artifacts have been suggested in the past three decades. In this paper, we assessed the feasibility of use of information on scattered artifacts for estimation of bone mineral density (BMD) without dual-energy X-ray absorptiometry (DXA) or quantitative computed tomographic imaging (QCT). To investigate the relationship between scattered image artifacts and BMD, we first used a forearm phantom and cone-beam computed tomography. In the phantom, we considered two regions of interest-bone-equivalent solid material containing 50 mg HA per cm(-3) and water-to represent low- and high-density trabecular bone, respectively. We compared the scattered image artifacts in the high-density material with those in the low-density material. The technique was then applied to osteoporosis patients and healthy subjects to assess its feasibility for BMD estimation. The high-density material produced a greater number of scattered image artifacts than the low-density material. Moreover, the radius and ulna of healthy subjects produced a greater number of scattered image artifacts than those from osteoporosis patients. Although other parameters, such as bone thickness and X-ray incidence, should be considered, our technique facilitated BMD estimation directly without DXA or QCT. We believe that BMD estimation based on assessment of scattered image artifacts may benefit the prevention, early treatment and management of osteoporosis.

  4. Quantification of Bone Growth Rate Variability in Rats Exposed to Micro- (near zero G) and Macrogravity (2G)

    NASA Technical Reports Server (NTRS)

    Bromage, Timothy G.; Doty, Stephen B.; Smolyar, Igor; Holton, Emily

    1996-01-01

    Our stated primary objective is to quantify the growth rate variability of rat lamellar bone exposed to micro and macrogravity (2G). The primary significance of the proposed work is that an elegant method will be established that unequivocally characterizes the morphological consequences of gravitational factors on developing bone. The integrity of this objective depends upon our successful preparation of thin sections suitable for imaging individual bone lamellae, and our imaging and quantitation of growth rate variability in populations of lamellae from individual bone samples.

  5. MR imaging in staging of bone tumors

    PubMed Central

    Ehara, Shigeru

    2006-01-01

    For staging of bone tumors, TNM and Enneking’s systems are used with some differences. Magnetic resonance imaging is particularly useful for defining the extent of high-grade tumors, including transcortical and intertrabecular infiltration and periosteal extension. The concepts of compartment and curative surgical margins are important for bone tumor staging. PMID:17098647

  6. Trabecular bone analysis in CT and X-ray images of the proximal femur for the assessment of local bone quality.

    PubMed

    Fritscher, Karl; Grunerbl, Agnes; Hanni, Markus; Suhm, Norbert; Hengg, Clemens; Schubert, Rainer

    2009-10-01

    Currently, conventional X-ray and CT images as well as invasive methods performed during the surgical intervention are used to judge the local quality of a fractured proximal femur. However, these approaches are either dependent on the surgeon's experience or cannot assist diagnostic and planning tasks preoperatively. Therefore, in this work a method for the individual analysis of local bone quality in the proximal femur based on model-based analysis of CT- and X-ray images of femur specimen will be proposed. A combined representation of shape and spatial intensity distribution of an object and different statistical approaches for dimensionality reduction are used to create a statistical appearance model in order to assess the local bone quality in CT and X-ray images. The developed algorithms are tested and evaluated on 28 femur specimen. It will be shown that the tools and algorithms presented herein are highly adequate to automatically and objectively predict bone mineral density values as well as a biomechanical parameter of the bone that can be measured intraoperatively.

  7. Second and third NIR optical windows for imaging of bone microfractures

    NASA Astrophysics Data System (ADS)

    Sordillo, Laura A.; Pu, Yang; Sordillo, Peter P.; Budansky, Yury; Alfano, R. R.

    2014-05-01

    Microfractures in bone, secondary to repetitive stress, particularly in the lower extremities, are an important problem for military recruits and for athletes. They also may occur in those with brittle bones, such as the elderly, or in patients taking bisphosphonates for osteoporosis. Microfractures can be early predictors of major bone fracture and may be as important as changes in bone density in predicting where and how likely a major fracture will occur. Unlike major bone fractures, microfractures can be difficult to detect by conventional methods. We explored a second NIR spectral window from 1,100 nm to 1,350 nm, and a third spectral window from 1,600 nm to 1,870 nm to image microfractures through tissue media. Due to a reduction in scattering at longer NIR wavelengths, employment of the second and third NIR windows may allow for deeper penetration into tissue and higher contrast images of microfractures underneath the skin.

  8. Improved 3D skeletonization of trabecular bone images derived from in vivo MRI

    NASA Astrophysics Data System (ADS)

    Magland, Jeremy F.; Wehrli, Felix W.

    2008-03-01

    Independent of overall bone density, 3D trabecular bone (TB) architecture has been shown to play an important role in conferring strength to the skeleton. Advances in imaging technologies such as micro-computed tomography (CT) and micro-magnetic resonance (MR) now permit in vivo imaging of the 3D trabecular network in the distal extremities. However, various experimental factors preclude a straightforward analysis of the 3D trabecular structure on the basis of these in vivo images. For MRI, these factors include blurring due to patient motion, partial volume effects, and measurement noise. While a variety of techniques have been developed to deal with the problem of patient motion, the second and third issues are inherent limitations of the modality. To address these issues, we have developed a series of robust processing steps to be applied to a 3D MR image and leading to a 3D skeleton that accurately represents the trabecular bone structure. Here we describe the algorithm, provide illustrations of its use with both specimen and in vivo micro-MR images, and discuss the accuracy and quantify the relationship between the original bone structure and the resulting 3D skeleton volume.

  9. [Imaging analysis of jaw defects reparation with antigen-extracted porcine cancellous bone].

    PubMed

    Chen, Xufeng; Lu, Lihong; Feng, Zhiqiang; Yin, Zhongda; Lai, Renfa

    2017-12-01

    At present, most of the bone xenograft for clinical application comes from bovine. In recent years, many studies have been done on the clinical application of porcine xenograft bone. The goal of this study was to evaluate the effect of canine mandibular defects reparation with antigen-extracted porcine cancellous bone by imaging examination. Four dogs' bilateral mandibular defects were created, with one side repaired with autologous bone (set as control group) while the other side repaired with antigen-extracted porcine cancellous bone (set as experimental group). Titanium plates and titanium screws were used for fixation. Cone beam computed tomography (CBCT), computed tomography (CT), single-photon emission computed tomography (SPECT) were undertaken at week 12 and 24 postoperatively, and SPECT and CT images were fused. The results demonstrated that the remodeling of antigen-extracted porcine cancellous bone was slower than that of autologous bone, but it can still be used as scaffold for jaw defects. The results in this study provide a new choice for materials required for clinical reparation of jaw defects.

  10. Ultrasound elastography assessment of bone/soft tissue interface

    NASA Astrophysics Data System (ADS)

    Parmar, Biren J.; Yang, Xu; Chaudhry, Anuj; Shafeeq Shajudeen, Peer; Nair, Sanjay P.; Weiner, Bradley K.; Tasciotti, Ennio; Krouskop, Thomas A.; Righetti, Raffaella

    2016-01-01

    We report on the use of elastographic imaging techniques to assess the bone/soft tissue interface, a region that has not been previously investigated but may provide important information about fracture and bone healing. The performance of axial strain elastograms and axial shear strain elastograms at the bone/soft tissue interface was studied ex vivo on intact and fractured canine and ovine tibias. Selected ex vivo results were corroborated on intact sheep tibias in vivo. The elastography results were statistically analyzed using elastographic image quality tools. The results of this study demonstrate distinct patterns in the distribution of the normalized local axial strains and axial shear strains at the bone/soft tissue interface with respect to the background soft tissue. They also show that the relative strength and distribution of the elastographic parameters change in the presence of a fracture and depend on the degree of misalignment between the fracture fragments. Thus, elastographic imaging modalities might be used in the future to obtain information regarding the integrity of bones and to assess the severity of fractures, alignment of bone fragments as well as to follow bone healing.

  11. Analysis of acetabular orientation and femoral anteversion using images of three-dimensional reconstructed bone models.

    PubMed

    Park, Jaeyeong; Kim, Jun-Young; Kim, Hyun Deok; Kim, Young Cheol; Seo, Anna; Je, Minkyu; Mun, Jong Uk; Kim, Bia; Park, Il Hyung; Kim, Shin-Yoon

    2017-05-01

    Radiographic measurements using two-dimensional (2D) plain radiographs or planes from computed tomography (CT) scans have several drawbacks, while measurements using images of three-dimensional (3D) reconstructed bone models can provide more consistent anthropometric information. We compared the consistency of results using measurements based on images of 3D reconstructed bone models (3D measurements) with those using planes from CT scans (measurements using 2D slice images). Ninety-six of 561 patients who had undergone deep vein thrombosis-CT between January 2013 and November 2014 were randomly selected. We evaluated measurements using 2D slice images and 3D measurements. The images used for 3D reconstruction of bone models were obtained and measured using [Formula: see text] and [Formula: see text] (Materialize, Leuven, Belgium). The mean acetabular inclination, acetabular anteversion and femoral anteversion values on 2D slice images were 42.01[Formula: see text], 18.64[Formula: see text] and 14.44[Formula: see text], respectively, while those using images of 3D reconstructed bone models were 52.80[Formula: see text], 14.98[Formula: see text] and 17.26[Formula: see text]. Intra-rater reliabilities for acetabular inclination, acetabular anteversion, and femoral anteversion on 2D slice images were 0.55, 0.81, and 0.85, respectively, while those for 3D measurements were 0.98, 0.99, and 0.98. Inter-rater reliabilities for acetabular inclination, acetabular anteversion and femoral anteversion on 2D slice images were 0.48, 0.86, and 0.84, respectively, while those for 3D measurements were 0.97, 0.99, and 0.97. The differences between the two measurements are explained by the use of different tools. However, more consistent measurements were possible using the images of 3D reconstructed bone models. Therefore, 3D measurement can be a good alternative to measurement using 2D slice images.

  12. Demonstration of a geode by magnetic resonance imaging: a new light on the cause of juxta-articular bone cysts in rheumatoid arthritis.

    PubMed Central

    Moore, E A; Jacoby, R K; Ellis, R E; Fry, M E; Pittard, S; Vennart, W

    1990-01-01

    The magnetic resonance imaging (MRI) features of a rheumatoid arthritic geode are presented. Development of such a cyst from before x ray diagnosis to its coalescence with the wrist joint is described. The evidence suggests that these juxta-articular cysts are not merely an intrusion of the synovial cavity into the bone marrow but start as isolated structures beneath the subchondral bone. Images PMID:2241269

  13. Sci-Thur AM: YIS – 07: Optimizing dual-energy x-ray parameters using a single filter for both high and low-energy images to enhance soft-tissue imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowman, Wesley; Sattarivand, Mike

    Objective: To optimize dual-energy parameters of ExacTrac stereoscopic x-ray imaging system for lung SBRT patients Methods: Simulated spectra and a lung phantom were used to optimize filter material, thickness, kVps, and weighting factors to obtain bone subtracted dual-energy images. Spektr simulations were used to identify material in the atomic number (Z) range [3–83] based on a metric defined to separate spectrums of high and low energies. Both energies used the same filter due to time constraints of image acquisition in lung SBRT imaging. A lung phantom containing bone, soft tissue, and a tumor mimicking material was imaged with filter thicknessesmore » range [0–1] mm and kVp range [60–140]. A cost function based on contrast-to-noise-ratio of bone, soft tissue, and tumor, as well as image noise content, was defined to optimize filter thickness and kVp. Using the optimized parameters, dual-energy images of anthropomorphic Rando phantom were acquired and evaluated for bone subtraction. Imaging dose was measured with dual-energy technique using tin filtering. Results: Tin was the material of choice providing the best energy separation, non-toxicity, and non-reactiveness. The best soft-tissue-only image in the lung phantom was obtained using 0.3 mm tin and [140, 80] kVp pair. Dual-energy images of the Rando phantom had noticeable bone elimination when compared to no filtration. Dose was lower with tin filtering compared to no filtration. Conclusions: Dual-energy soft-tissue imaging is feasible using ExacTrac stereoscopic imaging system utilizing a single tin filter for both high and low energies and optimized acquisition parameters.« less

  14. Enhanced Wnt signaling improves bone mass and strength, but not brittleness, in the Col1a1(+/mov13) mouse model of type I Osteogenesis Imperfecta.

    PubMed

    Jacobsen, Christina M; Schwartz, Marissa A; Roberts, Heather J; Lim, Kyung-Eun; Spevak, Lyudmila; Boskey, Adele L; Zurakowski, David; Robling, Alexander G; Warman, Matthew L

    2016-09-01

    Osteogenesis Imperfecta (OI) comprises a group of genetic skeletal fragility disorders. The mildest form of OI, Osteogenesis Imperfecta type I, is frequently caused by haploinsufficiency mutations in COL1A1, the gene encoding the α1(I) chain of type 1 collagen. Children with OI type I have a 95-fold higher fracture rate compared to unaffected children. Therapies for OI type I in the pediatric population are limited to anti-catabolic agents. In adults with osteoporosis, anabolic therapies that enhance Wnt signaling in bone improve bone mass, and ongoing clinical trials are determining if these therapies also reduce fracture risk. We performed a proof-of-principle experiment in mice to determine whether enhancing Wnt signaling in bone could benefit children with OI type I. We crossed a mouse model of OI type I (Col1a1(+/Mov13)) with a high bone mass (HBM) mouse (Lrp5(+/p.A214V)) that has increased bone strength from enhanced Wnt signaling. Offspring that inherited the OI and HBM alleles had higher bone mass and strength than mice that inherited the OI allele alone. However, OI+HBM and OI mice still had bones with lower ductility compared to wild-type mice. We conclude that enhancing Wnt signaling does not make OI bone normal, but does improve bone properties that could reduce fracture risk. Therefore, agents that enhance Wnt signaling are likely to benefit children and adults with OI type 1. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Quantitative MRI and spectroscopy of bone marrow

    PubMed Central

    Ruschke, Stefan; Dieckmeyer, Michael; Diefenbach, Maximilian; Franz, Daniela; Gersing, Alexandra S.; Krug, Roland; Baum, Thomas

    2017-01-01

    Bone marrow is one of the largest organs in the human body, enclosing adipocytes, hematopoietic stem cells, which are responsible for blood cell production, and mesenchymal stem cells, which are responsible for the production of adipocytes and bone cells. Magnetic resonance imaging (MRI) is the ideal imaging modality to monitor bone marrow changes in healthy and pathological states, thanks to its inherent rich soft‐tissue contrast. Quantitative bone marrow MRI and magnetic resonance spectroscopy (MRS) techniques have been also developed in order to quantify changes in bone marrow water–fat composition, cellularity and perfusion in different pathologies, and to assist in understanding the role of bone marrow in the pathophysiology of systemic diseases (e.g. osteoporosis). The present review summarizes a large selection of studies published until March 2017 in proton‐based quantitative MRI and MRS of bone marrow. Some basic knowledge about bone marrow anatomy and physiology is first reviewed. The most important technical aspects of quantitative MR methods measuring bone marrow water–fat composition, fatty acid composition, perfusion, and diffusion are then described. Finally, previous MR studies are reviewed on the application of quantitative MR techniques in both healthy aging and diseased bone marrow affected by osteoporosis, fractures, metabolic diseases, multiple myeloma, and bone metastases. Level of Evidence: 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:332–353. PMID:28570033

  16. Strontium ranelate: a novel mode of action leading to renewed bone quality.

    PubMed

    Ammann, Patrick

    2005-01-01

    Various bone resorption inhibitors and bone stimulators have been shown to decrease the risk of osteoporotic fractures. However, there is still a need for agents promoting bone formation by inducing positive uncoupling between bone formation and bone resorption. In vitro studies have suggested that strontium ranelate enhances osteoblast cell replication and activity. Simultaneously, strontium ranelate dose-dependently inhibits osteoclast activity. In vivo studies indicate that strontium ranelate stimulates bone formation and inhibits bone resorption and prevents bone loss and/or promotes bone gain. This positive uncoupling between bone formation and bone resorption results in bone gain and improvement in bone geometry and microarchitecture, without affecting the intrinsic bone tissue quality. Thus, all the determinants of bone strength are positively influenced. In conclusion, strontium ranelate, a new treatment of postmenopausal osteoporosis, acts through an innovative mode of action, both stimulating bone formation and inhibiting bone resorption, resulting in the rebalancing of bone turnover in favor of bone formation. Strontium ranelate increases bone mass while preserving the bone mineralization process, resulting in improvement in bone strength and bone quality.

  17. Quantitative in vivo assessment of bone microarchitecture in the human knee using HR-pQCT.

    PubMed

    Kroker, Andres; Zhu, Ying; Manske, Sarah L; Barber, Rhamona; Mohtadi, Nicholas; Boyd, Steven K

    2017-04-01

    High-resolution peripheral quantitative computed tomography (HR-pQCT) is a novel imaging modality capable of visualizing bone microarchitecture in vivo at human peripheral sites such as the distal radius and distal tibia. This research has extended the technology to provide a non-invasive assessment of bone microarchitecture at the human knee by establishing new hardware, imaging protocols and data analysis. A custom leg holder was developed to stabilize a human knee centrally within a second generation HR-pQCT field of view. Five participants with anterior cruciate ligament reconstructions had their knee joint imaged in a continuous scan of 6cm axially. The nominal isotropic voxel size was 60.7μm. Bone mineral density and microarchitecture were assessed within the weight-bearing regions of medial and lateral compartments of the knee at three depths from the weight-bearing articular bone surface, including both the cortical and trabecular bone regions. Scan duration was approximately 18min per knee and produced 5GB of projection data and 10GB of reconstructed image data (2304×2304 image matrix, 1008 slices). Motion during the scan was minimized by the leg holder and was similar in magnitude as a scan of the distal tibia. Bone mineral density and microarchitectural parameters were assessed for 16 volumes of interest in the tibiofemoral joint. This is a new non-invasive in vivo assessment tool for bone microarchitecture in the human knee that provides an opportunity to gain insight into normal, injured and surgically reconstructed human knee bone architecture in cross-sectional or longitudinal studies. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  18. Double agents and secret agents: the emerging fields of exogenous chemical exchange saturation transfer and T2-exchange magnetic resonance imaging contrast agents for molecular imaging.

    PubMed

    Daryaei, Iman; Pagel, Mark D

    2015-01-01

    Two relatively new types of exogenous magnetic resonance imaging contrast agents may provide greater impact for molecular imaging by providing greater specificity for detecting molecular imaging biomarkers. Exogenous chemical exchange saturation transfer (CEST) agents rely on the selective saturation of the magnetization of a proton on an agent, followed by chemical exchange of a proton from the agent to water. The selective detection of a biomarker-responsive CEST signal and an unresponsive CEST signal, followed by the ratiometric comparison of these signals, can improve biomarker specificity. We refer to this improvement as a "double-agent" approach to molecular imaging. Exogenous T 2 -exchange agents also rely on chemical exchange of protons between the agent and water, especially with an intermediate rate that lies between the slow exchange rates of CEST agents and the fast exchange rates of traditional T 1 and T 2 agents. Because of this intermediate exchange rate, these agents have been relatively unknown and have acted as "secret agents" in the contrast agent research field. This review exposes these secret agents and describes the merits of double agents through examples of exogenous agents that detect enzyme activity, nucleic acids and gene expression, metabolites, ions, redox state, temperature, and pH. Future directions are also provided for improving both types of contrast agents for improved molecular imaging and clinical translation. Therefore, this review provides an overview of two new types of exogenous contrast agents that are becoming useful tools within the armamentarium of molecular imaging.

  19. Normal bone and soft tissue distribution of fluorine-18-sodium fluoride and artifacts on 18F-NaF PET/CT bone scan: a pictorial review.

    PubMed

    Sarikaya, Ismet; Elgazzar, Abdelhamid H; Sarikaya, Ali; Alfeeli, Mahmoud

    2017-10-01

    Fluorine-18-sodium fluoride (F-NaF) PET/CT is a relatively new and high-resolution bone imaging modality. Since the use of F-NaF PET/CT has been increasing, it is important to accurately assess the images and be aware of normal distribution and major artifacts. In this pictorial review article, we will describe the normal uptake patterns of F-NaF in the bone tissues, particularly in complex structures, as well as its physiologic soft tissue distribution and certain artifacts seen on F-NaF PET/CT images.

  20. Diagnostic imaging of trabecular bone microstructure for oral implants: a literature review.

    PubMed

    Ibrahim, N; Parsa, A; Hassan, B; van der Stelt, P; Wismeijer, D

    2013-01-01

    Several dental implant studies have reported that radiographic evaluation of bone quality can aid in reducing implant failure. Bone quality is assessed in terms of its quantity, density, trabecular characteristics and cells. Current imaging modalities vary widely in their efficiency in assessing trabecular structures, especially in a clinical setting. Most are very costly, require an extensive scanning procedure coupled with a high radiation dose and are only partially suitable for patient use. This review examines the current literature regarding diagnostic imaging assessment of trabecular microstructure prior to oral implant placement and suggests cone beam CT as a method of choice for evaluating trabecular bone microstructure.

  1. Detection of occult, undisplaced hip fractures with a dual-energy CT algorithm targeted to detection of bone marrow edema.

    PubMed

    Reddy, T; McLaughlin, P D; Mallinson, P I; Reagan, A C; Munk, P L; Nicolaou, S; Ouellette, H A

    2015-02-01

    The purpose of this study is to describe our initial clinical experience with dual-energy computed tomography (DECT) virtual non-calcium (VNC) images for the detection of bone marrow (BM) edema in patients with suspected hip fracture following trauma. Twenty-five patients presented to the emergency department at a level 1 trauma center between January 1, 2011 and January 1, 2013 with clinical suspicion of hip fracture and normal radiographs were included. All CT scans were performed on a dual-source, dual-energy CT system. VNC images were generated using prototype software and were compared to regular bone reconstructions by two musculoskeletal radiologists in consensus. Radiological and/or clinical diagnosis of fracture at 30-day follow-up was used as the reference standard. Twenty-one patients were found to have DECT-VNC signs of bone marrow edema. Eighteen of these 21 patients were true positive and three were false positive. A concordant fracture was clearly seen on bone reconstruction images in 15 of the 18 true positive cases. In three cases, DECT-VNC was positive for bone marrow edema where bone reconstruction CT images were negative. Four patients demonstrated no DECT-VNC signs of bone marrow edema: two cases were true negative, two cases were false negative. When compared with the gold standard of hip fracture determined at retrospective follow-up, the sensitivity of DECT-VNC images of the hip was 90 %, specificity was 40 %, positive predictive value was 86 %, and negative predictive value was 50 %. Our initial experience would suggest that DECT-VNC is highly sensitive but poorly specific in the diagnosis of hip fractures in patients with normal radiographs. The value of DECT-VNC primarily lies in its ability to help detect fractures which may be subtle or undetectable on bone reconstruction CT images.

  2. Osteoporosis imaging: effects of bone preservation on MDCT-based trabecular bone microstructure parameters and finite element models.

    PubMed

    Baum, Thomas; Grande Garcia, Eduardo; Burgkart, Rainer; Gordijenko, Olga; Liebl, Hans; Jungmann, Pia M; Gruber, Michael; Zahel, Tina; Rummeny, Ernst J; Waldt, Simone; Bauer, Jan S

    2015-06-26

    Osteoporosis is defined as a skeletal disorder characterized by compromised bone strength due to a reduction of bone mass and deterioration of bone microstructure predisposing an individual to an increased risk of fracture. Trabecular bone microstructure analysis and finite element models (FEM) have shown to improve the prediction of bone strength beyond bone mineral density (BMD) measurements. These computational methods have been developed and validated in specimens preserved in formalin solution or by freezing. However, little is known about the effects of preservation on trabecular bone microstructure and FEM. The purpose of this observational study was to investigate the effects of preservation on trabecular bone microstructure and FEM in human vertebrae. Four thoracic vertebrae were harvested from each of three fresh human cadavers (n=12). Multi-detector computed tomography (MDCT) images were obtained at baseline, 3 and 6 month follow-up. In the intervals between MDCT imaging, two vertebrae from each donor were formalin-fixed and frozen, respectively. BMD, trabecular bone microstructure parameters (histomorphometry and fractal dimension), and FEM-based apparent compressive modulus (ACM) were determined in the MDCT images and validated by mechanical testing to failure of the vertebrae after 6 months. Changes of BMD, trabecular bone microstructure parameters, and FEM-based ACM in formalin-fixed and frozen vertebrae over 6 months ranged between 1.0-5.6% and 1.3-6.1%, respectively, and were not statistically significant (p>0.05). BMD, trabecular bone microstructure parameters, and FEM-based ACM as assessed at baseline, 3 and 6 month follow-up correlated significantly with mechanically determined failure load (r=0.89-0.99; p<0.05). The correlation coefficients r were not significantly different for the two preservation methods (p>0.05). Formalin fixation and freezing up to six months showed no significant effects on trabecular bone microstructure and FEM-based ACM in human vertebrae and may both be used in corresponding in-vitro experiments in the context of osteoporosis.

  3. In situ observation of fluoride-ion-induced hydroxyapatite collagen detachment on bone fracture surfaces by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Kindt, J. H.; Thurner, P. J.; Lauer, M. E.; Bosma, B. L.; Schitter, G.; Fantner, G. E.; Izumi, M.; Weaver, J. C.; Morse, D. E.; Hansma, P. K.

    2007-04-01

    The topography of freshly fractured bovine and human bone surfaces was determined by the use of atomic force microscopy (AFM). Fracture surfaces from both kinds of samples exhibited complex landscapes formed by hydroxyapatite mineral platelets with lateral dimensions ranging from ~90 nm × 60 nm to ~20 nm × 20 nm. Novel AFM techniques were used to study these fracture surfaces during various chemical treatments. Significant topographical changes were observed following exposure to aqueous solutions of ethylenediaminetetraacetic acid (EDTA) or highly concentrated sodium fluoride (NaF). Both treatments resulted in the apparent loss of the hydroxyapatite mineral platelets on a timescale of a few seconds. Collagen fibrils situated beneath the overlying mineral platelets were clearly exposed and could be resolved with high spatial resolution in the acquired AFM images. Time-dependent mass loss experiments revealed that the applied agents (NaF or EDTA) had very different resulting effects. Despite the fact that the two treatments exhibited nearly identical results following examination by AFM, bulk bone samples treated with EDTA exhibited a ~70% mass loss after 72 h, whereas for the NaF-treated samples, the mass loss was only of the order of ~10%. These results support those obtained from previous mechanical testing experiments, suggesting that enhanced formation of superficial fluoroapatite dramatically weakens the protein-hydroxyapatite interfaces. Additionally, we discovered that treatment with aqueous solutions of NaF resulted in the effective extraction of noncollagenous proteins from bone powder.

  4. Assessment of imaging quality in magnified phase CT of human bone tissue at the nanoscale

    NASA Astrophysics Data System (ADS)

    Yu, Boliang; Langer, Max; Pacureanu, Alexandra; Gauthier, Remy; Follet, Helene; Mitton, David; Olivier, Cecile; Cloetens, Peter; Peyrin, Francoise

    2017-10-01

    Bone properties at all length scales have a major impact on the fracture risk in disease such as osteoporosis. However, quantitative 3D data on bone tissue at the cellular scale are still rare. Here we propose to use magnified X-ray phase nano-CT to quantify bone ultra-structure in human bone, on the new setup developed on the beamline ID16A at the ESRF, Grenoble. Obtaining 3D images requires the application of phase retrieval prior to tomographic reconstruction. Phase retrieval is an ill-posed problem for which various approaches have been developed. Since image quality has a strong impact on the further quantification of bone tissue, our aim here is to evaluate different phase retrieval methods for imaging bone samples at the cellular scale. Samples from femurs of female donors were scanned using magnified phase nano-CT at voxel sizes of 120 and 30 nm with an energy of 33 keV. Four CT scans at varying sample-to-detector distances were acquired for each sample. We evaluated three phase retrieval methods adapted to these conditions: Paganin's method at single distance, Paganin's method extended to multiple distances, and the contrast transfer function (CTF) approach for pure phase objects. These methods were used as initialization to an iterative refinement step. Our results based on visual and quantitative assessment show that the use of several distances (as opposed to single one) clearly improves image quality and the two multi-distance phase retrieval methods give similar results. First results on the segmentation of osteocyte lacunae and canaliculi from such images are presented.

  5. HYPOXIA-ACTIVATED PRO-DRUG TH-302 EXHIBITS POTENT TUMOUR SUPPRESSIVE ACTIVITY AND COOPERATES WITH CHEMOTHERAPY AGAINST OSTEOSARCOMA

    PubMed Central

    Liapis, Vasilios; Labrinidis, Agatha; Zinonos, Irene; Hay, Shelley; Ponomarev, Vladimir; Panagopoulos, Vasilios; DeNichilo, Mark; Ingman, Wendy; Atkins, Gerald J.; Findlay, David M.; Zannettino, Andrew CW.; Evdokiou, Andreas

    2015-01-01

    Tumour hypoxia is a major cause of treatment failure for a variety of malignancies. However, tumour hypoxia also offers treatment opportunities, exemplified by the development compounds that target hypoxic regions within tumours. TH-302 is a pro-drug created by the conjugation of 2-nitroimidazole to bromo-isophosphoramide (Br-IPM). When TH-302 is delivered to regions of hypoxia, Br-IPM, the DNA cross linking toxin, is released. In this study we assessed the cytotoxic activity of TH-302 against osteosarcoma cells in vitro and evaluated its anticancer efficacy as a single agent, and in combination with doxorubicin, in an orthotopic mouse model of human osteosarcoma (OS). In vitro, TH-302 was potently cytotoxic to osteosarcoma cells selectively under hypoxic conditions, whereas primary normal human osteoblasts were protected. Animals transplanted with OS cells directly into their tibiae and left untreated developed mixed osteolytic/osteosclerotic bone lesions and subsequently developed lung metastases. TH-302 reduced tumor burden in bone and cooperated with doxorubicin to protect bone from osteosarcoma induced bone destruction, while it also reduced lung metastases. TH-302 may therefore be an attractive therapeutic agent with strong activity as a single agent and in combination with chemotherapy against OS. PMID:25444931

  6. Hypoxia-activated pro-drug TH-302 exhibits potent tumor suppressive activity and cooperates with chemotherapy against osteosarcoma.

    PubMed

    Liapis, Vasilios; Labrinidis, Agatha; Zinonos, Irene; Hay, Shelley; Ponomarev, Vladimir; Panagopoulos, Vasilios; DeNichilo, Mark; Ingman, Wendy; Atkins, Gerald J; Findlay, David M; Zannettino, Andrew C W; Evdokiou, Andreas

    2015-02-01

    Tumor hypoxia is a major cause of treatment failure for a variety of malignancies. However, tumor hypoxia also offers treatment opportunities, exemplified by the development compounds that target hypoxic regions within tumors. TH-302 is a pro-drug created by the conjugation of 2-nitroimidazole to bromo-isophosphoramide (Br-IPM). When TH-302 is delivered to regions of hypoxia, Br-IPM, the DNA cross linking toxin, is released. In this study we assessed the cytotoxic activity of TH-302 against osteosarcoma cells in vitro and evaluated its anticancer efficacy as a single agent, and in combination with doxorubicin, in an orthotopic mouse model of human osteosarcoma (OS). In vitro, TH-302 was potently cytotoxic to osteosarcoma cells selectively under hypoxic conditions, whereas primary normal human osteoblasts were protected. Animals transplanted with OS cells directly into their tibiae and left untreated developed mixed osteolytic/osteosclerotic bone lesions and subsequently developed lung metastases. TH-302 reduced tumor burden in bone and cooperated with doxorubicin to protect bone from osteosarcoma induced bone destruction, while it also reduced lung metastases. TH-302 may therefore be an attractive therapeutic agent with strong activity as a single agent and in combination with chemotherapy against OS. Crown Copyright © 2014. Published by Elsevier Ireland Ltd. All rights reserved.

  7. Imaging Internal Structure of Long Bones Using Wave Scattering Theory.

    PubMed

    Zheng, Rui; Le, Lawrence H; Sacchi, Mauricio D; Lou, Edmond

    2015-11-01

    An ultrasonic wavefield imaging method is developed to reconstruct the internal geometric properties of long bones using zero-offset data acquired axially on the bone surface. The imaging algorithm based on Born scattering theory is implemented with the conjugate gradient iterative method to reconstruct an optimal image. In the case of a multilayered velocity model, ray tracing through a smooth medium is used to calculate the traveled distance and traveling time. The method has been applied to simulated and real data. The results indicate that the interfaces of the top cortex are accurately imaged and correspond favorably to the original model. The reconstructed bottom cortex below the marrow is less accurate mainly because of the low signal-to-noise ratio. The current imaging method has successfully recovered the top cortical layer, providing a potential tool to investigate the internal structures of long bone cortex for osteoporosis assessment. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  8. A Review of the Effect of Anticonvulsant Medications on Bone Mineral Density and Fracture Risk

    PubMed Central

    Lee, Richard H.; Lyles, Kenneth W.; Colón-Emeric, Cathleen

    2011-01-01

    Background Osteoporosis and seizure disorders are common diagnoses in older adults and often occur concomitantly. Objective The goal of this review was to discuss the current hypothesis for the pathogenesis of anticonvulsant-induced bone density loss and the evidence regarding the risk for osteoporosis and fractures in older individuals. Methods A review of the literature was performed, searching in MEDLINE and CINAHL for articles published between 1990 and October 2009 with the following search terms: anticonvulsant OR antiepileptic; AND osteoporosis OR bone density OR fracture OR absorptiometry, photon. Studies within the pediatric population, cross-sectional studies, and studies whose results were published in a language other than English were excluded. Results A search of the published literature yielded >300 results, of which 24 met the inclusion and exclusion criteria and were included in this review. Hepatic enzyme induction by certain anticonvulsant medications appears to contribute to increased metabolism of 25-hydroxyvitamin D to inactive metabolites, which results in metabolic bone disease. There is increasing evidence that anticonvulsant use is associated with a higher risk of osteoporosis and clinical fractures, especially among older agents such as phenobarbital, carbamazepine, phenytoin, and valproate. Several observational studies suggest a class effect among anticonvulsant agents, associated with clinically significant reductions in bone mineral density and fracture risk. The use of anticonvulsant medications increases the odds of fracture by 1.2 to 2.4 times. However, only 2 large-scale observational studies have specifically examined the risk among those aged >65 years. This review also identified a randomized controlled trial whose results suggest that supplementation with high-dose vitamin D may be associated with increased bone mineral density in patients taking anticonvulsant medications. However, no randomized controlled trials investigating therapeutic agents to prevent fracture in this population were identified. Consequently, there are no formal practice guidelines for the monitoring, prevention, and management of bone disease among those taking anticonvulsants. Conclusions Observational studies suggest an association between use of anticonvulsant medications, reduced bone mineral density, and increased fracture risk. Randomized clinical trials are needed to guide the management of bone disease among those who use anticonvulsants. PMID:20226391

  9. Medical image segmentation using 3D MRI data

    NASA Astrophysics Data System (ADS)

    Voronin, V.; Marchuk, V.; Semenishchev, E.; Cen, Yigang; Agaian, S.

    2017-05-01

    Precise segmentation of three-dimensional (3D) magnetic resonance imaging (MRI) image can be a very useful computer aided diagnosis (CAD) tool in clinical routines. Accurate automatic extraction a 3D component from images obtained by magnetic resonance imaging (MRI) is a challenging segmentation problem due to the small size objects of interest (e.g., blood vessels, bones) in each 2D MRA slice and complex surrounding anatomical structures. Our objective is to develop a specific segmentation scheme for accurately extracting parts of bones from MRI images. In this paper, we use a segmentation algorithm to extract the parts of bones from Magnetic Resonance Imaging (MRI) data sets based on modified active contour method. As a result, the proposed method demonstrates good accuracy in a comparison between the existing segmentation approaches on real MRI data.

  10. Comparison of diffraction-enhanced computed tomography and monochromatic synchrotron radiation computed tomography of human trabecular bone.

    PubMed

    Connor, D M; Hallen, H D; Lalush, D S; Sumner, D R; Zhong, Z

    2009-10-21

    Diffraction-enhanced imaging (DEI) is an x-ray-based medical imaging modality that, when used in tomography mode (DECT), can generate a three-dimensional map of both the apparent absorption coefficient and the out-of-plane gradient of the index of refraction of the sample. DECT is known to have contrast gains over monochromatic synchrotron radiation CT (SRCT) for soft tissue structures. The goal of this experiment was to compare contrast-to-noise ratio (CNR) and resolution in images of human trabecular bone acquired using SRCT with images acquired using DECT. All images were acquired at the National Synchrotron Light Source (Upton, NY, USA) at beamline X15 A at an x-ray energy of 40 keV and the silicon [3 3 3] reflection. SRCT, apparent absorption DECT and refraction DECT slice images of the trabecular bone were created. The apparent absorption DECT images have significantly higher spatial resolution and CNR than the corresponding SRCT images. Thus, DECT will prove to be a useful tool for imaging applications in which high contrast and high spatial resolution are required for both soft tissue features and bone.

  11. Triple-phase bone image abnormalities in Lyme arthritis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, S.J.; Dadparvar, S.; Slizofski, W.J.

    1989-10-01

    Arthritis is a frequent manifestation of Lyme disease. Limited triple-phase Tc-99m MDP bone imaging of the wrists and hands with delayed whole-body images was performed in a patient with Lyme arthritis. This demonstrated abnormal joint uptake in the wrists and hands in all three phases, with increased activity seen in other affected joints on delayed whole-body images. These findings are nonspecific and have been previously described in a variety of rheumatologic conditions, but not in Lyme disease. Lyme disease should be considered in the differential diagnosis of articular and periarticular bone scan abnormalities.

  12. Cancer-associated bone disease

    PubMed Central

    Body, J.-J.; Brandi, M.-L.; Cannata-Andia, J.; Chappard, D.; El Maghraoui, A.; Glüer, C.C.; Kendler, D.; Napoli, N.; Papaioannou, A.; Pierroz, D.D.; Rahme, M.; Van Poznak, C.H.; de Villiers, T.J.; El Hajj Fuleihan, G.

    2016-01-01

    Bone is commonly affected in cancer. Cancer-induced bone disease results from the primary disease, or from therapies against the primary condition, causing bone fragility. Bone-modifying agents, such as bisphosphonates and denosumab, are efficacious in preventing and delaying cancer-related bone disease. With evidence-based care pathways, guidelines assist physicians in clinical decision-making. Of the 57 million deaths in 2008 worldwide, almost two thirds were due to non-communicable diseases, led by cardiovascular diseases and cancers. Bone is a commonly affected organ in cancer, and although the incidence of metastatic bone disease is not well defined, it is estimated that around half of patients who die from cancer in the USA each year have bone involvement. Furthermore, cancer-induced bone disease can result from the primary disease itself, either due to circulating bone resorbing substances or metastatic bone disease, such as commonly occurs with breast, lung and prostate cancer, or from therapies administered to treat the primary condition thus causing bone loss and fractures. Treatment-induced osteoporosis may occur in the setting of glucocorticoid therapy or oestrogen deprivation therapy, chemotherapy-induced ovarian failure and androgen deprivation therapy. Tumour skeletal-related events include pathologic fractures, spinal cord compression, surgery and radiotherapy to bone and may or may not include hypercalcaemia of malignancy while skeletal complication refers to pain and other symptoms. Some evidence demonstrates the efficacy of various interventions including bone-modifying agents, such as bisphosphonates and denosumab, in preventing or delaying cancer-related bone disease. The latter includes treatment of patients with metastatic skeletal lesions in general, adjuvant treatment of breast and prostate cancer in particular, and the prevention of cancer-associated bone disease. This has led to the development of guidelines by several societies and working groups to assist physicians in clinical decision making, providing them with evidence-based care pathways to prevent skeletal-related events and bone loss. The goal of this paper is to put forth an IOF position paper addressing bone diseases and cancer and summarizing the position papers of other organizations. PMID:24146095

  13. TH-AB-209-02: Gadolinium Measurements in Human Bone Using in Vivo K X-Ray Fluorescence (KXRF) Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mostafaei, F; Nie, L

    Purpose: Improvement in an in vivo K x-ray fluorescence system, based on 109Cd source, for the detection of gadolinium (Gd) in bone has been investigated. Series of improvements to the method is described. Gd is of interest because of the extensive use of Gd-based contrast agents in MR imaging and the potential toxicity of Gd exposure. Methods: A set of seven bone equivalent phantoms with different amount of Gd concentrations (from 0–100 ppm) has been developed. Soft tissue equivalent plastic plates were used to simulate the soft tissue overlaying the tibia bone in an in vivo measurement. A new 5more » GBq 109Cd source was used to improve the source activity in comparison to the previous study (0.17 GBq). An improved spectral fitting program was utilized for data analysis. Results: The previous published minimum detection limit (MDL) for Gd doped phantom measurements using KXRF system was 3.3 ppm. In this study the MDL for bare bone phantoms was found to be 0.8 ppm. Our previous study used only three layers of plastic (0.32, 0.64 and 0.96 mm) as soft tissue equivalent materials and obtained the MDL of 4–4.8 ppm. In this study the plastic plates with more realistic thicknesses to simulate the soft tissue covering tibia bone (nine thicknesses ranging from 0.61–6.13 mm) were used. The MDLs for phantoms were determined to be 1.8–3.5 ppm. Conclusion: With the improvements made to the technology (stronger source, improved data analysis algorithm, realistic soft tissue thicknesses), the MDL of the KXRF system to measure Gd in bare bone was improved by a factor of 4.1. The MDL is at the level of the bone Gd concentration reported in literature. Hence, the system is ready to be tested on human subjects to investigate the use of bone Gd as a biomarker for Gd toxicity.« less

  14. Skeletal dosimetry: A hyperboloid representation of the bone-marrow interface to reduce voxel effects in three-dimensional images of trabecular bone

    NASA Astrophysics Data System (ADS)

    Rajon, Didier Alain

    Radiation damage to the hematopoietic bone marrow is clearly defined as the limiting factor to the development of internal emitter therapies. Current dosimetry models rely on chord-length distributions measured through the complex microstructure of the trabecular bone regions of the skeleton in which most of the active marrow is located. Recently, Nuclear Magnetic Resonance (NMR) has been used to obtain high-resolution three-dimensional (3D) images of small trabecular bone samples. These images have been coupled with computer programs to estimate dosimetric parameters such as chord-length distributions, and energy depositions by monoenergetic electrons. This new technique is based on the assumption that each voxel of the image is assigned either to bone tissue or to marrow tissue after application of a threshold value. Previous studies showed that this assumption had important consequences on the outcome of the computer calculations. Both the chord-length distribution measurements and the energy deposition calculations are subject to voxel effects that are responsible for large discrepancies when applied to mathematical models of trabecular bone. The work presented in this dissertation proposes first a quantitative study of the voxel effects. Consensus is that the voxelized representation of surfaces should not be used as direct input to dosimetry computer programs. Instead we need a new technique to transform the interfaces into smooth surfaces. The Marching Cube (MC) algorithm was used and adapted to do this transformation. The initial image was used to generate a continuous gray-level field throughout the image. The interface between bone and marrow was then simulated by the iso-gray-level surface that corresponds to a predetermined threshold value. Calculations were then performed using this new representation. Excellent results were obtained for both the chord-length distribution and the energy deposition measurements. Voxel effects were reduced to an acceptable level and the discrepancies found when using the voxelized representation of the interface were reduced to a few percent. We conclude that this new model should be used every time one performs dosimetry estimates using NMR images of trabecular bone samples.

  15. NIKOS II - A System For Non-Invasive Imaging Of Coronary Arteries

    NASA Astrophysics Data System (ADS)

    Dix, Wolf-Rainer; Engelke, Klaus; Heintze, Gerhard; Heuer, Joachim; Graeff, Walter; Kupper, Wolfram; Lohmann, Michael; Makin, I.; Moechel, Thomas; Reumann, Reinhold; Stellmaschek, Karl-Heinz

    1989-05-01

    This paper presents results of the initial in-vivo investigations with the system NIKOS II (NIKOS = Nicht-invasive Koronarangiographie mit Synchrotronstrahlung), an advanced version of NIKOS I which was developed since 1981. Aim of the work is to be able to visualize coronary arteries down to 1mm diameter with an iodine mass density of lmg/cm2, thus allowing non-invasive investigations by intravenous injection of the contrast agent. For this purpose Digital Subtraction Angiography (DSA) in energy subtraction mode (dichromography) is employed. The two images for subtraction are taken at photon energies just below and above the iodine K-edge (33.17keV) After subtraction the background contrast from bone and soft tissue is suppressed and the iodinated structures are strongly enhanced because of the abrupt change of absorption at the K-edge. The two monoenergetic beams are filtered out of a synchrotron radiation beam by a crystal monochromator and measured with a two line detector. One scan (two images) lasts between 250ms (final version) and ls (at present ). The images from the in-vivo investigations of dogs have been promising. The right coronary artery (diameter 1.5mm) was clearly visible. With application of better image processing algorithms the images illustrated in this paper have a definite potential for improvement.

  16. A comparison of peripheral imaging technologies for bone and muscle quantification: a technical review of image acquisition

    PubMed Central

    Wong, A.K.O.

    2016-01-01

    The choice of an appropriate imaging technique to quantify bone, muscle, or muscle adiposity needs to be guided by a thorough understanding of its competitive advantages over other modalities balanced by its limitations. This review details the technical machinery and methods behind peripheral quantitative computed tomography (pQCT), high-resolution (HR)-pQCT, and magnetic resonance imaging (MRI) that drive successful depiction of bone and muscle morphometry, densitometry, and structure. It discusses a number of image acquisition settings, the challenges associated with using one versus another, and compares the risk-benefits across the different modalities. Issues related to all modalities including partial volume artifact, beam hardening, calibration, and motion assessment are also detailed. The review further provides data and images to illustrate differences between methods to better guide the reader in selecting an imaging method strategically. Overall, investigators should be cautious of the impact of imaging parameters on image signal or contrast-to-noise-ratios, and the need to report these settings in future publications. The effect of motion should be assessed on images and a decision made to exclude prior to segmentation. A more standardized approach to imaging bone and muscle on pQCT and MRI could enhance comparability across studies and could improve the quality of meta-analyses. PMID:27973379

  17. A comparison of peripheral imaging technologies for bone and muscle quantification: a technical review of image acquisition.

    PubMed

    Wong, A K

    2016-12-14

    The choice of an appropriate imaging technique to quantify bone, muscle, or muscle adiposity needs to be guided by a thorough understanding of its competitive advantages over other modalities balanced by its limitations. This review details the technical machinery and methods behind peripheral quantitative computed tomography (pQCT), high-resolution (HR)-pQCT, and magnetic resonance imaging (MRI) that drive successful depiction of bone and muscle morphometry, densitometry, and structure. It discusses a number of image acquisition settings, the challenges associated with using one versus another, and compares the risk-benefits across the different modalities. Issues related to all modalities including partial volume artifact, beam hardening, calibration, and motion assessment are also detailed. The review further provides data and images to illustrate differences between methods to better guide the reader in selecting an imaging method strategically. Overall, investigators should be cautious of the impact of imaging parameters on image signal or contrast-to-noise-ratios, and the need to report these settings in future publications. The effect of motion should be assessed on images and a decision made to exclude prior to segmentation. A more standardized approach to imaging bone and muscle on pQCT and MRI could enhance comparability across studies and could improve the quality of meta-analyses.

  18. The effects of hemostatic agents on peripheral nerve function: an experimental study.

    PubMed

    Alkan, Alper; Inal, Samet; Yildirim, Mehmet; Baş, Burcu; Ağar, Erdal

    2007-04-01

    In the practice of oral and maxillofacial surgery, hemostatic agents are sometimes placed in close proximity to peripheral nerves. In the present study, we evaluated immediate and delayed effects of 4 hemostatic agents (oxidized regenerated cellulose, 5% colloid silver-added gelatine sponge, bovine collagen, bone wax) on peripheral nerve function. A total of 25 rat sciatic nerves were prepared, and the amplitudes were recorded with a physiological data acquisition system. Animals were randomly assigned to 5 groups: control, oxidized regenerated cellulose, gelatine sponge, bone wax, and bovine collagen. The first hour records are defined as immediate effects of these hemostatic agents on nerve function. The animals were then allowed to recover for 4 weeks. At the end of this period, the same surgical and recording procedures were performed. These final records are defined as delayed effects of hemostatic agents on nerve function. According to nerve conduction velocity (NCV) and compound action potential (CAP) values of the experimental groups, early and delayed effects of each hemostatic agent were statistically compared with Bonferroni corrected test (P < .05). Statistically, NCV was significantly reduced, and the CAP was significantly increased 1 hour after surgery (P < .05) in the group of oxidized regenerated cellulose. However, there were no significant differences after 4 weeks compared with the first records. In the gelatine sponge group, CAP was significantly increased 4 weeks after the application. In the bovine collagen and bone wax groups, NCV and CAP values (1 hour and 4 weeks after the application) were not statistically significant compared with initial control records. The present study shows that bovine collagen is the most suitable hemostatic agent applicable for peripheral nerves.

  19. Segmenting the Femoral Head and Acetabulum in the Hip Joint Automatically Using a Multi-Step Scheme

    NASA Astrophysics Data System (ADS)

    Wang, Ji; Cheng, Yuanzhi; Fu, Yili; Zhou, Shengjun; Tamura, Shinichi

    We describe a multi-step approach for automatic segmentation of the femoral head and the acetabulum in the hip joint from three dimensional (3D) CT images. Our segmentation method consists of the following steps: 1) construction of the valley-emphasized image by subtracting valleys from the original images; 2) initial segmentation of the bone regions by using conventional techniques including the initial threshold and binary morphological operations from the valley-emphasized image; 3) further segmentation of the bone regions by using the iterative adaptive classification with the initial segmentation result; 4) detection of the rough bone boundaries based on the segmented bone regions; 5) 3D reconstruction of the bone surface using the rough bone boundaries obtained in step 4) by a network of triangles; 6) correction of all vertices of the 3D bone surface based on the normal direction of vertices; 7) adjustment of the bone surface based on the corrected vertices. We evaluated our approach on 35 CT patient data sets. Our experimental results show that our segmentation algorithm is more accurate and robust against noise than other conventional approaches for automatic segmentation of the femoral head and the acetabulum. Average root-mean-square (RMS) distance from manual reference segmentations created by experienced users was approximately 0.68mm (in-plane resolution of the CT data).

  20. Injectable biomaterials for minimally invasive orthopedic treatments.

    PubMed

    Jayabalan, M; Shalumon, K T; Mitha, M K

    2009-06-01

    Biodegradable and injectable hydroxy terminated-poly propylene fumarate (HT-PPF) bone cement was developed. The injectable formulation consisting HT-PPF and comonomer, n-vinyl pyrrolidone, calcium phosphate filler, free radical catalyst, accelerator and radiopaque agent sets rapidly to hard mass with low exothermic temperature. The candidate bone cement attains mechanical strength more than the required compressive strength of 5 MPa and compressive modulus 50 MPa. The candidate bone cement resin elicits cell adhesion and cytoplasmic spreading of osteoblast cells. The cured bone cement does not induce intracutaneous irritation and skin sensitization. The candidate bone cement is tissue compatible without eliciting any adverse tissue reactions. The candidate bone cement is osteoconductive and inductive and allow osteointegration and bone remodeling. HT-PPF bone cement is candidate bone cement for minimally invasive radiological procedures for the treatment of bone diseases and spinal compression fractures.

  1. Radiopharmaceuticals in the elderly cancer patient: Practical considerations, with a focus on prostate cancer therapy: A position paper from the International Society of Geriatric Oncology Task Force.

    PubMed

    Prior, John O; Gillessen, Silke; Wirth, Manfred; Dale, William; Aapro, Matti; Oyen, Wim J G

    2017-05-01

    Molecular imaging using radiopharmaceuticals has a clear role in visualising the presence and extent of tumour at diagnosis and monitoring response to therapy. Such imaging provides prognostic and predictive information relevant to management, e.g. by quantifying active tumour mass using positron emission tomography/computed tomography (PET/CT). As these techniques require only pharmacologically inactive doses, age and potential frailty are generally not important. However, this may be different for therapy involving radionuclides because the radiation can impact normal bodily function (e.g. myelosuppression). Since the introduction of Iodine-131 as a targeted therapy in thyroid cancer, several radiopharmaceuticals have been widely used. These include antibodies and peptides targeting specific epitopes on cancer cells. Among therapeutic bone seeking agents, radium-223 ( 223 Ra) stands out as it results in survival gains in patients with castration-resistant prostate cancer and symptomatic bone metastases. The therapeutic use of radiopharmaceuticals in elderly cancer patients specifically has received little attention. In elderly prostate cancer patients, there may be advantages in radionuclides' ease of use and relative lack of toxicity compared with cytotoxic and cytostatic drugs. When using radionuclide therapies, close coordination between oncology and nuclear medicine is needed to ensure safe and effective use. Bone marrow reserve has to be considered. As most radiopharmaceuticals are cleared renally, dose adjustment may be required in the elderly. However, compared with younger patients there is less, if any, concern about adverse long-term radiation effects such as radiation-induced second cancers. Issues regarding the safety of medical staff, care givers and the wider environment can be managed by current precautions. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  2. Mechanisms of Radiation-Induced Bone Loss and Effect on Prostate Cancer Bone Metastases

    DTIC Science & Technology

    2012-06-01

    Develop intravital multiphoton fluorescence microscopy (IVFM) for real-time imaging of osteocytes in calvariae of transgenic mice using i) GFP to...OT, OB counting) and in vivo bone imaging (months 6-10) 8 20 week old female C57Bl/6 mice (n=30) were used in this experiment. The mice were...divided into 2 groups. One group (group A, n=15) was imaged twice by microCT during the experiment that included a baseline microCT that was given 2 days

  3. Double agents and secret agents: the emerging fields of exogenous chemical exchange saturation transfer and T2-exchange magnetic resonance imaging contrast agents for molecular imaging

    PubMed Central

    Daryaei, Iman; Pagel, Mark D

    2016-01-01

    Two relatively new types of exogenous magnetic resonance imaging contrast agents may provide greater impact for molecular imaging by providing greater specificity for detecting molecular imaging biomarkers. Exogenous chemical exchange saturation transfer (CEST) agents rely on the selective saturation of the magnetization of a proton on an agent, followed by chemical exchange of a proton from the agent to water. The selective detection of a biomarker-responsive CEST signal and an unresponsive CEST signal, followed by the ratiometric comparison of these signals, can improve biomarker specificity. We refer to this improvement as a “double-agent” approach to molecular imaging. Exogenous T2-exchange agents also rely on chemical exchange of protons between the agent and water, especially with an intermediate rate that lies between the slow exchange rates of CEST agents and the fast exchange rates of traditional T1 and T2 agents. Because of this intermediate exchange rate, these agents have been relatively unknown and have acted as “secret agents” in the contrast agent research field. This review exposes these secret agents and describes the merits of double agents through examples of exogenous agents that detect enzyme activity, nucleic acids and gene expression, metabolites, ions, redox state, temperature, and pH. Future directions are also provided for improving both types of contrast agents for improved molecular imaging and clinical translation. Therefore, this review provides an overview of two new types of exogenous contrast agents that are becoming useful tools within the armamentarium of molecular imaging. PMID:27747191

  4. Cranial nerve contrast using nerve-specific fluorophores improved by paired-agent imaging with indocyanine green as a control agent

    NASA Astrophysics Data System (ADS)

    Torres, Veronica C.; Vuong, Victoria D.; Wilson, Todd; Wewel, Joshua; Byrne, Richard W.; Tichauer, Kenneth M.

    2017-09-01

    Nerve preservation during surgery is critical because damage can result in significant morbidity. This remains a challenge especially for skull base surgeries where cranial nerves (CNs) are involved because visualization and access are particularly poor in that location. We present a paired-agent imaging method to enhance identification of CNs using nerve-specific fluorophores. Two myelin-targeting imaging agents were evaluated, Oxazine 4 and Rhodamine 800, and coadministered with a control agent, indocyanine green, either intravenously or topically in rats. Fluorescence imaging was performed on excised brains ex vivo, and nerve contrast was evaluated via paired-agent ratiometric data analysis. Although contrast was improved among all experimental groups using paired-agent imaging compared to conventional, solely targeted imaging, Oxazine 4 applied directly exhibited the greatest enhancement, with a minimum 3 times improvement in CNs delineation. This work highlights the importance of accounting for nonspecific signal of targeted agents, and demonstrates that paired-agent imaging is one method capable of doing so. Although staining, rinsing, and imaging protocols need to be optimized, these findings serve as a demonstration for the potential use of paired-agent imaging to improve contrast of CNs, and consequently, surgical outcome.

  5. Preventing painful age-related bone fractures: Anti-sclerostin therapy builds cortical bone and increases the proliferation of osteogenic cells in the periosteum of the geriatric mouse femur.

    PubMed

    Thompson, Michelle L; Chartier, Stephane R; Mitchell, Stefanie A; Mantyh, Patrick W

    2016-01-01

    Age-related bone fractures are usually painful and have highly negative effects on a geriatric patient's functional status, quality of life, and survival. Currently, there are few analgesic therapies that fully control bone fracture pain in the elderly without significant unwanted side effects. However, another way of controlling age-related fracture pain would be to preemptively administer an osteo-anabolic agent to geriatric patients with high risk of fracture, so as to build new cortical bone and prevent the fracture from occurring. A major question, however, is whether an osteo-anabolic agent can stimulate the proliferation of osteogenic cells and build significant amounts of new cortical bone in light of the decreased number and responsiveness of osteogenic cells in aging bone. To explore this question, geriatric and young mice, 20 and 4 months old, respectively, received either vehicle or a monoclonal antibody that sequesters sclerostin (anti-sclerostin) for 28 days. From days 21 to 28, animals also received sustained administration of the thymidine analog, bromodeoxyuridine (BrdU), which labels the DNA of dividing cells. Animals were then euthanized at day 28 and the femurs were examined for cortical bone formation, bone mineral density, and newly borne BrdU+ cells in the periosteum which is a tissue that is pivotally involved in the formation of new cortical bone. In both the geriatric and young mice, anti-sclerostin induced a significant increase in the thickness of the cortical bone, bone mineral density, and the proliferation of newly borne BrdU+ cells in the periosteum. These results suggest that even in geriatric animals, anti-sclerostin therapy can build new cortical bone and increase the proliferation of osteogenic cells and thus reduce the likelihood of painful age-related bone fractures. © The Author(s) 2016.

  6. Bone Regeneration in Critical Bone Defects Using Three-Dimensionally Printed β-Tricalcium Phosphate/Hydroxyapatite Scaffolds Is Enhanced by Coating Scaffolds with Either Dipyridamole or BMP-2

    PubMed Central

    Ishack, Stephanie; Mediero, Aranzazu; Wilder, Tuere; Ricci, John L.; Cronstein, Bruce N.

    2017-01-01

    Bone defects resulting from trauma or infection need timely and effective treatments to restore damaged bone. Using specialized three-dimensional (3-D) printing technology we have created custom 3-D scaffolds of hydroxyapatite (HA)/Beta-Tri-Calcium Phosphate (β-TCP) to promote bone repair. To further enhance bone regeneration we have coated the scaffolds with dipyridamole, an agent that increases local adenosine levels by blocking cellular uptake of adenosine. 15% HA:85% β-TCP scaffolds were designed using Robocad software, fabricated using a 3-D Robocasting system, and sintered at 1100°C for 4h. Scaffolds were coated with BMP-2 (200ng/ml), Dypiridamole 100µM or saline and implanted in C57B6 and adenosine A2A receptor knockout (A2AKO) mice with 3mm cranial critical bone defects for 2-8 weeks. Dipyridamole release from scaffold was assayed spectrophotometrically. MicroCT and histological analysis were performed. micro-computed tomography (microCT) showed significant bone formation and remodeling in HA/β-TCP- dipyridamole and HA/β-TCP -BMP-2 scaffolds when compared to scaffolds immersed in vehicle at 2, 4 and 8 weeks (n=5 per group; p≤ 0.05, p≤ 0.05 and p≤ 0.01, respectively). Histological analysis showed increased bone formation and a trend toward increased remodeling in HA/β-TCP- dipyridamole and HA/β-TCP-BMP-2 scaffolds. coating scaffolds with dipyridamole did not enhance bone regeneration in A2AKO mice. In conclusion, scaffolds printed with HA/β-TCP promote bone regeneration in critical bone defects and coating these scaffolds with agents that stimulate A2A receptors and growth factors can further enhance bone regeneration. These coated scaffolds may be very useful for treating critical bone defects due to trauma, infection or other causes. PMID:26513656

  7. Assessment of Bone Quality in Osteoporosis Treatment with Bone Anabolic Agents: Really Something New?

    PubMed

    Ulivieri, Fabio M; Caudarella, Renata; Camisasca, Marzia; Cabrini, Daniela M; Merli, Ilaria; Messina, Carmelo; Piodi, Luca P

    2018-04-20

    Osteoporosis is a chronic pathologic condition, particularly of the elderly, in which a reduction of bone mineral density (BMD) weakens bone, leading to the so-called fragility fractures, most often of spine and femur. The gold standard exam for the quantitative measurement of BMD is the dual X-ray photon absorptiometry (DXA), a radiological method. However, a relevant number of fragility fractures occurs in the range of normal BMD values, meaning that also qualitative aspects of bone play a role, namely bone architecture and bone geometry. Bone structure is investigated by microCT and histomorphometry, which necessitate an invasive approach with a biopsy, usually taken at the iliac crest, not the typical site of fragility fractures. New tools, trabecular bone score (TBS) and hip structural analysis (HSA), obtained during DXA, can supply informations about bone structure of spine and femur, respectively, in a not invasive way. Therapy of osteoporosis is based on two types of drugs leading to an increase of BMD: antiresorptive and anabolic treatments. The antiresorptive drugs inhibit the osteoclasts, whereas teriparatide and, in part, strontium ranelate ameliorate bone structure. The present review deals with the relation between the anabolic drugs for osteoporosis and the cited new tools which investigate bone architecture and geometry, in order to clarify if they represent a real advantage in monitoring efficacy of osteoporosis' treatment. Data from the studies show that increases of TBS and HSA values after anabolic therapy are small and very close to their least significant change at the end of the usual period of treatment. Therefore, it is questionable if TBS and HSA are really helpful in monitoring bone quality and in defining reduction of individual fragility fracture risk during osteoporosis treatment with bone anabolic agents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Segmentation of nanotomographic cortical bone images for quantitative characterization of the osteoctyte lacuno-canalicular network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciani, A.; Kewish, C. M.; Guizar-Sicairos, M.

    A newly developed data processing method able to characterize the osteocytes lacuno-canalicular network (LCN) is presented. Osteocytes are the most abundant cells in the bone, living in spaces called lacunae embedded inside the bone matrix and connected to each other with an extensive network of canals that allows for the exchange of nutrients and for mechanotransduction functions. The geometrical three-dimensional (3D) architecture is increasingly thought to be related to the macroscopic strength or failure of the bone and it is becoming the focus for investigating widely spread diseases such as osteoporosis. To obtain 3D LCN images non-destructively has been outmore » of reach until recently, since tens-of-nanometers scale resolution is required. Ptychographic tomography was validated for bone imaging in [1], showing clearly the LCN. The method presented here was applied to 3D ptychographic tomographic images in order to extract morphological and geometrical parameters of the lacuno-canalicular structures.« less

  9. Qualitative evaluation of titanium implant integration into bone by diffraction enhanced imaging.

    PubMed

    Wagner, A; Sachse, A; Keller, M; Aurich, M; Wetzel, W-D; Hortschansky, P; Schmuck, K; Lohmann, M; Reime, B; Metge, J; Arfelli, F; Menk, R; Rigon, L; Muehleman, C; Bravin, A; Coan, P; Mollenhauer, J

    2006-03-07

    Diffraction enhanced imaging (DEI) uses refraction of x-rays at edges, which allows pronounced visualization of material borders and rejects scattering which often obscures edges and blurs images. Here, the first evidence is presented that, using DEI, a destruction-free evaluation of the quality of integration of metal implants into bone is possible. Experiments were performed in rabbits and sheep with model implants to investigate the option for DEI as a tool in implant research. The results obtained from DEI were compared to conventional histology obtained from the specimens. DE images allow the identification of the quality of ingrowth of bone into the hydroxyapatite layer of the implant. Incomplete integration of the implant with a remaining gap of less than 0.3 mm caused the presence of a highly refractive edge at the implant/bone border. In contrast, implants with bone fully grown onto the surface did not display a refractive signal. Therefore, the refractive signal could be utilized to diagnose implant healing and/or loosening.

  10. Analysis of x-ray hand images for bone age assessment

    NASA Astrophysics Data System (ADS)

    Serrat, Joan; Vitria, Jordi M.; Villanueva, Juan J.

    1990-09-01

    In this paper we describe a model-based system for the assessment of skeletal maturity on hand radiographs by the TW2 method. The problem consists in classiflying a set of bones appearing in an image in one of several stages described in an atlas. A first approach consisting in pre-processing segmentation and classification independent phases is also presented. However it is only well suited for well contrasted low noise images without superimposed bones were the edge detection by zero crossing of second directional derivatives is able to extract all bone contours maybe with little gaps and few false edges on the background. Hence the use of all available knowledge about the problem domain is needed to build a rather general system. We have designed a rule-based system for narrow down the rank of possible stages for each bone and guide the analysis process. It calls procedures written in conventional languages for matching stage models against the image and getting features needed in the classification process.

  11. Qualitative evaluation of titanium implant integration into bone by diffraction enhanced imaging

    NASA Astrophysics Data System (ADS)

    Wagner, A.; Sachse, A.; Keller, M.; Aurich, M.; Wetzel, W.-D.; Hortschansky, P.; Schmuck, K.; Lohmann, M.; Reime, B.; Metge, J.; Arfelli, F.; Menk, R.; Rigon, L.; Muehleman, C.; Bravin, A.; Coan, P.; Mollenhauer, J.

    2006-03-01

    Diffraction enhanced imaging (DEI) uses refraction of x-rays at edges, which allows pronounced visualization of material borders and rejects scattering which often obscures edges and blurs images. Here, the first evidence is presented that, using DEI, a destruction-free evaluation of the quality of integration of metal implants into bone is possible. Experiments were performed in rabbits and sheep with model implants to investigate the option for DEI as a tool in implant research. The results obtained from DEI were compared to conventional histology obtained from the specimens. DE images allow the identification of the quality of ingrowth of bone into the hydroxyapatite layer of the implant. Incomplete integration of the implant with a remaining gap of less than 0.3 mm caused the presence of a highly refractive edge at the implant/bone border. In contrast, implants with bone fully grown onto the surface did not display a refractive signal. Therefore, the refractive signal could be utilized to diagnose implant healing and/or loosening.

  12. Segmentation of nanotomographic cortical bone images for quantitative characterization of the osteoctyte lacuno-canalicular network

    NASA Astrophysics Data System (ADS)

    Ciani, A.; Guizar-Sicairos, M.; Diaz, A.; Holler, M.; Pallu, S.; Achiou, Z.; Jennane, R.; Toumi, H.; Lespessailles, E.; Kewish, C. M.

    2016-01-01

    A newly developed data processing method able to characterize the osteocytes lacuno-canalicular network (LCN) is presented. Osteocytes are the most abundant cells in the bone, living in spaces called lacunae embedded inside the bone matrix and connected to each other with an extensive network of canals that allows for the exchange of nutrients and for mechanotransduction functions. The geometrical three-dimensional (3D) architecture is increasingly thought to be related to the macroscopic strength or failure of the bone and it is becoming the focus for investigating widely spread diseases such as osteoporosis. To obtain 3D LCN images non-destructively has been out of reach until recently, since tens-of-nanometers scale resolution is required. Ptychographic tomography was validated for bone imaging in [1], showing clearly the LCN. The method presented here was applied to 3D ptychographic tomographic images in order to extract morphological and geometrical parameters of the lacuno-canalicular structures.

  13. IMAGING DIAGNOSIS-MAGNETIC RESONANCE IMAGING FEATURES OF CRANIOMANDIBULAR OSTEOPATHY IN AN AIREDALE TERRIER.

    PubMed

    Matiasovic, Matej; Caine, Abby; Scarpante, Elena; Cherubini, Giunio Bruto

    2016-05-01

    An Airedale Terrier was presented for evaluation of depression and reluctance to be touched on the head. Magnetic resonance (MR) imaging of the head was performed. The images revealed bone lesions affecting the calvarium at the level of the coronal suture and left mandibular ramus, with focal cortical destruction, expansion, and reactive new bone formation. Skull lesions were hypointense on T1-weighted sequences, hyperintense on T2-weighted sequences, and showed an intense and homogeneous enhancement after gadolinium administration. Reactive new bone formation and periosteal proliferation were confirmed histopathologically. The clinical signs, imaging findings, and histopathological examination were consistent with craniomandibular osteopathy. © 2015 American College of Veterinary Radiology.

  14. SU-E-J-250: A Methodology for Active Bone Marrow Protection for Cervical Cancer Intensity-Modulated Radiotherapy Using 18F-FLT PET/CT Image

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, C; Yin, Y

    Purpose: The purpose of this study was to compare a radiation therapy treatment planning that would spare active bone marrow and whole pelvic bone marrow using 18F FLT PET/CT image. Methods: We have developed an IMRT planning methodology to incorporate functional PET imaging using 18F FLT/CT scans. Plans were generated for two cervical cancer patients, where pelvicactive bone marrow region was incorporated as avoidance regions based on the range: SUV>2., another region was whole pelvic bone marrow. Dose objectives were set to reduce the volume of active bone marrow and whole bone marraw. The volumes of received 10 (V10) andmore » 20 (V20) Gy for active bone marrow were evaluated. Results: Active bone marrow regions identified by 18F FLT with an SUV>2 represented an average of 48.0% of the total osseous pelvis for the two cases studied. Improved dose volume histograms for identified bone marrow SUV volumes and decreases in V10(average 18%), and V20(average 14%) were achieved without clinically significant changes to PTV or OAR doses. Conclusion: Incorporation of 18F FLT/CT PET in IMRT planning provides a methodology to reduce radiation dose to active bone marrow without compromising PTV or OAR dose objectives in cervical cancer.« less

  15. Development of a Three-Dimensional (3D) Printed Biodegradable Cage to Convert Morselized Corticocancellous Bone Chips into a Structured Cortical Bone Graft.

    PubMed

    Chou, Ying-Chao; Lee, Demei; Chang, Tzu-Min; Hsu, Yung-Heng; Yu, Yi-Hsun; Liu, Shih-Jung; Ueng, Steve Wen-Neng

    2016-04-20

    This study aimed to develop a new biodegradable polymeric cage to convert corticocancellous bone chips into a structured strut graft for treating segmental bone defects. A total of 24 adult New Zealand white rabbits underwent a left femoral segmental bone defect creation. Twelve rabbits in group A underwent three-dimensional (3D) printed cage insertion, corticocancellous chips implantation, and Kirschner-wire (K-wire) fixation, while the other 12 rabbits in group B received bone chips implantation and K-wire fixation only. All rabbits received a one-week activity assessment and the initial image study at postoperative 1 week. The final image study was repeated at postoperative 12 or 24 weeks before the rabbit scarification procedure on schedule. After the animals were sacrificed, both femurs of all the rabbits were prepared for leg length ratios and 3-point bending tests. The rabbits in group A showed an increase of activities during the first week postoperatively and decreased anterior cortical disruptions in the postoperative image assessments. Additionally, higher leg length ratios and 3-point bending strengths demonstrated improved final bony ingrowths within the bone defects for rabbits in group A. In conclusion, through this bone graft converting technique, orthopedic surgeons can treat segmental bone defects by using bone chips but with imitate characters of structured cortical bone graft.

  16. Development of a Three-Dimensional (3D) Printed Biodegradable Cage to Convert Morselized Corticocancellous Bone Chips into a Structured Cortical Bone Graft

    PubMed Central

    Chou, Ying-Chao; Lee, Demei; Chang, Tzu-Min; Hsu, Yung-Heng; Yu, Yi-Hsun; Liu, Shih-Jung; Ueng, Steve Wen-Neng

    2016-01-01

    This study aimed to develop a new biodegradable polymeric cage to convert corticocancellous bone chips into a structured strut graft for treating segmental bone defects. A total of 24 adult New Zealand white rabbits underwent a left femoral segmental bone defect creation. Twelve rabbits in group A underwent three-dimensional (3D) printed cage insertion, corticocancellous chips implantation, and Kirschner-wire (K-wire) fixation, while the other 12 rabbits in group B received bone chips implantation and K-wire fixation only. All rabbits received a one-week activity assessment and the initial image study at postoperative 1 week. The final image study was repeated at postoperative 12 or 24 weeks before the rabbit scarification procedure on schedule. After the animals were sacrificed, both femurs of all the rabbits were prepared for leg length ratios and 3-point bending tests. The rabbits in group A showed an increase of activities during the first week postoperatively and decreased anterior cortical disruptions in the postoperative image assessments. Additionally, higher leg length ratios and 3-point bending strengths demonstrated improved final bony ingrowths within the bone defects for rabbits in group A. In conclusion, through this bone graft converting technique, orthopedic surgeons can treat segmental bone defects by using bone chips but with imitate characters of structured cortical bone graft. PMID:27104525

  17. Non-Invasive Investigation of Bone Adaptation in Humans to Mechanical Loading

    NASA Technical Reports Server (NTRS)

    Whalen, R.

    1999-01-01

    Experimental studies have identified peak cyclic forces, number of loading cycles, and loading rate as contributors to the regulation of bone metabolism. We have proposed a theoretical model that relates bone density to a mechanical stimulus derived from average daily cumulative peak cyclic 'effective' tissue stresses. In order to develop a non-invasive experimental model to test the theoretical model we need to: (1) monitor daily cumulative loading on a bone, (2) compute the internal stress state(s) resulting from the imposed loading, and (3) image volumetric bone density accurately, precisely, and reproducibly within small contiguous volumes throughout the bone. We have chosen the calcaneus (heel) as an experimental model bone site because it is loaded by ligament, tendon and joint contact forces in equilibrium with daily ground reaction forces that we can measure; it is a peripheral bone site and therefore more easily and accurately imaged with computed tomography; it is composed primarily of cancellous bone; and it is a relevant site for monitoring bone loss and adaptation in astronauts and the general population. This paper presents an overview of our recent advances in the areas of monitoring daily ground reaction forces, biomechanical modeling of the forces on the calcaneus during gait, mathematical modeling of calcaneal bone adaptation in response to cumulative daily activity, accurate and precise imaging of the calcaneus with quantitative computed tomography (QCT), and application to long duration space flight.

  18. Segmentation of cortical bone using fast level sets

    NASA Astrophysics Data System (ADS)

    Chowdhury, Manish; Jörgens, Daniel; Wang, Chunliang; Smedby, Årjan; Moreno, Rodrigo

    2017-02-01

    Cortical bone plays a big role in the mechanical competence of bone. The analysis of cortical bone requires accurate segmentation methods. Level set methods are usually in the state-of-the-art for segmenting medical images. However, traditional implementations of this method are computationally expensive. This drawback was recently tackled through the so-called coherent propagation extension of the classical algorithm which has decreased computation times dramatically. In this study, we assess the potential of this technique for segmenting cortical bone in interactive time in 3D images acquired through High Resolution peripheral Quantitative Computed Tomography (HR-pQCT). The obtained segmentations are used to estimate cortical thickness and cortical porosity of the investigated images. Cortical thickness and Cortical porosity is computed using sphere fitting and mathematical morphological operations respectively. Qualitative comparison between the segmentations of our proposed algorithm and a previously published approach on six images volumes reveals superior smoothness properties of the level set approach. While the proposed method yields similar results to previous approaches in regions where the boundary between trabecular and cortical bone is well defined, it yields more stable segmentations in challenging regions. This results in more stable estimation of parameters of cortical bone. The proposed technique takes few seconds to compute, which makes it suitable for clinical settings.

  19. The uptake by the canine tibia of the bone-scanning agent 99mTc-MDP before and after an osteotomy.

    PubMed

    Hughes, S; Khan, R; Davies, R; Lavender, P

    1978-11-01

    The residue and extraction of technetium-labelled methylene diphosphonate (99mTc-MDP), a substance used in bone scanning, was examined in the canine tibia and found to be low. Examination of washout curves suggested that there were four compartments in cortical bone, a vascular, a perivascular, a bone fluid and a bone compartment. After an osteotomy in the canine tibia the residue of 99mTc-MDP increased. This was believed to be due to an increase in the blood supply to the bone and to an associated increase in new bone available for exchange. Bone scanning in a fracture is therefore a reflection of the vascular status of the bone being examined and of the uptake by bone. This is dependent on there being an adequate blood supply to the bone and an increased number of mineral-binding sites.

  20. Radiation dose optimization in pediatric temporal bone computed tomography: influence of tube tension on image contrast and image quality.

    PubMed

    Nauer, Claude Bertrand; Zubler, Christoph; Weisstanner, Christian; Stieger, Christof; Senn, Pascal; Arnold, Andreas

    2012-03-01

    The purpose of this experimental study was to investigate the effect of tube tension reduction on image contrast and image quality in pediatric temporal bone computed tomography (CT). Seven lamb heads with infant-equivalent sizes were scanned repeatedly, using four tube tensions from 140 to 80 kV while the CT-Dose Index (CTDI) was held constant. Scanning was repeated with four CTDI values from 30 to 3 mGy. Image contrast was calculated for the middle ear as the Hounsfield unit (HU) difference between bone and air and for the inner ear as the HU difference between bone and fluid. The influence of tube tension on high-contrast detail delineation was evaluated using a phantom. The subjective image quality of eight middle and inner ear structures was assessed using a 4-point scale (scores 1-2 = insufficient; scores 3-4 = sufficient). Middle and inner ear contrast showed a near linear increase with tube tension reduction (r = -0.94/-0.88) and was highest at 80 kV. Tube tension had no influence on spatial resolution. Subjective image quality analysis showed significantly better scoring at lower tube tensions, with highest image quality at 80 kV. However, image quality improvement was most relevant for low-dose scans. Image contrast in the temporal bone is significantly higher at low tube tensions, leading to a better subjective image quality. Highest contrast and best quality were found at 80 kV. This image quality improvement might be utilized to further reduce the radiation dose in pediatric low-dose CT protocols.

  1. Accuracy of UTE-MRI-based patient setup for brain cancer radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yingli; Cao, Minsong; Kaprealian, Tania

    2016-01-15

    Purpose: Radiation therapy simulations solely based on MRI have advantages compared to CT-based approaches. One feature readily available from computed tomography (CT) that would need to be reproduced with MR is the ability to compute digitally reconstructed radiographs (DRRs) for comparison against on-board radiographs commonly used for patient positioning. In this study, the authors generate MR-based bone images using a single ultrashort echo time (UTE) pulse sequence and quantify their 3D and 2D image registration accuracy to CT and radiographic images for treatments in the cranium. Methods: Seven brain cancer patients were scanned at 1.5 T using a radial UTEmore » sequence. The sequence acquired two images at two different echo times. The two images were processed using an in-house software to generate the UTE bone images. The resultant bone images were rigidly registered to simulation CT data and the registration error was determined using manually annotated landmarks as references. DRRs were created based on UTE-MRI and registered to simulated on-board images (OBIs) and actual clinical 2D oblique images from ExacTrac™. Results: UTE-MRI resulted in well visualized cranial, facial, and vertebral bones that quantitatively matched the bones in the CT images with geometric measurement errors of less than 1 mm. The registration error between DRRs generated from 3D UTE-MRI and the simulated 2D OBIs or the clinical oblique x-ray images was also less than 1 mm for all patients. Conclusions: UTE-MRI-based DRRs appear to be promising for daily patient setup of brain cancer radiotherapy with kV on-board imaging.« less

  2. Bone diseases in rabbits with hyperparathyroidism: computed tomography, magnetic resonance imaging and histopathology.

    PubMed

    Bai, Rong-jie; Cong, De-gang; Shen, Bao-zhong; Han, Ming-jun; Wu, Zhen-hua

    2006-08-05

    Hyperparathyroidism (HPT) occurs at an early age and has a high disability rate. Unfortunately, confirmed diagnosis in most patients is done at a very late stage, when the patients have shown typical symptoms and signs, and when treatment does not produce any desirable effect. It has become urgent to find a method that would detect early bone diseases in HPT to obtain time for the ideal treatment. This study evaluated the accuracy of high field magnetic resonance imaging (MRI) combined with spiral computed tomography (SCT) scan in detecting early bone diseases in HPT, through imaging techniques and histopathological examinations on an animal model of HPT. Eighty adult rabbits were randomly divided into two groups with forty in each. The control group was fed normal diet (Ca:P = 1:0.7); the experimental group was fed high phosphate diet (Ca:P = 1:7) for 3, 4, 5, or 6-month intervals to establish the animal model of HPT. The staging and imaging findings of the early bone diseases in HPT were determined by high field MRI and SCT scan at the 3rd, 4th, 5th and 6th month. Each rabbit was sacrificed after high field MRI and SCT scan, and the parathyroid and bones were removed for pathological examination to evaluate the accuracy of imaging diagnosis. Parathyroid histopathological studies revealed hyperplasia, osteoporosis and early cortical bone resorption. The bone diseases in HPT displayed different levels of low signal intensity on T(1)WI and low to intermediate signal intensity on T(2)WI in bone of stage 0, I, II or III, but showed correspondingly absent, probable, osteoporotic and subperiosteal cortical resorption on SCT scan. High field MRI combined with SCT scan not only detects early bone diseases in HPT, but also indicates staging, and might be a reliable method of studying early bone diseases in HPT.

  3. Preparation, Biological Evaluation and Dosimetry Studies of 175Yb-Bis-Phosphonates for Palliative Treatment of Bone Pain.

    PubMed

    Fakhari, Ashraf; Jalilian, Amir R; Yousefnia, Hassan; Shanehsazzadeh, Saeed; Samani, Ali Bahrami; Daha, Fariba Johari; Ardestani, Mehdi Shafiee; Khalaj, Ali

    2015-10-05

    Optimized production and quality control of ytterbium-175 (Yb-175) labeled pamidronate and alendronate complexes as efficient agents for bone pain palliation has been presented. Yb-175 labeled pamidronate and alendronate (175Yb-PMD and 175Yb-ALN) complexes were prepared successfully at optimized conditions with acceptable radiochemical purity, stability and significant hydroxyapatite absorption. The biodistribution of complexes were evaluated up to 48 h, which demonstrated significant bone uptake ratios for 175Yb-PAM at all-time intervals. It was also detected that 175Yb-PAM mostly washed out and excreted through the kidneys. The performance of 175Yb-PAM in an animal model was better or comparable to other 175Yb-bone seeking complexes previously reported. Based on calculations, the total body dose for 175Yb-ALN is 40% higher as compared to 175Yb-PAM (especially kidneys) indicating that 175Yb-PAM is probably a safer agent than 175Yb-ALN.

  4. Preparation, Biological Evaluation and Dosimetry Studies of 175Yb-Bis-Phosphonates for Palliative Treatment of Bone Pain

    PubMed Central

    Fakhari, Ashraf; Jalilian, Amir R.; Yousefnia, Hassan; Shanehsazzadeh, Saeed; Samani, Ali Bahrami; Daha, Fariba Johari; Ardestani, Mehdi Shafiee; Khalaj, Ali

    2015-01-01

    Objective: Optimized production and quality control of ytterbium-175 (Yb-175) labeled pamidronate and alendronate complexes as efficient agents for bone pain palliation has been presented. Methods: Yb-175 labeled pamidronate and alendronate (175Yb-PMD and 175Yb-ALN) complexes were prepared successfully at optimized conditions with acceptable radiochemical purity, stability and significant hydroxyapatite absorption. The biodistribution of complexes were evaluated up to 48 h, which demonstrated significant bone uptake ratios for 175Yb-PAM at all-time intervals. It was also detected that 175Yb-PAM mostly washed out and excreted through the kidneys. Results: The performance of 175Yb-PAM in an animal model was better or comparable to other 175Yb-bone seeking complexes previously reported. Conclusion: Based on calculations, the total body dose for 175Yb-ALN is 40% higher as compared to 175Yb-PAM (especially kidneys) indicating that 175Yb-PAM is probably a safer agent than 175Yb-ALN. PMID:27529886

  5. Y-90 SPECT ML image reconstruction with a new model for tissue-dependent bremsstrahlung production using CT information: a proof-of-concept study

    NASA Astrophysics Data System (ADS)

    Lim, Hongki; Fessler, Jeffrey A.; Wilderman, Scott J.; Brooks, Allen F.; Dewaraja, Yuni K.

    2018-06-01

    While the yield of positrons used in Y-90 PET is independent of tissue media, Y-90 SPECT imaging is complicated by the tissue dependence of bremsstrahlung photon generation. The probability of bremsstrahlung production is proportional to the square of the atomic number of the medium. Hence, the same amount of activity in different tissue regions of the body will produce different numbers of bremsstrahlung photons. Existing reconstruction methods disregard this tissue-dependency, potentially impacting both qualitative and quantitative imaging of heterogeneous regions of the body such as bone with marrow cavities. In this proof-of-concept study, we propose a new maximum-likelihood method that incorporates bremsstrahlung generation probabilities into the system matrix, enabling images of the desired Y-90 distribution to be reconstructed instead of the ‘bremsstrahlung distribution’ that is obtained with existing methods. The tissue-dependent probabilities are generated by Monte Carlo simulation while bone volume fractions for each SPECT voxel are obtained from co-registered CT. First, we demonstrate the tissue dependency in a SPECT/CT imaging experiment with Y-90 in bone equivalent solution and water. Visually, the proposed reconstruction approach better matched the true image and the Y-90 PET image than the standard bremsstrahlung reconstruction approach. An XCAT phantom simulation including bone and marrow regions also demonstrated better agreement with the true image using the proposed reconstruction method. Quantitatively, compared with the standard reconstruction, the new method improved estimation of the liquid bone:water activity concentration ratio by 40% in the SPECT measurement and the cortical bone:marrow activity concentration ratio by 58% in the XCAT simulation.

  6. Evaluation of the 3D spatial distribution of the Calcium/Phosphorus ratio in bone using computed-tomography dual-energy analysis.

    PubMed

    Hadjipanteli, A; Kourkoumelis, N; Fromme, P; Huang, J; Speller, R D

    2016-01-01

    The Calcium/Phosphorus (Ca/P) ratio was shown to vary between healthy bones and bones with osteoporotic symptoms. The relation of the Ca/P ratio to bone quality remains under investigation. To study this relation and determine if the ratio can be used to predict bone fractures, a non-invasive 3D imaging technique is required. The first aim of this study was to test the effectiveness of a computed-tomography dual-energy analysis (CT-DEA) technique developed to assess the Ca/P ratio in bone apatite (collagen-free bone) in identifying differences between healthy and inflammation-mediated osteoporotic (IMO) bones. The second aim was to extend the above technique for its application to a more complex structure, intact bone, that could potentially lead to clinical use. For the first aim, healthy and IMO rabbit cortical bone apatite samples were assessed. For the second aim, some changes were made to the technique, which was applied to healthy and IMO intact bone samples. Statistically significant differences between healthy and IMO bone apatite were found for the bulk Ca/P ratio, low Ca/P ratio proportion and interconnected low Ca/P ratio proportion. For the intact bone samples, the bulk Ca/P ratio was found to be significantly different between healthy and IMO. Results show that the CT-DEA technique can be used to identify differences in the Ca/P ratio between healthy and osteoporotic, in both bone apatite and intact bone. With quantitative imaging becoming an increasingly important advancement in medical imaging, CT-DEA for bone decomposition could potentially have several applications. Copyright © 2015. Published by Elsevier Ltd.

  7. Cat-scratch disease. Subtle vertebral bone marrow abnormalities demonstrated by MR imaging and radionuclide bone scan.

    PubMed

    Wilson, J D; Castillo, M

    1995-01-01

    Cat-scratch disease (CSD) is a benign, self-limited cause of lymphadenitis occurring mainly in children and young adults. Its etiology is a delicate, small gram-negative pleomorphic bacillus. Less common manifestations of CSD are seen in 5% of patients and include Parinaud's oculoglandular syndrome (with enlargement of the preauricular nodes), parotid gland enlargement, encephalitis, radiculopathy, pneumonitis, erythema nodosum, thrombocytopenia, and lytic bone lesions. We describe a patient in whom magnetic resonance imaging initially detected subtle vertebral bone marrow abnormalities that correlated with the site of abnormality on a subsequent radionuclide bone scan.

  8. The study of the changes in the biochemical and mineral contents of bones of Catla catla due to lead intoxication.

    PubMed

    Palaniappan, P L R M; Krishnakumar, N; Vadivelu, M; Vijayasundaram, V

    2010-02-01

    In the present study, an attempt has been made to analyze the changes in the biochemical and mineral contents of lead-intoxicated bones of Catla catla at subchronic (15.5 ppm) exposure, and also to determine whether the effects of Pb intoxication can be reversed with the chelating agent meso 2, 3-dimercaptosuccinic acid (DMSA) on the bones of freshwater fingerlings Catla catla by using Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), and atomic absorption spectrophotometer techniques. The FT-IR spectra of the lead-exposed bones show significant alteration in the biochemical constituents. The XRD analysis showed a decrease in crystallinity due to lead exposure. Further, the Ca, Mg, and P contents of the lead-exposed bones were less than those of the control group, and there was an increase in the mineral contents of the bones after DMSA treatment. In conclusion, the present study suggests that the subchronic lead exposure results in severe loss of bone minerals. The overall decrease in the FT-IR band intensity of Pb-exposed bones relative to the control indicates a decrease in the biochemical constituents like proteins and lipids. The increase in the band intensity after treatment with chelating agent DMSA indicates increased biochemical constituents, showing that the subchronic effects of lead can be reversed by DMSA. The amide I bands observed at 1654 cm(-1) in the present study suggest that the protein is dominated by alpha-helical structure.

  9. The role of 3D printing in treating craniomaxillofacial congenital anomalies.

    PubMed

    Lopez, Christopher D; Witek, Lukasz; Torroni, Andrea; Flores, Roberto L; Demissie, David B; Young, Simon; Cronstein, Bruce N; Coelho, Paulo G

    2018-05-20

    Craniomaxillofacial congenital anomalies comprise approximately one third of all congenital birth defects and include deformities such as alveolar clefts, craniosynostosis, and microtia. Current surgical treatments commonly require the use of autogenous graft material which are difficult to shape, limited in supply, associated with donor site morbidity and cannot grow with a maturing skeleton. Our group has demonstrated that 3D printed bio-ceramic scaffolds can generate vascularized bone within large, critical-sized defects (defects too large to heal spontaneously) of the craniomaxillofacial skeleton. Furthermore, these scaffolds are also able to function as a delivery vehicle for a new osteogenic agent with a well-established safety profile. The same 3D printers and imaging software platforms have been leveraged by our team to create sterilizable patient-specific intraoperative models for craniofacial reconstruction. For microtia repair, the current standard of care surgical guide is a two-dimensional drawing taken from the contralateral ear. Our laboratory has used 3D printers and open source software platforms to design personalized microtia surgical models. In this review, we report on the advancements in tissue engineering principles, digital imaging software platforms and 3D printing that have culminated in the application of this technology to repair large bone defects in skeletally immature transitional models and provide in-house manufactured, sterilizable patient-specific models for craniofacial reconstruction. © 2018 Wiley Periodicals, Inc.

  10. Advances in Magnetic Resonance Imaging Contrast Agents for Biomarker Detection

    PubMed Central

    Sinharay, Sanhita; Pagel, Mark D.

    2016-01-01

    Recent advances in magnetic resonance imaging (MRI) contrast agents have provided new capabilities for biomarker detection through molecular imaging. MRI contrast agents based on the T2 exchange mechanism have more recently expanded the armamentarium of agents for molecular imaging. Compared with T1 and T2* agents, T2 exchange agents have a slower chemical exchange rate, which improves the ability to design these MRI contrast agents with greater specificity for detecting the intended biomarker. MRI contrast agents that are detected through chemical exchange saturation transfer (CEST) have even slower chemical exchange rates. Another emerging class of MRI contrast agents uses hyperpolarized 13C to detect the agent with outstanding sensitivity. These hyperpolarized 13C agents can be used to track metabolism and monitor characteristics of the tissue microenvironment. Together, these various MRI contrast agents provide excellent opportunities to develop molecular imaging for biomarker detection. PMID:27049630

  11. The pattern of trabecular bone microarchitecture in the distal femur of typically developing children and its effect on processing of magnetic resonance images.

    PubMed

    Modlesky, Christopher M; Whitney, Daniel G; Carter, Patrick T; Allerton, Brianne M; Kirby, Joshua T; Miller, Freeman

    2014-03-01

    Magnetic resonance imaging (MRI) is used to assess trabecular bone microarchitecture in humans; however, image processing can be labor intensive and time consuming. One aim of this study was to determine the pattern of trabecular bone microarchitecture in the distal femur of typically developing children. A second aim was to determine the proportion and location of magnetic resonance images that need to be processed to yield representative estimates of trabecular bone microarchitecture. Twenty-six high resolution magnetic resonance images were collected immediately above the growth plate in the distal femur of 6-12year-old typically developing children (n=40). Measures of trabecular bone microarchitecture [i.e., apparent trabecular bone volume to total volume (appBV/TV), trabecular number (appTb.N), trabecular thickness (appTb.Th) and trabecular separation (appTb.Sp)] in the lateral aspect of the distal femur were determined using the twenty most central images (20IM). The average values for appBV/TV, appTb.N, appTb.Th and appTb.Sp from 20IM were compared to the average values from 10 images (10IM), 5 images (5IM) and 3 images (3IM) equally dispersed throughout the total image set and one image (1IM) from the center of the total image set using linear regression analysis. The resulting mathematical models were cross-validated using the leave-one-out technique. Distance from the growth plate was strongly and inversely related to appBV/TV (r(2)=0.68, p<0.001) and appTb.N (r(2)=0.92, p<0.001) and was strongly and positively related to appTb.Sp (r(2)=0.86, p<0.001). The relationship between distance from the growth plate and appTb.Th was not linear (r(2)=0.06, p=0.28), but instead it was quadratic and statistically significant (r(2)=0.54, p<0.001). Trabecular bone microarchitecture estimates from 10IM, 5IM, 3IM and 1IM were not different from estimates from 20IM (p>0.05). However, there was a progressive decrease in the strength of the relationships as a smaller proportion of images were used to predict estimates from 20IM (r(2)=0.98 to 0.99 using 10IM, 0.94 to 0.96 using 5IM, 0.87 to 0.90 using 3IM and 0.66 to 0.72 using 1IM; all p<0.001). Using the resulting mathematical models and the leave-one-out cross-validation analysis, measures of trabecular bone microarchitecture estimated from the 10IM and 5IM partial image sets agreed extremely well with estimates from 20IM. The findings indicate that partial magnetic resonance image sets can be used to provide reasonable estimates of trabecular bone microarchitecture status in the distal femur of typically developing children. However, because the relative amount of trabecular bone in the distal femur decreases with distance from the growth plate due to a decrease in trabecular number, careful positioning of the region of interest and sampling from throughout the region of interest is necessary. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Design Principles of Nanoparticles as Contrast Agents for Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Shan, Liang; Gu, Xinbin; Wang, Paul

    2013-09-01

    Molecular imaging is an emerging field that introduces molecular agents into traditional imaging techniques, enabling visualization, characterization and measurement of biological processes at the molecular and cellular levels in humans and other living systems. The promise of molecular imaging lies in its potential for selective potency by targeting biomarkers or molecular targets and the imaging agents serve as reporters for the selectivity of targeting. Development of an efficient molecular imaging agent depends on well-controlled high-quality experiment design involving target selection, agent synthesis, in vitro characterization, and in vivo animal characterization before it is applied in humans. According to the analysis from the Molecular Imaging and Contrast Agent Database (MICAD, ), more than 6000 molecular imaging agents with sufficient preclinical evaluation have been reported to date in the literature and this number increases by 250-300 novel agents each year. The majority of these agents are radionuclides, which are developed for positron emission tomography (PET) and single photon emission computed tomography (SPECT). Contrast agents for magnetic resonance imaging (MRI) account for only a small part. This is largely due to the fact that MRI is currently not a fully quantitative imaging technique and is less sensitive than PET and SPECT. However, because of the superior ability to simultaneously extract molecular and anatomic information, molecular MRI is attracting significant interest and various targeted nanoparticle contrast agents have been synthesized for MRI. The first and one of the most critical steps in developing a targeted nanoparticle contrast agent is target selection, which plays the central role and forms the basis for success of molecular imaging. This chapter discusses the design principles of targeted contrast agents in the emerging frontiers of molecular MRI.

  13. Feasibility of endoscopic laser speckle imaging modality in the evaluation of auditory disorder: study in bone-tissue phantom

    NASA Astrophysics Data System (ADS)

    Yu, Sungkon; Jang, Seulki; Lee, Sangyeob; Park, Jihoon; Ha, Myungjin; Radfar, Edalat; Jung, Byungjo

    2016-03-01

    This study investigates the feasibility of an endoscopic laser speckle imaging modality (ELSIM) in the measurement of perfusion of flowing fluid in optical bone tissue phantom(OBTP). Many studies suggested that the change of cochlear blood flow was correlated with auditory disorder. Cochlear microcirculation occurs under the 200μm thickness bone which is the part of the internal structure of the temporal bone. Concern has been raised regarding of getting correct optical signal from hard tissue. In order to determine the possibility of the measurement of cochlear blood flow under bone tissue using the ELSIM, optical tissue phantom (OTP) mimicking optical properties of temporal bone was applied.

  14. In Silico Investigations of the Anti-Catabolic Effects of Pamidronate and Denosumab on Multiple Myeloma-Induced Bone Disease

    PubMed Central

    Wang, Yan; Lin, Bo

    2012-01-01

    It is unclear whether the new anti-catabolic agent denosumab represents a viable alternative to the widely used anti-catabolic agent pamidronate in the treatment of Multiple Myeloma (MM)-induced bone disease. This lack of clarity primarily stems from the lack of sufficient clinical investigations, which are costly and time consuming. However, in silico investigations require less time and expense, suggesting that they may be a useful complement to traditional clinical investigations. In this paper, we aim to (i) develop integrated computational models that are suitable for investigating the effects of pamidronate and denosumab on MM-induced bone disease and (ii) evaluate the responses to pamidronate and denosumab treatments using these integrated models. To achieve these goals, pharmacokinetic models of pamidronate and denosumab are first developed and then calibrated and validated using different clinical datasets. Next, the integrated computational models are developed by incorporating the simulated transient concentrations of pamidronate and denosumab and simulations of their actions on the MM-bone compartment into the previously proposed MM-bone model. These integrated models are further calibrated and validated by different clinical datasets so that they are suitable to be applied to investigate the responses to the pamidronate and denosumab treatments. Finally, these responses are evaluated by quantifying the bone volume, bone turnover, and MM-cell density. This evaluation identifies four denosumab regimes that potentially produce an overall improved bone-related response compared with the recommended pamidronate regime. This in silico investigation supports the idea that denosumab represents an appropriate alternative to pamidronate in the treatment of MM-induced bone disease. PMID:23028650

  15. Estimated human absorbed dose of a new (153)Sm bone seeking agent based on biodistribution data in mice: Comparison with (153)Sm-EDTMP.

    PubMed

    Yousefnia, Hassan; Zolghadri, Samaneh

    2015-11-01

    The main goal in radiotherapy is to deliver the absorbed dose within the target organs in highest possible amount, while the absorbed dose of the other organs, especially the critical organs, should be kept as low as possible. In this work, the absorbed dose to human organs for a new (153)Sm bone-seeking agent was investigated. (153)Sm-(4-{[(bis(phosphonomethyl))carbamoyl]methyl}-7,10-bis(carboxymethyl)-1,4,7,10-tetraazacyclododec-1-yl) acetic acid ((153)Sm-BPAMD) complex was successfully prepared. The biodistribution of the complex was investigated in male Syrian mice up to 48 h post injection. The human absorbed dose of the complex was estimated based on the biodistribution data of the mice by radiation absorbed dose assessment resource (RADAR) method. The target to non-target absorbed dose ratios for (153)Sm-BPAMD were compared with these ratios for (153)Sm-EDTMP. The highest absorbed dose for (153)Sm-BPAMD was observed in bone surface with 5.828 mGy/MBq. The dose ratios of the bone surface to the red marrow and to the total body for (153)Sm-BPAMD were 5.3 and 20.0, respectively, while these ratios for (153)Sm-EDTMP were 4.4 and 18.3, respectively. This means, for a given dose to the bone surface as the target organ, the red marrow (as the main critical organ) and the total body would receive lesser absorbed dose in the case of (153)Sm-BPAMD. Generally, the human absorbed dose estimation of (153)Sm-BPAMD indicated that all other tissues approximately received insignificant absorbed dose in comparison with bone surface and therefore can be regarded as a new potential agent for bone pain palliation therapy. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  16. Diabetes, bone and glucose-lowering agents: clinical outcomes.

    PubMed

    Schwartz, Ann V

    2017-07-01

    Older adults with diabetes are at higher risk of fracture and of complications resulting from a fracture. Hence, fracture risk reduction is an important goal in diabetes management. This review is one of a pair discussing the relationship between diabetes, bone and glucose-lowering agents; an accompanying review is provided in this issue of Diabetologia by Beata Lecka-Czernik (DOI 10.1007/s00125-017-4269-4 ). Specifically, this review discusses the challenges of accurate fracture risk assessment in diabetes. Standard tools for risk assessment can be used to predict fracture but clinicians need to be aware of the tendency for the bone mineral density T-score and the fracture risk assessment tool (FRAX) to underestimate risk in those with diabetes. Diabetes duration, complications and poor glycaemic control are useful clinical markers of increased fracture risk. Glucose-lowering agents may also affect fracture risk, independent of their effects on glycaemic control, as seen with the negative skeletal effects of the thiazolidinediones; in this review, the potential effects of glucose-lowering medications on fracture risk are discussed. Finally, the current understanding of effective fracture prevention in older adults with diabetes is reviewed.

  17. Development and Pharmacological Evaluation of New Bone-Targeted (99m)Tc-Radiolabeled Bisphosphonates.

    PubMed

    Makris, George; Tseligka, Eirini D; Pirmettis, Ioannis; Papadopoulos, Minas S; Vizirianakis, Ioannis S; Papagiannopoulou, Dionysia

    2016-07-05

    A novel bisphosphonate, 1-(3-aminopropylamino)ethane-1,1-diyldiphosphonic acid (3), was coupled to the tridentate chelators di-2-picolylamine, 2-picolylamine-N-acetic acid, iminodiacetic acid, 3-((2-aminoethyl)thio)-3-(1H-imidazol-4-yl)propanoic acid, and 2-((2-carboxyethyl)thio)-3-(1H-imidazol-4-yl)propanoic acid to form ligands 6, 9, 11, 15, and 19, respectively. Organometallic complexes of the general formula [Re/(99m)Tc(CO)3(κ(3)-L)] were synthesized, where L denotes ligand 6, 9, 11, 15, or 19. The rhenium complexes were prepared at the macroscopic level and characterized by spectroscopic methods. The technetium-99m organometallic complexes were synthesized in high yield and were identified by comparative reversed-phase HPLC with their Re analogues. The (99m)Tc tracers were stable in vitro and exhibited binding to hydroxyapatite. In biodistribution studies, all of the (99m)Tc complexes exhibited high bone uptake superior to that of 25, which is the directly (99m)Tc-labeled bisphosphonate 3, and comparable to that of (99m)Tc-methylene diphosphonate ((99m)Tc-MDP). The tracers [(99m)Tc(CO)3(6)] (26), [(99m)Tc(CO)3(9)] (27), [(99m)Tc(CO)3(11)] (28), and [(99m)Tc(CO)3(15)] (29) exhibited higher bone/blood ratios than (99m)Tc-MDP. 26 had the highest bone uptake at 1 h p.i. The new bisphosphonates showed no substantial growth inhibitory capacity in PC-3, Saos-2, and MCF-7 established cancer cell lines at low concentrations. Incubation of 26 with the same cancer cell lines indicated a rapid and saturated uptake. The promising properties of 26-29 indicate their potential for use as bone-imaging agents.

  18. Digital image processing of bone - Problems and potentials

    NASA Technical Reports Server (NTRS)

    Morey, E. R.; Wronski, T. J.

    1980-01-01

    The development of a digital image processing system for bone histomorphometry and fluorescent marker monitoring is discussed. The system in question is capable of making measurements of UV or light microscope features on a video screen with either video or computer-generated images, and comprises a microscope, low-light-level video camera, video digitizer and display terminal, color monitor, and PDP 11/34 computer. Capabilities demonstrated in the analysis of an undecalcified rat tibia include the measurement of perimeter and total bone area, and the generation of microscope images, false color images, digitized images and contoured images for further analysis. Software development will be based on an existing software library, specifically the mini-VICAR system developed at JPL. It is noted that the potentials of the system in terms of speed and reliability far exceed any problems associated with hardware and software development.

  19. The potential role of newer gram-positive antibiotics in the setting of osteomyelitis of adults.

    PubMed

    Moenster, Ryan P; Linneman, Travis W; Call, William B; Kay, Chad L; McEvoy, Theresa A; Sanders, Jamie L

    2013-04-01

    To summarize available literature regarding the potential role of linezolid, daptomycin, telavancin, tigecycline and ceftaroline for the treatment of osteomyelitis caused by resistant gram-positive organisms. Literature was obtained through PubMed searches from January 1980 to October 2011 using the terms osteomyelitis, bone, linezolid, daptomycin, telavancin, tigecycline and ceftaroline. Results were limited to those published in English. All articles identified from the PubMed searches were evaluated. Any published data related to bone penetration (animal or human) or clinical outcomes in adult osteomyelitis of these agents were included in the review. Animal models report bone concentrations of 2·3 mcg/dL (vertebral) for linezolid, 0·45 mcg/mL (tibiae) for daptomycin, 0·78 mcg/mL (tibiae) for tigecycline and 0·27 mcg/mL (tibiae) for telavancin; no data are available for ceftaroline. Human studies demonstrate bone concentrations of 4·6, 17·0 and 3·9 mcg/mL (sternal, metatarsal and cancellous bone respectively) for linezolid, 4·7 mcg/mL (metatarsal) for daptomycin and 0·078 mcg/mL (unspecified) for tigecycline; no data are available for telavancin and ceftaroline. Retrospective cohort data, and prospective/retrospective case series support the use of linezolid in this setting; however, side-effects may limit use. Retrospective and prospective cohort data support daptomycin use. A retrospective case series is available supporting the use of telavancin. No data are available supporting clinical effectiveness for ceftaroline or tigecycline in the setting of osteomyelitis. Limited data are available evaluating the safety and efficacy of these agents in osteomyelitis in adults. Daptomycin and telavancin may be potential alternatives or second-line agents to vancomycin in selected patients. Linezolid, because of an increase in clinically important ADRs with prolonged use, should be reserved as a second- or third-line agent. Due to a lack of clinical data and poor bone penetration, along with concerns regarding outcomes in severe infections, tigecycline's potential is limited. Little data exist regarding ceftaroline use in osteomyelitis. © 2013 Blackwell Publishing Ltd.

  20. Targeted Nuclear Imaging Probes for Cardiac Amyloidosis.

    PubMed

    Bravo, Paco E; Dorbala, Sharmila

    2017-07-01

    The aim of the present manuscript is to review the latest advancements of radionuclide molecular imaging in the diagnosis and prognosis of individuals with cardiac amyloidosis. 99m Technetium labeled bone tracer scintigraphy had been known to image cardiac amyloidosis, since the 1980s; over the past decade, bone scintigraphy has been revived specifically to diagnose transthyretin cardiac amyloidosis. 18 F labeled and 11 C labeled amyloid binding radiotracers developed for imaging Alzheimer's disease, have been repurposed since 2013, to image light chain and transthyretin cardiac amyloidosis. 99m Technetium bone scintigraphy for transthyretin cardiac amyloidosis, and amyloid binding targeted PET imaging for light chain and transthyretin cardiac amyloidosis, are emerging as highly accurate methods. Targeted radionuclide imaging may soon replace endomyocardial biopsy in the evaluation of patients with suspected cardiac amyloidosis. Further research is warranted on the role of targeted imaging to quantify cardiac amyloidosis and to guide therapy.

  1. Stem cell-mediated accelerated bone healing observed with in vivo molecular and small animal imaging technologies in a model of skeletal injury.

    PubMed

    Lee, Sheen-Woo; Padmanabhan, Parasuraman; Ray, Pritha; Gambhir, Sanjiv Sam; Doyle, Timothy; Contag, Christopher; Goodman, Stuart B; Biswal, Sandip

    2009-03-01

    Adult stem cells are promising therapeutic reagents for skeletal regeneration. We hope to validate by molecular imaging technologies the in vivo life cycle of adipose-derived multipotent cells (ADMCs) in an animal model of skeletal injury. Primary ADMCs were lentivirally transfected with a fusion reporter gene and injected intravenously into mice with bone injury or sham operation. Bioluminescence imaging (BLI), [(18)F]FHBG (9-(fluoro-hydroxy-methyl-butyl-guanine)-micro-PET, [(18)F]Fluoride ion micro-PET and micro-CT were performed to monitor stem cells and their effect. Bioluminescence microscopy and immunohistochemistry were done for histological confirmation. BLI showed ADMC's traffic from the lungs then to the injury site. BLI microscopy and immunohistochemistry confirmed the ADMCs in the bone defect. Micro-CT measurements showed increased bone healing in the cell-injected group compared to the noninjected group at postoperative day 7 (p < 0.05). Systemically administered ADMC's traffic to the site of skeletal injury and facilitate bone healing, as demonstrated by molecular and small animal imaging. Molecular imaging technologies can validate the usage of adult adipose tissue-derived multipotent cells to promote fracture healing. Imaging can in the future help establish therapeutic strategies including dosage and administration route. (c) 2008 Orthopaedic Research Society.

  2. Integrin Targeted MR Imaging

    PubMed Central

    Tan, Mingqian; Lu, Zheng-Rong

    2011-01-01

    Magnetic resonance imaging (MRI) is a powerful medical diagnostic imaging modality for integrin targeted imaging, which uses the magnetic resonance of tissue water protons to display tissue anatomic structures with high spatial resolution. Contrast agents are often used in MRI to highlight specific regions of the body and make them easier to visualize. There are four main classes of MRI contrast agents based on their different contrast mechanisms, including T1, T2, chemical exchange saturation transfer (CEST) agents, and heteronuclear contrast agents. Integrins are an important family of heterodimeric transmembrane glycoproteins that function as mediators of cell-cell and cell-extracellular matrix interactions. The overexpressed integrins can be used as the molecular targets for designing suitable integrin targeted contrast agents for MR molecular imaging. Integrin targeted contrast agent includes a targeting agent specific to a target integrin, a paramagnetic agent and a linker connecting the targeting agent with the paramagnetic agent. Proper selection of targeting agents is critical for targeted MRI contrast agents to effectively bind to integrins for in vivo imaging. An ideal integrin targeted MR contrast agent should be non-toxic, provide strong contrast enhancement at the target sites and can be completely excreted from the body after MR imaging. An overview of integrin targeted MR contrast agents based on small molecular and macromolecular Gd(III) complexes, lipid nanoparticles and superparamagnetic nanoparticles is provided for MR molecular imaging. By using proper delivery systems for loading sufficient Gd(III) chelates or superparamagnetic nanoparticles, effective molecular imaging of integrins with MRI has been demonstrated in animal models. PMID:21547154

  3. Segmentation of bone structures in 3D CT images based on continuous max-flow optimization

    NASA Astrophysics Data System (ADS)

    Pérez-Carrasco, J. A.; Acha-Piñero, B.; Serrano, C.

    2015-03-01

    In this paper an algorithm to carry out the automatic segmentation of bone structures in 3D CT images has been implemented. Automatic segmentation of bone structures is of special interest for radiologists and surgeons to analyze bone diseases or to plan some surgical interventions. This task is very complicated as bones usually present intensities overlapping with those of surrounding tissues. This overlapping is mainly due to the composition of bones and to the presence of some diseases such as Osteoarthritis, Osteoporosis, etc. Moreover, segmentation of bone structures is a very time-consuming task due to the 3D essence of the bones. Usually, this segmentation is implemented manually or with algorithms using simple techniques such as thresholding and thus providing bad results. In this paper gray information and 3D statistical information have been combined to be used as input to a continuous max-flow algorithm. Twenty CT images have been tested and different coefficients have been computed to assess the performance of our implementation. Dice and Sensitivity values above 0.91 and 0.97 respectively were obtained. A comparison with Level Sets and thresholding techniques has been carried out and our results outperformed them in terms of accuracy.

  4. Material separation in x-ray CT with energy resolved photon-counting detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Xiaolan; Meier, Dirk; Taguchi, Katsuyuki

    Purpose: The objective of the study was to demonstrate that, in x-ray computed tomography (CT), more than two types of materials can be effectively separated with the use of an energy resolved photon-counting detector and classification methodology. Specifically, this applies to the case when contrast agents that contain K-absorption edges in the energy range of interest are present in the object. This separation is enabled via the use of recently developed energy resolved photon-counting detectors with multiple thresholds, which allow simultaneous measurements of the x-ray attenuation at multiple energies. Methods: To demonstrate this capability, we performed simulations and physical experimentsmore » using a six-threshold energy resolved photon-counting detector. We imaged mouse-sized cylindrical phantoms filled with several soft-tissue-like and bone-like materials and with iodine-based and gadolinium-based contrast agents. The linear attenuation coefficients were reconstructed for each material in each energy window and were visualized as scatter plots between pairs of energy windows. For comparison, a dual-kVp CT was also simulated using the same phantom materials. In this case, the linear attenuation coefficients at the lower kVp were plotted against those at the higher kVp. Results: In both the simulations and the physical experiments, the contrast agents were easily separable from other soft-tissue-like and bone-like materials, thanks to the availability of the attenuation coefficient measurements at more than two energies provided by the energy resolved photon-counting detector. In the simulations, the amount of separation was observed to be proportional to the concentration of the contrast agents; however, this was not observed in the physical experiments due to limitations of the real detector system. We used the angle between pairs of attenuation coefficient vectors in either the 5-D space (for non-contrast-agent materials using energy resolved photon-counting acquisition) or a 2-D space (for contrast agents using energy resolved photon-counting acquisition and all materials using dual-kVp acquisition) as a measure of the degree of separation. Compared to dual-kVp techniques, an energy resolved detector provided a larger separation and the ability to separate different target materials using measurements acquired in different energy window pairs with a single x-ray exposure. Conclusions: We concluded that x-ray CT with an energy resolved photon-counting detector with more than two energy windows allows the separation of more than two types of materials, e.g., soft-tissue-like, bone-like, and one or more materials with K-edges in the energy range of interest. Separating material types using energy resolved photon-counting detectors has a number of advantages over dual-kVp CT in terms of the degree of separation and the number of materials that can be separated simultaneously.« less

  5. Protective effect of egg yolk peptide on bone metabolism.

    PubMed

    Kim, Hye Kyung; Lee, Sena; Leem, Kang-Hyun

    2011-03-01

    Osteoporosis is a major health problem worldwide, and most current therapy used in osteoporosis treatment acts by either increasing bone formation or decreasing bone resorption. However, the adverse effects of these therapies may preclude their long-term use. We examined the effects of egg yolk water-soluble peptide (YPEP) on bone metabolism as an alternative to current therapeutic agents in ovariectomized (OVX) rats. In the first step, the in vitro effects of YPEP on bone loss were determined. The proliferation, collagen content, and alkaline phosphatase activity of preosteoblastic MC3T3-E1 cells and osteoclastogenesis from bone marrow-derived precursor cells were measured. The in vivo experiment confirmed the positive effect of YPEP on bone tissue. Three-month-old female Sprague-Dawley rats were either sham operated or ovariectomized and fed commercial chow diet or 0.1% YPEP-supplemented diet for 3 month. YPEP increased preosteoblastic MC3T3-E1 cell proliferation and alkaline phosphatase activity in a dose-dependent manner. Collagen content was also increased by YPEP treatment. Furthermore, YPEP potently suppressed osteoclastogenesis from bone marrow-derived precursor cells. YPEP (100 μg/mL) abolished the formation of osteoclasts positive for tartrate-resistant acid phosphatase. OVX rats supplemented with YPEP showed an osteoprotective effect, as the bone mineral density and cortical thickness in the tibia were increased compared with the OVX controls. Moreover, histological data indicate that YPEP prevented the cancellous bone loss induced by ovariectomy. None of these protective effects were observed in casein-treated rats. The present study suggests that YPEP is a promising alternative to current therapeutic agents for the management of osteoporosis.

  6. Autocrine inhibition of the c-fms proto-oncogene reduces breast cancer bone metastasis assessed with in vivo dual-modality imaging.

    PubMed

    Jeffery, Justin J; Lux, Katie; Vogel, John S; Herrera, Wynetta D; Greco, Stephen; Woo, Ho-Hyung; AbuShahin, Nisreen; Pagel, Mark D; Chambers, Setsuko K

    2014-04-01

    Breast cancer cells preferentially home to the bone microenvironment, which provides a unique niche with a network of multiple bidirectional communications between host and tumor, promoting survival and growth of bone metastases. In the bone microenvironment, the c-fms proto-oncogene that encodes for the CSF-1 receptor, along with CSF-1, serves as one critical cytokine/receptor pair, functioning in paracrine and autocrine fashion. Previous studies concentrated on the effect of inhibition of host (mouse) c-fms on bone metastasis, with resulting decrease in osteolysis and bone metastases as a paracrine effect. In this report, we assessed the role of c-fms inhibition within the tumor cells (autocrine effect) in the early establishment of breast cancer cells in bone and the effects of this early c-fms inhibition on subsequent bone metastases and destruction. This study exploited a multidisciplinary approach by employing two non-invasive, in vivo imaging methods to assess the progression of bone metastases and bone destruction, in addition to ex vivo analyses using RT-PCR and histopathology. Using a mouse model of bone homing human breast cancer cells, we showed that an early one-time application of anti-human c-fms antibody delayed growth of bone metastases and bone destruction for at least 31 days as quantitatively measured by bioluminescence imaging and computed tomography, compared to controls. Thus, neutralizing human c-fms in the breast cancer cell alone decreases extent of subsequent bone metastasis formation and osteolysis. Furthermore, we are the first to show that anti-c-fms antibodies can impact early establishment of breast cancer cells in bone.

  7. Combining coherent hard X-ray tomographies with phase retrieval to generate three-dimensional models of forming bone

    NASA Astrophysics Data System (ADS)

    Bortel, Emely L.; Langer, Max; Rack, Alexander; Forien, Jean-Baptiste; Duda, Georg N.; Fratzl, Peter; Zaslansky, Paul

    2017-11-01

    Holotomography, a phase sensitive synchrotron-based μCT modality, is a quantitative 3D imaging method. By exploiting partial spatial X-ray coherence, bones can be imaged volumetrically with high resolution coupled with impressive density sensitivity. This tomographic method reveals the main characteristics of the important tissue compartments in forming bones, including the rapidly-changing soft tissue and the partially or fully mineralized bone regions, while revealing subtle density differences in 3D. Here we show typical results observed within the growing femur bone midshafts of healthy mice that are 1, 3, 7, 10 and 14 days old (postpartum). Our results make use of partially-coherent synchrotron radiation employing inline Fresnel-propagation in multiple tomographic datasets obtained in the imaging beamline ID19 of the ESRF. The exquisite detail creates maps of the juxtaposed soft, partially mineralized and highly mineralized bone revealing the environment in which bone cells create and shape the matrix. This high resolution 3D data is a step towards creating realistic computational models that may be used to study the dynamic processes involved in bone tissue formation and adaptation. Such data will enhance our understanding of the important biomechanical interactions directing maturation and shaping of the bone micro- and macro-geometries.

  8. Micro-MRI-based image acquisition and processing system for assessing the response to therapeutic intervention

    NASA Astrophysics Data System (ADS)

    Vasilić, B.; Ladinsky, G. A.; Saha, P. K.; Wehrli, F. W.

    2006-03-01

    Osteoporosis is the cause of over 1.5 million bone fractures annually. Most of these fractures occur in sites rich in trabecular bone, a complex network of bony struts and plates found throughout the skeleton. The three-dimensional structure of the trabecular bone network significantly determines mechanical strength and thus fracture resistance. Here we present a data acquisition and processing system that allows efficient noninvasive assessment of trabecular bone structure through a "virtual bone biopsy". High-resolution MR images are acquired from which the trabecular bone network is extracted by estimating the partial bone occupancy of each voxel. A heuristic voxel subdivision increases the effective resolution of the bone volume fraction map and serves a basis for subsequent analysis of topological and orientational parameters. Semi-automated registration and segmentation ensure selection of the same anatomical location in subjects imaged at different time points during treatment. It is shown with excerpts from an ongoing clinical study of early post-menopausal women, that significant reduction in network connectivity occurs in the control group while the structural integrity is maintained in the hormone replacement group. The system described should be suited for large-scale studies designed to evaluate the efficacy of therapeutic intervention in subjects with metabolic bone disease.

  9. Actinomycotic osteomyelitis of the mandible: an unusual case.

    PubMed

    Figueiredo, Leonardo Morais Godoy; Trindade, Soraya Castro; Sarmento, Viviane Almeida; de Oliveira, Thaís Feitosa Leitão; Muniz, Wilson Rodrigo; Valente, Rômulo Oliveira de Hollanda

    2013-12-01

    Actinomycotic osteomyelitis is an infection in soft tissues and/or bones, being associated with trauma or a previous nonspecific infection. This article presents an unusual case of mandibular osteomyelitis caused by Actinomyces. A 19-year-old male patient was referred for endodontic treatment of the lower right first molar about 16 months ago and removal of lower right third molar approximately 3 years before. The panoramic radiography showed change in bone density in the region of ill-defined mandibular angle boundaries, and the computed tomography (CT) showed mixed density image in the mandibular angle, with discreet expansion of cortical vestibular and lingual. Biopsy was performed, and content was aspirated in small quantity and purulent tissue fragments were sent to anatomical-pathological examination. The collected purulent secretion was colored for cytopathologic study, which showed infection by Actinomyces. In this case, the causative agent was Actinomyces, which makes it even more unusual. The origin of the microorganism has not been clearly established; however, the diagnosis allowed long-term treatment with antibiotics, which has resulted in the resolution of the case.

  10. Comparison of image enhancement methods for the effective diagnosis in successive whole-body bone scans.

    PubMed

    Jeong, Chang Bu; Kim, Kwang Gi; Kim, Tae Sung; Kim, Seok Ki

    2011-06-01

    Whole-body bone scan is one of the most frequent diagnostic procedures in nuclear medicine. Especially, it plays a significant role in important procedures such as the diagnosis of osseous metastasis and evaluation of osseous tumor response to chemotherapy and radiation therapy. It can also be used to monitor the possibility of any recurrence of the tumor. However, it is a very time-consuming effort for radiologists to quantify subtle interval changes between successive whole-body bone scans because of many variations such as intensity, geometry, and morphology. In this paper, we present the most effective method of image enhancement based on histograms, which may assist radiologists in interpreting successive whole-body bone scans effectively. Forty-eight successive whole-body bone scans from 10 patients were obtained and evaluated using six methods of image enhancement based on histograms: histogram equalization, brightness-preserving bi-histogram equalization, contrast-limited adaptive histogram equalization, end-in search, histogram matching, and exact histogram matching (EHM). Comparison of the results of the different methods was made using three similarity measures peak signal-to-noise ratio, histogram intersection, and structural similarity. Image enhancement of successive bone scans using EHM showed the best results out of the six methods measured for all similarity measures. EHM is the best method of image enhancement based on histograms for diagnosing successive whole-body bone scans. The method for successive whole-body bone scans has the potential to greatly assist radiologists quantify interval changes more accurately and quickly by compensating for the variable nature of intensity information. Consequently, it can improve radiologists' diagnostic accuracy as well as reduce reading time for detecting interval changes.

  11. Ultrashort echo time magnetization transfer (UTE-MT) imaging of cortical bone.

    PubMed

    Chang, Eric Y; Bae, Won C; Shao, Hongda; Biswas, Reni; Li, Shihong; Chen, Jun; Patil, Shantanu; Healey, Robert; D'Lima, Darryl D; Chung, Christine B; Du, Jiang

    2015-07-01

    Magnetization transfer (MT) imaging is one way to indirectly assess pools of protons with fast transverse relaxation. However, conventional MT imaging sequences are not applicable to short T2 tissues such as cortical bone. Ultrashort echo time (UTE) sequences with TE values as low as 8 µs can detect signals from different water components in cortical bone. In this study we aim to evaluate two-dimensional UTE-MT imaging of cortical bone and its application in assessing cortical bone porosity as measured by micro-computed tomography (μCT) and biomechanical properties. In total, 38 human cadaveric distal femur and proximal tibia bones were sectioned to produce 122 rectangular pieces of cortical bone for quantitative UTE-MT MR imaging, μCT, and biomechanical testing. Off-resonance saturation ratios (OSRs) with a series of MT pulse frequency offsets (Δf) were calculated and compared with porosity assessed with μCT, as well as elastic (modulus, yield stress, and strain) and failure (ultimate stress, failure strain, and energy) properties, using Pearson correlation and linear regression. A moderately strong negative correlation was observed between OSR and μCT porosity (R(2)  = 0.46-0.51), while a moderate positive correlation was observed between OSR and yield stress (R(2)  = 0.25-0.30) and failure stress (R(2)  = 0.31-0.35), and a weak positive correlation (R(2)  = 0.09-0.12) between OSR and Young's modulus at all off-resonance saturation frequencies. OSR determined with the UTE-MT sequence provides quantitative information on cortical bone and is sensitive to μCT porosity and biomechanical function. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Metabolic Bone Diseases and Total Hip Arthroplasty: Preventing Complications.

    PubMed

    Moya-Angeler, Joaquin; Lane, Joseph M; Rodriguez, Jose A

    2017-11-01

    Metabolic bone diseases are a diverse group of conditions characterized by abnormalities in calcium metabolism and/or bone cell physiology. These unbalanced processes can eventually lead to bony deformities and altered joint biomechanics, resulting in degenerative joint disease. Not infrequently, patients with metabolic bone diseases have restricting hip joint pain that ultimately necessitates hip arthroplasty. To minimize complications, the surgeon must consider the particular characteristics of these patients. The surgical and medical management of patients with metabolic bone diseases undergoing hip arthroplasty requires appropriate preoperative diagnosis, careful attention to the technical challenges of surgery, and strategies to maximize the long-term results of the surgical intervention, such as the use of bone anabolic and anticatabolic agents.

  13. Bone marrow invasion in multiple myeloma and metastatic disease.

    PubMed

    Vilanova, J C; Luna, A

    2016-04-01

    Magnetic resonance imaging (MRI) of the spine is the imaging study of choice for the management of bone marrow disease. MRI sequences enable us to integrate structural and functional information for detecting, staging, and monitoring the response the treatment of multiple myeloma and bone metastases in the spine. Whole-body MRI has been incorporated into different guidelines as the technique of choice for managing multiple myeloma and metastatic bone disease. Normal physiological changes in the yellow and red bone marrow represent a challenge in analyses to differentiate clinically significant findings from those that are not clinically significant. This article describes the findings for normal bone marrow, variants, and invasive processes in multiple myeloma and bone metastases. Copyright © 2015 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  14. Three-dimensional evaluation of human jaw bone microarchitecture: correlation between the microarchitectural parameters of cone beam computed tomography and micro-computer tomography.

    PubMed

    Kim, Jo-Eun; Yi, Won-Jin; Heo, Min-Suk; Lee, Sam-Sun; Choi, Soon-Chul; Huh, Kyung-Hoe

    2015-12-01

    To evaluate the potential feasibility of cone beam computed tomography (CBCT) in the assessment of trabecular bone microarchitecture. Sixty-eight specimens from four pairs of human jaw were scanned using both micro-computed tomography (micro-CT) of 19.37-μm voxel size and CBCT of 100-μm voxel size. The correlation of 3-dimensional parameters between CBCT and micro-CT was evaluated. All parameters, except bone-specific surface and trabecular thickness, showed linear correlations between the 2 imaging modalities (P < .05). Among the parameters, bone volume, percent bone volume, trabecular separation, and degree of anisotropy (DA) of CBCT images showed strong correlations with those of micro-CT images. DA showed the strongest correlation (r = 0.693). Most microarchitectural parameters from CBCT were correlated with those from micro-CT. Some microarchitectural parameters, especially DA, could be used as strong predictors of bone quality in the human jaw. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Bone anabolics in osteoporosis: Actuality and perspectives

    PubMed Central

    Montagnani, Andrea

    2014-01-01

    Vertebral and nonvertebral fractures prevention is the main goal for osteoporosis therapy by inhibiting bone resorption and/or stimulating bone formation. Antiresorptive drugs decrease the activation frequency, thereby determining a secondary decrease in bone formation rate and a low bone turnover. Bisphosphonates are today’s mainstay among antiresorptive treatment of osteoporosis. Also, oral selective estrogen receptor modulators and recently denosumab have a negative effect on bone turnover. Agents active on bone formation are considered a better perspective in the treatment of severe osteoporosis. Recombinant-human parathyroid hormone (PTH) has showed to increase bone formation and significantly decrease vertebral fractures in severe patients, but with a modest effect on nonvertebral fractures. The study of Wnt signaling pathway, that induces prevalently an osteoblastic activity, opens large possibilities to antagonists of Wnt-inhibitors, such as sclerostin antibodies and dickkopf-1 antagonists, with potential effects not only on trabecular bone but also on cortical bone. PMID:25035827

  16. Phantom-less bone mineral density (BMD) measurement using dual energy computed tomography-based 3-material decomposition

    NASA Astrophysics Data System (ADS)

    Hofmann, Philipp; Sedlmair, Martin; Krauss, Bernhard; Wichmann, Julian L.; Bauer, Ralf W.; Flohr, Thomas G.; Mahnken, Andreas H.

    2016-03-01

    Osteoporosis is a degenerative bone disease usually diagnosed at the manifestation of fragility fractures, which severely endanger the health of especially the elderly. To ensure timely therapeutic countermeasures, noninvasive and widely applicable diagnostic methods are required. Currently the primary quantifiable indicator for bone stability, bone mineral density (BMD), is obtained either by DEXA (Dual-energy X-ray absorptiometry) or qCT (quantitative CT). Both have respective advantages and disadvantages, with DEXA being considered as gold standard. For timely diagnosis of osteoporosis, another CT-based method is presented. A Dual Energy CT reconstruction workflow is being developed to evaluate BMD by evaluating lumbar spine (L1-L4) DE-CT images. The workflow is ROI-based and automated for practical use. A dual energy 3-material decomposition algorithm is used to differentiate bone from soft tissue and fat attenuation. The algorithm uses material attenuation coefficients on different beam energy levels. The bone fraction of the three different tissues is used to calculate the amount of hydroxylapatite in the trabecular bone of the corpus vertebrae inside a predefined ROI. Calibrations have been performed to obtain volumetric bone mineral density (vBMD) without having to add a calibration phantom or to use special scan protocols or hardware. Accuracy and precision are dependent on image noise and comparable to qCT images. Clinical indications are in accordance with the DEXA gold standard. The decomposition-based workflow shows bone degradation effects normally not visible on standard CT images which would induce errors in normal qCT results.

  17. TU-A-12A-08: Computing Longitudinal Material Changes in Bone Metastases Using Dual Energy Computed Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidtlein, CR; Hwang, S; Veeraraghavan, H

    Purpose: This study demonstrates a methodology for tracking changes in metastatic bone disease using trajectories in material basis space in serial dual energy computed tomography (DECT) studies. Methods: This study includes patients with bone metastases from breast cancer that had clinical surveillance CT scans using a General Electric CT750HD in dual energy mode. A radiologist defined regions-of-interested (ROI) for bone metastasis, normal bone, and marrow across the serial DECT scans. Our approach employs a Radon transform to forward-projection the basis images, namely, water and iodine, into sinogram space. This data is then repartitioned into fat/bone and effective density/Z image pairsmore » using assumed energy spectrums for the x-ray energies. This approach both helps remove negative material densities and avoids adding spectrum-hardening artifacts. These new basis data sets were then reconstructed via filtered back-projection to create new material basis pair images. The trajectories of these pairs were then plotted in the new basis space providing a means to both visualize and quantitatively measure changes in the material properties of the tumors. Results: ROI containing radiologist defined metastatic bone disease showed well-defined trajectories in both fat/bone and effective density/Z space. ROI that contained radiologist defined normal bone and marrow did not exhibit any discernible trajectories and were stable from scan to scan. Conclusions: The preliminary results show that changes in material composition and effective density/Z image pairs were seen primarily in metastasis and not in normal tissue. This study indicates that by using routine clinical DECT it may be possible to monitor therapy response of bone metastases because healing or worsening bone metastases change material composition of bone. Additional studies are needed to further validate these results and to test for their correlation with outcome.« less

  18. Sex differences in parameters of bone strength in new recruits: beyond bone density.

    PubMed

    Evans, Rachel K; Negus, Charles; Antczak, Amanda J; Yanovich, Ran; Israeli, Eran; Moran, Daniel S

    2008-11-01

    Stress fracture (SF) injuries in new recruits have long been attributed to low bone mineral density (BMD). Low areal BMD assessed using two-dimensional dual-energy x-ray absorptiometry imaging, however, reflects structural density and is affected by smaller measures of bone geometry. Recent studies support a relationship between bone size and SF and indicate that slender bones are more susceptible to damage under identical loading conditions. Peripheral quantitative computed tomography (pQCT) is a three-dimensional imaging tool that provides measures of tissue density and geometry parameters of the tibia, a common site of SF. To evaluate sex differences in parameters of volumetric BMD (vBMD), geometry, and strength of the tibia in new recruits using a novel pQCT image analysis procedure. pQCT images were obtained from 128 healthy men and women (20 male, 108 female, aged 18-21 yr) entering a 4-month gender-integrated combat training program in the Israeli Defense Forces. Tibial scans taken at sites 4% (trabecular bone), 38%, and 66% (cortical bone) from the distal end plate were analyzed using MATLAB to assess whole-bone and regional parameters. Measures included vBMD, geometry (diameter, area, cortical thickness, and canal radius), and strength (moments of inertia and bone strength and slenderness indices). With the exception of normalized canal radius, which did not differ between sexes, all measures of bone geometry (P < 0.0001) and strength (P < 0.0001 to P = 0.07) were greater in men. Women exhibited 2.7% to 3.0% greater cortical vBMD than men, whereas trabecular vBMD was 8.4% lower in women (P < 0.001). These differences remained significant after adjusting for body size. Sex differences in bone geometry and mineralization of the tibia may contribute to a decreased ability to withstand the demands imposed by novel, repetitive exercise in untrained individuals entering recruit training.

  19. Modeling the Chagas’ disease after stem cell transplantation

    NASA Astrophysics Data System (ADS)

    Galvão, Viviane; Miranda, José Garcia Vivas

    2009-04-01

    A recent model for Chagas’ disease after stem cell transplantation is extended for a three-dimensional multi-agent-based model. The computational model includes six different types of autonomous agents: inflammatory cell, fibrosis, cardiomyocyte, proinflammatory cytokine tumor necrosis factor- α, Trypanosoma cruzi, and bone marrow stem cell. Only fibrosis is fixed and the other types of agents can move randomly through the empty spaces using the three-dimensional Moore neighborhood. Bone marrow stem cells can promote apoptosis in inflammatory cells, fibrosis regression and can differentiate in cardiomyocyte. T. cruzi can increase the number of inflammatory cells. Inflammatory cells and tumor necrosis factor- α can increase the quantity of fibrosis. Our results were compared with experimental data giving a fairly fit and they suggest that the inflammatory cells are important for the development of fibrosis.

  20. Evaluation of bone formation in calcium phosphate scaffolds with μCT-method validation using SEM.

    PubMed

    Lewin, S; Barba, A; Persson, C; Franch, J; Ginebra, M-P; Öhman-Mägi, C

    2017-10-05

    There is a plethora of calcium phosphate (CaP) scaffolds used as synthetic substitutes to bone grafts. The scaffold performance is often evaluated from the quantity of bone formed within or in direct contact with the scaffold. Micro-computed tomography (μCT) allows three-dimensional evaluation of bone formation inside scaffolds. However, the almost identical x-ray attenuation of CaP and bone obtrude the separation of these phases in μCT images. Commonly, segmentation of bone in μCT images is based on gray scale intensity, with manually determined global thresholds. However, image analysis methods, and methods for manual thresholding in particular, lack standardization and may consequently suffer from subjectivity. The aim of the present study was to provide a methodological framework for addressing these issues. Bone formation in two types of CaP scaffold architectures (foamed and robocast), obtained from a larger animal study (a 12 week canine animal model) was evaluated by μCT. In addition, cross-sectional scanning electron microscopy (SEM) images were acquired as references to determine thresholds and to validate the result. μCT datasets were registered to the corresponding SEM reference. Global thresholds were then determined by quantitatively correlating the different area fractions in the μCT image, towards the area fractions in the corresponding SEM image. For comparison, area fractions were also quantified using global thresholds determined manually by two different approaches. In the validation the manually determined thresholds resulted in large average errors in area fraction (up to 17%), whereas for the evaluation using SEM references, the errors were estimated to be less than 3%. Furthermore, it was found that basing the thresholds on one single SEM reference gave lower errors than determining them manually. This study provides an objective, robust and less error prone method to determine global thresholds for the evaluation of bone formation in CaP scaffolds.

  1. Optimization of CT image reconstruction algorithms for the lung tissue research consortium (LTRC)

    NASA Astrophysics Data System (ADS)

    McCollough, Cynthia; Zhang, Jie; Bruesewitz, Michael; Bartholmai, Brian

    2006-03-01

    To create a repository of clinical data, CT images and tissue samples and to more clearly understand the pathogenetic features of pulmonary fibrosis and emphysema, the National Heart, Lung, and Blood Institute (NHLBI) launched a cooperative effort known as the Lung Tissue Resource Consortium (LTRC). The CT images for the LTRC effort must contain accurate CT numbers in order to characterize tissues, and must have high-spatial resolution to show fine anatomic structures. This study was performed to optimize the CT image reconstruction algorithms to achieve these criteria. Quantitative analyses of phantom and clinical images were conducted. The ACR CT accreditation phantom containing five regions of distinct CT attenuations (CT numbers of approximately -1000 HU, -80 HU, 0 HU, 130 HU and 900 HU), and a high-contrast spatial resolution test pattern, was scanned using CT systems from two manufacturers (General Electric (GE) Healthcare and Siemens Medical Solutions). Phantom images were reconstructed using all relevant reconstruction algorithms. Mean CT numbers and image noise (standard deviation) were measured and compared for the five materials. Clinical high-resolution chest CT images acquired on a GE CT system for a patient with diffuse lung disease were reconstructed using BONE and STANDARD algorithms and evaluated by a thoracic radiologist in terms of image quality and disease extent. The clinical BONE images were processed with a 3 x 3 x 3 median filter to simulate a thicker slice reconstructed in smoother algorithms, which have traditionally been proven to provide an accurate estimation of emphysema extent in the lungs. Using a threshold technique, the volume of emphysema (defined as the percentage of lung voxels having a CT number lower than -950 HU) was computed for the STANDARD, BONE, and BONE filtered. The CT numbers measured in the ACR CT Phantom images were accurate for all reconstruction kernels for both manufacturers. As expected, visual evaluation of the spatial resolution bar patterns demonstrated that the BONE (GE) and B46f (Siemens) showed higher spatial resolution compared to the STANDARD (GE) or B30f (Siemens) reconstruction algorithms typically used for routine body CT imaging. Only the sharper images were deemed clinically acceptable for the evaluation of diffuse lung disease (e.g. emphysema). Quantitative analyses of the extent of emphysema in patient data showed the percent volumes above the -950 HU threshold as 9.4% for the BONE reconstruction, 5.9% for the STANDARD reconstruction, and 4.7% for the BONE filtered images. Contrary to the practice of using standard resolution CT images for the quantitation of diffuse lung disease, these data demonstrate that a single sharp reconstruction (BONE/B46f) should be used for both the qualitative and quantitative evaluation of diffuse lung disease. The sharper reconstruction images, which are required for diagnostic interpretation, provide accurate CT numbers over the range of -1000 to +900 HU and preserve the fidelity of small structures in the reconstructed images. A filtered version of the sharper images can be accurately substituted for images reconstructed with smoother kernels for comparison to previously published results.

  2. Quantifying bone thickness, light transmission, and contrast interrelationships in transcranial photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Lediju Bell, Muyinatu A.; Ostrowski, Anastasia K.; Li, Ke; Kaanzides, Peter; Boctor, Emad

    2015-03-01

    We previously introduced photoacoustic imaging to detect blood vessels surrounded by bone and thereby eliminate the deadly risk of carotid artery injury during endonasal, transsphenoidal surgeries. Light would be transmitted through an optical fiber attached to the surgical drill, while a transcranial probe placed on the temporal region of the skull receives photoacoustic signals. This work quantifies changes in photoacoustic image contrast as the sphenoid bone is drilled. Frontal bone from a human adult cadaver skull was cut into seven 3 cm x 3 cm chips and sanded to thicknesses ranging 1-4 mm. For 700-940 nm wavelengths, the average optical transmission through these specimens increased from 19% to 44% as bone thickness decreased, with measurements agreeing with Monte Carlo simulations within 5%. These skull specimens were individually placed in the optical pathway of a 3.5 mm diameter, cylindrical, vessel-mimicking photoacoustic target, as the laser wavelength was varied between 700-940 nm. The mean optical insertion loss and photoacoustic image contrast loss due to the bone specimens were 56-80% and 46-79%, respectively, with the majority of change observed when the bone was <=2 mm thick. The decrease in contrast is directly proportional to insertion loss over this thickness range by factors of 0.8-1.1 when multiple wavelengths are considered. Results suggest that this proportional relationship may be used to determine the amount of bone that remains to be drilled when the thickness is 2 mm or less.

  3. Integration of High-resolution Data for Temporal Bone Surgical Simulations

    PubMed Central

    Wiet, Gregory J.; Stredney, Don; Powell, Kimerly; Hittle, Brad; Kerwin, Thomas

    2016-01-01

    Purpose To report on the state of the art in obtaining high-resolution 3D data of the microanatomy of the temporal bone and to process that data for integration into a surgical simulator. Specifically, we report on our experience in this area and discuss the issues involved to further the field. Data Sources Current temporal bone image acquisition and image processing established in the literature as well as in house methodological development. Review Methods We reviewed the current English literature for the techniques used in computer-based temporal bone simulation systems to obtain and process anatomical data for use within the simulation. Search terms included “temporal bone simulation, surgical simulation, temporal bone.” Articles were chosen and reviewed that directly addressed data acquisition and processing/segmentation and enhancement with emphasis given to computer based systems. We present the results from this review in relationship to our approach. Conclusions High-resolution CT imaging (≤100μm voxel resolution), along with unique image processing and rendering algorithms, and structure specific enhancement are needed for high-level training and assessment using temporal bone surgical simulators. Higher resolution clinical scanning and automated processes that run in efficient time frames are needed before these systems can routinely support pre-surgical planning. Additionally, protocols such as that provided in this manuscript need to be disseminated to increase the number and variety of virtual temporal bones available for training and performance assessment. PMID:26762105

  4. Uptake of 18F-DCFPyL in Paget's Disease of Bone, an Important Potential Pitfall in Clinical Interpretation of PSMA PET Studies.

    PubMed

    Rowe, Steven P; Deville, Curtiland; Paller, Channing; Cho, Steve Y; Fishman, Elliot K; Pomper, Martin G; Ross, Ashley E; Gorin, Michael A

    2015-12-01

    Prostate-specific membrane antigen (PSMA)-targeted PET imaging is an emerging technique for evaluating patients with prostate cancer (PCa) in a variety of clinical contexts. As with any new imaging modality, there are interpretive pitfalls that are beginning to be recognized. In this image report, we describe the findings in a 63-year-old male with biochemically recurrent PCa after radical prostatectomy who was imaged with 18 F-DCFPyL, a small molecule inhibitor of PSMA. Diffuse radiotracer uptake was noted throughout the sacrum, corresponding to imaging findings on contrast-enhanced CT, bone scan, and pelvic MRI consistent with Paget's disease of bone. The uptake of 18 F-DCFPyL in Paget's disease is most likely due to hyperemia and increased radiotracer delivery. In light of the overlap in patients affected by PCa and Paget's, it is important for nuclear medicine physicians and radiologists interpreting PSMA PET/CT scans to be aware of the potential for this diagnostic pitfall. Correlation to findings on conventional imaging such as diagnostic CT and bone scan can help confirm the diagnosis.

  5. Absence of bone sialoprotein (BSP) impairs cortical defect repair in mouse long bone.

    PubMed

    Malaval, Luc; Monfoulet, Laurent; Fabre, Thierry; Pothuaud, Laurent; Bareille, Reine; Miraux, Sylvain; Thiaudiere, Eric; Raffard, Gerard; Franconi, Jean-Michel; Lafage-Proust, Marie-Hélène; Aubin, Jane E; Vico, Laurence; Amédée, Joëlle

    2009-11-01

    Matrix proteins of the SIBLING family interact with bone cells and with bone mineral and are thus in a key position to regulate bone development, remodeling and repair. Within this family, bone sialoprotein (BSP) is highly expressed by osteoblasts, hypertrophic chondrocytes and osteoclasts. We recently reported that mice lacking BSP (BSP-/-) have very low trabecular bone turnover. In the present study, we set up an experimental model of bone repair by drilling a 1 mm diameter hole in the cortical bone of femurs in both BSP-/- and +/+ mice. A non-invasive MRI imaging and bone quantification procedure was designed to follow bone regeneration, and these data were extended by microCT imaging and histomorphometry on undecalcified sections for analysis at cellular level. These combined approaches revealed that the repair process as reflected in defect-refilling in the cortical area was significantly delayed in BSP-/- mice compared to +/+ mice. Concomitantly, histomorphometry showed that formation, mineralization and remodeling of repair (primary) bone in the medulla were delayed in BSP-/- mice, with lower osteoid and osteoclast surfaces at day 15. In conclusion, the absence of BSP delays bone repair at least in part by impairing both new bone formation and osteoclast activity.

  6. Monitoring Bacterial Burden, Inflammation and Bone Damage Longitudinally Using Optical and μCT Imaging in an Orthopaedic Implant Infection in Mice

    PubMed Central

    Niska, Jared A.; Meganck, Jeffrey A.; Pribaz, Jonathan R.; Shahbazian, Jonathan H.; Lim, Ed; Zhang, Ning; Rice, Brad W.; Akin, Ali; Ramos, Romela Irene; Bernthal, Nicholas M.; Francis, Kevin P.; Miller, Lloyd S.

    2012-01-01

    Background Recent advances in non-invasive optical, radiographic and μCT imaging provide an opportunity to monitor biological processes longitudinally in an anatomical context. One particularly relevant application for combining these modalities is to study orthopaedic implant infections. These infections are characterized by the formation of persistent bacterial biofilms on the implanted materials, causing inflammation, periprosthetic osteolysis, osteomyelitis, and bone damage, resulting in implant loosening and failure. Methodology/Principal Findings An orthopaedic implant infection model was used in which a titanium Kirshner-wire was surgically placed in femurs of LysEGFP mice, which possess EGFP-fluorescent neutrophils, and a bioluminescent S. aureus strain (Xen29; 1×103 CFUs) was inoculated in the knee joint before closure. In vivo bioluminescent, fluorescent, X-ray and μCT imaging were performed on various postoperative days. The bacterial bioluminescent signals of the S. aureus-infected mice peaked on day 19, before decreasing to a basal level of light, which remained measurable for the entire 48 day experiment. Neutrophil EGFP-fluorescent signals of the S. aureus-infected mice were statistically greater than uninfected mice on days 2 and 5, but afterwards the signals for both groups approached background levels of detection. To visualize the three-dimensional location of the bacterial infection and neutrophil infiltration, a diffuse optical tomography reconstruction algorithm was used to co-register the bioluminescent and fluorescent signals with μCT images. To quantify the anatomical bone changes on the μCT images, the outer bone volume of the distal femurs were measured using a semi-automated contour based segmentation process. The outer bone volume increased through day 48, indicating that bone damage continued during the implant infection. Conclusions/Significance Bioluminescent and fluorescent optical imaging was combined with X-ray and μCT imaging to provide noninvasive and longitudinal measurements of the dynamic changes in bacterial burden, neutrophil recruitment and bone damage in a mouse orthopaedic implant infection model. PMID:23082163

  7. Imaging Bone–Cartilage Interactions in Osteoarthritis Using [18F]-NaF PET-MRI

    PubMed Central

    Pedoia, Valentina; Seo, Youngho; Yang, Jaewon; Bucknor, Matt; Franc, Benjamin L.; Majumdar, Sharmila

    2016-01-01

    Purpose: Simultaneous positron emission tomography–magnetic resonance imaging (PET-MRI) is an emerging technology providing both anatomical and functional images without increasing the scan time. Compared to the traditional PET/computed tomography imaging, it also exposes the patient to significantly less radiation and provides better anatomical images as MRI provides superior soft tissue characterization. Using PET-MRI, we aim to study interactions between cartilage composition and bone function simultaneously, in knee osteoarthritis (OA). Procedures: In this article, bone turnover and remodeling was studied using [18F]-sodium fluoride (NaF) PET data. Quantitative MR-derived T1ρ relaxation times characterized the biochemical cartilage degeneration. Sixteen participants with early signs of OA of the knee received intravenous injections of [18F]-NaF at the onset of PET-MR image acquisition. Regions of interest were identified, and kinetic analysis of dynamic PET data provided the rate of uptake (Ki) and the normalized uptake (standardized uptake value) of [18F]-NaF in the bone. Morphological MR images and quantitative voxel-based T1ρ maps of cartilage were obtained using an atlas-based registration technique to segment cartilage automatically. Voxel-by-voxel statistical parameter mapping was used to investigate the relationship between bone and cartilage. Results: Increases in cartilage T1ρ, indicating degenerative changes, were associated with increased turnover in the adjoining bone but reduced turnover in the nonadjoining compartments. Associations between pain and increased bone uptake were seen in the absence of morphological lesions in cartilage, but the relationship was reversed in the presence of incident cartilage lesions. Conclusion: This study shows significant cartilage and bone interactions in OA of the knee joint using simultaneous [18F]-NaF PET-MR, the first in human study. These observations highlight the complex biomechanical and biochemical interactions in the whole knee joint in OA, which potentially could help assess therapeutic targets in treating OA. PMID:28654417

  8. Leg lengthening - series (image)

    MedlinePlus

    ... as Legg-Perthes disease Previous injuries or bone fractures that may stimulate excessive bone growth Abnormal spinal ... in the bone to be lengthened; usually the lower leg bone (tibia) or upper ... small steps, usually over the course of several months.

  9. Finite Element Analysis of Denosumab Treatment Effects on Vertebral Strength in Ovariectomized Cynomolgus Monkeys.

    PubMed

    Lee, David C; Varela, Aurore; Kostenuik, Paul J; Ominsky, Michael S; Keaveny, Tony M

    2016-08-01

    Finite element analysis has not yet been validated for measuring changes in whole-bone strength at the hip or spine in people after treatment with an osteoporosis agent. Toward that end, we assessed the ability of a clinically approved implementation of finite element analysis to correctly quantify treatment effects on vertebral strength, comparing against direct mechanical testing, in cynomolgus monkeys randomly assigned to one of three 16-month-long treatments: sham surgery with vehicle (Sham-Vehicle), ovariectomy with vehicle (OVX-Vehicle), or ovariectomy with denosumab (OVX-DMAb). After treatment, T12 vertebrae were retrieved, scanned with micro-CT, and mechanically tested to measure compressive strength. Blinded to the strength data and treatment codes, the micro-CT images were coarsened and homogenized to create continuum-type finite element models, without explicit porosity. With clinical translation in mind, these models were then analyzed for strength using the U.S. Food and Drug Administration (FDA)-cleared VirtuOst software application (O.N. Diagnostics, Berkeley, CA, USA), developed for analysis of human bones. We found that vertebral strength by finite element analysis was highly correlated (R(2)  = 0.97; n = 52) with mechanical testing, independent of treatment (p = 0.12). Further, the size of the treatment effect on strength (ratio of mean OVX-DMAb to mean OVX-Vehicle, as a percentage) was large and did not differ (p = 0.79) between mechanical testing (+57%; 95% CI [26%, 95%]) and finite element analysis (+51% [20%, 88%]). The micro-CT analysis revealed increases in cortical thickness (+45% [19%, 73%]) and trabecular bone volume fraction (+24% [8%, 42%]). These results show that a preestablished clinical finite element analysis implementation-developed for human bone and clinically validated in fracture-outcome studies-correctly quantified the observed treatment effects of denosumab on vertebral strength in cynomolgus monkeys. One implication is that the treatment effects in this study are well explained by the features contained within these finite element models, namely, the bone geometry and mass and the spatial distribution of bone mass. © 2016 American Society for Bone and Mineral Research. © 2016 American Society for Bone and Mineral Research.

  10. Quantitation of Bone Growth Rate Variability in Rats Exposed to Micro-(near zero G) and Macrogravity (2G)

    NASA Technical Reports Server (NTRS)

    Bromage, Timothy G.; Doty, Stephen B.; Smolyar, Igor; Holton, Emily

    1997-01-01

    Our stated primary objective is to quantify the growth rate variability of rat lamellar bone exposed to micro- (near zero G: e.g., Cosmos 1887 & 2044; SLS-1 & SLS-2) and macrogravity (2G). The primary significance of the proposed work is that an elegant method will be established that unequivocally characterizes the morphological consequences of gravitational factors on developing bone. The integrity of this objective depends upon our successful preparation of thin sections suitable for imaging individual bone lamellae, and our imaging and quantitation of growth rate variability in populations of lamellae from individual bone samples.

  11. Fully automated subchondral bone segmentation from knee MR images: Data from the Osteoarthritis Initiative.

    PubMed

    Gandhamal, Akash; Talbar, Sanjay; Gajre, Suhas; Razak, Ruslan; Hani, Ahmad Fadzil M; Kumar, Dileep

    2017-09-01

    Knee osteoarthritis (OA) progression can be monitored by measuring changes in the subchondral bone structure such as area and shape from MR images as an imaging biomarker. However, measurements of these minute changes are highly dependent on the accurate segmentation of bone tissue from MR images and it is challenging task due to the complex tissue structure and inadequate image contrast/brightness. In this paper, a fully automated method for segmenting subchondral bone from knee MR images is proposed. Here, the contrast of knee MR images is enhanced using a gray-level S-curve transformation followed by automatic seed point detection using a three-dimensional multi-edge overlapping technique. Successively, bone regions are initially extracted using distance-regularized level-set evolution followed by identification and correction of leakages along the bone boundary regions using a boundary displacement technique. The performance of the developed technique is evaluated against ground truths by measuring sensitivity, specificity, dice similarity coefficient (DSC), average surface distance (AvgD) and root mean square surface distance (RMSD). An average sensitivity (91.14%), specificity (99.12%) and DSC (90.28%) with 95% confidence interval (CI) in the range 89.74-92.54%, 98.93-99.31% and 88.68-91.88% respectively is achieved for the femur bone segmentation in 8 datasets. For tibia bone, average sensitivity (90.69%), specificity (99.65%) and DSC (91.35%) with 95% CI in the range 88.59-92.79%, 99.50-99.80% and 88.68-91.88% respectively is achieved. AvgD and RMSD values for femur are 1.43 ± 0.23 (mm) and 2.10 ± 0.35 (mm) respectively while for tibia, the values are 0.95 ± 0.28 (mm) and 1.30 ± 0.42 (mm) respectively that demonstrates acceptable error between proposed method and ground truths. In conclusion, results obtained in this work demonstrate substantially significant performance with consistency and robustness that led the proposed method to be applicable for large scale and longitudinal knee OA studies in clinical settings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Local plate/rod descriptors of 3D trabecular bone micro-CT images from medial axis topologic analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peyrin, Francoise; Attali, Dominique; Chappard, Christine

    Purpose: Trabecular bone microarchitecture is made of a complex network of plate and rod structures evolving with age and disease. The purpose of this article is to propose a new 3D local analysis method for the quantitative assessment of parameters related to the geometry of trabecular bone microarchitecture. Methods: The method is based on the topologic classification of the medial axis of the 3D image into branches, rods, and plates. Thanks to the reversibility of the medial axis, the classification is next extended to the whole 3D image. Finally, the percentages of rods and plates as well as their meanmore » thicknesses are calculated. The method was applied both to simulated test images and 3D micro-CT images of human trabecular bone. Results: The classification of simulated phantoms made of plates and rods shows that the maximum error in the quantitative percentages of plate and rods is less than 6% and smaller than with the structure model index (SMI). Micro-CT images of human femoral bone taken in osteoporosis and early or advanced osteoarthritis were analyzed. Despite the large physiological variability, the present method avoids the underestimation of rods observed with other local methods. The relative percentages of rods and plates were not significantly different between osteoarthritis and osteoporotic groups, whereas their absolute percentages were in relation to an increase of rod and plate thicknesses in advanced osteoarthritis with also higher relative and absolute number of nodes. Conclusions: The proposed method is model-independent, robust to surface irregularities, and enables geometrical characterization of not only skeletal structures but entire 3D images. Its application provided more accurate results than the standard SMI on simple simulated phantoms, but the discrepancy observed on the advanced osteoarthritis group raises questions that will require further investigations. The systematic use of such a local method in the characterization of trabecular bone samples could provide new insight in bone microarchitecture changes related to bone diseases or to those induced by drugs or therapy.« less

  13. Computer-aided design/computer-aided manufacturing skull base drill.

    PubMed

    Couldwell, William T; MacDonald, Joel D; Thomas, Charles L; Hansen, Bradley C; Lapalikar, Aniruddha; Thakkar, Bharat; Balaji, Alagar K

    2017-05-01

    The authors have developed a simple device for computer-aided design/computer-aided manufacturing (CAD-CAM) that uses an image-guided system to define a cutting tool path that is shared with a surgical machining system for drilling bone. Information from 2D images (obtained via CT and MRI) is transmitted to a processor that produces a 3D image. The processor generates code defining an optimized cutting tool path, which is sent to a surgical machining system that can drill the desired portion of bone. This tool has applications for bone removal in both cranial and spine neurosurgical approaches. Such applications have the potential to reduce surgical time and associated complications such as infection or blood loss. The device enables rapid removal of bone within 1 mm of vital structures. The validity of such a machining tool is exemplified in the rapid (< 3 minutes machining time) and accurate removal of bone for transtemporal (for example, translabyrinthine) approaches.

  14. Rhinoceros Feet Step Out of a Rule-of-Thumb: A Wildlife Imaging Pioneering Approach of Synchronized Computed Tomography-Digital Radiography

    PubMed Central

    Saragusty, Joseph; Göritz, Frank; Potier, Romain; Mulot, Baptiste; Maillot, Alexis; Etienne, Pascal; Bernardino, Rui; Fernandes, Teresa; Mews, Jurgen; Hildebrandt, Thomas Bernd

    2014-01-01

    Currently, radiography is the only imaging technique used to diagnose bone pathology in wild animals situated under “field conditions”. Nevertheless, while chronic foot disease in captive mega-herbivores is widely reported, foot radiographic imaging is confronted with scarcity of studies. Numerous hindrances lead to such limited numbers and it became very clear that the traditional perspective on bone imaging in domestic animals based on extensive studies and elaborated statistical evaluations cannot be extrapolated to their non-domestic relatives. For these reasons, the authors initiated a multi-modality imaging study and established a pioneering approach of synchronized computed tomography (CT) and digital radiography (DR), based on X-ray projections derived from three-dimensional CT reconstructed images. Whereas this approach can be applied in any clinical field, as a case of outstanding importance and great concern for zoological institutions, we selected foot bone pathologies in captive rhinoceroses to demonstrate the manifold applications of the method. Several advances were achieved, endowing the wildlife clinician with all-important tools: prototype DR exposure protocols and a modus operandi for foot positioning, advancing both traditional projections and, for the first-time, species-related radiographic views; assessment of radiographic diagnostic value for the whole foot and, in premiere, for each autopodial bone; together with additional insights into radiographic appearance of bone anatomy and pathology with a unique, simultaneous CT-DR correlation. Based on its main advantages in availing a wide range of keystone data in wildlife imaging from a limited number of examined subjects and combining advantages of CT as the golden standard method for bone diseases' diagnostic with DR's clinical feasibility under field conditions, synchronized CT-DR presents a new perspective on wildlife's health management. With this we hope to provide veterinary clinicians with concrete imaging techniques and substantial diagnostic tools, which facilitate straightforward attainment and interpretation of field radiography images taken worldwide. PMID:24963807

  15. Rhinoceros feet step out of a rule-of-thumb: a wildlife imaging pioneering approach of synchronized computed tomography-digital radiography.

    PubMed

    Galateanu, Gabriela; Hermes, Robert; Saragusty, Joseph; Göritz, Frank; Potier, Romain; Mulot, Baptiste; Maillot, Alexis; Etienne, Pascal; Bernardino, Rui; Fernandes, Teresa; Mews, Jurgen; Hildebrandt, Thomas Bernd

    2014-01-01

    Currently, radiography is the only imaging technique used to diagnose bone pathology in wild animals situated under "field conditions". Nevertheless, while chronic foot disease in captive mega-herbivores is widely reported, foot radiographic imaging is confronted with scarcity of studies. Numerous hindrances lead to such limited numbers and it became very clear that the traditional perspective on bone imaging in domestic animals based on extensive studies and elaborated statistical evaluations cannot be extrapolated to their non-domestic relatives. For these reasons, the authors initiated a multi-modality imaging study and established a pioneering approach of synchronized computed tomography (CT) and digital radiography (DR), based on X-ray projections derived from three-dimensional CT reconstructed images. Whereas this approach can be applied in any clinical field, as a case of outstanding importance and great concern for zoological institutions, we selected foot bone pathologies in captive rhinoceroses to demonstrate the manifold applications of the method. Several advances were achieved, endowing the wildlife clinician with all-important tools: prototype DR exposure protocols and a modus operandi for foot positioning, advancing both traditional projections and, for the first-time, species-related radiographic views; assessment of radiographic diagnostic value for the whole foot and, in premiere, for each autopodial bone; together with additional insights into radiographic appearance of bone anatomy and pathology with a unique, simultaneous CT-DR correlation. Based on its main advantages in availing a wide range of keystone data in wildlife imaging from a limited number of examined subjects and combining advantages of CT as the golden standard method for bone diseases' diagnostic with DR's clinical feasibility under field conditions, synchronized CT-DR presents a new perspective on wildlife's health management. With this we hope to provide veterinary clinicians with concrete imaging techniques and substantial diagnostic tools, which facilitate straightforward attainment and interpretation of field radiography images taken worldwide.

  16. Zero TE-based pseudo-CT image conversion in the head and its application in PET/MR attenuation correction and MR-guided radiation therapy planning.

    PubMed

    Wiesinger, Florian; Bylund, Mikael; Yang, Jaewon; Kaushik, Sandeep; Shanbhag, Dattesh; Ahn, Sangtae; Jonsson, Joakim H; Lundman, Josef A; Hope, Thomas; Nyholm, Tufve; Larson, Peder; Cozzini, Cristina

    2018-02-18

    To describe a method for converting Zero TE (ZTE) MR images into X-ray attenuation information in the form of pseudo-CT images and demonstrate its performance for (1) attenuation correction (AC) in PET/MR and (2) dose planning in MR-guided radiation therapy planning (RTP). Proton density-weighted ZTE images were acquired as input for MR-based pseudo-CT conversion, providing (1) efficient capture of short-lived bone signals, (2) flat soft-tissue contrast, and (3) fast and robust 3D MR imaging. After bias correction and normalization, the images were segmented into bone, soft-tissue, and air by means of thresholding and morphological refinements. Fixed Hounsfield replacement values were assigned for air (-1000 HU) and soft-tissue (+42 HU), whereas continuous linear mapping was used for bone. The obtained ZTE-derived pseudo-CT images accurately resembled the true CT images (i.e., Dice coefficient for bone overlap of 0.73 ± 0.08 and mean absolute error of 123 ± 25 HU evaluated over the whole head, including errors from residual registration mismatches in the neck and mouth regions). The linear bone mapping accounted for bone density variations. Averaged across five patients, ZTE-based AC demonstrated a PET error of -0.04 ± 1.68% relative to CT-based AC. Similarly, for RTP assessed in eight patients, the absolute dose difference over the target volume was found to be 0.23 ± 0.42%. The described method enables MR to pseudo-CT image conversion for the head in an accurate, robust, and fast manner without relying on anatomical prior knowledge. Potential applications include PET/MR-AC, and MR-guided RTP. © 2018 International Society for Magnetic Resonance in Medicine.

  17. MR imaging of the pelvis: a guide to incidental musculoskeletal findings for abdominal radiologists.

    PubMed

    Gaetke-Udager, Kara; Girish, Gandikota; Kaza, Ravi K; Jacobson, Jon; Fessell, David; Morag, Yoav; Jamadar, David

    2014-08-01

    Occasionally patients who undergo magnetic resonance imaging for presumed pelvic disease demonstrate unexpected musculoskeletal imaging findings in the imaged field. Such incidental findings can be challenging to the abdominal radiologist, who may not be familiar with their appearance or know the appropriate diagnostic considerations. Findings can include both normal and abnormal bone marrow, osseous abnormalities such as Paget's disease, avascular necrosis, osteomyelitis, stress and insufficiency fractures, and athletic pubalgia, benign neoplasms such as enchondroma and bone island, malignant processes such as metastasis and chondrosarcoma, soft tissue processes such as abscess, nerve-related tumors, and chordoma, joint- and bursal-related processes such as sacroiliitis, iliopsoas bursitis, greater trochanteric pain syndrome, and labral tears, and iatrogenic processes such as bone graft or bone biopsy. Though not all-encompassing, this essay will help abdominal radiologists to identify and describe this variety of pelvic musculoskeletal conditions, understand key radiologic findings, and synthesize a differential diagnosis when appropriate.

  18. Bone marrow cavity segmentation using graph-cuts with wavelet-based texture feature.

    PubMed

    Shigeta, Hironori; Mashita, Tomohiro; Kikuta, Junichi; Seno, Shigeto; Takemura, Haruo; Ishii, Masaru; Matsuda, Hideo

    2017-10-01

    Emerging bioimaging technologies enable us to capture various dynamic cellular activities [Formula: see text]. As large amounts of data are obtained these days and it is becoming unrealistic to manually process massive number of images, automatic analysis methods are required. One of the issues for automatic image segmentation is that image-taking conditions are variable. Thus, commonly, many manual inputs are required according to each image. In this paper, we propose a bone marrow cavity (BMC) segmentation method for bone images as BMC is considered to be related to the mechanism of bone remodeling, osteoporosis, and so on. To reduce manual inputs to segment BMC, we classified the texture pattern using wavelet transformation and support vector machine. We also integrated the result of texture pattern classification into the graph-cuts-based image segmentation method because texture analysis does not consider spatial continuity. Our method is applicable to a particular frame in an image sequence in which the condition of fluorescent material is variable. In the experiment, we evaluated our method with nine types of mother wavelets and several sets of scale parameters. The proposed method with graph-cuts and texture pattern classification performs well without manual inputs by a user.

  19. [Clinical, pathological and imaging features of primary pelvic Ewing's sarcoma].

    PubMed

    Liu, J; Chen, Y; Ling, X L; Gong, Y; Ding, J P; Zhang, Z K; Wang, Y J

    2016-07-19

    To explore the clinical, pathological and imaging features of Ewing's sarcoma in pelvis and to improve knowledge and diagnosis of the disease. A retrospective analysis of the clinical, pathological and imaging data of pathologically confirmed 13 cases of Ewing's sarcoma in pelvis was carried out between May 2008 and March 2016 in the Affiliated Hospital of Hangzhou Normal University, the Third Hospital of Hebei Medical University and the Second Hospital of Hebei Medical University. The median age 13 cases of pelvic primary Ewing's sarcoma was 17 years old.The X-ray and CT imagings showed osteolytic and mixed bone destruction, CT showed mixed type in 10 cases, 8 cases of bone tumors as a flocculent, 10 cases of bone expansion failure, 10 cases of periosteal reaction, the layered 5 cases, radial in 5 cases.Thirteen cases showed soft tissue mass, soft tissue mass was equal or slightly lower density.Four cases showed heterogeneous contrast enhancement.The lesions showed low signal in T1WI and mixed high signal in T2WI of magnetic resonance imaging(MRI). The boundary of the lesions were obscure, and 5 cases had patchy necrosis area, and 9 cases had incomplete false capsule, surrounding soft tissue was violated.Four cases showed heterogeneous contrast enhancement after MRI enhancement scan. The age of onset of Ewing's sarcoma of the pelvis is more concentrated in about 15 years.The imaging feaures are mixed bone destruction and more bone is swelling and permeability damage, soft tissue mass is larger, bone tumor is cloudy or acicular, periosteal reaction in a layered and radial, most cases show that the false envelope is not complete.Combined with clinical and imaging examination, the diagnosis of the disease can be made.

  20. Structural scene analysis and content-based image retrieval applied to bone age assessment

    NASA Astrophysics Data System (ADS)

    Fischer, Benedikt; Brosig, André; Deserno, Thomas M.; Ott, Bastian; Günther, Rolf W.

    2009-02-01

    Radiological bone age assessment is based on global or local image regions of interest (ROI), such as epiphyseal regions or the area of carpal bones. Usually, these regions are compared to a standardized reference and a score determining the skeletal maturity is calculated. For computer-assisted diagnosis, automatic ROI extraction is done so far by heuristic approaches. In this work, we apply a high-level approach of scene analysis for knowledge-based ROI segmentation. Based on a set of 100 reference images from the IRMA database, a so called structural prototype (SP) is trained. In this graph-based structure, the 14 phalanges and 5 metacarpal bones are represented by nodes, with associated location, shape, as well as texture parameters modeled by Gaussians. Accordingly, the Gaussians describing the relative positions, relative orientation, and other relative parameters between two nodes are associated to the edges. Thereafter, segmentation of a hand radiograph is done in several steps: (i) a multi-scale region merging scheme is applied to extract visually prominent regions; (ii) a graph/sub-graph matching to the SP robustly identifies a subset of the 19 bones; (iii) the SP is registered to the current image for complete scene-reconstruction (iv) the epiphyseal regions are extracted from the reconstructed scene. The evaluation is based on 137 images of Caucasian males from the USC hand atlas. Overall, an error rate of 32% is achieved, for the 6 middle distal and medial/distal epiphyses, 23% of all extractions need adjustments. On average 9.58 of the 14 epiphyseal regions were extracted successfully per image. This is promising for further use in content-based image retrieval (CBIR) and CBIR-based automatic bone age assessment.

  1. The value of multimodality imaging in the investigation of a PSA recurrence after radical prostatectomy in the Irish hospital setting.

    PubMed

    McLoughlin, L C; Inder, S; Moran, D; O'Rourke, C; Manecksha, R P; Lynch, T H

    2018-02-01

    The diagnostic evaluation of a PSA recurrence after RP in the Irish hospital setting involves multimodality imaging with MRI, CT, and bone scanning, despite the low diagnostic yield from imaging at low PSA levels. We aim to investigate the value of multimodality imaging in PC patients after RP with a PSA recurrence. Forty-eight patients with a PSA recurrence after RP who underwent multimodality imaging were evaluated. Demographic data, postoperative PSA levels, and imaging studies performed at those levels were evaluated. Eight (21%) MRIs, 6 (33%) CTs, and 4 (9%) bone scans had PCa-specific findings. Three (12%) patients had a positive MRI with a PSA <1.0 ng/ml, while 5 (56%) were positive at PSA ≥1.1 ng/ml (p = 0.05). Zero patient had a positive CT TAP at a PSA level <1.0 ng/ml, while 5 (56%) were positive at levels ≥1.1 ng/ml (p = 0.03). Zero patient had a positive bone at PSA levels <1.0 ng/ml, while 4 (27%) were positive at levels ≥1.1 ng/ml (p = 0.01). The diagnostic yield from multimodality imaging, and isotope bone scanning in particular, in PSA levels <1.0 ng/ml, is low. There is a statistically significant increase in the frequency of positive findings on CT and bone scanning at PSA levels ≥1.1 ng/ml. MRI alone is of investigative value at PSA <1.0 ng/ml. The indication for CT, MRI, or isotope bone scanning should be carefully correlated with the clinical question and how it will affect further management.

  2. SU-E-J-248: Comparative Study of Two Image Registration for Image-Guided Radiation Therapy in Esophageal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shang, K; Wang, J; Liu, D

    2014-06-01

    Purpose: Image-guided radiation therapy (IGRT) is one of the major treatment of esophageal cancer. Gray value registration and bone registration are two kinds of image registration, the purpose of this work is to compare which one is more suitable for esophageal cancer patients. Methods: Twenty three esophageal patients were treated by Elekta Synergy, CBCT images were acquired and automatically registered to planning kilovoltage CT scans according to gray value or bone registration. The setup errors were measured in the X, Y and Z axis, respectively. Two kinds of setup errors were analysed by matching T test statistical method. Results: Fourmore » hundred and five groups of CBCT images were available and the systematic and random setup errors (cm) in X, Y, Z directions were 0.35, 0.63, 0.29 and 0.31, 0.53, 0.21 with gray value registration, while 0.37, 0.64, 0.26 and 0.32, 0.55, 0.20 with bone registration, respectively. Compared with bone registration and gray value registration, the setup errors in X and Z axis have significant differences. In Y axis, both measurement comparison results of T value is 0.256 (P value > 0.05); In X axis, the T value is 5.287(P value < 0.05); In Z axis, the T value is −5.138 (P value < 0.05). Conclusion: Gray value registration is recommended in image-guided radiotherapy for esophageal cancer and the other thoracic tumors. Manual registration could be applied when it is necessary. Bone registration is more suitable for the head tumor and pelvic tumor department where composed of redundant interconnected and immobile bone tissue.« less

  3. Blood-pool SPECT in addition to bone SPECT in the viability assessment in mandibular reconstruction.

    PubMed

    Aydogan, F; Akbay, E; Cevik, C; Kalender, E

    2014-01-01

    The assessment of the postoperative viability of vascularized and non-vascularized grafts used in the reconstruction of mandibular defects due to trauma and surgical reasons is a major problem in maxillofacial surgery. In the present study, we evaluated the feasibility and image quality of blood-pool SPECT, which is used for the first time in the literature here in the assessment of mandibular reconstruction, in addition to non-invasive bone scintigraphy and bone SPECT. We also evaluated whether it would be useful in clinical prediction. Micro-vascularized and non-vascularized bone grafts were used in 12 Syrian men with maxillofacial trauma. Between days 5-7 after surgery, three-phase bone scintigraphy, blood-pool SPECT and delayed bone SPECT scans were performed. After month 6, the patients were assessed by control CT scans. Of the non-vascularized grafts, one graft was reported as non-viable at week one. At month 6, graft resorption was demonstrated on the CT images. The remaining non-vascularized grafts and all of the micro-vascularized grafts were considered to be viable according to delayed bone SPECT and blood-pool SPECT images. However, only the anterior and posterior ends could be clearly assessed on delayed SPECT images, while blood-pool SPECT images allowed the clear assessment of the entire graft. The combined use of blood-pool and delayed SPECT scans could allow for better assessment of graft viability in the early period, and can provide more detailed information to clinicians about prognosis in the follow-up of patients undergoing mandibular graft reconstruction.

  4. Autologous bone marrow purging with LAK cells.

    PubMed

    Giuliodori, L; Moretti, L; Stramigioli, S; Luchetti, F; Annibali, G M; Baldi, A

    1993-12-01

    In this study we will demonstrate that LAK cells, in vitro, can lyse hematologic neoplastic cells with a minor toxicity of the staminal autologous marrow cells. In fact, after bone marrow and LAK co-culture at a ratio of 1/1 for 8 hours, the inhibition on the GEMM colonies resulted to be 20% less compared to the untreated marrow. These data made LAK an inviting agent for marrow purging in autologous bone marrow transplantation.

  5. Tibial stress changes in new combat recruits for special forces: patterns and timing at MR imaging.

    PubMed

    Hadid, Amir; Moran, Daniel S; Evans, Rachel K; Fuks, Yael; Schweitzer, Mark E; Shabshin, Nogah

    2014-11-01

    To characterize the incidence, location, grade, and patterns of magnetic resonance (MR) imaging findings in the tibia in asymptomatic recruits before and after 4-month basic training and to investigate whether MR imaging parameters correlated with pretraining activity levels or with future symptomatic injury. This study was approved by three institutional review boards and was conducted in compliance with HIPAA requirements. Volunteers were included in the study after they signed informed consent forms. MR imaging of the tibia of 55 men entering the Israeli Special Forces was performed on recruitment day and after basic training. Ten recruits who did not perform vigorous self-training prior to and during service served as control subjects. MR imaging studies in all recruits were evaluated for presence, type, length, and location of bone stress changes in the tibia. Anthropometric measurements and activity history data were collected. Relationships between bone stress changes, physical activity, and clinical findings and between lesion size and progression were analyzed. Bone stress changes were seen in 35 of 55 recruits (in 26 recruits at time 0 and in nine recruits after basic training). Most bone stress changes consisted of endosteal marrow edema. Approximately 50% of bone stress changes occurred between the middle and distal thirds of the tibia. Lesion size at time 0 had significant correlation with progression. All endosteal findings smaller than 100 mm resolved or did not change, while most findings larger than 100 mm progressed. Of 10 control subjects, one had bone stress changes at time 0, and one had bone stress changes at 4 months. Most tibial bone stress changes occurred before basic training, were usually endosteal, occurred between the middle and distal thirds of the tibia, were smaller than 100 mm, and did not progress. These findings are presumed to represent normal bone remodeling.

  6. Ultrasound Contrast Agents

    NASA Astrophysics Data System (ADS)

    Cachard, Christian; Basset, Olivier

    While the use of contrast agents in other imaging modalities (X ray, MRI, PET, …) has been routinely accepted for many years, the development and commercialization of contrast agents designed specifically for ultrasound imaging has occurred only very recently. As in the other imaging modalities, the injection of contrast agents during an ultrasound examination is intended to facilitate the detection and diagnosis of specific pathologies. Contrast agents efficiency is based on the backscattering of ultrasound by microbubbles. These microparticules are intravenously injected in the blood flow. After an introduction and generalities on ultrasound contrast agents (UCA) the microbubble physics in an acoustic field will be developed. Second, physics characteristics of contrast agents will be compared (bubbles with or without shell, gas nature, size distribution). Influence of acoustic pressure on the behaviour of the microparticules (linear, non linear and destruction) will be discussed. Finally, a review of specific imaging adapted to contrast agent properties as harmonic imaging, pulse inversion imaging will be presented.

  7. Intelligent Design of Nano-Scale Molecular Imaging Agents

    PubMed Central

    Kim, Sung Bae; Hattori, Mitsuru; Ozawa, Takeaki

    2012-01-01

    Visual representation and quantification of biological processes at the cellular and subcellular levels within living subjects are gaining great interest in life science to address frontier issues in pathology and physiology. As intact living subjects do not emit any optical signature, visual representation usually exploits nano-scale imaging agents as the source of image contrast. Many imaging agents have been developed for this purpose, some of which exert nonspecific, passive, and physical interaction with a target. Current research interest in molecular imaging has mainly shifted to fabrication of smartly integrated, specific, and versatile agents that emit fluorescence or luminescence as an optical readout. These agents include luminescent quantum dots (QDs), biofunctional antibodies, and multifunctional nanoparticles. Furthermore, genetically encoded nano-imaging agents embedding fluorescent proteins or luciferases are now gaining popularity. These agents are generated by integrative design of the components, such as luciferase, flexible linker, and receptor to exert a specific on–off switching in the complex context of living subjects. In the present review, we provide an overview of the basic concepts, smart design, and practical contribution of recent nano-scale imaging agents, especially with respect to genetically encoded imaging agents. PMID:23235326

  8. Intelligent design of nano-scale molecular imaging agents.

    PubMed

    Kim, Sung Bae; Hattori, Mitsuru; Ozawa, Takeaki

    2012-12-12

    Visual representation and quantification of biological processes at the cellular and subcellular levels within living subjects are gaining great interest in life science to address frontier issues in pathology and physiology. As intact living subjects do not emit any optical signature, visual representation usually exploits nano-scale imaging agents as the source of image contrast. Many imaging agents have been developed for this purpose, some of which exert nonspecific, passive, and physical interaction with a target. Current research interest in molecular imaging has mainly shifted to fabrication of smartly integrated, specific, and versatile agents that emit fluorescence or luminescence as an optical readout. These agents include luminescent quantum dots (QDs), biofunctional antibodies, and multifunctional nanoparticles. Furthermore, genetically encoded nano-imaging agents embedding fluorescent proteins or luciferases are now gaining popularity. These agents are generated by integrative design of the components, such as luciferase, flexible linker, and receptor to exert a specific on-off switching in the complex context of living subjects. In the present review, we provide an overview of the basic concepts, smart design, and practical contribution of recent nano-scale imaging agents, especially with respect to genetically encoded imaging agents.

  9. Pulse compression favourable aperiodic infrared imaging approach for non-destructive testing and evaluation of bio-materials

    NASA Astrophysics Data System (ADS)

    Mulaveesala, Ravibabu; Dua, Geetika; Arora, Vanita; Siddiqui, Juned A.; Muniyappa, Amarnath

    2017-05-01

    In recent years, aperiodic, transient pulse compression favourable infrared imaging methodologies demonstrated as reliable, quantitative, remote characterization and evaluation techniques for testing and evaluation of various biomaterials. This present work demonstrates a pulse compression favourable aperiodic thermal wave imaging technique, frequency modulated thermal wave imaging technique for bone diagnostics, especially by considering the bone with tissue, skin and muscle over layers. In order to find the capabilities of the proposed frequency modulated thermal wave imaging technique to detect the density variations in a multi layered skin-fat-muscle-bone structure, finite element modeling and simulation studies have been carried out. Further, frequency and time domain post processing approaches have been adopted on the temporal temperature data in order to improve the detection capabilities of frequency modulated thermal wave imaging.

  10. Optimizing Bone Health in Duchenne Muscular Dystrophy.

    PubMed

    Buckner, Jason L; Bowden, Sasigarn A; Mahan, John D

    2015-01-01

    Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder characterized by progressive muscle weakness, with eventual loss of ambulation and premature death. The approved therapy with corticosteroids improves muscle strength, prolongs ambulation, and maintains pulmonary function. However, the osteoporotic impact of chronic corticosteroid use further impairs the underlying reduced bone mass seen in DMD, leading to increased fragility fractures of long bones and vertebrae. These serious sequelae adversely affect quality of life and can impact survival. The current clinical issues relating to bone health and bone health screening methods in DMD are presented in this review. Diagnostic studies, including biochemical markers of bone turnover and bone mineral density by dual energy X-ray absorptiometry (DXA), as well as spinal imaging using densitometric lateral spinal imaging, and treatment to optimize bone health in patients with DMD are discussed. Treatment with bisphosphonates offers a method to increase bone mass in these children; oral and intravenous bisphosphonates have been used successfully although treatment is typically reserved for children with fractures and/or bone pain with low bone mass by DXA.

  11. Towards optical brain imaging: getting light through a bone

    NASA Astrophysics Data System (ADS)

    Thompson, J. V.; Hokr, B. H.; Nodurft, D. T.; Yakovlev, V. V.

    2018-06-01

    Optical imaging and detection in biological samples is severely limited by scattering effects. In particular, optical techniques for measuring conditions beneath the skull and within the bone marrow hold significant promise when it comes to speed, sensitivity and specificity. However, the strong optical scattering due to bone hinders the realization of these methods. In this article, we propose a technique to enhance the transmittance of light through bone. This is achieved by injecting light below the top surface of the bone and utilizing multiple scattering to increase transmittance. This technique suggests that enhancements of 2-6 times may be realized by injection of light 1 mm below the surface of the bone. By enhancing the transmittance of light through bone, we will greatly improve our ability to utilize optical methods to better understand and diagnose conditions within biological media.

  12. [Therapeutic agents for disorders of bone and calcium metabolism--Parathyroid hormone in weekly subcutaneous injection].

    PubMed

    Uzawa, Toyonobu

    2007-01-01

    The parathyroid hormone (PTH) that is marketed outside Japan is for daily administration. It has been proven to increase bone mass and prevent fractures, and the effects are very strong. However, data suggest that daily administration of PTH increases bone resorption. By contrast, weekly administration of PTH, which is being developed in Japan, actually decreases bone resorption, and data suggest that this regimen maintains a good balance between bone formation (predominant) and bone resorption. Furthermore, it has been reported that weekly administration of PTH increases bone mass as much as every day administration of PTH, and as such, weekly administration of PTH has the potential to be a useful regimen with characteristics that are different from those of daily administration of PTH.

  13. A survey of the images used on the Arthritis Research UK (ARUK) Osteomalacia Mind-Map in relation to cultural background.

    PubMed

    Walker, David; Robinson, Sandra; Jagatsinh, Yogen; Adebajo, Ade; Helliwell, Philip; Rahman, Anisur

    2011-06-01

    To explore the appropriateness of the images in the Arthritis Research UK Mind-Map for Osteomalacia with people for whom it was intended (Bengali; Gujarati; Hindi; Punjabi and Urdu). Participants were identified in a convenient sample from contacts within their communities. They were asked to comment on the images for meaning, suitability and offence to people from their culture. A total of 56 people were surveyed. Appropriateness responses were either generic: Images of bone metabolism were confusing [31/56]; muscle weakness "looked like knee pain" [16/56]; a bending and cracking bone "looked like a dog's bone" [22/56] and that the bone pain man "looked like he had toothache" [21/56]; or culture-specific the depiction of food and the Burqa as below. Only 3 images caused any offence, phrased as "may offend someone". The Burqa was described as stereotyping. The images on the current Osteomalacia Mind-Map are largely appropriate and have little capacity to offend. Some may be improved upon in terms of conveying meaning. One set of images can suit all of the cultures. Images can cross cultural barriers. The revised Mind-Map should be more useful in conveying meaning to a wider selection of patients.

  14. Skeletal dosimetry based on µCT images of trabecular bone: update and comparisons

    NASA Astrophysics Data System (ADS)

    Kramer, R.; Cassola, V. F.; Vieira, J. W.; Khoury, H. J.; de Oliveira Lira, C. A. B.; Robson Brown, K.

    2012-06-01

    Two skeletal dosimetry methods using µCT images of human bone have recently been developed: the paired-image radiation transport (PIRT) model introduced by researchers at the University of Florida (UF) in the US and the systematic-periodic cluster (SPC) method developed by researchers at the Federal University of Pernambuco in Brazil. Both methods use µCT images of trabecular bone (TB) to model spongiosa regions of human bones containing marrow cavities segmented into soft tissue volumes of active marrow (AM), trabecular inactive marrow and the bone endosteum (BE), which is a 50 µm thick layer of marrow on all TB surfaces and on cortical bone surfaces next to TB as well as inside the medullary cavities. With respect to the radiation absorbed dose, the AM and the BE are sensitive soft tissues for the induction of leukaemia and bone cancer, respectively. The two methods differ mainly with respect to the number of bone sites and the size of the µCT images used in Monte Carlo calculations and they apply different methods to simulate exposure from radiation sources located outside the skeleton. The PIRT method calculates dosimetric quantities in isolated human bones while the SPC method uses human bones embedded in the body of a phantom which contains all relevant organs and soft tissues. Consequently, the SPC method calculates absorbed dose to the AM and to the BE from particles emitted by radionuclides concentrated in organs or from radiation sources located outside the human body in one calculation step. In order to allow for similar calculations of AM and BE absorbed doses using the PIRT method, the so-called dose response functions (DRFs) have been developed based on absorbed fractions (AFs) of energy for electrons isotropically emitted in skeletal tissues. The DRFs can be used to transform the photon fluence in homogeneous spongiosa regions into absorbed dose to AM and BE. This paper will compare AM and BE AFs of energy from electrons emitted in skeletal tissues calculated with the SPC and the PIRT method and AM and BE absorbed doses and AFs calculated with PIRT-based DRFs and with the SPC method. The results calculated with the two skeletal dosimetry methods agree well if one takes the differences between the two models properly into account. Additionally, the SPC method will be updated with larger µCT images of TB.

  15. A computer-aided system for automatic extraction of femur neck trabecular bone architecture using isotropic volume construction from clinical hip computed tomography images.

    PubMed

    Vivekanandhan, Sapthagirivasan; Subramaniam, Janarthanam; Mariamichael, Anburajan

    2016-10-01

    Hip fractures due to osteoporosis are increasing progressively across the globe. It is also difficult for those fractured patients to undergo dual-energy X-ray absorptiometry scans due to its complicated protocol and its associated cost. The utilisation of computed tomography for the fracture treatment has become common in the clinical practice. It would be helpful for orthopaedic clinicians, if they could get some additional information related to bone strength for better treatment planning. The aim of our study was to develop an automated system to segment the femoral neck region, extract the cortical and trabecular bone parameters, and assess the bone strength using an isotropic volume construction from clinical computed tomography images. The right hip computed tomography and right femur dual-energy X-ray absorptiometry measurements were taken from 50 south-Indian females aged 30-80 years. Each computed tomography image volume was re-constructed to form isotropic volumes. An automated system by incorporating active contour models was used to segment the neck region. A minimum distance boundary method was applied to isolate the cortical and trabecular bone components. The trabecular bone was enhanced and segmented using trabecular enrichment approach. The cortical and trabecular bone features were extracted and statistically compared with dual-energy X-ray absorptiometry measured femur neck bone mineral density. The extracted bone measures demonstrated a significant correlation with neck bone mineral density (r > 0.7, p < 0.001). The inclusion of cortical measures, along with the trabecular measures extracted after isotropic volume construction and trabecular enrichment approach procedures, resulted in better estimation of bone strength. The findings suggest that the proposed system using the clinical computed tomography images scanned with low dose could eventually be helpful in osteoporosis diagnosis and its treatment planning. © IMechE 2016.

  16. Dedicated computer system AOTK for image processing and analysis of horse navicular bone

    NASA Astrophysics Data System (ADS)

    Zaborowicz, M.; Fojud, A.; Koszela, K.; Mueller, W.; Górna, K.; Okoń, P.; Piekarska-Boniecka, H.

    2017-07-01

    The aim of the research was made the dedicated application AOTK (pol. Analiza Obrazu Trzeszczki Kopytowej) for image processing and analysis of horse navicular bone. The application was produced by using specialized software like Visual Studio 2013 and the .NET platform. To implement algorithms of image processing and analysis were used libraries of Aforge.NET. Implemented algorithms enabling accurate extraction of the characteristics of navicular bones and saving data to external files. Implemented in AOTK modules allowing the calculations of distance selected by user, preliminary assessment of conservation of structure of the examined objects. The application interface is designed in a way that ensures user the best possible view of the analyzed images.

  17. The synergistic effects of Chinese herb and injectable calcium silicate/β-tricalcium phosphate composite on an osteogenic accelerator in vitro.

    PubMed

    Huang, Ming-Hsien; Kao, Chia-Tze; Chen, Yi-Wen; Hsu, Tuan-Ti; Shieh, Den-En; Huang, Tsui-Hsien; Shie, Ming-You

    2015-04-01

    This study investigates the physicochemical and biological effects of traditional Chinese medicines on the β-tricalcium phosphate (β-TCP)/calcium silicate (CS) composites of bone cells using human dental pulp cell. CS is an osteoconductive and bioactive material. For this research we have combined β-TCP and CS and check its effectiveness, a series of β-TCP/CS composites with different ratios of Xu Duan (XD) were prepared to make new bioactive and biodegradable biocomposites for bone repair. XD has been used in Traditional Chinese Medicine for hundreds of years as an antiosteoporosis, tonic and antiaging agent for the therapy of low back pain, traumatic hematoma, threatened abortion and bone fractures. Formation of bone-like apatite, the diametral tensile strength, and weight loss of composites were considered before and after immersion in simulated body fluid (SBF). In addition, we also examined the effects of XD released from β-TCP/CS composites and in vitro human dental pulp cell (hDPCs) and studied its behavior. The results show the XD-contained paste did not give any demixing when the weight ratio of XD increased to 5-10 % due to the filter-pressing effect during extrusion through the syringe. After immersion in SBF, the microstructure image showed a dense bone-like apatite layer covered on the β-TCP/CS/XD composites. In vitro cell experiments shows that the XD-rich composites promote human dental pulp cells (hDPCs) proliferation and differentiation. However, when the XD quantity in the composite is more than 5 %, the amount of cells and osteogenesis protein of hDPCs were stimulated by XD released from β-TCP/CS composites. The combination of XD in degradation of β-TCP and osteogenesis of CS gives strong reason to believe that these calcium-based composite cements may prove to be promising bone repair materials.

  18. Modulation of O6-alkylating agent induced clastogenicity by enhanced DNA repair capacity of bone marrow cells.

    PubMed

    Chinnasamy, N; Fairbairn, L J; Laher, J; Willington, M A; Rafferty, J A

    1998-08-07

    The murine bone marrow micronucleus assay has been used to examine (1) the potentiation of fotemustine and streptozotocin induced-clastogenicity by the O6-alkylguanine-DNA alkyltransferase (ATase) inactivator O6-benzylguanine (O6-beG) and (2) the level of protection afforded against this potentiation by retrovirus-mediated expression of an O6-beG-resistant mutant of human ATase (haTPA/GA) in mouse bone marrow. Both fotemustine and streptozotocin induced significantly higher levels of micronucleated polychromatic erythrocytes (p < 0.001 for the highest doses studied) compared to those seen in vehicle-treated animals. The number of micronuclei produced by either agent was dramatically elevated by pretreatment with O6-beG (p < 0.001). Furthermore, in myeloablated mice reconstituted with bone marrow expressing the O6-beG-resistant hATPA/GA as a result of retroviral gene transfer, the frequency of micronucleus formation following exposure of mice to otherwise clastogenic doses of fotemustine or streptozotocin, in the presence of O6-beG, wash highly significantly reduced (p < 0.001 for both agents) relative to that in mock transduced controls. These data clearly implicate O6-chloroethyl- and O6-methylguanine as clastogenic lesions in vivo and establish ATase as a major protective mechanism operating to reduce the frequency of such damage. The potentiation of drug induced clastogenicity by O6-beG suggests that the clinical use of this inactivator in combination with O6-alkylating agents, could substantially increase the risk of therapy related malignancy. Nevertheless the use of hATPA/GA as a protective mechanism via gene therapy may overcome this risk.

  19. Segmentation of bone and soft tissue regions in digital radiographic images of extremities

    NASA Astrophysics Data System (ADS)

    Pakin, S. Kubilay; Gaborski, Roger S.; Barski, Lori L.; Foos, David H.; Parker, Kevin J.

    2001-07-01

    This paper presents an algorithm for segmentation of computed radiography (CR) images of extremities into bone and soft tissue regions. The algorithm is a region-based one in which the regions are constructed using a growing procedure with two different statistical tests. Following the growing process, tissue classification procedure is employed. The purpose of the classification is to label each region as either bone or soft tissue. This binary classification goal is achieved by using a voting procedure that consists of clustering of regions in each neighborhood system into two classes. The voting procedure provides a crucial compromise between local and global analysis of the image, which is necessary due to strong exposure variations seen on the imaging plate. Also, the existence of regions whose size is large enough such that exposure variations can be observed through them makes it necessary to use overlapping blocks during the classification. After the classification step, resulting bone and soft tissue regions are refined by fitting a 2nd order surface to each tissue, and reevaluating the label of each region according to the distance between the region and surfaces. The performance of the algorithm is tested on a variety of extremity images using manually segmented images as gold standard. The experiments showed that our algorithm provided a bone boundary with an average area overlap of 90% compared to the gold standard.

  20. Biodistribution of fracture-targeted GSK3β inhibitor-loaded micelles for improved fracture healing

    PubMed Central

    Low, Stewart A.; Galliford, Chris V.; Yang, Jiyuan; Low, Philip S.; Kopeček, Jindřich

    2016-01-01

    Bone fractures constitute a major cause of morbidity and mortality especially in the elderly. Complications associated with osteoporosis drugs and the age of the patient slow bone turnover and render such fractures difficult to heal. Increasing the speed of fracture repair by administration of a fracture-targeted bone anabolic agent could find considerable application. Aspartic acid oligopeptides are negatively charged molecules at physiological pH that adsorb to hydroxyapatite, the mineral portion of bone. This general adsorption is the strongest where bone turnover is highest or where hydroxyapatite is freshly exposed. Importantly, both of these conditions are prominent at fracture sites. GSK3β inhibitors are potent anabolic agents that can promote tissue repair when concentrated in a damaged tissue. Unfortunately, they can also cause significant toxicity when administered systemically and are furthermore difficult to deliver due to their strong hydrophobicity. In this paper, we solve both problems by conjugating the hydrophobic GSK3β inhibitor to a hydrophilic aspartic acid octapeptide using a hydrolyzable bond, thereby generating a bone fracture-targeted water-soluble form of the drug. The resulting amphiphile is shown to assemble into micelles, extending its circulation time while maintaining its fracture-targeting abilities. For measurement of pharmacokinetics, an 125I was introduced at the location of the bromine in the GSK3β inhibitor to minimize any structural differences. Biodistribution studies demonstrate a greater than 4-fold increase in fracture accumulation over healthy bone. PMID:26331790

Top