Bone alterations are associated with ankle osteoarthritis joint pain
Nakamura, Yukio; Uchiyama, Shigeharu; Kamimura, Mikio; Komatsu, Masatoshi; Ikegami, Shota; Kato, Hiroyuki
2016-01-01
The etiology of ankle osteoarthritis (OA) is largely unknown. We analyzed 24 ankle OA of 21 patients diagnosed by plain radiographs using magnetic resonance imaging (MRI). Ankle joint pain disappeared in 22 out of 24 joints by conservative treatment. MRI bone signal changes in and around the ankle joints were observed in 22 of 24 joints. Bone signal changes along the joint line were seen in 10 of 11 joints as a Kellgren-Lawrence (KL) grade of II to IV. Such signal changes were witnessed in only 4 of 13 joints with KL grade 0 or I. In the talocrural joint, bone alterations occurred in both tibia and talus bones through the joint line in cases of KL grade III or IV, while focal bone alterations were present in the talus only in KL grade I or II cases. Sixteen of 24 joints exhibited intraosseous bone signal changes, which tended to correspond to joint pain of any ankle OA stage. Our results suggest that bone alterations around the ankle joint might be one of the etiologies of OA and associated with ankle joint pain. PMID:26776564
Bone alterations are associated with ankle osteoarthritis joint pain.
Nakamura, Yukio; Uchiyama, Shigeharu; Kamimura, Mikio; Komatsu, Masatoshi; Ikegami, Shota; Kato, Hiroyuki
2016-01-18
The etiology of ankle osteoarthritis (OA) is largely unknown. We analyzed 24 ankle OA of 21 patients diagnosed by plain radiographs using magnetic resonance imaging (MRI). Ankle joint pain disappeared in 22 out of 24 joints by conservative treatment. MRI bone signal changes in and around the ankle joints were observed in 22 of 24 joints. Bone signal changes along the joint line were seen in 10 of 11 joints as a Kellgren-Lawrence (KL) grade of II to IV. Such signal changes were witnessed in only 4 of 13 joints with KL grade 0 or I. In the talocrural joint, bone alterations occurred in both tibia and talus bones through the joint line in cases of KL grade III or IV, while focal bone alterations were present in the talus only in KL grade I or II cases. Sixteen of 24 joints exhibited intraosseous bone signal changes, which tended to correspond to joint pain of any ankle OA stage. Our results suggest that bone alterations around the ankle joint might be one of the etiologies of OA and associated with ankle joint pain.
Seki, Yasuhiro; Hoshino, Yuko; Kuroda, Hiroshi
2013-10-01
The prevalence of sesamoid bones in the hands has been reported in some previous articles. Most of them, however, have reported sesamoid bones of the metacarpophalangeal joint of the hand and of the interphalangeal (IP) joint of the thumb. The present study investigates the prevalence of sesamoid bones of the IP joint of the thumb and fingers. A retrospective review of radiologic views of the IP joints in the thumb or fingers was performed, including a total of 650 patients (1,096 thumbs or fingers). Sesamoid bones were found in the IP joint of the thumb at 67% (212 of 318), while the index, middle, ring, little fingers had sesamoid bones in the proximal interphlangeal (PIP) joint at 0% (0 of 172), 0.4% (1 of 244), 0.5% (1 of 183), and 1% (2 of 179), respectively. None of the four fingers had sesamoid bones in the distal IP joint. Previous articles have described the similar prevalence to the present study, of sesamoid bones of the IP joint of the thumb, while some others reported the different prevalence. About the PIP joint, no previous articles have found a sesamoid bone. Because the lateral X-ray view is more accurate and suitable to evaluate sesamoid bones, we used the lateral one for the present study. The knowledge that sesamoid bones occurs at these rates in the thumb IP joint and finger PIP joints is helpful to differentiate chip fractures from sesamoid bones near the IP joint, including the PIP joint. Copyright © 2012 Wiley Periodicals, Inc.
Increased concentrations of bone sialoprotein in joint fluid after knee injury.
Lohmander, L S; Saxne, T; Heinegård, D
1996-01-01
OBJECTIVE: To detect evidence for localised changes in bone matrix metabolism after joint trauma and in post-traumatic osteoarthritis by quantification of bone sialoprotein in joint fluid and serum after knee injury in a cross sectional study. METHODS: Samples of knee joint fluid and serum were obtained from volunteers with normal knees (n = 19), patients with rupture of the anterior cruciate ligament isolated or combined with tear of a meniscus (n = 114), and patients with isolated meniscus lesions (n = 80). Concentrations of bone sialoprotein were determined by ELISA. Concentrations of other markers of joint tissue metabolism in these samples were determined in previous investigations. RESULTS: The median concentrations of bone sialoprotein in joint fluid from healthy volunteers was 122 ng ml-1 (range 41 to 183). Concentrations of bone sialoprotein were increased in both injury groups compared with the reference group (median for cruciate ligament injury 146 ng ml-1, range 72 to 339; median for meniscus injury 166 ng ml-1, range 75 to 376). After injury, bone sialoprotein increased quickly and remained increased for six months. Bone sialoprotein in joint fluid was increased only in samples from joints with normal or nearly normal (fibrillated) cartilage, and was within reference range in joints with radiographic signs of osteoarthritis. Bone sialoprotein concentrations in joints with cruciate ligament injury were positively correlated with levels of aggrecan and cartilage oligomeric matrix protein fragments, and with levels of stromelysin-1 and tissue inhibitor of metalloproteinase-1. The ratios between the concentrations of bone sialoprotein in joint fluid and serum were > 1 in the majority of the cruciate ligament injury cases. CONCLUSIONS: The release of significant amounts of bone sialoprotein into joint fluid in connection with acute joint trauma may be associated with injury to, and active remodelling of, the cartilage-bone interface and subchondral bone. The findings are consistent with dramatic shifts in cartilage, bone, and synovial metabolism following joint injury. Bone sialoprotein concentrations in synovial fluid may be a useful marker of subchondral injury and remodelling following joint injury. PMID:8882132
[Cytokines in bone diseases. Anti-cytokine therapies for bone and joint diseases].
Tanaka, Yoshiya
2010-10-01
The efficacy of biologics targeting inflammatory cytokines such as TNF and IL-6 for bone and joint diseases has been emerging. Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by chronic synovitis and bone damage. By the use of TNF-inhibitors, clinical remission, structural remission and functional remission have become possible during the treatment of RA. Especially, the progress of joint and bone destruction is completely suppressed by TNF-inhibitors in the vast majority of RA patients. On the other hand, anti-RANKL antibody inhibits joint destruction as well as systemic osteoporosis, though no effects on synovitis of RA. Thus, differential efficacy of different therapies in bone destruction and osteoporosis would warrant further study to clarify the mechanisms of bone and joints diseases.
Aging changes in the bones - muscles - joints
... ency/article/004015.htm Aging changes in the bones - muscles - joints To use the sharing features on ... to the body. Joints are the areas where bones come together. They allow the skeleton to be ...
[Mechanical behavior of the subchondral bone in the experimentally induced osteoarthritis].
Miyanaga, Y
1979-06-01
In order to evaluate the role of the subchondral bone (cancellous bone) in the development and progression of the joint degeneration, osteoarthritis of the knee joint was produced experimentally in the rabbits and viscoelasticity and strength of the subchondral bone from the femoral medial condyle have been investigated along with the pathological, histological study of the joint. The viscoelastic spectrometer and the Instron type testing machine were used. As the first change after operation, osteophyte formation around the joint margin has been observed before the initiation of the degeneration of articular cartilage and there is a possibility that mechanical properties of subchondral bone such as high deformability and low elasticity to the mechanism of osteophyte formation. Subchondral bone softening with marked increase of ultimate strain and phase lag, marked decrease of compressive elastic modulus and ultimate stress precedes or occurs concurrently with the degeneration of the articular cartilage. These facts indicate the relationship between the mechanical properties of the subchondral bone and joint degeneration. Once the joint degeneration starts, degeneration continues progressively while the subchondral bone tends to become brittle. These changes may be considered as a kind of functional adaptation to the damage or denudation of articular cartilage. It is postulated that some architectural changes of the subchondral bone may provide alterations of the mechanical properties. Biomechanical roles of the subchondral bone is suggested as one of the factors in the joint degeneration.
Gropp, Kathryn E; Carlson, Cathy S; Evans, Mark G; Bagi, Cedo M; Reagan, William J; Hurst, Susan I; Shelton, David L; Zorbas, Mark A
2018-01-01
Tanezumab, an anti-nerve growth factor (NGF) antibody, is in development for management of chronic pain. During clinical trials of anti-NGF antibodies, some patients reported unexpected adverse events requiring total joint replacements, resulting in a partial clinical hold on all NGF inhibitors. Three nonclinical toxicology studies were conducted to evaluate the effects of tanezumab or the murine precursor muMab911 on selected bone and joint endpoints and biomarkers in cynomolgus monkeys, Sprague-Dawley rats, and C57BL/6 mice. Joint and bone endpoints included histology, immunohistochemistry, microcomputed tomography (mCT) imaging, and serum biomarkers of bone physiology. Responses of bone endpoints to tanezumab were evaluated in monkeys at 4 to 30 mg/kg/week for 26 weeks and in rats at 0.2 to 10 mg/kg twice weekly for 28 days. The effects of muMab911 at 10 mg/kg/week for 12 weeks on selected bone endpoints were determined in mice. Tanezumab and muMab911 had no adverse effects on any bone or joint parameter. There were no test article-related effects on bone or joint histology, immunohistochemistry, or structure. Reversible, higher osteocalcin concentrations occurred only in the rat study. No deleterious effects were observed in joints or bones in monkeys, rats, or mice administered high doses of tanezumab or muMab911.
Segmentation of hand radiographs using fast marching methods
NASA Astrophysics Data System (ADS)
Chen, Hong; Novak, Carol L.
2006-03-01
Rheumatoid Arthritis is one of the most common chronic diseases. Joint space width in hand radiographs is evaluated to assess joint damage in order to monitor progression of disease and response to treatment. Manual measurement of joint space width is time-consuming and highly prone to inter- and intra-observer variation. We propose a method for automatic extraction of finger bone boundaries using fast marching methods for quantitative evaluation of joint space width. The proposed algorithm includes two stages: location of hand joints followed by extraction of bone boundaries. By setting the propagation speed of the wave front as a function of image intensity values, the fast marching algorithm extracts the skeleton of the hands, in which each branch corresponds to a finger. The finger joint locations are then determined by using the image gradients along the skeletal branches. In order to extract bone boundaries at joints, the gradient magnitudes are utilized for setting the propagation speed, and the gradient phases are used for discriminating the boundaries of adjacent bones. The bone boundaries are detected by searching for the fastest paths from one side of each joint to the other side. Finally, joint space width is computed based on the extracted upper and lower bone boundaries. The algorithm was evaluated on a test set of 8 two-hand radiographs, including images from healthy patients and from patients suffering from arthritis, gout and psoriasis. Using our method, 97% of 208 joints were accurately located and 89% of 416 bone boundaries were correctly extracted.
Clinical and radiographic study of bone and joint lesions in 26 dogs with leishmaniasis.
Agut, A; Corzo, N; Murciano, J; Laredo, F G; Soler, M
2003-11-22
Twenty-six dogs with parasitologically confirmed leishmaniasis and abnormalities of gait were studied to determine the most common radiological patterns of bone and joint lesions. The clinical findings included either lameness, joint pain and crepitation, soft tissue swelling and/or muscle atrophy. Bone lesions were observed radiographically in 12 of the 26 dogs; the radius and ulna were affected in seven, the tibia in six and the femur in six. Joint lesions were observed radiographically in 15 of the 26 dogs; the carpus and stifle were affected in all 15, and the tarsus in nine. There was a tendency for the bones and joints to be affected bilaterally. The radiographic patterns observed were different in the long bones and the joints. In the long bones, the most common pattern was periosteal and intramedullary proliferation, involving the diaphyses and related to the nutrient foramen; in the joints, two patterns, either non-erosive or erosive polyarthritis with soft-tissue swelling, were observed. The changes observed in the synovial fluid were associated in most cases with osteolytic lesions. However, Leishmania organisms were identified in the synovial fluid from joints without bony radiographic changes.
[Fetal bone and joint disorders].
Jakobovits, Akos
2008-12-21
The article discusses the physiology and pathology of fetal bone and joint development and functions. The bones provide static support for the body. The skull and the bones of spinal column encase the central and part of the peripheral nervous system. The ribs and the sternum shield the heart and the lungs, while the bones of the pelvis protect the intraabdominal organs. Pathological changes of these bony structures may impair the functions of the respective systems or internal organs. Movements of the bones are brought about by muscles. The deriving motions are facilitated by joints. Bony anomalies of the extremities limit their effective functions. Apart from skeletal and joint abnormalities, akinesia may also be caused by neurological, muscular and skin diseases that secondarily affect the functions of bones and joints. Such pathological changes may lead to various degrees of physical disability and even to death. Some of the mentioned anomalies are recognizable in utero by ultrasound. The diagnosis may serve as medical indication for abortion in those instances when the identified abnormality is incompatible with independent life.
Bones, Muscles, and Joints: The Musculoskeletal System
... Staying Safe Videos for Educators Search English Español Bones, Muscles, and Joints KidsHealth / For Parents / Bones, Muscles, ... able to stand, walk, run, or even sit. Bones and What They Do From our head to ...
Bones, Muscles, and Joints: The Musculoskeletal System
... Staying Safe Videos for Educators Search English Español Bones, Muscles, and Joints KidsHealth / For Teens / Bones, Muscles, ... to do everyday physical activities. What Are the Bones and What Do They Do? The human skeleton ...
Knee joint transplantation combined with surgical angiogenesis in rabbits – a new experimental model
Kremer, Thomas; Giusti, Guilherme; Friedrich, Patricia F.; Willems, Wouter; Bishop, Allen T.; Giessler, Goetz A.
2012-01-01
Summary Purpose We have previously described a means to maintain bone allotransplant viability, without long-term immune modulation, replacing allogenic bone vasculature with autogenous vessels. A rabbit model for whole knee joint transplantation was developed and tested using the same methodology, initially as an autotransplant. Materials/Methods Eight New Zealand White rabbit knee joints were elevated on a popliteal vessel pedicle to evaluate limb viability in a non-survival study. Ten additional joints were elevated and replaced orthotopically in a fashion identical to allotransplantation, obviating only microsurgical repairs and immunosuppression. A superficial inferior epigastric facial (SIEF) flap and a saphenous arteriovenous (AV) bundle were introduced into the femur and tibia respectively, generating a neoangiogenic bone circulation. In allogenic transplantation, this step maintains viability after cessation of immunosuppression. Sixteen weeks later, x-rays, microangiography, histology, histomorphometry and biomechanical analysis were performed. Results Limb viability was preserved in the initial 8 animals. Both soft tissue and bone healing occurred in 10 orthotopic transplants. Surgical angiogenesis from the SIEF flap and AV bundle was always present. Bone and joint viability was maintained, with demonstrable new bone formation. Bone strength was less than the opposite side. Arthrosis and joint contractures were frequent. Conclusion We have developed a rabbit knee joint model and evaluation methods suitable for subsequent studies of whole joint allotransplantation. PMID:22113889
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chow, J; Owrangi, A; Jiang, R
2014-06-01
Purpose: This study investigated the performance of the anisotropic analytical algorithm (AAA) in dose calculation in radiotherapy concerning a small finger joint. Monte Carlo simulation (EGSnrc code) was used in this dosimetric evaluation. Methods: Heterogeneous finger joint phantom containing a vertical water layer (bone joint or cartilage) sandwiched by two bones with dimension 2 × 2 × 2 cm{sup 3} was irradiated by the 6 MV photon beams (field size = 4 × 4 cm{sup 2}). The central beam axis was along the length of the bone joint and the isocenter was set to the center of the joint. Themore » joint width and beam angle were varied from 0.5–2 mm and 0°–15°, respectively. Depth doses were calculated using the AAA and DOSXYZnrc. For dosimetric comparison and normalization, dose calculations were repeated in water phantom using the same beam geometry. Results: Our AAA and Monte Carlo results showed that the AAA underestimated the joint doses by 10%–20%, and could not predict joint dose variation with changes of joint width and beam angle. The calculated bone dose enhancement for the AAA was lower than Monte Carlo and the depth of maximum dose for the phantom was smaller than that for the water phantom. From Monte Carlo results, there was a decrease of joint dose as its width increased. This reflected the smaller the joint width, the more the bone scatter contributed to the depth dose. Moreover, the joint dose was found slightly decreased with an increase of beam angle. Conclusion: The AAA could not handle variations of joint dose well with changes of joint width and beam angle based on our finger joint phantom. Monte Carlo results showed that the joint dose decreased with increase of joint width and beam angle. This dosimetry comparison should be useful to radiation staff in radiotherapy related to small bone joint.« less
Chan, V O; Moran, D E; Shine, S; Eustace, S J
2013-10-01
To assess the incidence and clinical significance of medial joint line bone bruising following acute ankle inversion injury. Forty-five patients who underwent ankle magnetic resonance imaging (MRI) within 2 weeks of acute ankle inversion injury were included in this prospective study. Integrity of the lateral collateral ligament complex, presence of medial joint line bone bruising, tibio-talar joint effusion, and soft-tissue swelling were documented. Clinical follow-up at 6 months was carried out to determine the impact of injury on length of time out of work, delay in return to normal walking, delay in return to sports activity, and persistence of medial joint line pain. Thirty-seven patients had tears of the anterior talofibular ligament (ATFL). Twenty-six patients had medial joint line bone bruising with altered marrow signal at the medial aspect of the talus and congruent surface of the medial malleolus. A complete ATFL tear was seen in 92% of the patients with medial joint line bone bruising (p = 0.05). Patients with an ATFL tear and medial joint line bone bruising had a longer delay in return to normal walking (p = 0.0002), longer delay in return to sports activity (p = 0.0001), and persistent medial joint line pain (p = 0.0003). There was no statistically significant difference in outcome for the eight patients without ATFL tears. Medial joint line bone bruising following an acute ankle inversion injury was significantly associated with a complete ATFL tear, longer delay in the return to normal walking and sports activity, as well as persistent medial joint line pain. Its presence should prompt detailed assessment of the lateral collateral ligament complex, particularly the ATFL. Copyright © 2013 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Razawy, Wida; van Driel, Marjolein
2018-01-01
Abstract The IL‐23/Th17 axis has been implicated in the development of autoimmune diseases, such as rheumatoid arthritis (RA) and psoriatic arthritis (PsA). RA and PsA are heterogeneous diseases with substantial burden on patients. Increasing evidence suggests that the IL‐23 signaling pathway may be involved in the development of autoimmunity and erosive joint damage. IL‐23 can act either directly or indirectly on bone forming osteoblasts as well as on bone resorbing osteoclasts. As IL‐23 regulates the activity of cells of the bone, it is conceivable that in addition to inflammation‐mediated joint erosion, IL‐23 may play a role in physiological bone remodeling. In this review, we focus on the role of IL‐23 in autoimmune arthritis in patients and murine models, and provide an overview of IL‐23 producing and responding cells in autoimmune arthritic joints. In addition, we discuss the role of IL‐23 on bone forming osteoblasts and bone resorbing osteoclasts regarding inflammation‐mediated joint damage and bone remodeling. At last, we briefly discuss the clinical implications of targeting this pathway for joint damage and systemic bone loss in autoimmune arthritis. PMID:29148561
Lardé, Hélène; Nichols, Sylvain; Babkine, Marie; Desrochers, André
2016-07-01
To determine arthroscopic approaches to the dorsal synovial compartments of the antebrachiocarpal and middle carpal joints in adult cattle, and to describe the arthroscopic intra-articular anatomy from each approach. Ex vivo study. Six fresh adult bovine cadavers. Two carpi were injected with latex and dissected to determine the ideal location for arthroscopic portals. Arthroscopy of the antebrachiocarpal and middle carpal joints of 10 carpi was then performed. The dorsolateral approach was made between the extensor carpi radialis and common digital extensor tendons. The dorsomedial approach was made medial to the extensor carpi radialis tendon, midway between the distal radius and proximal row of carpal bones (antebrachiocarpal joint) and midway between the two rows of carpal bones (middle carpal joint), with the joint in flexion. Arthroscopy of the antebrachiocarpal joint allowed visualization of the distal radius, proximal aspect of the radial, intermediate and ulnar carpal bones, and a palmar ligament located between the radius and the intermediate carpal bone. The approach to the middle carpal joint allowed visualization of the distal aspect of the radial, intermediate, and ulnar carpal bones, the proximal aspect of the fourth and fused second and third carpal bones and an interosseous ligament. The most lateral articular structures (lateral glenoid cavity of the distal radius, ulnar carpal and fourth carpal bones) were difficult to assess. Dorsal approaches to the antebrachiocarpal and middle carpal joints allowed visualization of most intra-articular dorsal structures in adult cattle. © Copyright 2016 by The American College of Veterinary Surgeons.
Razawy, Wida; van Driel, Marjolein; Lubberts, Erik
2018-02-01
The IL-23/Th17 axis has been implicated in the development of autoimmune diseases, such as rheumatoid arthritis (RA) and psoriatic arthritis (PsA). RA and PsA are heterogeneous diseases with substantial burden on patients. Increasing evidence suggests that the IL-23 signaling pathway may be involved in the development of autoimmunity and erosive joint damage. IL-23 can act either directly or indirectly on bone forming osteoblasts as well as on bone resorbing osteoclasts. As IL-23 regulates the activity of cells of the bone, it is conceivable that in addition to inflammation-mediated joint erosion, IL-23 may play a role in physiological bone remodeling. In this review, we focus on the role of IL-23 in autoimmune arthritis in patients and murine models, and provide an overview of IL-23 producing and responding cells in autoimmune arthritic joints. In addition, we discuss the role of IL-23 on bone forming osteoblasts and bone resorbing osteoclasts regarding inflammation-mediated joint damage and bone remodeling. At last, we briefly discuss the clinical implications of targeting this pathway for joint damage and systemic bone loss in autoimmune arthritis. © 2017 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Template-based automatic extraction of the joint space of foot bones from CT scan
NASA Astrophysics Data System (ADS)
Park, Eunbi; Kim, Taeho; Park, Jinah
2016-03-01
Clean bone segmentation is critical in studying the joint anatomy for measuring the spacing between the bones. However, separation of the coupled bones in CT images is sometimes difficult due to ambiguous gray values coming from the noise and the heterogeneity of bone materials as well as narrowing of the joint space. For fine reconstruction of the individual local boundaries, manual operation is a common practice where the segmentation remains to be a bottleneck. In this paper, we present an automatic method for extracting the joint space by applying graph cut on Markov random field model to the region of interest (ROI) which is identified by a template of 3D bone structures. The template includes encoded articular surface which identifies the tight region of the high-intensity bone boundaries together with the fuzzy joint area of interest. The localized shape information from the template model within the ROI effectively separates the bones nearby. By narrowing the ROI down to the region including two types of tissue, the object extraction problem was reduced to binary segmentation and solved via graph cut. Based on the shape of a joint space marked by the template, the hard constraint was set by the initial seeds which were automatically generated from thresholding and morphological operations. The performance and the robustness of the proposed method are evaluated on 12 volumes of ankle CT data, where each volume includes a set of 4 tarsal bones (calcaneus, talus, navicular and cuboid).
Li, Siming; Yang, Xiaohong; Tang, Shenghui; Zhang, Xunmeng; Feng, Zhencheng; Cui, Shuliang
2015-08-01
Surgical replacement of massively defected joints necessarily relies on osteochondral grafts effective to both of bone and cartilage. Demineralized bone matrix (DBM) retains the osteoconductivity but destroys viable chondrocytes in the cartilage portion essential for successful restoration of defected joints. This study prepared osteochondral grafts of DBM with protected cartilage. Protected cartilage portions was characterized by cellular and molecular biology and the grafts were allogenically used for grafting. Protected cartilage showed similar histomorphological structure and protected proteins estimated by total proteins and cartilage specific proteins as in those of fresh controls when DBMs were generated in bone portions. Such grafts were successfully used for simultaneously repair of bone and cartilage in massively defected osteoarticular joints within 16 weeks post-surgery. These results present an allograft with clinical potential for simultaneous restoration of bone and cartilage in defected joints.
Subchondral bone density distribution of the talus in clinically normal Labrador Retrievers.
Dingemanse, W; Müller-Gerbl, M; Jonkers, I; Vander Sloten, J; van Bree, H; Gielen, I
2016-03-15
Bones continually adapt their morphology to their load bearing function. At the level of the subchondral bone, the density distribution is highly correlated with the loading distribution of the joint. Therefore, subchondral bone density distribution can be used to study joint biomechanics non-invasively. In addition physiological and pathological joint loading is an important aspect of orthopaedic disease, and research focusing on joint biomechanics will benefit veterinary orthopaedics. This study was conducted to evaluate density distribution in the subchondral bone of the canine talus, as a parameter reflecting the long-term joint loading in the tarsocrural joint. Two main density maxima were found, one proximally on the medial trochlear ridge and one distally on the lateral trochlear ridge. All joints showed very similar density distribution patterns and no significant differences were found in the localisation of the density maxima between left and right limbs and between dogs. Based on the density distribution the lateral trochlear ridge is most likely subjected to highest loads within the tarsocrural joint. The joint loading distribution is very similar between dogs of the same breed. In addition, the joint loading distribution supports previous suggestions of the important role of biomechanics in the development of OC lesions in the tarsus. Important benefits of computed tomographic osteoabsorptiometry (CTOAM), i.e. the possibility of in vivo imaging and temporal evaluation, make this technique a valuable addition to the field of veterinary orthopaedic research.
Kager, Leo; Whelan, Jeremy; Dirksen, Uta; Hassan, Bass; Anninga, Jakob; Bennister, Lindsey; Bovée, Judith V M G; Brennan, Bernadette; Broto, Javier M; Brugières, Laurence; Cleton-Jansen, Anne-Marie; Copland, Christopher; Dutour, Aurélie; Fagioli, Franca; Ferrari, Stefano; Fiocco, Marta; Fleuren, Emmy; Gaspar, Nathalie; Gelderblom, Hans; Gerrand, Craig; Gerß, Joachim; Gonzato, Ornella; van der Graaf, Winette; Hecker-Nolting, Stefanie; Herrero-Martín, David; Klco-Brosius, Stephanie; Kovar, Heinrich; Ladenstein, Ruth; Lancia, Carlo; LeDeley, Marie-Cecile; McCabe, Martin G; Metzler, Markus; Myklebost, Ola; Nathrath, Michaela; Picci, Piero; Potratz, Jenny; Redini, Françoise; Richter, Günther H S; Reinke, Denise; Rutkowski, Piotr; Scotlandi, Katia; Strauss, Sandra; Thomas, David; Tirado, Oscar M; Tirode, Franck; Vassal, Gilles; Bielack, Stefan S
2016-01-01
This report summarizes the results of the 3rd Joint ENCCA-WP7, EuroSarc, EEC, PROVABES, and EURAMOS European Bone Sarcoma Network Meeting, which was held at the Children's Cancer Research Institute in Vienna, Austria on September 24-25, 2015. The joint bone sarcoma network meetings bring together European bone sarcoma researchers to present and discuss current knowledge on bone sarcoma biology, genetics, immunology, as well as results from preclinical investigations and clinical trials, to generate novel hypotheses for collaborative biological and clinical investigations. The ultimate goal is to further improve therapy and outcome in patients with bone sarcomas.
Multiscale biomechanical responses of adapted bone-periodontal ligament-tooth fibrous joints
Jang, Andrew T.; Merkle, Arno; Fahey, Kevin; Gansky, Stuart A.; Ho, Sunita P.
2015-01-01
Reduced functional loads cause adaptations in organs. In this study, temporal adaptations of bone-ligament-tooth fibrous joints to reduced functional loads were mapped using a holistic approach. Systematic studies were performed to evaluate organ-level and tissue-level adaptations in specimens harvested periodically from rats given powder food for 6 months (N = 60 over 8,12,16,20, and 24 weeks). Bone-periodontal ligament (PDL)-tooth fibrous joint adaptation was evaluated by comparing changes in joint stiffness with changes in functional space between the tooth and alveolar bony socket. Adaptations in tissues included mapping changes in the PDL and bone architecture as observed from collagen birefringence, bone hardness and volume fraction in rats fed soft foods (soft diet, SD) compared to those fed hard pellets as a routine diet (hard diet, HD). In situ biomechanical testing on harvested fibrous joints revealed increased stiffness in SD groups (SD:239-605 N/mm) (p<0.05) at 8 and 12 weeks. Increased joint stiffness in early development phase was due to decreased functional space (at 8wks change in functional space was −33 µm, at 12wks change in functional space was −30 µm) and shifts in tissue quality as highlighted by birefringence, architecture and hardness. These physical changes were not observed in joints that were well into function, that is, in rodents older than 12 weeks of age. Significant adaptations in older groups were highlighted by shifts in bone growth (bone volume fraction 24wks: Δ-0.06) and bone hardness (8wks: Δ−0.04 GPa, 16 wks: Δ−0.07 GPa, 24wks: Δ−0.06 GPa). The response rate (N/s) of joints to mechanical loads decreased in SD groups. Results from the study showed that joint adaptation depended on age. The initial form-related adaptation (observed change in functional space) can challenge strain-adaptive nature of tissues to meet functional demands with increasing age into adulthood. The coupled effect between functional space in the bone-PDLtooth complex and strain-adaptive nature of tissues is necessary to accommodate functional demands, and is temporally sensitive despite joint malfunction. From an applied science perspective, we propose that adaptations are registered as functional history in tissues and joints. PMID:26151121
Signaling networks in joint development
Salva, Joanna E.; Merrill, Amy E.
2016-01-01
Here we review studies identifying regulatory networks responsible for synovial, cartilaginous, and fibrous joint development. Synovial joints, characterized by the fluid-filled synovial space between the bones, are found in high-mobility regions and are the most common type of joint. Cartilaginous joints unite adjacent bones through either a hyaline cartilage or fibrocartilage intermediate. Fibrous joints, which include the cranial sutures, form a direct union between bones through fibrous connective tissue. We describe how the distinct morphologic and histogenic characteristics of these joint classes are established during embryonic development. Collectively, these studies reveal that despite the heterogeneity of joint strength and mobility, joint development throughout the skeleton utilizes common signaling networks via long-range morphogen gradients and direct cell-cell contact. This suggests that different joint types represent specialized variants of homologous developmental modules. Identifying the unifying aspects of the signaling networks between joint classes allows a more complete understanding of the signaling code for joint formation, which is critical to improving strategies for joint regeneration and repair. PMID:27859991
Metabolic Bone Diseases and Total Hip Arthroplasty: Preventing Complications.
Moya-Angeler, Joaquin; Lane, Joseph M; Rodriguez, Jose A
2017-11-01
Metabolic bone diseases are a diverse group of conditions characterized by abnormalities in calcium metabolism and/or bone cell physiology. These unbalanced processes can eventually lead to bony deformities and altered joint biomechanics, resulting in degenerative joint disease. Not infrequently, patients with metabolic bone diseases have restricting hip joint pain that ultimately necessitates hip arthroplasty. To minimize complications, the surgeon must consider the particular characteristics of these patients. The surgical and medical management of patients with metabolic bone diseases undergoing hip arthroplasty requires appropriate preoperative diagnosis, careful attention to the technical challenges of surgery, and strategies to maximize the long-term results of the surgical intervention, such as the use of bone anabolic and anticatabolic agents.
Interplay between Cartilage and Subchondral Bone Contributing to Pathogenesis of Osteoarthritis
Sharma, Ashish R.; Jagga, Supriya; Lee, Sang-Soo; Nam, Ju-Suk
2013-01-01
Osteoarthritis (OA) is a common debilitating joint disorder, affecting large sections of the population with significant disability and impaired quality of life. During OA, functional units of joints comprising cartilage and subchondral bone undergo uncontrolled catabolic and anabolic remodeling processes to adapt to local biochemical and biological signals. Changes in cartilage and subchondral bone are not merely secondary manifestations of OA but are active components of the disease, contributing to its severity. Increased vascularization and formation of microcracks in joints during OA have suggested the facilitation of molecules from cartilage to bone and vice versa. Observations from recent studies support the view that both cartilage and subchondral bone can communicate with each other through regulation of signaling pathways for joint homeostasis under pathological conditions. In this review we have tried to summarize the current knowledge on the major signaling pathways that could control the cartilage-bone biochemical unit in joints and participate in intercellular communication between cartilage and subchondral bone during the process of OA. An understanding of molecular communication that regulates the functional behavior of chondrocytes and osteoblasts in both physiological and pathological conditions may lead to development of more effective strategies for treating OA patients. PMID:24084727
Kamimura, Mikio; Nakamura, Yukio; Ikegami, Shota; Uchiyama, Shigeharu; Kato, Hiroyuki
2013-01-01
In this study, we aimed to investigate whether joint pain is derived from cartilage or bone alterations. We reviewed 23 hip joints of 21 patients with primary hip osteoarthritis (OA), which were classified into Kellgren-Laurence (KL) grading I to IV. Plain radiographs and magnetic resonance imaging (MRI) were obtained from all of the 23 joints. Two of the 21 patients had bilateral hip OA. Pain was assessed based on the pain scale of Denis. A Welch t test was performed for age, height, weight, body mass index, bone mineral density, and a Mann-Whitney U test was performed for KL grading. Four of 8 hip joints with pain and OA showed broad signal changes detected by MRI. Fourteen hip joints without pain, but with OA did not show broad signal changes by MRI. Collectively, MRI analyses showed that broad signal changes in OA cases without joint pain or with a slight degree of joint pain were not observed, while broad signal changes were observed in OA cases with deteriorated joint pain. Our findings suggest that hip joint pain might be associated with bone signal alterations in the hips of OA patients.
Barr, Andrew J; Campbell, T Mark; Hopkinson, Devan; Kingsbury, Sarah R; Bowes, Mike A; Conaghan, Philip G
2015-08-25
Bone is an integral part of the osteoarthritis (OA) process. We conducted a systematic literature review in order to understand the relationship between non-conventional radiographic imaging of subchondral bone, pain, structural pathology and joint replacement in peripheral joint OA. A search of the Medline, EMBASE and Cochrane library databases was performed for original articles reporting association between non-conventional radiographic imaging-assessed subchondral bone pathologies and joint replacement, pain or structural progression in knee, hip, hand, ankle and foot OA. Each association was qualitatively characterised by a synthesis of the data from each analysis based upon study design, adequacy of covariate adjustment and quality scoring. In total 2456 abstracts were screened and 139 papers were included (70 cross-sectional, 71 longitudinal analyses; 116 knee, 15 hip, six hand, two ankle and involved 113 MRI, eight DXA, four CT, eight scintigraphic and eight 2D shape analyses). BMLs, osteophytes and bone shape were independently associated with structural progression or joint replacement. BMLs and bone shape were independently associated with longitudinal change in pain and incident frequent knee pain respectively. Subchondral bone features have independent associations with structural progression, pain and joint replacement in peripheral OA in the hip and hand but especially in the knee. For peripheral OA sites other than the knee, there are fewer associations and independent associations of bone pathologies with these important OA outcomes which may reflect fewer studies; for example the foot and ankle were poorly studied. Subchondral OA bone appears to be a relevant therapeutic target. PROSPERO registration number: CRD 42013005009.
Cortés, Daniel; Sylvester, Daniel Cortés; Exss, Eduardo; Marholz, Carlos; Millas, Rodrigo; Moncada, Gustavo
2011-04-01
The aim of this study was to determine the frequency and relationship between disk position and degenerative bone changes in the temporomandibular joints (TMJ), in subjects with internal derangement (ID). MRI and CT scans of 180 subjects with temporomandibular disorders (TMD) were studied. Different image parameters or characteristics were observed, such as disk position, joint effusion, condyle movement, degenerative bone changes (flattened, cortical erosions and irregularities), osteophytes, subchondral cysts and idiopathic condyle resorption. The present study concluded that there is a significant association between disk displacement without reduction and degenerative bone changes in patients with TMD. The study also found a high probability of degenerative bone changes when disk displacement without reduction is present. No association was found between TMD and condyle range of motion, joint effusion and/or degenerative bone changes. The following were the most frequent morphological changes observed: flattening of the anterior surface of the condyle; followed by erosions and irregularities of the joint surfaces; flattening of the articular surface of the temporal eminence, subchondral cysts, osteophytes; and idiopathic condyle resorption, in decreasing order.
Chen, Y; Sun, Y; Pan, X; Ho, K; Li, G
2015-10-01
Osteoarthritis (OA) is a progressive joint disorder. To date, there is not effective medical therapy. Joint distraction has given us hope for slowing down the OA progression. In this study, we investigated the benefits of joint distraction in OA rat model and the probable underlying mechanisms. OA was induced in the right knee joint of rats through anterior cruciate ligament transaction (ACLT) plus medial meniscus resection. The animals were randomized into three groups: two groups were treated with an external fixator for a subsequent 3 weeks, one with and one without joint distraction; and one group without external fixator as OA control. Serum interleukin-1β level was evaluated by ELISA; cartilage quality was assessed by histology examinations (gross appearance, Safranin-O/Fast green stain) and immunohistochemistry examinations (MMP13, Col X); subchondral bone aberrant changes was analyzed by micro-CT and immunohistochemistry (Nestin, Osterix) examinations. Characters of OA were present in the OA group, contrary to in general less severe damage after distraction treatment: firstly, IL-1β level was significantly decreased; secondly, cartilage degeneration was attenuated with lower histologic damage scores and the lower percentage of MMP13 or Col X positive chondrocytes; finally, subchondral bone abnormal change was attenuated, with reduced bone mineral density (BMD) and bone volume/total tissue volume (BV/TV) and the number of Nestin or Osterix positive cells in the subchondral bone. In the present study, we demonstrated that joint distraction reduced the level of secondary inflammation, cartilage degeneration and subchondral bone aberrant change, joint distraction may be a strategy for slowing OA progression. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Kofler, J; Peterbauer, C
2014-01-01
This case report describes the clinical and radiographic findings and the surgical treatment of a serofibrinous arthritis of the antebrachiocarpal joint and of a chronic purulent arthritis of the intercarpal and carpometacarpal joints with osteomyelitis of the distal carpal bones and subchondral osteomyelitis of the proximal metacarpal bones in a cow of the breed "Pustertaler Sprinze". The therapy comprised an arthrotomy of both joint spaces and the resection of the distal row of the carpal bones. The right forelimb had been immobilised for 70 days by a full limb cast. After this period, radiographs revealed an ob- vious ankylosis of the carpal joint, and the cow showed only a slight lameness. Six years postoperatively this cow was still in the herd and had produced six calves.
Seo, Jimyung; Lee, Minseok; Choi, Min Ju; Zheng, Zhenlong; Cho, Arthur; Bang, Dongsik; Kim, Do Young
2015-01-01
Behçet's disease (BD) is a multisystemic inflammatory disease with articular involvement. Non-specific arthralgia without objective signs of arthritis, such as swelling or effusion, is common in such patients. Thus, an accurate diagnosis of joint involvement may be challenging for dermatologists. To evaluate the validity of (99m)Tc-methylene diphosphonate (Tc-99m-MDP) bone scintigraphy for joint involvement assessment in patients with BD. In 211 patients with BD who had scintigraphic evaluations due to joint symptoms, agreement between bone scintigraphy findings and clinically evaluated joint complaints was retrospectively assessed using Cohen's kappa (κ) statistic. A patient subset (n = 104) showing agreement between joint complaints and scintigraphy results was re-evaluated by a rheumatologist to determine the level of diagnostic specificity attained by combining bone scintigraphy with clinical examinations of dermatologists. The total kappa value (211 patients) was 0.604, indicating fair agreement between joint complaints and scintigraphy results. Individual analysis of eleven joint categories revealed statistically significant correlations for wrist (κ = 0.677), shoulder (κ = 0.661), and foot joints (κ = 0.618). Of the 104 referrals to a rheumatologist, 95 (91.34%) were confirmed as having BD-associated articular involvement. Joint acral areas (e.g., foot, hand, wrist and shoulder) that had the highest kappa value correlations also ranked highest in diagnostic specificity. Bone scintigraphy presents a simple and useful option for dermatologists to assess joint involvement in BD patients, especially for specific anatomic sites.
Huebner, Janet L; Bay-Jensen, Anne C; Huffman, Kim M; He, Yi; Leeming, Diana J; McDaniel, Gary E; Karsdal, Morten A; Kraus, Virginia B
2014-01-01
Objective To evaluate joint tissue remodeling, with urinary collagen biomarkers, uALPHA CTX and uCTXII, and their association with osteoarthritis (OA) severity, progression, and localized knee bone turnover. Methods Participants (N=149) with symptomatic and radiographic knee OA underwent fixed flexion knee radiography at baseline and 3 years, and late-phase bone scintigraphy of both knees at baseline, scored semi-quantitatively for osteophyte (OST) and joint space narrowing (JSN) severity and uptake intensity with scores summed across knees. Urinary concentrations of ALPHA CTX and CTXII were determined by ELISA. Immunohistochemistry of human OA knees was performed to localize the joint tissue origin of the biomarker epitopes. Results uALPHA CTX correlated strongly with intensity of bone scintigraphic uptake, and JSN and OST progression (risk ratio=13.2 and 3, respectively). uCTXII was strongly associated with intensity of bone scintigraphic uptake, with JSN and OST severity, and OA progression based on OST. uALPHA CTX localized primarily to high bone turnover areas in subchondral bone; CTXII localized to the bone-cartilage interface, the tidemark, and damaged articular cartilage. Conclusion Baseline uALPHA CTX, localized to high turnover areas of subchondral bone, was associated with dynamic bone turnover of knees signified by scintigraphy, and progression of both OST and JSN. uCTXII correlated with JSN and OST severity, and progression of OST. To our knowledge, this represents the first report of serological markers reflecting subchondral bone turnover. These collagen markers may be useful for non-invasive detection and quantification of active subchondral bone turnover and joint remodeling in knee OA. PMID:24909851
Bone Lengthening in the Pediatric Upper Extremity.
Farr, Sebastian; Mindler, Gabriel; Ganger, Rudolf; Girsch, Werner
2016-09-07
➤Bone lengthening has been used successfully for several congenital and acquired conditions in the pediatric clavicle, humerus, radius, ulna, and phalanges.➤Common indications for bone lengthening include achondroplasia, radial longitudinal deficiency, multiple hereditary exostosis, brachymetacarpia, symbrachydactyly, and posttraumatic and postinfectious growth arrest.➤Most authors prefer distraction rates of <1 mm/day for each bone in the upper extremity except the humerus, which can safely be lengthened by 1 mm/day.➤Most authors define success by the amount of radiographic bone lengthening, joint motion after lengthening, and subjective patient satisfaction rather than validated patient-related outcome measures.➤Bone lengthening of the upper extremity is associated with a high complication rate, with complications including pin-track infections, fixation device failure, nerve lesions, nonunion, fracture of regenerate bone, and joint dislocations. Copyright © 2016 by The Journal of Bone and Joint Surgery, Incorporated.
Lande, Rachel; Reese, Shona L; Cuddy, Laura C; Berry, Clifford R; Pozzi, Antonio
2014-01-01
Osteochondrosis is a common developmental abnormality affecting the subchondral bone of immature, large breed dogs. The purpose of this retrospective study was to describe CT lesions detected in scapulohumeral joints of 32 immature dogs undergoing CT for thoracic limb lameness. Eight dogs (14 scapulohumeral joints) had arthroscopy following imaging. Thirteen dogs (19 scapulohumeral joints) were found to have CT lesions, including 10 dogs (16 scapulohumeral joints) with subchondral bone lesions and 3 dogs with enthesopathy of the supraspinatus tendon. In one dog, subchondral bone lesions appeared as large oval defects within the mid-aspect of the glenoid cavities, bilaterally. These lesions resembled osseous cyst-like lesions commonly identified in the horse. This is the first report of such a presentation of a subchondral bone lesion in the glenoid cavity of a dog. In all dogs, small, focal, round or linear lucent defects were visible within the cortical bone at the junction of the greater tubercle and intertubercular groove. These structures were thought to represent vascular channels. Findings from this study support the use of CT as an adjunct modality for the identification and characterization of scapulohumeral subchondral bone lesions in immature dogs with thoracic limb lameness. © 2013 American College of Veterinary Radiology.
Blockade of Dickkopf (DKK)-1 induces fusion of sacroiliac joints.
Uderhardt, S; Diarra, D; Katzenbeisser, J; David, J-P; Zwerina, J; Richards, W; Kronke, G; Schett, G
2010-03-01
To study whether Dickkopf (DKK)-1, an inhibitor of wingless (Wnt) signalling, is involved in the fusion of sacroiliac joints. Mice transgenic for tumour necrosis factor (TNFtg mice), which develop bilateral sacroiliitis, were treated with vehicle, anti-TNF antibody or anti-DKK1 antibody. Sacroiliac joints were analysed for histological signs of inflammation, bone erosion, osteoclast formation and ankylosis. Moreover, expression of collagen type X, beta-catenin and DKK-1 was assessed by immunohistochemistry. There were no signs of spontaneous ankylosis of the sacroiliac joints in TNFtg mice. TNF blockade effectively reduced inflammation, bone erosion and osteoclast numbers in the sacroiliac joints, but did not lead to ankylosis. Blockade of DKK1 had no effect on inflammatory signs of sacroiliitis, but significantly reduced bone erosions and osteoclast counts. Moreover, DKK1 blockade promoted expression of collagen type X, the formation of hypertrophic chondrocytes and ankylosis of sacroiliac joints. DKK1 influences inflammatory remodelling of sacroiliac joints by prevention of joint ankylosis. This may indicate an important role of the Wnt signalling pathway in the structural bone changes of axial joint disease. Although this model does not reflect the entire spectrum of ankylosing spondylitis in humans, it helps to explain the pathophysiological processes of sacroiliac joint ankylosis, which is a hallmark of the spondyloarthritides.
Brachygnathia superior and degenerative joint disease: a new lethal syndrome in Angus calves.
Jayo, M; Leipold, H W; Dennis, S M; Eldridge, F E
1987-03-01
Brachygnathia superior and generalized diarthrodial degenerative joint disease were seen in 17 related, purebred Angus calves ranging in age from 2 days to 4 months. Craniometrical studies revealed decreased maxillary and palatine bone lengths and increased cranial, skull, and facial indices. Radiological evaluation of major appendicular joints demonstrated lipping of the joint margins with osteophyte formation, sclerosis of subchondral bone, and narrowing of joint spaces. Synovial fluid evaluation indicated joint degeneration but no etiologic agent. Rheumatoid factor analysis of plasma was negative. Grossly, all major appendicular joints were defective including the atlanto-occipital articulation. Lesions ranged from loss of surface luster to erosions and deep ulcers with eburnation of the subchondral bone and secondary proliferative synovitis. Histological changes were degeneration of the articular cartilage matrix, chondrocyte necrosis, flaking and fibrillation, chondrone formation, erosions and ulcers of the articular cartilage with subchondral bone sclerosis, vascular invasion with fibrosis, and chronic, nonsuppurative, proliferative synovitis. Growth plates had defective chondrocyte proliferation and hypertrophy with aberrant ossification of calcified cartilaginous matrix. Histochemical analysis of cartilage and bone failed to incriminate which component was defective, glycosaminoglycan or collagen, but indicated different distribution or absence of one or the other. Genealogic studies revealed a genetic basis for the new defect.
Leptin in joint and bone diseases: new insights.
Scotece, M; Conde, J; Lopez, V; Lago, F; Pino, J; Gomez-Reino, J J; Gualillo, O
2013-01-01
Leptin is an adipokine with pleiotropic actions that regulates food intake, energy metabolism, inflammation and immunity, and also participates in the complex mechanism that regulates skeleton biology, both at bone and cartilage level. Leptin is increased in obesity and contributes to the "low-grade inflammatory state" of obese subjects causing a cluster of metabolic aberrations that affects joints and bone. In this review, we report the most recent research advances about the role of leptin in bone and cartilage function and its implication in inflammatory and degenerative joint diseases, such as osteoarthritis, rheumatoid arthritis and osteoporosis.
Trapezium Bone Density-A Comparison of Measurements by DXA and CT.
Breddam Mosegaard, Sebastian; Breddam Mosegaard, Kamille; Bouteldja, Nadia; Bæk Hansen, Torben; Stilling, Maiken
2018-01-18
Bone density may influence the primary fixation of cementless implants, and poor bone density may increase the risk of implant failure. Before deciding on using total joint replacement as treatment in osteoarthritis of the trapeziometacarpal joint, it is valuable to determine the trapezium bone density. The aim of this study was to: (1) determine the correlation between measurements of bone mineral density of the trapezium obtained by dual-energy X-ray absorptiometry (DXA) scans by a circumference method and a new inner-ellipse method; and (2) to compare those to measurements of bone density obtained by computerized tomography (CT)-scans in Hounsfield units (HU). We included 71 hands from 59 patients with a mean age of 59 years (43-77). All patients had Eaton-Glickel stage II-IV trapeziometacarpal (TM) joint osteoarthritis, were under evaluation for trapeziometacarpal total joint replacement, and underwent DXA and CT wrist scans. There was an excellent correlation (r = 0.94) between DXA bone mineral density measures using the circumference and the inner-ellipse method. There was a moderate correlation between bone density measures obtained by DXA- and CT-scans with (r = 0.49) for the circumference method, and (r = 0.55) for the inner-ellipse method. DXA may be used in pre-operative evaluation of the trapezium bone quality, and the simpler DXA inner-ellipse measurement method can replace the DXA circumference method in estimation of bone density of the trapezium.
Bone sialoprotein in laboratory diagnostic work-up of osteoarthritis.
Lis, Kinga
2008-01-01
Changes in osteoarthritis joint appear in the articular cartilage, synovium and in subchondral bone. It is necessary to find, apart from markers of cartilage destruction, a sensitive and specific biochemical marker which would reflect the metabolism as well as degradation of subchondral bone. Bone sialoprotein is mostly synthesized in osseous tissue found directly under the surface of joint cartilage. As a result, it is being increasingly perceived as a valuable marker of the metabolism rate of this layer of bone. Bone sialoprotein seems to be of use as a marker for subchondral bone degradation rate in laboratory diagnostic work-up of osteoarthritis.
Efficacy of infliximab on MRI-determined bone oedema in psoriatic arthritis.
Marzo-Ortega, Helena; McGonagle, Dennis; Rhodes, Laura A; Tan, Ai Lyn; Conaghan, Philip G; O'Connor, Philip; Tanner, Steven F; Fraser, Alexander; Veale, Douglas; Emery, Paul
2007-06-01
Psoriatic arthritis (PsA) is commonly associated with bone pathology, including entheseal new bone formation and osteolysis. On MRI, areas of active clinical involvement are represented by bone oedema and synovitis. To assess the impact of infliximab on bone oedema in PsA as shown by MRI. 18 patients with joint swelling, psoriasis and seronegativity for rheumatoid factor received four infusions of infliximab, 3 mg/kg, in combination with methotrexate. MRI of the affected hand (12 patients) or knee joints (6 patients) was performed before and after treatment. The primary outcome was the assessment of bone oedema and synovitis at 20 weeks as shown by MRI. Secondary outcomes included the American College of Rheumatology (ACR) response criteria, psoriasis skin scores (Psoriasis Area and Severity Index (PASI)) and a quality of life measure (Psoriatic Arthritis Quality of Life (PsAQoL)). At baseline, bone oedema was seen in 50% of patients (seven hands and two knees) in 30% of scanned joints, and this improved or resolved in all cases in the hand joints (p = 0.018) and in one knee joint at 20 weeks. Synovitis was found to be reduced in 90% of cases on MRI. Likewise, a significant improvement in all clinical outcomes, including PASI (p = 0.003) and PsAQoL (p = 0.006) was seen at week 20. 65% (n = 11) of the patients achieved an ACR response, of whom 45% had ACR70 or above and 54% had ACR20 or ACR50. Infliximab treatment is associated with dramatic improvements in MRI-determined bone oedema in PsA in the short term. It remains to be determined whether infliiximib treatment is the cause for prevention of new bone formation, bone fusion or osteolysis in PsA as shown by radiography.
Assessment of Cortical and Trabecular Bone Changes in Two Models of Post-Traumatic Osteoarthritis
Pauly, Hannah M; Larson, Blair E; Coatney, Garrett A; Button, Keith D.; DeCamp, Charlie E; Fajardo, Ryan S; Haut, Roger C; Donahue, Tammy L Haut
2015-01-01
Subchondral bone is thought to play a significant role in the initiation and progression of the post-traumatic osteoarthritis. The goal of this study was to document changes in tibial and femoral subchondral bone that occur as a result of two lapine models of anterior cruciate ligament injury, a modified ACL transection model and a closed-joint traumatic compressive impact model. Twelve weeks post-injury bones were scanned via micro-computed tomography. The subchondral bone of injured limbs from both models showed decreases in bone volume and bone mineral density. Surgical transection animals showed significant bone changes primarily in the medial hemijoint of femurs and tibias, while significant changes were noted in both the medial and lateral hemijoints of both bones for traumatic impact animals. It is believed that subchondral bone changes in the medial hemijoint were likely caused by compromised soft tissue structures seen in both models. Subchondral bone changes in the lateral hemijoint of traumatic impact animals are thought to be due to transmission of the compressive impact force through the joint. The joint-wide bone changes shown in the traumatic impact model were similar to clinical findings from studies investigating the progression of osteoarthritis in humans. PMID:26147652
Intema, F.; Thomas, T.P.; Anderson, D.D.; Elkins, J.M.; Brown, T.D.; Amendola, A.; Lafeber, F.P.J.G.; Saltzman, C.L.
2011-01-01
Objective In osteoarthritis (OA), subchondral bone changes alter the joint’s mechanical environment and potentially influence progression of cartilage degeneration. Joint distraction as a treatment for OA has been shown to provide pain relief and functional improvement through mechanisms that are not well understood. This study evaluated whether subchondral bone remodeling was associated with clinical improvement in OA patients treated with joint distraction. Method Twenty-six patients with advanced post-traumatic ankle OA were treated with joint distraction for three months using an Ilizarov frame in a referral center. Primary outcome measure was bone density change analyzed on CT scans. Longitudinal, manually segmented CT datasets for a given patient were brought into a common spatial alignment. Changes in bone density (Hounsfield Units (HU), relative to baseline) were calculated at the weight-bearing region, extending subchondrally to a depth of 8 mm. Clinical outcome was assessed using the ankle OA scale. Results Baseline scans demonstrated subchondral sclerosis with local cysts. At one and two years of follow-up, an overall decrease in bone density (−23% and −21%, respectively) was observed. Interestingly, density in originally low-density (cystic) areas increased. Joint distraction resulted in a decrease in pain (from 60 to 35, scale of 100) and functional deficit (from 67 to 36). Improvements in clinical outcomes were best correlated with disappearance of low-density (cystic) areas (r=0.69). Conclusions Treatment of advanced post-traumatic ankle OA with three months of joint distraction resulted in bone density normalization that was associated with clinical improvement. PMID:21324372
Twilt, Marinka; Pradsgaard, Dan; Spannow, Anne Helene; Horlyck, Arne; Heuck, Carsten; Herlin, Troels
2017-08-10
BoneXpert is an automated method to calculate bone maturation and bone health index (BHI) in children with juvenile idiopathic arthritis (JIA). Cartilage thickness can also be seen as an indicator for bone health and arthritis damage. The objective of this study was to evaluate the relation between cartilage thickness, bone maturation and bone health in patients with JIA. Patients with JIA diagnosed according ILAR criteria included in a previous ultrasonography (US) study were eligible if hand radiographs were taken at the same time as the US examination. Of the 95 patients 67 met the inclusion criteria. Decreased cartilage thickness was seen in 27% of the examined joints. Decreased BHI was seen in half of the JIA patient, and delayed bone maturation was seen in 33% of patients. A combination of decreased BHI and bone age was seen in 1 out of 5 JIA patients. Decreased cartilage thickness in the knee, wrist and MCP joint was negatively correlated with delayed bone maturation but not with bone health index. Delayed bone maturation and decreased BHI were not related to a thinner cartilage, but a thicker cartilage. No relation with JADAS 10 was found. The rheumatologist should remain aware of delayed bone maturation and BHI in JIA patients with cartilage changes, even in the biologic era.
Huebner, Janet L; Bay-Jensen, Anne C; Huffman, Kim M; He, Yi; Leeming, Diana J; McDaniel, Gary E; Karsdal, Morten A; Kraus, Virginia B
2014-09-01
To evaluate joint tissue remodeling using the urinary collagen biomarkers urinary α-C-telopeptide of type I collagen (α-CTX) and urinary C-telopeptide of type II collagen (CTX-II) and to determine the association of these biomarkers with osteoarthritis (OA) severity, progression, and localized knee bone turnover. Participants (n = 149) with symptomatic and radiographic knee OA underwent fixed-flexion knee radiography at baseline and 3 years, and late-phase bone scintigraphy of both knees at baseline, which were scored semiquantitatively for osteophyte and joint space narrowing (JSN) severity and uptake intensity, with scores summed across knees. Urinary concentrations of α-CTX and CTX-II were determined by enzyme-linked immunosorbent assay. Immunohistochemical analysis of human OA knees was performed to localize the joint tissue origin of the biomarker epitopes. Urinary α-CTX concentrations correlated strongly with the intensity of bone scintigraphic uptake and with JSN progression (risk ratio 13.2) and osteophyte progression (risk ratio 3). Urinary CTX-II concentrations were strongly associated with intensity of bone scintigraphic uptake, with JSN and osteophyte severity, and with OA progression based on osteophyte score. Urinary α-CTX localized primarily to high bone turnover areas in subchondral bone. CTX-II localized to the bone-cartilage interface, the tidemark, and damaged articular cartilage. Baseline urinary α-CTX, which was localized to high turnover areas of subchondral bone, was associated with dynamic bone turnover of knees, as signified by scintigraphy, and progression of both osteophytes and JSN. Urinary CTX-II correlated with JSN and osteophyte severity and progression of osteophytes. To our knowledge, this represents the first report of serologic markers reflecting subchondral bone turnover. These collagen markers may be useful for noninvasive detection and quantification of active subchondral bone turnover and joint remodeling in knee OA. Copyright © 2014 by the American College of Rheumatology.
Influence of altered gait patterns on the hip joint contact forces.
Carriero, Alessandra; Zavatsky, Amy; Stebbins, Julie; Theologis, Tim; Lenaerts, Gerlinde; Jonkers, Ilse; Shefelbine, Sandra J
2014-01-01
Children who exhibit gait deviations often present a range of bone deformities, particularly at the proximal femur. Altered gait may affect bone growth and lead to deformities by exerting abnormal stresses on the developing bones. The objective of this study was to calculate variations in the hip joint contact forces with different gait patterns. Muscle and hip joint contact forces of four children with different walking characteristics were calculated using an inverse dynamic analysis and a static optimisation algorithm. Kinematic and kinetic analyses were based on a generic musculoskeletal model scaled down to accommodate the dimensions of each child. Results showed that for all the children with altered gaits both the orientation and magnitude of the hip joint contact force deviated from normal. The child with the most severe gait deviations had hip joint contact forces 30% greater than normal, most likely due to the increase in muscle forces required to sustain his crouched stance. Determining how altered gait affects joint loading may help in planning treatment strategies to preserve correct loading on the bone from a young age.
Morse taper dental implants and platform switching: The new paradigm in oral implantology
Macedo, José Paulo; Pereira, Jorge; Vahey, Brendan R.; Henriques, Bruno; Benfatti, Cesar A. M.; Magini, Ricardo S.; López-López, José; Souza, Júlio C. M.
2016-01-01
The aim of this study was to conduct a literature review on the potential benefits with the use of Morse taper dental implant connections associated with small diameter platform switching abutments. A Medline bibliographical search (from 1961 to 2014) was carried out. The following search items were explored: “Bone loss and platform switching,” “bone loss and implant-abutment joint,” “bone resorption and platform switching,” “bone resorption and implant-abutment joint,” “Morse taper and platform switching.” “Morse taper and implant-abutment joint,” Morse taper and bone resorption,” “crestal bone remodeling and implant-abutment joint,” “crestal bone remodeling and platform switching.” The selection criteria used for the article were: meta-analysis; randomized controlled trials; prospective cohort studies; as well as reviews written in English, Portuguese, or Spanish languages. Within the 287 studies identified, 81 relevant and recent studies were selected. Results indicated a reduced occurrence of peri-implantitis and bone loss at the abutment/implant level associated with Morse taper implants and a reduced-diameter platform switching abutment. Extrapolation of data from previous studies indicates that Morse taper connections associated with platform switching have shown less inflammation and possible bone loss with the peri-implant soft tissues. However, more long-term studies are needed to confirm these trends. PMID:27011755
2011-01-01
Introduction Glucosamine is an amino-monosaccharide and precursor of glycosaminoglycans, major components of joint cartilage. Glucosamine has been clinically introduced for the treatment of osteoarthritis but the data about its protective role in disease are insufficient. The goal of this study was to investigate the effect of long term administration of glucosamine on bone resorption and remodeling. Methods The effect of glucosamine on bone resorption and remodeling was studied in a model of collagenase-induced osteoarthritis (CIOA). The levels of macrophage-inflammatory protein (MIP)-1α, protein regulated upon activation, normal T-cell expressed, and secreted (RANTES), soluble receptor activator of nuclear factor kappa-B ligand (RANKL), tumor necrosis factor (TNF)-α, and interleukin (IL)-6, 4 and 10 in synovial fluid were measured by enzyme-linked immunosorbent assay (ELISA). Cell populations in synovial extracts and the expression of RANKL, of receptors for TNF-α (TNF-αR) and interferon γ (IFN-γR) on clusters of differentiation (CD) three positive T cells were analyzed by flow cytometry. Transforming growth factor (TGF)-β3, bone morphogenetic protein (BMP)-2, phosphorylated protein mothers against decapentaplegic homolog 2 (pSMAD-2), RANKL and Dickkopf-1 protein (DKK-1) positive staining in CIOA joints were determined by immunohistochemistry. Results The administration of glucosamine hydrochloride in CIOA mice inhibited loss of glycosaminoglycans (GAGs) and proteoglycans (PGs) in cartilage, bone erosion and osteophyte formation. It decreased the levels of soluble RANKL and IL-6 and induced IL-10 increase in the CIOA joint fluids. Glucosamine limited the number of CD11b positive Ly6G neutrophils and RANKL positive CD3 T cells in the joint extracts. It suppressed bone resorption via down-regulation of RANKL expression and affected bone remodeling in CIOA by decreasing BMP-2, TGF-β3 and pSMAD-2 expression and up-regulating DKK-1 joint levels. Conclusions Our data suggest that glucosamine hydrochloride inhibits bone resorption through down-regulation of RANKL expression in the joints, via reduction of the number of RANKL positive CD3 T cells and the level of sRANKL in the joints extracts. These effects of glucosamine appear to be critical for the progression of CIOA and result in limited bone remodeling of the joints. PMID:21410959
21 CFR 888.5 - Resurfacing technique.
Code of Federal Regulations, 2014 CFR
2014-04-01
... techniques, certain joint prostheses require far less bone resection than other devices intended to repair or replace the same joint. The amount of bone resection may or may not affect the safety and effectiveness of...
21 CFR 888.5 - Resurfacing technique.
Code of Federal Regulations, 2011 CFR
2011-04-01
... techniques, certain joint prostheses require far less bone resection than other devices intended to repair or replace the same joint. The amount of bone resection may or may not affect the safety and effectiveness of...
21 CFR 888.5 - Resurfacing technique.
Code of Federal Regulations, 2013 CFR
2013-04-01
... techniques, certain joint prostheses require far less bone resection than other devices intended to repair or replace the same joint. The amount of bone resection may or may not affect the safety and effectiveness of...
21 CFR 888.5 - Resurfacing technique.
Code of Federal Regulations, 2010 CFR
2010-04-01
... techniques, certain joint prostheses require far less bone resection than other devices intended to repair or replace the same joint. The amount of bone resection may or may not affect the safety and effectiveness of...
21 CFR 888.5 - Resurfacing technique.
Code of Federal Regulations, 2012 CFR
2012-04-01
... techniques, certain joint prostheses require far less bone resection than other devices intended to repair or replace the same joint. The amount of bone resection may or may not affect the safety and effectiveness of...
Altered paracrine signaling from the injured knee joint impairs postnatal long bone growth.
Roselló-Díez, Alberto; Stephen, Daniel; Joyner, Alexandra L
2017-07-25
Regulation of organ growth is a poorly understood process. In the long bones, the growth plates (GPs) drive elongation by generating a scaffold progressively replaced by bone. Although studies have focused on intrinsic GP regulation, classic and recent experiments suggest that local signals also modulate GP function. We devised a genetic mouse model to study extrinsic long bone growth modulation, in which injury is specifically induced in the left hindlimb, such that the right hindlimb serves as an internal control. Remarkably, when only mesenchyme cells surrounding postnatal GPs were killed, left bone growth was nevertheless reduced. GP signaling was impaired by altered paracrine signals from the knee joint, including activation of the injury response and, in neonates, dampened IGF1 production. Importantly, only the combined prevention of both responses rescued neonatal growth. Thus, we identified signals from the knee joint that modulate bone growth and could underlie establishment of body proportions.
Schwalbe, H J; Bamfaste, G; Franke, R P
1999-01-01
Quality control in orthopaedic diagnostics according to DIN EN ISO 9000ff requires methods of non-destructive process control, which do not harm the patient by radiation or by invasive examinations. To obtain an improvement in health economy, quality-controlled and non-destructive measurements have to be introduced into the diagnostics and therapy of human joints and bones. A non-invasive evaluation of the state of wear of human joints and of the cracking tendency of bones is, as of today's point of knowledge, not established. The analysis of acoustic emission signals allows the prediction of bone rupture far below the fracture load. The evaluation of dry and wet bone samples revealed that it is possible to conclude from crack initiation to the bone strength and thus to predict the probability of bone rupture.
[Subchondral bone in osteoarthritis: a review].
Pang, Jian; Cao, Yue-long; Shi, Yin-yu
2011-08-01
Osteoarthritis (OA) is the most prevalent of joint diseases,and its pathology is characterized by the degeneration of cartilage, sclerosis of subchondral bone, and osteophyte formation. Localization of the early lesions of OA has not been clarified, but many researchers have focused on cartilage and have considered that changes in subchondral bone occur subsequently to the degeneration of cartilage. However, a low bone mineral density, particularly in the knee joint with OA, high bone turnover, and efficacy of bone resorption inhibitors for OA have recently been reported, suggesting that subchondral bone plays an important role in the pathogenesis of OA. This review aims to make a conclusion about advancement in research of subchondral bone in osteoarthritis.
Simultaneous segmentation of the bone and cartilage surfaces of a knee joint in 3D
NASA Astrophysics Data System (ADS)
Yin, Y.; Zhang, X.; Anderson, D. D.; Brown, T. D.; Hofwegen, C. Van; Sonka, M.
2009-02-01
We present a novel framework for the simultaneous segmentation of multiple interacting surfaces belonging to multiple mutually interacting objects. The method is a non-trivial extension of our previously reported optimal multi-surface segmentation. Considering an example application of knee-cartilage segmentation, the framework consists of the following main steps: 1) Shape model construction: Building a mean shape for each bone of the joint (femur, tibia, patella) from interactively segmented volumetric datasets. Using the resulting mean-shape model - identification of cartilage, non-cartilage, and transition areas on the mean-shape bone model surfaces. 2) Presegmentation: Employment of iterative optimal surface detection method to achieve approximate segmentation of individual bone surfaces. 3) Cross-object surface mapping: Detection of inter-bone equidistant separating sheets to help identify corresponding vertex pairs for all interacting surfaces. 4) Multi-object, multi-surface graph construction and final segmentation: Construction of a single multi-bone, multi-surface graph so that two surfaces (bone and cartilage) with zero and non-zero intervening distances can be detected for each bone of the joint, according to whether or not cartilage can be locally absent or present on the bone. To define inter-object relationships, corresponding vertex pairs identified using the separating sheets were interlinked in the graph. The graph optimization algorithm acted on the entire multiobject, multi-surface graph to yield a globally optimal solution. The segmentation framework was tested on 16 MR-DESS knee-joint datasets from the Osteoarthritis Initiative database. The average signed surface positioning error for the 6 detected surfaces ranged from 0.00 to 0.12 mm. When independently initialized, the signed reproducibility error of bone and cartilage segmentation ranged from 0.00 to 0.26 mm. The results showed that this framework provides robust, accurate, and reproducible segmentation of the knee joint bone and cartilage surfaces of the femur, tibia, and patella. As a general segmentation tool, the developed framework can be applied to a broad range of multi-object segmentation problems.
Hayami, Tadashi; Pickarski, Maureen; Zhuo, Ya; Wesolowski, Gregg A; Rodan, Gideon A; Duong, Le T
2006-02-01
Osteoarthritis (OA) is a chronic joint disease characterized by cartilage destruction, subchondral bone sclerosis, and osteophyte formation. Subchondral bone stiffness has been proposed to initiate and/or contribute to cartilage deterioration in OA. The purpose of this study was to characterize subchondral bone remodeling, cartilage damage, and osteophytosis during the disease progression in two models of surgically induced OA. Rat knee joints were subjected either to anterior cruciate ligament transection (ACLT) alone or in combination with resection of medial menisci (ACLT + MMx). Histopathological changes in the surgical joints were compared with sham at 1, 2, 4, 6, and 10 weeks post-surgery. Using a modified Mankin scoring system, we demonstrate that articular cartilage damage occurs within 2 weeks post-surgery in both surgical models. Detectable cartilage surface damage and proteoglycan loss were observed as early as 1 week post-surgery. These were followed by the increases in vascular invasion into cartilage, in loss of chondrocyte number and in cell clustering. Histomorphometric analysis revealed subchondral bone loss in both models within 2 weeks post-surgery followed by significant increases in subchondral bone volume relative to sham up to 10 weeks post-surgery. Incidence of osteophyte formation was optimally observed in ACLT joints at 10 weeks and in ACLT + MMx joints at 6 weeks post-surgery. In summary, the two surgically induced rat OA models share many characteristics seen in human and other animal models of OA, including progressive articular cartilage degradation, subchondral bone sclerosis, and osteophyte formation. Moreover, increased subchondral bone resorption is associated with early development of cartilage lesions, which precedes significant cartilage thinning and subchondral bone sclerosis. Together, these findings support a role for bone remodeling in OA pathogenesis and suggest that these rat models are suitable for evaluating bone resorption inhibitors as potential disease-modifying pharmaco-therapies.
Brodziak-Dopierała, Barbara; Roczniak, Wojciech; Jakóbik-Kolon, Agata; Kluczka, Joanna; Koczy, Bogdan; Kwapuliński, Jerzy; Babuśka-Roczniak, Magdalena
2017-10-01
Iron as a cofactor of enzymes takes part in the synthesis of the bone matrix. Severe deficiency of iron reduces the strength and mineral density of bones, whereas its excess may increase oxidative stress. In this context, it is essential to determine the iron content in knee joint tissues. The study objective was to determine the level of iron in the tissues of the knee joint, i.e., in the femoral bone, tibia and meniscus. Material for analysis was obtained during endoprosthetic surgery of the knee joint. Within the knee joint, the tibia, femur and meniscus were analyzed. Samples were collected from 50 patients, including 36 women and 14 men. The determination of iron content was performed with the ICP-AES method, using Varian 710-ES. The lowest iron content was in the tibia (27.04 μg/g), then in the meniscus (38.68 μg/g) and the highest in the femur (41.93 μg/g). Statistically significant differences were noted in the content of iron in knee joint tissues. In patients who underwent endoprosthesoplasty of the knee joint, statistically significant differences were found in the levels of iron in various components of the knee joint. The highest iron content was found in the femoral bone of the knee joint and then in the meniscus, the lowest in the tibia. The differences in iron content in the knee joint between women and men were not statistically significant.
The Unified Classification System (UCS): improving our understanding of periprosthetic fractures.
Duncan, C P; Haddad, F S
2014-06-01
Periprosthetic fractures are an increasingly common complication following joint replacement. The principles which underpin their evaluation and treatment are common across the musculoskeletal system. The Unified Classification System proposes a rational approach to treatment, regardless of the bone that is broken or the joint involved. ©2014 The British Editorial Society of Bone & Joint Surgery.
Vascularised knee joint transplantation in man: the first two years experience.
Kirschner, M H; Brauns, L; Gonschorek, O; Bühren, V; Hofmann, G O
2000-04-01
To describe our early experience with a new technique for restoring destroyed knee joints to give reasonable functional results. Observational clinical trial. Level-1-Trauma centre, Germany. 5 patients with large bone defects of the knee and loss of the extensor apparatus caused either by serious injury alone, or infection after serious injury. Transplantation of fresh and perfused knee joints with a vascular pedicle from multiorgan donors under immunosuppression. Ability to walk, need to remove one transplanted joint. Four patients are able to walk, the range of movement being from 50 degrees-120 degrees. The first patient additionally had to be provided with a total knee joint arthroplasty. In the third patient the graft became infected and had to be removed. She finally had an arthrodesis and bone lengthening by the Ilizarov technique. Transplantation of the knee joint may be an alternative to bone lengthening or amputation for patients with total loss of the extensor apparatus.
McCann, M R; Yeung, C; Pest, M A; Ratneswaran, A; Pollmann, S I; Holdsworth, D W; Beier, F; Dixon, S J; Séguin, C A
2017-05-01
Low-amplitude, high-frequency whole-body vibration (WBV) has been adopted for the treatment of musculoskeletal diseases including osteoarthritis (OA); however, there is limited knowledge of the direct effects of vibration on joint tissues. Our recent studies revealed striking damage to the knee joint following exposure of mice to WBV. The current study examined the effects of WBV on specific compartments of the murine tibiofemoral joint over 8 weeks, including microarchitecture of the tibia, to understand the mechanisms associated with WBV-induced joint damage. Ten-week-old male CD-1 mice were exposed to WBV (45 Hz, 0.3 g peak acceleration; 30 min/day, 5 days/week) for 4 weeks, 8 weeks, or 4 weeks WBV followed by 4 weeks recovery. The knee joint was evaluated histologically for tissue damage. Architecture of the subchondral bone plate, subchondral trabecular bone, primary and secondary spongiosa of the tibia was assessed using micro-CT. Meniscal tears and focal articular cartilage damage were induced by WBV; the extent of damage increased between 4 and 8-week exposures to WBV. WBV did not alter the subchondral bone plate, or trabecular bone of the tibial spongiosa; however, a transient increase was detected in the subchondral trabecular bone volume and density. The lack of WBV-induced changes in the underlying subchondral bone suggests that damage to the articular cartilage may be secondary to the meniscal injury we detected. Our findings underscore the need for further studies to assess the safety of WBV in the human population to avoid long-term joint damage. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Goetzen, Michael; Hofmann-Fliri, Ladina; Arens, Daniel; Zeiter, Stephan; Stadelmann, Vincent; Nehrbass, Dirk; Richards, R Geoff; Blauth, Michael
2015-01-01
Augmentation of implants with polymethylmethacrylate (PMMA) bone cement in osteoporotic fractures is a promising approach to increase implant purchase. Side effects of PMMA for the metaphyseal bone, particularly for the adjacent subchondral bone plate and joint cartilage, have not yet been studied. The following experimental study investigates whether subchondral PMMA injection compromises the homeostasis of the subchondral bone and/or the joint cartilage.Ten mature sheep were used to simulate subchondral PMMA injection. Follow-ups of 2 (4 animals) and 4 (6 animals) months were chosen to investigate possible cartilage damage and subchondral plate alterations in the knee. Evaluation was completed by means of high-resolution peripheral quantitative computed tomography (HRpQCT) imaging, histopathological osteoarthritis scoring, and determination of glycosaminoglycan content in the joint cartilage. Results were compared with the untreated contralateral knee and statistically analyzed using nonparametric tests.Evaluation of the histological osteoarthritis score revealed no obvious cartilage damage for the treated knee; median histological score after 2 months 0 (range 4), after 4 months 1 (range 5). There was no significant difference when compared with the untreated control site after 2 and 4 months (P = 0.23 and 0.76, respectively). HRpQCT imaging showed no damage to the metaphyseal trabeculae. Glycosaminoglycan measurements of the treated joint cartilage after 4 months revealed no significant difference compared with the untreated cartilage (P = 0.24).The findings of this study support initial clinical observation that PMMA implant augmentation of metaphyseal fractures appears to be a safe procedure for fixation without harming the subchondral bone plate and adjacent joint cartilage.
Huo, Yinghe; Vincken, Koen L; van der Heijde, Desiree; de Hair, Maria J H; Lafeber, Floris P; Viergever, Max A
2017-11-01
Objective: Wrist joint space narrowing is a main radiographic outcome of rheumatoid arthritis (RA). Yet, automatic radiographic wrist joint space width (JSW) quantification for RA patients has not been widely investigated. The aim of this paper is to present an automatic method to quantify the JSW of three wrist joints that are least affected by bone overlapping and are frequently involved in RA. These joints are located around the scaphoid bone, viz. the multangular-navicular, capitate-navicular-lunate, and radiocarpal joints. Methods: The joint space around the scaphoid bone is detected by using consecutive searches of separate path segments, where each segment location aids in constraining the subsequent one. For joint margin delineation, first the boundary not affected by X-ray projection is extracted, followed by a backtrace process to obtain the actual joint margin. The accuracy of the quantified JSW is evaluated by comparison with the manually obtained ground truth. Results: Two of the 50 radiographs used for evaluation of the method did not yield a correct path through all three wrist joints. The delineated joint margins of the remaining 48 radiographs were used for JSW quantification. It was found that 90% of the joints had a JSW deviating less than 20% from the mean JSW of manual indications, with the mean JSW error less than 10%. Conclusion: The proposed method is able to automatically quantify the JSW of radiographic wrist joints reliably. The proposed method may aid clinical researchers to study the progression of wrist joint damage in RA studies. Objective: Wrist joint space narrowing is a main radiographic outcome of rheumatoid arthritis (RA). Yet, automatic radiographic wrist joint space width (JSW) quantification for RA patients has not been widely investigated. The aim of this paper is to present an automatic method to quantify the JSW of three wrist joints that are least affected by bone overlapping and are frequently involved in RA. These joints are located around the scaphoid bone, viz. the multangular-navicular, capitate-navicular-lunate, and radiocarpal joints. Methods: The joint space around the scaphoid bone is detected by using consecutive searches of separate path segments, where each segment location aids in constraining the subsequent one. For joint margin delineation, first the boundary not affected by X-ray projection is extracted, followed by a backtrace process to obtain the actual joint margin. The accuracy of the quantified JSW is evaluated by comparison with the manually obtained ground truth. Results: Two of the 50 radiographs used for evaluation of the method did not yield a correct path through all three wrist joints. The delineated joint margins of the remaining 48 radiographs were used for JSW quantification. It was found that 90% of the joints had a JSW deviating less than 20% from the mean JSW of manual indications, with the mean JSW error less than 10%. Conclusion: The proposed method is able to automatically quantify the JSW of radiographic wrist joints reliably. The proposed method may aid clinical researchers to study the progression of wrist joint damage in RA studies.
Anatomy of the pelvic joints--a review.
Dietrichs, E
1991-01-01
In adults, after the os ilium, os ischii and os pubis have joined together by ossification to form the os coxae, there is usually one joint between the hip bones ventrally (the pubic symphysis) and several more complex joints between the hip bones and os sacrum dorsally (sacroiliac, "axial sacroiliac" and accessory sacroiliac joints). These joints carry the weight of the upper part of the body, but they shall also enable pelvic distention during labour. Pathological conditions in these joints are common, and increased knowledge concerning their normal antomy is important for better understanding of these conditions.
Mechanical loading, damping, and load-driven bone formation in mouse tibiae.
Dodge, Todd; Wanis, Mina; Ayoub, Ramez; Zhao, Liming; Watts, Nelson B; Bhattacharya, Amit; Akkus, Ozan; Robling, Alexander; Yokota, Hiroki
2012-10-01
Mechanical loads play a pivotal role in the growth and maintenance of bone and joints. Although loading can activate anabolic genes and induce bone remodeling, damping is essential for preventing traumatic bone injury and fracture. In this study we investigated the damping capacity of bone, joint tissue, muscle, and skin using a mouse hindlimb model of enhanced loading in conjunction with finite element modeling to model bone curvature. Our hypothesis was that loads were primarily absorbed by the joints and muscle tissue, but that bone also contributed to damping through its compression and natural bending. To test this hypothesis, fresh mouse distal lower limb segments were cyclically loaded in axial compression in sequential bouts, with each subsequent bout having less surrounding tissue. A finite element model was generated to model effects of bone curvature in silico. Two damping-related parameters (phase shift angle and energy loss) were determined from the output of the loading experiments. Interestingly, the experimental results revealed that the knee joint contributed to the largest portion of the damping capacity of the limb, and bone itself accounted for approximately 38% of the total phase shift angle. Computational results showed that normal bone curvature enhanced the damping capacity of the bone by approximately 40%, and the damping effect grew at an accelerated pace as curvature was increased. Although structural curvature reduces critical loads for buckling in beam theory, evolution apparently favors maintaining curvature in the tibia. Histomorphometric analysis of the tibia revealed that in response to axial loading, bone formation was significantly enhanced in the regions that were predicted to receive a curvature-induced bending moment. These results suggest that in addition to bone's compressive damping capacity, surrounding tissues, as well as naturally-occurring bone curvature, also contribute to mechanical damping, which may ultimately affect bone remodeling and bone quality. Copyright © 2012 Elsevier Inc. All rights reserved.
Monasterio, G; Castillo, F; Rojas, L; Cafferata, E A; Alvarez, C; Carvajal, P; Núñez, C; Flores, G; Díaz, W; Vernal, R
2018-05-15
It is well accepted that the presence of cytokines belonging to the Th1/Th17/Th22 axis of immuno-inflammatory response in the joint environment, such as IL-1β, IL-17 and IL-22, respectively, are associated with pathogenesis of several synovial joint degenerative disorders. During temporomandibular joint osteoarthritis (TMJ-OA), IL-1β and IL-17 have been implicated in the inflammation and resorption of sub-chondral bone; however, the role of Th22 response in the TMJ-OA pathophysiology has not been established. This study aimed to compare the expression of Th1/Th17/Th22-type cytokines, chemokines and chemokine receptors in synovial fluid samples obtained from TMJ-OA or disk displacement with reduction (DDWR) patients. In addition, it aimed to associate these levels with joint pain, imagenological signs of bone degeneration, RANKL production, osteoclastogenesis and osteoclast-induced bone resorption. Higher levels of IL-1β, IL-17 and IL-22 were expressed in TMJ-OA compared with DDWR subjects, and these increased levels significantly correlated with RANKL expression, joint pain and articular bone degeneration. Higher levels of CCR5, CCR6 and CCR7, as well as their respective ligands CCL5 and CCL20, responsible for recruitment of IL-1β, IL-17 and IL-22-producing cells, were over-expressed in TMJ-OA compared with DDWR subjects. Osteoclastogenesis and osteoclast-induced bone resorption were significantly greater in presence of synovial fluid from TMJ-OA compared with DDWR subjects. These data demonstrate that cytokines, CCLs and CCRs associated with the Th1/Th17/Th22 axis of immuno-inflammatory response are involved in TMJ-OA pathogenesis. These findings suggest that IL-22 is involved in the RANKL expression in TMJ-OA, which in turn induces differentiation of osteoclasts and subsequent resorption of sub-chondral bone. © 2018 John Wiley & Sons Ltd.
Nano-material aspects of shock absorption in bone joints.
Tributsch, H; Copf, F; Copf, P; Hindenlang, U; Niethard, F U; Schneider, R
2010-01-01
This theoretical study is based on a nano-technological evaluation of the effect of pressure on the composite bone fine structure. It turned out, that the well known macroscopic mechano-elastic performance of bones in combination with muscles and tendons is just one functional aspect which is critically supported by additional micro- and nano- shock damping technology aimed at minimising local bone material damage within the joints and supporting spongy bone material. The identified mechanisms comprise essentially three phenomena localised within the three-dimensional spongy structure with channels and so called perforated flexible tensulae membranes of different dimensions intersecting and linking them. Kinetic energy of a mechanical shock may be dissipated within the solid-liquid composite bone structure into heat via the generation of quasi-chaotic hydromechanic micro-turbulence. It may generate electro-kinetic energy in terms of electric currents and potentials. And the resulting specific structural and surface electrochemical changes may induce the compressible intra-osseal liquid to build up pressure dependent free chemical energy. Innovative bone joint prostheses will have to consider and to be adapted to the nano-material aspects of shock absorption in the operated bones.
Fatima, Farah; Fei, Ying; Ali, Abukar; Mohammad, Majd; Erlandsson, Malin C.; Bokarewa, Maria I.; Nawaz, Muhammad; Valadi, Hadi; Na, Manli
2017-01-01
Background Permanent joint dysfunction due to bone destruction occurs in up to 50% of patients with septic arthritis. Recently, imaging technologies such as micro computed tomography (μCT) scan have been widely used for preclinical models of autoimmune joint disorders. However, the radiological features of septic arthritis in mice are still largely unknown. Methods NMRI mice were intravenously or intra-articularly inoculated with S. aureus Newman or LS-1 strain. The radiological and clinical signs of septic arthritis were followed for 10 days using μCT. We assessed the correlations between joint radiological changes and clinical signs, histological changes, and serum levels of cytokines. Results On days 5–7 after intravenous infection, bone destruction verified by μCT became evident in most of the infected joints. Radiological signs of bone destruction were dependent on the bacterial dose. The site most commonly affected by septic arthritis was the distal femur in knees. The bone destruction detected by μCT was positively correlated with histological changes in both local and hematogenous septic arthritis. The serum levels of IL-6 were significantly correlated with the severity of joint destruction. Conclusion μCT is a sensitive method for monitoring disease progression and determining the severity of bone destruction in a mouse model of septic arthritis. IL-6 may be used as a biomarker for bone destruction in septic arthritis. PMID:28152087
HyBAR: hybrid bone-attached robot for joint arthroplasty.
Song, S; Mor, A; Jaramaz, B
2009-06-01
A number of small bone-attached surgical robots have been introduced to overcome some disadvantages of large stand-alone surgical robots. In orthopaedics, increasing demand on minimally invasive joint replacement surgery has also been encouraging small surgical robot developments. Among various technical aspects of such an approach, optimal miniaturization that maintains structural strength for high speed bone removal was investigated. By observing advantages and disadvantages from serial and parallel robot structures, a new hybrid kinematic configuration was designed for a bone-attached robot to perform precision bone removal for cutting the femoral implant cavity during patellofemoral joint arthroplasty surgery. A series of experimental tests were conducted in order to evaluate the performance of the new robot, especially with respect to accuracy of bone preparation. A miniaturized and rigidly-structured robot prototype was developed for minimally invasive bone-attached robotic surgery. A new minimally invasive modular clamping system was also introduced to enhance the robotic procedure. Foam and pig bone experimental results demonstrated a successful implementation of the new robot that eliminated a number of major design problems of a previous prototype. For small bone-attached surgical robots that utilize high speed orthopaedic tools, structural rigidity and clamping mechanism are major design issues. The new kinematic configuration using hinged prismatic joints enabled an effective miniaturization with good structural rigidity. Although minor problems still exist at the prototype stage, the new development would be a significant step towards the practical use of such a robot.
Gregson, C L; Hardcastle, S A; Murphy, A; Faber, B; Fraser, W D; Williams, M; Davey Smith, G; Tobias, J H
2017-04-01
High Bone Mass (HBM) is associated with (a) radiographic knee osteoarthritis (OA), partly mediated by increased BMI, and (b) pelvic enthesophytes and hip osteophytes, suggestive of a bone-forming phenotype. We aimed to establish whether HBM is associated with radiographic features of OA in non-weight-bearing (hand) joints, and whether such OA demonstrates a bone-forming phenotype. HBM cases (BMD Z-scores≥+3.2) were compared with family controls. A blinded assessor graded all PA hand radiographs for: osteophytes (0-3), joint space narrowing (JSN) (0-3), subchondral sclerosis (0-1), at the index Distal Interphalangeal Joint (DIPJ) and 1st Carpometacarpal Joint (CMCJ), using an established atlas. Analyses used a random effects logistic regression model, adjusting a priori for age and gender. Mediating roles of BMI and bone turnover markers (BTMs) were explored by further adjustment. 314 HBM cases (mean age 61.1years, 74% female) and 183 controls (54.3years, 46% female) were included. Osteophytes (grade≥1) were more common in HBM (DIPJ: 67% vs. 45%, CMCJ: 69% vs. 50%), with adjusted OR [95% CI] 1.82 [1.11, 2.97], p=0.017 and 1.89 [1.19, 3.01], p=0.007 respectively; no differences were seen in JSN. Further adjustment for BMI failed to attenuate ORs for osteophytes in HBM cases vs. controls; DIPJ 1.72 [1.05, 2.83], p=0.032, CMCJ 1.76 [1.00, 3.06], p=0.049. Adjustment for BTMs (concentrations lower amongst HBM cases) did not attenuate ORs. HBM is positively associated with OA in non-weight-bearing joints, independent of BMI. HBM-associated OA is characterised by osteophytes, consistent with a bone-forming phenotype, rather than JSN reflecting cartilage loss. Systemic factors (e.g. genetic architecture) which govern HBM may also increase bone-forming OA risk. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
[Bone and joint decade--"mile step" in diagnostics and treatment of movement system diseases?].
Brongel, Leszek; Lorkowski, Jacek; Hładki, Waldemar; Trybus, Marek
2006-01-01
Musculoskeletal disorders affect hundreds of millions of people across the world and are the most common causes of severe long-term pain and physical disability. The impact from such disorders on the individual and on society let to propose by WHO for the Decade of the Bone and Joint from 2000 to 2010. The goal of the Decade is to improve the health-related quality of life for people with musculoskeletal disorders throughout the world and this could be achieved by raising awareness of the growing burden of bone and joint diseases on society, promoting prevention and treatment and advancing understanding of musculoskeletal disorders through research. The main fields of interest during the Decade are joint diseases, spinal disorders and low back pain, osteoporosis and severe trauma of the extremities. In our Department we study problems concerning on traumatology of old patients, multitrauma injury, biomechanics in spinal disorders, in degenerative joint disease and foot diseases. Apart from contemporary imaging methods like US or CT we use pedobarographic diagnostics and fotogrammetric examination. In this study we present strategic goals and the summary of our ongoing projects in our Department related to the goals of the Bone and Joint Decade.
NASA Astrophysics Data System (ADS)
Nixon, Alan J.; Roth, Jerry E.; Krook, Lennart P.
1991-05-01
A pulsed carbon dioxide laser was used to vaporize articular cartilage in four horses, and perforate the cartilage and subchondral bone in four horses. Both intercarpal joints were examined arthroscopically and either a 1 cm cartilage crater or a series of holes was created in the third carpal bone of one joint. The contralateral carpus served as a control. The horses were evaluated clinically for 8 weeks, euthanatized and the joints examined radiographically, grossly, and histologically. Pulsed carbon dioxide laser vaporized cartilage readily but penetrated bone poorly. Cartilage vaporization resulted in no greater swelling, heat, pain on flexion, lameness, or synovial fluid reaction than the sham procedure. Laser drilling resulted in a shallow, charred hole with a tenacious carbon residue, and in combination with the thermal damage to deeper bone, resulted in increased swelling, mild lameness and a low-grade, but persistent synovitis. Cartilage removal by laser vaporization resulted in rapid regrowth with fibrous and fibrovascular tissue and occasional regions of fibrocartilage at week 8. The subchondral bone, synovial membrane, and draining lymph nodes appeared essentially unaffected by the laser cartilage vaporization procedure. Conversely, carbon dioxide laser drilling of subchondral bone resulted in poor penetration, extensive areas of thermal necrosis of bone, and significant secondary damage to the apposing articular surface of the radial carpal bone. The carbon dioxide laser is a useful intraarticular instrument for removal of cartilage and has potential application in inaccessible regions of diarthrodial joints. It does not penetrate bone sufficiently to have application in subchondral drilling.
Code of Federal Regulations, 2014 CFR
2014-04-01
... across-the-joint. This generic type of device is designed to achieve biological fixation to bone without the use of bone cement. This identification includes fixed-bearing knee prostheses where the ultra...
Code of Federal Regulations, 2013 CFR
2013-04-01
... across-the-joint. This generic type of device is designed to achieve biological fixation to bone without the use of bone cement. This identification includes fixed-bearing knee prostheses where the ultra...
Code of Federal Regulations, 2012 CFR
2012-04-01
... across-the-joint. This generic type of device is designed to achieve biological fixation to bone without the use of bone cement. This identification includes fixed-bearing knee prostheses where the ultra...
Code of Federal Regulations, 2011 CFR
2011-04-01
... across-the-joint. This generic type of device is designed to achieve biological fixation to bone without the use of bone cement. This identification includes fixed-bearing knee prostheses where the ultra...
Code of Federal Regulations, 2010 CFR
2010-04-01
... across-the-joint. This generic type of device is designed to achieve biological fixation to bone without the use of bone cement. This identification includes fixed-bearing knee prostheses where the ultra...
Hwa, S Y; Burkhardt, D; Little, C; Ghosh, P
2001-04-01
An ovine model of osteoarthritis (OA) induced by bilateral lateral meniscectomy (BLM) was used to evaluate in vivo effects of the slow acting antiarthritic drug diacerein (DIA) on degenerative changes in cartilage and subchondral bone of the operated joints. Twenty of 30 adult age matched Merino wethers were subjected to BLM in the knee joints and the remainder served as non-operated controls (NOC). Half of the BLM group (n = 10) were given DIA (25 mg/kg orally) daily for 3 mo, then 50 mg/kg daily for a further 6 mo. The remainder of the meniscectomized (MEN) group served as OA controls. Five DIA, 5 MEN, and 5 NOC animals were sacrificed at 3 mo and the remainder at 9 mo postsurgery. One knee joint of each animal was used for bone mineral density (BMD) studies. Osteochondral slabs from the lateral femoral condyle and lateral tibial plateau were cut from the contralateral joint and were processed for histological and histomorphometric examination to assess the cartilage and subchondral bone changes. No significant difference was observed in the modified Mankin scores for cartilage from the DIA and MEN groups at 3 or 9 mo. However, in animals treated with DIA, the thickness of cartilage (p = 0.05) and subchondral bone (p = 0.05) in the lesion (middle) zone of the lateral tibial plateau were decreased relative to the corresponding zone of the MEN group at 3 mo (p = 0.05). At 9 mo subchondral bone thickness in this zone remained the same as NOC but BMD, which included both subchondral and trabecular bone, was significantly increased relative to the NOC group (p = 0.01). In contrast, the subchondral bone thickness of the outer zone of lateral tibial plateau and lateral femoral condyle of both MEN and DIA groups increased after 9 mo, while BMD remained the same as in the NOC. DIA treatment of meniscectomized animals mediated selective responses of cartilage and subchondral bone to the altered mechanical stresses induced across the joints by this procedure. While subchondral bone thickness in tibial lesion sites was reduced, cartilage and bone proliferation at the outer joint margins, a region where osteophyte formation occurred, were enhanced, suggesting that DIA supported the processes of repair and endochondral ossification.
[The occurance lead and cadmium in hip joint in aspect of exposure on tobacco smoke].
Bogunia, Mariusz; Brodziak-Dopierała, Barbara; Kwapuliński, Jerzy; Ahnert, Bozena; Kowol, Jolanta; Nogaj, Ewa
2008-01-01
The objective of this study was qualification of content cadmium and lead in selected elements of the hip joint in aspect of tobacco smoking. The material for the research were 5 elements of hip joint (articular cartilage, trabecular bone and cortical bone femur head, fragment articular capsule and fragment trabecular bone from region intertrochanteric femoral bone), obtained intraoperatively during endoprothesoplastic surgeries. The samples come from habitants of Upper Silesian Region. Determination of trace elements contents were performed by ASA method (Pye Unicam SP-9) in acetylene-oxygen flame. Higher contents of lead were observed for smoking people, however in case of cadmium the differences of this element were not statistical essential between smokers and non-smokers.
Bunion removal - series (image)
... causes the joint to thicken and enlarge. This causes the bones of the big toe to angle in toward and over the ... pain-free (general anesthesia) and rarely requires a hospital ... the bones of the big toe into the foot. The deformed joint and ...
2011-01-01
Background Idiopathic Toe Walking (ITW) is present in children older than 3 years of age still walking on their toes without signs of neurological, orthopaedic or psychiatric diseases. ITW has been estimated to occur in 7% to 24% of the childhood population. To study associations between Idiopathic Toe Walking (ITW) and decrease in range of joint motion of the ankle joint. To study associations between ITW (with stiff ankles) and stiffness in other joints, muscle strength and bone density. Methods In a cross-sectional study, 362 healthy children, adolescents and young adults (mean age (sd): 14.2 (3.9) years) participated. Range of joint motion (ROM), muscle strength, anthropometrics sport activities and bone density were measured. Results A prevalence of 12% of ITW was found. Nine percent had ITW and severely restricted ROM of the ankle joint. Children with ITW had three times higher chance of severe ROM restriction of the ankle joint. Participants with ITW and stiff ankle joints had a decreased ROM in other joints, whereas bone density and muscle strength were comparable. Conclusion ITW and a decrease in ankle joint ROM might be due to local stiffness. Differential etiological diagnosis should be considered. PMID:21418634
Engelbert, Raoul; Gorter, Jan Willem; Uiterwaal, Cuno; van de Putte, Elise; Helders, Paul
2011-03-21
Idiopathic Toe Walking (ITW) is present in children older than 3 years of age still walking on their toes without signs of neurological, orthopaedic or psychiatric diseases. ITW has been estimated to occur in 7% to 24% of the childhood population. To study associations between Idiopathic Toe Walking (ITW) and decrease in range of joint motion of the ankle joint. To study associations between ITW (with stiff ankles) and stiffness in other joints, muscle strength and bone density. In a cross-sectional study, 362 healthy children, adolescents and young adults (mean age (sd): 14.2 (3.9) years) participated. Range of joint motion (ROM), muscle strength, anthropometrics sport activities and bone density were measured. A prevalence of 12% of ITW was found. Nine percent had ITW and severely restricted ROM of the ankle joint. Children with ITW had three times higher chance of severe ROM restriction of the ankle joint. Participants with ITW and stiff ankle joints had a decreased ROM in other joints, whereas bone density and muscle strength were comparable. ITW and a decrease in ankle joint ROM might be due to local stiffness. Differential etiological diagnosis should be considered.
Altered paracrine signaling from the injured knee joint impairs postnatal long bone growth
Roselló-Díez, Alberto; Stephen, Daniel; Joyner, Alexandra L
2017-01-01
Regulation of organ growth is a poorly understood process. In the long bones, the growth plates (GPs) drive elongation by generating a scaffold progressively replaced by bone. Although studies have focused on intrinsic GP regulation, classic and recent experiments suggest that local signals also modulate GP function. We devised a genetic mouse model to study extrinsic long bone growth modulation, in which injury is specifically induced in the left hindlimb, such that the right hindlimb serves as an internal control. Remarkably, when only mesenchyme cells surrounding postnatal GPs were killed, left bone growth was nevertheless reduced. GP signaling was impaired by altered paracrine signals from the knee joint, including activation of the injury response and, in neonates, dampened IGF1 production. Importantly, only the combined prevention of both responses rescued neonatal growth. Thus, we identified signals from the knee joint that modulate bone growth and could underlie establishment of body proportions. DOI: http://dx.doi.org/10.7554/eLife.27210.001 PMID:28741471
Schnitzler, C M; Pieczkowski, W M; Fredlund, V; Mesquita, J M; Sweet, M B; Smit, A E
1988-01-01
Mseleni Joint Disease (MJD), a polyarticular osteoarthritis of uncertain etiology is endemic among the Tonga-Zulu tribe. The traditional diet is deficient in calcium, and palm wine (2-4% alcohol) is drunk widely. Patients with MJD are reported to be more osteopenic than those without. Iliac bone biopsies of 19 arthritic patients were examined by routine histomorphometry and revealed decreased trabecular bone volume (p less than 0.0005), increased resorption surfaces (p less than 0.01), decreased bone formation rate at the BMU (p less than 0.01) level and increased mineralization lag time (p less than 0.01). Six of the 19 patients (31.6%) had features of osteomalacia and six (31.6%) signs of osteoblast failure. The most likely cause of the bone disorder is calcium deficiency, but inanition, inactivity and alcohol abuse may have contributed. Although the joint disorder may have contributed to the bone disorder, the converse is unlikely the case.
Bone structure of the temporo-mandibular joint in the individuals aged 18-25.
Parafiniuk, M; Gutsch-Trepka, A; Trepka, S; Sycz, K; Wolski, S; Parafiniuk, W
1998-01-01
Osteohistometric studies were performed in 15 female and 15 male cadavers aged 18-25. Condyloid process and right and left acetabulum of the temporo-mandibular joint have been studied. Density has been investigated using monitor screen linked with microscope (magnification 80x). Density in the spongy part of the condyloid process was 26.67-26.77%; in the subchondrial layer--72.13-72.72%, and in the acetabular wall 75.03-75.91%. Microscopic structure of the bones of the temporo-mandibular joint revealed no differences when compared with images of compact and cancellous bone shown in the histology textbooks. Sex and the side of the body had no influence on microscopic image and proportional bone density. Isles of chondrocytes in the trabeculae of the spongy structure of the condyloid process were found in 4 cases and isles of the condensed bone resembling the compact pattern in 7 cases.
Nano-Material Aspects of Shock Absorption in Bone Joints
Tributsch, H; Copf, F; Copf, p; Hindenlang, U; Niethard, F.U; Schneider, R
2010-01-01
This theoretical study is based on a nano-technological evaluation of the effect of pressure on the composite bone fine structure. It turned out, that the well known macroscopic mechano-elastic performance of bones in combination with muscles and tendons is just one functional aspect which is critically supported by additional micro- and nano- shock damping technology aimed at minimising local bone material damage within the joints and supporting spongy bone material. The identified mechanisms comprise essentially three phenomena localised within the three–dimensional spongy structure with channels and so called perforated flexible tensulae membranes of different dimensions intersecting and linking them. Kinetic energy of a mechanical shock may be dissipated within the solid-liquid composite bone structure into heat via the generation of quasi-chaotic hydromechanic micro-turbulence. It may generate electro-kinetic energy in terms of electric currents and potentials. And the resulting specific structural and surface electrochemical changes may induce the compressible intra-osseal liquid to build up pressure dependent free chemical energy. Innovative bone joint prostheses will have to consider and to be adapted to the nano-material aspects of shock absorption in the operated bones. PMID:21625375
Wang, Shanxi; Li, Jun; Huang, Fuguo; Liu, Lei
2017-05-01
To review the application and research progress of subtalar distraction bone block arth-rodesis in the treatment of calcaneus fracture malunion. The recent literature concerning the history, surgical technique, postoperative complication, indications, and curative effect of subtalar distraction arthrodesis with bone graft block interposition in the treatment of calcaneus fracture malunion was summarized and analyzed. Subtalar distraction bone block arthrodesis is one of the main ways to treat calcaneus fracture malunion, including a combined surgery with subtalar arthrodesis and realignment surgery for hindfoot deformity using bone block graft. The advantage is on the base of subtalar joint fusion, through one-time retracting subtalar joint, the posterior articular surface of subtalar joint implants bone block can partially restore calcaneal height, thus improving the function of the foot. Compared with other calcaneal malunion treatments, subtalar distraction arthrodesis is effective to correct complications caused by calcaneus fracture malunion, and it can restore the height of talus and calcaneus, correct loss of talocalcaneal angle, and ease pain. Subtalar distraction bone block arthrodesis has made remarkable progress in the treatment of calcaneus fracture malunion, but it has the disadvantages of postoperative nonunion and absorption of bone block, so further study is needed.
Chromium content in the human hip joint tissues.
Brodziak-Dopierała, Barbara; Kwapuliński, Jerzy; Sobczyk, Krzysztof; Wiechuła, Danuta
2015-02-01
Chromium has many important functions in the human body. For the osseous tissue, its role has not been clearly defined. This study was aimed at determining chromium content in hip joint tissues. A total of 91 hip joint samples were taken in this study, including 66 from females and 25 from males. The sample tissues were separated according to their anatomical parts. The chromium content was determined by the AAS method. The statistical analysis was performed with U Mann-Whitney's non-parametric test, P≤0.05. The overall chromium content in tissues of the hip joint in the study subjects was as follows: 5.73 µg/g in the articular cartilage, 5.33 µg/g in the cortical bone, 17.86 µg/g in the cancellous bone, 5.95 µg/g in the fragment of the cancellous bone from the intertrochanteric region, and 1.28 µg/g in the joint capsule. The chromium contents were observed in 2 group patients, it was 7.04 µg/g in people with osteoarthritis and 12.59 µg/g in people with fractures. The observed chromium content was highest in the cancellous bone and the lowest in the joint capsule. Chromium content was significantly different between the people with hip joint osteoarthritis and the people with femoral neck fractures. Copyright © 2015 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.
Lee, Sang Yang; Niikura, Takahiro; Miwa, Masahiko; Sakai, Yoshitada; Oe, Keisuke; Fukazawa, Takahiro; Kawakami, Yohei; Kurosaka, Masahiro
2011-06-14
Treatment of soft tissue defects with exposed bones and joints, resulting from trauma, infection, and surgical complications, represents a major challenge. The introduction of negative pressure wound therapy has changed many wound management practices. Negative pressure wound therapy has recently been used in the orthopedic field for management of traumatic or open wounds with exposed bone, nerve, tendon, and orthopedic implants. This article describes a case of a patient with a large soft tissue defect and exposed knee joint, in which negative pressure wound therapy markedly improved wound healing. A 50-year-old man presented with an ulceration of his left knee with exposed joint, caused by severe wound infections after open reduction and internal fixation of a patellar fracture. After 20 days of negative pressure wound therapy, a granulated wound bed covered the exposed bones and joint.To our knowledge, this is the first report of negative pressure wound therapy used in a patient with a large soft tissue defect with exposed knee joint. Despite the chronic wound secondary to infection, healing was achieved through the use of the negative pressure wound therapy, thus promoting granulation tissue formation and closing the joint. We suggest negative pressure wound therapy as an alternative option for patients with lower limb wounds containing exposed bones and joints when free flap transfer is contraindicated. Our result added to the growing evidence that negative pressure wound therapy is a useful adjunctive treatment for open wounds around the knee joint. Copyright 2011, SLACK Incorporated.
Kütük, Nükhet; Baş, Burcu; Soylu, Emrah; Gönen, Zeynep Burçin; Yilmaz, Canay; Balcioğlu, Esra; Özdamar, Saim; Alkan, Alper
2014-02-01
The purpose of the present study was to explore the potential use of platelet-rich-plasma (PRP) in the treatment of temporomandibular joint osteoarthritis (TMJ-OA). Surgical defects were created bilaterally on the condylar fibrocartilage, hyaline cartilage, and bone to induce an osteoarthritic TMJ in rabbits. PRP was applied to the right joints of the rabbits (PRP group), and the left joints received physiologic saline (control group). After 4 weeks, the rabbits were sacrificed for histologic and scanning electron microscopy (SEM) examinations. The data were analyzed statistically. The new bone regeneration was significantly greater in the PRP group (P < .011). Although the regeneration of the fibrocartilage and hyaline cartilage was greater in the PRP group, no statistically significant difference was found between the 2 groups. SEM showed better ultrastructural architecture of the collagen fibrils in the PRP group. PRP might enhance the regeneration of bone in TMJ-OA. Copyright © 2014 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Total-Body Irradiation Produces Late Degenerative Joint Damage in Rats
Hutchinson, Ian D.; Olson, John; Lindburg, Carl A.; Payne, Valerie; Collins, Boyce; Smith, Thomas L.; Munley, Michael T.; Wheeler, Kenneth T.; Willey, Jeffrey S.
2014-01-01
Purpose Premature musculoskeletal joint failure is a major source of morbidity among childhood cancer survivors. Radiation effects on synovial joint tissues of the skeleton are poorly understood. Our goal was to assess long-term changes in the knee joint from skeletally mature rats that received total-body irradiation while skeletal growth was ongoing. Materials and Methods 14 week-old rats were irradiated with 1, 3 or 7 Gy total-body doses of 18 MV x-rays. At 53 weeks of age, structural and compositional changes in knee joint tissues (articular cartilage, subchondral bone, and trabecular bone) were characterized using 7T MRI, nanocomputed tomography (nanoCT), microcomputed tomography (microCT), and histology. Results T2 relaxation times of the articular cartilage were lower after exposure to all doses. Likewise, calcifications were observed in the articular cartilage. Trabecular bone microarchitecture was compromised in the tibial metaphysis at 7 Gy. Mild to moderate cartilage erosion was scored in the 3 and 7 Gy rats. Conclusions Late degenerative changes in articular cartilage and bone were observed after total body irradiation in adult rats exposed prior to skeletal maturity. 7T MRI, microCT, nanoCT, and histology identified potential prognostic indicators of late radiation-induced joint damage. PMID:24885745
Mason, Jeffrey B; Gurda, Brittney L; Hankenson, Kurt D; Harper, Lindsey R; Carlson, Cathy S; Wilson, James M; Richardson, Dean W
2017-11-01
Our goals in the current experiments were to determine if (a) upregulation of Wnt signaling would induce osteoarthritis changes in stable stifle joints and (b) if downregulation of Wnt signaling in destabilized joints would influence the progression of OA. At 37 weeks of age, rats were injected in the stifle joint with a recombinant adeno-associated viral vector containing the Wnt-inhibitor Dkk-1 or a Wnt10b transgene. At 40 weeks of age, rats underwent surgical destabilization of the joint. At 50 weeks of age, stifle joints were submitted for micro-computed tomography and histopathological analysis. Injection of either Wnt10b or Dkk-1 transgenes in stable joints improved bone architectural parameters, but worsened soft tissue integrity. Osteophytosis was decreased by Dkk-1, but unchanged by Wnt10b. Destabilization negatively influenced bone architecture, increased osteophytosis, and decreased soft tissue integrity. Dkk-1 exacerbated the negative effects of destabilization, whereas Wnt10b had little effect on these parameters. Osteophytosis was improved, whereas soft tissue integrity was worsened by both transgenes in destabilized joints. The Wnt-inhibitor Dkk-1 does not appear to completely inhibit the effects of Wnt signaling on bone remodeling. In vivo upregulation of Wnt10b and its inhibitor, Dkk-1, can produce both parallel or contrasting phenotypic responses depending on the specific parameter measured and the fidelity of the examined joint. These observations elucidate different roles for Wnt signaling in stable versus destabilized joints and may help to explain the conflicting results previously reported for the role of Dkk-1 in joint disease.
Tamai, Mami; Kawakami, Atsushi; Iwamoto, Naoki; Kawashiri, Shin-Ya; Fujikawa, Keita; Aramaki, Toshiyuki; Kita, Junko; Okada, Akitomo; Koga, Tomohiro; Arima, Kazuhiko; Kamachi, Makoto; Yamasaki, Satoshi; Nakamura, Hideki; Ida, Hiroaki; Origuchi, Tomoki; Takao, Shoichiro; Aoyagi, Kiyoshi; Uetani, Masataka; Eguchi, Katsumi
2011-03-01
To verify whether magnetic resonance imaging (MRI)-proven joint injury is sensitive as compared with joint injury determined by physical examination. MRI of the wrist and finger joints of both hands was examined in 51 early-stage rheumatoid arthritis (RA) patients by both plain and gadolinium diethylenetriaminepentaacetic acid-enhanced MRI. Synovitis, bone edema, and bone erosion (the latter two included as bone lesions at the wrist joints); metacarpophalangeal joints; and proximal interphalangeal joints were considered as MRI-proven joint injury. Japan College of Rheumatology-certified rheumatologists had given a physical examination just before the MRI study. The presence of tender and/or swollen joints in the same fields as MRI was considered as joint injury on physical examination. The association of MRI-proven joint injury with physical examination-proven joint injury was examined. A total of 1,110 sites were available to be examined. MRI-proven joint injury was found in 521 sites, whereas the other 589 sites were normal. Physical examination-proven joint injury was found in 305 sites, which was significantly low as compared with MRI-proven joint injury (P = 1.1 × 10(-12) versus MRI). Joint injury on physical examination was not found in 81.5% of the sites where MRI findings were normal. Furthermore, an association of the severity of MRI-proven joint injury with that of joint injury on physical examination was clearly demonstrated (P = 1.6 × 10(-15), r(s) = 0.469). Our present data suggest that MRI is not only sensitive but accurately reflects the joint injury in patients with early-stage RA. Copyright © 2011 by the American College of Rheumatology.
Akoto, Ralph; Müller-Hübenthal, Jonas; Balke, Maurice; Albers, Malte; Bouillon, Bertil; Helm, Philip; Banerjee, Marc; Höher, Jürgen
2015-08-19
Bone tunnel enlargement is a phenomenon present in all anterior cruciate ligament (ACL)- reconstruction techniques. It was hypothesized that press-fit fixation using a free autograft bone plug reduces the overall tunnel size in the tibial tunnel. In a prospective cohort study twelve patients who underwent primary ACL reconstruction using an autologous quadriceps tendon graft and adding a free bone block for press-fit fixation (PF) in the tibial tunnel were matched to twelve patients who underwent ACL reconstruction with a hamstring graft and interference screw fixation (IF). The diameters of the bone tunnels were analysed by a multiplanar reconstruction technique (MPR) in a CT scan three months postoperatively. Manual and instrumental laxity (Lachman test, Pivot-shift test, Rolimeter) and functional outcome scores (International Knee Documentation Committee sore, Tegner activity level) were measured after one year follow up. In the PF group the mean bone tunnel diameter at the level of the joint entrance was not significantly enlarged. One and two centimeter distal to the bone tunnel diameter was reduced by 15% (p = .001). In the IF group the bone tunnel at the level of the joint entrance was enlarged by 14% (p = .001). One and two centimeter distal to the joint line the IF group showed a widening of the bone tunnel by 21% (p < .001) One and two centimeter below the joint line the bone tunnel was smaller in the PF group when compared to the IF group (p < .001). No significant difference for laxity test and functional outcome scores could be shown. This study demonstrates that press-fit fixation with free autologous bone plugs in the tibial tunnel results in significantly smaller diameter of the tibial tunnel compared to interference screw fixation.
Implantable sensor technology: measuring bone and joint biomechanics of daily life in vivo
2013-01-01
Stresses and strains are major factors influencing growth, remodeling and repair of musculoskeletal tissues. Therefore, knowledge of forces and deformation within bones and joints is critical to gain insight into the complex behavior of these tissues during development, aging, and response to injury and disease. Sensors have been used in vivo to measure strains in bone, intraarticular cartilage contact pressures, and forces in the spine, shoulder, hip, and knee. Implantable sensors have a high impact on several clinical applications, including fracture fixation, spine fixation, and joint arthroplasty. This review summarizes the developments in strain-measurement-based implantable sensor technology for musculoskeletal research. PMID:23369655
[The para-clinic investigation of temporo-mandibular joint changes in patients with acromegaly].
Morăraşu, C; Burlui, V; Olaru, C; Boza, C; Bortă, C; Morăraşu, G; Brînză, M
2001-01-01
The Acromegaly is an endocrinological disease determined by the hypersecretion of STH in a certain period of the body evolution and it causes the hypertrophy of bones in general and of mandible and cranio-facial bones, determining a disorder due to this development of bones, associated with troubles in the activity of muscles and of the phospho-calcium metabolism. This study was made on a group of 33 acromegaly patients. Their temporo-mandibular joint was investigated by ortopantomography, tomography, computer tomography and scintigraphy. All of these exams shows the changes in temporo-mandibular joint due to the cells hyperactivity determined by the hypersecretion of STH.
Three-Dimensional Geometric Analysis of Felid Limb Bone Allometry
Doube, Michael; Conroy, Alexis Wiktorowicz; Christiansen, Per; Hutchinson, John R.; Shefelbine, Sandra
2009-01-01
Background Studies of bone allometry typically use simple measurements taken in a small number of locations per bone; often the midshaft diameter or joint surface area is compared to body mass or bone length. However, bones must fulfil multiple roles simultaneously with minimum cost to the animal while meeting the structural requirements imposed by behaviour and locomotion, and not exceeding its capacity for adaptation and repair. We use entire bone volumes from the forelimbs and hindlimbs of Felidae (cats) to investigate regional complexities in bone allometry. Method/Principal Findings Computed tomographic (CT) images (16435 slices in 116 stacks) were made of 9 limb bones from each of 13 individuals of 9 feline species ranging in size from domestic cat (Felis catus) to tiger (Panthera tigris). Eleven geometric parameters were calculated for every CT slice and scaling exponents calculated at 5% increments along the entire length of each bone. Three-dimensional moments of inertia were calculated for each bone volume, and spherical radii were measured in the glenoid cavity, humeral head and femoral head. Allometry of the midshaft, moments of inertia and joint radii were determined. Allometry was highly variable and related to local bone function, with joint surfaces and muscle attachment sites generally showing stronger positive allometry than the midshaft. Conclusions/Significance Examining whole bones revealed that bone allometry is strongly affected by regional variations in bone function, presumably through mechanical effects on bone modelling. Bone's phenotypic plasticity may be an advantage during rapid evolutionary divergence by allowing exploitation of the full size range that a morphotype can occupy. Felids show bone allometry rather than postural change across their size range, unlike similar-sized animals. PMID:19270749
Mohan, Geetha; Magnitsky, Sergey; Melkus, Gerd; Subburaj, Karupppasamy; Kazakia, Galateia; Burghardt, Andrew J; Dang, Alexis; Lane, Nancy E; Majumdar, Sharmila
2016-10-01
Osteoarthritis (OA) is a major degenerative joint disease characterized by progressive loss of articular cartilage, synovitis, subchondral bone changes, and osteophyte formation. Currently there is no treatment for OA except temporary pain relief and end-stage joint replacement surgery. We performed a pilot study to determine the effect of kartogenin (KGN, a small molecule) on both cartilage and subchondral bone in a rat model of OA using multimodal imaging techniques. OA was induced in rats (OA and KGN treatment group) by anterior cruciate ligament transection (ACLT) surgery in the right knee joint. Sham surgery was performed on the right knee joint of control group rats. KGN group rats received weekly intra-articular injection of 125 μM KGN 1 week after surgery until week 12. All rats underwent in vivo magnetic resonance imaging (MRI) at 3, 6, and 12 weeks after surgery. Quantitative MR relaxation measures (T 1ρ and T 2 ) were determined to evaluate changes in articular cartilage. Cartilage and bone turnover markers (COMP and CTX-I) were determined at baseline, 3, 6, and 12 weeks. Animals were sacrificed at week 12 and the knee joints were removed for micro-computed tomography (micro-CT) and histology. KGN treatment significantly lowered the T 1ρ and T 2 relaxation times indicating decreased cartilage degradation. KGN treatment significantly decreased COMP and CTX-I levels indicating decreased cartilage and bone turnover rate. KGN treatment also prevented subchondral bone changes in the ACLT rat model of OA. Thus, kartogenin is a potential drug to prevent joint deterioration in post-traumatic OA. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1780-1789, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Avascular necrosis; Bone infarction; Ischemic bone necrosis; AVN; Aseptic necrosis ... Osteonecrosis occurs when part of the bone does not get blood and dies. After a while, the bone can collapse. If osteonecrosis is not treated, the joint deteriorates, leading ...
Nuclear medicine and the failed joint replacement: Past, present, and future
Palestro, Christopher J
2014-01-01
Soon after the introduction of the modern prosthetic joint, it was recognized that radionuclide imaging provides useful information about these devices. The bone scan was used extensively to identify causes of prosthetic joint failure. It became apparent, however, that although sensitive, regardless of how the images were analyzed or how it was performed, the test was not specific and could not distinguish among the causes of prosthetic failure. Advances in anatomic imaging, notably cross sectional modalities, have facilitated the diagnosis of many, if not most, causes of prosthetic failure, with the important exception of infection. This has led to a shift in the diagnostic paradigm, in which nuclear medicine investigations increasingly have focused on diagnosing infection. The recognition that bone scintigraphy could not reliably diagnose infection led to the development of combined studies, first bone/gallium and subsequently leukocyte/bone and leukocyte/marrow imaging. Labeled leukocyte imaging, combined with bone marrow imaging is the most accurate (about 90%) imaging test for diagnosing joint arthroplasty infection. Its value not withstanding, there are significant disadvantages to this test. In-vivo techniques for labeling leukocytes, using antigranulocyte antibodies have been explored, but have their own limitations and the results have been inconsistent. Fluorodeoxyglucose (FDG)-positron emission tomography (FDG-PET) has been extensively investigated for more than a decade but its role in diagnosing the infected prosthesis has yet to be established. Antimicrobial peptides bind to bacterial cell membranes and are infection specific. Data suggest that these agents may be useful for diagnosing prosthetic joint infection, but large scale studies have yet to be undertaken. Although for many years nuclear medicine has focused on diagnosing prosthetic joint infection, the advent of hybrid imaging with single-photon emission computed tomography(SPECT)/electronic computer X-ray tomography technique (CT) and the availability of fluorine-18 fluoride PET suggests that the diagnostic paradigm may be shifting again. By providing the anatomic information lacking in conventional radionuclide studies, there is renewed interest in bone scintigraphy, performed as a SPECT/CT procedure, for detecting joint instability, mechanical loosening and component malpositioning. Fluoride-PET may provide new insights into periprosthetic bone metabolism. The objective of this manuscript is to provide a comprehensive review of the evolution of nuclear medicine imaging of joint replacements. PMID:25071885
NASA Astrophysics Data System (ADS)
Tamaddon, Maryam; Chen, Shen Mao; Vanaclocha, Leyre; Hart, Alister; El-Husseiny, Moataz; Henckel, Johann; Liu, Chaozong
2017-11-01
Osteoarthritis (OA) is the most common type of arthritis and a major cause of disability in the adult population. It affects both cartilage and subchondral bone in the joints. There has been some progress in understanding the changes in subchondral bone with progression of osteoarthritis. However, local changes in subchondral bone such as microstructure or volumetric bone mineral density in connection with the defect in cartilage are relatively unexplored. To develop an effective treatment for progression of OA, it is important to understand how the physical environment provided by the subchondral bone affects the overlying cartilage. In this study we examined the volumetric bone mineral density (vBMD) distribution in the osteoarthritic joint tissues obtained from total hip replacement surgeries due to osteoarthritis, using peripheral quantitative CT (pQCT). It was found that there is a significant decrease in volumetric bone mineral density, which co-localises with the damage in the overlying cartilage. This was not limited to the subchondral bone immediately adjacent to the cartilage defect but continued in the layers below. Bone resorption and cyst formation in the OA tissues were also detected. We observed that the bone surrounding subchondral bone cysts exhibited much higher volumetric bone mineral density than that of the surrounding bones. PQCT was able to detect significant changes in vBMD between OA and non-OA samples, as well as between areas of different cartilage degeneration, which points to its potential as a technique for detection of early OA.
van der Harst, M R; van de Lest, C H A; Degroot, J; Kiers, G H; Brama, P A J; van Weeren, P R
2005-05-01
A detailed and comprehensive insight into the normal maturation process of the different tissues that make up functional units of the locomotor system such as joints is necessary to understand the influence of early training on musculoskeletal tissues. To study simultaneously the maturation process in the entire composite structure that makes up the bearing surface of a joint (cartilage, subchondral and trabecular bone) in terms of biochemical changes in the tissues of juvenile horses at 2 differently loaded sites of the metacarpophalangeal joint, compared to a group of mature horses. In all the structures described above developmental changes may follow a different timescale. Age-related changes in biochemical characteristics of the collagen part of the extracellular matrix (hydroxylysine, hydroxyproline, hydroxypyridinum crosslinks) of articular cartilage and of the underlying subchondral and trabecular bone were determined in a group of juvenile horses (n = 13) (Group 1, age 6 months-4 years) and compared to a group of mature horses (n = 30) (Group 2, >4 years). In both bony layers, bone mineral density, ash content and levels of individual minerals were determined. In cartilage, subchondral bone and trabecular bone, virtually all collagen parameters in juvenile horses were already at a similar (stable) level as in mature horses. In both bony layers, bone mineral density, ash- and calcium content were also stable in the mature horses, but continued to increase in the juvenile group. For magnesium there was a decrease in the juvenile animals, followed by a steady state in the mature horses. In horses age 6 months-4 years, the collagen network of all 3 layers within the joint has already attained a mature biochemical composition, but the mineral composition of both subchondral and trabecular bone continues to develop until approximately age 4 years. The disparity in maturation of the various extracellular matrix components of a joint can be assumed to have consequences for the capacity to sustain load and should hence be taken into account when training or racing young animals.
Wang, Y Y; Zhao, Z; Luo, G; Li, Y; Zhang, J L; Huang, F
2016-11-01
Objective: To evaluate the specificity and limitations of sacroiliac joint magnetic resonance imaging (MRI) in the diagnosis of axial spondyloarthritis (SpA)in patients with chronic low back pain. Methods: We retrospectively analyzed clinical data of 390 patients with chronic low back pain in Department of Rheumatology, the PLA General Hospital from January 2013 to December 2015, including clinical manifestations, laboratory examinations and MRI data of sacroiliac joints. Results: There were 238 men and 152 women recruited. A total of 326 cases were diagnosed as axial SpA, including 216 men and 110 women with mean age (27.10±8.64) years and mean duration (7.64±3.50) months. Among these 326 patients, 243 (74.5%) were HLA-B 27 positive. The other 64 patients were considered as diagnoses rather than SpA (non-SpA), consisting of 22 men and 42 women with mean age (31.29±7.76) years and mean duration (5.75±2.90)months. Non-SpA group had 10 (15.6%) patients with HLA-B 27 positive. There were 68.1% and 65.0% SpA patients showing bone marrow edema and bone erosion of sacroiliac joint in MRI imaging respectively. Although there were 25.0% non-SpA patients with bone marrow edema and 7.8% with bone erosion in MRI of sacroiliac joint, the scores of bone marrow edema 0.00(0.00, 0.75) and bone erosion [0.00(0.00, 0.00)] were significantly lower compared with those in axial SpA group [bone marrow edema scores 2.00(0.00, 4.00), bone erosion scores 1.00(0.00, 3.00); P <0.05]. The scores of fat infiltration [1.00(0.00, 4.25), 1.00(0.00, 4.00)] and bone sclerosis [0.00(0.00, 1.00), 0.00(0.00, 1.75)] were not statistically different between two groups. Diagnostic sensitivity of bone marrow edema and bone erosion for axial SpA were 56.4% and 64.1% respectively, specificity were 93.8% and 92.2% respectively. The positive predictive value of bone marrow edema and bone erosion for axial SpA were 9.09 and 8.21, negative predictive value were 0.46 and 0.38.Diagnositic sensitivity of fatty infiltration and bone sclerosis for axial SpA group were 29.1% and 57.7%, specificity were 64.1% and 46.9%.The positive predictive value of fatty infiltration and bone sclerosis for axial SpA were 0.81 and 1.08, negative predictive value were 1.10 and 0.90. Conclusion: Sacroiliac joint MRI is a valuable method to diagnose axial SpA in patients with chronic low back pain. Yet it still has some limitations. Clinical presentations and spinal MRI would be helpful in some patients.
Proteoglycan 4: A Dynamic Regulator of Skeletogenesis and Parathyroid Hormone Skeletal Anabolism
Novince, Chad M; Michalski, Megan N; Koh, Amy J; Sinder, Benjamin P; Entezami, Payam; Eber, Matthew R; Pettway, Glenda J; Rosol, Thomas J; Wronski, Thomas J; Kozloff, Ken M; McCauley, Laurie K
2014-01-01
Proteoglycan 4 (Prg4), known for its lubricating and protective actions in joints, is a strong candidate regulator of skeletal homeostasis and parathyroid hormone (PTH) anabolism. Prg4 is a PTH-responsive gene in bone and liver. Prg4 null mutant mice were used to investigate the impact of proteoglycan 4 on skeletal development, remodeling, and PTH anabolic actions. Young Prg4 mutant and wild-type mice were administered intermittent PTH(1–34) or vehicle daily from 4 to 21 days. Young Prg4 mutant mice had decreased growth plate hypertrophic zones, trabecular bone, and serum bone formation markers versus wild-type mice, but responded with a similar anabolic response to PTH. Adult Prg4 mutant and wild-type mice were administered intermittent PTH(1–34) or vehicle daily from 16 to 22 weeks. Adult Prg4 mutant mice had decreased trabecular and cortical bone, and blunted PTH-mediated increases in bone mass. Joint range of motion and animal mobility were lower in adult Prg4 mutant versus wild-type mice. Adult Prg4 mutant mice had decreased marrow and liver fibroblast growth factor 2 (FGF-2) mRNA and reduced serum FGF-2, which were normalized by PTH. A single dose of PTH decreased the PTH/PTHrP receptor (PPR), and increased Prg4 and FGF-2 to a similar extent in liver and bone. Proteoglycan 4 supports endochondral bone formation and the attainment of peak trabecular bone mass, and appears to support skeletal homeostasis indirectly by protecting joint function. Bone- and liver-derived FGF-2 likely regulate proteoglycan 4 actions supporting trabeculae formation. Blunted PTH anabolic responses in adult Prg4 mutant mice are associated with altered biomechanical impact secondary to joint failure. PMID:21932346
Wahaj, Aiyesha; Hafeez, Kashif; Zafar, Muhammad Sohail
2017-01-01
This study reviewed the dental literature in order to determine the association of bone marrow edema with osteoarthritis and temporomandibular joint (TMJ) internal derangement disorders. A literature search was performed using electronic databases PubMed/Medline (National Library of Medicine, Bethesda, Maryland) and Cochrane for articles published during the last 15 years (January 2000-December 2014). A predetermined inclusion and exclusion criteria were used for filtering the scientific papers. Research articles fulfilling the basic inclusion criteria were included in the review. The reviewed studies showed that bone marrow edema is found in painful joints with osteoarthritis in a majority of cases. A few cases with no pain or significant degenerative changes are reported to have a bone marrow edema pattern as well. Bone marrow edema, increased fluid level, and pain are associated with osteoarthritis in the majority of patients reporting TMJ arthritis. Degenerative and disc displacement conditions are multifactorial and require further investigations. Magnetic resonance imaging can be employed to detect bone marrow edema even in the absence of pain and clinical symptoms in the patients of internal derangements.
Effects of Imbalanced Muscle Loading on Hip Joint Development and Maturation
Ford, Caleb A.; Nowlan, Niamh C.; Thomopoulos, Stavros; Killian, Megan L.
2017-01-01
The mechanical loading environment influences the development and maturation of joints. In this study, the influence of imbalanced muscular loading on joint development was studied using localized chemical denervation of hip stabilizing muscle groups in neonatal mice. It was hypothesized that imbalanced muscle loading, targeting either gluteal muscles or quadriceps muscles, would lead to bilateral hip joint asymmetry, as measured by acetabular coverage, femoral head volume and bone morphometry, and femoral-acetabular shape. The contralateral hip joints as well as age-matched, uninjected mice were used as controls. Altered bone development was analyzed using micro-computed tomography, histology, and image registration techniques at postnatal days (P) 28, 56, and 120. This study found that unilateral muscle unloading led to reduced acetabular coverage of the femoral head, lower total volume, lower bone volume ratio, and lower mineral density, at all three time points. Histologically, the femoral head was smaller in unloaded hips, with thinner triradiate cartilage at P28 and thinner cortical bone at P120 compared to contralateral hips. Morphological shape changes were evident in unloaded hips at P56. Unloaded hips had lower trabecular thickness and increased trabecular spacing of the femoral head compared to contralateral hips. The present study suggests that decreased muscle loading of the hip leads to altered bone and joint shape and growth during postnatal maturation. Statement of Clinical Significance: Adaptations from altered muscle loading during postnatal growth investigated in this study have implications on developmental hip disorders that result from asymmetric loading, such as patients with limb-length inequality or dysplasia. PMID:27391299
Development of a hip joint model for finite volume simulations.
Cardiff, P; Karač, A; FitzPatrick, D; Ivanković, A
2014-01-01
This paper establishes a procedure for numerical analysis of a hip joint using the finite volume method. Patient-specific hip joint geometry is segmented directly from computed tomography and magnetic resonance imaging datasets and the resulting bone surfaces are processed into a form suitable for volume meshing. A high resolution continuum tetrahedral mesh has been generated, where a sandwich model approach is adopted; the bones are represented as a stiffer cortical shells surrounding more flexible cancellous cores. Cartilage is included as a uniform thickness extruded layer and the effect of layer thickness is investigated. To realistically position the bones, gait analysis has been performed giving the 3D positions of the bones for the full gait cycle. Three phases of the gait cycle are examined using a finite volume based custom structural contact solver implemented in open-source software OpenFOAM.
Uozumi, Y; Nagamune, K
2013-01-01
The purpose of this study is to propose an automatic segmentation about each bone (the femur, the tibia, the patellar, and fibular) of the knee in MDCT image. The proposed method was applied for six patients (Age 33 ± 13, four males/tew females). The proposed method segmented the knee joint into each bone by using anatomical structure for the knee joint. The experiments calculate matching rate of the manual and the proposed method for evaluating it. As a result, The matching rate of the femur, the tibia, the patellar, and fibula were 95.84 ± 0.57%, 94.12 ± 1.01%, 94.49 ± 0.83%, 86.37 ± 4.28%, respectively. This study concluded that the proposed method is enough to segment the knee bones.
Karimi, Mohammad Taghi; Mohammadi, Ali; Ebrahimi, Mohammad Hossein; McGarry, Anthony
2017-02-01
The femoral head in subjects with leg calve perthes disease (LCPD) is generally considerably deformed. It is debatable whether this deformation is due to an increase in applied loads, a decrease in bone mineral density or a change in containment of articular surfaces. The aim of this study was to determine the influence of these factors on deformation of the femoral head. Two subjects with LCPD participated in this study. Subject motion and the forces applied on the affected leg were recorded using a motion analysis system (Qualsis TM ) and a Kistler force plate. OpenSim software was used to determine joint contact force of the hip joint whilst walking with and without a Scottish Rite orthosis. 3D Models of hip joints of both subjects were produced by Mimics software. The deformation of femoral bone was determined by Abaqus. Mean values of the force applied on the leg increased while walking with the orthosis. There was no difference between bone mineral density (BMD) of the femoral bone of normal and LCPD sides (p-value>0.05) and no difference between hip joint contact force of normal and LCPD sides. Hip joint containment appeared to decrease follow the use of the orthosis. It can be concluded that the deformation of femoral head in LCPD may not be due to change in BMD or applied load. Although the Scottish Rite orthosis is used mostly to increase hip joint containment, it appears to reduce hip joint contact area. It is recommended that a similar study is conducted using a higher number of subjects. Copyright © 2016 IPEM. All rights reserved.
Saltzman, Bryan M; Riboh, Jonathan C
2018-06-01
Articular cartilage injuries and early osteoarthritis are among the most common conditions seen by sports medicine physicians. Nonetheless, treatment options for articular degeneration are limited once the osteoarthritic cascade has started. Intense research is focused on the use of biologics, cartilage regeneration, and transplantation to help maintain and improve cartilage health. An underappreciated component of joint health is the subchondral bone. A comprehensive, nonsystematic review of the published literature was completed via a PubMed/MEDLINE search of the keywords "subchondral" AND "bone" from database inception through December 1, 2016. Clinical review. Level 4. Articles collected via the database search were assessed for the association of bone marrow lesions and osteoarthritis, cartilage regeneration, and ligamentous and meniscal injury; the clinical disorder known as painful bone marrow edema syndrome; and the subchondral bone as a target for medical and surgical intervention. A complex interplay exists between the articular cartilage of the knee and its underlying subchondral bone. The role of subchondral bone in the knee is intimately related to the outcomes from cartilage restoration procedures, ligamentous injury, meniscal pathology, and osteoarthritis. However, subchondral bone is often neglected when it should be viewed as a critical element of the osteochondral unit and a key player in joint health. Continued explorations into the intricacies of subchondral bone marrow abnormalities and implications for the advent of procedures such as subchondroplasty will inform further research efforts on how interventions aimed at the subchondral bone may provide durable options for knee joint preservation.
Barak, Meir M; Lieberman, Daniel E; Hublin, Jean-Jacques
2011-12-01
This study tests Wolff's law of trabecular bone adaptation by examining if induced changes in joint loading orientation cause corresponding adjustments in trabecular orientation. Two groups of sheep were exercised at a trot, 15 min/day for 34 days on an inclined (7°) or level (0°) treadmills. Incline trotting caused the sheep to extend their tarsal joints by 3-4.5° during peak loading (P<0.01) but has no effect on carpal joint angle (P=0.984). Additionally, tarsal joint angle in the incline group sheep were maintained more extended throughout the day using elevated platform shoes on their forelimbs. A third "sedentary group" group did not run but wore platform shoes throughout the day. As predicted by Wolff's law, trabecular orientation in the distal tibia (tarsal joint) were more obtuse by 2.7 to 4.3° in the incline group compared to the level group; trabecular orientation was not significantly different in the sedentary and level groups. In addition, trabecular orientations in the distal radius (carpal joint) of the sedentary, level and incline groups did not differ between groups, and were aligned almost parallel to the radius long axis, corresponding to the almost straight carpal joint angle at peak loading. Measurements of other trabecular bone parameters revealed additional responses to loading, including significantly higher bone volume fraction (BV/TV), Trabecular number (Tb.N) and trabecular thickness (Tb.Th), lower trabecular spacing (Tb.Sp), and less rod-shaped trabeculae (higher structure model index, SMI) in the exercised than sedentary sheep. Overall, these results demonstrate that trabecular bone dynamically adjusts and realigns itself in very precise relation to changes in peak loading direction, indicating that Wolff's law is not only accurate but also highly sensitive. Copyright © 2011 Elsevier Inc. All rights reserved.
Misdorp, W.; Van Der Heul, R. O.
1976-01-01
Tumours of bones and joints are not infrequent in dogs but are rare in other domestic animals. In the dog, most bone tumours are malignant; osteosarcomas are by far the most frequently encountered tumours, especially in giant breeds and boxers. The following main categories of bone tumour are described: bone-forming, cartilage-forming, giant cell, marrow, vascular, miscellaneous, metastatic, unclassified, and tumour-like lesions. The tumours of joints and related structures are classified as synovial sarcomas, fibroxanthomas, and malignant giant cell tumour of soft tissues. ImagesFig. 21Fig. 22Fig. 23Fig. 24Fig. 17Fig. 18Fig. 19Fig. 20Fig. 29Fig. 30Fig. 31Fig. 32Fig. 33Fig. 34Fig. 35Fig. 36Fig. 25Fig. 26Fig. 27Fig. 28Fig. 1Fig. 2Fig. 3Fig. 4Fig. 37Fig. 38Fig. 39Fig. 40Fig. 5Fig. 6Fig. 7Fig. 8Fig. 13Fig. 14Fig. 15Fig. 16Fig. 9Fig. 10Fig. 11Fig. 12 PMID:1086157
Assessment of Biomarkers Associated with Joint Injury and Subsequent Post-Traumatic Arthritis
2014-10-01
synovitis score with semi-quantitative scales, and osteophyte score6-10. Parametric analyses were performed for bone morphological measures and...histological assessment. Subchondral bone thickening was significantly increased in the C57BL/6 mice compared to the MRL/MpJ mice in the medial femur (p...biochemical and metabolic data. J Bone Joint Surg Am. 53:523-537. 10. Gelse K, Soder S, Eger W, Diemtar T, Aigner T. Feb 2003. Osteophyte development
[Current treatment situation and progress on bone defect of collapsed tibial plateau fractures].
Luo, Chang-qi; Fang, Yue; Tu, Chong-qi; Yang, Tian-fu
2016-02-01
Characteristics of collapsed tibial plateau fracture determines that the joint surface must remain anatomical reduction,line of force in tibial must exist and internal fixation must be strong. However, while renewing articular surface smoothness, surgeons have a lot of problems in dealing with bone defect under the joint surface. Current materials used for bone defect treatment include three categories: autologous bone, allograft bone and bone substitutes. Some scholars think that autologous bone grafts have a number of drawbacks, such as increasing trauma, prolonged operation time, the limited source, bone area bleeding,continuous pain, local infection and anesthesia,but most scholars believe that the autologous cancellous bone graft is still the golden standard. Allograft bone has the ability of bone conduction, but the existence of immune responses, the possibility of a virus infection, and the limited source of the allograft cannot meet the clinical demands. Likewise, bone substitutes have the problem that osteogenesis does not match with degradation in rates. Clinical doctors can meet the demand of the patient's bone graft according to patient's own situation and economic conditions.
Di Ceglie, Irene; Ascone, Giuliana; Cremers, Niels A J; Sloetjes, Annet W; Walgreen, Birgitte; Vogl, Thomas; Roth, Johannes; Verbeek, J Sjef; van de Loo, Fons A J; Koenders, Marije I; van der Kraan, Peter M; Blom, Arjen B; van den Bosch, Martijn H J; van Lent, Peter L E M
2018-05-02
Osteoclast-mediated bone erosion is a central feature of rheumatoid arthritis (RA). Immune complexes, present in a large percentage of patients, bind to Fcγ receptors (FcγRs), thereby modulating the activity of immune cells. In this study, we investigated the contribution of FcγRs, and FcγRIV in particular, during antigen-induced arthritis (AIA). AIA was induced in knee joints of wild-type (WT), FcγRI,II,III -/- , and FcγRI,II,III,IV -/- mice. Bone destruction, numbers of tartrate-resistant acid phosphatase-positive (TRAP + ) osteoclasts, and inflammation were evaluated using histology; expression of the macrophage marker F4/80, neutrophil marker NIMPR14, and alarmin S100A8 was evaluated using immunohistochemistry. The percentage of osteoclast precursors in the bone marrow was determined using flow cytometry. In vitro osteoclastogenesis was evaluated with TRAP staining, and gene expression was assessed using real-time PCR. FcγRI,II,III,IV -/- mice showed decreased bone erosion compared with WT mice during AIA, whereas both the humoral and cellular immune responses against methylated bovine serum albumin were not impaired in FcγRI,II,III,IV -/- mice. The percentage of osteoclast precursors in the bone marrow of arthritic mice and their ability to differentiate into osteoclasts in vitro were comparable between FcγRI,II,III,IV -/- and WT mice. In line with these observations, numbers of TRAP + osteoclasts on the bone surface during AIA were comparable between the two groups. Inflammation, a process that strongly activates osteoclast activity, was reduced in FcγRI,II,III,IV -/- mice, and of note, mainly decreased numbers of neutrophils were present in the joint. In contrast to FcγRI,II,III,IV -/- mice, AIA induction in knee joints of FcγRI,II,III -/- mice resulted in increased bone erosion, inflammation, and numbers of neutrophils, suggesting a crucial role for FcγRIV in the joint pathology by the recruitment of neutrophils. Finally, significant correlations were found between bone erosion and the number of neutrophils present in the joint as well as between bone erosion and the number of S100A8-positive cells, with S100A8 being an alarmin strongly produced by neutrophils that stimulates osteoclast resorbing activity. FcγRs play a crucial role in the development of bone erosion during AIA by inducing inflammation. In particular, FcγRIV mediates bone erosion in AIA by inducing the influx of S100A8/A9-producing neutrophils into the arthritic joint.
21 CFR 888.3565 - Knee joint patellofemorotibial metal/polymer porous-coated uncemented prosthesis.
Code of Federal Regulations, 2011 CFR
2011-04-01
... type of device is designed to achieve biological fixation to bone without the use of bone cement. This... bearing is rigidly secured to the metal tibial base plate. (b) Classification. Class II (special controls). The special control is FDA's guidance: “Class II Special Controls Guidance Document: Knee Joint...
Merritt, Jonathan S.; Davies, Helen M. S.; Burvill, Colin; Pandy, Marcus G.
2008-01-01
The equine distal forelimb is a common location of injuries related to mechanical overload. In this study, a two-dimensional model of the musculoskeletal system of the region was developed and applied to kinematic and kinetic data from walking and trotting horses. The forces in major tendons and joint reaction forces were calculated. The components of the joint reaction forces caused by wrapping of tendons around sesamoid bones were found to be of similar magnitude to the reaction forces between the long bones at each joint. This finding highlighted the importance of taking into account muscle-tendon wrapping when evaluating joint loading in the equine distal forelimb. PMID:18509485
Hölzer, Andreas; Schröder, Christian; Woiczinski, Matthias; Sadoghi, Patrick; Müller, Peter E; Jansson, Volkmar
2012-02-02
The joint fluid mechanics and transport of wear particles in the prosthetic hip joint were analyzed for subluxation and flexion motion using computational fluid dynamics (CFD). The entire joint space including a moving capsule boundary was considered. It was found that particles suspended in the joint space are drawn into the joint gap between prosthesis cup and head during subluxation, which was also documented by Lundberg et al. (2007; Journal of Biomechanics 40, 1676-1685), however, wear particles remain in the joint gap. Wear particles leave the joint gap during flexion and can finally migrate to the proximal boundaries including the acetabular bone, where the particle deposition can cause osteolysis according to the established literature. Thus, the present study supports the theory of polyethylene wear particle induced osteolysis of the acetabular bone as a major factor in the loosening of hip prosthesis cups. Copyright © 2011 Elsevier Ltd. All rights reserved.
Dawson, P U; Rose, R E; Wade, N A
2015-09-01
Osteogenesis imperfecta, also known as 'brittle bone disease', is a genetic connective tissue disease. It is characterized by bone fragility and osteopenia (low bone density). In this case, a 57-year old female presented to the University Hospital of the West Indies (UHWI), Physical Medicine and Rehabilitation Clinic with left low back pain rated 6/10 on the numeric rating scale (NRS). Clinically, the patient had sacroiliac joint mediated pain although X-rays did not show the sacroiliac joint changes. Fluoroscopy-guided left sacroiliac joint steroid injection was done. Numeric rating scale and Oswestry Disability Index (ODI) questionnaire were used to evaluate outcome. This was completed at baseline, one week follow-up and at eight weeks post fluoroscopy-guided sacroiliac joint steroid injection. Numeric rating scale improved from 6/10 before the procedure to 0/10 post procedure, and ODI questionnaire score improved from a moderate disability score of 40% to a minimal disability score of 13%. Up to eight weeks, the NRS was 0/10 and ODI remained at minimal disability of 15%. Fluoroscopy-guided sacroiliac joint injection is a known diagnostic and treatment method for sacroiliac joint mediated pain. To our knowledge, this is the first case published on the use of fluoroscopy-guided sacroiliac joint steroid injection in the treatment of sacroiliac joint mediated low back pain in a patient with osteogenesis imperfecta.
Ko, Frank C; Dragomir, Cecilia; Plumb, Darren A; Goldring, Steven R; Wright, Timothy M; Goldring, Mary B; van der Meulen, Marjolein C H
2013-06-01
Alterations in the mechanical loading environment in joints may have both beneficial and detrimental effects on articular cartilage and subchondral bone, and may subsequently influence the development of osteoarthritis (OA). Using an in vivo tibial loading model, the aim of this study was to investigate the adaptive responses of cartilage and bone to mechanical loading and to assess the influence of load level and duration. Cyclic compression at peak loads of 4.5N and 9.0N was applied to the left tibial knee joint of adult (26-week-old) C57BL/6 male mice for 1, 2, and 6 weeks. Only 9.0N loading was utilized in young (10-week-old) mice. Changes in articular cartilage and subchondral bone were analyzed by histology and micro-computed tomography. Mechanical loading promoted cartilage damage in both age groups of mice, and the severity of joint damage increased with longer duration of loading. Metaphyseal bone mass increased with loading in young mice, but not in adult mice, whereas epiphyseal cancellous bone mass decreased with loading in both young and adult mice. In both age groups, articular cartilage thickness decreased, and subchondral cortical bone thickness increased in the posterior tibial plateau. Mice in both age groups developed periarticular osteophytes at the tibial plateau in response to the 9.0N load, but no osteophyte formation occurred in adult mice subjected to 4.5N peak loading. This noninvasive loading model permits dissection of temporal and topographic changes in cartilage and bone and will enable investigation of the efficacy of treatment interventions targeting joint biomechanics or biologic events that promote OA onset and progression. Copyright © 2013 by the American College of Rheumatology.
[Imaging assessment of bone and cartilage destruction in rheumatoid arthritis].
Hirata, Shintaro; Tanaka, Yoshiya
2015-12-01
Rheumatoid arthritis (RA) is characterized by synovitis and subsequent joint destruction involving bone and cartilage. Recent therapeutic development have improved outcomes including disease activity and structural progression in RA, and standardized procedures of imaging assessment including modified total Sharp score (mTSS) have contributed largely for the development of therapeutic strategy. In addition, ultrasonography and MRI of joints have been recently emerging as novel imaging methods for RA. Here, we review current imaging assessments of bone and cartilage destruction in RA.
Wan, Chao; Hao, Zhixiu
2018-02-01
Graft tissues within bone tunnels remain mobile for a long time after anterior cruciate ligament (ACL) reconstruction. However, whether the graft-tunnel friction affects the finite element (FE) simulation of the ACL reconstruction is still unclear. Four friction coefficients (from 0 to 0.3) were simulated in the ACL-reconstructed joint model as well as two loading levels of anterior tibial drawer. The graft-tunnel friction did not affect joint kinematics and the maximal principal strain of the graft. By contrast, both the relative graft-tunnel motion and equivalent strain for the bone tunnels were altered, which corresponded to different processes of graft-tunnel integration and bone remodeling, respectively. It implies that the graft-tunnel friction should be defined properly for studying the graft-tunnel integration or bone remodeling after ACL reconstruction using numerical simulation.
Heuft-Dorenbosch, Liesbeth; Weijers, René; Landewé, Robert; van der Linden, Sjef; van der Heijde, Désirée
2006-01-01
To study the inter-reader reliability of detecting abnormalities of sacroiliac (SI) joints in patients with recent-onset inflammatory back pain by magnetic resonance imaging (MRI), and to study the prevalence of inflammation and structural changes at various sites of the SI joints. Sixty-eight patients with inflammatory back pain (at least four of the five following criteria: symptom onset before age 40, insidious onset, morning stiffness, duration >3 months, improvement with exercise--or three out of five of these plus night pain) were included (38% male; mean age, 34.9 years [standard deviation 10.3]; 46% HLA-B27-positive; mean symptom duration, 18 months), with symptom duration <2 years. A MRI scan of the SI joints was made in the coronal plane with the following sequences: T1-weighted spin echo, short-tau inversion recovery, T2-weighted fast-spin echo with fat saturation, and T1-spin echo with fat saturation after the administration of gadolinium. Both SI joints were scored for inflammation (separately for subchondral bone and bone marrow, joint space, joint capsule, ligaments) as well as for structural changes (erosions, sclerosis, ankylosis), by two observers independently. Agreement between the two readers was analysed by concordance and discordance rates and by kappa statistics. Inflammation was present in 32 SI joints of 22 patients, most frequently located in bone marrow and/or subchondral bone (29 joints in 21 patients). Readers agreed on the presence of inflammation in 85% of the cases in the right SI joint and in 78% of the cases in the left SI joint. Structural changes on MRI were present in 11 patients. Ten of these 11 patients also showed signs of inflammation. Agreement on the presence or absence of inflammation and structural changes of SI joints by MRI was acceptable, and was sufficiently high to be useful in ascertaining inflammatory and structural changes due to sacroiliitis. About one-third of patients with recent-onset inflammatory back pain show inflammation, and about one-sixth show structural changes in at least one SI joint.
Three-dimensional human femoral strain analysis using ESPI
NASA Astrophysics Data System (ADS)
Tyrer, J. R.; Heras-Palou, C.; Slater, T.
With age, disease or injury the joints in the human body can wear out or bones may even fail catastrophically. In many cases it is possible to replace joints and bones with artificial components (prostheses). However, prosthetic joints can have a very limited life (often less than 10 years) and require replacement or 'revision'. In order to optimise prosthetic life, it is necessary to improve the design of components and implantation techniques, which is clearly also beneficial to both patients and hospitals.
[Automated Assessment for Bone Age of Left Wrist Joint in Uyghur Teenagers by Deep Learning].
Hu, T H; Huo, Z; Liu, T A; Wang, F; Wan, L; Wang, M W; Chen, T; Wang, Y H
2018-02-01
To realize the automated bone age assessment by applying deep learning to digital radiography (DR) image recognition of left wrist joint in Uyghur teenagers, and explore its practical application value in forensic medicine bone age assessment. The X-ray films of left wrist joint after pretreatment, which were taken from 245 male and 227 female Uyghur nationality teenagers in Uygur Autonomous Region aged from 13.0 to 19.0 years old, were chosen as subjects. And AlexNet was as a regression model of image recognition. From the total samples above, 60% of male and female DR images of left wrist joint were selected as net train set, and 10% of samples were selected as validation set. As test set, the rest 30% were used to obtain the image recognition accuracy with an error range in ±1.0 and ±0.7 age respectively, compared to the real age. The modelling results of deep learning algorithm showed that when the error range was in ±1.0 and ±0.7 age respectively, the accuracy of the net train set was 81.4% and 75.6% in male, and 80.5% and 74.8% in female, respectively. When the error range was in ±1.0 and ±0.7 age respectively, the accuracy of the test set was 79.5% and 71.2% in male, and 79.4% and 66.2% in female, respectively. The combination of bone age research on teenagers' left wrist joint and deep learning, which has high accuracy and good feasibility, can be the research basis of bone age automatic assessment system for the rest joints of body. Copyright© by the Editorial Department of Journal of Forensic Medicine.
Effects of imbalanced muscle loading on hip joint development and maturation.
Ford, Caleb A; Nowlan, Niamh C; Thomopoulos, Stavros; Killian, Megan L
2017-05-01
The mechanical loading environment influences the development and maturation of joints. In this study, the influence of imbalanced muscular loading on joint development was studied using localized chemical denervation of hip stabilizing muscle groups in neonatal mice. It was hypothesized that imbalanced muscle loading, targeting either gluteal muscles or quadriceps muscles, would lead to bilateral hip joint asymmetry, as measured by acetabular coverage, femoral head volume and bone morphometry, and femoral-acetabular shape. The contralateral hip joints as well as age-matched, uninjected mice were used as controls. Altered bone development was analyzed using micro-computed tomography, histology, and image registration techniques at postnatal days (P) 28, 56, and 120. This study found that unilateral muscle unloading led to reduced acetabular coverage of the femoral head, lower total volume, lower bone volume ratio, and lower mineral density, at all three time points. Histologically, the femoral head was smaller in unloaded hips, with thinner triradiate cartilage at P28 and thinner cortical bone at P120 compared to contralateral hips. Morphological shape changes were evident in unloaded hips at P56. Unloaded hips had lower trabecular thickness and increased trabecular spacing of the femoral head compared to contralateral hips. The present study suggests that decreased muscle loading of the hip leads to altered bone and joint shape and growth during postnatal maturation. Statement of Clinical Significance: Adaptations from altered muscle loading during postnatal growth investigated in this study have implications on developmental hip disorders that result from asymmetric loading, such as patients with limb-length inequality or dysplasia. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1128-1136, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Conformational Changes in the Carpus During Finger Traps Distraction
Leventhal, Evan L.; Moore, Douglas C.; Akelman, Edward; Wolfe, Scott W.; Crisco, Joseph J.
2010-01-01
Introduction Wrist distraction is a common treatment maneuver used clinically for the reduction of distal radial fractures and mid-carpal dislocations. Wrist distraction is also required during wrist arthroscopy to access the radiocarpal joint and has been used as a test for scapholunate ligament injury. However, the effect of a distraction load on the normal wrist has not been well studied. The purpose of this study was to measure the 3-D conformational changes of the carpal bones in the normal wrist as a result of a static distractive load. Methods The dominant wrists of 14 healthy volunteers were scanned using computed tomography at rest and during application of 98N of distraction. Load was applied using finger traps and volunteers were encouraged to relax their forearm muscles and to allow distraction of the wrist. The motions of the bones in the wrist were tracked between the unloaded and loaded trial using markerless bone registration. The average displacement vector of each bone was calculated relative to the radius as well as the interbone distances for 20 bone-bone interactions. Joint separation was estimated at the radiocarpal, midcarpal and carpal-metacarpal joints in the direction of loading using the radius, lunate, capitate and 3rd metacarpal. Results With loading, the distance between the radius and 3rd metacarpal increased an average of 3.3±3.1mm in the direction of loading. This separation was primarily located in the axial direction at the radiocarpal (1.0±1.0mm) and midcarpal (2.0±1.7mm) joints. There were minimal changes in the transverse direction within the distal row, although the proximal row narrowed by 0.98±0.7mm. Distraction between the radius and scaphoid (2.5±2.2mm) was 2.4 times greater than between the radius and lunate (1.0±1.0mm). Conclusions Carpal distraction has a significant effect on the conformation of the carpus, especially at the radiocarpal and midcarpal joints. In the normal wrist, external traction causes twice as much distraction at the lunocapitate joint than at the radiolunate joint. PMID:20141894
Conformational changes in the carpus during finger trap distraction.
Leventhal, Evan L; Moore, Douglas C; Akelman, Edward; Wolfe, Scott W; Crisco, Joseph J
2010-02-01
Wrist distraction is a common treatment maneuver used clinically for the reduction of distal radial fractures and midcarpal dislocations. Wrist distraction is also required during wrist arthroscopy to access the radiocarpal joint and has been used as a test for scapholunate ligament injury. However, the effect of a distraction load on the normal wrist has not been well studied. The purpose of this study was to measure the three-dimensional conformational changes of the carpal bones in the normal wrist as a result of a static distractive load. Using computed tomography, the dominant wrists of 14 healthy volunteers were scanned at rest and during application of 98 N of distraction. Load was applied using finger traps, and volunteers were encouraged to relax their forearm muscles and to allow distraction of the wrist. The motions of the bones in the wrist were tracked between the unloaded and loaded trial using markerless bone registration. The average displacement vector of each bone relative to the radius was calculated, as were the interbone distances for 20 bone-bone interactions. Joint separation was estimated at the radiocarpal, midcarpal, and carpometacarpal joints in the direction of loading using the radius, lunate, capitate, and third metacarpal. With loading, the distance between the radius and third metacarpal increased an average of 3.3 mm +/- 3.1 in the direction of loading. This separation was primarily in the axial direction at the radiocarpal (1.0 mm +/- 1.0) and midcarpal (2.0 mm +/- 1.7) joints. There were minimal changes in the transverse direction within the distal row, although the proximal row narrowed by 0.98 mm +/- 0.7. Distraction between the radius and scaphoid (2.5 mm +/- 2.2) was 2.4 times greater than that between the radius and lunate (1.0 mm +/- 1.0). Carpal distraction has a significant (p < .01) effect on the conformation of the carpus, especially at the radiocarpal and midcarpal joints. In the normal wrist, external traction causes twice as much distraction at the lunocapitate joint than at the radiolunate joint. Copyright 2010. Published by Elsevier Inc.
Most kinds of arthritis cause pain and swelling in your joints. Joints are places where two bones meet, such as your elbow or knee. Infectious arthritis is an infection in the joint. The infection ...
Wang, Man-Ying; Flanagan, Sean P.; Song, Joo-Eun; Greendale, Gail A.; Salem, George J.
2012-01-01
Objective To investigate the relationships among hip joint moments produced during functional activities and hip bone mass in sedentary older adults. Methods Eight male and eight female older adults (70–85 yr) performed functional activities including walking, chair sit–stand–sit, and stair stepping at a self-selected pace while instrumented for biomechanical analysis. Bone mass at proximal femur, femoral neck, and greater trochanter were measured by dual-energy X-ray absorptiometry. Three-dimensional hip moments were obtained using a six-camera motion analysis system, force platforms, and inverse dynamics techniques. Pearson’s correlation coefficients were employed to assess the relationships among hip bone mass, height, weight, age, and joint moments. Stepwise regression analyses were performed to determine the factors that significantly predicted bone mass using all significant variables identified in the correlation analysis. Findings Hip bone mass was not significantly correlated with moments during activities in men. Conversely, in women bone mass at all sites were significantly correlated with weight, moments generated with stepping, and moments generated with walking (p < 0.05 to p < 0.001). Regression analysis results further indicated that the overall moments during stepping independently predicted up to 93% of the variability in bone mass at femoral neck and proximal femur; whereas weight independently predicted up to 92% of the variability in bone mass at greater trochanter. Interpretation Submaximal loading events produced during functional activities were highly correlated with hip bone mass in sedentary older women, but not men. The findings may ultimately be used to modify exercise prescription for the preservation of bone mass. PMID:16631283
Tiihonen, R; Honkanen, P B; Belt, E A; Ikävalko, M; Skyttä, E T
2012-01-01
Revision arthroplasty of metacarpophalangeal (MCP) joints in chronic inflammatory arthritis patients after silicone implants is challenging due of severe bone loss and soft tissue deficiencies. The aim of this study was to evaluate the outcome of revision MCP arthroplasty using poly-L/D-lactic acid 96:4 (PLDLA) interposition implant and morcelised allograft or autograft bone packing in patients with failed MCP arthroplasties and severe osteolysis. The study group consisted of 15 patients (15 hands and 36 joints) at a mean follow-up of seven years (range 5-10 years). The radiographs were reviewed for osteolysis and incorporation of the grafted bone. The clinical assessments included active range of motion, evaluation of pain, subjective outcome and assessment of grip power. PLDLA interposition arthroplasty combined with bone packing provided satisfactory pain relief, but function was limited. Radiographic analysis showed complete incorporation of the grafted bone to the diaphyseal portion of the host metacarpal and phalangeal bones in 30 of the 36 joints. All the patients had very limited grip strength, both on the operated and non-operated side. Due to soft tissue deficiencies long-term function and alignment problems can not be resolved with PLDLA interposition implant.
Comparison of 3D bone models of the knee joint derived from CT and 3T MR imaging.
Neubert, Aleš; Wilson, Katharine J; Engstrom, Craig; Surowiec, Rachel K; Paproki, Anthony; Johnson, Nicholas; Crozier, Stuart; Fripp, Jurgen; Ho, Charles P
2017-08-01
To examine whether magnetic resonance (MR) imaging can offer a viable alternative to computed tomography (CT) based 3D bone modeling. CT and MR (SPACE, TrueFISP, VIBE) images were acquired from the left knee joint of a fresh-frozen cadaver. The distal femur, proximal tibia, proximal fibula and patella were manually segmented from the MR and CT examinations. The MR bone models obtained from manual segmentations of all three sequences were compared to CT models using a similarity measure based on absolute mesh differences. The average absolute distance between the CT and the various MR-based bone models were all below 1mm across all bones. The VIBE sequence provided the best agreement with the CT model, followed by the SPACE, then the TrueFISP data. The most notable difference was for the proximal tibia (VIBE 0.45mm, SPACE 0.82mm, TrueFISP 0.83mm). The study indicates that 3D MR bone models may offer a feasible alternative to traditional CT-based modeling. A single radiological examination using the MR imaging would allow simultaneous assessment of both bones and soft-tissues, providing anatomically comprehensive joint models for clinical evaluation, without the ionizing radiation of CT imaging. Copyright © 2017 Elsevier B.V. All rights reserved.
Khorasani, Mohammad S; Diko, Sindi; Hsia, Allison W; Anderson, Matthew J; Genetos, Damian C; Haudenschild, Dominik R; Christiansen, Blaine A
2015-02-16
Previous studies in animal models of osteoarthritis suggest that alendronate (ALN) has antiresorptive and chondroprotective effects, and can reduce osteophyte formation. However, these studies used non-physiologic injury methods, and did not investigate early time points during which bone is rapidly remodeled prior to cartilage degeneration. The current study utilized a non-invasive model of knee injury in mice to investigate the effect of ALN treatment on subchondral bone changes, articular cartilage degeneration, and osteophyte formation following injury. Non-invasive knee injury via tibial compression overload or sham injury was performed on a total of 90 mice. Mice were treated with twice weekly subcutaneous injections of low-dose ALN (40 μg/kg/dose), high-dose ALN (1,000 μg/kg/dose), or vehicle, starting immediately after injury until sacrifice at 7, 14 or 56 days. Trabecular bone of the femoral epiphysis, subchondral cortical bone, and osteophyte volume were quantified using micro-computed tomography (μCT). Whole-joint histology was performed at all time points to analyze articular cartilage and joint degeneration. Blood was collected at sacrifice, and serum was analyzed for biomarkers of bone formation and resorption. μCT analysis revealed significant loss of trabecular bone from the femoral epiphysis 7 and 14 days post-injury, which was effectively prevented by high-dose ALN treatment. High-dose ALN treatment was also able to reduce subchondral bone thickening 56 days post-injury, and was able to partially preserve articular cartilage 14 days post-injury. However, ALN treatment was not able to reduce osteophyte formation at 56 days post-injury, nor was it able to prevent articular cartilage and joint degeneration at this time point. Analysis of serum biomarkers revealed an increase in bone resorption at 7 and 14 days post-injury, with no change in bone formation at any time points. High-dose ALN treatment was able to prevent early trabecular bone loss and cartilage degeneration following non-invasive knee injury, but was not able to mitigate long-term joint degeneration. These data contribute to understanding the effect of bisphosphonates on the development of osteoarthritis, and may support the use of anti-resorptive drugs to prevent joint degeneration following injury, although further investigation is warranted.
Alcohol Devitalization and Replantation for Primary Malignant Bone Tumors of the Knee Joint
ZHANG, Xihai; CHEN, Ge; WANG, Jun; TANG, Lian; YIN, Yiran
2017-01-01
Background: This paper is aimed at studying the therapeutic effects of in situ replantation of alcohol-devitalized bone segments to treat malignant bone tumors of the knee joint. Methods: We retrospectively analyzed clinical data for 45 patients from January 2013 to January 2016 who underwent replantation following alcohol-devitalization of bone segments and 40 who underwent prosthesis implantation. The two groups were comparable in basal clinical biometric data, including gender, age, tumor type and location, Enneking staging, and maximum tumor diameter. Radical tumor resection was combined with neoadjuvant chemotherapy following the two-implantation procedures. Results: The median follow-up time was 25 months, and the outcomes were compared. We found no differences in the length of bone lesions, surgery time, intraoperative blood loss, amount of postoperative drainage, and perioperative complications, which were just three for each method. We also found no significant differences in limb function scores, internal fixation imaging scores, tumor-free survival rate, and overall survival rate between the two groups. Replantation following alcohol-devitalization of tumor-bearing bone segment demonstrated similar clinical outcomes compared with prosthesis implantation in the treatment of primary malignant bone tumors of the knee joint. Conclusion: Both therapies enjoy good application safety and effectiveness. Because alcohol devitalization is inexpensive and easy to apply in the clinic, it should be considered a preferred method in the treatment of bone tumors. PMID:29308374
2014-09-01
evidence for intra- articular fractures, existence of substantial subchondral bone erosion at the surface of articular plate, and formation of bone spurs...small growths called osteophytes ) on the edges is seen in the PTOA joint but not on the intact contralateral knee joint. This provides addition
2014-09-01
mouse. Clear evidence for intra- articular fractures, existence of substantial subchondral bone erosion at the surface of articular plate, and formation...of bone spurs (small growths called osteophytes ) on the edges is seen in the PTOA joint but not on the intact contralateral knee joint. This
Bone and Joint Problems Associated with Diabetes
... bone metabolism (diabetic osteodystrophy): Time for recognition. Osteoporosis International. 2016;27:1931. Hull B, et al. Diabetes and bone. The American Journal of the Medical Sciences. 2016;351:356. What people with diabetes need ...
Coralline hydroxyapatite bone graft substitutes.
Elsinger, E C; Leal, L
1996-01-01
The authors present a review of the various bone grafts currently available with special attention to coral bone grafts. Several of the benefits of coralline hydroxyapatite bone graft substitutes, such as safety and biocompatibility, will be addressed in this article, part of an ongoing investigation of coral bone grafts used in triple arthrodesis procedures. To date, eight cases have been performed. In seven cases, granular chips were employed to pack the subtalar joint. The final case, presented in this article, represents a 26-year-old male who, 2 years previously, sustained a calcaneal fracture with resultant shortening along the lateral column. A coralline hydroxyapatite block was used at the calcaneocuboid joint to achieve distraction. Clinically, the patient is progressing well at 10 months postoperatively. Radiographically, one can still clearly appreciate the margins of the bone graft at 5 months.
The joint in psoriatic arthritis.
Mortezavi, Mahta; Thiele, Ralph; Ritchlin, Christopher
2015-01-01
Psoriatic arthritis (PsA), a chronic inflammatory joint disease associated with psoriasis, is notable for diversity in disease presentation, course and response to treatment. Equally varied are the types of musculoskeletal involvement which include peripheral and axial joint disease, dactylitis and enthesitis. In this review, we focus on the psoriatic joint and discuss pathways that underlie synovial, cartilage and bone inflammation and highlight key histopathologic features. The pivotal inflammatory mechanisms and pathobiology of PsA parallel findings in other forms of spondyloarthritis but are distinct from disease pathways described in rheumatoid synovitis and bone disease. The diagnosis of PsA from both a clinical and imaging perspective is also discussed.
Joint Aspiration (Arthrocentesis)
... arthritis, or JRA), systemic lupus erythematosus (SLE), and Lyme disease. Joint aspiration is diagnostic but it also can ... topic for: Parents Kids Teens Evaluate Your Child's Lyme Disease Risk Living With Lupus Bones, Muscles, and Joints ...
The humeroscapular bone of the great horned owl (Bubo virginianus) and other raptors.
Smith, B J; Smith, S A
1992-03-01
A small, separate, bony density dorsal to the shoulder joint is radiographically visible in several species of large hawks and owls. Gross dissection and histological examination show the bone to lie on the deep surface of the major deltoid muscle in intimate association with the dorsal coracohumeral ligament of the shoulder joint. The tendon of the supracoracoideus muscle passes immediately cranial to the humeroscapular bone. Two ligaments distinct from the shoulder joint capsule attach the humeroscapular bone to the proximal humerus: one passes to the proximal edge of the pectoral crest of the humerus, and the other passes to the ventral tubercle of the humerus. The bone was described as the humeroscapular bone in reference to a similar fibrocartilaginous structure possessed by some birds. The humeroscapular bone is present in the great horned owl (Bubo virginianus), the screech owl (Otus asio), the barred owl (Strix varia), the red-tailed hawk (Buteo jamaicencis), the Cooper's hawk (Accipiter cooperii), and the sharp-shinned hawk (Accipiter striatus). The bone is absent in the barn owl (Tyto alba), the osprey (Pandion haliaetus), the golden eagle (Aquila chysaetos), and the turkey vulture (Cathartes aura), though some of these species possessed a similar fibrocartilaginous structure. Whether the humeroscapular structure develops as bone or cartilage in a given species may be related to other morphological features of the wing, and/or to characteristics of the predatory behavior of the species. Clinicians and anatomists dealing with birds of prey must be aware of the presence of the humeroscapular bone to avoid misinterpreting it as a fracture fragment.
FGF2 High Molecular Weight Isoforms Contribute to Osteoarthropathy in Male Mice
Meo Burt, Patience; Xiao, Liping; Dealy, Caroline; Fisher, Melanie C.
2016-01-01
Humans with X-linked hypophosphatemia (XLH) and Hyp mice, the murine homolog of the disease, develop severe osteoarthropathy and the precise factors that contribute to this joint degeneration remain largely unknown. Fibroblast growth factor 2 (FGF2) is a key regulatory growth factor in osteoarthritis. Although there are multiple FGF2 isoforms the potential involvement of specific FGF2 isoforms in joint degradation has not been investigated. Mice that overexpress the high molecular weight FGF2 isoforms in bone (HMWTg mice) phenocopy Hyp mice and XLH subjects and Hyp mice overexpress the HMWFGF2 isoforms in osteoblasts and osteocytes. Given that Hyp mice and XLH subjects develop osteoarthropathies we examined whether HMWTg mice also develop knee joint degeneration at 2, 8, and 18 mo compared with VectorTg (control) mice. HMWTg mice developed spontaneous osteoarthropathy as early as age 2 mo with thinning of subchondral bone, osteophyte formation, decreased articular cartilage thickness, abnormal mineralization within the joint, increased cartilage degradative enzymes, hypertrophic markers, and angiogenesis. FGF receptors 1 and 3 and fibroblast growth factor 23 were significantly altered compared with VectorTg mice. In addition, gene expression of growth factors and cytokines including bone morphogenetic proteins, Insulin like growth factor 1, Interleukin 1 beta, as well as transcription factors Sex determining region Y box 9, hypoxia inducible factor 1, and nuclear factor kappa B subunit 1 were differentially modulated in HMWTg compared with VectorTg. This study demonstrates that overexpression of the HMW isoforms of FGF2 in bone results in catabolic activity in joint cartilage and bone that leads to osteoarthropathy. PMID:27732085
Correlation of quantitative computed tomographic subchondral bone density and ash density in horses.
Drum, M G; Les, C M; Park, R D; Norrdin, R W; McIlwraith, C W; Kawcak, C E
2009-02-01
The purpose of this study was to compare subchondral bone density obtained using quantitative computed tomography with ash density values from intact equine joints, and to determine if there are measurable anatomic variations in mean subchondral bone density. Five adult equine metacarpophalangeal joints were scanned with computed tomography (CT), disarticulated, and four 1-cm(3) regions of interest (ROI) cut from the distal third metacarpal bone. Bone cubes were ashed, and percent mineralization and ash density were recorded. Three-dimensional models were created of the distal third metacarpal bone from CT images. Four ROIs were measured on the distal aspect of the third metacarpal bone at axial and abaxial sites of the medial and lateral condyles for correlation with ash samples. Overall correlations of mean quantitative CT (QCT) density with ash density (r=0.82) and percent mineralization (r=0.93) were strong. There were significant differences between abaxial and axial ROIs for mean QCT density, percent bone mineralization and ash density (p<0.05). QCT appears to be a good measure of bone density in equine subchondral bone. Additionally, differences existed between axial and abaxial subchondral bone density in the equine distal third metacarpal bone.
Osteogenic Activity of Locally Applied Small Molecule Drugs in a Rat Femur Defect Model
Cottrell, Jessica A.; Vales, Francis M.; Schachter, Deborah; Wadsworth, Scott; Gundlapalli, Rama; Kapadia, Rasesh; O'Connor, J. Patrick
2010-01-01
The long-term success of arthroplastic joints is dependent on the stabilization of the implant within the skeletal site. Movement of the arthroplastic implant within the bone can stimulate osteolysis, and therefore methods which promote rigid fixation or bone growth are expected to enhance implant stability and the long-term success of joint arthroplasty. In the present study, we used a simple bilateral bone defect model to analyze the osteogenic activity of three small-molecule drug implants via microcomputerized tomography (micro-CT) and histomorphometry. In this study, we show that local delivery of alendronate, but not lovastatin or omeprazole, led to significant new bone formation at the defect site. Since alendronate impedes osteoclast-development, it is theorized that alendronate treatment results in a net increase in bone formation by preventing osteoclast mediated remodeling of the newly formed bone and upregulating osteoblasts. PMID:20625499
Cavalcanti, Samantha Cristine Santos X B; Corrêa, Luciana; Mello, Suzana Beatriz Veríssimo; Luz, João Gualberto C
2014-10-01
Methotrexate (MTX) is an anti-metabolite used in rheumatology and oncology. High doses are indicated for oncological treatment, whereas low doses are indicated for chronic inflammatory diseases. This study evaluated the effect of two MTX treatment schedules on the bone healing of the temporomandibular joint fracture in rats. Seventy-five adult male Wistar rats were used to generate an experimental unilateral medially rotated condylar fracture model that allows an evaluation of bone healing and the articular structures. The animals were subdivided into three groups that each received one of the following treatments intraperitoneally: saline (1 mL/week), low-dose MTX (3 mg/kg/week) and high-dose MTX (30 mg/kg). The histological study comprised fracture site and temporomandibular joint evaluations and bone neoformation was evaluated by histomorphometric analysis. A biochemical parameter of bone formation was also assessed. When compared with saline, high-dose MTX delayed bone fracture repairs. In this latter group, after 90 days, the histological analysis revealed atrophy of the fibrocartilage and the presence of fibrous tissue in the joint space. The histomorphometric analysis revealed diminished bone neoformation. The alkaline phosphatase levels also decreased after MTX treatment. It was concluded that high-dose MTX impaired mandibular condyle repair and induced degenerative articular changes. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Morphological integration in the forelimb of musteloid carnivorans
Fabre, Anne-Claire; Goswami, Anjali; Peigné, Stéphane; Cornette, Raphaël
2014-01-01
The forelimb forms a functional unit that allows a variety of behaviours and needs to be mobile, yet at the same time stable. Both mobility and stability are controlled, amongst others, at the level of the elbow joint. This joint is composed of the humero-ulnar articulation, mainly involved during parasagittal movements; and the radio-ulnar articulation, mainly allowing rotation. In contrast, the humero-radial articulation allows both movements of flexion–extension and rotation. Here, we study the morphological integration between each bone of the forelimb at the level of the entire arm, as well as at the elbow joint, in musteloid carnivorans. To do so, we quantitatively test shape co-variation using surface 3D geometric morphometric data. Our results show that morphological integration is stronger for bones that form functional units. Different results are obtained depending on the level of investigation: for the entire arm, results show a greater degree of shape co-variation between long bones of the lower arm than between the humerus and either bone of the lower arm. Thus, at this level the functional unit of the lower arm is comprised of the radius and ulna, permitting rotational movements of the lower arm. At the level of the elbow, results display a stronger shape co-variation between bones allowing flexion and stability (humerus and ulna) than between bones allowing mobility (ulna and radius and humerus and radius). Thus, the critical functional unit appears to be the articulation between the humerus and ulna providing the stability of the joint. PMID:24836555
The Measurement Of Total Joint Loosening By X-Ray Photogrammetry
NASA Astrophysics Data System (ADS)
Lippert, Frederick G.; Veress, Sandor A.; Tiwari, Rama S.; Harrington, Richard M.
1980-07-01
Failure of total joint replacement due to loosening of the composents either between the implant and cement or between the cement and bone is emerging as a late complication with an incidence as high as 20 percent. Loosening may not only cause pain but progressive loss of support for the prosthesis with eventual structural failure. Early diagnosis is important so that revision may be carried when deterioration or pain occurs. No method is currently available which clearly establishes loosening at an early stage except surgical exploration. We have devised a method based on our in vivo photogrammetry studies of patellar tracking patterns using metallic markers placed in bone near both components of the total joint. Stereo x-rays taken with the joint loaded and unloaded are measured for relative motion between the implant and the metallic markers. Laboratory studies using prosthetic hip components mounted in plastic bone have revealed the ability of this method to detect pistoning movements as small as 80 microns. These findings were confirmed by physical measurements.
Liu, Chunfang; Yang, Yue; Sun, Danni; Wang, Chao; Wang, Hui; Jia, Shiwei; Liu, Liang; Lin, Na
2015-12-01
Anemone flaccida Fr. Schmidt is used in the clinical compound prescription for the treatment of rheumatoid arthritis (RA) in China and has the traditional use of draining dampness, diminishing swelling, and relieving pain. Total saponins (TS) are the characteristic components and also the main active ingredients of A. flaccida. Previous reports indicated that TS possess anti-inflammatory and immunoregulatory properties; however, the effects of TS on bone destruction of RA have not been evaluated. In this study, our data first showed the therapeutic effects of TS on severity of arthritis and arthritis progression in collagen-induced arthritis (CIA) rats. Then, by microfocal computed tomography (CT) quantification, TS significantly increased bone mineral density, bone volume fraction, and trabecular thickness and decreased trabecular separation of inflamed joints both at peri-articular and extra-articular locations. TS also diminished the level of the bone resorption marker CTX-I and simultaneously increased the bone formation marker osteocalcin in sera of CIA rats. Interestingly, TS prevented bone destruction by reducing the number of osteoclasts in inflamed joints, reducing the expression of receptor activator of nuclear factor-κF (RANK) ligand (RANKL) and RANK, increasing the expression of osteoprotegerin (OPG), at both mRNA and protein levels, and decreasing the ratio of RANKL to OPG in inflamed joints and sera of CIA rats. This was further confirmed in the co-culture system of human fibroblast-like synovial and peripheral blood mononuclear cells. In addition, TS inhibited the levels of pro-inflammatory cytokines implicated in bone resorption, such as interleukin-1β (IL-1β), tumor necrosis factor-α (TNFα), IL-6, IL-17, and IL-23 in sera and joints. These findings offer convincing evidence that TS attenuate RA partially by preventing both focal bone destruction and systemic bone loss. This anti-erosive effect results in part from inhibiting osteoclastogenesis by regulating the RANKL/RANK/OPG signaling pathway. The suppression of systemic and local pro-osteoclastogenic cytokines by TS was also highly effective.
Uematsu, Miho; Tobisawa, Shinsuke; Nagao, Masahiro; Matsubara, Shiro; Mizutani, Toshio; Shibuya, Makoto
2012-01-01
A 50-year-old woman with a history of palmoplantar pustulosis, femur osteomyelitis, and sterno-costo-clavicular hyperostosis presented with a chronic severe left temporal headache that had progressed during the previous year. Her CRP level was elevated. Cranial images showed Gadolinium-enhancement of the left temporal muscle, left parietal bone and dura mater. (99m)Tc-HMDP scintigram showed increased uptake in the left parietal bone, left sterno-costo-clavicular joint, right femoral head and intervertebral joints. Biopsy of the lesion demonstrated 1) proliferation of connective tissue in both perimysium and endomysium of the temporal muscle with mild inflammatory cell infiltration within the interstitium, 2) marked infiltration of granulocytes to the bone marrow of the parietal bone, 3) necrosis and moderate fibrosis in the interstitium with inflammatory cell infiltration in the parietal bone, and 4) moderate fibrosis and slight infiltration of inflammatory cells in the dura mater. The patient was diagnosed with a cranial lesion of synovitis-acne-pustulosis-hyperostosis-osteitis (SAPHO) syndrome. There was a moderate response to treatment with intravenous steroid pulse therapy and subsequent methotrexate. In a case of headache accompanied by inflammatory response, palmoplantar pustulosis and joint lesions such as hyperostosis, the possibility of a rare cranial manifestation of SAPHO syndrome should be considered.
Pate, Kathryn M; Sherk, Vanessa D; Carpenter, R Dana; Weaver, Michael; Crapo, Silvia; Gally, Fabienne; Chatham, Lillian S; Goldstrohm, David A; Crapo, James D; Kohrt, Wendy M; Bowler, Russell P; Oberley-Deegan, Rebecca E; Regan, Elizabeth A
2015-03-15
Osteoarthritis (OA) is associated with increased mechanical damage to joint cartilage. We have previously found that extracellular superoxide dismutase (ECSOD) is decreased in OA joint fluid and cartilage, suggesting oxidant damage may play a role in OA. We explored the effect of forced running as a surrogate for mechanical damage in a transgenic mouse with reduced ECSOD tissue binding. Transgenic mice heterozygous (Het) for the human ECSOD R213G polymorphism and 129-SvEv (wild-type, WT) mice were exposed to forced running on a treadmill for 45 min/day, 5 days/wk, over 8 wk. At the end of the running protocol, knee joint tissue was obtained for histology, immunohistochemistry, and protein analysis. Sedentary Het and WT mice were maintained for comparison. Whole tibias were studied for bone morphometry, finite element analysis, and mechanical testing. Forced running improved joint histology in WT mice. However, when ECSOD levels were reduced, this beneficial effect with running was lost. Het ECSOD runner mice had significantly worse histology scores compared with WT runner mice. Runner mice for both strains had increased bone strength in response to the running protocol, while Het mice showed evidence of a less robust bone structure in both runners and untrained mice. Reduced levels of ECSOD in cartilage produced joint damage when joints were stressed by forced running. The bone tissues responded to increased loading with hypertrophy, regardless of mouse strain. We conclude that ECSOD plays an important role in protecting cartilage from damage caused by mechanical loading. Copyright © 2015 the American Physiological Society.
Patient and implant survival following joint replacement because of metastatic bone disease
2013-01-01
Background Patients suffering from a pathological fracture or painful bony lesion because of metastatic bone disease often benefit from a total joint replacement. However, these are large operations in patients who are often weak. We examined the patient survival and complication rates after total joint replacement as the treatment for bone metastasis or hematological diseases of the extremities. Patients and methods 130 patients (mean age 64 (30–85) years, 76 females) received 140 joint replacements due to skeletal metastases (n = 114) or hematological disease (n = 16) during the period 2003–2008. 21 replaced joints were located in the upper extremities and 119 in the lower extremities. Clinical and survival data were extracted from patient files and various registers. Results The probability of patient survival was 51% (95% CI: 42–59) after 6 months, 39% (CI: 31–48) after 12 months, and 29% (CI: 21–37) after 24 months. The following surgical complications were seen (8 of which led to additional surgery): 2–5 hip dislocations (n = 8), deep infection (n = 3), peroneal palsy (n = 2), a shoulder prosthesis penetrating the skin (n = 1), and disassembly of an elbow prosthesis (n = 1). The probability of avoiding all kinds of surgery related to the implanted prosthesis was 94% (CI: 89–99) after 1 year and 92% (CI: 85–98) after 2 years. Conclusion Joint replacement operations because of metastatic bone disease do not appear to have given a poorer rate of patient survival than other types of surgical treatment, and the reoperation rate was low. PMID:23530874
Fan, Wei-Li; Sun, Hong-Zhen; Wu, Si-Yu; Wang, Ai-Min
2013-03-01
The most common treatment for old calcaneal fractures accompanied by subtalar joint injury is the use of subtalar in situ arthrodesis and subtalar distraction bone-block arthrodesis or osteotomy. This article describes the introduction of a novel surgical treatment, gradual subtalar distraction with external fixation and restoration of the calcaneal height, and presents an assessment of its efficacy. The protruding lateral calcaneus and the articular surfaces and subchondral bone of the posterior facet of the subtalar joint were surgically removed. An external fixator, attached with 2 pins in the subcutaneous tibia and 2 pins in the posterolateral calcaneus, was used to fix the subtalar joint for 7 to 10 days followed by gradual subtalar distraction at 1 mm/d. The lengthening procedure was stopped when the calcaneal height was restored according to radiography. The external fixator was removed after bone fusion. Seven cases of old calcaneal fractures accompanied by severe subtalar joint injury (8 feet) were treated using this method. Average follow-up was 14.3 months (range, 7-36 months). In all 7 cases (1 case of both feet), the postoperative wound healed primarily. The calcaneal heights of all 8 feet were partially restored. Subtalar joint bone fusion was completed within 4 to 6 months after the operation. The average preoperative American Orthopedic Foot & Ankle Society (AOFAS) hindfoot score was 25.3, and the average postoperative AOFAS score was 76.3. Subtalar distraction osteogenesis with external fixation was a novel and effective method for the treatment of old calcaneal fractures accompanied by severe subtalar joint injury in this small group of patients. Level IV, retrospective case series.
Tissue Engineered Bone Using Polycaprolactone Scaffolds Made by Selective Laser Sintering
2005-01-01
temporo - mandibular joint (TMJ) pose many challenges for bone tissue engineering. Adverse reactions to alloplastic, non- biological materials result in...producing a prototype mandibular condyle scaffold based on an actual pig condyle. INTRODUCTION Repair and reconstruction of complex joints such as the...computed tomography (CT) data with a designed porous architecture to build a complex scaffold that mimics a mandibular condyle. Results show that
FE analysis of SMA-based bio-inspired bone-joint system
NASA Astrophysics Data System (ADS)
Yang, S.; Seelecke, S.
2009-10-01
This paper presents the finite element (FE) analysis of a bio-inspired bone-joint system. Motivated by the BATMAV project, which aims at the development of a micro-air-vehicle platform that implements bat-like flapping flight capabilities, we study the actuation of a typical elbow joint, using shape memory alloy (SMA) in a dual manner. Micro-scale martensitic SMA wires are used as 'metal muscles' to actuate a system of humerus, elbow joint and radius, in concert with austenitic wires, which operate as flexible joints due to their superelastic character. For the FE analysis, the humerus and radius are modeled as standard elastic beams, while the elbow joint and muscle wires use the Achenbach-Muller-Seelecke SMA model as beams and cable elements, respectively. The particular focus of the paper is on the implementation of the above SMA model in COMSOL.
Yanai, T; Ishii, T; Chang, F; Ochiai, N
2005-05-01
We produced large full-thickness articular cartilage defects in 33 rabbits in order to evaluate the effect of joint distraction and autologous culture-expanded bone-marrow-derived mesenchymal cell transplantation (ACBMT) at 12 weeks. After fixing the knee on a hinged external fixator, we resected the entire surface of the tibial plateau. We studied three groups: 1) with and without joint distraction; 2) with joint distraction and collagen gel, and 3) with joint distraction and ACBMT and collagen gel. The histological scores were significantly higher in the groups with ACBMT collagen gel (p < 0.05). The area of regenerated soft tissue was smaller in the group allowed to bear weight (p < 0.05). These findings suggest that the repair of large defects of cartilage can be enhanced by joint distraction, collagen gel and ACBMT.
Tendon-bone graft for tendinous mallet fingers following failed splinting.
Wang, Le; Zhang, Xu; Liu, Ze; Huang, Xiuge; Zhu, Hongwei; Yu, Yadong
2013-12-01
To describe and assess a surgical technique for the treatment of tendinous mallet fingers after failed conservative treatment. From January 2010 to March 2012, 28 tendinous mallet fingers in 28 patients were treated. All patients had greater than 25° extensor lags after 6 to 8 weeks of splinting. Four patients had a second trial of splinting, which also failed. A tendon-bone graft, taken from the extensor carpi radialis brevis and the third metacarpal base, was used for reconstruction. The mean time between the injury and operation was 74 days. The mean preoperative extension lag was 34°. Five patients reported pain in the distal interphalangeal joint. At the final follow-up, patients rated the level of pain on the distal interphalangeal and wrist joints using a visual analog scale. Joint motion was graded with the Crawford criteria. Hand function was assessed with the Disabilities of the Arm, Shoulder, and Hand questionnaire. Patients reported on their satisfaction based on the Michigan Hand Outcomes Questionnaire. Bone healing was achieved in all patients at a mean of 5 weeks. Position of bone graft was maintained until bone healing was evident in all cases. At the mean follow-up period of 15 months, nail deformity was not noted. No patient reported pain on the distal interphalangeal joint or wrist. The mean residual extension lag of the distal interphalangeal joints was 4°. The results showed that 24 digits were excellent and 4 were good based on the Crawford criteria. The Disabilities of the Arm, Shoulder, and Hand scores averaged 1, and 27 patients were satisfied with appearance of the hand. One patient sometimes felt uncomfortable regarding the appearance. A tendon-bone graft is a useful and reliable technique for the treatment of tendinous mallet fingers after failed splinting. Therapeutic IV. Copyright © 2013 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Parhampour, Behrouz; Torkaman, Giti; Hoorfar, Hamid; Hedayati, Mehdi; Ravanbod, Roya
2014-05-01
To assess the effects of short-term resistance training and pulsed electromagnetic fields on bone metabolism and joint function in patients with haemophilia with osteoporosis. A randomized, controlled, patient and blood sample assessor-blinded, six-week trial, three times weekly. Hospital outpatients with severe haemophilia A and osteoporosis. Forty-eight patients were randomly assigned to resistance training (RT, n = 13), combined resistance training with pulsed electromagnetic fields (RTPEMF, n = 12), pulsed electromagnetic fields (PEMF, n = 11) and control (n = 12) groups. The RT group received 30-40 minutes of resistance exercises and placebo pulsed electromagnetic fields. The RTPEMF group received the same exercises with lower repetition and 30 minutes of pulsed electromagnetic fields. The PEMF group was exposed to 60 minutes of pulsed electromagnetic fields (30 Hz and 40 Gauss). Bone-specific alkaline phosphatase, N-terminal telopeptide of type 1 collagen, and joint function, using the modified Colorado Questionnaire, were measured before and after the programme. The absolute change of bone-specific alkaline phosphatase was significant in the RT and RTPEMF groups compared with the control group (25.41 ± 14.40, 15.09 ± 5.51, and -4.73 ± 2.93 U/L, respectively). The absolute changes in the total score for joint function were significant for knees, ankles, and elbows in the RT group (9.2 ± 1.38, 5.1 ± 0.5, and 3.2 ± 0.8, respectively) and the RTPEMF group (7.7 ± 1.0, 3.3 ± 0.6, and 2.5 ± 0.7, respectively) compared to the PEMF and control groups. This value was significant for knee joints in the PEMF group compared to the control group (3.4 ± 0.5 and 0.66 ± 0.4, respectively). Resistance training is effective for improving bone formation and joint function in severe haemophilia A patients with osteoporosis.
Effects of Ankle Arthrodesis on Biomechanical Performance of the Entire Foot
Wang, Yan; Li, Zengyong; Wong, Duo Wai-Chi; Zhang, Ming
2015-01-01
Background/Methodology Ankle arthrodesis is one popular surgical treatment for ankle arthritis, chronic instability, and degenerative deformity. However, complications such as foot pain, joint arthritis, and bone fracture may cause patients to suffer other problems. Understanding the internal biomechanics of the foot is critical for assessing the effectiveness of ankle arthrodesis and provides a baseline for the surgical plan. This study aimed to understand the biomechanical effects of ankle arthrodesis on the entire foot and ankle using finite element analyses. A three-dimensional finite element model of the foot and ankle, involving 28 bones, 103 ligaments, the plantar fascia, major muscle groups, and encapsulated soft tissue, was developed and validated. The biomechanical performances of a normal foot and a foot with ankle arthrodesis were compared at three gait instants, first-peak, mid-stance, and second-peak. Principal Findings/Conclusions Changes in plantar pressure distribution, joint contact pressure and forces, von Mises stress on bone and foot deformation were predicted. Compared with those in the normal foot, the peak plantar pressure was increased and the center of pressure moved anteriorly in the foot with ankle arthrodesis. The talonavicular joint and joints of the first to third rays in the hind- and mid-foot bore the majority of the loading and sustained substantially increased loading after ankle arthrodesis. An average contact pressure of 2.14 MPa was predicted at the talonavicular joint after surgery and the maximum variation was shown to be 80% in joints of the first ray. The contact force and pressure of the subtalar joint decreased after surgery, indicating that arthritis at this joint was not necessarily a consequence of ankle arthrodesis but rather a progression of pre-existing degenerative changes. Von Mises stress in the second and third metatarsal bones at the second-peak instant increased to 52 MPa and 34 MPa, respectively, after surgery. These variations can provide indications for outcome assessment of ankle arthrodesis surgery. PMID:26222188
Effects of Ankle Arthrodesis on Biomechanical Performance of the Entire Foot.
Wang, Yan; Li, Zengyong; Wong, Duo Wai-Chi; Zhang, Ming
2015-01-01
Ankle arthrodesis is one popular surgical treatment for ankle arthritis, chronic instability, and degenerative deformity. However, complications such as foot pain, joint arthritis, and bone fracture may cause patients to suffer other problems. Understanding the internal biomechanics of the foot is critical for assessing the effectiveness of ankle arthrodesis and provides a baseline for the surgical plan. This study aimed to understand the biomechanical effects of ankle arthrodesis on the entire foot and ankle using finite element analyses. A three-dimensional finite element model of the foot and ankle, involving 28 bones, 103 ligaments, the plantar fascia, major muscle groups, and encapsulated soft tissue, was developed and validated. The biomechanical performances of a normal foot and a foot with ankle arthrodesis were compared at three gait instants, first-peak, mid-stance, and second-peak. Changes in plantar pressure distribution, joint contact pressure and forces, von Mises stress on bone and foot deformation were predicted. Compared with those in the normal foot, the peak plantar pressure was increased and the center of pressure moved anteriorly in the foot with ankle arthrodesis. The talonavicular joint and joints of the first to third rays in the hind- and mid-foot bore the majority of the loading and sustained substantially increased loading after ankle arthrodesis. An average contact pressure of 2.14 MPa was predicted at the talonavicular joint after surgery and the maximum variation was shown to be 80% in joints of the first ray. The contact force and pressure of the subtalar joint decreased after surgery, indicating that arthritis at this joint was not necessarily a consequence of ankle arthrodesis but rather a progression of pre-existing degenerative changes. Von Mises stress in the second and third metatarsal bones at the second-peak instant increased to 52 MPa and 34 MPa, respectively, after surgery. These variations can provide indications for outcome assessment of ankle arthrodesis surgery.
Lee, Jee-Wook; Kobayashi, Akio; Nakano, Takayoshi
2017-05-01
The aim of the present study was to investigate the preferred orientation of biological apatite (BAp) as a new index of the quality of subchondral bone (SB) in knee joint osteoarthritis (OA). Ten OA and five normal knee joints were obtained. Thickness, quantity and bone mineral density (BMD) of SB were analyzed at the medial condyle of the femur in dry conditions by peripheral quantitative computed tomography. In addition, the preferred crystallographic orientation of the c-axis of BAp was evaluated as bone quality parameter using a microbeam X-ray diffractometer technique. BMD and thickness of SB were significantly increased in OA specimens compared to normal knee specimens (P < 0.01), and the preferred orientation of the c-axis of BAp along the normal direction of SB surface was significantly higher in OA specimens (P < 0.01), reflecting the change in stress of concentration in the pathological portion without cartilage. SB sclerosis in OA results in both proliferation of bone tissues and enhanced degree of preferential alignment of the c-axis of BAp. Our findings could have major implications for the diagnosis of clinical studies, including pathologic elucidation in OA.
Triple-phase bone image abnormalities in Lyme arthritis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, S.J.; Dadparvar, S.; Slizofski, W.J.
1989-10-01
Arthritis is a frequent manifestation of Lyme disease. Limited triple-phase Tc-99m MDP bone imaging of the wrists and hands with delayed whole-body images was performed in a patient with Lyme arthritis. This demonstrated abnormal joint uptake in the wrists and hands in all three phases, with increased activity seen in other affected joints on delayed whole-body images. These findings are nonspecific and have been previously described in a variety of rheumatologic conditions, but not in Lyme disease. Lyme disease should be considered in the differential diagnosis of articular and periarticular bone scan abnormalities.
Experiment K-314: Fetal and neonatal rat bone and joint development following in Utero spaceflight
NASA Technical Reports Server (NTRS)
Sabelman, E. E.; Holton, E. M.; Arnaud, C. D.
1981-01-01
Infant rat limb specimens from Soviet and U.S. ground-based studies were examined by radiography, macrophotography, histologic sectioning and staining and scanning electron microscopy. A comparison was conducted between vivarium and flight-type diets suggesting that nutritional obesity may adversely affect pregnancy. Data were obtained on maturation of ossification centers, orientation of collagen fibers in bone, tendon and ligaments, joint surface texture and spatial relationships of bones of the hind limb. Computer reconstructions of the knee and hip show promise as a means of investigating the etiology of congenital hip dislocation.
Flexibility in the mouse middle ear: A finite element study of the frequency response
NASA Astrophysics Data System (ADS)
Gottlieb, Peter; Puria, Sunil
2018-05-01
The mammalian middle ear is comprised of three distinct ossicles, connected by joints, and suspended in an air-filled cavity. In most mammals, the ossicular joints are mobile synovial joints, which introduce flexibility into the ossicular chain. In some smaller rodents, however, these joints are less mobile, and in the mouse in particular, the malleus is additionally characterized by a large, thin plate known as the transversal lamina, which connects the manubrium to the incus-malleus joint (IMJ). We hypothesize that this feature acts as a functional joint, maintaining the benefits of a flexible ossicular chain despite a less-mobile IMJ, and tested this hypothesis with a finite element model of the mouse middle ear. The results showed that while fusing the ossicular joints had a negligible effect on sound transmission, stiffening the ossicular bone significantly reduced sound transmission, implying that bone flexibility plays a critical role in the normal function of the mouse middle ear.
21 CFR 888.3150 - Elbow joint metal/polymer constrained cemented prosthesis.
Code of Federal Regulations, 2010 CFR
2010-04-01
... use with bone cement (§ 888.3027). (b) Classification. Class II. The special controls for this device...) “Guidance Document for Testing Orthopedic Implants with Modified Metallic Surfaces Apposing Bone or Bone... Biomaterials (Nonporous) for Surgical Implant with Respect to Effect of Material on Muscle and Bone,” (v) F...
21 CFR 888.3150 - Elbow joint metal/polymer constrained cemented prosthesis.
Code of Federal Regulations, 2012 CFR
2012-04-01
... use with bone cement (§ 888.3027). (b) Classification. Class II. The special controls for this device...) “Guidance Document for Testing Orthopedic Implants with Modified Metallic Surfaces Apposing Bone or Bone... Biomaterials (Nonporous) for Surgical Implant with Respect to Effect of Material on Muscle and Bone,” (v) F...
21 CFR 888.3150 - Elbow joint metal/polymer constrained cemented prosthesis.
Code of Federal Regulations, 2014 CFR
2014-04-01
... use with bone cement (§ 888.3027). (b) Classification. Class II. The special controls for this device...) “Guidance Document for Testing Orthopedic Implants with Modified Metallic Surfaces Apposing Bone or Bone... Biomaterials (Nonporous) for Surgical Implant with Respect to Effect of Material on Muscle and Bone,” (v) F...
21 CFR 888.3150 - Elbow joint metal/polymer constrained cemented prosthesis.
Code of Federal Regulations, 2013 CFR
2013-04-01
... use with bone cement (§ 888.3027). (b) Classification. Class II. The special controls for this device...) “Guidance Document for Testing Orthopedic Implants with Modified Metallic Surfaces Apposing Bone or Bone... Biomaterials (Nonporous) for Surgical Implant with Respect to Effect of Material on Muscle and Bone,” (v) F...
21 CFR 888.3150 - Elbow joint metal/polymer constrained cemented prosthesis.
Code of Federal Regulations, 2011 CFR
2011-04-01
... use with bone cement (§ 888.3027). (b) Classification. Class II. The special controls for this device...) “Guidance Document for Testing Orthopedic Implants with Modified Metallic Surfaces Apposing Bone or Bone... Biomaterials (Nonporous) for Surgical Implant with Respect to Effect of Material on Muscle and Bone,” (v) F...
Bone effects of biologic drugs in rheumatoid arthritis.
Corrado, Addolorata; Neve, Anna; Maruotti, Nicola; Cantatore, Francesco Paolo
2013-01-01
Biologic agents used in the treatment of rheumatoid arthritis (RA) are able to reduce both disease activity and radiographic progression of joint disease. These drugs are directed against several proinflammatory cytokines (TNF α , IL-6, and IL-1) which are involved both in the pathogenesis of chronic inflammation and progression of joint structural damage and in systemic and local bone loss typically observed in RA. However, the role of biologic drugs in preventing bone loss in clinical practice has not yet clearly assessed. Many clinical studies showed a trend to a positive effect of biologic agents in preventing systemic bone loss observed in RA. Although the suppression of inflammation is the main goal in the treatment of RA and the anti-inflammatory effects of biologic drugs exert a positive effect on bone metabolism, the exact relationship between the prevention of bone loss and control of inflammation has not been clearly established, and if the available biologic drugs against TNF α , IL-1, and IL-6 can exert their effect on systemic and local bone loss also through a direct mechanism on bone cell metabolism is still to be clearly defined.
Scintigraphic findings in ankylosing spondylitis.
Lentle, B C; Russell, A S; Percy, J S; Jackson, F I
1977-06-01
A prospective study of bone scintigraphic findings has been carried out in 63 patients, firmly diagnosed as having ankylosing spondylitis. In addition to abnormal uptake of the radiotracer at the sacroiliac joints, a peripheral arthropathy has been a common finding, particularly in the proximal joints, occurring in up to 50% of patients. Increased uptake of radiotracer in the spine has also been found both diffusely and focally. Focal increases have been noted at the apophyseal joints in 40% of patients and in three patients with a sterile intervertebral diskitis, an unusual complication of this disease only diagnosed in two patients after bone scintigraphy.
Numerical damage models using a structural approach: application in bones and ligaments
NASA Astrophysics Data System (ADS)
Arnoux, P. J.; Bonnoit, J.; Chabrand, P.; Jean, M.; Pithioux, M.
2002-01-01
The purpose of the present study was to apply knowledge of structural properties to perform numerical simulations with models of bones and knee ligaments exposed to dynamic tensile loading leading to tissue damage. Compact bones and knee ligaments exhibit the same geometrical pattern in their different levels of structural hierarchy from the tropocollagen molecule to the fibre. Nevertheless, their mechanical behaviours differ considerably at the fibril level. These differences are due to the contribution of the joints in the microfibril-fibril-fibre assembly and to the mechanical properties of the structural components. Two finite element models of the fibrous bone and ligament structure were used to describe damage in terms of elastoplastic laws or joint decohesion processes.
Turmezei, Tom D; Poole, Ken E S
2011-01-01
Bone is a fundamental component of the disordered joint homeostasis seen in osteoarthritis, a disease that has been primarily characterized by the breakdown of articular cartilage accompanied by local bone changes and a limited degree of joint inflammation. In this review we consider the role of computed tomography imaging and computational analysis in osteoarthritis research, focusing on subchondral bone and osteophytes in the hip. We relate what is already known in this area to what could be explored through this approach in the future in relation to both clinical research trials and the underlying cellular and molecular science of osteoarthritis. We also consider how this area of research could impact on our understanding of the genetics of osteoarthritis.
Pest, Michael A.; Russell, Bailey A.; Zhang, Yu-Wen; Jeong, Jae-Wook; Beier, Frank
2017-01-01
Objective Mitogen-inducible gene 6 (MIG-6) regulates epidermal growth factor receptor (EGFR) signaling in synovial joint tissues. Whole-body knockout of the Mig6 gene in mice has been shown to induce osteoarthritis and joint degeneration. To evaluate the role of chondrocytes in this process, Mig6 was conditionally deleted from Col2a1-expressing cell types in the cartilage of mice. Methods Bone and cartilage in the synovial joints of cartilage-specific Mig6-deleted (knockout [KO]) mice and control littermates were compared. Histologic staining and immunohistochemical analyses were used to evaluate joint pathology as well as the expression of key extracellular matrix and regulatory proteins. Calcified tissue in synovial joints was assessed by micro–computed tomography (micro-CT) and whole-skeleton staining. Results Formation of long bones was found to be normal in KO animals. Cartilage thickness and proteoglycan staining of articular cartilage in the knee joints of 12-week-old KO mice were increased as compared to controls, with higher cellularity throughout the tissue. Radiopaque chondro-osseous nodules appeared in the knees of KO animals by 12 weeks of age and progressed to calcified bone–like tissue by 36 weeks of age. Nodules were also observed in the spine of 36-week-old animals. Erosion of bone at ligament entheses was evident by 12 weeks of age, by both histologic and micro-CT assessment. Conclusion MIG-6 expression in chondrocytes is important for the maintenance of cartilage and joint homeostasis. Dysregulation of EGFR signaling in chondrocytes results in anabolic activity in cartilage, but erosion of ligament entheses and the formation of ectopic chondro-osseous nodules severely disturb joint physiology. PMID:24966136
Radiographic changes in Thoroughbred yearlings in South Africa.
Furniss, C; Carstens, A; van den Berg, S S
2011-12-01
This study involves the evaluation of pre-purchase radiographic studies of South African Thoroughbred yearlings. Radiographic changes were recorded and compared with similar international studies. The study differs from other studies in that a lower prevalence of pedal osteitis (1.26%), dorsal osteochondral fragmentation of the metatarsophalangeal joint (1.60%), distal metacarpal sagittal ridge changes (15.7%), ulnar carpal bone lucencies (8.33%), carpal osteophytes (1.19%), distal intertarsal and tarsometatarsal joint radiographic changes (9.92%), tarsal osteochondrosis lesions (4.40%) and stifle osteochondrosis lesions (0.4%) was found. The prevalence of dorsal osteochondral fragments in the metacarpophalangeal joint was similar to other studies (1.60%). A higher prevalence of vascular channels as well as irregular borders and lucencies was evident in the proximal sesamoid bones. There was a higher prevalence of palmar metacarpophalangeal and plantar metatarsophalangeal osteochondral fragments (2% and 7.10% respectively). Palmar metacarpal disease, metacarpal supracondylar lysis, proximal sesamoid bone fractures and carpal osteochondral fragmentation were absent in the current study. Additional findings recorded in the current study were proximal interphalangeal joint hyperextension (left front 15.13%, right front 18.91%), the solar angle (right front 2.38 degrees, left front 2.79 degrees), the prevalence of carpal bone 1 (30.95%) and carpal bone 5 (1.59%). Management, nutrition and genetics in the various groups of Thoroughbred yearlings should be further investigated in order to explain the reasons for the differences recorded in the current study.
Knee joint pain potentially due to bone alterations in a knee osteoarthritis patient.
Komatsu, Masatoshi; Nakamura, Yukio; Kamimura, Mikio; Uchiyama, Shigeharu; Mukaiyama, Keijiro; Ikegami, Shota; Kato, Hiroyuki
2014-12-01
Osteoarthritis (OA) is the leading cause of musculoskeletal pain and functional disability worldwide. However, the etiology of this condition is still largely unknown. We report the clinical course of an elderly man with knee OA. Plain radiographs and MRI examinations performed during follow-up suggested that the pathophysiology of the patient's knee OA and joint pain may have been primarily due to bone alterations.
Factors that Affect the Content of Cadmium, Nickel, Copper and Zinc in Tissues of the Knee Joint.
Roczniak, Wojciech; Brodziak-Dopierała, Barbara; Cipora, Elżbieta; Jakóbik-Kolon, Agata; Kluczka, Joanna; Babuśka-Roczniak, Magdalena
2017-08-01
Osteoarthritis causes the degradation of the articular cartilage and periarticular bones. Trace elements influence the growth, development and condition of the bone tissue. Changes to the mineral composition of the bone tissue can cause degenerative changes and fractures. The aim of the research was to determine the content of cadmium (Cd), nickel (Ni), copper (Cu) and zinc (Zn) in the tibia, the femur and the meniscus in men and women who underwent a knee replacement surgery. Samples were collected from 50 patients, including 36 women and 14 men. The determination of trace elements content were performed by ICP-AES method, using Varian 710-ES. Average concentration in the tissues of the knee joint teeth amounted for cadmium 0.015, nickel 0.60, copper 0.89 and zinc 80.81 mg/kg wet weight. There were statistically significant differences in the content of cadmium, copper and zinc in different parts of the knee joint. There were no statistically significant differences in the content of cadmium, nickel, copper and zinc in women and men in the examined parts of the knee joint. Among the elements tested, copper and nickel showed a high content in the connective tissue (the meniscus) compared to the bone tissue (the tibia and the femur).
MacBarb, Regina F; Lindsey, Derek P; Woods, Shane A; Lalor, Peggy A; Gundanna, Mukund I; Yerby, Scott A
2017-01-01
Minimally invasive surgical fusion of the sacroiliac (SI) joint using machined solid triangular titanium plasma spray (TPS) coated implants has demonstrated positive clinical outcomes in SI joint pain patients. Additive manufactured (AM), i.e. 3D-printed, fenestrated triangular titanium implants with porous surfaces and bioactive agents, such as nanocrystalline hydroxyapatite (HA) or autograft, may further optimize bony fixation and subsequent biomechanical stability. A bilateral ovine distal femoral defect model was used to evaluate the cancellous bone-implant interfaces of TPS-coated and AM implants. Four implant groups (n=6/group/time-point) were included: 1)TPS-coated, 2)AM, 3)AM+HA, and 4)AM+Autograft. The bone-implant interfaces of 6- and 12-week specimens were investigated via radiographic, biomechanical, and histomorphometric methods. Imaging showed peri-implant bone formation around all implants. Push-out testing demonstrated forces greater than 2500 N, with no significant differences among groups. While TPS implants failed primarily at the bone-implant interface, AM groups failed within bone ~2-3mm away from implant surfaces. All implants exhibited bone ongrowth, with no significant differences among groups. AM implants had significantly more bone ingrowth into their porous surfaces than TPS-coated implants ( p <0.0001). Of the three AM groups, AM+Auto implants had the greatest bone ingrowth into the porous surface and through their core ( p <0.002). Both TPS and AM implants exhibited substantial bone ongrowth and ingrowth, with additional bone through growth into the AM implants' core. Overall, AM implants experienced significantly more bone infiltration compared to TPS implants. While HA-coating did not further enhance results, the addition of autograft fostered greater osteointegration for AM implants. Additive manufactured implants with a porous surface provide a highly interconnected porous surface that has comparatively greater surface area for bony integration. Results suggest this may prove advantageous toward promoting enhanced biomechanical stability compared to TPS-coated implants for SI joint fusion procedures.
van der Harst, Mark R; Brama, Pieter A J; van de Lest, Chris H A; Kiers, Geesje H; DeGroot, Jeroen; van Weeren, P René
2004-09-01
In articular joints, the forces generated by locomotion are absorbed by the whole of cartilage, subchondral bone and underlying trabecular bone. The objective of this study is to test the hypothesis that regional differences in joint loading are related to clear and interrelated differences in the composition of the extracellular matrix (ECM) of all three weight-bearing constituents. Cartilage, subchondral- and trabecular bone samples from two differently loaded sites (site 1, dorsal joint margin; site 2, central area) of the proximal articular surface of 30 macroscopically normal equine first phalanxes were collected. Collagen content, cross-linking (pentosidine, hydroxylysylpyridinoline (HP), lysylpyridinoline (LP)) hydroxylation, and denaturation, as well as glycosaminoglycan (GAG) and DNA content were measured in all three tissues. In addition, bone mineral density (BMD), the percentage of ash and the mineral composition (calcium, magnesium and phosphorus) were determined in the bony samples. For pentosidine cross-links there was an expected correlation with age. Denatured collagen content was significantly higher in cartilage at site 1 than at site 2 and was higher in trabecular bone compared to subchondral bone, with no site differences. There were significant site differences in hydroxylysine (Hyl) concentration and HP cross-links in cartilage that were paralleled in one or both of the bony layers. In subchondral bone there was a positive correlation between total (HP+LP) cross-links and Ca content. For Ca and other minerals there were corresponding site differences in both bony layers. It is concluded that there are distinct differences in distribution of the major biochemical components over both sites in all three layers. These differences show similar patterns in cartilage, subchondral bone and trabecular bone, stressing the functional unity of these tissues. Overall, differences could be interpreted as adaptations to a considerably higher cumulative loading over time at site 2, requiring stiffer tissue. Turnover is higher in trabecular bone than in subchondral bone. In cartilage, the dorsal site 1 appears to suffer more tissue damage.
NASA Astrophysics Data System (ADS)
McCanless, Jonathan D.
Osteoarthritis-associated pain of the spinal disc, knee, and hip derives from degeneration of cartilagenous tissues in these joints. Traditional therapies have focused on these cartilage (and disc specific nucleus pulposus) changes as a means of treatment through tissue grafting, regenerative synthetic implants, non-regenerative space filling implants, arthroplasty, and arthrodesis. Although such approaches may seem apparent upon initial consideration of joint degeneration, tissue pathology has shown changes in the underlying bone and vascular bed precede the onset of cartilaginous changes. It is hypothesized that these changes precedent joint degeneration and as such may provide a route for early prevention. The current work proposes an injectable biomaterial-based therapy within these subchondral and cancellous bone regions as a means of preventing or reversing osteoarthritis. Two human concentrated platelet releasate-containing alginate hydrogel/beta-tricalcium phosphate composites have been developed for this potential biomaterial application. The undertaking of assessing these materials through bench-, in vitro, and ex vivo work is described herein. These studies showed the capability of the biomaterials to initiate a wound healing response in monocytes, angiogenic and differentiation behavior in immature endothelial cells, and early osteochondral differentiation in mesenchymal stem cells. These cellular activities are associated with fracture healing and endochondral bone formation, demonstrating the potential of the biomaterials to induce osseous and vascular tissue remodeling underlying osteoarthritic joints as a novel therapy for a disease with rapidly growing healthcare costs.
... treat or reduce any joint dislocation or bone fracture by applying tension to the leg or arm with weights and pulleys to realign the bone. For example, it may be used to help line up a broken bone while it heals. Traction as a treatment involves the amount of ...
Junbo, Wang; Sijia, Liu; Hongying, Chen; Lei, Liu; Pu, Wang
2017-06-15
Whole-body vibration(WBV) has been suggested for the prevention of subchondral bone loss of knee osteoarthritis (OA) . This study examined the effects of different frequency of whole-body vibration on subchondral trabecular bone microarchitecture, cartilage degradation and metabolism of the tibia and femoral condyle bone, and joint pain in an anterior cruciate ligament transection (ACLT)-induced knee osteoarthritisrabbit model. Ninety adult rabbits were divided into six groups: all groups received unilateral ACLT; Group 1, ACLT only; Group 2, 5 Hz WBV; Group 3, 10 Hz WBV; Group 4, 20 Hz WBV; Group 5, 30 Hz WBV; and Group 6, 40 Hz WBV. Pain was tested via weight-bearing asymmetry. Subchondral trabecular bone microarchitecture was examined using in vivo micro-computed tomography. Knee joint cartilage was evaluated by gross morphology, histology, and ECM gene expression level (aggrecan and type II collagen [CTX-II]). Serum bone-specific alkaline phosphatase, N-mid OC, cartilage oligometric protein, CPII, type I collagen, PIIANP, G1/G2 aggrecan levels, and urinary CTX-II were analyzed. After 8 weeks of low-magnitude WBV, the lower frequency (10 Hz and 20 Hz) WBV treatment decreased joint pain and cartilage resorption, accelerated cartilage formation, delayed cartilage degradation especially at the 20 Hz regimen. However, the higher frequencies (30 Hz and 40 Hz) had worse effects, with worse limb function and cartilage volume as well as higher histological scores and cartilage resorption. In contrast, both prevented loss of trabeculae and increased bone turnover. No significant change was observed in the 5 Hz WBV group. Our data demonstrate that the lower frequencies (10 Hz and 20 Hz) of low-magnitude WBV increased bone turnover, delayed cartilage degeneration, and caused a significant functional change of the OA-affected limb in ACLT-induced OA rabbit model but did not reverse OA progression after 8 weeks of treatment.
Parr, W C H; Chatterjee, H J; Soligo, C
2012-04-05
Orientation of the subtalar joint axis dictates inversion and eversion movements of the foot and has been the focus of evolutionary and clinical studies for a number of years. Previous studies have measured the subtalar joint axis against the axis of the whole foot, the talocrural joint axis and, recently, the principal axes of the talus. The present study introduces a new method for estimating average joint axes from 3D reconstructions of bones and applies the method to the talus to calculate the subtalar and talocrural joint axes. The study also assesses the validity of the principal axes as a reference coordinate system against which to measure the subtalar joint axis. In order to define the angle of the subtalar joint axis relative to that of another axis in the talus, we suggest measuring the subtalar joint axis against the talocrural joint axis. We present corresponding 3D vector angles calculated from a modern human skeletal sample. This method is applicable to virtual 3D models acquired through surface-scanning of disarticulated 'dry' osteological samples, as well as to 3D models created from CT or MRI scans. Copyright © 2012 Elsevier Ltd. All rights reserved.
[Past, present and future of vascularised bone transfers in the hand and wrist].
Allieu, Y
2010-12-01
The author specifies the aims and indications for simple or compound pedicle or free vascularised bone and bone and joint grafts (VBGs and VBJGs). He relates the history of VBGs whose indications for the wrist are often many and varied for the treatment of scaphoid non-union and Kienböch's disease. Within the hand the indication for compound VBGs is dominated by thumb reconstruction (skin and bone grafts). Compound VBGs and VBJGs used in an emergency for hand trauma, harvested from another irrecoverable long finger (bank finger) are extremely varied and adapted to each particular case. For secondary joint reconstruction in the adult, VBJGs must be discussed along with prosthetic arthroplasties (radio-carpal, lower radio-ulnar, trapezo-metacarpal, interphalangeal). For children VBJGs with an included growth plate maintain their indication. The immediate future of VBGs is that of a better knowledge of bone necrosis and bone innervation as well as an improvement in surgical techniques: microsurgery and robotics, mini-invasive surgery (wrist arthroscopy). The near future for VBGs is to control bone consolidation thanks to progress in the bio-engineering of bone tissue, which may make them obsolete and, for VBJGs, vascularised joint allografts, thanks to progress in immunosuppressant treatments. Although the immediate future and this near future may be envisaged according to the current advances, the same is not true for the distant future which remains totally unforeseeable, although this might involve regeneration and construction of organs by man himself. Copyright © 2010 Elsevier Masson SAS. All rights reserved.
Ko, Frank C.; Dragomir, Cecilia L.; Plumb, Darren A.; Hsia, Allison W.; Adebayo, Olufunmilayo O.; Goldring, Steven R.; Wright, Timothy M.; Goldring, Mary B.; van der Meulen, Marjolein C.H.
2017-01-01
We previously showed that repetitive cyclic loading of the mouse knee joint causes changes that recapitulate the features of osteoarthritis (OA) in humans. By applying a single loading session, we characterized the temporal progression of the structural and compositional changes in subchondral bone and articular cartilage. We applied loading during a single 5-minute session to the left tibia of adult (26-week-old) C57Bl/6 male mice at a peak load of 9.0N for 1200 cycles. Knee joints were collected at times 0, 1, and 2 weeks after loading. The changes in articular cartilage and subchondral bone were analyzed by histology, immunohistochemistry (caspase-3 and cathepsin K), and microcomputed tomography. At time 0, no change was evident in chondrocyte viability or cartilage or subchondral bone integrity. However, cartilage pathology demonstrated by localized thinning and proteoglycan loss occurred at 1 and 2 weeks after the single session of loading. Transient cancellous bone loss was evident at 1 week, associated with increased osteoclast number. Bone loss was reversed to control levels at 2 weeks. We observed formation of fibrous and cartilaginous tissues at the joint margins at 1 and 2 weeks. Our findings demonstrate that a single session of noninvasive loading leads to the development of OA-like morphological and cellular alterations in articular cartilage and subchondral bone. The loss in subchondral trabecular bone mass and thickness returns to control levels at 2 weeks, whereas the cartilage thinning and proteoglycan loss persist. PMID:26896841
Moewis, Philippe; Checa, Sara; Kutzner, Ines; Hommel, Hagen; Duda, Georg N
2018-01-01
Mechanical and kinematical aligning techniques are the usual positioning methods during total knee arthroplasty. However, alteration of the physiological joint line and unbalanced medio-lateral load distribution are considered disadvantages in the mechanical and kinematical techniques, respectively. The aim of this study was to analyse the influence of the joint line on the strain and stress distributions in an implanted knee and their sensitivity to rotational mal-alignment. Finite element calculations were conducted to analyse the stresses in the PE-Inlay and the mechanical strains at the bone side of the tibia component-tibia bone interface during normal positioning of the components and internal and external mal-rotation of the tibial component. Two designs were included, a horizontal and a physiological implant. The loading conditions are based on internal knee joint loads during walking. A medialization of the stresses on the PE-Inlay was observed in the physiological implant in a normal position, accompanied by higher stresses in the mal-rotated positions. Within the tibia component-tibia bone interface, similar strain distributions were observed in both implant geometries in the normal position. However, a medialization of the strains was observed in the physiological implant in both mal-rotated conditions with greater bone volume affected by higher strains. Although evident changes due to mal-rotation were observed, the stresses do not suggest a local plastic deformation of the PE-Inlay. The strains values within most of the tibia component-tibia bone interface were in the physiological strain zone and no significant bone changes would be expected. The physiological cut on the articular aspect showed no detrimental effect compared to the horizontal implant.
NASA Astrophysics Data System (ADS)
Kaabar, Wejdan; Gundogdu, O.; Tzaphlidou, M.; Janousch, M.; Attenburrow, D.; Bradley, D. A.
2008-05-01
In articular cartilage, Ca, P, K and S are among some of the well known co-factors of the metalloproteinases enzymatic family, the latter playing a pivotal role in the growth and degeneration of the collagenous bone-cartilage interface of articulating joints. Current study forms part of a larger investigation concerning the distribution of these and other key elements in such media. For the purpose of evaluating these low atomic number elements (Z⩽20), use was made of the capabilities of the LUCIA Station, located at the synchrotron facility of the Paul Scherrer Institute (PSI). Using an incident radiation energy of 4.06 keV, a synchrotron radiation micro x-ray fluorescence (SR-μXRF) technique was applied in examining the distribution of the essential elements Ca, P, K and S in the bone-cartilage interface of both healthy and diseased (osteoarthritic) areas of an equine metacarpophalangeal joint. The SR-μXRF mappings and line profile patterns have revealed remarkable changes in both the pattern and absolute distributions of these elements, agreeing with the findings of others. The elemental presence shown in the individual area scans encompassing the lesion each reflect the visibly abraded outer surface of the cartilage and change in shape of the bone surface. One of the area scans for the bone-cartilage interface shows a marked change in both the pattern and absolute elemental presence for all three elements compared to that observed at two other scan sites. The observation of change in bone cartilage composition around the surface of the articulating joint is thought to be novel, the variation being almost certainly due to the differing weight-bearing role of the subchondral bone at each location.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaabar, Wejdan; Gundogdu, O.; Attenburrow, D.
2008-05-20
In articular cartilage, Ca, P, K and S are among some of the well known co-factors of the metalloproteinases enzymatic family, the latter playing a pivotal role in the growth and degeneration of the collagenous bone-cartilage interface of articulating joints. Current study forms part of a larger investigation concerning the distribution of these and other key elements in such media. For the purpose of evaluating these low atomic number elements (Z{<=}20), use was made of the capabilities of the LUCIA Station, located at the synchrotron facility of the Paul Scherrer Institute (PSI). Using an incident radiation energy of 4.06 keV,more » a synchrotron radiation micro x-ray fluorescence (SR-{mu}XRF) technique was applied in examining the distribution of the essential elements Ca, P, K and S in the bone-cartilage interface of both healthy and diseased (osteoarthritic) areas of an equine metacarpophalangeal joint. The SR-{mu}XRF mappings and line profile patterns have revealed remarkable changes in both the pattern and absolute distributions of these elements, agreeing with the findings of others. The elemental presence shown in the individual area scans encompassing the lesion each reflect the visibly abraded outer surface of the cartilage and change in shape of the bone surface. One of the area scans for the bone-cartilage interface shows a marked change in both the pattern and absolute elemental presence for all three elements compared to that observed at two other scan sites. The observation of change in bone cartilage composition around the surface of the articulating joint is thought to be novel, the variation being almost certainly due to the differing weight-bearing role of the subchondral bone at each locati0008.« less
Lallemand, E; Coiffier, G; Arvieux, C; Brillet, E; Guggenbuhl, P; Jolivet-Gougeon, A
2016-05-01
The rapid identification of bacterial species involved in bone and joint infections (BJI) is an important element to optimize the diagnosis and care of patients. The aim of this study was to evaluate the usefulness of matrix-assisted laser desorption ionization mass spectrometry (MALDI-TOF MS) for the rapid diagnosis of bone infections, directly on synovial fluid (SF) or on crushed osteoarticular samples (CS). From January to October 2013, we prospectively analyzed 111 osteoarticular samples (bone and joint samples, BJS) from 78 patients in care at the University Hospital of Rennes, France. The diagnosis procedure leading to the sample collection was linked to a suspicion of infection, inflammatory disease, arthritis, or for any bone or joint abnormalities. Standard bacteriological diagnosis and molecular biology analysis [16S rRNA polymerase chain reaction (PCR) and sequencing] were conducted. In addition, analysis by MALDI-TOF MS was performed directly on the osteoarticular samples, as soon as the amount allowed. Culture, which remains the gold standard for the diagnosis of BJI, has the highest sensitivity (85.9 %) and remains necessary to test antimicrobial susceptibility. The 16S rDNA PCR results were positive in the group with positive BJI (28.6 %) and negative in the group without infection. Direct examination remains insensitive (31.7 %) but more effective than MALDI-TOF MS directly on the sample (6.3 %). The specificity was 100 % in all cases, except for culture (74.5 %). Bacterial culture remains the gold standard, especially enrichment in blood bottles. Direct analysis of bone samples with MALDI-TOF MS is not useful, possibly due to the low inoculum of BJS.
Popovich, I; Dalbeth, N; Doyle, A; Reeves, Q; McQueen, F M
2014-07-01
Few imaging studies have investigated cartilage in gout. Magnetic resonance imaging (MRI) can image cartilage damage and also reveals other features of gouty arthropathy. The objective was to develop and validate a system for quantifying cartilage damage in gout. 3-T MRI scans of the wrist were obtained in 40 gout patients. MRI cartilage damage was quantified using an adaptation of the radiographic Sharp van der Heijde score. Two readers scored cartilage loss at 7 wrist joints: 0 (normal), 1 (partial narrowing), 2 (complete narrowing) and concomitant osteoarthritis was recorded. Bone erosion, bone oedema and synovitis were scored (RAMRIS) and tophi were assessed. Correlations between radiographic and MRI cartilage scores were investigated, as was the reliability of the MRI cartilage score and its associations. The GOut MRI Cartilage Score (GOMRICS) was highly correlated with the total Sharp van der Heijde (SvdH) score and the joint space narrowing component (R = 0.8 and 0.71 respectively, p < 0.001). Reliability was high (intraobserver, interobserver ICCs = 0.87 [0.57-0.97], 0.64 [0.41-0.79] respectively), and improved on unenhanced scans; interobserver ICC = 0.82 [0.49-0.95]. Cartilage damage was predominantly focal (82% of lesions) and identified in 40 out of 280 (14%) of joints. Cartilage scores correlated with bone erosion (R = 0.57), tophus size (R = 0.52), and synovitis (R = 0.55), but not bone oedema scores. Magnetic resonance imaging can be used to investigate cartilage in gout. Cartilage damage was relatively uncommon, focal, and associated with bone erosions, tophi and synovitis, but not bone oedema. This emphasises the unique pathophysiology of gout.
Endress, Ryan; Woon, Colin Y L; Farnebo, Simon J; Behn, Anthony; Bronstein, Joel; Pham, Hung; Yan, Xinrui; Gambhir, Sanjiv S; Chang, James
2012-08-01
In patients with chronic scapholunate (SL) dissociation or dynamic instability, ligament repair is often not possible, and surgical reconstruction is indicated. The ideal graft ligament would recreate both anatomical and biomechanical properties of the dorsal scapholunate ligament (dorsal SLIL). The finger proximal interphalangeal joint (PIP joint) collateral ligament could possibly be a substitute ligament. We harvested human PIP joint collateral ligaments and SL ligaments from 15 cadaveric limbs. We recorded ligament length, width, and thickness, and measured the biomechanical properties (ultimate load, stiffness, and displacement to failure) of native dorsal SLIL, untreated collateral ligaments, decellularized collateral ligaments, and SL repairs with bone-collateral ligament-bone composite collateral ligament grafts. As proof of concept, we then reseeded decellularized bone-collateral ligament-bone composite grafts with green fluorescent protein-labeled adipo-derived mesenchymal stem cells and evaluated them histologically. There was no difference in ultimate load, stiffness, and displacement to failure among native dorsal SLIL, untreated and decellularized collateral ligaments, and SL repairs with tissue-engineered collateral ligament grafts. With pair-matched untreated and decellularized scaffolds, there was no difference in ultimate load or stiffness. However, decellularized ligaments revealed lower displacement to failure compared with untreated ligaments. There was no difference in displacement between decellularized ligaments and native dorsal SLIL. We successfully decellularized grafts with recently described techniques, and they could be similarly reseeded. Proximal interphalangeal joint collateral ligament-based bone-collateral ligament-bone composite allografts had biomechanical properties similar to those of native dorsal SLIL. Decellularization did not adversely affect material properties. These tissue-engineered grafts may offer surgeons another option for reconstruction of chronic SL instability. Copyright © 2012 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Heterotopic ossification revisited.
Mavrogenis, Andreas F; Soucacos, Panayotis N; Papagelopoulos, Panayiotis J
2011-03-11
Heterotopic ossification is the abnormal formation of mature lamellar bone within extraskeletal soft tissues where bone does not exist. Heterotopic ossification has been classified into posttraumatic, nontraumatic or neurogenic, and myositis ossificans progressiva or fibrodysplasia ossificans progressive. The pathophysiology is unknown. Anatomically, heterotopic ossification occurs outside the joint capsule without disrupting it. The new bone can be contiguous with the skeleton but generally does not involve the periosteum. Three-phase technetium-99m (99mTc) methylene diphosphonate bone scan is the most sensitive imaging modality for early detection and assessing the maturity of heterotopic ossification. Nonsurgical treatment with indomethacin and radiation therapy is appropriate for prophylaxis or early treatment of heterotopic ossification. Although bisphosphonates are effective prophylaxis if initiated shortly after the trauma, mineralization of the bone matrix resumes after drug discontinuation. During the acute inflammatory stage, the patient should rest the involved joint in a functional position; once acute inflammatory signs subside, passive range of motion exercises and continued mobilization are indicated. Surgical indications for excision of heterotopic ossification include improvement of function, standing posture, sitting or ambulation, independent dressing, feeding and hygiene, and repeated pressure sores from underlying bone mass. The optimal timing of surgery has been suggested to be a delay of 12 to 18 months until radiographic evidence of heterotopic ossification maturation and maximal recovery after neurological injury. The ideal candidate for surgical treatment before 18 months should have no joint pain or swelling, a normal alkaline phosphatase level, and 3-phase bone scan indicating mature heterotopic ossification. Copyright 2011, SLACK Incorporated.
Chen, K; Man, C; Zhang, B; Hu, J; Zhu, S S
2013-02-01
This study investigated the effects of in vitro chondrogenic differentiated mesenchymal stem cells (MSCs) on cartilage and subchondral cancellous bone in temporomandibular joint osteoarthritis (TMJOA). Four weeks after induction of osteoarthritis (OA), the joints received hylartin solution, non-chondrogenic MSCs or in vitro chondrogenic differentiated MSCs. The changes in cartilage and subchondral cancellous bone were evaluated by histology, reverse transcription polymerase chain reaction and micro-computed tomography (CT). Implanted cells were tracked using Adeno-LacZ labelling. The differentiated MSC-treated group had better histology than the MSC-treated group at 4 and 12 weeks, but no difference at 24 weeks. Increased mRNA expression of collegan II, aggeran, Sox9 and decreased matrix metalloproteinase 13 (MMP13) were observed in differentiated MSC-treated groups compared to the undifferentiated MSC-treated group at 4 weeks. The differentiated MSC-treated group had decreased bone volume fraction, trabecular thickness and bone surface density, and increased trabecular spacing in the subchondral cancellous bone than the undifferentiated MSC-treated group. Transplanted cells were observed at cartilage, subchondral bone, and the synovial membrane lining at 4 weeks. Intra-articular injection of MSCs could delay the progression of TMJOA, and in vitro chondrogenic induction of MSCs could enhance the therapeutic effects. This provides new insights into the role of MSCs in cell-based therapies for TMJOA. Copyright © 2012 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Kivell, Tracy L
2016-04-01
Many of the unresolved debates in palaeoanthropology regarding evolution of particular locomotor or manipulative behaviours are founded in differing opinions about the functional significance of the preserved external fossil morphology. However, the plasticity of internal bone morphology, and particularly trabecular bone, allowing it to respond to mechanical loading during life means that it can reveal greater insight into how a bone or joint was used during an individual's lifetime. Analyses of trabecular bone have been commonplace for several decades in a human clinical context. In contrast, the study of trabecular bone as a method for reconstructing joint position, joint loading and ultimately behaviour in extant and fossil non-human primates is comparatively new. Since the initial 2D studies in the late 1970s and 3D analyses in the 1990 s, the utility of trabecular bone to reconstruct behaviour in primates has grown to incorporate experimental studies, expanded taxonomic samples and skeletal elements, and improved methodologies. However, this work, in conjunction with research on humans and non-primate mammals, has also revealed the substantial complexity inherent in making functional inferences from variation in trabecular architecture. This review addresses the current understanding of trabecular bone functional adaptation, how it has been applied to hominoids, as well as other primates and, ultimately, how this can be used to better interpret fossil hominoid and hominin morphology. Because the fossil record constrains us to interpreting function largely from bony morphology alone, and typically from isolated bones, analyses of trabecular structure, ideally in conjunction with that of cortical structure and external morphology, can offer the best resource for reconstructing behaviour in the past. © 2016 Anatomical Society.
The effect of carprofen on selected markers of bone metabolism in dogs with chronic osteoarthritis.
Liesegang, A; Limacher, S; Sobek, A
2007-08-01
The purpose of this study was to investigate the effect of the nonsteroidal anti-inflammatory drug carprofen on bone turnover and to monitor the progress of chronic osteoarthritic dogs by measuring different bone markers and radiographic evalutation of the corresponding joints. For this purpose 20 dogs of different ages and weight were devided into 2 groups. Ten dogs were assigned to Group R, treated with carprofen, and ten dogs to Group C, which had no treatment. Radiographs of the affected joints were reviewed initially and six months later at the end of the experiment. Blood was taken 8 times from each dog. Four bone markers (Osteocalcin (OC), bone-specific alkaline phosphatase (bAP), carboxyterminal telopeptide of type I collagen (ICTP), serum CrossLaps (CTX) as well as 1,25-(OH)2-Vitamin D and parathyroid hormone (PTH) were monitored for 6 months. No significant group effects on bone markers were notied. In Group R a decrease in ICTP concentrations during the first three months and a significant decrease in CTX concentrations in the first two months of the study were observed. The bone formation marker bAP revealed a significant decrease throughout the experiment. Three dogs of Group C and one dog of Group R showed osteoarthritic progression in the radiographs. The significant decrease of CTX indicates that carprofentreatment could have a retarding effect on the progression of osteoarthritis. Radiological findings suggest that carprofen may delay osteophyte formation. The monitoring of focal metabolic processes as in bone of a osteoarthrotic joint is difficult, since the bone mass is very active and metabolic processes may have an influence on the monitoring.
Yamanishi, Yasufumi; Yamaguchi, Satoshi; Imazato, Satoshi; Nakano, Tamaki; Yatani, Hirofumi
2014-09-01
Occlusal overloading causes peri-implant bone resorption. Previous studies examined stress distribution in alveolar bone around commercial implants using three-dimensional (3D) finite element analysis. However, the commercial implants contained some different designs. The purpose of this study is to reveal the effect of the target design on peri-implant bone stress and abutment micromovement. Six 3D implant models were created for different implant-abutment joints: 1) internal joint model (IM); 2) external joint model (EM); 3) straight abutment (SA) shape; 4) tapered abutment (TA) shapes; 5) platform switching (PS) in the IM; and 6) modified TA neck design (reverse conical neck [RN]). A static load of 100 N was applied to the basal ridge surface of the abutment at a 45-degree oblique angle to the long axis of the implant. Both stress distribution in peri-implant bone and abutment micromovement in the SA and TA models were analyzed. Compressive stress concentrated on labial cortical bone and tensile stress on the palatal side in the EM and on the labial side in the IM. There was no difference in maximum principal stress distribution for SA and TA models. Tensile stress concentration was not apparent on labial cortical bone in the PS model (versus IM). Maximum principal stress concentrated more on peri-implant bone in the RN than in the TA model. The TA model exhibited less abutment micromovement than the SA model. This study reveals the effects of the design of specific components on peri-implant bone stress and abutment displacement after implant-supported single restoration in the anterior maxilla.
Development and reliability of a preliminary Foot Osteoarthritis Magnetic Resonance Imaging Score
Halstead, Jill; Martín-Hervás, Carmen; Hensor, Elizabeth MA; McGonagle, Dennis; Keenan, Anne-Maree
2017-01-01
Objective Foot osteoarthritis (OA) is very common but under-investigated musculoskeletal condition and there is little consensus as to common MRI imaging features. The aim of this study was to develop a preliminary foot OA MRI score (FOAMRIS) and evaluate its reliability. Methods This preliminary semi-quantitative score included the hindfoot, midfoot and metatarsophalangeal joints. Joints were scored for joint space narrowing (JSN, 0-3), osteophytes (0-3), joint effusion-synovitis and bone cysts (present/absent). Erosions and bone marrow lesions (BMLs) were scored (0-3) and BMLs were evaluated adjacent to entheses and at sub-tendon sites (present/absent). Additionally, tenosynovitis was scored (0-3) and midfoot ligament pathology was scored (present/absent). Reliability was evaluated in 15 people with foot pain and MRI-detected OA using 3.0T MRI multi-sequence protocols and assessed using intraclass correlation coefficients (ICC) as an overall score and per anatomical site (see supplementary data). Results Intra-reader agreement (ICC) was generally good to excellent across the foot in joint features (JSN 0.94, osteophytes 0.94, effusion-synovitis 0.62 and cysts 0.93), bone features (BML 0.89, erosion 0.78, BML-entheses 0.79, BML sub-tendon 0.75) and soft-tissue features (tenosynovitis 0.90, ligaments 0.87). Inter-reader agreement was lower for joint features (JSN 0.60, osteophytes 0.41, effusion-synovitis 0.03) and cysts 0.65, bone features (BML 0.80, erosion 0.00, BML-entheses 0.49, BML sub-tendon -0.24) and soft-tissue features (tenosynovitis 0.48, ligaments 0.50). Conclusion This preliminary FOAMRIS demonstrated good intra-reader reliability and fair inter-reader reliability when assessing the total feature scores. Further development is required in cohorts with a range of pathologies and to assess the psychometric measurement properties. PMID:28572462
Klára, Tamás; Csönge, Lajos; Janositz, Gábor; Pap, Károly; Lacza, Zsombor
2015-01-11
The authors report the history of a 74-year-old patient who underwent surgical treatment for segmental knee-joint periprosthetic bone loss using structural proximal tibial allografts coated with serum albumin. Successful treatment of late complications which occurred in the postoperative period is also described. The authors emphasize that bone replacement with allografts is a physiological process that enables the stable positioning of the implant and the reconstruction of the soft tissues, the replacement of extensive bone loss, and also it is a less expensive operation. It has been already confirmed that treatment of lyophilised allografts with albumin improves the ability of bone marrow-derived mesenchymal stem cells to adhere and proliferate the surface of the allografts, penetrate the pores and reach deeper layers of the graft. Earlier studies have shown osteoblast activity on the surface and interior of the graft.
NASA Astrophysics Data System (ADS)
Bian, Weiguo; Qin, Lian; Li, Dichen; Wang, Jin; Jin, Zhongmin
2010-09-01
The artificial biodegradable osteochondral construct is one of mostly promising lifetime substitute in the joint replacement. And the complex hierarchical structure of natural joint is important in developing the osteochondral construct. However, the architecture features of the interface between cartilage and bone, in particular those at the micro-and nano-structural level, remain poorly understood. This paper investigates these structural data of the cartilage-bone interface by micro computerized tomography (μCT) and Scanning Electron Microscope (SEM). The result of μCT shows that important bone parameters and the density of articular cartilage are all related to the position in the hierarchical structure. The conjunctions of bone and cartilage were defined by SEM. All of the study results would be useful for the design of osteochondral construct further manufactured by nano-tech. A three-dimensional model with gradient porous structure is constructed in the environment of Pro/ENGINEERING software.
Low-intensity pulsed ultrasound stimulation for mandibular condyle osteoarthritis lesions in rats.
Kanaguchi Arita, A; Yonemitsu, I; Ikeda, Y; Miyazaki, M; Ono, T
2018-05-01
This study evaluated low-intensity pulsed ultrasound effects for temporomandibular joint osteoarthritis in adult rats. Osteoarthritis-like lesions were induced in 24 adult rats' temporomandibular joints with low-dose mono-iodoacetate injections. The rats were divided into four groups: control and mono-iodoacetate groups, injected with contrast media and mono-iodoacetate, respectively, at 12 weeks and observed until 20 weeks; and low-intensity pulsed ultrasound and mono-iodoacetate + low-intensity pulsed ultrasound groups, injected with contrast media and mono-iodoacetate, respectively, at 12 weeks with low-intensity pulsed ultrasound performed from 16 to 20 weeks. Condylar bone mineral density, bone mineral content and bone volume were evaluated weekly with microcomputed tomography. Histological and immunohistochemical staining for matrix metalloproteinases-13 was performed at 20 weeks. At 20 weeks, the mono-iodoacetate + low-intensity pulsed ultrasound group showed significantly higher bone mineral density, bone mineral content and bone volume than the mono-iodoacetate group; however, these values remained lower than those in the other two groups. On histological and immunohistochemical analysis, the chondrocytes were increased, and fewer matrix metalloproteinases-13 immunopositive cells were identified in the mono-iodoacetate + low-intensity pulsed ultrasound group than mono-iodoacetate group. Low-intensity pulsed ultrasound for 2 weeks may have therapeutic potential for treating temporomandibular joint osteoarthritis lesions. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Fixation of revision implants is improved by a surgical technique to crack the sclerotic bone rim.
Kold, Søren; Bechtold, Joan E; Mouzin, Olivier; Elmengaard, Brian; Chen, Xinqian; Søballe, Kjeld
2005-03-01
Revision joint replacement has poorer outcomes compared with primary joint replacement, and these poor outcomes have been associated with poorer fixation. We investigated a surgical technique done during the revision operation to improve access from the marrow space to the implant interface by locally cracking the sclerotic bone rim that forms during aseptic loosening. Sixteen implants were inserted bilaterally by distal femur articulation of the knee joint of eight dogs, using our controlled experimental model that replicates the revision setting (sclerotic bone rim, dense fibrous tissue, macrophages, elevated cytokines) by pistoning a loaded 6.0-mm implant 500 microm into the distal femur with particulate PE. At 8 weeks, one of two revision procedures was done. Both revision procedures included complete removal of the membrane, scraping, lavaging, and inserting a revision plasma-spray Ti implant. The crack revision procedure also used a splined tool to circumferentially locally perforate the sclerotic bone rim before insertion of an identical revision implant. Superior fixation was achieved with the cracking procedure in this experimental model. Revision implants inserted with the rim cracking procedure had a significantly higher pushout strength (fivefold median increase) and energy to failure (sixfold median increase), compared with the control revision procedure. Additional evaluation is needed of local perforation of sclerotic bone rim as a simple bone-sparing means to improve revision implant fixation and thereby increase revision implant longevity.
Haemodynamically Unstable Pelvic Fractures
2009-01-01
through the pubic symphysis, and posteriorlywith the sacrum forming the sacroiliac (SI) joints (Fig. 1). The SI joints are the strongest in the body...Gardner MJ, Kendoff D, Ostermeier S, et al. Sacroiliac joint compression using an anterior pelvic compressor: a mechanical study in synthetic bone. J
X-ray - pelvis ... Tumors Degenerative conditions of bones in the hips, pelvis, and upper legs ... hip joint Tumors of the bones of the pelvis Sacroiliitis (inflammation of the area where the sacrum ...
Forslind, K; Svensson, B
2016-01-01
To determine the value of magnetic resonance imaging (MRI) of bones and joints in patients with recent-onset rheumatoid arthritis (RA) treated for 2 years from diagnosis with disease-modifying anti-rheumatic drugs (DMARDs) and glucocorticoids. Thirteen patients with early RA were treated according to clinical practice and followed with MRI, radiographs, and Disease Activity Score calculated on 28 joints (DAS28) at inclusion (baseline) and after 1, 4, 7, 13, and 25 months. MRI of the dominant wrist and metacarpophalangeal (MCP) joints were assessed for synovitis, bone oedema, and erosions using the RA MRI Score (RAMRIS) and for tenosynovitis by an MRI tenosynovitis scoring method. Radiographs were assessed by the van der Heijde modified Sharp score (SHS). Clinical remission was defined by a DAS28 < 2.6. MRI at baseline detected inflammation in joints and tendons in all patients as well as erosions in 10 out of 13 patients. Over time, the erosion score increased while the synovitis and tenosynovitis scores remained almost unchanged. Bone oedema strongly correlated with synovitis. Synovitis and tenosynovitis correlated well with the erosion score at baseline but not thereafter. The MRI changes showed that joint damage started early and continued in the presence of persistent synovial and tenosynovial inflammation. The observations made in this small study suggest that the treatment goal of 'clinical remission' should be supplemented by a 'joint remission' goal. To this end, MRI is an appropriate tool. Further studies are needed to evaluate the optimal use of MRI in early RA.
THE KINEMATICS OF PRIMATE MIDFOOT FLEXIBILITY
Greiner, Thomas M.; Ball, Kevin A.
2015-01-01
This study describes a unique assessment of primate intrinsic foot joint kinematics based upon bone pin rigid cluster tracking. It challenges the assumption that human evolution resulted in a reduction of midfoot flexibility, which has been identified in other primates as the “midtarsal break.” Rigid cluster pins were inserted into the foot bones of human, chimpanzee, baboon and macaque cadavers. The positions of these bone pins were monitored during a plantarflexion-dorsiflexion movement cycle. Analysis resolved flexion-extension movement patterns and the associated orientation of rotational axes for the talonavicular, calcaneocuboid and lateral cubometatarsal joints. Results show that midfoot flexibility occurs primarily at the talonavicular and cubometatarsal joints. The rotational magnitudes are roughly similar between humans and chimps. There is also a similarity among evaluated primates in the observed rotations of the lateral cubometatarsal joint, but there was much greater rotation observed for the talonavicular joint, which may serve to differentiate monkeys from the hominines. It appears that the capability for a midtarsal break is present within the human foot. A consideration of the joint axes shows that the medial and lateral joints have opposing orientations, which has been associated with a rigid locking mechanism in the human foot. However, the potential for this same mechanism also appears in the chimpanzee foot. These findings demonstrate a functional similarity within the midfoot of the hominines. Therefore, the kinematic capabilities and restrictions for the skeletal linkages of the human foot may not be as unique as has been previously suggested. PMID:25234343
Ehlers-Danlos Syndrome Hypermobility Type
EHLERS-DANLOS SYNDROME HYPERMOBILITY TYPE Ehlers-Danlos syndrome hypermobility type is a connective tissue disorder that mostly affects the bones and joints. People with this condition have loose joints ...
Gagala, J; Tarczynska, M; Gaweda, K; Matuszewski, L
2014-09-01
Osteonecrosis of the femoral head is an entity which occurs mainly in young and active patients aged between 20 and 50. The success of hip joint preserving treatments ranges from 15% to 50% depending on the stage and amount of osteonecrotic lesion. Total hip replacement is indicated in late post-collapse hips but it has unsatisfactory survival because of the wear and osteolysis in young and active patients. Osteochondral allografts have been reported in the treatment of large articular lesions with defects in underlying bone in knee, talus and shoulder. By combining osteoconductive properties of osteochondral allograft with osteogenic abilities of bone marrow-derived mesenchymal cells it has a potential to be an alternative to an autologous graft. The adjunct of hinged joint distraction should minimize stresses in subchondral bone to promote creeping substitution and prevent femoral head collapse. Unlike current treatment modalities, it would provide both structural support and allow bony and articular substitution. Copyright © 2014 Elsevier Ltd. All rights reserved.
Automated bone segmentation from large field of view 3D MR images of the hip joint
NASA Astrophysics Data System (ADS)
Xia, Ying; Fripp, Jurgen; Chandra, Shekhar S.; Schwarz, Raphael; Engstrom, Craig; Crozier, Stuart
2013-10-01
Accurate bone segmentation in the hip joint region from magnetic resonance (MR) images can provide quantitative data for examining pathoanatomical conditions such as femoroacetabular impingement through to varying stages of osteoarthritis to monitor bone and associated cartilage morphometry. We evaluate two state-of-the-art methods (multi-atlas and active shape model (ASM) approaches) on bilateral MR images for automatic 3D bone segmentation in the hip region (proximal femur and innominate bone). Bilateral MR images of the hip joints were acquired at 3T from 30 volunteers. Image sequences included water-excitation dual echo stead state (FOV 38.6 × 24.1 cm, matrix 576 × 360, thickness 0.61 mm) in all subjects and multi-echo data image combination (FOV 37.6 × 23.5 cm, matrix 576 × 360, thickness 0.70 mm) for a subset of eight subjects. Following manual segmentation of femoral (head-neck, proximal-shaft) and innominate (ilium+ischium+pubis) bone, automated bone segmentation proceeded via two approaches: (1) multi-atlas segmentation incorporating non-rigid registration and (2) an advanced ASM-based scheme. Mean inter- and intra-rater reliability Dice's similarity coefficients (DSC) for manual segmentation of femoral and innominate bone were (0.970, 0.963) and (0.971, 0.965). Compared with manual data, mean DSC values for femoral and innominate bone volumes using automated multi-atlas and ASM-based methods were (0.950, 0.922) and (0.946, 0.917), respectively. Both approaches delivered accurate (high DSC values) segmentation results; notably, ASM data were generated in substantially less computational time (12 min versus 10 h). Both automated algorithms provided accurate 3D bone volumetric descriptions for MR-based measures in the hip region. The highly computational efficient ASM-based approach is more likely suitable for future clinical applications such as extracting bone-cartilage interfaces for potential cartilage segmentation.
Automated bone segmentation from large field of view 3D MR images of the hip joint.
Xia, Ying; Fripp, Jurgen; Chandra, Shekhar S; Schwarz, Raphael; Engstrom, Craig; Crozier, Stuart
2013-10-21
Accurate bone segmentation in the hip joint region from magnetic resonance (MR) images can provide quantitative data for examining pathoanatomical conditions such as femoroacetabular impingement through to varying stages of osteoarthritis to monitor bone and associated cartilage morphometry. We evaluate two state-of-the-art methods (multi-atlas and active shape model (ASM) approaches) on bilateral MR images for automatic 3D bone segmentation in the hip region (proximal femur and innominate bone). Bilateral MR images of the hip joints were acquired at 3T from 30 volunteers. Image sequences included water-excitation dual echo stead state (FOV 38.6 × 24.1 cm, matrix 576 × 360, thickness 0.61 mm) in all subjects and multi-echo data image combination (FOV 37.6 × 23.5 cm, matrix 576 × 360, thickness 0.70 mm) for a subset of eight subjects. Following manual segmentation of femoral (head-neck, proximal-shaft) and innominate (ilium+ischium+pubis) bone, automated bone segmentation proceeded via two approaches: (1) multi-atlas segmentation incorporating non-rigid registration and (2) an advanced ASM-based scheme. Mean inter- and intra-rater reliability Dice's similarity coefficients (DSC) for manual segmentation of femoral and innominate bone were (0.970, 0.963) and (0.971, 0.965). Compared with manual data, mean DSC values for femoral and innominate bone volumes using automated multi-atlas and ASM-based methods were (0.950, 0.922) and (0.946, 0.917), respectively. Both approaches delivered accurate (high DSC values) segmentation results; notably, ASM data were generated in substantially less computational time (12 min versus 10 h). Both automated algorithms provided accurate 3D bone volumetric descriptions for MR-based measures in the hip region. The highly computational efficient ASM-based approach is more likely suitable for future clinical applications such as extracting bone-cartilage interfaces for potential cartilage segmentation.
Texas Emergency Resource Management. Volume II.
1979-09-30
direct all users and distributors of sugar and other natural sweeteners in the State to abide by such regulations as may be issued by the U. S. Department...systemic disorders such a, arthritis, heart disease, diabetes or kidney trouble. May treat bone, muscle and joint disorders limits to feet and be kno...dis- orders such as arthritis, heart disease, diabetes or kidney trouble. May treat bone, muscle and joint disorders limited to feet and be known as
Assessment of Biomarkers Associated with Joint Injury and Subsequent Post-Traumatic Arthritis
2016-12-01
models of the patella and patellar cartilage (Geomagic Studio, Research Triangle Park, NC). Changes in cartilage thickness between post -operative... quantitative scales, and "Assessment of Biomarkers Associated with Joint Injury and Subsequent Post -Traumatic Arthritis" Start date: 9/30/2012 PIs...Geomagic®). Positive and negative deviations of the bone surface were measured, and defined as the distance to a test surface ( post -fx bone surface
A new approach to depict bone surfaces in finger imaging using photoacoustic tomography
NASA Astrophysics Data System (ADS)
Biswas, S. K.; van Es, P.; Steenbergen, W.; Manohar, S.
2015-03-01
Imaging the vasculature close around the finger joints is of interest in the field of rheumatology. Locally increased vasculature in the synovial membrane of these joints can be a marker for rheumatoid arthritis. In previous work we showed that part of the photoacoustically induced ultrasound from the epidermis reflects on the bone surface within the finger. These reflected signals could be wrongly interpreted as new photoacoustic sources. In this work we show that a conventional ultrasound reconstruction algorithm, that considers the skin as a collection of ultrasound transmitters and the PA tomography probe as the detector array, can be used to delineate bone surfaces of a finger. This can in the future assist in the localization of the joint gaps. This can provide us with a landmark to localize the region of the inflamed synovial membrane. We test the approach on finger mimicking phantoms.
Guillier, D; Moris, V; See, L-A; Girodon, M; Wajszczak, B-L; Zwetyenga, N
2017-02-01
Total prosthetic replacement of the temporo-mandibular joint (TMJ) has become a common procedure, but it is usually limited to the TMJ itself. We report about one case of complex prosthetic joint reconstruction extending to the neighbouring bony structures. A 57-year-old patient, operated several times for a cranio-facial fibrous dysplasia, presented with a recurring TMJ ankylosis and a complexe latero-facial bone loss on the right side. We performed a reconstruction procedure including the TMJ, the zygomatic arch and the malar bone by mean of custom made composite prosthesis (chrome-cobalt-molybdenum-titanium and polyethylene). Five years postoperatively, mouth opening, nutrition, pain and oral hygiene were significantly improved. Nowadays technical possibilities allow for complex facial alloplastic reconstructions with good medium term results. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Lalone, Emily A; Grewal, Ruby; King, Graham W; MacDermid, Joy C
2015-01-01
Some mal-alignment of the wrist occurs in up to 71% of patients following a distal radius fracture. A multiple case study was used to provide proof of principle of an image-based technique to investigate the evolution and impact of post-traumatic joint changes at the distal radioulnar joint. Participants who had a unilateral distal radius fracture who previously participated in a prospective study were recruited from a single tertiary hand center. Long term follow-up measures of pain, disability, range of motion and radiographic alignment were obtained and compared to joint congruency measures. The inter-bone distance, a measure of joint congruency was quantified from reconstructed CT bone models of the distal radius and ulna and the clinical outcome was quantified using the patient rated wrist evaluation. In all four cases, acceptable post-reduction alignment and minimal pain/disability at 1-year suggested good clinical outcomes. However, 10 years following injury, 3 out of 4 patients had radiographic signs of degenerative changes occurring in their injured wrist (distal radioulnar joint/radio-carpal joint). Proximity maps displaying inter-bone distances showed asymmetrical congruency between wrists in these three patients. The 10-year PRWE (patient rated wrist evaluation) varied from 4 to 60, with 3 reporting minimal pain/disability and one experiencing high pain/disability. These illustrative cases demonstrate long-term joint damage post-fracture is common and occurs despite positive short-term clinical outcomes. Imaging and functional outcomes are not necessarily correlated. A novel congruency measure provides an indicator of the overall impact of joint mal-alignment that can be used to determine predictors of post-traumatic arthritis and is viable for clinical or large cohort studies.
Onodera, Tomohiro; Majima, Tokifumi; Iwasaki, Norimasa; Kamishima, Tamotsu; Kasahara, Yasuhiko; Minami, Akio
2012-09-01
The stress distribution of an ankle under various physiological conditions is important for long-term survival of total ankle arthroplasty. The aim of this study was to measure subchondral bone density across the distal tibial joint surface in patients with malalignment/instability of the lower limb. We evaluated subchondral bone density across the distal tibial joint in patients with malalignment/instability of the knee by computed tomography (CT) osteoabsorptiometry from ten ankles as controls and from 27 ankles with varus deformity/instability of the knee. The quantitative analysis focused on the location of the high-density area at the articular surface, to determine the resultant long-term stress on the ankle joint. The area of maximum density of subchondral bone was located in the medial part in all subjects. The pattern of maximum density in the anterolateral area showed stepwise increases with the development of varus deformity/instability of the knee. Our results should prove helpful for designing new prostheses and determining clinical indications for total ankle arthroplasty.
Joint diseases: from connexins to gap junctions.
Donahue, Henry J; Qu, Roy W; Genetos, Damian C
2017-12-19
Connexons form the basis of hemichannels and gap junctions. They are composed of six tetraspan proteins called connexins. Connexons can function as individual hemichannels, releasing cytosolic factors (such as ATP) into the pericellular environment. Alternatively, two hemichannel connexons from neighbouring cells can come together to form gap junctions, membrane-spanning channels that facilitate cell-cell communication by enabling signalling molecules of approximately 1 kDa to pass from one cell to an adjacent cell. Connexins are expressed in joint tissues including bone, cartilage, skeletal muscle and the synovium. Indicative of their importance as gap junction components, connexins are also known as gap junction proteins, but individual connexin proteins are gaining recognition for their channel-independent roles, which include scaffolding and signalling functions. Considerable evidence indicates that connexons contribute to the function of bone and muscle, but less is known about the function of connexons in other joint tissues. However, the implication that connexins and gap junctional channels might be involved in joint disease, including age-related bone loss, osteoarthritis and rheumatoid arthritis, emphasizes the need for further research into these areas and highlights the therapeutic potential of connexins.
Liacouras, Peter C; Wayne, Jennifer S
2007-12-01
Computational models of musculoskeletal joints and limbs can provide useful information about joint mechanics. Validated models can be used as predictive devices for understanding joint function and serve as clinical tools for predicting the outcome of surgical procedures. A new computational modeling approach was developed for simulating joint kinematics that are dictated by bone/joint anatomy, ligamentous constraints, and applied loading. Three-dimensional computational models of the lower leg were created to illustrate the application of this new approach. Model development began with generating three-dimensional surfaces of each bone from CT images and then importing into the three-dimensional solid modeling software SOLIDWORKS and motion simulation package COSMOSMOTION. Through SOLIDWORKS and COSMOSMOTION, each bone surface file was filled to create a solid object and positioned necessary components added, and simulations executed. Three-dimensional contacts were added to inhibit intersection of the bones during motion. Ligaments were represented as linear springs. Model predictions were then validated by comparison to two different cadaver studies, syndesmotic injury and repair and ankle inversion following ligament transection. The syndesmotic injury model was able to predict tibial rotation, fibular rotation, and anterior/posterior displacement. In the inversion simulation, calcaneofibular ligament extension and angles of inversion compared well. Some experimental data proved harder to simulate accurately, due to certain software limitations and lack of complete experimental data. Other parameters that could not be easily obtained experimentally can be predicted and analyzed by the computational simulations. In the syndesmotic injury study, the force generated in the tibionavicular and calcaneofibular ligaments reduced with the insertion of the staple, indicating how this repair technique changes joint function. After transection of the calcaneofibular ligament in the inversion stability study, a major increase in force was seen in several of the ligaments on the lateral aspect of the foot and ankle, indicating the recruitment of other structures to permit function after injury. Overall, the computational models were able to predict joint kinematics of the lower leg with particular focus on the ankle complex. This same approach can be taken to create models of other limb segments such as the elbow and wrist. Additional parameters can be calculated in the models that are not easily obtained experimentally such as ligament forces, force transmission across joints, and three-dimensional movement of all bones. Muscle activation can be incorporated in the model through the action of applied forces within the software for future studies.
Destructive discovertebral degenerative disease of the lumbar spine.
Charran, A K; Tony, G; Lalam, R; Tyrrell, P N M; Tins, B; Singh, J; Eisenstein, S M; Balain, B; Trivedi, J M; Cassar-Pullicino, V N
2012-09-01
The uncommon variant of degenerative hip joint disease, termed rapidly progressive osteoarthritis, and highlighted by severe joint space loss and osteochondral disintegration, is well established. We present a similar unusual subset in the lumbar spine termed destructive discovertebral degenerative disease (DDDD) with radiological features of vertebral malalignment, severe disc resorption, and "bone sand" formation secondary to vertebral fragmentation. Co-existing metabolic bone disease is likely to promote the development of DDDD of the lumbar spine, which presents with back pain and sciatica due to nerve root compression by the "bone sand" in the epidural space. MRI and CT play a complimentary role in making the diagnosis.
... devices into the broken bone to maintain proper alignment during healing. Other injuries may be treated with ... that extend into the joint and poor bone alignment can cause osteoarthritis years later. If your leg ...
Back-scattered electron imaging of a non-vertebral case of hypervitaminosis A in a cat.
Franch, J; Pastor, J; Franch, B; Durall, I; Manzanares, M C
2000-03-01
We describe a clinical case of hypervitaminosis A in a cat. The main lesions were bony fusions of both the hip and stifle joints, without spinal involvement. A post-mortem study using back-scattered scanning electron microscopy (BEI-SEM) revealed that exostoses had formed around the joints without articular surface involvement. The more recently formed areas of bony proliferation were composed mainly of chondroid tissue surrounded by different degrees of woven bone. As the bony reaction occurred, remodelling of the trabeculae was observed which lead to progressive substitution of chondroid tissue by woven bone surrounded by apposition of lamellar bone. No traces of calcified cartilage were observed in any of the bone sections evaluated. Copyright 2000 European Society of Feline Medicine.
Schmalzried, T P; Jasty, M; Harris, W H
1992-07-01
Thirty-four hips in which there had been prosthetic replacement were selected for study because of the presence of linear (diffuse) or lytic (localized) areas of periprosthetic bone loss. In all hips, there was careful documentation of the anatomical location of the material that had been obtained for histological analysis, and the specific purpose of the removal of the tissue was for examination to determine the cause of the resorption of bone. Specimens from twenty-three hips were retrieved during an operation and from eleven hips, at autopsy. The area of bone loss was linear only in sixteen hips, lytic only in thirteen, and both linear and lytic in five. In all thirty-four hips, intracellular particulate debris was found in the macrophages that were present in the area of bone resorption. All thirty-four had intracellular particles of polyethylene, many of which were less than one micrometer in size. Thirty-one hips had extracellular particles of polyethylene as well. Twenty-two of the thirty-four hips had intracellular metallic debris; in ten, metallic debris was found extracellularly as well. Ten of the sixteen cemented specimens had intracellular and extracellular polymethylmethacrylate debris. In the mechanically stable prostheses--cemented and uncemented--polyethylene wear debris was identified in areas of bone resorption far from the articular surfaces. The number of macrophages in a microscopic field was directly related to the amount of particulate polyethylene debris that was visible by light microscopy. Although the gross radiographic appearances of linear bone loss and lytic bone loss were different, the histological appearance of the regions in which there was active bone resorption was similar. Regardless of the radiographic appearance and anatomical origin of the specimen, bone resorption was found to occur in association with macrophages that were laden with polyethylene debris. In general, the number of macrophages present had a direct relationship to the degree of bone resorption that was seen. We believe that these findings indicate that joint fluid penetrates far more extensively than previously thought, even in a well fixed component, along the interface between the prosthesis and bone and in the periprosthetic tissues; it is often more extensive than is shown by arthrography. We therefore suggest the concept of the effective joint space to include all periprosthetic regions that are accessible to joint fluid and thus accessible to particulate debris.(ABSTRACT TRUNCATED AT 400 WORDS)
Adaptive plasticity in mammalian masticatory joints
NASA Astrophysics Data System (ADS)
Ravosa, Matthew J.; Kunwar, Ravinder; Nicholson, Elisabeth K.; Klopp, Emily B.; Pinchoff, Jessie; Stock, Stuart R.; Stack, M. Sharon; Hamrick, Mark W.
2006-08-01
Genetically similar white rabbits raised on diets of different mechanical properties, as well as wild-type and myostatin-deficient mice raised on similar diets, were compared to assess the postweaning effects of elevated masticatory loads due to increased jaw-adductor muscle and bite forces on the proportions and properties of the mandibular symphysis and temporomandibular joint (TMJ). Microcomputed tomography (microCT) was used to quantify bone structure at a series of equidistant external and internal sites in coronal sections for a series of joint locations. Discriminant function analyses and non-parametric ANOVAs were used to characterize variation in biomineralization within and between loading cohorts. In both species, long-term excessive loading results in larger joint proportions, thicker articular and cortical bone, and increased biomineralization of hard tissues. Such adaptive plasticity appears designed to maintain the postnatal integrity of masticatory joint systems for a primary loading environment(s). This behavioral signal may be increasingly mitigated in older organisms by the interplay between adaptive and degradative joint tissue responses.
Scalise, J; Jaczynski, A; Jacofsky, M
2016-02-01
The eccentric glenosphere was principally introduced into reverse shoulder arthroplasty to reduce the incidence of scapular notching. There is only limited information about the influence of its design on deltoid power and joint reaction forces. The aim of our study was to investigate how the diameter and eccentricity of the glenosphere affect the biomechanics of the deltoid and the resultant joint reaction forces. Different sizes of glenosphere and eccentricity were serially tested in ten cadaveric shoulders using a custom shoulder movement simulator. Increasing the diameter of the glenosphere alone did not alter the deltoid moment arm. However, using an eccentric glenosphere increased the moment arm of the deltoid, lowered the joint reaction force and required less deltoid force to generate movement. Eccentricity is an independent variable which increases deltoid efficiency and lowers joint reaction forces in a reverse shoulder arthroplasty. Cite this article: Bone Joint J 2016;98-B:218-23. ©2016 The British Editorial Society of Bone & Joint Surgery.
Li, Songiun; An, Rongze; Wang, Zhaojie; Kuang, Lipeng; Tan, Weiyuan; Fang, Cunxun
2014-05-01
To explore the correlation between the degree of bone marrow edema (BME) and the content change of tumor necrosis factor alpha (TNF-alpha) and matrix metalloproteinase 3 (MMP-3) and the knee pain symptoms in patients with bone contusion around the knee joint. Thirty patients (30 knees) of bone contusion around the knee joint were chosen as the trial group between October 2009 and April 2012. According to visual analogue scale (VAS), 30 patients were divided into mild group (10 cases), moderate group (10 cases), and severe group (10 cases); according to MRI morphological changes, the patients were divided into type I group (12 cases), type II group (11 cases), and type III group (7 cases). Ten patients (10 knees) with soft tissue injury of the knee were chosen as control group. No significant difference was found (P > 0.05) in gender, age, causes, side, and admission time after injury between 2 groups. The serum contents of MMP-3 and TNF-alpha were detected and statistically analysed between different degrees of pain groups and between different degrees of BME groups. Correlation was analysed between BME and inflammatory factor changes and VAS score. The MMP-3 and TNF-alpha contents in trial group [(29.580 +/- 6.870) (microg/L and (23.750 +/- 7.096) ng/L] were significantly higher than those in control group [(8.219 +/- 1.355) microg/L and (6.485 +/- 1.168) ng/L] (t = 9.686, P = 0.000; t = 7.596, P =0.000). The MMP-3 and TNF-alpha contents in patients with different degrees of pain and BME were significantly higher than those in patients of control group (P < 0.05), and significant difference was found between patients with different degrees of pain (P < 0.05), but no significant difference between patients with different degrees of BME (P > 0.05). Multiple linear regression analysis showed that TNF-alpha content was significantly correlated with VAS score (P = 0.000). Knee pain symptoms are not related to the degree of BME in patients with bone contusion around the knee joint. Inflammatory factor TNF-alpha content is the main influence factor of knee joint pain symptoms.
21 CFR 888.3360 - Hip joint femoral (hemi-hip) metallic cemented or uncemented prosthesis.
Code of Federal Regulations, 2011 CFR
2011-04-01
... designs which are intended to be fixed to the bone with bone cement (§ 888.3027) as well as designs which have large window-like holes in the stem of the device and which are intended for use without bone cement. However, in these latter designs, fixation of the device is not achieved by means of bone...
21 CFR 888.3360 - Hip joint femoral (hemi-hip) metallic cemented or uncemented prosthesis.
Code of Federal Regulations, 2014 CFR
2014-04-01
... designs which are intended to be fixed to the bone with bone cement (§ 888.3027) as well as designs which have large window-like holes in the stem of the device and which are intended for use without bone cement. However, in these latter designs, fixation of the device is not achieved by means of bone...
21 CFR 888.3360 - Hip joint femoral (hemi-hip) metallic cemented or uncemented prosthesis.
Code of Federal Regulations, 2012 CFR
2012-04-01
... designs which are intended to be fixed to the bone with bone cement (§ 888.3027) as well as designs which have large window-like holes in the stem of the device and which are intended for use without bone cement. However, in these latter designs, fixation of the device is not achieved by means of bone...
21 CFR 888.3360 - Hip joint femoral (hemi-hip) metallic cemented or uncemented prosthesis.
Code of Federal Regulations, 2013 CFR
2013-04-01
... designs which are intended to be fixed to the bone with bone cement (§ 888.3027) as well as designs which have large window-like holes in the stem of the device and which are intended for use without bone cement. However, in these latter designs, fixation of the device is not achieved by means of bone...
21 CFR 888.3360 - Hip joint femoral (hemi-hip) metallic cemented or uncemented prosthesis.
Code of Federal Regulations, 2010 CFR
2010-04-01
... designs which are intended to be fixed to the bone with bone cement (§ 888.3027) as well as designs which have large window-like holes in the stem of the device and which are intended for use without bone cement. However, in these latter designs, fixation of the device is not achieved by means of bone...
Audit of the Douglas Hocking Research Institute bone bank: ten years of non-irradiated bone graft.
Love, David; Pritchard, Michael; Burgess, Tanya; Van Der Meer, Gavin; Page, Richard; Williams, Simon
2009-01-01
An audit performed in the use of non-irradiated femoral head bone graft at the Geelong Hospital over a 10-year period. While it is thought the non-irradiated bone graft provides a better structural construct there is theoretical increased risk of infection transmission. We performed a retrospective review of prospectively collected data in the use of non-irradiated bone allograft used from the Geelong Hospital Douglas Hocking Research Institute bone bank over a 10-year period. The review was performed using data collected from the bone bank and correlating it with the patient's medical record. All complications, including infections, related to the use of the allograft were recorded. We found that over the 10 years to 2004 that 811 femoral heads were donated, with 555 being used over 362 procedures in 316 patients. We identified a total of nine deep infections, of which seven were in joint replacements. Overall this was a 2.5% deep infection rate, which was lowered to 1.4% if the previously infected joints that were operated on were excluded. The use of non-irradiated femoral head bone graft was safe in a regional setting.
Dénarié, Delphine; Constant, Elodie; Thomas, Thierry
2014-01-01
Objective. The aim of this review is to clarify the usefulness of bone, cartilage, and synovial biomarker in the management of rheumatoid arthritis (RA) therapy in remission. Synovial Biomarkers. High MMP-3 levels are associated with joint progression in RA patients, but there is no data about their utility in clinical remission. IIINys and Glc-Gal-PYD seem to be more specific to synovium, but more studies are required. Cartilage Biomarkers. Unbalance between cartilage break-down biomarkers (urinary CTX II and COMP) and cartilage formation biomarker (PIIANP) was described. This unbalance is also associated with joint destruction and prognosis of destruction. No data are available on patients in remission. Bone Biomarkers. RA activity is correlated with an increase of bone resorption markers such as CTX I, PYD, and TRACP 5b and a decrease of bone formation markers such as OC and BALP. RA therapies seem to improve bone turnover in limiting bone resorption. There is no study about bone marker utility in remission. Conclusion. Biomarkers seem to correlate with RA activity and progression. They also could be used to manage RA therapies, but we need more data on RA remission to predict relapse. PMID:24744505
Influence of abutment screw preload on stress distribution in marginal bone.
Khraisat, Ameen
2012-01-01
Changes in an implant assembly after abutment connection might possibly cause deformation in the implant/abutment joint and even in the marginal bone. The aim of this study was to evaluate the influence of abutment screw preload through the implant collar on marginal bone stress without external load application. Models of three implant parts made of titanium (implant, abutment, and abutment screw) and cortical bone were built and positioned with computer-aided design software. Meshing and generation of boundary conditions, loads, and interactions were performed. Each part was meshed independently. The sole load applied to the model was a torque of 32 Ncm on the abutment screw about its axis of rotation. The implant collar was deformed axially after the screw was tightened (3 μm). This deformation resulted in 60 MPa of stress in the marginal bone. Moreover, pressure on the marginal bone in a radial direction was observed. It can be concluded that, without any external load application, abutment screw preload exerts stresses on the implant collar and the marginal bone. These findings should help guide the development of new implant/abutment joint designs that exert less stress on the marginal bone.
Takano, H; Takahashi, T; Nakata, A; Nogami, S; Yusa, K; Kuwajima, S; Yamazaki, M; Fukuda, M
2016-05-01
The aim of this study was to investigate the bone resorption effect of the mediators delivered in joint cavity of patients with mandibular condyle fractures by detecting osteoclast markers using cellular biochemistry methods, and by analysing bone resorption activities via inducing osteoclast differentiation of the infiltrated cells from arthrocentesis. Sixteen joints in 10 patients with mandibular condyle fractures were evaluated. The control group consisted of synovial fluid (SF) samples from seven joints of four volunteers who had no clinical signs or symptoms involving the temporomandibular joint (TMJ) or disc displacement. We collected SF cells from all patients during therapeutic arthrocentesis. The infiltrating cells from TMJ SF were cultured, differentiated into tartrate-resistant acid phosphatase (TRAP)-positive osteoclast-like cells and examined bone resorption activities. We also investigated factors related to osteoclast induction of SF, using ELISA procedures. Osteoclast-like cells were induced from the SF cells obtained from all patients with condylar fractures. These multinucleated giant cells were positive for TRAP and actin, and had the ability to absorb dentin slices. The levels of macrophage colony-stimulating factor (M-CSF), prostaglandin E2 (PGE2), soluble form of receptor activator of nuclear factor kappa-B ligand (sRANKL) and osteoprotegerin (OPG), in SF samples from the patients, were significantly higher than in the controls. These findings indicate that bone resorption activities in SF from patients with mandibular condyle fractures were upregulated and may participate in the pathogenesis and wound healing. © 2016 The Authors. Journal of Oral Rehabilitation Published by John Wiley & Sons Ltd.
Chronic In Vivo Load Alteration Induces Degenerative Changes in the Rat Tibiofemoral Joint
Roemhildt, M. L.; Beynnon, B. D.; Gauthier, A. E.; Gardner-Morse, M.; Ertem, F.; Badger, G. J.
2012-01-01
Objective We investigated the relationship between the magnitude and duration of sustained compressive load alteration and the development of degenerative changes in the rat tibiofemoral joint. Methods A varus loading device was attached to the left hind limb of mature rats to apply increased compression to the medial compartment and decreased compression to the lateral compartment of the tibiofemoral joint of either 0% or 100% body weight for 0, 6 or 20 weeks. Compartment-specific assessment of the tibial plateaus included biomechanical measures (articular cartilage aggregate modulus, permeability and Poisson’s ratio, and subchondral bone modulus) and histological assessments (articular cartilage, calcified cartilage, and subchondral bone thicknesses, degenerative scoring parameters, and articular cartilage cellularity). Results Increased compression in the medial compartment produced significant degenerative changes consistent with the development of osteoarthritis including a progressive decrease in cartilage aggregate modulus (43% and 77% at 6 and 20 weeks), diminished cellularity (38% and 51% at 6 and 20 weeks), and increased histological degeneration. At 20 weeks, medial compartment articular cartilage thickness deceased 30% while subchondral bone thickness increased 32% and subchondral bone modulus increased 99%. Decreased compression in the lateral compartment increased calcified cartilage thickness, diminished region-specific subchondral bone thickness and revealed trends for reduced cellularity and decreased articular cartilage thickness at 20 weeks. Conclusions Altered chronic joint loading produced degenerative changes consistent with those observed clinically with the development of osteoarthritis and may replicate the slow development of non-traumatic osteoarthritis in which mechanical loads play a primary etiological role. PMID:23123358
... improves when the drug is decreased or discontinued. Avascular Necrosis of Bone For reasons that are not known, ... joint damage, most often of the hips. In avascular necrosis (or osteonecrosis, meaning “bone death”) of the hip, ...
Ko, Frank C.; Dragomir, Cecilia; Plumb, Darren A.; Goldring, Steven R.; Wright, Timothy M.; Goldring, Mary B.; van der Meulen, Marjolein C.H.
2013-01-01
Objectives Alterations in the mechanical loading environment in joints may have both beneficial and detrimental effects on articular cartilage and subchondral bone and subsequently influence the development of osteoarthritis (OA). We used an in vivo tibial loading model to investigate the adaptive responses of cartilage and bone to mechanical loading and to assess the influence of load level and duration. Methods We applied cyclic compression of 4.5 and 9.0N peak loads to the left tibia via the knee joint of adult (26-week-old) C57Bl/6 male mice for 1, 2, and 6 weeks. Only 9.0N loading was utilized in young (10-week-old) mice. The changes in articular cartilage and subchondral bone were analyzed by histology and microcomputed tomography. Results Loading promoted cartilage damage in both age groups, with increased damage severity dependent upon the duration of loading. Metaphyseal bone mass increased in the young mice, but not in the adult mice, whereas epiphyseal cancellous bone mass decreased with loading in both young and adult mice. Articular cartilage thickness decreased, and subchondral cortical bone thickness increased in the posterior tibial plateau in both age groups. Both age groups developed periarticular osteophytes at the tibial plateau in response to the 9.0N load, but no osteophyte formation occurred in adult mice subjected to 4.5N peak loading. Conclusion This non-invasive loading model permits dissection of temporal and topographical changes in cartilage and bone and will enable investigation of the efficacy of treatment interventions targeting joint biomechanics or biological events that promote OA onset and progression. PMID:23436303
Ko, Frank C; Dragomir, Cecilia L; Plumb, Darren A; Hsia, Allison W; Adebayo, Olufunmilayo O; Goldring, Steven R; Wright, Timothy M; Goldring, Mary B; van der Meulen, Marjolein C H
2016-11-01
We previously showed that repetitive cyclic loading of the mouse knee joint causes changes that recapitulate the features of osteoarthritis (OA) in humans. By applying a single loading session, we characterized the temporal progression of the structural and compositional changes in subchondral bone and articular cartilage. We applied loading during a single 5-minute session to the left tibia of adult (26-week-old) C57Bl/6 male mice at a peak load of 9.0N for 1,200 cycles. Knee joints were collected at times 0, 1, and 2 weeks after loading. The changes in articular cartilage and subchondral bone were analyzed by histology, immunohistochemistry (caspase-3 and cathepsin K), and microcomputed tomography. At time 0, no change was evident in chondrocyte viability or cartilage or subchondral bone integrity. However, cartilage pathology demonstrated by localized thinning and proteoglycan loss occurred at 1 and 2 weeks after the single session of loading. Transient cancellous bone loss was evident at 1 week, associated with increased osteoclast number. Bone loss was reversed to control levels at 2 weeks. We observed formation of fibrous and cartilaginous tissues at the joint margins at 1 and 2 weeks. Our findings demonstrate that a single session of noninvasive loading leads to the development of OA-like morphological and cellular alterations in articular cartilage and subchondral bone. The loss in subchondral trabecular bone mass and thickness returns to control levels at 2 weeks, whereas the cartilage thinning and proteoglycan loss persist. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1941-1949, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Vitamin K, osteoarthritis, and joint pain
USDA-ARS?s Scientific Manuscript database
Osteoarthritis is the leading cause of joint pain and lower extremity disability in older adults and there is no known cure. Vitamin K has been implicated on osteoarthritis because vitamin K dependent proteins are present in joint tissues, such as cartilage and bone. In order to function, vitamin K ...
Weichman, B M; Chau, T T; Rona, G
1987-04-01
Histopathologic evaluation of hindpaws from control rats with established adjuvant arthritis showed severe alterations in soft tissue and bone, as well as progressive, moderate-to-severe articular changes. Following treatment with etodolac for 28 days, soft tissue and articular changes were rated mild, and bone changes were rated moderate, but with remodeling. These findings indicate that etodolac partially reversed the joint damage in these rats.
Fuhrmann, R A; Pillukat, T
2016-06-01
Realignment and stabilization of the hindfoot by subtalar joint arthrodesis. Idiopathic/posttraumatic arthritis, inflammatory arthritis of the subtalar joint with/without hindfoot malalignment. Optional flatfoot/cavovarus foot reconstruction. Inflammation, vascular disturbances, nicotine abuse. Approach dependent on assessment. Lateral approach: Supine position. Incision above the sinus tarsi. Exposure of subtalar joint. Removal of cartilage and breakage of the subchondral sclerosis. In valgus malalignment, interposition of corticocancellous bone segment; in varus malalignment resection of bone segment from the calcaneus. Reposition and temporarily stabilization with Kirschner wires. Imaging of hindfoot alignment. Stabilization with cannulated screws. Posterolateral approach: Prone position. Incision parallel to the lateral Achilles tendon border. Removal of cartilage and breakage of subchondral sclerosis. Medial approach: Supine position. Incision just above and parallel to the posterior tibial tendon. Removal of cartilage and breakage of subchondral sclerosis. Stabilization with screws. Lower leg walker with partial weightbearing. Active exercises of the ankle. After a 6‑week X‑ray, increase of weightbearing. Full weightbearing not before 8 weeks; with interpositioning bone grafts not before 10-12 weeks. Stable walking shoes. Active mobilization of the ankle. Of 43 isolated subtalar arthrodesis procedures, 5 wound healing disorders and no infections developed. Significantly improved AOFAS hindfood score. Well-aligned heel observed in 34 patients; 5 varus and 2 valgus malalignments. Sensory disturbances in 8 patients; minor ankle flexion limitations. Full bone healing in 36 subtalar joints, pseudarthrosis in 4 patients.
Bone marrow derived stem cells in joint and bone diseases: a concise review.
Marmotti, Antonio; de Girolamo, Laura; Bonasia, Davide Edoardo; Bruzzone, Matteo; Mattia, Silvia; Rossi, Roberto; Montaruli, Angela; Dettoni, Federico; Castoldi, Filippo; Peretti, Giuseppe
2014-09-01
Stem cells have huge applications in the field of tissue engineering and regenerative medicine. Their use is currently not restricted to the life-threatening diseases but also extended to disorders involving the structural tissues, which may not jeopardize the patients' life, but certainly influence their quality of life. In fact, a particularly popular line of research is represented by the regeneration of bone and cartilage tissues to treat various orthopaedic disorders. Most of these pioneering research lines that aim to create new treatments for diseases that currently have limited therapies are still in the bench of the researchers. However, in recent years, several clinical trials have been started with satisfactory and encouraging results. This article aims to review the concept of stem cells and their characterization in terms of site of residence, differentiation potential and therapeutic prospective. In fact, while only the bone marrow was initially considered as a "reservoir" of this cell population, later, adipose tissue and muscle tissue have provided a considerable amount of cells available for multiple differentiation. In reality, recently, the so-called "stem cell niche" was identified as the perivascular space, recognizing these cells as almost ubiquitous. In the field of bone and joint diseases, their potential to differentiate into multiple cell lines makes their application ideally immediate through three main modalities: (1) cells selected by withdrawal from bone marrow, subsequent culture in the laboratory, and ultimately transplant at the site of injury; (2) bone marrow aspirate, concentrated and directly implanted into the injury site; (3) systemic mobilization of stem cells and other bone marrow precursors by the use of growth factors. The use of this cell population in joint and bone disease will be addressed and discussed, analysing both the clinical outcomes but also the basic research background, which has justified their use for the treatment of bone, cartilage and meniscus tissues.
NASA Astrophysics Data System (ADS)
Slane, Joshua A.
Acrylic bone cement (polymethyl methacrylate) is widely used in total joint replacements to provide long-term fixation of implants. In essence, bone cement acts as a grout by filling in the voids left between the implant and the patient's bone, forming a mechanical interlock. While bone cement is considered the `gold standard' for implant fixation, issues such as mechanical failure of the cement mantle (aseptic loosening) and the development of prosthetic joint infection (PJI) still plague joint replacement procedures and often necessitate revision arthroplasty. In an effort to address these failures, various modifications are commonly made to bone cement such as mechanical reinforcement with particles/fibers and the addition of antibiotics to mitigate PJI. Despite these attempts, issues such as poor particle interfacial adhesion, inadequate drug release, and the development of multidrug resistant bacteria limit the effectiveness of bone cement modifications. Therefore, the overall goal of this work was to use micro and nanoparticles to enhance the properties of acrylic bone cement, with particular emphasis placed on improving the mechanical properties, cumulative antibiotic release, and antimicrobial properties. An acrylic bone cement (Palacos R) was modified with three types of particles in various loading ratios: mesoporous silica nanoparticles (for mechanical reinforcement), xylitol microparticles (for increased antibiotic release), and silver nanoparticles (as an antimicrobial agent). These particles were used as sole modifications, not in tandem with one another. The resulting cement composites were characterized using a variety of mechanical (macro to nano, fatigue, fracture, and dynamic), imaging, chemical, thermal, biological, and antimicrobial testing techniques. The primary outcomes of this dissertation demonstrate that: (1) mesoporous silica, as used in this work, is a poor reinforcement phase for acrylic bone cement, (2) xylitol can significantly increase the cumulative antibiotic release from acrylic cement, and (3) silver nanoparticles are a potential alternative to traditional antibiotics in cement, such as gentamicin.
Positive modulator of bone morphogenic protein-2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zamora, Paul O.; Pena, Louis A.; Lin, Xinhua
Compounds of the present invention of formula I and formula II are disclosed in the specification and wherein the compounds are modulators of Bone Morphogenic Protein activity. Compounds are synthetic peptides having a non-growth factor heparin binding region, a linker, and sequences that bind specifically to a receptor for Bone Morphogenic Protein. Uses of compounds of the present invention in the treatment of bone lesions, degenerative joint disease and to enhance bone formation are disclosed.
Positive modulator of bone morphogenic protein-2
Zamora, Paul O [Gaithersburg, MD; Pena, Louis A [Poquott, NY; Lin, Xinhua [Plainview, NY; Takahashi, Kazuyuki [Germantown, MD
2009-01-27
Compounds of the present invention of formula I and formula II are disclosed in the specification and wherein the compounds are modulators of Bone Morphogenic Protein activity. Compounds are synthetic peptides having a non-growth factor heparin binding region, a linker, and sequences that bind specifically to a receptor for Bone Morphogenic Protein. Uses of compounds of the present invention in the treatment of bone lesions, degenerative joint disease and to enhance bone formation are disclosed.
Unsal, Murat; Tetik, Cihangir; Erol, Bülent; Cabukoğlu, Cengiz
2003-01-01
In a sheep semilunar bone model, we investigated whether collapse in the intercalar bones lacking bony support could be prevented by the injection of acrylic bone cement. The study included 16 limbs of eight sheep. Preoperatively, anteroposterior and lateral views of the carpal joints in the fore limbs were obtained. The animals were divided into four groups. In group 1 (n=3) no surgical procedure was performed in the right semilunar bones, whereas the periosteum on the contralateral side was elevated (group 2; n=3). The first two groups were left as controls. In Group 3 (n=5) the left semilunar bones were filled with acrylic bone cement following decancellation of the bone, while the right semilunar bones were left decancellated (group 4; n=5). The sheep were monitored for three months. Radiographs of the carpal joints were obtained to evaluate collapse occurrence in the semilunar bones. Thereafter, the animals were sacrificed and the semilunar bones were excised for biomechanical and histological examinations. Osteonecrosis and cartilage damage were sought and resistance to compressive forces was investigated. Radiologically, the extent of collapse was statistically significant in the semilunar bones in group 4 (p<0.05). The use of acrylic bone cement was found to prevent collapse in group 3, with no significant difference being noted between preoperative and postoperative semilunar bone heights (p>0.05). Biomechanically, the least resistance to compressive forces was measured in group 4 (p<0.05). Histologically, cartilage damage and osteonecrosis were only seen in group 4. Our data suggest that the use of acrylic bone cement prevents collapse in the semilunar bones, without inducing any cartilage damage or osteonecrosis.
Chen Wang, M D; Geng, Xiang; Wang, Shaobai; Xin Ma, M D; Xu Wang, M D; Jiazhang Huang, M D; Chao Zhang, M D; Li Chen, M S; Yang, Junsheng; Wang, Kan
2016-09-01
The tarsal bones articulate with each other and demonstrate complicated kinematic characteristics. The in vivo motions of these tarsal joints during normal gait are still unclear. Seven healthy subjects were recruited and fourteen feet in total were tested in the current study. Three dimensional models of the tarsal bones were first created using CT scanning. Corresponding local 3D coordinate systems of each tarsal bone was subsequently established for 6DOF motion decompositions. The fluoroscopy system captured the lateral fluoroscopic images of the targeted tarsal region whilst the subject was walking. Seven key pose images during the stance phase were selected and 3D to 2D bone model registrations were performed on each image to determine joint positions. The 6DOF motions of each tarsal joint during gait were then obtained by connecting these positions together. The TNJ (talo-navicular joint) exhibited the largest ROMs (range of motion) on all rotational directions with 7.39±2.75°of dorsi/plantarflexion, 21.12±4.68°of inversion/eversion, and 16.11±4.44°of internal/external rotation. From heel strike to midstance, the TNJ, STJ (subtalar joint), and CCJ (calcaneao-cuboid joint) were associated with 5.97°, 5.04°, and 3.93°of dorsiflexion; 15.46°, 8.21°, and 5.82°of eversion; and 9.75°, 7.6°, and 4.99°of external rotation, respectively. Likewise, from midstance to heel off, the TNJ, STJ, and CCJ were associated with 6.39, 6.19°, and 4.47°of plantarflexion; 18.57°, 11.86°, and 6.32°of inversion and 13.95°, 9.66°, and 7.58°of internal rotation, respectively. In conclusion, among the tarsal joints, the TNJ exhibited the greatest rotational mobility. Synchronous and homodromous rotational motions were detected for TNJ, STJ, and CCJ during the stance phase. Copyright © 2016 Elsevier B.V. All rights reserved.
Bone Repair and Military Readiness
2012-10-25
formation. Orthopedic surgeons have had to adapt surgical techniques to account for issues with cementing total joint prostheses and subsequent total joint ...the silorane composite has the potential to support osseous integration around the cemented total joint implant and may generate less immunogenic wear...factors, and potential for osseointegration/osseoinduction, this material has potential to be used for screw augmentation, total hip/knee joint
Kleyer, Arnd; Beyer, Laura; Simon, Christoph; Stemmler, Fabian; Englbrecht, Matthias; Beyer, Christian; Rech, Jürgen; Manger, Bernhard; Krönke, Gerhard; Schett, Georg; Hueber, Axel J
2017-02-10
Rheumatoid arthritis (RA) and psoriatic arthritis (PsA) result in severe joint destruction and functional disability if left untreated. We aim to develop tools that help patients with RA and PsA to understand and experience the impact of inflammatory joint disease on the integrity of their (juxta-articular) bone and increase adherence to medical treatment. In this study, we used high-resolution peripheral quantitative computed tomography (HR-pQCT) to develop 3D prototypes of patients' finger joints. HR-pQCT (XtremeCT, Scanco) measurements were performed in healthy individuals and patients with inflammatory joint disease, followed by a 3D print using the objet30 printer. Healthy participants (n = 10), and patients (n = 15 with RA and 15 with PsA) underwent a detailed, standardized interview with demonstration of printed joints. Utilizing HR-pQCT images of metacarpophalangeal (MCP) heads, high quality and exact 3D prints as prototypes were created. Erosions in different sizes and the trabecular network printed in detail were visualized, demonstrating structural reduction in arthritic vs. healthy bone. After demonstration of 3D prints (healthy vs. erosive joint, visual and haptic) 26/39 (66%) participants (including healthy volunteers) were deeply affected, often quoting "shock". Of the patients with RA and PsA, 13/15 (86%) and 11/15 (73%), respectively, stated that they would rethink their attitude to medication adherence. More importantly, 21/24 patients with RA or PsA (87.5%) expressed that they would have wished to see such 3D prints during their first disease-specific conversations. Using arthro-haptic 3D printed prototypes of joints may help to better understand the impact of inflammatory arthritides on bone integrity and long-term damage.
Choi, Young; Kwon, Soon-Sun; Chung, Chin Youb; Park, Moon Seok; Lee, Seung Yeol; Lee, Kyoung Min
2014-07-16
The Lauge-Hansen classification system does not provide sufficient data related to syndesmotic injuries in supination-external rotation (SER)-type ankle fractures. The aim of the present study was to investigate factors helpful for the preoperative detection of syndesmotic injuries in SER-type ankle fractures using radiographs and computed tomography (CT). A cohort of 191 consecutive patients (104 male and eighty-seven female patients with a mean age [and standard deviation] of 50.7 ± 16.4 years) with SER-type ankle fractures who had undergone operative treatment were included. Preoperative ankle radiographs and CT imaging scans were made for all patients, and clinical data, including age, sex, and mechanism of injury (high or low-energy trauma), were collected. Patients were divided into two groups: the stable syndesmotic group and the unstable syndesmotic group, with a positive intraoperative lateral stress test leading to syndesmotic screw fixation. Fracture height, fracture length, medial joint space, extent of fracture, and bone attenuation were measured on radiographs and CT images and were compared between the groups. Binary logistic regression analysis was performed to identify the factors that significantly contributed to unstable syndesmotic injuries. Receiver operating characteristic curves were calculated, and cutoff values were suggested to predict unstable syndesmotic injuries on preoperative imaging measurements. Of the 191 patents with a SER-type ankle fracture, thirty-eight (19.9%) had a concurrent unstable syndesmotic injury. Age, sex, mechanism of injury, fracture height, medial joint space, and bone attenuation were significantly different between the two groups. In the binary logistic analysis, fracture height, medial joint space, and bone attenuation were found to be significant factors contributing to unstable syndesmotic injuries. The cutoff values for predicting unstable syndesmotic injuries were a fracture height of >3 mm and a medial joint space of >4.9 mm on CT scans, and a fracture height of >7 mm and medial joint space of >4.5 mm on radiographs. Fracture height, medial joint space, and bone attenuation were useful factors for the preoperative detection of unstable syndesmotic injuries in SER-type ankle fractures. Diagnostic Level II. See Instructions for Authors for a complete description of levels of evidence. Copyright © 2014 by The Journal of Bone and Joint Surgery, Incorporated.
3D surface voxel tracing corrector for accurate bone segmentation.
Guo, Haoyan; Song, Sicong; Wang, Jinke; Guo, Maozu; Cheng, Yuanzhi; Wang, Yadong; Tamura, Shinichi
2018-06-18
For extremely close bones, their boundaries are weak and diffused due to strong interaction between adjacent surfaces. These factors prevent the accurate segmentation of bone structure. To alleviate these difficulties, we propose an automatic method for accurate bone segmentation. The method is based on a consideration of the 3D surface normal direction, which is used to detect the bone boundary in 3D CT images. Our segmentation method is divided into three main stages. Firstly, we consider a surface tracing corrector combined with Gaussian standard deviation [Formula: see text] to improve the estimation of normal direction. Secondly, we determine an optimal value of [Formula: see text] for each surface point during this normal direction correction. Thirdly, we construct the 1D signal and refining the rough boundary along the corrected normal direction. The value of [Formula: see text] is used in the first directional derivative of the Gaussian to refine the location of the edge point along accurate normal direction. Because the normal direction is corrected and the value of [Formula: see text] is optimized, our method is robust to noise images and narrow joint space caused by joint degeneration. We applied our method to 15 wrists and 50 hip joints for evaluation. In the wrist segmentation, Dice overlap coefficient (DOC) of [Formula: see text]% was obtained by our method. In the hip segmentation, fivefold cross-validations were performed for two state-of-the-art methods. Forty hip joints were used for training in two state-of-the-art methods, 10 hip joints were used for testing and performing comparisons. The DOCs of [Formula: see text], [Formula: see text]%, and [Formula: see text]% were achieved by our method for the pelvis, the left femoral head and the right femoral head, respectively. Our method was shown to improve segmentation accuracy for several specific challenging cases. The results demonstrate that our approach achieved a superior accuracy over two state-of-the-art methods.
Peripheral Quantitative CT (pQCT) Using a Dedicated Extremity Cone-Beam CT Scanner
Muhit, A. A.; Arora, S.; Ogawa, M.; Ding, Y.; Zbijewski, W.; Stayman, J. W.; Thawait, G.; Packard, N.; Senn, R.; Yang, D.; Yorkston, J.; Bingham, C.O.; Means, K.; Carrino, J. A.; Siewerdsen, J. H.
2014-01-01
Purpose We describe the initial assessment of the peripheral quantitative CT (pQCT) imaging capabilities of a cone-beam CT (CBCT) scanner dedicated to musculoskeletal extremity imaging. The aim is to accurately measure and quantify bone and joint morphology using information automatically acquired with each CBCT scan, thereby reducing the need for a separate pQCT exam. Methods A prototype CBCT scanner providing isotropic, sub-millimeter spatial resolution and soft-tissue contrast resolution comparable or superior to standard multi-detector CT (MDCT) has been developed for extremity imaging, including the capability for weight-bearing exams and multi-mode (radiography, fluoroscopy, and volumetric) imaging. Assessment of pQCT performance included measurement of bone mineral density (BMD), morphometric parameters of subchondral bone architecture, and joint space analysis. Measurements employed phantoms, cadavers, and patients from an ongoing pilot study imaged with the CBCT prototype (at various acquisition, calibration, and reconstruction techniques) in comparison to MDCT (using pQCT protocols for analysis of BMD) and micro-CT (for analysis of subchondral morphometry). Results The CBCT extremity scanner yielded BMD measurement within ±2–3% error in both phantom studies and cadaver extremity specimens. Subchondral bone architecture (bone volume fraction, trabecular thickness, degree of anisotropy, and structure model index) exhibited good correlation with gold standard micro-CT (error ~5%), surpassing the conventional limitations of spatial resolution in clinical MDCT scanners. Joint space analysis demonstrated the potential for sensitive 3D joint space mapping beyond that of qualitative radiographic scores in application to non-weight-bearing versus weight-bearing lower extremities and assessment of phalangeal joint space integrity in the upper extremities. Conclusion The CBCT extremity scanner demonstrated promising initial results in accurate pQCT analysis from images acquired with each CBCT scan. Future studies will include improved x-ray scatter correction and image reconstruction techniques to further improve accuracy and to correlate pQCT metrics with known pathology. PMID:25076823
Bruijnen, Stefan T G; Verweij, Nicki J F; van Duivenvoorde, Leonie M; Bravenboer, Nathalie; Baeten, Dominique L P; van Denderen, Christiaan J; van der Horst-Bruinsma, Irene E; Voskuyl, Alexandre E; Custers, Martijn; van de Ven, Peter M; Bot, Joost C J; Boden, Bouke J H; Lammertsma, Adriaan A; Hoekstra, Otto S H; Raijmakers, Pieter G H M; van der Laken, Conny J
2018-01-01
Abstract Objectives Excessive bone formation is an important hallmark of AS. Recently it has been demonstrated that axial bony lesions in AS patients can be visualized using 18F-fluoride PET-CT. The aim of this study was to assess whether 18F-fluoride uptake in clinically active AS patients is related to focal bone formation in spine biopsies and is sensitive to change during anti-TNF treatment. Methods Twelve anti-TNF-naïve AS patients [female 7/12; age 39 years (SD 11); BASDAI 5.5 ± 1.1] were included. 18 F-fluoride PET-CT scans were performed at baseline and in two patients, biopsies were obtained from PET-positive and PET-negative spine lesions. The remaining 10 patients underwent a second 18F-fluoride PET-CT scan after 12 weeks of anti-TNF treatment. PET scans were scored visually by two blinded expert readers. In addition, 18F-fluoride uptake was quantified using the standardized uptake value corrected for individual integrated whole blood activity concentration (SUVAUC). Clinical response to anti-TNF was defined according to a ⩾ 20% improvement in Assessment of SpondyloArthritis international Society criteria at 24 weeks. Results At baseline, all patients showed at least one axial PET-positive lesion. Histological analysis of PET-positive lesions in the spine confirmed local osteoid formation. PET-positive lesions were found in the costovertebral joints (43%), facet joints (23%), bridging syndesmophytes (20%) and non-bridging vertebral lesions (14%) and in SI joints (75%). After 12 weeks of anti-TNF treatment, 18F-fluoride uptake in clinical responders decreased significantly in the costovertebral (mean SUVAUC −1.0; P < 0.001) and SI joints (mean SUVAUC −1.2; P = 0.03) in contrast to non-responders. Conclusions 18F-fluoride PET-CT identified bone formation, confirmed by histology, in the spine and SI joints of AS patients and demonstrated alterations in bone formation during anti-TNF treatment. PMID:29329443
Bruijnen, Stefan T G; Verweij, Nicki J F; van Duivenvoorde, Leonie M; Bravenboer, Nathalie; Baeten, Dominique L P; van Denderen, Christiaan J; van der Horst-Bruinsma, Irene E; Voskuyl, Alexandre E; Custers, Martijn; van de Ven, Peter M; Bot, Joost C J; Boden, Bouke J H; Lammertsma, Adriaan A; Hoekstra, Otto S H; Raijmakers, Pieter G H M; van der Laken, Conny J
2018-04-01
Excessive bone formation is an important hallmark of AS. Recently it has been demonstrated that axial bony lesions in AS patients can be visualized using 18F-fluoride PET-CT. The aim of this study was to assess whether 18F-fluoride uptake in clinically active AS patients is related to focal bone formation in spine biopsies and is sensitive to change during anti-TNF treatment. Twelve anti-TNF-naïve AS patients [female 7/12; age 39 years (SD 11); BASDAI 5.5 ± 1.1] were included. 18 F-fluoride PET-CT scans were performed at baseline and in two patients, biopsies were obtained from PET-positive and PET-negative spine lesions. The remaining 10 patients underwent a second 18F-fluoride PET-CT scan after 12 weeks of anti-TNF treatment. PET scans were scored visually by two blinded expert readers. In addition, 18F-fluoride uptake was quantified using the standardized uptake value corrected for individual integrated whole blood activity concentration (SUVAUC). Clinical response to anti-TNF was defined according to a ⩾ 20% improvement in Assessment of SpondyloArthritis international Society criteria at 24 weeks. At baseline, all patients showed at least one axial PET-positive lesion. Histological analysis of PET-positive lesions in the spine confirmed local osteoid formation. PET-positive lesions were found in the costovertebral joints (43%), facet joints (23%), bridging syndesmophytes (20%) and non-bridging vertebral lesions (14%) and in SI joints (75%). After 12 weeks of anti-TNF treatment, 18F-fluoride uptake in clinical responders decreased significantly in the costovertebral (mean SUVAUC -1.0; P < 0.001) and SI joints (mean SUVAUC -1.2; P = 0.03) in contrast to non-responders. 18F-fluoride PET-CT identified bone formation, confirmed by histology, in the spine and SI joints of AS patients and demonstrated alterations in bone formation during anti-TNF treatment.
Third tarsal bone fractures in the greyhound.
Guilliard, M J
2010-12-01
To describe the signalment, morphology, response to treatment and prognosis of third tarsal bone fractures in the racing greyhound. All third tarsal bone fractures seen by the author over a ten year period were included in the study. Diagnosis was by radiography. Treatments were reconstruction with a lag screw, fragment removal, centrodistal joint arthrodesis or conservative management. Twenty-three cases were included in the study of which 16 cases were recent and seven cases chronic fractures. The chronic cases had been rested from between three and six months before an examination for recurrent lameness. There were five concomitant second tarsal bone fractures. Partial dorsal collapse was present in four cases. Thirteen dogs had lag screw fixation; three were lost to follow-up, seven returned to racing and three, all with partial tarsal collapse, failed to return to racing. Two dogs that had a centrodistal joint arthrodesis and one dog treated by rest alone raced again. Two dogs that had fragment removal failed to return to racing. Veterinary examination of greyhounds with third tarsal bone fractures is often not sought at the time of the initial injury due to the benign presenting signs. Recurrence of lameness after rest is common. The prognosis for a successful return to racing would appear to be good following fragment fixation in both acute and chronic cases without dorsal tarsal collapse. Centrodistal joint arthrodesis may encourage bone union. The prognosis for conconservatively treated cases is guarded. Fragment removal is not recommended as a treatment. © 2010 British Small Animal Veterinary Association.
2015-10-01
quality, and cartilage health in post-traumatic osteoarthritis (PTOA). Few molecular details are known about the regulation of PLR or bone quality...degeneration. 15. SUBJECT TERMS Osteocyte, remodeling, bone, bone quality, post-traumatic osteoarthritis , TGF-beta, mechanical load, matrix...joint health, and their contribution to post-traumatic osteoarthritis (PTOA). Osteocytes sense and respond to mechanical loads, and they are also
Lindsey, Derek P.; Woods, Shane A.; Lalor, Peggy A.; Gundanna, Mukund I.; Yerby, Scott A.
2017-01-01
Background Minimally invasive surgical fusion of the sacroiliac (SI) joint using machined solid triangular titanium plasma spray (TPS) coated implants has demonstrated positive clinical outcomes in SI joint pain patients. Additive manufactured (AM), i.e. 3D-printed, fenestrated triangular titanium implants with porous surfaces and bioactive agents, such as nanocrystalline hydroxyapatite (HA) or autograft, may further optimize bony fixation and subsequent biomechanical stability. Methods A bilateral ovine distal femoral defect model was used to evaluate the cancellous bone-implant interfaces of TPS-coated and AM implants. Four implant groups (n=6/group/time-point) were included: 1)TPS-coated, 2)AM, 3)AM+HA, and 4)AM+Autograft. The bone-implant interfaces of 6- and 12-week specimens were investigated via radiographic, biomechanical, and histomorphometric methods. Results Imaging showed peri-implant bone formation around all implants. Push-out testing demonstrated forces greater than 2500 N, with no significant differences among groups. While TPS implants failed primarily at the bone-implant interface, AM groups failed within bone ~2-3mm away from implant surfaces. All implants exhibited bone ongrowth, with no significant differences among groups. AM implants had significantly more bone ingrowth into their porous surfaces than TPS-coated implants (p<0.0001). Of the three AM groups, AM+Auto implants had the greatest bone ingrowth into the porous surface and through their core (p<0.002). Conclusions Both TPS and AM implants exhibited substantial bone ongrowth and ingrowth, with additional bone through growth into the AM implants’ core. Overall, AM implants experienced significantly more bone infiltration compared to TPS implants. While HA-coating did not further enhance results, the addition of autograft fostered greater osteointegration for AM implants. Clinical Relevance Additive manufactured implants with a porous surface provide a highly interconnected porous surface that has comparatively greater surface area for bony integration. Results suggest this may prove advantageous toward promoting enhanced biomechanical stability compared to TPS-coated implants for SI joint fusion procedures. PMID:28765800
Application of curative therapy in the ward. 1920.
Marble, Henry Chase
2009-06-01
This Classic article is a reprint of the original work by Henry Chase Marble, Application of Curative Therapy in the Ward. An accompanying biographical sketch on Henry Chase Marble, MD, is available at DOI 10.1007/s11999-009-0789-7 . The Classic Article is (c)1920 by the Journal of Bone and Joint Surgery, Inc. and is reprinted with permission from Marble HC. Application of curative therapy in the ward. J Bone Joint Surg Am. 1920;2:136-138.
The anatomy of the anterior cruciate ligament and its relevance to the technique of reconstruction.
Śmigielski, R; Zdanowicz, U; Drwięga, M; Ciszek, B; Williams, A
2016-08-01
Anterior cruciate ligament (ACL) reconstruction is commonly performed and has been for many years. Despite this, the technical details related to ACL anatomy, such as tunnel placement, are still a topic for debate. In this paper, we introduce the flat ribbon concept of the anatomy of the ACL, and its relevance to clinical practice. Cite this article: Bone Joint J 2016;98-B:1020-6. ©2016 The British Editorial Society of Bone & Joint Surgery.
Characteristics and Impact of Animal Models Used for Sports Medicine Research
2012-09-01
arthroscopic ro- tator cuff repairs : double-row compared with single-row fixation. J Bone Joint Surg Am. 2006; 88:403-410. 24. Ma CB, MacGillivary JD...Clabeaux J, et al. Biomechanical evaluation of arthroscopic rotator cuff stitches. J Bone Joint Surg Am. 2004; 86:1211-1216. 25. Elder CL, Dahners LE...absorbable meniscal repair de- vices as a function of hydrolysis time. An in vitro experimental study. Am J Sports Med. 2001; 29:118-123. 15. Proctor CS
Skin movement artefact assessment and compensation in the estimation of knee-joint kinematics.
Lucchetti, L; Cappozzo, A; Cappello, A; Della Croce, U
1998-11-01
In three dimensional (3-D) human movement analysis using close-range photogrammetry, surface marker clusters deform and rigidly move relative to the underlying bone. This introduces an important artefact (skin movement artefact) which propagates to bone position and orientation and joint kinematics estimates. This occurs to the extent that those joint attitude components that undergo small variations result in totally unreliable values. This paper presents an experimental and analytical procedure, to be included in a subject-specific movement analysis protocol, which allows for the assessment of skin movement artefacts and, based on this knowledge, for their compensation. The effectiveness of this procedure was verified with reference to knee-joint kinematics and to the artefacts caused by the hip movements on markers located on the thigh surface. Quantitative validation was achieved through experimental paradigms whereby prior reliable information on the target joint kinematics was available. When position and orientation of bones were determined during the execution of a motor task, using a least-squares optimal estimator, but the rigid artefactual marker cluster movement was not dealt with, then knee joint translations and rotations were affected by root mean square errors (r.m.s.) up to 14 mm and 6 degrees, respectively. When the rigid artefactual movement was also compensated for, then r.m.s errors were reduced to less than 4 mm and 3 degrees, respectively. In addition, errors originally strongly correlated with hip rotations, after compensation, lost this correlation.
Nano-engineered titanium for enhanced bone therapy
NASA Astrophysics Data System (ADS)
Gulati, Karan; Atkins, Gerald J.; Findlay, David M.; Losic, Dusan
2013-09-01
Current treatment of a number of orthopaedic conditions, for example fractures, bone infection, joint replacement and bone cancers, could be improved if mechanical support could be combined with drug delivery. A very challenging example is that of infection following joint replacement, which is very difficult to treat, can require multiple surgeries and compromises both the implant and the patient's wellbeing. An implant capable of providing appropriate biomechanics and releasing drugs/proteins locally might ensure improved healing of the traumatized bone. We propose fabrication of nanoengineered titanium bone implants using bioinert titanium wires in order to achieve this goal. Titanium in the form of flat foils and wires were modified by fabrication of titania nanotubes (TNTs), which are hollow self-ordered cylindrical tubes capable of accommodating substantial drug amounts and releasing them locally. To further control the release of drug to over a period of months, a thin layer of biodegradable polymer PLGA poly(lactic-coglycolic acid) was coated onto the drug loaded TNTs. This delayed release of drug and additionally the polymer enhanced bone cell adhesion and proliferation.
[Bone structure in rheumatoid arthritis].
Ono, Kumiko; Ohashi, Satoru; Tanaka, Sakae; Matsumoto, Takuya
2013-07-01
In rheumatoid arthritis (RA) , the osteoclast pathway is activated by abnormal immune conditions accompanied by chronic inflammation, resulting in periarticular osteoporosis and local bone destruction around joints. In addition, multiple factors, including reduced physical activity and pharmacotherapies such as steroids, lead to systemic osteoporosis. These conditions cause decreasing bone mineral density and deterioration of bone quality, and expose patients to increased risk of fracture. Understanding the bone structures of RA and evaluating fracture risk are central to the treatment of RA.
Ankle joint pressure changes in high tibial and distal femoral osteotomies: a cadaver study.
Krause, F; Barandun, A; Klammer, G; Zderic, I; Gueorguiev, B; Schmid, T
2017-01-01
To assess the effect of high tibial and distal femoral osteotomies (HTO and DFO) on the pressure characteristics of the ankle joint. Varus and valgus malalignment of the knee was simulated in human cadaver full-length legs. Testing included four measurements: baseline malalignment, 5° and 10° re-aligning osteotomy, and control baseline malalignment. For HTO, testing was rerun with the subtalar joint fixed. In order to represent half body weight, a 300 N force was applied onto the femoral head. Intra-articular sensors captured ankle pressure. In the absence of restriction of subtalar movement, insignificant migration of the centre of force and changes of maximal pressure were seen at the ankle joint. With restricted subtalar motion, more significant lateralisation of the centre of force were seen with the subtalar joint in varus than in valgus position. Changes in maximum pressure were again not significant. The re-alignment of coronal plane knee deformities by HTO and DFO altered ankle pressure characteristics. When the subtalar joint was fixed in the varus position, migration of centre of force after HTO was more significant than when the subtalar joint was fixed in valgus. Cite this article: Bone Joint J 2017;99-B:59-65. ©2017 The British Editorial Society of Bone & Joint Surgery.
Lanocha-Arendarczyk, Natalia; Kosik-Bogacka, Danuta I.; Kalisinska, Elzbieta; Sokolowski, Sebastian; Kolodziej, Lukasz; Budis, Halina; Safranow, Krzysztof; Kot, Karolina; Ciosek, Zaneta; Tomska, Natalia; Galant, Katarzyna
2016-01-01
The aim of this study was to investigate the impact of environmental factors on the concentrations of vanadium (V), chromium (Cr), and calcium (Ca) and to examine the synergistic or antagonistic relationships between these metals, in cartilage (C), cortical bone (CB), and spongy bone (SB) samples obtained following hip joint surgery on patients with osteoarthritis in NW Poland. We found significantly higher concentrations of V and Cr in spongy bone in patients who consumed game meat and also those with prosthetic implants. Chromium levels were significantly lower in patients with kidney diseases. The greatest positive correlations were found between spongy bone V and (i) the amount of consumed beer and (ii) seafood diet. Correlation analysis also showed a significant correlation between Cr levels and seafood diet. To a certain extent these results indicate that the concentrations of V, Cr, and Ca in the human hip joint tissues are connected with occupational exposure, kidney diseases, diet containing game meat, sea food, beer, and the presence of implants. Furthermore, we noted new types of interactions in specific parts of the femoral head. Vanadium may contribute to the lower bone Ca levels, especially in the external parts (cartilage and cortical bone). PMID:27294138
Lanocha-Arendarczyk, Natalia; Kosik-Bogacka, Danuta I; Kalisinska, Elzbieta; Sokolowski, Sebastian; Kolodziej, Lukasz; Budis, Halina; Safranow, Krzysztof; Kot, Karolina; Ciosek, Zaneta; Tomska, Natalia; Galant, Katarzyna
2016-01-01
The aim of this study was to investigate the impact of environmental factors on the concentrations of vanadium (V), chromium (Cr), and calcium (Ca) and to examine the synergistic or antagonistic relationships between these metals, in cartilage (C), cortical bone (CB), and spongy bone (SB) samples obtained following hip joint surgery on patients with osteoarthritis in NW Poland. We found significantly higher concentrations of V and Cr in spongy bone in patients who consumed game meat and also those with prosthetic implants. Chromium levels were significantly lower in patients with kidney diseases. The greatest positive correlations were found between spongy bone V and (i) the amount of consumed beer and (ii) seafood diet. Correlation analysis also showed a significant correlation between Cr levels and seafood diet. To a certain extent these results indicate that the concentrations of V, Cr, and Ca in the human hip joint tissues are connected with occupational exposure, kidney diseases, diet containing game meat, sea food, beer, and the presence of implants. Furthermore, we noted new types of interactions in specific parts of the femoral head. Vanadium may contribute to the lower bone Ca levels, especially in the external parts (cartilage and cortical bone).
MRI evaluation of infectious and non-infectious synovitis: preliminary studies in a rabbit model.
Strouse, P J; Londy, F; DiPietro, M A; Teo, E L; Chrisp, C E; Doi, K
1999-05-01
Literature on magnetic resonance imaging (MR) evaluation of inflammatory joint effusions is sparse. To describe an animal model for studying infectious and non-infectious joint effusions with magnetic resonance imaging. Ten rabbit knees with septic arthritis and four with talc synovitis were imaged with MR. Contralateral knees injected with saline served as controls. Fat saturation T2-weighted and gadolinium-enhanced T1-weighted images were assessed for joint effusion, and periarticular and adjacent intraosseous increased signal or enhancement. Each knee was cultured and underwent pathologic examination. Both Staphylococcus aureus and talc produced effusions in all knees. The degree of periarticular signal and enhancement was greater in infected knees than talc-injected knees. No abnormal enhancement was seen within bone. Pathologic examination showed a greater degree of inflammation and joint destruction in the infected knees, but no evidence of osteomyelitis. A greater degree of abnormal signal and enhancement seen on MR suggests a more vigorous inflammatory process, as seen with septic arthritis. In spite of advanced septic arthritis, no enhancement was evident within bone, suggesting that enhancement within bone is not an expected finding in isolated septic arthritis and should raise concern for osteomyelitis.
NASA Astrophysics Data System (ADS)
Gajda, Jerzy K.; Niesterowicz, Andrzej; Mazurkiewicz, Henryk
1995-03-01
A high number of osseous diseases, particularly of the backbone and hip-joint regions, result in a need for their overall treatment and prevention. Two basic treatment methods are used: physical exercises at an early stage of the illness, and surgical treatment in an advanced stage. Recently, in operational treatment of coxarthrosis the elements of the joint (acetabulum and capitellum) were replaced by their artificial counterparts, despite some drawbacks and unknowns related to this kind of treatment. In order to check the effectiveness of this treatment and to eliminate its drawbacks we have tested the joint by means of speckle photography method. The objective of this paper is an attempt to evaluate stress and displacement distributions in a system consisting of artificial acetabulum and capitellum and a natural bone in order to determine an optimum fitting of artificial acetabulum and capitellum and a natural bone in order to determine an optimum fitting of artificial elements that guarantees uniform distribution of stresses corresponding to anatomical and physiological parameters of the hip-joint. Speckle photographs have been analyzed point by point with the help of the algorithm for striped images processing.
Pirfenidone reduces subchondral bone loss and fibrosis after murine knee cartilage injury.
Chan, Deva D; Li, Jun; Luo, Wei; Predescu, Dan N; Cole, Brian J; Plaas, Anna
2018-01-01
Pirfenidone is an anti-inflammatory and anti-fibrotic drug that has shown efficacy in lung and kidney fibrosis. Because inflammation and fibrosis have been linked to the progression of osteoarthritis, we investigated the effects of oral Pirfenidone in a mouse model of cartilage injury, which results in chronic inflammation and joint-wide fibrosis in mice that lack hyaluronan synthase 1 (Has1 -/- ) in comparison to wild-type. Femoral cartilage was surgically injured in wild-type and Has1 -/- mice, and Pirfenidone was administered in food starting after 3 days. At 4 weeks, Pirfenidone reduced the appearance, on micro-computed tomography, of pitting in subchondral bone at, and cortical bone surrounding, the site of cartilage injury. This corresponded with a reduction in fibrotic tissue deposits as observed with gross joint surface photography. Pirfenidone resulted in significant recovery of trabecular bone parameters affected by joint injury in Has1 -/- mice, although the effect in wild-type was less pronounced. Pirfenidone also increased Safranin-O staining of growth plate cartilage after cartilage injury and sham operation in both genotypes. Taken together with the expression of selected extracellular matrix, inflammation, and fibrosis genes, these results indicate that Pirfenidone may confer chondrogenic and bone-protective effects, although the well-known anti-fibrotic effects of Pirfenidone may occur earlier in the wound-healing response than the time point examined in this study. Further investigations to identify the specific cell populations in the joint and signaling pathways that are responsive to Pirfenidone are warranted, as Pirfenidone and other anti-fibrotic drugs may encourage tissue repair and prevent progression of post-traumatic osteoarthritis. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:365-376, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Assessment of the Breakaway Torque at the Posterior Pelvic Ring in Human Cadavers.
Bastian, Johannes Dominik; Bergmann, Mathias; Schwyn, Ronald; Keel, Marius Johann Baptist; Benneker, Lorin Michael
2015-01-01
To enhance the diminished screw purchase in cancellous, osteoporotic bone following the fixation of posterior pelvic ring injuries by iliosacral screws an increased bone-implant contact area using modificated screws, techniques or bone cement may become necessary. The aim of the study was to identify sites within the pathway of iliosacral screws requiring modifications of the local bone or the design of instrumentations placed at this site. The breakaway torque was measured mechanically at the iliosacral joint ("ISJ"), the sacral lateral mass ("SLM") and the center of the S1 ("CS1"), at a superior and an inferior site under fluoroscopic control on five human cadaveric specimens (3 female; mean age 87 years, range: 76-99) using the DensiProbe™Spine device. The measured median (range) breakaway torque was 0.63 Nm (0.31-2.52) at the "iliosacral joint", 0.14 Nm (0.05-1.22) at the "sacral lateral mass", 0.57 Nm (0.05-1.42) at the "S1 center." The "sacral lateral mass" breakaway torque was lower than compared to that at the "iliosacral joint" (p < .001) or "S1 center" (p < .001). The median (range) breakaway torque measured at all superior measurement points was 0.52 Nm (0.10-2.52), and 0.48 Nm (0.05-1.18) at all inferior sites. The observed difference was statistically significant (p < .05). The lateral mass of the sacrum provides the lowest bone quality for implant anchorage. Iliosacral screws should be placed as superior as safely possible, should bridge the iliosacral joint and may allow for cement application at the lateral mass of the sacrum through perforations.
Pyogenic Sacroiliitis in a 13-Month-Old Child: A Case Report and Literature Review.
Leroux, Julien; Julien, Leroux; Bernardini, Isabelle; Isabelle, Bernardini; Grynberg, Lucie; Lucie, Grynberg; Grandguillaume, Claire; Claire, Grandguillaume; Michelin, Paul; Paul, Michelin; Ould Slimane, Mourad; Slimane, Ould Slimane; Nectoux, Eric; Eric, Nectoux; Deroussen, François; François, Deroussen; Gouron, Richard; Richard, Gouron; Angelliaume, Audrey; Audrey, Angelliaume; Ilharreborde, Brice; Brice, Ilharreborde; Renaux-Petel, Mariette; Mariette, Renaux-Petel
2015-10-01
Pyogenic sacroiliitis is exceptional in very young children. Diagnosis is difficult because clinical examination is misleading. FABER test is rarely helpful in very young children. Inflammatory syndrome is frequent. Bone scintigraphy and MRI are very sensitive for the diagnosis. Joint fluid aspiration and blood cultures are useful to identify the pathogen. Appropriate antibiotic therapy provides rapid regression of symptoms and healing. We report the case of pyogenic sacroiliitis in a 13-month-old child.Clinical, biological, and imaging data of this case were reviewed and reported retrospectively.A 13-month-old girl consulted for decreased weight bearing without fever or trauma. Clinical examination was not helpful. There was an inflammatory syndrome. Bone scintigraphy found a sacroiliitis, confirmed on MRI. Aspiration of the sacroiliac joint was performed. Empiric intravenous biantibiotic therapy was started. Patient rapidly recovered full weight bearing. On the 5th day, clinical examination and biological analysis returned to normal. Intravenous antibiotic therapy was switched for oral. One month later, clinical examination and biological analysis were normal and antibiotic therapy was stopped.Hematogenous osteoarticular infections are common in children but pyogenic sacroiliitis is rare and mainly affects older children. Diagnosis can be difficult because clinical examination is poor. Moreover, limping and decreased weight bearing are very common reasons for consultation. This may delay the diagnosis or refer misdiagnosis. Bone scintigraphy is useful to locate a bone or joint disease responsible for limping. In this observation, bone scintigraphy located the infection at the sacroiliac joint. Given the young age, MRI was performed to confirm the diagnosis. Despite the very young age of the patient, symptoms rapidly disappeared with appropriate antibiotic therapy.We report the case of pyogenic sacroiliitis in a 13-month-old child. It reminds the risk of misdiagnosing pyogenic sacroiliitis in children because it is exceptional and clinical examination is rarely helpful. It also highlights the usefulness of bone scintigraphy and MRI in osteoarticular infections in children.
Turley, Sean M; Thambyah, Ashvin; Riggs, Christopher M; Firth, Elwyn C; Broom, Neil D
2014-01-01
The palmar aspect of the third metacarpal (MC3) condyle of equine athletes is known to be subjected to repetitive overloading that can lead to the accumulation of joint tissue damage, degeneration, and stress fractures, some of which result in catastrophic failure. However, there is still a need to understand at a detailed microstructural level how this damage progresses in the context of the wider joint tissue complex, i.e. the articular surface, the hyaline and calcified cartilage, and the subchondral bone. MC3 bones from non-fractured joints were obtained from the right forelimbs of 16 Thoroughbred racehorses varying in age between 3 and 8 years, with documented histories of active race training. Detailed microstructural analysis of two clinically important sites, the parasagittal grooves and the mid-condylar regions, identified extensive levels of microdamage in the calcified cartilage and subchondral bone concealed beneath outwardly intact hyaline cartilage. The study shows a progression in microdamage severity, commencing with mild hard-tissue microcracking in younger animals and escalating to severe subchondral bone collapse and lesion formation in the hyaline cartilage with increasing age and thus athletic activity. The presence of a clearly distinguishable fibrous tissue layer at the articular surface immediately above sites of severe subchondral collapse suggested a limited reparative response in the hyaline cartilage. PMID:24689513
Giddings, V L; Kurtz, S M; Jewett, C W; Foulds, J R; Edidin, A A
2001-07-01
Polymethylmethacrylate (PMMA) bone cement is used in total joint replacements to anchor implants to the underlying bone. Establishing and maintaining the integrity of bone cement is thus of critical importance to the long-term outcome of joint replacement surgery. The goal of the present study was to evaluate the suitability of a novel testing technique, the small punch or miniaturized disk bend test, to characterize the elastic modulus and fracture behavior of PMMA. We investigated the hypothesis that the crack initiation behavior of PMMA during the small punch test was sensitive to the test temperature. Miniature disk-shaped specimens, 0.5 mm thick and 6.4 mm in diameter, were prepared from PMMA and Simplex-P bone cement according to manufacturers' instructions. Testing was conducted at ambient and body temperatures, and the effect of test temperature on the elastic modulus and fracture behavior was statistically evaluated using analysis of variance. For both PMMA materials, the test temperature had a significant effect on elastic modulus and crack initiation behavior. At body temperature, the specimens exhibited "ductile" crack initiation, whereas at room temperature "brittle" crack initiation was observed. The small punch test was found to be a sensitive and repeatable test method for evaluating the mechanical behavior of PMMA. In light of the results of this study, future small punch testing should be conducted at body temperature.
Arnbak, Bodil; Jensen, Tue S; Egund, Niels; Zejden, Anna; Hørslev-Petersen, Kim; Manniche, Claus; Jurik, Anne G
2016-04-01
To estimate the prevalence of degenerative and spondyloarthritis (SpA)-related magnetic resonance imaging (MRI) findings in the spine and sacroiliac joints (SIJs) and analyse their association with gender and age in persistent low back pain (LBP) patients. Degenerative and SpA-related MRI findings in the whole spine and SIJs were evaluated in Spine Centre patients aged 18-40 years with LBP. Among the 1,037 patients, the prevalence of disc degeneration, disc contour changes and vertebral endplate signal (Modic) changes were 87 % (±SEM 1.1), 82 % (±1.2) and 48 % (±1.6). All degenerative spinal findings were most frequent in men and patients aged 30-40 years. Spinal SpA-related MRI findings were rare. In the SIJs, 28 % (±1.4) had at least one MRI finding, with bone marrow oedema being the most common (21 % (±1.3)). SIJ erosions were most prevalent in patients aged 18-29 years and bone marrow oedema in patients aged 30-40 years. SIJ sclerosis and fatty marrow deposition were most common in women. SIJ bone marrow oedema, sclerosis and erosions were most frequent in women indicating pregnancy-related LBP. The high prevalence of SIJ MRI findings associated with age, gender, and pregnancy-related LBP need further investigation of their clinical importance in LBP patients. • The location of vertebral endplate signal changes supports a mechanical aetiology. • Several sacroiliac joint findings were associated with female gender and pregnancy-related back pain. • Sacroiliac joint bone marrow oedema was frequent and age-associated, indicating a possible degenerative aetiology. • More knowledge of the clinical importance of sacroiliac joint MRI findings is needed.
Pye, Stephen R; Marshall, Tarnya; Gaffney, Karl; Silman, Alan J; Symmons, Deborah P M; O'Neill, Terence W
2010-05-28
The aim of this analysis was to determine the relative influence of disease and non-disease factors on areal bone mineral density (BMDa) in a primary care based cohort of women with inflammatory polyarthritis. Women aged 16 years and over with recent onset inflammatory polyarthritis were recruited to the Norfolk Arthritis Register (NOAR) between 1990 and 1993. Subjects were examined at both baseline and follow up for the presence of tender, swollen and deformed joints. At the 10th anniversary visit, a sub-sample of women were invited to complete a bone health questionnaire and attend for BMDa (Hologic, QDR 4000). Linear regression was used to examine the association between BMDa with both (i) arthritis-related factors assessed at baseline and the 10th anniversary visit and (ii) standard risk factors for osteoporosis. Adjustments were made for age. 108 women, mean age 58.0 years were studied. Older age, decreasing weight and BMI at follow up were all associated with lower BMDa at both the spine and femoral neck. None of the lifestyle factors were linked. Indices of joint damage including 10th anniversary deformed joint count and erosive joint count were the arthritis-related variables linked with a reduction in BMDa at the femoral neck. By contrast, disease activity as determined by the number of tender and or swollen joints assessed both at baseline and follow up was not linked with BMDa at either site. Cumulative disease damage was the strongest predictor of reduced femoral bone density. Other disease and lifestyle factors have only a modest influence.
The Content of Structural and Trace Elements in the Knee Joint Tissues.
Roczniak, Wojciech; Brodziak-Dopierała, Barbara; Cipora, Elżbieta; Mitko, Krzysztof; Jakóbik-Kolon, Agata; Konieczny, Magdalena; Babuśka-Roczniak, Magdalena
2017-11-23
Many elements are responsible for the balance in bone tissue, including those which constitute a substantial proportion of bone mass, i.e., calcium, phosphorus and magnesium, as well as minor elements such as strontium. In addition, toxic elements acquired via occupational and environmental exposure, e.g., Pb, are included in the basic bone tissue composition. The study objective was to determine the content of strontium, lead, calcium, phosphorus, sodium and magnesium in chosen components of the knee joint, i.e., tibia, femur and meniscus. The levels of Sr, Pb, Ca, P, Na and Mg were the highest in the tibia in both men and women, whereas the lowest in the meniscus. It should be noted that the levels of these elements were by far higher in the tibia and femur as compared to the meniscus. In the components of the knee joint, the level of strontium showed the greatest variation. Significant statistical differences were found between men and women only in the content of lead.
The Content of Structural and Trace Elements in the Knee Joint Tissues
Roczniak, Wojciech; Brodziak-Dopierała, Barbara; Cipora, Elżbieta; Mitko, Krzysztof; Jakóbik-Kolon, Agata; Konieczny, Magdalena; Babuśka-Roczniak, Magdalena
2017-01-01
Many elements are responsible for the balance in bone tissue, including those which constitute a substantial proportion of bone mass, i.e., calcium, phosphorus and magnesium, as well as minor elements such as strontium. In addition, toxic elements acquired via occupational and environmental exposure, e.g., Pb, are included in the basic bone tissue composition. The study objective was to determine the content of strontium, lead, calcium, phosphorus, sodium and magnesium in chosen components of the knee joint, i.e., tibia, femur and meniscus. The levels of Sr, Pb, Ca, P, Na and Mg were the highest in the tibia in both men and women, whereas the lowest in the meniscus. It should be noted that the levels of these elements were by far higher in the tibia and femur as compared to the meniscus. In the components of the knee joint, the level of strontium showed the greatest variation. Significant statistical differences were found between men and women only in the content of lead. PMID:29168758
Antibiotic-loaded bone void filler accelerates healing in a femoral condylar rat model.
Shiels, S M; Cobb, R R; Bedigrew, K M; Ritter, G; Kirk, J F; Kimbler, A; Finger Baker, I; Wenke, J C
2016-08-01
Demineralised bone matrix (DBM) is rarely used for the local delivery of prophylactic antibiotics. Our aim, in this study, was to show that a graft with a bioactive glass and DBM combination, which is currently available for clinical use, can be loaded with tobramycin and release levels of antibiotic greater than the minimum inhibitory concentration for Staphylococcus aureus without interfering with the bone healing properties of the graft, thus protecting the graft and surrounding tissues from infection. Antibiotic was loaded into a graft and subsequently evaluated for drug elution kinetics and the inhibition of bacterial growth. A rat femoral condylar plug model was used to determine the effect of the graft, loaded with antibiotic, on bone healing. We found that tobramycin loaded into a graft composed of bioglass and DBM eluted antibiotic above the minimum inhibitory concentration for three days in vitro. It was also found that the antibiotic loaded into the graft produced no adverse effects on the bone healing properties of the DBM at a lower level of antibiotic. This antibiotic-loaded bone void filler may represent a promising option for the delivery of local antibiotics in orthopaedic surgery. Cite this article: Bone Joint J 2016;98-B:1126-31. ©2016 The British Editorial Society of Bone & Joint Surgery.
Buckle, Kelly N; Alley, Maurice R
2011-08-01
A juvenile, male, yellow-eyed penguin (Megadyptes antipodes) with abnormal stance and decreased mobility was captured, held in captivity for approximately 6 weeks, and euthanized due to continued clinical signs. Radiographically, there was bilateral degenerative joint disease with coxofemoral periarticular osteophyte formation. Grossly, the bird had bilaterally distended, thickened coxofemoral joints with increased laxity, and small, roughened and angular femoral heads. Histologically, the left femoral articular cartilage and subchondral bone were absent, and the remaining femoral head consisted of trabecular bone overlain by fibrin and granulation tissue. There was no gross or histological evidence of infection. The historic, gross, radiographic, and histopathologic findings were most consistent with bilateral aseptic femoral head degeneration resulting in degenerative joint disease. Although the chronicity of the lesions masked the initiating cause, the probable underlying causes of aseptic bilateral femoral head degeneration in a young animal are osteonecrosis and osteochondrosis of the femoral head. To our knowledge, this is the first reported case of bilateral coxofemoral degenerative joint disease in a penguin.
De La Hoz Polo, M; Navallas, M
2014-01-01
The term "juvenile idiopathic arthritis" (JIA) encompasses a group of arthritis of unknown cause with onset before the age of 16 years that last for at least 6 weeks. The prevalence of temporomandibular joint involvement in published series ranges from 17% to 87%. Temporomandibular joint involvement is difficult to detect clinically, so imaging plays a key role in diagnosis and monitoring treatment. MRI is the technique of choice for the study of arthritis of the temporomandibular joint because it is the most sensitive technique for detecting acute synovitis and bone edema. Power Doppler ultrasonography can also detect active synovitis by showing the hypervascularization of the inflamed synovial membrane, but it cannot identify bone edema. This article describes the MRI technique for evaluating the temporomandibular joint in patients with juvenile idiopathic arthritis, defines the parameters to look for, and illustrates the main findings. Copyright © 2013 SERAM. Published by Elsevier Espana. All rights reserved.
Development and application of biomimetic electrospun nanofibers in total joint replacement
NASA Astrophysics Data System (ADS)
Song, Wei
Failure of osseointegration (direct anchorage of an implant by bone formation at the bone-implant surface) and implant infection (such as that caused by Staphylococcus aureus, S. aureus) are the two main causes of implant failure and loosening. There is a critical need for orthopedic implants that promote rapid osseointegration and prevent bacterial colonization, particularly when placed in bone compromised by disease or physiology of the patients. A better understanding of the key factors that influence cell fate decisions at the bone-implant interface is required. Our study is to develop a class of "bone-like" nanofibers (NFs) that promote osseointegration while preventing bacterial colonization and subsequent infections. This research goal is supported by our preliminary data on the preparation of coaxial electrospun NFs composed of polycaprolactone (PCL) and polyvinyl alcohol (PVA) polymers arranged in a core-sheath shape. The PCL/PVA NFs are biocompatible and biodegradable with appropriate fiber diameter, pore size and mechanical strength, leading to enhanced cell adhesion, proliferation and differentiation of osteoblast precursor cells. The objective is to develop functionalized "bone-like" PCL/PVA NFs matrix embedded with antibiotics (doxycycline (Doxy), bactericidal and anti-osteoclastic) on prosthesis surface. Through a rat tibia implantation model, the Doxy incorporated coaxial NFs has demonstrated excellent in promoting osseointegration and bacteria inhibitory efficacy. NFs coatings significantly enhanced the bonding between implant and bone remodeling within 8 weeks. The SA-induced osteomyelitis was prevented by the sustained release of Doxy from NFs. The capability of embedding numerous bio-components including proteins, growth factors, drugs, etc. enables NFs an effective solution to overcome the current challenged issue in Total joint replacement. In summary, we proposed PCL/PVA electrospun nanofibers as promising biomaterials that can be applied on joint replacement prosthesis to improve osseointegration and prevent osteomyelitis.
Use of routine clinical multimodality imaging in a rabbit model of osteoarthritis--part I.
Bouchgua, M; Alexander, K; d'Anjou, M André; Girard, C A; Carmel, E Norman; Beauchamp, G; Richard, H; Laverty, S
2009-02-01
To evaluate in vivo the evolution of osteoarthritis (OA) lesions temporally in a rabbit model of OA with clinically available imaging modalities: computed radiography (CR), helical single-slice computed tomography (CT), and 1.5 tesla (T) magnetic resonance imaging (MRI). Imaging was performed on knees of anesthetized rabbits [10 anterior cruciate ligament transection (ACLT) and contralateral sham joints and six control rabbits] at baseline and at intervals up to 12 weeks post-surgery. Osteophytosis, subchondral bone sclerosis, bone marrow lesions (BMLs), femoropatellar effusion and articular cartilage were assessed. CT had the highest sensitivity (90%) and specificity (91%) to detect osteophytes. A significant increase in total joint osteophyte score occurred at all time-points post-operatively in the ACLT group alone. BMLs were identified and occurred most commonly in the lateral femoral condyle of the ACLT joints and were not identified in the tibia. A significant increase in joint effusion was present in the ACLT joints until 8 weeks after surgery. Bone sclerosis or cartilage defects were not reliably assessed with the selected imaging modalities. Combined, clinically available CT and 1.5 T MRI allowed the assessment of most of the characteristic lesions of OA and at early time-points in the development of the disease. However, the selected 1.5 T MRI sequences and acquisition times did not permit the detection of cartilage lesions in this rabbit OA model.
Peripheral Nerve Fibers and Their Neurotransmitters in Osteoarthritis Pathology
Grässel, Susanne; Muschter, Dominique
2017-01-01
The importance of the nociceptive nervous system for maintaining tissue homeostasis has been known for some time, and it has also been suggested that organogenesis and tissue repair are under neuronal control. Changes in peripheral joint innervation are supposed to be partly responsible for degenerative alterations in joint tissues which contribute to development of osteoarthritis. Various resident cell types of the musculoskeletal system express receptors for sensory and sympathetic neurotransmitters, allowing response to peripheral neuronal stimuli. Among them are mesenchymal stem cells, synovial fibroblasts, bone cells and chondrocytes of different origin, which express distinct subtypes of adrenoceptors (AR), receptors for vasoactive intestinal peptide (VIP), substance P (SP) and calcitonin gene-related peptide (CGRP). Some of these cell types synthesize and secrete neuropeptides such as SP, and they are positive for tyrosine-hydroxylase (TH), the rate limiting enzyme for biosynthesis of catecholamines. Sensory and sympathetic neurotransmitters are involved in the pathology of inflammatory diseases such as rheumatoid arthritis (RA) which manifests mainly in the joints. In addition, they seem to play a role in pathogenesis of priori degenerative joint disorders such as osteoarthritis (OA). Altogether it is evident that sensory and sympathetic neurotransmitters have crucial trophic effects which are critical for joint tissue and bone homeostasis. They modulate articular cartilage, subchondral bone and synovial tissue properties in physiological and pathophysiological conditions, in addition to their classical neurological features. PMID:28452955
Mesnard, Michel; Ramos, Antonio; Ballu, Alex; Morlier, Julien; Cid, M; Simoes, J A
2011-04-01
Prosthetic materials and bone present quite different mechanical properties. Consequently, mandible reconstruction with metallic materials (or a mandible condyle implant) modifies the physiologic behavior of the mandible (stress, strain patterns, and condyle displacements). The changing of bone strain distribution results in an adaptation of the temporomandibular joint, including articular contacts. Using a validated finite element model, the natural mandible strains and condyle displacements were evaluated. Modifications of strains and displacements were then assessed for 2 different temporomandibular joint implants. Because materials and geometry play important key roles, mechanical properties of cortical bone were taken into account in models used in finite element analysis. The finite element model allowed verification of the worst loading configuration of the mandibular condyle. Replacing the natural condyle by 1 of the 2 tested implants, the results also show the importance of the implant geometry concerning biomechanical mandibular behavior. The implant geometry and stiffness influenced mainly strain distribution. The different forces applied to the mandible by the elevator muscles, teeth, and joint loads indicate that the finite element model is a relevant tool to optimize implant geometry or, in a subsequent study, to choose a more suitable distribution of the screws. Bone screws (number and position) have a significant influence on mandibular behavior and on implant stress pattern. Stress concentration and implant fracture must be avoided. Copyright © 2011 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Kloefkorn, Heidi E.; Allen, Kyle D.
2017-01-01
Aim of the Study The importance of the medial meniscus to knee health is demonstrated by studies which show meniscus injuries significantly increase the likelihood of developing osteoarthritis (OA), and knee OA can be modeled in rodents using simulated meniscus injuries. Traditionally, histological assessments of OA in these models have focused on damage to the articular cartilage; however, OA is now viewed as a disease of the entire joint as an organ system. The aim of this study was to develop quantitative histological measures of bone and synovial changes in a rat medial meniscus injury model of knee OA. Materials and Methods To initiate OA, a medial meniscus transection (MMT) and a medial collateral ligament transection (MCLT) were performed in 32 male Lewis rats (MMT group). MCLT alone served as the sham procedure in 32 additional rats (MCLT sham group). At weeks 1, 2, 4, and 6 post-surgery, histological assessment of subchondral bone and synovium was performed (n = 8 per group per time point). Results Trabecular bone area and the ossification width at the osteochondral interface increased in both the MMT and MCLT groups. Subintimal synovial cell morphology also changed in MMT and MCLT groups relative to naïve animals. Conclusions OA affects the joint as an organ system, and quantifying changes throughout an entire joint can improve our understanding of the relationship between joint destruction and painful OA symptoms following meniscus injury. PMID:27797605
Gartsman, Gary M; Morris, Brent J; Unger, R Zackary; Laughlin, Mitzi S; Elkousy, Hussein A; Edwards, T Bradley
2015-03-04
The purpose of this study was to determine characteristics and trends in published shoulder research over the last decade in a leading orthopaedic journal. We examined all clinical shoulder articles published in The Journal of Bone & Joint Surgery from 2004 to 2014. The number of citations, authorship, academic degrees of the authors, country and institution of origin, topic, level of evidence, positive or nonpositive outcome, and inclusion of validated patient-reported outcome measures were assessed for each article. Shoulder articles that included an author with an advanced research degree (MD [Doctor of Medicine] with a PhD [Doctor of Philosophy] or other advanced degree) increased during the study period (p = 0.047). Level-I, II, and III studies were more likely to have an author with an advanced research degree, and Level-IV studies were more likely to have MDs only (p = 0.03). Overall, there was great variability of outcome measures, with at least thirty-nine different validated or nonvalidated outcome measures reported. Over the last decade, there was an improvement in the level of evidence of shoulder articles published in The Journal of Bone & Joint Surgery that corresponds with recent emphasis on evidence-based medicine. A consensus is needed in shoulder research for more consistent application of validated patient-reported outcome measurement tools. Copyright © 2015 by The Journal of Bone and Joint Surgery, Incorporated.
Long-distance running, bone density, and osteoarthritis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lane, N.E.; Bloch, D.A.; Jones, H.H.
Forty-one long-distance runners aged 50 to 72 years were compared with 41 matched community controls to examine associations of repetitive, long-term physical impact (running) with osteoarthritis and osteoporosis. Roentgenograms of hands, lateral lumbar spine, and knees were assessed without knowledge of running status. A computed tomographic scan of the first lumbar vertebra was performed to quantitate bone mineral content. Runners, both male and female, have approximately 40% more bone mineral than matched controls. Female runners, but not male runners, appear to have somewhat more sclerosis and spur formation in spine and weight-bearing knee x-ray films, but not in hand x-raymore » films. There were no differences between groups in joint space narrowing, crepitation, joint stability, or symptomatic osteoarthritis. Running is associated with increased bone mineral but not, in this cross-sectional study, with clinical osteoarthritis.« less
Sodium 18F-Fluoride PET/CT of Bone, Joint and Other Disorders
Jadvar, Hossein; Desai, Bhushan; Conti, Peter S.
2014-01-01
The use of 18F-sodium fluoride (18F-NaF) with positron emission tomography-computed tomography (PET/CT) is increasing. This resurgence of an old tracer has been fueled by several factors including superior diagnostic performance over standard 99mTc-based bone scintigraphy, growth in the availability of PET/CT imaging systems, increase in the number of regional commercial distribution centers for PET radiotracers, the recent concerns about potential chronic shortages with 99mTc based radiotracers, and the recent decision by the Centers for Medicare and Medicaid Services to reimburse for 18F-NaF PET/CT for evaluation of patients with known or suspected bone metastases through the National Oncologic PET Registry. The major goal of this article is to review the current evidence on the diagnostic utility of 18F-NaF in the imaging assessment of bone and joint in a variety of clinical conditions. PMID:25475379
[The development of research in tribology of artificial joints].
Dai, Zhendong; Gong, Juanqing
2006-06-01
Aseptic loosening of the prosthesis is a major form for the failure of artificial joints, which results in the conglomeration of wear particles at the bone-implant interface. This paper briefly reviews the recent development of tribology of artificial joints preserving good lubrication, enhancing the wear resistance of materials for the joints, reducing the generation of sensitive-size particles and depressing the debris-tissue reactions. Suggestion for improvement in the design of artificial joints is presented.
Seth, Ajay; Matias, Ricardo; Veloso, António P.; Delp, Scott L.
2016-01-01
The complexity of shoulder mechanics combined with the movement of skin relative to the scapula makes it difficult to measure shoulder kinematics with sufficient accuracy to distinguish between symptomatic and asymptomatic individuals. Multibody skeletal models can improve motion capture accuracy by reducing the space of possible joint movements, and models are used widely to improve measurement of lower limb kinematics. In this study, we developed a rigid-body model of a scapulothoracic joint to describe the kinematics of the scapula relative to the thorax. This model describes scapular kinematics with four degrees of freedom: 1) elevation and 2) abduction of the scapula on an ellipsoidal thoracic surface, 3) upward rotation of the scapula normal to the thoracic surface, and 4) internal rotation of the scapula to lift the medial border of the scapula off the surface of the thorax. The surface dimensions and joint axes can be customized to match an individual’s anthropometry. We compared the model to “gold standard” bone-pin kinematics collected during three shoulder tasks and found modeled scapular kinematics to be accurate to within 2mm root-mean-squared error for individual bone-pin markers across all markers and movement tasks. As an additional test, we added random and systematic noise to the bone-pin marker data and found that the model reduced kinematic variability due to noise by 65% compared to Euler angles computed without the model. Our scapulothoracic joint model can be used for inverse and forward dynamics analyses and to compute joint reaction loads. The computational performance of the scapulothoracic joint model is well suited for real-time applications; it is freely available for use with OpenSim 3.2, and is customizable and usable with other OpenSim models. PMID:26734761
Seth, Ajay; Matias, Ricardo; Veloso, António P; Delp, Scott L
2016-01-01
The complexity of shoulder mechanics combined with the movement of skin relative to the scapula makes it difficult to measure shoulder kinematics with sufficient accuracy to distinguish between symptomatic and asymptomatic individuals. Multibody skeletal models can improve motion capture accuracy by reducing the space of possible joint movements, and models are used widely to improve measurement of lower limb kinematics. In this study, we developed a rigid-body model of a scapulothoracic joint to describe the kinematics of the scapula relative to the thorax. This model describes scapular kinematics with four degrees of freedom: 1) elevation and 2) abduction of the scapula on an ellipsoidal thoracic surface, 3) upward rotation of the scapula normal to the thoracic surface, and 4) internal rotation of the scapula to lift the medial border of the scapula off the surface of the thorax. The surface dimensions and joint axes can be customized to match an individual's anthropometry. We compared the model to "gold standard" bone-pin kinematics collected during three shoulder tasks and found modeled scapular kinematics to be accurate to within 2 mm root-mean-squared error for individual bone-pin markers across all markers and movement tasks. As an additional test, we added random and systematic noise to the bone-pin marker data and found that the model reduced kinematic variability due to noise by 65% compared to Euler angles computed without the model. Our scapulothoracic joint model can be used for inverse and forward dynamics analyses and to compute joint reaction loads. The computational performance of the scapulothoracic joint model is well suited for real-time applications; it is freely available for use with OpenSim 3.2, and is customizable and usable with other OpenSim models.
Siebelt, Michiel; Groen, Harald C; Koelewijn, Stuart J; de Blois, Erik; Sandker, Marjan; Waarsing, Jan H; Müller, Cristina; van Osch, Gerjo J V M; de Jong, Marion; Weinans, Harrie
2014-01-29
Articular cartilage needs sulfated-glycosaminoglycans (sGAGs) to withstand high pressures while mechanically loaded. Chondrocyte sGAG synthesis is regulated by exposure to compressive forces. Moderate physical exercise is known to improve cartilage sGAG content and might protect against osteoarthritis (OA). This study investigated whether rat knee joints with sGAG depleted articular cartilage through papain injections might benefit from moderate exercise, or whether this increases the susceptibility for cartilage degeneration. sGAGs were depleted from cartilage through intraarticular papain injections in the left knee joints of 40 Wistar rats; their contralateral joints served as healthy controls. Of the 40 rats included in the study, 20 rats remained sedentary, and the other 20 were subjected to a moderately intense running protocol. Animals were longitudinally monitored for 12 weeks with in vivo micro-computed tomography (μCT) to measure subchondral bone changes and single-photon emission computed tomography (SPECT)/CT to determine synovial macrophage activation. Articular cartilage was analyzed at 6 and 12 weeks with ex vivo contrast-enhanced μCT and histology to measure sGAG content and cartilage thickness. All outcome measures were unaffected by moderate exercise in healthy control joints of running animals compared with healthy control joints of sedentary animals. Papain injections in sedentary animals resulted in severe sGAG-depleted cartilage, slight loss of subchondral cortical bone, increased macrophage activation, and osteophyte formation. In running animals, papain-induced sGAG-depleted cartilage showed increased cartilage matrix degradation, sclerotic bone formation, increased macrophage activation, and more osteophyte formation. Moderate exercise enhanced OA progression in papain-injected joints and did not protect against development of the disease. This was not restricted to more-extensive cartilage damage, but also resulted in pronounced subchondral sclerosis, synovial macrophage activation, and osteophyte formation.
Rice, Devyn; Shaat, Mohamed
2017-10-01
In this study, the fatigue characteristics of femoral and tibial locking compression plate (LCP) implants are determined accounting for the knee biomechanics during the gait. A biomechanical model for the kinematics and kinetics of the knee joint during the complete gait cycle is proposed. The rotations of the femur, tibia, and patella about the knee joint during the gait are determined. Moreover, the patellar-tendon force (PT), quadriceps-tendon force (QT), the tibiofemoral joint force (TFJ), and the patellofemoral joint force (PFJ) through the standard gait cycle are obtained as functions of the body weight (BW). On the basis of the derived biomechanics of the knee joint, the fatigue factors of safety along with the fatigue life of 316L stainless steel femoral and tibial LCP implants are reported as functions of the BW and bone fracture location, for the first time. The reported results reveal that 316L stainless steel LCP implants for femoral surgeries are preferred for conditions in which the bone fracture is close to the knee joint and the BW is less than 80 kg. For tibial surgeries, 316L stainless steel LCP implants can be used for conditions in which the bone fracture is close to the knee joint and the BW is less than 100 kg. This study presents a critical guide for the determination of the fatigue characteristics of LCP implants. The obtained results reveal that the fatigue analyses should be performed on the basis of the body biomechanics to guarantee accurate designs of LCP implants for femoral and tibial orthopedic surgeries.
Your knee joint is made up of bone, cartilage, ligaments and fluid. Muscles and tendons help the knee joint move. When any of these structures is hurt or diseased, you have knee problems. Knee problems can cause pain and difficulty ...
Therapies for the bone in mucopolysaccharidoses
Tomatsu, Shunji; Alméciga-Díaz, Carlos J.; Montaño, Adriana M.; Yabe, Hiromasa; Tanaka, Akemi; Dung, Vu Chi; Giugliani, Roberto; Kubaski, Francyne; Mason, Robert W.; Yasuda, Eriko; Sawamoto, Kazuki; Mackenzie, William; Suzuki, Yasuyuki; Orii, Kenji E.; Barrera, Luis A.; Sly, William S.; Orii, Tadao
2014-01-01
Patients with mucopolysaccharidoses (MPS) have accumulation of glycosaminoglycans in multiple tissues which may cause coarse facial features, mental retardation, recurrent ear and nose infections, inguinal and umbilical hernias, hepatosplenomegaly, and skeletal deformities. Clinical features related to bone lesions may include marked short stature, cervical stenosis, pectus carinatum, small lungs, joint rigidity (but laxity for MPS IV), kyphoscoliosis, lumbar gibbus, and genu valgum. Patients with MPS are often wheelchair-bound and physical handicaps increase with age as a result of progressive skeletal dysplasia, abnormal joint mobility, and osteoarthritis, leading to 1) stenosis of the upper cervical region, 2) restrictive small lung, 3) hip dysplasia, 4) restriction of joint movement, and 5) surgical complications. Patients often need multiple orthopedic procedures including cervical decompression and fusion, carpal tunnel release, hip reconstruction and replacement, and femoral or tibial osteotomy through their lifetime. Current measures to intervene in bone disease progression are not perfect and palliative, and improved therapies are urgently required. Enzyme replacement therapy (ERT), hematopoietic stem cell transplantation (HSCT), and gene therapy are available or in development for some types of MPS. Delivery of sufficient enzyme to bone, especially avascular cartilage, to prevent or ameliorate the devastating skeletal dysplasias remains an unmet challenge. The use of an anti-inflammatory drug is also under clinical study. Therapies should start at a very early stage prior to irreversible bone lesion, and damage since the severity of skeletal dysplasia is associated with level of activity during daily life. This review illustrates a current overview of therapies and their impact for bone lesions in MPS including ERT, HSCT, gene therapy, and anti-inflammatory drugs. PMID:25537451
Percutaneous CT-Guided Treatment of Osteochondritis Dissecans of the Sacroiliac Joint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becce, Fabio, E-mail: fabio.becce@chuv.ch; Mouhsine, Elyazid; Mosimann, Pascal John
2012-08-15
Osteochondritis dissecans (OCD) is a joint disorder that affects the articular cartilage and subchondral bone, most commonly at the knee. OCD of the sacroiliac joint is extremely rare. Management of OCD remains controversial, and surgery is often needed, especially when conservative treatment fails. We present a rare case of OCD involving the left sacroiliac joint successfully treated by percutaneous computed tomography-guided retrograde drilling and debridement.
Program Evaluation of Outcomes Based Orthotic and Prosthetic Education
2006-12-01
Rheumatoid Arthritis; synovial joints ; tendon sheaths. b. Osteoarthritis; weight bearing joints ; loading areas. c. Osteoporosis; cancellous bone...flexion. 32. The desirable length of a thumb post is: a. to the thumb IP joint . b. proximal to the IP joint . c. to the nail bed. d. just...assist hyperextension of the thoracic spine. b. eliminate motion. c. prevent lumbar flexion. d. reduce axial load on lumbar vertebrae. 44
Customized a Ti6Al4V Bone Plate for Complex Pelvic Fracture by Selective Laser Melting.
Wang, Di; Wang, Yimeng; Wu, Shibiao; Lin, Hui; Yang, Yongqiang; Fan, Shicai; Gu, Cheng; Wang, Jianhua; Song, Changhui
2017-01-04
In pelvic fracture operations, bone plate shaping is challenging and the operation time is long. To address this issue, a customized bone plate was designed and produced using selective laser melting (SLM) technology. The key steps of this study included designing the customized bone plate, metal 3D printing, vacuum heat treatment, surface post-processing, operation rehearsal, and clinical application and evaluation. The joint surface of the bone plate was placed upwards with respect to the build platform to keep it away from the support and to improve the quality of the joint surface. Heat conduction was enhanced by adding a cone-type support beneath the bone plate to prevent low-quality fabrication due to poor heat conductivity of the Ti-6Al-4V powder. The residual stress was eliminated by exposing the SLM-fabricated titanium-alloy bone plate to a vacuum heat treatment. Results indicated that the bone plate has a hardness of HV1 360-HV1 390, an ultimate tensile strength of 1000-1100 MPa, yield strength of 900-950 MPa, and an elongation of 8%-10%. Pre-operative experiments and operation rehearsal were performed using the customized bone plate and the ABC-made pelvic model. Finally, the customized bone plate was clinically applied. The intraoperative C-arm and postoperative X-ray imaging results indicated that the customized bone plate matched well to the damaged pelvis. The customized bone plate fixed the broken bone and guides pelvis restoration while reducing operation time to about two hours. The customized bone plate eliminated the need for preoperative titanium plate pre-bending, thereby greatly reducing surgical wounds and operation time.
Customized a Ti6Al4V Bone Plate for Complex Pelvic Fracture by Selective Laser Melting
Wang, Di; Wang, Yimeng; Wu, Shibiao; Lin, Hui; Yang, Yongqiang; Fan, Shicai; Gu, Cheng; Wang, Jianhua; Song, Changhui
2017-01-01
In pelvic fracture operations, bone plate shaping is challenging and the operation time is long. To address this issue, a customized bone plate was designed and produced using selective laser melting (SLM) technology. The key steps of this study included designing the customized bone plate, metal 3D printing, vacuum heat treatment, surface post-processing, operation rehearsal, and clinical application and evaluation. The joint surface of the bone plate was placed upwards with respect to the build platform to keep it away from the support and to improve the quality of the joint surface. Heat conduction was enhanced by adding a cone-type support beneath the bone plate to prevent low-quality fabrication due to poor heat conductivity of the Ti-6Al-4V powder. The residual stress was eliminated by exposing the SLM-fabricated titanium-alloy bone plate to a vacuum heat treatment. Results indicated that the bone plate has a hardness of HV1 360–HV1 390, an ultimate tensile strength of 1000–1100 MPa, yield strength of 900–950 MPa, and an elongation of 8%–10%. Pre-operative experiments and operation rehearsal were performed using the customized bone plate and the ABC-made pelvic model. Finally, the customized bone plate was clinically applied. The intraoperative C-arm and postoperative X-ray imaging results indicated that the customized bone plate matched well to the damaged pelvis. The customized bone plate fixed the broken bone and guides pelvis restoration while reducing operation time to about two hours. The customized bone plate eliminated the need for preoperative titanium plate pre-bending, thereby greatly reducing surgical wounds and operation time. PMID:28772395
Automatic joint alignment measurements in pre- and post-operative long leg standing radiographs.
Goossen, A; Weber, G M; Dries, S P M
2012-01-01
For diagnosis or treatment assessment of knee joint osteoarthritis it is required to measure bone morphometry from radiographic images. We propose a method for automatic measurement of joint alignment from pre-operative as well as post-operative radiographs. In a two step approach we first detect and segment any implants or other artificial objects within the image. We exploit physical characteristics and avoid prior shape information to cope with the vast amount of implant types. Subsequently, we exploit the implant delineations to adapt the initialization and adaptation phase of a dedicated bone segmentation scheme using deformable template models. Implant and bone contours are fused to derive the final joint segmentation and thus the alignment measurements. We evaluated our method on clinical long leg radiographs and compared both the initialization rate, corresponding to the number of images successfully processed by the proposed algorithm, and the accuracy of the alignment measurement. Ground truth has been generated by an experienced orthopedic surgeon. For comparison a second reader reevaluated the measurements. Experiments on two sets of 70 and 120 digital radiographs show that 92% of the joints could be processed automatically and the derived measurements of the automatic method are comparable to a human reader for pre-operative as well as post-operative images with a typical error of 0.7° and correlations of r = 0.82 to r = 0.99 with the ground truth. The proposed method allows deriving objective measures of joint alignment from clinical radiographs. Its accuracy and precision are on par with a human reader for all evaluated measurements.
Symmetry analysis of talus bone: A Geometric morphometric approach.
Islam, K; Dobbe, A; Komeili, A; Duke, K; El-Rich, M; Dhillon, S; Adeeb, S; Jomha, N M
2014-01-01
The main object of this study was to use a geometric morphometric approach to quantify the left-right symmetry of talus bones. Analysis was carried out using CT scan images of 11 pairs of intact tali. Two important geometric parameters, volume and surface area, were quantified for left and right talus bones. The geometric shape variations between the right and left talus bones were also measured using deviation analysis. Furthermore, location of asymmetry in the geometric shapes were identified. Numerical results showed that talus bones are bilaterally symmetrical in nature, and the difference between the surface area of the left and right talus bones was less than 7.5%. Similarly, the difference in the volume of both bones was less than 7.5%. Results of the three-dimensional (3D) deviation analyses demonstrated the mean deviation between left and right talus bones were in the range of -0.74 mm to 0.62 mm. It was observed that in eight of 11 subjects, the deviation in symmetry occurred in regions that are clinically less important during talus surgery. We conclude that left and right talus bones of intact human ankle joints show a strong degree of symmetry. The results of this study may have significance with respect to talus surgery, and in investigating traumatic talus injury where the geometric shape of the contralateral talus can be used as control. Cite this article: Bone Joint Res 2014;3:139-45.
The effect of N-acetylcysteine on mechanical fatigue resistance of antibiotic-loaded bone cement.
Sukur, Erhan; Akar, Abdulhalim; Topcu, Huseyin Nevzat; Cicekli, Ozgur; Kochai, Alauddin; Turker, Mehmet
2018-05-31
This biomechanical study evaluates the effect of N-acetylcysteine alone and in combination with the most commonly used antibiotic-loaded bone cement mixtures. We mixed eight bone cement mixture groups including combinations of N-acetylcysteine, gentamicin, teicoplanin, and vancomycin and applied a four-point bending test individually to each sample on days 1 and 15 using an MTS Acumen test device. The result was less than 50 MPa-the limit declared by the ISO (International Standards Organization)-in only the "gentamicin + bone cement + N-acetylcysteine" group. Mechanical fatigue resistance of the bone cement decreased significantly with the addition of N-acetylcysteine both on day 1 and day 15 (p < 0.001). With the addition of N-acetylcysteine into the "gentamicin + bone cement" and "vancomycin + bone cement" mixtures, a significant decrease in mechanical fatigue resistance was observed both on day 1 and day 15 (p < 0.001). In contrast, with the addition of N-acetylcysteine into the "teicoplanin + bone cement" mixture, no significant difference in mechanical fatigue resistance was observed on days 1 and 15 (p = 0.093, p = 0.356). Preliminary results indicate that adding N-acetylcysteine to teicoplanin-loaded bone cement does not significantly affect the cement's mechanical resistance, potentially leading to a new avenue for preventing and treating peri-prosthetic joint infection. N-acetylcysteine may, therefore, be considered as an alternative agent to be added to antibiotic-loaded bone cement mixtures used in the prevention of peri-prosthetic joint infection.
Symmetry analysis of talus bone
Islam, K.; Dobbe, A.; Komeili, A.; Duke, K.; El-Rich, M.; Dhillon, S.; Adeeb, S.; Jomha, N. M.
2014-01-01
Objective The main object of this study was to use a geometric morphometric approach to quantify the left-right symmetry of talus bones. Methods Analysis was carried out using CT scan images of 11 pairs of intact tali. Two important geometric parameters, volume and surface area, were quantified for left and right talus bones. The geometric shape variations between the right and left talus bones were also measured using deviation analysis. Furthermore, location of asymmetry in the geometric shapes were identified. Results Numerical results showed that talus bones are bilaterally symmetrical in nature, and the difference between the surface area of the left and right talus bones was less than 7.5%. Similarly, the difference in the volume of both bones was less than 7.5%. Results of the three-dimensional (3D) deviation analyses demonstrated the mean deviation between left and right talus bones were in the range of -0.74 mm to 0.62 mm. It was observed that in eight of 11 subjects, the deviation in symmetry occurred in regions that are clinically less important during talus surgery. Conclusions We conclude that left and right talus bones of intact human ankle joints show a strong degree of symmetry. The results of this study may have significance with respect to talus surgery, and in investigating traumatic talus injury where the geometric shape of the contralateral talus can be used as control. Cite this article: Bone Joint Res 2014;3:139–45. PMID:24802391
Technical tips to perform safe and effective ultrasound guided steroid joint injections in children.
Parra, Dimitri A
2015-01-01
The aim of this article is to describe the technique used to perform ultrasound guided steroid joint injections in children in a group of joints that can be injected using ultrasound as the only image guidance modality. The technique is described and didactic figures are provided to illustrate key technical concepts. It is very important to be familiar with the sonographic appearance of the pediatric joints and the developing bone when performing ultrasound-guided joint injections in children.
Hwee, Yin Kan; Park, Daniel; Vinas, Marisa; Litts, Christopher; Friedman, David
2017-08-01
Collagenase clostridium histolyticum (CCH) injection is an alternative to surgery for patients with Dupuytren disease (DD) of the metacarpophalangeal (MCP) and proximal interphalangeal (PIP) joints. The success of surgical and nonsurgical treatment modalities for DD is reported to vary widely between 25% and 80% (J Bone Joint Surg Am. 1985;67:1439-1443; Plast Reconstr Surg. 2007;120:44e-54e; J Bone Joint Surg Am. 2007;89:189-198; J Hand Surg Am. 2011:36:936-942; J Hand Surg Am. 1990;15:755-761; J Hand Surg Br. 1996;21:797-800; J Bone Joint Surg Br. 2000;82:90-94; Plast Reconstr Surg. 2005;115:802-810; Ann Plast Surg. 2006;57:13-17). This study presents the outcomes of patients with DD contractures treated with CCH injections at a single institution. An institutional review board-approved retrospective study was conducted of patients with DD of the hand treated with CCH injections in a single institution from February 2010 to April 2015. All patients received the recommended dose of 0.58 mg of CCH and returned for joint manipulation the following day. Data for follow-up at 7 and 30 days postoperatively and up to 5 years for patients who returned seeking further therapy for recurrent symptoms were reviewed. One hundred thirteen patients with a total of 146 affected joints (72 MCP; 74 PIP) were treated with CCH injections (95 males; 18 females; age, 40-92 y). Successful CCH therapy occurred in 75% of injected joints (109/146 joints; 59 MCP; 50 PIP), as defined by less than 5 degrees of contracture after treatment. Twenty-three percent of treated joints had partial correction (34/146 joints; 13 MCP; 21 PIP), as defined by between 5 and 30 degrees of residual contracture after treatment. Three patients (2%) had a failure of treatment, as defined by unchanged or worsened contracture from pretreatment baseline measurements. Fifteen patients (13%) returned to the clinic seeking additional therapy for recurrent joint contracture symptoms in 17 joints over a span of 1.5 months to 4 years after initial successful or partially successful treatment (17/143, 12%; 5 MCP; 12 PIP). Recurrence was defined as patients who sought treatment for a return of symptoms or greater than 20 degrees contracture in the setting of a palpable cord after initial full or partial contracture correction. Our 5-year outcome of CCH injections for DD contractures revealed full correction in 75% and partial correction in 23% of treated joints, with failure of treatment seen in only 2% of patients. Thirteen percent of the patients returned for additional treatment because of symptoms resulting from contracture recurrence in 12% of initially corrected or partially corrected joints. These positive outcomes are comparable with current surgical treatment modalities (J Hand Surg Am. 1990;15:755-761; J Bone Joint Surg Am. 1962;44B:602-613; J Clin Epidemiol. 2000;53:291-296). The use of CCH injections is an important nonsurgical treatment alternative for DD contractures of the MCP and PIP joints.
Siebelt, M; Waarsing, J H; Groen, H C; Müller, C; Koelewijn, S J; de Blois, E; Verhaar, J A N; de Jong, M; Weinans, H
2014-09-01
Osteoarthritis (OA) is a non-rheumatoid joint disease characterized by progressive degeneration of extra-cellular cartilage matrix (ECM), enhanced subchondral bone remodeling, osteophyte formation and synovial thickening. Alendronate (ALN) is a potent inhibitor of osteoclastic bone resorption and results in reduced bone remodeling. This study investigated the effects of pre-emptive use of ALN on OA related osteoclastic subchondral bone resorption in an in vivo rat model for severe OA. Using multi-modality imaging we measured effects of ALN treatment within cartilage and synovium. Severe osteoarthritis was induced in left rat knees using papain injections in combination with a moderate running protocol. Twenty rats were treated with subcutaneous ALN injections and compared to twenty untreated controls. Animals were longitudinally monitored for 12weeks with in vivo μCT to measure subchondral bone changes and SPECT/CT to determine synovial macrophage activation using a folate-based radiotracer. Articular cartilage was analyzed at 6 and 12weeks with ex vivo contrast enhanced μCT and histology to measure sulfated-glycosaminoglycan (sGAG) content and cartilage thickness. ALN treatment successfully inhibited subchondral bone remodeling. As a result we found less subchondral plate porosity and reduced osteophytosis. ALN treatment did not reduce subchondral sclerosis. However, after the OA induction phase, ALN treatment protected cartilage ECM from degradation and reduced synovial macrophage activation. Surprisingly, ALN treatment also improved sGAG content of tibia cartilage in healthy joints. Our data was consistent with the hypothesis that osteoclastic bone resorption might play an important role in OA and may be a driving force for progression of the disease. However, our study suggest that this effect might not solely be effects on osteoclastic activity, since ALN treatment also influenced macrophage functioning. Additionally, ALN treatment and physical activity exercised a positive effect in healthy control joints, which increased cartilage sGAG content. More research on this topic might lead to novel insights as to improve cartilage quality. Copyright © 2014 Elsevier Inc. All rights reserved.
[The reference of normal values of the sacroiliac joint index in bone scintigraphy].
Sebastjanowicz, Przemysław; Iwanowski, Jacek; Piwowarska-Bilska, Hanna; Elbl, Bogumiła; Birkenfeld, Bożena
Scintigraphy of sacroiliac joints as functional imaging provides unique information on the existing disease process. By using radiopharmaceuticals that allow imaging of the metabolic activity within the joint, it is possible to assess the stage of the disease, even when there are no lesions in radiological images. Quantitative analysis of scintigrams of sacroiliac joints is performed by comparing the uptake in both of them in relation to the uptake in the sacral bone area. The values of sacroiliac (SI/S) indices are influenced by the age of the patient, sex, state of health, and a range of individual biological features. Therefore, reference values of SI/S ratios are very important for medical specialists who describe and diagnose locomotor system diseases. The aim of this paper is to develop a reference range of sacroiliac ratios. The innovativeness of this paper involves examining sacroiliac ratios for various age groups, in children and adult patients, taking their sex into consideration. The study comprised a group of 335 people with proper bone scintigraphy. These people were divided into children and patients aged ≥21. Children were divided into 4 age groups (1–5; 6–10; 11–15; 16–20) and adults into 6 age groups (21–30; 31–40; 41–50; 51–60; 61–70; ≥71). Sacroiliac ratios were calculated using the method of three rectangular region of interests located on the left and right sacroiliac joint and on the sacral bone. The sacroiliac ratio was calculated for both joints by dividing the average number of counts within a selected sacroiliac joint by the average number of counts within the sacral bone. SI/S borderline reference values covered the range of 1.18÷2.28 that was obtained for children aged ≤5 and for the group of 11–15-year-olds. Considerable discrepancies in the values of the coefficient for women and men were seen among 31–50-year-olds. Borderline reference results for the entire control group cover the range of 1.18 ±2.28. The lower reference value applies to ≤5-year-olds, whereas the higher value applies to the group of 11–15-year-olds. The standard deviation value obtained was highest in paediatric patients. The results indicate the occurrence of significant individual differences between patients in this age group.
Oberkircher, Ludwig; Born, Sebastian; Struewer, Johannes; Bliemel, Christopher; Buecking, Benjamin; Wack, Christina; Bergmann, Martin; Ruchholtz, Steffen; Krüger, Antonio
2014-10-01
Injuries of the subaxial cervical spine including facet joints and posterior ligaments are common. Potential surgical treatments consist of anterior, posterior, or anterior-posterior fixation. Because each approach has its advantages and disadvantages, the best treatment is debated. This biomechanical cadaver study compared the effect of different facet joint injuries on primary stability following anterior plate fixation. Fractures and plate fixation were performed on 15 fresh-frozen intact cervical spines (C3-T1). To simulate a translation-rotation injury in all groups, complete ligament rupture and facet dislocation were simulated by dissecting the entire posterior and anterior ligament complex between C-4 and C-5. In the first group, the facet joints were left intact. In the second group, one facet joint between C-4 and C-5 was removed and the other side was left intact. In the third group, both facet joints between C-4 and C-5 were removed. The authors next performed single-level anterior discectomy and interbody grafting using bone material from the respective thoracic vertebral bodies. An anterior cervical locking plate was used for fixation. Continuous loading was performed using a servohydraulic test bench at 2 N/sec. The mean load failure was measured when the implant failed. In the group in which both facet joints were intact, the mean load failure was 174.6 ± 46.93 N. The mean load failure in the second group where only one facet joint was removed was 127.8 ± 22.83 N. In the group in which both facet joints were removed, the mean load failure was 73.42 ± 32.51 N. There was a significant difference between the first group (both facet joints intact) and the third group (both facet joints removed) (p < 0.05, Kruskal-Wallis test). In this cadaver study, primary stability of anterior plate fixation for dislocation injuries of the subaxial cervical spine was dependent on the presence of the facet joints. If the bone in one or both facet joints is damaged in the clinical setting, anterior plate fixation in combination with bone grafting might not provide sufficient stabilization; additional posterior stabilization may be needed.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-11
... bisphosphonate use for the treatment and prevention of osteoporosis (thinning and weakening of bones that increases the chance of having a broken bone) in light of the emergence of the safety concerns of osteonecrosis of the jaw (jawbone death) and atypical femur fractures (unusual broken thigh bone) that may be...
A rare case of primary bone lymphoma mimicking a pelvic abscess
Al Wattar, BH; Mohanty, K
2011-01-01
Primary bone lymphoma (PBL) is a rare, malignant, neoplastic disorder of the skeleton that accounts for less than 5% of all primary bone tumours. We present an extremely rare case of PBL mimicking a pelvic abscess around the sacroiliac joint, which has never been reported in the medical literature, and discuss learning points highlighted from this case. PMID:22004625
21 CFR 888.3810 - Wrist joint ulnar (hemi-wrist) polymer prosthesis.
Code of Federal Regulations, 2014 CFR
2014-04-01
... polyethylene intended to be implanted into the intramedullary canal of the bone and held in place by a suture. Its purpose is to cover the resected end of the distal ulna to control bone overgrowth and to provide...
21 CFR 888.3810 - Wrist joint ulnar (hemi-wrist) polymer prosthesis.
Code of Federal Regulations, 2010 CFR
2010-04-01
... polyethylene intended to be implanted into the intramedullary canal of the bone and held in place by a suture. Its purpose is to cover the resected end of the distal ulna to control bone overgrowth and to provide...
21 CFR 888.3810 - Wrist joint ulnar (hemi-wrist) polymer prosthesis.
Code of Federal Regulations, 2013 CFR
2013-04-01
... polyethylene intended to be implanted into the intramedullary canal of the bone and held in place by a suture. Its purpose is to cover the resected end of the distal ulna to control bone overgrowth and to provide...
21 CFR 888.3810 - Wrist joint ulnar (hemi-wrist) polymer prosthesis.
Code of Federal Regulations, 2011 CFR
2011-04-01
... polyethylene intended to be implanted into the intramedullary canal of the bone and held in place by a suture. Its purpose is to cover the resected end of the distal ulna to control bone overgrowth and to provide...
21 CFR 888.3810 - Wrist joint ulnar (hemi-wrist) polymer prosthesis.
Code of Federal Regulations, 2012 CFR
2012-04-01
... polyethylene intended to be implanted into the intramedullary canal of the bone and held in place by a suture. Its purpose is to cover the resected end of the distal ulna to control bone overgrowth and to provide...
Saxena, Amol; DiDomenico, Lawrence A; Widtfeldt, Arthur; Adams, Todd; Kim, Will
2005-01-01
This study assessed arthrodesis procedures performed in the foot and ankle of high-risk patients following implantation of an internal electrical bone stimulator. Criteria defining patients as "high risk" included diabetes, obesity, habitual tobacco and/or alcohol use, immunosuppressive therapy, and previous history of nonunion. Standard arthrodesis protocol of bone graft and internal fixation was supplemented with the implantable electrical bone stimulator. A retrospective, multicenter review was conducted of 26 patients (28 cases) who underwent 28 forefoot and hindfoot arthrodeses from 1998 to 2002. Complete fusion was defined as bony trabeculation across the joint, lack of motion across the joint, maintenance of hardware/fixation, and absence of radiographic signs of nonunion or pseudoarthrosis. Radiographic consolidation was achieved in 24 of the 28 cases at an average 10.3+/-4.0 weeks. Followup averaged 27.2 months. Complications included 2 patients who sustained breakage of the cables to the bone stimulator. Five patients underwent additional surgery. Four of the 5 patients had additional surgery in order to achieve arthrodesis. All 4 went on to subsequent arthrodesis. This study demonstrates how arthrodesis of the foot and ankle may be enhanced by the use of implantable electrical bone stimulation.
Sequeiros, Roberto Blanco; Fritz, Jan; Ojala, Risto; Carrino, John A
2011-08-01
Magnetic resonance imaging (MRI) is promising tool for image-guided therapy. In musculoskeletal setting, image-guided therapy is used to direct diagnostic and therapeutic procedures and to steer patient management. Studies have demonstrated that MRI-guided interventions involving bone, soft tissue, joints, and intervertebral disks are safe and in selected indications can be the preferred action to manage clinical situation. Often, these procedures are technically similar to those performed in other modalities (computed tomography, fluoroscopy) for bone and soft tissue lesions. However, the procedural perception to the operator can be very different to other modalities because of the vastly increased data.Magnetic resonance imaging guidance is particularly advantageous should the lesion not be visible by other modalities, for selective lesion targeting, intra-articular locations, cyst aspiration, and locations adjacent to surgical hardware. Palliative tumor-related pain management such as ablation therapy forms a subset of procedures that are frequently performed under MRI. Another suitable entity for MRI guidance are the therapeutic percutaneous osseous or joint-related benign or reactive conditions such as osteoid osteoma, epiphyseal bone bridging, osteochondritis dissecans, bone cysts, localized bone necrosis, and posttraumatic lesions. In this article, we will describe in detail the technical aspects of performing MRI-guided therapeutic musculoskeletal procedures as well as the clinical indications.
Ramme, Austin J; Voss, Kevin; Lesporis, Jurinus; Lendhey, Matin S; Coughlin, Thomas R; Strauss, Eric J; Kennedy, Oran D
2017-05-01
MicroCT imaging allows for noninvasive microstructural evaluation of mineralized bone tissue, and is essential in studies of small animal models of bone and joint diseases. Automatic segmentation and evaluation of articular surfaces is challenging. Here, we present a novel method to create knee joint surface models, for the evaluation of PTOA-related joint changes in the rat using an atlas-based diffeomorphic registration to automatically isolate bone from surrounding tissues. As validation, two independent raters manually segment datasets and the resulting segmentations were compared to our novel automatic segmentation process. Data were evaluated using label map volumes, overlap metrics, Euclidean distance mapping, and a time trial. Intraclass correlation coefficients were calculated to compare methods, and were greater than 0.90. Total overlap, union overlap, and mean overlap were calculated to compare the automatic and manual methods and ranged from 0.85 to 0.99. A Euclidean distance comparison was also performed and showed no measurable difference between manual and automatic segmentations. Furthermore, our new method was 18 times faster than manual segmentation. Overall, this study describes a reliable, accurate, and automatic segmentation method for mineralized knee structures from microCT images, and will allow for efficient assessment of bony changes in small animal models of PTOA.
Mourant, Judith R.; Anderson, Gerhard D.; Bigio, Irving J.; Johnson, Tamara M.
1996-01-01
Method for fusing bone. The present invention is a method for joining hard tissue which includes chemically removing the mineral matrix from a thin layer of the surfaces to be joined, placing the two bones together, and heating the joint using electromagnetic radiation. The goal of the method is not to produce a full-strength weld of, for example, a cortical bone of the tibia, but rather to produce a weld of sufficient strength to hold the bone halves in registration while either external fixative devices are applied to stabilize the bone segments, or normal healing processes restore full strength to the tibia.
Barneveld, A; van Weeren, P R
1999-11-01
It was hypothesised that imposition of different exercise levels at a young age would lead to differences in bone density in the third tarsal bone and to difference in the prevalence of pathological lesions that might contribute to the development of bone spavin later in life. Furthermore, based on earlier literature, it was hypothesised that such lesions could be classified as a manifestation of osteochondrosis. Changes in bone density in the third tarsal bone and early pathological changes in the articular cartilage of the distal intertarsal joint were studied in the offspring of sires with radiographic evidence of osteochondrosis in either stifle or hock. Twenty-four foals were studied at age 5 months after having been subjected to different exercise programmes (box-rest, box-rest with sprint training, pasture exercise) from age one week. Nineteen other foals that originally belonged to the same exercise groups were studied at age 11 months, after they had been weaned, housed together and subjected to an identical low level exercise regimen for an additional 6 months. Bone density was quantified using a microscopic technique. Histomorphological analysis was performed semiquantitatively and using high detail radiography techniques. At age 5 months, mean +/- s.d. bone density in the compact bone of the third tarsal bone was significantly lower in the box-rested foals (37 +/- 4%) than in both the trained and pastured foals (48 +/- 7% and 52 +/- 11%, respectively). After 6 months of identical exercise the previously box-rested foals showed an increase in bone density (53 +/- 12%) which became similar to the value found in the formerly pastured foals (52 +/- 8%). Major pathological lesions (chondrocyte necrosis, fragmentation and chondrone formation) of the articular cartilage of the third and central tarsal bones were already present at age 5 months, but were significantly more numerous at 11 months. There was no relation between the number of cartilage lesions and the osteochondrosis status of the foals. Only 2 lesions in 11-month-old foals had histological characteristics compatible with osteochondrosis, all other lesions were degenerative in nature. It is concluded that bone density of the compact bone of the subchondral bone plate in the third tarsal bone reacts strongly to variations in exercise at a very young age. Low bone density, caused by lack of exercise, can be compensated for when exercise is later increased. Pathological changes in the distal intertarsal joint are common at 5 months and increase to 11 months. These lesions are degenerative in nature and seem not to be related to osteochondrosis. Although the clinical relevance of these abnormalities is uncertain, they may be relevant for the development of osteoarthritic processes in this region later in life.
Bone Disease in Axial Spondyloarthritis.
Van Mechelen, Margot; Gulino, Giulia Rossana; de Vlam, Kurt; Lories, Rik
2018-05-01
Axial spondyloarthritis is a chronic inflammatory skeletal disorder with an important burden of disease, affecting the spine and sacroiliac joints and typically presenting in young adults. Ankylosing spondylitis, diagnosed by the presence of structural changes to the skeleton, is the prototype of this disease group. Bone disease in axial spondyloarthritis is a complex phenomenon with the coexistence of bone loss and new bone formation, both contributing to the morbidity of the disease, in addition to pain caused by inflammation. The skeletal structural changes respectively lead to increased fracture risk and to permanent disability caused by ankylosis of the sacroiliac joints and the spine. The mechanism of this new bone formation leading to ankylosis is insufficiently known. The process appears to originate from entheses, specialized structures that provide a transition zone in which tendon and ligaments insert into the underlying bone. Growth factor signaling pathways such as bone morphogenetic proteins, Wnts, and Hedgehogs have been identified as molecular drivers of new bone formation, but the relationship between inflammation and activation of these pathways remains debated. Long-standing control of inflammation appears necessary to avoid ankylosis. Recent evidence and concepts suggest an important role for biomechanical factors in both the onset and progression of the disease. With regard to new bone formation, these processes can be understood as ectopic repair responses secondary to inflammation-induced bone loss and instability. In this review, we discuss the clinical implications of the skeletal changes as well as the underlying molecular mechanisms, the relation between inflammation and new bone formation, and the potential role of biomechanical stress.
Tins, Bernhard; Cassar-Pullicino, Victor; McCall, Iain; Cool, Paul; Williams, David; Mangham, David
2006-04-01
The standard treatment for chondroblastoma is surgery, which can be difficult and disabling due to its apo- or epiphyseal location. Radiofrequency (RF) ablation potentially offers a minimally invasive alternative. The often large size of chondroblastomas can make treatment with plain electrode systems difficult or impossible. This article describes the preliminary experience of RF treatment of chondroblastomas with a multi-tined expandable RF electrode system. Four cases of CT guided RF treatment are described. The tumour was successfully treated in all cases. In two cases, complications occurred; infraction of a subarticular chondroblastoma in one case and cartilage and bone damage in the unaffected compartment of a knee joint in the other. Radiofrequency treatment near a joint surface threatens the integrity of cartilage and therefore long-term joint function. In weight-bearing areas, the lack of bone replacement in successfully treated lesions contributes to the risk of mechanical failure. Multi-tined expandable electrode systems allow the treatment of large chondroblastomas. In weight-bearing joints and lesions near to the articular cartilage, there is a risk of cartilage damage and mechanical weakening of the bone. In lesions without these caveats, RF ablation appears promising. The potential risks and benefits need to be evaluated for each case individually.
Cemented total knee replacement in 24 dogs: surgical technique, clinical results, and complications.
Allen, Matthew J; Leone, Kendall A; Lamonte, Kimberly; Townsend, Katy L; Mann, Kenneth A
2009-07-01
To characterize the performance of cemented total knee replacement (TKR) in dogs. Preclinical research study. Skeletally mature, male Hounds (25-30 kg; n=24) with no preexisting joint pathology. Dogs had unilateral cemented TKR and were evaluated at 6, 12, 26, or 52 weeks (6 dogs/time point) by radiography, bone density analysis, visual gait assessment, and direct measurement of thigh circumference and stifle joint range of motion as indicators of functional recovery. At study end, the stability of the cemented tibial component was determined by destructive mechanical testing. Joint stability was excellent in 16 dogs (67%) and good in 8 dogs. None of the tibial components had evidence of migration or periprosthetic osteolysis whereas 1 femoral component was loose at 52 weeks. There was an early and significant decrease in tibial bone density, likely because of disuse of the operated limb. Dogs returned to full activity by 12 weeks. The tibial cement-bone interface maintained its strength over 52 weeks. Cement provides stable fixation of the tibial component in canine TKR. Cemented TKR yields adequate clinical function and stifle joint excursion in the dog. Clinical studies are needed to determine the long-term fate of cemented TKR implants, to assess the influence of implant design on implant fixation and wear, and to obtain objective functional data.
Comparison of loading rate-dependent injury modes in a murine model of post-traumatic osteoarthritis
Lockwood, Kevin A.; Chu, Bryce T.; Anderson, Matthew J.; Haudenschild, Dominik R.; Christiansen, Blaine A.
2014-01-01
Post-traumatic osteoarthritis (PTOA) is a common long-term consequence of joint injuries such as anterior cruciate ligament (ACL) rupture. In this study we used a tibial compression overload mouse model to compare knee injury induced at low speed (1 mm/s), which creates an avulsion fracture, to injury induced at high speed (500 mm/s), which induces midsubstance tear of the ACL. Mice were sacrificed at 0 days, 10 days, 12 weeks, or 16 weeks post-injury, and joints were analyzed with micro-computed tomography, whole joint histology, and biomechanical laxity testing. Knee injury with both injury modes caused considerable trabecular bone loss by 10 days post-injury, with the Low Speed Injury group (avulsion) exhibiting a greater amount of bone loss than the High Speed Injury group (midsubstance tear). Immediately after injury, both injury modes resulted in greater than 2-fold increases in total AP joint laxity relative to control knees. By 12 and 16 weeks post-injury, total AP laxity was restored to uninjured control values, possibly due to knee stabilization via osteophyte formation. This model presents an opportunity to explore fundamental questions regarding the role of bone turnover in PTOA, and the findings of this study support a biomechanical mechanism of osteophyte formation following injury. PMID:24019199
Pathology of Gray Wolf Shoulders: Lessons in Species and Aging.
Lawler, Dennis; Becker, Julia; Reetz, Jennifer; Goodmann, Pat; Evans, Richard; Rubin, David; Tangredi, Basil; Widga, Christopher; Sackman, Jill; Martin, Terrence; Kohn, Luci; Smith, Gail
2016-10-01
We examined scapula glenoids (n = 14) and proximal articular humeri (n = 14) of seven gray wolves that were maintained in a sanctuary park setting. Immediately after death, observations were made visually in situ and by radiography. Further observations were made in a museum laboratory setting, prior to and following clearing of soft tissues. Selected dry bone specimens were evaluated using computed tomography. Significant cartilage erosion and osteoarthropathy were identified in all shoulder joints. No single evaluation method yielded maximal information. Plain film radiography revealed only more severe changes. Computed tomography yielded more detail and clarity than standard radiography. Direct examination of articular cartilage informed about joint soft tissue, and dry bone informed about externally visible bone pathology. These data provide a basis for biological, biomedical, ecological, and archaeological scientists to improve retrospective interpretations of bone lesions. They further support developing plausible differential diagnoses for features of ancient and modern animal bones. We noted a dog-like capacity for wolf longevity in a non-free-roaming environment. However, aged wolves' life spans far exceeded those of similar-sized domestic dogs and breeds, suggesting the possibility of an important species difference that should be explored. We suggest also a hypothesis that the driving force for joint pathology in sheltered non-domestic species may relate significantly to achieving the longevity that is possible biologically, but is uncommon in the wild because of differential stochastic influences. Anat Rec, 299:1338-1347, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Segmenting the Femoral Head and Acetabulum in the Hip Joint Automatically Using a Multi-Step Scheme
NASA Astrophysics Data System (ADS)
Wang, Ji; Cheng, Yuanzhi; Fu, Yili; Zhou, Shengjun; Tamura, Shinichi
We describe a multi-step approach for automatic segmentation of the femoral head and the acetabulum in the hip joint from three dimensional (3D) CT images. Our segmentation method consists of the following steps: 1) construction of the valley-emphasized image by subtracting valleys from the original images; 2) initial segmentation of the bone regions by using conventional techniques including the initial threshold and binary morphological operations from the valley-emphasized image; 3) further segmentation of the bone regions by using the iterative adaptive classification with the initial segmentation result; 4) detection of the rough bone boundaries based on the segmented bone regions; 5) 3D reconstruction of the bone surface using the rough bone boundaries obtained in step 4) by a network of triangles; 6) correction of all vertices of the 3D bone surface based on the normal direction of vertices; 7) adjustment of the bone surface based on the corrected vertices. We evaluated our approach on 35 CT patient data sets. Our experimental results show that our segmentation algorithm is more accurate and robust against noise than other conventional approaches for automatic segmentation of the femoral head and the acetabulum. Average root-mean-square (RMS) distance from manual reference segmentations created by experienced users was approximately 0.68mm (in-plane resolution of the CT data).
Ochman, Sabine; Evers, Julia; Raschke, Michael J; Vordemvenne, Thomas
2012-01-01
The treatment of complex fractures of the distal tibia, ankle, and talus with soft tissue damage, bone loss, and nonreconstructable joints for which the optimal timing for reduction and fixation has been missed is challenging. In such cases primary arthrodesis might be a treatment option. We report a series of multi-injured patients with severe soft tissue damage and bone loss, who were treated with a retrograde tibiotalocalcaneal arthrodesis nail as a minimally invasive treatment option for limb salvage. After a median follow-up of 5.4 years, all patients returned to their former profession. The ankle and bone fusion was complete, with moderate functional results and quality of life. Calcaneotibial arthrodesis using a retrograde nail is a good treatment option for nonreconstructable fractures of the ankle joint with severe bone loss and poor soft tissue quality in selected patients with multiple injuries, in particular, those involving both lower extremities, as a salvage procedure. Copyright © 2012 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
Mourant, J.R.; Anderson, G.D.; Bigio, I.J.; Johnson, T.M.
1996-03-12
The present invention is a method for joining hard tissue which includes chemically removing the mineral matrix from a thin layer of the surfaces to be joined, placing the two bones together, and heating the joint using electromagnetic radiation. The goal of the method is not to produce a full-strength weld of, for example, a cortical bone of the tibia, but rather to produce a weld of sufficient strength to hold the bone halves in registration while either external fixative devices are applied to stabilize the bone segments, or normal healing processes restore full strength to the tibia.
Herati, Ramin Sedaghat; Knox, Van W; O'Donnell, Patricia; D'Angelo, Marina; Haskins, Mark E; Ponder, Katherine P
2008-11-01
Mucopolysaccharidosis I (MPS I) and MPS VII are due to deficient activity of the glycosaminoglycan-degrading lysosomal enzymes alpha-L-iduronidase and beta-glucuronidase, respectively, and result in abnormal bones and joints. Here, the severity of skeletal disease in MPS I and MPS VII dogs and the effects of neonatal gene therapy were evaluated. For untreated MPS VII dogs, the lengths of the second cervical vertebrae (C2) and the femur were only 56% and 84% of normal, respectively, and bone dysplasia and articular erosions, and joint subluxation were severe. Previously, we reported that neonatal intravenous injection of a retroviral vector (RV) with the appropriate gene resulted in expression in liver and blood cells, and high serum enzyme activity. In this study, we demonstrate that C2 and femurs of RV-treated MPS VII dogs were longer at 82% and 101% of normal, respectively, and there were partial improvements of qualitative abnormalities. For untreated MPS I dogs, the lengths of C2 and femurs (91% and 96% of normal, respectively) were not significantly different from normal dogs. Qualitative changes in MPS I bones and joints were generally modest and were partially improved with RV treatment, although cervical spine disease was severe and was difficult to correct with gene therapy in both models. The greater severity of skeletal disease in MPS VII than in MPS I dogs may reflect accumulation of chondroitin sulfate in cartilage in MPS VII, or could relate to the specific mutations. Neonatal RV-mediated gene therapy ameliorates, but does not prevent, skeletal disease in MPS I and MPS VII dogs.
Margulies, Bryan S; DeBoyace, Sean D; Parsons, Adrienne M; Policastro, Connor G; Ee, Jessica S S; Damron, Timothy S
2015-05-01
We sought to demonstrate whether there is a difference in the local mesenchymal stem cells (MSC) niche obtained from patients undergoing their first total joint replacement surgery versus those patients undergoing a revision surgery for an failing total joint implant. Bone marrow aspirates collected from patients undergoing revision total joint arthroplasty were observed to be less clonal and the expression of PDGFRα, CD51, ALCAM, endoglin, CXCL12, nestin, and nucleostemin were decreased. Revision MSC were also less able to commit to an osteoblast-lineage or an adipocyte-lineage. Further, in revision MSC, OPG, and IL6 expression were increased. Monocytes, derived from revision whole marrow aspirates, were less capable of differentiating into osteoclasts, the cells implicated in the pathologic degradation of bone. Osteoclasts were also not observed in tissue samples collected adjacent to the implants of revision patients; however, the alternatatively activated M2-macrophage phenotype was observed in parallel with pathologic accumulations of amyloid-β, τ-protien and 3-nitrotyrosine. Despite the limited numbers of patients examined, our data suggest that nucleostemin may be a useful functional marker for MSC while the observation of M2-macrophage infiltration around the implant lays the foundation for future investigation into a novel mechanism that we propose is associated with loose total joint implants. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
The Glasgow-Maastricht foot model, evaluation of a 26 segment kinematic model of the foot.
Oosterwaal, Michiel; Carbes, Sylvain; Telfer, Scott; Woodburn, James; Tørholm, Søren; Al-Munajjed, Amir A; van Rhijn, Lodewijk; Meijer, Kenneth
2016-01-01
Accurately measuring of intrinsic foot kinematics using skin mounted markers is difficult, limited in part by the physical dimensions of the foot. Existing kinematic foot models solve this problem by combining multiple bones into idealized rigid segments. This study presents a novel foot model that allows the motion of the 26 bones to be individually estimated via a combination of partial joint constraints and coupling the motion of separate joints using kinematic rhythms. Segmented CT data from one healthy subject was used to create a template Glasgow-Maastricht foot model (GM-model). Following this, the template was scaled to produce subject-specific models for five additional healthy participants using a surface scan of the foot and ankle. Forty-three skin mounted markers, mainly positioned around the foot and ankle, were used to capture the stance phase of the right foot of the six healthy participants during walking. The GM-model was then applied to calculate the intrinsic foot kinematics. Distinct motion patterns where found for all joints. The variability in outcome depended on the location of the joint, with reasonable results for sagittal plane motions and poor results for transverse plane motions. The results of the GM-model were comparable with existing literature, including bone pin studies, with respect to the range of motion, motion pattern and timing of the motion in the studied joints. This novel model is the most complete kinematic model to date. Further evaluation of the model is warranted.
Nowakowski, Andrej M; Stangel, Melanie; Grupp, Thomas M; Valderrabano, Victor
2012-09-27
The important roles of the anterior cruciate ligament regarding knee stability, physiologic kinematics, and proprioception are unquestioned. Thus, various efforts have been made to retain the ACL during total knee arthroplasty (TKA). Neither of the existing solutions to this problem, i.e. bicruciate retaining prostheses and implantation of two unicondylar prostheses, has been successful because of concept-specific problems as well as general difficulties with implant fixation. The new transversal support tibial plateau concept is a prosthesis of two individual joint surfaces reinforced beneath the articular line by joint surface supports and buttressed by a single transversal support. This configuration, which enables retention of both cruciate ligaments, should provide good bone fixation and ensure long-term alignment of the individual joint surfaces. In the current study, four prototypes based on this novel concept were developed and the resulting primary stability was analyzed using adapted load testing. The test set-up, with the model-loading of specially prepared Sawbones® and a sinusoidal oscillating load transmission with 25 000 cycles over 10 increasing load levels, achieved subsidence, which enabled comparison of the four different model variants regarding primary stability in view of bone anchoring. The model variant (TSmobile) that allowed transverse glide of the joint surface supports along the transversal support revealed the largest subsidence. A rigid attachment of the joint surface supports of the transversal support tibial plateau thus appears to offer increased primary stability regarding bone anchoring.
Madsen, Karen Berenth; Egund, Niels; Jurik, Anne Grethe
2010-02-01
We investigated the potential concordance of 2 different magnetic resonance (MR) sequences - short-tau inversion recovery (STIR) and fat-saturated T1-weighted spin-echo after application of gadolinium (Gd) contrast medium to detect active bone marrow abnormalities at the sacroiliac joints (SIJ) in patients with spondyloarthritis (SpA). Blinded and using the Danish scoring method, we evaluated transaxial MR images of the 2 sequences in 40 patients with SpA with disease duration of 3-14 years. Both the cartilaginous and ligamentous portions of the SIJ were analyzed. There was a significant positive correlation between the activity scores obtained by STIR and Gd-enhanced sequences (p < 0.0001). Agreement in the detection of bone marrow abnormalities occurred in 60 of the 80 joints, 35 with and 25 without signs of active disease. Discordance with STIR-positive marrow activity scores occurred in only 11 joints; Gd-enhanced positive scores in 9 joints. The STIR sequence detected remnants of marrow activity in the periphery of chronic fatty replacement not seen or partly obscured on the Gd sequence. Small subchondral enhancing lesions may not be scored on the STIR sequence, mostly because of reduced image resolution. Active bone marrow abnormalities were detected nearly equally well with STIR and Gd-enhanced fat-suppressed T1 sequences in patients with SpA, with STIR being most sensitive to visualize active abnormalities in the periphery of chronic changes.
Code of Federal Regulations, 2011 CFR
2011-04-01
... fixed in the intramedullary canal of the femur by impaction with or without use of bone cement. The... nonporous metal alloys, and used with or without bone cement. (b) Classification. Class II. [54 FR 48239...
Code of Federal Regulations, 2013 CFR
2013-04-01
... fixed in the intramedullary canal of the femur by impaction with or without use of bone cement. The... nonporous metal alloys, and used with or without bone cement. (b) Classification. Class II. [54 FR 48239...
Code of Federal Regulations, 2014 CFR
2014-04-01
... fixed in the intramedullary canal of the femur by impaction with or without use of bone cement. The... nonporous metal alloys, and used with or without bone cement. (b) Classification. Class II. [54 FR 48239...
Code of Federal Regulations, 2012 CFR
2012-04-01
... fixed in the intramedullary canal of the femur by impaction with or without use of bone cement. The... nonporous metal alloys, and used with or without bone cement. (b) Classification. Class II. [54 FR 48239...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-19
..., and wolf tooth necklace containing drilled canines; 4 drilled canines; 6 bone awls; 9 polished or worked bone tools; 2 polished small mammal mandibles; 1 worked canine; 2 fish spine needles; 1 antler...
Code of Federal Regulations, 2010 CFR
2010-04-01
... fixed in the intramedullary canal of the femur by impaction with or without use of bone cement. The... nonporous metal alloys, and used with or without bone cement. (b) Classification. Class II. [54 FR 48239...
Gracility of the modern Homo sapiens skeleton is the result of decreased biomechanical loading.
Ryan, Timothy M; Shaw, Colin N
2015-01-13
The postcranial skeleton of modern Homo sapiens is relatively gracile compared with other hominoids and earlier hominins. This gracility predisposes contemporary humans to osteoporosis and increased fracture risk. Explanations for this gracility include reduced levels of physical activity, the dissipation of load through enlarged joint surfaces, and selection for systemic physiological characteristics that differentiate modern humans from other primates. This study considered the skeletal remains of four behaviorally diverse recent human populations and a large sample of extant primates to assess variation in trabecular bone structure in the human hip joint. Proximal femur trabecular bone structure was quantified from microCT data for 229 individuals from 31 extant primate taxa and 59 individuals from four distinct archaeological human populations representing sedentary agriculturalists and mobile foragers. Analyses of mass-corrected trabecular bone variables reveal that the forager populations had significantly higher bone volume fraction, thicker trabeculae, and consequently lower relative bone surface area compared with the two agriculturalist groups. There were no significant differences between the agriculturalist and forager populations for trabecular spacing, number, or degree of anisotropy. These results reveal a correspondence between human behavior and bone structure in the proximal femur, indicating that more highly mobile human populations have trabecular bone structure similar to what would be expected for wild nonhuman primates of the same body mass. These results strongly emphasize the importance of physical activity and exercise for bone health and the attenuation of age-related bone loss.
Electrical stimulation on joint contracture: an experiment in rat model with direct current.
Akai, M; Shirasaki, Y; Tateishi, T
1997-04-01
To examine whether electrical stimulation could decrease the degree of joint stiffness in a rat lower extremity model. Rat knee joints were surgically immobilized in a flexed position for 3 weeks. Two groups of rats were stimulated with 20 microA and 50 microA constant direct current. Another group had surgical intervention and sham electrodes without electricity. The hind leg was extirpated and prepared for a sample with the femur-knee joint-tibia unit. Recording the knee flexion angle with extension torque, the degree of joint contracture was assessed biomechanically by measuring the bone-joint-bone sample as a cantilever. Measurement was performed with (1) spectral analysis of transfer function measurement using random mechanical noise with frequency range from 1 to 50Hz, and (2) dynamic stiffness and loss tangent with steady-state sinusoidal excitation (11 and 35Hz). The results showed that no significant difference or trend was found in vibration analysis among three groups. However, spectral analysis of transfer function measurement revealed more deformation against load, and more viscous nature in the stimulation groups, especially in low frequency band, than in the sham group. Electrical stimulation with constant direct current has a possibility of reducing the degree of joint contracture.
Atrey, A; Heylen, S; Gosling, O; Porteous, M J L; Haddad, F S
2016-07-01
Joint replacement of the hip and knee remain very satisfactory operations. They are, however, expensive. The actual manufacturing of the implant represents only 30% of the final cost, while sales and marketing represent 40%. Recently, the patents on many well established and successful implants have expired. Companies have started producing and distributing implants that purport to replicate existing implants with good long-term results. The aims of this paper are to assess the legality, the monitoring and cost saving implications of such generic implants. We also assess how this might affect the traditional orthopaedic implant companies. Cite this article: Bone Joint J 2016;98-B:892-900. ©2016 The British Editorial Society of Bone & Joint Surgery.
[APPLICATION OF COMPRESSION MINI-SCREWS IN TREATMENT OF PATIENTS WITH INJURY OF ELBOW JOINT BONES].
Neverov, V A; Egorov, K S
2015-01-01
A case report presents the experience of application of compression pileateless mini-screws (Gerbert's screws) in treatment of intra-articular fractures, which formed the elbow joint (44 cases). There were performed 32 operations concerning fracture of head of radius, 10 operations on the occasion of fractures of distal section of the humerus and 2 operations on the coronoid process. Long-term treatment results were followed-up in 31 patients during more than 6 months. On basis of analysis of treatment results the authors made a conclusion that the application of mini-screws in case of bone fractures, which formed the elbow joint, allowed realization of stable osteosynthesis after anatomic reposition of articular surfaces, obtaining good anatomical and functional result and shortened the terms of patient's treatment.
Woo, Sang Hyun; Bang, Chi Young; Ahn, Hee-Chan; Kim, Sung-Jung; Choi, Jun-Young
2017-05-01
We present a one-stage procedure for lengthening the fourth brachymetatarsia with autogenous iliac bone and cartilage cap grafting for the anatomical reconstruction of the metatarsophalangeal (MTP) joint METHODS: During the last 8 years, 56 feet in 41 patients with congenital brachymetatarsia of the fourth toe were corrected with a one-stage operation to reposition the articular cartilage cap to the distal part of interpositional iliac bone graft at the metatarsal epiphysis. The length of the harvested iliac bone graft was 22.9 mm on average. The mean fixation period was 58.5 days, and the mean gain in length and percentage increase was 20.9 mm and 39%, respectively. MRI showed a stable MTP joint over viable cartilage cap in 83.3% of the cases. Mean postoperative American Orthopedic Foot and Ankle Society lesser MTP-interphalangeal score was 82.0. Neither neurovascular impairment nor recurrence of brachymetatarsia occurred in the mean follow-up period of 43.6 months. All patients were satisfied with the postoperative cosmetic results. Thirteen patients (23.2%) complained of limited active dorsiflexion of the fourth toe, and extensor adhesion was released by extensor tenolysis in only one patient. In a single case of nonunion at the bone graft site, additional surgery was not necessary. Anatomical reconstruction of the fourth brachymetatarsia with one-stage interpositional iliac bone and cartilage cap grafting resulted in excellent cosmetic results and a physiologic MTP joint, providing the benefits of one-stage lengthening with a low complication rate. Therapeutic, IV. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Hirahara, Naohisa; Kaneda, Takashi; Muraoka, Hirotaka; Fukuda, Taiga; Ito, Kotaro; Kawashima, Yusuke
2017-04-01
The purpose of this study was to determine the characteristic magnetic resonance imaging (MRI) findings indicating bone and soft tissue involvement in patients with rheumatoid arthritis (RA) of the temporomandibular joints (TMJs). Twenty-one patients with RA and TMJ pain who underwent MRI examination of the TMJs at the authors' hospital from August 2006 to December 2014 were included in this study. Twenty-two patients with normal TMJs who underwent MRI examination at the authors' hospital from November to December 2014 were included as controls. MRI findings were compared between the 2 groups. MRI findings of RA in the TMJ included 1) abnormal disc position (95.2%), 2) abnormal disc morphology (83.3%), 3) joint effusion (30.9%), 4) osseous changes in the mandibular condyle (83.3%), 5) synovial proliferation (pannus; 85.7%), 6) erosion of the articular eminence and glenoid fossa (9.52%), 7) deformity of the articular eminence and glenoid fossa (16.6%), 8) abnormal bone marrow signal in the mandibular condyle (83.3%), and 9) swelling of lymph nodes in the parotid glands (78.5%). The abnormal bone marrow signal and pannus in the mandibular condyle and lymph node swelling in the parotid glands were markedly more common in patients with RA than in controls. MRI findings of RA of the TMJs were characterized by bone and soft tissue involvement, including abnormal bone marrow signal of the mandibular condyle, pannus, and swelling of lymph nodes in the parotid glands. These characteristic MRI findings could be useful in detecting RA in the TMJ in a clinical situation. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Curis, Emmanuel; Pestre, Vincent; Jullien, Vincent; Eyrolle, Luc; Archambeau, Denis; Morand, Philippe; Gatin, Laure; Karoubi, Matthieu; Pinar, Nicolas; Dumaine, Valérie; Nguyen Van, Jean-Claude; Babinet, Antoine; Anract, Philippe; Salmon, Dominique
2015-08-01
Clindamycin, a lincosamide antibiotic with a good penetration into bone, is widely used for treating bone and joint infections by Gram-positive pathogens. To be active against Staphylococcus spp, its concentration at the infection site, C, must be higher than 2× the minimal inhibitory concentration (MIC). The aims of the work were to study the determinants of plasma clindamycin trough concentration, C min, especially the effect of co-treatment with rifampicin, and the consequences on clinical outcome. An observational study was performed, involving patients hospitalized for a bone and joint infection who received clindamycin as part of their antibiotic treatment. Target C min was 1.7 mg/L, to reach the desired bone concentration/MIC >2, assuming a 30% diffusion into bone and MIC = 2.5 mg/L. Sixty one patients (mean age: 56.8 years, 57.4% male) were included between 2007 and 2011. 72.1% underwent a surgery on a foreign material, and 91.1% were infected by at least a Gram-positive micro-organism. Median C min value was 1.39 mg/L, with 58% of the values below the threshold value of 1.7 mg/L. Median C min was significantly lower for patients taking rifampicin (0.46 vs 1.52 mg/L, p = 0.034). No patient with rifampicin co-administration reached the target concentration (maximal C min: 0.85 mg/L). After a median follow-up of 17 months (1.5-38 months), 4 patients relapsed, 2 died and 47 (88.7% of the patients with known outcome) were cured, independently of association with rifampicin. This study shows the high inter-variability of plasma clindamycin concentration and confirms that co-treatment with rifampicin significantly decreases clindamycin trough concentrations.
Brucella and Osteoarticular Cell Activation: Partners in Crime
Giambartolomei, Guillermo H.; Arriola Benitez, Paula C.; Delpino, M. Victoria
2017-01-01
Osteoarticular brucellosis is the most common presentation of human active disease although its prevalence varies widely. The three most common forms of osteoarticular involvement are sacroiliitis, spondylitis, and peripheral arthritis. The molecular mechanisms implicated in bone damage have been recently elucidated. B. abortus induces bone damage through diverse mechanisms in which TNF-α and the receptor activator of nuclear factor kappa-B ligand (RANKL)-the natural modulator of bone homeostasis are involved. These processes are driven by inflammatory cells, like monocytes/macrophages, neutrophils, Th17 CD4+ T, and B cells. In addition, Brucella abortus has a direct effect on osteoarticular cells and tilts homeostatic bone remodeling. These bacteria inhibit bone matrix deposition by osteoblasts (the only bone cells involved in bone deposition), and modify the phenotype of these cells to produce matrix metalloproteinases (MMPs) and cytokine secretion, contributing to bone matrix degradation. B. abortus also affects osteoclasts (cells naturally involved in bone resorption) by inducing an increase in osteoclastogenesis and osteoclast activation; thus, increasing mineral and organic bone matrix resorption, contributing to bone damage. Given that the pathology induced by Brucella species involved joint tissue, experiments conducted on synoviocytes revealed that besides inducing the activation of these cells to secrete chemokines, proinflammatory cytokines and MMPS, the infection also inhibits synoviocyte apoptosis. Brucella is an intracellular bacterium that replicates preferentially in the endoplasmic reticulum of macrophages. The analysis of B. abortus-infected synoviocytes indicated that bacteria also replicate in their reticulum suggesting that they could use this cell type for intracellular replication during the osteoarticular localization of the disease. Finally, the molecular mechanisms of osteoarticular brucellosis discovered recently shed light on how the interaction between B. abortus and immune and osteoarticular cells may play an important role in producing damage in joint and bone. PMID:28265268
2016-10-01
acute joint distraction treatment suffered some complications and did not appear to improve cartilage health when applied at this acute phase. We have...immature animals from their herd as a result of PRRS (porcine respiratory and reproduction syndrome ). This forced purchase of animals from alternative more...joint distraction applied acutely after IAF are the focus of Aim 1, and the effects of joint distraction applied shortly after the bone has healed are
Karlo, Christoph A; Patcas, Raphael; Kau, Thomas; Watzal, Helmut; Signorelli, Luca; Müller, Lukas; Ullrich, Oliver; Luder, Hans-Ulrich; Kellenberger, Christian J
2012-07-01
To determine the best suited sagittal MRI sequence out of a standard temporo-mandibular joint (TMJ) imaging protocol for the assessment of the cortical bone of the mandibular condyles of cadaveric specimens using micro-CT as the standard of reference. Sixteen TMJs in 8 human cadaveric heads (mean age, 81 years) were examined by MRI. Upon all sagittal sequences, two observers measured the cortical bone thickness (CBT) of the anterior, superior and posterior portions of the mandibular condyles (i.e. objective analysis), and assessed for the presence of cortical bone thinning, erosions or surface irregularities as well as subcortical bone cysts and anterior osteophytes (i.e. subjective analysis). Micro-CT of the condyles was performed to serve as the standard of reference for statistical analysis. Inter-observer agreements for objective (r = 0.83-0.99, P < 0.01) and subjective (κ = 0.67-0.88) analyses were very good. Mean CBT measurements were most accurate, and cortical bone thinning, erosions, surface irregularities and subcortical bone cysts were best depicted on the 3D fast spoiled gradient echo recalled sequence (3D FSPGR). The most reliable MRI sequence to assess the cortical bone of the mandibular condyles on sagittal imaging planes is the 3D FSPGR sequence. MRI may be used to assess the cortical bone of the TMJ. • Depiction of cortical bone is best on 3D FSPGR sequences. • MRI can assess treatment response in patients with TMJ abnormalities.
Code of Federal Regulations, 2010 CFR
2010-04-01
... component is intended to be fixed with bone cement. The acetabular component is intended for use without bone cement (§ 888.3027). (b) Classification. Class III. (c) Date PMA or notice of completion of a PDP...
Code of Federal Regulations, 2011 CFR
2011-04-01
... component is intended to be fixed with bone cement. The acetabular component is intended for use without bone cement (§ 888.3027). (b) Classification. Class III. (c) Date PMA or notice of completion of a PDP...
Code of Federal Regulations, 2012 CFR
2012-04-01
... component is intended to be fixed with bone cement. The acetabular component is intended for use without bone cement (§ 888.3027). (b) Classification. Class III. (c) Date PMA or notice of completion of a PDP...
Code of Federal Regulations, 2013 CFR
2013-04-01
... component is intended to be fixed with bone cement. The acetabular component is intended for use without bone cement (§ 888.3027). (b) Classification. Class III. (c) Date PMA or notice of completion of a PDP...
Code of Federal Regulations, 2014 CFR
2014-04-01
... component is intended to be fixed with bone cement. The acetabular component is intended for use without bone cement (§ 888.3027). (b) Classification. Class III. (c) Date PMA or notice of completion of a PDP...
Okamoto, Masanori; Yamazaki, Hiroshi; Yoshimura, Yasuo; Aoki, Kaoru; Tanaka, Atsushi; Kato, Hiroyuki
2017-01-01
Abstract Rationale: Isolated metastasis to the hand bones is very rare. Only seven cases of metastasis to the trapezium have been reported. To the best of our knowledge, this is the first report of a single metastasis to the trapezium from a gastric adenocarcinoma. Patient concerns: A 62-year-old man presented with pain and massive swelling in the right carpometacarpal joint of the thumb. Diagnoses: The patient was diagnosed with trapezial metastasis of advanced gastric adenocarcinoma. Interventions: The patient underwent systemic chemotherapy with cisplatin and S-1, radiotherapy to the metastatic bone, and treatment with denosumab. One year later, the huge metastatic tumor was resected, and the hand was reconstructed using vascularized scapular bone. Outcomes: Eighteen months postoperatively, the patient was satisfied with the appearance of the reconstructed hand and was able to use his right thumb in activities of daily living. Lessons: Although rare, metastasis to the trapezium should be considered in patients with persistent and progressive thumb CMC joint pain. PMID:29390390
Developing bones are differentially affected by compromised skeletal muscle formation
Nowlan, Niamh C.; Bourdon, Céline; Dumas, Gérard; Tajbakhsh, Shahragim; Prendergast, Patrick J.; Murphy, Paula
2010-01-01
Mechanical forces are essential for normal adult bone function and repair, but the impact of prenatal muscle contractions on bone development remains to be explored in depth in mammalian model systems. In this study, we analyze skeletogenesis in two ‘muscleless’ mouse mutant models in which the formation of skeletal muscle development is disrupted; Myf5nlacZ/nlacZ:MyoD−/− and Pax3Sp/Sp (Splotch). Ossification centers were found to be differentially affected in the muscleless limbs, with significant decreases in bone formation in the scapula, humerus, ulna and femur, but not in the tibia. In the scapula and humerus, the morphologies of ossification centers were abnormal in muscleless limbs. Histology of the humerus revealed a decreased extent of the hypertrophic zone in mutant limbs but no change in the shape of this region. The elbow joint was also found to be clearly affected with a dramatic reduction in the joint line, while no abnormalities were evident in the knee. The humeral deltoid tuberosity was significantly reduced in size in the Myf5nlacZ/nlacZ:MyoD−/− mutants while a change in shape but not in size was found in the humeral tuberosities of the Pax3Sp/Sp mutants. We also examined skeletal development in a ‘reduced muscle’ model, the Myf5nlacZ/+:MyoD−/− mutant, in which skeletal muscle forms but with reduced muscle mass. The reduced muscle phenotype appeared to have an intermediate effect on skeletal development, with reduced bone formation in the scapula and humerus compared to controls, but not in other rudiments. In summary, we have demonstrated that skeletal development is differentially affected by the lack of skeletal muscle, with certain rudiments and joints being more severely affected than others. These findings indicate that the response of skeletal progenitor cells to biophysical stimuli may depend upon their location in the embryonic limb, implying a complex interaction between mechanical forces and location-specific regulatory factors affecting bone and joint development. PMID:19948261
The History of the European Bone and Joint Infection Society (EBJIS)
Walenkamp, Geert H.I.M.
2018-01-01
The European Bone and Joint Infection Society (EBJIS) was founded by a French initiative as a Study Group in 1982. The group of 26 founding members increased to around 60 members in 1992, and membership was limited to surgeons from Europe, experienced in orthopedic infections. In 1993, a transformation to a Society was performed with a more open structure for all kind of doctors and scientists. Annual meetings, a Travelling Fellowship, research projects and instructional courses were organized. Professional support and improved publicity has resulted in an increase to more than 400 members, from worldwide. PMID:29761069
Trunnion corrosion: what surgeons need to know in 2018.
Berstock, J R; Whitehouse, M R; Duncan, C P
2018-01-01
To present a surgically relevant update of trunnionosis. Systematic review performed April 2017. Trunnionosis accounts for approximately 2% of the revision total hip arthroplasty (THA) burden. Thinner (reduced flexural rigidity) and shorter trunnions (reduced contact area at the taper junction) may contribute to mechanically assisted corrosion, exacerbated by high offset implants. The contribution of large heads and mixed metallurgy is discussed. Identifying causative risk factors is challenging due to the multifactorial nature of this problem. Cite this article: Bone Joint J 2018;100-B(1 Supple A):44-9. ©2018 The British Editorial Society of Bone & Joint Surgery.
Hemke, Robert; Tzaribachev, Nikolay; Nusman, Charlotte M; van Rossum, Marion A J; Maas, Mario; Doria, Andrea S
2017-08-01
There is increasing evidence that early therapeutic intervention improves longterm joint outcome in juvenile idiopathic arthritis (JIA). Given the existence of highly effective treatments, there is an urgent need for reliable and accurate measures of disease activity and joint damage in JIA. Our objective was to assess the reliability of 2 magnetic resonance imaging (MRI) scoring methods: the Juvenile Arthritis MRI Scoring (JAMRIS) system and the International Prophylaxis Study Group (IPSG) consensus score, for evaluating disease status of the knee in patients with JIA. Four international readers independently scored an MRI dataset of 25 JIA patients with clinical knee involvement. Synovial thickening, joint effusion, bone marrow changes, cartilage lesions, bone erosions, and subchondral cysts were scored using the JAMRIS and IPSG systems. Further, synovial enhancement, infrapatellar fat pad heterogeneity, tendinopathy, and enthesopathy were scored. Interreader reliability was analyzed by using the generalized κ, ICC, and the smallest detectable difference (SDD). ICC regarding interreader reliability ranged from 0.33 (95% CI 0.12-0.52, SDD = 0.29) for enthesopathy up to 0.95 (95% CI 0.92-0.97, SDD = 3.19) for synovial thickening. Good interreader reliability was found concerning joint effusion (ICC 0.93, 95% CI 0.89-0.95, SDD = 0.51), synovial enhancement (ICC 0.90, 95% CI 0.85-0.94, SDD = 9.85), and bone marrow changes (ICC 0.87, 95% CI 0.80-0.92, SDD = 10.94). Moderate to substantial reliability was found concerning cartilage lesions and bone erosions (ICC 0.55-0.72, SDD 1.41-13.65). The preliminary results are promising for most of the scored JAMRIS and IPSG items. However, further refinement of the scoring system is warranted for unsatisfactorily reliable items such as bone erosions, cartilage lesions, and enthesopathy.
Honda, Kosuke; Natsumi, Yoshiko; Urade, Masahiro
2008-12-01
The relationship of bony changes in the condylar surfaces in articular disc displacement without reduction in temporomandibular joint (TMJ) was investigated using diagnostic imaging. The study also evaluated whether the bony changes in the condylar surfaces limit disc and condyle motion, and produce pathological joint sounds. Thirty-seven joints in 28 patients diagnosed with degenerative bony changes in the condylar surfaces radiographically and anterior disc displacement without reduction using magnetic resonance imaging (MRI) were studied. The bony changes were assessed by radiographic examination and classified into two types: pathological bone changes (PBCs) including erosion, osteophyte formation and deformity, and adaptive bone changes (ABCs) including flattening and concavity. MRI was performed on the TMJ to examine the configuration and position of the discs. Joint sounds in the TMJ were determined using electrovibratograghy with a joint vibration analysis. The articular disc motion to the condyle in the PBC group was smaller than in the ABC group irrespective of the configuration of the disc, even though there were no significant differences between the two types of bony changes in the disc position during jaw closing. The joint vibration analysis of the TMJ showed that joint sounds with a higher frequency were observed in the PBC group than in the ABC group. High energy levels needed to produce the higher frequencies (over 300 Hz) were observed only in the PBC group.
Zeininger, Angel; Richmond, Brian G; Hartman, Gideon
2011-06-01
Great apes and humans use their hands in fundamentally different ways, but little is known about joint biomechanics and internal bone variation. This study examines the distribution of mineral density in the third metacarpal heads in three hominoid species that differ in their habitual joint postures and loading histories. We test the hypothesis that micro-architectural properties relating to bone mineral density reflect habitual joint use. The third metacarpal heads of Pan troglodytes, Pongo pygmaeus, and Homo sapiens were sectioned in a sagittal plane and imaged using backscattered electron microscopy (BSE-SEM). For each individual, 72 areas of subarticular cortical (subchondral) and trabecular bone were sampled from within 12 consecutive regions of the BSE-SEM images. In each area, gray levels (representing relative mineralization density) were quantified. Results show that chimpanzee, orangutan, and human metacarpal III heads have different gray level distributions. Weighted mean gray levels (WMGLs) in the chimpanzee showed a distinct pattern in which the 'knuckle-walking' regions (dorsal) and 'climbing' regions (palmar) are less mineralized, interpreted to reflect elevated remodeling rates, than the distal regions. Pongo pygmaeus exhibited the lowest WMGLs in the distal region, suggesting elevated remodeling rates in this region, which is loaded during hook grip hand postures associated with suspension and climbing. Differences among regions within metacarpal heads of the chimpanzee and orangutan specimens are significant (Kruskal-Wallis, p < 0.001). In humans, whose hands are used for manipulation as opposed to locomotion, mineralization density is much more uniform throughout the metacarpal head. WMGLs were significantly (p < 0.05) lower in subchondral compared to trabecular regions in all samples except humans. This micro-architectural approach offers a means of investigating joint loading patterns in primates and shows significant differences in metacarpal joint biomechanics among great apes and humans. Copyright © 2011 Elsevier Ltd. All rights reserved.
Aslam, Saima; Darouiche, Rabih O.
2012-01-01
Prosthetic joint infections represent a major therapeutic challenge for both healthcare providers and patients. This paper reviews the predisposing factors, pathogenesis, microbiology, diagnosis, treatment and prophylaxis of prosthetic joint infection. The most optimal management strategy should be identified based on a number of considerations including type and duration of infection, antimicrobial susceptibility of the infecting pathogen, condition of infected tissues and bone stock, patient wishes and functional status. PMID:22847032
Adaptation of bone to physiological stimuli.
Judex, S; Gross, T S; Bray, R C; Zernicke, R F
1997-05-01
The ability of bone to alter its morphology in response to local physical stimuli is predicated upon the appropriate recruitment of bone cell populations. In turn, the ability to initiate cellular recruitment is influenced by numerous local and systemic factors. In this paper, we discuss data from three ongoing projects from our laboratory that examine how physiological processes influence adaptation and growth in the skeleton. In the first study, we recorded in vivo strains to quantify the locomotion-induced distribution of two parameters closely related to bone fluid flow strain rate and strain gradients. We found that the magnitude of these parameters (and thus the implied fluid flow) varies substantially within a given cross-section, and that while strain rate magnitude increases uniformly with elevated speed, strain gradients increase focally as gait speed is increased. Secondly, we examined the influence of vascular alterations on bone adaptation by assessing bone blood flow and bone mechanical properties in an in vivo model of trauma-induced joint laxity. A strong negative correlation (r2 = 0.8) was found between increased blood flow (76%) in the primary and secondary spongiosa and decreased stiffness (-34%) following 14 weeks of joint laxity. These data suggest that blood flow and/or vascular adaptation may interact closely with bone adaptation initiated by trauma. Thirdly, we examined the effect of a systemic influence upon skeletal health. After 4 weeks old rats were fed high fat-sucrose diets for 2 yr, their bone mechanical properties were significantly reduced. These changes were primarily due to interference with normal calcium absorption. In the aggregate, these studies emphasize the complexity of bone's normal physical environment, and also illustrate the potential interactions of local and systemic factors upon the process by which bone adapts to physical stimuli.
A unified theory of bone healing and nonunion: BHN theory.
Elliott, D S; Newman, K J H; Forward, D P; Hahn, D M; Ollivere, B; Kojima, K; Handley, R; Rossiter, N D; Wixted, J J; Smith, R M; Moran, C G
2016-07-01
This article presents a unified clinical theory that links established facts about the physiology of bone and homeostasis, with those involved in the healing of fractures and the development of nonunion. The key to this theory is the concept that the tissue that forms in and around a fracture should be considered a specific functional entity. This 'bone-healing unit' produces a physiological response to its biological and mechanical environment, which leads to the normal healing of bone. This tissue responds to mechanical forces and functions according to Wolff's law, Perren's strain theory and Frost's concept of the "mechanostat". In response to the local mechanical environment, the bone-healing unit normally changes with time, producing different tissues that can tolerate various levels of strain. The normal result is the formation of bone that bridges the fracture - healing by callus. Nonunion occurs when the bone-healing unit fails either due to mechanical or biological problems or a combination of both. In clinical practice, the majority of nonunions are due to mechanical problems with instability, resulting in too much strain at the fracture site. In most nonunions, there is an intact bone-healing unit. We suggest that this maintains its biological potential to heal, but fails to function due to the mechanical conditions. The theory predicts the healing pattern of multifragmentary fractures and the observed morphological characteristics of different nonunions. It suggests that the majority of nonunions will heal if the correct mechanical environment is produced by surgery, without the need for biological adjuncts such as autologous bone graft. Cite this article: Bone Joint J 2016;98-B:884-91. ©2016 The British Editorial Society of Bone & Joint Surgery.
Latt, L Daniel; Glisson, Richard R; Adams, Samuel B; Schuh, Reinhard; Narron, John A; Easley, Mark E
2015-10-01
Transverse tarsal joint arthrodesis is commonly performed in the operative treatment of hindfoot arthritis and acquired flatfoot deformity. While fixation is typically achieved using screws, failure to obtain and maintain joint compression sometimes occurs, potentially leading to nonunion. External fixation is an alternate method of achieving arthrodesis site compression and has the advantage of allowing postoperative compression adjustment when necessary. However, its performance relative to standard screw fixation has not been quantified in this application. We hypothesized that external fixation could provide transverse tarsal joint compression exceeding that possible with screw fixation. Transverse tarsal joint fixation was performed sequentially, first with a circular external fixator and then with compression screws, on 9 fresh-frozen cadaveric legs. The external fixator was attached in abutting rings fixed to the tibia and the hindfoot and a third anterior ring parallel to the hindfoot ring using transverse wires and half-pins in the tibial diaphysis, calcaneus, and metatarsals. Screw fixation comprised two 4.3 mm headless compression screws traversing the talonavicular joint and 1 across the calcaneocuboid joint. Compressive forces generated during incremental fixator foot ring displacement to 20 mm and incremental screw tightening were measured using a custom-fabricated instrumented miniature external fixator spanning the transverse tarsal joint. The maximum compressive force generated by the external fixator averaged 186% of that produced by the screws (range, 104%-391%). Fixator compression surpassed that obtainable with screws at 12 mm of ring displacement and decreased when the tibial ring was detached. No correlation was found between bone density and the compressive force achievable by either fusion method. The compression across the transverse tarsal joint that can be obtained with a circular external fixator including a tibial ring exceeds that which can be obtained with 3 headless compression screws. Screw and external fixator performance did not correlate with bone mineral density. This study supports the use of external fixation as an alternative method of generating compression to help stimulate fusion across the transverse tarsal joints. The findings provide biomechanical evidence to support the use of external fixation as a viable option in transverse tarsal joint fusion cases in which screw fixation has failed or is anticipated to be inadequate due to suboptimal bone quality. © The Author(s) 2015.
[Temporo-mandibular joint. Morpho-functional considerations].
Scutariu, M D; Indrei, Anca
2004-01-01
The temporo-mandibular joint is distinguished from most other synovial joints of the body by two features: 1. the two jointed components carry teeth whose position and occlusion introduce a very strong influence on the movements of the temporo-mandibular joint and 2. its articular surfaces are not covered by hyaline cartilage, but by a dense, fibrous tissue. This paper describes the parts of the temporo-mandibular joint: the articular surfaces (the condylar process of the mandible and the glenoid part of the temporal bone), the fibrocartilaginous disc which is interposed between the mandibular and the temporal surface, the fibrous capsule of the temporo-mandibular joint and the ligaments of this joint. All these parts present a very strong adaptation at the important functions of the temporo-mandibular joint.
Barker, W H J; Wright, I M
2017-03-01
A technique for minimally invasive repair of slab fractures of the third tarsal bone has not previously been reported. Results of third tarsal bone slab fracture repair in Thoroughbred racehorses are lacking. To report the outcomes of repair of uniplanar frontal slab factures of the third tarsal bone using a single 3.5 mm cortex screw in lag fashion. Retrospective case series. Case records of horses that had undergone this procedure were reviewed. Seventeen horses underwent surgery. Eighteen percent of cases had wedge shaped third tarsal bones. A point midway between the long and lateral digital extensor tendons and centrodistal and tarsometatarsal joints created a suitable entry site for implants. The fracture location, configuration and curvature of the third tarsal bone and associated joints requires a dorsolateral proximal-plantaromedial distal trajectory for the screw, which was determined by preplaced needles. There were no complications and fractures healed in all cases at 4-6 months post surgery. Seventy-nine percent of horses returned to racing and, at the time of reporting, 3 are in post operative rehabilitation programmes. The technique reported provides a safe, appropriate and repeatable means of repairing slab fractures of the third tarsal bone. Surgical repair is a viable alternative to conservative management. © 2016 EVJ Ltd.
Total hip arthroplasty in patients with neuromuscular imbalance.
Konan, S; Duncan, C P
2018-01-01
Patients with neuromuscular imbalance who require total hip arthroplasty (THA) present particular technical problems due to altered anatomy, abnormal bone stock, muscular imbalance and problems of rehabilitation. In this systematic review, we studied articles dealing with THA in patients with neuromuscular imbalance, published before April 2017. We recorded the demographics of the patients and the type of neuromuscular pathology, the indication for surgery, surgical approach, concomitant soft-tissue releases, the type of implant and bearing, pain and functional outcome as well as complications and survival. Recent advances in THA technology allow for successful outcomes in these patients. Our review suggests excellent benefits for pain relief and good functional outcome might be expected with a modest risk of complication. Cite this article: Bone Joint J 2018;100-B(1 Supple A):17-21. ©2018 The British Editorial Society of Bone & Joint Surgery.
An atlas of radiological interpretation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calder, J.F.; Chessell, G.
1988-01-01
This book is concerned with pathologic entities and their impact on the skeleton. The book is divided into nine chapters. After a discussion of normal anatomic features, the authors discuss trauma, avascular necrosis and osteochondritis, bone infections, diseases of the joints, bone tumors, reticuloses and hemopoietic disorders, endocrine and metabolic bone diseases, and congenital abnormalities. A line drawing accompanies every radiograph to contrast the pathologic findings with the normal anatomic features.
van Ballegooijen, Adriana J; Pilz, Stefan; Tomaschitz, Andreas; Grübler, Martin R; Verheyen, Nicolas
2017-01-01
Vitamins D and K are both fat-soluble vitamins and play a central role in calcium metabolism. Vitamin D promotes the production of vitamin K-dependent proteins, which require vitamin K for carboxylation in order to function properly. The purpose of this review is to summarize available evidence of the synergistic interplay between vitamins D and K on bone and cardiovascular health. Animal and human studies suggest that optimal concentrations of both vitamin D and vitamin K are beneficial for bone and cardiovascular health as supported by genetic, molecular, cellular, and human studies. Most clinical trials studied vitamin D and K supplementation with bone health in postmenopausal women. Few intervention trials studied vitamin D and K supplementation with cardiovascular-related outcomes. These limited studies indicate that joint supplementation might be beneficial for cardiovascular health. Current evidence supports the notion that joint supplementation of vitamins D and K might be more effective than the consumption of either alone for bone and cardiovascular health. As more is discovered about the powerful combination of vitamins D and K, it gives a renewed reason to eat a healthy diet including a variety of foods such as vegetables and fermented dairy for bone and cardiovascular health.
Pilz, Stefan; Tomaschitz, Andreas; Grübler, Martin R.; Verheyen, Nicolas
2017-01-01
Vitamins D and K are both fat-soluble vitamins and play a central role in calcium metabolism. Vitamin D promotes the production of vitamin K-dependent proteins, which require vitamin K for carboxylation in order to function properly. The purpose of this review is to summarize available evidence of the synergistic interplay between vitamins D and K on bone and cardiovascular health. Animal and human studies suggest that optimal concentrations of both vitamin D and vitamin K are beneficial for bone and cardiovascular health as supported by genetic, molecular, cellular, and human studies. Most clinical trials studied vitamin D and K supplementation with bone health in postmenopausal women. Few intervention trials studied vitamin D and K supplementation with cardiovascular-related outcomes. These limited studies indicate that joint supplementation might be beneficial for cardiovascular health. Current evidence supports the notion that joint supplementation of vitamins D and K might be more effective than the consumption of either alone for bone and cardiovascular health. As more is discovered about the powerful combination of vitamins D and K, it gives a renewed reason to eat a healthy diet including a variety of foods such as vegetables and fermented dairy for bone and cardiovascular health. PMID:29138634
della Croce, U; Cappozzo, A; Kerrigan, D C
1999-03-01
Human movement analysis using stereophotogrammetry is based on the reconstruction of the instantaneous laboratory position of selected bony anatomical landmarks (AL). For this purpose, knowledge of an AL's position in relevant bone-embedded frames is required. Because ALs are not points but relatively large and curved areas, their identification by palpation or other means is subject to both intra- and inter-examiner variability. In addition, the local position of ALs, as reconstructed using an ad hoc experimental procedure (AL calibration), is affected by photogrammetric errors. The intra- and inter-examiner precision with which local positions of pelvis and lower limb palpable bony ALs can be identified and reconstructed were experimentally assessed. Six examiners and two subjects participated in the study. Intra- and inter-examiner precision (RMS distance from the mean position) resulted in the range 6-21 mm and 13-25 mm, respectively. Propagation of the imprecision of ALs to the orientation of bone-embedded anatomical frames and to hip, knee and ankle joint angles was assessed. Results showed that this imprecision may cause distortion in joint angle against time functions to the extent that information relative to angular movements in the range of 10 degrees or lower may be concealed. Bone geometry parameters estimated using the same data showed that the relevant precision does not allow for reliable bone geometry description. These findings, together with those relative to skin movement artefacts reported elsewhere, assist the human movement analyst's consciousness of the possible limitations involved in 3D movement analysis using stereophotogrammetry and call for improvements of the relevant experimental protocols.
Cartilage and bone damage in rheumatoid arthritis
Maśliński, Włodzimierz; Prochorec-Sobieszek, Monika; Nieciecki, Michał; Sudoł-Szopińska, Iwona
2018-01-01
Rheumatoid arthritis (RA), which is a chronic inflammatory disease with a multifactorial aetiology, leads to partial or permanent disability in the majority of patients. It is characterised by persistent synovitis and formation of pannus, i.e. invasive synovial tissue, which ultimately leads to destruction of the cartilage, subchondral bone, and soft tissues of the affected joint. Moreover, inflammatory infiltrates in the subchondral bone, which can lead to inflammatory cysts and later erosions, play an important role in the pathogenesis of RA. These inflammatory infiltrates can be seen in magnetic resonance imaging (MRI) as bone marrow oedema (BME). BME is observed in 68–75% of patients in early stages of RA and is considered a precursor of rapid disease progression. The clinical significance of synovitis and bone marrow oedema as precursors of erosions is well established in daily practice, and synovitis, BME, cysts, hyaline cartilage defects and bone erosions can be detected by ultrasonography (US) and MRI. A less explored subject is the inflammatory and destructive potential of intra- and extra-articular fat tissue, which can also be evaluated in US and MRI. Finally, according to certain hypotheses, hyaline cartilage damage may trigger synovitis and lead to irreversible joint damage, and MRI may be used for preclinical detection of cartilage biochemical abnormalities. This review discusses the pathomechanisms that lead to articular cartilage and bone damage in RA, including erosion precursors such as synovitis and osteitis and panniculitis, as well as the role of imaging techniques employed to detect early cartilage damage and bone erosions. PMID:29853727
Ultrasonographic findings of shoulder teno-muscular structures in symptomatic and asymptomatic dogs.
Barella, Gabriele; Lodi, Matteo; Faverzani, Stefano
2017-11-14
B-mode sonographic evaluation of shoulder joint in dogs provides qualitative information concerning mainly tendon and muscles structures. Although the sonographic findings of tenomuscular lesions have been described previously, their frequency in symptomatic and asymptomatic patients has not been reported yet. Aim of the study was to describe and compare qualitative ultrasonographic findings of shoulder joint in clinically symptomatic and asymptomatic dogs and to speculate which lesions might be considered major responsible for lameness. Fifty-two dogs with shoulder lameness and 58 asymptomatic dogs (both with unremarkable radiographic findings) underwent ultrasonographic B-mode examination of the scapulohumeral joint. Lesions detected were recorded and statistically compared between groups. Significant differences between groups were observed for the number of ultrasonographic abnormalities detected and for fluid accumulation, biceps brachii tendon (BT) lesions and bone surface irregularities. Sonography was considered useful for the determination of lesions absence and for the detection of BT lesions, fluid accumulation, muscle lacerations and bone surface irregularities. The odds for symptomatic dogs were greater than for asymptomatic patients to ultrasonographically diagnose BT lesions, fluid accumulation and bone surface irregularities. Ultrasound has proven to be a useful tool in the evaluation of tenomusculoskeletal structures of shoulder in dogs with unremarkable radiographic findings. Our results suggest that ultrasonography is useful in the diagnosis of tendon abnormalities, fluid accumulation, muscle lacerations and bone surface irregularities as potential contributors to shoulder lameness in dogs.
2014-01-01
Introduction Articular cartilage needs sulfated-glycosaminoglycans (sGAGs) to withstand high pressures while mechanically loaded. Chondrocyte sGAG synthesis is regulated by exposure to compressive forces. Moderate physical exercise is known to improve cartilage sGAG content and might protect against osteoarthritis (OA). This study investigated whether rat knee joints with sGAG depleted articular cartilage through papain injections might benefit from moderate exercise, or whether this increases the susceptibility for cartilage degeneration. Methods sGAGs were depleted from cartilage through intraarticular papain injections in the left knee joints of 40 Wistar rats; their contralateral joints served as healthy controls. Of the 40 rats included in the study, 20 rats remained sedentary, and the other 20 were subjected to a moderately intense running protocol. Animals were longitudinally monitored for 12 weeks with in vivo micro-computed tomography (μCT) to measure subchondral bone changes and single-photon emission computed tomography (SPECT)/CT to determine synovial macrophage activation. Articular cartilage was analyzed at 6 and 12 weeks with ex vivo contrast-enhanced μCT and histology to measure sGAG content and cartilage thickness. Results All outcome measures were unaffected by moderate exercise in healthy control joints of running animals compared with healthy control joints of sedentary animals. Papain injections in sedentary animals resulted in severe sGAG-depleted cartilage, slight loss of subchondral cortical bone, increased macrophage activation, and osteophyte formation. In running animals, papain-induced sGAG-depleted cartilage showed increased cartilage matrix degradation, sclerotic bone formation, increased macrophage activation, and more osteophyte formation. Conclusions Moderate exercise enhanced OA progression in papain-injected joints and did not protect against development of the disease. This was not restricted to more-extensive cartilage damage, but also resulted in pronounced subchondral sclerosis, synovial macrophage activation, and osteophyte formation. PMID:24472689
Iundusi, Riccardo; Gasbarra, Elena; D'Arienzo, Michele; Piccioli, Andrea; Tarantino, Umberto
2015-05-13
Reduction of tibial plateau fractures and maintain a level of well aligned congruent joint is key to a satisfactory clinical outcome and is important for the return to pre-trauma level of activity. Stable internal fixation support early mobility and weight bearing. The augmentation with bone graft substitute is often required to support the fixation to mantain reduction. For these reasons there has been development of novel bone graft substitutes for trauma applications and in particular synthetic materials based on calcium phosphates and/or apatite combined with calcium sulfates. Injectable bone substitutes can optimize the filling of irregular bone defects. The purpose of this study was to assess the potential of a novel injectable bone substitute CERAMENT™|BONE VOID FILLER in supporting the initial reduction and preserving alignment of the joint surface until fracture healing. From June 2010 through May 2011 adult patients presenting with acute, closed and unstable tibial plateau fractures which required both grafting and internal fixation, were included in a prospective study with percutaneous or open reduction and internal fixation (ORIF) augmented with an injectable ceramic biphasic bone substitute CERAMENT™|BONE VOID FILLER (BONESUPPORT™, Lund, Sweden) to fill residual voids. Clinical follow up was performed at 1, 3, 9 and 12 months and any subsequent year; including radiographic analysis and Rasmussen system for knee functional grading. Twenty four patients, balanced male-to-female, with a mean age of 47 years, were included and followed with an average of 44 months (range 41-52 months). Both Schatzker and Müller classifications were used and was type II or 41-B3 in 7 patients, type III or 41-B2 in 12 patients, type IV or 41-C1 in 2 patients and type VI or 41-C3 in 3 patients, respectively. The joint alignement was satisfactory and manteined within a range of 2 mm, with an average of 1.18 mm. The mean Rasmussen knee function score was 26.5, with 14 patients having an excellent result and the remaining 10 with a good result. It can be concluded that radiological and clinical outcome was satisfactory and obtained in all cases without complications. This injectable novel biphasic hydroxyapatite and calcium sulfate ceramic material is a valuable armamentarium in the treatment of trauma where bone graft is required.
Herati, Ramin Sedaghat; Knox, Van W.; O’Donnell, Patricia; D’Angelo, Marina; Haskins, Mark E.; Ponder, Katherine P.
2009-01-01
Mucopolysaccharidosis I (MPS I) and MPS VII are due to deficient activity of the glycosaminoglycan-degrading lysosomal enzymes α-L-iduronidase and β-glucuronidase, respectively, and result in abnormal bones and joints. Here, the severity of skeletal disease in MPS I and MPS VII dogs and the effects of neonatal gene therapy were evaluated. For untreated MPS VII dogs, the lengths of the second cervical vertebrae (C2) and the femur were only 56% and 84% of normal, respectively, and bone dysplasia and articular erosions, and joint subluxation were severe. Previously, we reported that neonatal intravenous injection of a retroviral vector (RV) with the appropriate gene resulted in expression in liver and blood cells, and high serum enzyme activity. In this study, we demonstrate that C2 and femurs of RV-treated MPS VII dogs were longer at 82% and 101% of normal, respectively, and there were partial improvements of qualitative abnormalities. For untreated MPS I dogs, the lengths of C2 and femurs (91% and 96% of normal, respectively) were not significantly different from normal dogs. Qualitative changes in MPS I bones and joints were generally modest and were partially improved with RV treatment, although cervical spine disease was severe and was difficult to correct with gene therapy in both models. The greater severity of skeletal disease in MPS VII than in MPS I dogs may reflect accumulation of chondroitin sulfate in cartilage in MPS VII, or could relate to the specific mutations. Neonatal RV-mediated gene therapy ameliorates, but does not prevent, skeletal disease in MPS I and MPS VII dogs. PMID:18707908
Koulikov, Victoria; Lerman, Hedva; Kesler, Mikhail; Even-Sapir, Einat
2015-12-01
Cadmium zinc telluride (CZT) solid-state detectors have been recently introduced in the field of nuclear medicine in cardiology and breast imaging. The aim of the current study was to evaluate the performance of the novel detectors (CZT) compared to that of the routine NaI(Tl) in bone scintigraphy. A dual-headed CZT-based camera dedicated originally to breast imaging has been used, and in view of the limited size of the detectors, the hands were chosen as the organ for assessment. This is a clinical study. Fifty-eight consecutive patients (total 116 hands) referred for bone scan for suspected hand pathology gave their informed consent to have two acquisitions, using the routine camera and the CZT-based camera. The latter was divided into full-dose full-acquisition time (FD CZT) and reduced-dose short-acquisition time (RD CZT) on CZT technology, so three image sets were available for analysis. Data analysis included comparing the detection of hot lesions and identification of the metacarpophalangeal, proximal interphalangeal, and distal interphalangeal joints. A total of 69 hot lesions were detected on the CZT image sets; of these, 61 were identified as focal sites of uptake on NaI(Tl) data. On FD CZT data, 385 joints were identified compared to 168 on NaI(Tl) data (p < 0.001). There was no statistically significant difference in delineation of joints between FD and RD CZT data as the latter identified 383 joints. Bone scintigraphy using a CZT-based gamma camera is associated with improved lesion detection and anatomic definition. The superior physical characteristics of this technique raised a potential reduction in administered dose and/or acquisition time without compromising image quality.
Wu, J; Wang, K; Xu, J; Ruan, G; Zhu, Q; Cai, J; Ren, J; Zheng, S; Zhu, Z; Otahal, P; Ding, C
2017-09-01
The roles of ghrelin in knee osteoarthritis (OA) are unclear. This study aimed to examine cross-sectional associations of ghrelin with knee symptoms, joint structures and cartilage or bone biomarkers in patients with knee OA. This study included 146 patients with symptomatic knee OA. Serum levels of ghrelin and cartilage or bone biomarkers including cartilage oligomeric matrix protein (COMP), cross linked C-telopeptide of type I collagen (CTXI), cross linked N-telopeptide of type I collagen (NTXI), N-terminal procollagen III propeptide (PIIINP), and matrix metalloproteinase (MMP)-3, 10, 13 were measured using Enzyme-linked immunosorbent assay (ELISA). Knee symptoms were assessed using the Western Ontario and McMaster Universities Arthritis Index (WOMAC). Infrapatellar fat pad (IPFP) volume, IPFP signal intensity alternation, cartilage defects, bone marrow lesions (BMLs) and effusion-synovitis were assessed using the (MRI). Osteophytes and joint space narrowing (JSN) were assessed using the Osteoarthritis Research Society International atlas. After adjustment for potential confounders, ghrelin quartiles were positively associated with knee symptoms including pain, stiffness, dysfunction and total score (quartile 4 vs 1: β 24.19, 95% CI 8.13-40.25). Ghrelin quartiles were also significantly associated with increased IPFP signal intensity alteration (quartile 4 vs 1: OR 3.57, 95% CI 1.55-8.25) and NTXI, PIIINP, MMP3 and MMP13. Ghrelin was not significantly associated with other joint structures and biomarkers. Serum levels of ghrelin were significantly associated with increased knee symptoms, IPFP signal intensity alteration and serum levels of MMP3, MMP13, NTXI and PIIINP, suggesting that ghrelin may have a role to play in knee OA. Copyright © 2017 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Use of cadaver models in point-of-care emergency ultrasound education for diagnostic applications.
Zaia, Brita E; Briese, Beau; Williams, Sarah R; Gharahbaghian, Laleh
2012-10-01
As the use of bedside emergency ultrasound (US) increases, so does the need for effective US education. To determine 1) what pathology can be reliably simulated and identified by US in human cadavers, and 2) feasibility of using cadavers to improve the comfort of emergency medicine (EM) residents with specific US applications. This descriptive, cross-sectional survey study assessed utility of cadaver simulation to train EM residents in diagnostic US. First, the following pathologies were simulated in a cadaver: orbital foreign body (FB), retrobulbar (RB) hematoma, bone fracture, joint effusion, and pleural effusion. Second, we assessed residents' change in comfort level with US after using this cadaver model. Residents were surveyed regarding their comfort level with various US applications. After brief didactic sessions on the study's US applications, participants attempted to identify the simulated pathology using US. A post-lab survey assessed for change in comfort level after the training. Orbital FB, RB hematoma, bone fracture, joint effusion, and pleural effusion were readily modeled in a cadaver in ways typical of a live patient. Twenty-two residents completed the pre- and post-lab surveys. After training with cadavers, residents' comfort improved significantly for orbital FB and RB hematoma (mean increase 1.6, p<0.001), bone fracture (mean increase 2.12, p<0.001), and joint effusion (1.6, p<0.001); 100% of residents reported that they found US education using cadavers helpful. Cadavers can simulate orbital FB, RB hematoma, bone fracture, joint effusion, and pleural effusion, and in our center improved the comfort of residents in identifying all but pleural effusion. Copyright © 2012 Elsevier Inc. All rights reserved.
Image segmentation and registration for the analysis of joint motion from 3D MRI
NASA Astrophysics Data System (ADS)
Hu, Yangqiu; Haynor, David R.; Fassbind, Michael; Rohr, Eric; Ledoux, William
2006-03-01
We report an image segmentation and registration method for studying joint morphology and kinematics from in vivo MRI scans and its application to the analysis of ankle joint motion. Using an MR-compatible loading device, a foot was scanned in a single neutral and seven dynamic positions including maximal flexion, rotation and inversion/eversion. A segmentation method combining graph cuts and level sets was developed which allows a user to interactively delineate 14 bones in the neutral position volume in less than 30 minutes total, including less than 10 minutes of user interaction. In the subsequent registration step, a separate rigid body transformation for each bone is obtained by registering the neutral position dataset to each of the dynamic ones, which produces an accurate description of the motion between them. We have processed six datasets, including 3 normal and 3 pathological feet. For validation our results were compared with those obtained from 3DViewnix, a semi-automatic segmentation program, and achieved good agreement in volume overlap ratios (mean: 91.57%, standard deviation: 3.58%) for all bones. Our tool requires only 1/50 and 1/150 of the user interaction time required by 3DViewnix and NIH Image Plus, respectively, an improvement that has the potential to make joint motion analysis from MRI practical in research and clinical applications.
Yuan, Wei; Zhang, Haiping; Zhou, Xiaoshu; Wu, Weidong; Zhu, Yue
2018-05-01
Artificial cervical disc replacement is expected to maintain normal cervical biomechanics. At present, the effect of the Prestige LP prosthesis height on cervical biomechanics has not been thoroughly studied. This finite element study of the cervical biomechanics aims to predict how the parameters, like range of motion (ROM), adjacent intradiscal pressure, facet joint force, and bone-implant interface stress, are affected by different heights of Prestige LP prostheses. The finite element model of intact cervical spine (C3-C7) was obtained from our previous study, and the model was altered to implant Prestige LP prostheses at the C5-C6 level. The effects of the height of 5, 6, and 7 mm prosthesis replacement on ROM, adjacent intradiscal pressure, facet joint force, as well as the distribution of bone-implant interface stress were examined. ROM, adjacent intradiscal pressure, and facet joint force increased with the prosthesis height, whereas ROM and facet joint force decreased at C5-C6. The maximal stress on the inferior surface of the prostheses was greater than that on the superior surface, and the stresses increased with the prosthesis height. The biomechanical changes were slightly affected by the height of 5 and 6 mm prostheses, but were strongly affected by the 7-mm prosthesis. An appropriate height of the Prestige LP prosthesis can preserve normal ROM, adjacent intradiscal pressure, and facet joint force. Prostheses with a height of ≥2 mm than normal can lead to marked changes in the cervical biomechanics and bone-implant interface stress. Copyright © 2018 Elsevier Inc. All rights reserved.
Treatment of Early Post-Op Wound Infection after Internal Fixation
2017-10-01
the fracture stable while the bone heals. Approximately 10%-40% of severe fractures fixed with internal fixation develop a deep wound infection during...effect of treatment of post-op wound infection in bones after fracture fixation or joint fusion and either: (Group 1) operative debridement and PO
2007-12-01
Month 1): a. Train a research coordinator to identify potential radiographs at pediatric orthopedic hospital. b. Have conference call with...JR. Delayed autogenous bone graft in the treatment of congenital pseudarthrosis. J Bone Joint Surg Am 1949;31:23. 8. Rudicel S. The orthopaedic
Ciocca, Leonardo; Donati, Davide; Fantini, Massimiliano; Landi, Elena; Piattelli, Adriano; Iezzi, Giovanna; Tampieri, Anna; Spadari, Alessandro; Romagnoli, Noemi; Scotti, Roberto
2013-08-01
In this study, rapid CAD-CAM prototyping of pure hydroxyapatite to replace temporomandibular joint condyles was tested in sheep. Three adult animals were implanted with CAD-CAM-designed porous hydroxyapatite scaffolds as condyle substitutes. The desired scaffold shape was achieved by subtractive automated milling machining (block reduction). Custom-made surgical guides were created by direct metal laser sintering and were used to export the virtual planning of the bone cut lines into the surgical environment. Using the same technique, fixation plates were created and applied to the scaffold pre-operatively to firmly secure the condyles to the bone and to assure primary stability of the hydroxyapatite scaffolds during masticatory function. Four months post-surgery, the sheep were sacrificed. The hydroxyapatite scaffolds were explanted, and histological specimens were prepared. Different histological tissues penetrating the scaffold macropores, the sequence of bone remodeling, new apposition of bone and/or cartilage as a consequence of the different functional anatomic role, and osseointegration at the interface between the scaffold and bone were documented. This animal model was found to be appropriate for testing CAD-CAM customization and the biomechanical properties of porous, pure hydroxyapatite scaffolds used as joint prostheses.
Telldahl, Ylva
2012-12-01
In this paper the nature and frequency of skeletal changes in the lower limb bones of cattle are investigated. The bones derive from the archaeological site of Eketorp ringfort on the Öland island in Sweden dated between Iron Age-Middle Age (ca. A.D. 300-1200/50). The analysis was conducted to explore whether skeletal lesions were associated with traction activity, and if changes in the type and prevalence of lesions occurred over time. Different skeletal lesions were recorded by bone and precise anatomical location: the joint surfaces of metapodia and phalanges were divided into four to seven zones to determine if different types of lesions were located on particular regions of the articular surface. The results show that metatarsals exhibited a higher frequency of pathologies in the Iron Age and medieval period compared to metacarpals, while anterior phalanges 1 and 2 had a higher occurrence of lesions than the posterior elements. The study also demonstrates that the type and location of depressions on joint surfaces are unevenly distributed between bone elements. Finally, the results show that skeletal lesions were more common in robust animals. Copyright © 2012 Elsevier Inc. All rights reserved.
A Thumb Carpometacarpal Joint Coordinate System Based on Articular Surface Geometry
Halilaj, Eni; Rainbow, Michael J.; Got, Christopher; Moore, Douglas C.; Crisco, Joseph J.
2013-01-01
The thumb carpometacarpal (CMC) joint is a saddle-shaped articulation whose in vivo kinematics can be explored more accurately with computed tomography (CT) imaging methods than with previously used skin-based marker systems. These CT-based methods permit a detailed analysis of the morphology of the joint, and thus the prominent saddle-shaped geometry can be used to define a coordinate system that is inherently aligned with the primary directions of motion at the joint. The purpose of this study was to develop a CMC joint coordinate systems that is based on the computed principal directions of curvature on the trapezium and the first metacarpal. We evaluated the new coordinate system using bone surface models segmented from the CT scans of twenty-four healthy subjects. An analysis of sensitivity to the manual selection of articular surfaces resulted in mean orientation differences of 0.7±0.7° and mean location differences of 0.2±0.1mm. Inter-subject variability, which mostly emanates from anatomical differences, was evaluated with whole bone registration and resulted in mean orientation differences of 3.1±2.7° and mean location differences of 0.9±0.5mm. The proposed joint coordinate system addresses concerns of repeatability associated with bony landmark identification and provides a robust platform for describing the complex kinematics of the CMC joint. PMID:23357698
The role of a small posterior malleolar fragment in trimalleolar fractures: a biomechanical study.
Evers, J; Fischer, M; Zderic, I; Wähnert, D; Richards, R G; Gueorguiev, B; Raschke, M J; Ochman, S
2018-01-01
The aim of this study was to investigate the effect of a posterior malleolar fragment (PMF), with < 25% ankle joint surface, on pressure distribution and joint-stability. There is still little scientific evidence available to advise on the size of PMF, which is essential to provide treatment. To date, studies show inconsistent results and recommendations for surgical treatment date from 1940. A total of 12 cadaveric ankles were assigned to two study groups. A trimalleolar fracture was created, followed by open reduction and internal fixation. PMF was fixed in Group I, but not in Group II. Intra-articular pressure was measured and cyclic loading was performed. Contact area decreased following each fracture, while anatomical fixation restored it nearly to its intact level. Contact pressure decreased significantly with fixation of the PMF. In plantarflexion, the centre of force shifted significantly posteriorly in Group II and anteriorly in Group I. Load to failure testing showed no difference between the groups. Surgical reduction of a small PMF with less than 25% ankle joint surface improves pressure distribution but does not affect ankle joint stability. Cite this article: Bone Joint J 2018;100-B:95-100. ©2018 The British Editorial Society of Bone & Joint Surgery.
Quinn, J H; Stover, J D
1998-11-01
This article describes the results of treating temporomandibular joint (TMJ) articular disc perforation and advanced chondromalacia arthroscopically by the use of discoplasty and abrasion arthroplasty. Forty-four joints were treated in 25 patients (23 females and 2 males). Twenty-nine disc perforations were present, 24 joints had grade III chondromalacia (fibrillated cartilage), and 14 joints had grade IV chondromalacia (exposed bone). Surgical procedures included 14 abrasion arthroplasties and 24 motorized shavings or holmium laser vaporizations. Holmium laser discoplasty with mobilization was used in 29 joints. Patients were followed-up for an average of 40.8 months (11 to 74 months). Preoperative pain on the visual analog scale (VAS) (1 to 10 cm) ranged from 5 to 10 cm, with an average of 7.4 cm. Postoperatively, nine patients had no pain and 16 patients had an average VAS of 2.7 cm (range, 1 to 5 cm). Preoperatively, 30 joints had clicking, and 14 joints had crepitation. Postoperatively, 25 joints had no noise, 12 joints had slight intermittent clicking, and seven joints had crepitation. The preoperative range of motion averaged 29.7 mm. Postoperatively, the range of motion averaged 37.7 mm (range, 33 to 42 mm). All patients could masticate a regular diet except hard food after an average of 40.8 months (11 to 74 months). These findings seem to justify the arthroscopic surgical procedures of discoplasty for disc perforations, motorized shaving, or holmium laser vaporization of grade III chondromalacia, and abrasion arthroplasty for bone exposure. The results also question the need for discectomy in the treatment of disc perforation.
Double needle technique: an alternative method for performing difficult sacroiliac joint injections.
Gupta, Sanjeeva
2011-01-01
The sacroiliac joint (SIJ) is a common source of low back pain. The most appropriate method of confirming SIJ pain is to inject local anesthesia into the joint to find out if the pain decreases. Unfortunately, although the SIJ is a large joint, it can be difficult to enter due to the complex nature of the joint and variations in anatomy. In my experience a double needle technique for sacroiliac joint injection can increase the chances of accurate injection into the SIJ in difficult cases. After obtaining appropriate fluoroscopic images, the tip of the needle is advanced into the SIJ. Once the tip of the needle is correctly placed, its position is checked under continuous fluoroscopy while moving the C-arm in the right and left oblique directions (dynamic fluoroscopy). On dynamic fluoroscopy the tip of the needle should remain within the joint line and not appear to be on the bone. If the tip of the needle appears to be on the bone a new joint line will need to be identified (the most translucent area through the joint) by dynamic fluoroscopy and another needle advanced into the newly identified joint line. Dynamic fluoroscopy is repeated again to confirm that the tip of the second needle remains within the joint line. Once both needles are in place contrast dye is injected through the needle that is most likely to be in the SIJ. If the contrast dye spread is not satisfactory then it is injected through the other needle. I have used this technique in 10 patients and found it very helpful in accurately performing SIJ injection which can at times be challenging.
Zak, Lukas; Wozasek, Gerald E
2013-11-01
The temporary loss of motion of adjacent joints is a common complication after distraction osteogenesis of the lower limb. The aim of this study was to investigate the incidence of tendon contracture and impaired joint motion of the knee and/or ankle joint during and after callus distraction with a ring fixator. Twenty patients (2 female, 18 male, average age: 36 years) were surgically treated for callus distraction and segment transport with an external ring fixator after traumatic bone loss in 21 lower limbs. The impaired joint motion of the adjacent joints during and after treatment was evaluated. During treatment, we observed the free range of motion (ROM) of the ankle joint in 4 cases (19 %), restricted motion in 11 cases (52 %), and complete loss of motion in 6 cases (33 %). After treatment,free ROM was observed in 12 cases (57 %), impaired motion in 3 cases (14 %), and fixed joint position in 6 cases (29 %, 2 arthrodesis). This represents an improvement of motion in eight cases (38 %) and an impairment in two cases (10 %). In 11 cases, the ROM remained unchanged. During treatment, six restrictions in extension (24 %) and five (33 %) restrictions in flexion occurred in the knee joint, ultimately resulting in one loss of extension and three losses of flexion after frame removal. The impairment of joint motion during bone lengthening with an external ring fixator in the lower extremity occurs in most cases at the ankle joint. Various treatment options are available to address tendon shortening, but accompanying physiotherapy may prevent or moderate its onset.
Güler-Yüksel, Melek; Klarenbeek, Naomi B; Goekoop-Ruiterman, Yvonne P M; de Vries-Bouwstra, Jeska K; van der Kooij, Sjoerd M; Gerards, Andreas H; Ronday, H Karel; Huizinga, Tom W J; Dijkmans, Ben A C; Allaart, Cornelia F; Lems, Willem F
2010-01-01
To investigate whether accelerated hand bone mineral density (BMD) loss is associated with progressive joint damage in hands and feet in the first year of rheumatoid arthritis (RA) and whether it is an independent predictor of subsequent progressive total joint damage after 4 years. In 256 recent-onset RA patients, baseline and 1-year hand BMD was measured in metacarpals 2-4 by digital X-ray radiogrammetry. Joint damage in hands and feet were scored in random order according to the Sharp-van der Heijde method at baseline and yearly up to 4 years. 68% of the patients had accelerated hand BMD loss (>-0.003 g/cm2) in the first year of RA. Hand BMD loss was associated with progressive joint damage after 1 year both in hands and feet with odds ratios (OR) (95% confidence intervals [CI]) of 5.3 (1.3-20.9) and 3.1 (1.0-9.7). In univariate analysis, hand BMD loss in the first year was a predictor of subsequent progressive total joint damage after 4 years with an OR (95% CI) of 3.1 (1.3-7.6). Multivariate analysis showed that only progressive joint damage in the first year and anti-citrullinated protein antibody positivity were independent predictors of long-term progressive joint damage. In the first year of RA, accelerated hand BMD loss is associated with progressive joint damage in both hands and feet. Hand BMD loss in the first year of recent-onset RA predicts subsequent progressive total joint damage, however not independent of progressive joint damage in the first year.
Hutson, Joel D; Hutson, Kelda N
2013-01-15
Using the extant phylogenetic bracket of dinosaurs (crocodylians and birds), recent work has reported that elbow joint range of motion (ROM) studies of fossil dinosaur forearms may be providing conservative underestimates of fully fleshed in vivo ROM. As humeral ROM occupies a more central role in forelimb movements, the placement of quantitative constraints on shoulder joint ROM could improve fossil reconstructions. Here, we investigated whether soft tissues affect the more mobile shoulder joint in the same manner in which they affect elbow joint ROM in an extant archosaur. This test involved separately and repeatedly measuring humeral ROM in Alligator mississippiensis as soft tissues were dissected away in stages to bare bone. Our data show that the ROMs of humeral flexion and extension, as well as abduction and adduction, both show a statistically significant increase as flesh is removed, but then decrease when the bones must be physically articulated and moved until they separate from one another and/or visible joint surfaces. A similar ROM pattern is inferred for humeral pronation and supination. All final skeletonized ROMs were less than initial fully fleshed ROMs. These results are consistent with previously reported elbow joint ROM patterns from the extant phylogenetic bracket of dinosaurs. Thus, studies that avoid separation of complementary articular surfaces may be providing fossil shoulder joint ROMs that underestimate in vivo ROM in dinosaurs, as well as other fossil archosaurs.
Nishizawa, Tetsuro; Kawamura, Toshihiko; Izumi, Nakao; Kawamura, Hiroki; Fujii, Katsuyuki; Abo, Toru
2005-01-01
Collagen-induced arthritis was evoked by an injection of lipopolysaccharide and anti-type II collagen antibody in mice. In parallel with the onset of arthritis, granulocytes with large light scatter and a Mac-1+ Gr-1+ phenotype expanded in the joints of these mice. Lymphocytes with a CD3− B220+ phenotype (i.e. B220+ B cells) were the major population among lymphocyte subsets in the joints, irrespective of disease. To determine the origin of these leucocyte populations in the joints and other organs, parabiotic experiments using CBF1Ly5.1 and CBF1Ly5.2 mice were conducted in mice with and without collagen-induced arthritis. As expected, leucocyte populations in the liver and spleen became a half-and-half mixture of their own cells and partner cells (e.g. ∼45% of Ly5.1+ cells in Ly5.2+ partner mice). However, such a mixture was extremely delayed in the joints and bone marrow, even in mice with arthritis. These results suggest that, because circulatory blood is not exchanged in the joints, granulocytes and other lymphocytes are generated in situ in the inflamed joints of mice with collagen-induced arthritis or are possibly supplied by the bone marrow. It is of interest that granulocytes in the joints expanded, even without a supply from another site, namely, the synovium. PMID:15606803
Ohshima, Hiroshi
2010-04-01
The assembly of the Japanese Experiment Module "Kibo" to international space station was completed in 2009 and Koichi Wakata became the first Japanese station astronaut who spent more than 4 months in the station. Bone and muscle losses are significant medical concerns for long duration human space flight. Effective countermeasure program for bone loss and muscle atrophy is necessary to avoid post flight bone fracture and joint sprain after landing. The musculoskeletal response to human space flight and current physical countermeasure program for station astronauts are described.
Kim, Du Hwan; Sung, Duk Hyun; Min, Yong Ki
2013-03-01
Osteomalacia is a metabolic bone disease that leads to softening of the bones and can be caused by hypophosphatemia. Large clinical studies of low-dose adefovir dipivoxil (adefovir) have found no evidence of renal tubular dysfunction leading to hypophosphatemia after 48 weeks of treatment. We report two cases of low-dose adefovir-induced hypophosphatemic osteomalacia that initially presented with diffuse musculoskeletal pain. The first patient was a 62-year-old man with a 2-year history of bone pain involving the dorsal mid-thorax, lower anterior chest wall, right sacroiliac joint area, and both knees. The patient had been receiving adefovir for 5 years before confirmation of hypophosphatemia and urinary phosphate wasting. Bone scintigraphy revealed multifocal lesions including multiple ribs, costochondral junctions, costovertebral junctions, sacrum, both posterior iliac bones, both proximal tibia, right calcaneus, and the left second metatarsophalangeal joint area, which were suggestive of metabolic bone disorder. Bone pain was significantly reduced within 3 months after supplementation with phosphate and calcitriol. The second patient was a 54-year-old male who presented with an 18-month history of severe bone pain of the right medial knee and low back. The patient had been taking adefovir for approximately 40 months before the development of bone pain. Laboratory data revealed hypophosphatemia and vitamin D deficiency. Bone scintigraphy showed increased uptake in bilateral ribs, sternum, both scapulae, both costovertebral junctions, both pelvic bones, medial cortex of the right proximal femur, right proximal tibia, and the left lateral tarsal bone. The symptoms improved by changing the antiviral agent from adefovir to entecavir. Because osteomalacia often presents with diffuse bone pain, non-specific radiologic findings and non-characteristic routine serum biochemical changes, the disease can be confused with various musculoskeletal diseases and a high index of suspicion is necessary for an early diagnosis in patients receiving adefovir therapy.
Assessment of Biomarkers Associated with Joint Injury and Subsequent Post-Traumatic Arthritis
2016-12-01
Studio, Research Triangle Park, NC). Changes in cartilage thickness between post -operative and 18-month follow-up images were quantified using an in...surface were measured, and defined as the distance to a test surface ( post -fx bone surface) that was either outside (positive) or inside (negative) of... test surface ( post -fx bone surface) that was either outside (positive) or inside (negative) of the reference surface (pre-fx bone surface). A
Case 24: Stress Fracture of the Tibia
2008-03-01
extremity weight bearing bones. Most often this micro trauma is found in military recruits and athletes taking part in running activities. A...application of force most commonly related to running and jumping results in micro trauma to the cortical bone. The weight bearing bones of the lower...year old active duty U.S Army combat soldier deployed to Iraq. He had had progressive pain over his lower right leg that radiated to his knee joint
[Biomaterials in bone repair].
Puska, Mervi; Aho, Allan J; Vallittu, Pekka K
2013-01-01
In orthopedics, traumatology, and craniofacial surgery, biomaterials should meet the clinical demands of bone that include shape, size and anatomical location of the defect, as well as the physiological load-bearing stresses. Biomaterials are metals, ceramics, plastics or materials of biological origin. In the treatment of large defects, metallic endoprostheses or bone grafts are employed, whereas ceramics in the case of small defects. Plastics are employed on the artificial joint surfaces, in the treatment of vertebral compression fractures, and as biodegradable screws and plates. Porosity, bioactivity, and identical biomechanics to bone are fundamental for achieving a durable, well-bonded, interface between biomaterial and bone. In the case of severe bone treatments, biomaterials should also imply an option to add biologically active substances.
Three-dimensional skeletal kinematics of the shoulder girdle and forelimb in walking Alligator
Baier, David B; Gatesy, Stephen M
2013-01-01
Crocodylians occupy a key phylogenetic position for investigations of archosaur locomotor evolution. Compared to the well-studied hindlimb, relatively little is known about the skeletal movements and mechanics of the forelimb. In this study, we employed manual markerless XROMM (X-ray Reconstruction Of Moving Morphology) to measure detailed 3-D kinematics of the shoulder girdle and forelimb bones of American alligators (Alligator mississippiensis) walking on a treadmill. Digital models of the interclavicle, scapulocoracoid, humerus, radius and ulna were created using a 3-D laser scanner. Models were articulated and aligned to simultaneously recorded frames of fluoroscopic and standard light video to reconstruct and measure joint motion. Joint coordinate systems were established for the coracosternal, glenohumeral and elbow joints. Our analysis revealed that the limb joints only account for about half of fore/aft limb excursion; the remaining excursion results from shoulder girdle movements and lateral bending of the vertebral column. Considerable motion of each scapulocoracoid relative to the vertebral column is consistent with coracosternal mobility. The hemisellar design of the glenohumeral joint permits some additional translation, or sliding in the fore-aft plane, but this movement does not have much of an effect on the distal excursion of the bone. PMID:24102540
Lioce, Elisa Edi Anna Nadia; Novello, Matteo; Durando, Gianni; Bistolfi, Alessandro; Actis, Maria Vittoria; Massazza, Giuseppe; Magnetto, Chiara; Guiot, Caterina
2014-11-01
The aim of the study described here was to quantitatively assess thermal and mechanical effects of therapeutic ultrasound (US) by sonicating a joint-mimicking phantom, made of muscle-equivalent material, using clinical US equipment. The phantom contains two bone disks simulating a deep joint (treated at 1 MHz) and a superficial joint (3 MHz). Thermal probes were inserted in fixed positions. To test the mechanical (cavitational) effects, we used a latex balloon filled with oxygen-loaded nanobubbles; the dimensions of the oxygen-loaded nanobubbles were determined before and after sonication. Significant increases in temperature (up to 17°C) with fixed field using continuous waves were detected both in front of and behind the bones, depending on the US mode (continuous wave vs. pulsed wave) and on the treatment modality (fixed vs. massage). We found no significant differences in mechanical effects. Although limited by the in vitro design (no blood perfusion, no metabolic compensation), the results can be used to guide operators in their choice of the best US treatment modality for a specific joint. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Yeh, Tsu-Te; Wen, Zhi-Hong; Lee, Herng-Sheng; Lee, Chian-Her; Yang, Zhi; Jean, Yen-Hsuan; Wu, Shing-Sheng; Nimni, Marcel E; Han, Bo
2008-05-01
We aimed to establish an animal model to investigate primary osteoarthritis of the lumbar facet joints after collagenase injection in rats and its effects on chondrocyte apoptosis. We hypothesized that osteoarthritic-like changes would be induced by collagenase injection and that apoptosis of chondrocytes would increase. Collagenase (1, 10, or 50 U) or saline (control) was injected into the lumbar facet joints. The histology and histochemistry of cartilage, synovium, and subchondral bone were examined at 1, 3, and 6 weeks after surgery. Apoptotic cells induced by 1 U of collagenase were quantified using the terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) assay. Degeneration of the cartilage and changes to the synovium and subchondral bone were dependent on both the doses of collagenase and the time after surgery. There were significantly more apoptotic chondrocytes in collagenase-treated joints than in control (P < 0.001 at 1 and 3 weeks and P < 0.05 at 6 weeks). Thus, lumbar facet joints subjected to collagenase developed osteoarthritic-like changes that could be quantified and compared. This model provides a useful tool for further study on the effects of compounds that have the potential to inhibit enzyme-associated damage to cartilage.
Early signs of osteoarthritis in professional ballet dancers: a preliminary study.
Angioi, Manuela; Maffulli, Gayle D; McCormack, Moira; Morrissey, Dylan; Chan, Otto; Maffulli, Nicola
2014-09-01
To investigate a cohort of professional ballet dancers for evidence of early signs of osteoarthritis (OA). One radiologist and 1 orthopedic surgeon specialized in musculoskeletal disorders analyzed magnetic resonance imaging scans independently. University Teaching Hospital. Fifteen professional ballet dancers (4 males and 11 females; age range, 19-36 years) experiencing chronic pain in the hip, knee, spine, ankle, or foot joints. Presence of osteophytes, subchondral sclerosis, joint space narrowing, cysts, and bone marrow changes; the Kellgren and Lawrence scale was used to quantify the knee OA. In the knee, there was thinning and irregularity of the articular cartilage over the medial femoral condyle and bone marrow changes within the lateral femoral condyle. In the hip, there was a loss of joint space and a frayed labrum with deep recess. The first metatarsophalangeal joint showed evidence of osteophytic development. Early signs of OA, in different joints, were present in a small but highly selected cohort of professional ballet dancers. In future, prospective studies among a number of ballet companies should control for medical and natural history alongside the visual analysis of images and plain radiographs to confirm these preliminary results.
Next Generation Tissue Engineering of Orthopedic Soft Tissue-to-Bone Interfaces.
Boys, Alexander J; McCorry, Mary Clare; Rodeo, Scott; Bonassar, Lawrence J; Estroff, Lara A
2017-09-01
Soft tissue-to-bone interfaces are complex structures that consist of gradients of extracellular matrix materials, cell phenotypes, and biochemical signals. These interfaces, called entheses for ligaments, tendons, and the meniscus, are crucial to joint function, transferring mechanical loads and stabilizing orthopedic joints. When injuries occur to connected soft tissue, the enthesis must be re-established to restore function, but due to structural complexity, repair has proven challenging. Tissue engineering offers a promising solution for regenerating these tissues. This prospective review discusses methodologies for tissue engineering the enthesis, outlined in three key design inputs: materials processing methods, cellular contributions, and biochemical factors.
Next Generation Tissue Engineering of Orthopedic Soft Tissue-to-Bone Interfaces
Boys, Alexander J.; McCorry, Mary Clare; Rodeo, Scott; Bonassar, Lawrence J.; Estroff, Lara A.
2017-01-01
Soft tissue-to-bone interfaces are complex structures that consist of gradients of extracellular matrix materials, cell phenotypes, and biochemical signals. These interfaces, called entheses for ligaments, tendons, and the meniscus, are crucial to joint function, transferring mechanical loads and stabilizing orthopedic joints. When injuries occur to connected soft tissue, the enthesis must be re-established to restore function, but due to structural complexity, repair has proven challenging. Tissue engineering offers a promising solution for regenerating these tissues. This prospective review discusses methodologies for tissue engineering the enthesis, outlined in three key design inputs: materials processing methods, cellular contributions, and biochemical factors. PMID:29333332
Management of sports injuries of the foot and ankle: An update.
Hong, C C; Pearce, C J; Ballal, M S; Calder, J D F
2016-10-01
Injuries to the foot in athletes are often subtle and can lead to a substantial loss of function if not diagnosed and treated appropriately. For these injuries in general, even after a diagnosis is made, treatment options are controversial and become even more so in high level athletes where limiting the time away from training and competition is a significant consideration. In this review, we cover some of the common and important sporting injuries affecting the foot including updates on their management and outcomes. Cite this article: Bone Joint J 2016;98-B:1299-1311. ©2016 The British Editorial Society of Bone & Joint Surgery.
Bone edema of the whole vertebral body: an unusual case of spondyloarthritis.
Ortolan, Augusta; Lazzarin, Paolo; Lorenzin, Mariagrazia; Rampin, Lucia; Ramonda, Roberta
2017-01-01
Spondyloarthritis (SpA) is usually characterized by early inflammatory involvement of the sacroiliac joints (SI), which constitutes one of the most important classification criteria according to the SpondyloArthritis International Society (ASAS). These criteria do not include inflammatory spine lesions which can be detected on MRI, although spine involvement is very common in axial SpA. This is because spine MRI lesion often retrieved in SpA are not very specific, and can be found in many other diseases such as malignancy and osteoarthritis. Here we present the case of a 33-year old woman who presented a worsening low back pain, with a thoracic spine MRI showing bone marrow edema (BME) of the whole T8 vertebral body. Owing to this peculiar presentation, together with the unresponsiveness of the pain to nonsteroidal anti inflammatory drugs (NSAIDs) and a slight increase of the biomarker CA19-9, a malignancy was suspected. Therefore, the patient underwent bone scintigraphy, Single positron emission computed tomography (SPET/TC), positron emission tomography and repeated MRI without reaching a diagnosis. Finally, when SI joints MRI was performed, BME of the SI joints emerged: this was fundamental to formulate the diagnosis of axSpA.
Limited posterolateral surgical approach to the knee for excision of osteoid osteoma.
Minkoff, J; Jaffe, L; Menendez, L
1987-10-01
An 18-year-old man suffered four years of undiagnosed knee pain until a CAT scan revealed an epiphyseal osteoid osteoma of the tibia located subchondrally, just medial to the proximal tibiofibular joint. A nidus in this location is not easily accessible, and its proximity to the joint surface raised concerns about damage to the tibial plateau. To facilitate excision of the tumor, cadaveric dissections were performed to develop a limited posterior approach to the proximal, lateral portion of the tibia. The CAT scan was used to calculate the precise dimensions of the tumor and its relation to the posterior tibial cortex and the proximal tibiofibular joint. With the use of the exposure developed in the laboratory and the calculations derived from the CAT scan, the tumor could be excised by removing a single block of bone 15 mm3. Intraoperative radiographs confirmed the presence of the nidus within the excised block of bone. This case report reaffirms the frequent difficulties and tardiness in diagnosing osteoid osteomas and the need to include these tumors in the differential diagnosis of knee pain and epiphyseal lesions. Before CAT scans were used, the working diagnoses were torn meniscus, juvenile rheumatoid arthritis, and bone hemangiomatosis.
In Vivo Talocrural Joint Contact Mechanics With Functional Ankle Instability.
Kobayashi, Takumi; Suzuki, Eiichi; Yamazaki, Naohito; Suzukawa, Makoto; Akaike, Atsushi; Shimizu, Kuniaki; Gamada, Kazuyoshi
2015-12-01
Functional ankle instability (FAI) may involve abnormal kinematics and contact mechanics during ankle internal rotation. Understanding of these abnormalities is important to prevent secondary problems in patients with FAI. However, there are no in vivo studies that have investigated talocrural joint contact mechanics during weightbearing ankle internal rotation. The objective of this study to determine talocrural contact mechanics during weightbearing ankle internal rotation in patients with FAI. Twelve male subjects with unilateral FAI (age range, 18-26 years) were enrolled. Computed tomography and fluoroscopic imaging of both lower extremities were obtained during weightbearing passive ankle joint complex rotation. Three-dimensional bone models created from the computed tomographic images were matched to the fluoroscopic images to compute 6 degrees of freedom for talocrural joint kinematics. The closest contact area in the talocrural joint in ankle neutral rotation and maximum internal rotation during either dorsiflexion or plantar flexion was determined using geometric bone models and talocrural joint kinematics data. The closest contact area in the talus shifted anteromedially during ankle dorsiflexion-internal rotation, whereas it shifted posteromedially during ankle plantar flexion-internal rotation. The closest contact area in FAI joints was significantly more medial than that in healthy joints during maximum ankle internal rotation and was associated with excessive talocrural internal rotation or inversion. This study demonstrated abnormal talocrural kinematics and contact mechanics in FAI subjects. Such abnormal kinematics may contribute to abnormal contact mechanics and may increase cartilage stress in FAI joints. Therapeutic, Level IV: cross-sectional case-control study. © 2015 The Author(s).
Johnson, K A; Francis, D J; Manley, P A; Chu, Q; Caterson, B
2004-08-01
To compare the effects of caudal pole hemi-meniscectomy (CPHM) and complete medial meniscectomy (MM), specifically with respect to development of secondary osteoarthritis, in the stifle joints of clinically normal dogs. 14 large-breed dogs. Unilateral CPHM (7 dogs) or MM (7) was performed, and the left stifle joints served as untreated control joints. Gait was assessed in all dogs before surgery and at 4, 8, 12, and 16 weeks postoperatively. After euthanasia, joints were evaluated grossly; Mankin cartilage scores, subchondral bone density assessment, and articular cartilage proteoglycan extraction and western blot analyses of 3B3(-) and 7D4 epitopes were performed. Weight distribution on control limbs exceeded that of treated limbs at 4 and 16 weeks after surgery in the CPHM group and at 4 and 8 weeks after surgery in the MM group; weight distribution was not significantly different between the 2 groups. After 16 weeks, incomplete meniscal regeneration and cartilage fibrillation on the medial aspect of the tibial plateau and medial femoral condyle were detected in treated joints in both groups. Mankin cartilage scores, subchondral bone density, and immunoexpression of 3B3(-) or 7D4 in articular cartilage in CPHM- or MM-treated joints were similar; 7D4 epitope concentration in synovial fluid was significantly greater in the MM-treated joints than in CPHM-treated joints. Overall severity of secondary osteoarthritis induced by CPHM and MM was similar. Investigation of 7D4 epitope concentration in synovial fluid suggested that CPHM was associated with less disruption of chondrocyte metabolism.
Ackland, David C; Robinson, Dale; Redhead, Michael; Lee, Peter Vee Sin; Moskaljuk, Adrian; Dimitroulis, George
2017-05-01
Personalized prosthetic joint replacements have important applications in cases of complex bone and joint conditions where the shape and size of off-the-shelf components may not be adequate. The objective of this study was to design, test and fabricate a personalized 3D-printed prosthesis for a patient requiring total joint replacement surgery of the temporomandibular joint (TMJ). The new 'Melbourne' prosthetic TMJ design featured a condylar component sized specifically to the patient and fixation screw positions that avoid potential intra-operative damage to the mandibular nerve. The Melbourne prosthetic TMJ was developed for a 58-year-old female recipient with end-stage osteoarthritis of the TMJ. The load response of the prosthesis during chewing and a maximum-force bite was quantified using a personalized musculoskeletal model of the patient's masticatory system developed using medical images. The simulations were then repeated after implantation of the Biomet Microfixation prosthetic TMJ, an established stock device. The maximum condylar stresses, screw stress and mandibular stress at the screw-bone interface were lower in the Melbourne prosthetic TMJ (259.6MPa, 312.9MPa and 198.4MPa, respectively) than those in the Biomet Microfixation device (284.0MPa, 416.0MPa and 262.2MPa, respectively) during the maximum-force bite, with similar trends also observed during the chewing bite. After trialing surgical placement and evaluating prosthetic TMJ stability using cadaveric specimens, the prosthesis was fabricated using 3D printing, sterilized, and implanted into the female recipient. Six months post-operatively, the prosthesis recipient had a normal jaw opening distance (40.0 mm), with no complications identified. The new design features and immediate load response of the Melbourne prosthetic TMJ suggests that it may provide improved clinical and biomechanical joint function compared to a commonly used stock device, and reduce risk of intra-operative nerve damage during placement. The framework presented may be useful for designing and testing customized devices for the treatment of debilitating bone and joint conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pan, Jianjiang; Lu, Xuan; Yang, Ge; Han, Yongmei; Tong, Xiang; Wang, Yue
2017-12-01
A sample of 512 Chinese was studied and we observed that greater disc degeneration on MRI was associated with greater spine DXA BMD. Yet, this association may be confounded by facet joint osteoarthritis. BMD may not be a risk factor for lumbar disc degeneration in Chinese. Evidence suggested that lumbar vertebral bone and intervertebral disc interact with each other in multiple ways. The current paper aims to determine the association between bone mineral density (BMD) and lumbar disc degeneration using a sample of Chinese. We studied 165 patients with back disorders and 347 general subjects from China. All subjects had lumbar spine magnetic resonance (MR) imaging and dual- energy X-ray absorptiometry (DXA) spine BMD studies, and a subset of general subjects had additional hip BMD measurements. On T2-weighted MR images, Pfirrmann score was used to evaluate the degree of lumbar disc degeneration and facet joint osteoarthritis was assessed as none, slight-moderate, and severe. Regression analyses were used to examine the associations between lumbar and hip BMD and disc degeneration, adjusting for age, gender, body mass index (BMI), lumbar region, and facet joint osteoarthritis. Greater facet joint osteoarthritis was associated with greater spine BMD (P < 0.01) in both patients and general subjects. For general subjects, greater spine BMD was associated with severe disc degeneration, controlling for age, gender, BMI, and lumbar region. When facet joint osteoarthritis entered the regression model, however, greater spine BMD was associated with greater facet joint osteoarthritis (P < 0.01) but not greater disc degeneration (P > 0.05). No statistical association was observed between spine BMD and lumbar disc degeneration in patients with back disorders (P > 0.05), and between hip BMD and disc degeneration in general subjects (P > 0.05). BMD may not be a risk factor for lumbar disc degeneration in Chinese. Facet joint osteoarthritis inflates DXA spine BMD measurements and therefore, may confound the association between spine BMD and disc degeneration.
Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis.
Goldring, Mary B; Goldring, Steven R
2010-03-01
The articular surface plays an essential role in load transfer across the joint, and conditions that produce increased load transfer or altered patterns of load distribution accelerate the development of osteoarthritis (OA). Current knowledge segregates the risk factors into two fundamental mechanisms related to the adverse effects of "abnormal" loading on normal cartilage or "normal" loading on abnormal cartilage. Although chondrocytes can modulate their functional state in response to loading, their capacity to repair and modify the surrounding extracellular matrix is limited in comparison to skeletal cells in bone. This differential adaptive capacity underlies the more rapid appearance of detectable skeletal changes, especially after acute injuries that alter joint mechanics. The imbalance in the adaptation of the cartilage and bone disrupts the physiological relationship between these tissues and further contributes to OA pathology. This review focuses on the specific articular cartilage and skeletal features of OA and the putative mechanisms involved in their pathogenesis.
Osteogenesis imperfecta in childhood: treatment strategies.
Engelbert, R H; Pruijs, H E; Beemer, F A; Helders, P J
1998-12-01
Osteogenesis imperfecta (OI) is a skeletal disorder of remarkable clinical variability characterized by bone fragility, osteopenia, variable degrees of short stature, and progressive skeletal deformities. Additional clinical manifestations such as blue sclerae, dentinogenesis imperfecta, joint laxity, and maturity onset deafness are described in the literature. OI occurs in about 1 in 20,000 births and is caused by quantitative and qualitative defects in the synthesis of collagen I. Depending on the severity of the disease, a large impact on motor development, range of joint motion, muscle strength, and functional ability may occur. Treatment strategies should primarily focus on the improvement of functional ability and the adoption of compensatory strategies, rather than merely improving range of joint motion and muscle strength. Surgical treatment of the extremities may be indicated to stabilize the long bones to optimize functional ability and walking capacity. Surgical treatment of the spine may be indicated in patients with progressive spinal deformity and in those with symptomatic basilar impression.
The scintigraphic investigation of sacroiliac disease.
Lentle, B C; Russell, A S; Percy, J S; Jackson, F I
1977-06-01
Bone scintigraphs obtained with both Technetium-99m polyphosphate and Technetium-99m pyrophosphate have been abnormal at the sacroiliac joints of 44 patients with definite ankylosing spondylitis (AS). Because of the normal registration of the sacroiliac joints on bone scintigraphy, it has been necessary to develop a profile-scan technique to quantify the abnormality that proves to be significantly different from the normal finding. In 17 patients with a strong clinical suspicion of AS but normal radiographs, the sacroiliac joints have frequently been abnormal. This finding is meaningful because there is a common occurence in this group of the histocompatibility antigen HL A-B27, known to be a marker of AS. We also note the frequency of abnormal sacroiliac scinitigrams in 26 patients with rheumatoid arthritis and in a group of other diseases-Crohn's disease, uveitis, psoriasis, ulcerative colitis, and Reiter's disease-all of which share some of the manifestations of AS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahowald, M.L.; Raskind, J.R.; Peterson, L.
1986-08-01
Numerous clinical studies have questioned the ability of radionuclide scans to differentiate septic from aseptic joint inflammation. A clinical study may not be able to document an underlying disease process or duration of infection and, thus, may make conclusions about the accuracy of scan interpretations open to debate. In this study, the Dumonde-Glynn model of antigen-induced arthritis in rabbits was used as the experimental model to study technetium and gallium scans in Staphylococcus aureus infection of arthritic and normal joints. Gallium scans were negative in normal rabbits, usually negative in antigen-induced arthritis, but positive in septic arthritis. The bone scanmore » was usually negative in early infection but positive in late septic arthritis, a finding reflecting greater penetration of bacteria into subchondral bone because of the underlying inflammatory process.« less
Arthroscopy of the fetlock joint of the dromedary camel.
Ali, M M; Abd-Elnaeim, M
2012-01-01
To describe a technique for arthroscopy of the fetlock joint of the dromedary camel, and the problems that could occur during and after arthroscopy. Seven animals (4 cadaveric limbs and 3 living camels) were used in this study. Two dorsal arthroscopic portals (lateral and medial) and one palmaro-lateral portal were used. Distension of the joint capsule was effected by injecting Ringer´s lactate solution into the joint cavity. Landmarks for the dorsal arthroscopic portals were located at the centre of the groove bounded by the lateral branch of the suspensory ligament and the large metacarpus at a point 1 cm proximal to the joint. The palmaro-lateral portal was located in a triangular area between the branch of the suspensory ligament, the large metacarpus, and the sesamoid bone, with insertion of the arthroscope in a 45° joint flexion angle. Arthroscopy of the fetlock joint via the dorso-lateral portal allowed examination of the distal end of the large metacarpus and the proximal end of the first phalanx of the fourth digit. Arthroscopy via a dorso-medial approach allowed examination of the distal end of the large metacarpus and the proximal end of the first phalanx and the distal end of the third digit. The palmaro-lateral portal allowed examination of the sesamoid bones, the synovial membrane, and the synovial villi. The main complications recorded during arthroscopy were iatrogenic articular surface injury as well as obstruction of vision with the synovial villi. This is the first work to describe the normal arthroscopy of the fetlock joint in the dromedary camel, the arthroscopic portals, and the complications that could occur during and after arthroscopy. Further studies are required for diagnosis of pathological changes in the fetlock joint of the dromedary camel and for arthroscopy of other joints in the dromedary camel.
2011-01-01
Introduction Osteoarthritis (OA) is a complex, multifactorial joint disease affecting both the cartilage and the subchondral bone. Animal models of OA aid in the understanding of the pathogenesis of OA and testing suitable drugs for OA treatment. In this study we characterized the temporal changes in the tibial subchondral bone architecture in a rat model of low-dose monosodium iodoacetate (MIA)-induced OA using in vivo micro-computed tomography (CT). Methods Male Wistar rats received a single intra-articular injection of low-dose MIA (0.2 mg) in the right knee joint and sterile saline in the left knee joint. The animals were scanned in vivo by micro-CT at two, six, and ten weeks post-injection, analogous to early, intermediate, and advanced stages of OA, to assess architectural changes in the tibial subchondral bone. The articular cartilage changes in the tibiae were assessed macroscopically and histologically at ten weeks post-injection. Results Interestingly, tibiae of the MIA-injected knees showed significant bone loss at two weeks, followed by increased trabecular thickness and separation at six and ten weeks. The trabecular number was decreased at all time points compared to control tibiae. The tibial subchondral plate thickness of the MIA-injected knee was increased at two and six weeks and the plate porosity was increased at all time points compared to control. At ten weeks, histology revealed loss of proteoglycans, chondrocyte necrosis, chondrocyte clusters, cartilage fibrillation, and delamination in the MIA-injected tibiae, whereas the control tibiae showed no changes. Micro-CT images and histology showed the presence of subchondral bone sclerosis, cysts, and osteophytes. Conclusions These findings demonstrate that the low-dose MIA rat model closely mimics the pathological features of progressive human OA. The low-dose MIA rat model is therefore suitable to study the effect of therapeutic drugs on cartilage and bone in a non-trauma model of OA. In vivo micro-CT is a non-destructive imaging technique that can track structural changes in the tibial subchondral bone in this animal model, and could also be used to track changes in bone in preclinical drug intervention studies for OA treatments. PMID:22185204
Klupiński, Kamil; Krekora, Katarzyna; Woldańska-Okońska, Marta
2014-01-01
Anterior cruciate ligament (ACL) is one of the most important structures of the knee joint. It has a stabilizing function and causes sliding movement between the articular surfaces. Most frequently there comes to the anterior cruciate ligament injury during practicing sports such as skiing, football, sports which require sudden turns and those which are associated with jumps for height like basketball and volleyball. The aim of study was to evaluate of the outcomes of complex physiotherapy after reconstruction of anterior cruciate ligament by bone -tendon-bone (BTB) method. The study involved 41 patients, 8 women and 33 men, aged 20 to 45 years, body height 1.60-1.90 cm and body weight 50-100 kg. The patients were divided into two groups. Group I included 26 patients (3 women and 23 men) after arthroscopic ACL reconstruction. Group II--control-group included 15 patients (5 women and 10 men) after ACL injury but not subjected to the ligament reconstruction. The patients from both groups underwent rehabilitation according to the same rehabilitation program suggested by the Medical Magnus Clinic in Lodz, which consisted in performing daily exercises in open and closed kinetic chains. All group I and II patients were examined three times: after surgery (before the start of the rehabilitation), in the sixth week of rehabilitation and 12 weeks afterwards. The clinical examination included: measurement of the range of movement in the knee joint, the measurement of musculoskeletal strength with Lovett scale, knee pain assessment using Visual Analog Scale (VAS), transpatellar anthropometric measurement of the knee joint, linear measurements of the thigh and shin (at two points: 5 and 10 cm above the patellar apex and at two points: 5 and 10 cm below the patellar base). Introduction of early highly specialized physiotherapy has been demonstrated to contribute to the improvement of the rehabilitation outcomes and to the shortening of the therapy. A statistically significant improvement has been obtained in all examined patients after anterior cruciate ligament reconstruction by bone - tendon - bone method at every stage of rehabilitation in relation to the initial values. Early motor physiotherapy has a significant impact on the condition of patients treated both surgically and conservatively. The differences observed between the groups in the range of the measurement of movement in the knee joint, the measurement of musculoskeletal strength, severity of pain in the knee joint, transpatellar anthropometric measurement of the knee joint and linear measurements of the thigh and shin were caused by necessary surgery which leads to the conclusion that the therapeutic rehabilitation should be longer in the investigated group. In this group introduction of physical therapy with analgesic effects is also of importance. Taking into account good results observed in patients from the control group, who were treated conservatively, the possible indications for surgery should be carefully considered.
Okamoto, Masanori; Yamazaki, Hiroshi; Yoshimura, Yasuo; Aoki, Kaoru; Tanaka, Atsushi; Kato, Hiroyuki
2017-12-01
Isolated metastasis to the hand bones is very rare. Only seven cases of metastasis to the trapezium have been reported. To the best of our knowledge, this is the first report of a single metastasis to the trapezium from a gastric adenocarcinoma. A 62-year-old man presented with pain and massive swelling in the right carpometacarpal joint of the thumb. The patient was diagnosed with trapezial metastasis of advanced gastric adenocarcinoma. The patient underwent systemic chemotherapy with cisplatin and S-1, radiotherapy to the metastatic bone, and treatment with denosumab. One year later, the huge metastatic tumor was resected, and the hand was reconstructed using vascularized scapular bone. Eighteen months postoperatively, the patient was satisfied with the appearance of the reconstructed hand and was able to use his right thumb in activities of daily living. Although rare, metastasis to the trapezium should be considered in patients with persistent and progressive thumb CMC joint pain. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.
Huang, Henry; Skelly, Jordan D; Ayers, David C; Song, Jie
2017-02-09
Age is the primary risk factor for osteoarthritis (OA), yet surgical OA mouse models such as destabilization of the medial meniscus (DMM) used for evaluating disease-modifying OA targets are frequently performed on young adult mice only. This study investigates how age affects cartilage and subchondral bone changes in mouse joints following DMM. DMM was performed on male C57BL/6 mice at 4 months (4 M), 12 months (12 M) and 19+ months (19 M+) and on females at 12 M and 18 M+. Two months after surgery, operated and unoperated contralateral knees were harvested and evaluated using cartilage histology scores and μCT quantification of subchondral bone plate thickness and osteophyte formation. The 12 M and 19 M+ male mice developed more cartilage erosions and thicker subchondral bone plates after DMM than 4 M males. The size of osteophytes trended up with age, while the bone volume fraction was significantly higher in the 19 M+ group. Furthermore, 12 M females developed milder OA than males as indicated by less cartilage degradation, less subchondral bone plate sclerosis and smaller osteophytes. Our results reveal distinct age/gender-dependent structural changes in joint cartilage and subchondral bone post-DMM, facilitating more thoughtful selection of murine age/gender when using this surgical technique for translational OA research.
Huang, Henry; Skelly, Jordan D.; Ayers, David C.; Song, Jie
2017-01-01
Age is the primary risk factor for osteoarthritis (OA), yet surgical OA mouse models such as destabilization of the medial meniscus (DMM) used for evaluating disease-modifying OA targets are frequently performed on young adult mice only. This study investigates how age affects cartilage and subchondral bone changes in mouse joints following DMM. DMM was performed on male C57BL/6 mice at 4 months (4 M), 12 months (12 M) and 19+ months (19 M+) and on females at 12 M and 18 M+. Two months after surgery, operated and unoperated contralateral knees were harvested and evaluated using cartilage histology scores and μCT quantification of subchondral bone plate thickness and osteophyte formation. The 12 M and 19 M+ male mice developed more cartilage erosions and thicker subchondral bone plates after DMM than 4 M males. The size of osteophytes trended up with age, while the bone volume fraction was significantly higher in the 19 M+ group. Furthermore, 12 M females developed milder OA than males as indicated by less cartilage degradation, less subchondral bone plate sclerosis and smaller osteophytes. Our results reveal distinct age/gender-dependent structural changes in joint cartilage and subchondral bone post-DMM, facilitating more thoughtful selection of murine age/gender when using this surgical technique for translational OA research. PMID:28181577
Treatment of malreduced pilon fracture: A case report and the result in the long-term follow-up.
Balioğlu, Mehmet Bulent; Akman, Yunus Emre; Bahar, Hakan; Albayrak, Akif
2016-01-01
The risk for post-traumatic osteoarthritis (POA) following tibial plafond joint trauma has been reported to be as high as 70-75%. In the treatment of more severe joint pathologies, with incongruity and intra-articular defects, internal or external fixations techniques may be required. We report the orthopedic management of a pilon fracture in a 30-year-old male with malunion and implant failure after initial mal-reduction of the fracture 9-months earlier. Tricortical iliac crest autologous bone grafting (TCG) was used in combination with internal fixation to restore distal tibial articular. The procedure resulted in a pain free ankle, sufficient range of motion for function and patient satisfaction. Early surgical intervention and anatomical reduction with appropriate fixation are recommended for intra-articular tibial pilon fractures. Autogenous bone grafting is a reliable treatment option to augment structural stability, bone defects and bone-healing. Indications for bone grafting include delayed union or nonunion, malunion, arthrodesis, limb salvage, and reconstruction of bone voids or defects. The application of TCG in the management of a malreduced tibial plafond fracture has not been described before. We performed TCG with internal fixation in order to restore stability, congruency and alignment in a young patient in whom a biological restoration was feasible due to good bone quality. In suitable cases, TCG might provide an alternative to arthrodesis or arthroplasty. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Treatment of malreduced pilon fracture: A case report and the result in the long-term follow-up
Balioğlu, Mehmet Bulent; Akman, Yunus Emre; Bahar, Hakan; Albayrak, Akif
2015-01-01
Introduction The risk for post-traumatic osteoarthritis (POA) following tibial plafond joint trauma has been reported to be as high as 70–75%. In the treatment of more severe joint pathologies, with incongruity and intra-articular defects, internal or external fixations techniques may be required. Presentation of case We report the orthopedic management of a pilon fracture in a 30-year-old male with malunion and implant failure after initial mal-reduction of the fracture 9-months earlier. Tricortical iliac crest autologous bone grafting (TCG) was used in combination with internal fixation to restore distal tibial articular. The procedure resulted in a pain free ankle, sufficient range of motion for function and patient satisfaction. Discussion Early surgical intervention and anatomical reduction with appropriate fixation are recommended for intra-articular tibial pilon fractures. Autogenous bone grafting is a reliable treatment option to augment structural stability, bone defects and bone-healing. Indications for bone grafting include delayed union or nonunion, malunion, arthrodesis, limb salvage, and reconstruction of bone voids or defects. The application of TCG in the management of a malreduced tibial plafond fracture has not been described before. Conclusion We performed TCG with internal fixation in order to restore stability, congruency and alignment in a young patient in whom a biological restoration was feasible due to good bone quality. In suitable cases, TCG might provide an alternative to arthrodesis or arthroplasty. PMID:26724734
The Plastic Nature of the Human Bone-Periodontal Ligament-Tooth Fibrous Joint
Ho, Sunita P.; Kurylo, Michael P.; Grandfield, Kathryn; Hurng, Jonathan; Herber, Ralf-Peter; Ryder, Mark I.; Altoe, Virginia; Aloni, Shaul; Feng, Jian Q. (Jerry); Webb, Samuel; Marshall, Grayson W.; Curtis, Donald; Andrews, Joy C.; Pianetta, Piero
2014-01-01
This study investigates bony protrusions within a narrowed periodontal ligament space (PDL-space) of a human bone-PDL-tooth fibrous joint by mapping structural, biochemical, and mechanical heterogeneity. Higher resolution structural characterization was achieved via complementary atomic force microscopy (AFM), nano transmission X-ray microscopy (nano-TXM), and micro tomography (Micro XCT™). Structural heterogeneity was correlated to biochemical and elemental composition, illustrated via histochemistry and microprobe X-ray fluorescence analysis (μ-XRF), and mechanical heterogeneity evaluated by AFM-based nanoindentation. Results demonstrated that the narrowed PDL-space was due to invasion of bundle bone (BB) into PDL-space. Protruded BB had a wider range with higher elastic modulus values (2-8 GPa) compared to lamellar bone (0.8-6 GPa), and increased quantities of Ca, P and Zn as revealed by μ-XRF. Interestingly, the hygroscopic 10-30 μm interface between protruded BB and lamellar bone exhibited higher X-ray attenuation similar to cement lines and lamellae within bone. Localization of the small leucine rich proteoglycan biglycan (BGN) responsible for mineralization was observed at the PDL-bone interface and around the osteocyte lacunae. Based on these results, it can be argued that the LB-BB interface was the original site of PDL attachment, and that the genesis of protruded BB identified as protrusions occurred as a result of shift in strain. We emphasize the importance of bony protrusions within the context of organ function and that additional study is warranted. PMID:24063947
Tympanic plate fractures in temporal bone trauma: prevalence and associated injuries.
Wood, C P; Hunt, C H; Bergen, D C; Carlson, M L; Diehn, F E; Schwartz, K M; McKenzie, G A; Morreale, R F; Lane, J I
2014-01-01
The prevalence of tympanic plate fractures, which are associated with an increased risk of external auditory canal stenosis following temporal bone trauma, is unknown. A review of posttraumatic high-resolution CT temporal bone examinations was performed to determine the prevalence of tympanic plate fractures and to identify any associated temporal bone injuries. A retrospective review was performed to evaluate patients with head trauma who underwent emergent high-resolution CT examinations of the temporal bone from July 2006 to March 2012. Fractures were identified and assessed for orientation; involvement of the tympanic plate, scutum, bony labyrinth, facial nerve canal, and temporomandibular joint; and ossicular chain disruption. Thirty-nine patients (41.3 ± 17.2 years of age) had a total of 46 temporal bone fractures (7 bilateral). Tympanic plate fractures were identified in 27 (58.7%) of these 46 fractures. Ossicular disruption occurred in 17 (37.0%). Fractures involving the scutum occurred in 25 (54.4%). None of the 46 fractured temporal bones had a mandibular condyle dislocation or fracture. Of the 27 cases of tympanic plate fractures, 14 (51.8%) had ossicular disruption (P = .016) and 18 (66.6%) had a fracture of the scutum (P = .044). Temporomandibular joint gas was seen in 15 (33%) but was not statistically associated with tympanic plate fracture (P = .21). Tympanic plate fractures are commonly seen on high-resolution CT performed for evaluation of temporal bone trauma. It is important to recognize these fractures to avoid the preventable complication of external auditory canal stenosis and the potential for conductive hearing loss due to a fracture involving the scutum or ossicular chain.
Investigation of motorcyclist cervical spine trauma using HUMOS model.
Sun, Jingchao; Rojas, Alban; Bertrand, Pierre; Petit, Yvan; Kraenzler, Reinhard; Arnoux, Pierre Jean
2012-09-01
With 16 percent of the total road user fatalities, motorcyclists represent the second highest rate of road fatalities in France after car occupants. Regarding road accidents, a large proportion of trauma was on the lower cervical spine. According to different clinical studies, it is postulated that the cervical spine fragility areas are located on the upper and lower cervical spine. In motorcycle crashes, impact conditions occur on the head segment with various orientations and impact directions, leading to a combination of rotations and compression. Hence, motorcyclist vulnerability was investigated considering many impact conditions. Using the human model for safety (HUMOS), a finite element model, this work aims to provide an evaluation of the cervical spine weaknesses based on an evaluation of injury mechanisms. This evaluation consisted of defining 2 injury risk factors (joint injury and bone fracture) using a design of experiment including various velocities, impact directions, and impact orientations. The results confirmed previously reported clinical and epidemiological work on the fragility of the lower cervical spine and the upper cervical spine segments. Joint injuries appeared before bone fractures on both the upper and lower cervical spine. Bone fracture risk was greater on the lower cervical spine than on the upper cervical spine. The compression induced by a high impact angle was identified as an important injury severity factor. It significantly increased the injury incidence for both joint injuries and bone fractures. It also induced a shift in injury location from the lower to the upper cervical spine. The impact velocity exhibited a linear relationship with injury risks and severity. It also shifted the bone fracture risk from the lower to upper spinal segments.
Holwegner, Callista; Reinhardt, Adam L; Schmid, Marian J; Marx, David B; Reinhardt, Richard A
2015-01-01
Juvenile idiopathic arthritis in temporomandibular joints (TMJs) is often treated with intra-articular steroid injections, which can inhibit condylar growth. The purpose of this study was to compare simvastatin (a cholesterol-lowering drug that reduces TMJ inflammation) with the steroid triamcinolone hexacetonide in experimental TMJ arthritis. Joint inflammation was induced by injecting complete Freund's adjuvant (CFA) into the TMJs of 40 growing Sprague Dawley rats; 4 other rats were left untreated. In the same intra-articular injection, one of the following was applied: (1) 0.5 mg of simvastatin in ethanol carrier, (2) ethanol carrier alone, (3) 0.15 mg of triamcinolone hexacetonide, (4) 0.5 mg of simvastatin and 0.15 mg of triamcinolone hexacetonide, or (5) nothing additional to the CFA. The animals were killed 28 days later, and their mandibles were evaluated morphometrically and with microcomputed tomography. The analysis showed that the TMJs subjected to CFA alone had decreased ramus height compared with those with no treatment (P <0.05). Groups that had injections containing the steroid overall had decreases in weight, ramus height, and bone surface density when compared with the CFA-alone group (P <0.0001). Groups that had injections containing simvastatin, however, had overall increases in weight (P <0.0001), ramus height (P <0.0001), condylar width (P <0.05), condylar bone surface density (P <0.05), and bone volume (P <0.0001) compared with the groups receiving the steroid injections, and they were not different from the healthy (no treatment) group. Treatment of experimentally induced arthritis in TMJs with intra-articular simvastatin preserved normal condylar bone growth. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Müller-Gerbl, M
1998-01-01
Pauwels (1965) and subsequent workers in the same field have shown that the distribution of the subchondral density within a joint surface can serve as a parametric measurement which reflects the main stress acting on a joint. Our own investigations on anatomical specimens have demonstrated that this subchondral mineralization does indeed show regular distribution patterns from which conclusions about the mechanical situation within an individual joint may be drawn. Since radiographical densitometry and histological methods are only available for determining the adaptive reaction of the bone to the particular mechanical situation in a joint after death, the information obtained applies only to an end situation and tells us nothing about the development of the changes with time. Furthermore, investigations carried out on human specimens by radiographical densitometry mostly apply to samples of a particular age, since such specimens can be acquired only from departments of pathology, forensic medicine or anatomy. The functional reactions of the bone tissue to repeated long-term changes in the loading--lengthy immobilization and subsequent remobilization, for instance, or heavy loading over a considerable period of time--cannot be followed by any ordinary method in experimental animals, since the death of the animal is a prerequisite for the precise quantitative examination of the bone tissue. This applies also to attempts to follow the process by means of animal experiments. CT OAM has been developed as a method which, based on CT, can provide a surface representation of the 3-D density distribution in the joints of living subjects. Comparative studies were carried out to establish and confirm the validity of the procedure. These have shown (1) that the results obtained from anatomical specimens are identical with those obtained in the living; (2) that secondary CT sections are suitable for evaluation and that the spectrum of joint surfaces examined can be extended to include the whole joint (if this were not so, effects caused by the apparatus--particularly the partial-volume effect--would render the procedure impossible); and finally (3) that the distribution of the Hounsfield density within the subchondral bone represents the distribution of the mineralization. The mineralization patterns found by us in different joints of normal subjects have shown that these patterns can be brought into line with current models of joint mechanics. The radiocarpal joint, for instance, has revealed the various types of loading occurring within physiological limits. Information has also been obtained about the age-related changes taking place in the hip, wrist and ankle joints. The increase of the total mineralization in gymnasts can be related to the qualitative and quantitative adaptation to an increased peak loading, and reduced mineralization to a lengthy reduction in use during, for instance, postoperative immobilization. In groups of patients with various diseases of mechanical origin (shoulder instability, malalignment of the main axis, defective repositioning of healed fractures, rupture of the rotator cuff, meniscectomy or rupture of the anterior cruciate ligament), a pattern of mineralization is found which is different from the normal picture. These findings reflect the abnormal mechanical situation. The mineralization pattern of the femoropatellar joint has revealed the differing etiologies of medial and lateral cartilage damage and the examination of patients with lunatomalacia has made it possible to recognize a genetic disposition. The postoperative comparison of the mineralization patterns of patients with genu varum who have undergone a correction osteotomy and the results of animal experiments on various procedures for reconstructing the anterior cruciate ligament or a primary replacement of the meniscus, have produced results which make it possible to judge the success or failure of the operation. (ABSTRACT TRUNCATED)
Mahoney, David J.; Mikecz, Katalin; Ali, Tariq; Mabilleau, Guillaume; Benayahu, Dafna; Plaas, Anna; Milner, Caroline M.; Day, Anthony J.; Sabokbar, Afsaneh
2008-01-01
TSG-6 is an inflammation-induced protein that is produced at pathological sites, including arthritic joints. In animal models of arthritis, TSG-6 protects against joint damage; this has been attributed to its inhibitory effects on neutrophil migration and plasmin activity. Here we investigated whether TSG-6 can directly influence bone erosion. Our data reveal that TSG-6 inhibits RANKL-induced osteoclast differentiation/activation from human and murine precursor cells, where elevated dentine erosion by osteoclasts derived from TSG-6-/- mice is consistent with the very severe arthritis seen in these animals. However, the long bones from unchallenged TSG-6-/- mice were found to have higher trabecular mass than controls, suggesting that in the absence of inflammation TSG-6 has a role in bone homeostasis; we have detected expression of the TSG-6 protein in the bone marrow of unchallenged wild type mice. Furthermore, we have observed that TSG-6 can inhibit bone morphogenetic protein-2 (BMP-2)-mediated osteoblast differentiation. Interaction analysis revealed that TSG-6 binds directly to RANKL and to BMP-2 (as well as other osteogenic BMPs but not BMP-3) via composite surfaces involving its Link and CUB modules. Consistent with this, the full-length protein is required for maximal inhibition of osteoblast differentiation and osteoclast activation, although the isolated Link module retains significant activity in the latter case. We hypothesize that TSG-6 has dual roles in bone remodeling; one protective, where it inhibits RANKL-induced bone erosion in inflammatory diseases such as arthritis, and the other homeostatic, where its interactions with BMP-2 and RANKL help to balance mineralization by osteoblasts and bone resorption by osteoclasts. PMID:18586671
Quantitative in vivo assessment of bone microarchitecture in the human knee using HR-pQCT.
Kroker, Andres; Zhu, Ying; Manske, Sarah L; Barber, Rhamona; Mohtadi, Nicholas; Boyd, Steven K
2017-04-01
High-resolution peripheral quantitative computed tomography (HR-pQCT) is a novel imaging modality capable of visualizing bone microarchitecture in vivo at human peripheral sites such as the distal radius and distal tibia. This research has extended the technology to provide a non-invasive assessment of bone microarchitecture at the human knee by establishing new hardware, imaging protocols and data analysis. A custom leg holder was developed to stabilize a human knee centrally within a second generation HR-pQCT field of view. Five participants with anterior cruciate ligament reconstructions had their knee joint imaged in a continuous scan of 6cm axially. The nominal isotropic voxel size was 60.7μm. Bone mineral density and microarchitecture were assessed within the weight-bearing regions of medial and lateral compartments of the knee at three depths from the weight-bearing articular bone surface, including both the cortical and trabecular bone regions. Scan duration was approximately 18min per knee and produced 5GB of projection data and 10GB of reconstructed image data (2304×2304 image matrix, 1008 slices). Motion during the scan was minimized by the leg holder and was similar in magnitude as a scan of the distal tibia. Bone mineral density and microarchitectural parameters were assessed for 16 volumes of interest in the tibiofemoral joint. This is a new non-invasive in vivo assessment tool for bone microarchitecture in the human knee that provides an opportunity to gain insight into normal, injured and surgically reconstructed human knee bone architecture in cross-sectional or longitudinal studies. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.
Mehl, Christian; Gassling, Volker; Schultz-Langerhans, Stephan; Açil, Yahya; Bähr, Telse; Wiltfang, Jörg; Kern, Matthias
The main aim of this study was to evaluate the influence of four different abutment materials and the adhesive joint of two-piece abutments on the cervical implant bone and soft tissue. Sixty-four titanium implants (Camlog Conelog; 4.3 ± 9 mm) were placed bone level into the edentulous arches of four minipigs. Four different types of abutments were placed at implant exposure: zirconium dioxide, lithium disilicate, and titanium bonded to a titanium luting base with resin cement; one-piece titanium abutments served as the control. The animals were sacrificed 6 months after implant exposure, and the bone-to-implant contact (BIC) area, sulcus depth, the length of the junctional epithelium and the connective tissue, the biologic width, and first cervical BIC-implant shoulder distance were measured using histomorphometry and light and fluorescence microscopy. Overall, 14 implants were lost (22%). At exposure, the implant shoulder-bone distance was 0.6 ± 0.7 mm. Six months later, the bone loss was 2.1 ± 1.2 mm measured histomorphometrically. There was a significant difference between the two measurements (P ≤ .0001). No significant influence could be found between any of the abutment materials with regard to bone loss or soft tissue anatomy (P > .05), with the exception of zirconium dioxide and onepiece titanium abutments when measuring the length of the junctional epithelium (P ≤ .01). The maxilla provided significantly more soft tissue and less bone loss compared with the mandible (P ≤ .02). All tested abutment materials and techniques seem to be comparable with regard to soft tissue properties and the cervical bone level.
Ni, Jianlong; Li, Dichen; Mao, Mao; Dang, Xiaoqian; Wang, Kunzheng; He, Jiankang; Shi, Zhibin
2018-02-01
To explore a method of bone tunnel placement for anterior cruciate ligament (ACL) reconstruction based on 3-dimensional (3D) printing technology and to assess its accuracy. Twenty human cadaveric knees were scanned by thin-layer computed tomography (CT). To obtain data on bones used to establish a knee joint model by computer software, customized bone anchors were installed before CT. The reference point was determined at the femoral and tibial footprint areas of the ACL. The site and direction of the bone tunnels of the femur and tibia were designed and calibrated on the knee joint model according to the reference point. The resin template was designed and printed by 3D printing. Placement of the bone tunnels was accomplished by use of templates, and the cadaveric knees were scanned again to compare the concordance of the internal opening of the bone tunnels and reference points. The twenty 3D printing templates were designed and printed successfully. CT data analysis between the planned and actual drilled tunnel positions showed mean deviations of 0.57 mm (range, 0-1.5 mm; standard deviation, 0.42 mm) at the femur and 0.58 mm (range, 0-1.5 mm; standard deviation, 0.47 mm) at the tibia. The accuracy of bone tunnel placement for ACL reconstruction in cadaveric adult knees based on 3D printing technology is high. This method can improve the accuracy of bone tunnel placement for ACL reconstruction in clinical sports medicine. Copyright © 2017 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Moore, E A; Jacoby, R K; Ellis, R E; Fry, M E; Pittard, S; Vennart, W
1990-10-01
The magnetic resonance imaging (MRI) features of a rheumatoid arthritic geode are presented. Development of such a cyst from before x ray diagnosis to its coalescence with the wrist joint is described. The evidence suggests that these juxta-articular cysts are not merely an intrusion of the synovial cavity into the bone marrow but start as isolated structures beneath the subchondral bone.
Moore, E A; Jacoby, R K; Ellis, R E; Fry, M E; Pittard, S; Vennart, W
1990-01-01
The magnetic resonance imaging (MRI) features of a rheumatoid arthritic geode are presented. Development of such a cyst from before x ray diagnosis to its coalescence with the wrist joint is described. The evidence suggests that these juxta-articular cysts are not merely an intrusion of the synovial cavity into the bone marrow but start as isolated structures beneath the subchondral bone. Images PMID:2241269
Glucocorticoid-Induced Avascular Bone Necrosis: Diagnosis and Management
Chan, KL; Mok, CC
2012-01-01
Glucocorticoid use is one of the most important causes of avascular bone necrosis (AVN). The pathogenesis of glucocorticoid-induced AVN is not fully understood but postulated mechanisms include fat hypertrophy, fat emboli and intravascular coagulation that cause impedance of blood supply to the bones. Data regarding the relationship between AVN and dosage, route of administration and treatment duration of glucocorticoids are conflicting, with some studies demonstrating the cumulative dose of glucocorticoid being the most important determining factor. Early recognition of this complication is essential as the prognosis is affected by the stage of the disease. Currently, there is no consensus on whether universal screening of asymptomatic AVN should be performed for long-term glucocorticoid users. A high index of suspicion should be exhibited for bone and joint pain at typical sites. Magnetic resonance imaging (MRI) or bone scintigraphy is more sensitive than plain radiograph for diagnosing early-stage AVN. Conservative management of AVN includes rest and reduction of weight bearing. Minimization of glucocorticoid dose or a complete withdrawal of the drug should be considered if the underlying conditions allow. The efficacy of bisphosphonates in reducing the rate of collapse of femoral head in AVN is controversial. Surgical therapy of AVN includes core decompression, osteotomy, bone grafting and joint replacement. Recent advances in the treatment of AVN include the use of tantalum rod and the development of more wear resistant bearing surface in hip arthroplasty. PMID:23115605
Glucocorticoid-induced avascular bone necrosis: diagnosis and management.
Chan, K L; Mok, C C
2012-01-01
Glucocorticoid use is one of the most important causes of avascular bone necrosis (AVN). The pathogenesis of glucocorticoid-induced AVN is not fully understood but postulated mechanisms include fat hypertrophy, fat emboli and intravascular coagulation that cause impedance of blood supply to the bones. Data regarding the relationship between AVN and dosage, route of administration and treatment duration of glucocorticoids are conflicting, with some studies demonstrating the cumulative dose of glucocorticoid being the most important determining factor. Early recognition of this complication is essential as the prognosis is affected by the stage of the disease. Currently, there is no consensus on whether universal screening of asymptomatic AVN should be performed for long-term glucocorticoid users. A high index of suspicion should be exhibited for bone and joint pain at typical sites. Magnetic resonance imaging (MRI) or bone scintigraphy is more sensitive than plain radiograph for diagnosing early-stage AVN. Conservative management of AVN includes rest and reduction of weight bearing. Minimization of glucocorticoid dose or a complete withdrawal of the drug should be considered if the underlying conditions allow. The efficacy of bisphosphonates in reducing the rate of collapse of femoral head in AVN is controversial. Surgical therapy of AVN includes core decompression, osteotomy, bone grafting and joint replacement. Recent advances in the treatment of AVN include the use of tantalum rod and the development of more wear resistant bearing surface in hip arthroplasty.
Sato, Eugene J; Killian, Megan L; Choi, Anthony J; Lin, Evie; Choo, Alexander D; Rodriguez-Soto, Ana E; Lim, Chanteak T; Thomopoulos, Stavros; Galatz, Leesa M; Ward, Samuel R
2015-04-01
Injury to the rotator cuff can cause irreversible changes to the structure and function of the associated muscles and bones. The temporal progression and pathomechanisms associated with these adaptations are unclear. The purpose of this study was to investigate the time course of structural muscle and osseous changes in a rat model of a massive rotator cuff tear. Supraspinatus and infraspinatus muscle architecture and biochemistry and humeral and scapular morphological parameters were measured three days, eight weeks, and sixteen weeks after dual tenotomy with and without chemical paralysis via botulinum toxin A (BTX). Muscle mass and physiological cross-sectional area increased over time in the age-matched control animals, decreased over time in the tenotomy+BTX group, and remained nearly the same in the tenotomy-alone group. Tenotomy+BTX led to increased extracellular collagen in the muscle. Changes in scapular bone morphology were observed in both experimental groups, consistent with reductions in load transmission across the joint. These data suggest that tenotomy alone interferes with normal age-related muscle growth. The addition of chemical paralysis yielded profound structural changes to the muscle and bone, potentially leading to impaired muscle function, increased muscle stiffness, and decreased bone strength. Structural musculoskeletal changes occur after tendon injury, and these changes are severely exacerbated with the addition of neuromuscular compromise. Copyright © 2015 by The Journal of Bone and Joint Surgery, Incorporated.
Adaptive scapula bone remodeling computational simulation: Relevance to regenerative medicine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Gulshan B., E-mail: gbsharma@ucalgary.ca; University of Pittsburgh, Swanson School of Engineering, Department of Bioengineering, Pittsburgh, Pennsylvania 15213; University of Calgary, Schulich School of Engineering, Department of Mechanical and Manufacturing Engineering, Calgary, Alberta T2N 1N4
Shoulder arthroplasty success has been attributed to many factors including, bone quality, soft tissue balancing, surgeon experience, and implant design. Improved long-term success is primarily limited by glenoid implant loosening. Prosthesis design examines materials and shape and determines whether the design should withstand a lifetime of use. Finite element (FE) analyses have been extensively used to study stresses and strains produced in implants and bone. However, these static analyses only measure a moment in time and not the adaptive response to the altered environment produced by the therapeutic intervention. Computational analyses that integrate remodeling rules predict how bone will respondmore » over time. Recent work has shown that subject-specific two- and three dimensional adaptive bone remodeling models are feasible and valid. Feasibility and validation were achieved computationally, simulating bone remodeling using an intact human scapula, initially resetting the scapular bone material properties to be uniform, numerically simulating sequential loading, and comparing the bone remodeling simulation results to the actual scapula’s material properties. Three-dimensional scapula FE bone model was created using volumetric computed tomography images. Muscle and joint load and boundary conditions were applied based on values reported in the literature. Internal bone remodeling was based on element strain-energy density. Initially, all bone elements were assigned a homogeneous density. All loads were applied for 10 iterations. After every iteration, each bone element’s remodeling stimulus was compared to its corresponding reference stimulus and its material properties modified. The simulation achieved convergence. At the end of the simulation the predicted and actual specimen bone apparent density were plotted and compared. Location of high and low predicted bone density was comparable to the actual specimen. High predicted bone density was greater than actual specimen. Low predicted bone density was lower than actual specimen. Differences were probably due to applied muscle and joint reaction loads, boundary conditions, and values of constants used. Work is underway to study this. Nonetheless, the results demonstrate three dimensional bone remodeling simulation validity and potential. Such adaptive predictions take physiological bone remodeling simulations one step closer to reality. Computational analyses are needed that integrate biological remodeling rules and predict how bone will respond over time. We expect the combination of computational static stress analyses together with adaptive bone remodeling simulations to become effective tools for regenerative medicine research.« less
Adaptive scapula bone remodeling computational simulation: Relevance to regenerative medicine
NASA Astrophysics Data System (ADS)
Sharma, Gulshan B.; Robertson, Douglas D.
2013-07-01
Shoulder arthroplasty success has been attributed to many factors including, bone quality, soft tissue balancing, surgeon experience, and implant design. Improved long-term success is primarily limited by glenoid implant loosening. Prosthesis design examines materials and shape and determines whether the design should withstand a lifetime of use. Finite element (FE) analyses have been extensively used to study stresses and strains produced in implants and bone. However, these static analyses only measure a moment in time and not the adaptive response to the altered environment produced by the therapeutic intervention. Computational analyses that integrate remodeling rules predict how bone will respond over time. Recent work has shown that subject-specific two- and three dimensional adaptive bone remodeling models are feasible and valid. Feasibility and validation were achieved computationally, simulating bone remodeling using an intact human scapula, initially resetting the scapular bone material properties to be uniform, numerically simulating sequential loading, and comparing the bone remodeling simulation results to the actual scapula's material properties. Three-dimensional scapula FE bone model was created using volumetric computed tomography images. Muscle and joint load and boundary conditions were applied based on values reported in the literature. Internal bone remodeling was based on element strain-energy density. Initially, all bone elements were assigned a homogeneous density. All loads were applied for 10 iterations. After every iteration, each bone element's remodeling stimulus was compared to its corresponding reference stimulus and its material properties modified. The simulation achieved convergence. At the end of the simulation the predicted and actual specimen bone apparent density were plotted and compared. Location of high and low predicted bone density was comparable to the actual specimen. High predicted bone density was greater than actual specimen. Low predicted bone density was lower than actual specimen. Differences were probably due to applied muscle and joint reaction loads, boundary conditions, and values of constants used. Work is underway to study this. Nonetheless, the results demonstrate three dimensional bone remodeling simulation validity and potential. Such adaptive predictions take physiological bone remodeling simulations one step closer to reality. Computational analyses are needed that integrate biological remodeling rules and predict how bone will respond over time. We expect the combination of computational static stress analyses together with adaptive bone remodeling simulations to become effective tools for regenerative medicine research.
[Magnetic resonance imaging for the wrist joint of the coal miners in vibration department].
Zhao, Xuan-zhi; Liu, Rui-lian; Hu, Shu-dong; Zhang, Wei; Xu, Wen-xiu; Ge, Ling-xia
2006-04-01
To study the magnetic resonance imaging (MRI) in the wrist joint of coal miners who work in excavation and vibration department. Forty-three coal miners with the hand-arm vibration disease served as the observation group while 20 workers who were not working in the vibration department acted as the control group. The patients in the observation group were divided into five subgroups according to the time when they received vibration. The regularity of the development of signs and symptoms of MRI was observed and analyzed. The hydroarthrosis was most found in MRI. There were significant difference in hydroarthrosis (chi(2) = 8.80, P < 0.01), osteoporosis and osteomyelitis (chi(2) = 3.91, chi(2) = 5.01, P < 0.05 respectively) between the observation group and the control group. The edema of bone marrow and the avascular necrosis of ossa carpi were found only in the observation group and not found in the control group. The hydroarthrosis and the edema of bone marrow occurred most in the early stage of vibration. The signal in the edema of the bone marrow of the distal end of the radius was decreased in the GE sequence T(2)WI with the specificity. (1) Changes in the wrist joint occur in the early stage of the vibration work, and can be found in the MRI. (2) The edema of the bone marrow of the distal end of the radius is of great value in the diagnosis of the hand-arm vibration disease.
Imaging technologies for preclinical models of bone and joint disorders
2011-01-01
Preclinical models for musculoskeletal disorders are critical for understanding the pathogenesis of bone and joint disorders in humans and the development of effective therapies. The assessment of these models primarily relies on morphological analysis which remains time consuming and costly, requiring large numbers of animals to be tested through different stages of the disease. The implementation of preclinical imaging represents a keystone in the refinement of animal models allowing longitudinal studies and enabling a powerful, non-invasive and clinically translatable way for monitoring disease progression in real time. Our aim is to highlight examples that demonstrate the advantages and limitations of different imaging modalities including magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), single-photon emission computed tomography (SPECT) and optical imaging. All of which are in current use in preclinical skeletal research. MRI can provide high resolution of soft tissue structures, but imaging requires comparatively long acquisition times; hence, animals require long-term anaesthesia. CT is extensively used in bone and joint disorders providing excellent spatial resolution and good contrast for bone imaging. Despite its excellent structural assessment of mineralized structures, CT does not provide in vivo functional information of ongoing biological processes. Nuclear medicine is a very promising tool for investigating functional and molecular processes in vivo with new tracers becoming available as biomarkers. The combined use of imaging modalities also holds significant potential for the assessment of disease pathogenesis in animal models of musculoskeletal disorders, minimising the use of conventional invasive methods and animal redundancy. PMID:22214535
Long-term trend of bone development in the contemporary teenagers of Chinese Han nationality.
Wang, Ya-Hui; Ying, Chong-Liang; Wan, Lei; Zhu, Guang-You
2012-08-01
To further improve the accuracy of bone age identification using the time of secondary ossification center appearance and epiphyseal fusion of 7 joints to estimate the age of living individuals. DR films were taken from 7 parts including sternal end of clavical and the left side of shoulder, elbow, carpal, hip, knee and ankle joints of 1 709 individuals who came from eastern China, central China and southern China, whose ages were between 11.0 and 20.0 years. From those 7 joints 24 osteal loci were selected as bone age indexes, which could better reflect age growth of teenagers. The characteristics of secondary ossification center appearance and epiphyseal fusion were observed, and the mean and age range of secondary ossification center appearance and epiphyseal fusion were calculated. The fusion time of the 24 epiphyses were advanced at different degrees, the most obvious epiphyses the sternal end of clavicle, scapular acromial end, distal end of the radius, distal end of the ulna, iliac crest, ischial tuberosity, the upper and lower end of tibia and fibula. The appearance time of sternal end of clavicle, scapular acromial end, iliac crest and ischial tuberosity epiphyses were all found to be after the age of 12, and the female's age, approximately 1 year ahead of schedule in comparison with the male's. The relevant forensic information and data for bone age identification should be updated every 10-15 years so as to provide accurate and objective evidence for court testimony, conviction and sentencing.
de Souza Tesch, Ricardo; Takamori, Esther Rieko; Menezes, Karla; Carias, Rosana Bizon Vieira; Dutra, Cláudio Leonardo Milione; de Freitas Aguiar, Marcelo; Torraca, Tânia Salgado de Sousa; Senegaglia, Alexandra Cristina; Rebelatto, Cármen Lúcia Kuniyoshi; Daga, Debora Regina; Brofman, Paulo Roberto Slud; Borojevic, Radovan
2018-04-07
Upon orthognathic mandibular advancement surgery the adjacent soft tissues can displace the distal bone segment and increase the load on the temporomandibular joint causing loss of its integrity. Remodeling of the condyle and temporal fossa with destruction of condylar cartilage and subchondral bone leads to postsurgical condylar resorption, with arthralgia and functional limitations. Patients with severe lesions are refractory to conservative treatments, leading to more invasive therapies that range from simple arthrocentesis to open surgery and prosthesis. Although aggressive and with a high risk for the patient, surgical invasive treatments are not always efficient in managing the degenerative lesions. We propose a regenerative medicine approach using in-vitro expanded autologous cells from nasal septum applied to the first proof-of-concept patient. After the required quality controls, the cells were injected into each joint by arthrocentesis. Results were monitored by functional assays and image analysis using computed tomography. The cell injection fully reverted the condylar resorption, leading to functional and structural regeneration after 6 months. Computed tomography images showed new cortical bone formation filling the former cavity space, and a partial recovery of condylar and temporal bones. The superposition of the condyle models showed the regeneration of the bone defect, reconstructing the condyle original form. We propose a new treatment of condylar resorption subsequent to orthognathic surgery, presently treated only by alloplastic total joint replacement. We propose an intra-articular injection of autologous in-vitro expanded cells from the nasal septum. The proof-of-concept treatment of a selected patient that had no alternative therapeutic proposal has given promising results, reaching full regeneration of both the condylar cartilage and bone at 6 months after the therapy, which was fully maintained after 1 year. This first case is being followed by inclusion of new patients with a similar pathological profile to complete an ongoing stage I/II study. This clinical trial is approved by the National Commission of Ethics in Medical Research (CONEP), Brazil, CAAE 12484813.0.0000.5245, and retrospectively registered in the Brazilian National Clinical Trials Registry and in the USA Clinical Trials Registry under the Universal Trial Number (UTN) U1111-1194-6997 .
A Case of Acromioclavicular Joint Dislocation Associated with Coracoid Process Fracture.
Nakamura, Yosuke; Gotoh, Masafumi; Mitsui, Yasuhiro; Shirachi, Isao; Yoshikawa, Eiichiro; Uryu, Takuya; Murakami, Hidetaka; Okawa, Takahiro; Higuchi, Fujio; Shiba, Naoto
2015-01-01
Rupture of any two or more parts of the superior shoulder suspensory complex (SSSC) including the distal clavicle, acromion, coracoid process, glenoid cavity of the scapula, acromioclavicular ligament, and coracoclavicular ligament is associated with shoulder girdle instability and is an indication for surgery. Here we report a case of acromioclavicular joint dislocation associated with coracoid process fracture. A 48-year-old man sustained a hard blow to the left shoulder from a fall, and simple radiography detected a coracoid process fracture and acromioclavicular joint dislocation. The injury consisted of a rupture of two parts of the SSSC. For the coracoid process fracture, osteosynthesis was performed using hollow cancellous bone screws. For the acromioclavicular joint dislocation, hook plate fixation and the modified Neviaser's procedure were performed. The bone healed well 5 months after surgery, at which time the screws were removed. At 18 months after initial surgery, the coracoid process fracture had healed with a 10% rate of dislocation on radiography, and the patient currently has no problem performing daily activities, no range of motion limitations, and a Japanese Orthopaedic Association scale score of 93.
Daszkiewicz, Karol; Witkowski, Wojciech; Chróścielewski, Jacek; Ferenc, Tomasz; Baczkowski, Boguslaw
2018-01-01
Objective The purpose of this study was to evaluate the influence of a change in the meniscus cross sectional shape on its position and on the biomechanics of a knee joint. Methods One main finite element model of a left knee joint was created on the basis of MRI images. The model consisted of bones, articular cartilages, menisci and ligaments. Eight variants of this model with an increased or decreased meniscus height were then prepared. Nonlinear static analyses with a fixed flexion/extension movement for a compressive load of 1000 N were performed. The additional analyses for those models with a constrained medio-lateral relative bone translation allowed for an evaluation of the influence of this translation on a meniscus external shift. Results It was observed that a decrease in the meniscus height caused a decrease in the contact area, together with a decrease in the contact force between the flattened meniscus and the cartilage. For the models with an increased meniscus height, a maximal value of force acting on the meniscus in a medio-lateral direction was obtained. The results have shown that the meniscus external shift was approximately proportional to the meniscus slope angle, but that relationship was modified by a medio-lateral relative bone translation. It was found that the translation of the femur relative to the tibia may be dependent on the geometry of the menisci. Conclusions The results have suggested that a change in the meniscus geometry in the cross sectional plane can considerably affect not only the meniscal external shift, but also the medio-lateral translation of the knee joint as well as the congruency of the knee joint. PMID:29447236
Luczkiewicz, Piotr; Daszkiewicz, Karol; Witkowski, Wojciech; Chróścielewski, Jacek; Ferenc, Tomasz; Baczkowski, Boguslaw
2018-01-01
The purpose of this study was to evaluate the influence of a change in the meniscus cross sectional shape on its position and on the biomechanics of a knee joint. One main finite element model of a left knee joint was created on the basis of MRI images. The model consisted of bones, articular cartilages, menisci and ligaments. Eight variants of this model with an increased or decreased meniscus height were then prepared. Nonlinear static analyses with a fixed flexion/extension movement for a compressive load of 1000 N were performed. The additional analyses for those models with a constrained medio-lateral relative bone translation allowed for an evaluation of the influence of this translation on a meniscus external shift. It was observed that a decrease in the meniscus height caused a decrease in the contact area, together with a decrease in the contact force between the flattened meniscus and the cartilage. For the models with an increased meniscus height, a maximal value of force acting on the meniscus in a medio-lateral direction was obtained. The results have shown that the meniscus external shift was approximately proportional to the meniscus slope angle, but that relationship was modified by a medio-lateral relative bone translation. It was found that the translation of the femur relative to the tibia may be dependent on the geometry of the menisci. The results have suggested that a change in the meniscus geometry in the cross sectional plane can considerably affect not only the meniscal external shift, but also the medio-lateral translation of the knee joint as well as the congruency of the knee joint.
Itokazu, Maki; Minoda, Yukihide; Ikebuchi, Mitsuhiko; Mizokawa, Shigekazu; Ohta, Yoichi; Nakamura, Hiroaki
2016-08-01
Soft tissue balancing is crucial to the success of total knee arthroplasty (TKA). To create a rectangular flexion joint gap, the rotation of the femoral component is important. The purpose of this study is to determine whether or not anatomical landmarks of the distal femoral condyles are parallel to the tibial bone cut surface in flexion. Forty-eight patients (three male and 45 female) with a mean age of 74years were examined. During the operation, we estimated the flexion joint gap with the following three techniques. 1) a three degree external cut to the posterior condylar line (MR1), 2) a parallel cut to the surgical transepicondylar axis (MR2), and 3) a parallel cut to the anatomical transepicondylar axis (MR3). The flexion joint gap was 1.1±3.0° (mean±standard deviation (SD)) in internal rotation in the case of MR1, 0.9±3.4° in internal rotation in the case of MR2, and 2.1±3.4° in external rotation in the case of MR3. An outlier (flexion joint gap >3.0°) was observed in 12 cases (25%) in MR1, 13 cases (27%) in MR2, and 15 cases (31%) in MR3. The anatomical landmarks of the distal femoral condyles are not always parallel to the tibial bone cut surface in flexion. To create a rectangular flexion joint gap, the rotation of the femoral component rotation is based not only on the anatomical landmarks but also on the ligament balance. Copyright © 2016 Elsevier B.V. All rights reserved.
Repositioning the knee joint in human body FE models using a graphics-based technique.
Jani, Dhaval; Chawla, Anoop; Mukherjee, Sudipto; Goyal, Rahul; Vusirikala, Nataraju; Jayaraman, Suresh
2012-01-01
Human body finite element models (FE-HBMs) are available in standard occupant or pedestrian postures. There is a need to have FE-HBMs in the same posture as a crash victim or to be configured in varying postures. Developing FE models for all possible positions is not practically viable. The current work aims at obtaining a posture-specific human lower extremity model by reconfiguring an existing one. A graphics-based technique was developed to reposition the lower extremity of an FE-HBM by specifying the flexion-extension angle. Elements of the model were segregated into rigid (bones) and deformable components (soft tissues). The bones were rotated about the flexion-extension axis followed by rotation about the longitudinal axis to capture the twisting of the tibia. The desired knee joint movement was thus achieved. Geometric heuristics were then used to reposition the skin. A mapping defined over the space between bones and the skin was used to regenerate the soft tissues. Mesh smoothing was then done to augment mesh quality. The developed method permits control over the kinematics of the joint and maintains the initial mesh quality of the model. For some critical areas (in the joint vicinity) where element distortion is large, mesh smoothing is done to improve mesh quality. A method to reposition the knee joint of a human body FE model was developed. Repositions of a model from 9 degrees of flexion to 90 degrees of flexion in just a few seconds without subjective interventions was demonstrated. Because the mesh quality of the repositioned model was maintained to a predefined level (typically to the level of a well-made model in the initial configuration), the model was suitable for subsequent simulations.
Wang, Fengping; Zhu, Jun; Peng, Xuejun; Su, Jing
2017-10-01
The clinical value of 3D printed surgical guides in resection and reconstruction of malignant bone tumor around the knee joint were studied. For this purpose, a sample of 66 patients from October 2013 to October 2015 were randomly selected and further divided into control group and observation group, each group consisted of 33 cases. The control group was treated by conventional tumor resection whereas, in the observation group, the tumor was resected with 3D printed surgical guide. However, reconstruction of tumor-type hinge prosthesis was performed in both groups and then the clinical effect was compared. Results show that there was no significant difference in the operation time between the two groups (p>0.05). However, the blood loss, resection length and complication rate were found significantly lower in the observation group than in the control group (p<0.05). The rate of negative margin and the recurrence rate in the 12-month follow-up (p>0.05) between two groups were statistically the same (p>0.05), whereas the Musculoskeletal Tumor Society (MSTS) score of the knee joint in the observation group was significantly better than that of the control group (p<0.05) after 1, 3, 6 and 12 months of the operation. Consequently, the 3D printed surgical guides can significantly improve the postoperative joint function after resection and reconstruction of malignant bone tumor around the knee joint and can reduce the incidence of complications.
Biomechanics and Mechanobiology of Trabecular Bone: A Review
Oftadeh, Ramin; Perez-Viloria, Miguel; Villa-Camacho, Juan C.; Vaziri, Ashkan; Nazarian, Ara
2015-01-01
Trabecular bone is a highly porous, heterogeneous, and anisotropic material which can be found at the epiphyses of long bones and in the vertebral bodies. Studying the mechanical properties of trabecular bone is important, since trabecular bone is the main load bearing bone in vertebral bodies and also transfers the load from joints to the compact bone of the cortex of long bones. This review article highlights the high dependency of the mechanical properties of trabecular bone on species, age, anatomic site, loading direction, and size of the sample under consideration. In recent years, high resolution micro finite element methods have been extensively used to specifically address the mechanical properties of the trabecular bone and provide unique tools to interpret and model the mechanical testing experiments. The aims of the current work are to first review the mechanobiology of trabecular bone and then present classical and new approaches for modeling and analyzing the trabecular bone microstructure and macrostructure and corresponding mechanical properties such as elastic properties and strength. PMID:25412137
Three-dimensional modeling and animation of two carpal bones: a technique.
Green, Jason K; Werner, Frederick W; Wang, Haoyu; Weiner, Marsha M; Sacks, Jonathan M; Short, Walter H
2004-05-01
The objectives of this study were to (a). create 3D reconstructions of two carpal bones from single CT data sets and animate these bones with experimental in vitro motion data collected during dynamic loading of the wrist joint, (b). develop a technique to calculate the minimum interbone distance between the two carpal bones, and (c). validate the interbone distance calculation process. This method utilized commercial software to create the animations and an in-house program to interface with three-dimensional CAD software to calculate the minimum distance between the irregular geometries of the bones. This interbone minimum distance provides quantitative information regarding the motion of the bones studied and may help to understand and quantify the effects of ligamentous injury.
[Synovial fluid from aseptically failed total hip or knee arthroplasty is not toxic to osteoblasts].
Gallo, J; Zdařilová, A; Rajnochová Svobodová, A; Ulrichová, J; Radová, L; Smižanský, M
2010-10-01
A failure of total hip or knee artroplasty is associated with an increased production of joint fluid. This contains wear particles and host cells and proteins, and is assumed to be involved in the pathogenesis of aseptic loosening and periprosthetic osteolysis. This study investigated the effect of synovial fluid from patients with aseptically failed joint prostheses on osteoblast cultures. Synovial fluid samples were obtained from patients with failed total joint prostheses (TJP; n=36) and from control patient groups (n = 16) involving cases without TJP and osteoarthritis, without TJP but with osteoarthritis, and with stable TJP. The samples were treated in the standard manner and then cultured with the SaOS-2 cell line which shows the characteristics and behaviour of osteoblasts. Each fluid sample was also examined for the content of proteins, cells and selected cytokines (IL-1ß, TNF-α, IL-6, RANKL and OPG detected by ELISA). We tested the hypothesis assuming that the fluids from failed joints would show higher cytotoxicity to osteoblast culture and we also expected higher levels of IL-1ß, TNF-α, IL-6, and RANKL in patients with TJP failure and/ or with more severe bone loss. The statistical methods used included the Kruskal-Wallis ANOVA and Mann-Whitney U test. The fluids from failed TJPs showed the highest RANKL and the lowest OPG levels resulting in the highest RANKL/OPG ratio. However, there was no evidence suggesting that the joint fluids from failed TJPs would be more toxic to osteoblast culture than the fluids from control groups. In addition, no correlation was found between the fluid levels of molecules promoting inflammation and osteoclastic activity and the extent of bone loss in the hip (in terms of Saleh's classification) or the knee (AORI classification). In fact, the fluids from failed TJPs had higher protein levels in comparison with the controls, but the difference was not significant. The finding of high RANKL levels and low OPG concentrations is in agreement with the theory of aseptic loosening and periprosthetic osteolysis. The other cytokines, particularly TNF-α and IL-1ß, were found in low levels. This can be explained by the stage of particle disease at which the samples were taken for ELISA analysis. It is probable that the level of signal molecules reflects osteolytic process activity and is therefore not constant. The reason for no correlation found between cytokine levels and the extent of bone loss may also lie in the use of therapeutic classifications of bone defects that is apparently less sensitive to the biological activity of aseptic loosening and/or periprosthetic osteolysis. Synovial fluids from failed total hip or knee joint prostheses are not toxic to osteoblast cultures. Cytotoxicity indicators and levels of pro-inflammatory and pro-osteoclastic cytokines (IL-1ß, TNF-α, IL-6, RANKL and OPG) do not correlate well with the extent of periprosthetic bone loss. Key words: total joint replacement, arthroplasty, aseptic loosening, periprosthetic osteolysis, joint fluid, SaOS-2 cell line, cytotoxicity, cytokines, RANKL, OPG.
Biomechanical Analysis of Treadmill Locomotion on the International Space Station
NASA Technical Reports Server (NTRS)
De Witt, J. K.; Fincke, R. S.; Guilliams, M. E.; Ploutz-Snyder, L. L.
2011-01-01
Treadmill locomotion exercise is an important aspect of ISS exercise countermeasures. It is widely believed that an optimized treadmill exercise protocol could offer benefits to cardiovascular and bone health. If training heart rate is high enough, treadmill exercise is expected to lead to improvements in aerobic fitness. If impact or bone loading forces are high enough, treadmill exercise may be expected to contribute to improved bone outcomes. Ground-based research suggests that joint loads increase with increased running speed. However, it is unknown if increases in locomotion speed results in similar increases in joint loads in microgravity. Although data exist regarding the biomechanics of running and walking in microgravity, a majority were collected during parabolic flight or during investigations utilizing a microgravity analog. The Second Generation Treadmill (T2) has been in use on the International Space Station (ISS) and records the ground reaction forces (GRF) produced by crewmembers during exercise. Biomechanical analyses will aid in understanding potential differences in typical gait motion and allow for modeling of the human body to determine joint and muscle forces during exercise. By understanding these mechanisms, more appropriate exercise prescriptions can be developed that address deficiencies. The objective of this evaluation is to collect biomechanical data from crewmembers during treadmill exercise prior to and during flight. The goal is to determine if locomotive biomechanics differ between normal and microgravity environments and to determine how combinations of subject load and speed influence joint loading during in-flight treadmill exercise. Further, the data will be used to characterize any differences in specific bone and muscle loading during locomotion in these two gravitational conditions. This project maps to the HRP Integrated Research Plan risks including Risk of Bone Fracture (Gap B15), Risk of Early Onset Osteoporosis Due to Spaceflight (Gap B15), Risk of Impaired Performance Due to Reduced Muscle Mass, Strength, and Endurance (Gaps M3, M4, M6, Ml, M8, M9) and Risk of reduced Physical Performance Capabilities Due to Reduce Aerobic Capacity (Gaps M7, M8, M9).
Herthel, T D; Rick, M C; Judy, C E; Cohen, N D; Herthel, D J
2016-09-01
Outcomes associated with arthrodesis of the proximal interphalangeal (PIP) joint in Quarter Horses used for Western performance activities are well documented but little is known regarding outcomes for other types of horses. To identify factors associated with outcomes, including breed and activity, after arthrodesis of the PIP joint in Warmbloods, Thoroughbreds and Quarter Horses. Retrospective case series. Surgical case records of 82 Quarter Horses principally engaged in Western performance and Thoroughbred or Warmblood breeds principally engaged in showing, showjumping and dressage, with arthrodesis of the PIP joint were reviewed. Arthrodesis was performed with either 3 transarticular cortex bone screws placed in lag fashion, a dynamic compression plate (DCP) with 2 transarticular cortex bone screws placed in lag fashion, or a locking compression plate (LCP) with 2 transarticular cortex bone screws placed in lag fashion. Demographic data, clinical presentation, radiographic findings, surgical technique, post operative treatment and complications were recorded. Long-term follow-up was obtained for all 82 horses. Osteoarthritis of the PIP joint was the most common presenting condition requiring arthrodesis, which was performed with either the 3 screw technique (n = 41), DCP fixation (n = 22), or LCP fixation (n = 19). Post operatively, 23/31 (74%) Warmbloods/Thoroughbreds and 44/51 (87%) Quarter Horses achieved successful outcomes. Thirteen of 23 (57%) Warmbloods/Thoroughbreds and 24 of 38 (63%) Quarter Horses, used for athletic performance, returned to successful competition. Within this subgroup of horses engaged in high-level activity, regardless of breed type, horses undergoing hindlimb arthrodesis were significantly more likely to return to successful competition (73%; 33/45) than those with forelimb arthrodesis (25%; 4/16, P = 0.002). Arthrodesis of the PIP joint in Warmbloods/Thoroughbreds and Quarter Horses results in a favourable outcome for return to their intended use and athletic competition. © 2015 EVJ Ltd.
Makitsubo, Manami; Adachi, Nobuo; Nakasa, Tomoyuki; Kato, Tomohiro; Shimizu, Ryo; Ochi, Mitsuo
2016-10-04
Although differences in the results of the bone marrow stimulation technique between the knee and ankle have been reported, a detailed mechanism for those differences has not been clarified. The purpose of this study was to examine whether morphological differences between the knee and ankle joint affect the results of drilling as treatment for osteochondral defects in a rabbit model. Osteochondral defects were created at the knee and ankle joint in the rabbit. In the knee, osteochondral defects were created at the medial femoral condyle (MFC) and patellar groove (PG). At the ankle, defects were created in the talus at either a covered or uncovered area by the tibial plafond. After creating the osteochondral defect, drilling was performed. At 4, 8, and 12 weeks after surgery, repair of the osteochondral defects were evaluated histologically. The proliferation of rabbit chondrocytes and proteoglycan release of cartilage tissue in response to IL-1β were analyzed in vitro in both joints. At 8 weeks after surgery, hyaline cartilage repair was observed in defects at the covered area of the talus and the MFC. At 12 weeks, hyaline cartilage with a normal thickness was observed for the defect at the covered area of the talus, but not for the defect at the MFC. At 12 weeks, subchondral bone formation progressed and a normal contour of subchondral bone was observed on CT in the defect at the covered area of the talus. No significant differences in chondrocyte proliferation rate and proteoglycan release were detected between the knee and ankle in vitro. Our results demonstrate that the covered areas of the talus show early and sufficient osteochondral repair compared to that of the knee and the uncovered areas of the talus. These results suggest that the congruent joint shows better subchondral repair prior to cartilage repair compared to that of the incongruent joint.
Arthrofibrosis involving the middle facet of the talocalcaneal joint in children and adolescents.
El Rassi, George; Riddle, Eric C; Kumar, S Jay
2005-10-01
Pain over the anterolateral aspect of the ankle in a patient with a history of repeated ankle sprains and with restricted subtalar movement may be associated with a tarsal coalition. Nineteen patients presented with such a history, but conventional imaging did not reveal a cartilaginous or osseous coalition. Since symptoms persisted despite nonoperative treatment, the middle facet was explored surgically. The purpose of this study was to discuss the operative findings and to report the results of treatment. Nineteen patients (twenty-three feet) with pain over the anterolateral aspect of the ankle or a history of repeated ankle sprains had restricted subtalar joint motion and inconclusive findings on diagnostic imaging, except for bone-scanning. Their ages ranged from 9.1 to 18.5 years. The middle facet of the subtalar joint was explored surgically through a 3 to 4-cm-long incision centered over the sustentaculum tali. The results at a mean of 5.8 years were classified as good, fair, or poor on the basis of pain, talocalcaneal joint motion, and shoe wear. Routine radiographs, computed tomography, and magnetic resonance imaging revealed no major abnormality, whereas technetium-99m bone scintigraphy consistently showed slightly increased isotope uptake in the middle facet. Surgical removal of a hypervascular and thickened capsule and synovium in the area of the middle facet of the subtalar joint decreased pain and improved subtalar motion. The final result was good in seventeen patients (twenty feet) and fair in two patients (three feet). There were no poor results. A diagnosis of inflammatory arthrofibrosis should be considered when a patient with a painful rigid flatfoot has normal findings on radiographs and hematological studies but increased isotope uptake in the middle facet of the talocalcaneal joint on bone scintigraphy. Excision of the hypervascular capsule and synovium from this area can result in resolution of the symptoms. Therapeutic Level IV.
Sainoh, Takeshi; Takaso, Masashi; Inoue, Gen; Orita, Sumihisa; Eguchi, Yawara; Nakamura, Junichi; Aoki, Yasuchika; Ishikawa, Tetsuhiro; Miyagi, Masayuki; Arai, Gen; Kamoda, Hiroto; Suzuki, Miyako; Kubota, Gou; Sakuma, Yoshihiro; Oikawa, Yasuhiro; Yamazaki, Masashi; Toyone, Tomoaki; Takahashi, Kazuhisa
2012-01-01
Purpose Sacroiliac fixation using iliac screws for highly unstable lumbar spine has been reported with an improved fusion rate and clinical results. On the other hand, there is a potential for clinical problems related to iliac fixation, including late sacroiliac joint arthritis and pain. Materials and Methods Twenty patients were evaluated. Degenerative scoliosis was diagnosed in 7 patients, failed back syndrome in 6 patients, destructive spondyloarthropathy in 4 patients, and Charcot spine in 3 patients. All patients underwent posterolateral fusion surgery incorporating lumbar, S1 and iliac screws. We evaluated the pain scores, bone union, and degeneration of sacroiliac joints by X-ray imaging and computed tomography before and 3 years after surgery. For evaluation of low back and buttock pain from sacroiliac joints 3 years after surgery, lidocaine was administered in order to examine pain relief thereafter. Results Pain scores significantly improved after surgery. All patients showed bone union at final follow-up. Degeneration of sacroiliac joints was not seen in the 20 patients 3 years after surgery. Patients showed slight low back and buttock pain 3 years after surgery. However, not all patients showed relief of the low back and buttock pain after injection of lidocaine into the sacroiliac joint, indicating that their pain did not originate from sacroiliac joints. Conclusion The fusion rate and clinical results were excellent. Also, degeneration and pain from sacroiliac joints were not seen within 3 years after surgery. We recommend sacroiliac fixation using iliac screws for highly unstable lumbar spine. PMID:22318832
Adhesive bone bonding prospects for lithium disilicate ceramic implants
NASA Astrophysics Data System (ADS)
Vennila Thirugnanam, Sakthi Kumar
Temporomandibular Joint (TMJ) implants articulating mandible with temporal bone in humans have a very high failure rate. Metallic TMJ implants available in the medical market are not osseointegrated, but bond only by mechanical interlocking using screws which may fail, mandating a second surgery for removal. Stress concentration around fixture screws leads to aseptic loosening or fracture of the bone. It has been proposed that this problem can be overcome by using an all-ceramic TMJ implant bonded to bone with dental adhesives. Structural ceramics are promising materials with an excellent track record in the field of dentis.
Axe, Jeremie M; Axe, Michael J
2013-10-01
Unguided approaches have not demonstrated evidence of highly accurate intra-articular glenohumeral injections. The purpose of this study was to assess the accuracy of a posterior approach bone touch technique in conscious subjects without shoulder pathology as a first step in developing an accurate, reliable technique for use in patients. Twenty-six young subjects (age 22-26) without shoulder pathology (BMI 24 +/- 3), had bilateral shoulders injected while awake and seated. A 20 gauge 3.5-inch needle was introduced 1.5 cm below the scapular spine mid-way between the posterior lateral acromial corner and the posterior axillary crease. In Trial I, 20 shoulders were injected. After touching the humerus, the arm was oscillated. The needle advanced to 4-5 cm and 10 mL of dye injected. Pop and ease of flow were recorded. Immediate room change, spot fluoroscopy, and independent experienced radiology reading followed. In Trial II, 32 shoulders were injected. The technique was modified to touching the humerus, externally rotating the arm 25 degrees, and while remaining in bone contact, delivering 10 mL of dye. The same data as Trial I was recorded. In Trial I, 14/20 (70 percent) had dye within the glenohumeral joint. Five of seven failures were too anterior showing dye around the subscapularis muscle and all were associated with a pop. In Trial II, 31/32 (97 percent) had dye within glenohumeral joint. Twenty-three of 32 (72 percent) had a "pop," including the failure. Overall, 45/52 (87 percent) had dye within glenohumeral joint. Thirty-one of 52 (71 percent) of all shoulders had a "pop." Twenty-three of 52 (44 percent) shoulders had pain, resolving within 24 hours. A modified (Delaware) posterior bone touch technique for glenohumeral joint injection is 97 percent accurate in conscious healthy young subjects. Pop and ease of flow are not always indicative of correct needle placement. This study serves as an important first step in determining an optimum approach for injecting pathologic glenohumeral joints with corticosteroids or hyaluronic acid. IV Case Series.
Biomechanical study of tarsometatarsal joint fusion using finite element analysis.
Wang, Yan; Li, Zengyong; Zhang, Ming
2014-11-01
Complications of surgeries in foot and ankle bring patients with severe sufferings. Sufficient understanding of the internal biomechanical information such as stress distribution, contact pressure, and deformation is critical to estimate the effectiveness of surgical treatments and avoid complications. Foot and ankle is an intricate and synergetic system, and localized intervention may alter the functions to the adjacent components. The aim of this study was to estimate biomechanical effects of the TMT joint fusion using comprehensive finite element (FE) analysis. A foot and ankle model consists of 28 bones, 72 ligaments, and plantar fascia with soft tissues embracing all the segments. Kinematic information and ground reaction force during gait were obtained from motion analysis. Three gait instants namely the first peak, second peak and mid-stance were simulated in a normal foot and a foot with TMT joint fusion. It was found that contact pressure on plantar foot increased by 0.42%, 19% and 37%, respectively after TMT fusion compared with normal foot walking. Navico-cuneiform and fifth meta-cuboid joints sustained 27% and 40% increase in contact pressure at second peak, implying potential risk of joint problems such as arthritis. Von Mises stress in the second metatarsal bone increased by 22% at midstance, making it susceptible to stress fracture. This study provides biomechanical information for understanding the possible consequences of TMT joint fusion. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
Mills, Jillian S; Kinsley, Marc A; Peters, Duncan F; Weber, Patty S D; Shearer, Tara R; Pease, Anthony P
2017-09-12
The purpose of this study was to determine whether there was a correlation between circulating and intra-synovial Dkk-1 and radiographic signs of equine osteoarthritis. Circulating and intra-synovial Dkk-1 levels were measured in clinical cases using a commercially available human Dkk-1 ELISA. Radiographs were performed of the joints from which fluid was collected and these were assessed and scored by a boarded radiologist for joint narrowing, subchondral bone sclerosis, subchondral bone lysis, and periarticular modelling. Comparisons were made between radiographic scores and the concentrations of Dkk-1 using a Kruskal-Wallis one-way ANOVA. Correlations were calculated using Kendall's statistic. A total of 42 synovial fluid samples from 21 horses were collected and used in the analysis. No significant correlation was identified between Dkk-1 concentrations and radiographic signs of osteoarthritis. Intra-synovial Dkk-1 concentrations were significantly greater (p <0.001) in low motion joints (mean concentration, 232.68 pg/mL; range, 109.07-317.17) when compared to high-motion joints (28.78 pg/mL; 0.05-186.44 pg/mL) (p <0.001). Low motion joints have significantly higher concentrations of Dkk-1 compared to high motion joints. Further research is needed to establish the importance of this finding and whether potential diagnostic or therapeutic applications of Dkk-1 exist in the horse.
Bone cement: how effective is it at restoring hearing in isolated incudostapedial erosion?
Watson, G J; Narayan, S
2014-08-01
To determine the effectiveness of biocements in rebridging isolated incudostapedial erosion. A review of the use of biocements for isolated incudostapedial joint erosion was performed on publications from 1998 to 2012 available from Medline, Embase and Pubmed. Inclusion criteria were papers published in English, case series or comparative studies with more than 10 patients, isolated incudostapedial erosion through chronic ear disease, minimal air-bone gap less than 20 dB (or air-bone gap less than 10 dB) and follow up for at least one year. In 108 patients, rebridging ossiculoplasty was performed using hydroxyapatite cement. Closure of air-bone gaps less than 20 dB and less than 10 dB was achieved in 80-94.4 per cent and 29-75 per cent, respectively. Glass ionomer cement was used in 318 patients. Closure of air-bone gaps less than 20 dB and less than 10 dB was achieved in 74-94 per cent and 40-76 per cent, respectively. Biocements can be successfully used to close isolated incudostapedial erosions. Larger comparative prospective studies documenting the length of eroded incus and types of reformation of the incudostapedial joint, with standardised reporting, are needed in the future.
García-Gareta, Elena; Hua, Jia; Rayan, Faizal; Blunn, Gordon W
2014-06-01
Aseptic loosening in total joint replacements (TJRs) is mainly caused by osteolysis which leads to a reduction of the bone stock necessary for implant fixation in revision TJRs. Our aim was to develop bone tissue-engineered constructs based on scaffolds of clinical relevance in revision TJRs to reconstitute the bone stock at revision operations by using a perfusion bioreactor system (PBRS). The hypothesis was that a PBRS will enhance mesenchymal stem cells (MSCs) proliferation and osteogenic differentiation and will provide an even distribution of MSCs throughout the scaffolds when compared to static cultures. A PBRS was designed and implemented. Scaffolds, silicon substituted hydroxyapatite granules and calcium-phosphate coated porous TiAl6V4 cylinders, were seeded with MSCs and cultured either in static conditions or in the PBRS at 0.75 mL/min. Statistically significant increased cell proliferation and alkaline phosphatase activity was found in samples cultured in the PBRS. Histology revealed a more even cell distribution in the perfused constructs. SEM showed that cells arranged in sheets. Long cytoplasmic processes attached the cells to the scaffolds. We conclude that a novel tissue engineering approach to address the issue of poor bone stock at revision operations is feasible by using a PBRS.
Dapunt, Ulrike; Giese, Thomas; Maurer, Susanne; Stegmaier, Sabine; Prior, Birgit; Hänsch, G Maria; Gaida, Matthias M
2015-10-01
Bone infections of patients with joint replacement by endoprosthesis (so called "periprosthetic joint infection") pose a severe problem in the field of orthopedic surgery. The diagnosis is often difficult, and treatment is, in most cases, complicated and prolonged. Patients often require an implant exchange surgery, as the persistent infection and the accompanying inflammation lead to tissue damage with bone degradation and consequently, to a loosening of the implant. To gain insight into the local inflammatory process, expression of the proinflammatory cytokine MRP-14, a major content of neutrophils, and its link to subsequent bone degradation was evaluated. We found MRP-14 prominently expressed in the affected tissue of patients with implant-associated infection, in close association with the chemokine CXCL8 and a dense infiltrate of neutrophils and macrophages. In addition, the number of MRP-14-positive cells correlated with the presence of bone-resorbing osteoclasts. MRP-14 plasma concentrations were significantly higher in patients with implant-associated infection compared with patients with sterile inflammation or healthy individuals, advocating MRP-14 as a novel diagnostic marker. A further biologic activity of MRP-14 was detected: rMRP-14 directly induced the differentiation of monocytes to osteoclasts, thus linking the inflammatory response in implant infections with osteoclast generation, bone degradation, and implant loosening. © Society for Leukocyte Biology.
Song, Xiaojun; Ta, Dean; Wang, Weiqi
2011-10-01
The parameters of ultrasonic guided waves (GWs) are very sensitive to mechanical and structural changes in long cortical bones. However, it is a challenge to obtain the group velocity and other parameters of GWs because of the presence of mixed multiple modes. This paper proposes a blind identification algorithm using the joint approximate diagonalization of eigen-matrices (JADE) and applies it to the separation of superimposed GWs in long bones. For the simulation case, the velocity of the single mode was calculated after separation. A strong agreement was obtained between the estimated velocity and the theoretical expectation. For the experiments in bovine long bones, by using the calculated velocity and a theoretical model, the cortical thickness (CTh) was obtained. For comparison with the JADE approach, an adaptive Gaussian chirplet time-frequency (ACGTF) method was also used to estimate the CTh. The results showed that the mean error of the CTh acquired by the JADE approach was 4.3%, which was smaller than that of the ACGTF method (13.6%). This suggested that the JADE algorithm may be used to separate the superimposed GWs and that the JADE algorithm could potentially be used to evaluate long bones. Copyright © 2011 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Subtalar fusion with iliac bone free flap after a recalcitrant nonunion: Report of two cases.
Roger, Ignacio; Worden, Alicia; Panattoni, Joao; Garcia, Ignacio; Aranda, Fernando; Delgado, Paula A
2016-09-01
Fractures of the calcaneus are associated with secondary osteoarthritis of the subtalar joint. In a persistent nonunion, vascularized bone flaps offer superior biologic and mechanical properties as well as accelerates joint fusion and decreases morbidity. In this report, we present results of the use of vascularized iliac bone free flap for treating subtalar failed fusions in two patients. Two patients sustained calcaneal fractures due to foot trauma, which were initially or subsequently treated with subtalar arthrodesis. Case one developed septic subtalar nonunion during treatment and case two failed three attempts at subtalar arthrodeses. The iliac crest bone flap harvested measured 4 × 4 cm (case one) and 3 × 3 cm (case two). The flap was pedicled by the deep circumflex iliac artery, which was anastomosed to the anterior tibial artery at the recipient site. No flap donor or recipient site complications occurred. Fusion was confirmed on CT scan and weight bearing was initiated at 5-6 months. At latest follow up (1-2 years), no complications occurred. Our results show that subtalar nonunion treatment with a vascularized iliac bone flap may be feasible and such a reconstruction could be clinically successful. © 2015 Wiley Periodicals, Inc. Microsurgery 36:501-506, 2016. © 2015 Wiley Periodicals, Inc.
Computer Assisted Surgery and Current Trends in Orthopaedics Research and Total Joint Replacements
NASA Astrophysics Data System (ADS)
Amirouche, Farid
2008-06-01
Musculoskeletal research has brought about revolutionary changes in our ability to perform high precision surgery in joint replacement procedures. Recent advances in computer assisted surgery as well better materials have lead to reduced wear and greatly enhanced the quality of life of patients. The new surgical techniques to reduce the size of the incision and damage to underlying structures have been the primary advance toward this goal. These new techniques are known as MIS or Minimally Invasive Surgery. Total hip and knee Arthoplasties are at all time high reaching 1.2 million surgeries per year in the USA. Primary joint failures are usually due to osteoarthristis, rheumatoid arthritis, osteocronis and other inflammatory arthritis conditions. The methods for THR and TKA are critical to initial stability and longevity of the prostheses. This research aims at understanding the fundamental mechanics of the joint Arthoplasty and providing an insight into current challenges in patient specific fitting, fixing, and stability. Both experimental and analytical work will be presented. We will examine Cementless total hip arthroplasty success in the last 10 years and how computer assisted navigation is playing in the follow up studies. Cementless total hip arthroplasty attains permanent fixation by the ingrowth of bone into a porous coated surface. Loosening of an ingrown total hip arthroplasty occurs as a result of osteolysis of the periprosthetic bone and degradation of the bone prosthetic interface. The osteolytic process occurs as a result of polyethylene wear particles produced by the metal polyethylene articulation of the prosthesis. The total hip arthroplasty is a congruent joint and the submicron wear particles produced are phagocytized by macrophages initiating an inflammatory cascade. This cascade produces cytokines ultimately implicated in osteolysis. Resulting bone loss both on the acetabular and femoral sides eventually leads to component instability. As patients are living longer and total hip arthroplasty is performed in younger patients the risks of osteolysis associated with cumulative wear is increased. Computer-assisted surgery is based on sensing feedback; vision and imaging that help surgeons align the patient's joints during total knee or hip replacement with a degree of accuracy not possible with the naked eye. For the first time, the computer feedback is essential for ligament balancing and longevity of the implants. The computers navigation systems also help surgeons to use smaller incisions instead of the traditional larger openings. Small-incision surgery offers the potential for faster recovery, less bleeding and less pain for patients. The development of SESCAN imaging technique to create a patient based model of a 3D joint will be presented to show the effective solution of complex geometry of joints.
Touloupakis, Georgios; Stuflesser, Wilfried; Antonini, Guido; Ferrara, Fabrizio; Crippa, Cornelio; Lettera, Maria Gabriella
2016-05-06
Incorrect or delayed diagnosis and treatment of the carpometacarpal fracture-dislocations is often associated with poor prognosis. We present a rare case of unusual pattern of injury, involving dorsal dislocation of four ulnar carpometacarpal joints, associated with fracture of the trapezium, a burst fracture of the trapezoid bone and an extra-articular fracture of the third distal of the radius. The first surgical intervention was followed by unsatisfactory results, confirmed by the CT scans. A second surgery followed and an open reduction and pinning with K wires performed. Post-operative follow up lasting for nine months revealed a very good surgical outcome.
[Conservative treatment of metacarpal fracture].
Prokop, A; Helling, H J; Kulus, S; Rehm, K E
2002-01-01
Conservative treatment of meatacarpale fracture is recommended if there are no joint displacement, rotation failures, displacement over 30 degrees ad axim and shortening over 5 mm. Operative procedures should be done in open fractures and serial of fractures of metacarpale bones. Early functionally treatment should be done in stable, not displaced fractures. Cast can be used only for a short time in full extended position of fingers and flexion in metacarpo-phalangeal joint in 60-90 degrees. Twin-tapes after reduction of edema allowed free range of motion by fixed rotation. Closed reduction of displaced fractures of fifth metacarpal bone (boxer's fracture) isn't successful. Cases with displacement over 30 degrees may be operatively treated by intramedullary stabilization.
[Treatment of metacarpal fractures].
Prokop, A; Jubel, A; Helling, H J; Kulus, S; Rehm, K E
2002-09-01
Conservative treatment of metacarpal fractures is recommended if there is no joint displacement, malrotation, displacement of over 30 degrees ad axim and shortening of over 5 mm. Surgery should be performed in open fractures and serial fractures of metacarpal bone. Early functional treatment should be carried out in stable, not displaced fractures. A cast can be used for a short period in full extended position of fingers and flexion in metacarpo-phalangeal joint in 60 - 90 degrees. Twin-tape fixation allows functional treatment after soft-tissue swelling has disappeared. Closed reduction of displaced fractures of the fifth metacarpal bone (boxer's fracture) is not successful. Cases with displacement of over 30 degrees may be treated surgically by intramedullary stabilisation.
Fusion in posttraumatic foot and ankle reconstruction.
Thordarson, David B
2004-01-01
Despite appropriate acute treatment, many foot and ankle injuries result in posttraumatic arthritis. Arthrodesis remains the mainstay of treatment of end-stage arthritis of the foot and ankle. An understanding of the biomechanics of the foot and ankle, particularly which joints are most responsible for optimal function of the foot, can help guide reconstructive efforts. A careful history and physical examination, appropriate radiographs, and, when necessary, differential selective anesthetic blocks help limit fusion to only those joints that are causing pain. Compression fixation, when possible, remains the treatment of choice. When bone defects are present, however, neutralization fixation may be necessary to prevent a secondary deformity that could result from impaction into a bone defect.
Anderson, Ryan T; Pacaccio, Douglas J; Yakacki, Christopher M; Carpenter, R Dana
2016-09-01
Tibio-talo-calcaneal (TTC) arthrodesis is an end-stage treatment for patients with severe degeneration of the ankle joint. This treatment consists of using an intramedullary nail (IM) to fuse the calcaneus, talus, and tibia bones together into one construct. Poor bone quality within the joint prior to surgery is common and thus the procedure has shown complications due to non-union. However, a new FDA-approved IM nail has been released that houses a nickel titanium (NiTi) rod that uses its inherent pseudoelastic material properties to apply active compression across the fusion site. Finite element analysis was performed to model the mechanical response of the NiTi within the device. A bone model was then developed based on a quantitative computed tomography (QCT) image for anatomical geometry and bone material properties. A total bone and device system was modeled to investigate the effect of bone quality change and gather load-sharing properties during gait loading. It was found that during the highest magnitude loading of gait, the load taken by the bone was more than 50% higher than the load taken by the nail. When comparing the load distribution during gait, results from this study would suggest that the device helps to prevent stress shielding by allowing a more even distribution of load between bone and nail. In conditions where bone quality may vary patient-to-patient, the model indicates that a 10% decrease in overall bone modulus (i.e. material stiffness) due to reduced bone mineral density would result in higher stresses in the nail (3.4%) and a marginal decrease in stress for the bone (0.5%). The finite element model presented in this study can be used as a quantitative tool to further understand the stress environment of both bone and device for a TTC fusion. Furthermore, the methodology presented gives insight on how to computationally program and use the unique material properties of NiTi in an active compression state useful for bone fracture healing or fusion treatments. Copyright © 2016 Elsevier Ltd. All rights reserved.
Periodontal Ligament Entheses and their Adaptive Role in the Context of Dentoalveolar Joint Function
Lin, Jeremy D.; Jang, Andrew T.; Kurylo, Michael P.; Hurng, Jonathan; Yang, Feifei; Yang, Lynn; Pal, Arvin; Chen, Ling; Ho, Sunita P.
2017-01-01
Objectives The dynamic bone-periodontal ligament (PDL)-tooth fibrous joint consists of two adaptive functionally graded interfaces (FGI), the PDL-bone and PDL-cementum that respond to mechanical strain transmitted during mastication. In general, from a materials and mechanics perspective, FGI prevent catastrophic failure during prolonged cyclic loading. This review is a discourse of results gathered from literature to illustrate the dynamic adaptive nature of the fibrous joint in response to physiologic and pathologic simulated functions, and experimental tooth movement. Methods Historically, studies have investigated soft to hard tissue transitions through analytical techniques that provided insights into structural, biochemical, and mechanical characterization methods. Experimental approaches included two dimensional to three dimensional advanced in situ imaging and analytical techniques. These techniques allowed mapping and correlation of deformations to physicochemical and mechanobiological changes within volumes of the complex subjected to concentric and eccentric loading regimes respectively. Results Tooth movement is facilitated by mechanobiological activity at the interfaces of the fibrous joint and generates elastic discontinuities at these interfaces in response to eccentric loading. Both concentric and eccentric loads mediated cellular responses to strains, and prompted self-regulating mineral forming and resorbing zones that in turn altered the functional space of the joint. Significance A multiscale biomechanics and mechanobiology approach is important for correlating joint function to tissue-level strain-adaptive properties with overall effects on joint form as related to physiologic and pathologic functions. Elucidating the shift in localization of biomolecules specifically at interfaces during development, function, and therapeutic loading of the joint is critical for developing “functional regeneration and adaptation” strategies with an emphasis on restoring physiologic joint function. PMID:28476202
Reducing the Risk of ACL Injury in Female Athletes
ERIC Educational Resources Information Center
McDaniel, Larry W.; Rasche, Adrienna; Gaudet, Laura; Jackson, Allen
2010-01-01
The Anterior Cruciate Ligament (ACL) is located behind the kneecap (patella) and connects the thigh bone (femur) to the shin bone (tibia). Stabilizing the knee joint is the primary responsibility of the ACL. Injuries that affect the ACL are three to five times more common in females than males. This is a result of anatomical, biomechanical,…
Bone scan features in spontaneous knee pain.
Vattimo, A; Merlo, F; Bertelli, P; Burroni, L
1992-01-01
In 21 patients with "spontaneous" knee pain, 99mTc-MDP bone scan was found to be more sensitive than clinical and radiographic examination in detecting alterations of the joint components. These alterations were shown by increased radionuclide uptake in the compartments where pain was present, which was most commonly the medial femorotibial compartment, although the femoropatellar compartment was also frequently affected. The authors conclude that bone scan should be the first imaging study performed on the knee in order to establish if further tests are necessary.
Radiopharmaceutical stannic Sn-117m chelate compositions and methods of use
Srivastava, Suresh C.; Meinken, George E.
2001-01-01
Radiopharmaceutical compositions including .sup.117m Sn labeled stannic (Sn.sup.4+) chelates are provided. The chelates are preferably polyhydroxycarboxylate, such as oxalates, tartrates, citrates, malonates, gluconates, glucoheptonates and the like. Methods of making .sup.117m Sn-labeled (Sn.sup.4+) polyhydroxycarboxylic chelates are also provided. The foregoing pharmaceutical compositions can be used in methods of preparing bone for scintigraphical analysis, for radiopharmaceutical skeletal imaging, treatment of pain resulting from metastatic bone involvement, treatment of primary bone cancer, treatment of cancer resulting from metastatic spread to bone from other primary cancers, treatment of pain resulting from rheumatoid arthritis, treatment of bone/joint disorders and to monitor radioactively the skeletal system.
Yeh, Tsu-Te; Wen, Zhi-Hong; Lee, Herng-Sheng; Lee, Chian-Her; Yang, Zhi; Jean, Yen-Hsuan; Nimni, Marcel E.; Han, Bo
2008-01-01
We aimed to establish an animal model to investigate primary osteoarthritis of the lumbar facet joints after collagenase injection in rats and its effects on chondrocyte apoptosis. We hypothesized that osteoarthritic-like changes would be induced by collagenase injection and that apoptosis of chondrocytes would increase. Collagenase (1, 10, or 50 U) or saline (control) was injected into the lumbar facet joints. The histology and histochemistry of cartilage, synovium, and subchondral bone were examined at 1, 3, and 6 weeks after surgery. Apoptotic cells induced by 1 U of collagenase were quantified using the terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) assay. Degeneration of the cartilage and changes to the synovium and subchondral bone were dependent on both the doses of collagenase and the time after surgery. There were significantly more apoptotic chondrocytes in collagenase-treated joints than in control (P < 0.001 at 1 and 3 weeks and P < 0.05 at 6 weeks). Thus, lumbar facet joints subjected to collagenase developed osteoarthritic-like changes that could be quantified and compared. This model provides a useful tool for further study on the effects of compounds that have the potential to inhibit enzyme-associated damage to cartilage. PMID:18224353
Imaging osteoarthritis in the knee joints using x-ray guided diffuse optical tomography
NASA Astrophysics Data System (ADS)
Zhang, Qizhi; Yuan, Zhen; Sobel, Eric S.; Jiang, Huabei
2010-02-01
In our previous studies, near-infrared (NIR) diffuse optical tomography (DOT) had been successfully applied to imaging osteoarthritis (OA) in the finger joints where significant difference in optical properties of the joint tissues was evident between healthy and OA finger joints. Here we report for the first time that large joints such as the knee can also be optically imaged especially when DOT is combined with x-ray tomosynthesis where the 3D image of the bones from x-ray is incorporated into the DOT reconstruction as spatial a priori structural information. This study demonstrates that NIR light can image large joints such as the knee in addition to finger joints, which will drastically broaden the clinical utility of our x-ray guided DOT technique for OA diagnosis.
Joint dysfunction and functional decline in middle age myostatin null mice.
Guo, Wen; Miller, Andrew D; Pencina, Karol; Wong, Siu; Lee, Amanda; Yee, Michael; Toraldo, Gianluca; Jasuja, Ravi; Bhasin, Shalender
2016-02-01
Since its discovery as a potent inhibitor for muscle development, myostatin has been actively pursued as a drug target for age- and disease-related muscle loss. However, potential adverse effects of long-term myostatin deficiency have not been thoroughly investigated. We report herein that male myostatin null mice (mstn(-/-)), in spite of their greater muscle mass compared to wild-type (wt) mice, displayed more significant functional decline from young (3-6months) to middle age (12-15months) than age-matched wt mice, measured as gripping strength and treadmill endurance. Mstn(-/-) mice displayed markedly restricted ankle mobility and degenerative changes of the ankle joints, including disorganization of bone, tendon and peri-articular connective tissue, as well as synovial thickening with inflammatory cell infiltration. Messenger RNA expression of several pro-osteogenic genes was higher in the Achilles tendon-bone insertion in mstn(-/-) mice than wt mice, even at the neonatal age. At middle age, higher plasma concentrations of growth factors characteristic of excessive bone remodeling were found in mstn(-/-) mice than wt controls. These data collectively indicate that myostatin may play an important role in maintaining ankle and wrist joint health, possibly through negative regulation of the pro-osteogenic WNT/BMP pathway. Copyright © 2015 Elsevier Inc. All rights reserved.
Biological aspects of early osteoarthritis.
Madry, Henning; Luyten, Frank P; Facchini, Andrea
2012-03-01
Early OA primarily affects articular cartilage and involves the entire joint, including the subchondral bone, synovial membrane, menisci and periarticular structures. The aim of this review is to highlight the molecular basis and histopathological features of early OA. Selective review of literature. Risk factors for developing early OA include, but are not limited to, a genetic predisposition, mechanical factors such as axial malalignment, and aging. In early OA, the articular cartilage surface is progressively becoming discontinuous, showing fibrillation and vertical fissures that extend not deeper than into the mid-zone of the articular cartilage, reflective of OARSI grades 1.0-3.0. Early changes in the subchondral bone comprise a progressive increase in subchondral plate and subarticular spongiosa thickness. Early OA affects not only the articular cartilage and the subchondral bone but also other structures of the joint, such as the menisci, the synovial membrane, the joint capsule, ligaments, muscles and the infrapatellar fat pad. Genetic markers or marker combinations may become useful in the future to identify early OA and patients at risk. The high socioeconomic impact of OA suggests that a better insight into the mechanisms of early OA may be a key to develop more targeted reconstructive therapies at this first stage of the disease. Systematic review, Level II.
Finite element analysis of a condylar support prosthesis to replace the temporomandibular joint.
Abel, Eric W; Hilgers, André; McLoughlin, Philip M
2015-04-01
This paper presents a finite element study of a temporomandibular joint (TMJ) prosthesis in which the mandibular component sits on the condyle after removal of only the diseased articular surface and minimal amount of condylar bone. The condylar support prosthesis (CSP) is customised to fit the patient and allows a large part of the joint force to be transmitted through the condyle to the ramus, rather than relying only on transfer of the load by the screws that fix the prosthesis to the ramus. The 3-dimensional structural finite element analysis compared a design of CSP with a standard commercial prosthesis and one that was modified to fit the ramus, to relate the findings to the different designs and geometrical features. The models simulated an incisal bite under high loading. In the CSP and in its fixation screws, the stresses were much lower than those in the other 2 prostheses and the bone strains were at physiological levels. The CSP gives a more physiological form of load transfer than is possible without the condylar contact, and considerably reduces the amount of strain on the bone around the screws. Copyright © 2015 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Grimberg, Jean; Diop, Amadou; Kalra, Kunal; Charousset, Christophe; Duranthon, Louis-Denis; Maurel, Nathalie
2010-03-01
We assessed bone-tendon contact surface and pressure with a continuous and reversible measurement system comparing 3 different double- and single-row techniques of cuff repair with simulation of different joint positions. We reproduced a medium supraspinatus tear in 24 human cadaveric shoulders. For the 12 right shoulders, single-row suture (SRS) and then double-row bridge suture (DRBS) were used. For the 12 left shoulders, DRBS and then double-row cross suture (DRCS) were used. Measurements were performed before, during, and after knot tying and then with different joint positions. There was a significant increase in contact surface with the DRBS technique compared with the SRS technique and with the DRCS technique compared with the SRS or DRBS technique. There was a significant increase in contact pressure with the DRBS technique and DRCS technique compared with the SRS technique but no difference between the DRBS technique and DRCS technique. The DRCS technique seems to be superior to the DRBS and SRS techniques in terms of bone-tendon contact surface and pressure. Copyright 2010 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.
Sonography of the musculoskeletal system in dogs and cats.
Kramer, M; Gerwing, M; Hach, V; Schimke, E
1997-01-01
Sonography of the musculoskeletal system in dogs and cats was undertaken to evaluate the application of this imaging procedure in orthopedics. In most of the patients a 7.5 MHz linear transducer was used because of its flat application surface and its resolving power. The evaluation of bone by sonography is limited, but sonography can provide addition information regarding the bone surface and surrounding soft tissue. Ultrasound is valuable for assessing joint disease. Joint effusion, thickening of the joint capsule and cartilage defects can be identified sonographically. It is also possible to detect bone destruction. Instabilities are often identified with the help of a dynamic examination. Soft tissue abnormalities of the musculoskeletal system lend themselves to sonographic evaluation. Partial or complete muscles or tendon tears are able to be differentiated and the healing process can be monitored. Most of the diseases that are in the area of the biceps or the achilles tendon, such as dislocation of the tendon, old injuries with scarification, free dissecates in the tendonsheath, tendinitis and/or tendosynovitis can be differentiated by sonography. In addition, with clinical and laboratory findings, it is often possible to make a correct diagnosis with ultrasound in patients with abscesses, foreign bodies, hematomas, soft tissue tumors and lipomas.
Hyoid Bone and Thyroid Cartilage Metastases from Sigmoid Colon Adenocarcinoma: A Case Report.
Bracanovic, Djurdja; Vukovic, Vesna; Janovic, Aleksa; Radosavljevic, Davorin; Rakocevic, Zoran
2017-05-05
Secondary tumours of the hyoid bone and thyroid cartilage are extremely rare. In this paper, we present a case of the hyoid bone and thyroid cartilage metastases in a patient treated for sigmoid colon adenocarcinoma. Four years after sigmoid colon adenocarcinoma was diagnosed and treated with surgery and chemotherapy, the patient developed bone metastases in the left sacroiliac joint and right proximal humerus. Although the patient did not complain of any related symptoms, in a bone scintigraphy the accumulation of Technetium-99m was incidentally detected in the two sites of the anterior neck. On ultrasound examination there were two hyperechoic and heterogeneous masses with calcifications placed in front of the hyoid bone and thyroid cartilage. Computerized tomography demonstrated massive hyoid bone and thyroid cartilage destruction. In patients with progressive sigmoid colon adenocarcinoma, destruction of the hyoid bone and thyroid cartilage could be suspected for metastases.
Lentle, B C; Russell, A S; Percy, J S; Scott, J R; Jackson, F I
1976-03-01
Use of modern materials and methods has given bone scintiscanning a larger role in clinical medicine, The safety and ready availability of newer agents have led to its greater use in investigating both benign and malignant disease of bone and joint. Present evidence suggests that abnormal accumulation of 99mTc-polyphosphate and its analogues results from ionic deposition at crystal surfaces in immature bone, this process being facilitated by an increase in bone vascularity. There is, also, a component of matrix localization. These factors are in keeping with the concept that abnormal scintiscan sites represent areas of increased osteoblastic activity, although this may be an oversimplification. Increasing evidence shows that the bone scintiscan is more sensitive than conventional radiography in detecting focal disease of bone, and its ability to reflect the immediate status of bone further complements radiographic findings. The main limitation of this method relates to nonspecificity of the results obtained.
Xie, Qing-tiao; Huang, Xuan-ping; Jiang, Xian-fang; Yang, Yuan-yuan; Li, Hua; Lin, Xi
2013-08-01
To evaluate the clinical effect of joint reconstruction by using autogenous coronoid process graft to treat temporomandibular joint(TMJ) ankylosis. Nine cases of TMJ ankylosis from September 2008 to September 2010 were surgically treated by joint reconstruction with autogenous coronoid process graft, using autogenous articular disc or prosthodontic membrane as interpositional material. Mouth opening, occlusion and cone beam CT(CBCT) were used for evaluation before and after surgery. Satisfactory mouth opening was achieved in all patients and no one got occlusal changes or reankylosis during follow-up. CBCT showed that coronoid process graft reached bone union with the ramus and turned to be round. It is effective to cure TMJ ankylosis through joint reconstruction with autogenous coronoid process graft.
Sgariglia, Federica; Candela, Maria Elena; Huegel, Julianne; Jacenko, Olena; Koyama, Eiki; Yamaguchi, Yu; Pacifici, Maurizio; Enomoto-Iwamoto, Motomi
2014-01-01
Long bones are integral components of the limb skeleton. Recent studies have indicated that embryonic long bone development is altered by mutations in Ext genes and consequent heparan sulfate (HS) deficiency, possibly due to changes in activity and distribution of HS-binding/growth plate-associated signaling proteins. Here we asked whether Ext function is continuously required after birth to sustain growth plate function and long bone growth and organization. Compound transgenic Ext1f/f;Col2CreERT mice were injected with tamoxifen at postnatal day 5 (P5) to ablate Ext1 in cartilage and monitored over time. The Ext1-deficient mice exhibited growth retardation already by 2 weeks post-injection, as did their long bones. Mutant growth plates displayed a severe disorganization of chondrocyte columnar organization, a shortened hypertrophic zone with low expression of collagen X and MMP-13, and reduced primary spongiosa accompanied, however, by increased numbers of TRAP-positive osteoclasts at the chondro-osseous border. The mutant epiphyses were abnormal as well. Formation of a secondary ossification center was significantly delayed but interestingly, hypertrophic-like chondrocytes emerged within articular cartilage, similar to those often seen in osteoarthritic joints. Indeed, the cells displayed a large size and round shape, expressed collagen X and MMP-13 and were surrounded by an abundant Perlecan-rich pericellular matrix not seen in control articular chondrocytes. In addition, ectopic cartilaginous by EXT mutations and HS deficiency. In sum, the data do show that Ext1 is continuously required for postnatal growth and organization of long bones as well as their adjacent joints. Ext1 deficiency elicits defects that can occur in human skeletal conditions including trabecular bone loss, osteoarthritis and HME. PMID:23958822
Treatment of aneurysmal bone cysts of the pelvis and sacrum.
Papagelopoulos, P J; Choudhury, S N; Frassica, F J; Bond, J R; Unni, K K; Sim, F H
2001-11-01
Aneurysmal bone cysts are benign, non-neoplastic, highly vascular bone lesions. The purpose of this study was to describe the prevalence, the clinical presentation, and the recurrence rate of aneurysmal bone cysts of the pelvis and sacrum and to examine the diagnostic and therapeutic options and prognosis for patients with this condition. Forty consecutive patients with an aneurysmal bone cyst of the pelvis and/or sacrum were treated from 1921 to 1996. Their medical records and radiographic and imaging studies were reviewed, and histological sections from the cysts were examined. Seventeen lesions were iliosacral, sixteen were acetabular, and seven were ischiopubic. Seven involved the hip joint, and two involved the sacroiliac joint. All twelve sacral lesions extended to more than one sacral segment and were associated with neurological signs and symptoms. Destructive acetabular lesions were associated with pathological fracture in five patients and with medial migration of the femoral head, hip subluxation, and hip dislocation in one patient each. The mean duration of follow-up was thirteen years (range, three to fifty-three years). Thirty-five patients who were initially treated for a primary lesion had surgical treatment (twenty-one had excision-curettage and fourteen had intralesional excision); two patients also had adjuvant radiation therapy. Of the thirty-five patients, five (14%) had a local recurrence noted less than eighteen months after the operation. Of five patients initially treated for a recurrent lesion, one had a local recurrence. At the latest follow-up examination, all forty patients were disease-free and twenty-eight (70%) were asymptomatic. There were two deep infections. Aneurysmal bone cysts of the pelvis and sacrum are usually aggressive lesions associated with substantial bone destruction, pathological fractures, and local recurrence. Current management recommendations include preoperative selective arterial embolization, excision-curettage, and bone-grafting.
Geven, Edwin J W; van den Bosch, Martijn H J; Di Ceglie, Irene; Ascone, Giuliana; Abdollahi-Roodsaz, Shahla; Sloetjes, Annet W; Hermann, Sven; Schäfers, Michael; van de Loo, Fons A J; van der Kraan, Peter M; Koenders, Marije I; Foell, Dirk; Roth, Johannes; Vogl, Thomas; van Lent, Peter L E M
2016-10-24
Seronegative joint diseases are characterized by a lack of well-defined biomarkers since autoantibodies are not elevated. Calprotectin (S100A8/A9) is a damage-associated molecular pattern (DAMP) which is released by activated phagocytes, and high levels are found in seronegative arthritides. In this study, we investigated the biomarker potential of systemic and local levels of these S100 proteins to assess joint inflammation and joint destruction in an experimental model for seronegative arthritis. Serum levels of S100A8/A9 and various cytokines were monitored during disease development in interleukin-1 receptor antagonist (IL-1Ra) -/- mice using ELISA and multiplex bead-based immunoassay, and were correlated to macroscopic and microscopic parameters for joint inflammation, bone erosion, and cartilage damage. Local expression of S100A8 and S100A9 and matrix metalloproteinase (MMP)-mediated cartilage damage in the ankle joints were investigated by immunohistochemistry. In addition, local S100A8 and activated MMPs were monitored in vivo by optical imaging using anti-S100A8-Cy7 and AF489-Cy5.5, a specific tracer for activated MMPs. Serum levels of S100A8/A9 were significantly increased in IL-1Ra -/- mice and correlated with macroscopic joint swelling and histological inflammation, while serum levels of pro-inflammatory cytokines did not correlate with joint swelling. In addition, early serum S100A8/A9 levels were prognostic for disease outcome at a later stage. The increased serum S100A8/A9 levels were reflected by an increased expression of S100A8 and S100A9 within the ankle joint, as visualized by molecular imaging. Next to inflammatory processes, serum S100A8/A9 also correlated with histological parameters for bone erosion and cartilage damage. In addition, arthritic IL-1Ra -/- mice with increased synovial S100A8 and S100A9 expression showed increased cartilage damage that coincided with MMP-mediated neoepitope expression and in vivo imaging of activated MMPs. Expression of S100A8 and S100A9 in IL-1Ra -/- mice strongly correlates with synovial inflammation, bone erosion, and cartilage damage, underlining the potential of S100A8/A9 as a systemic and local biomarker in seronegative arthritis not only for assessing inflammation but also for assessing severity of inflammatory joint destruction.
Kawcak, Chris E; Frisbie, David D; McIlwraith, C Wayne
2011-06-01
To evaluate effects of extracorporeal shock wave therapy (ESWT) and polysulfated glycosaminoglycan treatment (PSGAGT) on subchondral bone (SCB), serum biomarkers, and synovial fluid biomarkers in horses with induced osteoarthritis. 24 healthy 2- to 3-year-old horses. An osteochondral fragment was created on the distal aspect of the radial carpal bone in 1 middle carpal joint of each horse. Horses were randomly allocated to receive local application of ESWT (days 14 and 28; n = 8), PSGAGT (IM, q 4 d for 28 days; 8), or a sham ESWT probe (placebo; days 14 and 28; 8). Serum biomarkers were measured every 7 days, and synovial fluid biomarkers were measured every 14 days. Bone density was measured by use of computed tomography on days 0 and 70, and microdamage and bone formation variables were compared among groups at the end of the study (day 70). There was no significant effect of ESWT or PSGAGT on any bone variable. Serum osteocalcin concentration was significantly greater in horses that received ESWT, compared with placebo-treated horses, and serum concentration of the C-terminal telopeptide of type I collagen was significantly higher in horses that received ESWT, compared with placebo- and PSGAG-treated horses. Concentrations of the synovial fluid epitope CS846 were significantly higher in joints with osteoarthritis treated with ESWT CONCLUSIONS AND CLINICAL RELEVANCE: Treatment of osteoarthritis with ESWT had no effect on SCB but did induce increases in serum biomarkers indicative of bone remodeling. Treatment of osteoarthritis with PSGAG had no effect on SCB or biomarkers.
Bonnan, Matthew F; Sandrik, Jennifer L; Nishiwaki, Takahiko; Wilhite, D Ray; Elsey, Ruth M; Vittore, Christopher
2010-12-01
In nonavian dinosaur long bones, the once-living chondroepiphysis (joint surface) overlay a now-fossilized calcified cartilage zone. Although the shape of this zone is used to infer nonavian dinosaur locomotion, it remains unclear how much it reflects chondroepiphysis shape. We tested the hypothesis that calcified cartilage shape reflects the overlying chondroepiphysis in extant archosaurs. Long bones with intact epiphyses from American alligators (Alligator mississippiensis), helmeted guinea fowl (Numida meleagris), and juvenile ostriches (Struthio camelus) were measured and digitized for geometric morphometric (GM) analyses before and after chondroepiphysis removal. Removal of the chondroepiphysis resulted in significant element truncation in all examined taxa, but the amount of truncation decreased with increasing size. GM analyses revealed that Alligator show significant differences between chondroepiphysis shape and the calcified cartilage zone in the humerus, but display nonsignificant differences in femora of large individuals. In Numida, GM analysis shows significant shape differences in juvenile humeri, but humeri of adults and the femora of all guinea fowl show no significant shape difference. The juvenile Struthio sample showed significant differences in both long bones, which diminish with increasing size, a pattern confirmed with magnetic resonance imaging scans in an adult. Our data suggest that differences in extant archosaur long bone shape are greater in elements not utilized in locomotion and related stress-inducing activities. Based on our data, we propose tentative ranges of error for nonavian dinosaur long bone dimensional measurements. We also predict that calcified cartilage shape in adult, stress-bearing nonavian dinosaur long bones grossly reflects chondroepiphysis shape.
In Vivo Measurement of Glenohumeral Joint Contact Patterns
NASA Astrophysics Data System (ADS)
Bey, Michael J.; Kline, Stephanie K.; Zauel, Roger; Kolowich, Patricia A.; Lock, Terrence R.
2009-12-01
The objectives of this study were to describe a technique for measuring in-vivo glenohumeral joint contact patterns during dynamic activities and to demonstrate application of this technique. The experimental technique calculated joint contact patterns by combining CT-based 3D bone models with joint motion data that were accurately measured from biplane x-ray images. Joint contact patterns were calculated for the repaired and contralateral shoulders of 20 patients who had undergone rotator cuff repair. Significant differences in joint contact patterns were detected due to abduction angle and shoulder condition (i.e., repaired versus contralateral). Abduction angle had a significant effect on the superior/inferior contact center position, with the average joint contact center of the repaired shoulder 12.1% higher on the glenoid than the contralateral shoulder. This technique provides clinically relevant information by calculating in-vivo joint contact patterns during dynamic conditions and overcomes many limitations associated with conventional techniques for quantifying joint mechanics.
Qi, Yue-Feng; Chen, Fa-Lin; Bao, Shu-Ren; Li, Cheng-Huan; Zhao, Xing-Wei; Liu, Shi-Ming; Chen, Wen-Xue; Li, Ye; Wang, Peng
2012-08-01
To explore therapeutic effects of bone setting manipulation for the treatment of over degree II supination-eversion fractures of ankle,and analyze manipulative reduction mechanism. From 2005 to 2008, 95 patients with over degree II supination-eversion fractures of ankle were treated respectively by manipulation and operation. There were 43 cases [11 males and 32 females with an average age of (44.95 +/- 12.65) years] in manipulation group, and 2 cases were degree II, 11 cases were degree III, and 30 cases were degree IV. There were 52 cases [21 males and 31 females with an average age of (39.96 +/- 13.28) years] in operative group,and 6 cases were degree II, 18 cases were degree III, and 28 cases were degree IV. Bone setting manipulation and hard splint external fixation were applied to manipulative group. Operative reduction internal fixation was performed in operative group. X-ray was used to evaluate reduction of fracture before and after treatment, 2 months after treatment. Ankle joint function was evaluated according to Olerud-Molander scoring system after 6 months treatment. All patients were followed up with good reduction. Three cases occurred wound complication in operative group, but not in manipulative group. In manipulation group, 19 cases got excellent results, 20 cases good and 4 cases fair; while in operative group, 30 cases got excellent results, 20 cases good and 2 cases poor. There were no significant differences in fracture reduction and ankle joint function recovery between two groups (P > 0.05). Efficacy of operative treatment was better than that of manipulative treatment at degree IV fracture (P < 0.05). Bone setting manipulation is a good method for treating supination-eversion ankle joint fractures, which has advantages of simple and safe operation, reliable efficacy. For ankle join fracture at degree IV, manipulative reduction should be adopted earlier, and operative treatment also necessary
Zhang, Ping; Yu, Kai Hu; Guo, Rui Min; Ran, Jun; Liu, Yao; Morelli, John; Runge, Val M; Li, Xiao Ming
2016-08-01
To evaluate the diagnostic value of spectral computed tomography (CT) of sacroiliac joints for axial spondyloarthritis (SpA). We retrospectively analyzed the records of 125 patients with low back pain (LBP) suspected of having SpA. Each patient underwent sacroiliac joint spectral CT examination. Water- and calcium-based material decomposition images were reconstructed. After 3-6 months of follow-up, 76 were diagnosed with SpA, and the remaining 49 patients were diagnosed with nonspecific LBP (nLBP). The slope of sacroiliac bone marrow HU (Hounsfield unit) curve (λHU), CT value, and bone marrow to normal muscle ratios of water and calcium concentrations in the ilium and sacrum were calculated and compared between nLBP and SpA patients. The iliac λHU was 8.26 ± 3.91 for nLBP and 9.81 ± 4.92 for SpA. The mean iliac ratios of water and calcium concentrations were 1.04 ± 0.03 and 21.67 ± 4.40, respectively, for nLBP, and 1.07 ± 0.04 and 111.5 ± 358.98, respectively, for SpA. The mean iliac CT values were 311.12 ± 86.52 HU for nLBP and 423.97 ± 127.51 HU for SpA. There were statistically significant differences in iliac ratios of water and calcium concentrations, CT value, and λHU between nLBP and SpA patients (p < 0.05). The sensitivity of iliac λHU was the highest. The diagnostic odds ratio of ratio of iliac calcium concentration was the highest, and its negative likelihood ratio was the lowest. Spectral CT not only shows bone erosion and sclerosis, but also shows and quantitatively measures bone marrow edema in the sacroiliac joints of SpA patients. Copyright © 2015. Published by Elsevier B.V.
Repair of articular osteochondral defects of the knee joint using a composite lamellar scaffold.
Lv, Y M; Yu, Q S
2015-04-01
The major problem with repair of an articular cartilage injury is the extensive difference in the structure and function of regenerated, compared with normal cartilage. Our work investigates the feasibility of repairing articular osteochondral defects in the canine knee joint using a composite lamellar scaffold of nano-ß-tricalcium phosphate (ß-TCP)/collagen (col) I and II with bone marrow stromal stem cells (BMSCs) and assesses its biological compatibility. The bone-cartilage scaffold was prepared as a laminated composite, using hydroxyapatite nanoparticles (nano-HAP)/collagen I/copolymer of polylactic acid-hydroxyacetic acid as the bony scaffold, and sodium hyaluronate/poly(lactic-co-glycolic acid) as the cartilaginous scaffold. Ten-to 12-month-old hybrid canines were randomly divided into an experimental group and a control group. BMSCs were obtained from the iliac crest of each animal, and only those of the third generation were used in experiments. An articular osteochondral defect was created in the right knee of dogs in both groups. Those in the experimental group were treated by implanting the composites consisting of the lamellar scaffold of ß-TCP/col I/col II/BMSCs. Those in the control group were left untreated. After 12 weeks of implantation, defects in the experimental group were filled with white semi-translucent tissue, protruding slightly over the peripheral cartilage surface. After 24 weeks, the defect space in the experimental group was filled with new cartilage tissues, finely integrated into surrounding normal cartilage. The lamellar scaffold of ß-TCP/col I/col II was gradually degraded and absorbed, while new cartilage tissue formed. In the control group, the defects were not repaired. This method can be used as a suitable scaffold material for the tissue-engineered repair of articular cartilage defects. Cite this article: Bone Joint Res 2015;4:56-64. ©2015 The British Editorial Society of Bone & Joint Surgery.
Automated muscle wrapping using finite element contact detection.
Favre, Philippe; Gerber, Christian; Snedeker, Jess G
2010-07-20
Realistic muscle path representation is essential to musculoskeletal modeling of joint function. Algorithms predicting these muscle paths typically rely on a labor intensive predefinition of via points or underlying geometries to guide wrapping for given joint positions. While muscle wrapping using anatomically precise three-dimensional (3D) finite element (FE) models of bone and muscle has been achieved, computational expense and pre-processing associated with this approach exclude its use in applications such as subject-specific modeling. With the intention of combining advantageous features of both approaches, an intermediate technique relying on contact detection capabilities of commercial FE packages is presented. We applied the approach to the glenohumeral joint, and validated the method by comparison against existing experimental data. Individual muscles were modeled as a straight series of deformable beam elements and bones as anatomically precise 3D rigid bodies. Only the attachment locations and a default orientation of the undeformed muscle segment were pre-defined. The joint was then oriented in a static position of interest. The muscle segment free end was then moved along the shortest Euclidean path to its origin on the scapula, wrapping the muscle along bone surfaces by relying on software contact detection. After wrapping for a given position, the resulting moment arm was computed as the perpendicular distance from the line of action vector to the humeral head center of rotation. This approach reasonably predicted muscle length and moment arm for 27 muscle segments when compared to experimental measurements over a wide range of shoulder motion. Artificial via points or underlying contact geometries were avoided, contact detection and multiobject wrapping on the bone surfaces were automatic, and low computational cost permitted wrapping of individual muscles within seconds on a standard desktop PC. These advantages may be valuable for both general and subject-specific musculoskeletal modeling. 2010 Elsevier Ltd. All rights reserved.
Raffeiner, Bernd; Grisan, Enrico; Botsios, Costantino; Stramare, Roberto; Rizzo, Gaia; Bernardi, Livio; Punzi, Leonardo; Ometto, Francesca; Doria, Andrea
2017-08-01
To investigate power Doppler (PD) signal, grade and location and their association with radiographic progression in RA patients in remission. A prospective observational study was conducted in 125 consecutive RA patients in stable 28-joint DAS (DAS28) remission (⩾6 months) achieved on anti-TNF-α. At baseline, patients in stable remission underwent radiographic and US examination of the wrists and MCP, PIP and MTP joints. Semi-quantitative PD scoring (0-3) was recorded. We scored PD according to two locations: capsular or within synovial tissue without bone contact (location 1) and with bone contact or penetrating bone cortex (location 2). Radiographic progression was evaluated at the 1 year follow-up and defined as a change in van der Heijde-modified total Sharp score >0. Risk ratios (RRs) of radiographic progression according to presence, grade and location of PD were calculated. Four patients were excluded because of missing data. At baseline, 59/121 (48.7%) patients had a PD signal in one or more joints. PD location 2 was found in 74.6% patients (44/59). At the 1 year follow-up, 17/121 patients experienced radiographic progression: all had PD signal in one or more joints at baseline (RR 2.47, P < 0.0001). Radiographic progression was associated with the following baseline US features: PD grade 2 (RR 4.58, P < 0.01), PD grade 3 (RR 3.49, P < 0.05), total PD score ⩾2 (sum of all PD scores) (RR 3.19, P < 0.0001) and PD location 2 (RR 3.49, P < 0.0001). Higher PD grades and PD in contact with/or penetrating bone are associated with radiographic progression in patients in DAS28 remission. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Winkler, T.; Sass, F. A.; Schmidt-Bleek, K.
2018-01-01
Despite its intrinsic ability to regenerate form and function after injury, bone tissue can be challenged by a multitude of pathological conditions. While innovative approaches have helped to unravel the cascades of bone healing, this knowledge has so far not improved the clinical outcomes of bone defect treatment. Recent findings have allowed us to gain in-depth knowledge about the physiological conditions and biological principles of bone regeneration. Now it is time to transfer the lessons learned from bone healing to the challenging scenarios in defects and employ innovative technologies to enable biomaterial-based strategies for bone defect healing. This review aims to provide an overview on endogenous cascades of bone material formation and how these are transferred to new perspectives in biomaterial-driven approaches in bone regeneration. Cite this article: T. Winkler, F. A. Sass, G. N. Duda, K. Schmidt-Bleek. A review of biomaterials in bone defect healing, remaining shortcomings and future opportunities for bone tissue engineering: The unsolved challenge. Bone Joint Res 2018;7:232–243. DOI: 10.1302/2046-3758.73.BJR-2017-0270.R1.
Gene Expression Analyses of Subchondral Bone in Early Experimental Osteoarthritis by Microarray
Chen, YuXian; Shen, Jun; Lu, HuaDing; Zeng, Chun; Ren, JianHua; Zeng, Hua; Li, ZhiFu; Chen, ShaoMing; Cai, DaoZhang; Zhao, Qing
2012-01-01
Osteoarthritis (OA) is a degenerative joint disease that affects both cartilage and bone. A better understanding of the early molecular changes in subchondral bone may help elucidate the pathogenesis of OA. We used microarray technology to investigate the time course of molecular changes in the subchondral bone in the early stages of experimental osteoarthritis in a rat model. We identified 2,234 differentially expressed (DE) genes at 1 week, 1,944 at 2 weeks and 1,517 at 4 weeks post-surgery. Further analyses of the dysregulated genes indicated that the events underlying subchondral bone remodeling occurred sequentially and in a time-dependent manner at the gene expression level. Some of the identified dysregulated genes that were identified have suspected roles in bone development or remodeling; these genes include Alp, Igf1, Tgf β1, Postn, Mmp3, Tnfsf11, Acp5, Bmp5, Aspn and Ihh. The differences in the expression of these genes were confirmed by real-time PCR, and the results indicated that our microarray data accurately reflected gene expression patterns characteristic of early OA. To validate the results of our microarray analysis at the protein level, immunohistochemistry staining was used to investigate the expression of Mmp3 and Aspn protein in tissue sections. These analyses indicate that Mmp3 protein expression completely matched the results of both the microarray and real-time PCR analyses; however, Aspn protein expression was not observed to differ at any time. In summary, our study demonstrated a simple method of separation of subchondral bone sample from the knee joint of rat, which can effectively avoid bone RNA degradation. These findings also revealed the gene expression profiles of subchondral bone in the rat OA model at multiple time points post-surgery and identified important DE genes with known or suspected roles in bone development or remodeling. These genes may be novel diagnostic markers or therapeutic targets for OA. PMID:22384228